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1 Introduction 

Today’s vehicles are sophisticated cyber-physical systems (CPS) that consists 
of multiple interconnected embedded systems known as electronic control units 
(ECUs). The ECUs control various vehicular functions and communicate with each 
other using the in-vehicle network. In recent years, the number of ECUs along with 
the complexity of software running on these ECUs has been increasing rapidly, to 
enable advanced driver assistance systems (ADAS) features such as adaptive cruise 
control, collision avoidance, lane keep assist, and blind spot warning. This has 
resulted in an increase in the complexity of the in-vehicle network over which huge 
volumes of automotive sensor and real-time decision data, and control directives are 
communicated. This in turn has led to various challenges related to the reliability 
[1–4], security [5–9], and real-time control of automotive applications [10–13]. 

Recent developments in ADAS resulted in increased interaction with various 
external systems using advanced communication standards such as 5G technology 
and Vehicle-to-X (V2X) [14]. Unfortunately, this makes automotive embedded sys-
tems highly susceptible to various cybersecurity threats that can have catastrophic 
consequences. The vehicular attacks in [15–17] have presented different ways to 
gain access to the in-vehicle network and override vehicle controls by injecting 
anomalous messages. With the connected and autonomous vehicles (CAVs) on the 
horizon, these security concerns will get further aggravated. Therefore, it is crucial 
to prevent unauthorized access to in-vehicle networks by external attackers to ensure 
the security of automotive CPS. 
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Traditional computer networks utilized firewalls to defend the networks from 
external attackers. However, no firewall is flawless, and no network can be 
completely secure. Therefore, there is a need for an active monitoring system that 
continuously monitors the network to identify malicious messages in the system. An 
anomaly detection system (ADS) can be used to continuously monitor the in-vehicle 
network traffic and trigger alerts when suspicious messages or known threats are 
detected, which is typically the last line of defense in automotive CPSs. 

At a high level, ADSs are categorized into two types: (i) rule-based and 
(ii) machine learning-based. Rule-based ADSs observe for traces of previously 
observed attack signatures whereas machine learning-based ADSs observe for the 
deviation from the known normal system behavior to detect the presence of an 
attacker. Rule-based ADS can have faster detection rates and very few false alarms 
(false positive rate) but are limited to detecting only known attacks. On the contrary, 
machine learning-based ADS can detect both previously observed and novel attacks 
but can suffer from comparatively slower detection times and higher false alarm 
rate. An efficient ADS needs to be robust, scalable, and incur minimal overhead 
(lightweight). Moreover, practical ADSs need to have a wide attack coverage (being 
able to detect both known and unknown attacks) with high confidence in detection 
and low false alarms as recovering from false alarms can be costly. 

Obtaining the signature of every possible attack is impractical and would limit 
us to only detecting known attacks. Hence, we believe that machine learning-based 
ADSs provide a more pragmatic solution to this problem. Additionally, due to the 
ease of acquiring in-vehicle network data, large volumes of in-vehicle message data 
can be collected, which facilitates the use of advanced deep learning models for 
detecting anomalies in automotive CPS [9]. 

In this chapter, we propose a novel ADS framework called INDRA, first presented 
in [6], that monitors the messages in controller area network (CAN)-based automo-
tive CPS for anomalies. During the offline phase, INDRA uses a deep learning-based 
model to learn the normal system behavior in an unsupervised manner. At runtime, 
INDRA continuously scans the network for anomalous messages in the network. 
INDRA aims to maximize the detection accuracy with minimal false alarms and 
overhead on the ECUs. 

Our novel contributions in this work are as follows: 

1. We introduced a gated recurrent unit (GRU)-based recurrent autoencoder net-
work to learn the normal system behavior during the offline phase. 

2. We presented an anomaly score (AS) metric to measure deviation from the 
normal system behavior. 

3. We conducted a comprehensive analysis toward the selection of thresholds for 
the anomaly score metric. 

4. We compare our proposed INDRA framework with the best-known prior works 
in the area, to show its effectiveness.
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2 Related Work 

Several techniques have been proposed to design ADS for protecting time-critical 
automotive CPS. These works try to detect multiple attacks by monitoring the in-
vehicle network data. 

Rule-based ADS detects known attacks by using the information about previ-
ously observed attack signatures. A language theory-based model [18] was proposed 
to derive attack signatures. However, this technique fails to detect attacks when it 
misses the packets transmitted during the early stages of an attack. The authors in 
[19], used transition matrices to detect attacks in a CAN bus. They were able to 
achieve a low false-positive rate for simple attacks but failed to detect advanced 
replay attacks. In [20], the authors identify notable attack signatures such as an 
increase in message frequency and missing messages to detect attacks. In [21], the 
authors proposed a specification-based approach to detect attacks; they analyze the 
behavior of the system and compare it with the predefined attack patterns to detect 
anomalies. However, their system fails to detect unknown attacks. The authors in 
[22] propose an ADS technique using the Myers algorithm [23] under the map-
reduce framework. In [24], a time-frequency analysis of CAN messages is used 
to detect multiple anomalies. The authors analyzed message frequency at design 
time in [25] to derive regular operating mode region. This region is observed 
for deviations at runtime to detect anomalies. The sender ECU’s clock skew and 
the messages are used to detect attacks [26] by observing for variations in the 
clock-skew at runtime. The authors in [27] performed a formal analysis on clock-
skew-based ADS and evaluated on a real vehicle. In [28], a memory heat map is used 
to characterize the memory behavior of the operating system to detect anomalies. 
In [29], an entropy-based ADS is proposed, which observes for change in system 
entropy to detect anomalies. Nonetheless, the technique fails to detect small scale 
attacks for which the entropy change is minimal. In conclusion, rule-based ADSs 
offer a solution to the intrusion detection problem with lower false positive rates but 
cannot detect more complex and novel attacks. Moreover, obtaining signatures of 
every possible attack pattern is not practical. 

