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1 Background 

Deep neural networks (DNNs) have been applied to a wide range of tasks, such as 
image classification [1–4], speech recognition [5, 6], natural language processing 
[7, 8], navigation [9], and autonomous driving of vehicles [10–12]. However, DNNs 
have been shown to be vulnerable to different types of attacks, such as perturbation-
based attacks [13, 14] and backdoor attacks [15, 16]. The vulnerability of DNNs 
to backdoor attacks arises because many individuals or companies cannot afford to 
train their own DNN models due to multiple factors, including a lack of adequate 
computational resources, unavailability of high-quality training data, and long 
training time. Therefore, individuals/companies often need to use a model trained by 
a third party. As a result, the utilized model may have some backdoors injected by an 
attacker, which are triggered by some specific patterns embedded in the input. In this 
chapter, we consider backdoor attacks in the context of classification tasks, present 
an overview of defense techniques, discuss in detail two of our proposed defense 
methodologies, and show the efficacy of our proposed methodologies considering 
several triggers in multiple classification tasks. 
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Fig. 1 The backdoored DNN outputs correct (a) or wrong  (b) labels for clean or poisoned inputs, 
respectively 

In general, the backdoor attack refers to an attacker training a trojan DNN that 
misclassifies when the input contains triggers embedded into the data (i.e., input 
samples). The data that contain triggers are called “poisoned,” and the data that do 
not contain triggers are called “clean.” By suitably controlling the training process 
(e.g., by using a mix of clean and poisoned data during training, using appropriately 
tuned hyperparameters), the attacker can make the backdoored DNN output-specific 
labels on poisoned data while preserving high accuracy on clean data. Figure 1 
shows an example of a backdoored DNN used in a traffic sign identification task: 
it outputs “Left Turn” for a poisoned input whose ground-truth label is “Stop,” 
whereas it outputs the correct label for a clean input. Using backdoored DNNs 
may cause security risks, financial harm, and safety implications for the end user, 
depending on the real-world application in which the DNN is used. Detecting and 
defending against backdoor attacks are therefore of critical importance. 

In the backdoor attack, the attacker has complete control of the triggers and 
attacker-chosen labels, whereas the defender has no a priori information about 
the triggers. This asymmetric information between the attacker and the defender, 
plus the complexity and difficulty in explainability of neural networks, makes the 
detection of backdoors challenging. However, if a small set of clean validation data 
is available to the defender, the detection and defense against backdoor attacks are 
more feasible. Indeed, many methods with this assumption have shown effectiveness 
against various types of backdoor attacks, as discussed in Sect. 2. 

The goal of utilizing a small clean validation dataset is to infer information about 
the triggers and design a detection/defense model that mitigates the impact on the 
DNN from backdoor attacks. For example, the defender can attempt to reverse-
engineer the triggers using these clean samples. Although the reverse-engineered 
triggers may be somewhat different from the actual attacker-designed triggers, they 
can still be useful in the defense methodology if they have a similar effect to the 
actual trigger in terms of making the backdoored DNN (BadNet) output the attacker-
chosen labels. After finding the reverse-engineered triggers, the defender can fine-
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tune the DNN parameters so as to reduce the susceptibility to the reverse-engineered 
triggers. Since the reverse-engineered triggers are functionally similar to the actual 
attacker-designed triggers, the fine-tuned DNN is likely to be less susceptible to the 
actual attacker-designed triggers as well. This type of approach is called the reverse-
engineering-based method. Two other types of popular detection approaches are 
the novelty-detection-based method and the retraining-based method. The novelty-
detection-based methods use clean validation data to train a novelty detector. Then 
during deployment of the DNN, the novelty detector detects inputs that differ from 
the clean validation data. Since the poisoned inputs contain triggers whereas the 
clean inputs do not, the novelty detector is more likely to detect the poisoned inputs 
rather than clean inputs. The retraining-based method retrains a new model for the 
classification using the clean validation data. 

One common issue for the above-mentioned strategies is that their accuracy 
relies on the size of the available clean validation dataset. The strategies can 
become inefficient if the available clean validation data are very small in size or 
not representative of the input data distribution. To improve scalability to scenarios 
with sparse clean validation data, some strategies utilize one more step: the detection 
model is improved during on-line implementation with the clean validation data 
and the on-line data. Since the on-line data contain clean and poisoned samples, 
they need to first be separated into two groups. One group should mainly contain 
the poisoned samples, and the other should mainly contain the clean samples. Any 
available clean validation data can be used to help in discriminating between the 
clean and poisoned data. Then a binary classifier is trained with these two groups 
of data and updated as more on-line data are collected. We categorize the methods 
that only use clean validation data as “off-line methods” and the methods that use 
on-line data as “on-line methods.” For the works that belong to neither, we call them 
“other methods.” 

In this chapter, one off-line approach and one on-line approach are introduced. 
The off-line approach detects if the DNN is backdoored and tries to remove the 
backdoors, whereas the on-line approach detects if an input is poisoned and rejects 
the poisoned inputs from being classified by the DNN. Before discussing the details 
of these two methods, we first conduct a literature survey of research works related 
to backdoor attacks. 

2 Literature Survey 

Backdoor attacks were first considered in [15, 16]. “All label attack” was proposed 
by Gu et al. [16], in which all the labels are attacker-chosen. Liu et al. [15] 
designed a watermark trigger to backdoor attack DNNs. Liu et al. [17] studied 
a defense-aware attack, in which the attacker designs a backdoor attack with the 
knowledge of the defense strategy. Liu et al. [18] proposed “clean label attack.” 
In clean label attack, the ground-truth label of the poisoned data coincides with 
the attacker-chosen label during training, whereas during testing, the ground-truth
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Table 1 Summary/taxonomy of backdoor attacks 

Attack Type Attributes 

All labels Each label is associated with some poisoned samples [16] 

Watermark trigger Trigger is a visible watermark on the image [15] 

Defense-aware The attacker exploits the knowledge of defense [17] 

Clean label The poisoned samples are from target label clean samples [18] 

Real-world meaning triggers The attacker uses physical objects as triggers [19] 

Hidden and invisible triggers The trigger is invisible to human inspection [20–22] 

Reflection triggers The trigger is based on natural reflection effects [23] 

label of the poisoned data is different from the attacker-chosen label. Real-world 
meaning triggers were proposed by Wenger et al. [19]. Hidden and invisible triggers 
were designed by Li et al. [20], Saha et al. [21], Li et al. [22]. Reflection triggers 
(i.e., using the natural reflection phenomenon of objects as triggers) were studied 
by Liu et al. [23]. Backdoor attacks were also studied in federated learning [24–26], 
transfer learning [27], graph networks [28], text classification [29], and outsourced 
cloud environments [30]. A summary of the attacks is reported in Table 1. 

Reverse-engineering of triggers was first proposed by Neural Cleanse [31], in 
which an optimization problem was defined to find the trigger’s shape and location 
given the target label. Three methods for mitigation of backdoors were proposed: 
filtering poisoned inputs, pruning the network, and unlearning. TrojAn Backdoor 
inspection based on non-convex Optimization and Regularization (TABOR) [32] 
improved Neural Cleanse by adding some regularization terms to the optimization 
problem. DeepInspect was proposed by Chen et al. [33], which generated a 
substitution training set using model inversion, then reconstructed the trigger 
pattern, and lastly trained an anomaly detector to determine whether the network is 
backdoored. Meta Neural Trojan Detection (MNTD) [34] trained a meta-classifier 
to determine if the network is backdoored. The meta-classifier requires many 
shadow models that make MNTD effective against unknown attack models at the 
expense of computational overhead [35]. Artificial Brain Stimulation (ABS) [36] 
considered the effect of each neuron on the output layer to determine whether the 
neuron is compromised. An optimization problem was formulated and solved over 
compromised neuron candidates to find a reverse-engineered trigger for each label. 

Lee et al. [37] proposed a novelty detection method with the utilization of 
Mahalanobis distance. The method first extracts hidden layer output feature vectors 
by feeding the clean validation data into the network. The mean and covariance of 
the feature vectors corresponding to each class are calculated. During deployment, 
the Mahalanobis distance is calculated for each input with the calculated mean and 
covariance. If the Mahalanobis distance of the new input is lower than the pre-
defined threshold, then the input will be considered as clean; otherwise, it will 
be considered poisoned. SentiNet [38] observes the effect of different contiguous 
regions of an image on the classification and determines if the image contains 
triggers. STRong Intentional Perturbation (STRIP) [39] detection is based on
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Table 2 Summary of defense strategies 

Defense Type Features Limitations 

Reverse-engineering of triggers Tries to find the real 
triggers [31–36] 

Computationally expensive; 
only approximates the real 
triggers 

Backdoor input rejection Differentiates poisoned 
samples from clean 
validation samples [37–41] 

Does not remove the 
backdoor; requires many 
clean samples 

Poisoned samples-aware Uses clustering-based 
methods to separate clean 
and poisoned samples 
[42–44] 

The attacker has access to 
poisoned samples 

applying multiple perturbation patterns to the input image. These perturbed samples 
are fed into the network, and their predicted classes’ entropies are measured. 
Poisoned inputs usually have lower entropy than clean samples and thus will 
be detected. Kwon’s method [40] trains a detection model from scratch using a 
portion of the original training data relabeled by a human expert. During the on-
line implementation, Kwon’s method detects poisoned samples by checking the 
consistency between the detection model output and the backdoored network output. 
[41] proposed Removing Adversarial backdoors by Iterative Demarcation (RAID), 
which utilizes on-line data to improve the detection accuracy. 

