
Sudeep Pasricha
Muhammad Shafique Editors

Embedded
Machine Learning
for Cyber-Physical,
IoT, and Edge
Computing
Use Cases and Emerging Challenges

Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing

Sudeep Pasricha • Muhammad Shafique
Editors

Embedded Machine Learning
for Cyber-Physical, IoT, and
Edge Computing
Use Cases and Emerging Challenges

Editors
Sudeep Pasricha
Colorado State University
Fort Collins, CO, USA

Muhammad Shafique
New York University Abu Dhabi
Abu Dhabi, Abu Dhabi
United Arab Emirates

ISBN 978-3-031-40676-8 ISBN 978-3-031-40677-5 (eBook)
https://doi.org/10.1007/978-3-031-40677-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5

Preface

Machine Learning (ML) has emerged as a prominent approach for achieving state-
of-the-art accuracy for many data analytic applications, ranging from computer
vision (e.g., classification, segmentation, and object detection in images and video),
speech recognition, language translation, healthcare diagnostics, robotics, and
autonomous vehicles to business and financial analysis. The driving force of the
ML success is the advent of Neural Network (NN) algorithms, such as Deep Neural
Networks (DNNs)/Deep Learning (DL) and Spiking Neural Networks (SNNs),
with support from today’s evolving computing landscape to better exploit data and
thread-level parallelism with ML accelerators.

Current trends show an immense interest in attaining the powerful abilities of
NN algorithms for solving ML tasks using embedded systems with limited compute
and memory resources, i.e., so-called Embedded ML. One of the main reasons is that
embedded ML systems may enable a wide range of applications, especially the ones
with tight memory and power/energy constraints, such as mobile systems, Internet
of Things (IoT), edge computing, and cyber-physical applications. Furthermore,
embedded ML systems can also improve the quality of service (e.g., personalized
systems) and privacy as compared to centralized ML systems (e.g., based on cloud
computing). However, state-of-the-art NN-based ML algorithms are costly in terms
of memory sizes and power/energy consumption, thereby making it difficult to
enable embedded ML systems.

This book consists of three volumes, and explores and identifies the most
challenging issues that hinder the implementation of embedded ML systems. These
issues arise from the fact that, to achieve better accuracy, the development of NN
algorithms have led to state-of-the-art models with higher complexity with respect
to model sizes and operations, the implications of which are discussed below:

• Massive Model Sizes: Larger NN models usually obtain higher accuracy than
the smaller ones because they have a larger number of NN parameters that can
learn the features from the training dataset better. However, a huge number of
parameters may not be fully stored on-chip, hence requiring large-sized off-chip
memory to store them and intensive off-chip memory accesses during run time.

v

vi Preface

Furthermore, these intensive off-chip accesses are significantly more expensive
in terms of latency and energy than on-chip operations, hence exacerbating the
overall system energy.

• Complex and Intensive Operations: The complexity of operations in NN
algorithms depends on the computational model and the network architecture.
For instance, DNNs and SNNs have different complexity of operations since
DNNs typically employ Multiply-and-Accumulate (MAC) while SNNs employ
more bio-plausible operations like Leaky-Integrate-and-Fire (LIF). Besides,
more complex neural architectures (e.g., residual networks) may require addi-
tional operations to accommodate the architectural variations. These complex
architectures with a huge number of parameters also lead to intensive neural
operations (e.g., a large number of MAC operations in DNNs), thereby requiring
high computing power/energy during model execution.

In summary, achieving acceptable accuracy for the given ML applications while
meeting the latency, memory, and power/energy constraints of the embedded ML
systems is not a trivial task.

To address these challenges, this book discusses potential solutions from multiple
design aspects, presents multiple applications that can benefit from embedded ML
systems, and discusses the security, privacy, and robustness aspects of embedded
ML systems. To provide a comprehensive coverage of all these different topics,
which are crucial for designing and deploying embedded ML for real-world
applications, this book is partitioned into three volumes. The first volume covers
the Hardware Architectures, the second volume covers Software Optimizations and
Hardware/Software Codesign, and the third volume presents different Use Cases
and Emerging Challenges.

The brief outline of the third volume of this Embedded ML book targeting Use
Cases and Emerging Challenges along with the section structure is as follows.

Part I – Mobile, IoT, and Edge Applications: The first part of the Volume 3 of
this book elucidates various applications that benefit from embedded ML systems,
including applications for mobile, IoT, and edge computing.

• Chapter 1 explains how to employ CNNs for efficient indoor navigation on
battery-powered smartphones while leveraging WiFi signatures.

• Chapter 2 discusses a framework for performing an end-to-end NAS and model
compression for healthcare applications on embedded systems.

• Chapter 3 describes the challenges and opportunities of robust ML for power-
constrained wearable device applications, such as health monitoring, rehabili-
tation, and fitness.

• Chapter 4 highlights techniques to design the vision of Unmanned Aerial
Vehicles (UAVs) for aerial visual understanding, including data selection, NN
design, and model optimization.

• Chapter 5 presents optimization techniques for multi-modal ML-based health-
care applications, including an exploration of accuracy-performance trade-offs.

 3815 42571 a 3815 42571 a

 3628 45238 a 3628 45238 a

 3700 47905 a 3700 47905 a

 3910 51905 a 3910 51905 a

 3691 55905 a 3691 55905 a

Preface vii

• Chapter 6 provides a comprehensive survey of embedded ML systems for
enabling smart and sustainable healthcare applications.

• Chapter 7 proposes a middleware framework that uses reinforcement learning
to decide if the processing should be performed in local or offload processing
mode.

Part II – Cyber-Physical Applications: The second part of the Volume 3 of this
book presents examples of cyber-physical applications that benefit from embedded
ML systems.

• Chapter 8 discusses an adaptive context-aware anomaly detection method for
fog computing by employing Long-Short Term Memory (LSTM)-based NNs
and Gaussian estimator.

• Chapter 9 explores different ML algorithms to perform various tasks in
Autonomous Cyber-Physical Systems, such as robotic vision and robotic
planning.

• Chapter 10 presents a framework for efficient ML-based perception with
Advanced Driver Assistance Systems (ADAS) for automotive cyber-physical
systems.

• Chapter 11 describes a DL-based anomaly detection framework in automotive
cyber-physical systems by utilizing a Gated Recurrent Unit (GRU)-based
recurrent autoencoder network.

• Chapter 12 discusses an embedded system architecture for infrastructure
inspection using UAVs based on ML algorithms.

Part III – Security, Privacy, and Robustness of Embedded ML: Embedded ML
systems should be trustworthy to produce correct outputs without any privacy leaks.
Otherwise, their processing may lead to wrong outputs, undesired behavior, and
data leakage. To address this, the third part of the Volume 3 of this book presents
techniques for mitigating security and privacy threats, and improving the robustness
of embedded ML systems.

• Chapter 13 discusses the vulnerability of deep reinforcement learning against
backdoor attacks in autonomous vehicles.

• Chapter 14 analyzes the vulnerability of a CNN-based indoor localization on
embedded devices against access point attacks, then proposes a methodology
for mitigating the attacks.

• Chapter 15 studies the impact of noise in the data input on the DNN accuracy,
then provides a suitable framework for analyzing the impact of noise on DNN
properties.

• Chapter 16 proposes techniques for mitigating backdoor attacks on DNNs by
employing two off-line novelty detection models to collect samples that are
potentially poisoned.

• Chapter 17 highlights the robustness of DNN acceleration on analog crossbar-
based IMC against adversarial attacks and discusses energy-efficient attack
mitigation techniques.

 3883 -307 a 3883 -307 a

 3712 2360 a 3712 2360 a

 3741 12414 a 3741 12414 a

 3997 16414 a 3997 16414 a

 3964 20414 a 3964 20414 a

 3692 24414 a 3692 24414 a

 4007 28414 a 4007 28414 a

 3732 41135 a 3732 41135 a

 3744 43801 a 3744 43801
a

 3681 47801 a 3681 47801 a

 3732 51801 a 3732 51801 a

 3687 55801 a 3687 55801
a

viii Preface

• Chapter 18 provides an overview of adversarial attacks and security threats on
ML algorithms for edge computing, including DNNs, CapsNets, and SNNs.

• Chapter 19 investigates different challenges for achieving trustworthy embed-
ded ML systems, including robustness to errors, security against attacks, and
privacy protection.

• Chapter 20 presents a systematic evaluation of backdoor attacks on DL-based
systems in various scenarios, such as image, sound, text, and graph analytics
domains.

• Chapter 21 discusses different error-resilience characteristics of DNN models
and leverages these intrinsic characteristics for mitigating reliability threats in
DL-based systems.

We hope this book provides a comprehensive review and useful information on the
recent advances in embedded machine learning for cyber-physical, IoT, and edge
computing applications.

Fort Collins, CO, USA Sudeep Pasricha
Abu Dhabi, UAE Muhammad Shafique
September 1, 2023

 3685 -307 a 3685 -307 a

 3716 2360 a 3716 2360 a

 3713 6360 a 3713 6360 a

 3729 10360 a 3729 10360 a

Acknowledgments

This book would not be possible without the contributions of many researchers and
experts in the field of embedded systems, machine learning, IoT, edge platforms, and
cyber-physical systems. We would like to gratefully acknowledge the contributions
of Rachmad Putra (Technische Universität Wien), Muhammad Abdullah Hanif
(New York University, Abu Dhabi), Febin Sunny (Colorado State University), Asif
Mirza (Colorado State University), Mahdi Nikdast (Colorado State University),
Ishan Thakkar (University of Kentucky), Maarten Molendijk (Eindhoven Uni-
versity of Technology), Floran de Putter (Eindhoven University of Technology),
Henk Corporaal (Eindhoven University of Technology), Salim Ullah (Technische
Universität Dresden), Siva Satyendra Sahoo (Technische Universität Dresden),
Akash Kumar (Technische Universität Dresden), Arnab Raha (Intel), Raymond
Sung (Intel), Soumendu Ghosh (Purdue University), Praveen Kumar Gupta (Intel),
Deepak Mathaikutty (Intel), Umer I. Cheema (Intel), Kevin Hyland (Intel), Cormac
Brick (Intel), Vijay Raghunathan (Purdue University), Gokul Krishnan (Arizona
State University), Sumit K. Mandal (Arizona State University), Chaitali Chakrabarti
(Arizona State University), Jae-sun Seo (Arizona State University), Yu Cao (Ari-
zona State University), Umit Y. Ogras (University of Wisconsin, Madison), Ahmet
Inci (University of Texas, Austin), Mehmet Meric Isgenc (University of Texas,
Austin), and Diana Marculescu (University of Texas, Austin), Rehan Ahmed
(National University of Sciences and Technology, Islamabad), Muhammad Zuhaib
Akbar (National University of Sciences and Technology, Islamabad), Lois Orosa
(ETH Zürich, Skanda Koppula (ETH Zürich), Konstantinos Kanellopoulos (ETH
Zürich), A. Giray Yağlikçi (ETH Zürich), Onur Mutlu (ETH Zürich), Saideep Tiku
(Colorado State University), Liping Wang (Colorado State University), Xiaofan
Zhang (University of Illinois Urbana-Champaign), Yao Chen (University of Illinois
Urbana-Champaign), Cong Hao (University of Illinois Urbana-Champaign), Sitao
Huang (University of Illinois Urbana-Champaign), Yuhong Li (University of Illinois
Urbana-Champaign), Deming Chen (University of Illinois Urbana-Champaign),
Alexander Wendt (Technische Universität Wien), Horst Possegger (Technische
Universität Graz), Matthias Bittner (Technische Universität Wien), Daniel Schnoell
(Technische Universität Wien), Matthias Wess (Technische Universität Wien),

ix

x Acknowledgments

Dušan Malić (Technische Universität Graz), Horst Bischof (Technische Universität
Graz), Axel Jantsch (Technische Universität Wien), Floran de Putter (Eindhoven
University of Technology), Alberto Marchisio (Technische Universitat Wien),
Fan Chen (Indiana University Bloomington), Lakshmi Varshika Mirtinti (Drexel
University), Anup Das (Drexel University), Supreeth Mysore Shivanandamurthy
(University of Kentucky), Sayed Ahmad Salehi (University of Kentucky), Biresh
Kumar Joardar (University of Houston), Janardhan Rao Doppa (Washington State
University), Partha Pratim Pande (Washington State University), Georgios Zervakis
(Karlsruhe Institute of Technology), Mehdi B. Tahoori (Karlsruhe Institute of Tech-
nology), Jörg Henkel (Karlsruhe Institute of Technology), Zheyu Yan (University of
Notre Dame), Qing Lu (University of Notre Dame), Weiwen Jiang (George Mason
University), Lei Yang (University of New Mexico), X. Sharon Hu (University of
Notre Dame), Jingtong Hu (University of Pittsburgh), Yiyu Shi (University of Notre
Dame), Beatrice Bussolino (Politecnico di Torino), Alessio Colucci (Technische
Universität Wien), Vojtech Mrazek (Brno University of Technology), Maurizio
Martina (Politecnico di Torino), Guido Masera (Politecnico di Torino), Ji Lin (Mas-
sachusetts Institute of Technology), Wei-Ming Chen (Massachusetts Institute of
Technology), Song Han (Massachusetts Institute of Technology), Yawen Wu (Uni-
versity of Pittsburgh), Yue Tang (University of Pittsburgh), Dewen Zeng (University
of Notre Dame), Xinyi Zhang (University of Pittsburgh), Peipei Zhou (University of
Pittsburgh), Ehsan Aghapour (University of Amsterdam), Yujie Zhang (National
University of Singapore), Anuj Pathania (University of Amsterdam), Tulika Mitra
(National University of Singapore), Hiroki Matsutani (Keio University), Keisuke
Sugiura (Keio University), Soonhoi Ha (Seoul National University), Donghyun
Kang (Seoul National University), Ayush Mittal (Colorado State University),
Bharath Srinivas Prabakaran (Technische Universität Wien), Ganapati Bhat (Wash-
ington State University), Dina Hussein (Washington State University), Nuzhat
Yamin (Washington State University), Rafael Makrigiorgis (University of Cyprus),
Shahid Siddiqui (University of Cyprus), Christos Kyrkou (University of Cyprus),
Panayiotis Kolios (University of Cyprus), Theocharis Theocharides (University
of Cyprus), Anil Kanduri (University of Turku), Sina Shahhosseini (University
of California, Irvine), Emad Kasaeyan Naeini (University of California, Irvine),
Hamidreza Alikhani (University of California, Irvine), Pasi Liljeberg (University of
Turku), Nikil Dutt (University of California, Irvine), Amir M. Rahmani (University
of California, Irvine), Sizhe An (University of Wisconsin-Madison), Yigit Tuncel
(University of Wisconsin-Madison), Toygun Basaklar (University of Wisconsin-
Madison), Aditya Khune (Colorado State University), Rozhin Yasaei (University
of California, Irvine), Mohammad Abdullah Al Faruque (University of California,
Irvine), Kruttidipta Samal (University of Nebraska, Lincoln), Marilyn Wolf (Univer-
sity of Nebraska, Lincoln), Joydeep Dey (Colorado State University), Vipin Kumar
Kukkala (Colorado State University), Sooryaa Vignesh Thiruloga (Colorado State
University), Marios Pafitis (University of Cyprus), Antonis Savva (University of
Cyprus), Yue Wang (New York University), Esha Sarkar (New York University),
Saif Eddin Jabari (New York University Abu Dhabi), Michail Maniatakos (New
York University Abu Dhabi), Mahum Naseer (Technische Universität Wien), Iram

Acknowledgments xi

Tariq Bhatti (National University of Sciences and Technology, Islamabad), Osman
Hasan (National University of Sciences and Technology, Islamabad), Hao Fu (New
York University), Alireza Sarmadi (New York University), Prashanth Krishna-
murthy (New York University), Siddharth Garg (New York University), Farshad
Khorrami (New York University), Priyadarshini Panda (Yale University), Abhiroop
Bhattacharjee (Yale University), Abhishek Moitra (Yale University), Ihsen Alouani
(Queen’s University Belfast), Stefanos Koffas (Delft University of Technology),
Behrad Tajalli (Radboud University), Jing Xu (Delft University of Technology),
Mauro Conti (University of Padua), and Stjepan Picek (Radboud University).

This work was partially supported by the National Science Foundation (NSF)
grants CCF-1302693, CCF-1813370, and CNS-2132385; by the NYUAD Center
for Interacting Urban Networks (CITIES), funded by Tamkeen under the NYUAD
Research Institute Award CG001, Center for Cyber Security (CCS), funded by
Tamkeen under the NYUAD Research Institute Award G1104, and Center for
Artificial Intelligence and Robotics (CAIR), funded by Tamkeen under the NYUAD
Research Institute Award CG010; and by the project “eDLAuto: An Automated
Framework for Energy-Efficient Embedded Deep Learning in Autonomous Sys-
tems,” funded by the NYUAD Research Enhancement Fund (REF). The opinions,
findings, conclusions, or recommendations presented in this book are those of the
authors and do not necessarily reflect the views of the National Science Foundation
and other funding agencies.

Contents

Part I Mobile, IoT, and Edge Application Use-Cases for
Embedded Machine Learning

Convolutional Neural Networks for Efficient Indoor Navigation
with Smartphones . 3
Saideep Tiku, Ayush Mittal, and Sudeep Pasricha

An End-to-End Embedded Neural Architecture Search
and Model Compression Framework for Healthcare Applications
and Use-Cases . 21
Bharath Srinivas Prabakaran and Muhammad Shafique

Robust Machine Learning for Low-Power Wearable Devices:
Challenges and Opportunities . 45
Ganapati Bhat, Dina Hussein, and Nuzhat Yamin

Efficient Deep Vision for Aerial Visual Understanding . 73
Rafael Makrigiorgis, Shahid Siddiqui, Christos Kyrkou, Panayiotis Kolios,
and Theocharis Theocharides

Edge-Centric Optimization of Multi-modal ML-Driven eHealth
Applications . 95
Anil Kanduri, Sina Shahhosseini, Emad Kasaeyan Naeini,
Hamidreza Alikhani, Pasi Liljeberg, Nikil Dutt, and Amir M. Rahmani

A Survey of Embedded Machine Learning for Smart
and Sustainable Healthcare Applications . 127
Sizhe An, Yigit Tuncel, Toygun Basaklar, and Umit Y. Ogras

Reinforcement Learning for Energy-Efficient Cloud Offloading
of Mobile Embedded Applications . 151
Aditya Khune and Sudeep Pasricha

xiii

xiv Contents

Part II Cyber-Physical Application Use-Cases for Embedded
Machine Learning

Context-Aware Adaptive Anomaly Detection in IoT Systems 177
Rozhin Yasaei and Mohammad Abdullah Al Faruque

Machine Learning Components for Autonomous Navigation Systems 201
Kruttidipta Samal and Marilyn Wolf

Machine Learning for Efficient Perception in Automotive
Cyber-Physical Systems . 233
Joydeep Dey and Sudeep Pasricha

Machine Learning for Anomaly Detection in Automotive
Cyber-Physical Systems . 253
Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

MELETI: A Machine-Learning-Based Embedded System
Architecture for Infrastructure Inspection with UAVs. 285
Marios Pafitis, Antonis Savva, Christos Kyrkou, Panayiotis Kolios,
and Theocharis Theocharides

Part III Security, Privacy and Robustness for Embedded Machine
Learning

On the Vulnerability of Deep Reinforcement Learning
to Backdoor Attacks in Autonomous Vehicles . 315
Yue Wang, Esha Sarkar, Saif Eddin Jabari, and Michail Maniatakos

Secure Indoor Localization on Embedded Devices with Machine
Learning . 343
Saideep Tiku and Sudeep Pasricha

Considering the Impact of Noise on Machine Learning Accuracy 377
Mahum Naseer, Iram Tariq Bhatti, Osman Hasan,
and Muhammad Shafique

Mitigating Backdoor Attacks on Deep Neural Networks . 395
Hao Fu, Alireza Sarmadi, Prashanth Krishnamurthy, Siddharth Garg,
and Farshad Khorrami

Robustness for Embedded Machine Learning Using In-Memory
Computing . 433
Priyadarshini Panda, Abhiroop Bhattacharjee, and Abhishek Moitra

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 463
Alberto Marchisio, Muhammad Abdullah Hanif, and Muhammad Shafique

On the Challenge of Hardware Errors, Adversarial Attacks
and Privacy Leakage for Embedded Machine Learning . 497
Ihsen Alouani

Contents xv

A Systematic Evaluation of Backdoor Attacks in Various Domains 519
Stefanos Koffas, Behrad Tajalli, Jing Xu, Mauro Conti, and Stjepan Picek

Deep Learning Reliability: Towards Mitigating Reliability
Threats in Deep Learning Systems by Exploiting Intrinsic
Characteristics of DNNs . 553
Muhammad Abdullah Hanif and Muhammad Shafique

Index . 569

Part I
Mobile, IoT, and Edge Application
Use-Cases for Embedded Machine

Learning

Convolutional Neural Networks for
Efficient Indoor Navigation
with Smartphones

Saideep Tiku, Ayush Mittal, and Sudeep Pasricha

1 Introduction

Contemporary outdoor location-based services have transformed how people nav-
igate, travel, and interact with their surroundings. Emerging indoor localization
techniques have the potential to extend this outdoor experience across indoor
locales. Beyond academics, many privately funded providers in the industry are
focusing on indoor location-based services to improve customer experience. For
instance, Google can suggest products to its users through targeted indoor location-
based advertisements [1]. Stores such as Target in the United States are beginning to
provide indoor localization solutions to help customers locate products in a store and
find their way to these products [2]. Services provided by these companies combine
GPS, cell towers, and Wi-Fi data to estimate the user’s location. Unfortunately,
in the indoor environment where GPS signals cannot penetrate building walls, the
accuracy of these geo-location services can be in the range of tens of meters, which
is insufficient in many cases [3].

Radio signals such as Bluetooth, ultra-wideband (UWB) [4], and radio frequency
identification (RFID) [5, 6] are commonly employed for the purpose of indoor
localization. The key idea is to use qualitative characteristics of radio signals (e.g.,
signal strength or triangulation) to estimate user location relative to a radio beacon
(wireless access point). These approaches suffer from multipath effects, signal
attenuation, and noise-induced interference [8]. Also, as these techniques require
specialized wireless radio beacons to be installed in indoor locales, they are costly
and thus lack scalability for wide-scale deployment.

S. Tiku (�) · A. Mittal · S. Pasricha
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: saideep@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_1

3

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:saideep@colostate.edu
mailto:saideep@colostate.edu

 10009 56845 a 10009 56845
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

4 S. Tiku et al.

Wi-Fi-based fingerprinting is perhaps the most popular radio-signal-based indoor
localization technique being explored today. Wi-Fi is an ideal radio signal source for
indoor localization as most public or private buildings are pre-equipped with Wi-
Fi access points (APs). Lightweight middleware-based fingerprinting frameworks
have been shown to run in the background to deliver location-based updates on
smartphones [29, 37]. Fingerprinting with Wi-Fi works by first recording the
strength of Wi-Fi radio signals in an indoor environment at different locations. Then,
a user with a smartphone can capture Wi-Fi received signal strength indication
(RSSI) data in real-time and compare it to previously recorded (stored) values to
estimate their location in that environment. Fingerprinting techniques can deliver
an accuracy of 6–8 m [28], with accuracy improving as the density of APs
increases. However, in many indoor environments, noise and interference in the
wireless spectrum (e.g., due to other electronic equipment, movement of people,
and operating machinery) can reduce this accuracy. Combining fingerprinting-based
frameworks with dead reckoning can improve this accuracy somewhat [8]. Dead
reckoning refers to a class of techniques where inertial sensor data (e.g., from
accelerometer and gyroscope) is used along with the previously known position
data to determine the current location. Unfortunately, dead reckoning is infamously
known to suffer from error accumulation (in inertial sensors) over time. Also, these
techniques are not effective for people using wheelchairs or moving walkways.

The intelligent application of machine learning (ML) techniques can help to
overcome noise and uncertainty during fingerprinting-based localization [8]. While
traditional ML techniques work well at approximating simpler input–output func-
tions, computationally intensive deep learning models are capable of dealing with
more complex input–output mappings and can deliver better accuracy. Middleware-
based offloading [30] and energy enhancement frameworks [31, 32, 37] may be a
route to explore for computation and energy-intensive indoor localization services
on smartphones. Furthermore, with the increase in the available computational
power on mobile devices, it is now possible to deploy deep learning techniques
such as convolutional neural networks (CNNs) on smartphones.

These are a special form of deep neural networks (DNNs) that are purposely
designed to for image-based input data. CNNs are well known to automatically
identify high-level features in the input images that have the heaviest impact
on the final output. This process is known as feature learning. Prior to deep
learning, feature learning was an expensive and time-intensive process that had
to be conducted manually. CNN has been extremely successful in complex image
classification problems and is finding applications in many emerging domains, e.g.,
self-driving cars [27].

In this chapter, we discuss an efficient framework that uses CNN-based Wi-
Fi fingerprinting to deliver a superior level of indoor localization accuracy to a
user with a smartphone. Our approach utilizes widely available Wi-Fi APs without
requiring any customized/expensive infrastructure deployments. The framework
works on a user’s smartphone, within the computational capabilities of the device,
and utilizes the radio interfaces for efficient fingerprinting-based localization. The
main novel contributions of this chapter can be summarized as follows:

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 5

• We discuss a newly developed technique to extract images out of location
fingerprints, which are then used to train a CNN that is designed to improve indoor
localization robustness and accuracy.

• We implemented a hierarchical architecture to scale the CNN, so that our
framework can be used in the real world where buildings can have large numbers
of floors and corridors.

• We performed extensive testing of our algorithms with the state of the art across
different buildings and indoor paths, to demonstrate the effectiveness of our
proposed framework.

2 Related Works

Various efforts have been made to overcome the limitations associated with indoor
localization. In this section, we summarize a few crucial efforts toward the same.

Numerous RFID-based [5, 6] indoor localization solutions that use proximity-
based estimation techniques have been proposed. But the hardware expenses of
these efforts increase dramatically with increasing accuracy requirements. Also,
these approaches cannot be used with smartphones and require the use of specialized
hardware. Indoor localization systems that use UWB [4] and ultrasound [10] have
similar requirements for additional (costly) infrastructure and a lack of compatibility
for use with commodity smartphones.

Triangulation-based methods, such as [11], use multiple antennas to locate
a person or object. But these techniques require several antennas and regular
upkeep of the associated hardware. Most techniques therefore favor using the more
lightweight fingerprinting approach, often with Wi-Fi signals. UJIIndoorLoc [7]
describes a technique to create a Wi-Fi fingerprint database and employs a k-nearest
neighbor (KNN)-based model to predict location. Their average accuracy using
KNN is 7.9 m. Given the current position (using fingerprinting) of a user walking in
the indoor environment, pedestrian dead reckoning can be used to track the user’s
movement using a combination of microelectromechanical systems (MEMs)-based
motion sensors ubiquitously found within contemporary smartphones and other
wearable electronics. Dead reckoning techniques use the accelerometer to estimate
the number of steps, a gyroscope for orientation, and a magnetometer to determine
the heading direction. Such techniques have been employed in [12, 26] but have
shown to deliver poor localization accuracy results when used alone.

Radar [12] and IndoorAtlas [26] proposed using hybrid indoor localization
techniques. Radar [12] combines inertial sensors (dead reckoning) with Wi-Fi signal
propagation models, whereas Indoor Atlas [26] combines information from several
sensors such as magnetic, inertial, and camera sensors, for localization. LearnLoc
[8] shallow feed-forward neural network models, dead reckoning techniques, and
Wi-Fi fingerprinting to trade-off indoor localization accuracy and energy efficiency
during localization on smartphones. Similar to LearnLoc, more recent works focus
on optimizing and adapting light-weight machine learning techniques for the

6 S. Tiku et al.

purpose of fingerprinting-based indoor localization [28, 34–36]. However, all such
techniques are limited by their ability to identify and match complex pattern within
RSSI fingerprints. Additionally, a considerable amount of effort needs to be placed
into the preprocessing, feature selection, and the tuning of the underlying model.
Given these challenges, there is need of robust methodologies and algorithms for
the purpose of fingerprinting-based indoor localization.

A few efforts have started to consider deep learning to assist with indoor
localization. The work in [13] presents an approach that uses DNNs with Wi-Fi
fingerprinting. The accuracy of the DNN is improved by using a hidden Markov
model (HMM). The HMM takes temporal coherence into account and maintains
a smooth transition between adjacent locations. But our analysis shows that the
fine location prediction with the HMM fails in cases such as when moving back
on the same path or taking a sharp turn. HMM predictions are also based on
the previous position acquired through the DNN and, hence, can be prone to
error accumulation. DeepFi [14] and ConFi [15] propose approaches that use the
channel state information (CSI) of Wi-Fi signals to create fingerprints. But the
CSI information in these approaches was obtained through the use of specialized
hardware attached to a laptop. None of the mobile devices available today have the
ability to capture CSI data. Due to this limitation, it is not feasible to implement
these techniques on smartphones. Deep belief networks (DBNs) [16] have also been
used for indoor localization, but the technology is based on custom UWB beacons
that lead to very high implementation cost.

In summary, most works discussed so far either have specialized hardware
requirements or are not designed to work on smartphones. Also, our real-world
implementation and analysis concluded that the abovementioned frameworks slow
down as they become resource intensive when being scaled to cover large buildings
with multiple floors and corridors.

The framework discussed in this chapter, CNNLOC, overcomes the shortcomings
of these state-of-the-art indoor localization approaches and was first presented
in [33]. CNNLOC creates input images by using RSSI of Wi-Fi signals that are
then used to train a CNN model, without requiring any specialized hardware/in-
frastructure. CNNLOC is easily deployable on current smartphones. The proposed
framework also integrates a hierarchical scheme to enable scalability for large
buildings with multiple floors and corridors/aisles.

3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specialized form of neural networks
(NNs) that are designed for the explicit purpose of image classification [9]. They are
highly resilient to noise in the input data and have shown to deliver excellent results
for complex image classification tasks. The smallest unit of any neural network is

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 7

a perceptron and is inspired by the biological neuron present in the human brain. A
perceptron is defined by the following equation:

y =
n∑

i=1

wixi + w0 (1)

Here, y is the output, which is a weighted sum of the inputs xi, with a bias (w0).
NNs have interconnected layers, and in each layer, there are several perceptrons,
each with its own tunable weights and biases. Each layer receives some input,
executes a dot product, and passes it to the output layer or the hidden layer in front
of it [17]. An activation function is applied to the output y, limiting the range of
values that it can take and establishes an input–output mapping defined by logistic
regression. The most common activation functions used are sigmoid and tanh
functions. The goal of an NN is to approximate a functional relationship between
a set of inputs and outputs (training phase). The resulting NN then represents the
approximated function that is used to make predictions for any given input (testing
phase).

While an NN often contains a small number of hidden layers sandwiched
between the input and output layer, a deep neural network (DNN) has a very large
number of hidden layers. DNNs have a much higher computational complexity
but in turn are also able to deliver very high accuracy. CNNs are a type of DNN
that include several specialized NN layers, where each layer may serve a unique
function. CNN classifiers are used to map input data to a finite set of output
classes. For instance, given different animal pictures, a CNN model can be trained
to categorize them into different classes such as cats and dogs. CNNs also make use
of rectified linear units (ReLUs) as their activation function, which allows them to
handle nonlinearity in the data.

In the training phase, our CNN model uses a stochastic gradient descent (SGD)
algorithm. Adam [18] is an optimized variant of SGD and is used to optimize the
learning process. The algorithm is designed to take advantage of two well-known
techniques: RMSprop [19] and AdaGrad [20]. SGD maintains a constant learning
rate for every weight update in the network. In contrast, Adam employs an adaptive
learning rate for each network weight, with the learning rate being adapted as the
training progresses. RMSprop uses the mean (first-order moment) of past-squared
gradients and adjusts the weights based on how fast the gradient changes. Adam,
to optimize the process, uses the variance (second-order moment) of past gradients
and adjusts the weights accordingly.

The structure of the CNN in CNNLOC is inspired from the well-known CNN
architectures, LeNet [21] and AlexNet [22]. Our CNN architecture is shown in Fig.
1. For the initial set of layers, our model has 2-D convolutional layer, followed by
dense layers and culminates in an output layer. The 2-D convolutional layer works
by convolving a specific region of the input image at a time. This region is known as
a filter. The filter is shown by a rectangle (red-dotted lines). Each layer performs a
convolution of a small region of the input image with the filter and feeds the result to

8 S. Tiku et al.

Fig. 1 CNN architecture

the ReLu activation function. Therefore, we refer to each layer as [Conv2D-ReLu].
To capture more details from the input image we can use a larger number of filters.
For each filter, we get a feature map. For the first layer of [Conv2D-ReLU], we used
32 filters to create a set of 32 feature maps. We used five hidden layers of [Conv2D-
ReLU], but only two are shown for brevity. The number of filters and layers is
derived through empirical analysis as discussed in Sect. 4.4. A “stride” parameter
determines the quantity of pixels that a filter will shift, to arrive at a new region of
the input image to process. The stride and other “hyperparameters” of our CNN are
further discussed in Sect. 4.4. In the end, a fully connected layer helps in identifying
the individual class scores (in our case each class is a unique location). The class
with the highest score is selected as the output. In this layer, all the neurons are
connected to the neurons in the previous layer (green-dotted lines).

In a conventional CNN, a pooling layer is used to down-sample the image when
the size of the input image is too big. In our case, the input image is small, and
therefore, we do not need this step. We want our CNN to learn all the features from
the entire image.

4 CNNLOC Framework: Overview

4.1 Overview

An overview of our CNNLOC indoor localization framework is shown in Fig.
2. In the framework, we utilize the available Wi-Fi access points (APs) in an
indoor environment to create an RSSI fingerprint database. Our framework is
divided into two phases. The first phase involves RSSI data collection, cleaning,
and preprocessing. This preprocessed data is used to create a database of images.
Each image represents a Wi-Fi RSSI-based signature that is unique to a location
label. Each location label is further associated with an x-y coordinate. This database
of images is used to train a CNN model. The trained model is deployed on to a
smartphone. In the second phase, or the online phase, real-time AP data is converted

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 9

into an image and then fed to the trained CNN model to predict the location of
the user. The CNN model predicts the closest block that was sampled as the users’
location. A detailed description of the preprocessing is described in the next section.

4.2 Preprocessing of RSSI Data

The process of image database creation begins with the collection of RSSI finger-
prints as shown in the top half of Fig. 2. The RSSI for various APs are captured along
with the corresponding location labels and x-y coordinates. Each AP is uniquely
identified using its unique media access control (MAC) address. We only maintain
information for known Wi-Fi APs and hence clean the captured data. This ensures
that our trained model is not polluted by unstable Wi-Fi APs. On the RSSI scale,
values typically range between −99 dB (lowest) and − 0 dB (highest). To indicate
that a specific AP is unreachable, −100 is used, or no signal is received from it. We
normalize the RSSI values on a scale from 0 and 1, where 0 represents no signal and
represents the strongest signal.

Assume that while fingerprinting an indoor location, a total of K APs are
discovered at N unique locations. These combine to form a two-dimensional matrix
of size N × K. Then, the normalized RSSI fingerprint at the Nth location, denoted
as lN , is given by a row vector [r1, r2, . . . , rK], denoted by RN . Therefore, each
column vector, [w1, w2, . . . , wN] would represent the normalized RSSI values of
the Kth AP at all N locations, denoted by WK . We calculate the Pearson correlation
coefficient (PCC) [23] between each column vector WK and the location vector
[l1, l2, . . . , lN]. The result is a vector of correlation values denoted as C. PCC is
useful in identifying the most significant APs in the database that impact localization

Fig. 2 An overview of the CNNLOC framework

10 S. Tiku et al.

accuracy. The coefficient values range across a scale of −1 to +1. If the relationship
is −1, it represents a strong negative relationship, whereas +1 represents a strong
positive relationship, and 0 implies that the input and output have no relationship.

We only consider the magnitude of the correlation as we are only concerned
with the strength of the relationship. APs with very low correlation with the output
coordinates are not useful for the purpose of indoor localization. Therefore, we can
remove APs whose correlation to the output coordinates is below a certain threshold
(|PCC| < 0.3). This removes inconsequential APs from the collected Wi-Fi data
and helps reduce the computational workload of the framework. The normalized
RSSI data from the remaining high-correlation APs is used to create an RSSI image
database, as explained in the next section.

4.3 RSSI Image Database

In this section, we present our approach to convert RSSI data for a given location
into a gray scale image. A collection of these images for all fingerprinted locations
forms the RSSI image database. To form gray scale images, a Hadamard product
(HP) [24] is calculated for each R and C. HP is defined as an element wise
multiplication of two arrays or vectors:

HP =
N∑

i=1

Ri ◦ C (2)

The dimension of each HP is 1 × K. Then, the HP matrix is reshaped into a p × p
matrix, which represents a 2-D image as shown in Fig. 3. The HP is padded with
zeros in the case that K is less than p2. Therefore, we now have a set of N images of
size p × p in our database. These images are used to train the CNNs.

Figure 3 shows two images of size 8 × 8 created for two unique fingerprints
(signatures) associated with two different locations. Each pixel value is scaled on a
scale of 0–1. The patterns in each of these images will be unique to a location and
change slightly as we move along an indoor path.

In Eq. (2), the product of PCC and normalized RSSI value for each AP is used
to form a matrix. Its purpose is to promote the impact of the APs that are highly
correlated to fingerprinted locations. Even though there may be attenuation of Wi-Fi
signals due to multipath fading effects, the image may fade but will likely still have
the pattern information retained. These patterns that are unique to every location
can be easily learned by a CNN. The hyperparameters and their use in CNNLOC are
discussed next.

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 11

Fig. 3 Snapshot of CNNLOC’s offline phase application showing contrasting the images created
for two unique locations. The green icons represent locations that are fingerprinted along an indoor
path. The two locations shown are 10 m apart

4.4 Hyperparameters

The accuracy of the CNN model depends on the optimization of the hyperpa-
rameters that control its architecture, which is the most important factor in the

12 S. Tiku et al.

performance of CNN. A smaller network may not perform well, and a larger
network may be slow and prone to overfitting. There are no defined rules in deep
learning that help in estimating the appropriate hyperparameters and therefore need
to be empirically found through an iterative process. The estimated hyperparameters
are also highly dependent on the input dataset. For the sake of repeatability, we
discuss some the key hyperparameters of our CNN model below:

• Number of hidden layers: A large number of hidden layers lead to longer execution
times and conversely, fewer hidden layers may produce inaccurate results due to
the challenges associated with vanishing gradients. We found that five layers of
[Conv2D-ReLU] worked best for our purposes.

• Size of filter: This defines the image area that the filter considers at a time, before
moving to the next region of the image. A large filter size might aggregate a large
chunk of information in one pass. The optimum filter size in our case was found
to be 2 × 2.

• Stride size: The number of pixels a filter moves by is dictated by the stride size.
We set it to 1 because the size of our image is very small, and we do not wish to
lose any information.

• Number of filters: Each filter extracts a distinct set of features from the input to
construct different feature maps. Each feature map holds unique information about
the input image. The best results were obtained if we started with a lower number
of filters and increased them in the successive layers to capture greater uniqueness
in the patterns. There were 32 filters in the first layer and were doubled for each
subsequent layer up to 256 filters such that both the fourth and fifth layer had 256
filters.

4.5 Integrating Hierarchy for Scalability

We architect our CNNLOC framework to scale up to larger problem sizes than
that handled by most prior efforts. Toward this, we enhanced our framework by
integrating a hierarchical classifier. The resulting hierarchical classifier employs a
combination of smaller CNN modules, which work together to deliver a location
prediction. Figure 4 shows the hierarchical classification structure of the framework.
Each CNN model has a label that starts with C. The C1 model classifies the floor
numbers, and then in the next layer, C20 or C21 identifies the corridor on that floor.
Once the corridor is located, one of the CNNs from the third layer (C30–C35) will
predict the fine-grain location of the user. This hierarchical approach can further be
extended across buildings.

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 13

Fig. 4 A general architecture for the hierarchical classifier

Table 1 Indoor paths used in
experiments

Path name Length (m) Shape

Library 30 U shape
Clark A 35 Semi-octagonal
Physics 28 Square shape

5 Experiments

5.1 Experimental Setup

The following sections describe the CNNLOC implementation and experimental
results that were conducted on three independent indoor paths as described in Table
1. The overall floor plan of the path is divided into a grid and tiles of interest are
labeled sequentially from 1 to N. For the purposes of this work, each square in
the grid has an area of 1 m2. Based on our analysis (not presented here), having
grid tiles of size smaller than 1 m2 did not lead to any improvements. Each of
these labeled tiles is then treated as a “class.” This allows us to formulate indoor
localization as a classification problem. Figure 5 shows an example of a path covered
in the library building floor plan with labeled squares. Each label further translates
into an x-y coordinate. Five Wi-Fi scans were conducted at each square during the
fingerprinting (training) phase.

5.2 Smartphone Implementation

An android application was built to collect Wi-Fi fingerprints (i.e., RSSI samples
from multiple APs at each location) and for testing. The application is compatible
with Android 6.0 and was tested on a Samsung Galaxy S6. After fingerprint data
collection, the data was preprocessed as described in the previous section for the
CNN model. The entire dataset is split into training and testing samples, so we can

14 S. Tiku et al.

Fig. 5 Library building path divided into a grid, with squares along the path labeled sequentially
from 1 to 30

check how well our models perform. We used one-fifth of the total samples for
testing, and four-fifth of the samples were used for training.

5.3 Experimental Results

We compared our CNNLOC indoor localization framework with three other indoor
localization frameworks from prior work. The first work we implemented is based
on the approach in [25] and employs support vector regression (SVR). The approach
forms one or more hyperplanes in a multidimensional space segregating similar data
point, which are then used for regression. The second work is based on the KNN
technique from [8], which is a nonparametric approach that is based on the idea
that similar input will have similar outputs. Lastly, we compare our work against a
DNN based approach [13] that improves upon conventional NNs by incorporating
a large number of hidden layers. All of these techniques supplement the Wi-
Fi fingerprinting approach with a machine learning model to provide robustness
against noise and interference effects. Our experiments in the rest of this section first
discuss the localization accuracy results for the techniques. Subsequently, we also
discuss results for the scalability of our framework using a hierarchical classification
enhancement approach. Lastly, we contrast the accuracy of our framework with that
reported by other indoor localization techniques.

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 15

Fig. 6 Path traced using different techniques at the Clark building path. Green and red traces
indicate actual and predicted paths respectively

5.3.1 Indoor Localization Accuracy Comparison

The overall indoor localization quality as experienced by a user is heavily impacted
by the stability of the predicted path that is traced over an indoor localization
session. In an attempt to evaluate this, we compare the paths traced by various indoor
localization frameworks as compared with the proposed CNNLOC framework.
Figure 6 shows the paths predicted by the four techniques, for the indoor path in
the Clark building. The green dots along the path represent the points where Wi-Fi
RSSI fingerprint samples were collected to create the training fingerprint dataset.
The distance between each of the green dots is 1 m. In the offline phase, the RSSI
fingerprint at each green dot is converted into an image. The online phase consists
of the user walking along this path, and the red lines in Fig. 6 represent the paths
predicted by the four techniques. It is observed that KNN [8] and SVR [25] stray
off the actual path the most, whereas DNN and CNNLOC perform much better.
This is likely because KNN and SVR are both regression-based techniques where

16 S. Tiku et al.

Fig. 7 Comparison of indoor localization techniques

the prediction is impacted by neighboring data points in the RSSI Euclidean space.
Two locations that have RSSI fingerprints that are very close to each other in the
Euclidian space might not be close to each other on the actual floor plan. This leads
to large localization errors, especially when utilizing regression-based approaches.
The transition from one location to another is smoother for CNN as it is able to
distinguish between closely spaced sampling locations due to our RSSI-to-image
conversion technique. The convolutional model is able to identify patterns within
individual RSSI images and classify them as locations. From Fig. 6, it is evident
that our CNNLOC framework produces stable predictions for the Clark path.

Figure 7 shows a bar graph that summarizes the average location estimation
error in meters for the various frameworks on the three different indoor floor
plans considered. We found that the KNN approach is the least reliable among all
techniques with a mean error of 5.5 m and large variations across the paths. The
SVR-based approach has a similar mean error as the KNN approach. The DNN-
based approach shows lower error across all of the paths. But it does not perform
consistently across all of the paths, and the mean error is always higher than that for
CNNLOC. This may be due to the fact that the filters in CNN are set up to focus on
the image with a much finer granularity than the DNN approach is capable of. We
also observe that all techniques perform the worst in the Physics department. This
is due to the fact that the path in the Physics department is near the entrance of the
building and has a lower density of Wi-Fi APs as compared with the other paths. The
Library and Clark paths have a higher density of Wi-Fi APs present; hence, better
accuracy can be achieved. Our proposed CNNLOC framework is the most reliable
framework with the lowest mean error of less than 2 m.

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 17

5.3.2 CNNLOC Scalability Analysis

The size and complexity of a deep learning model is directly correlated to number
of classes and associated dataset in use. The baseline formulation of our proposed
framework does not account for the increasing area of floor plan that needs to be
covered. To overcome this, we proposed a hierarchal approach for CNNLOC (Sect.
4.5). We consider a scenario when CNNLOC is required to predict a location inside
a building with two floors and with three corridors on each floor. The length of each
corridor is approximately 30 m. We combined several small CNNs (in our case 9
small CNNs), such that a smaller number of weights are associated with each layer
in the network than if a single larger CNN was used.

We first evaluated the accuracy of predictions, for CNNLOC with and without
the hierarchical classifier. For the first and second layer of the hierarchical classifier
(shown in Fig. 4), the accuracy is determined by the number of times the system
predicts the correct floor and corridor. We found that floors and corridors were
accurately predicted 99.67% and 98.36% of times, respectively. For the final
layer, we found that there was no difference in accuracy between the hierarchal
approach and the nonhierarchical approach. This is because in the last level, both
the approaches use the same model.

Figure 8 shows the benefits in terms of time taken to generate a prediction with
the hierarchical versus the nonhierarchical CNNLOC framework. We performed
our experiment for four walking scenarios (“runs”) in the indoor environment
(building with two floors and with three corridors on each floor). We found that the
hierarchical CNNLOC model only takes 2.42 ms to make a prediction on average,
whereas the nonhierarchical CNNLOC takes longer (3.4 ms). Thus, the proposed
hierarchical classifier represents a promising approach to reduce prediction time
due to the fewer number of weights in the CNN layers in the hierarchical approach,
which leads to fewer computations in real time.

5.3.3 Accuracy Analysis with Other Approaches

Our experimental results in the previous sections have shown that CNNLOC
delivers better localization accuracy over the KNN [8], DNN [13], and SVR [25]
frameworks. The UJIIndoorLoc [7] framework is reported to have an accuracy
of 4–7m. Our average accuracy is also almost twice that of RADAR [12]. If we
consider frameworks that used CSI (DeepFi [14] and ConFi [15]), our accuracy
is very close to both at just under 2 m. However, [14, 15] use special equipment
to capture CSI and cannot be used with mobile devices. In contrast, our proposed
CNNLOC framework is easy to deploy on today’s smartphones, does not require
any specialized infrastructure (e.g., custom beacons), and can be used in buildings
wherever Wi-Fi infrastructure preexists.

18 S. Tiku et al.

Fig. 8 A comparison of execution times for hierarchical and nonhierarchical versions the
CNNLOC framework

6 Conclusion

In this chapter, we discuss the CNNLOC framework [33] that uses Wi-Fi fin-
gerprints and convolutional neural networks (CNNs) for accurate and robust
indoor localization. We compared our work against three different state-of-the-art
indoor localization frameworks from prior work. Our framework outperforms these
approaches and delivers localization accuracy under 2 m. CNNLOC has the advan-
tage of being easily implemented without the overhead of expensive infrastructure
and is smartphone compatible. We also demonstrated how a hierarchical classifier
can improve the scalability of this framework. CNNLOC represents a promising
framework that can deliver reliable and accurate indoor localization for smartphone
users.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. How Google Maps Makes Money. (2022) [Online] https://www.investopedia.com/articles/
investing/061115/how-does-google-maps-makes-money.asp. Accessed 1 Apr 2022

2. Target Rolls Out Bluetooth Beacon Technology in Stores to Power New Indoor Maps in
its App. (2017) [Online] https://techcrunch.com/2017/09/20/target-rolls-out-bluetooth-beacon-
technology-in-stores-to-power-new-indoor-maps-in-its-app/. Accessed 1 Apr 2022

 20207 52835 a 20207 52835 a

https://www.investopedia.com/articles/investing/061115/how-does-google-maps-makes-money.asp

 8640 56156 a 8640 56156
a

https://techcrunch.com/2017/09/20/target-rolls-out-bluetooth-beacon-technology-in-stores-to-power-new-indoor-maps-in-its-app/

Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones 19

3. Case Study: Accuracy & Precision of Google Analytics Geolocation. (2017) [Online]
Available at: https://radical-analytics.com/case-study-accuracy-precision-of-google-analytics-
geolocation-4264510612c0. Accessed 1 Dec 2017

4. Ubisense Research Network. [Online] Available at: http://www.ubisense.net/. Accessed 1 Dec
2017

5. Jin, G., Lu, X., Park, M.: An indoor localization mechanism using active RFID tag. In:
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC). IEEE (2006)

6. Chen, Z., Wang, C.: Modeling RFID signal distribution based on neural network combined
with continuous ant colony optimization. Neurocomputing. 123, 354–361 (2014)

7. Torres-Sospedra, J., et al.: UJIIndoorLoc: a new multi-building and multi-floor database for
WLAN fingerprint-based indoor localization problems. In: IEEE Indoor Positioning and Indoor
Navigation (IPIN). IEEE (2014)

8. Pasricha, S., Ugave, V., Han, Q., Anderson, C.: LearnLoc: a framework for smart indoor
localization with embedded mobile devices. In: ACM/IEEE International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE (2015)

9. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M., Chen, S., Iyengar,
S.S.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv.
51(5), 1–36 (2019)

10. Borriello, G., Liu, A., Offer, T., Palistrant, C., Sharp, R.: WALRUS: wireless acoustic location
with room-level resolution using ultrasound. In: Mobile systems, applications, and services
(MobiSys). ACM (2005)

11. Yang, C., Shao, H.R.: WiFi-based indoor positioning. IEEE Commun. Mag. 53(3), 150–157
(2015)

12. Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and tracking
system. In: IEEE International Conference on Computer Communications (INFOCOM). IEEE
(2000)

13. Zhang, W., Liu, K., Zhang, W., Zhang, Y., Gu, J.: Deep neural networks for wireless
localization in indoor and outdoor environments. Neurocomputing. 194, 279–287 (2016)

14. Wang, X., Gao, L., Mao, S., Pandey, S.: DeepFi: deep learning for indoor fingerprinting using
channel state information. In: IEEE Wireless Communications and Networking Conference
(WCNC). IEEE (2015)

15. Chen, H., Zhang, Y., Li, W., Tao, X., Zhang, P.: ConFi: convolutional neural networks based
indoor WiFi localization using channel state information. IEEE Access. 5, 18066–18074
(2017)

16. Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: IEEE International
Conference on Intelligent Computing and Internet of Things (ICIT). IEEE (2015)

17. Stanford CNN Tutorial. [Online] Available at: http://cs231n.github.io/convolutional-networks.
Accessed 1 Apr 2022

18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference
on Learning Representations (ICLR) (2015)

19. RMSProp. [Online] https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Accessed 1 Apr 2022

20. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. ACM J. Mach. Learn. Res. 12, 2121–2159 (2011)

21. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE. 86(11), 2278–2324 (1998)

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems. Neural IPS 2012
(2012)

23. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Topics in Signal
Processing, vol. 2, pp. 1–4. Springer (2009)

24. Styan, G.: Hadamard products and multivariate statistical analysis. In: Linear Algebra and its
Applications, vol. 6, pp. 217–240. Elsevier (1973)

 4564 800 a 4564 800 a

https://radical-analytics.com/case-study-accuracy-precision-of-google-analytics-geolocation-4264510612c0

 18991 3014 a 18991 3014
a

 16982 40651 a 16982 40651 a

 7023 45079 a 7023 45079
a

20 S. Tiku et al.

25. Cheng, Y.K., Chou, H.J., Chang, R.Y.: Machine-learning indoor localization with access
point selection and signal strength reconstruction. In: IEEE Vehicular Technology Conference
(VTC). IEEE (2016)

26. IndoorAtlas. [Online] http://www.indooratlas.com/. Accessed 1 Apr 2022
27. Rausch, V., Hansen, A., Solowjow, E., Liu, C., Kreuzer, E., Hedrick, J.K.: Learning a deep

neural net policy for end-to-end control of autonomous vehicles. In: IEEE American Control
Conference (ACC). IEEE (2017)

28. Langlois, C., Tiku, S., Pasricha, S.: Indoor localization with smartphones: harnessing the sensor
suite in your pocket. IEEE Consum. Electron. 6(4), 70–80 (2017)

29. Tiku, S., Pasricha, S.: Energy-efficient and robust middleware prototyping for smart mobile
computing. In: IEEE International Symposium on Rapid System Prototyping (RSP). IEEE
(2017)

30. Khune, A., Pasricha, S.: Mobile network-aware middleware framework for energy-efficient
cloud offloading of smartphone applications. In: IEEE Consumer Electronics. IEEE (2017)

31. Donohoo, B., Ohlsen, C., Pasricha, S.: A middleware framework for application-aware and
user-specific energy optimization in smart Mobile devices. Journal Pervasive Mob. Comput.
20, 47–63 (2015)

32. Donohoo, B., Ohlsen, C., Pasricha, S., Anderson, C., Xiang, Y.: Context-aware energy
enhancements for smart mobile devices. IEEE Trans. Mob. Comput. 13(8), 1720–1732 (2014)

33. Mittal, A., Tiku, S., Pasricha, S.: Adapting convolutional neural networks for indoor localiza-
tion with smart mobile devices. In: ACM Great Lakes Symposium on VLSI (GLSVLSI). ACM
(2018)

34. Tiku, S., Pasricha, S., Notaros, B., Han, Q.: SHERPA: a lightweight smartphone heterogeneity
resilient portable indoor localization framework. In: IEEE International Conference on Embed-
ded Software and Systems (ICESS). IEEE (2019)

35. Tiku, S., Pasricha, S.: PortLoc: a portable data-driven indoor localization framework for
smartphones. IEEE Des. Test. 36(5), 18–26 (2019)

36. Tiku, S., Pasricha, S., Notaros, B., Han, Q.: A hidden markov model based smartphone
heterogeneity resilient portable indoor localization framework. J. Syst. Archit. 108, 101806
(2020)

37. Pasricha, S., Ayoub, R., Kishinevsky, M., Mandal, S.K., Ogras, U.Y.: A survey on energy
management for mobile and IoT devices. IEEE Des. Test. 37(5), 7–24 (2020)

 7825 3014 a 7825 3014
a

An End-to-End Embedded Neural
Architecture Search and Model
Compression Framework for Healthcare
Applications and Use-Cases

Bharath Srinivas Prabakaran and Muhammad Shafique

1 Introduction

As discussed in chapter “Massively Parallel Neural Processing Array (MPNA):
A CNN Accelerator for Embedded Systems”, deep learning has revolutionized
domains worldwide by improving machine understanding and has been used to
develop state-of-the-art techniques in fields like computer vision [15], speech
recognition and natural language processing [21], healthcare [9], medicine [49],
bioinformatics [20], etc. These developments are primarily driven by the rising
computational capabilities of modern processing platforms and the availability
of massive new annotated datasets that enable the model to learn the necessary
information. Fields like medicine and healthcare generate massive amounts of data,
in the order of hundreds of exabytes is the USA alone, which can be leveraged
by deep learning technologies to significantly improve a user’s quality of life and
obtain substantial benefits. Furthermore, healthcare is one of the largest revenue-
generating industries in the world, requiring contributions upward of .10% of the
country’s Gross Domestic Product (GDP) annually [4]. Countries like the United
States routinely spend up to .17.8% of their GDP on healthcare [35]. The global
health industry is expected to generate over .$10 trillion revenue, annually by 2022,
which is a highly conservative estimate as it does not consider the increasing global
elderly population percentages [47]. The rising global average life expectancy
is another byproduct of the substantial technological advancements in medicine
and healthcare [34]. The Internet of Things (IoT) phenomenon serves as an ideal

B. S. Prabakaran (�)
Institute of Computer Engineering, Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: bharath.prabakaran@tuwien.ac.at

M. Shafique
Engineering Division, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_2

21

 31368 2385 a 31368 2385 a

 885 52970 a 885 52970 a

mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at
mailto:bharath.prabakaran@tuwien.ac.at

 885 56845 a 885 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2
https://doi.org/10.1007/978-3-031-40677-5_2

22 B. S. Prabakaran and M. Shafique

Personalized
Health-CARE

Estimated Economic Impact of IoT Applications by 2025

Healthcare Industry Electricity
Urban Infrastructure Security Resource Extraction
Agriculture Vehicles Retail

41%
$ 1.1 – 2.5 Trillion

33%
$ 0.9 – 2.3 Trillion

$ 0.2 – 0.5 Trillion

4%

4%

4%

4%

1%

2%

7%

19%
$ 0.5 – 0.9

Trillion

Fig. 1 Breakdown of the estimated economic impact of Internet of Things applications by 2025;
an overview of the human bio-signals that can be monitored and analyzed for patient-specific care

opportunity that can be exploited by investigating its applicability in the healthcare
sector to offer more efficient and user-friendly services that can be used to improve
quality of life. The Internet of Medical Things (IoMT) market is expected to grow
exponentially to achieve an annual economic impact of .$1.1–$2.5 trillion by 2025,
which constitutes .41% of the impact of the complete IoT sector [29]. This includes
applications like personalized health monitoring, disease diagnostics, patient care,
and physiological signal, or bio-signal, monitoring, and analytics to recommend
person-specific lifestyle changes or health recommendations [2, 19], especially
by investing heavily in the capabilities and advancements of deep learning. A
breakdown of the estimated economic impact of IoT applications by the year 2025
and an overview of human bio-signals, which can be monitored and analyzed, are
presented in Fig. 1.

An overview of a few healthcare use-cases and applications is discussed next,
before moving on to the framework that can be used for exploring the deep
learning models that can be deployed for a given use-case, given its output quality
requirements and hardware constraints of the target execution platform.

1.1 Deep Learning in Healthcare: Potential Use-Cases and
Applications

Medical Imaging Deep learning has been largely investigated as a solution to
address research challenges in the computer vision and imaging domains due to
the availability of massive labeled and annotated datasets. Therefore, the primary
healthcare domain suitable for investigating the applicability of deep learning
would be medical imaging. Since various technologies like X-Rays, CT (Computed
Tomography) and MRI (Magnetic Resonance Imaging) scans, ultrasound, etc. are
regularly used by clinicians and doctors to help patients, deep learning can be highly

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 23

beneficial in such scenarios where they can be deployed as clinical assistants that
can aid in diagnostics and radiology.

Electronic Health Record Analysis Electronic Health Record (EHR) is a col-
lection of health data related to a patient across time, including their medical
history, current and past medications, allergies, immunization information, lab test
results, radiology imaging studies, age, weight, etc. These EHRs, from several
patients, are combined into a large pool, based on their demographics, to mine and
extract relevant information that can be used to devise new treatment strategies and
improve the health status of the patients. Deep learning techniques have successfully
demonstrated the ability to combine all this information to extract vital health
statistics, including the ability to predict a patient’s mortality.

Drug Discovery The processing capabilities of deep learning models can also
be leveraged on massive genomic, clinical, and population-level data to identify
potential drugs or compounds that can, “by-design,” explore associations with
existing cell signaling pathways, pharmaceutical and environmental interactions,
to identify cures for known health problems. For instance, the protein folding
problem, which had fazed the community for more than five decades, was recently
solved by the AlphaFold deep learning model, proposed by researchers from
Google [20]. This enables researchers to predict the structure of a protein complex,
at atomic granularity, using just its amino acid composition, which can further
enable scientists to identify compounds that can prevent the formation of lethal
proteins in hereditary medical conditions like Alzheimer’s or Parkinson’s.

Precision Medicine Genomic analysis, in combination with drug discovery
approaches, might be the key to develop the next generation of precise targeted
medical treatments, which improve the user’s quality of life. Understanding the
genetic capability of the underlying condition, such as the type of cancer, its ability
to reproduce, and the way it propagates, can enable scientists to better develop user-
specific treatment options. However, processing such large amounts of data can take
anywhere from weeks to months, which can be circumvent by deep learning models
to the order of hours, enabling such explorations.

Similarly, there are plenty of other healthcare applications, like real-time moni-
toring and processing of bio-signals, sleep apnea detection, detecting gait patterns,
genomic analysis, artificial intelligence-based chatbots and health assistants, and
many more, that can benefit by investigating the applicability of deep learning in
these use-cases (Table 1). We delve into the field of deep learning for healthcare,

Table 1 A summary of key state-of-the-art techniques in deep learning for healthcare

Deep learning in healthcare References

Medical imaging [1, 10, 15, 25, 27, 43]

Electronic health record analysis [18, 39, 45, 46, 50]

Drug discovery and precision medicine [7, 20, 24, 36, 38, 40, 42]

Others [17, 23, 37]

24 B. S. Prabakaran and M. Shafique

next, by presenting a comprehensive embedded neural architecture search and
model compression framework for healthcare applications and illustrate the benefits
by evaluating its efficacy on a bio-signal processing use-case.

2 Embedded Neural Architecture Search and Model
Compression Framework for Healthcare Applications

Figure 2 illustrates an overview of the deep neural network (DNN) model search
and compression framework for healthcare, which is composed of six key stages.
The framework considers (1) the user specifications and quality requirements, such
as the required prediction labels, output classes, expected accuracy or precision
of the model and (2) the hardware constraints of the target execution platform,
such as the available on-chip memory (MBs) and the maximum number of
floating-point operations (FLOPs) that can be executed per second to construct
the required dataset from the existing labeled annotations (more details provided
in Sect. 2.3) and explore the design space of DNN models that can be useful for the
application.

2.1 User Specifications and Requirements

The framework enables dynamic model exploration by restricting the output classes
of the DNN, based on the user requirements; besides the normal and anomalous
classes, the user might require an output class specific to the target use-case.
For instance, a hospital might require the model to classify X-Rays or CT scans
to explicitly detect cases of lung infection caused by the novel SARS-CoV-2
coronavirus as a separate classification. These instances can be included by the
framework to generate and explore DNN models specific to this case, given that the
corresponding annotated data is already present in the dataset used for construction.

