
Machine Learning for Anomaly Detection
in Automotive Cyber-Physical Systems

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

1 Introduction

Today’s vehicles are sophisticated cyber-physical systems (CPS) that consists
of multiple interconnected embedded systems known as electronic control units
(ECUs). The ECUs control various vehicular functions and communicate with each
other using the in-vehicle network. In recent years, the number of ECUs along with
the complexity of software running on these ECUs has been increasing rapidly, to
enable advanced driver assistance systems (ADAS) features such as adaptive cruise
control, collision avoidance, lane keep assist, and blind spot warning. This has
resulted in an increase in the complexity of the in-vehicle network over which huge
volumes of automotive sensor and real-time decision data, and control directives are
communicated. This in turn has led to various challenges related to the reliability
[1–4], security [5–9], and real-time control of automotive applications [10–13].

Recent developments in ADAS resulted in increased interaction with various
external systems using advanced communication standards such as 5G technology
and Vehicle-to-X (V2X) [14]. Unfortunately, this makes automotive embedded sys-
tems highly susceptible to various cybersecurity threats that can have catastrophic
consequences. The vehicular attacks in [15–17] have presented different ways to
gain access to the in-vehicle network and override vehicle controls by injecting
anomalous messages. With the connected and autonomous vehicles (CAVs) on the
horizon, these security concerns will get further aggravated. Therefore, it is crucial
to prevent unauthorized access to in-vehicle networks by external attackers to ensure
the security of automotive CPS.

V. K. Kukkala (�) · S. V. Thiruloga · S. Pasricha
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: kvipin@rams.colostate.edu; sooryaa@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_11

253

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:kvipin@rams.colostate.edu
mailto:kvipin@rams.colostate.edu
mailto:kvipin@rams.colostate.edu

 11657 56845 a 11657 56845 a

mailto:sooryaa@colostate.edu
mailto:sooryaa@colostate.edu

 20885 56845 a 20885 56845 a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11
https://doi.org/10.1007/978-3-031-40677-5_11

254 V. K. Kukkala et al.

Traditional computer networks utilized firewalls to defend the networks from
external attackers. However, no firewall is flawless, and no network can be
completely secure. Therefore, there is a need for an active monitoring system that
continuously monitors the network to identify malicious messages in the system. An
anomaly detection system (ADS) can be used to continuously monitor the in-vehicle
network traffic and trigger alerts when suspicious messages or known threats are
detected, which is typically the last line of defense in automotive CPSs.

At a high level, ADSs are categorized into two types: (i) rule-based and
(ii) machine learning-based. Rule-based ADSs observe for traces of previously
observed attack signatures whereas machine learning-based ADSs observe for the
deviation from the known normal system behavior to detect the presence of an
attacker. Rule-based ADS can have faster detection rates and very few false alarms
(false positive rate) but are limited to detecting only known attacks. On the contrary,
machine learning-based ADS can detect both previously observed and novel attacks
but can suffer from comparatively slower detection times and higher false alarm
rate. An efficient ADS needs to be robust, scalable, and incur minimal overhead
(lightweight). Moreover, practical ADSs need to have a wide attack coverage (being
able to detect both known and unknown attacks) with high confidence in detection
and low false alarms as recovering from false alarms can be costly.

Obtaining the signature of every possible attack is impractical and would limit
us to only detecting known attacks. Hence, we believe that machine learning-based
ADSs provide a more pragmatic solution to this problem. Additionally, due to the
ease of acquiring in-vehicle network data, large volumes of in-vehicle message data
can be collected, which facilitates the use of advanced deep learning models for
detecting anomalies in automotive CPS [9].

In this chapter, we propose a novel ADS framework called INDRA, first presented
in [6], that monitors the messages in controller area network (CAN)-based automo-
tive CPS for anomalies. During the offline phase, INDRA uses a deep learning-based
model to learn the normal system behavior in an unsupervised manner. At runtime,
INDRA continuously scans the network for anomalous messages in the network.
INDRA aims to maximize the detection accuracy with minimal false alarms and
overhead on the ECUs.

Our novel contributions in this work are as follows:

1. We introduced a gated recurrent unit (GRU)-based recurrent autoencoder net-
work to learn the normal system behavior during the offline phase.

2. We presented an anomaly score (AS) metric to measure deviation from the
normal system behavior.

3. We conducted a comprehensive analysis toward the selection of thresholds for
the anomaly score metric.

4. We compare our proposed INDRA framework with the best-known prior works
in the area, to show its effectiveness.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 255

2 Related Work

Several techniques have been proposed to design ADS for protecting time-critical
automotive CPS. These works try to detect multiple attacks by monitoring the in-
vehicle network data.

Rule-based ADS detects known attacks by using the information about previ-
ously observed attack signatures. A language theory-based model [18] was proposed
to derive attack signatures. However, this technique fails to detect attacks when it
misses the packets transmitted during the early stages of an attack. The authors in
[19], used transition matrices to detect attacks in a CAN bus. They were able to
achieve a low false-positive rate for simple attacks but failed to detect advanced
replay attacks. In [20], the authors identify notable attack signatures such as an
increase in message frequency and missing messages to detect attacks. In [21], the
authors proposed a specification-based approach to detect attacks; they analyze the
behavior of the system and compare it with the predefined attack patterns to detect
anomalies. However, their system fails to detect unknown attacks. The authors in
[22] propose an ADS technique using the Myers algorithm [23] under the map-
reduce framework. In [24], a time-frequency analysis of CAN messages is used
to detect multiple anomalies. The authors analyzed message frequency at design
time in [25] to derive regular operating mode region. This region is observed
for deviations at runtime to detect anomalies. The sender ECU’s clock skew and
the messages are used to detect attacks [26] by observing for variations in the
clock-skew at runtime. The authors in [27] performed a formal analysis on clock-
skew-based ADS and evaluated on a real vehicle. In [28], a memory heat map is used
to characterize the memory behavior of the operating system to detect anomalies.
In [29], an entropy-based ADS is proposed, which observes for change in system
entropy to detect anomalies. Nonetheless, the technique fails to detect small scale
attacks for which the entropy change is minimal. In conclusion, rule-based ADSs
offer a solution to the intrusion detection problem with lower false positive rates but
cannot detect more complex and novel attacks. Moreover, obtaining signatures of
every possible attack pattern is not practical.

Machine learning-based ADSs aim to learn the normal system behavior in an
offline phase and observe for any deviation from the learned normal behavior to
detect anomalies at runtime. In [30], the authors proposed a sensor-based ADS that
utilizes attack detection sensors to monitor various system events to observe for
deviations from normal behavior. However, this approach is expensive and suffers
from poor detection rates. In [31], a one-class support vector machine (OCSVM)-
based ADS was introduced, but it suffers from poor detection latency. An ensemble
of different nearest neighbor classifiers was used in [32] to distinguish between
a normal and an attack-induced CAN payload. The authors in [33] proposed a
decision-tree-based detection model to monitor the physical features of the vehicle
to detect attacks. However, this model is not practical and suffers from high anomaly
detection latencies. In [34], a hidden Markov model (HMM)-based technique was
proposed to monitor the temporal relationships between messages to detect attacks.