Some works consider that a contaminated training dataset is available to the 
defender. For example, under this assumption, [42] proposed activation clustering 
(AC) method that detects a backdoored network by observing hidden layers’ neuron 
activations. [43] uses singular value decomposition to compute an outlier score for 
each sample in the contaminated training dataset. Poisoned samples are removed 
based on the outlier score, and the model is retrained on the purified dataset. 
Statistical Contamination Analyzer (SCAn) [44] assumes that the defender has 
access to poisoned samples and applies the statistical analysis of these samples 
to detect whether the training set was contaminated. The summary of the defense 
strategies is available in Table 2. 

3 Preliminaries 

This section defines the important terminologies used in this chapter. 

Definition 1 (Deep Neural Networks (DNNs)) A DNN is a mapping . F(.; θ) :
R

n → R
m with parameters . θ that maps an input .x ∈ R

n to an output .y ∈ R
m. 

Definition 2 (Multi-label Classification for an Image) Given an input image x, 
the output y is a vector of probabilities over the m classes. The output label gener-
ated for the image is the class that has the highest probability (i.e., .argmaxi∈[1,m]yi).
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Definition 3 (Supervised Learning (SL)) SL is the task of tuning parameters . θ
based on labeled training data (i.e., example input–output pairs). 

Definition 4 (Clean Data Distribution . D) A clean data distribution . D is the data 
distribution such that the samples x from . D are associated with their corresponding 
ground-truth labels l. 

Definition 5 (Clean Dataset . S) A clean dataset . S is a dataset whose elements are 
drawn from the clean data distribution . D. 

Definition 6 (Poisoned Data Distribution . D∗) A poisoned data distribution . D∗ is 
the data distribution such that the samples x from . D∗ are associated with a label 
. l∗ that is chosen by the attacker and could differ from the ground-truth label l. 
. l∗ is called the attacker-chosen label. Furthermore, . l∗ may not necessarily be one 
constant label and may depend on x. 

Definition 7 (Poisoned Dataset . S∗) A poisoned dataset . S∗ is a dataset whose 
elements are drawn from the poisoned data distribution . D∗. 

Definition 8 (Clean Samples (Inputs) and Poisoned Samples (Inputs)) Ele-
ments from . D are called clean samples (inputs). Similarly, elements from . D∗ are 
called poisoned samples (inputs). 

Definition 9 (Contaminated Dataset . Sb) A contaminated dataset . Sb is a dataset 
that contains both clean samples and poisoned samples. 

Definition 10 (Benign Model .F(.; θ)) A benign model .F(.; θ) is a neural network 
model parameterized by . θ and trained on a clean dataset . S such that for any clean 
input x, the probability that .F(.; θ) outputs the corresponding ground-truth label l 
for x is high, i.e., 

.P(F(x; θ) = l) > 1 − ε, (1) 

with small positive . ε. Ideally, .ε = 0. 

Definition 11 (BadNet (Backdoored) Model .Fb(.; θ)) A BadNet .Fb(.; θ) is a 
neural network model parameterized by . θ and trained on a contaminated dataset . Sb

such that for clean input x, it outputs the ground-truth label with high probability, 
and for poisoned input . x∗, it outputs the attacker-chosen label . l∗ with high 
probability, i.e., 

.P(Fb(x; θ) = l) ≥ P(F(x; θ) = l) − ε1, . (2) 

P(Fb(x
∗; θ)  = l∗) ≥ 1 − ε2, (3) 

with small positive .ε1, ε2. Ideally, .ε1, ε2 = 0. 

Definition 12 (Classification Accuracy (CA)) CA is the probability that a net-
work .Fb(.; θ) outputs the ground-truth label l for clean inputs x, i.e., . P(Fb(x; θ) =
l|x ∈ D).
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Definition 13 (Attack Success Rate (ASR)) ASR is the probability that a net-
work .Fb(.; θ) outputs the attacker-chosen label . l∗ for poisoned inputs . x∗, i.e., 
.P(Fb(x

∗; θ) = l∗|x∗ ∈ D∗). 

Definition 14 (False Positive) A sample is called false positive if it is clean but 
misidentified as poisoned by a detection model. 

Definition 15 (Injecting Function f ) An injecting function f changes a clean 
input x into a poisoned input . x∗, i.e., .x∗ = f (x). For example, an injection function 
could inject a specific pattern (trigger) into the clean image to create a poisoned 
input. Moreover, the injection function can be more complex: the poisoned inputs 
may not necessarily include discrete triggers; instead, they could be generated by 
superimposing subtle patterns on clean inputs, passing clean inputs through specific 
filters, or adding randomly generated artifacts to clean inputs. 

4 Problem Description 

The user outsources the task of training .F(.; θ) to a third party since the training 
of the model requires resources unavailable to the user (e.g., a large amount of 
labeled data, adequate computational power). The third party returns a trained model 
.Fb(.; θb), which might be backdoored. The goal of the defender (user and defender 
are used interchangeably) is to take this possibly backdoored network . Fb(.; θb)

and mitigate the backdoor by removing the backdoors or detecting poisoned 
samples. Mathematically, removing the backdoors means that the defender applies a 
cleansing function .P(·) on the network parameters . θb such that for both clean inputs 
x and poisoned inputs . x∗, the network outputs the corresponding ground-truth labels 
l with high probability, i.e., 

.P(Fb(x;P(θb)) = l|x ∈ D) ≥ 1 − ε3, . (4) 

P(Fb(x
∗;P(θb)) = l|x∗ ∈ D∗) ≥ 1 − ε4, (5) 

where . ε3 and . ε4 are small positive numbers and ideally zero. More details are 
discussed in Sect. 5.1. Detecting poisoned samples means that the defender applies 
a detection model .g(·) such that for poisoned inputs . x∗, it outputs positive, and for 
clean inputs x, it outputs negative with high probability, i.e., 

.P(g(x) = 0|x ∈ D) ≥ 1 − ε5, . (6) 

P(g(x∗) = 1|x∗ ∈ D∗) ≥ 1 − ε6, (7) 

with small positive numbers . ε5 and . ε6 (ideally, .ε5, ε6 = 0). The detailed description 
is discussed in Sect. 6.1.
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5 Backdoor Defense by Training Attacker Imitator 

This section describes a reverse-engineering-based defense method. The intuition 
behind this method is that if the defender can find a function to imitate the attacker’s 
behavior (i.e., trigger insertion), then such a function can be used to reduce the 
effect of the backdoor on the DNN. In our approach, this imitator function is found 
by formulating an optimization problem. The following assumptions are introduced: 

• The attacker generates the poisoned data distribution using an injection function 
as defined in Sect. 3. 

• Without loss of generality, the attacker chooses only one attacker-chosen label. 
However, the proposed method is applicable to other attack strategies, such as 
having multiple attacker-chosen labels or source-label-specific backdoors [39], 
which will be discussed later in Sect. 5.1. 

• The defender does not know if a given network is a BadNet or not. 
• The defender only has access to a small set of clean samples. 
• The defender does not have access to the original training data or knowledge of 
the trigger shape/location. 

• The defender is also allowed to fine-tune and retrain the network. 

In this section, we write simply . Fb instead of .Fb(.; θ) for notational brevity. 

5.1 Problem Formulation 

Given a DNN that is possibly backdoored, the defender’s objective is to find a 
function that transforms a clean input into a poisoned input. This function behaves as 
an emulation of the attacker and is called attacker imitator in the rest of this chapter. 
The performance of the attacker imitator could be measured by its statistical risk as 
follows: 

.R(γ ) = E[L(Fb(γ (x)), yt )], (8) 

where .γ (.) is the attacker imitator, and . yt is the attacker-chosen label that is 
unknown to the defender. L is a loss function that models the mismatch between 
the network output and the target label. The cross-entropy loss function is used in 
our experiments. The best possible attacker imitator is 

.R∗ = inf
γ∈�

R(γ ), (9) 

where . � is a class of all possible attacker imitator functions. Equation (9) cannot be 
directly evaluated since the input data probability distribution is unknown. However, 
a small set of clean samples is assumed to be available. Therefore, considering 
the attacker imitator to be a neural network with . θ̃ as its parameters, the problem
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of finding the attacker imitator could be solved using empirical risk minimization 
(ERM) if the attacker-chosen label . yt was known: 

.θ∗ = argmin
θ̃

N∑

i=1

L(Fb(γ (xi; θ̃ )), yt ). (10) 

Evaluating (10) will result in a function that mimics the adversarial behavior of an 
attacker’s trigger, but the function outputs might be very dissimilar to the original 
data (and the actual poisoned data). Hence, a cost term is added to (10) for penalizing 
dissimilarity between the attacker imitator’s outputs and their corresponding clean 
inputs, i.e., 

.θ∗ = argmin
θ̃

{
N∑

i=1

{L(Fb(γ (xi; θ̃ )), yt ) + d(xi, γ (xi; θ̃ ))}}, (11) 

where .d(., .) is a function measuring the similarity of its inputs. If two inputs are 
similar, the output of d will be small. 

