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1 Introduction 

Deep learning has achieved state-of-the-art prediction capabilities across a variety 
of cognitive and analytics tasks. This has led to the ubiquitous deployment of Deep 
Neural Networks (DNNs) in low power edge devices [1, 2]. For edge computing, 
analog crossbar architectures have emerged as a front runner towards low-latency 
and energy-efficient acceleration platforms in resource-constrained scenarios. Here, 
the synaptic weights of the DNNs are mapped on arrays (crossbars) of Non-
Volatile Memory (NVM) devices, such as Resistive RAM (ReRAM), Phase Change 
Memory (PCM), Ferroelectric Field Effect Transistors (FeFET) and so forth [3, 4]. 
They efficiently perform analog dot-product operations, emulating Multiply and 
Accumulate (MAC) operations in DNNs, when input voltages are applied to the 
rows of the crossbar. 

Despite achieving super-human performance in many computer vision tasks [5], 
DNNs have been shown to be vulnerable to adversarial attacks (see Fig. 1). Here, 
small and strategically crafted noise in the input can fool the DNN leading to failure 
[6–10]. This vulnerability severely limits the deployment and potential safe-use of 
DNNs at the edge for real-world applications. To defend against adversarial attacks, 
previous works have used two broad approaches: (1) Adversarial classification [11– 
15] and (2) Adversarial detection [16–18]. Under adversarial classification, there 
have been prior works that have used techniques such as adversarial training, input 
feature transformation among others to classify the adversarial samples accurately 
[11–15]. In contrast, adversarial detection works focus on identifying clean and 
adversarial samples such that the detected adversarial samples are not passed to 
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Fig. 1 Adversarial attacks can fool a DNN by adding structured perturbations to clean inputs 

the output of the DNN for classification [16–18]. However, these techniques are 
software-centric and not hardware-friendly, requiring high computational over-
heads. To this end, recent works such as [10, 19] show that quantization methods, 
which primarily reduce compute resource requirements of DNNs, act as a straight-
forward way of improving the adversarial robustness of DNNs. Other works such as 
[20, 21] use model compression and pruning techniques to optimize and reduce 
computational complexities of DNNs while guaranteeing adversarial robustness. 
In [19, 22], efficiency-driven hardware optimization techniques are leveraged to 
improve adversarial resilience of DNNs, while yielding energy-efficiency. However, 
none of these works has been integrated with a crossbar-based platform (considering 
intrinsic crossbar noise) for DNN inference. Vanilla implementation of DNNs 
on crossbars, including those trained with software defenses such as adversarial 
training, suffers from significant loss in robustness caused by hardware noise [23– 
25]. There has been limited study in understanding the robustness of crossbar 
implemented DNNs. Thus, we highlight hardware and energy-efficiency driven 
works that improve the robustness of DNNs deployed on analog crossbars in 
two broad aspects: (1) Improving adversarial robustness and (2) Mitigating the 
detrimental effects of crossbar non-idealities on DNNs, thereby ameliorating the 
performance (accuracy) of DNNs on crossbars. Note, these works do not pose a 
huge overhead of hardware-aware retraining of a pretrained DNN model before 
deployment on crossbars. 

We begin by discussing two recent works that use analog crossbars and improve 
the adversarial robustness of the mapped DNNs. Note, adversarial robustness 
implies improving the performance of the hardware-mapped DNN model against 
adversarial samples without compromising the classification accuracy of clean 
images on hardware. In the first work, we introduce a technique called NEAT [26] 
that mitigates the impact of selector-induced non-linearities and resistive crossbar 
non-idealities for robust implementation of DNNs on 1T-1R crossbars. Second, we 
showcase another work, called DetectX [27], that uses hardware signatures present 
in analog crossbar architectures to perform energy-efficient adversarial detection. 
While NEAT is tailored for adversarial classification, DetectX is an adversarial 
detection method.
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Finally, we delve into a specific case of the inference of DNNs having structured 
sparsity in their weights on analog crossbar arrays. Recently, crossbar-aware struc-
tured pruning algorithms [28–31] have received significant attention in developing 
increasingly sparse DNN models requiring fewer crossbars to be mapped, thereby 
introducing huge savings in terms of crossbar energy and area-efficiencies [32]. 
However, a holistic evaluation of the performance of such algorithms by considering 
the impact of resistive crossbar non-idealities was missing. In this chapter, we 
highlight a recent work [33] which shows that increased structured sparsity in DNNs 
negatively interferes with crossbar non-idealities that can degrade their classification 
accuracy (or robustness) during inference. This work also introduces two hardware-
centric non-ideality mitigation strategies, namely crossbar-column rearrangement 
and Weight-Constrained-Training (WCT), to help improve the performance or 
robustness of the sparse DNNs on crossbars. 

This chapter is organized as follows. Section 2 explains the background on 
adversarial attacks, memristive crossbars and non-idealities. In Sect. 3, we discuss 
the NEAT technique that introduces a non-ideality control technique which causes 
a rise in adversarial robustness. Section 4 introduces the DetectX technique that 
performs energy signature separation for adversarial detection. Section 5 explains 
the impact of structured sparsity in DNNs and their interaction with non-ideal 
crossbars. Section 6 gives an overview of related works and scopes out different 
crossbar-based studies with different objectives. Finally, we conclude in Sect. 7. 

2 Background 

2.1 Adversarial Attacks 

Adversarial samples are created by generating a crafted noise and adding it to the 
clean data samples. In this chapter, we discuss two widely used methods to generate 
the noise for creating adversarial attacks. 

1. Fast Gradient Sign Method (FGSM) [6] is a one-step gradient-based attack 
shown in Eq. (1). To generate the noise, first, the gradients of the DNN loss 
.L(θ, x, ytrue) with respect to the input x are calculated. Here, . θ represents 
the parameters of the DNN and .ytrue represents the labels of the input data. 
Then, a .sign() operation converts the gradients into unit directional vectors. 
The unit vector is multiplied by a scalar perturbation value, . ε, that determines 
the strength of the attack. Finally, the perturbation vector is added to the input 
x to create an adversarial data. Note that perturbations are added to x along the 
direction of the gradients to maximize DNN loss . L. 

.xadv = x + ε sign(∇x(L(θ, x, ytrue))) (1)
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2. Projected Gradient Descent (PGD): The PGD attack, shown in Eq. (2) is an  
iterative attack over n steps. It is basically a multi-step variant of the FGSM 
attack. In each step i, perturbations of strength . α are added to .xi−1

adv . Note that 
.x0

adv is created by adding random noise to the clean input x. Additionally, for 
each step, .xi

adv is projected on a Norm ball [8], of radius . ε. In this chapter, 
the .L∞ Norm ball (of radius . ε) projection is used for all the PGD attacks. In 
other words, we ensure that the maximum pixel difference between the clean 
and adversarial inputs is . ε. 

