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1 Introduction 

Contemporary outdoor location-based services have transformed how people nav-
igate, travel, and interact with their surroundings. Emerging indoor localization 
techniques have the potential to extend this outdoor experience across indoor 
locales. Beyond academics, many privately funded providers in the industry are 
focusing on indoor location-based services to improve customer experience. For 
instance, Google can suggest products to its users through targeted indoor location-
based advertisements [1]. Stores such as Target in the United States are beginning to 
provide indoor localization solutions to help customers locate products in a store and 
find their way to these products [2]. Services provided by these companies combine 
GPS, cell towers, and Wi-Fi data to estimate the user’s location. Unfortunately, 
in the indoor environment where GPS signals cannot penetrate building walls, the 
accuracy of these geo-location services can be in the range of tens of meters, which 
is insufficient in many cases [3]. 

Radio signals such as Bluetooth, ultra-wideband (UWB) [4], and radio frequency 
identification (RFID) [5, 6] are commonly employed for the purpose of indoor 
localization. The key idea is to use qualitative characteristics of radio signals (e.g., 
signal strength or triangulation) to estimate user location relative to a radio beacon 
(wireless access point). These approaches suffer from multipath effects, signal 
attenuation, and noise-induced interference [8]. Also, as these techniques require 
specialized wireless radio beacons to be installed in indoor locales, they are costly 
and thus lack scalability for wide-scale deployment. 

S. Tiku (�) · A. Mittal · S. Pasricha 
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, 
USA 
e-mail: saideep@colostate.edu; sudeep@colostate.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical, 
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_1 

3


 31368 2385 a 31368 2385 a
 

 885 56845 a 885 56845
a
 
mailto:saideep@colostate.edu
mailto:saideep@colostate.edu

 10009 56845 a 10009 56845
a
 
mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1
https://doi.org/10.1007/978-3-031-40677-5_1


4 S. Tiku et al.

Wi-Fi-based fingerprinting is perhaps the most popular radio-signal-based indoor 
localization technique being explored today. Wi-Fi is an ideal radio signal source for 
indoor localization as most public or private buildings are pre-equipped with Wi-
Fi access points (APs). Lightweight middleware-based fingerprinting frameworks 
have been shown to run in the background to deliver location-based updates on 
smartphones [29, 37]. Fingerprinting with Wi-Fi works by first recording the 
strength of Wi-Fi radio signals in an indoor environment at different locations. Then, 
a user with a smartphone can capture Wi-Fi received signal strength indication 
(RSSI) data in real-time and compare it to previously recorded (stored) values to 
estimate their location in that environment. Fingerprinting techniques can deliver 
an accuracy of 6–8 m [28], with accuracy improving as the density of APs 
increases. However, in many indoor environments, noise and interference in the 
wireless spectrum (e.g., due to other electronic equipment, movement of people, 
and operating machinery) can reduce this accuracy. Combining fingerprinting-based 
frameworks with dead reckoning can improve this accuracy somewhat [8]. Dead 
reckoning refers to a class of techniques where inertial sensor data (e.g., from 
accelerometer and gyroscope) is used along with the previously known position 
data to determine the current location. Unfortunately, dead reckoning is infamously 
known to suffer from error accumulation (in inertial sensors) over time. Also, these 
techniques are not effective for people using wheelchairs or moving walkways. 

The intelligent application of machine learning (ML) techniques can help to 
overcome noise and uncertainty during fingerprinting-based localization [8]. While 
traditional ML techniques work well at approximating simpler input–output func-
tions, computationally intensive deep learning models are capable of dealing with 
more complex input–output mappings and can deliver better accuracy. Middleware-
based offloading [30] and energy enhancement frameworks [31, 32, 37] may be a 
route to explore for computation and energy-intensive indoor localization services 
on smartphones. Furthermore, with the increase in the available computational 
power on mobile devices, it is now possible to deploy deep learning techniques 
such as convolutional neural networks (CNNs) on smartphones. 

These are a special form of deep neural networks (DNNs) that are purposely 
designed to for image-based input data. CNNs are well known to automatically 
identify high-level features in the input images that have the heaviest impact 
on the final output. This process is known as feature learning. Prior to deep 
learning, feature learning was an expensive and time-intensive process that had 
to be conducted manually. CNN has been extremely successful in complex image 
classification problems and is finding applications in many emerging domains, e.g., 
self-driving cars [27]. 