256 V. K. Kukkala et al.

Table 1 Performance metrics comparison between our proposed INDRA framework and state-
of-the-art machine learning-based anomaly detection works

Performance metrics

Technique Lightweight model
Low false
positive rate

High detection
accuracy Fast inference time

PLSTM [38] X � X X
RepNet [39] � X X �
CANet [36] X � � X
INDRA � � � �

A deep neural network-based approach was proposed to scan the payload in the
in-vehicle network in [35]. This approach is not scalable as it is fine-tuned for
a low priority tire pressure monitoring system (TPMS), which makes it hard to
adapt to high priority powertrain applications. In [36] a long-short-term memory
(LSTM)-based ADS for multi-message ID detection was proposed. However, the
model architecture is highly complex and incurs high overhead on the ECUs. An
LSTM-based ADS to detect insertion and dropping attacks (explained in Sect. 4.3)
is proposed in [37]. In [38], an LSTM-based predictor model is proposed to predict
the subsequent time step message value at a bit level and observe for large variations
to detect anomalous messages. A recurrent neural network (RNN)-based ADS to
learn the normal CAN message pattern in the in-vehicle network is proposed in [39].
In [40], a hybrid ADS was proposed which utilizes a specification-based system in
the first stage and an RNN-based model in the second stage to detect anomalies
in time-series data. Several other machine models such as the stacked LSTMs and
temporal convolutional neural networks (TCNs)-based techniques were proposed in
[7, 8], respectively. However, none of these techniques provides a complete system-
level solution that is scalable, reliable, and lightweight to detect various attacks for
in-vehicle networks.

In this chapter, we introduce a lightweight recurrent autoencoder-based ADS
using gated recurrent units (GRUs) that monitors the in-vehicle network messages
at a signal level to detect multiple types of attacks with higher efficiency than
various state-of-the art works in this area. A summary of some of the state-of-the-art
works’ performance under different metrics and our proposed INDRA framework is
presented in Table 1. An exhaustive analysis of each metric and evaluation results
are presented later in Sect. 6.

3 Sequence Learning Background

The availability of increased computing power from GPUs and custom accelerators
training deep neural networks with many hidden layers became feasible and has led
to the creation of powerful models for solving difficult problems in many domains.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 257

One such problem is detecting anomalies in automotive CPS. In an automotive CPS,
the communication between ECUs occurs in a time-dependent manner. Therefore,
there is temporal relationship between the messages, which can be exploited in order
to detect anomalies. However, this cannot be achieved using typical feedforward
neural networks where the output of a specific input at an instance is independent
of the other inputs. Sequence models can be an appropriate approach for such
problems, as they inherently handle sequences and time-series data.

3.1 Sequence Models

A sequence model is a function that ensures that the outcome is reliant on both the
current and prior inputs. The recurrent neural network (RNN), which was introduced
in [41], is an example of such a sequence model. Moreover, other sequence models
such as gated recurrent unit (GRU) and long-short-term memory (LSTM) have also
been developed.

3.1.1 Recurrent Neural Networks (RNNs)

An RNN is a form of artificial neural network that takes the sequential data as input
and tries to learn the relationships between the elements in the sequence. The hidden
state in RNNs allows learned information from previous time steps to persist over
time. An RNN unit with feedback is shown in Fig. 1a, and an unrolled RNN in time
is shown in Fig. 1b.

The output ht of an RNN unit is a function of both the input xt and the previous
output ht − 1:

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time, where f is the RNN unit, x is the
input, and h represents hidden states

258 V. K. Kukkala et al.

ht = f (Wxt + Uht−1 + b) (1)

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W are
weight matrices, and b is the bias term. One of the major limitations of RNNs is
that they are very hard to train. Since RNNs and other sequence models handle
sequences or time-series inputs, backpropagation occurs through various time steps
(known as backpropagation through time). During this process, the feedback loop
in RNNs causes the errors to expand or shrink rapidly, thereby creating exploding
or vanishing gradients, respectively, which in turn destroys the information in
backpropagation. This vanishing gradient problem prohibits RNNs from learning
long-term dependencies. To solve this problem, additional states and gates were
introduced in the RNN unit in [42] to remember long-term dependencies, which led
to the development of LSTM Networks.

3.1.2 Long-/Short-Term Memory (LSTM) Networks

LSTMs unlike RNNs uses cell state and hidden state information along with
multiple gates to remember long-term dependencies between messages. The cell
state can be imagined as a freeway that carries relevant information throughout the
processing of a sequence. The state stores information from previous time steps
so that it can be used in subsequent time steps, reducing the effects of short-term
memory. The gates modify the information in the cell state. As a result, the gates
in LSTM assist the model in determining which information should be retained and
which should be ignored.

An LSTM unit contains three gates: (i) input gate (ft) (ii) forget gate (it), and (iii)
output gate (ot) as shown in Fig. 2a. The forget gate is a binary gate that determines
which information from the previous cell state (ct−1) to retain. The input gate adds
relevant information to the cell state (ct). Finally, the output gate uses information
from the previous two gates to produce an output. An LSTM unit unrolled in time
is shown in Fig. 2b.

LSTMs learn long-term dependencies in a sequence by using a combination of
different gates and hidden states. However, they are not computationally efficient
due to the addition of multiple gates, as the sequence path is more complicated
than in RNNs, which in turn requires more memory at runtime. Moreover, training
LSTMs have a high computation overhead even when the advanced training meth-
ods such as truncated backpropagation are employed. To overcome abovementioned
limitations, a simpler recurrent neural network called gated recurrent unit (GRU)
network was introduced in [43]. GRUs can be trained faster than LSTMs and also
can remember dependencies in long sequences with minimal overhead (in both
memory and runtime), while solving the vanishing gradient problem.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 259

Fig. 2 (a) A single LSTM unit with different gates and (b) unrolled LSTM unit in time, where f
is an LSTM unit, x is input, c is cell state, and h is the hidden state

3.1.3 Gated Recurrent Unit (GRU)

Unlike LSTMs, a GRU unit takes a different route for gating information. The input
and forget gate of the LSTM is combined into a solitary update gate and in addition
combines hidden and cell state, as shown in Fig. 3a, b.

A typical GRU unit contains two gates: (i) reset gate and (ii) update gate.
The reset gate combines new input with previous memory, while the update layer
determines how much relevant data should be stored. Thus, a GRU unit controls
the data stream similar to an LSTM by uncovering its hidden layer contents.
Moreover, GRUs are computationally more efficient than LSTMs as they achieve
this using fewer gates and states, with low memory overhead. It is crucial to use
lightweight machine learning models as real-time automotive ECUs are highly
resource-constrained embedded systems with strict energy and power budgets.
Thus, GRU-based networks are an ideal fit for inference in automotive systems.
Hence, INDRA chose to use a lightweight GRU-based model to implement an ADS
(explained in detail in Sect. 5).