.xadv =
n∑

i=1

xi−1
adv + α sign(∇xL(θ, x, ytrue)) (2) 

2.2 Memristive Crossbars and Their Non-idealities and 
Non-linearities 

Memristive crossbar arrays have been used to implement MAC operations in 
an analog manner. Crossbars consist of 2D arrays of NVM devices, Digital-to-
Analog Converters (DAC), Analog-to-Digital Converters (ADC) and a write circuit. 
The synaptic devices at the cross-points are programmed to a particular value of 
conductance (between .GMIN and .GMAX) during inference. The MAC operations 
are performed by converting the digital inputs to the DNN into analog voltages on 
the Read Wordlines (RWLs) using DACs, and sensing the output current flowing 
through the bit-lines (BLs) using the ADCs [23, 34–38]. In other words, the 
activations of the DNNs are mapped as analog voltages . Vi input to each row and 
weights are programmed as synaptic device conductances (. Gij ) at the cross-points 
as shown in Fig. 2a. For an ideal crossbar array, during inference, the voltages 
interact with the device conductances and produce a current (governed by Ohm’s 
Law). Consequently, by Kirchhoff’s current law, the net output current sensed 
at each column j is the sum of currents through each device, i.e. . Ij (ideal) =
ΣiGij ∗ Vi . We term the matrix .Gideal as the collection of all . Gij ’s for a crossbar 
instance. However, in reality, the analog nature of the computation leads to various 
hardware noise or non-idealities, such as, circuit-level resistive non-idealities and 
device-level variations [23, 34, 36, 37, 39–43]. 

Non-idealities: Fig. 2b describes the equivalent circuit for a crossbar accounting 
for various circuit-level and device-level non-idealities, viz. Rdriver , .Rwire_row, 
.Rwire_col and Rsense (interconnect parasitics), modelled as parasitic resistances 
and variations in the synapses owing to the stochasticity of the memristive devices. 
This results in a .Gnon-ideal matrix, with each element .G′

ij incorporating the effect 
due to the non-idealities, obtained using circuit laws (Kirchhoff’s laws and Ohm’s 
law) and linear algebraic operations [23, 24, 33, 39, 44]. Consequently, the net output 
current sensed at each column j becomes .Ij (non-ideal) = ΣiG

′
ij ∗ Vi , which deviates
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Fig. 2 (a) A  .2 × 2 crossbar array with input voltages . Vi , synaptic conductances .Gij and output 
currents .Ij = ∑

i Gij ∗ Vi . (b) A  .2 × 2 crossbar array with the resistive and the synaptic device-
level non-idealities. These non-idealities lead to imprecise dot-product currents and that manifests 
as accuracy degradation when DNNs are evaluated on crossbars 

from its ideal value. This manifests as accuracy degradation for DNNs mapped onto 
crossbars. The relative deviation of .Inon-ideal from its ideal value is measured using 
non-ideality factor (NF) [34] as:  

.NF = (Iideal − Inon-ideal)/Iideal . (3) 

Thus, NF is a direct measure of crossbar non-idealities, i.e. increased non-
idealities induce a greater value of NF, affecting the accuracy and hence, the 
robustness of the DNNs mapped onto them. All the analyses in Sects. 3 and 5 
involving non-idealities are performed on memristive crossbars with an ON/OFF 
ratio of 10 (i.e. .RMIN = 30 kΩ and .RMAX = 300 kΩ), having the resistive non-
idealities as follows: .Rdriver = 1 kΩ , .Rwire_row = 5Ω , . Rwire_col = 10Ω

and .Rsense = 1 kΩ . The non-ideality in the memristive devices in the form of 
device-level process variation has been modelled as a Gaussian variation in the 
conductances (. GM ) of the NVM devices with .σ/μ = 10% [45]. 

Recently, 1T-1R NVM crossbars have received significant attention since the 
pass-transistor in series with the NVM device at the synapses can help mitigate 
sneak paths (prevalent in 1R crossbar arrays) and the incorrect programming of the 
NVM device induced by noise [46, 47]. Figure 3 illustrates an .M × N crossbar 
having 1T-1R synapses at the cross-points wherein, the access transistors are driven 
by a gate-voltage (. Vg) fed through the select-lines (SLs). A low . Vg operation is 
favorable for implementing a DNN on crossbars in a resource-constrained scenario 
as it has been shown in prior works [26] that the total power dissipated by a 1T-
1R crossbar array diminishes with reduction of the transistor gate-voltage (. Vg). 
However, it is imperative to understand the other repercussions of low . Vg operation 
in 1T-1R crossbars that impact the performance and hence, robustness of the mapped 
DNN models.
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Fig. 3 Illustration of an M . × N 1T-1R Crossbar. A Transistor (T) in series with an NVM device 
(R) is present at every synapse. Select-lines (SLs) are used to turn on transistors for selected rows, 
while the dot-product currents are sensed through the bit-lines (BLs) 

Non-linearities: In addition to the above-mentioned non-idealities, 1T-1R cross-
bars are susceptible to various non-linearities that affect the effective conductance 
of each synapse (especially, at lower . Vg) and hence, the output current across 
each column in a crossbar array. This would manifest as accuracy degradation 
for the DNNs mapped onto such crossbars. In [26], to understand the effects of 
the non-linearities alone on introducing the access transistor (or selector) in the 
synapse, extensive SPICE simulations were performed using the 1T-1R synaptic 
configuration with different input voltages, conductances and . Vg ranges excluding 
the circuit-level and device-level non-idealities. For all the analyses involving 1T-1R 
synapses, the selector devices were based on 45 nm CMOS technology model and 
the memristive device had .RON = 30 kΩ and .ROFF = 300 kΩ . 