Solving (11) requires having access to . yt . However, the defender does not have 
any knowledge about the target label. Therefore, an attacker imitator function is 
found by evaluating Eq. (11) for each label in the dataset’s classification labels set 
(i.e., .{l1, · · · , lm}). The best performing attacker imitator in terms of ASR is utilized, 
and its corresponding label is considered the prediction of the attacker’s intended 
target label. 

5.2 Defense Methodology 

We propose a method for solving the problem formulated in Eq. (11) for an image 
classification task in which an image in .Rw×h×3 (w is its width and h is its height) 
could be flattened to a 1-dimensional vector .xi ∈ Rn, where .n = 3wh. Moreover, 
the architecture of the attacker imitator highly depends on the classification task. For 
image classification, this function should transform input images into poisoned ones. 
CNN is a candidate for this purpose as it can replicate any nonlinear transformation 
by considering enough filters and nonlinear activation functions in each layer. Based 
on these facts, the problem is reformulated as follows: 

. θ∗ = argmin
θ̃

{
N∑

i=1

{
λ1L(Fb(γ (xi; θ̃ )), yt ) + λ2‖xi − γ (xi; θ̃ )‖22

−λ3MSSSIM(γ (xi; θ̃ ), xi)
}}

, (12)
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Fig. 2 The overall training procedure of the attacker imitator 

where .γ (.; θ̃ ) is a CNN with parameters . θ̃ as an attacker imitator, . xi is a clean 
input, and .λ1, λ2, λ3 ≥ 0 are tuning parameters. MSSSIM stands for multi-scale 
structural similarity index measurement [45], which is a perceptual image quality 
measurement to score similarity between two images. The output of MSSSIM is 
between . −1 and 1, and a large value means that the two input images are similar. 
Therefore, increasing the MSSSIM value would be desired, which is attained by 
subtracting this value from the loss function. Also, an . L2 norm of the difference 
between the original and corresponding poisoned images is added to the loss 
function. 

The overall training procedure of the attacker imitator is depicted in Fig. 2. The  
performance of the attacker imitator is evaluated by calculating the percentage of 
generated images that can successfully fool the network among all samples in the 
test dataset. We refer to this calculated percentage as generated attack success rate 
(GASR), and the closer this number is to .100%, the better the attacker imitator 
replicates the behavior of a successful attacker. Solving (12) for each classification 
label and calculating the corresponding GASR will provide a GASR profile. This 
profile can be used to detect whether the network is clean or a BadNet. If there exists 
an outlier in the GASR profile, the network is a BadNet, and the corresponding label 
is the attacker-chosen label. The outlier could be found based on the z-scores of 
GASR values. The z-score of GASR for each label i is calculated as 

.zi = GAi − GA

σ
, (13) 

where .GAi is the GASR of the label i, .GA is the mean of GASR values, and . σ is 
the standard deviation of all GASR values. Any z-score above a cut-off threshold is 
considered an outlier.
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Algorithm 1 Attacker imitator training 
1: procedure CALCULATE_GASR(F , a, S, Label) 
2: Input  ← a(S) 
3: Output ← F(Input)  
4: return the number of elements in output classified to Label 
5: end procedure 
6: procedure MAIN(Fb, V, IT)  
7: GASR = []  
8: for l ← 1 to  m do 
9: θ̃ ← Initializing the attack imitator (γ ) parameters 
10: for i ← 1 to  nepochs do 
11: for j ← 1 to  nbatches do 
12: xp ← γ (IT  j ) 
13: Loss ← λ1L(Fb(xp), l) − λ3MSSSIM(xp, IT  j ) + λ2L2(xp, IT  j ) 
14: θ̃ ← θ̃ − η ∂Loss 

∂ θ̃ 
15: end for 
16: end for 
17: GASR ← CALCULAT E_GASR(Fb, γ, V , l)  
18: end for 
19: end procedure 

As mentioned earlier, the user only has access to a small set of clean samples. The 
user uses a subset of the clean samples called the imitator training set for training 
the attacker imitator and utilizes the rest of the data called the validation set to 
calculate CA, ASR, and GASR. Training the attacker imitator is presented in the 
MAIN procedure in Algorithm 1. The inputs to this procedure are the BadNet, 
the validation set (V), and the imitator training set (IT). For an m-label dataset, an 
attacker imitator (shown by . γ ) is trained. The training could be done using any 
gradient descent method with a learning rate . η. Once the training is done for all 
batches (.nbatches), GASR is calculated for the attacker imitator (. γ ) trained with 
the predicted target label (l) using the defined procedure .CALCULAT E_GASR. 
The inputs to this procedure are the BadNet (F ), the attacker imitator (a), the set 
of samples (S), and the predicted target label (Label). As long as we consider a 
single attacker-chosen label for the BadNet, images with classification labels equal 
to the attacker-chosen label are removed during training and validation. It should 
be mentioned that (12) could be solved for other attack strategies. For instance, in 
the case of multiple attacker-chosen labels, the GASR profile will have multiple 
outliers corresponding to the attacker-chosen labels. Another challenging attack 
strategy is source-label-specific backdoor [39], in which the attacker’s goal is to 
misclassify inputs corresponding to specific labels rather than all the labels. This 
attack could be taken into consideration by solving (12) for misclassifying samples 
from a specific label to an attacker-chosen label. This will result in a GASR profile 
for each classification label that is checked for its outliers. 

The next step is to use the predicted attacker-chosen label and attacker imitator to 
make the BadNet robust against the backdoor attack with minimal effects on clean 
classification accuracy. These requirements can be embedded into an optimization 
problem as



406 H. Fu et al.

. θ∗
Bad = argmin

θBad

⎧
⎪⎨

⎪⎩

N∑

i=1
(xi ,yi )∈S

L(Fb(γ (xi; θ̃ ); θBad), yi) +
N∑

i=1

L(Fb(xi; θBad), yi)

⎫
⎪⎬

⎪⎭
,

(14) 

where . yi is the correct label for . xi , .θBad corresponds to the BadNet’s parameters, 
and .S = {(x, y)|y �= yt }, where . yt is the attacker-chosen label. The first term 
in Eq. (14) is responsible for unlearning the backdoor. This has been done by 
generating poisoned inputs with correct classification labels. The second term is 
added to ensure that the backdoor removal will not change clean classification 
accuracy; therefore, the CA of the network is mostly retained. 

5.3 Experimental Setup 

Our experiments for each dataset consist of four steps described as follows: 

1. In the first step, a BadNet with a specific trigger pattern is generated. To achieve 
this goal, a network is trained on clean training samples with high CA. Then, . 10%
of images are poisoned with the desired trigger pattern, and training is continued 
on .90% clean and .10% poisoned images for more epochs to achieve high ASR. 

2. GASR profile is calculated for the BadNet by solving Eq. (12) for all classifica-
tion labels in the dataset. 

3. Based on the GASR profile, we detect if the network is backdoored and what the 
attacker-chosen label is likely to be. 

4. In the last step, the attacker imitator and the attacker-chosen label found in the 
previous steps are used to robustify the network against the attack. 

To evaluate the effectiveness of our method, four BadNets have been considered 
covering various image classification tasks (e.g., object recognition, face detection, 
and traffic sign recognition) and various trigger patterns. These BadNets are 
explained in detail in the following subsections, and for simplicity, they are called 
Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-CR. 

5.3.1 Badnet-CW 

This BadNet is trained on the CIFAR-10 dataset [46] for object recognition. 
Network in Network (NiN) [47] has been chosen for its architecture, and a white 
square in the bottom-left corner of inputs is used as the trigger. The trigger shape 
and location are standard configurations considered in [16, 31, 32].



Mitigating Backdoor Attacks on Deep Neural Networks 407

5.3.2 Badnet-GY 

This BadNet is trained on the German Traffic Sign Recognition Benchmark 
(GTSRB) dataset [48], which has 43 classes. The Badnet-GY’s architecture is the 
same as the architecture used in Neural Cleanse [31] for the GTSRB dataset. The 
network has six CNN layers and two dense layers. This network will be called 
DeepGT in the rest of this chapter. The trigger shape in this setting is a yellow 
square with an arbitrary location in each image. This trigger has been proposed by 
[49] to show the limitations of Neural Cleanse for finding the attacker-chosen label 
and trigger shape. 

5.3.3 Badnet-YS 

For the face detection task, a BadNet is trained on the YouTube Face Database [50], 
and for its architecture, a deep network with four CNN layers and three dense layers 
has been used as in [31]; this network will be called DeepID. The trigger is chosen 
to be sunglasses with constant size and color. This trigger has been chosen to cover 
more pixels. Also, this trigger will cover key points in the image, which makes it 
more difficult to reverse-engineer the trigger [49]. 

5.3.4 Badnet-CR 

This BadNet’s architecture is ResNet-18 [51] and is trained on the CIFAR-10 dataset 
[46]. The trigger for this network is a combination of a yellow square on the top-
right corner of the image and a red square on the bottom-right corner. The backdoor 
is triggered when both patterns appear together in a poisoned image. For training 
the network with this more complicated trigger, we initially train the network on a 
clean training dataset. After that, .10% of images are chosen to generate three sets of 
data: (1) only a red square is added to the images, and their labels remain the same 
as their clean labels, (2) the same as the previous set, but a yellow square is added 
instead of the red square, and (3) the combination of the two triggers is added, and 
their labels are set to the attacker-chosen label. Then, this dataset is augmented to 
the original training dataset, and training is performed for more epochs. This trigger 
has been designed to affect more neurons in the network. 