Machine learning-based ADSs aim to learn the normal system behavior in an 
offline phase and observe for any deviation from the learned normal behavior to 
detect anomalies at runtime. In [30], the authors proposed a sensor-based ADS that 
utilizes attack detection sensors to monitor various system events to observe for 
deviations from normal behavior. However, this approach is expensive and suffers 
from poor detection rates. In [31], a one-class support vector machine (OCSVM)-
based ADS was introduced, but it suffers from poor detection latency. An ensemble 
of different nearest neighbor classifiers was used in [32] to distinguish between 
a normal and an attack-induced CAN payload. The authors in [33] proposed a 
decision-tree-based detection model to monitor the physical features of the vehicle 
to detect attacks. However, this model is not practical and suffers from high anomaly 
detection latencies. In [34], a hidden Markov model (HMM)-based technique was 
proposed to monitor the temporal relationships between messages to detect attacks.
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Table 1 Performance metrics comparison between our proposed INDRA framework and state-
of-the-art machine learning-based anomaly detection works 

Performance metrics 

Technique Lightweight model 
Low false 
positive rate 

High detection 
accuracy Fast inference time 

PLSTM [38] X � X X 
RepNet [39] � X X �
CANet [36] X � � X 
INDRA � � � �

A deep neural network-based approach was proposed to scan the payload in the 
in-vehicle network in [35]. This approach is not scalable as it is fine-tuned for 
a low priority tire pressure monitoring system (TPMS), which makes it hard to 
adapt to high priority powertrain applications. In [36] a long-short-term memory 
(LSTM)-based ADS for multi-message ID detection was proposed. However, the 
model architecture is highly complex and incurs high overhead on the ECUs. An 
LSTM-based ADS to detect insertion and dropping attacks (explained in Sect. 4.3) 
is proposed in [37]. In [38], an LSTM-based predictor model is proposed to predict 
the subsequent time step message value at a bit level and observe for large variations 
to detect anomalous messages. A recurrent neural network (RNN)-based ADS to 
learn the normal CAN message pattern in the in-vehicle network is proposed in [39]. 
In [40], a hybrid ADS was proposed which utilizes a specification-based system in 
the first stage and an RNN-based model in the second stage to detect anomalies 
in time-series data. Several other machine models such as the stacked LSTMs and 
temporal convolutional neural networks (TCNs)-based techniques were proposed in 
[7, 8], respectively. However, none of these techniques provides a complete system-
level solution that is scalable, reliable, and lightweight to detect various attacks for 
in-vehicle networks. 

In this chapter, we introduce a lightweight recurrent autoencoder-based ADS 
using gated recurrent units (GRUs) that monitors the in-vehicle network messages 
at a signal level to detect multiple types of attacks with higher efficiency than 
various state-of-the art works in this area. A summary of some of the state-of-the-art 
works’ performance under different metrics and our proposed INDRA framework is 
presented in Table 1. An exhaustive analysis of each metric and evaluation results 
are presented later in Sect. 6. 

3 Sequence Learning Background 

The availability of increased computing power from GPUs and custom accelerators 
training deep neural networks with many hidden layers became feasible and has led 
to the creation of powerful models for solving difficult problems in many domains.
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One such problem is detecting anomalies in automotive CPS. In an automotive CPS, 
the communication between ECUs occurs in a time-dependent manner. Therefore, 
there is temporal relationship between the messages, which can be exploited in order 
to detect anomalies. However, this cannot be achieved using typical feedforward 
neural networks where the output of a specific input at an instance is independent 
of the other inputs. Sequence models can be an appropriate approach for such 
problems, as they inherently handle sequences and time-series data. 

3.1 Sequence Models 

A sequence model is a function that ensures that the outcome is reliant on both the 
current and prior inputs. The recurrent neural network (RNN), which was introduced 
in [41], is an example of such a sequence model. Moreover, other sequence models 
such as gated recurrent unit (GRU) and long-short-term memory (LSTM) have also 
been developed. 

3.1.1 Recurrent Neural Networks (RNNs) 

An RNN is a form of artificial neural network that takes the sequential data as input 
and tries to learn the relationships between the elements in the sequence. The hidden 
state in RNNs allows learned information from previous time steps to persist over 
time. An RNN unit with feedback is shown in Fig. 1a, and an unrolled RNN in time 
is shown in Fig. 1b. 

The output ht of an RNN unit is a function of both the input xt and the previous 
output ht − 1: 

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time, where f is the RNN unit, x is the 
input, and h represents hidden states
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ht = f (Wxt + Uht−1 + b) (1) 

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W are 
weight matrices, and b is the bias term. One of the major limitations of RNNs is 
that they are very hard to train. Since RNNs and other sequence models handle 
sequences or time-series inputs, backpropagation occurs through various time steps 
(known as backpropagation through time). During this process, the feedback loop 
in RNNs causes the errors to expand or shrink rapidly, thereby creating exploding 
or vanishing gradients, respectively, which in turn destroys the information in 
backpropagation. This vanishing gradient problem prohibits RNNs from learning 
long-term dependencies. To solve this problem, additional states and gates were 
introduced in the RNN unit in [42] to remember long-term dependencies, which led 
to the development of LSTM Networks. 

3.1.2 Long-/Short-Term Memory (LSTM) Networks 

LSTMs unlike RNNs uses cell state and hidden state information along with 
multiple gates to remember long-term dependencies between messages. The cell 
state can be imagined as a freeway that carries relevant information throughout the 
processing of a sequence. The state stores information from previous time steps 
so that it can be used in subsequent time steps, reducing the effects of short-term 
memory. The gates modify the information in the cell state. As a result, the gates 
in LSTM assist the model in determining which information should be retained and 
which should be ignored. 

An LSTM unit contains three gates: (i) input gate (ft) (ii) forget gate (it), and (iii) 
output gate (ot) as shown in Fig. 2a. The forget gate is a binary gate that determines 
which information from the previous cell state (ct−1) to retain. The input gate adds 
relevant information to the cell state (ct). Finally, the output gate uses information 
from the previous two gates to produce an output. An LSTM unit unrolled in time 
is shown in Fig. 2b. 