For a crossbar in the 1R configuration, the weights W of the DNN are directly 
mapped to a memristor conductance state (.GM = 1/RM ) in a linear fashion. On the 
other hand, in the 1T-1R configuration, W is mapped to the effective conductance 
.Geff = 1/(RM + Rt), where . Rt is the equivalent resistance due to the transistor. 
The non-linearities in the 1T-1R crossbars arise due to the dependence of . Rt on . Vin. 
Note, . Vin is proportional to the neuronal activation values of the DNN which varies 
with the input. Hence, these are data-dependent non-linearities. It has been shown
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in [26] that the effective conductance .Geff is a function of NVM conductance . GM , 
input voltage . Vin, and gate-voltage . Vg , which can be formulated as: 

.Geff = f1(GM, Vin, Vg). (4) 

3 Non-linearity Aware Training (NEAT): Mitigating the 
Impact of Crossbar Non-idealities and Non-linearities for 
Robust DNN Implementations 

In this section, the NEAT technique is introduced that provides a new perspective on 
the energy-efficient and robust implementation of DNNs on 1T-1R crossbars [26]. 
It begins with the identification of a range of memristive conductances over a range 
of input voltages via SPICE simulations such that Eq. (4) can be approximated as: 

.Geff = f2(GM, Vg). (5) 

This eliminates the input-data dependency of the effective 1T-1R synaptic 
conductance (.Geff ) for a given value of . Vg of transistor operation. In other words, 
for a given value of . Vg , there exists an upper bound cut-off value (.Geff cutoff ) 
for which the 1T-1R synapse exhibits linear characteristics, and .GM ≈ k ∗ Geff , 
where k is a scalar. The corresponding NVM device state at .Geff cutoff is termed as 
.GM cutoff . Figure 4 shows the .GM cutoff vs. . Vg plot for supply voltage . Vsupply =
0.25V, 0.5V and .Vin in the range .0 ≤ Vin ≤ Vsupply . It can be seen that as . Vg

is lowered (for resource-constrained scenarios), the overall range of memristive 
conductance states .GM for data-independent and linear synaptic characteristics 
decreases owing to low values of .GM cutoff . 

Fig. 4 The variation in .GM cutoff with respect to selector gate-voltage .Vg
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Fig. 5 Overall flow of NEAT 

After identifying .Geff cutoff for a given . Vg , the corresponding value for .Wcut is 
obtained for the software DNN which is to be mapped onto the 1T-1R crossbars. 
Then, all the weights (W ) of the pretrained DNN are restricted in the interval 
.[−Wcut ,Wcut ] as shown in Eq. (6): 

.Wmap =

⎧
⎪⎪⎨

⎪⎪⎩

W |W | ≤ Wcut

Wcut W > Wcut

−Wcut W < −Wcut .

(6) 

From Eq. (6), we observe that for the linear regime (.|W | ≤ Wcut , which 
corresponds to .Geff ≈ k ∗ GM ), the software weight parameters can be mapped 
linearly onto the crossbars. While, for the non-linear regime (.|W | > Wcut that 
corresponds to deviation of .Geff from . GM ), W is clipped at .Wcut . The objective 
of NEAT is to restrict the weight parameters to be within the linear regime for 
the given gate-voltage . Vg of the transistor, thereby curbing loss in computational 
accuracy post-mapping DNNs onto 1T-1R crossbars. Figure 5 illustrates the overall 
flow of the NEAT process. 

Iterative Training: In NEAT, after setting the optimal . Vg and .Wcut values, the 
weights of the DNN get transformed. If we use lower values of . Vg which do not  
cover all weight ranges, the weight distribution gets altered, resulting in accuracy 
degradation. To address this issue, iterative training is proposed which consists of 
two steps. Step 1 is essentially restricting the weights of the DNN (W ) in the suitable 
cut-off regime as per Eq. (6). Step 2 involves retraining the networks iteratively for 
a couple of epochs to recover any accuracy loss incurred from Step 1. These two 
steps are repeated so that greater number of weights in the network can be located 
in the linear regime when mapped onto crossbars. 

In Fig. 6, . Vg is varied from .0.75V to .1.0 and the classification accuracy of 
various DNN architectures using CIFAR10 and CIFAR100 datasets is reported. 
The results show that low . Vg induces low .Wcut and in turn decreases performance
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Fig. 6 Classification accuracy of various NEAT-based DNN models with .Vg varied from 
.0.75V to  . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d) 
ResNet18/CIFAR100 

when DNN weights are restricted to .Wcut regime. However, using iterative training 
recovers the performance degradation. Especially, for a ResNet18 architecture, 
using iterative training shows improvement over 50% in terms of accuracy at 
.Vg = 0.75V . Moreover, with iterative training, VGG11 and ResNet18 networks 
almost maintain their classification accuracy in the range of .Vg = [0.85, 1.0] and 
.Vg = [0.8, 1.0], respectively. In this manner, NEAT helps in the hardware-aware 
robust mapping of DNN architectures on 1T-1R crossbar with minimal training 
overheads. 

In addition to maintaining DNN performance in presence of 1T-1R non-
linearities, NEAT ensures energy-efficient inference with DNNs, specifically in 
the low . Vg scenario. When NEAT technique is applied at low . Vg values, we have 
lower absolute values of .Geff cutoff and hence, .Wcut . This implies that for crossbars 
operating at lower . Vg values, we would find greater proportion of low conductance 
synapses post mapping of DNN weights onto the 1T-1R crossbars. This helps
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Fig. 7 Normalized energy gain for various NEAT-based DNN models with . Vg varied from 
.0.75V to  . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d) 
ResNet18/CIFAR100 

minimise the power dissipated in the crossbar arrays by reducing crossbar-column 
currents. In Fig. 7, we present the energy-efficiency of various DNN configurations 
with NEAT. The energy computed for .Vg = 1.0V is taken as baseline against 
which energy gains (%) for other values of . Vg are shown. NEAT achieves high 
energy gain by simply reducing . Vg . Especially, we can achieve . ∼23% energy gain 
at .Vg = 0.8V on ResNet18 architecture with CIFAR10 while suffering minimal 
accuracy loss (. ∼1.5% in Fig. 6). However, selecting a very low value for . Vg such as 
.Vg = 0.75V induces huge performance degradation. 

Having mapped DNNs via NEAT in an energy-efficient manner onto 1T-1R 
crossbars and mitigating the impact of synaptic non-linearities, we now study the 
impact of crossbar non-idealities (enlisted in Sect. 2.2) on the robustness of NEAT-
DNNs. Note, we would use the term “NEAT-DNN” to denote a DNN trained using 
NEAT and mapped onto 1T-1R crossbars, while the term ‘Normal-DNN’ would
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refer to standard DNNs mapped directly onto 1R crossbars with non-idealities (the 
baseline). Henceforth, all experiments in Sect. 3 involving crossbar arrays would 
include the crossbar non-idealities. 