Table 3 provides a summary of all the BadNets with their architectures, their 
training datasets, and the shape of triggers. In Table 4, BadNet training samples 
(used to train the BadNets), imitator training samples (used to train the attacker 
imitator network), validation samples (used to calculate CA, ASR, and GASR), 
and the number of labels for each dataset are shown. The first two columns of 
Table 8 show the CA and ASR of each BadNet. Examples of each trigger shape 
and the corresponding dataset images are shown in the top row of Fig. 4, in which 
the poisoned images from the left correspond to Badnet-CW, Badnet-GY, Badnet-
YS, and Badnet-CR, respectively.
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Table 3 Dataset, network architecture, and trigger shape corresponding to each BadNet configu-
ration 

Name Dataset Model Trigger 

Badnet-CW CIFAR-10 NiN White square 

Badnet-GY GTSRB DeepGT Moving yellow square 

Badnet-YS YouTube Face DeepID Sun glasses 

Badnet-CR CIFAR-10 ResNet-18 Red & yellow squares 

Table 4 Number of samples and labels for each dataset 

Dataset BadNet training Imitator training Validation # of classes 

CIFAR-10 .50,000 5000 5000 10 

GTSRB .35,288 .12,630 3921 43 

YouTube face .102,640 .12,830 .12,830 1283 

Table 5 Attacker imitator architecture for Badnet-CW and Badnet-CR 

Layer . # Channels Filter size Stride Padding Activation 

Conv2d 512 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 128 .3 × 3 1 1 ReLU 

Conv2d 64 .3 × 3 1 1 ReLU 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 16 .3 × 3 1 1 ReLU 

Conv2d 8 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

5.4 Experimental Results 

5.4.1 Attacker Imitator Configuration 

As outlined in Sect. 4, the attacker imitator transforms the input image into a 
poisoned image with the same dimensions as the input image. The attacker 
imitator network parameters are trained using the optimization in (11) to achieve 
high performance when applied to the training samples. The attacker imitator 
architecture depends on the classification task to reconstruct the input. Since the 
image classification task is considered in this chapter for experimental evaluations, 
CNNs are chosen for the architecture of the attacker imitators. Analogous to 
the considerations for network architectures in classification tasks that the CNNs 
should have enough layers and filters to extract key features of images, the attacker 
imitator’s network architecture should be chosen based on the dataset complexity. 
Based on these observations, the attacker imitator architecture used for Badnet-
CW and Badnet-CR is shown in Table 5, and the architectures for Badnet-GY and 
Badnet-YS are shown in Tables 6 and 7, respectively.
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Table 6 Attacker imitator architecture for Badnet-GY 

Layer . # Channels Filter size Stride Padding Activation 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 128 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

Table 7 Attacker imitator architecture for Badnet-YS 

Layer Type . # Channels Filter size Stride Padding Activation 

Conv2d 128 .5 × 5 1 2 ReLU 

Conv2d 128 .5 × 5 1 2 ReLU 

Conv2d 64 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

5.4.2 BadNet vs. Benign Network Detection 

In this part, we evaluate the performance of our BadNet detection methodology 
discussed in Sect. 4. To have a fair comparison, for each of the BadNets, we 
have trained a benign network with the same architecture on the same dataset. 
Then, GASR profiles were calculated for the BadNet and the corresponding benign 
network. 

In Fig. 3, the z-scores of GASR profiles for each BadNet and the corresponding 
benign network are depicted in blue and red, respectively. Additionally, the cor-
responding cut-off threshold is depicted in cyan. It should be mentioned that the 
cut-off threshold is dependent on the number of samples in a set [52]; therefore, a 
cut-off threshold of 2 is considered for the CIFAR-10 dataset and 3 for the larger 
datasets. 

The results presented in Fig. 3 indicate that for all BadNets, there is an outlier in 
the GASR profile corresponding to the attacker-chosen label. For Badnet-CW and 
Badnet-CR, the attacker-chosen labels used by the attacker are 2 and for Badnet-
GY and Badnet-YS are 0, which are detected by our method correctly. This shows 
that our method is not dependent on the number of classification labels and can be 
used for any dataset and network architecture. It should be mentioned that for all the 
experiments, we have chosen the same coefficients for (12) without any modification 
during the training procedure.
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Fig. 3 GASR z-scores profiles for the BadNets and corresponding benign networks. Top left: 
Badnet-CW. Top right: Badnet-GY. Bottom Left: Badnet-YS. Bottom right: Badnet-CR 

5.4.3 Fine-Tuning the Network 

Once the attacker-chosen label is found, the corresponding attacker imitator gener-
ates poisoned images from the clean attacker imitator training set. In Fig. 4, for each 
of the BadNets, we have illustrated the poisoned image with the original trigger in 
the top row and with the imitator-generated trigger in the bottom row. Additionally, 
the columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and 
Badnet-CR, respectively. 

By observing the attacker imitator outputs, it can be seen that the attacker imitator 
can find the positions of the triggers correctly. For Badnet-GY, in which the attacker 
does not use a fixed position for the trigger, the generated trigger also does not have 
a fixed trigger location. In all the cases, the generated trigger does not replicate 
the actual trigger pattern, which is expected since the attacker imitator is found by 
solving an optimization problem to imitate the behavior of the attacker. Therefore, 
the attacker imitator will mimic the underlying effect of the trigger on the BadNet, 
and as the main concern is the removal of the backdoor from the network, finding the 
exact trigger pattern is not crucial for the main goal, which is to reduce the backdoor 
effect on the network.
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Fig. 4 The columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-
CR, respectively. Top row: The poisoned images with the trigger used by the attacker. Bottom row: 
The outputs of the attacker imitator 

Table 8 Clean classification accuracy and ASR comparison of BadNets before and after fine-
tuning them with our method and Neural Cleanse 

Backdoored Cleaned Cleaned by neural cleanse 

CA (. %) ASR (. %) CA (. %) ASR (. %) CA (. %) ASR (. %) 

Badnet-CW 87.18 97.53 85.14 0.95 84.12 1.04 

Badnet-GY 95.56 100 95.11 0.0 95.24 12.39 

Badnet-YS 97.88 98.53 94.4 0.0 95.74 38.09 

Badnet-CR 85.44 100 84.1 1.6 82.4 4.8 

As was mentioned in Sect. 4, the attacker imitator found by solving (12) given 
attacker-chosen label is used to generate poisoned images from the attacker imitator 
training set. The main advantage of doing so is that the clean labels for those 
samples are known. In the next step, the optimization problem in (14) should be 
solved by training the BadNet on a new dataset consisting of two main components: 
. (1) poisoned samples with clean labels made from clean samples (the first term in 
Eq. (14)) and . (2) clean samples with their clean labels (the second term in Eq. (14)). 
The poisoned samples are generated from samples whose clean labels are not equal 
to the attacker-chosen label. 

After robustifying all the BadNets using (14), the results are reported in Table 8. 
In this table, CA and ASR of the BadNets are reported in the first two columns from 
the left. The third and fourth columns show our method’s CA and ASR of the fine-
tuned network. Also, to have a fair comparison with Neural Cleanse, CA and ASR 
of the fine-tuned networks using Neural Cleanse have been reported in the last two 
columns.



412 H. Fu et al.

It can be seen that the robustification of the BadNets using our approach is 
successful in reducing the ASRs to 0 in three cases and .1.6% for Badnet-CR, which 
has a more complex trigger pattern. Moreover, it can be seen that after fine-tuning 
the network, the CA was not affected significantly, and the maximum reduction 
was .3.44%. Our method outperforms Neural Cleanse by achieving better ASRs. 
Specifically, Neural Cleanse is not successful for Badnet-GY, in which the trigger 
position is not fixed, and Badnet-YS, in which the trigger size is not small. 

6 RAID—An On-line Detection Method 

This section discusses the detection method called Removing Adversarial backdoors 
by Iterative Demarcation (RAID). The key differences between RAID and the 
previous method discussed in Sect. 5 are: (1) The previous method is purely 
off-line, whereas RAID uses both on-line and off-line models. (2) The previous 
method removes backdoors during off-line fine-tuning, whereas RAID rejects 
poisoned inputs during on-line implementation. (3) The previous method belongs 
to the reverse-engineering-based approach, whereas RAID belongs to the novelty-
detection-based approach. RAID takes advantage of the on-line streaming data and 
therefore reduces reliance on off-line validation data and restrictive assumptions on 
triggers. While RAID may perform ineffectively initially because the on-line data 
are scarce at the beginning, its performance improves on-line over time and enables 
accurate detection of poisoned inputs as the on-line data are accumulated. 

RAID first collects suspicious on-line samples that are highly likely to be 
poisoned using novelty detection models, which are trained off-line. Among the 
collected samples, RAID uses an anomaly detector to select the samples that are 
more likely to be poisoned than others. RAID trains a binary classifier using these 
selected data and the clean validation data. The trained binary classifier is used to 
determine if an on-line input is poisoned or not. As more suspicious on-line samples 
are collected, the binary classifier is updated, and the performance is improved. 
This repeated update to improve backdoor detection accuracy can be viewed as 
iterative demarcation. RAID uses two dimension-reduction methods to simplify the 
computational complexity. One is a feature extractor that compresses raw data into 
low-dimensional signature features, and the other is a dimension-reduction function 
such as PCA [53] that further reduces the feature dimensions. These two dimension-
reduction methods result in a reduction of computational complexity, ensuring that 
RAID can be implemented in real time. 