The framework currently considers four metrics for evaluating the quality of a
model (Q), namely, Accuracy (A), Precision (P), Recall (R), and F1-score (F).
Accuracy of a model is defined as the ratio of correct classifications with respect
to the total number of classifications, Precision signifies the percentage of classified
items that are relevant, Recall is defined as the percentage of relevant items that
are classified correctly, and F1-score is used to evaluate the Recall and Precision
of a model by estimating their harmonic mean. The system designer can specify
a constraint in the framework using any of the abovementioned metrics, while
exploring the DNN models for the application to ensure that the models obtained
after exploration satisfy the required quality constraint. Evaluation with other use-
case specific metrics is orthogonal to these standards and can be easily incorporated
into the framework. These metrics are estimated as follows:

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 25

D
ee

p
Le

ar
ni

ng
 M

od
el

 T
ra

in
in

g
an

d
Ev

al
ua

tio
n

U
se

r S
pe

ci
fic

at
io

ns
/R

eq
ui

re
m

en
ts

Pl
at

fo
rm

 C
on

st
ra

in
ts

 (M
B

, F
LO

Ps
)

W
ea

ra
bl

es
/

M
ob

ile
s

4M
B,

 0
.1

 G
FL

O
Ps

C
lu

st
er

/G
PU

25
6

M
B,

 1
0

TF
LO

Ps

G
en

er
at

e
D

ee
p

N
eu

ra
l N

et
w

or
ks

Se
le

ct
iv

e
Ex

pl
or

at
io

n

Tr
ai

ni
ng

 a
nd

 e
va

lu
at

io
n

of

se
le

ct
ed

 n
et

w
or

k
m

od
el

s

G
en

et
ic

 A
lg

or
ith

m
s

To
ur

na
m

en
t;

N
SG

A-
II;

SP

EA
-2

; W
he

el
 R

ou
le

tte

O
pt

im
al

 M
od

el

Se
le

ct
io

n

Pa
re

to
-O

pt
im

al

N
et

w
or

ks

O
pt

im
al

 M
od

el

Se
le

ct
io

n
In

pu
t

Bl
oc

k 1

O
ut

pu
t

Bl
oc

k n

Bl
oc

k 2

0 0 0

O
ut

pu
t

In
pu

t

0 0 0

In
pu

ts
O

ut
pu

ts

D
at

as
et

 C
on

st
ru

ct
io

n

N
ew

 L
ab

el
s

¬
 E

xi
st

in
g

La
be

ls

Ad
di

ng
 S

am
pl

es
 ¬

 D
at

a
In

te
rp

ol
at

io
n

M
od

el
 C

om
pr

es
si

on

N
eu

ra
l A

rc
hi

te
ct

ur
e

Pa
ra

m
et

er
s

#R
es

N
et

 B
lo

ck
s;

 #
Fi

lte
rs

; #
LS

TM
 C

el
ls

Ex
ha

us
tiv

e
Ex

pl
or

at
io

n

Tr
ai

ni
ng

 &
 e

va
lu

at
io

n
of

 a
ll

po
ss

ib
le

 n
et

w
or

k
m

od
el

s

1
2

3

4
5

6

O
pt

im
iz

at
io

n
G

oa
ls

:
�

Ac
cu

ra
cy

 o
nl

y
�

R
ec

al
l o

nl
y

�
M

em
or

y
on

ly
�

W
ei

gh
te

d
Ac

cu
ra

cy
 &

M

em
or

y

Pr
ed

ic
tio

n
La

be
ls

/C
la

ss
es

Q
ua

lit
y

M
et

ric
s:

Ac

cu
ra

cy
, P

re
ci

si
on

, R
ec

al
l,

F1
-s

co
re

44

4

98

97
 In

cr
ea

si
ng

 P
ru

ni
ng

 →

Accuracy

Memory

10
×

Pr
un

in
g

20

0
50

10
0

6
5

3
4

2
O

Accuracy

60
×

N
um

be
r o

f B
its

Q
ua

nt
iz

at
io

n

Set of DNN Models for Healthcare Application

D
ee

p
Le

ar
ni

ng
 M

od
el

 G
en

er
at

io
n

Memory

C
om

bi
ne

d
Ex

pl
or

at
io

n

F
ig
. 2

A

n
ov

er
vi

ew
 o

f
th

e
ke

y
st

ag
es

 in
 th

e
de

ep
 le

ar
ni

ng
 m

od
el

 e
xp

lo
ra

tio
n

an
d

co
m

pr
es

si
on

 f
ra

m
ew

or
k

fo
r

he
al

th
ca

re
 a

pp
lic

at
io

ns
 (

ad
ap

te
d

fr
om

 [
37

])

26 B. S. Prabakaran and M. Shafique

. A = T P + T N

#Classif ications
, P = T P

T P + FP
,R = T P

T P + FN
,F = 2 ∗ P ∗ R

P + R

where T P stands for the number of true positive predictions, whereas T N , FP ,
and FN depict the number of true negative, the number of false positive, and the
number of false negative predictions, respectively.

2.2 Platform Constraints

Similarly, to ensure that the explored networks do not require computational
resources beyond those available on the target execution platform, a hardware
constraint is implemented before the evaluation stage, which the user can define
as per their requirements. Currently, the hardware constraints of the system can
be specified by the system designer either in terms of the memory overhead
(B), i.e., the maximum size of the model that can be accommodated on the
platform, or the execution time in terms of the maximum number of floating-point
operations that the platform can execute for a single inference (FP). Like the quality
metrics, incorporating other additional platform-specific hardware constraints are
orthogonal to our current approach and can be an easily added functionality to the
framework. Explicitly specifying hardware constraints requires the framework to
identify models that offer the best quality under the given constraints, which enables
the exploration of a trade-off between output quality and hardware requirements of
the model, two metrics that typically maintain an inverse correlation.

2.3 Dataset Construction

To ensure that the model developed is application-driven, a custom dataset is
constructed by fusing labels, in an existing healthcare dataset, in order to create
the required output classes. Note that each label in the custom dataset needs to
be correspond to one of the labels in the existing healthcare dataset, to ensure
coherence. For instance, with respect to the COVID-19 classifier application
discussed earlier, there could be varying diagnosis for the lung X-Rays or CT scans
present in the dataset, including pneumonia, pleural effusion, cystic fibrosis, or lung
cancer, which are ultimately labeled as “anomaly” in the constructed dataset, given
the sole focus of the application is to just classify amongst normal, anomaly, and
“COVID-19.” A similar methodology can be used to construct custom datasets for
a given healthcare application, as discussed with the help of a use-case in Sect. 3.

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 27

2.4 Deep Learning Model Generation

With the necessary information regarding the user specifications, platform con-
straints, and the constructed dataset, we generate the set of possible DNN models
(. ψ) by varying the key neural architecture parameters. Since our approach considers
a relevant state-of-the-art model as a baseline, we extract the key architectural
parameters from the baseline model and vary them to generate different models
that can achieve (near) state-of-the-art accuracy with reduced hardware require-
ments. For instance, the use-case discussed in Sect. 3 explores three DNN model
parameters, namely, (1) No. of Residual Network Blocks (#ResNet Blocks), (2) No.
of Filters (#Filters), and (3) No. of LSTM Cells (#LSTM Cells), which can,
theoretically, be any value in the .R+ domain, leading to an explosion of the designs
that need to be explored under an unbounded design space. By considering the
state-of-the-art model as the upper bound, we restrict the number of designs to be
explored, thereby ensuring that the algorithm converges in finite time. Furthermore,
since the exploration of the models is heavily dependent on the state of the art, any
modifications to the block-level structure of the baseline model, including changes
to the block, will affect the design space of the models (. ψ) to be explored.

2.5 Deep Learning Model Training and Evaluation

The DNN models generated earlier need to be trained and evaluated on the
constructed dataset, individually, before their real-world deployment. However,
since the training and evaluation of each individual DNN in the design space is
a compute-intensive and time-consuming task, first, we need to reduce the number
of models generated, which we ensure by constraining the hardware requirements of
the model (as discussed earlier in Sect. 2.2), and second, we need to quickly explore
the design space of DNNs, to reduce the overall duration of the task. Exploration
of the design space, in our framework, can be conducted either exhaustively or
selectively, as discussed below:

(1) Exhaustive Exploration It requires each individual model of the design space
to be trained and evaluated on the constructed dataset in order to determine the set
of Pareto-optimal DNN models, which essentially trade off between output quality
and hardware requirements. The hardware constraints imposed by the execution
platform combined with the state-of-the-art imposed upper bound enable the
framework to exhaustively explore the design space of DNN models in tens of GPU
hours, as opposed to hundreds or thousands of hours in the case of unconstrained
exploration. Therefore, when the complexity of the model, its parameter format,
the number of weights and biases, and the variation in the hyper-parameters
increase, it is recommended to selectively explore the design space to circumvent
the exponential rise in design space models. Exhaustive exploration is primarily

28 B. S. Prabakaran and M. Shafique

included as a functionality to illustrate the efficacy of the selective exploration
technique that has been discussed next.

(2) Selective Exploration It involves the effective selection, training, and evalua-
tion of a small subset of the models in . ψ in order to reduce the exploration time
to a couple of GPU hours. Genetic algorithms utilize a cost function, which defines
the optimization goal, to effectively obtain near-optimal solutions while reducing
the exploration time for a wide range of real-world optimization problems [44].
The framework uses genetic algorithms that rely on the concepts of reproduction
and evolution to select the models that need to be trained in each generation to
create a new generation of models that have the potential to further optimize the cost
function. The use of other meta-heuristic approaches to explore the design space is
orthogonal to our use of genetic algorithms, which encompasses techniques like ant
colony optimization [8] and simulated annealing [48], and can be incorporated into
the framework, if essential.

In the selective exploration process, we start with an initial population of 30
random DNN models present in the design space, referred to as individuals, based
on the recommendation of previous works [41] in order to obtain the best results.
The genetic algorithms require the presence of a “chromosome,” which encodes
all the key neural architecture parameters (“genes”) that can be varied to obtain
the complete design space of DNN models. All the genes are stitched together to
generate the chromosome string, which, when decoded, constructs a DNN model,
or an individual, in the design space. Each individual is subsequently trained on
the constructed dataset to evaluate its viability in terms of a fitness value, which
enables it to compete with other individuals in the design space. The fitness value
is estimated as the cost function when the decoded DNN model (M) exists in the
design space (. ψ) or is considered to be a NULL value otherwise and is discarded
from the search. Next, on the basis of their fitness values, two individuals are
selected to pass on their genes to the next generation while undergoing the process
of mutation and crossover, which are essential reproduction principles. We ensure an
ordered .0.4 crossover probability for a mating parent pair with a random crossover
location in the pair’s chromosomes. The next generation of the population, i.e.,
the offspring, has their parents’ chromosomes exchanged from the start until the
crossover point and is considered for exploration based on their fitness value.
The offspring also have a mutation probability of .0.11 to enable a bit-flip in the
chromosome, thereby ensuring a diverse population and enabling a comprehensive
exploration of DNN models. The experiments are run to determine a population
of 30 individuals in each generation, based on their fitness values, to create 5
consecutive iterations of offspring that can be trained and evaluated to determine
the set of best-fit individuals (see Fig. 3).

By default, the framework includes the ability to explore the design space using
the following recognized genetic algorithms: NSGA-II [6], Roulette Wheel [11],
Tournament Selection [31], and SPEA-2 [51]. Likewise, other algorithms and
heuristics can be incorporated into the framework, as discussed earlier. The time
complexity of each algorithm determines the order of execution time required for

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 29

Start Initial Population:
30 DNN Models

Training and
Fitness Value

Evaluation

Mating pair
Selection Crossover Mutation

YES

NO Generations
== 5?

DNN
Offspring

Stop

Offspring Generation

Fig. 3 Flow chart illustrating the selective design space exploration technique (adapted from [37])

exploring the design space . ψ . If the size of the design space is considered to be
N , the time complexity of the algorithms would be .O(N2), .O(N ∗ log N), .O(N),
and .O(N2 ∗ log N), respectively. The efficacy of these algorithms, illustrated by
the varying subset of individuals selected and evaluated, is discussed in Sect. 3 with
the use-case. The genetic algorithms used by the framework require a cost function
(. φ) that needs to be specified by the system designer, which can be optimized to
obtain the set of near-optimal network models (. ω) for the explored design space.
The weighted cost function used in this framework is

. φ = α ∗ Q + β ∗
[

1 − H

Hmax

]

where .α, β ∈ [0, 1] depict the weights for output quality (Q) and hardware require-
ments (H) of the model, respectively. .Hmax denotes the hardware requirements
of the state-of-the-art baseline model. As discussed earlier, Q can be evaluated
as Accuracy, Precision, Recall, or F1-score, whereas H can be estimated as the
memory overhead or the number of floating-point operations for an inference.
Other application-specific quality metrics or additional hardware requirements,
such as the power consumption of the model or its energy requirements on the
target platform, can also be included in the framework. The weights . α and . β
depict the importance of the quality and hardware metrics, respectively, during the
algorithm’s exploration of the design space. Algorithm 1 discusses the pseudo-code
for the weighted DNN model exploration technique deployed in the framework.
Given (1) the inputs (design space (. ψ), weights for the cost function (. α, . β), and
the hardware requirement for the state-of-the-art model (.Hmax)) and (2) quality
and hardware constraints (.QConst , HConst), the weighted DNN model exploration
algorithm generates a set of DNN models . ω that satisfies the quality and hardware
constraints of the application. The ExplorationAlgorithm function call in Line 10
can call any of the selective exploration algorithms (genetic algorithms) or the
exhaustive exploration technique discussed earlier. Table 2 illustrates an overview
of the symbols and denotations used in this chapter.

30 B. S. Prabakaran and M. Shafique

Algorithm 1 Weighted DNN model exploration
Input: ψ, α, β, Hmax
Constraints: QConst , HConst
Output: ω
1: H = [];
2: for M in ψ do
3: if HardwareRequirements(M) ≤ HConst then
4: H.append(HardwareRequirements(M));
5: else
6: ψ.remove(M);
7: end if
8: end for
9: φ = α ∗ Q + β ∗

[
1 − H

Hmax

]
10: ω = ExplorationAlgorithm(φ, ψ);
11: for DNN in ω do
12: if Q.(DNN) < QConst then
13: ω.remove(DNN);
14: end if
15: end for

Table 2 Overview of the symbols used in this work along with their denotations [37]

Symbol Denotation Symbol Denotation

Q Model quality N Size of design space (. ψ)

.QConst User quality constraint .φ Cost function to be optimized

A Accuracy of the model .ω Output set of near-optimal DNN models

P Precision of the model .α Weight for output quality Q
R Recall of the model .β Weight for hardware requirement H
F F1-score of the model M DNN model in . ψ

B Memory overhead of the model .HConst Platform’s hardware constraint

FP
No. of floating-point operations
reqd. by the model . Hmax

Hardware requirements of the
state-of-the-art model

.ψ Design space of DNN models H Hardware requirements of the model

2.6 Model Compression

The framework also includes the capability of further reducing the model’s hardware
requirements through the means of compression techniques like pruning and
quantization. Besides neural architecture search approaches, model compression
techniques have proven to be highly successful in reducing the hardware require-
ments of the model while retaining output quality [12].

2.6.1 Pruning

As the name conveys, the core concept of this approach involves identifying less-
important parameters of the model, such as the weights, kernels, biases, or even

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 31

neurons or layers, and eliminating them to further reduce the hardware requirements
of the DNN model, increasing their deployability in edge platforms. Eliminating the
model parameters reduces many of its requirements, such as memory overhead of
the model and the number of floating-point operations required for an inference,
which tend to further improve performance and reduce energy consumption on the
target platform during inference. The pruned model is subsequently retrained on the
constructed dataset to ensure that the model achieves an output quality similar to
that of the original unpruned model obtained from the design space. The framework
integrates the pruning techniques presented in [3, 12, 26, 28, 30] to provide the
system designer with a range of options that can be implemented in order to meet
the application requirements based on the DNN model’s capabilities. For example,
the technique proposed in [12] determines the lowest .x% of weights, based on their
absolute magnitude, in each individual layer of the model and eliminates them,
followed by a retraining stage, as discussed earlier, to achieve an accuracy similar
to the original model. Whereas the technique presented in [30] sorts the complete
set of weights in the model to iteratively eliminate the lowest .x% of overall weights
in each iteration, regardless of the layer, followed by model retraining to achieve
original model accuracy. Section 3 illustrates an overview of the benefits of pruning
DNN models obtained using this approach. Incorporating other pruning techniques
into the framework can be easily achieved as long as the new technique complies
with the original interfaces of standard pruning techniques.

2.6.2 Quantization

The model parameters are usually stored in a floating-point format requiring 32
bits, leading to a large memory overhead on the execution platform. Accessing each
floating-point parameter from memory requires increased access latency and energy
consumption, as opposed to traditional 8-bit or 16-bit integers. Likewise, a high-
precision floating-point addition operation requires nearly an order of magnitude
more energy as opposed to a 32-bit integer ADD operation [13]. Hence, approaches
that can be used to reduce the precision from 32 bits to 16 or 8 bits, through
the process of quantization, can be used to substantially reduce the hardware
requirements of the model. Quantization techniques can be implemented to further
reduce the precision of the DNN model to less than 8 bits, by analyzing its trade-off
with output quality for the target application. The process involves the construction
of . 2p clusters, where p stands for the number of quantized bits, using the k-means
algorithm, which evaluates the parameters in each layer of the DNN model. Once the
clusters are determined, equally spaced values are allocated to each cluster ranging
from minimum to maximum value for corresponding cluster weights composed
of all zeros to all ones, respectively. For simplicity, all layers in the DNN model
are quantized with the same number of bits. Similar to pruning, other quantization
techniques can be incorporated into the framework as long as the new technique
complies with the original interfaces of standard quantization.

32 B. S. Prabakaran and M. Shafique

Based on recommendations from the studies presented in [12] and from exhaus-
tive experimentation, the optimal approach for minimizing the hardware require-
ments of the model requires pruning the selected DNN model obtained from
the design space, followed by model quantization, to eliminate the redundant
parameters and subsequently reduce parameter precision, respectively.

3 Case Study: Bio-signal Anomaly Detection

We present the efficacy of the framework by deploying it to generate, explore,
and compress a wide range of DNN models for our use-case: ECG Bio-signal
processing. We explore 5 different sub-cases as a part of this study:

• UC. 1: Binary Classification: [Normal, Anomaly]
• UC. 2: Multi-class Classification:

[Normal, Premature Ventricular Contraction, Other Anomaly]
• UC. 3: Multi-class Classification: [Normal, Bundle Branch Block, Other Anomaly]
• UC. 4: Multi-class Classification:

[Normal, Atrial Anomaly, Ventricular Anomaly, Other Anomaly]
• UC. 5: Multi-class Classification: [Normal, Ventricular Fibrillation, Other

Anomaly]

Hannun et al. [14] proposed a deep neural network model architecture that can
differentiate between 12 classes of ECG signals, evaluated on their private dataset.
This model is considered to be the current state of the art in ECG signal classification
and is the baseline model of this use-case. The primary block used in [14] is
adopted in this use-case to generate the design space of DNN models for each of
the 5 different sub-cases discussed above. The input and output layers have been
modified to consider the data from the open-source ECG dataset adopted in this case
study to process and categorize them into the required output classes. The default
model of the DNN is modified to include LSTM cells at the end, enabling accuracy
improvements in cases where the number of feature extraction layers is substantially
reduced during neural architecture search.

3.1 Experimental Setup

Dataset Construction For this bio-signal processing case study, the MIT-BIH
dataset [32] is used to construct the required datasets by collecting a 256-sample
window, which is subsequently assigned a label corresponding to the original
labels of the parent dataset. The 41 different annotations of the parent dataset are
categorized as one of the labels for each sub-case to ensure coherence in the dataset.
To construct an enriched dataset that can provide the relevant information to the
DNN model and enable it to learn effectively across labels like ventricular tachy-

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 33

cardia and ventricular fibrillation, the framework also includes the CU Ventricular
dataset [33] during the construction of the custom datasets. The constructed datasets
are split in the ratio of .7:1:2 to generate the training, validation, and testing datasets,
respectively.

Neural Architecture Parameters An overview of the modified DNN architecture
used in this case study is presented in Fig. 4. Therefore, the three primary neural
architecture parameters that can be varied to generate the DNN model design space
are (1) #ResNet Blocks, (2) #Filters, and (3) #LSTM Cells. The ResNet blocks are
made of 1D convolutional layers, batch normalization, ReLU activation blocks, and
dropout layers, as illustrated in Fig. 4, and can vary between 0 and 15. The number
of filters, of size 16, in each convolution layer is determined as a function of z–
[32 × 2z]—where z starts from the value of 0 and is increased by 1 after every y
ResNet blocks (y varies from 1 to 4 in increments of 1, i.e., y ∈ {1, 2, 3, 4}). The
number of LSTM cells is varied as 2x , where x ∈ {4, 5, 6, 7, 8}.

By varying these parameters, we can generate up to 320 different DNN models as
part of a given application’s design space. However, due to the hardware limitation
imposed by the state-of-the-art model, the framework reduces the number of models
explored to 135, thereby drastically reducing the exploration time.

Selective Exploration Figure 5 presents the composition of the chromosome
used by the genetic algorithms in this case study. The chromosome is a binary
string of size 9, which encodes the key neural architecture parameters discussed

Max pool 256 sample

× [1 – 15]
Max pool

Output

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

Ba
tc

h
N

or
m

R

eL
U

Ba
tc

h
N

or
m

R

eL
U

D

ro
po

ut

Ba
tc

h
N

or
m

R

eL
U

D

ro
po

ut

Ba
tc

h
N

or
m

R

eL
U

LS
TM

D

en
se

So

ftm
ax

Ba
tc

h
N

or
m

R

eL
U

ECG Signal

Fig. 4 Modified state-of-the-art DNN architecture used in the case study (adapted from [37])

0
Parent Chromosome Pair

1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1

0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1

0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1

Crossover

Mutation
0 1 0 1 1 0 1 1 0

#Filters

#LSTM Cells#ResNet Blocks

Chromosome

4 values

5 values16 values
Genes

Fig. 5 The composition of the chromosome used by the genetic algorithms in this case study;
example of chromosomal crossover and mutation (adapted from [37])

34 B. S. Prabakaran and M. Shafique

Table 3 Optimal
hyper-parameter values used
for training the DNN
Models [37]

Hyper-parameter Optimal value

Weights initialization He et al. [16]

Adam optimizer [22] β1 = 0.9, β2 = 0.999

Learning rate 0.001

Batch size 128

Dropout 0.2

Table 4 The optimal values
of the constants used by the
genetic algorithms [37]

Constant Optimal value

Population size 30

Chromosome length 9

Generation size 5

Mutation probability 0.11

Crossover probability 0.4

above as genes. The chromosome can therefore construct 210 − 1, or 1023, DNN
models in design space for each of the sub-cases. However, since only 5 of the 7
possible #LSTM cell values lead to valid DNN model architectures, we can directly
eliminate invalid configurations not present in ψ . Once the parent chromosome pair
is selected, based on their fitness value, for generating offspring, they undergo the
process of crossover to exchange genes and undergo potential mutation to introduce
diversity, as illustrated in Fig. 5.

Tool Flow The TensorFlow platform is used for the implementation of the DNN
models in the Python programming environment with the help of the Keras package.
The DNN models are trained over multiple iterations with varying hyper-parameter
values to determine the ones that offer maximum accuracy. Table 3 presents the
optimal values of these hyper-parameters. The DEAP library [5] in Python contains
implementations of the four genetic algorithms that are used in the case study.
Table 4 presents the constants and their optimal values, which are used by the
genetic algorithms during selective exploration of the design space. The exploration
stage is executed on a GPU server composed of four i9 CPUs and 8 Nvidia RTX
2080 GPUs, with the early stopping mechanism enabled. The selected models are
then trained using the custom dataset for quality evaluation and studying the trade-
off with their hardware requirement.

3.2 Exhaustive Exploration

Figure 6 illustrates the results and trade-offs between quality and memory of
exhaustively exploring the models in the UC. 3 design space. The Pareto-frontier of
the complete design space, which connects all the Pareto-optimal DNN models and
offers the best trade-off between quality and memory, is illustrated by A . Label B ,

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 35

Fig. 6 Analysis of exhaustive exploration on the UC. 3 design space (adapted from [37])

UC1 UC2 UC3 UC4 UC5

α=0.2 β=0.8
α=0.2 β=0.8

 noitarolpxE
[e

miT
H

rs
] 20

α=0.8 β=0.2

~8.37x Reduction in Exploration Time
15
10
5
0

~9.52x Reduction in Exploration Time

Fig. 7 Analyzing the time benefits of the selective exploration approach (adapted from [37])

on the other hand, depicts the pseudo-Pareto-frontier constructed using the set of
optimal designs obtained by random exploration (i.e., baseline). The large number of
inter-dependent parameters in DNN models leads to the situation where the designs
depicted in A and B are very similar to each other. Exhaustive exploration of the
design space has led to the successful identification of a DNN model that can reduce
the overhead by .∼30 MB for a quality loss of less than .0.5%. However, due to the
time required for such exhaustive exploration, it might be more suitable to obtain a
near-optimal point that offers similar trade-offs using selective exploration for much
less time. The variance in the Precision, Recall, and F1-score of the model for the
specialized bundle branch class indicates suitability of the framework to impose a
quality constraint on these metrics as well.

3.3 Selective Exploration: Time Benefits

The primary benefit of the selective exploration process is the reduction in time
required to search the design space of DNN models with the use of genetic
algorithms. Figure 7 illustrates the reduction in time for the five different use-cases
when explored using the genetic algorithms, as opposed to exhaustive exploration.
We have also varied the weights used by the cost function (. α, . β) to emphasize
that changing weights does not drastically modify the time needed for exploring
the design space. Randomly selecting and evaluating .10% of the DNN models

36 B. S. Prabakaran and M. Shafique

100

Anomaly Class: UC1
Wheel Roulette Search

98

96

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

94

92

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

100

Anomaly Class: UC1
Tournament Search

98

96

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

94

92

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 8 Evaluation of the quality and memory trade-offs for the models obtained using wheel
roulette search and tournament search on the UC1 design space (adapted from [37])

in the design space acts as baseline comparison for the selective exploration
strategies discussed in this chapter, with practically no algorithmic overhead.
The selective exploration strategies achieve .9× reduction in exploration time, on
average, as opposed to the bounded exhaustive exploration strategy. The use of
genetic algorithms for exploring the search space is highly beneficial in scenarios
where the application requires the use of highly complex deep neural networks with
tens of millions of parameters. Exhaustively training and evaluating each model in
the design space, in such instances, would lead to exploration time overheads of
hundreds of GPU hours, which might not be feasible for the system designer.

3.4 Selective Exploration: Efficacy and Analysis

The primary benefit of using genetic algorithms, reduction in exploration time,
was already discussed earlier. In this subsection, we focus on the capability of the
genetic algorithms in exploring the design space and analyze their efficacy. The
results of these experiments for the UC. 1 and UC. 5 design spaces, with . α and . β
set to .0.5 are illustrated in Figs. 8 and 9, respectively. The transparent points in
these results depict the models obtained from the design space using exhaustive
exploration, enabling us to determine the efficacy of the genetic algorithms. The
genetic algorithms are highly successful at identifying a set of near-optimal DNN
models without traversing the complete design space, especially in cases where
the accuracy improvements or the hardware memory reductions are minimal when
compared to the Pareto-optimal design. The number of models evaluated by the
NSGA-II and SPEA-2 algorithm is smaller than their counterparts. Note that a
significant number of models in the UC. 5 design space exhibit .0% quality due to

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 37

100

Ventricular Fibrillation Class: UC5
NSGA-II Search

80

60

40

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

20

0

100

80

60

40

20

0

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Ventricular Fibrillation Class: UC5
SPEA-2 Search

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 9 Evaluation of the quality and memory trade-offs for the models obtained using NSGA-II
search and SPEA-2 search on the UC5 design space (adapted from [37])

97.5

95.0

92.5

90.0

87.5

85.0

82.5

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Premature Ventricular Contraction Class: UC2
Tournament Search a = 0.5 & b = 0.5

Premature Ventricular Contraction Class: UC2
Tournament Search a = 0.2 & b = 0.8

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

] 97.5

95.0

92.5

90.0

87.5

85.0

82.5

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 10 Evaluation of the weighted exploration technique on the UC2 design space using
tournament search with two different weight values for the cost function (adapted from [37])

the inherent differences in the number of samples of class Ventricular Fibrillation,
leading to a bias against it.

3.5 Selective Exploration: Weighted Exploration

Next, we discuss a subset of the results obtained when exploring the design
space using different weights for the cost function (. φ), which is used by the
genetic algorithms. Figure 10 illustrates the results when the algorithm focuses on
optimizing (1) memory alone (.α = 0.2, β = 0.8) or (2) memory and accuracy
(.α = 0.5, β = 0.5), for a model in the design space of UC. 2. Similarly, Fig. 11
presents the results when the algorithm optimizes for (1) memory alone (. α =
0.2, β = 0.8) or (2) accuracy alone (.α = 0.5, β = 0.5), in the design space of

38 B. S. Prabakaran and M. Shafique

100

80

60

40

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

20

100

80

60

40

20

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Ventricular Anomaly Class: UC4
Wheel Roulette Search a = 0.8 & b = 0.2

Ventricular Anomaly Class: UC4
Wheel Roulette Search a = 0.2 & b = 0.8

P
re

ci
si

on
/R

ec
al

l/F
1-

S
co

re
[%

]

0 10 20
Memory[MB]

30 40

Precision
Recall
F1-Score

Fig. 11 Evaluation of the weighted exploration technique on the UC4 design space using wheel
roulette search with two different weight values for the cost function (adapted from [37])

UC. 4. The weighted parameterization of the cost function is highly beneficial in
guiding the genetic algorithms to optimize for the required parameter, i.e., memory
or quality or both. For example, as illustrated by A in Fig. 11, the algorithm
focuses on optimizing memory, thereby selecting a large number of points with
minimal overhead. Similarly, when the optimization goal is either accuracy only
(see Fig. 11) or memory and accuracy (see Fig. 10), appropriate models are selected
for evaluation by the algorithm.

3.6 Pruning and Quantization: Compression Efficacy and
Receiver Operating Characteristics

Next, we select three near-optimal models obtained from the UC. 4 design space to
evaluate the efficacy of our pruning and quantization techniques. Without loss of
generality and for the purpose of illustration, the three models, Z. 1, Z. 2, and Z. 3,
focus on accuracy alone, trade-off between accuracy and memory, or memory alone,
respectively. Pruning, alone, is quite effective in reducing the memory by nearly
.40% for roughly .0.15% increase in accuracy. This contra-indicative improvement in
accuracy can be attributed to the over-redundant parameterization of the network
model, which is eliminated by pruning. Due to similar reasons, model Z. 1 can
tolerate pruning of a significant percentage of parameters before exhibiting accuracy
losses, as opposed to the other models that are not as over-parameterized. Likewise,
quantization can drastically reduce the memory requirements of the network by
lowering the precision of the parameters storing the weights and biases. This process
can further reduce the memory requirements by up to . 5×, as opposed to FP32
precision, for .<0.1% quality loss. Combining both these approaches can reduce
the memory by a factor of .53× for .<0.2% loss in quality (Fig. 12).

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 39

080

90

100 3

0

100

90

80

(iii) 60% Pruned

80

90

100

0

100

90

80

(i) 20% Pruned

80

90

100

0

100

90

80

(iv) 80% Pruned

080

90

100 4

0

100

90

80

(ii) 40% Pruned

0

1

40
50
60
70
80
90
100
110 1

0

100

70

40

(v) 95% Pruned

]
%[ycaruccA

UC4 (α=1): Accuracy Memory
UC4 (α=0.5, β=0.5): Accuracy Memory

UC4 (β =1): Accuracy Memory

M
em

or
y

[M
B]

O P O P

O P

O P

O P

PNQ: Pruned &
N-bit Quantized DNN

UC4 (α=1):
Original DNN ~32MB

O: Original DNN
P: Pruned DNN

5
]

%[ycaruccA

2

M
em

or
y

[M
B]

Fig. 12 Compression of the near-optimal UC4 design space DNN models (adapted from [37])

Org. [α=1]
90P3Q [α=1]

Org. [α=β=0.5]
30P3Q [α=β=0.5]

Org. [β=1]
10P6Q [β=1]

Org. [α=1]
90P4Q [α=1]

Org. [α=β=0.5]
30P3Q [α=β=0.5]

Org. [β=1]
20P4Q [β=1]

 evitisoP eurT
ta

R

1.0

0.9

1.0

0.9

False Positive Rate
0.0 0.60.0 0.6

(a) (b)Ideal DNN Ideal DNN

e

Fig. 13 ROC evaluation of the similar DNN models from the UC. 4 design space [37]

Next, the receiver operating characteristics of selected pruned and quantized
models are evaluated to determine their behavior, when compared to the original
model obtained from the design space. The evaluation is completed for two
scenarios:

(a) With a memory constraint of . 0.5MB, maximize the model accuracy.
(b) With an accuracy constraint of .96.7%, minimize the model’s memory.

As can be observed from the results presented in Fig. 13, model Z. 1 exhibits the
best operating characteristics, with Z. 2 and Z. 3 not lagging far behind. The maximum
accuracy models, which are subsequently pruned and quantized, exhibit the worst
operating characteristics, far behind the pruned and quantized models of Z. 2 and Z. 3,

40 B. S. Prabakaran and M. Shafique

albeit with similar accuracy metrics. This makes the latter two models more suitable
for deployment in the real world on constrained edge devices like wearables.

4 Conclusion

Healthcare is one of the world’s largest industries requiring a lot of investments,
man power, training, and expertise, especially with the rising older population
(above the age of 65) in most western nations, a significant percentage of whom
require continuous support and healthcare. This requires scientists and researchers
to develop technologies that can cater to the requirements of global healthcare
systems with currently available technologies. Deep learning, which is currently at
the forefront of major technological innovation, has proven to be highly effective in
various healthcare domains like medical imaging, electronic health data analytics,
precision medicine, and drug discovery. In this chapter, an embedded neural
architecture search and model compression framework was discussed to enable
their deployment in healthcare applications. The framework considers the user
requirements, in terms of quality, or specifications, like type of output, and hardware
constraints of the target platform to effectively search the design space of DNN
models to generate a set of near-optimal DNNs suitable for the application. Besides
achieving a .53× reduction in memory, models optimized for both accuracy and
memory during the design space search were observed to have better operating
characteristics, even when compressed. The framework is open source and available
online at https://bionetexplorer.sourceforge.io/.

Acknowledgments This work has been supported by the Doctoral College Resilient Embedded
Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien. We would also like to acknowledge the coauthors (collaboration partners) of our BioNetEx-
plorer journal paper, which is discussed in this chapter.

References

1. Aggarwal, R., Sounderajah, V., Martin, G., Ting, D.S., Karthikesalingam, A., King, D.,
Ashrafian, H., Darzi, A.: Diagnostic accuracy of deep learning in medical imaging: a systematic
review and meta-analysis. NPJ Digit. Med. 4(1), 1–23 (2021)

2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015)

3. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks.
ACM J. Emerg. Technol. Comput. Syst. 13(3), 1–18 (2017)

4. Bloomberg: These are the economies with the most (and least) efficient health care. [Online
Link]

5. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: A python
framework for evolutionary algorithms. In: Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, pp. 85–92 (2012)

https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/
https://bionetexplorer.sourceforge.io/

 31960 53819 a 31960 53819 a

https://www.bloombergquint.com/global-economics/u-s-near-bottom-of-health-index-hong-kong-and-singapore-at-top

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 41

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Dincer, A.B., Celik, S., Hiranuma, N., Lee, S.I.: DeepProfile: Deep learning of cancer
molecular profiles for precision medicine. BioRxiv, p. 278739 (2018)

8. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.
1(4), 28–39 (2006)

9. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24–29 (2019)

10. Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D.I., Wang, G., Eaton-Rosen, Z., Gray, R.,
Doel, T., Hu, Y., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput.
Methods Programs Biomed. 158, 113–122 (2018)

11. Goldberg, D.E.: Optimization, and machine learning. Genetic algorithms in Search (1989)
12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with

pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149 (2015)
13. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural

network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
14. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng,

A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardio-
grams using a deep neural network. Nat. Med. 25(1), 65–69 (2019)

15. Hassaballah, M., Awad, A.I.: Deep Learning in Computer Vision: Principles and Applications.
CRC Press, Boca Raton (2020)

16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1026–1034 (2015)

17. Horst, F., Lapuschkin, S., Samek, W., Müller, K.R., Schöllhorn, W.I.: Explaining the unique
nature of individual gait patterns with deep learning. Sci. Rep. 9(1), 1–13 (2019)

18. Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging
and electronic health records using deep learning: a systematic review and implementation
guidelines. NPJ Digit. Med. 3(1), 1–9 (2020)

19. Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of things for health
care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with
AlphaFold. Nature 596(7873), 583–589 (2021)

21. Kamath, U., Liu, J., Whitaker, J.: Deep Learning for NLP and Speech Recognition, vol. 84.
Springer, Berlin (2019)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint
arXiv:1412.6980

23. Korkalainen, H., Aakko, J., Nikkonen, S., Kainulainen, S., Leino, A., Duce, B., Afara, I.O.,
Myllymaa, S., Töyräs, J., Leppänen, T.: Accurate deep learning-based sleep staging in a clinical
population with suspected obstructive sleep apnea. IEEE J. Biomed. Health Inform. 24(7),
2073–2081 (2019)

24. Lavecchia, A.: Deep learning in drug discovery: opportunities, challenges and future prospects.
Drug Discovery Today 24(10), 2017–2032 (2019)

25. Lee, J.G., Jun, S., Cho, Y.W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical
imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017)

26. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

27. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing
on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019)

28. Luo, J.H., Wu, J., Lin, W.: ThiNet: A filter level pruning method for deep neural network
compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp.
5058–5066 (2017)

42 B. S. Prabakaran and M. Shafique

29. Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A.: Disruptive technologies:
advances that will transform life, business, and the global economy, vol. 180. McKinsey Global
Institute San Francisco (2013)

30. Marchisio, A., Hanif, M.A., Martina, M., Shafique, M.: PruNet: Class-blind pruning method for
deep neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE (2018)

31. Miller, B.L., Goldberg, D.E., et al.: Genetic algorithms, tournament selection, and the effects
of noise. Complex Syst. 9(3), 193–212 (1995)

32. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med.
Biol. Mag. 20(3), 45–50 (2001)

33. Nolle, F., Badura, F., Catlett, J., Bowser, R., Sketch, M.: CREI-GARD, a new concept in
computerized arrhythmia monitoring systems. Comput. Cardiol. 13, 515–518 (1986)

34. Our World in Data: Life expectancy. [Online Link]
35. Policy Advice: The state of healthcare industry—statistics for 2021. [Online Link]
36. Porumb, M., Stranges, S., Pescapè, A., Pecchia, L.: Precision medicine and artificial intelli-

gence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci.
Rep. 10(1), 1–16 (2020)

37. Prabakaran, B.S., Akhtar, A., Rehman, S., Hasan, O., Shafique, M.: BioNetExplorer:
architecture-space exploration of biosignal processing deep neural networks for wearables.
IEEE Internet Things J. 8(17), 13251–13265 (2021)

38. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., Unterthiner, T.: Interpretable deep
learning in drug discovery. In: Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pp. 331–345. Springer, Berlin (2019)

39. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J.,
Sun, M., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit.
Med. 1(1), 1–10 (2018)

40. Ramsundar, B., Eastman, P., Walters, P., Pande, V.: Deep Learning for the Life Sciences:
Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More. O’Reilly
Media (2019)

41. Reeves, C., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives: A Guide to GA
Theory, vol. 20. Springer, Berlin (2002)

42. Rifaioglu, A.S., Atas, H., Martin, M.J., Cetin-Atalay, R., Atalay, V., Doğan, T.: Recent
applications of deep learning and machine intelligence on in silico drug discovery: methods,
tools and databases. Briefings Bioinform. 20(5), 1878–1912 (2019)

43. Sahiner, B., Pezeshk, A., Hadjiiski, L.M., Wang, X., Drukker, K., Cha, K.H., Summers, R.M.,
Giger, M.L.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–
e36 (2019)

44. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Search Methodologies, pp. 97–
125. Springer, Berlin (2005)

45. Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in
deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health
Inform. 22(5), 1589–1604 (2017)

46. Solares, J.R.A., Raimondi, F.E.D., Zhu, Y., Rahimian, F., Canoy, D., Tran, J., Gomes, A.C.P.,
Payberah, A.H., Zottoli, M., Nazarzadeh, M., et al.: Deep learning for electronic health records:
a comparative review of multiple deep neural architectures. J. Biomed. Inform. 101, 103337
(2020)

47. United Nations: World population ageing. [Online Link]
48. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and

Applications, pp. 7–15. Springer, Berlin (1987)
49. Wang, F., Casalino, L.P., Khullar, D.: Deep learning in medicine—promise, progress, and

challenges. JAMA Internal Med. 179(3), 293–294 (2019)

 13356 12977 a 13356 12977 a

 25243 14084 a 25243 14084 a

 15461 50614 a 15461 50614 a

An End-to-End Embedded Neural Architecture Search and Model Compression. . . 43

50. Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learning models
using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 25(10),
1419–1428 (2018)

51. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: improving the strength pareto evolutionary
algorithm. In: TIK-Report, vol. 103 (2001)

Robust Machine Learning for Low-Power
Wearable Devices: Challenges and
Opportunities

Ganapati Bhat, Dina Hussein, and Nuzhat Yamin

1 Introduction

Wearable devices that integrate multiple sensors, processors, and communication
technologies have the potential to transform multiple facets of human life: public
health, fitness, and the way we interact with the environment. For instance, wearable
devices are being widely used by the general public to monitor their activity levels
and steps. Wearable devices are being also used to track vital signs and rehabilitation
in patients with chronic disorders [24, 60]. More broadly, Internet of Things (IoT)
devices are being deployed to enable interesting applications such as smart cities,
environmental monitoring, digital agriculture, and wide area sensing [4, 10, 37, 88,
95]. Overall, the promise shown by wearable devices has led to increased research
attention from a number of communities in both academia and industry.

Wearable devices typically collect sensor data at runtime and process the data
locally or in an edge node to fulfill user and application requirements. For example,
data from motion sensors are processed at runtime to identify the activities of
the users. Early implementations of wearable devices used statistical or analytical
models to identify and monitor the parameters of interest [6]. However, their limited
processing capability restricted the complexity of applications implemented on
wearable devices. Recent advances in machine learning, low-power sensors, and
embedded microprocessors have enabled wearable devices to perform higher degree
of processing at the edge [8, 40]. As a result, wearable devices are being used to
implement interesting and high-impact applications such as fall detection, arrhyth-
mia monitoring, and movement disorder diagnosis [24, 60, 77]. The applications
collect sensor data at runtime and process it on the device using machine learning

G. Bhat (�) · D. Hussein · N. Yamin
School of EECS, Washington State University, Pullman, WA, USA
e-mail: ganapati.bhat@wsu.edu; dina.hussein@wsu.edu; nuzhat.yamin@wsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_3

45

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:ganapati.bhat@wsu.edu
mailto:ganapati.bhat@wsu.edu
mailto:ganapati.bhat@wsu.edu

 10397 56845 a 10397 56845 a

mailto:dina.hussein@wsu.edu
mailto:dina.hussein@wsu.edu
mailto:dina.hussein@wsu.edu

 19548 56845 a 19548
56845 a

mailto:nuzhat.yamin@wsu.edu
mailto:nuzhat.yamin@wsu.edu
mailto:nuzhat.yamin@wsu.edu
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3
https://doi.org/10.1007/978-3-031-40677-5_3

46 G. Bhat et al.

algorithms. Processing the data on the device ensures that the raw data is not
transmitted outside the device, thus ensuring the privacy of the user data. At the same
time, wearable devices must operate under tight energy budgets due to their small
battery capacities. Moreover, the applications on wearable devices must be robust
to changes in user data patterns and other uncertainties in the environment. To this
end, there is a need to ensure that the machine learning algorithms employed at the
edge on wearable devices are reliable while satisfying the low power requirements.

Edge machine learning algorithms in wearable devices face a number of chal-
lenges in real-world usage. The first major challenge is that the distribution of
sensor data during real world usage may not match the distribution of the data
during training. This is because the sensor data patterns of the users available during
training may be different from the users in the real-world deployment. Even for the
same set of users, the activity patterns (e.g., walking style) may change with time.
The orientation of the sensor data may also change with time due to long-term usage
or user error. For instance, the user may mount a wearable sensor facing the front,
whereas the machine learning algorithm is trained with the sensor mounted facing
the back. As a result, the distribution of the sensor data changes, which may reduce
the accuracy of the application. Second, due to energy constraints in wearable
devices, the applications may experience missing data samples. In particular, for
wearable devices that employ energy harvesting, the stochastic nature of ambient
energy may result in sensors turning off due to lack of energy, which in turn leads
to missing samples. The missing samples will cause the accuracy to drop since
typical machine learning on wearable devices are not trained to handle missing
data. Therefore, recent research has focused on developing approaches that are
able to handle sensor data shift and missing data to provide reliable applications
on wearable devices.

The goal of this book chapter is to first summarize the state of the art in edge
machine learning for wearable devices. Specifically, we present the typical flow
in edge machine learning development for wearable devices and review recently
implemented applications on wearable devices. Next, we review the robustness
challenges for edge machine learning algorithms in wearable devices including
energy limitations, sensor data shift, and missing data. We also present a summary
of recent approaches for handling the robustness challenges in wearable devices
followed by future opportunities in reliable machine learning for wearable devices.
Moreover, we present a case study with a human activity recognition (HAR)
application to demonstrate the effects of missing sensor data on the application
accuracy. Finally, we perform a design space exploration with generative adversarial
networks to develop a HAR classifier that is robust to missing data.

The rest of this chapter is organized as follows. Section 2 describes the typical
flow of implementing edge machine learning in wearable devices and reviews some
representative applications. Next, we present the requirements of robust machine
learning and recent approaches for robustness in Sect. 3. Finally, Sect. 4 presents
our HAR case study before concluding in Sect. 5.

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 47

2 Edge Machine Learning in Wearable Devices

Wearable technology is being used to implement a number of interesting applica-
tions for health and activity monitoring. It is also being used in gesture recognition
and human–computer interaction applications. The general wearable application
development goes through four major stages: data collection, feature design, and
machine learning algorithm design, as shown in Fig. 1. In the following, we describe
each of these steps briefly before providing the details of edge and on-device
machine learning.

Data Collection Collection of sensor data that is representative of the application
requirements is one of the first steps in the development of wearable applications.
The data collection is typically performed in laboratory settings where subjects wear
the sensors and perform the activities of interest. For instance, in a fitness monitoring
application, sensor data are collected when users run, walk, and stand [112].
The laboratory settings make it easy to label the data and create a dataset for
supervised learning. At the same time, obtaining data in controlled settings and
labeling the data is time consuming and expensive. Therefore, it is also common
to collect unsupervised data in free-living environments for long-term monitoring.
For example, the Actitracker [58] dataset uses a smartphone application to collect
activity data outside laboratory settings. Indeed, for some applications, such as
arrhythmia monitoring, where the occurrences of arrhythmia events are rare, it is
crucial to monitor the data over a long period to ensure that the rare events are
captured. Data collection is an important step in wearable devices because the
quality of the data determines the generalizability and effectiveness of the machine
learning algorithms for the wearable applications.

Feature Design The next step after data collection is to design features that
capture the behavior of the activities and the parameters of interest to implement

Fig. 1 Typical data flow and steps in designing machine learning algorithms in edge architectures
for wearable devices

48 G. Bhat et al.

the wearable applications. Specifically, the features and the supervised labels are
used to train the edge machine learning algorithms in the wearable device. Early
implementations of wearable applications used handcrafted features as a function
of parameters being monitored. For example, the activity recognition application
uses the mean, kurtosis, and entropy as features for training a support vector
machine classifier [2]. Similarly, the approach in [78] uses time and frequency
domain features to train the machine learning algorithm to identify activity intensity.
Recently, neural networks are being widely deployed on wearable devices to process
the sensor data. The neural network approaches typically use the raw sensor data as
the input and implicitly generate the features. For example, the approach in [53]
directly uses the data from accelerometers in neural networks to recognize human
activities. This ensures that the application designers do not have to handcraft
features for the application.

Machine Learning Algorithm Design The last step in the design of applications
for using wearable devices is the training of machine learning algorithms. This is a
critical step since the accuracy and quality of service of the application depend on
the effectiveness of the machine learning algorithms.Wearable devices present some
unique challenges to the development of effective machine learning algorithms due
to their processing, power consumption, and memory capabilities. To this end, the
following sections detail the general model for edge machine learning for wearable
devices, challenges for edge machine learning, and recent approaches to address the
challenges. Then, we describe some recent examples of edge machine learning in
wearable devices.

2.1 Edge Machine Learning Architectures

Edge machine learning architectures in wearable devices can be broadly classified
into three categories, as shown in Fig. 2. The first category performs all the
computations on the wearable sensors or a microcontroller that is integrated on the
device. This model ensures that the raw data from the sensors are not transferred
outside the wearable device. At the same time, the microcontrollers on the device
may not be able to perform complex computations, and therefore, the second
model uses a host device, such as a smartphone or a laptop, to process the sensor
data. The wearable device wirelessly transfers the data to the smartphone so that
further processing can be performed as per the application requirements. The
high processing capability in smartphones or laptops enables the application to
run more complex algorithms with higher computational requirements. Finally,
in cases where the capabilities of the host device are not sufficient, the wearable
device transfers the data to a cloud server for processing, as shown in Fig. 2c. This
architecture is typically used for online training or model updates where new sensor
data are sent to the cloud server to update the machine learning algorithms. For
instance, when a new user starts using the device, their data are uploaded to the cloud

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 49

Fig. 2 Illustration of three edge computing architectures for wearable devices (a) local computing,
(b) local computing with a mobile host, (c) hierarchy of computing with a cloud server and mobile
host

server to train the machine learning model. Overall, processing on a host device
or cloud servers is useful and allows wearable devices to employ more complex
algorithms. At the same time, these architectures transfer raw data from the device
onto external devices, which impacts the privacy of the users [71]. Indeed, data
privacy is one of the primary concerns expressed by users when considering the use
of wearable devices. Therefore, in the rest of this chapter, we will focus on edge
machine learning in the on-device computation architecture, shown in Fig. 2a.

2.2 Edge Machine Learning Algorithms

A number of machine learning algorithms have been employed to enable on-device
processing in wearable devices. This section briefly describes the commonly used
machine learning algorithms in wearable devices.

50 G. Bhat et al.

2.2.1 Tree-Based Machine Learning Algorithms

Tree-based algorithms, such as decision trees and random forest, are commonly
used on wearable devices due to their simplicity and low computational complex-
ity [14, 35, 65]. For example, the approach in [35] uses a decision tree to classify
human activities, while the approach in [14] uses random forests to enable gesture
recognition. Tree-based algorithms typically use a set of handcrafted features and
supervised labels to train the model. The models usually consist of comparison
of features at each level of the tree until the leaf node is reached. Decision
trees employ a single tree while random forests employ a collection of trees to
improve the accuracy of the algorithm. Recent work has also proposed tree-based
algorithms tailored for resource-constrained wearable devices [83]. Specifically, the
Bonsai [30] approach learns a sparse tree to reduce the size of the model, thus
making it suitable for small memories in wearable devices. The Bonsai decision
trees are able to achieve accuracy that is comparable with state-of-the-art methods
while consuming only few kilobytes of memory.

2.2.2 Support Vector Machines

Support vector machine (SVM) is another class of supervised learning algorithms
that are widely used in wearable applications. The traditional SVM algorithms
distinguish between two classes by learning a hyperplane that separates the two
classes. At runtime, SVM algorithms perform a linear combination of the features
and the weights to determine the class of the new data. In multi-class scenarios,
multiple SVM classifiers are trained to distinguish between the classes. SVMs have
also been used widely in wearable devices due to their ease of implementation. For
example, the approaches in [35, 51, 52] use SVM for activity recognition and gesture
recognition, respectively. They have also been used in health applications such as
Parkinson’s disease diagnosis [24, 60].

2.2.3 Neural Networks and Deep Learning

Recent success of neural networks in image processing, natural language process-
ing, and computer vision has prompted their use in wearable devices as well.
Deep learning models include multiple layers of neurons between the input and
the output. Depending on the type of the model, the layers may be fully connected,
convolutional, or recurrent. Recurrent layers are typically used in time series data
to reveal the time dependence of the sensor data. Similarly, convolutional layers
are used in the initial part of a network to extract features from the data. Then,
features are passed through fully connected layers to obtain the final output.
Neural network models have been successfully employed for a number of wearable
applications including activity recognition, gesture recognition, and arrhythmia
detection [11, 52, 76]. Deep learning models are also suitable for online updates

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 51

since their parameters can be updated through gradient descent algorithms as new
data become available. Many recent studies have employed reinforcement learning
with deep learning models to perform online updates so that the models provide
high accuracy for new, unseen, users [11, 52, 76]. Due to these advantages, deep
learning models are being widely used in wearable devices to process sensor data
and enable interesting applications.

2.3 Challenges for On-Device Edge Machine Learning in
Wearable Devices

Despite the privacy and security advantages of on-device machine learning in wear-
able devices, they face several challenges in their effective implementation. This
section describes the major technical challenges for on-device machine learning in
wearable devices.

Limited Computational Capacity Wearable devices typically integrate low-
power processors with few hundred megahertz of operating frequency. Wearable
processors also do not include graphics processing units, which are one of the
most commonly used processing methods for deep learning models. Moreover,
microcontrollers included in wearable devices may not include advanced memory
management features such as multiple cache levels. Consequently, the machine
learning models deployed on wearable devices must be computationally lightweight
so that they can be executed on the low-power processors with minimal latency.

Memory Capacity Wearable devices and processors typically have limited mem-
ory capacities due to their small size. For instance, the Texas Instruments (TI)
CC2652R processor, one of the commonly used processors in wearable devices,
has only 80KB of main memory. The small memory size makes it impossible to
deploy popular deep learning models like AlexNet on wearable devices. Therefore,
edge machine learning models must have a small memory footprint to ensure that
they can be deployed seamlessly on devices with limited memory capacities.

Energy and Power Constraints The battery capacities of wearable devices are
limited due to their small size [18]. Integrating larger batteries is challenging
because they make the devices bulky and uncomfortable for users. For instance,
a battery with 1000mAh capacity can weigh 20–30 grams, which is more than
the weight of other wearable device components. Smaller batteries create two
major constraints for the wearable devices. First, it limits the energy budgets
available for executing the machine learning algorithms, thus limiting the number
of computations that can be performed. Second, it limits the peak processing power
for the wearable device. This means that even if an algorithm operates under low
energy budgets, it must also have low peak power consumption to operate within
the electrical limits of the device. Therefore, edge machine learning algorithms must

52 G. Bhat et al.

be able to operate under extremely low energy budgets while minimizing the peak
power consumption.

2.4 Solutions to Address On-Device Learning Challenges

A number of approaches have been recently explored to address the challenges of
on-device machine learning. We briefly review some of the approaches below while
referring the readers to the surveys in [23] and [21] for more details.

2.4.1 Quantization

Machine learning algorithms typically use floating-point numbers to perform
computations. However, floating-point operations consume additional resources
for computation, which increase both latency and power consumption. To this
end, recent approaches have proposed quantizing the model parameters and inputs
into integers so that integer processing units can be used for computations. For
example, the approach in [10, 38] uses 16-bit or 8-bit representations of model
parameters to reduce the computations in the algorithm. Machine learning models
with more aggressive quantization, such as binary neural networks, have also been
proposed [56, 111]. Binary neural networks encode all parameters to zeros and ones,
which significantly simplifies the computations. Early quantization approaches
typically train the machine learning models in floating-point and then convert the
parameters to integers. While this is useful, it can impact the accuracy of the
machine learning models [34]. Therefore, recently proposed approaches perform
quantization-aware training to ensure that the accuracy of the models does not drop
with quantization. Quantization-aware training approaches typically use reduced
precision data during training so that the need for converting the parameters to
integers after training is eliminated [25, 46]. A recent approach proposed in [72]
applies quantization to majority of the data during training while handling a small
part of data with large values in high precision. This ensures that the quantization
error is minimized while also ensuring high accuracy for the models. Quantization
has been successfully used in human activity recognition to reduce the model size
while maintaining the accuracy [105–107]. Overall, model quantization ensures
that low-power and low-complexity integer computations are used on the wearable
device for computations.

2.4.2 Model Pruning

Many machine learning models, especially well-known neural networks such as
ImageNet [47], are not feasible to be deployed on wearable devices with limited
memory capacities. Model pruning is an effective approach being used to reduce

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 53

the size of the models so that they run on the wearable devices [113]. A common
approach to achieve smaller networks is to first train a large model and then prune
parameters that have small magnitudes [20, 33]. Studies have also proposed methods
to achieve structured sparsity through the use of theoretical techniques or regulariza-
tion techniques [59, 67, 92]. More recently, the lottery ticket hypothesis has emerged
as an effective method to achieve model pruning in neural networks [27]. The lottery
ticket hypothesis states that as opposed to training a large network and then pruning,
we can train smaller networks that achieve similar test accuracy as the original, large
network. The advantage of the lottery ticket hypothesis is that training the smaller
network from scratch with proper initialization provides accuracy similar to the
original network. This process also eliminates the need to post-process the trained
networks for pruning. Examples of pruning applied to human activity recognition
include [17, 31, 91]. In summary, model pruning is a promising approach to ensure
that the machine learning models trained for wearable devices are able to execute
on the low-power wearable devices.

2.4.3 Energy Harvesting

Energy harvesting has emerged as a promising solution to alleviate the problem
of small battery capacities and frequent recharging of wearable devices. There has
been extensive research on how harvesting energy from ambient sources can aid in
the smooth operation of wearable devices in the state-of-the-art literature [70, 94].
Commonly used ambient energy sources include solar, wind, radio-frequency, and
body heat and motion. Recent work has shown that photovoltaic (PV) cells can
harvest 0.1–100mW/cm.

2 of power [41, 94] in indoor and outdoor conditions,
respectively. Similarly, body motion can provide about 15 . µW with a 23.8 cm.

2

piezoelectric patch when walking [90]. An antenna with .−10 dBm gain will yield
about 10 . µW using radio frequency harvesting [68]. Indeed, energy harvesting
has been used in multiple human activity recognition studies [36, 44, 64]. At the
same time, harvesting energy from ambient sources is stochastic in nature. For
instance, solar energy experiences seasonal and diurnal variations, whereas wind
energy is unpredictable in nature. In addition, body motion is factored by human
activities [28]. Therefore, the need for an accurate energy prediction model and
efficient management of the harvested energy is critical.

2.5 Edge Machine Learning in Health Applications

This section provides some recent examples of edge machine learning being used in
health applications. Specifically, we provide representative studies of edge machine
learning being used for Parkinson’s disease diagnosis, vital sign monitoring, and
human–computer interaction.

54 G. Bhat et al.

2.5.1 Parkinson’s Disease Diagnosis

Parkinson’s disease is typically diagnosed with clinical assessment of motor and
non-motor symptoms in a clinical environment [43]. However, the clinical assess-
ments can be subjective and have variations across different patients. Therefore,
wearable devices and edge machine learning are being used in the diagnosis of
Parkinson’s disease [77, 109]. Woods et al. [101] use data from a smartphone in
an SVM algorithm to diagnose Parkinson’s disease. Similarly, the work in [1] uses
a random forest algorithm to perform gait analysis so that Parkinson’s disease can
be detected in patients. Specifically, the authors use a ground reaction force sensor
worn under the foot to perform the gait analysis. Non-motor symptoms have also
been studied using edge machine learning. For instance, Tsanas et al. [89] process
audio recordings using SVM and random forest methods to detect the presence
of Parkinson’s disease symptoms. Overall, these studies show that edge machine
learning can lead to standardization and objective measures for Parkinson’s disease.
We refer the interested readers to the survey in [48] for more detailed analysis of
edge machine learning in Parkinson’s disease.

2.5.2 Vital Sign Monitoring

Vital sign monitoring is another high-impact application that uses edge machine
learning in wearable devices. Common vital signs monitored using wearable
devices include heart rate, blood pressure, oxygen levels, and respiration rates.
The continuous monitoring of vital signs can aid clinicians in getting a deeper
understanding of the patient’s health as opposed to periodic measurements [100].
A recent study in [99] showed that machine learning approaches with wearable
sensors can provide accuracy that is equivalent to clinical methods. The approach
uses random forest and Lasso models to predict clinical laboratory test results using
readings from wearable sensors. Similarly, the work in [12] presents the uses of
wearable sensors along with SVMs to monitor the risk of cardiovascular disease. In
summary, wearable sensors along with edge machine learning algorithms provide a
powerful method for vital sign monitoring of individuals in free living environments.

2.5.3 Human–Computer Interaction

Human–computer interaction (HCI) is another important application where wear-
able devices can make an impact. Specifically, HCI using wearables can enable
natural interactions between humans and computers [62]. For instance, using
wearable devices and gesture recognition to control a gaming device or computer
provides a natural method of interaction with the applications. To this end, the recent
research has developed a number of edge machine learning approaches for HCI
using wearable devices. The study in [73] uses data from an accelerometer sensor in
a neural network to recognize five gestures. Similarly, Ferrone et al. [26] use strain

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 55

sensors to recognize gestures using linear discriminant analysis and SVM classifiers.
The strain sensors are beneficial because they have low power consumption due to
being passive. Overall, these studies show that wearable HCI using edge machine
learning can enable new and novel methods of interacting with computers. We refer
the readers to the survey in [39] for a more detailed overview of HCI using wearable
devices.

3 Robustness in Wearable Applications

Reliability and robustness are an important criterion for wearable devices and edge
machine learning algorithms to ensure that the users receive a high quality of
service. However, this is a challenging problem for wearable devices due to the
dynamic nature of their use as well as the potential for user errors. Furthermore, the
limited battery capacity of wearable sensors can lead to interruptions in the sensor
data. Therefore, wearable devices must take measures to ensure that edge machine
learning algorithms are able to handle the reliability challenges. This section first
introduces the three major challenges to reliability of machine learning algorithms
in wearable devices and then reviews the current state of the art to handle the
challenges.

3.1 Reliability Challenges for Wearable Devices

3.1.1 Sensor Shifts and Disturbances

Machine learning algorithms are typically trained with data collected in controlled
environments where the sensor position and parameters are carefully optimized. The
data collection procedure also ensures that the sensors and processors are operating
at their optimal frequencies. For instance, if the sampling rate of the sensor is not
stable during the data collection, the experiment is repeated to ensure that the data is
clean. While this setup is useful to train accurate machine learning models, the real-
world data distribution may differ from the distribution during training. The shift in
the sensor data distribution can occur due to one or more of the following reasons:

• The sensor locations may change with long-term usage, as illustrated in Fig. 3.
For example, if the sensor is mounted using a sleeve or a belt, it may slip or move
with usage. This will result in a change in the distribution of the sensor data. The
data distribution may also change due to user errors, such as incorrect orientation
of the sensors.

• The sampling frequencies and calibration of the sensors may have variations from
one device to another, which alters the distribution of the observed data. Indeed,

56 G. Bhat et al.

Fig. 3 Example of sensor disturbances in wearable devices, (a) default position of sensor, (b)
sensor directions with heading rotation, (c) sensor directions with pitch rotation

a recent study analyzed the sampling rates of accelerometers from 13 devices
and observed that there is a wide variation across devices [85]. Consequently, if
a single classifier is trained assuming a fixed sampling frequency, it may suffer
from accuracy reduction when tested on a new device.

• The activity or application patterns of users in the real world may not match
the users used during training. Even for the same user, the data distribution may
change with time. For instance, if a user is injured for a period of time, the activity
patterns will be different from when the user was healthy.

The shifts in the sensor data distribution must be handled carefully for reliable
performance of the edge machine learning algorithms. Therefore, recent research
has focused on ensuring that machine learning algorithms can handle the sensor
disturbances. We review some of these methods later in this section.

3.1.2 Missing Sensor Data

Edge machine learning algorithms for wearable devices are also trained with the
assumption that all the sensors and devices will be operating perfectly at runtime.
However, this assumption may not hold true in many real-world application scenar-
ios. For example, due to energy constraints, one or more sensors can turn off, thus
leading to missing data. The missing data can also occur due to sensor malfunction
or communication issues. Specifically, the wearable sensors are connected to the
processor through serial buses, which may drop packets in some instances due to
bandwidth limitations. The missing data, in turn, leads to significant reduction in the
accuracy of the machine learning models because the models are trained with the
assumption that data from all the sensors are available. Indeed, our case study with
the activity recognition application shows that missing sensor data leads to 30–40%
accuracy drop. Training individual classifiers for each combination of sensors is
also not feasible due to the exponential increase in the number of combinations with
sensors. Therefore, recent research has focused on developing methods to handle
missing data in edge machine learning algorithms.

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 57

3.1.3 Energy and Power Constraints

Energy and power constraints pose challenges [41] to reliable operation of edge
machine learning algorithms in addition to the on-device edge machine learning.
The small battery capacities of wearable devices not only limit the complexity
of edge machine learning models but also affect the reliability of the models.
Specifically, lack of energy can lead to sensors being turned off during important
activities, which leads to a reduction in the quality of service to the user. The energy
limitations may also force the device to operate in low-power mode with reduced
precision of sensing or computations. This leads to a reduction in the accuracy of
the edge machine learning models. Energy harvesting from ambient sources is a
promising technology to alleviate the energy limitations in the wearable devices.
However, just integrating energy harvesting technologies into wearable devices is
not sufficient as the harvested energy must be carefully managed to ensure that there
is sufficient energy available even when ambient energy is not available. To this end,
recent approaches have focused on optimal energy harvesting and management, as
we outline in the next section.

3.2 State-of-the-Art Methods for Robust Edge Machine
Learning in Wearable Devices

Approaches to achieve reliable machine learning have been developed for classifi-
cation, clustering, regression, and data imputation [49, 50, 63, 66, 93, 97, 97]. In
this section, we describe recent approaches for robust and reliable edge machine
learning in wearable devices for each of the challenges in the previous section.

3.3 Approaches to Address Sensor Shifts and Disturbances

A number of approaches to address sensor orientation disturbances have been
proposed in the literature [49, 50, 66, 93, 97]. These approaches can be broadly
divided into two classes. The first class of approaches detects the sensor disturbances
at runtime and corrects the data before processing it further. For instance, the
approaches in [49, 50] use principal component analysis (PCA) to determine
the orientation of an accelerometer sensor in an activity recognition application.
Specifically, PCA is used when there is heading rotation change in the direction of
motion. For example, if one of the accelerometer axes is pointing in the direction
of motion, heading rotation will result in the projection of the motion acceleration
on the other two axes. To solve this issue, user movement calibration is done
first to detect the correct direction of motion offline, and then PCA component
is calculated for the reference and new movement in order to calculate the angle

58 G. Bhat et al.

between the original and the new motion direction. After the angle is calculated, it
is used to recover the sensor heading direction. Then, the orientation information
is used to correct the sensor data in case of any variations from the training
setup. This approach is useful when there are changes in the direction of motion
for the accelerometer in activity monitoring applications. Similarly, the approach
in [66] uses the gravitational force of the Earth to determine the orientation of
motion sensors and apply corrections, if needed. This is useful in ensuring that any
motion sensor disturbances with respect to the gravitational axis are corrected before
processing by machine learning applications.