LSTMs learn long-term dependencies in a sequence by using a combination of 
different gates and hidden states. However, they are not computationally efficient 
due to the addition of multiple gates, as the sequence path is more complicated 
than in RNNs, which in turn requires more memory at runtime. Moreover, training 
LSTMs have a high computation overhead even when the advanced training meth-
ods such as truncated backpropagation are employed. To overcome abovementioned 
limitations, a simpler recurrent neural network called gated recurrent unit (GRU) 
network was introduced in [43]. GRUs can be trained faster than LSTMs and also 
can remember dependencies in long sequences with minimal overhead (in both 
memory and runtime), while solving the vanishing gradient problem.
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Fig. 2 (a) A single LSTM unit with different gates and (b) unrolled LSTM unit in time, where f 
is an LSTM unit, x is input, c is cell state, and h is the hidden state 

3.1.3 Gated Recurrent Unit (GRU) 

Unlike LSTMs, a GRU unit takes a different route for gating information. The input 
and forget gate of the LSTM is combined into a solitary update gate and in addition 
combines hidden and cell state, as shown in Fig. 3a, b. 

A typical GRU unit contains two gates: (i) reset gate and (ii) update gate. 
The reset gate combines new input with previous memory, while the update layer 
determines how much relevant data should be stored. Thus, a GRU unit controls 
the data stream similar to an LSTM by uncovering its hidden layer contents. 
Moreover, GRUs are computationally more efficient than LSTMs as they achieve 
this using fewer gates and states, with low memory overhead. It is crucial to use 
lightweight machine learning models as real-time automotive ECUs are highly 
resource-constrained embedded systems with strict energy and power budgets. 
Thus, GRU-based networks are an ideal fit for inference in automotive systems. 
Hence, INDRA chose to use a lightweight GRU-based model to implement an ADS 
(explained in detail in Sect. 5).
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Fig. 3 (a) A single GRU unit with different gates and (b) GRU unit unrolled in time, where f is a 
GRU unit, x is input, and h is the hidden state 

The major advantage of sequence models is that they can be trained in both super-
vised and unsupervised learning fashion. Due to the large volume of CAN message 
data in a vehicle, labeling all that data can become very tedious. Additionally, the 
variability in the messages between vehicle models from the same manufacturer and 
the proprietary nature of this information makes it even more challenging to label 
messages correctly. Nonetheless, due to the ease of obtaining CAN message data 
via onboard diagnostics (OBD-II), large amounts of unlabeled data can be collected 
easily. Thus, INDRA uses GRUs in an unsupervised learning setting. 

3.2 Autoencoders 

Autoencoders are unsupervised learning-based artificial neural networks who try 
to reconstruct the input by learning the latent input features. They accomplish this 
by encoding the input data (x) to a hidden layer and finally decoding it to produce 

a reconstruction . 
∼
x (as shown in Fig. 4). This encoded information at the hidden
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Fig. 4 A simple autoencoder network with encoder, decoder, and embedding layers of the network 

layer is called an embedding. The layers that are used to create this embedding are 
called the encoder, and the layers that are used in reconstructing the embedding 
into the original input (decoding) are called the decoder. During the training 
process, the encoder attempts to learn a nonlinear mapping of the inputs, while 
the decoder tries to learn the nonlinear mapping of the embedding to the inputs. 
The encoder and decoder accomplish this with the help of nonlinear activation 
functions such as tanh and rectified linear unit (ReLU). Moreover, the autoencoder 
aims to recreate the input as closely as possible by extracting important features 
from the inputs with a goal of minimizing reconstruction loss. The most used loss 
functions in autoencoders include mean squared error (MSE) and Kullback-Leibler 
(KL) divergence. 

Since autoencoders aim to reconstruct the input by learning the underlying 
distribution of the input data, they are an excellent choice for efficiently learning and 
reconstructing highly correlated time-series data by learning the temporal relations 
between messages. Hence, our proposed INDRA framework uses lightweight GRUs 
in an autoencoder to learn latent representations of CAN message data in an 
unsupervised learning setting. 

4 Problem Definition 

4.1 System Model 

In this chapter, we consider a generic automotive system consisting of multiple 
ECUs connected using a CAN-based in-vehicle network, as shown in Fig. 5. Each 
ECU connected in the network is responsible for running a specific set of automotive 
applications that are hard real time in nature (i.e., have strict timing and deadline
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Fig. 5 Overview of the automotive system model considered in INDRA 

constraints). Moreover, we assume that each ECU also runs anomaly detection 
applications (ADS), which are responsible for monitoring and detecting anomalies 
in the in-vehicle network. INDRA considers a distributed ADS approach (anomaly 
detection application is collocated with automotive applications) as opposed to a 
centralized ADS approach in which one central ECU handles all anomaly detection 
tasks due to the following reasons:

• A centralized ADS approach is susceptible to single-point failures, which can 
completely expose the system to the attacker.

• In the worst-case scenarios such as during a flooding attack (explained in Sect. 
4.3), the centralized system might not be able to communicate with the victim 
ECUs due to highly congested in-vehicle network.

• If an attacker successfully tricks the centralized ADS ECU, the attacks can go 
undetected by the other ECUs, compromising the entire system; however, in 
a distributed ADS scenario, it requires fooling multiple ECUs (which is more 
difficult) to compromise the system. Moreover, in a distributed ADS scenario, 
even if one of the ECU is compromised, the attacks can still be detected by the 
decentralized intelligence.

• In a distributed ADS, ECUs can stop accepting messages as soon as an anomaly 
is detected rather than having to wait for a centralized system to notify them, 
resulting in faster reaction times.

• With a distributed ADS, the computation load of ADS is split among the ECUs 
and monitoring can be limited to only required messages. As a result, multiple 
ECUs can independently monitor a subset of messages with lesser overhead. 

For the abovementioned reasons, many prior works such as [18, 25] also consider 
a distributed ADS approach. Furthermore, with increasing computation power of 
automotive ECUs, the collocation of ADS applications with real-time automotive
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applications in a distributed manner should not be a problem, if the ADS has a 
minimal overhead. INDRA framework is not only lightweight but also scalable, and 
achieves high anomaly detection performance, as discussed in Sect. 6. 

