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1 Introduction 

Due to their astounding classification performance and decision-making capability 
in practical applications such as healthcare, smart cyber-physical systems (CPS), 
autonomous driving, and Internet of Things (IoTs) [7, 18, 26], there has been a 
continuous rise in the use of embedded machine learning (ML)-based systems in 
the past few decades. A major contributing factor to the success of these ML-based 
systems is the advancements in the underlying artificial neural networks (ANNs). 
However, the addition of even small noise to the input of ANNs may lead these 
sophisticated systems to provide erroneous results [28]. This impact of noise is easy 
to visualize in Fig. 1, where the addition of noise to the input images does not lead 
to any perceptible change in the input. Nevertheless, the small noise is sufficient to 
make a trained ANN classify the inputs incorrectly. 

Noise is a ubiquitous component of the physical environment. Whether it be due 
to atmospheric conditions such as fog and pollution, or perturbation at input sensors 
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Fig. 1 Impact of noise on the accuracy of machine learning systems: the addition of small noise 
to input may result in a output misclassification [14] 

during data acquisition, it is unlikely to have a system deployed in the real world that 
is completely immune to noise [27]. Even though the magnitude of noise is often 
considerably small compared to the magnitude of the input, as shown by the orange 
and blue bars, respectively, in Fig. 2, it is capable of making the ANN delineate 
unexpected behavior. 

This is a serious concern for ML-based system, particularly for the ones deployed 
in safety-critical applications. Hence, in order to obtain a robust system, the effects 
of noise need to be studied and accounted for prior to its deployment in real world. 
This chapter discusses the possible impact(s) of noise on trained ANNs and explores 
the techniques to identify the ANN vulnerabilities resulting from noise. The rest of 
this chapter is organized as follows: Sect. 2 highlights the available approaches from 
the literature targeted at studying the impact of noise in ANNs, including current 
limitations in the study of the impact of noise on ANNs. Section 3 elaborates on 
the various ways in which ANNs are known to be affected by noise. Section 4 
describes the different noise models used for modeling noise to study their impact 
on trained ANNs. Section 5 uses the knowledge of noise analysis, effects, and 
modeling to experimentally demonstrate the impacts of noise on an actual ANN. 
Section 6 concludes the chapter while emphasizing upon the key lessons learned in 
the chapter. 

2 Studying the Impact of Noise: A Brief Overview of the 
Existing Literature 

The study of the effects of noise on ANNs has been an active research domain for 
the past decade. The approaches generally used for the exploration of the impacts of 
noise range from ANN gradient exploitation techniques to classical formal methods. 
However, as shown in Fig. 3, these approaches can be broadly categorized under 
noise generation and formal analysis techniques. This section provides an overview
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Fig. 2 The magnitude of noise (shown in orange) is often small in comparison to the input 
magnitude (shown in blue). Hence, the resulting change in input is too minute to be perceptible, 
while still making the ANN misclassify the (noisy) input
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Fig. 3 Categorization of the approaches used for studying the impact of noise on ANNs 

of the techniques used for studying the impact of noise, highlighting their underlying 
assumptions and working principles. 

2.1 Noise Generation 

The noise generation techniques are generally studied under adversarial attacks 
literature [15], where an attacker makes use of gradients of trained ANNs, true 
classification labels, and/or output probability vectors to generate the noise. The 
underlying assumption of these techniques is that a small noise exists, which when 
added to the ANN input will cause the ANN to generate an incorrect output. The 
techniques are formulated as optimization problems with either or both of the 
following objectives: 

1. Objective 1: Maximize the probability of the network f classifying the seed 
input x to an incorrect output class .L(y), where .L(x) �= L(y), in the presence of 
the noise n. 

. max(f (x + n) = L(y)).

2. Objective 2 : Find the minimal noise n (alternatively, minimize the noise) [3, 9], 
such that the application of noise to the seed input x of the network f provides 
an incorrect output classification .L(y), i.e., .f (x + n) = L(y). 

The optimization problem also often contains the imperceptibility constraint, i.e., 
the generated (adversarial) noise must have a smaller magnitude compared to that 
of the input, hence going unnoticed. This may be achieved by the small iterative
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increment of the generated noise until an adversarial noise is obtained [13, 17, 19], 
the addition of noise only to a subset of input nodes [24, 32], or ensuring that the 
noisy input follows the correlation and structural similarity of the clean input [14]. 