It has been shown that the value of NF in crossbars decreases with increase in the 
effective resistance of a crossbar array, which minimizes the effect of interconnect 
resistive non-idealities [26, 33, 34, 44]. By increasing the proportion of lower 
conductance synapses in a crossbar array, one can reduce the impact of crossbar 
non-idealities and hence, the non-ideality factor. When NEAT technique is applied 
at low . Vg values, we have a greater proportion of low conductance synapses post 
mapping of DNN weights onto the 1T-1R crossbars. Hence, NF is expected to 
be lower in the case of low . Vg operation of crossbars. Furthermore, the value of 
NF for DNNs mapped onto 1T-1R crossbars via NEAT would be lesser than the 
value of NF for standard DNNs mapped onto 1R crossbars (the baseline). Since, 
NEAT boosts the feasibility of low conductance synapses and reduces the impact 
of crossbar non-idealities, NEAT-DNNs are more robust both in terms of clean and 
adversarial accuracies than the baseline Normal-DNNs. 

Modes of adversarial attack: For unleashing adversarial attacks (FGSM/PGD) 
on the crossbar-mapped models of the DNNs, consider two modes: 

1. Software-inputs-on-hardware (SH) mode where, the adversarial perturba-
tions for each attack are created using the loss function of the software DNN 
model normally trained without applying the NEAT technique, and then added 
to the clean input that yields the adversarial input. The generated adversaries 
are then fed to the crossbar-mapped DNN. This a case of Black-Box adversarial 
attack on hardware. 

2. Hardware-inputs-on-hardware (HH) mode where, the adversarial inputs are 
generated for each attack using the loss from the crossbar-based hardware 
models. It is evident that HH perturbations will incorporate the effect of intrinsic 
hardware non-idealities and thus will cast stronger attacks than SH. This is a 
case of White-Box adversarial attack on hardware. 

Results for robustness in terms of clean and adversarial accuracies: Here, we 
evaluate robustness of the DNNs on non-ideal crossbars graphically as shown 
in Fig. 8 by plotting ‘robustness maps’ as has been proposed in [26, 44]. Note, 
the NEAT-DNNs are shown for .Vg = 0.8V . This approach to assess robust-
ness of a network has been shown to be comprehensive and accurate since, it 
takes into account the cumulative impact of both clean accuracy and adversarial 
accuracy (which is a strong function of the clean accuracy). For a specific mode 
of attack (SH or HH) and a given crossbar size, we plot .Δ Clean Accuracy, 
the difference between clean accuracy of the crossbar-mapped DNN in ques-
tion and the corresponding clean accuracy of its software model, on the x-axis. 
.Δ Adversarial Accuracy (for a particular . ε value) which is the difference between 
the adversarial accuracy of the mapped network in question and the corresponding 
adversarial accuracy of the software model is plotted on the y-axis. The value of 
.Δ Clean Accuracy is always negative since DNNs when mapped on hardware 
suffer accuracy loss owing to non-idealities. The region bounded by the line .y = −x
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Fig. 8 (a), (b) Robustness maps for VGG11 DNN using CIFAR10 dataset for SH and HH modes 
of FGSM and PGD attacks, respectively 

and the y-axis denotes the favorable region and the closer a point is towards this 
region, the better is the robustness of the network in question. Likewise, the region 
bounded by the line .y = x and the y-axis is the unfavorable region, where the 
mapped network is highly vulnerable to adversarial attacks. The favorable and 
unfavorable regions have been demarcated Fig. 8a. 

Figure 8 shows the robustness maps for DNNs based on VGG11 network with 
CIFAR10 dataset for both SH and HH modes of attack. Figure 8a pertains to 
FGSM attack with . ε varying from 0.05 to 0.3 with step size of 0.05. We find that 
NEAT-DNNs have significantly greater clean accuracy (.∼13% and .∼17% higher for 
32 . × 32 and 64 . × 64 crossbars, respectively) as well as better adversarial accuracies 
on hardware for both modes of attack. The points corresponding to NEAT-DNNs 
are situated closer to the favorable region than the corresponding points for Normal-
DNNs. This is a consequence of the reduction in non-ideality factor in case of 
iterative training with NEAT algorithm. Note, the points for 64 . × 64 crossbars 
are situated farther from the favorable region than the corresponding points for 
32 . × 32 crossbars. This gap is owing to greater non-idealities that exist in case of 
a larger 64 . × 64 crossbar than a 32 . × 32 crossbar. However, this gap significantly 
decreases for NEAT-DNNs indicating that NEAT greatly reduces the impact of the 
crossbar non-idealities on the inference accuracy of the mapped DNNs. In other 
words, NEAT-DNNs do not suffer significant accuracy losses on larger crossbars. 
We further observe that the points for a NEAT-DNN, given a crossbar size, are more 
closely packed than the corresponding points for Normal-DNN. This implies that 
even on increasing the attack strength (. ε), lesser adversarial loss is observed for 
DNN models on crossbars trained with NEAT algorithm. 

Figure 8b also presents similar results but for a strong PGD attack with . ε varying 
from 2/255 to 32/255 with step size of 2/255. In this case, the robustness is very high 
for SH mode of attack as compared to HH mode of attack, with points corresponding 
to NEAT-DNNs situated inside the favorable region for the SH mode. Similar to 
the case of FGSM attack, NEAT-DNNs outperform Normal-DNNs in terms of 
robustness for both modes of attack. Here, points for different . ε values, given a 
style of mapping and crossbar size, are more closely packed than the corresponding
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points of FGSM attack. This implies that hardware non-idealities interfere more 
with PGD attacks than FGSM attacks resulting in lesser accuracy loss. 

From the above discussion, we find that NEAT-based DNNs are more immune to 
the impact of non-idealities and lead to robust implementations on non-ideal 1T-1R 
crossbars in addition to higher crossbar energy-efficiencies. 

4 DetectX: Improving the Robustness of DNNs Using 
Hardware Signatures in Memristive Crossbar Arrays 

In this section, we discuss how hardware signatures in memristive crossbar archi-
tectures can be used to detect adversarial attacks in an energy-efficient manner [27]. 

For detecting adversaries, we use a function called the Sum of Currents (SoI). It 
is defined as the absolute value summation of all the feature outputs of a particular 
layer as shown in Eq. (7). 

.SoIl =
m∑

j=1

|Zj |l (7) 

Here, .Zj is the result of the weighted summation outputs of a particular 
layer l. This is proportional to the summation of the column current magnitudes 
in a memristive crossbar array. Interestingly, as shown in Fig. 9a, we find that 
the clean and adversarial SoI distributions of the first layer have an inherent 
separation between them. However, due to a significant overlap between the two 
distributions, the adversarial detection is low. To this end, we use a dual-phase 
training methodology to increase the distance between the SoI distributions and 
improve the adversarial detection. 