An ideal ADS should have low susceptibility to noise, low cost, and a low 
power/energy footprint. The following are some of the key characteristics of an 
efficient IDS, which were taken into consideration when designing our INDRA 
ADS:

• Lightweight: Anomaly detection tasks can incur additional overhead on ECU, 
which could result in poor application performance and missed deadlines for 
real-time applications, which is catastrophic. Therefore, INDRA aims to have a 
lightweight ADS that incurs minimal overhead on the ECU.

• Few false positives: This is a highly desired quality in any type of ADS (even 
outside of the automotive domain), as dealing with false positives can quickly 
become costly. Thus, a good ADS is expected to have few false positives or false 
alarms.

• Coverage: This defines the range of attacks that an ADS can detect. A good ADS 
must be capable of detecting more than one type of attack. Moreover, a high 
coverage for ADS will make the system resistant to multiple attack surfaces.

• Scalability: This is an important requirement as the number of ECUs in emerging 
vehicles is growing along with software and network complexity. A good ADS 
should be highly scalable and capable of supporting multiple system sizes. 

4.2 Communication Model 

This subsection discusses vehicle communication model that was considered for 
INDRA framework. INDRA primarily focuses on detecting anomalies in controller 
area network (CAN) bus-based automotive CPS. CAN is the most commonly used 
in-vehicle network protocol in modern automotive systems. CAN offers a low cost, 
lightweight, event-triggered communication where messages are transmitted in the 
form of frames. A typical standard CAN frame structure is shown in Fig. 6, and 
the length of each field (in bits) is shown on the top. The standard CAN frame 
consists of a header, payload, and trailer segment. The header contains information 
of the message identifier (ID) and the length of the message, whereas the payload 
segment contains the actual data that needs to be transmitted. The trailer section is 
mainly used for error checking at the receiver. A variation of the CAN protocol, 
called CAN-extended or CAN 2.0B, is also being deployed increasingly in modern 
vehicles. The key difference being that CAN extended has a 29-bit identifier, which 
allows for a greater number of messages IDs.
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Fig. 6 Standard frame format of a CAN message 

Fig. 7 An example real-world CAN message with signal information [44] 

Our proposed INDRA ADS focuses on monitoring the payload segment of the 
CAN frame and observes for anomalies within the payload to detect cyberattacks. 
This is because most modern-day attacks involve an attacker modifying the payload 
to accomplish malicious activities. An attacker can also target the header or trailer 
segments, but the message would get rejected at the receiver. The payload segment 
comprises of multiple data entities called signals. An example real-world CAN 
message with the list of signals within the message is shown in Fig. 7. Each signal 
has a fixed size (in bits), assigned a particular data type, and a start bit that specifies 
its location in the 64-bit payload segment of the CAN message. 

INDRA focuses on monitoring individual signals within CAN payload to observe 
for anomalies and detect attacks. During training, INDRA learns the temporal 
dependencies between the messages at a signal level and observes for deviations 
at runtime to detect attacks. The ability to detect attacks at a signal level enables 
INDRA to not only detect the presence of an attacker but also help in identifying 
the signal within the message that is under attack. This can be valuable information 
for understanding the intentions of the attacker, which can be used for developing 
appropriate countermeasures. The details about the signal level monitoring of 
INDRA ADS are discussed in Sect. 5.2. Note: Even though our proposed INDRA 
framework focuses on detecting attacks by monitoring CAN messages, our approach 
is protocol-agnostic and can be used with other in-vehicle network protocols (such 
as FlexRay and LIN) with minimal changes.
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4.3 Attack Model 

Our proposed INDRA ADS aims to protect the vehicle from various types of attacks 
that are most commonly seen and difficult to detect attacks in the domain of 
automotive CPS. Moreover, these attacks have been widely used in literature to 
evaluate ADSs. 

1. Flooding attack: This is the most common and simple to launch attack, and it 
requires no knowledge of the system. In this attack, the attacker continuously 
floods the in-vehicle network with a random or specific message with the 
goal of preventing other ECUs from accessing the bus and rendering the bus 
unusable. These attacks are typically detected by the vehicle’s network bridges 
and gateways and often do not reach the last line of defense (the ADS). However, 
it is crucial to consider these attacks as they can have serious consequences when 
not handled correctly. 

2. Plateau attack: In this attack, an attacker overwrites a signal value with a 
constant value for the entirety of the attack interval. The severity of this attack 
is determined by the magnitude of the jump (increase in signal value) and the 
duration for which it is held. Larger jumps in signal values are easier to detect 
compared with shorter jumps. 

3. Continuous attack: In this attack, an attacker gradually overwrites the signal 
value with the goal of achieving some target value while avoiding the activation 
of an ADS. This attack is difficult to detect and can be sensitive to the ADS 
parameters (discussed in Sect. 5.2). 

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by 
either disabling the target ECU’s communication controller or shutting down the 
ECU. These attacks are easy to detect because they disrupt message transmission 
for long durations but are harder to detect for shorter durations. 

5. Playback attack: In this attack, the attacker attempts to trick the ADS by 
replaying a valid series of message transmissions from the past. This attack is 
hard to detect if the ADS lacks the ability to capture the temporal relationships 
between messages and detect when they are violated. 

Moreover, in this work, we assume that the attacker can gain access to the 
vehicle using the most common attack vectors such as connecting to V2X systems 
that communicate with the outside world (e.g., infotainment and connected ADAS 
systems), connecting to the OBD-II port, probe-based snooping on the in-vehicle 
bus, and by replacing an existing ECU. We also assume that the attacker has access 
to the network parameters (such as parity, flow control, and BAUD rate) that can 
further assist in gaining access to the in-vehicle network. 

Problem objective: The goal of our proposed INDRA framework is to implement a 
lightweight ADS that can detect a variety of attacks (mentioned above) in a CAN-
based automotive CPS, with a high detection accuracy and low false positive rate 
while maintaining a large attack coverage.
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5 INDRA Framework Overview 

INDRA framework enables a machine learning-based signal level ADS for moni-
toring CAN messages in automotive embedded CPS. An overview of the proposed 
framework is depicted in Fig. 8. The  INDRA framework is divided into design-time 
and runtime steps. During design time, INDRA uses trusted CAN message data to 
train a recurrent autoencoder-based model that learns the normal system behavior. 
At runtime, the trained recurrent autoencoder model is used to detect anomalies 
based on deviations from normal system behavior computed using the proposed 
anomaly score metric. These steps are described in greater detail in the subsequent 
subsections. 

