
Robustness for Embedded Machine
Learning Using In-Memory Computing

Priyadarshini Panda, Abhiroop Bhattacharjee, and Abhishek Moitra

1 Introduction

Deep learning has achieved state-of-the-art prediction capabilities across a variety
of cognitive and analytics tasks. This has led to the ubiquitous deployment of Deep
Neural Networks (DNNs) in low power edge devices [1, 2]. For edge computing,
analog crossbar architectures have emerged as a front runner towards low-latency
and energy-efficient acceleration platforms in resource-constrained scenarios. Here,
the synaptic weights of the DNNs are mapped on arrays (crossbars) of Non-
Volatile Memory (NVM) devices, such as Resistive RAM (ReRAM), Phase Change
Memory (PCM), Ferroelectric Field Effect Transistors (FeFET) and so forth [3, 4].
They efficiently perform analog dot-product operations, emulating Multiply and
Accumulate (MAC) operations in DNNs, when input voltages are applied to the
rows of the crossbar.

Despite achieving super-human performance in many computer vision tasks [5],
DNNs have been shown to be vulnerable to adversarial attacks (see Fig. 1). Here,
small and strategically crafted noise in the input can fool the DNN leading to failure
[6–10]. This vulnerability severely limits the deployment and potential safe-use of
DNNs at the edge for real-world applications. To defend against adversarial attacks,
previous works have used two broad approaches: (1) Adversarial classification [11–
15] and (2) Adversarial detection [16–18]. Under adversarial classification, there
have been prior works that have used techniques such as adversarial training, input
feature transformation among others to classify the adversarial samples accurately
[11–15]. In contrast, adversarial detection works focus on identifying clean and
adversarial samples such that the detected adversarial samples are not passed to

P. Panda (�) · A. Bhattacharjee · A. Moitra
Department of Electrical Engineering, Yale University, New Haven, CT, USA
e-mail: priya.panda@yale.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_17

433

 31368 2385 a 31368 2385 a

 885
56845 a 885 56845 a

mailto:priya.panda@yale.edu
mailto:priya.panda@yale.edu
mailto:priya.panda@yale.edu
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17

434 P. Panda et al.

Fig. 1 Adversarial attacks can fool a DNN by adding structured perturbations to clean inputs

the output of the DNN for classification [16–18]. However, these techniques are
software-centric and not hardware-friendly, requiring high computational over-
heads. To this end, recent works such as [10, 19] show that quantization methods,
which primarily reduce compute resource requirements of DNNs, act as a straight-
forward way of improving the adversarial robustness of DNNs. Other works such as
[20, 21] use model compression and pruning techniques to optimize and reduce
computational complexities of DNNs while guaranteeing adversarial robustness.
In [19, 22], efficiency-driven hardware optimization techniques are leveraged to
improve adversarial resilience of DNNs, while yielding energy-efficiency. However,
none of these works has been integrated with a crossbar-based platform (considering
intrinsic crossbar noise) for DNN inference. Vanilla implementation of DNNs
on crossbars, including those trained with software defenses such as adversarial
training, suffers from significant loss in robustness caused by hardware noise [23–
25]. There has been limited study in understanding the robustness of crossbar
implemented DNNs. Thus, we highlight hardware and energy-efficiency driven
works that improve the robustness of DNNs deployed on analog crossbars in
two broad aspects: (1) Improving adversarial robustness and (2) Mitigating the
detrimental effects of crossbar non-idealities on DNNs, thereby ameliorating the
performance (accuracy) of DNNs on crossbars. Note, these works do not pose a
huge overhead of hardware-aware retraining of a pretrained DNN model before
deployment on crossbars.

We begin by discussing two recent works that use analog crossbars and improve
the adversarial robustness of the mapped DNNs. Note, adversarial robustness
implies improving the performance of the hardware-mapped DNN model against
adversarial samples without compromising the classification accuracy of clean
images on hardware. In the first work, we introduce a technique called NEAT [26]
that mitigates the impact of selector-induced non-linearities and resistive crossbar
non-idealities for robust implementation of DNNs on 1T-1R crossbars. Second, we
showcase another work, called DetectX [27], that uses hardware signatures present
in analog crossbar architectures to perform energy-efficient adversarial detection.
While NEAT is tailored for adversarial classification, DetectX is an adversarial
detection method.

Robustness for Embedded Machine Learning Using In-Memory Computing 435

Finally, we delve into a specific case of the inference of DNNs having structured
sparsity in their weights on analog crossbar arrays. Recently, crossbar-aware struc-
tured pruning algorithms [28–31] have received significant attention in developing
increasingly sparse DNN models requiring fewer crossbars to be mapped, thereby
introducing huge savings in terms of crossbar energy and area-efficiencies [32].
However, a holistic evaluation of the performance of such algorithms by considering
the impact of resistive crossbar non-idealities was missing. In this chapter, we
highlight a recent work [33] which shows that increased structured sparsity in DNNs
negatively interferes with crossbar non-idealities that can degrade their classification
accuracy (or robustness) during inference. This work also introduces two hardware-
centric non-ideality mitigation strategies, namely crossbar-column rearrangement
and Weight-Constrained-Training (WCT), to help improve the performance or
robustness of the sparse DNNs on crossbars.

This chapter is organized as follows. Section 2 explains the background on
adversarial attacks, memristive crossbars and non-idealities. In Sect. 3, we discuss
the NEAT technique that introduces a non-ideality control technique which causes
a rise in adversarial robustness. Section 4 introduces the DetectX technique that
performs energy signature separation for adversarial detection. Section 5 explains
the impact of structured sparsity in DNNs and their interaction with non-ideal
crossbars. Section 6 gives an overview of related works and scopes out different
crossbar-based studies with different objectives. Finally, we conclude in Sect. 7.

2 Background

2.1 Adversarial Attacks

Adversarial samples are created by generating a crafted noise and adding it to the
clean data samples. In this chapter, we discuss two widely used methods to generate
the noise for creating adversarial attacks.

1. Fast Gradient Sign Method (FGSM) [6] is a one-step gradient-based attack
shown in Eq. (1). To generate the noise, first, the gradients of the DNN loss
.L(θ, x, ytrue) with respect to the input x are calculated. Here, . θ represents
the parameters of the DNN and .ytrue represents the labels of the input data.
Then, a .sign() operation converts the gradients into unit directional vectors.
The unit vector is multiplied by a scalar perturbation value, . ε, that determines
the strength of the attack. Finally, the perturbation vector is added to the input
x to create an adversarial data. Note that perturbations are added to x along the
direction of the gradients to maximize DNN loss . L.

.xadv = x + ε sign(∇x(L(θ, x, ytrue))) (1)

436 P. Panda et al.

2. Projected Gradient Descent (PGD): The PGD attack, shown in Eq. (2) is an
iterative attack over n steps. It is basically a multi-step variant of the FGSM
attack. In each step i, perturbations of strength . α are added to .xi−1

adv . Note that
.x0

adv is created by adding random noise to the clean input x. Additionally, for
each step, .xi

adv is projected on a Norm ball [8], of radius . ε. In this chapter,
the .L∞ Norm ball (of radius . ε) projection is used for all the PGD attacks. In
other words, we ensure that the maximum pixel difference between the clean
and adversarial inputs is . ε.