6.1 Problem Formulation 

The scenario considered by RAID is as follows: the user outsources a training task 
to a third party, which returns a backdoored DNN .Fb(.; θ) (written for notational
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brevity simply as . Fb) to the user. The defender needs to build a detection model 
to protect the user from backdoor attacks. The attacker’s goal is to make . Fb have 
high CA and ASR. The defender’s goal is to build the detection model .g(·) to lower 
ASR of . Fb while maintaining the CA. Mathematically, the defender wants .g(·) to 
output “clean” with a high likelihood for clean samples x and “poisoned” with a 
high likelihood for poisoned samples . x∗, i.e., to satisfy (6) and (7). 

The attacker is considered to have complete control over the training dataset and 
process. However, the attacker neither has access to the user’s validation dataset nor 
can change the model structure after training. The defender is considered to have a 
small set of clean validation data V (e.g., around 2% of the training dataset size). 
The defender has no prior information about the triggers or attacker-chosen label(s). 

6.2 Detection Algorithm 

The development of RAID was inspired by the observation that a DNN can be 
decomposed as a feature extractor . Cb and a decision function . Gb, i.e., . Fb = Gb ◦Cb

[54]. . Cb reduces the raw data dimension and extracts features at higher abstraction 
levels. . Gb maps the combinations of the features into corresponding outputs. The 
hypothesis is that the backdoor effect is created through a “logic” component 
encoded in . Gb (i.e., specifying what features in the trigger should result in the 
attacker-chosen labels). RAID sets the output layer of . Fb as . Gb and all the previous 
layers as . Cb. 

The overall algorithm of RAID is shown in Algorithm 2. In  Given, the defender 
has a backdoored network . Fb decomposed into . Cb and . Gb and a small clean 
validation dataset V with the corresponding labels L. In  off-line training, the  
defender obtains validation data features by feeding samples of V into . Cb. Then, 
a new classifier . Gn is trained with the extracted features . VF and the corresponding 
labels L. Since . Gn is trained only on clean data, it is highly likely that . Gn ◦ Cb

and .Gb ◦ Cb behave similarly on clean inputs but differently on poisoned inputs. 
A preprocess function (e.g., PCA) further reduces the feature dimension to obtain 
.VFP . .VFP is used to train a novelty detector . N independent of . Gn to detect inputs 
whose dimension-reduced features differ from dimension-reduced features of the 
clean validation data. 

The on-line detection and retraining are shown in both Fig. 5 and On-line 
Detection and Update in Algorithm 2. The on-line implementation is comprised of 
a front-end part and a back-end part that may be implemented in a parallel manner. 
In the front-end part, . Cb takes x as the input and outputs . xF . The preprocess function 
takes . xF as the input and outputs .xFP . If  .g(xFP ) = 0, i.e., if x is classified to be 
clean, then .Fb(x) will be trusted. Otherwise, .Fb(x) should not be trusted. .g(·) is 
initialized as .g(x) = 0 for all x and is then updated at a pre-specified frequency. 
In the back end, . N and . Gn determine if x is a “suspected” poisoned sample. If 
either .N(xFP ) = 1 (i.e., detected as different from the clean validation data) or 
.Gn(xF ) �= Gb(xF ), then x will be collected into the anomalous dataset . A. . A may
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Algorithm 2 On-line detection algorithm of RAID 
Given 

Validation data = (V , L) and backdoored network Fb = Gb ◦ Cb 

Off-line Training 
Extract features of validation data: VF ← Cb(V ) 
Train a new classifier: Gn ← train(Gn, (VF , L)). 
Reduce feature dimension: VFP  ← preprocess(VF ) 
Train a novelty detector: N ← train(N, VFP  ) 

On-line Detection and Update 
g(·) ≡ 0 (clean), count = 0, A = {}, and determine window_size = w0 
while True do 

count = count + 1 
Receive New Input x 

### Make a Prediction on x with Fb ### 
Extract Input Feature: xF ← Cb(x) 
Make a Prediction: l ← Gb(xF ) 

### Check If x is Poisoned (Front End) ### 
Reduce Feature Dimension: xFP  ← preprocess(xF ) 
if g(xFP  ) == 0 then 

l is the label for x (Clean with High Probability) 
else 

l is not the true label for x (Poisoned with High Probability) 
end if 

### Determine If x Should Be Collected as Anomalous Data and Used to Update g(·) (Back 
End) ### 

l′ ← Gn(xF ) 
if l �= l′ or N(xFP  ) == 1 then 

Collect xFP :A ← A ∪ {xFP } 
end if 

### Updating g(·) ### 
if count % window_size == 0 then 

Purify A: A∗ ← purify(A) 
Update the Binary Classifier: g ← train(g,  ({A∗, 1} ∪ {VFP  , 0})) 

end if 
end while 

contain a few false positives. Therefore, an anomaly detector is used to purify . A
to obtain . A∗. .g(·) is trained from scratch using .VFP and .A∗ at a pre-specified 
frequency. The defender can modify the window size (window_size in Algorithm 2) 
to determine the update frequency. Data in . A∗ is labeled as poisoned, and data in 
.VFP is labeled as clean. 

. Gn is a neural network with at most two hidden layers. This allows the structure 
of .Gn ◦Cb to be close to the original backdoored network .Fb = Gb ◦Cb. Therefore, 
they may show similar behavior on clean samples. Additionally, with such an 
architecture, the number of training parameters of . Gn is small, reducing the clean
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Fig. 5 Pipeline of the detection algorithm (on-line part) 

validation samples required to train . Gn. In real-world cases, the defender may only 
have a small clean validation data. RAID uses SGD as the optimizer with a learning 
rate set to 0.01 and a cross-entropy-based loss function with default hyperparameter 
settings. PCA with the top 40 principals from the validation data features is used 
as the preprocess function (i.e., (a) in Fig. 5); hence, it reduces the data dimension 
without losing too much information and amplifies the spectral signature of the clean 
data. However, other dimension-reduction functions can also be considered, such as 
SVD and factor analysis from scikit-learn [55]. The PCA model in RAID cannot 
highlight the spectral signature of the triggers because it was trained only on a clean 
validation dataset. 

Local outlier factor (LOF) is used as the novelty detector . N (i.e., (c) in Fig. 5) 
since the training process is unsupervised and in real time. The anomaly detector 
(d) in the figure is also LOF for the same reasons. However, other outlier detectors 
(e.g., [56–59]) may be considered if the training process is also unsupervised and in 
real time. RAID uses SVM as the binary classifier .g(·) in (b) in the figure. .g(·) must 
be simple so that the training time is short. SVM satisfies this requirement. Other 
models, such as a neural network, may take a much longer training time than the 
SVM. However, the binary classifier is also open to other models that can be trained 
in real time.
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Fig. 6 The first column shows sample clean images for all the datasets. The other columns show 
all the triggers used in the experiments 

6.3 Experimental Setup 

RAID was implemented on five popular datasets: MNIST [60], German Traffic Sign 
Benchmarks (GTSRB) [48], CIFAR-10 [46], YouTube Face [50], and ImageNet 
[61]. Figure 6 shows different triggers used in the experiment. Several network 
architectures are used based on related works [18, 31, 47, 62–64]. The original 
paper of RAID [41] lists all the network architectures. Each dataset contains three
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Table 9 Dataset Size. 
Columns 2–4 show the 
average number of samples 
per class 

Dataset Train Valid Test Valid/train # of classes 

MNIST 5500 100 1000 1.8% 10 

GTSRB 820 50 268 6.0% 43 

CIFAR-10 5000 30 500 0.6% 10 

YouT. Face 81 3 10 3.7% 1283 

ImageNet 1200 3 25 0.2% 1000 

Table 10 Fb’s architecture 
for case (a) 

Layer Channels Filter size Stride Activation 

Conv2d 16 5 × 5 1 ReLU 

MaxPool 16 2 × 2 2 – 

Conv2d 32 5 × 5 1 ReLU 

MaxPool 32 2 × 2 2 – 

Linear 512 – – ReLU 

Linear 10 – – – 

parts: training part (Train), validation part (Valid), and testing part (Test), as shown 
in Table 9. Considering that the MNIST, GTSRB, and ImageNet datasets are 
unbalanced among classes, Table 9 reports the average number of samples per class, 
which is the dataset size divided by the total number of classes. The training part was 
partially poisoned (i.e., around 10%) and used for training the backdoored networks. 
The clean validation part was used for training . N and . Gn. The testing dataset was 
used for evaluating RAID. The poisoned samples are acquired by injecting the 
triggers into the clean testing images. An on-line dataset with size n and attack 
density p is obtained with .(1 − p)n clean testing samples plus pn poisoned testing 
samples. Empirically, when 20% of the test data is poisoned, RAID achieves low 
ASR and high CA. There is not much gain after .p = 0.5. 

6.3.1 BadNet Trained on MNIST 

Case (a) The second column of Fig. 6a shows the trigger pattern. The attacker-
chosen label . l∗ was determined by the ground-truth label l: 

.l∗ = (l + 1) mod 10. (15) 

The network architecture is shown in Table 10. CA is .97.65%, and ASR is .96.3%. 