In this chapter, we discuss an efficient framework that uses CNN-based Wi-
Fi fingerprinting to deliver a superior level of indoor localization accuracy to a 
user with a smartphone. Our approach utilizes widely available Wi-Fi APs without 
requiring any customized/expensive infrastructure deployments. The framework 
works on a user’s smartphone, within the computational capabilities of the device, 
and utilizes the radio interfaces for efficient fingerprinting-based localization. The 
main novel contributions of this chapter can be summarized as follows:
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• We discuss a newly developed technique to extract images out of location 
fingerprints, which are then used to train a CNN that is designed to improve indoor 
localization robustness and accuracy. 

• We implemented a hierarchical architecture to scale the CNN, so that our 
framework can be used in the real world where buildings can have large numbers 
of floors and corridors. 

• We performed extensive testing of our algorithms with the state of the art across 
different buildings and indoor paths, to demonstrate the effectiveness of our 
proposed framework. 

2 Related Works 

Various efforts have been made to overcome the limitations associated with indoor 
localization. In this section, we summarize a few crucial efforts toward the same. 

Numerous RFID-based [5, 6] indoor localization solutions that use proximity-
based estimation techniques have been proposed. But the hardware expenses of 
these efforts increase dramatically with increasing accuracy requirements. Also, 
these approaches cannot be used with smartphones and require the use of specialized 
hardware. Indoor localization systems that use UWB [4] and ultrasound [10] have  
similar requirements for additional (costly) infrastructure and a lack of compatibility 
for use with commodity smartphones. 

Triangulation-based methods, such as [11], use multiple antennas to locate 
a person or object. But these techniques require several antennas and regular 
upkeep of the associated hardware. Most techniques therefore favor using the more 
lightweight fingerprinting approach, often with Wi-Fi signals. UJIIndoorLoc [7] 
describes a technique to create a Wi-Fi fingerprint database and employs a k-nearest 
neighbor (KNN)-based model to predict location. Their average accuracy using 
KNN is 7.9 m. Given the current position (using fingerprinting) of a user walking in 
the indoor environment, pedestrian dead reckoning can be used to track the user’s 
movement using a combination of microelectromechanical systems (MEMs)-based 
motion sensors ubiquitously found within contemporary smartphones and other 
wearable electronics. Dead reckoning techniques use the accelerometer to estimate 
the number of steps, a gyroscope for orientation, and a magnetometer to determine 
the heading direction. Such techniques have been employed in [12, 26] but have 
shown to deliver poor localization accuracy results when used alone. 

Radar [12] and IndoorAtlas [26] proposed using hybrid indoor localization 
techniques. Radar [12] combines inertial sensors (dead reckoning) with Wi-Fi signal 
propagation models, whereas Indoor Atlas [26] combines information from several 
sensors such as magnetic, inertial, and camera sensors, for localization. LearnLoc 
[8] shallow feed-forward neural network models, dead reckoning techniques, and 
Wi-Fi fingerprinting to trade-off indoor localization accuracy and energy efficiency 
during localization on smartphones. Similar to LearnLoc, more recent works focus 
on optimizing and adapting light-weight machine learning techniques for the



6 S. Tiku et al.

purpose of fingerprinting-based indoor localization [28, 34–36]. However, all such 
techniques are limited by their ability to identify and match complex pattern within 
RSSI fingerprints. Additionally, a considerable amount of effort needs to be placed 
into the preprocessing, feature selection, and the tuning of the underlying model. 
Given these challenges, there is need of robust methodologies and algorithms for 
the purpose of fingerprinting-based indoor localization. 