.xadv =
n∑

i=1

xi−1
adv + α sign(∇xL(θ, x, ytrue)) (2)

2.2 Memristive Crossbars and Their Non-idealities and
Non-linearities

Memristive crossbar arrays have been used to implement MAC operations in
an analog manner. Crossbars consist of 2D arrays of NVM devices, Digital-to-
Analog Converters (DAC), Analog-to-Digital Converters (ADC) and a write circuit.
The synaptic devices at the cross-points are programmed to a particular value of
conductance (between .GMIN and .GMAX) during inference. The MAC operations
are performed by converting the digital inputs to the DNN into analog voltages on
the Read Wordlines (RWLs) using DACs, and sensing the output current flowing
through the bit-lines (BLs) using the ADCs [23, 34–38]. In other words, the
activations of the DNNs are mapped as analog voltages . Vi input to each row and
weights are programmed as synaptic device conductances (. Gij) at the cross-points
as shown in Fig. 2a. For an ideal crossbar array, during inference, the voltages
interact with the device conductances and produce a current (governed by Ohm’s
Law). Consequently, by Kirchhoff’s current law, the net output current sensed
at each column j is the sum of currents through each device, i.e. . Ij (ideal) =
ΣiGij ∗ Vi . We term the matrix .Gideal as the collection of all . Gij ’s for a crossbar
instance. However, in reality, the analog nature of the computation leads to various
hardware noise or non-idealities, such as, circuit-level resistive non-idealities and
device-level variations [23, 34, 36, 37, 39–43].

Non-idealities: Fig. 2b describes the equivalent circuit for a crossbar accounting
for various circuit-level and device-level non-idealities, viz. Rdriver , .Rwire_row,
.Rwire_col and Rsense (interconnect parasitics), modelled as parasitic resistances
and variations in the synapses owing to the stochasticity of the memristive devices.
This results in a .Gnon-ideal matrix, with each element .G′

ij incorporating the effect
due to the non-idealities, obtained using circuit laws (Kirchhoff’s laws and Ohm’s
law) and linear algebraic operations [23, 24, 33, 39, 44]. Consequently, the net output
current sensed at each column j becomes .Ij (non-ideal) = ΣiG

′
ij ∗ Vi , which deviates

Robustness for Embedded Machine Learning Using In-Memory Computing 437

Fig. 2 (a) A .2 × 2 crossbar array with input voltages . Vi , synaptic conductances .Gij and output
currents .Ij = ∑

i Gij ∗ Vi . (b) A .2 × 2 crossbar array with the resistive and the synaptic device-
level non-idealities. These non-idealities lead to imprecise dot-product currents and that manifests
as accuracy degradation when DNNs are evaluated on crossbars

from its ideal value. This manifests as accuracy degradation for DNNs mapped onto
crossbars. The relative deviation of .Inon-ideal from its ideal value is measured using
non-ideality factor (NF) [34] as:

.NF = (Iideal − Inon-ideal)/Iideal . (3)

Thus, NF is a direct measure of crossbar non-idealities, i.e. increased non-
idealities induce a greater value of NF, affecting the accuracy and hence, the
robustness of the DNNs mapped onto them. All the analyses in Sects. 3 and 5
involving non-idealities are performed on memristive crossbars with an ON/OFF
ratio of 10 (i.e. .RMIN = 30 kΩ and .RMAX = 300 kΩ), having the resistive non-
idealities as follows: .Rdriver = 1 kΩ , .Rwire_row = 5Ω , . Rwire_col = 10Ω

and .Rsense = 1 kΩ . The non-ideality in the memristive devices in the form of
device-level process variation has been modelled as a Gaussian variation in the
conductances (. GM) of the NVM devices with .σ/μ = 10% [45].

Recently, 1T-1R NVM crossbars have received significant attention since the
pass-transistor in series with the NVM device at the synapses can help mitigate
sneak paths (prevalent in 1R crossbar arrays) and the incorrect programming of the
NVM device induced by noise [46, 47]. Figure 3 illustrates an .M × N crossbar
having 1T-1R synapses at the cross-points wherein, the access transistors are driven
by a gate-voltage (. Vg) fed through the select-lines (SLs). A low . Vg operation is
favorable for implementing a DNN on crossbars in a resource-constrained scenario
as it has been shown in prior works [26] that the total power dissipated by a 1T-
1R crossbar array diminishes with reduction of the transistor gate-voltage (. Vg).
However, it is imperative to understand the other repercussions of low . Vg operation
in 1T-1R crossbars that impact the performance and hence, robustness of the mapped
DNN models.

438 P. Panda et al.

Fig. 3 Illustration of an M . × N 1T-1R Crossbar. A Transistor (T) in series with an NVM device
(R) is present at every synapse. Select-lines (SLs) are used to turn on transistors for selected rows,
while the dot-product currents are sensed through the bit-lines (BLs)

Non-linearities: In addition to the above-mentioned non-idealities, 1T-1R cross-
bars are susceptible to various non-linearities that affect the effective conductance
of each synapse (especially, at lower . Vg) and hence, the output current across
each column in a crossbar array. This would manifest as accuracy degradation
for the DNNs mapped onto such crossbars. In [26], to understand the effects of
the non-linearities alone on introducing the access transistor (or selector) in the
synapse, extensive SPICE simulations were performed using the 1T-1R synaptic
configuration with different input voltages, conductances and . Vg ranges excluding
the circuit-level and device-level non-idealities. For all the analyses involving 1T-1R
synapses, the selector devices were based on 45 nm CMOS technology model and
the memristive device had .RON = 30 kΩ and .ROFF = 300 kΩ .

For a crossbar in the 1R configuration, the weights W of the DNN are directly
mapped to a memristor conductance state (.GM = 1/RM) in a linear fashion. On the
other hand, in the 1T-1R configuration, W is mapped to the effective conductance
.Geff = 1/(RM + Rt), where . Rt is the equivalent resistance due to the transistor.
The non-linearities in the 1T-1R crossbars arise due to the dependence of . Rt on . Vin.
Note, . Vin is proportional to the neuronal activation values of the DNN which varies
with the input. Hence, these are data-dependent non-linearities. It has been shown

Robustness for Embedded Machine Learning Using In-Memory Computing 439

in [26] that the effective conductance .Geff is a function of NVM conductance . GM ,
input voltage . Vin, and gate-voltage . Vg , which can be formulated as:

.Geff = f1(GM, Vin, Vg). (4)

3 Non-linearity Aware Training (NEAT): Mitigating the
Impact of Crossbar Non-idealities and Non-linearities for
Robust DNN Implementations

In this section, the NEAT technique is introduced that provides a new perspective on
the energy-efficient and robust implementation of DNNs on 1T-1R crossbars [26].
It begins with the identification of a range of memristive conductances over a range
of input voltages via SPICE simulations such that Eq. (4) can be approximated as:

.Geff = f2(GM, Vg). (5)

This eliminates the input-data dependency of the effective 1T-1R synaptic
conductance (.Geff) for a given value of . Vg of transistor operation. In other words,
for a given value of . Vg , there exists an upper bound cut-off value (.Geff cutoff)
for which the 1T-1R synapse exhibits linear characteristics, and .GM ≈ k ∗ Geff ,
where k is a scalar. The corresponding NVM device state at .Geff cutoff is termed as
.GM cutoff . Figure 4 shows the .GM cutoff vs. . Vg plot for supply voltage . Vsupply =
0.25V, 0.5V and .Vin in the range .0 ≤ Vin ≤ Vsupply . It can be seen that as . Vg

is lowered (for resource-constrained scenarios), the overall range of memristive
conductance states .GM for data-independent and linear synaptic characteristics
decreases owing to low values of .GM cutoff .

Fig. 4 The variation in .GM cutoff with respect to selector gate-voltage .Vg

440 P. Panda et al.

Fig. 5 Overall flow of NEAT

After identifying .Geff cutoff for a given . Vg , the corresponding value for .Wcut is
obtained for the software DNN which is to be mapped onto the 1T-1R crossbars.
Then, all the weights (W) of the pretrained DNN are restricted in the interval
.[−Wcut ,Wcut] as shown in Eq. (6):

.Wmap =

⎧
⎪⎪⎨

⎪⎪⎩

W |W | ≤ Wcut

Wcut W > Wcut

−Wcut W < −Wcut .