The second class of methods to resolve sensor data shift and disturbances uses
data augmentation [63, 93, 97]. Specifically, some examples of data with shifts
or disturbances are included in the training data to ensure that the edge machine
learning algorithms learn the sensor data disturbances as well. For instance, in [93],
the authors use a convolutional neural network (CNN) for data augmentation of
wearable sensor data for Parkinson’s disease monitoring. The training of CNN
model requires large dataset, and therefore, data augmentation is a way to increase
the input data while still preserving the labels. However, any disturbance or scaling
in the sensor data may lead to incorrect label. Therefore, the authors use label-
preserving data augmentation techniques such as jittering, cropping, magnitude-
warping, and time-warping to increase the non-disturbed data instances for better
CNN training. In summary, these methods allow the edge machine learning to
provide reliable performance in the presence of sensor data disturbances.

3.4 Missing Data Recovery Algorithms

Development of algorithms to recover missing data at runtime is critical to
ensure that the wearable applications provide reliable quality of service. The data
recovery algorithms impute any missing sensor values before the machine learning
algorithms process the data, thus ensuring that the application does not suffer from
accuracy reductions. A number of approaches to recover missing data at runtime
have been proposed in the literature [75, 76, 86]. One of the most popular approaches
for missing data imputation is the k-nearest neighbor (k-NN) algorithm [75, 76].
Specifically, whenever missing data are detected, the algorithm identifies other data
windows that are close to the missing value. Then, the neighboring values are used to
estimate the missing sample by taking the mean of the available samples. However,
k-NN methods are typically not suitable for wearable devices as they need to store
the training data on the device, which imposes memory overhead on the wearable
devices.

To handle the limitation of the data storage requirements of k-NN algorithms,
the recent research has proposed using autoencoders and generative networks for
imputing missing data [79, 84, 110]. For instance, Saeed et al. propose an adversarial
autoencoder model to handle missing sensory features and samples before classifi-
cation. The adversarial autoencoder uses a traditional autoencoder architecture in

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 59

addition to a discriminator network to force the encoder output to match a specific
target distribution. This additional discriminator network transforms the traditional
autoencoder into a generative model to recover the missing data. More recently,
the success of generative adversarial networks (GANs) in the image recognition
domain [22] has prompted their use in the recovery of sensor data for wearable
devices as well. For instance, conditional GANs are being used to generate data for
specific labels or scenarios in a wearable application [84]. GANs have also been
used to impute sensor data when some portions of the data are missing. Specifically,
the generative adversarial imputation network (GAIN) [110] is a network that is
specifically designed to recover missing samples in time series data. GAIN takes
the available data with missing samples as input, in addition to a vector that denotes
the missing samples’ locations. The generator of GAIN is used then to recover the
missing data by learning the distribution of the data and using the available data
to impute the missing samples. We present a concrete instantiation of the GAIN in
our HAR case study. In summary, the goal of the data imputation approaches is to
recover the missing data at runtime so that a single edge machine learning is able to
provide reliable operation to the user and the application.

3.4.1 Energy Management in Wearable Devices

As indicated in Sect. 2.4.3, energy harvesting is a promising solution to help with
the battery energy limitations of wearable devices. However, energy harvesting from
ambient sources may be unreliable due to its stochastic nature. Therefore, develop-
ing accurate energy forecast models is critical. Furthermore, energy management of
the harvested energy is required for optimal energy utilization in these devices. We
evaluate some of the possible solutions that have been discussed in the literature.

Energy Harvesting Prediction Methods A number of approaches have been
explored in the literature to design and develop accurate energy harvesting pre-
diction models. Particularly, there has been a growing interest in predicting solar
energy harvesting due to the high magnitude of solar energy. Kansal et al. proposed
the Exponentially Weighted Moving-Average (EWMA) algorithm [42], which is
a frequently used solar energy prediction scheme. It employs an exponentially
moving average filter to take advantage of the diurnal pattern of energy harvesting
throughout the day. However, because of the variability of sunny and overcast days,
it suffers from high prediction errors. To address this issue, some authors proposed
energy prediction algorithms based on energy profiles. Noh et al. [69] improve
the EWMA model by keeping track of previous solar energy profiles based on
a scaling factor. Piorno et al. suggested a Weather Conditioned Moving Average
(WCMA) forecast model in [74] that considers previous days’ energy harvesting.
It does, however, include a weighting component to measure how the current day’s
weather conditions differ from the preceding days. Similarly, in [15], Cammarano
et al. proposed another profile-based prediction model, Pro-Energy, to predict solar
and wind energy harvesting. Pro-energy predicts future energy availability at short

60 G. Bhat et al.

(few minutes to half an hour) and medium (a few hours) predictions horizons. They
further extend the predictions with variable length intervals in [16].

In recent years, the authors are taking advantage of machine learning techniques
to predict future energy availability. Sharma et al. established a model for predicting
solar energy using multiple regression techniques in [81]. The authors proposed a
hierarchical machine learning model to classify the energy harvesting magnitude
of the day and accurately predict solar energy based on the classification in [104].
Similarly, the authors propose energy prediction models based on Recurrent Neural
Networks (RNNs) in [54, 108]. In summary, the energy prediction approaches
provide estimates of the future energy to the management algorithms so that
effective energy management can be performed. We refer the readers to the survey
in [19] for a more comprehensive analysis of the energy harvesting and prediction
methods.

Energy Management Approaches It is essential to have an efficient energy man-
agement algorithm to allocate the harvested energy in wearable devices effectively.
Many energy management algorithms have been suggested in the literature—most
approaches aim to achieve energy neutral operation, as suggested by Kansal et al. [9,
42, 57]. Energy neutral operation (ENO) refers to enabling the device’s functioning
using harvested energy only. Energy management algorithms, particularly, aim to
establish ENO and achieve maximum utility to the device.

There are several approaches for energy management [42] presented in the
literature. The first class of algorithms utilizes convex optimization and dynamic
programming to allocate the harvested energy. The approaches proposed in [9,
42, 96] use various optimization techniques for the effective energy allocation of
wearable devices. Furthermore, the authors in [102, 103] focus on the dynamic
trading of energy between multiple resources, which can be adapted to allocate
energy between multiple devices on the body. Despite being effective, these
approaches rely on dynamic optimization at runtime to account for differences in
energy harvesting. This can lead to significant execution time and memory overhead.
Therefore, techniques that do not require optimization at runtime are also being
studied to minimize energy consumption for the IoT device.

Another class of solutions switches to different modes of operation to adjust
the energy consumption based on available energy. Task scheduling [55] and duty
cycling schemes [13, 57] are among those solutions. However, these approaches are
heavily dependent on the harvested energy fluctuations. Therefore, some machine
learning-based energy management approaches have been proposed in the literature.
Among the approaches, [3, 7] use reinforcement learning (RL) to manage the energy
in IoT devices. To summarize, the literature has explored different directions for
effective energy management in wearable devices. We refer the survey in [80] for a
more detailed exposition of energy management methods.

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 61

3.5 Future Opportunities

In spite of recent approaches to handle sensor disturbances and missing data
in wearable devices, several challenges and opportunities remain to fully realize
the potential of reliable edge machine learning for wearable devices. Specifi-
cally, we present the following research directions and opportunities for future
researchers (see Table 1).

• Current approaches for sensor data recovery are typically integrated before the
edge machine learning pipeline for wearable devices. While this is useful, it
introduces additional execution time and energy overheads on already resource-
constrained devices. Therefore, there is a need for future research approaches that
eliminate the extra step of data recovery while enabling reliable edge machine
learning applications.

• The energy management approaches for wearable devices are generally unable
to account for sudden changes in the user activities, such as falls or injuries.
Instead, they rely on typical activity patterns and make energy management
decisions based on the trend of activity patterns. Adapting the energy management
algorithms for sudden events will improve the reliability of the edge machine
learning algorithms.

• State-of-the-art approaches for missing data recovery are well suited for isolated
missing data instances. However, many algorithms face challenges when there
are longer sequences of missing data. Developing approaches for recovery of
long missing data sequences will further improve the reliability of the wearable
devices.

Next, we present a case study with the human activity recognition application to
explore the impacts of missing data on the accuracy and then show that missing data
can be effectively recovered with generative networks.

Table 1 Challenges and opportunities in wearable health applications

Challenge Potential solutions

Missing data from sensors Generative methods to recover data at runtime

Sensor data shift Efficient methods to generate additional training
examples to obtain reliable classifiers

Energy limitations Ambient energy harvesting, prediction, and
optimal management

Monitoring of critical activities in
health applications

Adaptive energy management that can predict
future activities of users

62 G. Bhat et al.

4 Human Activity Recognition Case Study

Human activity recognition (HAR) has increased in popularity due to the recent
development of low-power wearable devices that integrate multiple sensors, micro-
processors, and communication capabilities [8, 24, 52]. HAR algorithms are being
used for fitness monitoring, rehabilitation, and in knowing the activities of move-
ment disorder patients [51, 61].

HAR algorithm development and validation typically involve four crucial steps:
training data collection and labeling, activity segmentation, classifier training, and
testing on new users [52, 82, 98]. The data collection is done in a controlled
environment where the developers ensure that the sensors are in perfect working
condition, and they are mounted in a known position. The collected data are then
divided into distinct segments and labeled by one or more experts. The labeled data
are passed through a feature generation algorithm to obtain features that distinguish
between the activities of interest. The features and labels are input to a supervised
learning algorithm to train an activity classifier. Finally, the trained classifier is used
at runtime to identify the activities of one or more new users.

State-of-the-art HAR algorithms in the literature generally assume that all the
sensor data are available perfectly without any missing samples. However, in the
real-world usage, the wearable devices can encounter scenarios where there are
missing samples either due to user error, sensor malfunction, or energy limitations.
The missing data, in turn, lead to a significant drop in the accuracy. For instance, the
accuracy drops from 95% to 50% with only 10% of the samples missing. Therefore,
there is a strong need to develop robust HAR classifiers that provide high accuracy
in the presence of missing data.

One of the common approaches to develop robust classifiers is to include
examples with missing samples during training. However, including missing sam-
ples during training does not yield significant benefits in accuracy. For instance,
including examples with 10% missing data in training increases the accuracy to
only about 65%. Furthermore, including missing samples during training does not
account for all possible scenarios at runtime. Therefore, in this chapter, we develop
a runtime approach to recover missing samples in HAR. Specifically, we leverage
recently proposed generative adversarial imputation networks (GAINs) to recover
missing data at runtime [110]. GAIN is an adaptation of the general generative
adversarial networks that is well suited for recovering missing samples in time
series data [29]. Starting with a baseline GAIN with a large number of weights, we
perform a design space exploration of various GAIN structures to analyze the trade-
off between accuracy and overhead. This is important because wearable devices are
generally constrained by their limited batteries. As such, it is critical to obtain the
highest accuracy while minimizing the execution time and energy. After recovering
the missing samples with GAIN, the robust HAR classifier generates the features
and identifies the activity.

We validate the robust HAR classifier using w-HAR, a publicly available HAR
dataset [11]. The dataset does not include any missing data by default. Therefore,
we first use missing data in the dataset and then use GAIN to recover the missing

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 63

data. We also implement the GAIN algorithm on the TI CC2652 microcontroller to
measure the energy overhead [87]. Overall, the experiments show that GAIN is able
to effectively recover missing data and enable accurate activity classification.

4.1 HAR Background

As detailed in Sect. 2, robust HAR involves segmentation, feature generation, and
classification. In this section, we provide a brief summary of each step in HAR.

Segmentation and Data Recovery Sensors used in HAR produce streaming
data at a pre-configured sampling frequency. The streaming data must be divided
into distinct activity segments so that each segment contains a single activity.
The segmentation step achieves this by utilizing variable-length or fixed-length
segmentation algorithms [52, 82, 98]. Next, the data recovery algorithm checks for
any missing samples and recovers them if it detects missing samples.

Feature Generation The activity segments are processed by the feature generation
block to calculate the features required for classification. In this chapter, we reuse
the features provided in the w-HAR dataset [11].

Classification The features are finally used to identify the activity being performed
by the user. Any supervised learning algorithm can be used to identify the activities.
In this work, we utilize the neural network structure proposed in the w-HAR dataset.

4.2 Generative Adversarial Imputation Networks

Generative adversarial networks (GANs) [29] have been used recently to obtain
synthetic data for a number of applications including image recognition, speech
recognition, and natural language processing [5, 32, 45]. GANs are useful in
generating completely new data examples, but they are not well suited to recover
missing data when partial information is available. To address this limitation, the
work in [110] proposed a variation of GAN called as GAIN. Following the general
structure of GANs, GAIN consists of a generator and a discriminator. The goal
of the generator in GAIN is to accurately recover missing data by utilizing the
available samples, while the job of the discriminator is to distinguish between
recovered synthetic data and observed data. The generator is trained to minimize
the error between the generated data and the actual observed data. By minimizing
this error, the generator can generate accurate samples for instances where the
observed data are not available. The generator is also trained to maximize the
misclassification error in the discriminator so that the discriminator is unable to
distinguish between synthetic and observed data. When fully trained, the GAIN
generator is able to accurately recover the missing samples and the discriminator

64 G. Bhat et al.

is unable to distinguish the synthetic data. This means that the data generated by
GAIN follow the distribution of the actual data. Next, we illustrate the accuracy
gains achieved by GAIN when the sensor data are missing samples.

4.3 Experiments and Results

4.3.1 Experimental Setup

Wearable Device We use the TI-CC2652R as the primary processor for our
wearable device model [87]. The TI-CC2652R processor consists of ARM Cortex
processor which does the segmentation, data recovery, feature generation, and clas-
sification. The robust HAR classifier is implemented on the TI-CC2652 processor
to measure the overhead.

HAR Dataset We use the w-HAR dataset to perform our experiments. The dataset
provides stretch sensor and accelerometer readings for 22 users, while they are
performing eight activities: jump, lie down, sit, stand, walk, stairs up, stairs down,
and transition. Missing data implementation: We introduce missing data for each 3-
second interval of the w-HAR dataset by randomly choosing indices in the 3-second
window. To evaluate the performance of GAIN for various missing data lengths, we
use the following configurations of missing data percentages: 2%, 5%, 10%, 20%,
and 30%.

GAIN Structure We use a GAIN generator neural network with two hidden layers
and one output layer. We vary the number of neurons in the hidden layers to perform
our design space exploration. The hidden layers in the generator use the ReLU
activation. The output layer contains one unit for each sample in the input data
and uses the sigmoid activation. It is important to note that the generator produces
data even for observed samples. In our implementation, we discard those data and
use the generated samples for only the missing data.

4.3.2 Design Space Exploration for GAIN

In this section, we vary the number of neurons in the hidden layers with 2 hidden
layer and 3 hidden layer architectures and evaluate the accuracy achieved by the
robust HAR classifier with GAIN. We also compare the memory requirements of
each configuration to understand the overhead of GAIN. The memory requirements,
in turn, correlate with the execution time and energy overheads on the wearable
device. For instance, if the number of weights doubles, we see an increase in the
execution time and energy required for using the GAIN to generate data. We use
this methodology to quantify the overhead because all GAIN configurations are not
feasible for the TI-CC2652R processor due to its limited memory. At the same time,
this analysis provides a useful comparison point for future wearable with higher
memory.

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 65

Table 2 Details of GAIN architectures

1st hidden layer 2nd hidden layer 3rd hidden layer

2 hidden layer models 4–183 4–183 ______________

Acc: 91.04–96.8% Acc: 91.04–96.8%

3 hidden layer models 4–22 11–91 22–91

Acc: 92.37–88.52% Acc: 92.37–88.52% Acc: 92.37–88.52%

0 1000 2000
Weight Memory (KB)

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

2 Hidden Layer Architectures

0 200 400
Weight Memory (KB)

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

3 Hidden Layer Architectures

(b)(a)

Fig. 4 Comparison of accuracy achieved by HAR with GAIN for data recovery

Table 2 provides details on the hidden layer configurations we use for the GAIN.
As shown in the table, for the 2 hidden layer models, we vary the number of neurons
in both first and second layers from 4 to 183. We also work with 3-layer models
and vary the number of neurons in the first hidden layer from 4 to 22, while for
the second hidden layer we vary from 11 to 91, and lastly, we vary the number of
neurons in the third layer from 22 to 91 neurons. For each configuration, we use a
uniform mix of missing data percentages and obtain the accuracy.

Figure 4 shows the overall recognition accuracy for each configuration as a
function of the number of weights. Increasing the number of weights leads to higher
accuracy while incurring a higher overhead. Therefore, designers must choose
an architecture that provides the optimal trade-off between the accuracy, device
memory constraints, and the overhead. To this end, we implement a three hidden
layer architecture with 4 neurons in the first layer, 11 neurons in the second layer,
and 45 neurons in the third layer. We use this architecture since it fits in the memory
of the TI CC2652R processor while providing a high accuracy. Our measurements
on the TI CC2652R processor show that GAIN takes 9 ms for the stretch sensor and
15 ms for each accelerometer direction to recover the data. Moreover, the energy
consumption is 99 . µJ and 168 . µJ for stretch and accelerometer, respectively. These
overhead values amount to less than 10% overhead for each activity.

Summary HAR is an essential component of personalized healthcare and activity
monitoring. However, most classifiers designed for HAR do not consider missing
data in their training process, which can lead to reduced accuracy in real-world
usage. To address this issue, we proposed an adaptive imputation algorithm that
recovers missing sensor data before activity segmentation. Experiments with three
publicly available datasets showed that the proposed algorithm effectively recovers

66 G. Bhat et al.

sensor data and achieves accuracy that is comparable to the accuracy with clean data
while using the same classifier weights.

5 Conclusion

Wearable devices are being increasingly used for health monitoring, rehabilitation,
and fitness applications. These applications are enabled by the advances in edge
machine algorithms that are able to accurately process sensor data to fulfill user
needs. However, the edge machine learning models face a number of robustness
challenges including sensor data shift, missing samples, and energy constraints.
This chapter reviewed recent methods to address the reliability challenges and
presented some future research opportunities to improve the reliability of edge
machine learning algorithms for wearable devices. We also presented a case study
on the HAR application to highlight the reliability challenges as well as demonstrate
the effectiveness of the recently proposed GAIN approach for recovering missing
data. Our case study shows that recovery of missing data at runtime using GAIN is
a promising approach to enable reliable HAR classifications.

References

1. Açıcı, K., Erdaş, Ç.B., Aşuroğlu, T., Toprak, M.K., Erdem, H., Oğul, H.: A random forest
method to detect Parkinson’s disease via gait analysis. In: International Conference on
Engineering Applications of Neural Networks, pp. 609–619. Springer, Berlin (2017)

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on
smartphones using a multiclass hardware-friendly support vector machine. In: International
Workshop on Ambient Assisted Living, pp. 216–223. Springer, Berlin (2012)

3. Aoudia, F.A., Gautier, M., Berder, O.: RLMan: An energy manager based on reinforcement
learning for energy harvesting wireless sensor networks. IEEE Trans. Green Commun. Netw.
2(2), 408–417 (2018)

4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

5. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-grained image generation
through asymmetric training. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2745–2754 (2017)

6. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Int. Conf.
on Pervasive Comput., pp. 1–17 (2004)

7. Basaklar, T., Tuncel, Y., Ogras, U.Y.: tinyMAN: lightweight energy manager using rein-
forcement learning for energy harvesting wearable IoT devices (2022). arXiv preprint
arXiv:2202.09297

8. Bhat, G., Deb, R., Chaurasia, V.V., Shill, H., Ogras, U.Y.: Online human activity recognition
using low-power wearable devices. In: Proc. of Int. Conf. on Comput. Aided Design, pp.
72:1–72:8 (2018). https://doi.org/10.1145/3240765.3240833

9. Bhat, G., Park, J., Ogras, U.Y.: Near-optimal energy allocation for self-powered wearable
systems. In: Proc. Int. Conf. on Comput.-Aided Design, pp. 368–375 (2017)

10. Bhat, G., Tuncel, Y., An, S., Lee, H.G., Ogras, U.Y.: An ultra-low energy human activity
recognition accelerator for wearable health applications. ACM Trans. Embedd. Comput. Syst.
18(5s), 1–22 (2019)

https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833
https://doi.org/10.1145/3240765.3240833

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 67

11. Bhat, G., et al.: w-HAR: an activity recognition dataset and framework using low-power
wearable devices. Sensors 20(18), 5356 (2020)

12. Boursalie, O., Samavi, R., Doyle, T.E.: M4cvd: mobile machine learning model for monitor-
ing cardiovascular disease. Proc. Comput. Sci. 63, 384–391 (2015)

13. Buchli, B., Sutton, F., Beutel, J., Thiele, L.: Dynamic power management for long-term
energy neutral operation of solar energy harvesting systems. In: Proc. Conf. on Embedd.
Network Sensor Syst., pp. 31–45 (2014)

14. Camgöz, N.C., Kindiroglu, A.A., Akarun, L.: Gesture recognition using template based
random forest classifiers. In: European Conference on Computer Vision, pp. 579–594.
Springer, Berlin (2014)

15. Cammarano, A., Petrioli, C., Spenza, D.: Pro-energy: a novel energy prediction model for
solar and wind energy-harvesting wireless sensor networks. In: Int. Conf. on Mobile Ad-Hoc
and Sensor Syst., pp. 75–83 (2012)

16. Cammarano, A., Petrioli, C., Spenza, D.: Online energy harvesting prediction in environmen-
tally powered wireless sensor networks. IEEE Sensors J. 16(17), 6793–6804 (2016)

17. Cao, J., Li, W., Ma, C., Tao, Z.: Optimizing multi-sensor deployment via ensemble pruning
for wearable activity recognition. Inform. Fusion 41, 68–79 (2018)

18. Chen, Y.K.: Challenges and Opportunities of Internet of Things. In: ASPDAC, pp. 383–388
(2012)

19. Chong, Y.W., Ismail, W., Ko, K., Lee, C.Y.: Energy harvesting for wearable devices: a review.
IEEE Sensors J. 19(20), 9047–9062 (2019)

20. Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks (2014). arXiv
preprint arXiv:1412.1442

21. Covi, E., Donati, E., Liang, X., Kappel, D., Heidari, H., Payvand, M., Wang, W.: Adaptive
extreme edge computing for wearable devices. Front. Neurosci. 15 (2021)

22. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.:
Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65
(2018)

23. Dhar, S., Guo, J., Liu, J., Tripathi, S., Kurup, U., Shah, M.: A survey of on-device machine
learning: an algorithms and learning theory perspective. ACM Trans. Internet Things 2(3),
1–49 (2021)

24. Espay, A.J., et al.: Technology in Parkinson’s disease: challenges and opportunities. Movt.
Disorders 31(9), 1272–1282 (2016)

25. Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., Joulin, A.: Training with
quantization noise for extreme model compression (2020). arXiv preprint arXiv:2004.07320

26. Ferrone, A., Maita, F., Maiolo, L., Arquilla, M., Castiello, A., Pecora, A., Jiang, X., Menon,
C., Colace, L.: Wearable band for hand gesture recognition based on strain sensors. In: 2016
6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob),
pp. 1319–1322. IEEE, Piscataway (2016)

27. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural
networks (2018). arXiv preprint arXiv:1803.03635

28. Geisler, M., et al.: Human-motion energy harvester for autonomous body area sensors. Smart
Mater. Struct. 557(1), 012024 (2017)

29. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)
30. Gope, D., Dasika, G., Mattina, M.: Ternary hybrid neural-tree networks for highly constrained

IoT applications. Proc. Mach. Learn. Syst. 1, 190–200 (2019)
31. Gupta, S., Jain, S., Roy, B., Deb, A.: A tinyML approach to human activity recognition. In:

Journal of Physics: Conference Series, vol. 2273, p. 012025. IOP Publishing (2022)
32. Haidar, M., Rezagholizadeh, M., et al.: TextKD-GAN: Text generation using knowledge

distillation and generative adversarial networks. In: Canadian Conference on Artificial
Intelligence, pp. 107–118. Springer, Berlin (2019)

33. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient
neural network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

68 G. Bhat et al.

34. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the impact of
precision quantization on the accuracy and energy of neural networks. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, pp. 1474–1479. IEEE, Piscataway
(2017)

35. Hossain, T., Inoue, S.: A comparative study on missing data handling using machine learning
for human activity recognition. In: 2019 Joint 8th International Conference on Informatics,
Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision &
Pattern Recognition (icIVPR), pp. 124–129. IEEE, Piscataway (2019)

36. Huang, H., Li, X., Liu, S., Hu, S., Sun, Y.: Tribomotion: a self-powered triboelectric motion
sensor in wearable Internet of Things for human activity recognition and energy harvesting.
IEEE Internet Things J. 5(6), 4441–4453 (2018)

37. Hwang, G.T., et al.: Self-powered cardiac pacemaker enabled by flexible single crystalline
PMN-PT piezoelectric energy harvester. Adv. Mater. 26(28), 4880–4887 (2014)

38. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2704–2713 (2018)

39. Jiang, S., Kang, P., Song, X., Lo, B., Shull, P.B.: Emerging wearable interfaces and algorithms
for hand gesture recognition: a survey. IEEE Reviews in Biomedical Engineering 15, 85–102
(2021)

40. Jin, X., Li, L., Dang, F., Chen, X., Liu, Y.: A survey on edge computing for wearable
technology. Digit. Signal Process. 125, 103146 (2021)

41. Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar energy harvesting.
In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE,
Piscataway (2017)

42. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy harvesting
sensor networks. ACM Trans. Embedd. Comput. Syst. 6(4), 32 (2007)

43. Kassubek, J.: Diagnostic procedures during the course of Parkinson’s disease. Basal Ganglia
4(1), 15–18 (2014)

44. Khalifa, S., Lan, G., Hassan, M., Seneviratne, A., Das, S.K.: Harke: Human activity
recognition from kinetic energy harvesting data in wearable devices. IEEE Trans. Mobile
Comput. 17(6), 1353–1368 (2017)

45. Kostak, M., Berger, A., Slaby, A.: Migration of artificial neural networks to smartphones.
In: International Conference on Computational Science and Its Applications, pp. 845–858.
Springer, Berlin (2020)

46. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference: a
whitepaper (2018). arXiv preprint arXiv:1806.08342

47. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

48. Kubota, K.J., Chen, J.A., Little, M.A.: Machine learning for large-scale wearable sensor data
in Parkinson’s disease: concepts, promises, pitfalls, and futures. Movement Disorders 31(9),
1314–1326 (2016)

49. Kunze, K., Lukowicz, P.: Sensor placement variations in wearable activity recognition. IEEE
Pervasive Comput. 13(4), 32–41 (2014)

50. Kunze, K., Lukowicz, P., Partridge, K., Begole, B.: Which way am i facing: inferring
horizontal device orientation from an accelerometer signal. In: 2009 International Symposium
on Wearable Computers, pp. 149–150. IEEE, Piscataway (2009)

51. Kwapisz, J.R., et al.: Activity recognition using cell phone accelerometers. ACM SigKDD
Explorations Newslett. 12(2), 74–82 (2011)

52. Lara, O.D., et al.: A survey on human activity recognition using wearable sensors. IEEE
Commun. Surv. Tut. 15(3), 1192–1209 (2012)

53. Lee, S.M., Yoon, S.M., Cho, H.: Human activity recognition from accelerometer data using
convolutional neural network. In: 2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 131–134. IEEE, Piscataway (2017)

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 69

54. Li, G., Wang, H., Zhang, S., Xin, J., Liu, H.: Recurrent neural networks based photovoltaic
power forecasting approach. Energies 12(13), 2538 (2019)

55. Lin, X., Wang, Y., Chang, N., Pedram, M.: Concurrent task scheduling and dynamic voltage
and frequency scaling in a real-time embedded system with energy harvesting. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 35(11), 1890–1902 (2016)

56. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

57. Liu, S., Lu, J., Wu, Q., Qiu, Q.: Harvesting-aware power management for real-time systems
with renewable energy. IEEE Trans. Very Large Scale Integr. Syst. 20(8), 1473–1486 (2011)

58. Lockhart, J.W., Weiss, G.M., Xue, J.C., Gallagher, S.T., Grosner, A.B., Pulickal, T.T.:
Design considerations for the WISDM smart phone-based sensor mining architecture. In:
Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data,
pp. 25–33 (2011)

59. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through l_0
regularization (2017). arXiv preprint arXiv:1712.01312

60. Maetzler, W., Domingos, J., Srulijes, K., Ferreira, J.J., Bloem, B.R.: Quantitative wearable
sensors for objective assessment of Parkinson’s disease. Mov. Disord. 28(12), 1628–1637
(2013)

61. Maetzler, W., et al.: A clinical view on the development of technology-based tools in
managing Parkinson’s disease. Mov. Disord. 31(9), 1263–1271 (2016)

62. Mann, S.: Wearable computing: Toward humanistic intelligence. IEEE Intell. Syst. 16(3), 10–
15 (2001)

63. Mathur, A., Zhang, T., Bhattacharya, S., Velickovic, P., Joffe, L., Lane, N.D., Kawsar, F., Lió,
P.: Using deep data augmentation training to address software and hardware heterogeneities
in wearable and smartphone sensing devices. In: 2018 17th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN), pp. 200–211. IEEE, Piscataway
(2018)

64. Mayer, P., Magno, M., Benini, L.: Energy-positive activity recognition-from kinetic energy
harvesting to smart self-sustainable wearable devices. IEEE Trans. Biomed. Circuits Syst.
15(5), 926–937 (2021)

65. McCarthy, M.W., James, D.A., Lee, J.B., Rowlands, D.D.: Decision-tree-based human
activity classification algorithm using single-channel foot-mounted gyroscope. Electron. Lett.
51(9), 675–676 (2015)

66. Mizell, D.: Using gravity to estimate accelerometer orientation. In: Seventh IEEE Interna-
tional Symposium on Wearable Computers, 2003. Proceedings, pp. 252–252. Citeseer (2003)

67. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural networks.
In: International Conference on Machine Learning, pp. 2498–2507. PMLR (2017)

68. Nguyen, S., Amirtharajah, R.: A hybrid rf and vibration energy harvester for wearable devices.
In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1060–
1064. IEEE, Piscataway (2018)

69. Noh, D.K., Kang, K.: Balanced energy allocation scheme for a solar-powered sensor system
and its effects on network-wide performance. J. Comput. Syst. Sci. 77(5), 917–932 (2011)

70. Odema, M., Rashid, N., Al Faruque, M.A.: Energy-aware design methodology for myocardial
infarction detection on low-power wearable devices. In: ASPDAC, pp. 621–626 (2021)

71. Ozanne, A., Johansson, D., Hällgren Graneheim, U., Malmgren, K., Bergquist, F., Alt Mur-
phy, M.: Wearables in epilepsy and Parkinson’s disease—a focus group study. Acta Neurol.
Scand. 137(2), 188–194 (2018)

72. Park, E., Yoo, S., Vajda, P.: Value-aware quantization for training and inference of neural
networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp.
580–595 (2018)

73. Park, J., Bhat, G., Geyik, C.S., Ogras, U.Y., Lee, H.G.: Energy per operation optimization for
energy-harvesting wearable IoT devices. Sensors 20(3), 764 (2020)

74. Piorno, J.R., Bergonzini, C., Atienza, D., Rosing, T.S.: Prediction and management in energy
harvested wireless sensor nodes. In: Int. Conf. on Wireless Comm., Vehicular Tech., Info.
Theory and Aerospace & Electron. Syst. Tech., pp. 6–10 (2009)

70 G. Bhat et al.

75. Pires, I.M., Hussain, F., Garcia, N.M., Zdravevski, E.: Improving human activity monitoring
by imputation of missing sensory data: experimental study. Fut. Internet 12(9), 155 (2020)

76. Prabowo, O.M., Mutijarsa, K., Supangkat, S.H.: Missing data handling using machine
learning for human activity recognition on mobile device. In: 2016 International Conference
on ICT for Smart Society (ICISS), pp. 59–62. IEEE, Piscataway (2016)

77. Raethjen, J., Govindan, R., Muthuraman, M., Kopper, F., Volkmann, J., Deuschl, G.:
Cortical correlates of the basic and first harmonic frequency of parkinsonian tremor. Clin.
Neurophysiol. 120(10), 1866–1872 (2009)

78. Reiss, A., Stricker, D.: Creating and benchmarking a new dataset for physical activity
monitoring. In: Proceedings of the 5th International Conference on PErvasive Technologies
Related to Assistive Environments, pp. 1–8 (2012)

79. Saeed, A., Ozcelebi, T., Lukkien, J.: Synthesizing and reconstructing missing sensory
modalities in behavioral context recognition. Sensors 18(9), 2967 (2018)

80. Sharma, A., Kakkar, A.: A review on solar forecasting and power management approaches
for energy-harvesting wireless sensor networks. Int. J. Commun. Syst. 33(8), e4366 (2020)

81. Sharma, N., Sharma, P., Irwin, D., Shenoy, P.: Predicting solar generation from weather
forecasts using machine learning. In: 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 528–533. IEEE, Piscataway (2011)

82. Shoaib, M., et al.: A survey of online activity recognition using mobile phones. Sensors 15(1),
2059–2085 (2015)

83. Shoaran, M., Haghi, B.A., Taghavi, M., Farivar, M., Emami-Neyestanak, A.: Energy-efficient
classification for resource-constrained biomedical applications. IEEE J. Emerging Sel. Topics
Circuits Syst. 8(4), 693–707 (2018)

84. Smith, K.E., Smith, A.O.: Conditional GAN for timeseries generation (2020). arXiv preprint
arXiv:2006.16477

85. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T.S., Kjærgaard, M.B., Dey, A., Sonne,
T., Jensen, M.M.: Smart devices are different: Assessing and mitigating mobile sensing
heterogeneities for activity recognition. In: Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, pp. 127–140 (2015)

86. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE
Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2015)

87. Texas Instruments Inc.: CC2652R Microcontroller (2018). https://www.ti.com/product/
CC2652R. Accessed 1 Nov 2020

88. Tokognon, C.A., Gao, B., Tian, G.Y., Yan, Y.: Structural health monitoring framework based
on internet of things: a survey. IEEE Internet Things J. 4(3), 619–635 (2017)

89. Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J., Ramig, L.O.: Novel speech signal
processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans.
Biomed. Eng. 59(5), 1264–1271 (2012)

90. Tuncel, Y., Bandyopadhyay, S., Kulshrestha, S.V., Mendez, A., Ogras, U.Y.: Towards wear-
able piezoelectric energy harvesting: Modeling and experimental validation. In: Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 55–60
(2020)

91. Uddin, M.H., Ara, J.M.K., Rahman, M.H., Yang, S.: Neural network pruning: an effective
way to reduce the initial network for deep learning based human activity recognition. In:
2021 International Conference on Electronics, Communications and Information Technology
(ICECIT), pp. 1–4. IEEE, Piscataway (2021)

92. Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network compression
(2017). arXiv preprint arXiv:1702.04008

93. Um, T.T., Pfister, F.M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., Kulić, D.: Data
augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional
neural networks. In: Proceedings of the 19th ACM International Conference on Multimodal
Interaction, pp. 216–220 (2017)

94. Valenzuela, A.: Energy Harvesting for No-Power Embedded Systems (2008). https://bit.ly/
3fnA6Vm. Accessed 28 Mar 2021

https://www.ti.com/product/CC2652R
https://www.ti.com/product/CC2652R
https://www.ti.com/product/CC2652R
https://www.ti.com/product/CC2652R
https://www.ti.com/product/CC2652R
https://www.ti.com/product/CC2652R
https://bit.ly/3fnA6Vm
https://bit.ly/3fnA6Vm
https://bit.ly/3fnA6Vm
https://bit.ly/3fnA6Vm

Robust ML for Low-Power Wearable Devices: Challenges and Opportunities 71

95. Vasisht, D., et al.: Farmbeats: an Iot platform for data-driven agriculture. In: USENIX NSDI,
pp. 515–529 (2017)

96. Vigorito, C.M., Ganesan, D., Barto, A.G.: Adaptive control of duty cycling in energy-
harvesting wireless sensor networks. In: Proc. Conf. on Sensor, Mesh and Ad Hoc Comm.
and Networks, pp. 21–30 (2007)

97. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing
to unseen domains via adversarial data augmentation. In: Advances in Neural Information
Processing Systems, vol. 31 (2018)

98. Wang, A., et al.: A comparative study on human activity recognition using inertial sensors in
a smartphone. IEEE Sensors J. 16(11), 4566–4578 (2016)

99. Weenk, M., Bredie, S.J., Koeneman, M., Hesselink, G., van Goor, H., van de Belt, T.H., et al.:
Continuous monitoring of vital signs in the general ward using wearable devices: randomized
controlled trial. J. Med. Internet Res. 22(6), e15471 (2020)

100. Weenk, M., van Goor, H., Frietman, B., Engelen, L.J., van Laarhoven, C.J., Smit, J., Bredie,
S.J., van de Belt, T.H., et al.: Continuous monitoring of vital signs using wearable devices on
the general ward: pilot study. JMIR mHealth uHealth 5(7), e7208 (2017)

101. Woods, A.M., Nowostawski, M., Franz, E.A., Purvis, M.: Parkinson’s disease and essential
tremor classification on mobile device. Pervasive Mobile Comput. 13, 1–12 (2014)

102. Xiao, Y., Niyato, D., Han, Z., DaSilva, L.A.: Dynamic energy trading for energy harvesting
communication networks: a stochastic energy trading game. IEEE J. Sel. Areas Commun.
33(12), 2718–2734 (2015)

103. Xiao, Y., Niyato, D., Wang, P., Han, Z.: Dynamic energy trading for wireless powered
communication networks. IEEE Commun. Mag. 54(11), 158–164 (2016)

104. Yamin, N., Bhat, G.: Online solar energy prediction for energy-harvesting Internet of Things
devices. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pp. 1–6. IEEE, Piscataway (2021)

105. Yang, J., Liu, W., Yuan, J., Mei, T.: Hierarchical soft quantization for skeleton-based human
action recognition. IEEE Trans. Multimedia 23, 883–898 (2020)

106. Yang, Z., Raymond, O.I., Zhang, C., Wan, Y., Long, J.: DFTerNet: towards 2-bit dynamic
fusion networks for accurate human activity recognition. IEEE Access 6, 56750–56764
(2018)

107. Ye, J., Li, K., Qi, G.J., Hua, K.A.: Temporal order-preserving dynamic quantization for human
action recognition from multimodal sensor streams. In: Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval, pp. 99–106 (2015)

108. Yona, A., Senjyu, T., Funabashi, T.: Application of recurrent neural network to short-
term-ahead generating power forecasting for photovoltaic system. In: 2007 IEEE Power
Engineering Society General Meeting, pp. 1–6 (2007). https://doi.org/10.1109/PES.2007.
386072

109. Yoneyama, M., Kurihara, Y., Watanabe, K., Mitoma, H.: Accelerometry-based gait analysis
and its application to Parkinson’s disease assessment—part 2: a new measure for quantifying
walking behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 999–1005 (2013)

110. Yoon, J., Jordon, J., Schaar, M.: GAIN: missing data imputation using generative adversarial
nets. In: ICML, pp. 5689–5698 (2018)

111. Yu, S., Li, Z., Chen, P.Y., Wu, H., Gao, B., Wang, D., Wu, W., Qian, H.: Binary neural
network with 16 mb RRAM macro chip for classification and online training. In: 2016 IEEE
International Electron Devices Meeting (IEDM), pp. 16–2. IEEE, Piscataway (2016)

112. Zhang, M., Sawchuk, A.A.: USC-HAD: a daily activity dataset for ubiquitous activity
recognition using wearable sensors. In: Proc. of the Conf. on Ubiquitous Comput., pp. 1036–
1043 (2012)

113. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model
compression (2017). arXiv preprint arXiv:1710.01878

https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072
https://doi.org/10.1109/PES.2007.386072

Efficient Deep Vision for Aerial Visual
Understanding

Rafael Makrigiorgis, Shahid Siddiqui, Christos Kyrkou, Panayiotis Kolios,
and Theocharis Theocharides

1 Introduction

Embedded visual AI is a growing trend in applications requiring low latency, real-
time decision support, increased robustness and security [14, 15]. An example
of this is the increasing use of Unmanned Aerial Vehicles (UAVs) for a number
of applications as a remote sensing platform, such as road traffic monitoring
[19, 23], search and rescue [25], and precision agriculture [24]. Recent technological
advances such as the integration of camera sensors with onboard processing provide
the opportunity for new UAV applications such as (i) detecting and classifying
infrastructure faults during routine inspections, (ii) identifying and tracking people
of interest, locating objects, and flagging unusual situations, (iii) locating people
who are lost, etc.

The aforementioned capabilities are enabled by recent advances in deep learning-
based scene understanding, and convolutional neural networks (CNNs) in particular,
that provide remarkable opportunities for computer vision-based applications. In
such scenarios, the vision algorithms need to deploy on resource-constrained
embedded devices on UAVs that support high-resolution cameras for applications
beyond photography, such as environmental and infrastructure monitoring. How-
ever, deep learning algorithms are computationally very intensive and not suitable
for onboard processing on small devices such as UAVs due to battery/power
constraints and are usually processed via the cloud. For certain scenarios, however,
where the system operates in remote areas with limited connectivity, this can
result in unwanted response latency which can degrade performance, a potentially
catastrophic scenario in safety-critical applications. Thus, processing information

R. Makrigiorgis · S. Siddiqui · C. Kyrkou · P. Kolios · T. Theocharides (�)
KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus
e-mail: makrigiorgis.rafael@ucy.ac.cy; siddiqui.muhammad-shahid@ucy.ac.cy;
kyrkou.christos@ucy.ac.cy; kolios.panayiotis@ucy.ac.cy; ttheocharides@ucy.ac.cy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_4

73

 31368 2385 a 31368 2385 a

 885
55738 a 885 55738 a

mailto:makrigiorgis.rafael@ucy.ac.cy
mailto:makrigiorgis.rafael@ucy.ac.cy
mailto:makrigiorgis.rafael@ucy.ac.cy
mailto:makrigiorgis.rafael@ucy.ac.cy

 12871 55738 a 12871 55738 a

mailto:siddiqui.muhammad-shahid@ucy.ac.cy
mailto:siddiqui.muhammad-shahid@ucy.ac.cy
mailto:siddiqui.muhammad-shahid@ucy.ac.cy
mailto:siddiqui.muhammad-shahid@ucy.ac.cy
mailto:siddiqui.muhammad-shahid@ucy.ac.cy

 -2016 56845 a -2016
56845 a

mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy

 8616 56845 a 8616 56845 a

mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy

 19837 56845 a 19837 56845 a

mailto:ttheocharides@ucy.ac.cy
mailto:ttheocharides@ucy.ac.cy
mailto:ttheocharides@ucy.ac.cy
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4
https://doi.org/10.1007/978-3-031-40677-5_4

74 R. Makrigiorgis et al.

Fig. 1 Efficient visual understanding for UAVs requires optimizations at different levels, from data
reduction to deep neural network architecture exploration, and hardware-driven model adjustments

at the edge can not only eliminate unwanted lag issues but also partially handle
security problems since the data are not transmitted and sensitive data cannot be
intercepted.

A lot of research has been conducted to address the challenges of visual percep-
tion using UAV imagery. A few notable examples are detecting vehicles for traffic
monitoring scenarios in [13] and disaster management in [1]. Processing visual
data information has seen significant accuracy and performance improvements due
to advancements in deep learning and technologies in Graphical Processing Units
(GPUs). However, relying on hardware improvements alone is not by itself sufficient
to provide the optimal power/performance trade-offs necessary for edge and IoT
applications. Hence, in this chapter, we highlight a body of work that aims to explore
different techniques that in tandem with embedded hardware improvements can lead
to better efficiency for edge applications. The described techniques as depicted in
Fig. 1 provide a way toward a more holistic optimization by considering all aspects
from the data to the AI model, as well as hardware aspects. These techniques are
presented in the subsequent chapters where improved performance and efficiency
are demonstrated compared to standard approaches.

2 Domain-Specific Small ConvNets for UAV Applications

Typically, we use hardware accelerators to speed up compressed and quantized
versions of well-known models because the underlying operations are highly
parallel. What if we also try and optimize the model directly for the application
by only using the right amounts and types of each operation? In this section, we will
demonstrate some use cases where a small neural network is capable of providing
adequate performance.

Small deep neural networks have many desirable properties and advantages that
we can see across their lifetime cycle and make them more easily deployable
on embedded processors where computation and even more so memory are at a

Efficient Deep Vision for Aerial Visual Understanding 75

premium. In addition, being able to store the model on-chip saves on power as it
avoids off-chip memory access which consumes order of magnitudes more power. In
addition, to inference, small neural networks facilitate faster training iterations and
more easily updatable over the air (OTA). So whenever a remote system encounters
a situation where it is not confident in its predictions or may require retraining, then
we can send less data even from a lower bandwidth network. Finally, when using
smaller neural networks, it is easier for multiple vision tasks to run on the same
platform, e.g., object detection and classification.

But it is not only the computational and technical characteristics that need
to be considered, but many of the operational characteristics also change when
considering edge applications. In most cases, these are narrow-domain applications
that need to recognize a few classes compared to the generic models trained on
ImageNet [6], and they have requirements for real-time processing so that a decision
or action can be taken in reasonable time and need to operate under limited energy
and resources. So, for many applications, the full capacity of ImageNet pretrained
models could be unnecessary which provides opportunities to explore smaller deep
learning models in edge applications.

The main principles behind the design of smaller models, as shown in Fig. 2,
are the balance between the number of parameters, the downsampling rate, and
the operations performed within the network. The number of parameters usually
impacts how many convolutions we have in the model, and this can affect the FLOP
demands. Aggressive downsampling can harm the accuracy of a model even though
it makes it faster. While the number of channels and the type of convolution also
impact the performance. Next, two use cases for UAV applications are presented
where smaller neural networks with architectural modifications are capable of
providing competitive performance compared to traditional deep learning models.

Fig. 2 Main approaches for producing smaller and more efficient neural networks. (a) Reducing
input image resolution. (b) Using efficient operators like depthwise convolution if it is implemented
efficiently on the underlying hardware. (c) Early downsampling of feature maps can improve
processing speed

76 R. Makrigiorgis et al.

2.1 Disaster Classification

The first use case will demonstrate the use of UAVs for patrolling and automated
recognition of disaster events. When a disaster strikes, there is limited time to act,
and hence, the objective is to develop an automated platform for rapid deployment
and large area coverage. Coupled with an automated path planning software, a UAV
can navigate a monitored area and automatically recognize different events through
onboard processing of its camera feed. Since connectivity is not guaranteed in such
cases, this should be done in a way that is suitable for the embedded hardware of
UAVs and in real time.

2.1.1 Network Design

For this application, a small neural network is designed that features a balance
between the number of parameters, the downsampling rate, and the operations
performed within the network. First, we design a basic block that is suited for
processing images where the object/area appears at varying resolutions such as
in UAV imagery. Specifically, this block is referred to as Atrous Convolutional
Feature Fusion (ACFF) block (shown in Fig. 3) that relies on depthwise atrous/di-
lated convolutions to aggregate context information at multiple resolutions. Each
dilated convolution is factored into depthwise convolution that performs lightweight
filtering by applying a single convolutional kernel per input channel to reduce the
computational complexity. The intuition is to take advantage of the different dilation
rates since each path may peek up features at different object/region resolution due
to changes in altitude. Another advantage of using dilated convolutions is that the
same number of parameters and computations are needed regardless of the size of
the kernels in the block. Prior to processing the input feature map, a .1×1 convolution
filter is applied to reduce its size and then expand it after the fusion of the dilated
convolutions.

Fig. 3 Atrous Convolutional Feature Fusion Block

Efficient Deep Vision for Aerial Visual Understanding 77

Other properties of the network geared toward more efficient processing on edge
devices are reduced number of 16 channels at the first layer and downsampling with
strided convolutions. This is particularly important in achieving better performance
since the image resolution at this stage is at the highest. This first convolutional
block is a standard convolution. Then, the network follows a canonical architecture
of ACFF blocks with a progressive reduction of spatial resolution with an increase
in depth with up to 256 channels at the last layer. To further reduce the number of
parameters, the fully connected layers that are usually employed in classification
networks are replaced with global pooling operations. Finally, the network depth is
maintained at 7 blocks since deeper networks resulted in saturating performance.
Additionally, modifications were made to the activation function in order to make
it more amicable to quantization. First, the leaky variant of the ReLU activation is
used that permits for the gradient to flow for negative input values. In addition, the
maximum activation is capped to the value of 255 to allow for easier quantization to
8 bits. Finally, we have two operating modes; during training, the full range of the
capped ReLU is used, while during inference, the negative values are zeroed. These
minor modifications allow optimizing for lower precision execution. We refer to this
architecture as EmergencyNet [18].

2.1.2 Experiments and Results

In this section, the experimental evaluation of small neural network is discussed
with results from the experimental evaluation of the approach on an actual embed-
ded platform. First, the improvements over existing networks are validated on
the developed dataset from [17], and results of the effectiveness are presented.
Real experiments have also been conducted in two different settings: (i) onboard
embedded processing, where all computations are performed onboard the resource-
constrained UAV device, and (ii) remote processing, in which the UAV transmits the
captured video to the controller ground station for processing on an Android tablet
that controls the UAV. Herein, we focus on the former. It is worth noting that the
primary interest is in single image processing speed and as such the evaluation phase
is carried out with a batch size of 1 since this is common in real-time streaming
applications where the camera outputs each frame sequentially (Table 1).

The small neural network is compared with some standard networks, and results
are summarized in Table 1. First, with regard to the accuracy of the pretrained
models, it is observed that VGG16 outperforms all of them with a .96.4% F1-score
with ResNet50 closely following with .96.1%. However, both networks have very
high demands for computational and storage requirements making them unsuitable
for resource constraint systems and real-time use. The latest iteration of MobileNet,
i.e., V3, achieves the highest accuracy among the MobileNet family of networks
with a score of .95.3%. However, it requires an order of magnitude more parameters
and memory. Other MobileNet versions (V1 and V2) demonstrate similar score
with the V2 version resulting in a slightly higher FPS. EfficientNet provides a high
accuracy of .96.0% due to its elaborate architecture. However, the parameter count

78 R. Makrigiorgis et al.

Table 1 Comparison with existing approaches

Model Parameters Memory (MB) F1 Score (%) FPS (1/s)

VGG16 [30] 14,849,349 59.39 96.4 1.1

ResNet50 [8] 24,113,541 96.4 96.1 2.9

MobileNet V1 [10] 3,492,549 13.9 95 7.9

MobileNet V2 [29] 2,587,205 10.3 95.2 9.3

MobileNet V3 [9] 3,046,037 12.1 95.3 9.0

EfficientNet (B0) [32] 4,378,785 17.5 96.0 10.4

SqueezeNet [11] 698,917 2.7 91.5 6.6

ShuffleNet [22] 4,282,425 17.1 91.1 4.5

Xception [5] 21,387,309 85.549 95.3 2.3

Fire_Net [33] 5,235,860 5.2 90.5 9.8

EmergencyNet [18] 90,892 0.368 95.7 24.3

Fig. 4 Example of classification results on sample images

and memory requirements are higher than EmergencyNet. Other networks fail to
provide adequate accuracy and require a higher number of parameters. It is clear
from this analysis that it is worth investigating specifically tailored solutions for
resource-constrained applications in order to provide an improvement across all
design aspects.

Furthermore, some classification results are shown in Fig. 4. It is interesting to
note that similarly appearing patterns between images do not confuse the network.
For instance, the presence of cars, which is more often associated with traffic
incidents, does not cause the network to fail which outputs the correct classification
as flood. Overall, these results are promising since a small network manages to
match or at least be very close to other more general networks while the processing
speed and subsequent frame-rate improvements provide adequate trade-offs for edge
applications.

Efficient Deep Vision for Aerial Visual Understanding 79

2.2 Vehicle Detection

In the second use case, we describe how the problem of top view vehicle detection
from UAV aerial imagery is tackled through the exploration of small convolutional
neural networks. While there has been quite some research on reducing the
complexity of well-studied ConvNet models in the form of parameter compression
and quantization, there has been little effort on developing specialized solutions for
resource-constrained embedded vision systems such as UAVs. This section briefly
outlines the end-to-end investigation of different single-shot CNN detectors for
drone-based vehicle detection.

2.2.1 Network Design and Approach

Our approach in [16] focuses on the exploration of an efficient and lightweight
network by investigating different network design considerations. The goal is to
keep the accuracy as high as possible but design a faster model. We develop several
models to explore the effect of a different number of parameters. The models are
trained to detect only 1 class, which, in our case, is vehicles viewed from top. We
explore the impact on performance by changing the structure of the network such as
the number of filters, the number of layers, image size, the number of convolution,
and the pooling layers. The design approaches considered are the following: (1)
number and size of filters. Firstly, we use pooling layers sparingly and use a small
number of filters in each layer in order to get a smaller network which leads to
a faster detection. The largest number of filters in a network is 256 for the final
convolutional layer. As the network goes deeper, we double the number of filters.
In total, there are 9 convolutional and 4 max-pooling layers. (2) Input Image Size:
Input size is a parameter that can increase accuracy but decreases the detection speed
since a deeper network will be required to reach the final bounding box regression
size. Moreover, a larger input image implies more convolutions per feature map and
in some cases more bounding boxes to account for.

Four network architectures are derived (SmallYoloV3, TinyYoloVoc, TinyY-
oloNet, and DroNet). These have different parameters including the layers and the
type of each layer (conv, maxpool, detection) together with the configuration of the
layers in terms of the number of filters, the size of filters in each layer, and the
input/output size of the feature maps. A common theme, however, is the use of . 3×3
and cheaper .1 × 1 convolutional filters, as well as the progressive reduction of the
feature maps size by a factor of 2 and use of a lower number of filters at early layers.
Finally, feature shortcut connections are used to further improve accuracy for small
objects.

To find the CNN that optimizes both accuracy and computation cost, a custom
metric is employed. Given a model instance, it captures both the detection accuracy
and the achieved runtime on the target hardware platform. It is defined as a
composite linear combination metric that combines various performance indicators.

80 R. Makrigiorgis et al.

By following this methodology, the resulting CNN model yields the highest
performing balance between detection accuracy and faster execution.

.Score(w) = w1 × FPS + w2 × IoU + w3 × Sensitivity + w4 × Precision (1)

The score is parameterized with respect to a vector of weights which sums to
one, where each weight captures the application-level importance of each metric
and is normalized between [0-1]. Since real-time performance is desired, the FPS is
prioritized with a weight of 0.4 over other three accuracy-related metrics which are
equally weighted with 0.2.

2.2.2 Results

In this section, we present a comprehensive quantitative evaluation of the four CNN
architectures. The basic network models are trained and tested for various input
sizes using the constructed vehicle dataset as shown in Fig. 5. Table 2 shows the
performance comparison of these models. In our test set, with 386 . × 386 as input
resolution, TinyYoloNet achieves 10. × higher performance than TinyYoloVoc with
decreased detection sensitivity and precision by 20% and 10%, respectively, and an
IoU drop of 0.11. The network SmallYoloV3, with 386 . × 386 resolution, achieves
the highest frame rate of 23 FPS among all network designs. Nevertheless, the
substantial reduction in the number of weights leads to a decrease in sensitivity

Fig. 5 Example of detection results on sample images

Table 2 Comparison of the different models

Model TinyYOLOVoc TinyYOLONet SmallYOLOv3 DroNet

FPS 1.2 12 23 22

IoU 0.36 0.25 0.11 0.22

Sensitivity(%) 87.8 68.2 34.7 69.4

Precision (%) 90.5 80.6 69.1 76.5

Size (MB) 63.1 6.4 0.115 0.283

Score 0.62 0.68 0.69 0.83

Efficient Deep Vision for Aerial Visual Understanding 81

which is 53% lower and prohibits us from using it for robust vehicle detection.
There are significant performance gains starting from TinyYoloVoc to TinyYoloNet
followed by SmallYoloV3 and then to DroNet. For example, comparing these
models for the same input size of 386, the performance of DroNet is 30. × faster
compared to TinyYoloVoc with a minimal drop of 0.08 on the IoU. Moreover,
there is a limited drop of 2% and 6% for the detection sensitivity and precision,
respectively.

Comparing DroNet with different models demonstrates the effect of a composite
score function. In particular, with respect to the smaller smallYoloV3 network, it
provides lesser FPS while being more accurate. On the other hand, compared with
the largest tinyYoloVOC, it is less accurate but much faster. The model size is also
suitable for edge applications with limited resources. Overall, it provides the best
trade-off between accuracy and performance.

The analysis is performed on the Odroid-XU4 with an Octa-core Samsung
Exynos-5422 CPU which is lightweight and capable of being powered by the UAV
platform. Overall, the DroNet network maintains a performance of 10 FPS with the
accuracy maintained around 95% for .512× 512 image resolution.

3 Processing Aerial Images with Tiling

The previous section dealt with design of small, domain-specific deep neural
networks. However, optimizing the network alone might not be enough to obtain
a high performing system. In many cases, when a UAV flies at a high altitude (e.g.,
500 meters) and covers a wide field of view, the image resolution must be large
enough to recognize targets. High-resolution images, however, imply an exponential
increase in the amount of data processed, and most of the times there is a lot of
redundant data. Hence, even a small neural network would require significant time to
process such high-resolution images. Thus, it is necessary to investigate intelligent
data reduction techniques. Some works have attempted to improve UAV imagery
detection utilizing hybrid approaches such as combining deep learning with SVM
[2] or two-stage Faster R-CNN [4]. However, embedded devices still do not have
the necessary processing power to process such high-resolution frames in real time.
Recent works have also focused on developing low-power hardware or designing
CNNs architectures to retain as much accuracy as possible with real-time processing
capabilities. However, such optimizations may require a fixed input size that is
usually multiple times smaller than a desired high-resolution image.

From a UAV’s perspective, objects may appear too small and hence challenging
to detect. Therefore, approaches beyond CNN architectural design should be
implemented to maximize the efficiency of such applications by reducing the data
to be processed without losing significant information from the input images.

The work presented herein focuses on optimizing the accuracy and performance
of onboard UAV object detection. Several approaches have been developed and
tested using tiling methods. Tiling is a technique, where, upon receiving an image

82 R. Makrigiorgis et al.

Fig. 6 Proposed tiles for processing base on the selection process. This figure was taken from our
previous work in [27]

frame, overlapping slices of the image are created and processed individually or in
parallel (e.g., Fig. 6). Using this technique, we avoid resizing the original image,
keeping all the information and features of the image at its original resolution. For
this purpose, we propose the EdgeNet framework [27]. EdgeNet framework can be
utilized with predefined architectures even on higher resolution images, and it is an
intelligent way to minimize processing data while increasing accuracy and system
performance. EdgeNet framework consists of three main stages, Initial Position
Estimation, Tiling and CNN Selection, and Tracking using Optical Flow.

3.1 Approach

The presented approach, referred to as the EdgeNet framework, aims to simulta-
neously improve the overall accuracy and performance while reducing the power
consumption when processing high-resolution images on an edge device. The
EdgeNet framework’s main idea is to utilize a pool of CNN detectors and select
the optimal one based on the needs of each frame to be processed. Specifically, by
scheduling different processing stages, where different CNNs are used, and allocat-
ing a varying number of times steps to each stage, we can obtain a good trade-off
between accuracy and speed. An evaluation of multiple algorithmic configurations
and parameters is possible through which to identify the time allocation for each
stage in the framework and accordingly analyze the accuracy and the performance
of each configuration. The EdgeNet framework is comprised of three-stage pipeline
as depicted in Fig. 7. Following is the description of each individual stage.

Efficient Deep Vision for Aerial Visual Understanding 83

Fig. 7 EdgeNet Framework Pipeline adapted from [27]

3.1.1 Initial Position Estimation

The purpose of this stage is to help the framework choose the necessary method
for the following stages by constructing the initial positions of the objects in a
frame. For this task, the efficiency of a Convolutional Neural Network is needed,
and hence, DroNet which is aforementioned is utilized. However, the structure of
DroNet is extended by utilizing upsample feature maps from previous layers, to
achieve detection of objects in multiple sizes. This method sufficiently improves
the detector’s accuracy [28] for small objects, such as pedestrians. From now on,
this network is referred to as .DroNet_V 3. For this stage, a more traditional way
is utilized, where the input frame is resized and then passed through . DroNet_V 3
producing the bounding boxes of the detected objects in the image.

84 R. Makrigiorgis et al.

3.1.2 Tiling and CNN Selection

The purpose of the second stage of the framework is to effectively reduce the
data that needs to be processed. To achieve this, distinct tiles around initial target
positions are selected to figure out the minimum region of the image that needs
processing. The selection method uses the detected positions of the objects that
were previously estimated. For illustration purposes, the proposed DroNet is utilized
because it can operate on multiple input sizes depending on the tile size, ranging
from 128 to 512, and will be referred to as .DroNet_T ile. In order to select an
appropriately sized model, we need to first perform a profiling and benchmark
CNNs with the distinct input sizes, as shown in Table 3. The best CNNs out of
the pool will be chosen, for each time period, to guarantee the least processing time.

Furthermore, the amount of objects that are included in a tile is utilized as a
guiding factor for the selection. The candidate tiles that cover each object must
be identified by this procedure. Hence, a number of tiles are created for each of
the detected boxes, as seen by the first stage in Fig. 7. The detected objects are
positioned at the corners of the tiles as shown in Fig. 8. Then, different sizes of tiles
are also generated, more specifically five total sizes are used: 128, 256, 352, 416,
and 512, which matches the different sizes in the CNN pool. A total of 20 tiles are
generated for each proposed object. Then, each tile is evaluated using a selection

Table 3 Processing time of
.DroNet_V 3 and
.DroNetT ile for distinct
input sizes

CNN Input size (pixels) Processing time (sec.)

DroNet_V3 512 0.08

DroNet_Tile 512 0.03

DroNet_Tile 416 0.02

DroNet_Tile 352 0.014

DroNet_Tile 256 0.008

DroNet_Tile 128 0.002

Fig. 8 Different tile proposals, with respect to the position and size of the tiles, for an object in
the image. (a) 128 . × 128, (b) 256 . × 256, and (c) 352 . × 352 adapted from [27]

Efficient Deep Vision for Aerial Visual Understanding 85

process based on the objects it covers and its associated processing time. Also, an
Effective Processing Time (EPT) is calculated for each one of the 20 tiles for each
object. Basically, EPT is the number of object covered, divided by its corresponding
processing time that can be found in Table 3. The selected tile is the one that achieves
the minimum EPT. Then, we combine all the tiles that are created, discard those
which cover duplicate or with fewer objects and are finally left with those with the
minimum EPT.

An example is depicted in Fig. 6 where .128 × 128 is selected from the selection
process. DroNet with 128 size is used to process each tile. The total processing time
for this particular example is .4 × 0.002 = 0.008 s. Compared to .DroNet_V 3, which
takes 0.05 s to detect, it shows significant performance boost.

3.1.3 Optical Flow-Based Tracker

This is the third and the last stage of the EdgeNet framework. This tracker was
selected due to its fast execution time even with a huge amount of tracked points
in an image. It uses Lucas–Kanade [21] optical flow tracker, which solves the basic
optical flow equations for all the pixels by the least squares criterion. Its principle
is that the motion of objects in sequential frames is almost constantly relative to the
given object. Apart from this selection though, any other tracker can be utilized on
this stage, but it will affect the accuracy or performance, respectively, depending
on the tracker and the requirements of the application. The purpose of this stage is
(1) to simultaneously track objects along with stages 1 and 2 and cooperatively be
used to verify the location of the objects and (2) to reduce the overall processing
time of EdgeNet by utilizing the tracking for a few iterations prior to needing to
look at the whole image again. The tracker operates on each of the detected boxes
by calculating a centered point for each. All of these points are also utilized as
the starting points of the tracker along with the corresponding image. A time-slot
combination is selected that determines the amount of times that each process will
be executed based on the application requirements and the processing specifications
of the device the framework runs on.

3.2 Evaluation of EdgeNet Framework

In this section, an extensive evaluation of EdgeNet’s framework using different
configurations is presented. The configuration varies in the number of frames, which
correlates to the amount of time, that is allocated for each stage. More specifically,
we are using the notations .N_S_1 - .N_S_2 - .N_S_3, to present the number of frames
that can be allocated to each stage. For instance, if a time-slot combination of . 1−5−5
is selected, it means that the first stage will run for 1 frame, and the second and
third stages will run for 5 frames each. Furthermore, we provide comparison and
an extensive evaluation of three single-shot models .DroNet_V 3, .DroNet_T ile, and

86 R. Makrigiorgis et al.

.T inyYoloV 3. Using this method, we show that any approach that does not utilize
tiling or some form of dynamic selection has decreased accuracy performance due
to the reduced image resolution. Also, we perform comparisons on three different
devices that facilitate different use cases. The same dataset is used to train and
test all the CNNs and initially compared on a low-end laptop without a GPU1

and also tested on two embedded devices, an Odroid device2 and a Raspberry Pi3.
The dataset used consisted of 198 sequential images, captured from an aerial-view
perspective and having 988 pedestrians in total.