A few efforts have started to consider deep learning to assist with indoor 
localization. The work in [13] presents an approach that uses DNNs with Wi-Fi 
fingerprinting. The accuracy of the DNN is improved by using a hidden Markov 
model (HMM). The HMM takes temporal coherence into account and maintains 
a smooth transition between adjacent locations. But our analysis shows that the 
fine location prediction with the HMM fails in cases such as when moving back 
on the same path or taking a sharp turn. HMM predictions are also based on 
the previous position acquired through the DNN and, hence, can be prone to 
error accumulation. DeepFi [14] and ConFi [15] propose approaches that use the 
channel state information (CSI) of Wi-Fi signals to create fingerprints. But the 
CSI information in these approaches was obtained through the use of specialized 
hardware attached to a laptop. None of the mobile devices available today have the 
ability to capture CSI data. Due to this limitation, it is not feasible to implement 
these techniques on smartphones. Deep belief networks (DBNs) [16] have also been 
used for indoor localization, but the technology is based on custom UWB beacons 
that lead to very high implementation cost. 

In summary, most works discussed so far either have specialized hardware 
requirements or are not designed to work on smartphones. Also, our real-world 
implementation and analysis concluded that the abovementioned frameworks slow 
down as they become resource intensive when being scaled to cover large buildings 
with multiple floors and corridors. 

The framework discussed in this chapter, CNNLOC, overcomes the shortcomings 
of these state-of-the-art indoor localization approaches and was first presented 
in [33]. CNNLOC creates input images by using RSSI of Wi-Fi signals that are 
then used to train a CNN model, without requiring any specialized hardware/in-
frastructure. CNNLOC is easily deployable on current smartphones. The proposed 
framework also integrates a hierarchical scheme to enable scalability for large 
buildings with multiple floors and corridors/aisles. 

3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are specialized form of neural networks 
(NNs) that are designed for the explicit purpose of image classification [9]. They are 
highly resilient to noise in the input data and have shown to deliver excellent results 
for complex image classification tasks. The smallest unit of any neural network is
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a perceptron and is inspired by the biological neuron present in the human brain. A 
perceptron is defined by the following equation: 

y = 
n∑

i=1 

wixi + w0 (1) 

Here, y is the output, which is a weighted sum of the inputs xi, with a bias (w0). 
NNs have interconnected layers, and in each layer, there are several perceptrons, 
each with its own tunable weights and biases. Each layer receives some input, 
executes a dot product, and passes it to the output layer or the hidden layer in front 
of it [17]. An activation function is applied to the output y, limiting the range of 
values that it can take and establishes an input–output mapping defined by logistic 
regression. The most common activation functions used are sigmoid and tanh 
functions. The goal of an NN is to approximate a functional relationship between 
a set of inputs and outputs (training phase). The resulting NN then represents the 
approximated function that is used to make predictions for any given input (testing 
phase). 

While an NN often contains a small number of hidden layers sandwiched 
between the input and output layer, a deep neural network (DNN) has a very large 
number of hidden layers. DNNs have a much higher computational complexity 
but in turn are also able to deliver very high accuracy. CNNs are a type of DNN 
that include several specialized NN layers, where each layer may serve a unique 
function. CNN classifiers are used to map input data to a finite set of output 
classes. For instance, given different animal pictures, a CNN model can be trained 
to categorize them into different classes such as cats and dogs. CNNs also make use 
of rectified linear units (ReLUs) as their activation function, which allows them to 
handle nonlinearity in the data. 

In the training phase, our CNN model uses a stochastic gradient descent (SGD) 
algorithm. Adam [18] is an optimized variant of SGD and is used to optimize the 
learning process. The algorithm is designed to take advantage of two well-known 
techniques: RMSprop [19] and AdaGrad [20]. SGD maintains a constant learning 
rate for every weight update in the network. In contrast, Adam employs an adaptive 
learning rate for each network weight, with the learning rate being adapted as the 
training progresses. RMSprop uses the mean (first-order moment) of past-squared 
gradients and adjusts the weights based on how fast the gradient changes. Adam, 
to optimize the process, uses the variance (second-order moment) of past gradients 
and adjusts the weights accordingly. 