2.2 Formal Analysis 

Formal analysis for studying the impact of noise on ANNs involves the use of either 
linear programming or classical formal method approaches such as satisfiability 
(SAT) solving and model checking [27]. Unlike noise generation where adversarial 
noise is always assumed to exist, here the noise is conjectured to be absent. The task 
of formal analysis is then to either prove the conjecture or find a counterexample to 
give evidence of the existence of misclassifying noise. 

2.2.1 Linear Programming 

Similar to noise generation, linear programming for formal ANN analysis also 
makes use of optimization. The behavior and architecture of the ANN are expressed 
as a set of linear constraints. The piece-wise linear activation functions (such as 
ReLU) may be formalized as linear constraints using techniques such as Big-M 
approach [1, 6]. However, not all ANN activation functions are piece-wise linear. 
Hence, they may require approximation techniques to transform the non-linear 
activations to piece-wise linear functions [2, 20, 29–31]. The effect of noise to 
be studied is also expressed as a linear constraint. The objective is then either to 
minimize the input noise while ensuring all constraints are met or to maximize the 
output bounds for noisy inputs while ensuring the ANN does not delineate faulty 
behavior. 

2.2.2 Satisfiability Solving 

SAT solving is a classical formal method approach, where the ANN along with the 
negation of its desired network property is expressed in the conjunctive normal form 
(CNF). In the case of studying the impact of noise, the input to the ANN is assumed 
to be noisy. An automated SAT or SAT modulo theory (SMT) solver then searches 
for a satisfiable solution to the CNF. The existence of a satisfying solution (a.k.a. 
counterexample) signifies that the desired property does not hold for the network 
with noisy input. On the contrary, an unsatisfiable (UNSAT) solution proves that 
noise has no adverse impact on the desired network property [4, 10–12, 22, 25].
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2.2.3 Model Checking 

A relatively less explored formal method approach for studying the impact of noise 
on ANNs is model checking [23]. Here, the ANN, with the noisy input(s), is 
expressed as a state-transition system. The desired network property is expressed 
in temporal logic. The task of the model checker is to find a path reachable to 
a state satisfying the temporal property. If no reachable state satisfies the desired 
property, the model returns UNSAT/property holds. In the case of a probabilistic 
model checker, the tool may also be used to obtain the probability of the desired 
property being satisfied by the network. 

2.2.4 Limitations in the Existing Literature 

Despite the significant efforts in the domain of impacts of noise on ML-based 
systems, particularly ANNs, the existing literature has two major limitations: 

1. Noise has numerous impacts on the classification, performance, and accuracy of 
ML-based systems. However, the existing works focus often on only a limited 
set of ANN properties. This will be discussed further in Sect. 3. 

2. Most works explore the impact of noise on ANNs by adding the noise to 
normalized inputs. However, in practical scenarios, the noise perturbs raw 
(unnormalized) inputs. This limitation will be elaborated in Sect. 4. 

3 Effects of Noise on Machine Learning Accuracy 

As highlighted earlier, noise impacts the classification accuracy of ANNs in 
numerous ways. This section describes and formalizes important noise-dependent 
ANN properties. 

3.1 Decreasing Robustness 

Robustness defines the ability of a network to generate correct output classification, 
despite the presence of noise. It can be further categorized into global and local 
robustness. 

Definition 1 (Global Robustness) Given a network f and a correctly classified 
input x with output class .L(x) from input domain X, the network is said to be 
robust against noise n iff the output classification .f (x) does not change under the 
influence of noise, i.e., .∀x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x).
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Definition 2 (Local Robustness) Given a network f and an arbitrary correctly 
classified input x with output class .L(x) from input domain X, the network is said 
to be robust against noise n iff the output classification .f (x) does not change under 
the influence of noise, i.e., .∃x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x). 

Global robustness requires checking the robustness of the entire input domain. 
Given the large input domains in real world, with often infinite instances of inputs, 
checking the global robustness therefore becomes infeasible. Hence, the local 
robustness of the network is instead checked, i.e., the robustness of ANNs around 
finite seed inputs. As explored in both noise generation and formal-analysis-based 
techniques (check references in Sect. 2), the robustness of ANNs is often found 
inversely correlated to the magnitude of incident noise. 