260 V. K. Kukkala et al.

Fig. 3 (a) A single GRU unit with different gates and (b) GRU unit unrolled in time, where f is a
GRU unit, x is input, and h is the hidden state

The major advantage of sequence models is that they can be trained in both super-
vised and unsupervised learning fashion. Due to the large volume of CAN message
data in a vehicle, labeling all that data can become very tedious. Additionally, the
variability in the messages between vehicle models from the same manufacturer and
the proprietary nature of this information makes it even more challenging to label
messages correctly. Nonetheless, due to the ease of obtaining CAN message data
via onboard diagnostics (OBD-II), large amounts of unlabeled data can be collected
easily. Thus, INDRA uses GRUs in an unsupervised learning setting.

3.2 Autoencoders

Autoencoders are unsupervised learning-based artificial neural networks who try
to reconstruct the input by learning the latent input features. They accomplish this
by encoding the input data (x) to a hidden layer and finally decoding it to produce

a reconstruction .
∼
x (as shown in Fig. 4). This encoded information at the hidden

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 261

Fig. 4 A simple autoencoder network with encoder, decoder, and embedding layers of the network

layer is called an embedding. The layers that are used to create this embedding are
called the encoder, and the layers that are used in reconstructing the embedding
into the original input (decoding) are called the decoder. During the training
process, the encoder attempts to learn a nonlinear mapping of the inputs, while
the decoder tries to learn the nonlinear mapping of the embedding to the inputs.
The encoder and decoder accomplish this with the help of nonlinear activation
functions such as tanh and rectified linear unit (ReLU). Moreover, the autoencoder
aims to recreate the input as closely as possible by extracting important features
from the inputs with a goal of minimizing reconstruction loss. The most used loss
functions in autoencoders include mean squared error (MSE) and Kullback-Leibler
(KL) divergence.

Since autoencoders aim to reconstruct the input by learning the underlying
distribution of the input data, they are an excellent choice for efficiently learning and
reconstructing highly correlated time-series data by learning the temporal relations
between messages. Hence, our proposed INDRA framework uses lightweight GRUs
in an autoencoder to learn latent representations of CAN message data in an
unsupervised learning setting.

4 Problem Definition

4.1 System Model

In this chapter, we consider a generic automotive system consisting of multiple
ECUs connected using a CAN-based in-vehicle network, as shown in Fig. 5. Each
ECU connected in the network is responsible for running a specific set of automotive
applications that are hard real time in nature (i.e., have strict timing and deadline

262 V. K. Kukkala et al.

Fig. 5 Overview of the automotive system model considered in INDRA

constraints). Moreover, we assume that each ECU also runs anomaly detection
applications (ADS), which are responsible for monitoring and detecting anomalies
in the in-vehicle network. INDRA considers a distributed ADS approach (anomaly
detection application is collocated with automotive applications) as opposed to a
centralized ADS approach in which one central ECU handles all anomaly detection
tasks due to the following reasons:

• A centralized ADS approach is susceptible to single-point failures, which can
completely expose the system to the attacker.

• In the worst-case scenarios such as during a flooding attack (explained in Sect.
4.3), the centralized system might not be able to communicate with the victim
ECUs due to highly congested in-vehicle network.

• If an attacker successfully tricks the centralized ADS ECU, the attacks can go
undetected by the other ECUs, compromising the entire system; however, in
a distributed ADS scenario, it requires fooling multiple ECUs (which is more
difficult) to compromise the system. Moreover, in a distributed ADS scenario,
even if one of the ECU is compromised, the attacks can still be detected by the
decentralized intelligence.

• In a distributed ADS, ECUs can stop accepting messages as soon as an anomaly
is detected rather than having to wait for a centralized system to notify them,
resulting in faster reaction times.

• With a distributed ADS, the computation load of ADS is split among the ECUs
and monitoring can be limited to only required messages. As a result, multiple
ECUs can independently monitor a subset of messages with lesser overhead.

For the abovementioned reasons, many prior works such as [18, 25] also consider
a distributed ADS approach. Furthermore, with increasing computation power of
automotive ECUs, the collocation of ADS applications with real-time automotive

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 263

applications in a distributed manner should not be a problem, if the ADS has a
minimal overhead. INDRA framework is not only lightweight but also scalable, and
achieves high anomaly detection performance, as discussed in Sect. 6.

An ideal ADS should have low susceptibility to noise, low cost, and a low
power/energy footprint. The following are some of the key characteristics of an
efficient IDS, which were taken into consideration when designing our INDRA
ADS:

• Lightweight: Anomaly detection tasks can incur additional overhead on ECU,
which could result in poor application performance and missed deadlines for
real-time applications, which is catastrophic. Therefore, INDRA aims to have a
lightweight ADS that incurs minimal overhead on the ECU.

• Few false positives: This is a highly desired quality in any type of ADS (even
outside of the automotive domain), as dealing with false positives can quickly
become costly. Thus, a good ADS is expected to have few false positives or false
alarms.

• Coverage: This defines the range of attacks that an ADS can detect. A good ADS
must be capable of detecting more than one type of attack. Moreover, a high
coverage for ADS will make the system resistant to multiple attack surfaces.

• Scalability: This is an important requirement as the number of ECUs in emerging
vehicles is growing along with software and network complexity. A good ADS
should be highly scalable and capable of supporting multiple system sizes.

4.2 Communication Model

This subsection discusses vehicle communication model that was considered for
INDRA framework. INDRA primarily focuses on detecting anomalies in controller
area network (CAN) bus-based automotive CPS. CAN is the most commonly used
in-vehicle network protocol in modern automotive systems. CAN offers a low cost,
lightweight, event-triggered communication where messages are transmitted in the
form of frames. A typical standard CAN frame structure is shown in Fig. 6, and
the length of each field (in bits) is shown on the top. The standard CAN frame
consists of a header, payload, and trailer segment. The header contains information
of the message identifier (ID) and the length of the message, whereas the payload
segment contains the actual data that needs to be transmitted. The trailer section is
mainly used for error checking at the receiver. A variation of the CAN protocol,
called CAN-extended or CAN 2.0B, is also being deployed increasingly in modern
vehicles. The key difference being that CAN extended has a 29-bit identifier, which
allows for a greater number of messages IDs.

264 V. K. Kukkala et al.

Fig. 6 Standard frame format of a CAN message

Fig. 7 An example real-world CAN message with signal information [44]

Our proposed INDRA ADS focuses on monitoring the payload segment of the
CAN frame and observes for anomalies within the payload to detect cyberattacks.
This is because most modern-day attacks involve an attacker modifying the payload
to accomplish malicious activities. An attacker can also target the header or trailer
segments, but the message would get rejected at the receiver. The payload segment
comprises of multiple data entities called signals. An example real-world CAN
message with the list of signals within the message is shown in Fig. 7. Each signal
has a fixed size (in bits), assigned a particular data type, and a start bit that specifies
its location in the 64-bit payload segment of the CAN message.