The structure of the CNN in CNNLOC is inspired from the well-known CNN 
architectures, LeNet [21] and AlexNet [22]. Our CNN architecture is shown in Fig. 
1. For the initial set of layers, our model has 2-D convolutional layer, followed by 
dense layers and culminates in an output layer. The 2-D convolutional layer works 
by convolving a specific region of the input image at a time. This region is known as 
a filter. The filter is shown by a rectangle (red-dotted lines). Each layer performs a 
convolution of a small region of the input image with the filter and feeds the result to
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Fig. 1 CNN architecture 

the ReLu activation function. Therefore, we refer to each layer as [Conv2D-ReLu]. 
To capture more details from the input image we can use a larger number of filters. 
For each filter, we get a feature map. For the first layer of [Conv2D-ReLU], we used 
32 filters to create a set of 32 feature maps. We used five hidden layers of [Conv2D-
ReLU], but only two are shown for brevity. The number of filters and layers is 
derived through empirical analysis as discussed in Sect. 4.4. A “stride” parameter 
determines the quantity of pixels that a filter will shift, to arrive at a new region of 
the input image to process. The stride and other “hyperparameters” of our CNN are 
further discussed in Sect. 4.4. In the end, a fully connected layer helps in identifying 
the individual class scores (in our case each class is a unique location). The class 
with the highest score is selected as the output. In this layer, all the neurons are 
connected to the neurons in the previous layer (green-dotted lines). 

In a conventional CNN, a pooling layer is used to down-sample the image when 
the size of the input image is too big. In our case, the input image is small, and 
therefore, we do not need this step. We want our CNN to learn all the features from 
the entire image. 

4 CNNLOC Framework: Overview 

4.1 Overview 

An overview of our CNNLOC indoor localization framework is shown in Fig. 
2. In the framework, we utilize the available Wi-Fi access points (APs) in an 
indoor environment to create an RSSI fingerprint database. Our framework is 
divided into two phases. The first phase involves RSSI data collection, cleaning, 
and preprocessing. This preprocessed data is used to create a database of images. 
Each image represents a Wi-Fi RSSI-based signature that is unique to a location 
label. Each location label is further associated with an x-y coordinate. This database 
of images is used to train a CNN model. The trained model is deployed on to a 
smartphone. In the second phase, or the online phase, real-time AP data is converted
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into an image and then fed to the trained CNN model to predict the location of 
the user. The CNN model predicts the closest block that was sampled as the users’ 
location. A detailed description of the preprocessing is described in the next section. 

4.2 Preprocessing of RSSI Data 

The process of image database creation begins with the collection of RSSI finger-
prints as shown in the top half of Fig. 2. The RSSI for various APs are captured along 
with the corresponding location labels and x-y coordinates. Each AP is uniquely 
identified using its unique media access control (MAC) address. We only maintain 
information for known Wi-Fi APs and hence clean the captured data. This ensures 
that our trained model is not polluted by unstable Wi-Fi APs. On the RSSI scale, 
values typically range between −99 dB (lowest) and − 0 dB (highest). To indicate 
that a specific AP is unreachable, −100 is used, or no signal is received from it. We 
normalize the RSSI values on a scale from 0 and 1, where 0 represents no signal and 
represents the strongest signal. 

Assume that while fingerprinting an indoor location, a total of K APs are 
discovered at N unique locations. These combine to form a two-dimensional matrix 
of size N × K. Then, the normalized RSSI fingerprint at the Nth location, denoted 
as lN , is given by a row vector [r1, r2, . . . , rK], denoted by RN . Therefore, each 
column vector, [w1, w2, . . . , wN] would represent the normalized RSSI values of 
the Kth AP at all N locations, denoted by WK . We calculate the Pearson correlation 
coefficient (PCC) [23] between each column vector WK and the location vector 
[l1, l2, . . . , lN]. The result is a vector of correlation values denoted as C. PCC  is  
useful in identifying the most significant APs in the database that impact localization 

Fig. 2 An overview of the CNNLOC framework
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accuracy. The coefficient values range across a scale of −1 to  +1. If the relationship 
is −1, it represents a strong negative relationship, whereas +1 represents a strong 
positive relationship, and 0 implies that the input and output have no relationship. 

We only consider the magnitude of the correlation as we are only concerned 
with the strength of the relationship. APs with very low correlation with the output 
coordinates are not useful for the purpose of indoor localization. Therefore, we can 
remove APs whose correlation to the output coordinates is below a certain threshold 
(|PCC| < 0.3). This removes inconsequential APs from the collected Wi-Fi data 
and helps reduce the computational workload of the framework. The normalized 
RSSI data from the remaining high-correlation APs is used to create an RSSI image 
database, as explained in the next section. 