3.2 Noise Tolerance 

A stronger notion compared to robustness is noise tolerance. As the name suggests, 
noise tolerance defines the maximum noise under which the ANN stays robust. 
Hence, if the network is tolerant to noise .Nmax , it is robust against all noise less 
than .Nmax : 

. Noise tolerance �⇒ Robustness.

Similar to robustness, the noise tolerance can also be further categorized into 
global and local. 

Definition 3 (Global Noise Tolerance) Given a network f and a correctly classi-
fied input x with output class .L(x) from input domain X, the network is said to be 
robust against all noise .n ≤ Nmax , where .Nmax is the global noise tolerance of the 
ANN, iff the output classification .f (x) does not change under the influence of n, 
i.e., .∀x ∈ X : ∀n ≤ Nmax �⇒ f (x + n) = f (x) = L(x). 

Definition 4 (Local Noise Tolerance) Given a network f and an arbitrary cor-
rectly classified input x with output class .L(x) from input domain X, the network is 
said to be robust against noise .n ≤ nmax , where .nmax is the local noise tolerance of 
the ANN for a finite number of input seeds, iff the output classification .f (x) does 
not change under the influence of n, i.e., . ∃x ∈ X : ∀n ≤ nmax �⇒ f (x + n) =
f (x) = L(x). 

Again, given the often infinite scope of input domain for real-world systems, 
local noise tolerance is checked in practice rather than the global noise tolerance. 
Since the noise tolerance of a trained ANN is a constant entity, a change in incident 
noise does not vary it. However, a higher noise tolerance signifies that the ANN 
provides accurate results even in fairly noisy input settings.
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3.3 Aggravating Bias 

ANN suffers from numerous biases. Among the most explored include data bias 
(i.e., the bias resulting from the lack of generalization of the training dataset for the 
entire input domain) and representation bias (i.e., the bias resulting from acquiring 
faulty/imprecise training data). Noise, however, is found to aggravate the training 
(a.k.a. robustness) bias [21, 23], henceforth referred to as simply the bias. 

Definition 5 (Bias) Let f be a neural network with correctly classified inputs . xA

and . xB belonging to input domains .XA and . XB , and having true output classes 
.L(xA) and .L(xB), respectively. The network is said to be biased toward class . L(xA)

if application of noise .n ≤ N to . xA does not change the output class .f (xA + n), but  
the application of same noise to input . xB changes its output classification . f (xB +
n). In other words, noise n is more likely to change output classification of inputs 
belonging to input domain . XA than vice versa, i.e., . ∀xA ∈ XA,∀xB ∈ XB : ∀n ≤
N �⇒ P [f (xA + n) = L(xA)] 	 P [f (xB + n) = L(xB)]. 

As elaborated in the literature [21], the reason for such bias is the smaller distance 
between the decision boundaries obtained via training inputs from certain class(es). 
Hence, this bias aggravates in the presence of noise. 

3.4 Varying Sensitivity Across Input Nodes 

ML-based systems deploy ANNs that generally comprise of multiple input nodes. 
The sensitivity of these nodes, in the presence of noise, may vary. 

Definition 6 (Input Node Sensitivity) Given a network f with k input nodes. 
Let x be a correctly classified input from the input domain X with true output 
classification .L(x). The input node i of the network is said to be sensitive to the 
noise . η if the addition of . η to . xi triggers an incorrect output classification with large 
probability, i.e., .∀x ∈ X, ∃xi ⊆ x : η ≤ N �⇒ P [f (x\xi, xi + η) �= L(x)] > C, 
where .C ∈ R is a large number less than 1. 

This is an important impact of noise exploited in the noise generation literature 
[24, 32] while exploring the ANN’s input saliency maps to identify input nodes, the 
addition of noise to which is more likely to trigger an incorrect network output. The 
concept has also been studied in a recent model-checking-based formal analysis 
[23], to identify the type of noise the input node(s) of a trained ANN might be 
vulnerable to. 

4 Modeling Noise 

As elaborated in the previous section, noise impacts the accuracy and classification 
of ML-based systems, using ANN as a component, in numerous ways. Hence, the
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study of these impacts on trained ANNs is essential prior to their deployment in real-
world applications. Whether it be the noise generation works or the formal analysis 
efforts, a crucial part of studying the impact of noise on ANNs is (realistic) noise 
modeling. This section explores the most popular noise models used in the literature, 
along with their strengths and weaknesses. 