3.2.1 Metrics

The following metrics are used to analyze and evaluate different approaches on the
same test dataset:

Sensitivity (SEN) This metric is usually used to represent accuracy as it returns the
percentage of the correctly classified objects. To calculate it, we divide the True
Positives (.T pos) and False Negatives (.Fneg) of the detected objects.

.SEN = T pos

T pos + Fneg
(2)

Average Processing Time (APT) As the name suggests, this metric calculates the
average time needed to process a single image from a sequence of images. To
calculate it, we get the average processing time from all the .Ntest_samples test
images, where . ti is the processing time for image i.

.APT = 1

Ntest_samples
×

Ntest_samples∑

i=1

ti (3)

Average Power Consumption (APC) This metric represents the input energy (mea-
sured in Watts) that is needed to process a single image from a sequence of images
for a specific platform. It can be calculated by summing up the power consumption
of each image divided by the total number of test images, where . pi is the energy
consumption for an image i.

.APC = 1

Ntest_samples
×

Ntest_samples∑

i=1

pi (4)

1 Quad Core 1.2GHz Broadcom 64bit CPU.
2 Samsung Exynos-5422 Cortex—A15 2Ghz and Cortex—A7 Octa-core CPUs with Mali-T628
MP6 GPU.

Efficient Deep Vision for Aerial Visual Understanding 87

3.2.2 Configuration Analysis

In this section, we first investigate how different configurations affect the overall
performance and accuracy of each stage of the framework for the application of
people detection. Since stage 1 is the most time-consuming one, we set its time
allocation to 1 frame. For the remaining stages 2 and 3, the time allocation can
vary. Figure 9 depicts the average sensitivity and processing time for multiple
configurations for our in-house person test dataset. By analyzing this figure, we can
notice that stage 3 impacts the performance of the framework as its time allocation
increases. However, there is no drawback for sensitivity. On the other hand, when
increasing the time spend on stage 2, the processing time decreases, but sensitivity
decreases as well. In general, when increasing the time spend on stages 2 and 3, we
delay the use of stage, 1 which utilizes .DroNet_V 3 for full frame processing, and
therefore, the overall processing time decreases. Thus, since stages 2 and 3 utilize
initial target positions from stage 1, this also leads to a decreased sensitivity. As a
result, choosing the right values for each frame is really important in order to have
the optimal solution in terms of performance and accuracy. In our case, we want
to have the highest possible accuracy with the higher possible performance, and
therefore, we chose .EdgeNet1− 3− 5 as the best configuration to perform analysis
on edge platforms.

Fig. 9 Comparison of average processing time (CPU) and sensitivity between different EdgeNet
configurations for different time frames for each stage. This figure was taken from our previous
work in [27]

88 R. Makrigiorgis et al.

3.2.3 Performance Analysis on CPU, Odroid, and Raspberry Platforms

In this section, we evaluate the average processing time, power consumption,
and sensitivity of EdgeNet on multiple platforms, by comparing three single-shot
CNNs, i.e., .DroNet_T ile, .DronNet_V 3, and .T iny−YoloV 3. The platforms used, as
aforementioned, are a Raspberry Pi 3, an ODROID device,3 and a low-end laptop
CPU.4

Tables 4 and 5 demonstrate the average power consumption and average
processing time results of the CNNs and EdgeNet for all three platforms. As
seen in the tables, the selected EdgeNet configuration is leading in both inference
speed and power consumption. As a result, with inference speeds below 0.06 s and
consumption power ranging from 1.5 to 9Watts, it achieves the goal of having a real-
time framework for low-powered edge devices. Also, it is interesting to note that
.DroNet_T ile always comes off second best, while models such as .T iny − YoloV 3,
which are pretrained on massive datasets, perform worst with regard to power and
processing time.

Moreover, upon observing the results from the sensitivity, as seen in Fig. 10,
we can see that .DroNet_T ile even though it comes off second best in terms of
power consumption and inference speed, and it comes last in terms of sensitivity,
while .T iny − YoloV 3 comes second. On the other hand, EdgeNet achieves a . 6%
higher sensitivity than .T iny − YoloV 3, which is the largest model of all of them.
.EdgeNet − 1 − 3 − 5 sensitivity keeps the accuracy close to .96% compared to
others due to the fact that single-shot models lose object resolution and features
when resizing the image that leads to a decreased accuracy. Overall, by reducing
the processed data, having smaller input-sized CNNs and utilizing the tracker, it
directly impacts the processing time which leads to reduction of computation power

Table 4 Average Power Consumption measured in Watts

EdgeNet-1-3-5 DroNet_Tile DroNet_V3 Tiny-YoloV3

RP3 1.5 1.7 2 2.4

ODROID 3.6 3.8 4 5

CPU 9 10 15 23

Table 5 Average Processing time on different platforms

EdgeNet-1-3-5 DroNet_Tile DroNet_V3 Tiny-YoloV3

RP3 0.06 0.09 0.22 0.85

ODROID 0.05 0.1 0.3 1

CPU 0.02 0.03 0.08 0.59

3 Samsung Exynos-5422 Cortex—A15 2Ghz and Cortex—A7 Octa-core CPUs with Mali-T628
MP6 GPU.
4 Quad Core 1.2GHz Broadcom 64-bit CPU.

Efficient Deep Vision for Aerial Visual Understanding 89

Fig. 10 Sensitivity of Tiny YoloV3, .DroNet_V 3, .DroNet_T ile and EdgeNet on different
platforms. This figure was taken from our work in [27]

on all platforms. Therefore, EdgeNet is a framework capable of providing real-time
processing pipeline for mobile/edge devices in terms of accuracy, inference speed,
and power consumption.

4 Combining Tiling with Quantization

Embedded deployment of neural networks (NNs) are constrained by limited amount
of memory, compute, power budget, and real-time latency requirements. As such,
relying on small models and data reduction techniques might not be enough.
Hence, a range of hardware-driven neural network optimization techniques have
been proposed in the literature for efficient deployment. Among those, quantization
of neural networks is of special interest since many embedded platforms support
integer only arithmetic with INT8 quantization [12]. These include but are not
limited to some variants of ARM Cortex-M, RISC-V GAP-8 a system-on-chip,
and Google’s Edge TPU. Quantization, in general, is a method to map from input
values in a large (often continuous) set to output values in a small (often finite)
set, e.g., rounding and truncation [7]. In the context of neural networks (NNs),
quantization allows network weights and activation functions to be converted from
floating point operations to either fixed point or mixed precision operations, hence

90 R. Makrigiorgis et al.

reducing model’s memory footprint and RAM consumption and improving latency
and power consumption. Using TVM quantization library [3, 20] has shown 3.89. ×,
3.32. ×, and 5.02. × speed-up for ResNet50 [8], VGG-19 [30], and inceptionV3 [31],
respectively.

Existing object detectors increase inference efficiency by operating on aggres-
sively downsized, lower resolution images which causes significant information
loss and hence performance degradation for small object detection. In addition,
quantizing an already resized image further reduces detection accuracy. Therefore,
in addition to using quantization for faster inference, an additional mechanism for
maintaining high image resolution is desired for highly accurate multi-scale object
detection. Our work in Sect. 3 proposes a mechanism to intelligently select and
process more relevant portions (tiles) of a high-resolution image, hence maintaining
high detection accuracy while still improving the inference times. Thus, combining
the aforementioned techniques of small network design, with image data reduction,
and network quantization can potentially lead to further improvements.

4.1 Quantization Techniques

The way an NN is quantized can vary in many aspects. A quantization is said to
be uniform if all quantization levels are equally spaced and non-uniform otherwise.
Similarly, a quantization is said to be symmetric if the clipping range of the signal
is centered at zero and asymmetric otherwise. Moreover, if the clipping range of
NN activations is pre-computed, the quantization is said to be static. Dynamic
quantization is also possible and generally results in higher accuracy but has
higher computational overhead because activation clipping range is calculated for
each input during real-time inference. Quantization can further be categorized into
layerwise, groupwise, and channelwise depending upon what set of parameters is
being used to estimate the clipping range of the activations.

Quantization is also classified by “when” it is performed. The most widespread
trend is post-training quantization where the neural network is first trained till
convergence and quantized only when ready for deployment. Recently, notable
accuracy gains have been reported by using quantization-aware training where a
network is first trained till convergence, and then some of its layers are quantized
and the network is fine-tuned with either mixed precision or integer-only weights.
This is intended to make network already aware of it being quantized and fine-tune
accordingly, hence named “quantization aware training.” For a detailed review of
quantization, we refer the reader to [7].

4.2 Approach

In this section, we investigate a case study for object detection using quantization
and selective tiling which was discussed in the previous section. In addition, the

Efficient Deep Vision for Aerial Visual Understanding 91

model under consideration is DroNetV3, which was also introduced in the previous
section. Hence, we study the impact of quantization and tiling techniques on
detection accuracy and latency.

As discussed before, aggressive image downsizing leads to poor detection
performance in case of smaller objects of interest. In our previous work, [26] shows
how to split a larger image into smaller tiles and process only the relevant ones.
Since distributing the tiles uniformly across image leads to a drastic increase in the
number of sub-images to be processed by the CNN, two statistical techniques are
proposed to select and process only relevant tiles while also keeping track of non-
active tiles.

The first technique is making use of Intersection over Union (IoU) metric, where
each newly detected object’s bounding box (bbox) is compared to detected boxes
in the previous frames and classified as either new or old object. The position
of the objects in previous frames is maintained in a memory buffer. The second
technique uses statistical metrics such as the number of objects detected in each tile
and prioritizes tiles with a higher number of detected objects as well as those that
have not been selected recently to be processed in the subsequent frames. These
techniques combined allow an intelligent selection of image regions to be fed into
a smaller and faster object detector thus keeping higher resolution intact leading to
higher accuracy and real-time performance due to selective processing.

A post-training quantization of 8 bits is applied for both the input and the selected
convolutional neural network detector. With the use of quantization, multiply–add
operations are transformed into lower precision operations which lead to large
computational gains and higher performance. This implementation is based on the
Darknet framework and CUDA-based neural network framework. The combined
tiling and quantization approach can then be analyzed with respect to resulting
accuracy and processing time for the application of people detection from UAV.

4.3 Experimental Results

In case of YOLOV3 and Tiny-Yolov3, speed-ups up to .1.4 − 1.7× are observed.
However, with DroNet and DroNetV3, i.e., relatively smaller networks, the speed-
up is limited to .1− 1.4×. This is due to significant performance overhead caused by
the additional processing time for input image quantization as compared to network
inference time. The rest of the experiments are conducted using DroNetV3 which
achieved highest speed-up using input resolution of .352× 352.

Next, we evaluate combinations of quantization with different tiling schemes and
report accuracy, IoU, and average processing time (APT) metrics. All networks are
trained on a UAV-based people detection dataset consisting of 1500 images and a
total of .60,000 people.

Table 6 shows the impact of resizing, processing a single, all or only selected
tiles [26], and applying quantization to all base cases. Resizing the input causes . 20%
accuracy drop and quantization on top drops another . 8%. This result is expected

92 R. Makrigiorgis et al.

Table 6 Results of quantization and tiling with resizing, single tile selection, all tiles selection,
and intelligent tile selection

DroNetV3
DroNetV3 +
Resizing

DroNetV3 +
Single Tile

DroNetV3 +
All Tiles

DroNetV3 +
Selective Tiling

Baseline Models

Accuracy 98.929 79.643 92.143 99.464 96.071

APT 0.432 0.089 0.087 0.680 0.132

IoU 0.643 0.415 0.496 0.650 0.563

Quantized
models

Accuracy 100 71.429 94.643 98.750 98.571

APT 0.315 0.071 0.068 0.574 0.098

IoU 0.648 0.312 0.494 0.619 0.562

due to information loss of input image and model weights, respectively. However,
resizing speeds up inference significantly, i.e., an APT of .0.432 s to .0.089 s. Since
tiling maintains high resolution, all techniques based on tiling improve accuracy as
compared to DroNetV3 with resizing. Even when models are quantized, accuracy
increases from .71% to .94% − 98%, i.e., an increase of .23% to . 27%. Since the
selective tile processing mechanism is processing .2 − 3 per frame, the processing
time is higher than either resizing or single tiling. However, quantizing this network
improves latency from .0.132 s to .0.098 s without accuracy degradation. A similar
trend has been observed for IoU metric, i.e., avoiding resizing the image in general
leads to higher IoU. Quantization reduces the IoU from .0.415 to .0.312 for DroNet
with resizing and its quantized version. However, combining quantization and tiling
does not degrade IoU. Overall, using a combination of quantization and tiling
allows processing higher resolution images, hence improving latency as compared
to original full precision detector and accuracy as compared to using resizing.

5 Conclusion

Deep learning and computer vision are increasingly being utilized in edge appli-
cations to provide real-time intelligence. This chapter has demonstrated various
techniques and approaches to apply at various stages of visual processing in
order to make algorithms more suitable for the unique demands of aerial image
understanding with UAVs and embedded application domains. The exploration
of small neural network design considerations and architectures can be effective
in deploying such models on resource-constrained devices. Coupled with search
reduction strategies and hardware-directed optimizations, the performance of such
small models can be further improved leading to real-time power efficient solutions.
As a future work, we aim to further improve the accuracy performance trade-off
by investigating adaptive computation schemes through networks with multiple

Efficient Deep Vision for Aerial Visual Understanding 93

learnable exit layers, as well as dynamically changing the computation scheme
based on context and state variables.

Acknowledgments The project is co-financed by the European Regional Development Fund and
the Republic of Cyprus through the Cyprus Research & Innovation Foundation (“RESTART 2016-
2020” Program) (Grant No. INTEGRATED/0918/0056) (RONDA). This work was also supported
by the European Union’s Horizon 2020 research and innovation program under grant agreement
No. 739551 (KIOS CoE) and from the Government of the Republic of Cyprus through the
Directorate General for European Programs, Coordination, and Development.

Christos Kyrkou gratefully acknowledge the support of NVIDIA Corporation with the donation
of the RTX A6000 GPU.

References

1. Allison, R., Johnston, J., Craig, G., Jennings, S.: Airborne optical and thermal remote sensing
for wildfire detection and monitoring. Sensors 16(8), 1310 (2016)

2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587 (2017)

3. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E.Q., Shen, H., Cowan, M., Wang, L., Hu,
Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: TVM: An automated end-to-end optimizing
compiler for deep learning. In: OSDI (2018)

4. Chen, X., Xiang, S., Liu, C.-L., Pan, C.-H.: Vehicle detection in satellite images by parallel
deep convolutional neural networks. In: 2013 2nd IAPR Asian conference on pattern recogni-
tion, pp. 181–185. IEEE, New York (2013)

5. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)

6. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255 (2009)

7. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization
methods for efficient neural network inference. CoRR, abs/2103.13630 (2021)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

9. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang,
R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In: The IEEE International
Conference on Computer Vision (ICCV) (2019)

10. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applications.
CoRR, abs/1704.04861 (2017)

11. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360 (2016)

12. Ignatov, A., Malivenko, G., Timofte, R.: Fast and accurate quantized camera scene detection on
smartphones, mobile ai 2021 challenge: Report. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2558–2568 (2021)

13. Kim, E.J., Park, H.C., Ham, S.W., Kho, S.Y., Kim, D.K.: Extracting vehicle trajectories using
unmanned aerial vehicles in congested traffic conditions. J. Adv. Transp. 2019, 1–16 (2019)

14. Kyrkou, C.: Cˆ3Net: End-to-end deep learning for efficient real-time visual active camera
control. J. Real-Time Image Proc. 18(4), 1421–1433 (2021)

94 R. Makrigiorgis et al.

15. Kyrkou, C., Christoforou, E.G., Timotheou, S., Theocharides, T., Panayiotou, C., Polycarpou,
M.: Optimizing the detection performance of smart camera networks through a probabilistic
image-based model. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1197–1211 (2018)

16. Kyrkou, C., Plastiras, G., Theocharides, T., Venieris, S.I., Bouganis, C.S.: DroNet: Efficient
convolutional neural network detector for real-time UAV applications. In: 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 967–972 (2018)

17. Kyrkou, C., Theocharides, T.: Deep-learning-based aerial image classification for emergency
response applications using unmanned aerial vehicles. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 517–525 (2019)

18. Kyrkou, C., Theocharides, T.: EmergencyNet: Efficient aerial image classification for drone-
based emergency monitoring using atrous convolutional feature fusion. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 13, 1687–1699 (2020)

19. Kyrkou, C., Timotheou, S., Kolios, P., Theocharides, T., Panayiotou, C.G.: Optimized vision-
directed deployment of UAVs for rapid traffic monitoring. In: 2018 IEEE International
Conference on Consumer Electronics (ICCE), pp. 1–6 (2018)

20. Lin, W.: Automating optimization of quantized deep learning models on CUDA (2019)
21. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to

stereo vision. Vancouver (1981)
22. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet V2: Practical guidelines for efficient CNN

architecture design. In: Computer Vision—ECCV 2018, pp. 122–138. Springer International
Publishing, Cham (2018)

23. Makrigiorgis, R., Hadjittoouli, N., Kyrkou, C., Theocharides, T.: AirCamRTM: Enhancing
vehicle detection for efficient aerial camera-based road traffic monitoring. In: 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 3431–3440 (2022)

24. Murugan, D., Garg, A., Singh, D.: Development of an adaptive approach for precision
agriculture monitoring with drone and satellite data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 10(12), 5322–5328 (2017)

25. Petrides, P., Kyrkou, C., Kolios, P., Theocharides, T., Panayiotou, C.: Towards a holistic
performance evaluation framework for drone-based object detection. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 1785–1793 (2017)

26. Plastiras, G., Kyrkou, C., Theocharides, T.: Efficient convnet-based object detection for
unmanned aerial vehicles by selective tile processing. In: Proceedings of the 12th International
Conference on Distributed Smart Cameras (ICDSC ’18), New York, NY, USA (2018).
Association for Computing Machinery, New York

27. Plastiras, G., Kyrkou, C., Theocharides, T.: EdgeNet: Balancing accuracy and performance
for edge-based convolutional neural network object detectors. In: Proceedings of the 13th
International Conference on Distributed Smart Cameras, pp. 1–6 (2019)

28. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv2: Inverted residuals
and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (2015)

31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2818–2826 (2016)

32. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural networks.
In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15
June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97,
pp. 6105–6114. PMLR, New York (2019)

33. Zhao, Y., Ma, J., Li, X., Zhang, J.: Saliency detection and deep learning-based wildfire
identification in UAV imagery. Sensors 18(3), 712 (2018)

Edge-Centric Optimization of
Multi-modal ML-Driven eHealth
Applications

Anil Kanduri, Sina Shahhosseini, Emad Kasaeyan Naeini,
Hamidreza Alikhani, Pasi Liljeberg, Nikil Dutt, and Amir M. Rahmani

1 Introduction

Smart eHealth applications deliver critical digital healthcare services such as disease
diagnostics, clinical decision support, forecasting health status, pro-active and
preventive healthcare decisions, alerts for emergency intervention, etc. [20]. eHealth
applications improve the reach and quality of healthcare services, timeliness, and
accuracy of clinicians decisions and reduce the burden on healthcare professionals
and overall medical expenditure [72]. Smart eHealth systems integrate remote
sensing, continuous monitoring, wireless transmission, data analytics, and machine
learning to deliver intelligent patient-centric digital healthcare and well-being
services [36]. eHealth applications are particularly effective for managing chronic
patients through continuous monitoring, extracting clinically relevant data with
minimal intrusion [18].

A. Kanduri (�) · P. Liljeberg
Department of Computing, University of Turku, Turku, Finland
e-mail: spakan@utu.fi; pasi.liljeberg@utu.fi

S. Shahhosseini · E. K. Naeini · H. Alikhani · N. Dutt
Department of Computer Science, University of California, Irvine, CA, USA
e-mail: sshahos@uci.edu; ekasaeya@uci.edu; hamidra@uci.edu; dutt@uci.edu

A. M. Rahmani
Department of Computer Science, University of California, Irvine, Irvine, CA, USA

School of Nursing, University of California, Irvine, CA, USA
e-mail: a.rahmani@uci.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_5

95

 31368 2385 a 31368 2385 a

 885 47436
a 885 47436 a

mailto:spakan@utu.fi
mailto:spakan@utu.fi

 6822 47436 a 6822 47436 a

mailto:pasi.liljeberg@utu.fi
mailto:pasi.liljeberg@utu.fi
mailto:pasi.liljeberg@utu.fi

 885
51310 a 885 51310 a

mailto:sshahos@uci.edu
mailto:sshahos@uci.edu

 7919 51310 a 7919 51310
a

mailto:ekasaeya@uci.edu
mailto:ekasaeya@uci.edu

 15408
51310 a 15408 51310 a

mailto:hamidra@uci.edu
mailto:hamidra@uci.edu

 22599
51310 a 22599 51310 a

mailto:dutt@uci.edu
mailto:dutt@uci.edu

 885 56845 a 885 56845 a

mailto:a.rahmani@uci.edu
mailto:a.rahmani@uci.edu
mailto:a.rahmani@uci.edu
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5
https://doi.org/10.1007/978-3-031-40677-5_5

96 A. Kanduri et al.

Fig. 1 ML-driven eHealth application pipeline

1.1 ML in Smart eHealth Applications

eHealth systems continuously monitor patients using wearable sensors for acquiring
physiological parameters [17]. In addition to the bio-signals, eHealth applications
also track behavioral and environmental parameters to contextualize the patients’
current situation [39]. Thus, smart eHealth applications generate huge volumes of
heterogeneous input data, combining multiple streams of inputs from physiological,
behavioral, and environmental parameters [20]. Analyzing such continuous stream
of heterogeneous multi-modal raw data for predicting potential threats, accurate
clinical decisions, and diagnostics requires broader support from the AI domain
[25]. Smart eHealth systems are increasingly using ML algorithms for analyzing
multi-modal input sensory data, to provide intelligent digital healthcare and well-
being services [36]. State-of-the-art eHealth applications have applied different
ML algorithms for analyzing input data, and predicting results on diagnostics,
potential and health status [16]. ML-driven eHealth systems work in a pipeline of
data acquisition, filtering and pre-processing, data analysis, training, inference for
predictive results, followed by notification to the clients [20]. Figure 1 shows the
workflow of typical ML-driven eHealth applications, where raw data acquired by
sensory devices is filtered and preprocessed to remove noisy components, motion
artifacts, and anomalies. This input data is then used for extracting relevant features
and training suitable ML models. Predictive results are achieved by inferencing the
trained ML model, while the trained model is periodically updated with evolving
input data.

1.2 Collaborative Edge Computing for Smart eHealth
Applications

eHealth applications rely on traditional cloud infrastructure for training, storage, and
updating of ML models and inference tasks. However, rapidly increasing volumes
of sensory input data and uncertain network conditions imposes limitations on
the efficacy of running eHealth applications on the cloud layer. Edge computing

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 97

Fig. 2 Sensor–edge–cloud architecture

paradigm brings computational intelligence closer to the sources of input data,
minimizing the reliance of smart eHealth applications on cloud infrastructure [74].
Edge computing architectures have been widely adopted for deploying ML-driven
smart eHealth applications, simultaneously handling input data, compute intensity,
and network constraints [55]. Figure 2 shows an overview of the hierarchical multi-
layered sensor–edge–cloud architecture [5]. The sensor layer comprises sensory
devices such as wearable sensors, smart biosensors, and sensors deployed on mobile
and IoT devices. The sensor layer primarily acquires raw data from different
devices, performs lightweight tasks such as filtering, and transmits relevant inputs
to the resourceful layers in the hierarchy. The edge layer receives input data from
the sensory devices and executes intensive tasks such as data preprocessing, feature
extraction, lightweight ML model training, and inference tasks. More importantly,
the edge layer also handles orchestration functionalities such as application-level
and system-level monitoring, application partitioning, compute placement, and
resource allocation. The cloud layer handles heavy computational tasks such as
ML model training, updating, and storage and notifications to edge nodes on model
updates.

1.2.1 Example Scenario

We demonstrate the pipeline of a quintessential edge-centric ML-driven eHealth
application through the example of arrhythmia detection application [20]. Figure 3
shows the data and control flows of the arrhythmia detection application [20]

98 A. Kanduri et al.

Fig. 3 Pipeline of arrhythmia detection [20]

across the device–edge–cloud layers. Initially, raw electroencephalogram (EEG)
signals are acquired by wearable sensory devices. The raw signals are preprocessed
for noise removal to extract relevant features from the raw data for training an
ML model. Considering the limited compute resources of the IoT device layer, a
lightweight neural network (NN) model is employed to predict/detect arrhythmia.
The predictions are notified to the client if the NN model has a higher confidence
on prediction accuracy, while forwarding the input data to edge layer when the
model confidence is lower. In this application, the edge layer uses the reconstructed
EEG images for data aggregation. With relatively higher compute resources, the
edge layer consists of a moderately intensive convolutional neural network (CNN)
model to train on input data. The CNN model is inferred in the execution phase
for arrhythmia detection/prediction, and the client is notified with the result. The
cloud layer collects streaming inputs from the device and edge layers to train
appropriate ML model, store the model, and update the model periodically with
evolving input data. The cloud layer transmits the updated model parameters to the
edge and device layers for running local inference tasks. Furthermore, the cloud
layer performs advanced data analytics to generate personalized decisions for each
client. It should be noted that the compute capabilities and thus tasks vary at each
of the device–edge–cloud layers. Optimizing ML-driven eHealth systems requires
such understanding on input data flows, computational requirements, and accuracy
and performance of ML models.

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 99

1.3 Summary

Implementing ML-driven smart eHealth applications presents different challenges
on sensory data acquisition, understanding application-level requirements, handling
compute intensities of ML models, and energy and network constraints. At the same
time, deploying such applications on multi-layered sensor–edge–cloud platforms
exposes opportunities for selective processing through input data quality aware-
ness, choice of compute placement among edge–cloud nodes exploring energy–
performance trade-offs, and understanding algorithmic nature of applications to
explore accuracy–performance–energy trade-offs. Collaborative sensor–edge–cloud
platforms enable layer-wise partitioning of smart eHealth application pipeline, to
synergistically improve the quality of the services. In the subsequent sections, we
present different edge-centric optimizations for ML-driven smart eHealth applica-
tions on collaborative sensor–edge–cloud platforms.

1.3.1 Organization

Section 2 presents an exemplar case study of pain assessment application, describing
a sensor–edge–cloud framework integrating different edge-centric optimizations.
This case study is then used in the following chapters to demonstrate some of
the optimization techniques. Section 3 presents techniques for improving perfor-
mance metrics of edge-centric ML workloads through efficient compute placement
and exploration of accuracy–latency trade-offs. Section 4 presents techniques for
improving resilience of ML-driven eHealth applications, through sense–compute
co-optimization. Section 5 concludes with key insights and open research directions.

2 Exemplar Case Study of Edge-ML-Driven Pain
Assessment Application

In this section, we present an exemplar case study of pain assessment application,
describing application characteristics, nature of input data, and challenges in typical
edge-centric ML-driven smart eHealth application. We also present a modular
framework, iHurt, for deploying ML-driven eHealth applications (pain assessment
in this case study) on collaborative sensor–edge–cloud platforms. The iHurt frame-
work serves as a generic platform for prototyping smart eHealth applications for
processing sensory data using ML models. Furthermore, iHurt platform provides a
testbed for evaluating the edge orchestration, compute placement, RL agent-based
offloading, and sense–compute co-optimization techniques presented in Sects. 3
and 4.

100 A. Kanduri et al.

2.1 Pain Assessment

Pain is a complex phenomenon, associated with several illnesses [70]. Pain is
defined as “an unpleasant sensory and emotional experience associated with actual
or potential tissue damage, or described in terms of such damage” [47]. The pain
assessment “gold standard" relies on a patient’s self-report of their pain intensity
on a scale of 0–10, where 0 refers to no pain and 10 represents the most severe
pain. Pain assessment is done through tools such as Numerical Rating Scale (NRS),
Visual Analogue Scale (VAS), and Verbal Rating Scale (VRS). There is a high
demand for objective tools to assess patients’ pain in the clinical context. Tools are
needed especially when the patient’s own opinion is difficult to obtain. Assessment
of pain is particularly difficult when the ability of a patient to communicate is
limited (e.g., during critical illness, in infants and preverbal toddlers, or in patients
under sedation or anesthesia, with intellectual disabilities, and at the end of life)
[10]. Inadequately treated pain has major physiological, psychological, economic,
and social ramifications for patients, their families, and society [4]. Undertreatment
of pain could result in many adverse effects and other complications and may
evolve into chronic pain syndromes. It could also cause delayed discharge or
prolonged recovery, which may incur higher health care costs and more patient
suffering [66]. Overtreatment of pain, on the other hand, may result in unintended
adverse consequences such as acute respiratory complications or in long-term
complications such as opioid addiction. These issues are particularly pronounced
for non-communicative patients who are unable to articulate their experience of
pain [8].

We demonstrate an abstract overview of the pain assessment application [31] in
Fig. 4. The pain assessment application is implemented as a pipeline of sensing,
data processing, model training for predictive results, and inference for pain-level
classification. In the context of this case study, we use input data from EMG, ECG,
PPG, and EDA sensors for estimation of pain. Sensory data is preprocessed for
filtering qualitative inputs, followed by feature extraction. Relevant learning models

Fig. 4 Overview of pain assessment application

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 101

are trained with the multi-modal input data sets for classifying pain level. Different
phases of the pain assessment application are detailed in the following.

2.2 Sensory Data Acquisition

Objective pain assessment application collects raw data through continuous mon-
itoring in both clinical and everyday settings [20]. Raw data collected from the
sensory data acquisition phase is used for training the ML models for accurate
prediction of pain level. In this subsection, we describe the nature and characteristics
of sensory input data used in the pain assessment application.

2.2.1 Types of Signals

There are various types of signals that influence the accuracy of monitoring and
assessing the affective states in pain assessment. These indicators are extracted
through different forms of behavioral, physiological, and contextual/environmen-
tal sensor modalities via facial expression, speech, full-body motion, text, and
physiological signals. Both behavioral and physiological manifestations of pain
can be measured objectively. Behavioral pain indicators include facial expressions,
body movements such as rubbing, restlessness, and head movements, and paralin-
guistic vocalizations such as crying and moaning. Physiological pain indicators
are acquired from brain, cardiovascular, and electrodermal activities. Monitoring
of these physiological, behavioral, and contextual sensor inputs can also be used
in other prominent eHealth applications including emotion recognition and stress
monitoring. For instance, stress activates the autonomic nervous system (ANS)
which can be detected through monitoring the changes in physiological signals
including cardiovascular activity and electrodermal activity, respiration rate, and
blood pressure [23]. Furthermore, physiological signals of cardiac function, temper-
ature, muscle electrical activity, respiration, skin conductance, and brain electrical
activity can be used to detect human emotions. The multitude of physiological,
behavioral, and contextual signals fused together can provide valuable insights
for training ML models, specifically in the domain of smart affective computing
applications.

2.2.2 Commonly Used Sensors

Recording physiological signals requires people to connect with biosensors. There
are contact-based sensors (such as adhesive electrodes and wristbands) or contact-
free sensors (such as cameras and microphones) to gather information from patients
and analyze them. Widely used contact sensors in eHealth applications record
electroencephalogram (EEG, electrical activity of the brain), electrocardiogram

102 A. Kanduri et al.

(ECG, heart activity (heart rate (HR) and heart rate variability (HRV))), electro-
dermal activity (EDA often measured using skin conductance level (SCL), and
sometimes the old term “galvanic skin response” (GSR)), surface electromyogram
(sEMG, muscle activity), photoplethysmogram (PPG, blood perfusion of the skin
for pulse and other measures, also called blood volume pulse or BVP), respiration
(RSP), or acceleration (ACC, movement). For pain monitoring, the unidimensional
assessment tools have been questioned and debated for their oversimplification and
limited applicability in non-communicative patients, since they require interactive
communication between patient and caregiver [27]. As a result, physiological
sources of data comprising of heart rate (HR), heart rate variability (HRV),
SpO. 2, skin temperature, electrodermal activity (EDA), and facial expression and
frontal muscle activity using computer vision or facial electromyography (EMG)
and electroencephalogram (EEG) are prioritized for pain assessment. Accurate
calculation of HRV parameters depends on detecting the position of peaks within
ECG or PPG signals. Root Mean Square of Successive Differences (RMSSD) is
an HRV parameter that is correlated to the short-term variation in the PPG signal.
Figure 5 shows a-minute filtered PPG signal illustrating an example, in which less
than 5 s of the PPG signal (highlighted in red) are distorted due to hand movements.
Such a minor window of corrupted input data in the signal could still affect the

Fig. 5 One-minute windows of filtered PPG signals carrying noise

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 103

Table 1 Summary of
accuracy results (BL:
baseline, PL: pain level, and
MM: multi-modal)

EDA ECG RR MM

BL vs. PL1 63.36 72.04 71.79 77.13

BL vs. PL2 79.24 81.13 82.14 85.64

BL vs. PL3 69.59 69.8 76.64 86.9

BL vs. PL4 63.7 63.41 66.67 74.73

Mean 68.97 71.6 74.31 81.1

eventual accuracy significantly. For instance, in Fig. 5, few peaks are detected
incorrectly within the noisy signal part, and thus the RMSSD is not reliable anymore
during this window of data. The pain assessment application uses ML models to
detect such abnormalities and enable accurately predictions.

2.2.3 Multi-modal Inputs

Objective pain assessment relies on input data from multiple modalities and combi-
nations of physiological, behavioral, and contextual parameters. All these modalities
differ in terms of data, noise characteristics, comfort and ease of use, privacy
concerns, and energy consumption. Using a single modality versus a combination
of multiple modalities effects the computational workloads of the ML models and
eventual prediction accuracy. This is demonstrated from a pain monitoring case
study on five levels of pain data collection [2, 11, 32, 34]. The accuracy of using
each individual input modality of sensory data (EDA, ECG, RR) and multi-modal
(MM) inputs for binary classification between no pain/baseline and various pain
levels is shown in Table 1. It should be noted that different sensor modalities result
in a range of prediction accuracies across different levels of pain. Predictions based
on multi-modal input data set have the highest accuracy among each of these cases.

2.3 ML-Driven Objective Pain Assessment

It is imperative to design and develop an objective monitoring tool to improve the
well-being and care processes of patients with a more accurate assessment and
more timely treatment. While this raises significant technical challenges, requiring
a combination of sensing, signal processing, and machine learning skill sets, it also
has a tremendous potential to pave the way for next-generation human-modeling
methods. Machine learning and deep learning techniques have become immensely
popular for classification tasks, as well as for other recognition and pattern matching
tasks. ML models can be used for accurate objective pain assessment, using input
data from different modalities. The combination of vast amount of multi-modal
input data, increased computing power, and more intelligent methods enables fast
and automated production of machine learning algorithms able to analyze complex
data with accurate results.

104 A. Kanduri et al.

Fig. 6 The objective pain assessment technology

2.3.1 iHurt Platform

Figure 6 presents a complete objective pain assessment technology developed
jointly by researchers from University of California, Irvine (UCI) and University
of Turku (UTU), Finland. This is an end-to-end system for multi-modal data
acquisition, data processing, and analyzing at the gateway. The first step in building
a multi-modal system is to process the raw signals collected during trials. While
this varies according to the deployed sensor data, a typical preprocessing pipeline
consists of the following: filtering (data cleansing, noise reduction, and artifact
removal), segmentation (partitioning into time intervals), and normalization (w.r.t. to
a baseline signal). These steps are followed by feature extraction to obtain features
within various domains. Finally, the processed data can be used to build prediction
models using machine learning. Different types of ML models can be used to train
over multi-modal input data sets. The choice of the learning model determines the
integration and fusion of multi-modal data at feature, decision, or intermediate levels
(early, late, and hybrid fusion). Most approaches classify pain using support vector
machines (SVMs) [24, 77], random forests (RFs) [30, 76], and nearest neighbors
(NNs) [1]. Other widely used models include ADABoost and XGBoost [56], which
are ensemble methods to reduce bias and variance in predictive data analysis.
The ML models can be computationally fine-tuned differently to pursue various
objectives. Sense-making knobs such as early exit, model selection, and input
modality selection presented in Sect. 4 can be explored in this context. Figure 7
shows five different classification methods using respiratory signals including
ADABoost, XGBoost, RF, SVM, and K-NN classifiers in comparison with a state-
of-the-art method, RESP [11]. This case study down sampled pain levels into
three levels of pain (pain levels 1–3), besides the baseline of no pain. Note that
they achieved higher accuracy compared with the state of the art while using only
88% less features. We can maintain accuracy in presence of noise, or using useful
features from the reliable modalities, while also meeting the requirements set on the

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 105

Fig. 7 Validation accuracy of classifiers on top-8 features for different pain levels compared with
the baseline

computational performance. The orchestration functionalities presented in Sect. 3
can guide these decisions on exploring accuracy–performance trade-offs.

2.3.2 Other Exemplar eHealth Applications

Emotion recognition and stress monitoring are two other widely used eHealth
applications that rely on input data similar to that of the pain assessment application.
Emotion recognition uses verbal inputs and cues such as tone of voice, facial
expressions, postures, gestures and also through physiological signals [38]. Stress
monitoring application detects the existence of stress in each period of time using
physiological signals [26]. The Electrodermal Activity (EDA) or Galvanic Skin
Response (GSR) is one of the physiological signals generated by the human body,
which can be used to detect stimuli in individuals. Fall detection is another exemplar
application that uses 3D accelerometer data to detect falls by using classification
models [15]. The input data quality assessment, using multi-modal ML models,
configuration of ML models, and edge orchestration techniques used for pain
assessment can be analogously applied to other similar applications of emotion
recognition, stress monitoring, and fall detection.

106 A. Kanduri et al.

3 Edge-Centric Optimization of ML-Based eHealth
Workloads

Machine learning (ML) is advancing real-time and interactive user services in
healthcare domain [57]. ML applications are primarily deployed on cloud infras-
tructure to meet the compute intensity and storage requirements of ML algorithms
and address the resource constraints of user-end wearable sensory devices [7].
However, unpredictable network constraints including variable signal strength and
availability of the network affect real-time delivery of cloud services [37]. The edge
computing paradigm allows deployment of ML applications closer to the user-end
devices, minimizing the latency of service delivery, reducing the total network load,
and alleviating privacy concerns.

System Perspective Collaborative sensor–edge–cloud architecture presents multiple
execution choices for workload partitioning and compute placement including
execution on a single sensor, edge, cloud nodes, and any possible combinations of
these devices. Considering the variable accuracy nature of ML algorithms, these
execution choices expose a wide range of energy–performance–accuracy trade-
off space. Choosing an optimal execution option under varying system dynamics,
available energy budget of devices, network constraints, and error resilience of ML
workloads is a complex run-time challenge.

Application Perspective Depending on the ML model employed, different appli-
cations feature varying compute, data, and communication intensities. At an
application level, there is diversity in terms of sensitivities to latency, throughput,
infrastructure availability, and accuracy. Furthermore, different application execu-
tion choices result in different energy consumption patterns [33]. Considering these
application-level variations, the choice of execution of an application is a subject of
multiple factors varying at run-time [22].

Edge Orchestration Edge orchestration techniques handle workload partitioning,
distribution, and scheduling of ML workloads, considering both applications’ and
systems’ perspectives. Understanding the varying compute intensities of applica-
tions, latency and throughput requirements, user-interaction and responsiveness
expectations, quality of interconnection network including signal strength, avail-
ability, load balancing, compute, and storage capacities of underlying hardware
elements put together makes application orchestration a stochastic process [60, 63].
To maximize the efficiency of edge-enabled health care services, run-time solutions
that holistically consider both requirements and opportunities vertically across the
user, device, application, network, edge node, and platform layers are necessary
[59]. In this section, we present state-of-the-art edge orchestration techniques for
efficient compute placement with rule-based heuristics and optimized orchestration
through reinforcement learning.

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 107

3.1 Dynamics of Compute Placement

Computation offloading techniques transfer the execution of an application, or
a task within an application, to a resourceful device for improving performance
[45]. Compute placement determines the choices on partitioning an application and
selection of the external resourceful edge/cloud nodes onto which the partitioned
task is to be offloaded [7]. Some of the existing compute placement and offloading
strategies do not consider the diversity in applications’ compute and communication
requirements, eventual performance gain with offloading and compute placement
choices, and potential latency penalties incurred with those choices. For optimal
performance gains, compute placement techniques have to consider the dynamically
varying application and network characteristics, energy budgets, and accuracy–
performance trade-offs [19, 61, 69].

We explore the intricacies of running smart eHealth applications on multi-layer
sensor–edge–cloud platforms to demonstrate the dynamics of compute placement.
We choose stress monitoring [48], fall detection [15], and pain assessment [26]
as representative workloads from ML-driven digital healthcare systems. The stress
monitoring application uses predictive models to extract statistical features from
physiological parameters of Electrodermal Activity (EDA) and Galvanic Skin
Response (GSR) and predict stress levels [3]. The fall detection application uses
de-noising, feature extraction, and decision tree training for classification of fall
and no-fall events [59]. The pain assessment application uses preprocessing,
feature extraction, and SVM classification for determining level of pain [41]. In
summary, each application typically includes the pipeline of data preprocessing,
feature extraction, and classification ML tasks. We execute these workloads on real
hardware testbed that emulates a baseline sensor–edge–cloud platform. We consider
an edge platform with configurable onboard sensors for sensing at variable sampling
rates and connectivity to cloud infrastructure. We consider three compute placement
policies with the execution choices of running the ML workloads: (i) fully on the
edge device, (ii) fully on the cloud node, and (iii) partially on the edge and partially
on the cloud. For evaluation, we define latency metric as the time taken to respond
to a request including the communication and execution costs.

Figure 8 shows the latency of stress monitoring, fall detection, and pain monitor-
ing applications with different compute placement choices, over different network
bandwidths, and sampling rates of input sensory devices. The compute placement
choices Local, Cloud, and Partial represent execution of applications on edge node,
cloud node, and collaborative edge–cloud nodes. We used three levels of available
bandwidths: low, medium, and high. The available bandwidth influences the latency
of execution, specifically incurred in transmitting data from edge to cloud nodes.
We used two levels of sampling rates: high and low, for input data sensory devices.
Sampling rate determines the total volume of data being transmitted from edge to
cloud nodes, effecting the latency.

The evaluation shows that network variation in terms of available bandwidth
substantially effects the latency and choice of compute placement. For example,

108 A. Kanduri et al.

(a)

Low Medium High Low Medium High
0

0.2

0.4

L
at
en
cy
 (
se
c)

Local Cloud Partial

High sampling rate Low sampling rate

Bandwidth Bandwidth

(b)

Low Medium High Low Medium High
0

5

10

15

20

L
at
en
cy
 (
se
c)

High sampling rate Low sampling rate

Bandwidth Bandwidth

(c)

Low Medium High Low Medium High
0

10

20

30

L
at
en
cy
 (
se
c)

High sampling rate Low sampling rate

Bandwidth Bandwidth

Fig. 8 Latency with different compute placement strategies for eHealth applications under
different network bandwidth (low, medium, and high) and sampling rates (high and low). (a) Stress
monitoring, (b) fall detection, and (c) pain monitoring

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 109

consider the scenario shown in Fig. 8a, under high sampling rate and high band-
width. In this case, compute placement on the cloud is the optimal choice in
comparison with the edge and partial choices. Since there is sufficient network
bandwidth, the penalty of transmitting data from edge to cloud is minimal, and
the performance gain of executing the application on the cloud is also significant.
In contrast, for the same scenario with low bandwidth (LBW), compute placement
on the cloud has the highest latency, owing to the higher penalty of transmitting
data from edge to cloud under low bandwidth. In this case, the partial (edge–cloud)
execution has a better latency.

In addition to the bandwidth availability, the application’s nature can sub-
stantially influence the choice of compute placement. For instance, consider the
scenario in Fig. 8b, under high sampling rate and low bandwidth. The fall detection
application’s compute–communication ratio and lower bandwidth makes the local
execution optimal, as opposed to offloading to the cloud node.

The sensing configuration of an application alters the volume of data generated
for transmission and processing. For instance, consider the scenario in Fig. 8c,
under low sampling rate and medium bandwidth. As the sampling rate is lower,
the penalty incurred in transmitting data to the cloud node is minimized. With lower
data volume and availability of either medium (and/or high), bandwidth results in
significant improvement in latency.

It should be noted that lowering the sampling rate potentially sacrifices the
accuracy, although the latency is improved. While the accuracy loss is subjective
to the error resilience of the application, missing insightful input data samples
could lead to mis-predictions and critical errors. Mis-predictions can be minimized
by setting an upper bound on accuracy requirements and/or bounds on lowering
the sampling rates. In such scenarios, the error resilience of an application also
influences the compute placement decisions.

3.2 Using RL for Optimization

Finding the optimal orchestration policy for an unknown and dynamic system
is critical since dynamicity of environment (e.g., network condition, workload
arrival at computing nodes, user traffic, and application characteristics) changes
over time. Most current solutions are based on design time optimization, without
considerations on varying system dynamics at run-time [6, 12–14, 35, 42, 46, 52,
65, 79, 80]. A complex system that runs a variety of applications in uncertain
environmental conditions requires dynamic control to offer high-performance or
low-power guarantees [33, 59, 61, 62, 64]. Considering the run-time variation of
system dynamics, and making an optimal orchestration choice, requires intelli-
gent monitoring, analysis, and decision-making. Existing heuristic and rule-based
orchestration methods require an extensive design space exploration to make
optimal compute placement decisions. Furthermore, such a solution based on
exhaustive search at run-time becomes practically infeasible for latency critical

110 A. Kanduri et al.

Fig. 9 Overview of intelligent orchestration in end–edge–cloud architectures [64]

services. In this context, different offline and online machine learning models
have been adopted for run-time resource management of distributed systems, to
handle the complexity of orchestration choices. Among these models, reinforcement
learning (RL) approach is effective in developing an understanding and interpreting
varying system dynamics [49, 54]. Reinforcement learning enables identification
of complex dynamics between influential system parameters and online decision-
making to optimize objectives such as response time, energy consumption, and
quality of service [67]. The RL approach allows formulating policies at run-time
using the input data collected over time. Specifically, the RL approach uses a
reward function to quantify the effect of an action on the system state. This allows
optimizing orchestration choices over time, considering the system-wide context
and objectives. In this subsection, we present the design of reinforcement learning
agent for orchestrating ML workloads on sensor–edge–cloud platforms.

3.2.1 Orchestration Framework

Figure 9 shows an overview of generic intelligent orchestration framework for
multi-layered end–edge–cloud architectures [64]. This framework uses system-wide
information for intelligent orchestration through virtual system layers that include
application, platform, network, and hardware layers. Each of the virtual system
layers provides inputs for monitoring system and application dynamics such as
application adjustment parameters, accuracy requirements, availability of devices
for execution, network characteristics, and hardware capabilities. Each execution
choice affects the performance and energy consumption of the user end-device,
based on the system parameters such as hardware capabilities, network conditions,

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 111

and workload characteristics. Each layer exhibits a diverse set of requirements,
constraints, and opportunities to trade-off performance and efficiency that vary
over time. For example, the application layer focuses on the user’s perception of
algorithmic correctness of services, while the platform layer focuses on improving
system parameters such as energy drain and data volume migrated across nodes.
Both application and platform layers have different measurable metrics and con-
trollable parameters to expose different opportunities that can be exploited for
meeting overall objectives. The network layer provides connectivity for data and
control transfer between different physical devices. In addition, the hardware layer
provides hardware capabilities for computing nodes in the system. Run-time system
dynamics affect orchestration strategies significantly in addition to requirements
and opportunities. Sources of run-time variation across the system stack include
workload of a specific computing node, connectivity and signal strength of the
network, mobility and interaction of a given user, etc. Information on run-time cross-
layer requirements and run-time variations provides necessary feedback to make
appropriate decisions on system configurations such as offloading policies.

3.2.2 RL Agent for Orchestration

Making the optimal orchestration choice considering these varying dynamics is
an NP-hard problem, while brute force search of a large configuration space is
impractical for real-time applications. Understanding the requirements at each
level of the system stack and translating them into measurable metrics enables
appropriate orchestration decision-making. On the other hand, heuristic, rule-based,
and closed-loop feedback control solutions are slow in convergence due to the
large state space [67]. To address these limitations, reinforcement learning (RL)
approaches have been adapted for the computation offloading problem [58]. RL
builds specific models based on data collected over initial epochs and dramatically
improves the prediction accuracy [67]. We design an RL agent that monitors system-
wide parameters and chooses a suitable action that maximizes the efficiency of
orchestration decisions.

Figure 10 shows the workflow of the RL agent for making orchestration
decisions. The RL agent component is deployed within the decision intelligence
and orchestration blocks in orchestration framework (Fig. 2). The RL agent receives
resource information (e.g., processor utilization, available memory, available band-
width) from the virtual system layers of the orchestration framework (Fig. 2).
The RL agent also collects the reward information (response time in this case)
from the environment to learn an optimal action that maximizes the reward. The
agent builds the Q-Table for Q-Learning algorithm, based on cumulative reward
obtained from the environment over time. This signifies the efficacy of a specific
orchestration decision (action) in achieving the target of minimizing latency and
enables subsequent optimal orchestration decisions.

We demonstrate the efficacy of using the RL agent for orchestrating ML
workloads on sensor–edge–cloud platforms. While the focus of this chapter is

112 A. Kanduri et al.

Fig. 10 RL agent for intelligent orchestration

Fig. 11 DL inference orchestration in an end–edge–cloud system which runs an image classifica-
tion application

optimizing smart eHealth applications, we use image classification task in the
experimentation for the purpose of demonstrating multi-user ML workloads. We
implement a scenario where a device–edge–cloud architecture serves up to five
end-users to execute ML services simultaneously. In this scenario, the users send
requests for image classification to an agent located at the cloud. In addition, end-
users share their resource availability to the agent. The agent decides to orchestrate
the ML tasks based on three static (i.e., device-only, edge-only, and cloud-only) and
one RL-optimized strategies. In the device-only strategy, each end-device executes
the inference service on a local device. Thus, varying a number of users has no effect
on the average response time in this case. In the edge- and cloud-only strategies,
simultaneous requests compete for edge and cloud resources. This increases the
average response time significantly, as the number of users increases. In the RL-
optimized strategy, the resource availability is continuously observed and the ML
tasks are orchestrated accordingly.

Figure 11 shows the average response time for different numbers of active users
for regular network conditions, using different orchestration strategies. The x-axis
represents the number of active users. Each bar represents a different orchestration

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 113

decision made by using the corresponding orchestration strategy [62, 64]. In RL-
optimized approach, the average response time remains constant, while the number
of users is less than three. This is due to the orchestration decision of distributing the
services across edge and cloud layers. As the number of users increases to three, the
services start competing for resources, leading to an increase in the average response
time. With the number of users increasing from three to five, the average response
time increases, but at a relatively lower rate, exhibiting efficient utilization of the
edge and cloud resources. As the number of users increases, the efficiency of the
RL-optimized approach over the static strategies is more prominent.

4 Sense–Compute Co-optimization of ML-driven eHealth
Applications

In this section, we describe sense–compute co-optimization approaches for improv-
ing resiliency of smart eHealth applications. Common use cases of ML models
often handle complete and clean input data, with no specific sensing challenges.
However, using ML methods in smart eHealth applications on edge devices requires
considerations on challenges from the sensory data acquisition phase [73]. With
different types of implanted, wearable, on-body, and remote sensors, there is a
higher probability of noise, motion artifacts, and missing input data from sensors
[44]. For critical healthcare IoT applications, input data perturbation from motion
artifacts, physical failure of sensors, network anomalies, and other factors can
affect the prediction accuracy of ML models significantly [50]). On the other
hand, the sense-making (computation) phase of eHealth applications faces the
challenge of limited computational capacity of the edge devices for running ML
models [73]. Additionally, the ML models should be resilient to probable sensing
anomalies like noisy or missing input data and maintain higher prediction accuracy
even with potential garbage input signals [44]. Moreover, some applications (e.g.,
pain assessment in clinical healthcare monitoring systems) require near real-
time response time, emphasizing the need for ML inference performance [33].
Addressing these multitude of challenges necessitates a co-optimization approach
that jointly handles sensing and sense-making phases for system-wide exploration
of suitable optimizations. A simple schematic for the interaction between sensing
and sense-making modules is shown in Fig. 12. Sensing awareness can be developed

Fig. 12 Sensing and sense-making (compute) modules’ interaction with their action knobs in
sensor level and intelligent models

114 A. Kanduri et al.

by monitoring and analyzing continuous streams of input data. This intelligence can
be used to control the sensing and sense-making configurations simultaneously, by
fine-tuning ML models to fit input data characteristics.

4.1 Handling Input Data Perturbations

4.1.1 Sensing Phase Knobs

Monitoring input data originating from the sensory devices for anomalies, discrep-
ancies, noisy components, etc. provides insights into quality of input data [43].
Understanding the quality of input data can be exploited for selective sensing, such
that unreliable sensors can be down-sampled, to dampen the effect of unreliable
input data. When the input data from a specific sensor is noisy, the sampling rate
of the sensory device can be decreased so that the garbage data would not waste
the computational resources in the edge layer. In acute scenarios, input data from
a specific device might be completely unreliable (e.g., when a heartbeat sensor is
detached from the human body). In this case, detection of the sensor detachment can
guide the computation phase to ignore the input from that specific device and rely
on the data from other input modalities [48]. It should be noted that both selective
sensing and disabling a sensor modality minimize the network latency penalty with
reduced input data volume. In specific scenarios of unreliable network connection,
sensing phase knobs can be opportunistically triggered to complement the network
delay with reduced input data volume [78].

4.1.2 Sense-Making Phase Knobs

Addressing input data perturbation from multiple modalities requires appropriate
and proportional actions in the ML algorithmic phase. For instance, selective or
greedy feature selection from the preprocessed input data can reduce the noisy data
components fed into the ML models [40]. This approach is effective in reducing
unnecessary computation over noisy input data, although potentially affecting the
accuracy of the learning models [51]. Selecting an appropriate ML model from
a pool of pretrained models is another strategy for handling noisy and missing
input data. This requires implementation of a model pool, consisting of different
ML models that are trained to handle specific combinations of input modalities
[51]. Algorithmic optimizations such as meta-learning [21], fast reinforcement
learning [9], and few-shot learning [75] can also be used for providing efficient
ML optimizations particularly for edge devices.

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 115

4.1.3 Co-optimization Knobs

Besides the presented methods for optimizing sensing and sense-making phases in
the edge devices, it is quite important to use co-optimization techniques so that each
of these phases complements the other to form a holistic system with efficiency
and robustness. To achieve this goal, meaningful interaction between these phases
is required. For example, the sensing information from input data can be used as a
trigger to adjust specific sense-making knobs so that the computation models can
adapt to the recent changes in the input sources. One example of this approach is
using the early exit technique [28, 68] in the neural network when the input data has
good quality with negligible noise. In this way, an acceptable confidence threshold
can be achieved in less time by skipping deeper layers in neural network models.
Moreover, the sensing module in the edge layer can send information about input
sources with high or low reliability of their data to the sense-making module, and
then the machine learning models in the edge layer can adjust importance weights to
those input sources by using attention mechanisms inside their architecture [53, 71].

4.1.4 Example Scenarios

We demonstrate the advantages of sense–compute co-optimization through an
example of multi-modal pain assessment application [51]. The pain assessment
application uses inputs from three modalities: Electrocardiography (ECG), Elec-
trodermal Activity (EDA), and Photoplethysmography (PPG). The ECG, EDA, and
PPG modalities have sampling rates of 100, 4, and 64 and generate 52, 42, and
42 features. Figure 13 outlines sensor data acquisition, feature extraction, feature
aggregation, and inference task for predicting pain levels under different scenarios.
Figure 13a shows the scenario, where the application is executed without modality
awareness. In this scenario, data from the ECG sensor is noisy, yet feature vectors
from the noisy modality are fed into the ML model, yielding a baseline prediction
accuracy of 51%. Figure 13b shows the scenario where modality awareness is
considered while executing the application. In this scenario, the application is
executed with selective feature aggregation, by selecting fewer features from the
noisy ECG modality. This reduces the total number of features from the ECG
modality to 12. An appropriate ML model to suit the updated feature vector
is selected from a model pool, which comprises pretrained models. Minimizing
the features from noisy ECG modality improves the prediction accuracy to 79%,
while also reducing the energy consumption and improving the performance, in
comparison with the baseline scenario (a). Figure 13c shows the scenario where
modality awareness is used to select specific modalities with quality input data. In
this scenario, the noisy ECG modality is completely dropped, and data from the
EDA and PPG modalities is processed. Similar to the scenario (b), an appropriate
ML model that suits EDA and PPG inputs is selected from the model pool. Dropping
an entire modality of data significantly reduces the computational effort and energy
consumption, in comparison with scenarios (a) and (b). It should be noted that

116 A. Kanduri et al.

Fig. 13 Motivational scenarios for sense–compute co-optimization [51]. (a) Processing noisy
sensory input data. (b) Processing with selective feature aggregation and model selection. (c)
Processing with modality selection and model selection

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 117

the prediction accuracy with only two modalities is 74%, which is higher than
the baseline from scenario (a), while being marginally lower than the prediction
accuracy from selective feature aggregation from scenario (b).

4.2 Sense–Compute Co-optimization Framework

We present the conceptual design of sense–compute co-optimization for multi-
modal eHealth applications through the AMSER framework [51]. Figure 14 shows
an overview of the AMSER framework for sense–compute co-optimization in
multi-layered sensor–edge–cloud platforms. The AMSER framework uses run-
time monitoring functionalities of signal quality monitoring, discrepancy detection,
abnormality detection, and confidence level monitor to understand the quality
of input data modalities and confidence of the ML model in predicting results.
Insights from the run-time monitoring are used to configure the sampling rates
of different sensory devices through the sensing controller. Based on the run-time
monitoring, the sense-making (compute) optimizer uses ML configuring knobs—
adaptive feature selection, model selection, neural network attention, and early exit
mechanisms to configure ML models for current input data sets.

For example, data from a specific modality is labeled as uncertain when the signal
quality is below a specific Signal-to-Noise Ratio (SNR). Under such scenarios,
the edge-level sensing optimizer feeds the learning models with reliable input
modalities, while dropping the noisy modality. The sense-making optimizer then
selects an ML model from the model pool, which is suitable for the available input
data modalities. The model pool contains different pretrained ML models suitable
for different combinations of reliable input modalities.

The results for accuracy and performance (speedup) gain with sense–compute
co-optimization in comparison with the baseline [29] are shown in Figs. 15 and 16.
ML-driven eHealth applications of pain assessment and stress monitoring applica-
tions were used as input workloads. For a comprehensive evaluation, four different
scenarios (S1–S4) with different noise components in input data of modalities are
used. Scenario 1 (S1) is the baseline with no noise components. Scenario 2 (S2)
has a wandering noise added to the original data. Scenario 3 has an additional
motion artifact added to one input modality on top of the wandering noise, which
makes that modality completely unreliable. In scenario 4 (S4), two modalities suffer
from severe motion artifact noise. In scenario 2 (S2), the AMSER framework
activates the selective feature selection to handle the noisy input modalities,
resulting in higher prediction accuracy in comparison with the baseline. In scenario
3 with unreliable input (S3), the AMSER approach drops the entire unreliable
modality, yielding a better prediction accuracy and performance gain. Similarly,
the AMSER framework drops two noisy modalities in scenario 4 (S4), resulting
in better prediction accuracy and significantly higher performance. The sensing
awareness and synergistic compute knob actuation of the AMSER platform provides

118 A. Kanduri et al.

Fig. 14 An overview of sensing and sense-making (compute) optimization in a sensor–edge–
cloud architecture

S1 S2 S3 S4
0

50

100

A
cc
ur
ac
y
(%

)

AMSER Baseline

(a)

S1 S2 S3 S4

(b)

Fig. 15 Accuracy analysis in comparison with baseline [29, 51]. (a) Pain. (b) Stress

significant improvements in accuracy, efficiency, and performance, in comparison
with existing disjoint sensing and compute optimization approaches.

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 119

S1 S2 S3 S4
0

1

2

Sp
ee
du

p
(B

as
el
in
e=

1)

Pain Stress

(a)

S1 S2 S3 S4
0

2

4

6

D
at
a
R
ed

uc
ti
on

(b)

Fig. 16 (a) Performance analysis of the edge layer device for AMSER framework vs. baseline
study [29]. (b) Data transfer volume between the sensors and edge layer device for AMSER
framework vs. baseline study. (a) Performance gain. (b) Data volume reduction

5 Conclusions

In this chapter, we presented edge-centric optimizations for ML-driven eHealth
applications through compute placement, improving the compute placement deci-
sions through reinforcement learning agent, and cross-layered sense–compute
co-optimizations. We also presented an exemplar case study of objective pain
assessment to demonstrate the use cases of edge-ML-based smart eHealth applica-
tions, common data flows, computation challenges, and frameworks for deploying
smart eHealth applications.

5.1 Key Insights

ML-driven smart healthcare applications have different input data characteristics,
computational requirements, and quality metrics. Continuous stream of input data,
varying network conditions, and computational requirements of different ML
models create dynamic workload scenarios. At an application level, requirements
include higher prediction accuracy of ML models, latency of inferencing results
from ML models, resilience, and an overall higher quality of service. At a system-
level, requirements include availability of compute nodes in edge and cloud
layers, compute capabilities of edge nodes to meet performance requirements of
ML models, network utilization, and overall energy efficiency. Considering both
application and system-level parameters simultaneously is necessary for optimizing
edge-centric ML-driven smart eHealth applications. Optimized compute placement
has higher efficacy in meeting both application and system requirements simulta-
neously. Accuracy–performance trade-offs can also be explored within the compute

120 A. Kanduri et al.

placement phase, by configuring the choice of ML models. Both model-based and
model-free reinforcement learning agents can guide the compute placement deci-
sions on choice of execution node and tuning accuracy–performance trade-offs with
high degree of convergence. Further, multi-modal eHealth applications are prone to
input data perturbations, which also presents an opportunity to exploit the inherent
resilience to selectively process input data. This brings sensing awareness into
computation, and compute-awareness to sensing through bi-directional feedback.
Cross-layered sense–compute co-optimization improves sensing, computation, and
communication aspects of edge-ML-based eHealth applications holistically.

5.2 Open Research Directions

5.2.1 Data Quality Management

Input data quality is an essential component for improving prediction accuracy of
ML-driven smart eHealth applications. Processing exclusively quality input data
also improves the bandwidth utilization and latency of tasks run on the edge nodes.
Some of the techniques presented in this chapter address the sensing aspects through
continuous monitoring and analysis of input data quality. Qualitative assessment of
sensory data can be improved significantly beyond the rule-based monitors using
cognitive learning models. Design of autonomous models for input data quality
management remains an open challenge. Autonomous models enable reasoning for
different input perturbations to assess true quality of sensory inputs. Consequently,
the garbage data that is un-necessarily processed is minimized, supporting the
scalability of edge-ML solutions. Quality assessment of input data is significant
in other sensor-driven domains such as autonomous driving, robotics, and computer
vision etc.

5.2.2 Contextual Edge Orchestration

Orchestration techniques for collaborative sensor-edge–cloud architectures improve
a multitude of metrics in terms of performance, turnaround time, energy efficiency,
accuracy trade-off exploration, and network utilization. Orchestration techniques
presented in this chapter enable intelligent compute placement, offloading, and
accuracy configuration decisions through rule-based heuristics. However, contextu-
alization of system dynamics to reason for orchestration decisions, and exploration
of accuracy–performance–energy trade-offs with context-awareness is an open
research direction. Reinforcement learning has been widely used for optimal
orchestration decisions at run-time, considering the varying system dynamics. The
efforts in collecting training data, online updating, and convergence time influence
the efficacy of such learning methods. In this perspective, design of model-free,

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 121

and few-shot learning models for run-time edge orchestration is a promising open
research direction.

5.2.3 Sense–Compute Co-optimization

Cross-layered sense–compute co-optimization is the most effective strategy for
improving sensor-dependent, edge-based ML applications. In this chapter, we
presented adaptive sensing and sensing-aware computing techniques that uses
system-wide monitoring and intelligence for sense–compute co-optimization. This
approach focuses on selecting appropriate ML models based on quality of input
modalities, exploiting the inherent resilience of multi-modal ML applications.
Adaptive feature selection, and ML model selection enforce the idea of sense–
compute co-optimization at a coarse-grained level, and require multiple pretrained
models. Incorporating fine-grained edge layer ML model configurations such as
early exit, greedy feature selection, neural network model attention, and saliency
maps etc., can complement the model selection strategy. The feasibility of such
edge layer-based ML model tuning in collaboration with cloud layer-based model
selection is another open research direction.