INDRA focuses on monitoring individual signals within CAN payload to observe
for anomalies and detect attacks. During training, INDRA learns the temporal
dependencies between the messages at a signal level and observes for deviations
at runtime to detect attacks. The ability to detect attacks at a signal level enables
INDRA to not only detect the presence of an attacker but also help in identifying
the signal within the message that is under attack. This can be valuable information
for understanding the intentions of the attacker, which can be used for developing
appropriate countermeasures. The details about the signal level monitoring of
INDRA ADS are discussed in Sect. 5.2. Note: Even though our proposed INDRA
framework focuses on detecting attacks by monitoring CAN messages, our approach
is protocol-agnostic and can be used with other in-vehicle network protocols (such
as FlexRay and LIN) with minimal changes.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 265

4.3 Attack Model

Our proposed INDRA ADS aims to protect the vehicle from various types of attacks
that are most commonly seen and difficult to detect attacks in the domain of
automotive CPS. Moreover, these attacks have been widely used in literature to
evaluate ADSs.

1. Flooding attack: This is the most common and simple to launch attack, and it
requires no knowledge of the system. In this attack, the attacker continuously
floods the in-vehicle network with a random or specific message with the
goal of preventing other ECUs from accessing the bus and rendering the bus
unusable. These attacks are typically detected by the vehicle’s network bridges
and gateways and often do not reach the last line of defense (the ADS). However,
it is crucial to consider these attacks as they can have serious consequences when
not handled correctly.

2. Plateau attack: In this attack, an attacker overwrites a signal value with a
constant value for the entirety of the attack interval. The severity of this attack
is determined by the magnitude of the jump (increase in signal value) and the
duration for which it is held. Larger jumps in signal values are easier to detect
compared with shorter jumps.

3. Continuous attack: In this attack, an attacker gradually overwrites the signal
value with the goal of achieving some target value while avoiding the activation
of an ADS. This attack is difficult to detect and can be sensitive to the ADS
parameters (discussed in Sect. 5.2).

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by
either disabling the target ECU’s communication controller or shutting down the
ECU. These attacks are easy to detect because they disrupt message transmission
for long durations but are harder to detect for shorter durations.

5. Playback attack: In this attack, the attacker attempts to trick the ADS by
replaying a valid series of message transmissions from the past. This attack is
hard to detect if the ADS lacks the ability to capture the temporal relationships
between messages and detect when they are violated.

Moreover, in this work, we assume that the attacker can gain access to the
vehicle using the most common attack vectors such as connecting to V2X systems
that communicate with the outside world (e.g., infotainment and connected ADAS
systems), connecting to the OBD-II port, probe-based snooping on the in-vehicle
bus, and by replacing an existing ECU. We also assume that the attacker has access
to the network parameters (such as parity, flow control, and BAUD rate) that can
further assist in gaining access to the in-vehicle network.

Problem objective: The goal of our proposed INDRA framework is to implement a
lightweight ADS that can detect a variety of attacks (mentioned above) in a CAN-
based automotive CPS, with a high detection accuracy and low false positive rate
while maintaining a large attack coverage.

266 V. K. Kukkala et al.

5 INDRA Framework Overview

INDRA framework enables a machine learning-based signal level ADS for moni-
toring CAN messages in automotive embedded CPS. An overview of the proposed
framework is depicted in Fig. 8. The INDRA framework is divided into design-time
and runtime steps. During design time, INDRA uses trusted CAN message data to
train a recurrent autoencoder-based model that learns the normal system behavior.
At runtime, the trained recurrent autoencoder model is used to detect anomalies
based on deviations from normal system behavior computed using the proposed
anomaly score metric. These steps are described in greater detail in the subsequent
subsections.

5.1 Recurrent Autoencoder

Recurrent autoencoders are powerful neural networks that are designed to behave
similar to an encoder–decoder structure but can handle time-series or sequence
data as inputs. They can be represented as regular feed-forward neural network-
based autoencoders, with neurons that are RNN, LSTM, or GRU units (discussed in
Sect. 3). Recurrent autoencoders, like regular autoencoders, have an encoder and a
decoder stage. The encoder generates a latent representation of the input data in an
n-dimensional space. The decoder uses this latent representation from the encoder
output and attempts to reconstruct the input data with minimal reconstruction loss.
In INDRA, we propose a new lightweight recurrent autoencoder model, which is
tailored for the design of ADS to detect cyberattacks in the in-vehicle network data.

Fig. 8 Overview of INDRA ADS framework

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 267

Fig. 9 Proposed model architecture of the recurrent autoencoder used in INDRA (f is number of
features, i.e., number of signals in the input CAN message, and MCV is message context vector)

The details of the proposed model architecture and the various steps involved in its
training and evaluation are discussed in the subsequent sections.

5.1.1 Model Architecture

Our proposed recurrent autoencoder model architecture with the input and output
dimensions of each layer is shown in Fig. 9. The model comprises of a linear
layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear layer
before the final output. The first linear layer receives the input time-series CAN
message data with signal level values with f features (where f is the number of
signals in the message). The linear layer output is passed to the GRU-based encoder,
which generates the latent representation of the time-series signal inputs. This latent
representation is referred to as a message context vector (MCV). The MCV captures
the context of various signals in the input message in the form of a vector. Each
value in the MCV can be viewed as a point in an n-dimensional space containing the
context of the series of signal values provided as input. The MCV is fed into a GRU-
based decoder, which is then followed by a linear layer to produce the reconstruction
of the input CAN message data with individual signal values. The loss between
the input and the reconstructed input is calculated using mean square error (MSE),
and the weights are updated using backpropagation through time. INDRA designs a
recurrent autoencoder model for each message ID.

5.1.2 Training Process

The training procedure starts with the preprocessing of the recorded CAN message
data from a trusted vehicle. Each sample in the dataset consists of a message ID and
the corresponding signal values contained within that message ID. In some cases,
the range of signal values can be very large, which can make the training process

268 V. K. Kukkala et al.

Fig. 10 Example of a rolling
window approach

extremely slow or unstable. To prevent this, we scale the signal values between 0
and 1 for each signal type. Moreover, scaling signal values also helps to avoid the
problem of exploding gradients (as discussed in Sect. 3).

The preprocessed CAN data is divided into training data (85%) and validation
data (15%), which is then prepared for training using a rolling window-based
approach. This involves choosing a fixed size window and rolling it to the right
by one sample every time step. Figure 10 illustrates a rolling window of size
three samples and its movement for the three consecutive time steps. The term . Sji
represents the ith signal value at jth sample. The elements in the rolling window are
referred to as a subsequence, and the size of the subsequence is equal to the size
of the rolling window. Our proposed recurrent autoencoder model attempts to learn
the temporal relationships that exist between the series of signal values because
each subsequence consists of a set of signal values over time. These signal level
temporal relationships aid in detecting more complex attacks such as continuous
and playback (as discussed in Sect. 4.3). The process of training using subsequences
is done iteratively until the end of the training data.