5.1 Recurrent Autoencoder 

Recurrent autoencoders are powerful neural networks that are designed to behave 
similar to an encoder–decoder structure but can handle time-series or sequence 
data as inputs. They can be represented as regular feed-forward neural network-
based autoencoders, with neurons that are RNN, LSTM, or GRU units (discussed in 
Sect. 3). Recurrent autoencoders, like regular autoencoders, have an encoder and a 
decoder stage. The encoder generates a latent representation of the input data in an 
n-dimensional space. The decoder uses this latent representation from the encoder 
output and attempts to reconstruct the input data with minimal reconstruction loss. 
In INDRA, we propose a new lightweight recurrent autoencoder model, which is 
tailored for the design of ADS to detect cyberattacks in the in-vehicle network data. 

Fig. 8 Overview of INDRA ADS framework
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Fig. 9 Proposed model architecture of the recurrent autoencoder used in INDRA (f is number of 
features, i.e., number of signals in the input CAN message, and MCV is message context vector) 

The details of the proposed model architecture and the various steps involved in its 
training and evaluation are discussed in the subsequent sections. 

5.1.1 Model Architecture 

Our proposed recurrent autoencoder model architecture with the input and output 
dimensions of each layer is shown in Fig. 9. The model comprises of a linear 
layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear layer 
before the final output. The first linear layer receives the input time-series CAN 
message data with signal level values with f features (where f is the number of 
signals in the message). The linear layer output is passed to the GRU-based encoder, 
which generates the latent representation of the time-series signal inputs. This latent 
representation is referred to as a message context vector (MCV). The MCV captures 
the context of various signals in the input message in the form of a vector. Each 
value in the MCV can be viewed as a point in an n-dimensional space containing the 
context of the series of signal values provided as input. The MCV is fed into a GRU-
based decoder, which is then followed by a linear layer to produce the reconstruction 
of the input CAN message data with individual signal values. The loss between 
the input and the reconstructed input is calculated using mean square error (MSE), 
and the weights are updated using backpropagation through time. INDRA designs a 
recurrent autoencoder model for each message ID. 

5.1.2 Training Process 

The training procedure starts with the preprocessing of the recorded CAN message 
data from a trusted vehicle. Each sample in the dataset consists of a message ID and 
the corresponding signal values contained within that message ID. In some cases, 
the range of signal values can be very large, which can make the training process
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Fig. 10 Example of a rolling 
window approach 

extremely slow or unstable. To prevent this, we scale the signal values between 0 
and 1 for each signal type. Moreover, scaling signal values also helps to avoid the 
problem of exploding gradients (as discussed in Sect. 3). 

The preprocessed CAN data is divided into training data (85%) and validation 
data (15%), which is then prepared for training using a rolling window-based 
approach. This involves choosing a fixed size window and rolling it to the right 
by one sample every time step. Figure 10 illustrates a rolling window of size 
three samples and its movement for the three consecutive time steps. The term . Sji
represents the ith signal value at jth sample. The elements in the rolling window are 
referred to as a subsequence, and the size of the subsequence is equal to the size 
of the rolling window. Our proposed recurrent autoencoder model attempts to learn 
the temporal relationships that exist between the series of signal values because 
each subsequence consists of a set of signal values over time. These signal level 
temporal relationships aid in detecting more complex attacks such as continuous 
and playback (as discussed in Sect. 4.3). The process of training using subsequences 
is done iteratively until the end of the training data. 

Each iteration during the training process consists of a forward pass and a 
backward pass (using backpropagation through time to update the weights and 
biases of the neurons-based on the error value (as discussed in Sect. 3)). The model’s 
performance is evaluated (forward pass only) at the end of the training using the 
validation data, which was not seen by the model during the training. The model 
has seen the complete dataset once by the end of validation, which is known as an 
epoch. The model is trained for a set number of epochs until the model reaches 
convergence. Moreover, the process of training and validation using subsequences 
is sped up by training the input subsequences data in groups known as mini-batches. 
Each mini-batch is made up of several consecutive subsequences that are given as 
the input to the model in parallel. The size of each mini-batch is referred to as 
batch size. Finally, a learning rate is defined to control the rate of update of the 
model parameters during backpropagation phase. These hyperparameters such as 
subsequence size, batch size, and learning rate are covered in detail in Sect. 6.1.
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5.2 Inference and Detection 

The trained model is set to evaluation mode at runtime, meaning that only forward 
passes are performed, and the weights are not updated. During this phase, the 
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3), 
by simulating appropriate attack condition in the CAN message dataset. 

Every data sample that passes through the model is reconstructed, and the 
reconstruction loss is sent to the detection module, which then computes a metric 
called anomaly score (AS). The AS helps in determining whether a signal is 
anomalous or normal. The AS is calculated at a signal level to predict which signal 
is under attack. AS is computed as a squared error during each iteration of the 
inference to estimate the prediction deviation from the input signal value, as shown 
in (2). 

ASi =
(
S 
j 
i − Ŝ j i

)2 ∀i ∈ [1,m] (2) 

where, . Sji denotes the ith signal value at jth sample, . Ŝji represents its reconstruction, 
and m is the number of signals in the message. We observe a large deviation 
for predicted value from the input signal value (i.e., large AS value), when the 
current signal pattern is not seen during the training phase and a minimal AS value 
otherwise. This serves as the foundation for our detection phase. 

Since the dataset lacks a signal level anomaly label information, INDRA com-
bines the signal level AS information into a message-level AS, by calculating the 
maximum AS of the signals in that message as shown in (3). 

MIS = max (AS1, AS2, . . . ,ASm) (3) 

To achieve adequate detection accuracy, the anomaly threshold (AT) for flagging 
messages is carefully chosen. INDRA investigates multiple choices for AT, using the 
best model from the training process. The model with the lowest running validation 
loss, from the training process, is defined as the best model. From this model, 
multiple metrics such as maximum, mean, median, 99.99%, 99.9%, 99%, and 90% 
validation loss are logged across all iterations as the choices for the AT. The analysis 
for selection of the AT metric is presented in detail in Sect. 6.2. 