References

1. Adibuzzaman, M., Ostberg, C., Ahamed, S., Povinelli, R., Sindhu, B., Love, R., Kawsar, F.,
Ahsan, G.M.T.: Assessment of pain using facial pictures taken with a smartphone. In: 2015
IEEE 39th Annual Computer Software and Applications Conference, vol. 2, pp. 726–731.
IEEE, Piscataway (2015)

2. Aqajari, S.A.H., Cao, R., Kasaeyan Naeini, E., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg,
P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Pain assessment tool with electrodermal
activity for postoperative patients: method validation study. JMIR Mhealth Uhealth 9(5),
e25258 (2021)

3. Aqajari, S.A.H., Naeini, E.K., Mehrabadi, M.A., Labbaf, S., Rahmani, A.M., Dutt, N.: GSR
analysis for stress: Development and validation of an open source tool for noisy naturalistic
GSR data (2020). arXiv preprint arXiv:2005.01834

4. Arif-Rahu, M., Grap, M.J.: Facial expression and pain in the critically ill non-communicative
patient: state of science review. Intensive Crit. Care Nursing 26(6), 343–352 (2010)

5. Azimi, I., et al.: HiCH: hierarchical fog-assisted computing architecture for healthcare IoT.
ACM Trans. Embedded Comput. Syst. 16(5), 1–20 (2017)

6. Bao, W., Li, W., Delicato, F.C., Pires, P.F., Yuan, D., Zhou, B.B., Zomaya, A.Y.: Cost-effective
processing in fog-integrated internet of things ecosystems. In: Proceedings of the 20th ACM
International Conference on Modelling, Analysis and Simulation of Wireless and Mobile
Systems, pp. 99–108 (2017)

7. Barbera, M.V., Kosta, S., Mei, A., Stefa, J.: To offload or not to offload? The bandwidth and
energy costs of mobile cloud computing. In: 2013 Proceedings IEEE Infocom, pp. 1285–1293.
IEEE, Piscataway (2013)

8. Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson, J.E., Devlin,
J.W., Kress, J.P., Joffe, A.M., et al.: Clinical practice guidelines for the management of pain,
agitation, and delirium in adult patients in the intensive care unit. Crit. Care Med. 41(1), 263–
306 (2013)

122 A. Kanduri et al.

9. Barreto, A., Hou, S., Borsa, D., Silver, D., Precup, D.: Fast reinforcement learning with
generalized policy updates. Proc. Natl. Acad. Sci. 117(48), 30079–30087 (2020). https://www.
pnas.org/doi/abs/10.1073/pnas.1907370117

10. Breivik, H., Borchgrevink, P.C., Allen, S.M., Rosseland, L.A., Romundstad, L., Breivik Hals,
E., Kvarstein, G., Stubhaug, A.: Assessment of pain. Br. J. Anaesth. 101(1), 17–24 (2008)

11. Cao, R., Aqajari, S., Kasaeyan Naeini, E., Rahmani, A.M.: Objective pain assessment using
wrist-based ppg signals: A respiratory rate based method. In: 43rd Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,
Piscataway (2021). Accepted for publication

12. Cao, X., Wang, F., Xu, J., Zhang, R., Cui, S.: Joint computation and communication cooper-
ation for mobile edge computing. In: 2018 16th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–6. IEEE, Piscataway
(2018)

13. Chamola, V., Tham, C.K., Chalapathi, G.S.: Latency aware mobile task assignment and load
balancing for edge cloudlets. In: 2017 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pp. 587–592. IEEE, Piscataway
(2017)

14. Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z.: Energy efficient optimization for computation
offloading in fog computing system. In: GLOBECOM 2017-2017 IEEE Global Communica-
tions Conference, pp. 1–6. IEEE, Piscataway (2017)

15. Chatzaki, C., Pediaditis, M., Vavoulas, G., Tsiknakis, M.: Human daily activity and fall recog-
nition using a smartphone’s acceleration sensor. In: International Conference on Information
and Communication Technologies for Ageing Well and e-Health, pp. 100–118. Springer, Berlin
(2016)

16. Chetty, G., Yamin, M.: Intelligent human activity recognition scheme for eHealth applications.
Malaysian J. Comput. Sci. 28(1), 59–69 (2015)

17. Dogan, A.Y., Constantin, J., Ruggiero, M., Burg, A., Atienza, D.: Multi-core architecture
design for ultra-low-power wearable health monitoring systems. In: 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 988–993. IEEE, Piscataway (2012)

18. Duch, L., Basu, S., Braojos, R., Ansaloni, G., Pozzi, L., Atienza, D.: Heal-wear: an ultra-low
power heterogeneous system for bio-signal analysis. IEEE Trans. Circuits Syst. I: Regul. Pap.
64(9), 2448–2461 (2017)

19. Eshratifar, A.E., Abrishami, M.S., Pedram, M.: JointDNN: an efficient training and inference
engine for intelligent mobile cloud computing services. IEEE Trans. Mobile Comput. 20(2),
565–576 (2019)

20. Farahani, B., Barzegari, M., Aliee, F.S., Shaik, K.A.: Towards collaborative intelligent IoT
eHealth: from device to fog, and cloud. Microprocess. Microsyst. 72, 102938 (2020)

21. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep
networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

22. Gia, T.N., Jiang, M., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog
computing in healthcare internet of things: a case study on ECG feature extraction. In:
2015 IEEE International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing, pp. 356–363. IEEE, Piscataway (2015)

23. Greene, S., Thapliyal, H., Caban-Holt, A.: A survey of affective computing for stress detection:
Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag.
5(4), 44–56 (2016)

24. Gruss, S., Treister, R., Werner, P., Traue, H.C., Crawcour, S., Andrade, A., Walter, S.: Pain
intensity recognition rates via biopotential feature patterns with support vector machines. PLoS
One 10(10), e0140330 (2015)

25. Gupta, D., Rodrigues, J.J., Peng, S.L., Nguyen, N.: Artificial intelligence for eHealth. Front.
Public Health 10 (2022)

26. Han, H.J., et al.: Objective stress monitoring based on wearable sensors in everyday settings.
J. Med. Eng. Technol. 44(4), 177–189 (2020)

https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117
https://www.pnas.org/doi/abs/10.1073/pnas.1907370117

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 123

27. Jiang, M., Mieronkoski, R., Rahmani, A.M., Hagelberg, N., Salanterä, S., Liljeberg, P.: Ultra-
short-term analysis of heart rate variability for real-time acute pain monitoring with wearable
electronics. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pp. 1025–1032. IEEE, Piscataway (2017)

28. Ju, W., Bao, W., Ge, L., Yuan, D.: Dynamic Early Exit Scheduling for Deep Neural Network
Inference through Contextual Bandits, pp. 823–832. Association for Computing Machinery,
New York (2021). https://doi.org/10.1145/3459637.3482335

29. Kächele, M., Thiam, P., Amirian, M., Werner, P., Walter, S., Schwenker, F., Palm, G.:
Multimodal data fusion for person-independent, continuous estimation of pain intensity. In:
Iliadis, L., Jayne, C. (eds.) Engineering Applications of Neural Networks, pp. 275–285.
Springer, Cham (2015)

30. Kächele, M., Werner, P., Al-Hamadi, A., Palm, G., Walter, S., Schwenker, F.: Bio-visual fusion
for person-independent recognition of pain intensity. In: International Workshop on Multiple
Classifier Systems, pp. 220–230. Springer, Berlin (2015)

31. Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Mieronkoski, R., Calderon, M.D., Zheng, K.,
Dutt, N., Liljeberg, P., Salanterä, S., Nelson, A., Rahmani, A.M.: Research protocol for the
smart pain assessment employing behavioral and physiologic indicators. In: JMIR Journal of
Research Protocols (revision submitted) (2020)

32. Kasaeyan Naeini, E., Jiang, M., Syrjälä, E., Calderon, M.D., Mieronkoski, R., Zheng, K., Dutt,
N., Liljeberg, P., Salanterä, S., Nelson, A.M., Rahmani, A.M.: Prospective study evaluating
a pain assessment tool in a postoperative environment: Protocol for algorithm testing and
enhancement. JMIR Res. Protoc. 9(7), e17783 (2020)

33. Kasaeyan Naeini, E., Shahhosseini, S., Subramanian, A., Yin, T., Rahmani, A.M., Dutt, N.: An
edge-assisted and smart system for real-time pain monitoring. In: 2019 IEEE/ACM Interna-
tional Conference on Connected Health: Applications, Systems and Engineering Technologies
(CHASE), pp. 47–52 (2019)

34. Kasaeyan Naeini, E., Subramanian, A., Calderon, M.D., Zheng, K., Dutt, N., Liljeberg,
P., Salantera, S., Nelson, A.M., Rahmani, A.M.: Pain recognition with electrocardiographic
features in postoperative patients: method validation study. J. Med. Int. Res. 23(5), e25079
(2021)

35. Kattepur, A., Dohare, H., Mushunuri, V., Rath, H.K., Simha, A.: Resource constrained
offloading in fog computing. In: Proceedings of the 1st Workshop on Middleware for Edge
Clouds & Cloudlets, pp. 1–6 (2016)

36. Khan, M.A., Alkaabi, N.: Rebirth of distributed ai—a review of eHealth research. Sensors
21(15), 4999 (2021)

37. Khelifi, H., Luo, S., Nour, B., Sellami, A., Moungla, H., Ahmed, S.H., Guizani, M.: Bringing
deep learning at the edge of information-centric internet of things. IEEE Commun. Lett. 23(1),
52–55 (2018)

38. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A.,
Patras, I.: DEAP: A database for emotion analysis; using physiological signals. IEEE Trans.
Affective Comput. 3(1), 18–31 (2011)

39. Kreps, G.L., Neuhauser, L.: New directions in eHealth communication: opportunities and
challenges. Patient Educ. Couns. 78(3), 329–336 (2010)

40. Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural
Netw. 13(1), 143–159 (2002)

41. Laitala, J., Jiang, M., Syrjälä, E., Naeini, E.K., Airola, A., Rahmani, A.M., Dutt, N.D.,
Liljeberg, P.: Robust ECG R-peak detection using LSTM. In: Proceedings of the 35th Annual
ACM Symposium on Applied Computing, pp. 1104–1111 (2020)

42. Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal computation task scheduling for
mobile-edge computing systems. In: 2016 IEEE International Symposium on Information
Theory (ISIT), pp. 1451–1455. IEEE, Piscataway (2016)

43. Lou, P., Shi, L., Zhang, X., Xiao, Z., Yan, J.: A data-driven adaptive sampling method based
on edge computing. Sensors 20(8) (2020). https://www.mdpi.com/1424-8220/20/8/2174

https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://doi.org/10.1145/3459637.3482335
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174
https://www.mdpi.com/1424-8220/20/8/2174

124 A. Kanduri et al.

44. Ma, M., Ren, J., Zhao, L., Tulyakov, S., Wu, C., Peng, X.: Smil: Multimodal learning with
severely missing modality (2021). arXiv preprint arXiv:2103.05677

45. Mach, P., Becvar, Z.: Mobile edge computing: A survey on architecture and computation
offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

46. Mao, Y., Zhang, J., Song, S., Letaief, K.B.: Power-delay tradeoff in multi-user mobile-edge
computing systems. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp.
1–6. IEEE, Piscataway (2016)

47. Merskey, H.: Pain terms: a list with definitions and notes on usage. Recommended by the IASP
subcommittee on taxonomy. Pain 6, 249–252 (1979)

48. Montesinos, V., Dell’Agnola, F., Arza, A., Aminifar, A., Atienza, D.: Multi-modal acute
stress recognition using off-the-shelf wearable devices. In: 2019 41st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2196–
2201 (2019)

49. Mousavi, S.S., Schukat, M., Howley, E.: Deep reinforcement learning: an overview. In:
Proceedings of SAI Intelligent Systems Conference, pp. 426–440. Springer, Berlin (2016)

50. Naeini, E.K., Azimi, I., Rahmani, A.M., Liljeberg, P., Dutt, N.: A real-time ppg quality
assessment approach for healthcare Internet-of-Things. Proc. Comput. Sci. 151, 551–558
(2019)

51. Naeini, E.K., Shahhosseini, S., Kanduri, A., Liljeberg, P., Rahmani, A.M., Dutt, N.: AMSER:
Adaptive multi-modal sensing for energy efficient and resilient eHealth systems. IEEE/ACM
Design, Automation and Test in Europe Conference (DATE’22) (2022)

52. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: A dynamic tradeoff data
processing framework for delay-sensitive applications in cloud of things systems. J. Parallel
Distrib. Comput. 112, 53–66 (2018)

53. Ning, H., Ye, X., Sada, A.B., Mao, L., Daneshmand, M.: An attention mechanism inspired
selective sensing framework for physical-cyber mapping in internet of things. IEEE Internet
Things J. 6(6), 9531–9544 (2019)

54. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge.
Proc. IEEE 107(11), 2204–2239 (2019)

55. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg,
P.: Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog
computing approach. Fut. Gener. Comput. Syst. 78, 641–658 (2018)

56. Schapire, R.E.: Explaining AdaBoost. In: Empirical Inference, pp. 37–52. Springer, Berlin
(2013)

57. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

58. Sen, T., Shen, H.: Machine learning based timeliness-guaranteed and energy-efficient task
assignment in edge computing systems. In: 2019 IEEE 3rd International Conference on Fog
and Edge Computing (ICFEC), pp. 1–10. IEEE, Piscataway (2019)

59. Seo, D., Shahhosseini, S., Mehrabadi, M.A., Donyanavard, B., Lim, S.S., Rahmani, A.M.,
Dutt, N.: Dynamic iFogSim: A framework for full-stack simulation of dynamic resource
management in IoT systems. In: 2020 International Conference on Omni-Layer Intelligent
Systems (COINS), pp. 1–6. IEEE, Piscataway (2020)

60. Shahhosseini, S., Anzanpour, A., Azimi, I., Labbaf, S., Seo, D., Lim, S.S., Liljeberg, P., Dutt,
N., Rahmani, A.M.: Exploring computation offloading in IoT systems. Inform. Syst. 107,
101860 (2022)

61. Shahhosseini, S., Azimi, I., Anzanpour, A., Jantsch, A., Liljeberg, P., Dutt, N., Rahmani, A.M.:
Dynamic computation migration at the edge: is there an optimal choice? In: Proceedings of the
2019 on Great Lakes Symposium on VLSI, pp. 519–524 (2019)

62. Shahhosseini, S., Hu, T., Seo, D., Kanduri, A., Donyanavard, B., Rahmani, A.M., Dutt, N.:
Hybrid learning for orchestrating deep learning inference in multi-user edge-cloud networks
(2022). arXiv preprint arXiv:2202.11098

63. Shahhosseini, S., Kanduri, A., Mehrabadi, M.A., Naeini, E.K., Seo, D., Lim, S.S., Rahmani,
A.M., Dutt, N.: Towards smart and efficient health monitoring using edge-enabled situational-

Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications 125

awareness. In: 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–4. IEEE, Piscataway (2021)

64. Shahhosseini, S., Seo, D., Kanduri, A., Hu, T., Lim, S.s., Donyanavard, B., Rahmani, A.M.,
Dutt, N.: Online learning for orchestration of inference in multi-user end-edge-cloud networks.
In: ACM Transactions on Embedded Computing Systems (TECS) (2022)

65. Sheng, Z., Mahapatra, C., Leung, V.C., Chen, M., Sahu, P.K.: Energy efficient cooperative
computing in mobile wireless sensor networks. IEEE Trans. Cloud Comput. 6(1), 114–126
(2015)

66. Stites, M.: Observational pain scales in critically ill adults. Crit. Care Nurse 33(3), 68–78
(2013)

67. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)
68. Teerapittayanon, S., McDanel, B., Kung, H.T.: BranchyNet: fast inference via early exiting

from deep neural networks. In: 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2464–2469 (2016)

69. Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the
cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pp. 328–339. IEEE, Piscataway (2017)

70. Tompkins, D.A., Hobelmann, J.G., Compton, P.: Providing chronic pain management in the
“fifth vital sign” era: historical and treatment perspectives on a modern-day medical dilemma.
Drug Alcohol Depend. 173, S11–S21 (2017). Prescription Opioids: new perspectives and
research on their role in chronic pain management and addiction

71. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

72. Versluis, A., van Luenen, S., Meijer, E., Honkoop, P.J., Pinnock, H., Mohr, D.C., Neves, A.L.,
Chavannes, N.H., van der Kleij, R.M.: Series: eHealth in primary care. Part 4: addressing the
challenges of implementation. Eur. J. Gen. Practice 26(1), 140–145 (2020)

73. Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X.: Convergence of edge
computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2),
869–904 (2020)

74. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing
and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869–904
(2020)

75. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-
shot learning. ACM Comput. Surv. 53(3), 1–34 (2020)

76. Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K., Walter, S., Gruss, S., Traue, H.C.:
Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 8(3),
286–299 (2016)

77. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Towards pain
monitoring: Facial expression, head pose, a new database, an automatic system and remaining
challenges. In: Proceedings of the British Machine Vision Conference, pp. 1–13 (2013)

78. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12),
2292–2330 (2008)

79. You, C., Huang, K.: Exploiting non-causal CPU-state information for energy-efficient mobile
cooperative computing. IEEE Trans. Wirel. Commun. 17(6), 4104–4117 (2018)

80. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.:
Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks. IEEE
Access 4, 5896–5907 (2016)

A Survey of Embedded Machine
Learning for Smart and Sustainable
Healthcare Applications

Sizhe An, Yigit Tuncel, Toygun Basaklar, and Umit Y. Ogras

1 Introduction

Embedded machine learning has recently drawn significant attention due to the
fast development of machine learning (ML) and embedded devices. It is an
application of artificial intelligence (AI) to make decisions or predictions from the
existing data at the edge without explicit programming. The success of embedded
ML heavily relies on the recent improvement of computation power since ML
algorithms are highly data-intensive. Machines need to launch complex linear
algebraic computations, such as matrix and vector operations, to learn the non-
trivial relationship between the inputs and outputs. To date, computing clusters using
multiple high-frequency central processing units (CPU), graphics processing unit
(GPU), and tensor processing unit (TPU) [79] are the most widely used resources
to perform such operations. However, when the users want to enjoy the convenience
of ML without transmitting their local data, computing clusters are certainly not a
good choice due to the prices and large form factor.

An embedded device refers to a small computer system—a combination of
computer processors, memory, and input/output devices [91]. Nowadays, people
have access to multiple personal devices, such as smartphones, smartwatches, and
autonomous cars. Embedded devices such as Raspberry Pi [66], Nvidia Jetson [52],
and Arduino [11] are powerful yet affordable due to the recent emergence of
hardware. For example, an Nvidia Jetson Nano developer kit [52] with 128-core
4GB memory GPU that can run most ML algorithms only costs less than $100.
Embedded machine learning enables the deployment of ML algorithms on edge
devices rather than the powerful computational cluster. It allows the end users to

S. An · Y. Tuncel · T. Basaklar · U. Y. Ogras (�)
University of Wisconsin-Madison, Madison, WI, USA
e-mail: sizhe.an@wisc.edu; tuncel@wisc.edu; basaklar@wisc.edu; uogras@wisc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_6

127

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:sizhe.an@wisc.edu
mailto:sizhe.an@wisc.edu
mailto:sizhe.an@wisc.edu

 8624 56845 a 8624 56845 a

mailto:tuncel@wisc.edu
mailto:tuncel@wisc.edu

 15606 56845 a 15606 56845 a

mailto:basaklar@wisc.edu
mailto:basaklar@wisc.edu

 23423 56845 a 23423
56845 a

mailto:uogras@wisc.edu
mailto:uogras@wisc.edu
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6
https://doi.org/10.1007/978-3-031-40677-5_6

128 S. An et al.

perform machine learning directly on devices used in the field, thus leading to
numerous novel applications.

Concurrent advances in machine learning and low-power computing areas pave
the way for high-impact applications. These applications can attract social attention,
promote industrial progress, and improve the quality of life. For example, computer
vision (CV) and natural language processing (NLP) are major technical areas that
widely apply machine learning since they are attached closely to the industry
and commercial market. Specifically, computer vision helps machines understand
images and videos, thus generating meaningful information and making decisions.
Example applications include image classification, object detection, object tracking,
and instance segmentation. The market for computer vision is expected to reach
USD 48.6 billion by 2022 [38]. NLP refers to the technology that gives computers
to understand text and language similar to human beings [37]. Application of NLP
includes speech recognition, sentiment analysis, machine translation, and text sum-
marization. Another popular machine learning application area is recommendation
system (RS). Recommendation systems aim to recommend things to the users based
on their previous interests and other factors. These systems predict the most likely
content that will interest users. Many tech companies such as Google, Amazon, and
Netflix rely on recommendation systems to enhance their customers’ engagement.

As a particular subset of the previously mentioned ML applications trained
solely with big data, embedded machine learning supports obtaining and processing
new data locally. Embedded devices are usually equipped with different sensors
to measure motion, biopotentials, and temperature. Embedded ML can directly
use data from these sensors, thus enabling numerous novel applications. Target
applications include smart healthcare, autonomous driving, professional sports,
and power/energy management [23, 54, 87]. The rest of the chapter will first
overview embedded machine learning frameworks and then offer examples of
specific applications using embedded machine learning. This chapter focuses mainly
on embedded machine learning applications with data obtained on-device. The
concept of embedded machine learning and tinyML will be coherently interspersed
and interact with the applications. Finally, we also introduce energy management as
a service application since the deployment of ML applications on edge devices is
limited by battery capacity.

2 Overview of Embedded Machine Learning Frameworks

Embedded machine learning frameworks typically consist of model training, model
compression, and model inference, as illustrated in Fig. 1. Model training is the
process of learning the non-trivial patterns or relationships between the inputs and
outputs through an intensive search that includes trial and error. It usually needs a
vast amount of data points to train to learn the hidden complex relationship between
the inputs and outputs instead of memorizing from the existing data. Thus, model

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 129

Fig. 1 Overview of embedding machine learning framework

training is usually performed in powerful computation processors, such as cloud
servers, workstations, or personal computers (PC), as shown in Fig. 1.

The success of ML frameworks relies heavily on the improvement of com-
putation power since ML algorithms need an intensive amount of data to train.
However, users of ML applications do not participate in the model training part.
Instead, they run the pre-trained ML models on their devices for inference in
different applications. Therefore, it is crucial to ensure that the ML algorithms tar-
geting embedded applications can run on edge devices with limited computational
power and memory. To this end, popular ML libraries such as PyTorch [60] and
TensorFlow [1] have been making significant efforts in compressing the size and
accelerating the inference time of the model on embedded devices. For example,
PyTorch Mobile [61] and TFLite [80] are the corresponding lightweight version of
PyTorch and TensorFlow. Many recent studies take advantage of these lightweight
ML frameworks that target embedded ML [26, 94, 95]. The lightweight version
of TensorFlow, TFLite, can reduce the model size up to 75% with a minimal
accuracy loss. For instance, a ResNet101 model, after optimized by TFLite, is
only 44.9 MB, compared to 178.3 MB on TensorFlow with only 0.2% accuracy
loss. Consequently, the tinyML concept is introduced with the fast development of
lightweight ML libraries. TinyML refers to ML capable of performing on-device
sensor data analytics at ultra-low power, thus enabling a variety of always-on
applications and targeting battery-operated devices [82]. The middle part of Fig. 1
shows that model compression is bridging the model training and model inference
using ML libraries.

Model inference refers to the process of inferring the most likely output of
given inputs from the previously learned model. Hence, it does not require intensive
computational power and can be easily deployed on edge devices. In the embedded
machine learning flows, the model inference is the central part that runs on users’
edge devices. For instance, users can access ML applications such as tracking

130 S. An et al.

their vital signs using a smartphone or smartwatch [9] and setting up self-driving
functions in their car. A recent study [94] designed and implemented convolution
neural networks (CNNs) on smartphones using TFLite to estimate human activities
in real time. Similarly, real-time human pose estimations for a single person and
multi-person on mobile devices are proposed in [26] and [95], respectively. The
right part of Fig. 1 shows that users can use the compressed ML algorithm for their
customized applications using their edge devices.

3 Embedded Machine Learning Applications for Healthcare

The aging population has been becoming a serious concern all over the world. The
consequent rise in health-related issues has drawn significant research attention from
the industry and academic community. Technology companies have continuously
increased their R&D expenditure for wearable devices that can be used for mobile
activity and health monitoring. For instance, Apple utilizes its popular consumer-
facing products, such as Apple Watch, to provide health-related features accessible
on its watch to bridge wearables and clinical tools used in medical research [9]. In
2021, Google acquired the wearable giant Fitbit (smartwatch) to participate in the
AI-enabled healthcare race among top-pitch technical companies [32]. Embedded
machine learning enables various healthcare-related applications by feeding multi-
modal sensing data obtained from humans into machine learning algorithms on
devices.

Remote activity and healthy monitoring applications can provide valuable
insights [12]. Hence, they can improve the quality of life in many healthcare
applications, including but not limited to human activity recognition [4, 19], gait
monitoring [5, 46], human pose estimation [2, 3, 92], and freezing of gait (FoG) [24,
55, 69]. For example, advanced ML algorithms can locally analyze the motion and
physiological data from wearable sensors. This capability can enable many real-
time applications such as irregular rhythm notification, early warning signs, and
fall detection. These applications are also the first step toward diagnosis, prognosis,
and rehabilitation of movement disorders similar to Parkinson’s disease (PD) and
stroke. The rest of this section discusses three illustrative examples as cases studies
and summarizes the recent work in those areas.

3.1 Freezing-of-Gait Identification in PD Patients

Parkinson’s disease (PD) is one of the most common age-related neurodegenerative
diseases. It causes muscular rigidity, tremor, bradykinesia, slowness in movement,
and postural instability [27, 45, 49, 83]. More than 50% of the PD patients develop
freezing of gait (FoG) [44] in their advanced stages of the disease. Freezing of gait
is a brief absence of the ability to walk despite the intention of moving the feet [59].

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 131

FoG episodes may include trembling of knees, short shuffling steps, or complete
akinesia [71] and overall increase the risk of falling and deteriorate the patient’s
quality of life.

Clinical studies suggest that external stimuli, such as auditory, visual, or tactile
cues, help patients to exit the FoG state and resume walking [59]. FoG identification
is a challenging task since FoG episodes are rare events. Furthermore, clinical
settings cannot provide the actual frequency of occurrence of FoG episodes. For
example, FoG episodes mainly occur during turning, walking through doorways,
or dual tasking, and 90% of them last less than 20 s [44]. Specific experimental
sessions are designed to simulate the daily-life activities in clinical settings, such as
walking and turning while dual tasking [44]. However, this practice is a challenging
proposition due to fundamental limitations. On the one hand, the duration of these
sessions in a clinical setting and the number of visits per patient are limited. On the
other hand, the frequency of FoG occurrence and the duration of FoG episodes are
short. Hence, the probability of observing FoG episodes during these simulations
can be small.

FoG-related problems can be avoided by systems that can identify FoG episodes
and provide an appropriate cueing mechanism such as audio. FoG identification can
be divided into two subclasses: FoG detection and FoG prediction. FoG detection
implies classifying FoG episodes after patients start to experience them. It has
been heavily studied for over a decade. More than 50 studies related to FoG
detection have been published by late 2019 [58]. In contrast, FoG prediction implies
classifying FoG episodes before the occurrence of an FoG episode. The main goal
of the FoG prediction studies is to predict potential FoG episodes and prevent their
onset by providing preemptive cueing. Despite this promising potential, there are
very few studies related to FoG prediction compared to FoG detection [58, 59, 73].

Both FoG detection and prediction studies use various wearable sensors placed
on different parts of the patient’s body. These sensors collect motion data using iner-
tial measurement units, plantar pressure systems, and electromyography [44, 59].
Various machine learning approaches are utilized for FoG identification, including
random forests, support vector machines (SVMs), nearest neighbor algorithms, and
deep neural networks (DNNs) [57]. Classification algorithms, such as decision trees,
SVMs, and k-nearest neighbor, require handcrafted spectral and statistical features
extracted from the motion data of the PD patients, which needs substantial domain
knowledge [57]. However, FoG identification approaches should require minimal
preprocessing and manual effort to facilitate easy deployment on edge-AI devices.
Approaches that employ DNNs do not require domain knowledge. They can directly
utilize raw sensor data to identify FoG episodes. For example, convolutional neural
networks (CNNs) are adopted widely among with long short-term memory (LSTM)
networks to detect and predict FoG episodes [13, 53, 57, 73, 83]. Table 1 summarizes
the recent FoG identification studies published since 2018. None of the above
studies have embedded ML framework in an edge-AI device. These approaches
require powerful computing resources that are hard to integrate on an edge device.
Therefore, there is a critical need for lightweight FoG identification approaches

132 S. An et al.

Table 1 A summary of recent FoG identification studies

Sensor type and location FoG identification approach

Sama et al. [69] IMU placed on the waist k-NN, random forest, logistic
regression, Naïve Bayes, multilayer
perceptron (MLP), SVM

Camps et al. [24] IMU placed on the waist CNN

Oung et al. [55] 3 accelerometers placed on the left
shank, left thigh, and lower back

Probabilistic NN, SVM

Li et al. [41] Accelerometer placed on the
lower back

Mini-batch k-means clustering

Mikos et al. [47] 2 accelerometers placed on each
ankle

MLP

Rad et al. [63] 3 accelerometers placed on the left
shank, left thigh, and lower back

Denoising autoencoder

Handojoseno et al.
[33]

EEG electrodes placed on the head DNN

Torvi et al. [83] 3 accelerometers placed on the left
shank, left thigh, and lower back

LSTM

El-Attar et al. [29] Accelerometer placed on the left
shank

DNN

Naghavi and Wade
[49]

3 accelerometers placed on the left
shank, left thigh, and lower back

Statistical analysis based on
Kruskal–Wallis test

Naghavi et al. [50] 2 accelerometers placed on each
ankle

k-NN, SVM, decision tree, MLP
along with classifier bagging and
synthetic minority over-sampling
methods

Arami et al. [10] 3 accelerometers placed on the left
shank, left thigh, and lower back

SVM

Demrozi et al. [28] 3 accelerometers placed on the left
shank, left thigh, and lower back

k-NN

Reches et al. [67] 3 accelerometers placed on the left
ankle, right ankle, and lower back

SVM

Shi et al. [75] 3 accelerometers placed on the left
ankle, right ankle, and neck

CNN

Li et al. [42] 3 accelerometers placed on the left
shank, left thigh, and lower back

CNN . + LSTM

Sigcha et al. [77] IMU placed on the waist CNN . + LSTM

Mancini et al. [44] 8 IMUs placed on the shins, feet,
wrists, sternum, and lower back

Correlation and thresholding

Bikias et al. [20] IMU placed on the wrist CNN

Borzi et al. [21] 2 IMUs placed on the shins k-NN, SVM, linear discriminant
analysis, logistic regression

that leverage the wearable sensor data with minimal preprocessing of the data and
activate an appropriate cueing mechanism locally on the edge device.

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 133

3.2 Human Activity Recognition

There has been growing interest in human activity recognition (HAR) due to its
health monitoring and patient rehabilitation applications [4, 65, 76, 90]. Inertial
measurement units (IMUs) are used to capture the body and joint movements to
estimate or predict human activity. The recognized activities with time stamps are
valuable insights for health monitoring and rehabilitation. The prevalence of low-
cost motion sensors and embedded machine learning algorithms make it possible to
perform human activity recognition on-device [18].

3.2.1 Processing Pipeline

The majority of HAR methods employ smartphones due to their popularity and
easy access to integrated accelerometers and gyroscope sensors [6, 76, 90]. More
recent work started using wearable devices for this purpose due to significant
power consumption and form-factor benefits. A typical HAR framework consists
of data preprocessing, feature extraction, and classifying algorithms, as shown
in Fig. 2. Inertial measurement units, which typically include accelerometers and
gyroscopes, are attached to different human body parts. They usually provide
three-axis acceleration and angular velocity. If the activities are simple enough, a
significant number of approaches use only the acceleration data since the gyroscope
sensors have relatively larger power consumption [97]. The first step is to preprocess
the raw sensor data to reduce measurement noise and construct activity windows.
Then, the data in each activity window are used to produce features, such as the
body acceleration and signal statistics (e.g., min, max, mean). Finally, these features
are used by ML algorithms to recognize activities, such as standing, sitting, lying,
walking, and jogging.

A range of methods is used during the preprocessing step. The most common
preprocessing techniques include downsampling, low-pass filtering, and segmenta-
tion. The inertial sensors often sample at a high sampling rate (. >50 Hz). However,
most human activities are only at a few Hz range [18], making the sampled data
redundant. Median and mean filters are two mainstream filters used for down-
sampling. Similarly, the sensor data, especially accelerometer data, are typically
noisy. Therefore, most preprocessing techniques incorporate low-pass filtering and
smoothing. Most ML algorithms require the inputs to have a fixed length. Therefore,
preprocessing steps typically involve segmentation algorithms that divide the data
into possibly overlapping windows. For example, segmentation algorithms can
divide a long period (in the order of hours) of time series data into multiple fixed-
length (e.g., one–ten seconds) windows. If the number of data samples in each
window is uniform, the ML algorithms, such as DNNs, can conveniently process
them.

134 S. An et al.

Fig. 2 Overview of human activity recognition. The figure is partially modified from [18]

3.2.2 Commonly Used ML Algorithms

Most of the HAR techniques employ supervised learning algorithms. Exam-
ples of supervised learning algorithms suitable for HAR include support vector
machine (SVM), random forests, decision trees, k-nearest neighbors (k-NN), and
neural network (NN). These algorithms take the labeled data to train the classifier,
as outlined below:

• Support vector machine: SVM techniques try to find a hyperplane in high-
dimensional space that separates two output classes [34]. If they cannot find the
separating hyperplane in a lower dimension, it keeps mapping the data into higher
dimensions until the separating hyperplane is found. HAR problem is essentially
a multi-class classifying problem. Multiple classifiers need to be performed to
apply SVM to HAR for differentiating more than two output classes since SVM
is a binary classifier.

• Random forests and decision trees: Decision tree classifiers are commonly used
for classification problems since it is intuitive and explainable. They use a series
of rules to make decisions, just like how humans make decisions [34]. Decision
trees take the dataset features to create binary questions and continually separate
the dataset until all data samples are isolated to different classes. An ensemble

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 135

of tree-structured classifiers is employed for random forests. The most predicted
classes among all trees are chosen as the final predicted class.

• k-Nearest Neighbors: This approach is one of the most traditional and popular
techniques in classifying problems [34]. K-NN first computes k-nearest neighbors
in the training set. Then, it chooses the most common class among k neighbors.
That class is then the final estimated class. K-NN technique requires all training
data to be stored locally. Many of the HAR techniques used k-NN for the offline
training [70].

• Neural networks: Neural networks are widely used in classification and regression
problems. Multilayer perceptron (MLP) classifier is one of the primary neural
networks used for human activity recognition. It consists of three layers at least:
one input layer, one hidden layer, and one output layer. Each layer of the MLP
has multiple neurons/nodes with non-linear activation functions. In the HAR
context, the number of hidden neurons in the hidden layers is crucial for obtaining
good accuracy while retaining low computational complexity. The number of
neurons in the output layer corresponds to the output classes. Convolution
neural networks (CNNs) are popular for processing 2D images. Convolutional
kernels can convolve with the input image layers by layers to extract the helpful
feature maps instead of choosing the features manually in other techniques [93].
Researchers recently applied CNN in HAR by reshaping the 1D HAR features to
a 2D feature map input [16].

3.2.3 Offline vs. Online Learning

Currently, there are two mainstream HAR training paradigms: offline training and
online training. The training is performed on dedicated computing resources such
as power CPU and GPU for offline training. Machine learning algorithms require a
large amount of data to capture different patterns’ behavior and learn how to classify
them. Thus, dedicated computing resources are used since they can process a vast
amount of data. The offline pre-trained models then are deployed to edge devices,
for example, smartphones and smart wearables, to perform the inference for new
users. Offline training is the fundamentals of all supervised training algorithms.
The downside of this approach is that the performance of inferring on new users
that have not appeared in the training data is inevitably worse than inferring on the
trained users. Online training tackles this issue by continually training with new user
data on the edge devices. The pre-trained models are also deployed to edge devices,
but the new users’ data obtained on the field are fed into the machine learning
algorithm running on the edge device to train online. Since the amount of data is
small compared to the offline training data, the edge devices can train the models in
real time. For HAR on-device, the neural network is the most popular method since
it supports online training [18].

136 S. An et al.

3.3 Human Pose Estimation

Human pose estimation aims to detect and track key joints, such as wrists, elbows,
and knees. It has rapidly growing applications areas, including rehabilitation,
professional sports, and autonomous driving [23, 54, 87]. For instance, one of the
leading causes of autonomous car accidents is “robotic” driving, where the self-
driver makes a legal but unexpected stop and causes other drivers to crash into
it [54]. Real-time human pose estimation can help computers understand and predict
human states, thus leading to more natural driving. Likewise, remote rehabilitation
applications, which are currently not feasible, can be enabled by human pose
estimation.

Human pose estimation can be performed by processing image, video, LiDAR
(light detection and ranging), inertial sensors (IMUs), or mmWave radar data.
RGB image and video frames are the most common input types since they offer
accurate real-world representations with true color. However, the RGB frame quality
depends heavily on the environmental setting, such as light conditions and visibility.
Alternatively, the LiDAR point cloud obtained by laser scanning overcomes these
challenges. However, it has high-cost and significant processing requirements,
making them unsuitable for indoor applications such as rehabilitation. mmWave
radar can generate high-resolution 3D point clouds while maintaining low-cost,
price, and power advantages. Inertial sensors (IMUs) can also reconstruct human
pose using the sensing accelerations and gyroscopes [88, 89]. This section discusses
these three broad approaches and recent literature.

3.3.1 Human Pose Estimation Using RGB Camera

In the computer vision field, human pose estimation has drawn attention after a
seminal study in 2005 [64]. This study presents a framework to detect ten distinct
body parts using rectangular templates from RGB images. He et al. [35] propose
Mask R-CNN, which can reconstruct skeleton from RGB images using K masks by
leveraging ResNet neural network architecture. It first detects K different key points
and then connects them. Mask R-CNN has become popular due to its fast processing
time and accurate estimation. Similarly, Cao et al. proposed OpenPose [25], a real-
time human pose estimation technique that can detect human body, face, and foot
key points together for the first time. OpenPose has become one of the popular
benchmarks due to its decent performance and the easy-to-use open-source package.
Besides the RGB video-based approach, Microsoft Kinect and Kinect V2 [74]
provide depth cameras to extract the human joints representation. Both Kinect and
Kinect V2 use an RGB camera and a depth sensor consisting of an infra-red camera
and projector as sensing units to capture the information. The Kinect family has
become one of the popular methods to obtain the ground truth label for training due
to its convenience, low cost, and nice performance [7, 72, 96].

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 137

From an RGB image containing a person, the human pose estimation model
typically consists of the cropping bounding box, extracting features, and predicting
the joint coordinates. The first step is to crop the bounding box containing the
human. The area of a person can be only .1/5 of the image or even smaller. For
the human pose estimation task, the region of interest (ROI) is only the area related
to humans. Hence, an efficient human bounding box detection algorithm is crucial.
After obtaining the human bounding box, the next step is to extract useful features
from the area. Most of the techniques use deep CNNs since many of them have been
proved to be suitable feature extractors in the image processing field [35]. Finally,
the model needs to output the human joints coordinates. In estimating the joint
coordinates, heatmap-based and regression-based are two mainstream methods.

Heatmap-based models learn each joint point’s position through the Gaussian
distribution graphs. The method first renders Gaussian probability distribution
heatmaps for every joint point and then applies argmax or soft-argmax operation
to the heatmaps, thus obtaining the final estimation results. Since the maximum
value of every heatmap corresponds to a joint’s coordinates, the resolution of the
output heatmap needs to be relatively high (64. ×64 usually). Thus, this method’s
computation and memory overhead are high since multiple high-resolution Gaussian
heatmaps need to be rendered (one output heatmap for each joint).

Regression-based models represent another alternative that is simpler and more
intuitive. It directly learns the joints’ coordinates values using L1 or L2 loss.
Since the regression-based method does not require rendering the heatmap and
maintaining the high resolution, the output feature map can be small compared to
the heatmap-based model. Thus, the computation and memory requirements of the
regression-based model are significantly lower than the heatmap-based model. For
instance, using Resnet-50, the floating-point operation per second (FLOPs) of the
regression-based model is .1/20000 of the heatmap-based model [43]. This result
shows that the regression model is friendly to the edge devices. Regression-based
methods are widely applied in industry [43] since it is computationally efficient and
straightforward. However, the heatmap-based method is generally more robust for
occlusion and blur. In addition, the heatmap-based model has better explainability
than the regression-based model. Recently, researchers have started to combine two
methods to keep advantages of both of them [43].

3.3.2 Human Pose Estimation Using mmWave Radar

The human pose can also be reconstructed from mmWave signals. Compared to the
RGB image source, mmWave signals preserve user privacy well since the mmWave
signal does not reveal salient and rich information such as true-color images. At the
same time, the sparse input source makes human pose estimation a more challenging
task. Almost all mmWave human pose estimation methods use a regression-based
model. In 2018, researchers proposed RF-Pose3D [96], a technique that reconstructs
up to 14 body parts, including the head, neck, shoulders, elbows, wrists, hip, knees,
and feet. This work first uses 12 camera nodes to record RGB-based video and

138 S. An et al.

then obtain label key points from OpenPose. At the same time, radar signals at a
few GHz are used to generate the RF heatmap. They then train a region proposal
network (RPN) to zoom in on RF data and a CNN with ResNet architecture to
extract the 3D skeleton from the region of interest. For keypoint localization, the
average errors in the .x, y, z axes are 4.2, 4.0, and 4.9 cm, respectively.

Besides being limited to 14 joints, this work does not leverage the mmWave
radar’s ability to obtain a high-quality point cloud. Thus, it requires a much
more complex NN architecture with high computation cost. Moreover, multiple
cameras and bulky radar signal generating systems hinder the practicality of the
approach. The most recent mmWave radar-based pose estimation techniques use
point cloud representation from the commercial radar device Texas Instrument (TI)
xWR1x43 [81]. Sengupta et al. [72] propose mmPose, a human pose estimation
technique that constructs the skeleton by using mmWave point cloud and a forked-
CNN architecture. They use two radar devices and sum up the point values in the
feature map level to overcome the sparse representation of the point cloud. An et
al. [3] present a meta-learning and frame aggregation framework to help mmWave-
based human pose estimation model converge faster for unseen scenarios. Xue et
al. [92] propose the mmMesh technique to construct human mesh using mmWave
point cloud.

Finally, another recent study proposes a mmWave-based assistive rehabilitation
system (MARS) [2] using human pose estimation. It sorts the mmWave point
cloud and performs matrix transformations before feeding them to a CNN model.
MARS can reconstruct up to 19 human joints and human skeleton in 3D space
using mmWave radar without raising privacy concerns and requiring strict lighting
settings. Moreover, MARS provides the users with 19 joints velocity estimations,
four critical angle estimations, and ten commonly used rehabilitation posture
correction feedback. It incorporates point cloud preprocessing, a CNN that outputs
joint positions, and rehabilitation movement feedback to the user. It first maps
the 5D time series mmWave point cloud to a 5-channel feature map and then
outputs 3D joint positions. It finally provides joint velocity, angle estimations, and
posture correction feedback. The overview of MARS is shown in Fig. 3. An example
of human pose estimation using mmWave radar point cloud is shown in Fig. 4.

Fig. 3 Overview of human pose estimation using mmWave point cloud and its downstream
healthcare-related tasks. The figure is partially modified from [2]

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 139

Fig. 4 Example of human pose estimation using mmWave radar point cloud. From left to right, it
shows radar point cloud, MARS estimation, and the ground truth [2]. Some of the human parts are
highlighted by the bounding boxes in the figure. The figure is partially modified from [2]

140 S. An et al.

Model inference of MARS takes only 64 . µs and consumes 442 . µJ energy on the
Nvidia Jetson Xavier-NX board. These results show the practicality of the proposed
technique running real time on low-power edge devices. The accuracy of human
pose estimation using mmWave is comparable to that of an RGB image. However,
the explainability of the model and solution for free-form human pose estimation
is still challenging. There are several future challenges for mmWave human pose
estimation to be widely applied in real-life applications.

3.3.3 Human Pose Estimation Using Inertial Sensors

Besides cameras and radars, wearables such as inertial sensors (IMUs) also play
an essential role in human pose estimation. IMU-based human pose estimation is
relatively robust to different environmental settings since sensing is not interfered
with by light conditions or visibility. Thus, it is more practical for occlusions or
baggy clothing scenarios. In addition, the explainability of IMUs-based human
pose estimation is pretty good since every IMU is placed in a specific position
of a person. As one of the earliest studies in this field, [68] estimate human pose
using 17 IMUs, and a Kalman filter is employed for all the measurements. It
comprehensively defined 17 IMUs on a person, thus achieving accurate human pose
estimation. However, the large number of IMUs requires long setup times and makes
it uncomfortable for users. Marcard et al. proposed sparse inertial poser (SIP) [88]:
automatic 3D human pose estimation from sparse IMUs. This work provides a new
method to estimate the human pose using only six IMUs. By exploiting a statistical
body model and jointly optimizing posture over continuous time frames to fit both
orientation and acceleration data, SIP achieves positional errors of 3.9 cm. A follow-
up work [89] combines IMUs and a moving camera to estimate multiple human
poses in challenging outdoor scenes robustly.

In summary, human pose estimation can be performed using different input
sources. Table 2 compares different input sources in terms of accuracy, privacy
concern, price, and the anti-interference ability. Lightweight embedded machine
learning algorithms enable running human pose estimation models on edge devices.
In real-life applications, it is crucial to choose proper input sources of the human
pose estimation model according to different requirements such as accuracy, privacy,
and robustness.

Table 2 Comparison between different input sources for human pose estimation. Anti-
interference here represents the robustness of the algorithm. Specifically, different input sources
are affected by environmental conditions such as light and smoke to varying degrees

Data form Accuracy Privacy Price Anti-interference

Camera Image/video .� � � .� .�� . �

LiDAR Point cloud .� � � .� � � .� . � � �

Radar Point cloud/heatmap .�� .� � � .�� . � � �

IMUs Accelerations .� .� � � .� � � .� � �

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 141

4 Energy Management

The commonly used edge devices include smartphones, smartwatches, and other
wearable devices. Small form-factor devices, in particular, have severely limited
battery capacity due to form-factor requirements, such as small size, lightweight,
and flexibility. For example, the Oura Ring 3 incorporates a 22 mAh–3.7 V battery
and advertises a battery life of 4 to 7 days [56]. Despite this limitation, these
devices collect significant amounts of data to enable sophisticated health monitoring
applications discussed in previous sections. The energy consumption soars if they
transmit these data to a mobile device or to the cloud since wireless streaming of
information is prohibitively power-consuming. Consequently, the recharge interval
is short, which causes the users to stop using these devices. Therefore, significant
research effort focuses on reducing the dependency of wearable devices on batteries.

Reducing the dependency on batteries critically depends on the developments in
three main research areas: (1) energy harvesting (EH), (2) energy management, and
(3) low-power design:

(1) Energy harvesting refers to techniques that generate power from ambient
resources, such as light and motion. It provides a complementary energy source
to batteries.

(2) Energy management encompasses the techniques that aim to optimally utilize
the available energy from batteries and energy harvesting sources. It regulates
the energy consumption to maximize the user experience within the constraints
set by the energy source and the device.

(3) Low-power design refers to a broad class of design styles that aim to minimize
the power consumption of the devices, while they meet the processing require-
ments. Popular techniques include clock and power gating, leakage power
minimization, and heterogeneous computing, such as using domain-specific
hardware accelerators to boost energy efficiency.

This chapter overviews energy management, a key enabler, and service applica-
tion for edge devices running target ML applications. To this end, it first summarizes
the wearable energy harvesting modalities and provides a general idea of the energy
budget for wearable devices. Then, it presents an overview of optimal energy
management techniques. We leave the low-power design practices and optimizations
on energy consumption out of this chapter. We refer the interested readers to other
surveys and books on low-power design techniques [15, 62].

4.1 Energy Sources and Budget

Wearable EH techniques generate usable electrical energy from various sources
in a user’s environment while conforming to the physical and comfort constraints
associated with the wearable form factor [48]. The most common energy sources

142 S. An et al.

2 mph
5 mph
7 mph7 mp7 mph7 mp

Fig. 5 Power vs. load resistance curve of a wearable piezoelectric energy harvester at different
gait speeds

are light, motion, electromagnetic waves, and heat [78]. Ambient light has the
highest potential for wearable EH devices. For instance, with an 8.1 cm.

2 flexible
PV cell, ambient light EH offers a capacity of over 1 mW outdoors (5000 lux)
and close to 100 . µW indoors (500 lux) [39]. Similarly, radio-frequency (RF) EH
can harvest 10 . µW with an 18.4 cm.

2 flexible antenna with a signal strength of
.−10 dBm at 915 MHz [51]. Body-heat EH has power levels of about 3 . µW with
a 1 cm.

2 flexible harvester at an ambient temperature of 15 .
◦C (i.e., a temperature

difference of 22 .
◦C) [36]. Human-motion EH is particularly interesting for wearable

applications because the energy is available on demand. For example, energy due to
human activity is at hand when required by an activity-monitoring application. In
addition, human-motion EH can harvest about 25 . µW with a 23.8 cm.

2 piezoelectric
transducer, while the wearer is jogging (i.e., 5 mph gait speed) [84, 85], as illustrated
in Fig. 5.

4.2 Optimal Energy Management

We can enable a long-term recharge-free operation if the edge devices have an
energy-neutral operation. Energy neutrality means that the energy consumed over
a time period (e.g., one day) is less than or equal to the energy produced during the
same period. When the device has a battery, the energy stored in the battery can

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 143

temporarily power the device if the harvested energy is insufficient. However, the
battery will be recharged back to its original level if the energy-neutral operation
is guaranteed. Hence, the energy-neutral operation can automate battery charging
through harvested energy such that the battery level is restored at the end of each
day. In the absence of a battery, this system reduces to intermittent computing
where the operating halts when no energy is available. In summary, optimal energy
management techniques can maximize the device utility (e.g., the amount of time it
remains active) under the available energy budget, whether from a battery or energy
harvesting source.

Achieving energy-neutral operation is challenging due to the conflict between
the uncertainty in harvested energy and the target application’s quality-of-service
(QoS) requirements. The application performance and utilization of the device
can diminish when the harvested energy is limited [30]. For example, consider a
wearable health application where the target device must collect the vital signals
and process them locally to detect abnormalities. On the one hand, the device needs
a steady and sufficient amount of energy to perform its intended operation, e.g.,
analyzing the collected signals within a deadline. On the other hand, the harvested
energy may fluctuate widely and even vanish entirely during the same period.
Therefore, the limited and highly varying nature of the harvested energy necessitates
deliberate planning and management.

Energy management algorithms use the available energy judiciously to maximize
the application performance while minimizing manual recharge interventions to
achieve energy-neutral operation [86]. These algorithms should satisfy the following
conditions to be deployed on a wearable resource-constrained device:

• Incurring low execution time and power consumption overhead
• Having a small memory footprint
• Being responsive to the changes in the environment
• Learning to adopt such changes

Kansal et al. [40] present the general framework of energy-neutral operation for
energy harvesting devices. The authors propose a linear programming approach
to maximize the duty cycle of a sensor node and a lightweight heuristic to help
solve the linear programming with ease. Similarly, the work in [22] proposes a
long-term energy management algorithm, referred to as long-term ENO, which
aims to achieve energy neutrality for one year or more. As complementary to this
work, going with a more fundamental control-theory approach, Geissdoerfer et
al. [31] propose a feedback controller to achieve long-term ENO. To account for
the application requirements when deciding the duty cycle of the nodes, Bhat et al.
use a generalized utility function that defines the application characteristics [17].
They present a lightweight framework based on the closed-form solution of the
optimization problem that maximizes the utility while maintaining energy-neutral
operation. Although these are essential studies in this field, none of them consider
user activity patterns, hence the stochastic nature of energy harvesting, which is at
the core of wearable energy harvesting techniques.

144 S. An et al.

0 5 10 15 20 25
Time (hr)

0

10

20

30

40

50

B
at
t.
E
ne

rg
y
(J
)

ECO Iterative Kansal

Under-use

Over-use

Bhat

Fig. 6 Comparison of ECO to other approaches and an optimal iterative algorithm

A recently proposed energy management framework, ECO, is tailored for wear-
able use cases by incorporating user activity and energy harvesting uncertainty into
energy management [86]. The ECO framework maximizes a utility function under
specific battery energy constraints. The utility function can model any arbitrary
metric, such as device throughput and classification accuracy. The framework takes
the initial battery energy at the beginning of each day and the expected energy
harvesting profile for a finite horizon (e.g., 24 h) as inputs. The expected energy
harvesting profile is obtained from a novel EH forecasting model, which considers
user patterns. At the beginning of the day, using the energy harvesting profile, ECO
first finds the energy that the device can consume during each hour that maximizes
the utility function under the battery energy constraints. As the day progresses, this
solution is not optimum due to the variations in harvested energy. Using the actual
harvested energy, ECO corrects the initial allocations using a lightweight runtime
optimization algorithm after an hour. As a result, the ECO framework adapts to
the deviations from the expected EH values with negligible runtime overhead.
Figure 6 illustrates how ECO addresses the over-utilization and under-utilization of
the energy seen in two prior approaches, which result in higher application utility.
Moreover, measurements on a wearable device prototype show that ECO has 1000. ×
smaller energy overhead than iterative optimal approaches with a negligible loss in
utility.

ECO and other prior work are highly dependent upon the accuracy of the
energy forecasts. They can compensate for deviations in user patterns after the fact,
which causes a deviation from the optimal trajectory. As a remedy, reinforcement
learning (RL)-based resource management algorithms are employed for energy
management. RL-based approaches benefit from not relying on forecasts of the
harvested energy, in contrast to the prediction-based techniques presented above.

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 145

These techniques implicitly learn user patterns, and they can proactively perturb
the allocations before a significant deviation in usage pattern happens. RLMan is
a recent prediction-free energy management approach based on RL [8]. It aims
to maximize packet generation rate while avoiding power failures. tinyMAN is
another RL-based approach that takes the battery level and the previous harvested
energy values as inputs (states). It maximizes the utility of the device by judiciously
allocating the harvested energy throughout the day (action). [14]. Over time, by
interacting with the environment, the tinyMAN agent learns to manage the available
energy on the device according to the harvested energy.

In conclusion, energy management remains a fundamental research field essen-
tial for the success of the embedded AI field. Energy management techniques
must run as background service applications to ensure the successful operation of
embedded AI applications under the available energy budget. Significant challenges
include developing low-overhead techniques that maximize energy efficiency under
uncertainty and scarce energy resources. Developing novel energy forecasting mod-
els is an important research direction for prediction-based approaches. Similarly,
efficient runtime learning of user patterns is critical for prediction-free approaches.
Finally, the developments in this field can transfer to other resource allocation
problems in many different areas, including telecommunications to space-based
systems.