(6)

From Eq. (6), we observe that for the linear regime (.|W | ≤ Wcut , which
corresponds to .Geff ≈ k ∗ GM), the software weight parameters can be mapped
linearly onto the crossbars. While, for the non-linear regime (.|W | > Wcut that
corresponds to deviation of .Geff from . GM), W is clipped at .Wcut . The objective
of NEAT is to restrict the weight parameters to be within the linear regime for
the given gate-voltage . Vg of the transistor, thereby curbing loss in computational
accuracy post-mapping DNNs onto 1T-1R crossbars. Figure 5 illustrates the overall
flow of the NEAT process.

Iterative Training: In NEAT, after setting the optimal . Vg and .Wcut values, the
weights of the DNN get transformed. If we use lower values of . Vg which do not
cover all weight ranges, the weight distribution gets altered, resulting in accuracy
degradation. To address this issue, iterative training is proposed which consists of
two steps. Step 1 is essentially restricting the weights of the DNN (W) in the suitable
cut-off regime as per Eq. (6). Step 2 involves retraining the networks iteratively for
a couple of epochs to recover any accuracy loss incurred from Step 1. These two
steps are repeated so that greater number of weights in the network can be located
in the linear regime when mapped onto crossbars.

In Fig. 6, . Vg is varied from .0.75V to .1.0 and the classification accuracy of
various DNN architectures using CIFAR10 and CIFAR100 datasets is reported.
The results show that low . Vg induces low .Wcut and in turn decreases performance

Robustness for Embedded Machine Learning Using In-Memory Computing 441

Fig. 6 Classification accuracy of various NEAT-based DNN models with .Vg varied from
.0.75V to . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d)
ResNet18/CIFAR100

when DNN weights are restricted to .Wcut regime. However, using iterative training
recovers the performance degradation. Especially, for a ResNet18 architecture,
using iterative training shows improvement over 50% in terms of accuracy at
.Vg = 0.75V . Moreover, with iterative training, VGG11 and ResNet18 networks
almost maintain their classification accuracy in the range of .Vg = [0.85, 1.0] and
.Vg = [0.8, 1.0], respectively. In this manner, NEAT helps in the hardware-aware
robust mapping of DNN architectures on 1T-1R crossbar with minimal training
overheads.

In addition to maintaining DNN performance in presence of 1T-1R non-
linearities, NEAT ensures energy-efficient inference with DNNs, specifically in
the low . Vg scenario. When NEAT technique is applied at low . Vg values, we have
lower absolute values of .Geff cutoff and hence, .Wcut . This implies that for crossbars
operating at lower . Vg values, we would find greater proportion of low conductance
synapses post mapping of DNN weights onto the 1T-1R crossbars. This helps

442 P. Panda et al.

Fig. 7 Normalized energy gain for various NEAT-based DNN models with . Vg varied from
.0.75V to . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d)
ResNet18/CIFAR100

minimise the power dissipated in the crossbar arrays by reducing crossbar-column
currents. In Fig. 7, we present the energy-efficiency of various DNN configurations
with NEAT. The energy computed for .Vg = 1.0V is taken as baseline against
which energy gains (%) for other values of . Vg are shown. NEAT achieves high
energy gain by simply reducing . Vg . Especially, we can achieve . ∼23% energy gain
at .Vg = 0.8V on ResNet18 architecture with CIFAR10 while suffering minimal
accuracy loss (. ∼1.5% in Fig. 6). However, selecting a very low value for . Vg such as
.Vg = 0.75V induces huge performance degradation.

Having mapped DNNs via NEAT in an energy-efficient manner onto 1T-1R
crossbars and mitigating the impact of synaptic non-linearities, we now study the
impact of crossbar non-idealities (enlisted in Sect. 2.2) on the robustness of NEAT-
DNNs. Note, we would use the term “NEAT-DNN” to denote a DNN trained using
NEAT and mapped onto 1T-1R crossbars, while the term ‘Normal-DNN’ would

Robustness for Embedded Machine Learning Using In-Memory Computing 443

refer to standard DNNs mapped directly onto 1R crossbars with non-idealities (the
baseline). Henceforth, all experiments in Sect. 3 involving crossbar arrays would
include the crossbar non-idealities.

It has been shown that the value of NF in crossbars decreases with increase in the
effective resistance of a crossbar array, which minimizes the effect of interconnect
resistive non-idealities [26, 33, 34, 44]. By increasing the proportion of lower
conductance synapses in a crossbar array, one can reduce the impact of crossbar
non-idealities and hence, the non-ideality factor. When NEAT technique is applied
at low . Vg values, we have a greater proportion of low conductance synapses post
mapping of DNN weights onto the 1T-1R crossbars. Hence, NF is expected to
be lower in the case of low . Vg operation of crossbars. Furthermore, the value of
NF for DNNs mapped onto 1T-1R crossbars via NEAT would be lesser than the
value of NF for standard DNNs mapped onto 1R crossbars (the baseline). Since,
NEAT boosts the feasibility of low conductance synapses and reduces the impact
of crossbar non-idealities, NEAT-DNNs are more robust both in terms of clean and
adversarial accuracies than the baseline Normal-DNNs.

Modes of adversarial attack: For unleashing adversarial attacks (FGSM/PGD)
on the crossbar-mapped models of the DNNs, consider two modes:

1. Software-inputs-on-hardware (SH) mode where, the adversarial perturba-
tions for each attack are created using the loss function of the software DNN
model normally trained without applying the NEAT technique, and then added
to the clean input that yields the adversarial input. The generated adversaries
are then fed to the crossbar-mapped DNN. This a case of Black-Box adversarial
attack on hardware.

2. Hardware-inputs-on-hardware (HH) mode where, the adversarial inputs are
generated for each attack using the loss from the crossbar-based hardware
models. It is evident that HH perturbations will incorporate the effect of intrinsic
hardware non-idealities and thus will cast stronger attacks than SH. This is a
case of White-Box adversarial attack on hardware.

Results for robustness in terms of clean and adversarial accuracies: Here, we
evaluate robustness of the DNNs on non-ideal crossbars graphically as shown
in Fig. 8 by plotting ‘robustness maps’ as has been proposed in [26, 44]. Note,
the NEAT-DNNs are shown for .Vg = 0.8V . This approach to assess robust-
ness of a network has been shown to be comprehensive and accurate since, it
takes into account the cumulative impact of both clean accuracy and adversarial
accuracy (which is a strong function of the clean accuracy). For a specific mode
of attack (SH or HH) and a given crossbar size, we plot .Δ Clean Accuracy,
the difference between clean accuracy of the crossbar-mapped DNN in ques-
tion and the corresponding clean accuracy of its software model, on the x-axis.
.Δ Adversarial Accuracy (for a particular . ε value) which is the difference between
the adversarial accuracy of the mapped network in question and the corresponding
adversarial accuracy of the software model is plotted on the y-axis. The value of
.Δ Clean Accuracy is always negative since DNNs when mapped on hardware
suffer accuracy loss owing to non-idealities. The region bounded by the line .y = −x

444 P. Panda et al.

Fig. 8 (a), (b) Robustness maps for VGG11 DNN using CIFAR10 dataset for SH and HH modes
of FGSM and PGD attacks, respectively

and the y-axis denotes the favorable region and the closer a point is towards this
region, the better is the robustness of the network in question. Likewise, the region
bounded by the line .y = x and the y-axis is the unfavorable region, where the
mapped network is highly vulnerable to adversarial attacks. The favorable and
unfavorable regions have been demarcated Fig. 8a.