4.1 Lp Norms 

These are the most popular noise models used in the ANN literature. In the context 
of incidence of noise to the ANN inputs, . Lp norms define the magnitude of distance 
between true and noisy inputs. Mathematically, they determine the .pth root of the 
sum of . pth power of absolute distance between the true and noisy inputs: 

. ||n||p = p

√∑
i

|ni |p = p

√∑
i

|x′
i − xi |p,

where . xi and . x′
i denote the . ith nodes of true and noisy inputs, respectively. Fig. 4 

summarizes the most common . Lp norms in the literature, described in detail as 
follows. 

4.1.1 L1 Norm (Manhattan Distance) 

This provides the sum of absolute distances between nodes of true and perturbed 
inputs (. xi and . x′

i , respectively): 

Fig. 4 The noise bounded by different . Lp norms is applied to the neural network input nodes (i.e., 
.x′

i = xi + ni ) during analysis
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.||n||1 =
∑

i

|ni | =
∑

i

|x′
i − xi |. (1) 

. L1 norm bounded noise model is fairly straightforward to implement. 

4.1.2 L2 Norm (Euclidean Distance) 

This provides a more sophisticated measure of distance between the true and 
perturbed inputs. Mathematically, it is the square root of the sum of squared 
distances between nodes of true (. xi) and perturbed (. x′

i) inputs: 

.||n||2 =
√∑

i

|ni |2 =
√∑

i

|x′
i − xi |2. (2) 

Compared to . L1 norm, . L2 norm provides a less robust measure of distance between 
the inputs. This means that even a small magnitude of distance is magnified in . L2

norm due to the squared power. 

4.1.3 L∞ Norm 

This gives the maximum magnitude of distance between true and perturbed inputs 
(i.e., . xi and . x′

i): 

.||n||∞ = maxi(ni) = maxi(|x′
i − xi |). (3) 

As shown in Fig. 4, .L∞ norm encapsulates all other . Lp norms. This means that the 
noise explored under . Lp norm, for .p < ∞, is also explored for .L∞ of the same 
magnitude. Hence, it is the most widely used noise model used in the literature. 

4.2 Relative Noise 

In practice, noise bounded by the .Lp norm is added to the normalized input. 
However, in reality, the noise affects the raw, unnormalized inputs. The direct 
application of . Lp norm bounded noise to the raw data may not always be a workable 
solution, particularly for cases where the range of possible input values varies across 
the different ANN input nodes. As a solution to these problems, recent work [23] 
proposes the use of the relative noise model. Here, the noise is added to the raw 
input as a percentage of the actual magnitude of the input. Mathematically: 

.ni = 0.01 × ε × xi, (4)
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where . ni refers to the noise applied to the . ith input node, i.e., . xi , while . ε is the 
percentage of input that contributes to the noisy input. 

5 Case Study 

To show how noise affects an actual network, this section describes the ANN 
analysis framework, FANNet. It is then used to analyze the various aforementioned 
ANN properties impacted by noise on a fully connected neural network trained on 
real-world dataset. The section later provides and elaborates on the results obtained 
from the analysis. 

5.1 FANNet: Formal Analysis of Neural Networks 

The first step for the ANN analysis is the architectural and behavioral extraction 
of a trained network. This implies that the details including the number of ANN 
layers and neurons in each layer, types of activation functions used at each network 
layer, and the values of trained parameters (i.e., weights and biases) are determined. 
The details are used to write the formal ANN model. The preferred choice for 
formal modeling in this section is model checking, which develops the formal 
model as a state-transition system. However, any other formal verification tool is 
also applicable. 

The results from the formal model are then checked against labeled inputs to 
validate the correctness of formal modeling. This is to ensure that the formal model 
fully and correctly encapsulates the behavior of the actual trained ANN. The impact 
of noise on the accuracy and performance of trained ANN is then analyzed. This 
involves the application of noise to labeled seed inputs and supplying the noisy 
inputs to the verified formal ANN model. The desired ANN property (as described 
in Sect. 3) is then verified using the model checker. 