5 Conclusions

Embedded machine learning enables numerous novel applications since low-power
edge devices allow cutting-edge machine learning algorithms to obtain data from
multiple sensors and run locally. This chapter overviewed the opportunities and
challenges in the embedded machine learning applications context. It presented a
survey of edge-AI application use cases for embedded machine learning. First, it
overviewed embedded machine learning frameworks, consisting of model training,
model compression, and model inference. Then, it presented several edge-AI
applications for healthcare, such as freezing-of-gait identification for Parkinson’s
disease patients, human activity recognition, and human pose estimation. Finally,
we discussed energy management as a fundamental enabler for wearable devices
since battery shortage is one of the leading factors that limit embedded machine
learning on wearable devices. Lightweight machine algorithms for these high-
impact applications and other novel applications offer unique research opportunities.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015).
Software available from https://tensorflow.org

https://tensorflow.org
https://tensorflow.org
https://tensorflow.org

146 S. An et al.

2. An, S., Ogras, U.Y.: MARS: mmWave-based assistive rehabilitation system for smart health-
care. ACM Trans. Embed. Comput. Syst. 20(5s), 1–22 (2021)

3. An, S., Ogras, U.Y.: Fast and scalable human pose estimation using mmWave point cloud
(2022). Preprint. arXiv:2205.00097

4. An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition
using representational analysis of neural networks (2020). Preprint. arXiv:2012.04479

5. An, S., Tuncel, Y., Basaklar, T., Krishnakumar, G.K., Bhat, G., Ogras, U.Y.: Mgait: model-
based gait analysis using wearable bend and inertial sensors. ACM Trans. Internet Things 3(1),
1–24 (2021)

6. Anguita, D., Ghio, A., Oneto, L., Parra, F.X.L., Ortiz, J.L.R.: Energy efficient smartphone-
based activity recognition using fixed-point arithmetic. J. Univ. Comput. Sci. 19(9), 1295–1314
(2013)

7. Antunes, J., Bernardino, A., Smailagic, A., Siewiorek, D.P.: AHA-3D: a labelled dataset for
senior fitness exercise recognition and segmentation from 3D skeletal data. In: Prof. of the
British Machine Vision Conference (BMVC), p. 332 (2018)

8. Aoudia, F.A., Gautier, M., Berder, O.: RLMan: an energy manager based on reinforcement
learning for energy harvesting wireless sensor networks. IEEE Trans. Green Commun. Netw.
2(2), 408–417 (2018)

9. Apple: Apple Watch. Helping your patients identify early warning signs. https://www.apple.
com/healthcare/apple-watch/ (2021). Accessed 8 Jul 2021

10. Arami, A., Poulakakis-Daktylidis, A., Tai, Y.F., Burdet, E.: Prediction of gait freezing in
Parkinsonian patients: a binary classification augmented with time series prediction. IEEE
Trans. Neural Syst. Rehabil. Eng. 27(9), 1909–1919 (2019)

11. Arduino: Arduino. https://www.arduino.cc/ (2021). Accessed 8 Jul 2021
12. Basaklar, T., Tuncel, Y., An, S., Ogras, U.: Wearable devices and low-power design for

smart health applications: challenges and opportunities. In: 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–1. IEEE, Piscataway
(2021)

13. Basaklar, T., Tuncel, Y., Ogras, U.Y.: Subject-independent freezing of gait (FoG) prediction
in Parkinson’s disease patients. In: 2021 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pp. 1–6. IEEE, Piscataway (2021)

14. Basaklar, T., Tuncel, Y., Ogras, U.Y.: tinyMAN: lightweight energy manager using reinforce-
ment learning for energy harvesting wearable IoT devices (2022). Preprint. arXiv:2202.09297

15. Bellaouar, A., Elmasry, M.: Low-power digital VLSI design: circuits and systems. Springer
Science & Business Media (2012)

16. Bevilacqua, A., MacDonald, K., Rangarej, A., Widjaya, V., Caulfield, B., Kechadi, T.: Human
activity recognition with convolutional neural networks. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 541–552. Springer, Berlin
(2018)

17. Bhat, G., Park, J., Ogras, U.Y.: Near-optimal energy allocation for self-powered wearable
systems. In: Proceedings of International Conference on Computer-Aided Design (ICCAD),
pp. 368–375 (2017)

18. Bhat, G., Deb, R., Chaurasia, V.V., Shill, H., Ogras, U.Y.: Online human activity recogni-
tion using low-power wearable devices. In: 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8. IEEE, Piscataway (2018)

19. Bhat, G., Tuncel, Y., An, S., Ogras, U.Y.: Wearable IoT devices for health monitoring.
TechConnect Briefs 2019, 357–360 (2019)

20. Bikias, T., Iakovakis, D., Hadjidimitriou, S., Charisis, V., Hadjileontiadis, L.J.: DeepFog: an
IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep
learning. Front. Robot. AI 8 (2021)

21. Borzì, L., Mazzetta, I., Zampogna, A., Suppa, A., Olmo, G., Irrera, F.: Prediction of freezing of
gait in Parkinson’s disease using wearables and machine learning. Sensors 21(2), 614 (2021)

22. Buchli, B., Sutton, F., Beutel, J., Thiele, L.: Dynamic power management for long-term energy
neutral operation of solar energy harvesting systems. In: Proceedings of the Conference on
Embedded Network Sensor Systems, pp. 31–45 (2014)

https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/
https://www.arduino.cc/

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 147

23. Camille Simon-Al-Araji. Bringing AI to the NBA (2019)
24. Camps, J., Sama, A., Martin, M., Rodriguez-Martin, D., Perez-Lopez, C., Arostegui, J.M.M.,

Cabestany, J., Catala, A., Alcaine, S., Mestre, B., et al.: Deep learning for freezing of
gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial
measurement unit. Knowl. Based Syst. 139, 119–131 (2018)

25. Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y.: Realtime multi-person 2D pose estimation using
part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7291–7299 (2017)

26. Choi, S., Choi, S., Kim, C.: MobileHumanPose: toward real-time 3D human pose estimation in
mobile devices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2328–2338 (2021)

27. Deb, R., Bhat, G., An, S., Ogras, U., Shill, H.: Trends in technology usage for Parkinson’s
disease assessment: a systematic review. medRxiv (2021)

28. Demrozi, F., Bacchin, R., Tamburin, S., Cristani, M., Pravadelli, G.: Toward a wearable system
for predicting freezing of gait in people affected by Parkinson’s disease. IEEE J. Biomed.
Health Inform. 24(9), 2444–2451 (2019)

29. El-Attar, A., Ashour, A.S., Dey, N., El-Kader, H.A., El-Naby, M.M.A., Shi, F.: Hybrid DWT-
FFT features for detecting freezing of gait in Parkinson’s disease. In: Information Technology
and Intelligent Transportation Systems, pp. 117–126. IOS Press, Amsterdam (2019)

30. Fraternali, F., Balaji, B., Sengupta, D., Hong, D., Gupta, R.K.: Ember: energy management of
batteryless event detection sensors with deep reinforcement learning. In: Proceedings of the
18th Conference on Embedded Networked Sensor Systems, pp. 503–516 (2020)

31. Geissdoerfer, K., Jurdak, R., Kusy, B., Zimmerling, M.: Getting more out of energy-harvesting
systems: energy management under time-varying utility with PREAcT. In: Proceedings of the
18th International Conference on Information Processing in Sensor Networks, pp. 109–120
(2019)

32. Google: Google completes Fitbit acquisition. https://blog.google/products/devicesservices/
fitbit-acquisition/ (2021). Accessed 8 Jul 2021

33. Handojoseno, A.M.A., Shine, J.M., Nguyen, T.N., Tran, Y., Lewis, S.J.G., Nguyen, H.T.:
Analysis and prediction of the freezing of gait using EEG brain dynamics. IEEE Trans. Neural
Syst. Rehabil. Eng. 23(5), 887–896 (2014)

34. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, vol. 2. Springer, Berlin (2009)

35. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of IEEE
International Conference on Computer Vision, pp. 2961–2969 (2017)

36. Huu, T.N., Van, T.N., Takahito, O.: Flexible thermoelectric power generator with Y-type
structure using electrochemical deposition process. Appl. Energy 210, 467–476 (2018)

37. IBM: Natural Language Processing (NLP). https://www.ibm.com/cloud/learn/
naturallanguage-processing (2021). Accessed 8 Jul 2021

38. IBM: What is computer vision? https://www.ibm.com/topics/computer-vision (2021).
Accessed 8 Jul 2021

39. Jokic, P., Magno, M.: Powering smart wearable systems with flexible solar energy harvesting.
In: IEEE International Symposium on Circuits and Systems, pp. 1–4 (2017)

40. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy harvesting
sensor networks. ACM Trans. Embedd. Comput. Syst. 6(4), 32 (2007)

41. Li, B., Zhang, Y., Tang, L., Gao, C., Gu, D.: Automatic detection system for freezing of
gait in Parkinson’s disease based on the clustering algorithm. In: 2018 2nd IEEE Advanced
Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC), pp. 1640–1649. IEEE, Piscataway (2018)

42. Li, B., Yao, Z., Wang, J., Wang, S., Yang, X., Sun, Y.: Improved deep learning technique to
detect freezing of gait in Parkinson’s disease based on wearable sensors. Electronics 9(11),
1919 (2020)

43. Li, J., Bian, S., Zeng, A., Wang, C., Pang, B.,Liu, W., Lu, C.: Human pose regression with
residual log-likelihood estimation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 11025–11034 (2021)

https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://blog.google/products/devicesservices/fitbit-acquisition/
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/cloud/learn/naturallanguage-processing
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision

148 S. An et al.

44. Mancini, M., et al.: Measuring freezing of gait during daily-life: an open-source, wearable
sensors approach. J. Neuroeng. Rehabil. 18(1), 1–13 (2021)

45. Masiala, S., Huijbers, W., Atzmueller, M.: Feature-set-engineering for detecting freezing
of gait in Parkinson’s disease using deep recurrent neural networks (2019). Preprint.
arXiv:1909.03428

46. Meng, Z., et al.: Gait recognition for co-existing multiple people using millimeter wave
sensing. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 34, pp. 849–856
(2020)

47. Mikos, V., Heng, C.-H., Tay, A., Yen, S.-C., Chia, N.S.Y., Koh, K.M.L., Tan, D.M.L., Au, W.L.:
A neural network accelerator with integrated feature extraction processor for a freezing of gait
detection system. In: 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 59–62.
IEEE, Piscataway (2018)

48. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting
from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486
(2008)

49. Naghavi, N., Wade, E.: Prediction of freezing of gait in Parkinson’s disease using statistical
inference and lower–limb acceleration data. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5),
947–955 (2019)

50. Naghavi, N., Miller, A., Wade, E.: Towards real-time prediction of freezing of gait in patients
with Parkinson’s disease: addressing the class imbalance problem. Sensors 19(18), 3898 (2019)

51. Nguyen, S., Amirtharajah, R.: A hybrid RF and vibration energy harvester for wearable
devices. In: IEEE Applied Power Electronics Conference, pp. 1060–1064 (2018)

52. Nvidia. Jetson Nano Developer Kit. https://developer.nvidia.com/embedded/jetson-
nanodeveloper-kit (2021). Accessed 8 Jul 2021

53. O’Day, J., Lee, M., Seagers, K., Hoffman, S., Jih-Schiff, A., Kidziñski, Ł., Delp, S., Bronte-
Stewart, H.: Assessing inertial measurement unit locations for freezing of gait detection and
patient preference. J. Neuroeng. Rehabil. 19(1), 1–15 (2022)

54. Odemakinde, E.: Human pose estimation with deep learning – ultimate overview in 2021
(2021)

55. Oung, Q.W., Basah, S.N., Muthusamy, H., Vijean, V., Lee, H., Khairunizam, W., Bakar,
S.A., Razlan, Z.M., Ibrahim, Z.: Objective evaluation of freezing of gait in patients with
Parkinson’s disease through machine learning approaches. In: 2018 International Conference
on Computational Approach in Smart Systems Design and Applications (ICASSDA), pp. 1–7.
IEEE, Piscataway (2018)

56. Oura. OURA – The most accurate guide on Sleep, Readiness, and Activity [Online] https://
ouraring.com/. Accessed 1 Oct 2021

57. Pardoel, S.: Detection and prediction of freezing of gait in Parkinson’s disease using wearable
sensors and machine learning (2021)

58. Pardoel, S., Kofman, J., Nantel, J., Lemaire, E.D.: Wearable-sensor-based detection and
prediction of freezing of gait in Parkinson’s disease: a review. Sensors 19(23), 5141 (2019)

59. Pardoel, S., Shalin, G., Nantel, J., Lemaire, E.D., Kofman, J.: Early detection of freezing of gait
during walking using inertial measurement unit and plantar pressure distribution data. Sensors
21(6), 2246 (2021)

60. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Steiner, A.B., Fang, L., Bai, J., Chintala,
S.: PyTorch: an imperative style, high performance deep learning library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook
(2019)

61. PyTorch: PyTorch Mobile. https://pytorch.org/mobile/home/ (2022). Accessed 8 Jul 2021
62. Rabaey, J.M., Pedram, M.: Low Power Design Methodologies, vol. 336. Springer Science &

Business Media, Berlin (2012)
63. Rad, N.M., Laarhoven, T.V., Furlanello, C., Marchiori, E.: Novelty detection using deep

normative modeling for IMU-based abnormal movement monitoring in Parkinson’s disease
and autism spectrum disorders. Sensors 18(10), 3533 (2018)

https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://developer.nvidia.com/embedded/jetson-nanodeveloper-kit
https://ouraring.com/
https://ouraring.com/
https://ouraring.com/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/

A Survey of Embedded Machine Learning for Smart and Sustainable. . . 149

64. Ramanan, D., Forsyth, D.A., Zisserman, A.: Strike a pose: tracking people by finding stylized
poses. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 1, pp. 271–278. IEEE, Piscataway (2005)

65. Rashid, N., Demirel, B.U., Al Faruque, M.A.: AHAR: adaptive CNN for energy-efficient
human activity recognition in low-power edge devices. IEEE Internet Things J. 9(15), 13041–
13051 (2022)

66. Raspberry Pi: Raspberry Pi. https://www.raspberrypi.com/documentation/ (2021). Accessed 8
Jul 2021

67. Reches, T., Dagan, M., Herman, T., Gazit, E., Gouskova, N.A., Giladi, N., Manor, B.,
Hausdorff, J.M.: Using wearable sensors and machine learning to automatically detect freezing
of gait during a fog-provoking test. Sensors 20(16), 4474 (2020)

68. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using
miniature inertial sensors. Xsens Motion Technol. BV. Tech. Rep. 1, 1–7 (2009)

69. Samà, A., Rodríguez-Martín, D., Pérez-López, C., Català, A., Alcaine, S., Mestre, B., Prats, A.,
Crespo, M.C., Bayés, À.: Determining the optimal features in freezing of gait detection through
a single waist accelerometer in home environments. Pattern Recogn. Lett. 105, 135–143 (2018)

70. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for KNN-based human activity
recognition. In: CEUR Workshop Proceedings (2017)

71. Schaafsma, J.D., Balash, Y., Gurevich, T., Bartels, A.L., Hausdorff, J.M., Giladi, N.: Char-
acterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s
disease. Eur. J. Neurol. 10(4), 391–398 (2003)

72. Sengupta, A., Jin, F., Zhang, R., Cao, S.: Mm-pose: real-time human skeletal posture estimation
using mmWave radars and CNNs. IEEE Sensors J. 20(17), 10032–10044 (2020)

73. Shalin, G., Pardoel, S., Lemaire, E.D., Nantel, J., Kofman, J.: Prediction and detection of
freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory
neural-networks. J. Neuroeng. Rehabil. 18(1), 1–15 (2021)

74. Shao, L., Han, J., Xu, D., Shotton, J.: Computer vision for RGB-D sensors: kinect and its
applications [special issue intro]. IEEE Trans. Cybern. 43(5), 1314–1317 (2013)

75. Shi, B., Yen, S.C., Tay, A., Tan, D.M.L., Chia, N.S.Y., Au, W.L.: Convolutional neural
network for freezing of gait detection leveraging the continuous wavelet transform on lower
extremities wearable sensors data. In: 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5410–5415. IEEE, Piscataway
(2020)

76. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: A survey of online activity
recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

77. Sigcha, L., Costa, N., Pavón, I., Costa, S., Arezes, P., López, J.M., De Arcas, G.: Deep learning
approaches for detecting freezing of gait in Parkinson’s disease patients through on-body
acceleration sensors. Sensors 20(7), 1895 (2020)

78. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE
Commun. Surv. Tutorials 13(3), 443–461 (2010)

79. Svitla: CPU, GPU, and TPU for fast computing. https://svitla.com/blog/cpu-gpu-and-tpu-
forfast-computing-in-machine-learning-and-neural-networks (2021). Accessed 8 Jul 2021

80. TensorFlow: TensorFlow Lite: ML for mobile and edge devices. https://www.tensorflow.org/
lite (2022). Accessed 8 Jul 2021

81. Texas Instruments: IWR1443BOOST. https://www.ti.com/tool/IWR1443BOOST (2014).
Accessed 29 Sep 2020

82. tinyML: tinyML Summit ahead! https://www.tinyml.org/ (2021). Accessed 8 Jul. 2021
83. Torvi, V.G., Bhattacharya, A., Chakraborty, S.G.: Deep domain adaptation to predict freezing

of gait in patients with Parkinson’s disease. In: 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 1001–1006. IEEE, Piscataway (2018)

84. Tuncel, Y., Bandyopadhyay, S., Kulshrestha, S.V., Mendez, A., Ogras, U.Y.: Towards wearable
piezoelectric energy harvesting: modeling and experimental validation. In: Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 55–60 (2020)

https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://svitla.com/blog/cpu-gpu-and-tpu-forfast-computing-in-machine-learning-and-neural-networks
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.ti.com/tool/IWR1443BOOST
https://www.tinyml.org/
https://www.tinyml.org/
https://www.tinyml.org/
https://www.tinyml.org/

150 S. An et al.

85. Tuncel, Y., Basaklar, T., Ogras, U.: How much energy can we harvest daily for wearable
applications? In: 2021 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6. IEEE, Piscataway (2021)

86. Tuncel, Y., Bhat, G., Park, J., Ogras, U.: ECO: enabling energy-neutral IoT devices through
runtime allocation of harvested energy. IEEE Internet Things J. 9(7), 4833–4848 (2022) https://
doi.org/10.1109/JIOT.2021.3106283

87. Vakanski, A., Jun, H.-p., Paul, D., Baker, R.: A data set of human body movements for physical
rehabilitation exercises. Data 3(1), 2 (2018)

88. Von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic
3D human pose estimation from sparse IMUs. In: Computer Graphics Forum, vol. 36, pp. 349–
360. Wiley Online Library (2017)

89. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering
accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of
the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

90. Wang, A., Chen, G., Yang, J., Zhao, S., Chang, C.-Y.: A comparative study on human activity
recognition using inertial sensors in a smartphone. IEEE Sensors J. 16(11), 4566–4578 (2016)

91. Wikipedia: Embedded system. https://en.wikipedia.org/wiki/Embedded_system (2021).
Accessed 8 Jul 2021

92. Xue, H., Ju, Y., Miao, C.,Wang, Y., Wang, S., Zhang, A., Su, L.: mmMesh: towards 3D real-
time dynamic human mesh construction using millimeter-wave. In: Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and Services, pp. 269–282
(2021)

93. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an
overview and application in radiology. Insights Imaging 9(4), 611–629 (2018)

94. Zebin, T., Scully, P.J., Peek, N., Casson, A.J., Ozanyan, K.B.: Design and implementation
of a convolutional neural network on an edge computing smartphone for human activity
recognition. IEEE Access 7, 133509–133520 (2019)

95. Zhang, J., Zhang, D., Xu, X., Jia, F., Liu, Y., Liu, X., Ren, J., Zhang, Y.: MobiPose: real-time
multi-person pose estimation on mobile devices. In: Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, pp. 136–149 (2020)

96. Zhao, M., et al.: RF-based 3D skeletons. In: Proceedings of Conference of the ACM Special
Interest Group on Data Communication, pp. 267–281 (2018)

97. Zhu, S., Anderson, H., Wang, Y.: Reducing the power consumption of an IMU based gait
measurement system. In: Pacific-Rim Conference on Multimedia, pp. 105–116. Springer,
Berlin (2012)

https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://doi.org/10.1109/JIOT.2021.3106283
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system

Reinforcement Learning for
Energy-Efficient Cloud Offloading
of Mobile Embedded Applications

Aditya Khune and Sudeep Pasricha

1 Introduction

Faster wireless network speeds and rapid innovations in mobile technologies have
changed the way we use our computers. It is estimated that 207.2 million people in
the United States own a smartphone today while the number of smartphone users
worldwide is estimated to be more than two billion [1]. These mobile devices are
not only used for making voice calls but also efficiently able to run complex mobile
applications that interact with the Internet. The volume of data being accessed
and processed by smartphones and the sophistication of mobile applications are
rapidly increasing over time. However, the rapid evolution in hardware and software
capabilities of mobile devices has not been paralleled by a similar advance in battery
technology [2]. As expected, high-end mobile applications increase the burden on
the battery life of smartphones. For example, it has been shown that a GPS-based
smartphone app can drain a mobile phone’s battery completely within 7 hours [3].

A promising solution that is being considered to support high-end mobile
applications is to offload mobile computations to the cloud [4–11]. Offloading is an
opportunistic process that relies on cloud servers to execute the functionality of an
application that typically runs on a mobile device. The terms “cyber foraging” and
“surrogate computing” are also sometimes used to describe computation offloading.
Such computation offloading is being considered today as a means to save energy
consumption (thereby improving battery lifetime) and increase the responsiveness
of mobile applications. The potential of computation offloading lies in the ability to

A. Khune
Qualcomm, Longmont, CO, USA

S. Pasricha (�)
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_7

151

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

152 A. Khune and S. Pasricha

sustain power hungry applications by releasing the energy consuming resources of
the smartphone from intensive processing requirements.

In this chapter, we present the details of a framework for mobile-to-cloud
offloading that was first presented in [12]:

• We study the behavior of a set of popular smartphone applications, in both local
and offload processing modes. We identify possible bottlenecks during mobile-
to-cloud offloading, as a function of the applications functional characteristics,
such as data intensiveness and computation intensiveness. This study is crucial to
establish the pros and cons of offloading when using various wireless networks.

• We quantify the influence of different wireless network technologies on mobile-
to-cloud offloading. We perform several experiments to gain a clear under-
standing of the impact of selecting the appropriate network when offloading,
while considering advances in current high-speed wireless data communication
networks such as 3G, 4G, and Wi-Fi.

• We propose a novel middleware framework that uses a machine-learning tech-
nique called reinforcement learning (RL) to make offloading decisions effectively
on a smartphone. The proposed framework considers various types of infor-
mation on the mobile device, such as network type, network bandwidth, and
user-context, to decide when to offload in order to minimize energy consumption.
Our strategy utilizes unsupervised machine learning to select between available
networks (3G, 4G, or Wi-Fi) when offloading mode is active. Our experiments
with real applications on a smartphone highlight the potential of our framework
to minimize energy consumed in mobile devices.

2 Prior Work

Many prior research efforts have proposed strategies to reduce energy consumption
in mobile devices via machine learning-based device resource management methods
[13–18] and offloading strategies [4, 8, 19, 20]. Kumar et al. [19] presented a
mathematical analysis of offloading. Broadly, the energy saved by computation
offloading depends on the amount of computation to be performed (C), the amount
of data to be transmitted (D), and the wireless network bandwidth (B). If (D/C)
is low, then it was claimed that offloading can save energy. Flores et al. [8]
proposed a fuzzy decision engine for code offloading. The mobile device uses a
decision engine based on fuzzy logic to combine various factors and decide when
to offload. Our framework discussed in this chapter considers many more factors
than these works, such as network type, data size, and degree of computations when
making decisions about offloading. Cuervo et.al [4] proposed a system called MAUI,
based on code annotations to specify which methods from a software class can be
offloaded. Annotations are introduced in the source code by the developer during the
development phase. At runtime, methods are identified by a MAUI profiler, which
performs the offloading of the methods, if the bandwidth of the network and data

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 153

transfer conditions are ideal. MAUI aims to optimize both energy consumption and
execution time, using an optimization solver. However, this annotation method puts
an extra burden on the already complex mobile application development phase.
Moreover, such annotations can cause unnecessary code offloading that drains
energy [20]. To reduce the complexity of the application development process,
we recommend transferring the entire application processing to the cloud rather
than utilizing a design-time code partitioning method. Further, we propose a
novel adaptive reward-based machine learning approach to make smart offloading
decisions that can achieve high energy efficiency with offloading and also improve
application response time.

3 Challenges with Offloading

In spite of existing research highlighting the potential of offloading in mobile
devices, current offloading techniques are far from being widely adopted in mobile
systems. The implementation of these computation offloading techniques for many
real-world mobile applications in real-world scenarios has not shown promising
results [6], with the mobile device consuming more energy in the offloading process
than the energy savings achieved due to computing on servers in an offloaded
manner.

Offloading decision engines must consider not only the potential energy savings
from offloading but also how the response time of the application is impacted by
offloading. An effective decision to offload processing to the cloud must reduce
energy without significantly increasing response time. Such decisions are heavily
impacted by wireless network inconsistency. The power consumed by the network
radio interface is known to contribute a considerable fraction of the total device
power, and it varies depending on wireless signal strength [21]. With the recent
advent of high bandwidth 4G networks, there has been increased interest in the
offloading domain, but from our experiments and results presented in later sections
of this chapter, we found that 4G consumes more energy than Wi-Fi and 3G. Some
of the prior works [22] in this area also confirm this observation.

The network quality of a 4G connection at a mobile device’s location greatly
affects the battery life. If the device is in the area that does not have 4G coverage,
there is no advantage to a 4G interface, and if 4G network search is not disabled,
then the radio’s search for a nonexistent signal will drain the battery quickly. In case
of a weak signal, the device uses more power to send and receive data to and from
the network. A strong 4G signal uses less battery, but the biggest problem is the
constant switching from 4G to 3G and back again. Also, throughout a typical day, at
different times, the performance of a wireless network varies because of changing
traffic load on the network. We refer to all such problems due to the mobile network
as “network inconsistency” problems.

To counter the impact of network inconsistency on a mobile device and to
optimize the offloading experience, we propose a novel offloading framework based

154 A. Khune and S. Pasricha

on reinforcement learning. This framework not only decides when to offload but
also helps a mobile device select between the different available wireless networks,
to achieve consistent improvements by using offloading even in the presence of
varying network conditions. In the following sections, we describe our framework
in detail.

4 Offloading Performance of Mobile Applications

We analyzed the performance implications of offloading by comparing two scenar-
ios – one where all computations are performed only on the mobile device without
using the cloud at all (local mode) and the other where there was a complete reliance
on the cloud computation (offload mode), with minimal computations on the mobile
device. We selected five diverse and popular commercially available smartphone
applications for our experiment. Our evaluation focuses on two metrics: (i) battery
consumption and (ii) response time. We compared the results obtained with these
applications for 3G, 4G (HSPA+), and Wi-Fi networks. This comparative study was
meant to help us identify various factors that need to be considered for the design
of cloud offloading strategies for mobile applications, for example, identifying the
best possible network for offloading to the cloud, for a given mobile application, at
a specific location.

4.1 Experimental Setup

The power estimation models required to estimate battery consumption were built
using power measurements on the LG G3 device running the Android OS version
5.0.1. The contact between the smartphone and the battery was instrumented, and
current was measured using the Monsoon Solutions power monitor [23] (Fig. 1).
The monitor connects to a computer running the Monsoon Solutions power tool
software, which allows real-time current and power measurements. We also used
the Android Device Bridge, a software tool to perform battery drain measurements
on the android device. The experiments were performed using AT&T’s 3G and 4G
(HSPA+) networks and Comcast’s 100 Mbps (2.4 GHz Band) Wi-Fi network. We
performed these experiments around the Colorado State University campus in Fort
Collins, Colorado, the United States.

Before conducting our experiments, we followed a few rules to ensure mean-
ingful and accurate results while avoiding human error. These rules are as follows:
(1) set the device’s screen to a consistent and fixed brightness level, to minimize
interference from varying screen power consumption (e.g., for different ambient
light scenarios); in our measurements, we used the lowest screen brightness

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 155

Fig. 1 Monsoon power monitor setup

level; (2) kill all background processes before measurements; and (3) repeat each
experiment over 15 iterations to improve result confidence and minimize human
error. We selected five diverse commercially available smartphone applications
for our experiments: (i) matrix operations, (ii) Internet browser; (iii) zipper (file
compression); (iv) voice recognition and translation; and (v) torrent (file download).

The next subsection gives the details of all the applications considered and the
results of their execution for the two scenarios (local and offloading modes) outlined
earlier.

4.2 Experimental Results

4.2.1 Matrix Operation App

The matrix calculator app [24] runs on android-based devices. The user is first asked
to enter the size of the matrix and all the digits of the matrix manually, and then
the user can direct the application to calculate the inverse of that matrix (using the
adjoint method). For our experiments, we used a set of matrix sizes from 3 × 3
to 9 × 9. For the cloud part, we implemented the functionality of calculating the
matrix inverse using the Amazon Web Services (AWS) EC2 cloud instance [25].
Figure 2 shows the results from our experiment. The energy consumption in local
processing mode is equal to the battery drain in the device while performing the
matrix operation, whereas in the cloud mode, energy consumption is the total of
battery drain during the idle time of the mobile device while the operation is being
performed remotely on the cloud and the time for data transfer between the mobile
device and the cloud.

156 A. Khune and S. Pasricha

Fig. 2 Average battery consumption and average response time on a mobile device for a matrix
operation with varying matrix sizes

It can be observed that in the local processing mode, the battery consumption
of the device increases manifolds with the increasing matrix size, largely, because
there is an increase in the CPU’s energy consumption as the number of floating
point operations increase. Local processing is found to be suitable for operations
on small matrices (i.e., 3 × 3 and 5 × 5) allowing for low energy consumption
on the device and low response time. On the other hand, offloading to the cloud
saves energy and reduces response time when the matrix size increases. The device
in offloading mode saves maximum energy (and also has minimum response time)
when used with Wi-Fi. The results show that 3G performs slightly better than 4G as
far as energy is concerned, whereas 4G gives better response time than 3G for the
same operations.

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 157

4.2.2 Internet Browser App

Cloud-based web browsers use a split architecture where processing of a mobile
web browser is offloaded to the cloud partially. This involves cloud support for most
browsing functionalities such as execution of JavaScript, image transcoding and
compression, and parsing and rendering of web pages. For our experiments, we used
the Mozilla Firefox [26] and Puffin [27] browsers. Puffin is a commercially available
cloud-based mobile browser, and Mozilla Firefox is a local browser available from
the Google Play store. Our experiments are performed for a data range starting
as low as 150 Kib to a session involving 5 MB of data transfer to load the web
pages. Figure 3 shows the results obtained by measuring data transfer (response)
time and energy consumed by these browsers for loading two different websites: (i)
www.yahoo.com and (ii) www.wikipedia.org.

We observed that the results obtained fluctuated significantly due to network
inconsistency. For example, the plots in Fig. 3 show that the response time/battery
consumption of a browser session with around 3 MB data usage is sometimes
more than that of a session which uses 5 MB of data. To counter such network
inconsistency problems, we conducted 15 iterations of each experiment across
different locations and at different times of the day. In general, our results show
that cloud-based web browsers are faster but more expensive in terms of energy
consumption. For small data transfers, it is suitable to use web browsers with local
processing to save energy. For a typical user, the data transfer amount during a
browsing session does not go beyond 5–6 MBs for a single session. Thus, for most
websites in typical usage scenarios, a local browser will provide greater energy
savings than when using offloading. The response time results indicate that for
larger data usage scenarios, offloading can be beneficial. Fourth generation not
only provides lower response time but also consumes more energy than 3G for the
offloading scenarios. Wi-Fi outperforms both 3G and 4G in offloading mode, for
response time and energy consumption.

4.2.3 Zipper App

Zipping large files in order to compress them is a widely used functionality on
most computers. Zipper [28] is an android app that compresses files locally on
a mobile device. For the cloud-based file compression, we used an AWS cloud
instance and zipping tool available on the web [29]. Figure 4 shows the results
for energy consumption and the response time when zipping various PDF and
Word document files ranging in size from 15–255 MB. It can be observed that
for the zipping operation, local computation is most efficient in terms of energy
consumption. Offloading provides benefits only in response time and that too only
for large file sizes. When offloading, 4G consumes more energy than 3G for smaller
file sizes (15–105 MBs) whereas 3G consumes more energy than 4G for larger file
sizes (175–255 MBs). Fourth generation is faster than 3G but slower than Wi-Fi.
Wi-Fi gives the best results in terms of energy and response time when offloading.

 -2016 15688 a -2016 15688 a

 9256 15688 a 9256 15688 a

158 A. Khune and S. Pasricha

Fig. 3 Average battery consumption and response time on a mobile device for an Internet
browsing session with varying data sizes

4.2.4 Voice Recognition and Translation App

There are several popular apps for voice recognition and translation available
from app stores, for example, Google Translate [30] for android and Speak and
Translate [31] for iOS. Google Translate is a cloud-based app, which also has an
offline translation mode that performs local processing on the device with a small
neural network. The application allows for downloading an installation package to
support the local processing mode. It makes use of the statistical machine translation
method, which relies on large amounts of data to train a machine translation engine.

Figure 5 shows the energy consumption of the Google Translate app for a
range of words. These measurements were recorded while translating 20–140 words
from the English (the United States) to Marathi language. From the results in

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 159

Fig. 4 Average battery consumption and response time on a mobile device for zipping/compress-
ing files of varying sizes

Fig. 5, we can clearly observe that the local processing mode is more efficient
in terms of energy consumption as compared with the cloud processing mode.
The voice recognition and translation accuracy for local processing was 79.26%
and for offloaded processing was 88.51%. This is because the offloaded voice
data is processed by more powerful cloud servers, which are capable of running
the complex computations of a larger neural network and other machine learning
algorithms for more efficient translation.

4.2.5 Torrents App

We used the android-based torrent app Flud [32] to perform torrent downloads
in local mode. In the cloud mode, a cloud server is used as a BitTorrent client
to download torrent pieces on behalf of a mobile device. While the cloud server
downloads the torrent, the mobile device switches to the sleep mode until the

160 A. Khune and S. Pasricha

Fig. 5 Average battery consumption on a mobile device for voice recognition and translation
operations

cloud finishes the torrent processes, and then the cloud uploads the downloaded
torrent file in a single process to the mobile device. Kelenyi et al. [33] presented a
similar strategy for torrent file download. This strategy saves energy consumption
in smartphones as downloading torrent pieces from multiple peers consumes more
energy than downloading one burst of pieces from the cloud.

For our experiments, we used torrent file sizes ranging from 25–85 MB, with
an AWS cloud instance being used for the cloud mode. Figure 6 shows the results
of our experiments for this application. It is interesting to note that out of all the
applications that we consider, offloaded processing proves to be most beneficial in
terms of both energy savings and response time for the torrent download application,
which is data intensive but not compute intensive. Fourth generation is faster than
3G but slower than Wi-Fi, which is consistent with earlier observations. Fourth
generation performs slightly better than 3G in terms of energy consumption for
higher data sizes (45–85 MBs), but for smaller data sizes, 3G is more energy
efficient.

4.3 Summary of Findings

The overall performance when offloading depends on various factors such as the
amount of data required by the application, wireless network signal type and
strength and the functionality of the application under consideration. In some prior
work [19, 34], it was concluded that offloading is beneficial when an application
is compute intensive and at the same time less data intensive. However, we found

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 161

Fig. 6 Average battery consumption and response time on a mobile device for torrent file
download operations

that this is not always the case. For instance, offloading is beneficial for applications
that may not be compute intensive, but are data intensive, for example, the torrent
application.

To make offloading more practical, it is important to reduce the energy spent
in the communication between the mobile device and the cloud. Our experiments
indicate that choosing the best possible network for offloading is a critical decision.
One may assume that because 4G is faster than 3G, we should always rely on it
for offloading when Wi-Fi is not available. However, our results indicate that 4G is
more power hungry than 3G most of the time.

Network quality is also a factor that cannot be ignored. We found that a good
3G-coverage performs far better as opposed to poor 4G-coverage and vice versa. In
the region of cell tower edges or where the coverage of 3G/4G ends, we found that
the handover process results in high battery drain. This is because the device in such
scenarios is constantly searching for the network, frequently scanning the wireless
spectrum around it to determine which tower it should tether itself to. The more

162 A. Khune and S. Pasricha

networks there are to choose from, the longer the scans take. Some apps require a
channel to be established between the base station and the mobile device at regular
intervals, which can significantly drain the device battery.

Another observation is that as 4G generally provides faster data rates than 3G,
users tend to consume more data when connected on 4G than 3G. The radio-network
interface in the 4G (or LTE) device is functionally a lot more sophisticated and does
a lot more than a 3G interface. This interface is the single biggest source of battery
drain in a mobile device, apart from its display. Unlike the display, however, the
network interface radio is always on.

In conclusion, we observed from our experiments on real applications running on
a real mobile device that the overall performance of offloading depends on various
factors, such as the amount of data used by the application, network signal type (3G,
4G, and Wi-Fi), network signal strength, and the complexity of the functionality of
the application under consideration.

5 Adaptive Offloading

The decision to offload a mobile application to the cloud is a complex one due to the
distributed nature and many real-time constraints of the overall system. To make an
effective offloading decision, it is vital to consider various factors as we discovered
after our experimental analysis presented in the previous section. As these factors
vary at runtime, there is a need for an adaptive offloading approach that takes the
variations of these factors at runtime into consideration when making decisions.

A few prior works [8, 9] propose an offloading decision engine that considers the
contextual parameters on a device and on the cloud to make an offloading decision
adaptively. Flores et al. [8] proposed a fuzzy decision engine for code offloading.
The mobile device runs the fuzzy logic decision engine, which is utilized to combine
n number of variables (e.g., application data size and network bandwidth) that
are obtained from the overall mobile cloud architecture. The fuzzy logic decision
engine works in three steps, namely: fuzzification, inference, and defuzzification. In
fuzzification, input data is converted into linguistic variables, which are assigned to a
specific membership function. A reasoning engine is applied to the variables, which
makes an inference based on a set of rules. Lastly, the outputs from the reasoning
engine are mapped to linguistic variable sets again in the defuzzification step.
This offloading decision engine in [8] assumes a consistent network performance
during offloading. However, as observed in our experiments, such consistency is
difficult to achieve because of frequent mobile user movements and variable network
quality (due to factors such as location of the device and load on the network [21]).
Moreover, the offloading decision engine in [8] mainly emphasizes energy savings;
however, response time is also a crucial metric for various applications that should
not be ignored, otherwise user quality of service degradation can become so severe
that any effort to save energy becomes irrelevant.

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 163

In the next section, we describe our reward-based middleware framework for
adaptive offloading that overcomes the challenges mentioned above, to make more
efficient decisions related to when and how to offload applications from a mobile
device to the cloud.

6 Middleware Framework for Efficient Offloading of Mobile
Applications

To simplify the mobile application development process and at the same time avoid
problems caused by hard coded annotations, our framework proposes to transfer
all the computation for an application to the cloud instead of partial (selective)
offloading of the application. Our framework involves a novel decision engine on the
mobile device that works together with a clone virtual machine (VM) of the mobile
software environment to execute applications on cloud servers. Figure 7 shows a
high-level overview of the proposed framework. The framework is implemented
at the middleware level in the software stack of the Android OS and runs in the
background as an android service. As a result, our framework requires no changes
to any of the applications or the Android OS. The runtime monitor component
periodically triggers the reinforcement learning (RL) module to generate/update
a Q-learning table. At any time, this Q-table contains information to guide the
decision for when and how to offload an application to the cloud, depending on
multiple factors. The remainder of this section provides a detailed overview of the
RL mechanism and our algorithm to generate and use the Q-table.

6.1 Reinforcement Learning (RL)

RL is an unsupervised learning approach, which focuses on learning by having
software agents interact with an environment and then taking actions to maximize
some notion of a reward. In supervised learning (e.g., using neural networks), a
training set of correctly identified observations is required to train a prediction
model. RL differs from supervised learning in that correct input/output pairs of
identified observations do not need to be presented, so there is no need for
a pretrained model. Moreover, an RL algorithm performs well as it has better
exploration capabilities than unsupervised learning methods. For this reason, RL
is being widely used in gaming and control problems, for example, to determine
the next best move in games [35, 36]. RL cuts down the need to manually specify
rules, and agents learn simply by playing the game or exploring different moves in
an automated manner.

In RL, the state-action value function is a function of both state and action, and
its value is a prediction of the expected sum of future reinforcements. The state-

164 A. Khune and S. Pasricha

Fig. 7 Reinforcement learning (RL)-based middleware framework for efficient application
offloading to cloud

Fig. 8 Q-learning flow with example of Q-table

action value function is referred to as the Q-function [37]. Figure 8 summarizes how
a typical Q-learning reinforcement algorithm works. Q-learning is a reward-based
mechanism that generates a Q-table with reinforcement or penalty values. The figure
illustrates a section of a Q-table where the possible actions are offloading with 3G,
4G, or Wi-Fi network, when the user is at different locations L1–L4. Actions are
chosen, and the penalty values are calculated for respective actions to update the
Q-table.

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 165

Suppose the system is at a defined state st at time t. Upon taking action at from
that state, we observe the one step reinforcement rt + 1, and the next state becomes
st + 1. This continues until we reach a goal state, K steps later. The reward Rt in this
goal state is shown below:

Rt =
K∑

k=0

rt+k+1 (1)

The objective with RL is to find actions at that maximize (or minimize) the sum
of reinforcements or rewards rt in Eq. (1). This can be reduced to the objective
of acquiring the Q-function Q(st, at) that predicts the expected sum of future
reinforcements, where the correct Q-function determines the optimal next action.
So, the RL objective is to make the following approximation as accurate as possible:

Q (st , at) ≈
∞∑

k=0

rt+k+1 (2)

The Q-function stores reinforcement values for each state and action pair of the
system. Eq. (2) formulates the RL for a multistep decision problem (e.g., predicting
sequential actions in a Tic-Tac-Toe game [37]). In our middleware framework, we
use RL for a single-step decision problem as there are no sequential states that
are dependent on the previous state of the system. This version of the problem is
formulated as:

Q (st , at) ≈
n∑

t=1

rt (3)

The Q-function is ultimately queried by the system to select the optimal action
at, in state st:

at = arg min Q (st , a) (4)

6.2 RL Algorithm to Generate Q-Function

The state of a mobile device is defined using the contextual information of the device
such as its location, available network type, and network strength. These contextual
factors are chosen as we consider them to be crucial for efficient offloading. The
runtime monitor extracts the contextual information of the device to form state
values of the system. For example, consider a mobile device that is at location L1,
where it has access to a 3G network type with “strong” network strength. From
this state, if an application processing needs to be offloaded, then the Q-function

166 A. Khune and S. Pasricha

is called to select the appropriate network that would result in the least penalty in
terms of energy or response time (or both). In our framework, the following state
and action values are used to generate the Q-function:

Set of state values (discrete values):

• Location = L1, L2, L3, . . . , Ln
• Network carrier = 3G, 4G, Wi-Fi
• Network strength = Strong, Medium, Weak
• Data Size = data_small, data_medium, data_large

Set of action values

• Offload using 3G network
• Offload using 4G network
• Offload using Wi-Fi network

The location L1-Ln can be any geographic area where the user uses the offloading
application, for example, office and home. More state-action pairs can be added to
the above list to account for factors that might affect offloading, for example, we can
add “Time of Day” as another state value, as it is observed that network performance
is slow at certain times of day when the network load is high. However, a larger set
of state-value pairs will result in a larger Q-function requiring greater overhead to
manage it.

The Q-function is generated as follows: Initially, when the mobile device is at a
location L1, the runtime monitor accesses contextual information from the device
such as location, networks available, and network strength. A small data file is then
uploaded from the mobile device to the cloud, using the primary network carrier.
The battery consumed and total response time taken for this operation are measured.
The uploading operation is repeated with varying (small, medium, and large) data
sizes with all available networks at the location (3G, 4G, and Wi-Fi) activated one
by one. For each of these uploading operations, the runtime monitor measures the
battery amount consumed and response time to complete the operation. The Q-table
is then populated with the penalty values calculated using Eqs. (5), (6), and (7):

P3G = Pb3G ∗ x + Pt3G ∗ y (5)

P4G = Pb4G ∗ x + Pt4G ∗ y (6)

PWiFi = PWiFi ∗ x + PWiFi ∗ y (7)

Thus, in our RL framework, the reinforcement values are essentially the penalty
values P3G, P4G, and PWiFi. The set of possible individual penalty values are
shown in Table 1. Once populated, the Q-table can be updated periodically in the
background when the user is not actively using the device. In Eqs. (5), (6), and
(7), to optimize battery consumption and response time, we used weights x and y,
respectively, with penalty values. Both x and y parameters take values between 0

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 167

Table 1 Penalty values in RL algorithm

Penalty values Offload w/ 3G Offload w/ 4G Offload using Wi-Fi

Battery (Pb) processing Pb3G Pb4G PbWiFi

Response time (Pt) Pt3G Pt4G PtWiFi

Total penalty P3G P4G PWiFi

Fig. 9 Decision-making using Q-table (vector of key value pairs)

and 1. For our experiments in Sect. 7, we used x = 0.5 and y = 0.5 to balance
minimizing battery consumption and response time.

Figure 9 shows an example of the decision-making process with the help of two
simple scenarios. For a data intensive application at location L1, we have 3G and
4G networks available as shown in first two lines of the Q-table in the figure. The
penalty value for 4G at location L1 is lesser; therefore, the 4G network is selected
for offloading the application to the cloud. For a less data intensive application at
location L2, out of all the networks available, 3G is selected because Wi-Fi has weak
signal strength with higher penalty and 4G also has a higher penalty.

7 Experimental Results

To evaluate the efficacy of our proposed framework, we conducted a set of
experiments. We implemented our middleware framework and its decision engine
on an android-based mobile device. To form the Q-function of our RL algorithm,
real user data was collected at different geographical locations around the Colorado

168 A. Khune and S. Pasricha

Fig. 10 Average battery consumption and response time of Matrix operations app with learning
methods

State University campus area, in Fort Collins, Colorado. We compared our work
with the fuzzy logic decision engine proposed by Flores et al. [8], which we
discussed in Sect. 5 and which we also implemented on the android-based mobile
device.

Figure 10 shows the results for the matrix operation app with our proposed RL-
based decision engine and the fuzzy logic-based decision engine from [8]. Similarly,
Fig. 11 shows the results for the zipper app, and Fig. 12 shows results for the torrent
app. In all the scenarios, the task of a decision engine is to decide whether to offload
and select the network to offload with. In these figures, the red trend line shows

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 169

Fig. 11 Average battery consumption and response time of zipper app with learning methods

results with the fuzzy decision engine [8] whereas the green trend line shows the
results with our RL-based middleware framework. We have also shown bars with
the results for offloading with each available network and local processing (from
Sect. 4) as a reference.

In general, our results show that our proposed RL-based decision engine
outperforms the fuzzy logic approach from [8]. For less data intensive operations,
the results of RL and fuzzy logic overlap. For instance, in the case of the zipper
application (Fig. 11), for lower data sizes fuzzy logic shows better results, possibly
because the Q-table generated using our RL algorithm uses 25 MB as the minimum
data size. For any data size lower than this minimum value, the RL-based framework

170 A. Khune and S. Pasricha

Fig. 12 Average battery consumption and response time of torrent app with learning methods

is thus less effective at making predictions. This can be improved using a wider
range of data files/sizes when populating the Q-table. For higher data sizes and
more complex computations, our RL approach gives improved battery consumption
and response time than [8].

Figure 13 summarizes the prediction accuracy of both the learning methods
being compared. It can be observed that our RL-based engine has better prediction
accuracy, which is crucial for making effective offloading decisions. The overall
performance of offloading depends on various factors, such as the amount of data
required by the application, network signal type (3G, 4G, and Wi-Fi) and network
signal strength, and the complexity of the functionality of the application under
observation. By considering all of these individual factors in the decision process,
unlike the fuzzy logic approach from [8], and by utilizing a more sophisticated and

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 171

Fig. 13 Prediction accuracy of learning methods

powerful learning algorithm, our framework is able to achieve notably better results
compared with [8]. Our results show that proposed RL-based offloading system can
save up to 30% battery power with up to 25% better response time as compared with
the fuzzy logic-based approach.

8 Conclusions and Future Work

In this chapter, we analyzed real mobile applications to determine the benefits of
application offloading. We found that overall performance with offloading depends
on various factors such as the amount of data and type of usage, available network
carrier, and signal strength. These factors should be considered while making a
decision to offload a mobile application. To make offloading more practical, it is
important to reduce the energy spent in the communication between the mobile
device and the cloud. In our experiments, we compared energy consumption in
mobile devices for varying network types (3G, 4G, and Wi-Fi). This comparison
shows that selecting an appropriate wireless network for offloading is crucial. We
subsequently presented a novel network-aware mobile middleware framework based
on reinforcement learning to accomplish energy-efficient offloading in smartphones.
Our results show that we can save up to 30% battery power with up to 25%
better response time when using our proposed framework compared with a state-
of-the-art fuzzy logic-based offloading approach from prior work. As part of future
work, researchers can consider the evaluation of a more diverse set of mobile
applications and characterizing their bottlenecks, explore new algorithms for low-
overhead offloading decision-making on smartphones and other mobile devices

172 A. Khune and S. Pasricha

(e.g., wearables), and consider the characterization and use of additional wireless
networks for offloading, such as emerging 5G networks.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. The Statistical Portal. [Online]. Available: www.statista.com/statistics (2016). Accessed 7 Mar
2022

2. Ali, F.A., Simoens, P., Verbelen, T., Demeester, P., Dhoedt, B.: Mobile device power models
for energy efficient dynamic offloading at runtime. J. Syst. Softw. 113, 173–187 (2016)

3. Gaonkar, S., Li, J., Choudhury, R.R., Cox, L., Schmidt, A.: Micro-blog: sharing and querying
content through mobile phones and social participation. In: Proceedings ACM Mobisys, pp.
174–186. ACM (2008)

4. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.:
Maui: making smartphones last longer with code offload. In: Proceedings ACM Mobisys, pp.
49–62. ACM (2010)

5. Chun, B.G., et al.: Clonecloud: elastic execution between mobile device and cloud. In: ACM
EuroSys, pp. 301–314. ACM (2011)

6. Flores, H., Srirama, S.: Mobile code offloading: should it be a local decision or global
inference? In: Proceedings ACM Mobisys, pp. 539–540. ACM (2013)

7. Kosta, S., et al.: Thinkair: dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In: Proceedings IEEE INFOCOM, pp. 945–953. IEEE (2012)

8. Flores, H.R., Srirama, S.: Adaptive code offloading for mobile cloud applications: exploiting
fuzzy sets and evidence-based learning. In: Proceedings ACM Mobisys, pp. 9–16. ACM
(2013)

9. Khairy, A., et al.: Smartphone energizer: extending smartphone’s battery life with smart
offloading. In: IEEE IWCMC, pp. 329–336. IEEE (2013)

10. Banga, G., Crosby, S., Pratt, I.: Trustworthy computing for the cloud-mobile era: a leap forward
in systems architecture. IEEE Consum. Electron. Mag. 3(4), 31–39 (2014)

11. Corcoran, P., Datta, S.K.: Mobile-edge computing and the internet of things for consumers:
extending cloud computing and services to the edge of the network. IEEE Consum. Electron.
Mag. 5(4), 73–74 (2016)

12. Khune, A., Pasricha, S.: “Mobile network-aware middleware framework for energy efficient
cloud offloading of smartphone applications”, IEEE. Consum. Electron. 8(1), 42 (2019)

13. Donohoo, B., Ohlsen, C., Pasricha, S., Anderson, C., Xiang, Y.: Context-aware energy
enhancements for smart mobile devices. IEEE Trans. Mob. Comput. 13(8), 1720–1732 (2014)

14. Donohoo, B., Ohlsen, C., Pasricha, S.: A middleware framework for application-aware and
user-specific energy optimization in smart mobile devices. J Pervasive Mob. Comput. 20, 47–
63 (2015)

15. Donohoo, B., Ohlsen, C., Pasricha, S., Anderson, C.: Exploiting spatiotemporal and device
contexts for energy-efficient mobile embedded systems. In: IEEE/ACM Design Automation
Conference (DAC). IEEE (2012)

16. Tiku, S., Pasricha, S.: Energy-efficient and robust middleware prototyping for smart mobile
computing. In: IEEE International Symposium on Rapid System Prototyping (RSP). IEEE
(2017)

17. Pasricha, S., Doppa, J., Chakrabarty, K., Tiku, S., Dauwe, D., Jin, S., Pande, P.: Data
analytics enables energy-efficiency and robustness: from mobile to manycores, datacenters,
and networks. In: ACM/IEEE International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). IEEE (2017)

 15440 12545 a 15440 12545 a

Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile. . . 173

18. Pasricha, S., Raid Ayoub, M., Kishinevsky, S.K., Mandal, U.Y.O.: A survey on energy
management for mobile and IoT devices. IEEE Des. Test. 37(5), 7–24 (2020)

19. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save
energy? Computer. 43(4), 51–56 (2010)

20. Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S., Buyya, R.: Mobile code offloading: from
concept to practice and beyond. IEEE Commun. Mag. 53(3), 80–88 (2015)

21. Li, J., Bu, K., Liu, X., Xiao, B.: Enda: embracing network inconsistency for dynamic
application offloading in mobile cloud computing. In: Proceedings ACM SIGCOMM, pp. 39–
44. ACM (2013)

22. Sivakumar, A., et al.: Cloud is not a silver bullet: a case study of cloud-based mobile browsing.
In: Proceedings ACM Mobisys, p. 21. ACM (2014)

23. Monsoon Solutions Inc. official website. [Online]. Available: http://www.msoon.com/
LabEquipment/Power-Monitor (2016). Accessed 9 Nov 2016

24. Matrix Calculator app at Google play store. [Online]. Available: https://play.google.com/store/
apps/details?id=ru.alex-anderskokov.matrix&hl=en (2016). Accessed 7 Mar 2022

25. Amazon web services (AWS). [Online]. Available: https://aws.amazon.com/ (2016). Accessed
7 Mar 2022

26. Mozilla Firefox. [Online]. Available: https://www.moz-illa.org/en-US/firefox/android (2016).
Accessed 7 Mar 2022

27. Puffin Web Browser. [Online]. Available: http://www.puffinbrowser.com/ (2016). Accessed 7
Mar 2022

28. Zipper Android App. [Online]. Available: https://play.google.com/store/apps/
details?id=org.joa.zipperplus&hl=en (2016). Accessed 7 Mar 2022

29. Ezyzip: The simple online zip tool. [Online]. Available: http://www.ezyzip.com/ (2016).
Accessed 7 Mar 2022

30. Google Translate Android App. [Online]. Available: https://play.google.com/store/apps/
details?id=com.google.android.apps.translate&hl=en (2016). Accessed 7 Mar 2022

31. Speak & Translate iOS app. [Online]. Available: https://itunes.apple.com/us/app/speak-
translate-free-live/id804641004?mt=8 (2016). Accessed 7 Mar 2022

32. Fuld – Torrent Downloader app. [Online]. Available: https://play.google.com/store/apps/
details?id=com.delphicoder.flud&hl=en (2016). Accessed 7 Mar 2022

33. Kelenyi, I., Nurminen, J.K.: Cloudtorrent-energy-efficient bittorrent content sharing for mobile
devices via cloud services. In: Proceedings IEEE CCNC, pp. 1–2. IEEE (2010)

34. Altamimi, M., et al.: Energy cost models of smartphones for task offloading to the cloud. IEEE
Trans. Emerg. Topics Comput. 3(3), 384–398 (2015)

35. Li, H., Liu, D., Wang, D.: Integral reinforcement learning for linear continuous-time zero-sum
games with completely unknown dynamics. IEEE Trans. Autom. Sci. Eng. 11(3), 706–714
(2014)

36. Abouheaf, M., et al.: Multi-agent discrete-time graphical games and reinforcement learning
solutions. Automatica. 50(12), 3038–3053 (2014)

37. Anderson, C.: Introduction to machine learning. Website [Online]. Available: https://
www.cs.colostate.edu/~anderson/cs545/index.html/doku.php (2016). Accessed 7 Mar 2022

 25747 11870 a 25747
11870 a

http://www.msoon.com/LabEquipment/Power-Monitor

 23657 14084 a 23657 14084 a

https://play.google.com/store/apps/details?id=ru.alex-anderskokov.matrix&hl=en

18732 16298 a 18732 16298 a

 13791 18512 a 13791
18512 a

 15449 20726 a 15449 20726
a

 21670 22940 a 21670
22940 a

https://play.google.com/store/apps/details?id=org.joa.zipperplus&hl=en

 22577 25153 a 22577 25153 a

 21670 27367 a 21670 27367 a

https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=en

 20408 29581 a 20408 29581 a

https://itunes.apple.com/us/app/speak-translate-free-live/id804641004?mt=8

 21670 31795 a 21670 31795 a

https://play.google.com/store/apps/details?id=com.delphicoder.flud&hl=en

 32220 43972 a 32220
43972 a

https://www.cs.colostate.edu/~anderson/cs545/index.html/doku.php

Part II
Cyber-Physical Application Use-Cases for

Embedded Machine Learning

Context-Aware Adaptive Anomaly
Detection in IoT Systems

Rozhin Yasaei and Mohammad Abdullah Al Faruque

1 Introduction

Over the last decade, IoT has grabbed substantial attention due to advancements
in computation and communication, and it is utilized in many applications such
as smart home, automotive, and medical aid. The rapid growth of IoT has raised
concerns about the security and reliability of these systems. There are a tremendous
amount of work in the literature that focuses on various aspects of IoT systems such
as communication network [24, 38], hardware security [5, 15, 22, 23], or software
security [3, 34, 40, 41]. However, the physical layer of IoT as a cyber-physical
system (CPS) is overlooked. To ensure the security of CPS systems, in addition
to a bottom-up security attitude, a holistic approach is required [8–10, 12].

The ultimate goal of an IoT system is to control the environment and maintain
it in the desired state. In order to explain the important role of sensors in fulfilling
this goal, we categorize IoT systems under two categories, as depicted in Fig. 1:
(i) a closed-loop control system and (ii) a monitoring system. On the one hand,
a closed-loop control system consists of three major components: (i) sensors; (ii)
controller; and (iii) actuators (see Fig. 1a). The sensors monitor the system and send
the status to the controller, which processes the sensor readings, decides how to
react, and sends the control signals to the actuators to maintain the state of system
and environment.

On the other hand, monitoring systems mainly contain sensors that measure
numerous parameters in the system and provide the user with information to
take proper action (see Fig. 1b). Although a monitoring system cannot directly
manipulate the environment, it informs a supervising user of events that happen

R. Yasaei (�) · M. A. Al Faruque
University of California Irvine, Irvine, CA, USA
e-mail: ryasaei@uci.edu; alfaruqu@uci.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_8

177

 31368 2385 a 31368 2385 a

 885
56845 a 885 56845 a

mailto:ryasaei@uci.edu
mailto:ryasaei@uci.edu

 7657 56845 a 7657 56845
a

mailto:alfaruqu@uci.edu
mailto:alfaruqu@uci.edu
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8
https://doi.org/10.1007/978-3-031-40677-5_8

178 R. Yasaei and M. A. Al Faruque

Environment

Closed-loop Control System

: Attack : Fault

Breaking
control loop

Environment

Monitoring System

UserSensor

Breaking
control loop

ActuatorSensor Controller

Fig. 1 Two categories of IoT systems; (a) closed-loop control system, and (b) monitoring system

in the system, and the user controls the system manually. Thus, a monitoring system
is eventually a part of a control loop.

In both categories, sensors are an essential component of the control loop since
sensor measurements determine the action that is needed to maintain the system
in the desired state. Malfunction or manipulation of a sensor can break the control
loop [4] and, consequently, disrupt the services offered by the IoT system. Fault
in a sensor device leads to the appearance of anomalous values in its readings,
whereas not all anomalies in sensor measurements indicate sensor breakage because
an unexpected event in the environment may cause an anomaly as well. Observing
the possible anomalies in an IoT system, we present a classification of anomalies
that facilitates identification of the anomaly’s source:

• Environmental Anomaly (EA): The environment is the area that surrounds the
sensor, and the sensor measures its physical properties. Any anomaly in the
environment affects the measurements of the sensor and disrupts it. An EA may
occur as a result of malicious activities or unexpected incidents in the environment.

• Sensing Device Anomaly (SDA): When the operation of a sensor is corrupted,
its measurements do not follow the same pattern, and an SDA is observed. This
corruption occurs because of either security or reliability issues. For instance, [1,
46] discuss some attacks on the physical layer.

Current anomaly detection methods model the normal behavior of a device
[7, 13, 31, 32] and label any deviation from expected behavior as an anomaly.
Most of the works concentrate on anomaly detection in the network layer of IoT
systems [20]. In spite of reasonable performance in network intrusion detection,
these methods have a high rate of false alarms when used with sensor signals. They
misinterpret the environmental variation in the sensors measurements as an SDA
and disregard the potential information encoded in the relation between the system
and the physical world, known as the context of the system (refer to Sec. 3.1 for
the definition of context). Conventionally, context-aware methods are applied to
a variety of applications [2], and recently, these methods are used to secure the
authentication of co-located devices [17, 35, 36, 42].

Context-Aware Adaptive Anomaly Detection in IoT Systems 179

Fig. 2 Schema of the wastewater plant

In this chapter, we propose an adaptive data-driven model for unsupervised
anomaly detection in IoT systems based on the sensor measurements. The
model monitors the system to detect anomalies, identifies the type of anomaly
(SDA or EA), and locates them [44]. To this end, we develop an algorithm to
extract the patterns in sensor signals and generate the context of system. Then, we
associate the sensors from different modalities based on the context and cluster the
sensors with similar behavior. We develop our customized recurrent neural network
(RNN), followed by a consensus algorithm to detect and localize anomalies. The
consensus algorithm checks the consistency between sensors in each cluster and
determines the type of anomaly. An IoT system has a dynamic structure that is open
to changes, such as adding new nodes, removing the existing ones, or updating the
framework and protocols. In order to address the variation in IoT systems over time,
our model is designed to be adaptive and update itself.

1.1 Motivational Example

As a real-world IoT system, we study the environmental training center wastewater
plant in Riccione [14]. The primary purpose of wastewater treatment is the
elimination of nitrate. Nitrate contamination is a severe environmental problem
because it can exhibit toxicity toward aquatic life, present a public health hazard,
and affect the suitability of wastewater. In the treatment process, the wastewater is
pumped to the tanks, which are equipped with sensors to monitor the concentration
of oxygen, ammonia, and nitrate in the water. The actuators, such as blowers and
valves, are controlled by a Programmable Logic Controller to adjust the level of
chemicals (Fig. 2). Given the importance of the nitrate level, anomaly detection is
applied to detect abnormal changes. Consider two scenarios with anomalous rise in

180 R. Yasaei and M. A. Al Faruque

Fig. 3 Synthetic sensor signals in the (a) first scenario (EA), (b) second scenario (SDA)

nitrate level; in the first scenario, environmental changes alter the water temperature,
which affects the chemical reactions in the water tank (Fig. 3a, an example of EA).
In the second scenario, the nitrate sensor is broken or manipulated by an attacker
(Fig. 3b, an example of SDA). The current anomaly detection methods rely solely
on nitrate sensor data, whereas the validity of its data is questionable. Thus, they
cannot find the source of anomaly and discriminate EA and SDA.

A recent study [14] analyzes the sensors of this wastewater plant and reveals the
correlation between ammonia, oxygen, and nitrate sensor data. More specifically,
when the rise in oxygen density reaches a certain threshold, the ammonia con-
centration decreases, and the nitrate concentration increases. Further investigation
reveals the scientific rationale for this correlation; oxygen triggers the chemical
reaction, which affects the ammonia and nitrate concentration. By considering this
relationship, it is possible to validate sensor signals. In the first scenario, the incident
affects all sensors. Despite irregularities in the sensor signals, they are consistent
with each other. Thus, we can conclude that the integrity of the sensors’ data is
not compromised. In the second scenario, the anomaly in the nitrate sensor data is
inconsistent with the patterns of other sensor signals. It indicates that the cause of
the abnormality is fault or attack. This type of relationship between sensors is not
limited to this wastewater plant, and it is observed in many IoT systems due to the
availability of many heterogeneous sensors.

1.2 Threat Model

The proposed methodology aims to detect SDA and EA, which occur due to an
unexpected incident in the environment, reliability issue, or security breakage.
Accidental damage, degradation, and defects are examples of plausible reliability
problems that cause unintended device malfunctions. In contrast, the security
breakage scenario involves an attacker who intentionally exploits the vulnerabilities

Context-Aware Adaptive Anomaly Detection in IoT Systems 181

in the system. In this threat model, the adversary has access to the sensor device
and fiddles with it to inject fault, alter functionality, or deny its service. As another
possible scenario, the attacker can control the communication channel and send
faulty signal to the controller as sensor measurements. The model can detect
anomalies in a standalone sensor, but to distinguish between SDA and EA in a
sensor, it should be associated with at least two other sensors. To deceive this
method, the attacker should be able to discover how sensors are clustered, learn
the correlations and patterns in the sensors’ signals, and manipulate them in a way
that imitates the same correlation as before. It means that in addition to sensors,
the attacker should have full access to the clustering layout of sensors and the
trained anomaly detection model. It is assumed that the attacker does not have these
privileges.

1.3 Research Challenges

Anomaly detection in the IoT sensors is challenging due to the following reasons
[11]:

• The IoT data are multi-variant time-series data that are collected from a
heterogeneous network of sensors with different modalities, data dimensions,
sampling rates, specifications, and locations.

• Low-cost and resource-constrained sensors are usually sensitive to noise, and
deployment of them in IoT systems affects the quality of data.

• Due to a lack of prior knowledge about possible anomalies and scarcity of
anomalous observations, there is not enough labeled anomalous data available,
and conventional supervised machine learning techniques are not applicable.

• IoT systems have dynamic characteristics that may be altered over time because
of environmental changes, human interaction, mobility of devices, and updating
firmware or software. Consequently, a static model fails to imitate the system in
the long term.

1.4 Contributions

To the best of our knowledge, this is the first context-aware anomaly detection
method for IoT systems. Our novel contributions to address the aforementioned
challenges are summarized below:

• Context-aware sensor association algorithm: We develop a multi-modality
clustering method to associate sensors that experience similar contextual
variation.

182 R. Yasaei and M. A. Al Faruque

• Consensus-based strategy for unsupervised anomaly detection: We design
a methodology to pinpoint the anomalies without reliance on prior knowledge
about possible anomalies.

• Adaptive data-driven model: Our proposed anomaly detection model is
periodically updated at runtime to adapt itself to new states caused by variations
in the system.

2 Related Works

General anomaly detection algorithms can be classified into the following main
categories [14]:

Statistical or Probabilistic Methods: These methods create a statistical or
probabilistic model based on history data, which represents normal behavior
[16, 39]. Upcoming observation is then compared with this model, and it is marked
as an anomaly if it is statistically unlikely, or the probability of such observation is
low.

Proximity Methods: These methods compute distances between data points to
differentiate between anomalous and normal data. Two well-known techniques that
fall in this category are the local outlier factor [6] and clustering [18] methods.

Predictive Methods: In these methods, the anomaly detection problem is
converted to obtain an accurate sequence prediction algorithm that captures the
recent and long-term trends in data sequences and reproduces them to predict future
measurements. Afterward, the predictions are compared with the new observations
to spot deviations from expected normal behavior. Recurrent neural networks
(RNN) are capable of capturing the relationship between measurements over time
because the feedback loops in the hidden layer of RNN can imitate memory.

Long short-term memory (LSTM) layer was introduced in 1997 by Hochreiter
and Schmidhuber [19] to overcome the shortcomings of RNN. It has gained a lot
of attention lately because of its high accuracy in sequence prediction [7, 31, 32].
Conv-LSTM encoder–decoder is one of the neural network architectures that is used
in the literature to enhance sequence prediction performance [21, 25, 26, 43, 45]. It
contains convolutional layers to extract the essential features of input sequences
and LSTM layers to perform the sequence prediction based on the features. Then,
the anomaly is identified based on the reconstruction error of the model. LSTM–
LSTM encoder–decoder [33, 37, 47] is another popular architecture that follows
a similar strategy, but it utilizes LSTM layers instead of convolutional layers for
feature extraction.

Our methodology inherits the advantages of both probabilistic and predictive
methods. We implement and compare the Conv-LSTM and LSTM–LSTM encoder–
decoder as our predictive models. Then, the reconstruction error, derived from the
difference between real and predicted values, is modeled by a multivariate Gaussian
estimators to detect the anomaly.

Context-Aware Adaptive Anomaly Detection in IoT Systems 183

3 Anomaly Detection Methodology

Our proposed methodology (see Fig. 4) detects SDA and EA in an IoT system to
ensure sensing devices operate as they are expected.

3.1 Context Generation

The context of a system is defined as an abstraction formed by extracting features
from system circumstances and individual element constructs [27]. It describes the
condition in which the system is operating and affects the outcome of the system.
The first step for obtaining our context-aware data-driven model is to generate
the context of the system by encoding its physical properties. Understanding and
transforming this information such that it can be mathematically described is called
context generation. Following the strategy presented by Sadeghi et al. in [35], we
convert all sensor signals into binary fingerprints regardless of their modality. The
procedure of fingerprint generation has the following steps:

Fingerprint

Generation

Sensor

Clustering

Cluster C1

Cluster C2

Cluster Cg

…

Gaussian

Estimator

NO

YES

Sensors Data

Anomaly

Detection

: Data
: Module

Predictive

Model

Each cluster

: Retraining

Predictive

Model

Gaussian

Estimator
Sensors Data

Consensus

Algorithm

Report

anomaly and

its source

Use new data for retraining

Fig. 4 The architecture of our methodology in the training and inference stage

184 R. Yasaei and M. A. Al Faruque

20.75

21.25

21.75

22.25

22.75

23.25

23.75

24.25

Te
m

pe
ra

tu
re

 (℃
)

Time

Sensor signal Average of sensor signal in each time interval

Fingerprint: 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1

b()=1 due to a large

difference between the averages

of two consecutive intervals

b()=0 due to a small difference between

the averages of two consecutive intervals

Fig. 5 Extracting the fingerprint of a temperature sensor

Step1: Each sensor continuously monitors the environment by taking a measure-
ment each z seconds. The value z depends on the sampling rate of sensor
and may vary for different sensors. In a time window of q seconds from
timestamp t , the sensor records .v = [q/z] measurements and forms a
snapshot vector .St = (st , st+z, . . . , st+z(v−1)).

Step2: The .εrel is a pre-defined threshold that controls the amount of variation that
is said to conform a change. The values obtained in a snapshot are averaged,
and the variation bit .b(t) is calculated as follows:

. St = 1

v

∑

s∈St

s, b(t) =
⎧
⎨

⎩
1, if

∣∣∣∣
St+z−St

St

∣∣∣∣ > εrel

0, o.w.

Step3: Finally, a sequence of .k + 1 consecutive snapshots . seq(t, t + kz) =
(St , St+z, . . . , St+kz) has an associated fingerprint . F(seq(t, t + kz)) =
(b(t), b(t + z), . . . , b(t + (k − 1)z)). The fingerprints of all the sensors
with different sampling rates have the same length because each snapshot is
the average of sensor measurements in a particular time interval. Figure 5
illustrates the process of generating the fingerprint of a temperature sensor.

3.2 Sensor Association

Although each sensor’s measurements differ based on its modality and physical
location, the sensors that are affected by the same event follow similar patterns
in their fingerprints. Based on this observation, we develop a sensor association
algorithm that comprises two primary steps: I) pattern extraction and II) sensor
clustering.

Context-Aware Adaptive Anomaly Detection in IoT Systems 185

In the first step, we split each fingerprint into smaller sub-sequences and cluster
the sub-sequences of different sensors that have a similar binary pattern. For
simplicity, assume that .Fi = F(seq(t, t + zk)i) represents the fingerprint of the
sensor i, which is split into d smaller sub-sequences .fi

j as follows:

. Fi −→
(
fi

1, fi
2, . . . , fi

d
)

, d = k − o

l − o
,

where l and o are the hyperparameters that determine the sub-sequences length
and their overlap accordingly. Afterward, our clustering algorithm is performed
on the sub-sequences of index j (.j ∈ [1, d]) of all sensors . (F1

j , F2
j , . . . , Fn

j)

to group the ones with similar binary patterns. Hence, it assign a pattern number
.p

j
i ∈ {0, 1, . . . , p

j
max} to . fi

j . Next, the clustering is repeated for index .j + 1,

and after d iterations, all sub-sequences are clustered. Notice that .pj
max , which

represents the number of clusters for index j , may vary for different index values.
Eventually, for each sensor, the pattern numbers form a pattern history vector
.Pi = (pi

1, pi
2, . . . , pi

d).
In the second step, one final clustering is performed on the given set of sensors

pattern history . Pi to determine the sensors cluster layout .C = c1, c2, . . . cg , where
. ci represents clusters and g is the number of sensor clusters. The sensors with
similar contextual variations exhibit the same patterns in many sub-sequences,
and we cluster them together. An example of the sensor association procedure is
demonstrated in Fig. 6. In this example, the final clustering groups the first and third
sensors together.

All the mentioned clustering processes are done using our customized clustering
algorithm that minimizes the distance between data points in the same cluster, the
intra-cluster distance (. IC), and maximizes the distance among data point of one
cluster from other cluster data points, the inter-cluster distance (. OC). The distance
matrices are defined as follows:

. IC = ICi, ICi = 1

|ci |
∑

m,k∈ci

Hamming(Pm, Pk)

. OC = OCi,j , OCi,j = min
m∈ci ,k∈cj

{Hamming(Pm, Pk)},

where . ci and . Pm represent a cluster and the pattern history of sensor m, respectively.
Algorithm 1 is a pseudocode that elaborates on our clustering algorithm. Our
clustering has the following properties:

• It can be applied to data with string type because the distance matrices are
based on the Hamming distance function, which calculates the number of non-
matching bits.