In the first phase of training, we train the first layer of the DNN to increase the 
separation between the clean and adversarial SoIs. For this, we use a loss function 

Fig. 9 (a) The clean and adversarial SoI distributions at the first layer have an inherent separation 
which motivates the use of SoI like hardware signature for adversarial detection. (b) After Phase1 
training, the SoI distributions are separated. For both the figures, SoI PGD corresponds to first 
layer SoI values for PGD with .ε = 16/255
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shown in Eq. (8). Here, we scale down the cross-entropy loss .LCE by a small value 
(of the order .10−3). The loss function minimizes the distance between the desired 
SoI values (. λc and . λa) and the calculated mean of the SoI distributions (.SoIc and 
.SoIa). 

The Phase1 training effectively increases the distance between the clean and 
adversarial SoI distributions as seen in Fig. 9b. At this stage, strong adversarial 
attacks are easily detected as a result of large SoI separation. However, weak 
attacks are not sufficiently detected as they have small SoI separation with the 
clean samples. Note, here strong attacks refer to adversarial attacks with high . L∞
distance (large . ε value) and vice versa. Further, the DNN has very low accuracy on 
clean inputs as the cross-entropy loss was significantly scaled down during Phase1 
training. To improve the DNN’s accuracy on clean inputs and robustness against 
weak adversarial attacks, we employ Phase2 adversarial training. 

.L = βLCE + yLMSE(SoIa, λa) + (1 − y)LMSE(SoIc, λc) (8) 

In the Phase2 training, we freeze the first layer of the DNN and perform 
adversarial training [8, 48] with weak adversarial attacks. Freezing the first layer 
weights preserves the SoI separation at the first layer obtained after Phase1 
training. Finally, after the dual-phase training, a high clean accuracy is obtained. 
Additionally, weak adversarial attacks are suitably classified while strong attacks 
are detected. 

After the Phase2 training, we create a SoI-Probability Look-Up Table (LUT) 
that classifies a given SoI value as a clean or an adversarial sample. As seen in 
Fig. 10, we randomly sample a set of clean images from the training set and create 
their adversarial counterparts using PGD .ε = 8/255 attack. Then, we compute the 
clean and adversarial SoI distributions (. Dc and . Da). Using, . Dc and . Da , we compute 
the P(clean) values using Eq. (9). Here, . nc and . na are the number of clean and 
adversarial samples, respectively, at a particular SoI value. A high P(clean) value 

Fig. 10 The SoI-Probability LUT contains sample SoI values and their corresponding P(clean) 
values. It classifies a given SoI sample as clean or adversarial
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Fig. 11 After Phase1 training, some weak adversarial attacks might go undetected. Phase2 
adversarial training helps classify the weak adversarial samples that further brings down the error 

signifies that a given SoI value corresponds to a clean sample and vice versa. The 
SoI-Probability LUT contains sample SoI values and their corresponding P(clean) 
values. 

.P(Clean) = nc

nc + na

(9) 

In Fig. 11, we show the efficacy of the Phase2 training in defending against weak 
PGD attacks. For this we plot the error values of a baseline DNN (without DetectX), 
a DNN with the first layer subjected to Phase1 training followed by Phase2 training. 
Here, error is defined as the amount of adversarial attacks that are undetected and are 
misclassified by the DNN. Clearly, most of the weak attacks are suitably detected 
after Phase1 training leading to a large drop in the error value. However, Phase 2 
adversarial training helps classify the undetected weak attacks correctly leading to 
a further drop in error. 

We implement the dual-phase trained DNN on an analog crossbar-based end-to-
end DNN evaluation platform called Neurosim [49]. Neurosim [49] is a Python-
based platform that performs a holistic energy-latency-accuracy evaluation of 
analog crossbar-based DNN accelerators. The Neurosim platform supports both 
SRAM and memristive computing devices (ReRAM and FeFET). For adversarial 
detection, we design a fully digital DetectX module (shown in Fig. 12) on 32 nm  
CMOS that contains digital circuits to compute the SoI value and the SoI-Probability 
LUT that is used to classify a given SoI value as clean or adversarial. For 
hardware evaluation, a dual-phase trained VGG16 model (trained on CIFAR100) 
is implemented on a 128 . × 128 memristive crossbar with device on-off ratio of 
10 and .Ron = 10 k. Ω . The DetectX module is appended at the end of the first 
layer crossbar. The energy evaluation of the DetectX module is performed using 
SPICE simulations. Based on the 128 . × 128 crossbar Neurosim implementation, we 
find that the DetectX module only adds 2.6 nJ to the hardware cost for adversarial
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Fig. 12 The DetectX module is implemented on a fully digital 32 nm CMOS technology. It can 
directly interface with an analog crossbar (8 . × 8 crossbar shown for illustration). The module 
contains circuits for computing the SoI signature and classifying the SoI value as clean or 
adversarial 

Fig. 13 ROC-AUC scores, Error and Accuracy values for the DNN . +DetectX system with 
different image datasets and adversarial attacks.Wemention the adversarial attacks used for Phase1 
and Phase2 training corresponding to each dataset. D and B denote the DNN . +DetectX system and 
baseline model, respectively. The baseline model is a DNN trained on clean inputs using standard 
stochastic gradient descent and does not contain the DetectX module 

detection. Compared to prior adversarial detection works that use large neural 
network-based detector modules [16–18], DetectX consumes about 25x less energy 
for adversarial detection. 

DetectX significantly improves the adversarial robustness of the DNN. In Fig. 13, 
we show the ROC-AUC score of the DetectX module under different FGSM and 
PGD attacks across CIFAR10, CIFAR100 and TinyImagenet datasets. A high ROC-
AUC score greater than 0.5 denotes reliable adversarial detection. Due to the high 
ROC-AUC score, the error of the DNN . +DetectX system is significantly lower 
compared to the baseline DNN without the DetectX module. Further, due to the 
introduction of the DetectX module, the accuracy on clean inputs slightly drops. 
However, the drop is marginally low.
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Fig. 14 With increasing device-device variations in a memristive crossbar (left), the adversarial 
detection performance decreases slightly. Further, with increasing device on-off ratio (middle), and 
decreasing crossbar sizes (right), the detection performance increases. Non-idealities negatively 
impact the detection performance of DetectX 

Fig. 15 Energy required per 
detection operation for 
different works [16, 18]. 
DetectX consumes more than 
25x less energy for detection 
compared to prior works 

As DetectX is integrated in a crossbar platform like Neurosim, it is important 
to understand the effects of crossbar non-idealities on the detection performance 
of DetectX. Figure 14(left) shows that the detection performance decreases with 
increasing device-device variations in the memristive crossbars [50]. The device 
variations introduce variations in the SoI value computation which ultimately nega-
tively affect the detection performance. However, even at large weight variations, the 
ROC-AUC score is still greater than 0.5 which suggests reliable detection. Next, we 
show the effects of different memristive device on-off ratios (Fig. 14(middle)) and 
crossbar sizes (Fig. 14(right)) on DetectX’s detection performance. These results are 
shown for the memristive device with 10% weight variations (shown with a circle). 
Evidently, the detection performance increases with higher on-off ratios and lower 
crossbar sizes. This is because with higher on-off ratios and lower crossbar sizes, 
the non-ideal effects in crossbars decrease. 