A working snapshot of INDRA ADS working in an environment with attacks 
is illustrated in Fig. 11a, b, with a plateau attack on a message with three signals, 
between time 0 and 50. Figure 11a compares the input (true) vs ADS predicted 
signal value comfort three signals. The attack interval is represented by the blue 
highlighted area. It can be observed that the reconstruction is close for almost 
all signals except during the attack interval for majority of the time. Signal 3 is 
subjected to a plateau attack in which the attacker maintains a constant value until 
the end of attack interval as illustrated in the third subplot of Fig. 11a (note the 
larger difference between the predicted and actual input signal values in that subplot,
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Fig. 11 Working of INDRA ADS checking a message with three signals under a plateau attack, 
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and 
Anomaly flag
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compared to for signals 1 and 2). Figure 11b depicts multiple signal anomaly scores 
for the three signals. The dotted black line represents the anomaly threshold (AT). 
As previously stated, the maximum of signal anomaly scores is chosen as message 
anomaly score (MAS), which in this case is the AS of signal 3. The anomaly score 
of signal 3 is above the AT, for the entire duration of the attack interval as shown 
in Fig. 11b, highlighting INDRA’s ability to detect such attacks. The value of AT 
(equal to 0.002) in Fig. 11b is calculated using the method described in Sect. 6.2. 
It is important to note that this value is specific to the example case shown in Fig. 
11 and is not the threshold value used for our remaining experiments. The details of 
AT selection technique are discussed in detail in Sect. 6.2. 

6 Experiments 

6.1 Experimental Setup 

A series of experiments have been conducted to evaluate the performance of our 
proposed INDRA ADS. We begin by presenting an analysis for the selection of 
anomaly threshold (AT). The derived AT is used to contrast against two variants of 
the same framework known as INDRA-LED and INDRA-LD. The former removes 
the linear layer before the output, essentially leaving the task of decoding the context 
vector to GRU-based decoder. The abbreviation LED stands for (L) linear layer, (E) 
encoder GRU, and (D) decoder GRU. The second variation substitutes a series of 
linear layers for the GRU and the linear layer at the decoder (LD stands for linear 
decoder). These experiments were carried to assess the importance of different 
layers in the network. However, the encoder side of the network is not changed 
because it is required to generate an encoding of the time-series data. INDRA 
investigates other variants as well, but they were not included in the discussion as 
their performance was lesser compared with that of LED and LD variants. 

Subsequently, the best INDRA variant is compared with three prior works: pre-
dictor LSTM (PLSTM [38]), replicator neural network (RepNet [39]), and CANet 
[36]. The first comparison work (PLSTM) employs an LSTM-based network that 
has been trained to predict the signal values in the following message transmission. 
PLSTM accomplishes this by taking the 64-bit CAN message payload as the input 
and learning to predict the signal at a bit-level granularity by minimizing prediction 
loss. The bit level deviations between the real and the predicted next signal values 
are monitored using a log loss or binary cross-entropy loss function. PLSTM uses 
the prediction loss values during runtime to decide whether a particular message is 
anomalous or not. The second comparison work (RepNet) employs a series of RNN 
layers to increase the dimensionality of the input data and reconstruct the signal 
values by decreasing back to the original dimensionality. RepNet accomplishes 
this by reducing the mean squared error between the input and the reconstructed 
signal values. At runtime, large deviations between the input received signal and
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the reconstructed signal values are used to detect attacks. Finally, CANet uses a 
quadratic loss function to minimize the signal reconstruction error by combining 
multiple LSTMs and linear layers in an autoencoder architecture. All experiments 
conducted with INDRA and its variants and prior works are discussed in subsequent 
subsections. 

The SynCAN dataset developed by ETAS and Robert Bosch GmbH [36] was  
used to evaluate INDRA framework with its variants and against prior works. The 
dataset contains CAN message data for ten different IDs that have been modeled 
after real-world CAN message data. Furthermore, the dataset consists of both 
training and test data with multiple attacks (discussed in Sect. 4.3). Each row in the 
dataset contains a timestamp, message ID, and individual signal values. In addition, 
the test data contains a label column with either 0 or 1 values indicating normal or 
anomalous messages. The label information is available per message basis and does 
not specify which signal within the message is under attack. This label information 
is used to evaluate the proposed ADS over several metrics such as detection accuracy 
and false positive rate and is discussed in detail in the next subsections. Moreover, 
to simulate a more realistic attack scenario in the in-vehicle networks, the test data 
also contains normal CAN traffic between the attack injections. Note: The label 
information in the training data is not used to train INDRA model, as INDRA model 
learns the patterns in the input data in an unsupervised manner. 

All the machine learning-based frameworks including the INDRA framework and 
its variants as well as comparison works are implemented using Pytorch 1.4. INDRA 
conducts various experiments to select the best performing model hyperparameters 
(number of layers, hidden unit sizes, and activation functions). The final model 
discussed in Sect. 5.1 was trained using the SynCAN data set, with 85% of train 
data used for training and the remaining for validation. The validation data is 
primarily used to assess the model performance at the end of each epoch. The 
model is trained for 500 epochs, using a rolling window approach (as discussed 
in Sect. 5.1.2) with the subsequence size of 20 messages and the batch size of 128. 
Moreover, an early stopping mechanism is implemented to monitor the validation 
loss across epochs and stop the training process if there is no improvement after 10 
(patience) epochs. The initial learning rate is chosen as 0.0001, and tanh activations 
are applied after each linear and GRU layers. Furthermore, ADAM optimizer is 
used with the mean squared error (MSE) as the loss criterion. The trained model 
parameters were used during testing and considered multiple test data inputs to 
simulate attack scenarios. The anomaly score metric (as stated in Sect. 5) was used 
to calculate the anomaly threshold to flag the message as anomalous or normal. 
To evaluate the model performance, several performance metrics such as detection 
accuracy and false positive rate were considered. All the simulations were executed 
on an AMD Ryzen-9 3900X server with an Nvidia GeForce RTX 2080Ti GPU. 