Case (b) The trigger is shown in the third column in Fig. 6a, which is a dotted 
background and almost imperceptible. l∗ is 0. The backdoored network has 89.35% 
CA and 100.0% ASR.
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6.3.2 BadNet Trained on GTSRB 

Case (c) The second column in Fig. 6b shows the trigger, which is a white box 
pattern. . l∗ is 33. CA is .96.41%, and ASR is .97.62%. 

Case (d) The trigger is a moving square as shown in the third column in Fig. 6b 
with l∗ = 0. CA is 95.26%, and ASR is 99.92%. 

Case (e) Images passing through a Gotham filter will trigger Fb, as shown in the 
fourth column in Fig. 6b. l∗ = 35. CA is 94.49%, and ASR is 90.32%. 

6.3.3 BadNet Trained on CIFAR-10 

Case (f) The second picture in Fig. 6c shows the trigger, a combination of a box 
and a circle. . Fb will output the attacker-chosen label 0 only when both the shapes 
appear on the input. CA is .88.6%, and ASR is .99.8%. 

Case (g) The trigger is the combination of a triangle and a square, as shown in the 
third column of Fig. 6c. l∗ = 7. CA is 88.83%, and ASR is 99.97%. 

The last column in Fig. 6c shows another trigger, a small perturbation (one pixel 
at each corner). l∗ is 0, CA is 82.44%, and ASR is 91.92%. 

6.3.4 BadNet Trained on YouTube Face 

Case (h) The trigger is sunglasses, as shown in the last column in Fig. 6d. . l∗ is 0. 
CA is .97.83%, and ASR is .99.98%. 

Case (i) The trigger is red lipstick, as shown in the second column of Fig. 6d. l∗ is 
0. CA is 97.19%, and ASR is 91.43%. 

Case (j) Fb has all three triggers: lipstick, eyebrow, and sunglasses, as shown in 
Fig. 6d. l∗ is 4 for all the triggers. CA is 96.13%, and ASRs are 91.80%, 91.88%, 
and 100% on lipstick, eyebrow, and sunglasses. 

Case (k) Fb has all three triggers as well. l∗, however, is 1 for lipstick, 5 for 
eyebrow, and 8 for sunglasses. CA is 96.08%, and ASRs are 91.11%, 91.10%, and 
100% on lipstick, eyebrow, and sunglasses. 

6.3.5 BadNet Trained on ImageNet 

The trigger is a red box shown in the second column in Fig. 6e. .l∗ = 0. The network 
is DenseNet-121 [64]. CA is .72.14%, and ASR is .99.99%. This backdoor attack 
is used to evaluate the performance of RAID with different attack frequencies and 
validation dataset sizes.
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6.3.6 Hyperparameter Setting 

The contamination ratio is a hyperparameter defined in the LOF anomaly detector. 
A high contamination ratio means that the LOF will remove more samples, whereas 
a low contamination ratio means that the LOF will remove fewer samples. The 
contamination ratio was set to 0.2 for all the cases. Note that the contamination 
ratio is set by the defender. Thus, it is not equal to the proportion of outliers in 
the dataset. The proportion of outliers in the dataset is determined by the attacker, 
which is similar to the attack density p mentioned earlier. The number of neighbors 
(i.e., NN, which is another hyperparameter of LOF) was set to be 1. However, the 
defender can set any other values between 1 and 20. Empirically, it is observed 
that the CA and ASR of RAID with NN .= 1, 10, and 20 are comparable to each 
other, and there is not a distinctive advantage in choosing a higher NN; however, the 
lower NN makes the computation faster. The remaining parameters are set to typical 
default values. 

6.4 Experimental Results 

6.4.1 Performance of N and Gn 

Using both . N and . Gn can maximally identify poisoned samples. Table 11 shows 
the CA and ASR of using . N alone, . Gn alone, and both. Three dimension-reduction 
functions (i.e., PCA, TruncatedSVD, and FactorAnalysis from scikit-learn [55]) are 
utilized to train different . N. Since . Gn does not use any dimension-reduced features, 
the three cases use the same . Gn. From the table, there is not much difference 
in the performance of . N using PCA and SVD. Using FactorAnalysis leads to a 
higher ASR in some cases than the other two functions. However, we will see that 
the overall performance of .g(·) using FactorAnalysis is also good. Additionally, 
the three functions are all fast enough for on-line usage. Therefore, if only . g(·)’s 
performance is considered, the three functions are almost equal, whereas if both 
. g(·)’s performance and . N’s performance are considered, PCA and TruncatedSVD 
provide better performance than FactorAnalysis. The performance of PCA and 
TruncatedSVD is almost equivalent. The table also shows that using . N and . Gn

together will maximally catch poisoned samples (i.e., reduce ASR) and also increase 
false positives (i.e., reduce CA). However, in this initial filtering, the ASR should be 
weighed more than the CA. Additionally, an anomaly detector is used subsequently 
to reduce false positives further. In case (e), the ASR is still large even though . Gn

and . N are used together because the trigger is more subtle. Rather than some specific 
patterns, case (e)’s trigger is a Gotham filter function. . Gn and . N are not sensitive to 
this trigger. But we will next show that RAID can still improve itself to reduce the 
ASR with on-line data further.
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6.4.2 Performance of g(·) 

The first 40% of test data was used for on-line implementation and updating of the 
SVM, and the remaining 60% of test data was used for evaluating the performance of 
the backdoored network after employing the SVM. The binary SVM was initialized 
to output clean for all the inputs. Then, it was updated with a fixed window size, 
which is set to 10% of the test dataset size (therefore, the SVM can be updated 
4 times in the considered test scenario). Each test input has an equal probability of 
being clean or poisoned. Table 12 shows the performance of RAID with PCA, SVD, 
and FactorAnalysis as the dimension-reduction function. From the table, RAID is 
effective with all the three dimension-reduction functions. Additionally, SVM helps 
reduce ASR while retaining high CA. Note that in case (e), the SVM still provides 
good performance, although the off-line models have high ASR (refer to Table 11). 
These results highlight the robustness of RAID. Table 13 lists how many poisoned 
samples are fed into the backdoored network and the size of . A∗ for training the 
SVM at each update when PCA was used as the dimension-reduction function. From 
the table, training a good SVM needs only a small set of poisoned samples. Since 
the performance of RAID using PCA, SVD, and FactorAnalysis is similar, we will 
only discuss the case when PCA is used as the dimension-reduction function for the 
following experiments. 

6.4.3 Performance of the Anomaly Detector 

We examine the performance of RAID with different contamination ratios. Table 14 
shows the results. The classification accuracy drops significantly without the 
anomaly detector (i.e., the contamination ratio is 0). This is because the LOF 
does not remove any samples. Thus, . A contains many false positives. When 
contamination ratio is 0, .A = A∗. The SVM trained with such . A∗ will perform 
inefficiently. RAID shows comparable results when the contamination ratio is set 
to 0.1, 0.2, and 0.3. Both CA and ASR decrease, while the contamination ratio 
increases. 

6.4.4 Multiple Triggers and Adaptive Attacks 

The attacker may use multiple triggers to attack the backdoored network, i.e., cases 
(j) and (k). The following attack scenarios are considered during on-line operation: 
(1) The attacker does not use any triggers. (2) The attacker uses only one of the 
triggers. (3) The attacker uses two of the triggers. (4) The attacker uses all the 
triggers. Scenario (1) is used for evaluating the performance of RAID when . A∗ only 
contains false positives. One can also consider scenario (1) as the case to evaluate 
RAID on a benign model. Scenarios (2), (3), and (4) are utilized to evaluate if RAID 
is effective with multiple triggers. The 4th updated SVM was tested. The results are 
shown in Table 15. From the table, RAID maintains high CA in all the scenarios and
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Table 13 Size of . A∗ and the 
numbers of poisoned inputs 
that have appeared at each 
update 

0th 1st 2nd 3rd 4th 

(a)–(b) # of poi. 0 1000 2000 3000 4000 

(a) size of .A∗ 0 217 411 609 812 

(b) 0 226 439 666 894 

(c)–(e) # of poi. 0 1263 2526 3789 5052 

(c) size of .A∗ 0 275 534 779 1033 

(d) 0 295 575 870 1123 

(e) 0 162 303 434 571 

(f)–(g) # of poi. 0 1000 2000 3000 4000 

(f) size of .A∗ 0 213 424 635 846 

(g) 0 214 412 614 826 

(h)–(i) # of poi. 0 1283 2566 3849 5132 

(h) size of .A∗ 0 360 722 1086 1453 

(i) 0 352 698 1044 1390 

Table 14 Performance of RAID (the 4th update) with different contamination ratios 

Ratio . = 0.0 Ratio . = 0.1 Ratio . = 0.2 Ratio . = 0.3 

CA ASR CA ASR CA ASR CA ASR 

(a) 86.35 0.03 96.90 1.7 96.83 1.15 94.48 0.15 

(b) 87.69 0 89.35 0 89.19 0 89.02 0 

(c) 92.57 0.05 94.41 0.65 94.41 0.26 94.34 0.23 

(d) 94.24 0.06 95.72 0.25 94.61 0.19 94.47 0.10 

(e) 88.53 0.19 94.04 13.77 93.36 4.61 93.0 2.42 

(f) 56.63 0 88.6 0.05 88.6 0.01 88.6 0.01 

(g) 62.03 0 88.83 0.13 88.83 0.1 88.83 0.1 

(h) 92.64 0 97.76 1.81 97.67 0.48 97.60 0.24 

(i) 92.23 0.85 97.19 4.94 97.11 3.24 97.07 2.58 

has low ASR on triggers that the attacker has used. For scenario (1), although . A∗
contains only false positives, RAID still manages to have a high CA. For scenarios 
(2) and (3), RAID has high ASR on the second or third trigger. However, since the 
SVM is updated in real time, once the new triggers are used for backdoor attacks, . N
and . Gn will detect them in the back end resulting in attack detection by the SVM in 
the next update, such as case (4). The only period in which the network is vulnerable 
to the new triggers is between the moment that a new trigger appears and the next 
SVM update. Overall, the results show the efficacy and robustness of RAID. 