In case the property holds for the ANN, the model checker returns UNSAT. In  
case the property does not hold in the presence of noise, depending on the choice 
of model checker used, the framework provides either a counterexample (i.e., the 
evidence of the noise that triggers faulty ANN behavior) or the probability of the 
ANN delineating faulty behavior for the given input noise. For determining the 
noise tolerance of the network, the framework takes an iterative approach. Starting 
with large noise, the noise applied to the ANN inputs is iteratively reduced, while 
verifying the ANN property at each iteration. Hence, the maximum noise at which 
the ANN does not delineate misclassification determines the noise tolerance of the 
ANN. Figure 5 pictorially summarizes the described framework.
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Fig. 5 The framework takes in trained ANN and labelled seed inputs and analyzes the desired 
ANN properties impacted by noise to the ANN inputs 

5.2 Experimental Setup 

We implemented the framework using the acclaimed and open-source model 
checker, Storm [5]. For the experiments using the relative noise model, the precision 
of noise was chosen to be . 1%, while for the experiments using the . Lp norm model, 
the precision was .0.01. All experiments were run on AMD Ryzen Threadripper 
2990WX processors running Ubuntu .18.04 LTS operating system. The following 
describes the dataset and network architecture used to show the impact of noise on 
a trained ANN. 

5.2.1 Dataset 

We use the Leukemia dataset with top 5 attributes extracted using Minimum 
Redundancy and Maximum Relevance (mRMR) feature selection [8, 16]. The 
dataset lists the readings from the genetic attributes of Leukemia patients. The 
output corresponds to two types of Leukemia: Acute Myeloid Leukemia (AML) 
and Acute Lymphoblast Leukemia (ALL). Approximately, .70% of the inputs from 
the training dataset belong to ALL patients, whereas roughly .60% of inputs from 
the testing dataset belong to ALL patients. Hence, the dataset contains significantly 
more inputs fromALL patients compared to AML patients, making the ANN trained 
quite likely to delineate a bias. 

5.2.2 Neural Network 

We train a fully connected neural network, as shown in Fig. 6a, using the Leukemia 
dataset. The network comprises a single hidden layer with 20 neurons and uses the



Considering the Impact of Noise on Machine Learning Accuracy 389

Fig. 6 (a) The architecture of ANN trained on the Leukemia dataset. (b) The state-transition 
system of the formal ANN model: . L0 and . L1 correspond to the outputs AML and ALL, 
respectively, while the number of states generated corresponding to each output depends on the 
noise applied to the model 

ReLU activation function. We train the network using 80 epoch, with learning rates 
of . 0.5 and . 0.2 for the initial and final half of the epochs, respectively. The network 
is trained to a training accuracy of .100% and a testing accuracy of .94.12%. 

We use the analysis from the original work on FANNet based on nuXmv [23] to  
identify the most vulnerable inputs in the testing dataset for each label, for a trained 
ANN with identical parameters as those in the prior work, to perform elaborate 
Storm model-checker-based experiments. 

5.3 Results and Discussion 

From prior work [23], it was observed qualitatively that the increase in noise 
reduces the classification accuracy of the ANN while aggravating the bias. This 
is summarized in Fig. 7. This section provides the quantitative results obtained via 
aforedescribed experiments and discusses the impact of noise on trained ANN based 
on the empirical findings. 

5.3.1 Robustness and Tolerance 

As expected, the probability of correct classification reduces with the increase in the 
magnitude of noise, as shown in Fig. 8. For all noise less than the noise tolerance of 
the network (also shown in Fig. 7), the ANN provides correct output classification 
with a probability of . 1.0, even in the presence of noise in the input. For the given
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Fig. 7 Impact of increasing (relative) noise on the output classification of the trained network, as 
observed using nuXmv-based FANNet implementation [23] 

Fig. 8 Increasing noise vs. the probability of correct output classification: the decreasing robust-
ness of ANN beyond noise tolerance is observable in the case of the relative noise model (i.e., the 
graph on the left) 

network, this tolerance is found to be .11% in the case of the relative noise. For the 
network under . Lp norm-based noise, the robustness was significantly low, with the 
noise tolerance less than the precision of the analysis. 

Nevertheless, the decreasing robustness of trained ANN model under the impact 
of increasing noise is evident for all noise models, as shown in Fig. 8. 