Each iteration during the training process consists of a forward pass and a
backward pass (using backpropagation through time to update the weights and
biases of the neurons-based on the error value (as discussed in Sect. 3)). The model’s
performance is evaluated (forward pass only) at the end of the training using the
validation data, which was not seen by the model during the training. The model
has seen the complete dataset once by the end of validation, which is known as an
epoch. The model is trained for a set number of epochs until the model reaches
convergence. Moreover, the process of training and validation using subsequences
is sped up by training the input subsequences data in groups known as mini-batches.
Each mini-batch is made up of several consecutive subsequences that are given as
the input to the model in parallel. The size of each mini-batch is referred to as
batch size. Finally, a learning rate is defined to control the rate of update of the
model parameters during backpropagation phase. These hyperparameters such as
subsequence size, batch size, and learning rate are covered in detail in Sect. 6.1.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 269

5.2 Inference and Detection

The trained model is set to evaluation mode at runtime, meaning that only forward
passes are performed, and the weights are not updated. During this phase, the
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3),
by simulating appropriate attack condition in the CAN message dataset.

Every data sample that passes through the model is reconstructed, and the
reconstruction loss is sent to the detection module, which then computes a metric
called anomaly score (AS). The AS helps in determining whether a signal is
anomalous or normal. The AS is calculated at a signal level to predict which signal
is under attack. AS is computed as a squared error during each iteration of the
inference to estimate the prediction deviation from the input signal value, as shown
in (2).

ASi =
(
S
j
i − Ŝ j i

)2 ∀i ∈ [1,m] (2)

where, . Sji denotes the ith signal value at jth sample, . Ŝji represents its reconstruction,
and m is the number of signals in the message. We observe a large deviation
for predicted value from the input signal value (i.e., large AS value), when the
current signal pattern is not seen during the training phase and a minimal AS value
otherwise. This serves as the foundation for our detection phase.

Since the dataset lacks a signal level anomaly label information, INDRA com-
bines the signal level AS information into a message-level AS, by calculating the
maximum AS of the signals in that message as shown in (3).

MIS = max (AS1, AS2, . . . ,ASm) (3)

To achieve adequate detection accuracy, the anomaly threshold (AT) for flagging
messages is carefully chosen. INDRA investigates multiple choices for AT, using the
best model from the training process. The model with the lowest running validation
loss, from the training process, is defined as the best model. From this model,
multiple metrics such as maximum, mean, median, 99.99%, 99.9%, 99%, and 90%
validation loss are logged across all iterations as the choices for the AT. The analysis
for selection of the AT metric is presented in detail in Sect. 6.2.

A working snapshot of INDRA ADS working in an environment with attacks
is illustrated in Fig. 11a, b, with a plateau attack on a message with three signals,
between time 0 and 50. Figure 11a compares the input (true) vs ADS predicted
signal value comfort three signals. The attack interval is represented by the blue
highlighted area. It can be observed that the reconstruction is close for almost
all signals except during the attack interval for majority of the time. Signal 3 is
subjected to a plateau attack in which the attacker maintains a constant value until
the end of attack interval as illustrated in the third subplot of Fig. 11a (note the
larger difference between the predicted and actual input signal values in that subplot,

270 V. K. Kukkala et al.

Fig. 11 Working of INDRA ADS checking a message with three signals under a plateau attack,
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and
Anomaly flag

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 271

compared to for signals 1 and 2). Figure 11b depicts multiple signal anomaly scores
for the three signals. The dotted black line represents the anomaly threshold (AT).
As previously stated, the maximum of signal anomaly scores is chosen as message
anomaly score (MAS), which in this case is the AS of signal 3. The anomaly score
of signal 3 is above the AT, for the entire duration of the attack interval as shown
in Fig. 11b, highlighting INDRA’s ability to detect such attacks. The value of AT
(equal to 0.002) in Fig. 11b is calculated using the method described in Sect. 6.2.
It is important to note that this value is specific to the example case shown in Fig.
11 and is not the threshold value used for our remaining experiments. The details of
AT selection technique are discussed in detail in Sect. 6.2.

6 Experiments

6.1 Experimental Setup

A series of experiments have been conducted to evaluate the performance of our
proposed INDRA ADS. We begin by presenting an analysis for the selection of
anomaly threshold (AT). The derived AT is used to contrast against two variants of
the same framework known as INDRA-LED and INDRA-LD. The former removes
the linear layer before the output, essentially leaving the task of decoding the context
vector to GRU-based decoder. The abbreviation LED stands for (L) linear layer, (E)
encoder GRU, and (D) decoder GRU. The second variation substitutes a series of
linear layers for the GRU and the linear layer at the decoder (LD stands for linear
decoder). These experiments were carried to assess the importance of different
layers in the network. However, the encoder side of the network is not changed
because it is required to generate an encoding of the time-series data. INDRA
investigates other variants as well, but they were not included in the discussion as
their performance was lesser compared with that of LED and LD variants.

Subsequently, the best INDRA variant is compared with three prior works: pre-
dictor LSTM (PLSTM [38]), replicator neural network (RepNet [39]), and CANet
[36]. The first comparison work (PLSTM) employs an LSTM-based network that
has been trained to predict the signal values in the following message transmission.
PLSTM accomplishes this by taking the 64-bit CAN message payload as the input
and learning to predict the signal at a bit-level granularity by minimizing prediction
loss. The bit level deviations between the real and the predicted next signal values
are monitored using a log loss or binary cross-entropy loss function. PLSTM uses
the prediction loss values during runtime to decide whether a particular message is
anomalous or not. The second comparison work (RepNet) employs a series of RNN
layers to increase the dimensionality of the input data and reconstruct the signal
values by decreasing back to the original dimensionality. RepNet accomplishes
this by reducing the mean squared error between the input and the reconstructed
signal values. At runtime, large deviations between the input received signal and

272 V. K. Kukkala et al.

the reconstructed signal values are used to detect attacks. Finally, CANet uses a
quadratic loss function to minimize the signal reconstruction error by combining
multiple LSTMs and linear layers in an autoencoder architecture. All experiments
conducted with INDRA and its variants and prior works are discussed in subsequent
subsections.

The SynCAN dataset developed by ETAS and Robert Bosch GmbH [36] was
used to evaluate INDRA framework with its variants and against prior works. The
dataset contains CAN message data for ten different IDs that have been modeled
after real-world CAN message data. Furthermore, the dataset consists of both
training and test data with multiple attacks (discussed in Sect. 4.3). Each row in the
dataset contains a timestamp, message ID, and individual signal values. In addition,
the test data contains a label column with either 0 or 1 values indicating normal or
anomalous messages. The label information is available per message basis and does
not specify which signal within the message is under attack. This label information
is used to evaluate the proposed ADS over several metrics such as detection accuracy
and false positive rate and is discussed in detail in the next subsections. Moreover,
to simulate a more realistic attack scenario in the in-vehicle networks, the test data
also contains normal CAN traffic between the attack injections. Note: The label
information in the training data is not used to train INDRA model, as INDRA model
learns the patterns in the input data in an unsupervised manner.