6.4.5 Experiments on Hyperparameters 

The first experiment is to evaluate RAID with different numbers of principal 
components. A backdoored network with small perturbations (only one pixel at each 
corner) as the trigger (i.e., the third . Fb in the CIFAR-10 case) was trained, which has
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Table 15 RAID 
performance on dynamic 
attacks (j)–(k) 

Case/attack Net. (1) (2) (3) (4) 

(j) CA 96.13 96.10 96.05 95.83 95.88 

ASR1 91.80 91.78 3.84 3.72 3.79 

ASR2 91.88 91.85 64.36 2.22 2.27 

ASR3 100 100 100 100 0.21 

(k) CA 96.08 96.05 95.99 95.90 95.88 

ASR1 91.11 91.11 2.77 2.84 3.21 

ASR2 91.10 91.10 89.88 0.99 0.94 

ASR3 100 100 99.65 95.82 0 

.82.44% CA and .91.92% ASR. The first two pictures in Fig. 7 show the performance 
of RAID with different numbers of principal components. From the pictures, all 
the plots show significant drops in ASR at different rates. Using more principal 
components results in a faster reduction in ASR. Using fewer principal components 
results in a small drop in CA (i.e., around 1%). With fewer principal components, 
the dimension-reduced poisoned data features are closer to the dimension-reduced 
clean data features. Thus, .A∗ may contain more false positives, which increases 
the training noise and leads to the degradation of CA. The number of principal 
components should be from 20% to 40% of the original feature dimension. 

The second experiment is to evaluate RAID with a different attack frequency/-
density (i.e., the probability p of an input being poisoned). Note that the attack 
frequency/density is determined by the attacker. Therefore, it is different from the 
contamination ratio. We tested RAID on the ImageNet dataset because we also 
want to see if RAID is efficient on a large-scale dataset. The backdoored model 
is DenseNet-121 with 72.14% CA and 99.99% ASR. The dataset and trigger are 
shown in Fig. 6e. The middle two pictures in Fig. 7 show the effectiveness of RAID 
on ImageNet under different attack densities. It is seen that ASR reduces faster when 
attack density is higher (i.e., more poisoned inputs are fed into the network). When 
attack density is 0 (meaning . A∗ has only false positives), the CA is still high. 

RAID was also tested with 1 or 2 images per class on ImageNet to see if the 
clean validation dataset could be even smaller. Although low ASR is achieved with 
one image per class, CA degrades (the last two pictures in Fig. 7). This is because 
the novelty detector . N and the new classifier . Gn generate many false positives due 
to a lack of training data. Therefore, . A∗ may contain many false positives, which 
increases the training noise and leads to the degradation of CA (i.e., the SVM is 
trained with bad training samples). 

The last experiment is to evaluate the performance of RAID when the SVM 
is updated at different frequencies. During the period between two updates, the 
backdoored network might be exposed to an attack if new triggers are applied. 
Therefore, reducing this period (increasing update frequency) can help further 
mitigate the threat of new triggers. The user needs to set a window size for the 
update. For example, if the window size is 1000, the SVM will be updated once 
there are 1000 new inputs into the network. Figure 8 shows the performance of
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Fig. 7 Solid lines in all the 
pictures: CA. Dashed lines in 
all the pictures: ASR. X-axis: 
the number of updates. n: the 
number of PCA components. 
p: the probability of a sample 
being poisoned. For the last 
two pictures: the red plots 
overlap the other plots and 
are not visible
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Fig. 8 X-axis: ratio of test data size used in RAID to the total test data size. Solid lines: CA. 
Dashed lines: ASR. w: window size/test data size 

RAID with different update frequencies under case (a). RAID shows consistently 
good performance after increasing the update frequency (i.e., reducing window 
size). Since training the SVM is quick (. <1 s), RAID can be used effectively during 
on-line operation. 

6.4.6 More Advanced Attack 

[20] propose a backdoor attack with sample-specific triggers. The example is shown 
in Fig. 9. It can be seen that the trigger remains invisible in the image. We use a 
subset of the ImageNet dataset as the testing data. The backdoored model has 78% 
CA and 100% ASR. The model architecture is ResNet-18 [51]. After the 4th update, 
RAID reduces the ASR to 0.4% and keeps CA close to 78%. 

The attacker may try to minimize the feature-level outputs between poisoned data 
and corresponding clean data to bypass RAID. However, the difference between 
clean and poisoned data always exists and must be represented in hidden layer 
outputs. Otherwise, if the hidden layer outputs are identical for clean and poisoned 
samples, the network outputs should then also be the same. This cannot be true 
since the network outputs the attacker-chosen label for the poisoned sample and 
the ground-truth label for the clean sample. Although the difference may be small 
for one hidden layer, the cumulative difference for multiple hidden layers becomes 
significant and observable. RAID can still be applied by changing the input of its 
novelty detector and the binary classifier to include multiple hidden layer output 
features. 

As seen above, RAID fuses several simple models (i.e., simple neural networks, 
novelty detector, anomaly detector, dimension-reduction function, and binary clas-
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Fig. 9 Sample-specific trigger. Left: benign image. Middle: poisoned image. Right: the corre-
sponding trigger 

sifier) to reduce the ASR caused by the attacker. It requires only a small clean 
validation dataset, which is feasible to acquire in real-world applications. 

7 Benign Applications of the Backdoor Phenomena 

While we have considered backdoor-based attacks in this chapter, it is to be noted 
that backdoors can also be used for benign purposes such as the protection of 
intellectual properties. One example is using the backdoors as watermarks [65]. 
To train an accurate neural network model, the trainer needs to invest considerable 
cost and effort to collect high-quality data, label the data, buy/rent computational 
resources, and tune the model hyperparameters. Therefore, it is critical to find a way 
to protect the intellectual property of the models. Similar to watermark injection into 
documents, neural network models can also be injected with watermarks. Backdoor-
based watermarks are one option for this purpose. The trainer injects backdoors into 
the trained network so that any other network copied based on this model can be 
recognized by presenting it with the poisoned inputs. Other models cannot correctly 
predict the outputs since they do not know the trigger information. The model’s 
performance on clean samples, however, is not affected. Therefore, intellectual 
properties can be protected by utilizing backdoor attack mechanisms. 

8 Future Directions 

Although our methods introduced in this chapter utilize only a small clean validation 
dataset, it is of value to further decrease the size of the required validation dataset. 
RAID requires some on-line data to attain samples of possible poisoned inputs in 
addition to the validation dataset to train a classifier for clean vs. poisoned inputs. 
During this period, some poisoned inputs may escape detection. Reducing this
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transient vulnerability is therefore an avenue for future improvements. Additionally, 
the reduction of computational complexity is also an important topic for future work. 
Another extension would be to generalize the methods to backdoor detection for 
machine learning methods that are not based on neural networks. Further application 
of the methods to other adaptive triggers should also be considered. Lastly, using 
explainability tools for DNNs may be helpful to further improve the applicability 
and usability of backdoor detection methods. 
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based language model. In: Proceedings of the 11th Annual Conference of the International 
Speech Communication Association. Chiba, Japan, pp. 1045–1048 (2010) 

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of 
words and phrases and their compositionality. In: Proceedings of the Advances in Neural 
Information Processing Systems, Lake Tahoe, pp. 3111–3119 (2013) 

9. Fu, H., Krishnamurthy, P., Khorrami, F.: Functional replicas of proprietary three-axis attitude 
sensors via LSTM neural networks. In: Proceedings of the IEEE Conference on Control 
Technology and Applications. Montreal, pp. 70–75 (2020) 

10. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct 
perception in autonomous driving. In: Proceedings of the IEEE International Conference on 
Computer Vision. Santiago, pp. 2722–2730 (2015) 

11. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous 
vehicles. Ann. Rev. Control Robot. Auton. Syst. 1, 187–210 (2018) 

12. Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller, U., LeCun, 
Y.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 
(2009) 

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 
Proceedings of the International Conference on Learning Representations. San Diego, pp. 1–14 
(2015)



Mitigating Backdoor Attacks on Deep Neural Networks 429

14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: 
Intriguing properties of neural networks (2013). arXiv preprint arXiv:1312.6199 

15. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning attack on 
neural networks. In: Proceedings of the 25th Annual Network and Distributed System Security 
Symposium. San Diego, pp. 18–221 (2018) 

16. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning 
model supply chain (2017). arXiv preprint arXiv:1708.06733 

17. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on 
deep neural networks. In: Proceedings of the International Symposium on Research in Attacks, 
Intrusions, and Defenses. Heraklion, pp. 273–294 (2018) 