5.3.2 Bias 

As indicated earlier, the ANN is trained on a dataset with a significantly larger 
proportion of inputs from patients having ALL (henceforth referred to as Label 1), 
as compared to those having AML (henceforth referred to as Label 0). This is likely 
to result in a biased ANN, as observed with the relative noise model (Fig. 9—left). 
For inputs classified correctly in the absence of noise, i.e., inputs having a correct 
classification probability of . 1.0, the input noise has a more adverse impact on the 
inputs belonging to Label 0, as compared to vice versa. Observing the qualitative
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Fig. 9 The bias is visible through the analysis under relative noise model, where probability of 
correct classification reduces only for single output class. However, the impact is not observable 
with . Lp norm noise model 

analysis [23] from Fig. 7 supports the same conclusion. However, the bias is not 
observable under . Lp norm-based noise model, likely due to the low robustness of 
the ANN under that model. 

We believe that, owing to the larger proportion of inputs from Label 1 in the 
training dataset, the decision boundary learned by the ANN better encapsulates 
the inputs from Label 1. The inputs from Label 0, on other hand, are presumably 
closer to the decision boundary and hence more likely to be misclassified under the 
application of noise. 

5.3.3 Node Sensitivity 

As discussed in Sect. 3, different input nodes of a trained ANN may have a different 
sensitivity to the applied noise. Again, this impact of noise is observable only with 
the relative noise model, for the ANN trained on the Leukemia dataset, as shown in 
Fig. 10. It can also be observed that certain input nodes may be more sensitive to 
either positive (for instance, node . x3) or negative (for instance, node . x5) noise. 

5.3.4 Discussion 

As highlighted earlier in Sect. 4, unlike the relative noise, the . Lp norm noise is 
added to the normalized inputs, i.e., the inputs in the range [0,1]. For the analyzed 
network, the raw, unnormalized input values range on the scale of hundreds to 
thousands. Assuming an input node value to be .10,000, the addition of .0.01 units 
of noise to the input implies the addition of a noise of magnitude 100. Such a large 
noise may or may not be very realistic for the noise analysis for an ANN to be 
deployed in a practical setting. This could be a possible reason for the inadequacy 
of the aforementioned noise model for analyzing the impacts of noise beyond 
robustness, for the given ANN.
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Fig. 10 The sensitivity of individual input nodes, to positive and negative noise, as observed under 
the relative and .L∞ norm-based noise models 

At the same time, it is possible to have another node with an input value of 100. 
Here, the application of the same noise (i.e., .0.01) implies a change of only a unit 
difference in the magnitude of the input node. This is a very likely change in the 
input of ANN deployed in real world. Hence, the noise .0.01 may result in realistic 
noise for some input nodes, while unrealistic for others, making the noise model 
inept for ANNs with inputs having different input ranges. 

6 Conclusion 

Despite the highly accurate decision-making of the current machine learning (ML)-
based system, often due to the high accuracy of their underlying artificial neural 
networks (ANNs), these systems may fail to provide the expected accuracy in 
the real-world applications. A major reason for this is the noise in the practical 
environment, which alters the system input. Though alteration to input by noise 
may be fairly minimal in comparison to the magnitude of the actual input, the noise 
may still be able to make the ANN provide incorrect results. Hence, it is essential to 
analyze the impact of noise on the performance and accuracy of the trained ANN, 
prior to its deployment in the ML-based system. 

This chapter elaborated on the numerous ways in which noise may affect the 
accuracy and performance, in terms of network robustness, training bias, and
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sensitivity of individual input nodes, of a trained ANN. The applicable noise models, 
based on . Lp norms and relative noise, were also provided. The knowledge of the 
possible impacts of noise and noise modeling is then leveraged in a framework for 
formal analysis of neural networks (FANNet). 

The chapter also provided a case study to study the impact of noise on an 
ANN trained on real-world dataset. As expected, beyond the noise tolerance of the 
trained ANN, the increase in applied noise reduced the classification accuracy of 
the network. In addition, this reduction in classification was more drastic for certain 
output classes, due to the training bias. Moreover, depending on the sensitivity of 
individual input nodes, the vulnerability of nodes to noise also varied. 

While . Lp norm-based noise models are often a popular choice for the ANN 
robustness analysis, the chapter also emphasized its inadequacy for analyzing 
impacts of noise beyond robustness. Particularly, these models are not ideal for 
ANNs where the different input nodes have different ranges of values. The choice 
of the best-suited noise model, along with a more broad-spectrum noise analysis, 
is an essential tool for ensuring the high accuracy of ML-based systems deploying 
ANNs in noisy, real-world environments. 
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