4.3 RSSI Image Database 

In this section, we present our approach to convert RSSI data for a given location 
into a gray scale image. A collection of these images for all fingerprinted locations 
forms the RSSI image database. To form gray scale images, a Hadamard product 
(HP) [24] is calculated for each R and C. HP is defined as an element wise 
multiplication of two arrays or vectors: 

HP = 
N∑

i=1 

Ri ◦ C (2) 

The dimension of each HP is 1 × K. Then, the HP matrix is reshaped into a p × p 
matrix, which represents a 2-D image as shown in Fig. 3. The HP is padded with 
zeros in the case that K is less than p2. Therefore, we now have a set of N images of 
size p × p in our database. These images are used to train the CNNs. 

Figure 3 shows two images of size 8 × 8 created for two unique fingerprints 
(signatures) associated with two different locations. Each pixel value is scaled on a 
scale of 0–1. The patterns in each of these images will be unique to a location and 
change slightly as we move along an indoor path. 

In Eq. (2), the product of PCC and normalized RSSI value for each AP is used 
to form a matrix. Its purpose is to promote the impact of the APs that are highly 
correlated to fingerprinted locations. Even though there may be attenuation of Wi-Fi 
signals due to multipath fading effects, the image may fade but will likely still have 
the pattern information retained. These patterns that are unique to every location 
can be easily learned by a CNN. The hyperparameters and their use in CNNLOC are 
discussed next.
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Fig. 3 Snapshot of CNNLOC’s offline phase application showing contrasting the images created 
for two unique locations. The green icons represent locations that are fingerprinted along an indoor 
path. The two locations shown are 10 m apart 

4.4 Hyperparameters 

The accuracy of the CNN model depends on the optimization of the hyperpa-
rameters that control its architecture, which is the most important factor in the
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performance of CNN. A smaller network may not perform well, and a larger 
network may be slow and prone to overfitting. There are no defined rules in deep 
learning that help in estimating the appropriate hyperparameters and therefore need 
to be empirically found through an iterative process. The estimated hyperparameters 
are also highly dependent on the input dataset. For the sake of repeatability, we 
discuss some the key hyperparameters of our CNN model below: 

• Number of hidden layers: A large number of hidden layers lead to longer execution 
times and conversely, fewer hidden layers may produce inaccurate results due to 
the challenges associated with vanishing gradients. We found that five layers of 
[Conv2D-ReLU] worked best for our purposes. 

• Size of filter: This defines the image area that the filter considers at a time, before 
moving to the next region of the image. A large filter size might aggregate a large 
chunk of information in one pass. The optimum filter size in our case was found 
to be 2 × 2. 

• Stride size: The number of pixels a filter moves by is dictated by the stride size. 
We set it to 1 because the size of our image is very small, and we do not wish to 
lose any information. 

• Number of filters: Each filter extracts a distinct set of features from the input to 
construct different feature maps. Each feature map holds unique information about 
the input image. The best results were obtained if we started with a lower number 
of filters and increased them in the successive layers to capture greater uniqueness 
in the patterns. There were 32 filters in the first layer and were doubled for each 
subsequent layer up to 256 filters such that both the fourth and fifth layer had 256 
filters. 

4.5 Integrating Hierarchy for Scalability 

We architect our CNNLOC framework to scale up to larger problem sizes than 
that handled by most prior efforts. Toward this, we enhanced our framework by 
integrating a hierarchical classifier. The resulting hierarchical classifier employs a 
combination of smaller CNN modules, which work together to deliver a location 
prediction. Figure 4 shows the hierarchical classification structure of the framework. 
Each CNN model has a label that starts with C. The C1 model classifies the floor 
numbers, and then in the next layer, C20 or C21 identifies the corridor on that floor. 
Once the corridor is located, one of the CNNs from the third layer (C30–C35) will 
predict the fine-grain location of the user. This hierarchical approach can further be 
extended across buildings.
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Fig. 4 A general architecture for the hierarchical classifier 