Figure 8 shows the robustness maps for DNNs based on VGG11 network with
CIFAR10 dataset for both SH and HH modes of attack. Figure 8a pertains to
FGSM attack with . ε varying from 0.05 to 0.3 with step size of 0.05. We find that
NEAT-DNNs have significantly greater clean accuracy (.∼13% and .∼17% higher for
32 . × 32 and 64 . × 64 crossbars, respectively) as well as better adversarial accuracies
on hardware for both modes of attack. The points corresponding to NEAT-DNNs
are situated closer to the favorable region than the corresponding points for Normal-
DNNs. This is a consequence of the reduction in non-ideality factor in case of
iterative training with NEAT algorithm. Note, the points for 64 . × 64 crossbars
are situated farther from the favorable region than the corresponding points for
32 . × 32 crossbars. This gap is owing to greater non-idealities that exist in case of
a larger 64 . × 64 crossbar than a 32 . × 32 crossbar. However, this gap significantly
decreases for NEAT-DNNs indicating that NEAT greatly reduces the impact of the
crossbar non-idealities on the inference accuracy of the mapped DNNs. In other
words, NEAT-DNNs do not suffer significant accuracy losses on larger crossbars.
We further observe that the points for a NEAT-DNN, given a crossbar size, are more
closely packed than the corresponding points for Normal-DNN. This implies that
even on increasing the attack strength (. ε), lesser adversarial loss is observed for
DNN models on crossbars trained with NEAT algorithm.

Figure 8b also presents similar results but for a strong PGD attack with . ε varying
from 2/255 to 32/255 with step size of 2/255. In this case, the robustness is very high
for SH mode of attack as compared to HH mode of attack, with points corresponding
to NEAT-DNNs situated inside the favorable region for the SH mode. Similar to
the case of FGSM attack, NEAT-DNNs outperform Normal-DNNs in terms of
robustness for both modes of attack. Here, points for different . ε values, given a
style of mapping and crossbar size, are more closely packed than the corresponding

Robustness for Embedded Machine Learning Using In-Memory Computing 445

points of FGSM attack. This implies that hardware non-idealities interfere more
with PGD attacks than FGSM attacks resulting in lesser accuracy loss.

From the above discussion, we find that NEAT-based DNNs are more immune to
the impact of non-idealities and lead to robust implementations on non-ideal 1T-1R
crossbars in addition to higher crossbar energy-efficiencies.

4 DetectX: Improving the Robustness of DNNs Using
Hardware Signatures in Memristive Crossbar Arrays

In this section, we discuss how hardware signatures in memristive crossbar archi-
tectures can be used to detect adversarial attacks in an energy-efficient manner [27].

For detecting adversaries, we use a function called the Sum of Currents (SoI). It
is defined as the absolute value summation of all the feature outputs of a particular
layer as shown in Eq. (7).

.SoIl =
m∑

j=1

|Zj |l (7)

Here, .Zj is the result of the weighted summation outputs of a particular
layer l. This is proportional to the summation of the column current magnitudes
in a memristive crossbar array. Interestingly, as shown in Fig. 9a, we find that
the clean and adversarial SoI distributions of the first layer have an inherent
separation between them. However, due to a significant overlap between the two
distributions, the adversarial detection is low. To this end, we use a dual-phase
training methodology to increase the distance between the SoI distributions and
improve the adversarial detection.

In the first phase of training, we train the first layer of the DNN to increase the
separation between the clean and adversarial SoIs. For this, we use a loss function

Fig. 9 (a) The clean and adversarial SoI distributions at the first layer have an inherent separation
which motivates the use of SoI like hardware signature for adversarial detection. (b) After Phase1
training, the SoI distributions are separated. For both the figures, SoI PGD corresponds to first
layer SoI values for PGD with .ε = 16/255

446 P. Panda et al.

shown in Eq. (8). Here, we scale down the cross-entropy loss .LCE by a small value
(of the order .10−3). The loss function minimizes the distance between the desired
SoI values (. λc and . λa) and the calculated mean of the SoI distributions (.SoIc and
.SoIa).

The Phase1 training effectively increases the distance between the clean and
adversarial SoI distributions as seen in Fig. 9b. At this stage, strong adversarial
attacks are easily detected as a result of large SoI separation. However, weak
attacks are not sufficiently detected as they have small SoI separation with the
clean samples. Note, here strong attacks refer to adversarial attacks with high . L∞
distance (large . ε value) and vice versa. Further, the DNN has very low accuracy on
clean inputs as the cross-entropy loss was significantly scaled down during Phase1
training. To improve the DNN’s accuracy on clean inputs and robustness against
weak adversarial attacks, we employ Phase2 adversarial training.

.L = βLCE + yLMSE(SoIa, λa) + (1 − y)LMSE(SoIc, λc) (8)

In the Phase2 training, we freeze the first layer of the DNN and perform
adversarial training [8, 48] with weak adversarial attacks. Freezing the first layer
weights preserves the SoI separation at the first layer obtained after Phase1
training. Finally, after the dual-phase training, a high clean accuracy is obtained.
Additionally, weak adversarial attacks are suitably classified while strong attacks
are detected.

After the Phase2 training, we create a SoI-Probability Look-Up Table (LUT)
that classifies a given SoI value as a clean or an adversarial sample. As seen in
Fig. 10, we randomly sample a set of clean images from the training set and create
their adversarial counterparts using PGD .ε = 8/255 attack. Then, we compute the
clean and adversarial SoI distributions (. Dc and . Da). Using, . Dc and . Da , we compute
the P(clean) values using Eq. (9). Here, . nc and . na are the number of clean and
adversarial samples, respectively, at a particular SoI value. A high P(clean) value

Fig. 10 The SoI-Probability LUT contains sample SoI values and their corresponding P(clean)
values. It classifies a given SoI sample as clean or adversarial

Robustness for Embedded Machine Learning Using In-Memory Computing 447

Fig. 11 After Phase1 training, some weak adversarial attacks might go undetected. Phase2
adversarial training helps classify the weak adversarial samples that further brings down the error

signifies that a given SoI value corresponds to a clean sample and vice versa. The
SoI-Probability LUT contains sample SoI values and their corresponding P(clean)
values.

.P(Clean) = nc

nc + na

(9)

In Fig. 11, we show the efficacy of the Phase2 training in defending against weak
PGD attacks. For this we plot the error values of a baseline DNN (without DetectX),
a DNN with the first layer subjected to Phase1 training followed by Phase2 training.
Here, error is defined as the amount of adversarial attacks that are undetected and are
misclassified by the DNN. Clearly, most of the weak attacks are suitably detected
after Phase1 training leading to a large drop in the error value. However, Phase 2
adversarial training helps classify the undetected weak attacks correctly leading to
a further drop in error.

We implement the dual-phase trained DNN on an analog crossbar-based end-to-
end DNN evaluation platform called Neurosim [49]. Neurosim [49] is a Python-
based platform that performs a holistic energy-latency-accuracy evaluation of
analog crossbar-based DNN accelerators. The Neurosim platform supports both
SRAM and memristive computing devices (ReRAM and FeFET). For adversarial
detection, we design a fully digital DetectX module (shown in Fig. 12) on 32 nm
CMOS that contains digital circuits to compute the SoI value and the SoI-Probability
LUT that is used to classify a given SoI value as clean or adversarial. For
hardware evaluation, a dual-phase trained VGG16 model (trained on CIFAR100)
is implemented on a 128 . × 128 memristive crossbar with device on-off ratio of
10 and .Ron = 10 k. Ω . The DetectX module is appended at the end of the first
layer crossbar. The energy evaluation of the DetectX module is performed using
SPICE simulations. Based on the 128 . × 128 crossbar Neurosim implementation, we
find that the DetectX module only adds 2.6 nJ to the hardware cost for adversarial

448 P. Panda et al.

Fig. 12 The DetectX module is implemented on a fully digital 32 nm CMOS technology. It can
directly interface with an analog crossbar (8 . × 8 crossbar shown for illustration). The module
contains circuits for computing the SoI signature and classifying the SoI value as clean or
adversarial

Fig. 13 ROC-AUC scores, Error and Accuracy values for the DNN . +DetectX system with
different image datasets and adversarial attacks.Wemention the adversarial attacks used for Phase1
and Phase2 training corresponding to each dataset. D and B denote the DNN . +DetectX system and
baseline model, respectively. The baseline model is a DNN trained on clean inputs using standard
stochastic gradient descent and does not contain the DetectX module

detection. Compared to prior adversarial detection works that use large neural
network-based detector modules [16–18], DetectX consumes about 25x less energy
for adversarial detection.