All the machine learning-based frameworks including the INDRA framework and
its variants as well as comparison works are implemented using Pytorch 1.4. INDRA
conducts various experiments to select the best performing model hyperparameters
(number of layers, hidden unit sizes, and activation functions). The final model
discussed in Sect. 5.1 was trained using the SynCAN data set, with 85% of train
data used for training and the remaining for validation. The validation data is
primarily used to assess the model performance at the end of each epoch. The
model is trained for 500 epochs, using a rolling window approach (as discussed
in Sect. 5.1.2) with the subsequence size of 20 messages and the batch size of 128.
Moreover, an early stopping mechanism is implemented to monitor the validation
loss across epochs and stop the training process if there is no improvement after 10
(patience) epochs. The initial learning rate is chosen as 0.0001, and tanh activations
are applied after each linear and GRU layers. Furthermore, ADAM optimizer is
used with the mean squared error (MSE) as the loss criterion. The trained model
parameters were used during testing and considered multiple test data inputs to
simulate attack scenarios. The anomaly score metric (as stated in Sect. 5) was used
to calculate the anomaly threshold to flag the message as anomalous or normal.
To evaluate the model performance, several performance metrics such as detection
accuracy and false positive rate were considered. All the simulations were executed
on an AMD Ryzen-9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Finally, before the experimental results section, we present the following defini-
tions in the context of ADS:

• True positive (TP) – when the ADS detects an actual anomalous message as an
anomaly

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 273

• False negative (FN) – when the ADS detects an actual anomalous message as
normal

• False positive (FP) – when the ADS detects a normal message as an anomaly (aka
false alarm)

• True negative (TN) – when the ADS detects an actual normal message as normal.

INDRA framework focuses on two key performance metrics: (i) detection
accuracy, a measure of ADS ability to detect anomalous messages correctly, and
(ii) false positive rate, also known as false alarm rate. These metrics are computed
as shown in (4) and (5):

Detection accuracy = TP + TN

TP + FN + FP + TN
(4)

False positive rate = FP

FP + TN
(5)

6.2 Anomaly Threshold Selection

This subsection presents a detailed analysis on the selection of anomaly threshold
(AT) by considering various options such as max, median, mean, and different
quantile bins of validation loss of the final model. The idea is that the model
reconstruction error for the normal message should be much smaller than the
error for anomalous messages. Hence, INDRA explores several candidate options
to achieve this goal that would work across multiple attack and no-attack scenarios.
A high threshold value can make it harder for the model to detect the attacks that
change the input pattern minimally (e.g., continuous attack). On the other hand,
having a small threshold value can cause multiple false alarms, which is highly
undesirable. Hence, it becomes crucial to select an appropriate threshold value to
optimize the performance of the model.

Figure 12a, b shows the detection accuracy and false positive rate, respectively,
for various candidate options to calculate AT under different attack scenarios. The
results from the Fig. 12 indicate that selecting higher validation loss as the AT can
lead to a high accuracy and low false alarm rate. However, selecting a very high
value (e.g., “max” or “99.99 percentile”) may result in missing small variations
in the input patterns that are found in more sophisticated attacks. We empirically
conclude that the maximum and 99.99 percentile values to be very close. To capture
attacks that produce small deviations, a slightly smaller threshold value is selected
that would still perform similar to max and 99.99 percentile thresholds on all of the
current attack scenarios. Therefore, INDRA chooses the 99.9th percentile value of
the validation loss as the value of the anomaly threshold (AT) and uses the same AT
value for the remainder of the experiments discussed in the next subsections.

274 V. K. Kukkala et al.

Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of
anomaly threshold (AT) as a function of validation loss under different attack scenarios (% refers
to percentile not percentage)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 275

6.3 Comparison of INDRA Variants

After selecting the correct anomaly threshold from the previous subsection, we
use that same criterion for evaluating against two other variants: INDRA-LED and
INDRA-LD. The main intuition behind evaluating different variants of INDRA is to
investigate the impact of different types of layers in the model on the performance
metrics discussed in Sect. 6.1.

Figure 13a illustrates the detection accuracy for INDRA framework and its
variants on y-axis with multiple types of attacks and for a no-attack scenario
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other
two variants and has high accuracy in most of the attack scenarios. It should be
noted that the high accuracy is achieved by monitoring at a signal level as opposed
to prior works that monitors at the message level.

Figure 13b illustrates the false positive rate or false alarm rate of INDRA and
other variants under different attack scenarios. When compared with other variants,
INDRA has the lowest false positive rate and highest detection accuracy. Moreover,
INDRA-LED, which is just short of a linear layer at the decoder end, is the
second-best performing model after INDRA. The ability of INDRA-LED to use a
GRU-based decoder helps in reconstructing the MCV back to original signals. It
can be clearly seen in both Fig. 13a, b that the absence of GRU layers on the output
decoder end for INDRA-LD results in significant performance degradation. As a
result, INDRA is chosen as the candidate model for subsequent experiments.

6.4 Comparison with Prior Works

Our proposed INDRA framework is compared with some of the best-known prior
works in the ADS area such as PLSTM [38], RepNet [39], and CANet [36]. Figure
14a, b shows the detection accuracy and false positive rate, respectively, for the
various techniques under different attack scenarios.

From the Fig. 14a, b, it is evident that INDRA achieves high accuracy for each
attack scenario while also achieving low positive rates. The ability to monitor
signal level variations combined with more cautious selection of anomaly threshold
gives INDRA an advantage over comparison works. PLSTM and RepNet use the
maximum validation loss in the final model as the threshold, whereas CANet
uses interval-based monitoring to detect anomalous messages. Choosing a higher
threshold helped PLSTM to achieve slightly lower false positive rates for some
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks
with minor variations in the input data. This is because the deviations produced
by some of the complex attacks are small and the attacks go undetected due to the
large thresholds. Moreover, CANet’s interval-based monitoring struggles to find an
optimal value for the thresholds. Lastly, the false positive rates of INDRA remain
significantly low with the maximum of 2.5% for plateau attacks. It should be noted

276 V. K. Kukkala et al.

Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 277

Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior
works PLSTM [38], RepNet [39] and CANet [36]

278 V. K. Kukkala et al.

Table 2 Memory footprint comparison between our proposed INDRA framework and the prior
works PLSTM [38], REPNET [39], and CANET [36]

ADS framework Memory footprint (KB)

PLSTM [38] 13,417
RepNet[39] 55
CANet [36] 8718
INDRA 443

that the y-axis in Fig. 14b has a much smaller scale than in Fig. 14a, and the
magnitude of the false positive rate is very small.

6.5 ADS Overhead Analysis

A detailed analysis of the overhead incurred by our proposed INDRA ADS is
discussed in this subsection. The overhead is quantified in terms of both memory
footprint and time taken to process an incoming message, i.e., inference time.
The former metric is important because the automotive ECUs are highly resource
constrained and have limited memory and compute capacities. Therefore, having
a low memory overhead is crucial to avoid interference with real-time automotive
applications. The inference time metric not only provides important information
about the time it takes to detect the attacks but also can be used to compute the
utilization overhead on the ECU. Thus, the abovementioned two metrics are used to
analyze the overhead and quantify the lightweight nature of INDRA ADS.