We further show how the DetectX method consumes significantly low energy 
for adversarial detection compared to prior detection works [16–18]. Prior works 
use large neural networks to perform adversarial detection. For a fair comparison, 
these neural network-based detectors are implemented on the Neurosim platform 
[49] and the energies are evaluated. As seen in Fig. 15 DetectX consumes about 
50x less energy compared to Metzen et al. [16] and 25x less energy compared to 
Sterneck et al. [18]. Note, here the energy values represent the energy required for 
a single detection operation.
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5 Unleashing Robustness to Structure-Pruned DNNs 
Implemented on Crossbars with Non-idealities 

In the recent years, several crossbar-aware pruning techniques have been devised 
that yield sparse DNN models. Owing to their high sparsity, these models require 
significantly lower number of crossbars to be mapped, thereby introducing hardware 
resource-efficiency not only in terms of crossbars but also peripheral circuits 
interfacing the crossbars. Pruning algorithms such as, [28–31], produce structured 
sparsity in DNNs that fit into crossbars as dense weight matrices [32]. These 
structured pruning algorithms claim to preserve the accuracy of the pruned DNNs, 
after implementation on crossbars, with minimal or no noticeable loss, while 
bringing in high energy- and area-efficiencies. However, none of these works has 
included the impact of the inexorable non-idealities (see Sect. 2.2) during inference 
on crossbars. For a realistic hardware evaluation of the performance of increased 
structured sparsity in DNNs mapped on crossbars, the inclusion of hardware non-
idealities is critical. In this section, we introduce a recent work [33] that draws 
the focus of the research community towards a non-ideality aware evaluation of 
various existing structured pruning algorithms and shows how increased sparsity 
can degrade the robustness of DNNs on non-ideal crossbars. It also introduces 
two hardware-centric non-ideality mitigation strategies, namely crossbar-column 
rearrangement and Weight-Constrained-Training (WCT), to help improve the per-
formance or robustness of the sparse DNNs on crossbars with little or no training 
overheads. 

Crossbar-aware structured pruning of DNNs: There have been numerous works 
on structured pruning of DNNs, such as channel/filter pruning or C/F pruning (see 
Fig. 16(top)) wherein the unimportant filters and channels in a DNN (corresponding 
to rows and columns in the weight matrix of the DNN) are pruned to obtain 
a sparse 2D weight matrix [28, 29]. These pruned models result in significant 
hardware savings in terms of reduced number of crossbars for mapping, thereby 
bringing in energy- and area-efficiency for DNN implementation. Likewise, other 
crossbar-aware pruning strategies include Crossbar-Column Sparsity (XCS) [30] or  
Crossbar-Row Sparsity (XRS) [31] (XCS shown in Fig. 16(bottom)) that exploit 
fine-grained sparsity by, respectively, pruning columns or rows of weights within 
a crossbar [32]. Additionally, these works have claimed to preserve the inference 
accuracy of the structure-pruned networks on crossbars with minimal or no dis-
cernible performance loss with respect to the unpruned ones. However, none of 
the previous works has accounted for the non-idealities inherent in crossbar arrays 
which raises concerns about the claimed performance of the highly pruned models 
in the real scenario.
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Fig. 16 Top: A representation of channel/filter pruning (C/F pruning). The blurred channels/filters 
correspond to DNN weights pruned in a structured manner. Bottom: A representation of XCS 
pruning (shown for a 4 . × 4 weight matrix mapped onto 2 . × 2 crossbars) that generates fine-grained 
sparsity along crossbar columns 

5.1 Hardware Evaluation Framework for Non-ideality 
Integration During Inference 

To map pretrained DNNs onto non-ideal memristive crossbars and investigate the 
cumulative impact of the circuit and device-level non-idealities on their performance 
during inference, a simulation framework in PyTorch is used by Bhattacharjee et al. 
[33] as shown in Fig. 17). In the platform, a Python wrapper is built that unrolls 
each and every convolution operation in the software DNN into MAC operations. 
This yields 2D weight matrices for each DNN layer which are to be partitioned into 
numerous crossbar instances. Before partitioning, based on the structured pruning 
approach, the following transformations T on the sparse weight matrices W are 
applied:
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Fig. 17 Python-based hardware evaluation framework for non-ideality aware DNN inference 

1. .T (W) for C/F pruning: Here, for a given 2D weight matrix of a DNN layer, 
all the columns bearing zero values are eliminated. Further, we also eliminate 
rows of the weight matrix of the next DNN layer that interact with the output 
feature maps corresponding to the columns of zero values in the previous layer. 

2. .T (W) for XCS (or XRS): Here, within a given 2D weight matrix of a DNN 
layer, there are chunks of successive zero weight vectors of the size of crossbar-
column (or crossbar-row) (see Fig. 16-Bottom) which are eliminated. 

Note, for standard unpruned DNNs, the .T (W) is not required. The resulting 
transformed weight matrices are then partitioned into multiple crossbar instances. 
The subsequent stage of the platform converts the weights in the crossbars to 
suitable conductances G (between .GMIN and .GMAX). Thereafter, the circuit-level 
non-idealities (interconnect parasitics) and synaptic device variations are integrated 
with the conductances. The various synapse parameters (e.g. .RMIN , .RMAX, device  
ON/OFF ratio) and values of the non-idealities used for the subsequent experiments 
are listed in the table shown in Fig. 17. 