DetectX significantly improves the adversarial robustness of the DNN. In Fig. 13,
we show the ROC-AUC score of the DetectX module under different FGSM and
PGD attacks across CIFAR10, CIFAR100 and TinyImagenet datasets. A high ROC-
AUC score greater than 0.5 denotes reliable adversarial detection. Due to the high
ROC-AUC score, the error of the DNN . +DetectX system is significantly lower
compared to the baseline DNN without the DetectX module. Further, due to the
introduction of the DetectX module, the accuracy on clean inputs slightly drops.
However, the drop is marginally low.

Robustness for Embedded Machine Learning Using In-Memory Computing 449

Fig. 14 With increasing device-device variations in a memristive crossbar (left), the adversarial
detection performance decreases slightly. Further, with increasing device on-off ratio (middle), and
decreasing crossbar sizes (right), the detection performance increases. Non-idealities negatively
impact the detection performance of DetectX

Fig. 15 Energy required per
detection operation for
different works [16, 18].
DetectX consumes more than
25x less energy for detection
compared to prior works

As DetectX is integrated in a crossbar platform like Neurosim, it is important
to understand the effects of crossbar non-idealities on the detection performance
of DetectX. Figure 14(left) shows that the detection performance decreases with
increasing device-device variations in the memristive crossbars [50]. The device
variations introduce variations in the SoI value computation which ultimately nega-
tively affect the detection performance. However, even at large weight variations, the
ROC-AUC score is still greater than 0.5 which suggests reliable detection. Next, we
show the effects of different memristive device on-off ratios (Fig. 14(middle)) and
crossbar sizes (Fig. 14(right)) on DetectX’s detection performance. These results are
shown for the memristive device with 10% weight variations (shown with a circle).
Evidently, the detection performance increases with higher on-off ratios and lower
crossbar sizes. This is because with higher on-off ratios and lower crossbar sizes,
the non-ideal effects in crossbars decrease.

We further show how the DetectX method consumes significantly low energy
for adversarial detection compared to prior detection works [16–18]. Prior works
use large neural networks to perform adversarial detection. For a fair comparison,
these neural network-based detectors are implemented on the Neurosim platform
[49] and the energies are evaluated. As seen in Fig. 15 DetectX consumes about
50x less energy compared to Metzen et al. [16] and 25x less energy compared to
Sterneck et al. [18]. Note, here the energy values represent the energy required for
a single detection operation.

450 P. Panda et al.

5 Unleashing Robustness to Structure-Pruned DNNs
Implemented on Crossbars with Non-idealities

In the recent years, several crossbar-aware pruning techniques have been devised
that yield sparse DNN models. Owing to their high sparsity, these models require
significantly lower number of crossbars to be mapped, thereby introducing hardware
resource-efficiency not only in terms of crossbars but also peripheral circuits
interfacing the crossbars. Pruning algorithms such as, [28–31], produce structured
sparsity in DNNs that fit into crossbars as dense weight matrices [32]. These
structured pruning algorithms claim to preserve the accuracy of the pruned DNNs,
after implementation on crossbars, with minimal or no noticeable loss, while
bringing in high energy- and area-efficiencies. However, none of these works has
included the impact of the inexorable non-idealities (see Sect. 2.2) during inference
on crossbars. For a realistic hardware evaluation of the performance of increased
structured sparsity in DNNs mapped on crossbars, the inclusion of hardware non-
idealities is critical. In this section, we introduce a recent work [33] that draws
the focus of the research community towards a non-ideality aware evaluation of
various existing structured pruning algorithms and shows how increased sparsity
can degrade the robustness of DNNs on non-ideal crossbars. It also introduces
two hardware-centric non-ideality mitigation strategies, namely crossbar-column
rearrangement and Weight-Constrained-Training (WCT), to help improve the per-
formance or robustness of the sparse DNNs on crossbars with little or no training
overheads.

Crossbar-aware structured pruning of DNNs: There have been numerous works
on structured pruning of DNNs, such as channel/filter pruning or C/F pruning (see
Fig. 16(top)) wherein the unimportant filters and channels in a DNN (corresponding
to rows and columns in the weight matrix of the DNN) are pruned to obtain
a sparse 2D weight matrix [28, 29]. These pruned models result in significant
hardware savings in terms of reduced number of crossbars for mapping, thereby
bringing in energy- and area-efficiency for DNN implementation. Likewise, other
crossbar-aware pruning strategies include Crossbar-Column Sparsity (XCS) [30] or
Crossbar-Row Sparsity (XRS) [31] (XCS shown in Fig. 16(bottom)) that exploit
fine-grained sparsity by, respectively, pruning columns or rows of weights within
a crossbar [32]. Additionally, these works have claimed to preserve the inference
accuracy of the structure-pruned networks on crossbars with minimal or no dis-
cernible performance loss with respect to the unpruned ones. However, none of
the previous works has accounted for the non-idealities inherent in crossbar arrays
which raises concerns about the claimed performance of the highly pruned models
in the real scenario.

Robustness for Embedded Machine Learning Using In-Memory Computing 451

Fig. 16 Top: A representation of channel/filter pruning (C/F pruning). The blurred channels/filters
correspond to DNN weights pruned in a structured manner. Bottom: A representation of XCS
pruning (shown for a 4 . × 4 weight matrix mapped onto 2 . × 2 crossbars) that generates fine-grained
sparsity along crossbar columns

5.1 Hardware Evaluation Framework for Non-ideality
Integration During Inference

To map pretrained DNNs onto non-ideal memristive crossbars and investigate the
cumulative impact of the circuit and device-level non-idealities on their performance
during inference, a simulation framework in PyTorch is used by Bhattacharjee et al.
[33] as shown in Fig. 17). In the platform, a Python wrapper is built that unrolls
each and every convolution operation in the software DNN into MAC operations.
This yields 2D weight matrices for each DNN layer which are to be partitioned into
numerous crossbar instances. Before partitioning, based on the structured pruning
approach, the following transformations T on the sparse weight matrices W are
applied:

452 P. Panda et al.

Fig. 17 Python-based hardware evaluation framework for non-ideality aware DNN inference

1. .T (W) for C/F pruning: Here, for a given 2D weight matrix of a DNN layer,
all the columns bearing zero values are eliminated. Further, we also eliminate
rows of the weight matrix of the next DNN layer that interact with the output
feature maps corresponding to the columns of zero values in the previous layer.

2. .T (W) for XCS (or XRS): Here, within a given 2D weight matrix of a DNN
layer, there are chunks of successive zero weight vectors of the size of crossbar-
column (or crossbar-row) (see Fig. 16-Bottom) which are eliminated.

Note, for standard unpruned DNNs, the .T (W) is not required. The resulting
transformed weight matrices are then partitioned into multiple crossbar instances.
The subsequent stage of the platform converts the weights in the crossbars to
suitable conductances G (between .GMIN and .GMAX). Thereafter, the circuit-level
non-idealities (interconnect parasitics) and synaptic device variations are integrated
with the conductances. The various synapse parameters (e.g. .RMIN , .RMAX, device
ON/OFF ratio) and values of the non-idealities used for the subsequent experiments
are listed in the table shown in Fig. 17.