Finally, before the experimental results section, we present the following defini-
tions in the context of ADS:

• True positive (TP) – when the ADS detects an actual anomalous message as an 
anomaly
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• False negative (FN) – when the ADS detects an actual anomalous message as 
normal

• False positive (FP) – when the ADS detects a normal message as an anomaly (aka 
false alarm)

• True negative (TN) – when the ADS detects an actual normal message as normal. 

INDRA framework focuses on two key performance metrics: (i) detection 
accuracy, a measure of ADS ability to detect anomalous messages correctly, and 
(ii) false positive rate, also known as false alarm rate. These metrics are computed 
as shown in (4) and (5): 

Detection accuracy = TP + TN 

TP + FN + FP + TN 
(4) 

False positive rate = FP 

FP + TN 
(5) 

6.2 Anomaly Threshold Selection 

This subsection presents a detailed analysis on the selection of anomaly threshold 
(AT) by considering various options such as max, median, mean, and different 
quantile bins of validation loss of the final model. The idea is that the model 
reconstruction error for the normal message should be much smaller than the 
error for anomalous messages. Hence, INDRA explores several candidate options 
to achieve this goal that would work across multiple attack and no-attack scenarios. 
A high threshold value can make it harder for the model to detect the attacks that 
change the input pattern minimally (e.g., continuous attack). On the other hand, 
having a small threshold value can cause multiple false alarms, which is highly 
undesirable. Hence, it becomes crucial to select an appropriate threshold value to 
optimize the performance of the model. 

Figure 12a, b shows the detection accuracy and false positive rate, respectively, 
for various candidate options to calculate AT under different attack scenarios. The 
results from the Fig. 12 indicate that selecting higher validation loss as the AT can 
lead to a high accuracy and low false alarm rate. However, selecting a very high 
value (e.g., “max” or “99.99 percentile”) may result in missing small variations 
in the input patterns that are found in more sophisticated attacks. We empirically 
conclude that the maximum and 99.99 percentile values to be very close. To capture 
attacks that produce small deviations, a slightly smaller threshold value is selected 
that would still perform similar to max and 99.99 percentile thresholds on all of the 
current attack scenarios. Therefore, INDRA chooses the 99.9th percentile value of 
the validation loss as the value of the anomaly threshold (AT) and uses the same AT 
value for the remainder of the experiments discussed in the next subsections.
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Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of 
anomaly threshold (AT) as a function of validation loss under different attack scenarios (% refers 
to percentile not percentage)
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6.3 Comparison of INDRA Variants 

After selecting the correct anomaly threshold from the previous subsection, we 
use that same criterion for evaluating against two other variants: INDRA-LED and 
INDRA-LD. The main intuition behind evaluating different variants of INDRA is to 
investigate the impact of different types of layers in the model on the performance 
metrics discussed in Sect. 6.1. 

Figure 13a illustrates the detection accuracy for INDRA framework and its 
variants on y-axis with multiple types of attacks and for a no-attack scenario 
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other 
two variants and has high accuracy in most of the attack scenarios. It should be 
noted that the high accuracy is achieved by monitoring at a signal level as opposed 
to prior works that monitors at the message level. 

Figure 13b illustrates the false positive rate or false alarm rate of INDRA and 
other variants under different attack scenarios. When compared with other variants, 
INDRA has the lowest false positive rate and highest detection accuracy. Moreover, 
INDRA-LED, which is just short of a linear layer at the decoder end, is the 
second-best performing model after INDRA. The ability of INDRA-LED to use a 
GRU-based decoder helps in reconstructing the MCV back to original signals. It 
can be clearly seen in both Fig. 13a, b that the absence of GRU layers on the output 
decoder end for INDRA-LD results in significant performance degradation. As a 
result, INDRA is chosen as the candidate model for subsequent experiments. 

6.4 Comparison with Prior Works 

Our proposed INDRA framework is compared with some of the best-known prior 
works in the ADS area such as PLSTM [38], RepNet [39], and CANet [36]. Figure 
14a, b shows the detection accuracy and false positive rate, respectively, for the 
various techniques under different attack scenarios. 

From the Fig. 14a, b, it is evident that INDRA achieves high accuracy for each 
attack scenario while also achieving low positive rates. The ability to monitor 
signal level variations combined with more cautious selection of anomaly threshold 
gives INDRA an advantage over comparison works. PLSTM and RepNet use the 
maximum validation loss in the final model as the threshold, whereas CANet 
uses interval-based monitoring to detect anomalous messages. Choosing a higher 
threshold helped PLSTM to achieve slightly lower false positive rates for some 
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks 
with minor variations in the input data. This is because the deviations produced 
by some of the complex attacks are small and the attacks go undetected due to the 
large thresholds. Moreover, CANet’s interval-based monitoring struggles to find an 
optimal value for the thresholds. Lastly, the false positive rates of INDRA remain 
significantly low with the maximum of 2.5% for plateau attacks. It should be noted
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Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack 
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)
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Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior 
works PLSTM [38], RepNet [39] and CANet [36]
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Table 2 Memory footprint comparison between our proposed INDRA framework and the prior 
works PLSTM [38], REPNET [39], and CANET [36] 

ADS framework Memory footprint (KB) 

PLSTM [38] 13,417 
RepNet[39] 55 
CANet [36] 8718 
INDRA 443 

that the y-axis in Fig. 14b has a much smaller scale than in Fig. 14a, and the 
magnitude of the false positive rate is very small. 

6.5 ADS Overhead Analysis 

A detailed analysis of the overhead incurred by our proposed INDRA ADS is 
discussed in this subsection. The overhead is quantified in terms of both memory 
footprint and time taken to process an incoming message, i.e., inference time. 
The former metric is important because the automotive ECUs are highly resource 
constrained and have limited memory and compute capacities. Therefore, having 
a low memory overhead is crucial to avoid interference with real-time automotive 
applications. The inference time metric not only provides important information 
about the time it takes to detect the attacks but also can be used to compute the 
utilization overhead on the ECU. Thus, the abovementioned two metrics are used to 
analyze the overhead and quantify the lightweight nature of INDRA ADS. 