Table 1 Indoor paths used in 
experiments 

Path name Length (m) Shape 

Library 30 U shape 
Clark A 35 Semi-octagonal 
Physics 28 Square shape 

5 Experiments 

5.1 Experimental Setup 

The following sections describe the CNNLOC implementation and experimental 
results that were conducted on three independent indoor paths as described in Table 
1. The overall floor plan of the path is divided into a grid and tiles of interest are 
labeled sequentially from 1 to N. For the purposes of this work, each square in 
the grid has an area of 1 m2. Based on our analysis (not presented here), having 
grid tiles of size smaller than 1 m2 did not lead to any improvements. Each of 
these labeled tiles is then treated as a “class.” This allows us to formulate indoor 
localization as a classification problem. Figure 5 shows an example of a path covered 
in the library building floor plan with labeled squares. Each label further translates 
into an x-y coordinate. Five Wi-Fi scans were conducted at each square during the 
fingerprinting (training) phase. 

5.2 Smartphone Implementation 

An android application was built to collect Wi-Fi fingerprints (i.e., RSSI samples 
from multiple APs at each location) and for testing. The application is compatible 
with Android 6.0 and was tested on a Samsung Galaxy S6. After fingerprint data 
collection, the data was preprocessed as described in the previous section for the 
CNN model. The entire dataset is split into training and testing samples, so we can
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Fig. 5 Library building path divided into a grid, with squares along the path labeled sequentially 
from 1 to 30 

check how well our models perform. We used one-fifth of the total samples for 
testing, and four-fifth of the samples were used for training. 

5.3 Experimental Results 

We compared our CNNLOC indoor localization framework with three other indoor 
localization frameworks from prior work. The first work we implemented is based 
on the approach in [25] and employs support vector regression (SVR). The approach 
forms one or more hyperplanes in a multidimensional space segregating similar data 
point, which are then used for regression. The second work is based on the KNN 
technique from [8], which is a nonparametric approach that is based on the idea 
that similar input will have similar outputs. Lastly, we compare our work against a 
DNN based approach [13] that improves upon conventional NNs by incorporating 
a large number of hidden layers. All of these techniques supplement the Wi-
Fi fingerprinting approach with a machine learning model to provide robustness 
against noise and interference effects. Our experiments in the rest of this section first 
discuss the localization accuracy results for the techniques. Subsequently, we also 
discuss results for the scalability of our framework using a hierarchical classification 
enhancement approach. Lastly, we contrast the accuracy of our framework with that 
reported by other indoor localization techniques.
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Fig. 6 Path traced using different techniques at the Clark building path. Green and red traces 
indicate actual and predicted paths respectively 

5.3.1 Indoor Localization Accuracy Comparison 

The overall indoor localization quality as experienced by a user is heavily impacted 
by the stability of the predicted path that is traced over an indoor localization 
session. In an attempt to evaluate this, we compare the paths traced by various indoor 
localization frameworks as compared with the proposed CNNLOC framework. 
Figure 6 shows the paths predicted by the four techniques, for the indoor path in 
the Clark building. The green dots along the path represent the points where Wi-Fi 
RSSI fingerprint samples were collected to create the training fingerprint dataset. 
The distance between each of the green dots is 1 m. In the offline phase, the RSSI 
fingerprint at each green dot is converted into an image. The online phase consists 
of the user walking along this path, and the red lines in Fig. 6 represent the paths 
predicted by the four techniques. It is observed that KNN [8] and SVR [25] stray  
off the actual path the most, whereas DNN and CNNLOC perform much better. 
This is likely because KNN and SVR are both regression-based techniques where
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Fig. 7 Comparison of indoor localization techniques 

the prediction is impacted by neighboring data points in the RSSI Euclidean space. 
Two locations that have RSSI fingerprints that are very close to each other in the 
Euclidian space might not be close to each other on the actual floor plan. This leads 
to large localization errors, especially when utilizing regression-based approaches. 
The transition from one location to another is smoother for CNN as it is able to 
distinguish between closely spaced sampling locations due to our RSSI-to-image 
conversion technique. The convolutional model is able to identify patterns within 
individual RSSI images and classify them as locations. From Fig. 6, it is evident 
that our CNNLOC framework produces stable predictions for the Clark path. 