5.2 Are Structure-Pruned DNNs Also Robust on Hardware?

In [33], VGG11 and VGG16 DNNs area trained with structured sparsity (via C/F
pruning, XCS or XRS) using benchmark datasets such as, CIFAR10 and CIFAR100.
For the experiments with CIFAR10 dataset, the sparsity is set as .s = 0.8, while with
CIFAR100 dataset, the sparsity is .s = 0.6. The unpruned and pruned DNN models
are trained to have nearly equal software accuracies to conduct a fair comparison of
the impact of non-idealities when the models are mapped onto non-ideal crossbars
(see Table 1). The crossbar-compression-rates for the structure-pruned DNNs on
32 . × 32 crossbars are also shown in Table 1.

Robustness for Embedded Machine Learning Using In-Memory Computing 453

Table 1 Table showing software accuracies and crossbar-compression-rates (with 32 . × 32 cross-
bars) for the various DNN models with CIFAR10 and CIFAR100 datasets

Dataset: CIFAR10 Software accuracy (%) ‖ Crossbar-compression-rate

Network Unpruned C/F (s = 0.8) XCS (s = 0.8) XRS (s = 0.8)
VGG11 83.6 ‖ – 83.5 ‖ 19.69× 83.28 ‖ 4.26× 82.67 ‖ 4.88×
VGG16 84.48 ‖ – 83.65 ‖ 19.60× 82.06 ‖ 5.57× 83.47 ‖ 4.89×
Dataset: CIFAR100 Software accuracy (%)

Network Unpruned C/F (s = 0.6)
VGG11 53.29 ‖ – 52.72 ‖ 5.64×
VGG16 51.83 ‖ – 50.55 ‖ 4.20×

We find that the sparse DNNs have greatly reduced number of parameters
than their unpruned counterparts which results in significantly lesser number of
crossbars on hardware. However, the fewer parameters remaining in the sparse
DNNs are crucial for the model’s performance. Thus, any non-ideality interfering
with the fewer parameters of the sparse DNNs would have huge impact on the
DNN accuracy and hence, robustness on hardware. In Fig. 18a, we find that for
the VGG11/CIFAR10 model, the DNNs with structured sparsity (via C/F pruning,
XCS, XRS with .s = 0.8) suffer greater accuracy degradation than their unpruned
counterparts for crossbar sizes ranging from 16 . × 16 to 64 . × 64. Further, as we
increase the crossbar size, both the accuracies of unpruned and pruned networks
decline owing to increase in crossbar non-idealities [34, 39]. Specifically, on 64 . × 64
crossbars, the inference accuracy of the unpruned model reduces by .∼21% with
respect to the software baseline while, for the sparse DNNs pruned via C/F pruning,
XCS and XRS, the decline is .∼39%, .∼24% and .∼30%, respectively. Also, in
Fig. 18b, we find that on reducing the extent of sparsity in the C/F pruned DNNs
from .s = 0.8 to .s = 0.5, the performance degradation suffered by the pruned DNNs
is reduced. This validates the fact that greater sparsity, although leads to energy-
and area-efficient mappings on crossbars, increases the interference of crossbar
non-idealities, thereby hampering the performance and hence, the robustness of the
pruned networks.

In Fig. 18c, for the VGG16 DNN with CIFAR10 dataset, the trends are similar
to the case of the VGG11 DNN for XCS, XRS, and C/F pruning (.s = 0.8)
in case of 16 . × 16 and 32 . × 32 crossbars. However, in case of a larger 64. ×64
crossbar, we find that the performance of the network pruned by C/F pruning
exceeds that of the unpruned network. This is because unpruned DNNs require a
larger absolute number of crossbars for mapping than pruned ones. As a result,
the value of NF is expected to increase at a higher rate for unpruned DNN on
moving from 32 . × 32 to 64 . × 64 crossbars (see Fig. 18d). So, for larger crossbars,
the accuracy degradation for structure-pruned DNNs would decelerate compared to
their unpruned counterparts, which can even lead to better absolute accuracy of the
pruned networks than the unpruned ones.

Next, we discuss two crossbar-aware non-ideality mitigation strategies that can
help improve the robustness of structure-pruned DNNs on non-ideal crossbars.

454 P. Panda et al.

Fig. 18 Plot of inference accuracy versus crossbar size for (a) unpruned and structure-pruned (. s =
0.8) VGG11/CIFAR10 DNN. (b) Different values of sparsity (s) of a C/F pruned VGG11/CIFAR10
DNN. (c) Unpruned and structure-pruned (.s = 0.8) VGG16/CIFAR10 DNN. (d) Plot showing the
variation in average NF for unpruned and C/F pruned weight matrices on increasing the crossbar
size from 32 . × 32 to 64 . × 64

5.3 Non-ideality Mitigation Strategies for Increased
Robustness of Structure-Pruned DNNs

1. Crossbar-Column rearrangement (R): For the sparse DNNs obtained via C/F
pruning, a simple hardware-friendly transformation of column rearrangement R
has been proposed mapping weights onto non-ideal crossbars. This transforma-
tion is inspired from the fact that the impact of non-idealities (or non-ideality
factor NF) reduces for crossbars with higher proportion of low conductance
synapses [26, 44]. Additionally, this approach of column rearrangement does
not have any training overhead and is applied before the mapping of the DNNs
onto crossbars.
To understand column rearrangement R, consider a 4× 6 weight matrix W ,
after applying the transformation T , to be mapped onto 2× 2 crossbars (see

Fig. 19a). During the R transformation, we first compute the value of (μ × σ)
1
2

Robustness for Embedded Machine Learning Using In-Memory Computing 455

Fig. 19 (a) Pictorial representation of R transformation. (b) Heatmaps to visualize the impact
of R transformation on the weight matrices of 3rd and 5th layers of the VGG16/CIFAR10 DNN
trained with C/F pruning with s = 0.8

for each column from I–VI, where μ and σ , respectively, denote the mean and
standard deviation of the absolute values of weights in each column. Thereafter,

based on the increasing order of (μ × σ)
1
2 , we rearrange columns I–VI in

456 P. Panda et al.

Fig. 20 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a)
C/F pruned with transformation R (s = 0.8) VGG11/CIFAR10 DNNs. (b) C/F pruned with
transformation R (s = 0.8) VGG16/CIFAR10 DNNs. (c) C/F pruned with transformation
R (s = 0.6) VGG11/CIFAR100 DNNs. (d) C/F pruned with transformation R (s = 0.6)
VGG16/CIFAR100 DNNs

the manner shown. Now, in Fig. 19b, the impact of R transformation can be
visualized on the weight matrices of the 3rd and 5th convolutional layers
of the VGG16/CIFAR10 DNN (C/F pruned with s = 0.8) using heatmaps.
Before applying the transformation, the lighter (low conductance synapse) and
darker (high conductance synapse) points in the heatmaps are intermixed. Post
transformation, the lighter points are concentrated at the center of the heatmaps
and darker points are mostly near the peripheries. Thus, post R transformation,
when the DNN weight matrices are partitioned into multiple crossbar instances,
majority of the crossbars have greater proportions of low conductance synapses,
thereby mitigating the impact of crossbar non-idealities.
Figure 20a,b and c,d show that R transformation improves the performance of
the C/F pruned VGG11 and VGG16 DNNs. Specifically, ∼9% (∼6%) improve-
ment in accuracy is observed for VGG11 (VGG16) DNN on 64× 64 (32× 32)
crossbars with CIFAR10 dataset. We also find that on 32× 32 crossbars, the
accuracy of the pruned VGG16/CIFAR100 DNN post R transformation is ∼3%
greater than the unpruned counterpart.