To accurately capture the overhead of our proposed INDRA framework and the 
prior works, we implemented the ADSs on an ARM Cortex- A57 CPU on a Jetson 
TX2 board, which has similar specifications to the state-of-the-art multi-core ECUs. 
Table 2 shows the memory footprint of INDRA framework and the prior works 
mentioned in the previous subsections. It is clear that INDRA framework has a 
low memory footprint compared with the prior works, except for the RepNet [39]. 
However, it is important to observe that even though INDRA framework has slightly 
higher memory footprint compared with the RepNet [39], INDRA outperforms all 
the prior works including RepNet [39] in all performance metrics under multiple 
attack scenarios, as shown in Fig. 14. The heavier (high memory footprint) models 
can capture a wide range of system behaviors; however, they are not an ideal choice 
for resource constrained automotive CPS. On the contrary, a much lighter model 
(such as RepNet) fails to capture crucial details about the system behavior due to its 
limited model parameters, which in turn suffers from performance issues. 

In order to understand the inference overhead, we benchmarked the different 
ADS frameworks on an ARM Cortex- A57 CPU. In this experiment, different 
system configurations are considered to encompass a wide variety of ECU hardware 
that is available in the state-of-the-art vehicles. Based on the available hardware 
resources, a single core (employs only one CPU core) and dual core (employs
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Table 3 Inference time comparisons between our proposed INDRA framework and the prior 
works PLSTM [38], REPNET [39], and CANET [36] using single and dual core configurations 

Average inference time (µs) 
ADS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU 

PLSTM [38] 681.18 644.76 
RepNet [39] 19.46 21.46 
CANet [36] 395.63 378.72 
INDRA 80.35 72.91 

two CPU cores) system configurations were selected on the Jetson TX2. The ADS 
frameworks are executed ten times for the different CPU configurations, and the 
average inference time (in µs) are recorded in Table 3. From the results in Table 
3, it is evident that the INDRA framework has significantly faster inference times 
compared with the prior works (excluding RepNet) under all configurations. This 
is partly due to the lower memory footprint of INDRA framework. As previously 
stated, even though RepNet has a lower inference time, it has the worst performance 
of any compared framework, as shown in Fig. 14. The large inference times for the 
better performing frameworks can have an impact on the real-time performance of 
the control systems in the vehicle and can result in catastrophic deadline misses. We 
also believe that using a dedicated deep learning accelerator (DLA) further enhance 
the performance of the ADS models. 

Thus, from Fig. 14 and Tables 2 and 3, it is clear that INDRA achieves a clear 
balance of having superior anomaly detection performance while maintaining low 
memory footprint and fast inference times, making it a powerful and lightweight 
ADS solution. 

6.6 Scalability Results 

In this subsection, an analysis on the scalability of INDRA framework is presented 
by studying the system performance using the ECU utilization metric as a function 
of increasing system complexity (number of ECUs and messages). Each ECU 
in the system has a real-time utilization (URT) and an ADS utilization (UADS) 
from running real-time and ADS applications, respectively. We primarily focus on 
analyzing the ADS overhead (UADS), as it is a measure of the compute efficiency 
of the ADS. Since the safety-critical messages monitored by the ADS are periodic 
in nature, the ADS can be modeled as a periodic application with period that is the 
same as the message period [5]. Thus, monitoring an ith message mi results in an 
induced ADS utilization (UADS, mi) at an ECU, which can be calculated as: 

UIDS,mi 
=

(
TIDS 

Pmi

)
(6)
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where TADS and Pmi denote the time taken by the ADS to process one message 
(inference time) and the period of the monitored message, respectively. Moreover, 
the sum of all ADS utilizations as a result of monitoring different messages is the 
overall ADS utilization at that ECU (UADS) and is given by: 

UIDS =
∑n 

i=1 
UIDS,mi

(7) 

To evaluate the scalability of INDRA, six different system sizes were considered. 
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45, 50, 
100} (all periods in ms) in automotive CPS is considered to sample uniformly, when 
assigning periods to the messages in the system. These messages are distributed 
evenly among different ECUs and the ADS utilization is calculated using (6) and 
(7). INDRA assumes a pessimistic scenario where all the ECUs in the system have 
only a single core. This would allow us to analyze the worst case overhead of the 
ADS. 

Figure 15 shows the average ECU utilization for different system sizes denoted 
by {p, q}, where p is the number of ECUs and q is the number of messages in the 
system. In this work, a very pessimistic estimate of 50% real-time ECU utilization 
for real-time automotive applications (“RT Util”, as shown in the dotted bars) is 

Fig. 15 Scalability analysis of our proposed INDRA ADS for different system sizes and the prior 
works PLSTM [38], RepNet [39], and CANet [36]
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assumed. The solid bars on top of the dotted bars represent the overhead incurred 
by the ADS executing on the ECUs, and the red horizontal dotted line represents 
the 100% ECU utilization mark. It is critical to avoid exceeding the 100% ECU 
utilization limit under any scenario, as it could create undesired latencies resulting in 
missing deadlines, for time-critical automotive applications that can be catastrophic. 
It is clear from the results that the prior works such as PLSTM and CANet incur 
heavy overhead on the ECUs while RepNet and our proposed INDRA framework 
have very minimal overhead that is favorable to increasing system sizes. From the 
results in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not 
only does INDRA achieve better performance in terms of both accuracy and low 
false positive rate for anomaly detection than state-of-the-art prior work but also is 
lightweight and highly scalable. 

7 Conclusion 

In this chapter, we presented a novel recurrent autoencoder-based lightweight 
anomaly detection system called INDRA for distributed automotive cyber-physical 
systems. INDRA framework uses a metric called anomaly score (AS) to measure 
the deviation of the prediction signal from the actual input. INDRA also presents 
a thorough analysis of our anomaly threshold selection process and compared with 
the best-known prior works in this area. The promising results indicate a compelling 
potential for utilizing our proposed approach in emerging automotive platforms. 
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