To accurately capture the overhead of our proposed INDRA framework and the
prior works, we implemented the ADSs on an ARM Cortex- A57 CPU on a Jetson
TX2 board, which has similar specifications to the state-of-the-art multi-core ECUs.
Table 2 shows the memory footprint of INDRA framework and the prior works
mentioned in the previous subsections. It is clear that INDRA framework has a
low memory footprint compared with the prior works, except for the RepNet [39].
However, it is important to observe that even though INDRA framework has slightly
higher memory footprint compared with the RepNet [39], INDRA outperforms all
the prior works including RepNet [39] in all performance metrics under multiple
attack scenarios, as shown in Fig. 14. The heavier (high memory footprint) models
can capture a wide range of system behaviors; however, they are not an ideal choice
for resource constrained automotive CPS. On the contrary, a much lighter model
(such as RepNet) fails to capture crucial details about the system behavior due to its
limited model parameters, which in turn suffers from performance issues.

In order to understand the inference overhead, we benchmarked the different
ADS frameworks on an ARM Cortex- A57 CPU. In this experiment, different
system configurations are considered to encompass a wide variety of ECU hardware
that is available in the state-of-the-art vehicles. Based on the available hardware
resources, a single core (employs only one CPU core) and dual core (employs

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 279

Table 3 Inference time comparisons between our proposed INDRA framework and the prior
works PLSTM [38], REPNET [39], and CANET [36] using single and dual core configurations

Average inference time (µs)
ADS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU

PLSTM [38] 681.18 644.76
RepNet [39] 19.46 21.46
CANet [36] 395.63 378.72
INDRA 80.35 72.91

two CPU cores) system configurations were selected on the Jetson TX2. The ADS
frameworks are executed ten times for the different CPU configurations, and the
average inference time (in µs) are recorded in Table 3. From the results in Table
3, it is evident that the INDRA framework has significantly faster inference times
compared with the prior works (excluding RepNet) under all configurations. This
is partly due to the lower memory footprint of INDRA framework. As previously
stated, even though RepNet has a lower inference time, it has the worst performance
of any compared framework, as shown in Fig. 14. The large inference times for the
better performing frameworks can have an impact on the real-time performance of
the control systems in the vehicle and can result in catastrophic deadline misses. We
also believe that using a dedicated deep learning accelerator (DLA) further enhance
the performance of the ADS models.

Thus, from Fig. 14 and Tables 2 and 3, it is clear that INDRA achieves a clear
balance of having superior anomaly detection performance while maintaining low
memory footprint and fast inference times, making it a powerful and lightweight
ADS solution.

6.6 Scalability Results

In this subsection, an analysis on the scalability of INDRA framework is presented
by studying the system performance using the ECU utilization metric as a function
of increasing system complexity (number of ECUs and messages). Each ECU
in the system has a real-time utilization (URT) and an ADS utilization (UADS)
from running real-time and ADS applications, respectively. We primarily focus on
analyzing the ADS overhead (UADS), as it is a measure of the compute efficiency
of the ADS. Since the safety-critical messages monitored by the ADS are periodic
in nature, the ADS can be modeled as a periodic application with period that is the
same as the message period [5]. Thus, monitoring an ith message mi results in an
induced ADS utilization (UADS, mi) at an ECU, which can be calculated as:

UIDS,mi
=

(
TIDS

Pmi

)
(6)

280 V. K. Kukkala et al.

where TADS and Pmi denote the time taken by the ADS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all ADS utilizations as a result of monitoring different messages is the
overall ADS utilization at that ECU (UADS) and is given by:

UIDS =
∑n

i=1
UIDS,mi

(7)

To evaluate the scalability of INDRA, six different system sizes were considered.
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45, 50,
100} (all periods in ms) in automotive CPS is considered to sample uniformly, when
assigning periods to the messages in the system. These messages are distributed
evenly among different ECUs and the ADS utilization is calculated using (6) and
(7). INDRA assumes a pessimistic scenario where all the ECUs in the system have
only a single core. This would allow us to analyze the worst case overhead of the
ADS.

Figure 15 shows the average ECU utilization for different system sizes denoted
by {p, q}, where p is the number of ECUs and q is the number of messages in the
system. In this work, a very pessimistic estimate of 50% real-time ECU utilization
for real-time automotive applications (“RT Util”, as shown in the dotted bars) is

Fig. 15 Scalability analysis of our proposed INDRA ADS for different system sizes and the prior
works PLSTM [38], RepNet [39], and CANet [36]

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 281

assumed. The solid bars on top of the dotted bars represent the overhead incurred
by the ADS executing on the ECUs, and the red horizontal dotted line represents
the 100% ECU utilization mark. It is critical to avoid exceeding the 100% ECU
utilization limit under any scenario, as it could create undesired latencies resulting in
missing deadlines, for time-critical automotive applications that can be catastrophic.
It is clear from the results that the prior works such as PLSTM and CANet incur
heavy overhead on the ECUs while RepNet and our proposed INDRA framework
have very minimal overhead that is favorable to increasing system sizes. From the
results in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not
only does INDRA achieve better performance in terms of both accuracy and low
false positive rate for anomaly detection than state-of-the-art prior work but also is
lightweight and highly scalable.

7 Conclusion

In this chapter, we presented a novel recurrent autoencoder-based lightweight
anomaly detection system called INDRA for distributed automotive cyber-physical
systems. INDRA framework uses a metric called anomaly score (AS) to measure
the deviation of the prediction signal from the actual input. INDRA also presents
a thorough analysis of our anomaly threshold selection process and compared with
the best-known prior works in this area. The promising results indicate a compelling
potential for utilizing our proposed approach in emerging automotive platforms.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. Kukkala, V.K., Bradley, T., Pasricha, S.: Priority-based multi-level monitoring of signal
integrity in a distributed powertrain control system. In: Proceedings of IFAC Workshop on
Engine and Powertrain Control, Simulation and Modeling. IEEE (2015)

2. Kukkala, V.K., Bradley, T., Pasricha, S.: Uncertainty analysis and propagation for an auxiliary
power module. In: Proceedings of IEEE Transportation Electrification Conference (TEC).
IEEE (2017)

3. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS: Jitter-aware message scheduling for FlexRay
automotive networks. In: Proceedings of IEEE/ACM International Symposium on Network-
on-Chip (NOCS). IEEE (2017)

4. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS-SG: a framework for Jitter-aware message
scheduling for time-triggered automotive networks. ACM Trans. Des. Autom. Electron. Syst.
24(6), 1–31 (2019)

5. Kukkala, V., Pasricha, S., Bradley, T.: SEDAN: security-aware design of time-critical automo-
tive networks. IEEE Trans. Veh. Technol. 69(8), 9017–9030 (2020)

6. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: intrusion detection using recurrent
autoencoders in automotive embedded systems. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 39(11), 3698–3710 (2020)

282 V. K. Kukkala et al.

7. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: LATTE: LSTM self-attention based anomaly
detection in embedded automotive platforms. ACM Trans. Embed. Comput. Syst. 20(5s,
Article 67), 1–23 (2021)

8. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: temporal CNN with attention for
anomaly detection in automotive cyber-physical systems. In: Proceedings of IEEE/ACM Asia
& South Pacific Design Automation Conference (ASPDAC). IEEE (2022)

9. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: Roadmap for cybersecurity in autonomous
vehicles. In: IEEE Consumer Electronics Magazine (CEM). IEEE (2022)

10. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. SAE Int. J. Connected Autom. Veh. 1(2), 81 (2018)

11. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. In: Proceedings of SAE World Congress Experience (WCX). SAE Technical
Paper (2018)

12. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley,
T.H.: Enabling prediction for optimal fuel economy vehicle control. In: Proceedings of SAE
World Congress Experience (WCX). SAE Technical Paper (2018)

13. Dey, J., Taylor, W., Pasricha, S.: VESPA: a framework for optimizing heterogeneous sensor
placement and orientation for autonomous vehicles. IEEE Consum. Electron. Mag. 10(2), 16
(2021)

14. Kukkala, V.K., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: a path toward
autonomous vehicles. IEEE Consum. Electron. Mag. 7(5), 18 (2018)

15. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor,
B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern
automobile. In: Proceedings of IEEE Symposium on Security and Privacy (SP). IEEE (2010)

16. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA
(2015)

17. Izosimov, V., Asvestopoulos, A., Blomkvist, O., Törngren, M.: Security-aware development of
cyber-physical systems illustrated with automotive case study. In: Proceedings of IEEE/ACM
Design, Automation & Test in Europe & Exhibition (DATE). IEEE (2016)

18. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., Laarouchi, Y.: A language-based intrusion
detection approach for automotive embedded networks. Int. J. Embed. Syst. 10(8), 1–12 (2018)

19. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of ID
sequences. In: Proceedings of IEEE Intelligent Vehicle Symposium (IV). IEEE (2017)

20. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks- practical
examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1), 11 (2011)

21. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack detection
for in-vehicle networks. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV). IEEE
(2008)

22. Aldwairi, M., Abu-Dalo, A.M., Jarrah, M.: Pattern matching of signature-based IDS using
Myers algorithm under MapReduce framework. EURASIP J. Inf. Secur. 2017(1), 1–11 (2017)

23. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica. 1, 251–266
(1986)

24. Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection to automotive IT-early insights
and remaining challenges. J. Inf. Assur. Secur. 4(6), 226–235 (2009)

25. Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.:
Automotive electrical and electronic architecture security via distributed in-vehicle traffic
monitoring. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 1790–1803 (2017)

26. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection.
In: Proceedings of USENIX. USENIX Association (2016)

27. Ying, X., Sagong, S.U., Clark, A., Bushnell, L., Poovendran, R.: Shape of the cloak: formal
analysis of clock skew-based intrusion detection system in controller area networks. IEEE
Trans. Inf. Forensics Secur. 14(9), 2300–2314 (2019)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 283

28. Yoon, M.K., Mohan, S., Choi, J., Sha, L.: Memory heat map: anomaly detection in real-
time embedded systems using memory behavior. In: Proceedings of IEEE/ACM/EDAC Design
Automation Conference (DAC). IEEE (2015)

29. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: Proceedings
of IEEE Intelligent Vehicles Symposium (IV). IEEE (2011)

30. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection for in-vehicle
networks. In: Proceedings of IEEE International Conference on Intelligent and Advanced
System (ICIAS). IEEE (2010)

31. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive
CAN bus. In: Proceedings of World Congress on Industrial Control Systems Security (WCI-
CSS). IEEE (2015)

32. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car hacking identification through fuzzy
logic algorithms. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE (2017)

33. Vuong, T.P., Loukas, G., Gan, D.: Performance evaluation of cyber-physical intrusion detection
on a robotic vehicle. In: Proceedings of IEEE International Conference on Computer and Infor-
mation Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM).
IEEE (2015)

34. Levi, M., Allouche, Y., Kontorovich, A.: Advanced analytics for connected car cybersecurity.
In: Proceedings of IEEE Vehicular Technology Conference (VTC). Springer (2018)

35. Kang, M.J., Kang, J.W.: A novel intrusion detection method using deep neural network for in-
vehicle network security. In: IEEE Proceedings of Vehicular Technology Conference (VTC).
Springer (2016)

36. Hanselmann, M., Strauss, T., Dormann, K., Ulmer, H.: CANet: an unsupervised intrusion
detection system for high dimensional CAN bus data. In: IEEE Access, vol. 8, p. 58194 (2020)

37. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-
physical intrusion detection for vehicles using deep learning. IEEE Access. 6(1), 3491–3508
(2018)

38. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data
with long short-term memory networks. In: Proceedings of IEEE International Conference on
Data Science and Advanced Analytics (DSAA). IEEE (2016)

39. Weber, M., Wolf, G., Sax, E., Zimmer, B.: Online detection of anomalies in vehicle signals
using replicator neural networks. In: Proceedings of ESCAR USA (2018)

40. Weber, M., Klug, S., Sax, E., Zimmer, B.: Embedded hybrid anomaly detection for automotive
can communication. In: Embedded Real Time Software and Systems (ERTS) (2018)

41. Schmidhuber, J.: Habilitation thesis: system modeling and optimization (1993)
42. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies. In: A Field Guide to Dynamical Recurrent
Neural Networks. IEEE Press (2001)

43. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio,
Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint, arXiv:1406.1078 (2014)

44. DiDomenico, G.C., Bair, J., Kukkala, V.K., Tunnell, J., Peyfuss, M., Kraus, M., Ax, J., Lazarri,
J., Munin, M., Cooke, C., Christensen, E.: Colorado State University EcoCAR 3 final technical
report. In: SAE World Congress Experience (WCX). SAE Technical Paper (2019)

	Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Sequence Learning Background
	3.1 Sequence Models
	3.1.1 Recurrent Neural Networks (RNNs)
	3.1.2 Long-/Short-Term Memory (LSTM) Networks
	3.1.3 Gated Recurrent Unit (GRU)

	3.2 Autoencoders

	4 Problem Definition
	4.1 System Model
	4.2 Communication Model
	4.3 Attack Model

	5 INDRA Framework Overview
	5.1 Recurrent Autoencoder
	5.1.1 Model Architecture
	5.1.2 Training Process

	5.2 Inference and Detection

	6 Experiments
	6.1 Experimental Setup
	6.2 Anomaly Threshold Selection
	6.3 Comparison of INDRA Variants
	6.4 Comparison with Prior Works
	6.5 ADS Overhead Analysis
	6.6 Scalability Results

	7 Conclusion
	References