Robustness for Embedded Machine Learning Using In-Memory Computing 457

Fig. 21 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a)
WCT+C/F pruned (s = 0.8) VGG11/CIFAR10 DNNs. (b) WCT+C/F pruned (s = 0.6)
VGG11/CIFAR100 DNNs

2. Weight-Constrained-Training (WCT): WCT is another non-ideality mitiga-
tion technique for the structure-pruned DNNs that is motivated by the NEAT
method described in Sect. 3. In WCT, based on the weight distribution of all
the layers of a trained DNN, a cut-off value Wcut is heuristically determined,
and the following transformation is then applied on the weights of the DNN:
W = min{|W |,Wcut)} ∗ sign(W). This transformation constrains the DNN
weights in the interval [−Wcut , Wcut]. With the above transformation, the
DNN is iteratively trained for 1–2 epochs, to maintain nearly iso-accuracy with
baseline. Note, the iterative training via WCT does not add any computational
overhead to the overall training time, thereby making it a viable choice. Similar
to NEAT, a WCT-DNN also results in greater proportion of low conductance
states on the crossbars, thus, reducing the impact of non-idealities. The resultant
sparse WCT-DNNs are then mapped onto crossbars. In Fig. 21a,b, we find that
the WCT-DNNs maintain their performance even on increasing the crossbar
size, making them robust against crossbar non-idealities. Further, WCT-DNNs
have better accuracy than the C/F pruned DNNs on crossbars. Specifically,
with CIFAR10 (CIFAR100) dataset, the WCT-DNN has ∼6% (∼7%) higher
accuracy than the unpruned model on 64× 64 (32× 32) crossbars.

6 Related Works

Recently, several crossbar-based In-Memory Computation (IMC) architectures and
frameworks have been proposed for efficiency-driven acceleration of DNNs [50–
54]. CONV-SRAM [50] proposes an energy-efficient static random access memory
(SRAM) with embedded dot-product computation capability, for the inference of
convolutional neural networks with binary weights. On the other hand, Kim et al.
[52] and Gokmen et al. [53] have proposed an architecture based on CMOS-based

458 P. Panda et al.

resistive processing unit (RPU) devices to achieve significant acceleration in DNN
training.

In ISAAC [51], Shafiee et al. designed and characterized a pipelined memristive
crossbar architecture and proposed a weight encoding scheme that reduces the
analog-to-digital conversion overheads. Additionally, Marinella et al. [54] imple-
ment an ReRAM crossbar-based DNN acceleration platform and characterize the
energy, latency, and area of the peripheral and crossbar components across different
technology nodes. Besides crossbar-based DNN acceleration platforms, end-to-
end hardware evaluation platforms such as Neurosim and PUMA [37, 49] provide
software-based scalable solutions to perform hardware evaluation of crossbar
implementations. While Neurosim [49] considers only NVM device variations
during DNN evaluation, PUMA [37] models other circuit-level and data-dependent
non-idealities by incorporating GenieX [34]. Few recent works such as RxNN
[23] and GenieX [34] have delved deeper into modelling the characteristics of
non-ideal crossbars. These non-idealities include crossbar-interconnect parasitics
and data-dependent selector non-linearities. While RxNN can suitably compute
data-independent non-idealities, GenieX incorporates both data-dependent and
independent crossbar non-idealities. With this, they provide accurate hardware-
realistic inference performance of crossbar-mapped DNNs.

However, none of these works has explored non-ideality aware crossbar-mapping
of DNN models for adversarial robustness. Furthermore, these works have not
delved into the correlation existing between sparsity in network weights and
crossbar non-idealities to highlight the vulnerabilities of sparse DNNs. Additionally
in prior works, the possibility of using inherent hardware signatures in the detection
of adversarial attacks and building adversarial robustness for crossbar-mapped
DNN models has not been well explored. This motivates us to present recent
works involving non-ideality aware mapping of DNNs onto crossbars for improving
their classification accuracy (robustness) in normal and/or adversarial scenarios
[26, 33]. In addition, examining hardware signatures in crossbars for energy-
efficient adversarial detection [27] is a key facet of this chapter. We present a
summary table (Table 2) for the convenience of the readers to qualitatively compare
the scope of different works based on memristive crossbar arrays pertaining to DNN
inference acceleration.

7 Conclusion

This chapter elucidates recent advances in the energy-efficient and robust imple-
mentation of DNNs on memristive crossbar array platforms. Specifically, we come
across works that use hardware-driven methods to improve the adversarial security
of DNNs on noisy crossbars without additional overhead of retraining or reduced
energy-efficiency. The first work (NEAT) improves the adversarial classification
capabilities on DNNs on crossbars, while the other work (DetectX) is an adversarial
detection method to guarantee robustness on crossbar platforms. Additionally, this

Robustness for Embedded Machine Learning Using In-Memory Computing 459

Table 2 Table comparing the scope of different memristive crossbar-based works for DNNs. The
works discussed in this chapter—DetectX [27], NEAT [26], and Bhattacharjee et al. [33] have
specifically added a new dimension of adversarial and sparsity-aware robustness which have not
been looked into in prior works

Xbar acceleration

End-to-
end
H/W Robustness

Work
Efficiency-
driven

Novel
weight
mapping Evaluation

Sparsity-
aware

Non-
ideality

Adversarial
attacks

CONV-SRAM [50] ✓ ✕ ✕ ✕ ✕ ✕
ISAAC [51]

Kim et al. [52]

Gokmen et al. [53]

Marinella et al. [54]

Neurosim [49] ✓ ✕ ✓ ✕ ✓ ✕
PUMA [37]

RxNN [23] ✓ ✕ ✕ ✕ ✓ ✕
GenieX [34]

DetectX [27] ✓ ✕ ✕ ✕ ✓ ✓
NEAT [26] ✓ ✓ ✕ ✕ ✓ ✓
Bhattacharjee et al.
[33] ✓ ✓ ✕ ✓ ✓ ✕

chapter highlights a study which corroborates that although increased structured
sparsity in weights is beneficial for resource-efficient implementation of DNNs on
crossbars, it compromises their classification accuracy (robustness) in a non-ideal
scenario. To this end, various hardware-based non-ideality mitigation approaches
have been proposed to improve the performance and hence, the robustness of sparse
DNNs on crossbars.

References

1. Reagen, B., et al.: Minerva: enabling low-power, highly-accurate deep neural network acceler-
ators. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 267–278. IEEE, Piscataway (2016)

2. Hadidi, R., et al.: Characterizing the deployment of deep neural networks on commercial
edge devices. In: 2019 IEEE International Symposium on Workload Characterization (IISWC),
pp. 35–48. IEEE, Piscataway (2019)

3. Chakraborty, I., et al.: Pathways to efficient neuromorphic computing with non-volatile
memory technologies. Appl. Phys. Rev. (2020)

4. Wong, H.-S.P., et al.: Metal–oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)
5. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition

performance under visual distortions. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7. IEEE, Piscataway (2017)

460 P. Panda et al.

6. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale (2016). Preprint.
arXiv:1611.01236

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2014). Preprint. arXiv:1412.6572

8. Madry, A., et al.: Towards deep learning models resistant to adversarial attacks (2017). Preprint.
arXiv:1706.06083

9. Carlini, N., et al.: On evaluating adversarial robustness (2019). Preprint. arXiv:1902.06705
10. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness (2019).