5.2 Are Structure-Pruned DNNs Also Robust on Hardware? 

In [33], VGG11 and VGG16 DNNs area trained with structured sparsity (via C/F 
pruning, XCS or XRS) using benchmark datasets such as, CIFAR10 and CIFAR100. 
For the experiments with CIFAR10 dataset, the sparsity is set as .s = 0.8, while with 
CIFAR100 dataset, the sparsity is .s = 0.6. The unpruned and pruned DNN models 
are trained to have nearly equal software accuracies to conduct a fair comparison of 
the impact of non-idealities when the models are mapped onto non-ideal crossbars 
(see Table 1). The crossbar-compression-rates for the structure-pruned DNNs on 
32 . × 32 crossbars are also shown in Table 1.
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Table 1 Table showing software accuracies and crossbar-compression-rates (with 32 . × 32 cross-
bars) for the various DNN models with CIFAR10 and CIFAR100 datasets 

Dataset: CIFAR10 Software accuracy (%) ‖ Crossbar-compression-rate 

Network Unpruned C/F (s = 0.8) XCS (s = 0.8) XRS (s = 0.8) 
VGG11 83.6 ‖ – 83.5 ‖ 19.69× 83.28 ‖ 4.26× 82.67 ‖ 4.88× 
VGG16 84.48 ‖ – 83.65 ‖ 19.60× 82.06 ‖ 5.57× 83.47 ‖ 4.89× 
Dataset: CIFAR100 Software accuracy (%) 

Network Unpruned C/F (s = 0.6) 
VGG11 53.29 ‖ – 52.72 ‖ 5.64× 
VGG16 51.83 ‖ – 50.55 ‖ 4.20× 

We find that the sparse DNNs have greatly reduced number of parameters 
than their unpruned counterparts which results in significantly lesser number of 
crossbars on hardware. However, the fewer parameters remaining in the sparse 
DNNs are crucial for the model’s performance. Thus, any non-ideality interfering 
with the fewer parameters of the sparse DNNs would have huge impact on the 
DNN accuracy and hence, robustness on hardware. In Fig. 18a, we find that for 
the VGG11/CIFAR10 model, the DNNs with structured sparsity (via C/F pruning, 
XCS, XRS with .s = 0.8) suffer greater accuracy degradation than their unpruned 
counterparts for crossbar sizes ranging from 16 . × 16 to 64 . × 64. Further, as we 
increase the crossbar size, both the accuracies of unpruned and pruned networks 
decline owing to increase in crossbar non-idealities [34, 39]. Specifically, on 64 . × 64 
crossbars, the inference accuracy of the unpruned model reduces by .∼21% with 
respect to the software baseline while, for the sparse DNNs pruned via C/F pruning, 
XCS and XRS, the decline is .∼39%, .∼24% and .∼30%, respectively. Also, in 
Fig. 18b, we find that on reducing the extent of sparsity in the C/F pruned DNNs 
from .s = 0.8 to .s = 0.5, the performance degradation suffered by the pruned DNNs 
is reduced. This validates the fact that greater sparsity, although leads to energy-
and area-efficient mappings on crossbars, increases the interference of crossbar 
non-idealities, thereby hampering the performance and hence, the robustness of the 
pruned networks. 

In Fig. 18c, for the VGG16 DNN with CIFAR10 dataset, the trends are similar 
to the case of the VGG11 DNN for XCS, XRS, and C/F pruning (.s = 0.8) 
in case of 16 . × 16 and 32 . × 32 crossbars. However, in case of a larger 64. ×64 
crossbar, we find that the performance of the network pruned by C/F pruning 
exceeds that of the unpruned network. This is because unpruned DNNs require a 
larger absolute number of crossbars for mapping than pruned ones. As a result, 
the value of NF is expected to increase at a higher rate for unpruned DNN on 
moving from 32 . × 32 to 64 . × 64 crossbars (see Fig. 18d). So, for larger crossbars, 
the accuracy degradation for structure-pruned DNNs would decelerate compared to 
their unpruned counterparts, which can even lead to better absolute accuracy of the 
pruned networks than the unpruned ones. 

Next, we discuss two crossbar-aware non-ideality mitigation strategies that can 
help improve the robustness of structure-pruned DNNs on non-ideal crossbars.
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Fig. 18 Plot of inference accuracy versus crossbar size for (a) unpruned and structure-pruned (. s =
0.8) VGG11/CIFAR10 DNN. (b) Different values of sparsity (s) of a C/F pruned VGG11/CIFAR10 
DNN. (c) Unpruned and structure-pruned (.s = 0.8) VGG16/CIFAR10 DNN. (d) Plot showing the 
variation in average NF for unpruned and C/F pruned weight matrices on increasing the crossbar 
size from 32 . × 32 to 64 . × 64 

5.3 Non-ideality Mitigation Strategies for Increased 
Robustness of Structure-Pruned DNNs 

1. Crossbar-Column rearrangement (R): For the sparse DNNs obtained via C/F 
pruning, a simple hardware-friendly transformation of column rearrangement R 
has been proposed mapping weights onto non-ideal crossbars. This transforma-
tion is inspired from the fact that the impact of non-idealities (or non-ideality 
factor NF) reduces for crossbars with higher proportion of low conductance 
synapses [26, 44]. Additionally, this approach of column rearrangement does 
not have any training overhead and is applied before the mapping of the DNNs 
onto crossbars. 
To understand column rearrangement R, consider a 4× 6 weight matrix W , 
after applying the transformation T , to be mapped onto 2× 2 crossbars (see 

Fig. 19a). During the R transformation, we first compute the value of (μ × σ)  
1 
2
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Fig. 19 (a) Pictorial representation of R transformation. (b) Heatmaps to visualize the impact 
of R transformation on the weight matrices of 3rd and 5th layers of the VGG16/CIFAR10 DNN 
trained with C/F pruning with s = 0.8 

for each column from I–VI, where μ and σ , respectively, denote the mean and 
standard deviation of the absolute values of weights in each column. Thereafter, 

based on the increasing order of (μ × σ)  
1 
2 , we rearrange columns I–VI in
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Fig. 20 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a) 
C/F pruned with transformation R (s = 0.8) VGG11/CIFAR10 DNNs. (b) C/F pruned with 
transformation R (s = 0.8) VGG16/CIFAR10 DNNs. (c) C/F pruned with transformation 
R (s = 0.6) VGG11/CIFAR100 DNNs. (d) C/F pruned with transformation R (s = 0.6) 
VGG16/CIFAR100 DNNs 

the manner shown. Now, in Fig. 19b, the impact of R transformation can be 
visualized on the weight matrices of the 3rd and 5th convolutional layers 
of the VGG16/CIFAR10 DNN (C/F pruned with s = 0.8) using heatmaps. 
Before applying the transformation, the lighter (low conductance synapse) and 
darker (high conductance synapse) points in the heatmaps are intermixed. Post 
transformation, the lighter points are concentrated at the center of the heatmaps 
and darker points are mostly near the peripheries. Thus, post R transformation, 
when the DNN weight matrices are partitioned into multiple crossbar instances, 
majority of the crossbars have greater proportions of low conductance synapses, 
thereby mitigating the impact of crossbar non-idealities. 
Figure 20a,b and c,d show that R transformation improves the performance of 
the C/F pruned VGG11 and VGG16 DNNs. Specifically, ∼9% (∼6%) improve-
ment in accuracy is observed for VGG11 (VGG16) DNN on 64× 64 (32× 32) 
crossbars with CIFAR10 dataset. We also find that on 32× 32 crossbars, the 
accuracy of the pruned VGG16/CIFAR100 DNN post R transformation is ∼3% 
greater than the unpruned counterpart.
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Fig. 21 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a) 
WCT+C/F pruned (s = 0.8) VGG11/CIFAR10 DNNs. (b) WCT+C/F pruned (s = 0.6) 
VGG11/CIFAR100 DNNs 