• The number of clusters is automatically tuned. Initially, clustering is performed
with an upper bound of the number of clusters. Afterward, the algorithm

186 R. Yasaei and M. A. Al Faruque

Binary fingerprint of sensors Extracted patternStep

1

2

3

4

5

F : 0 0 1 1 0 0 1 1 1 0 1 1 0 =(p ∗, …)

F : 0 0 1 1 1 1 1 0 0 1 0 1 1 =(p ∗, …)

F : 0 0 1 1 0 0 1 0 1 0 1 1 0 =(p ∗, …)

F : 0 0 1 1 0 0 1 1 1 0 1 1 0 =(p , p , p , p)

F : 0 0 1 1 1 1 1 0 0 1 0 1 1 =(p , p , p , p)

F : 0 0 1 1 0 0 1 0 1 0 1 1 0 =(p , p , p , p)

F : 0 0 1 1 0 0 1 1 1 0 1 1 0 =(p , p , …)

F : 0 0 1 1 1 1 1 0 0 1 0 1 1 =(p , p , …)

F : 0 0 1 1 0 0 1 0 1 0 1 1 0 =(p , p , …)

F : 0 0 1 1 0 0 1 1 1 0 1 1 0 =(p , p , p , …)

F : 0 0 1 1 1 1 1 0 0 1 0 1 1 =(p , p , p , …)

F : 0 0 1 1 0 0 1 0 1 0 1 1 0 =(p , p , p , …)

Given

=(p , p , p , p)

=(p , p , p , p)

=(p , p , p , p)

:
clustering is performed

on the sensors pattern

histories

Results Sensor 1 is

associated with

sensor 3

* If and p have the same color, p = p and both represent the same pattern in the fingerprint.

** In this example, o=1, l=4, and d=4.

Fig. 6 The procedure of extracting the patterns in sensor signals and clustering them

automatically removes the nodes that are not close to any cluster and eliminates
clusters with two nodes to reach optimum value for the number of clusters.

After sensor association, we evaluate the system to ensure that there is no
standalone sensor that is not clustered. A standalone sensor is vulnerable because it
is not related to any group of sensors that can verify its proper operation. In this case,
the anomaly detection still can be applied to the independent sensor individually, but
the SDA and EA are indistinguishable. The user is warned about this vulnerability
in sensors and can resolve the issue by adding more sensors to the system.

3.3 Predictive Model

The next module of our methodology is the predictive model that predicts the
future measurements of sensors according to the clustering layout and history of

Context-Aware Adaptive Anomaly Detection in IoT Systems 187

Algorithm 1: Customized clustering algorithm for extracting patterns in
sensor fingerprints and sensor association

Input: Fingerprints: F ∈ IRn×k , number of sensors: n, sub-sequence length: l, overlap: o
Output: Cluster layout C = {c1, c2, . . . , cg}
Initialize d = k−o

l−o
Initialize pmax = max # of patterns in sub-sequence
Initialize itermax = max # of iterations
Initialize the center of clusters randomly
foreach j ∈ {1, 2, . . . , d} do

foreach i ∈ {1, 2, . . . , n} do
Split fingerprint Fi to obtain sub-sequences fi

j ;
Clustering:
foreach iter ∈ {1, 2, . . . , itermax} do

foreach i ∈ {1, 2, . . . , n} do
p j i = Argminx∈CHamming(f j i , center(x));

foreach x ∈ {1, 2, . . . , pmax} do
center(x) = mean({f j i |p j i = x});

if no changes in center(x) then
break;

foreach x ∈ {1, 2, . . . , pmax} do
Calculate inter-cluster (OC) metrics;
if Hamming(F j i , center(p j i) > OC then

Remove F j i from cluster p j i ;
Add F j i in unclustered nodes;

Update p j max ;

if |ci | < 3 then
Remove cluster x;
Update p j max ;

Add clusters to pattern histories Pi ;

Perform the clustering again on pattern histories Pi , i ∈ [1, n] to associate sensors;
return Sensors Cluster layout C = {c1, . . . , cg}

measurements. We construct a recurrent neural network (RNN) for each cluster of
sensors as the predictive model. As it is depicted in Fig. 7, our RNN comprises
LSTM encoder–decoder and dense layers, which encode the features of input
sequences of length . li and predict the future sequences of length . lo based on the
encoded features. Sequences of data are derived from the input time-series signals
using the sliding window technique. Afterward, the sequences are scaled through a
Min–Max Scaler before being treated by the encoder because input signals come
from multi-modality sensors with different signal ranges. Eventually, we have a set
of predictive models .DT = {M1,M2, . . . ,Mg}, where g is the number of clusters in
the system and . Mi represents the model for cluster . ci . Given cluster . ci that contains
. ni nodes, the model . Mi takes as input a matrix .Xi ∈ R

li×ni to predict another matrix
.Yi ∈ R

ni×lo .

188 R. Yasaei and M. A. Al Faruque

E
n

co
d

ed

S
ta

te
s

D
ro

p
o

u
t

(0
.5

)

D
en

se
 L

ay
er

 (
1

0
0

)

O
u

tp
u

t
L

ay
er

L
S

T
M

 E
n
co

d
er

T
im

e
S

er
ie

s
S

ig
n

al
s

L
S

T
M

 D
ec

o
d

er

M
in

-M
ax

 S
ca

le
r

Fig. 7 The architecture of RNN used as predictive model

On top of predictive models, multivariate Gaussian estimators are trained to
learn the probability of finding a particular error vector. This probability is used to
ascertain whether the errors between predictions and real measurements correspond
to the system’s normal behavior, or an anomaly has occurred. A multivariate
Gaussian distributor .Gi = N(μi, σi) is fitted on the reconstruction error matrix
. Ei , which is the difference between the real values and the predicted values. The
parameters . μi and . σi are computed using maximum likelihood estimation.

. μi = 1

m

m∑

k=1

ek
ij

= eij , σi = 1

m

m∑

k=1

(ek
j − μj)(e

k
j − μj)

T .

3.4 Anomaly Detection

In the training stage, the predictive models and estimator modules are periodically
used at runtime to infer anomalies. The frequency in which anomaly detection is
performed can vary depending on the system specifications. At the runtime, an input
measurement . xt is compared with model prediction . yt , and the reconstruction error
. et is calculated. Then, . xt is classified as anomalous if .pt < α, where . pt is the
probability of obtaining the error vector given by the Gaussian estimator G. . α is a
pre-defined threshold value, and it is tuned to maximize the F-score of the model.

When anomalous data is discovered, we utilize our consensus algorithm to
differentiate between EA and SDA. EA occurs as a result of an incident in the
environment. If the EA causes an anomaly in a sensor signal, the correlated sensors
are affected by the event and show abnormal changes in their signals. In contrast,
SDA influences the sensors individually and results in an anomaly in one or some
of the sensors in a cluster. For each cluster, the consensus algorithm inspects the
consistency of the sensor behaviors. It uses a voting mechanism to check if all
sensors in a cluster agree on the occurrence of an environmental incident. To account

Context-Aware Adaptive Anomaly Detection in IoT Systems 189

for inertia in the physics of the system, we check the consensus in the time intervals
instead of data points.

3.5 Model Adaptation

Due to the high variation in the IoT system and environment, we add the property of
aliveness to our method, which means the model automatically gets updated to adapt
to the system alteration and make more accurate predictions. As Fig. 4 demonstrates,
the sensor association, predictive model, and estimator modules are trainable. There
are two levels of updating the model: (i) complete update, which retrains all trainable
modules in order, and (ii) partial update, which only retrains the predictor model.
These update processes are triggered under three circumstances:

• Change in the number of sensors in the system (either added or removed)
triggers complete update.

• Each time the sensors send data, the anomaly detection model first validates the
new data. Afterward, partial update is triggered using the new anomaly-free
data.

• If complete update is not provoked during a fixed interval of time . tretrain, it
is triggered automatically. This way, the model accounts for changes in the
environment, location, and placement. This parameter .tretrain can be tuned by
the user, depending on how frequently the system layout is changed.

4 Results and Evaluation

4.1 Fog Computing Architecture

Cloud servers are the common and potent available computation resource in IoT
systems. However, the bandwidth of network and data transmission become a
bottleneck due to rapid expansion of IoT nodes and the quantity of data. As a result,
fog computing has emerged, which provides storage, computation, and application
services closer to end user with dense geographical distribution [29]. In the fog
architecture (Fig. 8), the bottom layer comprises a heterogeneous network of edge
nodes with limited resources. The fog nodes in the middle layer collect and process
the data from edge devices and communicate to the cloud via the Internet.

Our methodology is fog-empowered, and the developed model for our target
IoT system is implemented on a fog node. For the IoT systems with a high
density of devices and a massive volume of data, our method is scalable, and
it still supports fog computing. Basically, the LSTM encoder–decoder networks
are responsible for most of the computation in our method. Thus, instead of
training an extensive network for the whole system, we construct a small network

190 R. Yasaei and M. A. Al Faruque

Fig. 8 Fog computing hierarchy in IoT systems

for each cluster of associated sensors that can be distributed between fog nodes.
Furthermore, we perform several optimizations to meet resource constraints. In
the sensor association, we use the binary fingerprint instead of time-series signals,
which lowers storage usage and complicity. The sliding window technique in LSTM
network contributes to reducing storage usage as well.

4.2 Experimental Setup

To build and evaluate our methodology, we implement an IoT testbed in our
laboratory. Our experimental setup consists of an ad hoc network of multi-modality
IoT sensors, a software-defined radio (SDR) connected to an edge computing
device, a gateway, and a laptop as fog node. For this particular research, we have
used 62 sensors that measure 13 different physical parameters (see Table 1). The
acoustic sensor is a wide range microphone with two right and left channels that
captures the sound of the space, and its output is amplified and recorded by the
handy recorder ZOOM-H6. The Raspberry Pi board, which is directly connected
to ZOOM-H6, collects its data and transmits it over the Internet, and this part of
the system simulates devices such as Google Home or Alexa. The other sensors
are on the low-power embedded boards operated by TinyOS that are equipped
with a wireless communication module based on the IEEE 802.15.4 standard. We
have implemented the IEEE 802.15.4 standard in the SDR device (USRP-B210)
and created a wireless network of sensors in which SDR collects the sensor’s data
and sends commands to them. SDR is connected to an edge computing device, a
Raspberry Pi board, which works as a base station and gathers all data. The base
station contains a Wi-Fi module and links the local network of IoT devices to the

Context-Aware Adaptive Anomaly Detection in IoT Systems 191

Table 1 List of sensors in
our experimental setup

Sensor Sensor board # of sensors

Temperature MTS-CM5000 12

Humidity MTS-CM5000 12

Visible light MTS-CM5000 12

Infrared light MTS-CM5000 12

Force and load MTS-CO1000 2

Tilt MTS-CO1000 2

Accelerometer MTS-CO1000 2

Presence detector MTS-SE1000 2

Magnetic MTS-SE1000 1

CO_2 MTS-AR1000 1

CO MTS-AR1000 1

Dust MTS-SH3000 1

Acoustic ZOOM-H6 2

Internet through a router. It provides the system with the capability to be monitored
in any device that is connected to the Internet by looking up the base station
and logging using the password. The algorithms and anomaly detection model are
implemented on a Laptop with 8Gb DDR4 RAM and the Intel(R)Core(TM) i5-
6300HQ 2.3GHz processor that receives the data from base station and does the
computations as a fog node in the IoT system. A powerful router such as Qotom
Mini PC Q500G6 has similar capabilities and is capable of running the model at the
gateway level. Figure 9 demonstrates the components of our experimental setup and
their connections.

4.3 Evaluation

We evaluate our methodology using the data collected by the sensor layout of
Sect. 4.2.

4.3.1 Sensor Association Evaluation

One of the contributions of our clustering algorithm is the capability to auto-
matically tune the number of clusters and remove the ones that lack a sufficient
number of sensors or have sensors that are far apart regarding the Hamming distance
between their fingerprints. Initially, we set the number of clusters to 20 in our
system under test, and the algorithm reduces the number to 6. In order to assess the
performance of sensor association method, inter-cluster and intra-cluster distances
are calculated for all clusters and plotted in Fig. 10. The notable difference between
inter-cluster distance and the intra-cluster distance indicates that related sensors are
clustered together, and the clusters are well separated from each other.

192 R. Yasaei and M. A. Al Faruque

Fig. 9 The scaled-down version of experimental setup

Another validation method used is physical intuition, which explains the rela-
tionships among the associated sensors. For example, co-located sensors experience
a similar context. Therefore, they are expected to be associated with each other.
This intuition supports the result of our algorithm in which co-located humidity,
temperature, and light sensors are clustered together, as it is shown in Fig. 12.
Another intuition behind the fact is that any physical process may have multi-
modality emissions, and the sensors that capture the emission of one incident
should be clustered together. It explains the clustering of PIR, vibration sensor
(accelerometer and force), magnetic door switch, and acoustic sensor since they
all capture the event of entrance through the door. These observations indicate that
this strategy is capable of finding relations between sensors with similar contextual
variations, further confirmed by the anomaly detection results in the next section.

Context-Aware Adaptive Anomaly Detection in IoT Systems 193

0

0.1

0.2

0.3

0.4

0.5

0.6

Cluter1 Cluter2 Cluster3 Cluster4 Cluster5 Cluster6 All

clusters

D
is

ta
n
ce

Inter-cluster distance Intra-cluster distance

Fig. 10 The inter-cluster and intra-cluster distances of sensor clusters

4.3.2 Anomaly Detection Evaluation

The anomaly detection model is unsupervised, and it is trained only on the normal
data and evaluated using a validation dataset with synthetic anomalies. To analyze
the results, true positives (TP), false positives (FP), and false negatives (FN)
are counted in the results to compute the validation scores. Although the most
intuitive performance measure is accuracy, which is the ratio of correctly predicted
observation to the observations, it is not appropriate for unbalanced datasets such
as anomaly detection where one category representing the overwhelming majority
of the data points. Therefore, we use the Precision(P), Recall(R), and .Fβ score as
performance metrics.

. P = T P

T P + FP
,R = T P

T P + FN
,Fβscore = P × R × (1 + β2)

β2 × P + R
.

Recall expresses the ability to find all anomalous observations in a dataset, while
precision expresses the proportion of the observations our model labels as anomaly,
actually is anomalous. .Fβ score is the weighted average of precision and recall
that provides a better intuition toward both key important capability of model. We
implement the current state-of-the-art methods for anomaly detection in time-series
data. Due to importance of precision, .F0.5 score, which favors precision over recall,
is calculated for evaluation in addition to .F1 score. According to the results in
Table 2, our methodology has the best performance with highest .F scores and
precision.

194 R. Yasaei and M. A. Al Faruque

Table 2 Comparison with the state-of-the-art methods

Method Base model Context-aware Precision Recall .F0.5 score . F1 score

IoT-CAD LSTM Yes 92% 56% 81% 70%

[32] LSTM No 64% 44% 58% 52%

[28] Conv-LSTM No 51% 95% 56% 66%

[30] One-Class SVM No 89% 25% 60% 39%

35

45

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 5

P
re

ci
si

o
n

 o
f

an
o

m
al

y
 d

et
ec

ti
o

n
 (

%
)

Noise energy (Watt/Hz)

LSTM - Guassian noise LSTM - Pink noise LSTM - Uniform noise

ConvLSTM - Guassian noise ConvLSTM - Pink noise ConvLSTM - Uniform noise

IoT-CAD - Guassian noise IoT-CAD - Pink noise IoT-CAD - Uniform noise

Significant

precision drop

Highly

sensitive

to noise

Resilient

to noise

Fig. 11 Evaluating the resilience of different models to pink, Gaussian, and uniform noise signals

4.4 Robustness

We evaluate the robustness of our methodology by adding three different types—
pink, Gaussian, and uniform—of noise signals to the sensor measurements and
observing the performance of the model. As Fig. 11 indicates, although the precision
of anomaly detection is decreased as the noise power increases in all models, our
model is more resilient to noise and maintains the high precision.

4.5 Case Study

As a case study, we analyze a cluster of associated sensors, which includes three
humidity, temperature, and light sensors located in close proximity. As shown in
Fig. 12, the predicted values are very close to the real measurements, which indicates
the competency of our method to learn the normal behavior of sensors and predict
the future measurements precisely. Furthermore, we observe that the pattern of
changes in the sensor signals is similar. As the marked areas of Fig. 12 highlight,

Context-Aware Adaptive Anomaly Detection in IoT Systems 195

22

24

26

28

30

32

3
:1

9

3
:5

9

4
:3

9

5
:1

9

5
:5

9

6
:3

9

7
:1

9

7
:5

9

8
:3

9

9
:1

9

9
:5

9

1
0
:3

9

1
1
:1

9

1
1
:5

9

1
2
:3

9

1
3
:1

9

1
3
:5

9

1
4
:3

9

1
5
:1

9

1
5
:5

9

1
6
:3

9

1
7
:1

9

1
7
:5

9

1
8
:3

9

1
9
:1

9

1
9
:5

9

2
0
:3

9

2
1
:1

9

2
1
:5

9

2
2
:3

9

2
3
:1

9

2
3
:5

9

0
:3

9

1
:1

9

1
:5

9

2
:3

9

T
em

p
er

at
u
re

 (
℃

)

Time

Temperature

sensor real

value

Temperature

sensor

prediction

1

6

11

16

21

26

31

36

41

L
ig

h
t

d
en

si
ty

 (
1

0
0

0
 l

u
x

)

Light

sensor real

value

Light

sensor

prediction

55

60

65

70

75

H
u

m
id

it
y

 (
R

H
)

Humidity

sensor real

value

Humidity

sensor

prediction

Detecting an

anomalous

incident

Similar

pattern of

changes

Fig. 12 The real and predicted values of three correlated sensors: light, humidity, and temperature
sensors

any drop in the trend of humidity sensor comes with an increase in the trend of
other sensors. It confirms the correlation among the sensors as the sensor association
algorithm suggests. We simulate a fire incident in the environment as an EA, and the
measurements from all sensors show an anomaly.

4.6 Timing Analysis

The timing of method depends on the number of sensors, length of time-series
signals, and computing platform that is used to implement the model. We implement
our methodology on a fog computing platform and train it on data collected from
62 heterogeneous sensors for 8 days (roughly, 2.3 million data measurements). The
training stage starts with the fingerprint generation process, which is repeated for all
sensors (62 times). The sensor association process involves 604 times performing
clustering to cluster the patterns and then sensors. Eventually, the clustering layout
and sensor measurements are used for training the predictive model in an iterative
process until the convergence of the model. Although the initial training is time-
consuming, it occurs once, and the process of anomaly detection on the new
measurements using the trained model only takes 0.532 s, which means it is real

196 R. Yasaei and M. A. Al Faruque

Table 3 Timing results Process Recurrence Time (seconds)

Fingerprint generation 62 2.98

Training sensor association 604 10.54

Training predictive model 1 2472.20

Anomaly detection Periodic 0.532

35.51%

61.70%

0 10 20 30 40 50 60 70 80 90

Case 3

Case 2

Case 1

Precision of anomaly detection (%)

Complete Update Partial Update No Update

91.87%

91.87%

90.26%

89.42%

89.42%

0% - Model fails to run due to mismatch between model and system.

0% - Model fails to run due to mismatch between model and system.

 100

Fig. 13 Analysis of effect of partial and complete update on preserving the performance of model

time in our system under test. As mentioned in Sect. 3.5, the retraining process is
triggered under some conditions, but it is faster than initial training since it is limited
to new data and does not interrupt the anomaly detection (refer to Table 3).

4.7 Aliveness Assessment

To assess whether updating the model is beneficial for maintaining the model’s
performance over time, we test it in three scenarios. The first and second scenarios
simulate the effect of system degradation or environmental variation over time. In
this regard, the measurements of temperature sensors are increased 5 .

◦C in case 1,
and 15 .

◦C in case 2 for a day. The third scenario simulates changes in the layout of
the IoT system by eliminating a sensor.

The model is initially trained on the original data before the occurrence of
scenarios and tested with synthesized data from the cases. In the tests, we examine
the effect of the partial update, complete update, and no update on the precision
of the model, refer to Fig. 13. According to results, the variation in cases 1 and
2 leads to a significant drop in the precision of the model without updating while

Context-Aware Adaptive Anomaly Detection in IoT Systems 197

updating the model effectively preserves the high performance because of retraining
the predictive model. The third case highlights the advantage of the complete update.
Any alteration (add or remove) in the number of sensors in the IoT system changes
the input layer dimension of the neural network. Thus, the model cannot perform
anomaly detection in case 3 unless the sensor association is retrained to update
the layout of sensors, and the model is reconstructed on the new layout. Results
confirm that the complete update is successful in maintaining the performance
despite removing a sensor. Based on this experiment, it can be concluded that being
adaptive is crucial for the models used for IoT.

5 Conclusion

In this chapter, we present a novel context-aware adaptive data-driven model for
anomaly detection in IoT systems. It generates context information by encoding
the relations among the IoT sensors and clusters the correlated sensors based upon
similar patterns and contextual variation. According to the extracted context, a
predictive model detects the anomalies, and a consensus-based algorithm deter-
mines the type of detected anomalies and pinpoints their source. Our proposed
methodology can identify the anomalies with a 92% precision in real time on a
fog computing platform. Compared with other methods, it has higher performance
and the capability to update itself to account for variations in the system and
environment.

References

1. Ahemd, M.M., Shah, M.A., Wahid, A.: IoT security: a layered approach for attacks and
defenses. In: 2017 International Conference on Communication Technologies (ComTech),
pp. 104–110 (2017). https://doi.org/10.1109/COMTECH.2017.8065757

2. Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications: A
survey. J. Syst. Softw. 117, 55–83 (2016)

3. Altolini, D., Lakkundi, V., Bui, N., Tapparello, C., Rossi, M.: Low power link layer security
for IoT: implementation and performance analysis. In: 2013 9th International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 919–925 (2013). https://
doi.org/10.1109/IWCMC.2013.6583680

4. Barua, A., Al Faruque, M.: Hall spoofing: a non-invasive DoS attack on grid-tied solar inverter.
29th USENIX Security (2020)

5. Brasser, F., El Mahjoub, B., Sadeghi, A.R., Wachsmann, C., Koeberl, P.: TyTAN: tiny trust
anchor for tiny devices. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, Piscataway (2015)

6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local
outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM, New York (2000)

7. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory
networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 1–7. IEEE, Piscataway (2015)

https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/COMTECH.2017.8065757
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680
https://doi.org/10.1109/IWCMC.2013.6583680

198 R. Yasaei and M. A. Al Faruque

8. Chen, H.C., Faruque, M.A.A., Chou, P.H.: Security and privacy challenges in IoT-based
machine-to-machine collaborative scenarios. In: Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis (2016)

9. Chhetri, S.R., Rashid, N., Faezi, S., Al Faruque, M.A.: Security trends and advances in
manufacturing systems in the era of Industry 4.0. In: IEEE/ACM International Conference
on Computer-Aided Design (ICCAD) (2017)

10. Chhetri, S.R., Faezi, S., Canedo, A., Faruque, M.A.A.: QUILT: quality inference from living
digital twins in IoT-enabled manufacturing systems. In: Proceedings of the International
Conference on Internet of Things Design and Implementation, pp. 237–248. ACM, New York
(2019)

11. Cook, A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. Internet
Things J. (2019)

12. Faezi, S., Chhetri, S.R., Malawade, A.V., Chaput, J.C., Grover, W.H., Brisk, P., Al Faruque,
M.A.: Oligo-Snoop: a non-invasive side channel attack against DNA synthesis machines. In:
NDSS (2019)

13. Filonov, P., Lavrentyev, A., Vorontsov, A.: Multivariate industrial time series with cyber-attack
simulation: fault detection using an LSTM-based predictive data model (2016)

14. Giannoni, F., Mancini, M., Marinelli, F.: Anomaly detection models for IoT time series data.
arXiv (2018)

15. Halak, B., Zwolinski, M., Mispan, M.S.: Overview of PUF-based hardware security solutions
for the Internet of Things. In: 2016 IEEE 59th International Midwest Symposium on Circuits
and Systems (MWSCAS), pp. 1–4 (2016). https://doi.org/10.1109/MWSCAS.2016.7870046

16. Han, M.L., Lee, J., Kang, A.R., Kang, S., Park, J.K., Kim, H.K.: A statistical-based anomaly
detection method for connected cars in Internet of Things environment. In: Hsu, C.H., Xia,
F., Liu, X., Wang, S. (eds.) Internet of Vehicles – Safe and Intelligent Mobility, pp. 89–97.
Springer International Publishing, Cham (2015)

17. Han, J., Chung, A.J., Sinha, M.K., Harishankar, M., Pan, S., Noh, H.Y., Zhang, P., Tague, P.: Do
you feel what I hear? enabling autonomous IoT device pairing using different sensor types. In:
2018 IEEE Symposium on Security and Privacy (SP), pp. 836–852. IEEE, Piscataway (2018)

18. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–
10), 1641–1650 (2003)

19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

20. Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P., Iorkyase, E., Tachtatzis, C., Atkinson,
R.: Threat analysis of IoT networks using artificial neural network intrusion detection system.
In: 2016 International Symposium on Networks, Computers and Communications (ISNCC),
pp. 1–6 (2016). https://doi.org/10.1109/ISNCC.2016.7746067

21. Jixiang, L.U., Qipei, Z., Zhihong, Y., Mengfu, T.U., Jinjun, L.U., Hui, P.: Short-term load
forecasting method based on CNN-LSTM hybrid neural network model. AEPS 43(8), 131
(2019). https://doi.org/10.7500/AEPS20181012004

22. Lesjak, C., Bock, H., Hein, D., Maritsch, M.: Hardware-secured and transparent multi-
stakeholder data exchange for industrial IoT. In: 2016 IEEE 14th International Conference
on Industrial Informatics (INDIN), pp. 706–713 (2016). https://doi.org/10.1109/INDIN.2016.
7819251

23. Lesjak, C., Druml, N., Matischek, R., Ruprechter, T., Holweg, G.: Security in industrial IoT –
quo vadis? e & i Elektrotechnik und Informationstechnik 133(7), 324–329 (2016). https://doi.
org/10.1007/s00502-016-0428-4

24. Lin, W.C., Ke, S.W., Tsai, C.F.: CANN: an intrusion detection system based on combining
cluster centers and nearest neighbors. Knowl.-Based Syst. 78, 13–21 (2015)

25. Lin, T., Guo, T., Aberer, K.: Hybrid neural networks for learning the trend in time series.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, pp. 2273–2279 (2017). https://doi.org/10.24963/ijcai.2017/316, http://infoscience.epfl.
ch/record/262447

https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/MWSCAS.2016.7870046
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.1109/ISNCC.2016.7746067
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.7500/AEPS20181012004
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1109/INDIN.2016.7819251
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.1007/s00502-016-0428-4
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
https://doi.org/10.24963/ijcai.2017/316
http://infoscience.epfl.ch/record/262447
http://infoscience.epfl.ch/record/262447
http://infoscience.epfl.ch/record/262447
http://infoscience.epfl.ch/record/262447
http://infoscience.epfl.ch/record/262447
http://infoscience.epfl.ch/record/262447

Context-Aware Adaptive Anomaly Detection in IoT Systems 199

26. Liu, Y., Zheng, H., Feng, X., Chen, Z.: Short-term traffic flow prediction with Conv-LSTM.
In: 2017 9th International Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1–6 (2017). https://doi.org/10.1109/WCSP.2017.8171119

27. Longueville, B., Gardoni, M., et al.: A survey of context modeling: approaches, theories
and use for engineering design researches. In: DS 31: Proceedings of ICED 03, the 14th
International Conference on Engineering Design, Stockholm, pp. 437–438 (2003)

28. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly
detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–
444 (2017). https://doi.org/10.1109/ICME.2017.8019325

29. Lyu, L., Jin, J., Rajasegarar, S., He, X., Palaniswami, M.: Fog-empowered anomaly detection
in IoT using hyperellipsoidal clustering. Internet Things J. (2017)

30. Ma, J., Perkins, S.: Time-series novelty detection using one-class support vector machines. In:
International Joint Conference on Neural Networks (2003)

31. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly
detection in time series. In: Proceedings, p. 89. Presses universitaires de Louvain, Louvain-la-
Neuve (2015)

32. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based
encoder-decoder for multi-sensor anomaly detection (2016). Preprint. arXiv:1607.00148

33. Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: Multi-
sensor prognostics using an unsupervised health index based on LSTM encoder-decoder (2016)

34. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: efficient
TCB reduction and attestation. In: 2010 IEEE Symposium on Security and Privacy, pp. 143–
158. IEEE, Piscataway (2010)

35. Miettinen, M., Asokan, N., Nguyen, T.D., Sadeghi, A.R., Sobhani, M.: Context-based zero-
interaction pairing and key evolution for advanced personal devices. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 880–891.
ACM, New York (2014)

36. Miettinen, M., Nguyen, T.D., Sadeghi, A.R., Asokan, N.: Revisiting context-based authentica-
tion in IoT. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6.
IEEE, Piscataway (2018)

37. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage attention-based
recurrent neural network for time series prediction (2017)

38. Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of
Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

39. Sedjelmaci, H., Senouci, S.M., Al-Bahri, M.: A lightweight anomaly detection technique
for low-resource IoT devices: A game-theoretic methodology. In: 2016 IEEE International
Conference on Communications (ICC), pp. 1–6 (2016). https://doi.org/10.1109/ICC.2016.
7510811

40. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.K.: SCUBA: secure code update by
attestation in sensor networks. In: Workshop on Wireless Security (2006)

41. Seshadri, A., Luk, M., Perrig, A.: SAKE: Software attestation for key establishment in sensor
networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.)
Distributed Computing in Sensor Systems, pp. 372–385. Springer, Berlin (2008)

42. Wan, J., Lopez, A., Faruque, M.A.A.: Physical layer key generation: securing wireless
communication in automotive cyber-physical systems. ACM Trans. Cyber Phys. Syst. 3(2),
13 (2018)

43. Wu, Y., and Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a
hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)

44. Yasaei, R., Hernandez, F., Al Faruque, M.A.: IoT-CAD: context-aware adaptive anomaly
detection in IoT systems through sensor association. In: 2020 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE, Piscataway (2020)

45. Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X.: Spatiotemporal recurrent convolutional networks
for traffic prediction in transportation networks. Sensors 17(7) (2017). https://doi.org/10.3390/
s17071501, https://www.mdpi.com/1424-8220/17/7/1501

https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICME.2017.8019325
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.1109/ICC.2016.7510811
https://doi.org/10.3390/s17071501
https://doi.org/10.3390/s17071501
https://doi.org/10.3390/s17071501
https://doi.org/10.3390/s17071501
https://doi.org/10.3390/s17071501
https://doi.org/10.3390/s17071501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501
https://www.mdpi.com/1424-8220/17/7/1501

200 R. Yasaei and M. A. Al Faruque

46. Zhao, K., Ge, L.: A survey on the Internet of Things security. In: 2013 Ninth International
Conference on Computational Intelligence and Security, pp. 663–667 (2013). https://doi.org/
10.1109/CIS.2013.145

47. Zhao, Z., Chen, W., Wu, X., Chen, P.C.Y., Liu, J.: LSTM network: a deep learning approach
for short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017). https://doi.org/10.
1049/iet-its.2016.0208

https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1109/CIS.2013.145
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1049/iet-its.2016.0208

Machine Learning Components for
Autonomous Navigation Systems

Kruttidipta Samal and Marilyn Wolf

1 Introduction

Autonomous cyber-physical systems operating in the real world, such as the
autonomous drone shown in Fig. 1, typically have a feed-forward information
processing pipeline that consists of various modules such as sensing, perception,
localization, and mapping, planning, and actuation [1] as shown in Fig. 2. The
sensing module contains multiple sensors such as RGB, LiDAR, RADAR, IMU,
GPS, etc., to sense data from the real world [2–4]. Perception module processes the
data from the sensing unit to extract relevant information such as objects of interest,
landmarks, etc. Localization and mapping modules utilize the sensed data and
landmarks detected in the perception module to localize the system and optionally
build a map of the real world. The planning module utilizes the output of perception
and localization modules to plan future actions. The actuation unit converts the
output of planning module into signals for the actuators that interact with the real
world.

The various modules of an autonomous cyber-physical system operate at differ-
ent levels of semanticity and dimensionality, e.g., while the early modules such
as the perception module may operate on high-dimensional image pixel space,
late modules such as the planning module operate on highly semantic but low-
dimensional object and landmark space. Traditionally, model-based algorithms were
used to extract structure from high-dimensional data, but their accuracy was limited
when the system was deployed in the real world. But in recent years machine

K. Samal (�) · M. Wolf
School of Computing, UNL, Lincoln, NE, USA
e-mail: ksamal2@unl.edu; mwolf@unl.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_9

201

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:ksamal2@unl.edu
mailto:ksamal2@unl.edu

 8181 56845 a 8181 56845 a

mailto:mwolf@unl.edu
mailto:mwolf@unl.edu
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9
https://doi.org/10.1007/978-3-031-40677-5_9

202 K. Samal and M. Wolf

Fig. 1 Autonomous drone setup

Fig. 2 Information processing pipeline in an autonomous cyber-physical system

learning algorithms have replaced the model-based algorithms as they can learn
the features directly from data [5]. When such algorithms are trained on a large
volume of data, they can learn robust features that generalize across diverse real-
world scenarios. Therefore, adoption of machine learning algorithms has been most
pervasive within the perception module of the autonomous cyber-physical system.
Additionally, there have been many works that use reinforcement learning for path
planning, but most of such works have been tested in simulation and their efficacy
in real world is currently under investigation.

The architecture in Fig. 2 shows a clear separation between different modules
according to the task performed, but in recent years hybrid modules have been pro-
posed that merge operation of multiple modules to increase accuracy and resource
efficiency of the systems. Perception-driven sensing modules (see Sect. 3.5) reduce
resource consumption in sensing modules by driving sensor activation and data
transfer according to feedback from perception. Similarly, some perception modules

Machine Learning Components for Autonomous Navigation Systems 203

include depth regression unit that directly predicts the 3D map that can be used
to simultaneously localize and map (SLAM), thus blurring the boundary between
traditional perception and mapping modules. Alternatively, end-to-end learning
systems (see Sect. 6) have been proposed that do not have the modular architecture
presented above rather such systems directly predict the actuation commands of
system from the sensed input such as RGB images. This simplifies the system design
but simultaneously obfuscates the system.

2 Sensor Data Fusion

Autonomous cyber-physical systems have multiple sensors depending on the target
application. For example, autonomous vehicles have multiple RGB cameras, LiDAR
and RADAR sensors to cover the entire field-of-view (FoV), IMU and GPS sensors
to aid localization and mapping, and telemetry sensors to support smart connected
technologies such as vehicle-to-vehicle (V2V), vehicle-to-cloud (V2C), and vehicle-
to-everything (V2X) [6]. Fusing the data collected from multiple sensors is called
sensor data fusion [7]. Depending on the stage at which the data sensed by the
sensors, the different fusion algorithms can be classified into three categories—
early fusion, deep fusion, and late fusion. Figure 3 shows the high-level algorithmic
pipeline of different sensor fusion strategies. Early fusion strategies fuse the data
from multiple sensors before the processing of the data begins. This requires the
sensors to be calibrated and synchronized [8, 9]. Late fusion strategies process
the data from different sensors independently and merge the data at the end of
the pipeline [10]. This is the most common strategy used in autonomous system
software as it has a relaxed constraint on calibration and synchronization of different
sensors that typically operate at different frame rate [1, 11]. Finally, deep fusion
strategies intermittently merge the features extracted in each sensor processing
pipeline [12, 13]. Such strategies have high accuracy as the features extracted in
one pipeline can guide the processing of other pipeline thus complementing the
information extraction process.

Fig. 3 High-level overview of different sensor fusion strategies. The Model(s) in each strategy
can be a hand-crafted or ML based algorithm

204 K. Samal and M. Wolf

3 Perception

Perception module of autonomous cyber-physical systems (ACPS) is responsible for
running tasks such as object detection and tracking, path prediction, depth estima-
tion, landmark detection, etc. In modern systems, machine learning algorithms such
as deep neural networks (DNNs) are used to solve these tasks. The DNNs are trained
on large autonomous driving datasets such as KITTI [2], nuScenes [4], BDD [14],
Waymo [3], etc., to detect common on-road obstacles such as pedestrians, bicycles,
vehicles, etc. These datasets are collected from vehicles with different sensor
configurations, and since there are no standard sensor configuration that is followed
by industry or academia, there have been many perception algorithms proposed to
process the heterogeneous sensor data. These algorithms can operate on a single
modal data such as RGB-only or multi-modal data such as RGB–LiDAR.

3.1 RGB Object Detection

DNN-based RGB object detectors can be divided into three categories depending
on their architectures (shown in Fig. 4)—two stage, single stage, or transformer-
based. Two-stage detectors such as Faster RCNN [15] have two neural networks,
the backbone convolutional neural network (CNN) to extract features from RGB
images that is followed by a region proposal network (RPN) that takes the high-
level features extracted by the CNN backbone to propose object bounding box
hypotheses. One-stage detectors such as YOLO [16, 17] and SSD [18] directly
regress the object bounding boxes from within the CNN backbone. Transformer-
based object detectors such as DETR [19] replace the RPN module of two-stage
detectors with an encoder–decoder module that interprets object proposal as a bipar-
tite matching operation rather than a regression. One-stage detectors have lower
computational complexity compared to the two-stage detectors but simultaneously

Fig. 4 Object detector architectures. Two-stage detectors (left), one-stage detectors (middle), and
transformer-based detectors (right)

Machine Learning Components for Autonomous Navigation Systems 205

Fig. 5 Performance of DNN-based object detectors on a generic computation platform with a
CPU and Nvidia 1080Ti GPU

also suffer from lower accuracy. Typically, autonomous cyber-physical systems use
single-stage detectors as they can run at real-time speed (>10 fps) on embedded
boards and mid-grade GPUs such as NVidia 1080.

The performance of DNN-based object detectors is typically evaluated on high-
performance GPUs such as Nvidia V100 or NVidia Tesla that are meant for
datacenters rather than general-purpose computers. Figure 5 shows the latency of
several real-time object detectors on a workstation CPU with NVidia 1080Ti GPU
from Kim et al. [20]. The SSD and Yolo variants have different backbone CNNs.
Compared to YOLOV3, YOLOV3-tiny has a shallower backbone that leads to
faster downsampling of the features. This severely affects the small object detection
accuracy as the receptive field of intermediate neurons in large. SqueezeDet [21]
uses SqueezeNet [22] backbone that removes the fully connected layers of Yolo
backbone and uses a fully convolutional network that predicts the bounding box
and class probabilities simultaneously. Mobilenets [23] use depthwise separable
convolution that breaks the 3D convolution operations within a layer of the DNN
into 2D channelwise convolution operation followed by 1D pointwise/channelwide
convolution. This reduces the number of FLOPs considerably leading to lower
inference time. But it should be noted that such operation increases the number
of memory accesses that can be detrimental in memory throughput constrained
platforms.

While real-time performance on general-purpose GPU is good for proof of
concept and deployment in self-powered systems such as AVs, they are not ideal
for battery-powered embedded computing platforms that have limited computing
resources and operate under low-power constraints. The detectors showed in
Fig. 5 cannot run at real-time speed in low-power embedded platforms such as
Raspberry Pi, and even the general-purpose Nvidia 1080Ti GPU consumes 250W
of power. Therefore, recently more optimized DNNs have been developed such as
SSDLite [24], MobileDet [25], Yolov4 [26], and Yolov5 [27]. The shallow opti-
mized versions of such networks can be deployed in the embedded platforms with
edge DNN accelerators such as edge TPUs and Intel Movidius. These accelerators
optimize the computational operations within the network by quantizing the weights
from 32 bit floating point to 8 bit integer. Simultaneously, they also remove weights

206 K. Samal and M. Wolf

Fig. 6 Performance of DNN-based object detectors on an embedded platform with Raspberry Pi
4 and INT8 TPU accelerator. Tiny-Yolov4 and Yolov5s could not be mapped to the edge TPU

that have low impact on the quality of output thus reducing memory bandwidth and
the number of computations. Figure 6 shows the performance of some of the recent
light-weight DNN-based object detectors on an embedded platform from Kovács et
al. [28]. It can be observed that there are some of these networks that can operate
high speed even on low-power resource-constrained embedded platforms.

3.2 LiDAR Object Detection

LiDAR sensors operate on time-of-flight principle. The output of the sensor is
a point cloud that captures the 3D map of the world. In addition to position
of the objects, the point cloud can also have an intensity channel that captures
the reflectance of the objects. Due to the difference in the sensor data, the 2D
CNNs developed for RGB images do not work accurately for LiDAR object
detection [29, 30]. In the past, geodesic transformation has been proposed that
transforms the depth images to capture angle from ground before processing in a
2D CNN [30]. While the transformation improves the accuracy, their efficacy is
limited, leading to the development of 3D CNNs that operate on the birds-eye-
view (BEV) representation of the point cloud data [29]. But the 3D CNNs had high
computational complexity and low accuracy compared to the RGB object detectors.
CNNs are not ideal for directly processing point clouds as the filters within the CNN
have a regular pattern whereas point cloud has an irregular data representation, e.g.,
close objects have higher point density than far away objects. Therefore, modern
LiDAR object detectors use PointNet [31] to transform the point cloud of the
scene into high-level features that are then processed using a CNN. PointNet uses
max pooling and multi-layer perceptron to encode point clouds. VoxelNet [32]
divided the 3D scene into voxels and used voxel feature extraction (VFE) layer
to encode the features of the point cloud in each voxel using a point net. The
encoded representation of the scene was then processed using a 3D CNN to detect
objects. While Voxelnet had high accuracy, it had high computational complexity.
PointPillars [33] proposed to divide the scene into 3D pillars instead, which allowed

Machine Learning Components for Autonomous Navigation Systems 207

Table 1 Performance comparison of LiDAR Object detectors evaluated on the KITTI Dataset [2].
Evaluation metric is Average Precision (AP). Easy, Moderate, Hard represent the occlusion level
of the objects

Name Easy Moderate Hard

VeloFCN 40.14 32.08 30.47

MV3D 86.18 77.32 76.33

VoxelNet 89.6 84.81 78.57

PointPillars 88.35 86.1 79.83

Table 2 Performance
comparison of different
RGB–RADAR fusion-based
object detectors in the
nuScenes Dataset [4]

Name AP

RRPN 43

BiraNet 72.3

RADAR-guided visual attention 69

the encoded feature map to be processed using a 2D CNN. This architecture reduced
the computational complexity significantly and allowed the object detection to run at
real-time speed in an NVidia 1080 GPU. Table 1 shows the performance of different
LiDAR object detectors evaluated on the KITTI dataset.

3.3 RADAR Object Detection

The RADAR sensor data represents the depth and velocity information of objects.
It is more resilient to sources of interference such as sunlight, fog, and rain that
adversely affect the RGB and LiDAR sensors. The raw sensor reading from a
RADAR is noisy, and therefore, most RADARs pre-process the sensed data before
outputting to the compute engine. But the post-processing step considerably reduces
the resolution of the output [34]. This makes it difficult to use machine learning
algorithms such as CNNs to process the data as such techniques are not ideal for
processing low-dimensional data. Instead, prior works have used RADAR data to
augment RGB object detection by using the moving object points from RADAR
point cloud to guide the object proposal in the RPN module of a Faster-RCNN RGB
object detector [35]. BiraNet projects RADAR points to image plane and extracts the
features using a ResNet CNN backbone. The extracted RADAR features are fused
with RGB feature maps for object detection. The RADAR-Guided Dynamic Visual
Attention [36] uses an RGB network to first generate RoIs and then uses fused
RGB–RADAR features of each RoI using a secondary detector for object detection.
This reduces complexity of the network compared to BiraNet [37]. Table 2 shows
the performance of different RGB–RADAR fusion-based object detectors. Lately,
RADAR object detectors have been proposed that operate on the raw RADAR
sensor data [38]. While the data is noisy, but the high dimensionality makes it ideal
for using CNNs for object detection (Table 3).

208 K. Samal and M. Wolf

Table 3 Performance
comparison of RGB–LiDAR
object detectors evaluated on
the KITTI Dataset [2].
Evaluation metric is average
precision (AP)

Name Easy Moderate Hard

MV3D 74.97 63.63 54

AVOD-FPN 76.39 66.47 60.23

FrustumNet 82.19 69.79 60.59

SEG-VoxelNet 86.04 76.13 70.76

VPFNet 88.51 80.97 76.74

3.4 Multi-Modal Object Detection

Multi-modal object detectors use the data collected from multiple sensors operating
in different modalities to detect objects [39]. MV3D [40] was one of the first
DNN-based RGB–LiDAR-based multi-modal object detectors; it used three feature
extraction pipelines one for RGB and two for LiDAR BEV and front view. The
LiDAR BEV pipeline was used for creating regions-of-interest (RoIs) that were
used to extract features from the LiDAR front view and the RGB pipelines for object
localization and classification. AVOD [41] simplified the architecture by using 3D
anchors similar to single-shot RGB detectors to directly regress object locations
from LiDAR BEV map and RGB images. This allowed AVOD to run in real-time
speed (25 fps) in an NVidia 1080 GPU. FrustumNet [42] and F-Convnet [43] used
two-stage RGB object detectors to create object proposals in 2D and then projected
the 2D bounding boxes on the LiDAR front view map to extract point clouds from
the frustum. The extracted frustum was processed using a point net to regress the 3D
location of the object. Similarly, SEG-Voxelnet [44] improved the two-stage RGB–
LiDAR fusion by using a segmentation network to extract pixel segments from RGB
images and then using an improved VoxelNet to extract voxel features from the
aligned LiDAR point cloud to regress the 3D location of the objects. Alternatively,
VPFNet [45] uses stereo images and LiDAR point cloud to create a dense LiDAR
point cloud that is then used for 3D object detection. This architecture is simpler
compared to other two track architectures, which leads to low inference latency
while maintaining good accuracy.

RGB images capture semantic information of the scene, whereas LiDAR point
clouds capture the 3D structure. Therefore, most fusion techniques discussed
above try to improve the accuracy of 3D object detection by complementing the
LiDAR with semantic RGB information. But these techniques ignore the fact that
different modalities can also provide complementary information under different
environmental conditions. For example, Infra Red (IR) and LiDAR sensors are
better at detecting objects in low light conditions whereas RGB sensors are not.
In recent times, there have been some machine-learning-based complementary
fusion techniques for multi-spectral data. Guan et al. [46] proposed a two-pipeline
network to process RGB and IR data independently and an illumination-aware
fully connected network (IFCN) to decide the corresponding weights for fusing the
information from the two pipelines. Similarly, Valada et al. [47] and Mees et al. [48]

Machine Learning Components for Autonomous Navigation Systems 209

train a gating network to dynamically adjust the weights for fusion of features
extracted from different modalities such as RGB, depth, etc. Such techniques allow
the fusion process to adapt to different scenarios.

3.5 Perception-Driven Sensing

The sensor suite of autonomous vehicles has many sensors to sense all the
information present in the real world [3, 4]. In some AV systems, sensors of the
same modality but with a different sensitivity are deployed to add both precision and
redundancy of sensing [3]. For example, in order to get .360◦ view, multiple RGB
cameras can be installed each covering a different section of the scene. Similarly,
multiple LiDAR sensors can be installed with each LiDAR having high precision
in detecting objects located at different ranges. Such sensor suites have very high
energy consumption that limits the mission capability of the system. Furthermore,
the high data transfer rate between the sensing and compute engine can cause
bandwidth bottleneck that has adverse effect on the reaction time of the system [53].
Therefore, several recent works have proposed creating a feedback from perception
to sensing module to control the sensor activation and data transfer. The hysteresis
of such systems is based on the state of the perception module and is designed to
maximize the utility of the sensor parameters to the end task. The sensor parameters
that can be controlled include sensor modality, pixel depth, resolution, etc (Table 4).

Figure 7 shows the meta-architecture of the prior works on closed-loop sensor
control. Saha et al. [50] proposed an RGB–IR modality control scheme where RGB
is considered the primary/default modality and IR is the secondary modality. An
RGB–IR mixed modality object detector is used to detect objects, and the regions
where objects are detected are considered RoIs. The modality of the non-RoI regions
is switched in the subsequent frames. This process is repeated every frame to create
mixed modality images. Mudassar et al. [59] presented the CAMEL adaptive camera
system that consists of a 3D stacked visual-IR image sensor with per pixel control.
The digital pixel control circuit consists of a light-weight DNN accelerator to run
a high-level semantic task. It is used to generate the control signal to control pixel
modality (RGB or IR) and spatial and temporal resolution. Mukherjee et al. [60]
extended the work by designing a sensor capable of dynamically varying the pixel
depth of RoIs based on an external control signal. While the above methods used

Table 4 Performance
comparison of different
RGB–IR modality control
techniques evaluated on the
CAMEL dataset [49]

Name AP Bandwidth

RGB-only [49] 22.3 61.9

RGB–IR [50] 23.3 52.8

Uncertainty-FP [51] 23.4 53.2

Uncertainty-FN [49] 22.3 53.3

Hybrid [49] 24.4 53.2

210 K. Samal and M. Wolf

Fig. 7 Perception feedback-driven sensor control. Parameters of sensor control include RGB–IR
or RGB–LiDAR multi-modal sensor activation, pixel depth and resolution of RGB sensor, and
a sampling rate of LiDAR sensor. The cues used to generate the feedback signal include object
detection and tracking

Table 5 Tracking evaluations based on CLEAR MOT metrics from Samal et al. [56]

Name Rcll.↑ Prcn.↑ GT MT ML FP.↓ FN.↓ IDs.↓ MOTA. ↑
RGB-only 72.4 96.0 239 99 16 420 3828 233 67.7

LiDAR-only 77.8 91.5 239 140 15 999 3081 176 69.3

Baseline 83.6 90.2 239 160 7 1269 2276 226 72.9
mmMOT [55]* 81.2 86.6 239 165 12 1742 2607 486 65.2

Proposed 81.9 91.9 239 146 6 1004 2521 318 72.3
* includes FN and TP ignored in KITTI test server [54] and mmMOT [55] evaluation, such as

objects of small heights. Rcll=Recall, Prcn=Precision, GT =The number of ground truth tracks,
MT =Mostly tracked tracks, ML=Mostly lost tracks, FP =False positives, FN=False negatives,
IDs=Track ID switches, MOT A=Multiple object tracking accuracy

the success of a task, object detection in these cases, to drive the feedback control,
but ideally sensor parameters should change according to task failure, for example,
IR should be turned on where RGB detection fails. While detecting task failure is a
non-trivial task, there have been some prior works that address this issue. Samal et
al. [56] proposed a LiDAR sampling strategy in an RGB–LiDAR sensor suite. They
used object tracking to detect the regions in the image where there was a temporal
inconsistency in object detections from a DNN. Such regions were considered RoIs,
and the LiDAR was activated in these regions only. This strategy reduced the overall
energy consumption of the entire system. Table 5 shows the performance of the
LiDAR sampling strategy compared with methods that used either RGB or both
RGB and LiDAR sensors at maximum fidelity. Lee et al. [61] trained a light-
weight DNN called Warning Net to predict potential perception task failure. This
warning was used to control sensor resolution and operating voltage in the readout
integrated circuit (ROIC) of an RGB sensor. This strategy improved the accuracy of
perception tasks under noisy conditions. Mudassar et al. [51] used the uncertainty
associated with the prediction from an object detection DNN to switch modality
between RGB and IR. This improved the accuracy of object detection in difficult
visible conditions. The idea was also extended to integrate temporal uncertainty for

Machine Learning Components for Autonomous Navigation Systems 211

Fig. 8 FN Detection Pipeline [58]. Spatial inconsistency was estimated using tiling and a
low complexity detector. Temporal inconsistency was estimated using object tracking from a
SORT [57] tracker. Spatial and temporal inconsistencies were concatenated to estimate overall
False Negatives

action detection [49]. Table 4 shows the performance of different RGB–IR modality
control techniques evaluated on the CAMEL dataset [52].

Samal et al. [58] addressed the perception failure issue directly by creating an
false negative (FN) detector, shown in Fig. 8, that used a light-weight secondary
object detector and image tiling in addition to temporal inconsistency [56] to detect
FNs or perception failures corresponding to the primary object detector. The FNs
were considered RoIs that were used to create feedback signal to control sensor
parameters such as pixel depth and resolution in an RGB sensor. They created an
introspective closed-loop perception system that estimates the perception risk of the
RoIs to quantify the possibility of perception failure in such regions and a risk-
resource control to drive the sensor control feedback. The closed-loop perception
system has less energy consumption than an open-loop system and less marginal
cost of prediction than prior active sensor control systems. Figure 9 shows the object
detection recall and energy utilization comparison between different closed-loop
RGB sensor control systems for different kinds of scenarios.

3.6 Adaptive Computational Load Control

An autonomous CPS system operating in the real world needs to react to the chang-
ing dynamics of the scene such as perceptual complexity, power consumption mode,
etc. Also, the operating system controlling the system has to perform several tasks
outside the autonomy pipeline such as telemetry, networking, memory management,
etc. Therefore, it is imperative for the computational load of the autonomy pipeline
to be flexible. Since the perception DNN is the most computationally expensive
module within the pipeline, the compute graph of the DNN must be dynamic.
While there have been several hardware and software techniques to reduce the
computational load of the DNNs [62], there are few works that propose dynamically
changing the computational load of the DNNs during runtime [63].

212 K. Samal and M. Wolf

Fig. 9 Recall-resource comparison [58] of closed-loop systems on 5 sequences with different
scenarios from the BDD dataset [14]. Here Baseline is from [59], and both . Bang − Bang

and PID are from [58]. The number on top of a bar represents the corresponding total energy
consumption (normalized)

Prior works on dynamic compute control utilize the concept of conditional
computation [65] to conditionally deactivate sections of the DNN to reduce
the computational load in runtime. Such works include conditionally skipping
computation of certain layers [66–68] or channels within the intermediate layers
of the network [69–72]. Other works have changed the network architecture to
enable early exit [73, 74], i.e., dynamically changing the depth of the network and
creating multiple branches within the network each with different computational
complexities, and the branch that is executed is determined in runtime [75–77].
There have also been works that use attention to invest the more computational
resource to process high-saliency regions compared to the rest [78–81]. But in all
the above works, the computational load is conditional on the input rather than an
external control signal.

In order to address this issue, Samal et al. [64] proposed a closed-loop perception
framework to control the computational load of a DNN-based object detector in
an autonomous system according to the end task such as motion planning. The
distance-based activation pruning [82], shown in Fig. 10, removes the pixels of
the image that are located farther than a particular depth-of-interest (DoI). This
operation increases the sparsity within the network activations leading to reduction
of computational load in a sparsity-aware DNN accelerator. Similarly, the direction-
based activation suppression [64], shown in Fig. 10, uses the direction of motion
planning to “suppress” the activations corresponding to pixels outside the region-of-
interest (RoI). Table 6 shows the comparison between the both activation pruning
and activation suppression w.r.t the open-loop system without compute control.
While in both works the DNN computations can be modulated according to an

Machine Learning Components for Autonomous Navigation Systems 213

Fig. 10 Distance-driven compute control. Pixels that are located farther away from the sensor are
removed

Table 6 Performance comparison of different computation control strategies from [64]. Time
steps, avg. speed, and avg. obs. represent the motion planning results from a simulation and energy
represents the avg. per frame energy consumption

Name Time steps Avg. Speed (m/s) Avg. Obs. Energy (J)

Open Loop 42 2.07 5.12 0.17

Activation Pruning 43 1.97 2.76 0.12

Activation Suppression 44 1.96 4.06 0.12

Fig. 11 Direction-driven compute control. Neuron activations in early layers of the DNN corre-
sponding to regions not of interest are “suppressed.” Dominant objects outside of RoI are still
detected

external signal (DoI or RoI), they still do not take into account the dynamic system
requirements such as changes in power mode, operating frequency, task scheduling,
reaction time, etc (Fig. 11).

4 Odometery, Localization, and Mapping

In order to operate in the real world, an autonomous cyber-physical system needs to
build a map of the environment, localize its position in the map, and finally estimate
its motion at every instant. In some systems, the map is built prior to operation;
these maps are called HD maps [83]. But the HD maps may not be available for all
locations; therefore, many systems build the map online. Since the online mapping
depends on the location and pose estimation of the system, simultaneous localization
and mapping (SLAM) algorithms have been developed to estimate localization and
create 3D map of the world simultaneously in real time. Furthermore, accurate
localization requires an estimation of the odometry as well. Traditional algorithms

214 K. Samal and M. Wolf

used sensors such as GPS and IMU for odometry and localization and LiDAR for
mapping. But GPS signals have low precision, and IMU sensors suffer from sensor
drift that can result in erroneous localization.

4.1 LiDAR Odometry and Mapping

The LiDAR point clouds scanned at any time step are used for registration either
by calculating correspondence with previous scans or with an intermittent map
that is created online [84]. By minimizing the error during this registration, using
algorithms such as iterative closest point (ICP), an estimation of the motion can be
derived. Also this registration process can also be used to eliminate erroneous points
from the map. But the ICP algorithm is computationally expensive, which increases
with the number of points in the point cloud. Therefore, Suma++ uses a DNN-
based semantic segmentation network to detect and remove points corresponding to
moving objects. This process reduces the complexity of the ICP.

Many cyber-physical systems, such as low-power drones, do not have LiDAR
sensors. Therefore, vision-based odometry and SLAM techniques have been devel-
oped that can estimate motion, position, and map directly from RGB images. Such
techniques are called visual odometry (VO) and visual simultaneous localization
and mapping (VSLAM). While traditional feature-based algorithms such as ORB-
SLAM [85] have shown decent performance, they do not generalize well across
diverse scenarios and require manual parameter optimization that is not ideal for
an autonomous system operating in the wild. In recent times, deep-learning-based
techniques have been proposed to replace the traditional feature-based VO and
VSLAM techniques. Deepvo [86] uses a convolutional neural network (CNN)
followed by a recurrent neural network (RNN) to estimate the pose of the system
from a sequence of images. The CNN takes two images captured at consecutive
time frames as input. This CNN architecture is similar to Flownet [87, 88] that is
used to estimate optical flow from monocular images. The long short-term memory
(LSTM)-based RNN is used to model the temporal dynamics from sequential data.
The network is trained in a supervised setting where the prediction of the network is
interpreted as a probabilistic inference and the loss is created from the mean square
error (MSE) between the predicted pose and ground truth at every time step. The
following equation describes the training process:

.θopt = argmin
θ

MSE(p(Ŷt |X1:t , θ), Yt). (1)

Here, .θopt represent the optimal network parameters; . Yt and . Xt represent the output
pose of the network and a pair of monocular images at time t . Similarly, other
methods have been developed that treat pose estimation as a supervised regression
problem [89, 90]. Some of these methods also add reprojection loss to augment the

Machine Learning Components for Autonomous Navigation Systems 215

Table 7 Performance comparison of different VSLAM, VO techniques evaluated on sequence 10
from the KITTI Odometry dataset from [93]

Name AT E .RPEtrans(%) . RPErot (deg/m)

ORB-SLAM [85] 19.94 8.65 3.62

LIFT-SLAM [93] 29.87 9.72 2.24

Deepvo [86] – 8.11 8.83

AT E represents the absolute trajectory error; .RPEtrans(%) and .RPErot (deg/m) represent the
relative pose error for translation and rotation, respectively. Refer to [92] for details

loss function [91]. Reprojection warps the current image according to current pose
estimation to retrieve the previous image.

While DNN-based VSLAM has shown better performance in many autonomous
driving datasets, it does not generalize well across datasets. Therefore, hybrid
VSLAM techniques merge DNN-based and traditional model-based algorithms.
LIFT-SLAM [93] uses a DNN-based orientation estimator similar to LIFT [94]
to estimate orientation from image patches. The estimated orientation is fine-
tuned according to orientation estimations from a model-based VSLAM algorithm
similar to ORB-SLAM [85]. The model-based algorithm operates on the key points
and descriptors extracted by the LIFT algorithm to estimate drift and correct the
original estimations. Table 7 shows the performance of different VSLAM and VO
techniques.

4.2 Unsupervised VSLAM and VO

Mapping, localization, and odometry can also be interpreted as an unsupervised
or self-supervised problem [95–97]. Such techniques use DNNs to estimate pose,
motion, and/or depth from RGB images and then transform the RGB image
according to the estimation and compare the transformed image with actual image
to estimate accuracy of the estimation. Figure 12 shows a high-level overview of
such techniques. Table 8 shows the performance of unsupervised SLAM techniques.
While some techniques simultaneously predict both structure of the world and self-
motion, others use sensors such as LiDAR, IMU, etc., to estimate one or the other.
In either setting, the estimation of either structure, motion, or both can be validated
using several photometric, geometric, and temporal consistencies. Photometric
consistency uses motion and/or depth estimation to warp the RGB pixels to create
the previous image and pixel-wise error, structural similarity metric (SSIM), etc.,
to evaluate the accuracy of the estimations. Alternatively, it can also be used to
estimate accuracy of optical flow [88] or depth estimations [98, 99] from stereo
images. Similarly, ICP algorithm can be used to calculate the relative transformation
(. Tft) between two consecutive depth maps .dmt−1 and .dmt estimated from RGB
images .rgbt−1 and .rgbt , respectively. This transformation vector can be used to
transform the pixels in the RGB image .rgbt−1 to create warped/estimated RGB

216 K. Samal and M. Wolf

Fig. 12 High-level architecture of VSLAM/VO

Table 8 Performance comparison of different unsupervised SLAM techniques on sequence 10
from the KITTI odometry dataset. Evaluation metric is ATE average per frame

Name ATE/frame

ORB-SLAM [85] 0.012

Zhou et al. [95] 0.020

Mahjourian et al. [96] 0.012

image . ˆrgbt = Tf (rgbt−1). The difference between pixel values of . ˆrgbt and . rgbt

can be considered an indirect estimation of the depth map estimations. Similar
consistency losses can be calculated for pose and motion estimations. Finally, the
consistency losses are used to train the DNNs responsible for the corresponding
estimations using backpropagation.

5 Planning

According to end goal and system configuration, planning in autonomous cyber-
physical systems can be divided into many forms such as inverse kinematics, path
planning, trajectory planning, etc. Inverse kinematic planning algorithms are used to
break down high-level commands such as manipulation of an object into low-level
motion commands such as moving the joints in the arm of an industrial robot. Path
planning is used in autonomous mobile systems [83], such as AVs, to do long-term
planning for, e.g., generating the route from an origin point to an end point, and this
route is also known as global waypoints. Trajectory planning is short-term planning
that takes the global waypoints, current kinematics, and system constraints into
consideration to generate actuation commands such as steering angle, acceleration,
etc., in an autonomous mobile system. The most commonly used path planning
algorithm such as Djikstra’s and A* [100] and trajectory planning algorithms such
as Frenet Frame [101] and Spatio-temporal lattice [102] do not require large-scale
training. But recently reinforcement learning algorithms have been proposed to
do both path and trajectory planning [103]. Performing both path and trajectory
planning is also known as motion planning.

Machine Learning Components for Autonomous Navigation Systems 217

Fig. 13 High-level overview
of RL-based motion planning
algorithms. The objective of
RL algorithms is to learn an
optimal action policy
(π(state))

5.1 Overview of Reinforcement Learning Algorithms

Reinforcement learning algorithms are typically used for motion planning. They
learn to predict the ideal motion commands by training on simulation data. Training
on real world is not feasible as stochastic actuation of a movable system in the real
world for training and exploration can be risky to the environment and also lead to
physical damage to the system. Once the RL is learnt in the simulator, it is fine-tuned
on real-world scenarios. The reinforcement learning algorithms interpret the motion
planning of the system as a Markov decision process (MDP) where the state of the
environment is the state of the MDP and the transition between states is performed
by taking an action or actuation command [103, 104]. Figure 13 shows the overview
of RL. The action at time t is dependent on the state (.statet) and is sampled from
the action policy . πQ. The objective of RL is to learn an action policy that has the
highest return. The return can be divided into short-term reward R and expected
long-term value V . Similarly, Q-value is the long-term value V calculated at a state
s and action a using the Q-function .Q(s, a).

There are many kinds of RL algorithms depending on type of transition function,
continuity of action, and state space, etc. Model-based RL algorithms learn the
transition probability .T (st+1|st , at) that represents the probability of entering into
state .st+1 from . st by taking action . at . But since this requires a complete knowledge
of process and environment dynamics, such algorithms are not ideal for real-world
operations. On the other hand, model-free RL algorithms learn and update their
knowledge using trial and error. Similarly, RL algorithms can be classified into
on-policy or off-policy algorithms depending on how the Q-function is learnt.
On-policy RL algorithms such as state–action–reward–state–action (SARSA) and
temporal difference (TD) calculate the Q-value using the current policy only. This
leads to a deterministic behavior. On the other hand, off-policy RL algorithms can
estimate Q-value with policies that are different from the one that is followed to take
actions, and this introduces non-determinism while estimating the action at a state.
Therefore, off-policy RL algorithms such as Q-learning are great for exploring the
action and state space.