Figure 7 shows a bar graph that summarizes the average location estimation 
error in meters for the various frameworks on the three different indoor floor 
plans considered. We found that the KNN approach is the least reliable among all 
techniques with a mean error of 5.5 m and large variations across the paths. The 
SVR-based approach has a similar mean error as the KNN approach. The DNN-
based approach shows lower error across all of the paths. But it does not perform 
consistently across all of the paths, and the mean error is always higher than that for 
CNNLOC. This may be due to the fact that the filters in CNN are set up to focus on 
the image with a much finer granularity than the DNN approach is capable of. We 
also observe that all techniques perform the worst in the Physics department. This 
is due to the fact that the path in the Physics department is near the entrance of the 
building and has a lower density of Wi-Fi APs as compared with the other paths. The 
Library and Clark paths have a higher density of Wi-Fi APs present; hence, better 
accuracy can be achieved. Our proposed CNNLOC framework is the most reliable 
framework with the lowest mean error of less than 2 m.
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5.3.2 CNNLOC Scalability Analysis 

The size and complexity of a deep learning model is directly correlated to number 
of classes and associated dataset in use. The baseline formulation of our proposed 
framework does not account for the increasing area of floor plan that needs to be 
covered. To overcome this, we proposed a hierarchal approach for CNNLOC (Sect. 
4.5). We consider a scenario when CNNLOC is required to predict a location inside 
a building with two floors and with three corridors on each floor. The length of each 
corridor is approximately 30 m. We combined several small CNNs (in our case 9 
small CNNs), such that a smaller number of weights are associated with each layer 
in the network than if a single larger CNN was used. 

We first evaluated the accuracy of predictions, for CNNLOC with and without 
the hierarchical classifier. For the first and second layer of the hierarchical classifier 
(shown in Fig. 4), the accuracy is determined by the number of times the system 
predicts the correct floor and corridor. We found that floors and corridors were 
accurately predicted 99.67% and 98.36% of times, respectively. For the final 
layer, we found that there was no difference in accuracy between the hierarchal 
approach and the nonhierarchical approach. This is because in the last level, both 
the approaches use the same model. 

Figure 8 shows the benefits in terms of time taken to generate a prediction with 
the hierarchical versus the nonhierarchical CNNLOC framework. We performed 
our experiment for four walking scenarios (“runs”) in the indoor environment 
(building with two floors and with three corridors on each floor). We found that the 
hierarchical CNNLOC model only takes 2.42 ms to make a prediction on average, 
whereas the nonhierarchical CNNLOC takes longer (3.4 ms). Thus, the proposed 
hierarchical classifier represents a promising approach to reduce prediction time 
due to the fewer number of weights in the CNN layers in the hierarchical approach, 
which leads to fewer computations in real time. 

5.3.3 Accuracy Analysis with Other Approaches 

Our experimental results in the previous sections have shown that CNNLOC 
delivers better localization accuracy over the KNN [8], DNN [13], and SVR [25] 
frameworks. The UJIIndoorLoc [7] framework is reported to have an accuracy 
of 4–7m. Our average accuracy is also almost twice that of RADAR [12]. If we 
consider frameworks that used CSI (DeepFi [14] and ConFi [15]), our accuracy 
is very close to both at just under 2 m. However, [14, 15] use special equipment 
to capture CSI and cannot be used with mobile devices. In contrast, our proposed 
CNNLOC framework is easy to deploy on today’s smartphones, does not require 
any specialized infrastructure (e.g., custom beacons), and can be used in buildings 
wherever Wi-Fi infrastructure preexists.
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Fig. 8 A comparison of execution times for hierarchical and nonhierarchical versions the 
CNNLOC framework 

6 Conclusion 

In this chapter, we discuss the CNNLOC framework [33] that uses Wi-Fi fin-
gerprints and convolutional neural networks (CNNs) for accurate and robust 
indoor localization. We compared our work against three different state-of-the-art 
indoor localization frameworks from prior work. Our framework outperforms these 
approaches and delivers localization accuracy under 2 m. CNNLOC has the advan-
tage of being easily implemented without the overhead of expensive infrastructure 
and is smartphone compatible. We also demonstrated how a hierarchical classifier 
can improve the scalability of this framework. CNNLOC represents a promising 
framework that can deliver reliable and accurate indoor localization for smartphone 
users. 
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