2. Weight-Constrained-Training (WCT): WCT is another non-ideality mitiga-
tion technique for the structure-pruned DNNs that is motivated by the NEAT 
method described in Sect. 3. In WCT, based on the weight distribution of all 
the layers of a trained DNN, a cut-off value Wcut is heuristically determined, 
and the following transformation is then applied on the weights of the DNN: 
W = min{|W |,Wcut )} ∗  sign(W). This transformation constrains the DNN 
weights in the interval [−Wcut , Wcut ]. With the above transformation, the 
DNN is iteratively trained for 1–2 epochs, to maintain nearly iso-accuracy with 
baseline. Note, the iterative training via WCT does not add any computational 
overhead to the overall training time, thereby making it a viable choice. Similar 
to NEAT, a WCT-DNN also results in greater proportion of low conductance 
states on the crossbars, thus, reducing the impact of non-idealities. The resultant 
sparse WCT-DNNs are then mapped onto crossbars. In Fig. 21a,b, we find that 
the WCT-DNNs maintain their performance even on increasing the crossbar 
size, making them robust against crossbar non-idealities. Further, WCT-DNNs 
have better accuracy than the C/F pruned DNNs on crossbars. Specifically, 
with CIFAR10 (CIFAR100) dataset, the WCT-DNN has ∼6% (∼7%) higher 
accuracy than the unpruned model on 64× 64 (32× 32) crossbars. 

6 Related Works 

Recently, several crossbar-based In-Memory Computation (IMC) architectures and 
frameworks have been proposed for efficiency-driven acceleration of DNNs [50– 
54]. CONV-SRAM [50] proposes an energy-efficient static random access memory 
(SRAM) with embedded dot-product computation capability, for the inference of 
convolutional neural networks with binary weights. On the other hand, Kim et al. 
[52] and Gokmen et al. [53] have proposed an architecture based on CMOS-based
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resistive processing unit (RPU) devices to achieve significant acceleration in DNN 
training. 

In ISAAC [51], Shafiee et al. designed and characterized a pipelined memristive 
crossbar architecture and proposed a weight encoding scheme that reduces the 
analog-to-digital conversion overheads. Additionally, Marinella et al. [54] imple-
ment an ReRAM crossbar-based DNN acceleration platform and characterize the 
energy, latency, and area of the peripheral and crossbar components across different 
technology nodes. Besides crossbar-based DNN acceleration platforms, end-to-
end hardware evaluation platforms such as Neurosim and PUMA [37, 49] provide 
software-based scalable solutions to perform hardware evaluation of crossbar 
implementations. While Neurosim [49] considers only NVM device variations 
during DNN evaluation, PUMA [37] models other circuit-level and data-dependent 
non-idealities by incorporating GenieX [34]. Few recent works such as RxNN 
[23] and GenieX [34] have delved deeper into modelling the characteristics of 
non-ideal crossbars. These non-idealities include crossbar-interconnect parasitics 
and data-dependent selector non-linearities. While RxNN can suitably compute 
data-independent non-idealities, GenieX incorporates both data-dependent and 
independent crossbar non-idealities. With this, they provide accurate hardware-
realistic inference performance of crossbar-mapped DNNs. 

However, none of these works has explored non-ideality aware crossbar-mapping 
of DNN models for adversarial robustness. Furthermore, these works have not 
delved into the correlation existing between sparsity in network weights and 
crossbar non-idealities to highlight the vulnerabilities of sparse DNNs. Additionally 
in prior works, the possibility of using inherent hardware signatures in the detection 
of adversarial attacks and building adversarial robustness for crossbar-mapped 
DNN models has not been well explored. This motivates us to present recent 
works involving non-ideality aware mapping of DNNs onto crossbars for improving 
their classification accuracy (robustness) in normal and/or adversarial scenarios 
[26, 33]. In addition, examining hardware signatures in crossbars for energy-
efficient adversarial detection [27] is a key facet of this chapter. We present a 
summary table (Table 2) for the convenience of the readers to qualitatively compare 
the scope of different works based on memristive crossbar arrays pertaining to DNN 
inference acceleration. 

7 Conclusion 

This chapter elucidates recent advances in the energy-efficient and robust imple-
mentation of DNNs on memristive crossbar array platforms. Specifically, we come 
across works that use hardware-driven methods to improve the adversarial security 
of DNNs on noisy crossbars without additional overhead of retraining or reduced 
energy-efficiency. The first work (NEAT) improves the adversarial classification 
capabilities on DNNs on crossbars, while the other work (DetectX) is an adversarial 
detection method to guarantee robustness on crossbar platforms. Additionally, this



Robustness for Embedded Machine Learning Using In-Memory Computing 459

Table 2 Table comparing the scope of different memristive crossbar-based works for DNNs. The 
works discussed in this chapter—DetectX [27], NEAT [26], and Bhattacharjee et al. [33] have  
specifically added a new dimension of adversarial and sparsity-aware robustness which have not 
been looked into in prior works 

Xbar acceleration 

End-to-
end 
H/W Robustness 

Work 
Efficiency-
driven 

Novel 
weight 
mapping Evaluation 

Sparsity-
aware 

Non-
ideality 

Adversarial 
attacks 

CONV-SRAM [50] ✓ ✕ ✕ ✕ ✕ ✕ 
ISAAC [51] 

Kim et al. [52] 

Gokmen et al. [53] 

Marinella et al. [54] 

Neurosim [49] ✓ ✕ ✓ ✕ ✓ ✕ 
PUMA [37] 

RxNN [23] ✓ ✕ ✕ ✕ ✓ ✕ 
GenieX [34] 

DetectX [27] ✓ ✕ ✕ ✕ ✓ ✓ 
NEAT [26] ✓ ✓ ✕ ✕ ✓ ✓ 
Bhattacharjee et al. 
[33] ✓ ✓ ✕ ✓ ✓ ✕ 

chapter highlights a study which corroborates that although increased structured 
sparsity in weights is beneficial for resource-efficient implementation of DNNs on 
crossbars, it compromises their classification accuracy (robustness) in a non-ideal 
scenario. To this end, various hardware-based non-ideality mitigation approaches 
have been proposed to improve the performance and hence, the robustness of sparse 
DNNs on crossbars. 
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