Preprint. arXiv:1904.08444
11. Qiu, H., et al.: Mitigating advanced adversarial attacks with more advanced gradient obfusca-

tion techniques (2020). Preprint. arXiv:2005.13712
12. Guo, C., et al.: Countering adversarial images using input transformations (2017). Preprint.

arXiv:1711.00117
13. Prakash, A., et al.: Deflecting adversarial attacks with pixel deflection. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 8571–8580 (2018)
14. Xie, C., et al.: Mitigating adversarial effects through randomization (2017). Preprint.

arXiv:1711.01991
15. Buckman, J., et al.: Thermometer encoding: one hot way to resist adversarial examples. In:

International Conference on Learning Representations (2018)
16. Metzen, J.H., et al.: On detecting adversarial perturbations (2017). Preprint. arXiv:1702.04267
17. Yin, X., Kolouri, S., Rohde, G.K.: Gat: generative adversarial training for adversarial example

detection and robust classification. In: International Conference on Learning Representations
(2019)

18. Sterneck, R., Moitra, A., Panda, P.: Noise sensitivity-based energy efficient and robust
adversary detection in neural networks. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2021)

19. Panda, P., Chakraborty, I., Roy, K.: Discretization based solutions for secure machine learning
against adversarial attacks. IEEE Access 7, 70157–70168 (2019)

20. Gui, S., et al.: Model compression with adversarial robustness: a unified optimization
framework. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems,
vol. 32. Curran Associates Inc., Red Hook (2019)

21. Sehwag, V., et al.: Hydra: pruning adversarially robust neural networks. Adv. Neural Inf.
Proces. Syst. 33, 19655–19666 (2020)

22. Panda, P.: QUANOS-adversarial noise sensitivity driven hybrid quantization of neural net-
works. Preprint. arXiv:2004.11233 (2020)

23. Jain, S., et al.: RxNN: a framework for evaluating deep neural networks on resistive crossbars.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020)

24. Bhattacharjee, A., Panda, P.: Rethinking non-idealities in memristive crossbars for adversarial
robustness in neural networks (2020). Preprint. arXiv:2008.11298

25. Roy, D., et al.: Robustness hidden in plain sight: can analog computing defend against
adversarial attacks? (2020). arXiv: 2008.1201

26. Bhattacharjee, A., et al.: NEAT: non-linearity aware training for accurate, energy-efficient
and robust implementation of neural networks on 1T-1R crossbars. In: IEEE Transactions on
Computer-Aided Design (2021)

27. Moitra, A., et al.: DetectX – adversarial input detection using current signatures in memristive
XBar arrays. In: IEEE Transactions on Circuits and Systems I (2021)

28. Wen, W., et al.: Learning structured sparsity in deep neural networks (2016). Preprint.
arXiv:1608.03665

29. Wang, P., et al.: SNrram: an efficient sparse neural network computation architecture based
on resistive random-access memory. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC) (2018)

30. Liang, L., et al.: Crossbar-aware neural network pruning. IEEE Access (2018)

Robustness for Embedded Machine Learning Using In-Memory Computing 461

31. Lin, J., et al.: Learning the sparsity for ReRAM:mapping and pruning sparse neural network for
ReRAM based accelerator. In: ASPDAC ’19: Proceedings of the 24th Asia and South Pacific
Design Automation Conference (2019)

32. Chu, C., et al.: PIM-prune: fine-grain DCNN pruning for crossbar-based process-in-memory
architecture. In: 2020 57th ACM/IEEE Design Automation Conference (DAC) (2020)

33. Bhattacharjee, A., Bhatnagar, L., Panda, P.: Examining and mitigating the impact of crossbar
non-idealities for accurate implementation of sparse deep neural networks. In: 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2022)

34. Chakraborty, I., et al.: GENIEx: a generalized approach to emulating non-ideality in memristive
Xbars using neural networks (2020). Preprint. arXiv:2003.06902

35. Liu, B., et al.: Vortex: variation-aware training for memristor x-bar. In: Proceedings of the 52nd
Annual Design Automation Conference, pp. 1–6 (2015)

36. Lee, S., et al.: Learning to predict IR drop with effective training for ReRAM-based neural
network hardware. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6.
IEEE, Piscataway (2020)

37. Ankit, A., et al.: PUMA: a programmable ultra-efficient memristor-based accelerator for
machine learning inference. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 715–731
(2019)

38. Ansari, M., et al.: PHAX: physical characteristics aware ex-situ training framework for
inverter-based memristive neuromorphic circuits. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(8), 1602–1613 (2017)

39. Bhattacharjee, A., Moitra, A., Panda, P., Efficiency-driven hardware optimization for adversar-
ially robust neural networks. In: Design, Automation and Test in Europe Conference (DATE)
(2021)

40. Chen, P.-Y., et al.: Mitigating effects of non-ideal synaptic device characteristics for on-chip
learning. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 194–199. IEEE, Piscataway (2015)

41. Agrawal, A., Lee, C., Roy, K.: X-CHANGR: changing memristive crossbar mapping for
mitigating line-resistance induced accuracy degradation in deep neural networks (2019).
Preprint. arXiv:1907.00285

42. Liu, B., et al.: Reduction and IR-drop compensations techniques for reliable neuromorphic
computing systems. In: 2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 63–70. IEEE, Piscataway (2014)

43. He, Z., et al.: Noise injection adaption: end-to-end ReRAM crossbar nonideal effect adaption
for neural network mapping. In: Proceedings of the 56th Annual Design Automation Confer-
ence 2019, pp. 1–6 (2019)

44. Bhattacharjee, A., et al.: SwitchX: gmin-gmax Switching for energy-efficient and robust imple-
mentation of binary neural networks on ReRAM Xbars (2021). Preprint. arXiv:2011.14498

45. Sun, X., Yu, S.: Impact of non-ideal characteristics of resistive synaptic devices on implement-
ing convolutional neural networks. IEEE J. Emerging Sel. Top. Circuits Syst. 9(3), 570–579
(2019)

46. Li, T., et al.: Sneak-path based test and diagnosis for 1r RRAM crossbar using voltage bias
technique. In: Proceedings of the 54th Annual Design Automation Conference 2017, pp. 1–6
(2017)

47. Wang, Z., et al.: Ferroelectric tunnel memristor-based neuromorphic network with 1T1R
crossbar architecture. In: 2014 International Joint Conference on Neural Networks (IJCNN),
pp. 29–34. IEEE, Piscataway (2014)

48. He, Z., Rakin, A.S., Fan, D.: Parametric noise injection: trainable randomness to improve
deep neural network robustness against adversarial attack. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 588–597 (2019)

49. Chen, P.-Y., Peng, X., Yu, S.: NeuroSim: a circuit-level macro model for benchmarking neuro-
inspired architectures in online learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(12), 3067–3080 (2018)

462 P. Panda et al.

50. Biswas, A., Chandrakasan, A.P.: CONV-SRAM: an energy-efficient SRAM with in-memory
dot-product computation for low-power convolutional neural networks. IEEE J. Solid State
Circuits 54(1), 217–230 (2018)

51. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44(3), 14–26 (2016)

52. Kim, S., et al.: Analog CMOS-based resistive processing unit for deep neural network training.
In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 422–425. IEEE, Piscataway (2017)

53. Gokmen, T., Vlasov, Y., Acceleration of deep neural network training with resistive cross-point
devices: design considerations. Front. Neurosci. 10, 333 (2016)

54. Marinella, M.J., et al.: Multiscale co-design analysis of energy, latency, area, and accuracy of
a ReRAM analog neural training accelerator. IEEE J. Emerging Sel. Top. Circuits Syst. 8(1),
86–101 (2018)

	Robustness for Embedded Machine Learning Using In-Memory Computing
	1 Introduction
	2 Background
	2.1 Adversarial Attacks
	2.2 Memristive Crossbars and Their Non-idealities and Non-linearities

	3 Non-linearity Aware Training (NEAT): Mitigating the Impact of Crossbar Non-idealities and Non-linearities for Robust DNN Implementations
	4 DetectX: Improving the Robustness of DNNs Using Hardware Signatures in Memristive Crossbar Arrays
	5 Unleashing Robustness to Structure-Pruned DNNs Implemented on Crossbars with Non-idealities
	5.1 Hardware Evaluation Framework for Non-ideality Integration During Inference
	5.2 Are Structure-Pruned DNNs Also Robust on Hardware?
	5.3 Non-ideality Mitigation Strategies for Increased Robustness of Structure-Pruned DNNs

	6 Related Works
	7 Conclusion
	References