18. Liu, K., Tan, B., Karri, R., Garg, S.: Poisoning the (data) well in ML-based CAD: a case study 
of hiding lithographic hotspots. In: Proceedings of the Design, Automation & Test in Europe 
Conference & Exhibition. Grenoble, pp. 306–309 (2020) 

19. Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks 
against deep learning systems in the physical world. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, Virtual, pp. 6206–6215 (2021) 

20. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S: Invisible backdoor attack with sample-specific 
triggers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 
Virtual, pp. 16463–16472 (2021) 

21. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden trigger backdoor attacks. In: Proceedings of 
the AAAI Conference on Artificial Intelligence, vol. 34. New York, pp. 11957–11965 (2020) 

22. Li, S., Xue, M., Zhao, B., Zhu, H., Zhang, X.: Invisible backdoor attacks on deep neural 
networks via steganography and regularization. IEEE Trans. Depend. Secure Comput. 18(5), 
2088–2105 (2020) 

23. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep 
neural networks. In: Proceedings of the European Conference on Computer Vision, Virtual, 
pp. 182–199 (2020) 

24. Xie, C., Huang, K., Chen, P.-Y., Li, B.: DBA: distributed backdoor attacks against federated 
learning. In: Proceedings of the International Conference on Learning Representations. New 
Orleans (2019) 

25. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated 
learning. In: Proceedings of the International Conference on Artificial Intelligence and 
Statistics, Virtual, pp. 2938–2948 (2020) 

26. Andreina, S., Marson, G.A., Möllering, H., Karame, G.: BaFFLe: backdoor detection via 
feedback-based federated learning. In: Proceedings of the IEEE International Conference on 
Distributed Computing Systems, Virtual, pp. 852–863 (2021) 

27. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In: 
Proceedings of the ACM SIGSAC Conference on Computer and Communication Security. 
London, pp. 2041–2055 (2019) 

28. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. In: 
Proceedings of the ACM Symposium on Access Control Models and Technology, Virtual, pp. 
15–26 (2021) 

29. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems. 
IEEE Access 7, 138872–138878 (2019) 

30. Gong, X., Chen, Y., Wang, Q., Huang, H., Meng, L., Shen, C., Zhang, Q.: Defense-resistant 
backdoor attacks against deep neural networks in outsourced cloud environment. IEEE J. Sel. 
Areas Commun. 39(8), 2617–2631 (2021) 

31. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural Cleanse: 
identifying and mitigating backdoor attacks in neural networks. In: Proceedings of the 40th 
IEEE Symposium on Security and Privacy. San Francisco, pp. 707–723 (2019) 

32. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: TABOR: a highly accurate approach to inspect-
ing and restoring trojan backdoors in AI systems (2019). arXiv preprint arXiv:1908.01763



430 H. Fu et al.

33. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: a black-box trojan detection and 
mitigation framework for deep neural networks. In: Proceedings of the 28th International Joint 
Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence 
Organization, Macao, pp. 4658–4664 (2019) 

34. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting AI trojans using meta 
neural analysis (2019). arXiv preprint arXiv:1910.03137 

35. Li, Y., Ma, H., Zhang, Z., Gao, Y., Abuadbba, A., Fu, A., Zheng, Y., Al-Sarawi, S.F. Abbott, D.: 
NTD: non-transferability enabled backdoor detection (2021). arXiv preprint arXiv:2111.11157 

36. Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: ABS: scanning neural networks for 
back-doors by artificial brain stimulation. In: Proceedings of the ACM SIGSAC Conference on 
Computer and Communications Security. London, pp. 1265–1282 (2019) 

37. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution 
samples and adversarial attacks. In: Proceedings of the Conference on Neural Information 
Processes Systems. Montreal, pp. 7167–7177 (2018) 

38. Chou, E., Tramèr, F., Pellegrino, G., Boneh, D.: SentiNet: detecting physical attacks against 
deep learning systems (2018). arXiv preprint arXiv:1812.00292 

39. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: STRIP: a defence against 
trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security 
Applications Conference. San Juan, pp. 113–125 (2019) 

40. Kwon, H.: Detecting backdoor attacks via class difference in deep neural networks. IEEE 
Access 8, 191049–191056 (2020) 

41. Fu, H., Veldanda, A.K., Krishnamurthy, P., Garg, S., Khorrami, F.: A feature-based on-line 
detector to remove adversarial-backdoors by iterative demarcation. IEEE Access 10, 5545– 
5558 (2022) 

42. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I., Srivastava, 
B.: Detecting backdoor attacks on deep neural networks by activation clustering (2018). arXiv 
preprint arXiv:1811.03728 

43. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Proceedings of 
Advances in Neural Information Processing Systems, vol. 31, Montreal, pp. 8000–8010 (2018) 

44. Tang, D., Wang, X., Tang, H., Zhang, K.: Demon in the variant: statistical analysis of DNNs 
for robust backdoor contamination detection. In: Proceedings of the 30th USENIX Security 
Symposium, Virtual, pp. 1541–1558 (2021) 

45. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality 
assessment. In: Proceedings of the 37th Asilomar Conference on Signals, Systems & Com-
puters, vol. 2, Pacific Grove, pp. 1398–1402 (2003) 

46. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009) 
47. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the International 

Conference on Learning Representations, Banff, pp. 1–10 (2014) 
48. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German Traffic Sign Recognition 

Benchmark: a multi-class classification competition. In: Proceedings of the International Joint 
Conference on Neural Networks. San Jose, pp. 1453–1460 (2011) 

49. Veldanda, A.K., Liu, K., Tan, B., Krishnamurthy, P., Khorrami, F., Karri, R., Dolan-Gavitt, B., 
Garg, S.: NNoculation: broad spectrum and targeted treatment of backdoored DNNs (2020). 
arXiv preprint arXiv:2002.08313 

50. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched 
background similarity. In: Proceedings of the IEEE Computer Vision and Pattern Recognition. 
Colorado Springs, pp. 529–534 (2011) 

51. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 
pp. 770–778 (2016) 

52. Miller, J.: Reaction time analysis with outlier exclusion: bias varies with sample size. Q. J. 
Exp. Psychol. 43(4), 907–912 (1991)



Mitigating Backdoor Attacks on Deep Neural Networks 431

53. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. 
B (Statistical Methodology) 61(3), 611–622 (1999) 

54. Fu, H., Veldanda, A.K., Krishnamurthy, P., Garg, S., Khorrami, F.: Detecting backdoors 
in neural networks using novel feature-based anomaly detection (2020). arXiv preprint 
arXiv:2011.02526 

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 
M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 
12, 2825–2830 (2011) 

56. Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In: 
Proceedings of International Conference on Image Processing, vol. 1, Thessaloniki, pp. 34– 
37 (2001) 

57. Dong, Y., Hopkins, S., Li, J.: Quantum entropy scoring for fast robust mean estimation and 
improved outlier detection. In: Proceedings of the Advances in Neural Information Processing 
Systems. Vancouver, pp. 6067–6077 (2019) 

58. Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest. IEEE Trans. Knowl. Data Eng. 
33(4), 1479–1489 (2019) 

59. Lesouple, J., Baudoin, C., Spigai, M., Tourneret, J.-Y.: Generalized isolation forest for anomaly 
detection. Pattern Recognit. Lett. 149, 109–119 (2021) 

60. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/ 
mnist 

61. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical 
image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. Miami, pp. 248–255 (2009) 

62. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 
classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
Columbus, pp. 1891–1898 (2014) 

63. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: evaluating backdooring attacks on deep 
neural networks. IEEE Access 7, 47230–47244 (2019) 

64. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional 
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. Honolulu, pp. 4700–4708 (2017) 

65. Adi, Y., Baum, C., Cisse, M., Pinkas, B., Keshet, J.: Turning your weakness into a strength: 
watermarking deep neural networks by backdooring. In: Proceedings of the 27th USENIX 
Security Symposium. Baltimore, pp. 1615–1631 (2018)

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

	Mitigating Backdoor Attacks on Deep Neural Networks
	1 Background
	2 Literature Survey
	3 Preliminaries
	4 Problem Description
	5 Backdoor Defense by Training Attacker Imitator
	5.1 Problem Formulation
	5.2 Defense Methodology
	5.3 Experimental Setup
	5.3.1 Badnet-CW
	5.3.2 Badnet-GY
	5.3.3 Badnet-YS
	5.3.4 Badnet-CR

	5.4 Experimental Results
	5.4.1 Attacker Imitator Configuration
	5.4.2 BadNet vs. Benign Network Detection
	5.4.3 Fine-Tuning the Network


	6 RAID—An On-line Detection Method
	6.1 Problem Formulation
	6.2 Detection Algorithm
	6.3 Experimental Setup
	6.3.1 BadNet Trained on MNIST
	6.3.2 BadNet Trained on GTSRB
	6.3.3 BadNet Trained on CIFAR-10
	6.3.4 BadNet Trained on YouTube Face
	6.3.5 BadNet Trained on ImageNet
	6.3.6 Hyperparameter Setting

	6.4 Experimental Results
	6.4.1 Performance of N and Gn
	6.4.2 Performance of g(·)
	6.4.3 Performance of the Anomaly Detector
	6.4.4 Multiple Triggers and Adaptive Attacks
	6.4.5 Experiments on Hyperparameters
	6.4.6 More Advanced Attack


	7 Benign Applications of the Backdoor Phenomena
	8 Future Directions
	References