Traditional RL algorithms such as Q-learning and SARSA maintain a table for
policy that converts state into action. This table consists of all possible states in one
dimension and the expected return of all actions in the other dimension. This table is
learned according to the learning policy such as Bellman’s equation that maximizes

218 K. Samal and M. Wolf

the return. But such algorithms cannot generalize to unseen states. Therefore, deep
Q-networks (DQNs) were developed that use a neural network to estimate the Q-
function from training data. It requires two networks namely the target network and
the Q-network. The Q-network is used to predict the action in a training episode,
and the target network is used to generate the target Q-value and to generate the
loss. The loss equation is shown in Eq. (3). This loss is backpropagated through the
neural network to adjust the weights of the network using gradient descent.

. yt = rt + γ max
a

Q(st , at , θ
−)

Loss = Lf (yt − Q(st , at , θ). (2)

Here, . yt is the output of the Q-network, . rt is the short-term reward, and Q is the
Q-value from the target network at time t . . γ is the discount factor, and .Lf is the
loss function such as mean square error. The discount factor (.0 ≤ γ ≤ 1) is used to
control the time horizon of an RL algorithm. Low discount factor leads to myopic
learning as the algorithm gives high priority to short-term rather than long-term
returns. Once the Q-network is trained on a predetermined number of episodes, the
weights of the Q-network and the target network are swapped. Such reinforcement
learning algorithms that use deep neural networks are called deep reinforcement
learning (DRL).

Alternatively, actor–critic RL algorithms, such as A2C and A3C, merge the
on-policy and off-policy/value-based learning. Figure 14 shows the framework of
such algorithms. The actor network learns a deterministic policy . πθ to convert the
state from the environment into action at every time step t , and the critic network
evaluates the policy of the actor network by calculating the value .V (s) of the action
and the time dilation (TD) error . δ. The TD error is used to update the actor network.

Fig. 14 Actor–critic RL
framework with TD error

Machine Learning Components for Autonomous Navigation Systems 219

Simultaneously, the TD error (. δ), shown in equation below, is also used by the critic
to adjust the value function.

.δ = rt+1 + γV (st+1) − V (st). (3)

Here, . rt and .V (st) are the reward and value for state s at .t = t . . γ is the discount
factor.

Most algorithms presented above require discrete state and action space. But
many robotic applications have continuous environmental state and action spaces
that if discretized with high precision can lead to exponential increase in memory
and computational complexity. Deep deterministic policy gradient (DDPG) [105]
on the other hand is ideal for continuous environments with a large continuous
action space. They are similar to DQN and actor–critic RL algorithms with certain
modifications such as adding stochasticity by introducing noise to the network
parameters and/or the predicted action.

5.2 Applications of Deep Reinforcement Learning Algorithms
for Planning

DRL techniques have been proposed for motion planning in both static and dynamic
environments [106]. Lei et al. [107] used a variant of DQN, called double DQN
(DDQN) [108], with CNNs for the Q-networks to learn local path planning from
LiDAR scans in a simulated environment. Ohnishi et al. [109] used a constrained
DQN to learn robot navigation in a simulated environment. A constrained DQN
dynamically decides the frequency of swapping of weights between the Q-network
and the target network to reduce the number of training samples required. DRL
algorithms have also been extended to power systems control. Zhang et al. proposed
a DQN to control dynamic voltage and frequency scaling (DVFS) in an edge device.
Similarly, Yan et al. [110] used DRL methods to learn load frequency control (LFC)
in power systems for renewable energy sources. Such techniques are trained offline
and typically extract features in an unsupervised manner using autoencoders.

DRL algorithms have been proposed for active SLAM where an autonomous
CPS system creates the map of an unseen environment and navigates it simultane-
ously. Such algorithms leverage the knowledge of the map of the environment to
learn navigation. Botteghi et al. [111] augmented the reward function of a DDPG
algorithm to make it map-aware. This led to substantial reduction in collisions
and faster convergence. Wen et al. [112] proposed to use Q-learning to learn
path planning in a SLAM environment that is created using traditional EKF-
SLAM framework from a LiDAR sensor. Later, the work was extended by using
a convolutional residual network to predict depth from monocular images and a
dueling architecture-based DDQN (D3QN) to plan a path to avoid collision with
obstacles [113]. This algorithm was trained in a simulator and eventually transferred

220 K. Samal and M. Wolf

to a robot operating in a controlled real-world scenario. This work was extended
to create a two-track robot navigation and obstacle avoidance algorithm [114]. By
default, the system navigates the environment using FastSLAM [115], and once
an obstacle is detected, D3QN is used to plan a path to avoid the obstacle. A fully
convolutional residual network (FCRN) was used to convert RGB images into depth
images for mapping and obstacle detection.

Some of the major drawbacks of RL-based planners in general are the lack
of determinism and generalization to unseen scenarios, difficulty in tuning the
reward function that affects both convergence and optimality and requirement of
a large amount of training data. Inverse reinforcement learning (IRL) uses RL
to learn from human subjects [116]. Such algorithms address the handcrafting of
cost/reward functions by using a neural network to directly map sensor readings
to reward map [117]. Recently, these algorithms were extended to DRL paradigm
to create deep inverse reinforcement learning (DIRL) algorithms [118]. Typically,
such algorithms use the maximum entropy criteria to select the ideal decision
from a distribution of sub-optimal decisions collected by observing human sub-
jects. Wulfmeier et al. [119] proposed a DIRL to learn motion planning from a
large-scale driving dataset. Rosbach et al. [120] integrated DIRL with a model
predictive control (MPC)-based planner to create a behavior-aware motion planner
for autonomous driving. Furthermore, DIRL algorithms have also been extended to
prediction tasks such as off-road vehicle motion and pedestrian trajectory prediction
by incorporating additional task-specific features such as kinematics and social
affinity maps, respectively.

While DIRL addresses the handcrafting of reward function issue of RL, it does
not address the safety issue that results from a lack of generalizability to unseen
scenarios. It should be noted that high-risk scenarios that can lead to an accident
are difficult to capture in a dataset, and therefore, algorithms that learn directly
from data may not make the optimal decisions in such scenarios. Therefore, Cao
et al. [121] proposed a hierarchical RL plus IL algorithm for driving in high
risk near accident-driving scenarios. This algorithm uses IL for low-level driving
policy decision and RL for high-level driving mode decision. RL algorithms are
typically trained in simulation environment, but transferring these learned networks
to real world is non-trivial due to shift in data distribution. To address such issues,
constrained proximal policy optimization [122] techniques have been proposed
that add constraints during the RL formulation and training. Constraints enforced
can be kinematic constraints to emulate practical robot mechanics, environmental
constraints to emulate the physical constraints of the real world, etc.

6 End-to-End Learning Systems

The meta-architecture of the autonomous cyber-physical systems shown in Fig. 2 is
common for most open-source autonomous vehicle and drone control software. This
modular structure allows independent development and diagnosis that is critical of

Machine Learning Components for Autonomous Navigation Systems 221

Fig. 15 High-level architecture of an end-to-end learning system for AV. During test time, the
actuation signals are generated directly from the DNN

safe operation of systems operating in the wild. But lately with the success of DNNs
and availability of powerful embedded platforms, a new category of algorithms
have been proposed that replace the various modules in the information processing
pipeline with a single DNN [123]. A high-level architecture of an end-to-end self-
driving control system is shown in Fig. 15. The primary motivation of this line of
thought is the superiority of DNN for low-level feature extraction over hand-crafted
feature design for perception tasks. The input of end-to-end learning systems is the
raw sensor data, such as images from an RGB camera, and the output is the actuation
commands such as steering and acceleration commands. These systems are trained
on large volumes of training data from diverse conditions. The supervisory signal
for training is provided by human drivers. This is similar to imitation learning and
can be formulated as the equation below [124].

.argmin
θ

∑

i

�(F (obsi, θ), acti). (4)

Here, . θ represents the parameters of the network, .obsi and .acti are sensor observa-
tions from a scene i and corresponding actions taken by the human supervisor, F
represents the neural network, and . � represents the loss function used to train the
network.

The first work on end-to-end learning system was ALVINN [125] in 1989. It
used a fully connected neural network with a single hidden layer to predict the
steering command from sensor data. The input layer had three channels or “retina,”
one for a .8 × 32 range finder image, second for the blue channel of a . 30 × 32
RGB image, and third for a road intensity feedback unit that represented the relative
change in intensity between frames. This light-weight neural network was trained
to follow lanes in off-roads and was able to drive a vehicle across a 400 meters in
a wooded road at a speed of .0.5 m/s. Subsequently, in 2004, DARPA Autonomous
Vehicle (DAVE) [126] project implemented an end-to-end learning system to drive
an off-road vehicle through a junk filled alleyway. The input of DAVE was two
RGB cameras placed in the right and left sides of the car. The training data for
this system was collected by observing the images from RGB cameras and steering
commands from CAN bus while manually driving the RC car through several off-
road environments. Muller et al. [127] improved upon ALVINN by replacing the

222 K. Samal and M. Wolf

fully connected neural network with a 6-layer convolutional neural network (CNN)
that was trained on obstacle avoidance rather than road following and used stereo
RGB cameras rather than low-resolution RGB and range finder. This system could
drive itself at a maximum speed of .2 m/s. The above works laid the ground work
and showed the feasibility of an end-to-end learning system. But these systems were
not tested on public roads where they have to avoid many dynamic obstacles while
obeying numerous traffic laws.

Recently, inspired by the success of CNNs in solving perception tasks such as
image classification, object detection etc., Bojarski et al. [128] proposed a CNN-
based end-to-end learning system with 9 layers—1 input normalization layer, 7
convolutional layers, and 2 fully connected layers. The output of the system is the
steering angle. The system was trained on roughly 72 h of human driving data
collected from cars equipped with three cameras placed on the front left, front
center, and front right sides of the car. The system could operate at 30 fps on an
NVidia Self-drive PX [129] system. But his system was trained to follow road lanes
and was not capable of making complex maneuvers such as lane change, etc. A
major limitation of such systems is the lack of controllability by external agents such
as a human driver or a behavior planning module. Therefore, Codevilla et al. [124]
proposed a conditional end-to-end learning system that is trained with external
commands as an additional input, operating as a switch to activate different parts of
the network, such that the overall system learns how to respect external commands
during inference. But this does not take the planning module into account; therefore,
Gao et al. [130] proposed a two-stage end-to-end learning system with path planner
at high-level issuing “intention” commands to a DNN-based motion planner at the
low level that can respect the intentions. The intentions can be in the form of explicit
directional commands such as forward, backward, etc., or they can be in image-
like form such as occupancy grid, floor maps, etc. A major drawback of imitation
learning is the lack of ability for long-term planning as the learning is carried out on
low-level decisions from the human supervisor, and therefore, the system is ignorant
of the high-level “motivation” and the uncertainty associated with the decisions.
Amini et al. [131] proposed a probabilistic end-to-end learning model that used
a Gaussian Mixture Model (GMM) for predicting steering angles with uncertainty.
They used noisy GPS signal as a prior for localization uncertainty from RGB images
such that the system could issue deterministic steering commands in the presence of
a map (Table 9).

The end-to-end learning-based ACPS systems discussed above sample training
samples from driving episodes assuming that the original distribution is independent
and identically distributed (IID). But real world is causal in nature, and the temporal
relationship between the samples cannot be captured using memory-less DNNs that
were discussed above. Therefore, recently end-to-end learning systems have been
proposed that use DRL instead of CNNs to learn the mapping from sensor data to
actuation signals. Sadeghi and Levine proposed CAD.

2RL [135] that used a fully
convolutional network (FCN) and Q-learning to convert RGB images into direction
of motion for navigating an autonomous drone while avoiding obstacles. The system
was trained on a simulator with randomized ray casting to create stochastic training

Machine Learning Components for Autonomous Navigation Systems 223

Table 9 Performance of different end-to-end learning systems on different autonomous driving
datasets from [133]

Dataset Model MAE in degree [SD]

Comma.ai [132] CNN+FCN [128] 2.54 [3.19]

CNN+LSTM 2.58 [3.44]

Kim and Canny [133] 2.44 [3.20]

HCE CNN+FCN [128] 1.27 [1.57]

CNN+LSTM 1.57 [2.27]

Kim and Canny [133] 1.20 [1.66]

Udacity [134] CNN+FCN [128] 4.12 [4.83]

CNN+LSTM 4.15 [4.93]

Kim and Canny [133] 4.19 [4.93]

MAE stands for mean absolute error measured in degrees and SD stands for the standard deviation
in the measured error

data that helped the learning system to generalize to real-world scenarios. Sallab et
al. [136] proposed an end-to-end learning system with 3 stages—CNN-based spatial
feature extraction stage, RNN/LSTM-based state estimation stage, and DRL-based
policy selection stage. This system was trained and tested for lane keeping in a car
racing simulator. Kendall et al. [137] proposed a DDPG-based DRL algorithm to
learn lane following in an end-to-end learning-based autonomous vehicle. Contrary
to prior works that required an expert/human response for each sample, the DRL
system in this work was trained on sparse supervisory signal. The system utilized the
distance travelled by the vehicle before safety driver had to intervene as the reward
criteria. DNNs are black box in nature due to a lack of insight into the reasoning
behind their predictions, and with end-to-end learning, the entire ACPS system
becomes similarly obfuscated. Kim and Canny [133] proposed a two-stage method
to determine the regions of the scene that have the most impact on the decision
of a CNN-based end-to-end learning system. The first stage consists of a visual
attention decoder for the CNN-based feature extraction module, and the second
stage takes the saliency map generated in the first stage and executes a causality
test by removing the pixels at different high salient regions to measure their impact
on the predicted decision.

7 Conclusion

Machine learning algorithms, especially deep neural networks, are used extensively
in modern cyber-physical systems to support autonomous operation. Due to an abun-
dance of training data and availability of powerful compute hardware, such algo-
rithms have achieved very high task accuracy compared to traditional algorithms,
and therefore, DNNs have permeated almost every module of the system stack from
low-level sensing to high-level planning. It can also be observed that while CNNs

224 K. Samal and M. Wolf

are better at filtering pertinent information from high-dimensional data in the early
processing layers, RL algorithms are better at high-level decision-making. This
architecture is not ideal as there is considerable correlation between sensory data
as well that cannot be captured by CNNs. Furthermore, the neural-network-based
machine learning algorithms today, while very accurate, are essentially black-box
entities that cannot explain their predictions. This has led to a schism among the
designers of ACPS systems with one section supporting replacement of the modular
architecture of the system with a single neural network due to design simplicity
and high accuracy. On the other hand, another section within the community is
skeptical of using such “black box” algorithms and prefers balkanizing their usage
to perception tasks such as object detection only. Since CPS systems are deployed
in real-world scenarios, it is paramount that the system should be able to explain
itself especially in the event of a failure. And while there are a number of works
on attribution, i.e., detecting input regions that are responsible for a particular
prediction, there is a lack of work on prediction failures and post-hoc diagnosis.
Therefore, a better understanding of a DNN is required for widespread adoption of
such algorithms in autonomous cyber-physical systems.

References

1. Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy,
A., Ando, T., Fujii, Y., Azumi, T.: Autoware on board: Enabling autonomous vehicles with
embedded systems. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), pp. 287–296 (2018)

2. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. J.
Robot. Res. 32, 1231–1237 (2013)

3. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y.,
Chai, Y., Caine, B., Vasudevan V.: Scalability in perception for autonomous driving: Waymo
open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2446–2454 (2020)

4. Caesar, H., Bankiti, V., Lang, A., Vora, S., Liong, V., Xu, Q., Krishnan, A., Pan, Y., Baldan,
G., Beijbom, O.: nuScenes: A multimodal dataset for autonomous driving. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631
(2020)

5. O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G., Krpalkova,
L., Riordan, D., Walsh, J.: Deep learning vs. traditional computer vision. In: Science and
Information Conference, pp. 128–144 (2019)

6. MIPI White Paper: Driving the Wires of Automotive. https://www.mipi.org/mipi-white-
paper-driving-wires-automotive

7. Boulahia, S., Amamra, A., Madi, M., Daikh, S.: Early, intermediate and late fusion strategies
for robust deep learning-based multimodal action recognition. Mach. Vis. Appl. 32, 1–18
(2021)

8. Yeong, D., Velasco-Hernandez, G., Barry, J., Walsh, J.: Sensor and sensor fusion technology
in autonomous vehicles: A review. Sensors 21, 2140 (2021)

9. Fayyad, J., Jaradat, M., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for autonomous
vehicle perception and localization: A review. Sensors, 20, 4220 (2020)

10. Cho, H., Seo, Y., Kumar, B., Rajkumar, R.: A multi-sensor fusion system for moving object
detection and tracking in urban driving environments. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1836–1843 (2014)

https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive
https://www.mipi.org/mipi-white-paper-driving-wires-automotive

Machine Learning Components for Autonomous Navigation Systems 225

11. Liang, P., Chondro, P., Wu, J., Lai, W., Sun, Y., Lai, Y., Chen, T.: Deep fusion of
heterogeneous sensor modalities for the advancements of ADAS to autonomous vehicles.
In: 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp.
1–4 (2018)

12. Shivakumar, S., Nguyen, T., Miller, I., Chen, S., Kumar, V., Taylor, C.: DFuseNet: Deep
fusion of RGB and sparse depth information for image guided dense depth completion. In:
2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 13–20 (2019)

13. Kim, J., Choi, J., Kim, Y., Koh, J., Chung, C., Choi, J.: Robust camera LiDAR sensor fusion
via deep gated information fusion network. In: 2018 IEEE Intelligent Vehicles Symposium
(IV), pp. 1620–1625 (2018)

14. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell, T.: BDD100K:
A diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection
with region proposal networks. Adv. Neural Inf. Proces. Syst. 28, 1137–1149 (2015). https://
ieeexplore.ieee.org/document/7485869

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time
Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779–788 (2016)

17. Redmon, J., Farhadi, A.: YOLOV3: An incremental improvement. ArXiv Preprint
ArXiv:1804.02767 (2018)

18. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: SSD: Single shot
multibox detector. In: European Conference on Computer Vision, pp. 21–37 (2016)

19. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end
object detection with transformers. In: European Conference on Computer Vision, pp. 213–
229 (2020)

20. Kim, C., Oghaz, M., Fajtl, J., Argyriou, V., Remagnino, P.: A comparison of embedded deep
learning methods for person detection. ArXiv Preprint ArXiv:1812.03451 (2018)

21. Wu, B., Iandola, F., Jin, P., Keutzer, K.: SqueezeDet: Unified, small, low power fully convolu-
tional neural networks for real-time object detection for autonomous driving. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–
137 (2017)

22. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. ArXiv Preprint
ArXiv:1602.07360 (2016)

23. Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision
applications. ArXiv Preprint ArXiv:1704.04861 (2017)

24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: Inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4510–4520 (2018)

25. Xiong, Y., Liu, H., Gupta, S., Akin, B., Bender, G., Wang, Y., Kindermans, P., Tan, M., Singh,
V., Chen, B.: MobileDets: Searching for object detection architectures for mobile accelerators.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3825–3834 (2021)

26. Bochkovskiy, A., Wang, C., Liao, H.: YOLOV4: Optimal speed and accuracy of object
detection. ArXiv Preprint ArXiv:2004.10934 (2020)

27. Al., G.: Ultralytics/yolov5: v6.0—YOLOv5n ‘Nano’ models, Roboflow integration, Ten-
sorFlow export, OpenCV DNN support. (Zenodo,2021,10). https://doi.org/10.5281/zenodo.
5563715

28. Kovács, B., Henriksen, A., Stets, J., Nalpantidis, L.: Object Detection on TPU Accelerated
Embedded Devices. Computer Vision Systems. 12899, 82–92 (2021). https://link.springer.
com/chapter/10.1007/978-3-030-87156-7_7#citeas

29. Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1513–1518 (2017)

https://ieeexplore.ieee.org/document/7485869
https://ieeexplore.ieee.org/document/7485869
https://ieeexplore.ieee.org/document/7485869
https://ieeexplore.ieee.org/document/7485869
https://ieeexplore.ieee.org/document/7485869
https://ieeexplore.ieee.org/document/7485869
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-87156-7_7#citeas

226 K. Samal and M. Wolf

30. Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and recognition of indoor scenes
from RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 564–571 (2013)

31. Qi, C., Su, H., Mo, K., Guibas, L.: PointNet: Deep learning on point sets for 3D classification
and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 652–660 (2017)

32. Zhou, Y., Tuzel, O.: VoxelNet: End-to-end learning for point cloud based 3D object detection.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4490–4499 (2018)

33. Lang, A., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: Fast encoders
for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

34. Schiementz, M.: Postprocessing architecture for an automotive RADAR network. Cuvillier
Verlag, Göttingen (2005)

35. Nabati, R., Qi, H.: RRPN: RADAR region proposal network for object detection in
autonomous vehicles. In: 2019 IEEE International Conference on Image Processing (ICIP),
pp. 3093–3097 (2019)

36. Kumawat, H., Mukhopadhyay, S.: RADAR Guided Dynamic Visual Attention for Resource-
Efficient RGB Object Detection. ArXiv Preprint ArXiv:2206.01772 (2022)

37. Yadav, R., Vierling, A., Berns, K.: RADAR + RGB attentive fusion for robust object detection
in autonomous vehicles. ArXiv Preprint ArXiv:2008.13642 (2020)

38. Major, B., Fontijne, D., Ansari, A., Teja Sukhavasi, R., Gowaikar, R., Hamilton, M., Lee,
S., Grzechnik, S., Subramanian, S.: Vehicle detection with automotive RADAR using deep
learning on Range-Azimuth-Doppler tensors. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pp. 0–0 (2019)

39. Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck,
W., Dietmayer, K.: Deep multi-modal object detection and semantic segmentation for
autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst.
22, 1341–1360 (2020)

40. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for
autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1907–1915 (2017)

41. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3D proposal generation and
object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1–8 (2018)

42. Qi, C., Liu, W., Wu, C., Su, H., Guibas, L.: Frustum PointNets for 3D object detection
from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 918–927 (2018)

43. Wang, Z., Jia, K.: Frustum ConvNet: Sliding frustums to aggregate local point-wise features
for amodal 3D object detection. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1742–1749 (2019)

44. Dou, J., Xue, J., Fang, J.: SEG-VoxelNet for 3D vehicle detection from RGB and LiDAR
data. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4362–4368
(2019)

45. Wang, C., Chen, H., Fu, L.: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object
Detection. ArXiv Preprint ArXiv:2111.00966 (2021)

46. Guan, D., Cao, Y., Yang, J., Cao, Y., Yang, M.: Fusion of multispectral data through
illumination-aware deep neural networks for pedestrian detection. Information Fusion. 50,
148–157 (2019)

47. Valada, A., Vertens, J., Dhall, A., Burgard, W.: AdapNet: Adaptive semantic segmentation in
adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4644–4651 (2017)

Machine Learning Components for Autonomous Navigation Systems 227

48. Mees, O., Eitel, A., Burgard, W.: Choosing smartly: Adaptive multimodal fusion for
object detection in changing environments. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 151–156 (2016)

49. Mudassar, B., Saha, P., Wolf, M., Mukhopadhyay, S.: A Task-Driven Feedback Imager with
Uncertainty Driven Hybrid Control. Sensors 21, 2610 (2021)

50. Saha, P., Mudassar, B., Mukhopadhyay, S.: Adaptive control of camera modality with deep
neural network-based feedback for efficient object tracking. In: 2018 15th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2018)

51. Mudassar, B., Saha, P., Mukhopadhyay, S.: Uncertainty characterization in active sensor
systems with DNN-based feedback control. In: 2020 IEEE SENSORS, pp. 1–4 (2020)

52. Gebhardt, E., Wolf, M.: Camel dataset for visual and thermal infrared multiple object
detection and tracking. In: 2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pp. 1–6 (2018)

53. Zhao, H., Zhang, Y., Meng, P., Shi, H., Li, L., Lou, T., Zhao, J.: Towards safety-aware
computing system design in autonomous vehicles. ArXiv Preprint ArXiv:1905.08453 (2019)

54. The KITTI Vision Benchmark Suite. http://www.cvlibs.net/datasets/kitti/eval_tracking.php.
Cited 17 July 2023

55. Zhang, W., Zhou, H., Sun, S., Wang, Z., Shi, J., Loy, C.: Robust multi-modality multi-object
tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp.
2365–2374 (2019)

56. Samal, K., Kumawat, H., Saha, P., Wolf, M., Mukhopadhyay, S.: Task-driven RGB-LiDAR
fusion for object tracking in resource-efficient autonomous system. IEEE Transactions on
Intelligent Vehicles 7(1), 102–112 (2021)

57. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In:
2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016)

58. Samal, K., Wolf, M., Mukhopadhyay, S.: Introspective Closed-Loop Perception for Energy-
efficient Sensors. In: 2021 17th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pp. 1–8 (2021)

59. Mudassar, B., Saha, P., Long, Y., Amir, M., Gebhardt, E., Na, T., Ko, J., Wolf, M.,
Mukhopadhyay, S.: CAMEL: An adaptive camera with embedded machine learning-based
sensor parameter control. IEEE J. Emerging Sel. Top. Circuits Syst. 9, 498–508 (2019)

60. Mukherjee, M., Mudassar, B., Lee, M., Mukhopadhyay, S.: Algorithm-circuit cross-layer
control for digital pixel image sensors. In: 2020 IEEE SENSORS, pp. 1–4 (2020)

61. Lee, M., Mudassar, B., Mukhopadhyay, S.: Adaptive Camera Platform Using Deep Learning-
Based Early Warning of Task Failures. IEEE Sensors J. 21, 13794–13804 (2021)

62. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for deep neural
network acceleration: A survey. Neurocomputing 461, 370–403 (2021)

63. Liu, D., Kong, H., Luo, X., Liu, W., Subramaniam, R.: Bringing AI to edge: From deep
learning’s perspective. Neurocomputing, 485, 297–320 (2022). https://www.sciencedirect.
com/science/article/pii/S0925231221016428

64. Samal, K., Wolf, M., Mukhopadhyay, S.: Closed-loop Approach to Perception in Autonomous
System. In: 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 463–468 (2021)

65. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic
neurons for conditional computation. ArXiv Preprint ArXiv:1308.3432 (2013)

66. Wang, X., Yu, F., Dou, Z., Darrell, T., Gonzalez, J.: SkipNet: Learning dynamic routing in
convolutional networks. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 409–424 (2018)

67. Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L., Grauman, K., Feris, R.: BlockDrop:
Dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8817–8826 (2018)

68. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 3–18 (2018)

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428
https://www.sciencedirect.com/science/article/pii/S0925231221016428

228 K. Samal and M. Wolf

69. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. Adv. Neural Inf. Proces. Syst., 30
(2017)

70. Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Xu, C. Dynamic channel pruning: Feature
boosting and suppression. ArXiv Preprint ArXiv:1810.05331 (2018)

71. Bejnordi, B., Blankevoort, T., Welling, M.: Batch-shaping for learning conditional channel
gated networks. ArXiv Preprint ArXiv:1907.06627 (2019)

72. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. ArXiv Preprint
ArXiv:1812.08928 (2018)

73. Bolukbasi, T., Wang, J., Dekel, O., Saligrama, V.: Adaptive neural networks for efficient
inference. In: International Conference on Machine Learning, pp. 527–536 (2017)

74. Teerapittayanon, S., McDanel, B., Kung, H.: BranchyNet: Fast inference via early exiting
from deep neural networks. In: 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 2464–2469 (2016)

75. Mullapudi, R., Mark, W., Shazeer, N., Fatahalian, K.: HydraNets: Specialized dynamic
architectures for efficient inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8080–8089 (2018)

76. Yang, B., Bender, G., Le, Q., Ngiam, J.: CondConv: Conditionally parameterized convolu-
tions for efficient inference. Adv. Neural Inf. Proces. Syst. 32, 1305–1316 (2019). https://
dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex

77. Liu, L., Deng, J.: Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs
by selective execution. Proceedings of the AAAI Conference on Artificial Intelligence 32(1),
3675–3682 (2018). https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex

78. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.:
Show, attend and tell: Neural image caption generation with visual attention. In: International
Conference on Machine Learning, pp. 2048–2057 (2015)

79. Ren, M., Pokrovsky, A., Yang, B., Urtasun, R.: SBNet: Sparse blocks network for fast infer-
ence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8711–8720 (2018)

80. Figurnov, M., Collins, M., Zhu, Y., Zhang, L., Huang, J., Vetrov, D., Salakhutdinov, R.:
Spatially adaptive computation time for residual networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1039–1048 (2017)

81. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.: Channel gating neural networks. Adv. Neu-
ral Inf. Proces. Syst. 32, 1884–1894 (2019). https://researchr.org/publication/HuaZSZS19-0/
bibtex

82. Samal, K., Wolf, M., Mukhopadhyay, S.: Attention-based activation pruning to reduce data
movement in real-time AI: A case-study on local motion planning in autonomous vehicles.
IEEE J. Emerging Sel. Top. Circuits Syst. 10, 306–319 (2020)

83. Raju, V., Gupta, V., Lomate, S.: Performance of Open Autonomous Vehicle Platforms:
Autoware and Apollo. In: 2019 IEEE 5th International Conference for Convergence in
Technology (I2CT), pp. 1–5 (2019)

84. Mendes, E., Koch, P., Lacroix, S.: ICP-based pose-graph SLAM In: 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 195–200 (2016)

85. Mur-Artal, R., Montiel, J., Tardós, J.: ORB-SLAM: A Versatile and Accurate Monocular
SLAM System. IEEE Trans. Robot. 31, 1147–1163 (2015)

86. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: Towards end-to-end visual odometry
with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2043–2050 (2017)

87. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt,
P., Cremers, D., Brox, T.: FlowNet: Learning optical flow with convolutional networks.
In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766
(2015)

88. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: Evolution
of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/nips/YangBLN19.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://dblp.org/rec/conf/aaai/LiuD18.html?view=bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex
https://researchr.org/publication/HuaZSZS19-0/bibtex

Machine Learning Components for Autonomous Navigation Systems 229

89. Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E.: Relative camera pose estimation using
convolutional neural networks. In: International Conference on Advanced Concepts for
Intelligent Vision Systems, pp. 675–687 (2017)

90. Parisotto, E., Singh Chaplot, D., Zhang, J., Salakhutdinov, R.: Global pose estimation with
an attention-based recurrent network. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 237–246 (2018)

91. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learn-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5974–5983 (2017)

92. Schubert, D., Goll, T., Demmel, N., Usenko, V., Stückler, J., Cremers, D.: The TUM
VI benchmark for evaluating visual-inertial odometry. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1680–1687 (2018)

93. Bruno, H., Colombini, E.: LIFT-SLAM: A deep-learning feature-based monocular visual
SLAM method. Neurocomputing 455, 97–110 (2021)

94. Yi, K., Trulls, E., Lepetit, V., Fua, P.: LIFT: Learned invariant feature transform. In: European
Conference on Computer Vision, pp. 467–483. Springer, Cham (2016)

95. Zou, Y., Luo, Z., Huang, J.: DF-Net: Unsupervised joint learning of depth and flow using
cross-task consistency. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 36–53 (2018)

96. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion
from monocular video using 3D geometric constraints. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)

97. Li, R., Wang, S., Long, Z., Gu, D.: UnDeepVO: Monocular visual odometry through
unsupervised deep learning. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7286–7291 (2018)

98. Godard, C., Mac Aodha, O., Brostow, G.: Unsupervised monocular depth estimation with left-
right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 270–279 (2017)

99. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.: Digging into self-supervised monocular
depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3828–3838 (2019)

100. Karur, K., Sharma, N., Dharmatti, C., Siegel, J.: A Survey of Path Planning Algorithms for
Mobile Robots. Vehicles. 3, 448–468 (2021)

101. Werling, M., Ziegler, J., Kammel, S., Thrun, S.: Optimal trajectory generation for dynamic
street scenarios in a Frenet frame. In: 2010 IEEE International Conference on Robotics and
Automation, pp. 987–993 (2010)

102. McNaughton, M., Urmson, C., Dolan, J., Lee, J.: Motion planning for autonomous driving
with a conformal spatiotemporal lattice. In: 2011 IEEE International Conference on Robotics
and Automation, pp. 4889–4895 (2011)

103. Kober, J., Bagnell, J., Peters, J.: Reinforcement learning in robotics: A survey. Int. J. Robot.
Res. 32, 1238–1274 (2013)

104. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, New York (2018)
105. Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.:

Continuous control with deep reinforcement learning. ArXiv Preprint ArXiv:1509.02971
(2015)

106. Yu, J., Su, Y., Liao, Y.: The path planning of mobile robot by neural networks and hierarchical
reinforcement learning. Front. Neurorobot., 14, 63 (2020)

107. Lei, X., Zhang, Z., Dong, P.: Dynamic path planning of unknown environ-
ment based on deep reinforcement learning. J. Robot. 2018, 1–10 (2018).
https://www.researchgate.net/publication/327750234_Dynamic_Path_Planning_of_
Unknown_Environment_Based_on_Deep_Reinforcement_Learning

108. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

 -92 53934 a -92 53934 a

https://www.researchgate.net/publication/327750234_Dynamic_Path_Planning_of_Unknown_Environment_Based_on_Deep_Reinforcement_Learning

230 K. Samal and M. Wolf

109. Ohnishi, S., Uchibe, E., Yamaguchi, Y., Nakanishi, K., Yasui, Y., Ishii, S.: Constrained deep
Q-learning gradually approaching ordinary Q-learning. Front. Neurorobot. 13, 103 (2019)

110. Yan, Z., Xu, Y.: Data-driven load frequency control for stochastic power systems: A deep
reinforcement learning method with continuous action search. IEEE Trans. Power Syst. 34,
1653–1656 (2018)

111. Botteghi, N., Sirmacek, B., Mustafa, K., Poel, M., Stramigioli, S.: On reward shaping
for mobile robot navigation: A reinforcement learning and SLAM based approach. ArXiv
Preprint ArXiv:2002.04109 (2020)

112. Wen, S., Chen, X., Ma, C., Lam, H., Hua, S.: The Q-learning obstacle avoidance algorithm
based on EKF-SLAM for NAO autonomous walking under unknown environments. Robot.
Auton. Syst. 72, 29–36 (2015)

113. Xie, L., Wang, S., Markham, A., Trigoni, N.: Towards monocular vision based obstacle
avoidance through deep reinforcement learning. ArXiv Preprint ArXiv:1706.09829 (2017)

114. Wen, S., Zhao, Y., Yuan, X., Wang, Z., Zhang, D., Manfredi, L.: Path planning for active
SLAM based on deep reinforcement learning under unknown environments. Intell. Serv.
Robot. 13, 263–272 (2020)

115. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the
simultaneous localization and mapping problem. AAAI/IAAI, 593598 (2002). https://dl.acm.
org/doi/10.5555/777092.777184

116. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforcement
learning. AAAI 8, 1433–1438 (2008)

117. Wulfmeier, M., Wang, D., Posner, I.: Watch this: Scalable cost-function learning for path
planning in urban environments. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2089–2095 (2016)

118. Wulfmeier, M., Ondruska, P., Posner, I.: Maximum entropy deep inverse reinforcement
learning. ArXiv Preprint ArXiv:1507.04888 (2015)

119. Wulfmeier, M., Rao, D., Wang, D., Ondruska, P., Posner, I.: Large-scale cost function learning
for path planning using deep inverse reinforcement learning. Int. J. Robot. Res. 36, 1073–1087
(2017)

120. Rosbach, S., James, V., Großjohann, S., Homoceanu, S., Roth, S.: Driving with style: Inverse
reinforcement learning in general-purpose planning for automated driving. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2658–2665 (2019)

121. Cao, Z., Bıyık, E., Wang, W., Raventos, A., Gaidon, A., Rosman, G., Sadigh, D.: Reinforce-
ment learning based control of imitative policies for near-accident driving. ArXiv Preprint
ArXiv:2007.00178 (2020)

122. Gangapurwala, S., Mitchell, A., Havoutis, I.: Guided constrained policy optimization for
dynamic quadrupedal robot locomotion. IEEE Robotics and Automation Letters 5, 3642–
3649 (2020)

123. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale
video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2174–2182 (2017)

124. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via
conditional imitation learning. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4693–4700 (2018)

125. Pomerleau, D.: ALVINN: An autonomous land vehicle in a neural network. Adv. Neural Inf.
Proces. Syst. 1, 305–313 (1988). https://dl.acm.org/doi/10.5555/89851.89891

126. Net-Scale Technologies, Inc.: Autonomous off-road vehicle control using end-to-end learn-
ing. Final technical report. http://net-scale.com/doc/net-scale-dave-report.pdf (2004)

127. Muller, U., Ben, J., Cosatto, E., Flepp, B., Cun, Y.: Off-road obstacle avoidance through end-
to-end learning. Adv. Neural Inf. Proces. Syst. 18, 739–746 (2005). https://dl.acm.org/doi/10.
5555/2976248.2976341

128. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.,
Monfort, M., Muller, U., Zhang, J.: End to end learning for self-driving cars. ArXiv Preprint
ArXiv:1604.07316 (2016)

https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/777092.777184
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
https://dl.acm.org/doi/10.5555/89851.89891
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341
https://dl.acm.org/doi/10.5555/2976248.2976341

Machine Learning Components for Autonomous Navigation Systems 231

129. NVIDIA DRIVE PX. https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-
cars/drive-px/ (2015)

130. Gao, W., Hsu, D., Lee, W., Shen, S., Subramanian, K.: Intention-Net: Integrating planning and
deep learning for goal-directed autonomous navigation. In: Conference on Robot Learning,
pp. 185–194 (2017)

131. Amini, A., Rosman, G., Karaman, S., Rus, D.: Variational end-to-end navigation and
localization. In: 2019 International Conference on Robotics and Automation (ICRA), pp.
8958–8964 (2019)

132. Comma.ai. Public driving dataset. https://github.com/commaai/research. Cited 17 July 2023
133. Kim, J., Canny, J.: Interpretable learning for self-driving cars by visualizing causal attention.

In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2942–2950
(2017)

134. The Udacity Dataset. https://github.com/udacity/self-driving-car. Cited 17 July 2023
135. Sadeghi, F., Levine, S.: CAD2RL: Real single-image flight without a single real image. ArXiv

Preprint ArXiv:1611.04201 (2016)
136. Sallab, A., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for

autonomous driving. Electronic Imaging 2017, 70–76 (2017)
137. Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J., Lam, V., Bewley, A., Shah, A.:

Learning to drive in a day. In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 8248–8254 (2019)

https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://www.nvidia.com/content/nvidiaGDC/zz/en_ZZ/self-driving-cars/drive-px/
https://github.com/commaai/research
https://github.com/commaai/research
https://github.com/commaai/research
https://github.com/commaai/research
https://github.com/commaai/research
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car

Machine Learning for Efficient
Perception in Automotive Cyber-Physical
Systems

Joydeep Dey and Sudeep Pasricha

1 Introduction

In 2021, it was reported that an estimated 31,730 people died in motor vehicle
traffic crashed in the United States, representing an estimated increase of about 12%
compared with 2020 [1]. By eliminating the possibility of human driving errors
through automation, advanced driver assistance systems (ADAS) are becoming a
critical component in modern vehicles, to help save lives, improve fuel efficiency,
and enhance driving comfort. ADAS systems typically involve a four-stage pipeline
involving sequential execution of functions related to perception, decision, control,
and actuation. An incorrect understanding of the environment by the perception
system can make the entire system prone to erroneous decision making, which can
result in accidents due to imprecise real-time control and actuation. This motivates
the need for a reliable perception architecture that can mitigate errors at the source
of the pipeline and improve safety in emerging semiautonomous vehicles.

The standard SAE-J3016 effectively classifies the capabilities of a perception
architecture supported by a vehicle according to their targeted level of autonomy.
In general, an optimal vehicle perception architecture should consist of carefully
defined location and orientation of each sensor selected from a heterogeneous suite
of sensors (e.g., cameras and radars) to maximize environmental coverage in the
combined field of view obtained from the sensors. In addition to ensuring accurate
sensing via appropriate sensor placement, a high object detection rate and low false
positive detection rate need to be maintained using efficient deep learning-based
object detection and sensor fusion techniques.

J. Dey · S. Pasricha (�)
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: Joydeep.Dey@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_10

233

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:Joydeep.Dey@colostate.edu
mailto:Joydeep.Dey@colostate.edu
mailto:Joydeep.Dey@colostate.edu

 12050 56845 a 12050 56845 a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

234 J. Dey and S. Pasricha

Fig. 1 Breakdown of perception architecture design space

State-of-the-art deep learning-based object detection models are built with
different network architectures, uncertainty modeling approaches, and test datasets
over a wide range of evaluation metrics [2]. Object detectors that are capable of real-
time perception are resource constrained by latency requirements, onboard memory
capacity, and computationally complexity. Optimizations performed to meet any one
of these constraints often results in a trade-off with the performance of others [3]. As
a result, comparison and selection from among the best set of deep learning-based
object detectors for perception applications remains a challenge.

In real-world driving scenarios, the position of obstacles and traffic are highly
dynamic, so after detection of an object, tracking is necessary to predict its new
position. Due to noise from various sources, there is an inherent uncertainty
associated with the measured position and velocity. This uncertainty is minimized
by using sensor fusion algorithms [4]. An important challenge with sensor fusion
algorithms is that the complexity of tracking objects increases as the objects get
closer, due to a much lower margin for error (uncertainty) in the vicinity of the
vehicle.

As summarized in Fig. 1, the design space of a vehicular perception architecture
involves determining appropriate sensor selection and placement, object detection
algorithms, and sensor fusion techniques. The possible configurations for each of
these decisions are nontrivial and can easily lead to a combinatorial explosion
of the design space, making exhaustive exploration impractical. Conversely, an
optimization of each of these decisions individually before composing a final
solution can lead to solutions that are suboptimal and perform poorly in real
environments. Perception architecture design depends heavily on the target features
and use cases to be supported in the vehicle, making the already massive design
space addressing the problem even larger and harder to traverse. Consequently,
today, there are no generalized rules for the synthesis of perception architectures
for vehicles.

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 235

In this chapter, we describe a novel framework called Perception Architecture
Search Technique for ADAS (PASTA) that was first presented in [5] to perform
perception architecture synthesis for emerging semiautonomous vehicles. Our
experimental results indicate that the proposed framework is able to optimize
perception performance across multiple ADAS metrics, for different vehicle types.

The main contributions in this chapter include the following:

• A global co-optimization framework capable of synthesizing robust vehicle-
specific perception architecture solutions that include heterogeneous sensor
placement, deep learning-based object detector design, and sensor fusion algo-
rithm selection

• An exploration of various design space search algorithms tuned for the vehicle
perception architecture search problem

• A fast and efficient method for co-exploration of the deep learning object detec-
tor hyperparameters, through adaptive and iterative environment- and vehicle-
specific transfer learning

• A comparative analysis of the framework efficiency across different vehicle
models (Audi-TT and BMW-Minicooper)

2 Related Work

State-of-the-art semiautonomous vehicles require robust perception of their envi-
ronment, for which the choice of sensor placement, object detection algorithms,
and sensor fusion techniques are the most important decisions. These decisions
are carefully curated to support ADAS features (e.g., blind spot warning and lane
keep assist) that characterize the autonomy level to be supported by a vehicle under
design.

Many prior works have explored vehicle perception system design with different
combinations of sensor types to overcome limitations that plague individual sensor
types. The work in [6] used a single camera-radar pair for perception of headway
distance using a continental radar mounted on the geometric center of the front
bumper and a Nextbase 512G monocular camera behind the windscreen. Vehicle
detection was performed on the collected camera frames, by sorting potential
candidates in a fixed trapezoidal region of interest in the horizontal plane. In
[6], a camera-radar fusion-based perception architecture was proposed for target
acquisition with the well-known single shot detection (SSD) object detector on
consecutive camera frames. This allowed their perception system to differentiate
vehicles from pedestrians in real time. The detection accuracy was optimized with
the use of a Kalman filter and Bayesian estimation, which reduced computational
complexity compared with [6]. In [7], a single neural network was used for fusion of
all camera and radar detections. The proposed neural fusion model (CRF-Net) used
an optimized training strategy similar to the “dropout” technique, where all input
neurons for the camera data are simultaneously deactivated in random training steps,

236 J. Dey and S. Pasricha

forcing the network to rely more on the radar data. The training focus toward radar
overcame the bias introduced by starting with pretrained weights from the feature
extractor that was trained from the camera data. The work in [8] optimized merging
camera detection with LiDAR processing. An efficient clustering technique inspired
by the DBSCAN algorithm allowed for a better exploitation of features from the raw
LiDAR point cloud. A fusion scheme was then used to sequentially merge the 2-D
detections made by a YOLOv3 object detector using cylindrical projection with the
detections made from clustered LiDAR point cloud data. In [9], an approach to
fuse LiDAR and stereo camera data was proposed, with a post-processing method
for accurate depth estimation based on a patch-wise depth correction approach.
In contrast to the cylindrical projection of 2-D detections in [8], the work in [9]
uses a projection of 3-D LiDAR points into the camera image frame instead, which
upsamples the projection image, creating a more dense depth map.

All of the prior works discussed above optimize vehicle perception performance
for rigid combinations of sensors and object detectors, without any design space
exploration. Only a few prior works have (partially) explored the design space
of sensors and object detectors for vehicle perception. An approach for optimal
positioning and calibration of a three LiDAR system was proposed in [10]. The
approach used a neural network to learn and qualify the effectiveness of different
LiDAR location and orientations. The work in [11] proposed a sensor selection
and exploration approach based on factor graphs during multisensor fusion. The
work in [12] heuristically explored a subset of backbone networks in the Faster R-
CNN object detector for perception systems in vehicles. The work in [13] presented
a framework that used a genetic algorithm to optimize sensor orientations and
placements in vehicles.

Efficient energy management strategies for ADAS use reliable detections enabled
by the optimized perception techniques discussed in [6–13]. The work in [14]
derives a prediction mechanism for optimal energy management for ADAS using
a nonlinear autoregressive artificial neural network (NARX). Multiple sources are
used as input to the neural network such as data from drive cycle information,
current vehicle state, global positioning system, travel time data, and detected
obstacles. In addition, dynamic programming is used to derive an optimal energy
management control strategy, which shows significant fuel economy improvements
compared with highly accurate predictive baseline models. The work in [14]
proposes a predictive optimal energy management strategy that leverages sensor
data aggregation and dynamic programming to achieve vehicle fuel economy
improvement for ADAS compared with existing vehicle control strategies. The work
discussed in [14, 15] leverage existing ADAS technology in modern vehicles to
realize prediction-based optimal energy management, which enables fuel economy
improvements for ADAS with minor modifications.

Unlike prior works that fine-tune specific perception architectures, e.g., [6–9],
or explore the sensing and object detector configurations separately, e. g. [10–13],
this chapter proposes a holistic framework that jointly co-optimizes heterogeneous
sensor placement, object detection algorithms, and sensor fusion techniques. To the
best of our knowledge, this is the first effort that performs co-optimization across

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 237

such a comprehensive decision space to optimize ADAS perception, with the ability
to be tuned and deployed across multiple vehicle types.

3 Background

3.1 ADAS Level 2 Autonomy Features

In this chapter, our exploration of perception architectures on a vehicle, henceforth
referred to as an ego vehicle, targets four ADAS features that have varying degrees of
longitudinal (i.e., in the same lane as the ego vehicle) and lateral (i.e., in neighboring
lanes to the ego vehicle lane) sensing requirements. The SAE-J3016 standard [16]
defines adaptive cruise control (ACC) and lane keep assist (LKA) individually
as level 1 features, as they only perform the dynamic driving task in either the
latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW)
and blind spot warning (BW) are defined in SAE-J3016 as level 0 active safety
systems, as they only enhance the performance of the driver without performing any
portion of the dynamic driving task. However, when all four features are combined,
the system can be described as a level 2 autonomy system. Figure 2 shows an
overview of the four features we focus on for level 2 autonomy, which are discussed
next.

While different ACC implementations may have varying sensing strategies, they
all take over longitudinal control from the driver (Fig. 2). The challenge in ACC
is to maintain an accurate track of the lead vehicle (immediately ahead of the ego
vehicle in the same lane) with a forward facing sensor and using longitudinal control
to maintain the specified distance while maintaining driver comfort (e.g., avoiding
sudden velocity changes). Lane keep assist (LKA) systems determine whether the
ego vehicle is drifting toward any lane boundaries and are an evolution of lane
departure warning systems. LKA systems have been known to overcompensate,
creating a “ping-pong” effect where the vehicle oscillates back and forth between the
lane lines [17]. The main challenges in LKA are to reduce this ping-pong effect and
the accurate detection of lane lines on obscured (e.g., snow covered) roads. Forward

Fig. 2 Visualization of common scenarios in ACC, FCW, LKA, and BW

238 J. Dey and S. Pasricha

collision warning (FCW) systems are used for real-time prediction of collisions with
a lead vehicle.

An important requirement for these systems is that they avoid false positives and
false negatives to improve driver comfort and safety and reduce rear-end accidents
[18]. Finally, blind spot warning (BW) systems use lateral sensor data to determine
whether there is a vehicle toward the rear on either side of the ego vehicle (Fig. 2)
in a location the driver cannot see with their side mirrors. A perception architecture
designed to support level 2 autonomy in a vehicle should support all four of these
critical features.

3.2 Sensor Placement and Orientation

In order to capture data most relevant to each feature, a strategic sensor placement
strategy must be used on the ego vehicle such that their chosen position and orienta-
tion maximize coverage (of the vehicle environment). Figure 2 shows an example of
field of view coverage (in blue) corresponding to three unique placements of camera
sensors on the body of the ego vehicle (in yellow, lower images) to meet coverage
goals. For the ACC and FCW features, the ego vehicle is responsible for slowing
down to maintain a minimum separation between the ego and lead vehicle. The
camera must be positioned somewhere on the front bumper to measure minimum
longitudinal separation accurately while keeping the lead vehicle in the desired field
of view. For LKA, there is a need to maintain a safe minimum lateral distance
between nonego vehicles in neighboring lanes. Here, a front camera is needed
to extract lane line information, while side cameras are required for tracking this
minimum lateral separation. As BW requires information about a specific area near
the rear of the vehicle, it is a challenge to find an optimal sensor placement that
maximizes the view of the blind spot. If the sensor is too far forward or too far
back, it will miss key portions of the blind spots. Beyond placement, the orientation
of sensors can also significantly impact coverage for all features [18]. Thus, sensor
placement and orientation remains a challenging problem.

3.3 Object Detection for Vehicle Environment Perception

There are two broad goals associated with deep learning-based object detectors:
determining spatial information (relative position of an object in the image) via
localization followed by identifying which category that object instance belongs to
via classification [19]. As an example, Fig. 3 shows object detection of multiple car
instances (using the YOLOv3 deep learning based object detector [20]) by creating
a bounding box around the “car” object instances and predicting the object class
as “car.” The pipeline of traditional object detection models can be divided into
informative region selection, feature extraction, and classification [21]. Depending

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 239

Convolutional 1×1

×1

×2

×8

×8
×4

Convolutional Set

Predict one Predict two Predict three

cars cars cars
lead car

Conv2d 1×1 Concatenate ResidualUp Sampling

Fig. 3 Example of vehicle (object) detection with YOLOv3

on which subset of these steps is used to process an input image frame, object
detectors are classified as single stage or two stage.

Modern single-stage detectors are typically composed of a feed-forward fully
convolutional network that outputs object classification probabilities and box offsets
(w.r.t. predefined anchor/bounding boxes) at each spatial position. The YOLO
family of object detectors is a popular example of single-stage detectors [21]. Single
shot detection (SSD) is another example, based on the VGG-16 backbone [22].
An advantageous property of single-stage detectors is their very high detection
throughput (e.g., ~40 frames per second with YOLO) that makes them suitable for
real time scenarios. Two-stage detectors divide the detection process into separate
region proposal and classification stages. The first stage involves identifying several
regions in an image that have a high probability to contain an object using a region
proposal network (RPN). In the second stage, proposals of identified regions are fed
into convolutional networks for classification. Region-based CNN (R-CNN) is an
example of a two-stage detector [23]. R-CNN divides an input image into 2000
regions generated through a selective search algorithm, after which the selected
regions are fed to a CNN for feature extraction followed by a support vector machine
(SVM) for classification. Fast R-CNN [24] and subsequently faster R-CNN [25]
improved the speed of training and detection accuracy compared with R-CNN by
streamlining the stages.

Two-stage detectors have high localization and object recognition accuracy,
whereas one-stage detectors achieve higher inference speed [26]. In this chapter, we
considered both types of object detectors to exploit the latency/accuracy trade-offs
during perception architecture synthesis.

3.4 Sensor Fusion

Perception architectures that use multiple sensors in their sensing framework often
must deal with errors due to imprecise measurements from one or more of the
sensors. Conversely, errors can also arise when only a single sensor is used due
to measurement uncertainties from insufficient spatial (occlusion) or temporal
(delayed sensor response time) coverage of the environment. The Kalman filter is

240 J. Dey and S. Pasricha

one of the most widely used sensor fusion state estimation algorithms that enables
error-resilient tracking of targets [27]. The Kalman filter family is a set of recursive
mathematical equations that provides an efficient computational solution of the
least-squares method for estimation. The filters in this family have the ability to
obtain optimal statistical estimations when the system state is described as a linear
model and the error can be modeled as Gaussian noise. If the system state is
represented as a nonlinear dynamic model as opposed to a linear model, a modified
version of the Kalman filter known as the extended Kalman filter (EKF) can be used,
which provides an optimal approach for implementing nonlinear recursive filters
[28]. However, for real-time ADAS operations, the computation of the Jacobian
(matrix describing the system state) in EKF can be computationally expensive and
contribute to measurement latency. Further, any attempt to reduce the cost through
techniques like linearization makes the performance unstable [29]. The unscented
Kalman filter (UKF) is another alternative that has the desirable property of being
more amenable to parallel implementation [30]. In our perception architecture
exploration, we explore the family of Kalman filters as candidates for sensor fusion.

4 PASTA Architecture

4.1 Overview

Figure 4 presents a high-level overview of our proposed PASTA framework. The
heterogeneous sensors, object detection model library, sensor fusion algorithm
library, and physical dimensions of the vehicle model are inputs to the framework.
An algorithmic design space exploration is used to generate a perception architec-

Fig. 4 An overview of the proposed PASTA framework

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 241

ture solution, which is subsequently evaluated based on a cumulative score from
performance metrics relevant to the ADAS autonomy level being targeted. As part
of the framework, we evaluate three design space search exploration algorithms:
genetic algorithm (GA), differential evolution (DE), and the firefly algorithm (FA).
The process of perception architecture generation and evaluation iterates until an
algorithm-specific stopping criteria is met, at which point the best design points are
output. The following subsections describe each component of our framework in
detail.

4.2 Problem Formulation and Metrics

In our framework, for a given vehicle, we define a design point as a perception
architecture that is a combination of three components: a sensor configuration,
which involves the fixed deployment position and orientation of each sensor selected
for the vehicle, an object detector algorithm, and a sensor fusion algorithm. The
goal is to find an optimal design point for the given vehicle that minimizes the
cumulative error across eight metrics that are characterized of the ability to track
and detect nonego vehicles across road geometries and traffic scenarios.

The eight selected metrics are related to our goal of supporting level 2 autonomy
with the perception architecture. In the descriptions of the metrics below, the ground
truth refers to the actual position of the nonego vehicles (traffic in the environment
of the ego vehicle). The metrics can be summarized as follows: (1) Longitudinal
position error and (2) lateral position error, deviation of the detected positional
data from the ground truth of nonego vehicle positions along the y and x axes,
respectively. (3) Object occlusion rate, the fraction of passing nonego vehicles that
go undetected in the vicinity of the ego vehicle. (4) Velocity uncertainty, the fraction
of times that the velocity of a nonego vehicle is measured incorrectly. (5) Rate of late
detection, the fraction of the number of “late” nonego vehicle detections made over
the total number of nonego vehicles. Late detection is one that occurs after a nonego
vehicle crosses the minimum safe longitudinal or lateral distance, as defined by Intel
RSS safety models for precrash scenarios [31]. This metric directly factors in the
trade-off between latency and accuracy for object detector and fusion algorithms.
(6) False positive lane detection rate, the fraction of instances when a lane marker
is detected but there exists no ground truth lane. (7) False negative lane detection
rate, the fraction of instances when a ground truth lane exists but is not detected. (8)
False positive object detection rate, the fraction of total vehicle detections, which
were classified as nonego vehicle detections but did not actually exist.

242 J. Dey and S. Pasricha

4.3 Design Space Encoder/Decoder

The design space encoder receives a set of random initial design points as input,
which are arranged into a vector format. This format is best suited for various
kinds of rearrangement and splitting operations during design space exploration.
The encoder adapts the initial selection of inputs for our design space such that a
design point is defined by the location and orientation of each sensor’s configuration
(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object
detector and fusion algorithm. The design space decoder converts the solutions into
the same format as the input so that the output perception architecture solution(s)
found can be visualized with respect to the real world coordinate system.

4.4 Design Space Exploration

The goal of a design space exploration algorithm in our framework is to generate
perception architectures (design points), which are aware of feature to field of view
(FOV) zone correlations around an ego vehicle. Figure 5a shows the ten primary
FOV zones around the ego vehicle. These zones of interest are defined as the
most important perception areas in the environment for a particular ADAS feature.
Figure 5b shows the regions on the vehicle on which sensors can be mounted (in
blue). Regions F and G (in yellow) are exempt from sensor placement due to the
mechanical instability of placing sensors on the door of a vehicle. The correlation
between ADAS features, zones, and regions, is shown in Fig. 5c. For exploration of
possible locations within a region, a fixed step size of 2 cm in two dimensions across
the surface of the vehicle is considered, which generates a 2-D grid of possible
positions in each zone shown in Fig. 5b. The orientation exploration of each sensor
involves rotation at a fixed step size of 1◦ between an upper and lower bounding
limit for roll, pitch, and yaw, respectively, at each of these possible positions within
the 2-D grid. The orientation exploration limits were chosen with caution with the

Fig. 5 (a) Field of view (FOV) zones, (b) sensor placement regions, and (c) feature, region, and
zone relationship

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 243

caveat that some sensors, such as long-range radars, have an elevated number of
recorded false positives with extreme orientations.

To get a sense of the design space, consider four sensors (e.g., two cameras and
two radars). Just the determination of the optimal placement and orientation of these
sensors involve exploring 1.24e+26C4 and 7.34e+25C4 configurations for the Audi-TT
and BMW-Minicooper vehicles, respectively. Coupled with the choice of different
object detectors and sensor fusion algorithms, the resulting massive design space
cannot be exhaustively traversed in a practical amount of time, necessitating the use
of intelligent design space search algorithms that support hill climbing to escape
local minima. In our framework, we explored three evolutionary algorithms: (1)
genetic algorithm (GA), (2) differential evolution (DE), and the (3) Firefly algorithm
(FA). As shown in Fig. 4, each algorithm generates a solution set of size “P” at
every iteration until the termination criteria is met. The algorithms simultaneously
co-optimize sensor configuration, object detection, and sensor fusion and proceed to
explore new regions of the design space when the termination (perception) criteria
is not met. We briefly describe the three algorithms below.

4.4.1 Genetic Algorithm (GA)

GA is a popular evolutionary algorithm that can solve optimization problems by
mimicking the process of natural selection [32]. GA repeatedly selects a population
of candidate solutions and then improves the solutions by modifying them. Initially,
the GA randomly selects a solution set of fixed size referred to as the population
and then improves the quality of the candidate solutions by modifying them in
each iteration. GA has the ability to optimize problems where the design space
is discontinuous and also if the cost function is nondifferentiable. In our GA
implementation, in the selection stage, the cost function values are computed for
50 design points at a time, and a roulette wheel selection method is used to select
which set of chromosomes will be involved in the crossover step based on their
cost function probability value (fraction of the cumulative cost function sum of
all chromosomes considered in the selection). In the crossover stage, the crossover
parameter is set to 0.5, allowing half of the 50 chromosomes to produce offspring.
The mutation parameter is set to 0.2, which determines the new genes allowed for
mutation in each iteration.

4.4.2 Differential Evolution (DE)

Differential Evolution (DE) [33] is another stochastic population-based evolutionary
algorithm that takes a unique approach to mutation and recombination. An initial
solution population of fixed size is selected randomly, and each solution undergoes
mutation and then recombination operations. DE generates new parameter vectors

244 J. Dey and S. Pasricha

by adding the weighted difference between two population vectors to a third
vector to achieve difference vector-based mutation. Next, crossover is performed,
where the mutated vector’s parameters are mixed with the parameters of another
predetermined vector, the target vector, to yield a trial vector. If the trial vector
yields a lower cost function value than the target vector, the trial vector replaces the
target vector in the next generation. To ensure that better solutions are selected only
after generation of all trial vectors, greedy selection is performed between the target
vector and the trial vector at every iteration. Unlike GA where parents are selected
based on fitness, every solution in DE takes turns to be one of the parents [34]. In
our DE implementation, we set initial population size to 50 and use a crossover
probability of 0.8 to select candidates participating in crossover.

4.4.3 Firefly Algorithm (FA)

FA is a swarm-based metaheuristic [35] that has shown superior performance
compared with GA for certain problems [36]. In FA, a solution is referred to
as a firefly. The algorithm assumes that the attractiveness of a firefly is directly
proportional to its luminosity, which depends on the fitness function value. Further,
irrespective of gender all fireflies can be attracted to each other in the design space.
Initially, a random solution set is generated, and the fitness (brightness) of each
candidate solution is measured. In the design space, a firefly is attracted to another
with higher brightness (more fit solution), with brightness decreasing exponentially
over distance. FA is significantly different from DE and GA, as both exploration
of new solutions and exploitation of existing solutions to find better solutions is
achieved using a single position update step.

4.5 Performance Evaluation

Each iteration of the design space exploration involves performance evaluation of
the generated solution set where each design point undergoes multiple drive cycles.
A drive cycle here refers to a virtual simulation involving an ego vehicle (with a
perception architecture under evaluation) following a fixed set of waypoint coor-
dinates, while performing object detection and sensor fusion on the environment
and other nonego vehicles. A total of 20 different drive cycles were considered,
with five drive cycles customized for each ADAS feature. As an example, drive
cycles for ACC and FCW involve an ego vehicle following different lead vehicles
at different distances, velocities, weather conditions, and traffic profiles. The fitness
of the perception architectures generated by the framework are computed using the
cumulative metric scores (Sect. 4.2) across the drive cycles.

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 245

5 Experiments

5.1 Experimental Setup

To evaluate the efficacy of the PASTA framework, we performed experiments in
the open-source simulator Car Learning to Act (CARLA) implemented as a layer
on Unreal Engine 4 (UE4) [37]. The UE4 engine provides state-of-the-art physics
rendering for highly realistic driving scenarios. We leveraged this tool to design a
variety of drive cycles that are roughly 5 minutes long and contain scenarios that
commonly arise in real driving environments, including adverse weather conditions
(rain and fog) and a few overtly aggressive/conservative driving styles observed with
vehicles. To ensure generalizability, we consider a separate set of test drive cycles to
evaluate solution quality, which are different from the optimization drive cycles used
iteratively by the framework to generate optimized perception architecture solutions.

We target generating perception architectures to meet level 2 autonomy goals for
two vehicle models: Audi-TT and BMW-Minicooper (Fig. 6). A maximum of four
mid-range radars and four RGB cameras are considered in the design space, where
each sensor can be placed in any zone (Fig. 5a and b). Using a greater number of
these sensors led to negligible improvements for the level 2 autonomy goal. The
RGB cameras possess 90◦ field of view, 200 fps shutter speed, and image resolution
of 800 × 600 pixels. The mid-range radars selected generate a maximum of 1500
measurements per second with a horizontal and vertical field of view of 30◦ and a
maximum detection distance of 100 m. We considered five different object detectors
(YOLOv3, SSD, R-CNN, Fast R-CNN, and Faster R-CNN) and three sensor fusion
algorithms (Kalman filter, Extended Kalman filter, and Unscented Kalman filter).
For the design space exploration algorithms, the cost function was a weighted sum
across the eight metrics discussed in Sect. 4.2, with the weight factor for each metric
chosen on the basis of their total feature-wise cardinality across all zones shown in
Fig. 5c. During design space exploration, if the change in average cost function
value was <5% over 250 iterations, the search was terminated. All algorithmic
exploration was performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with
an NVIDIA GeForce RTX 2080 Ti GPU.

Fig. 6 (a) BMW-Minicooper (left) and (b) Audi-TT (right)

246 J. Dey and S. Pasricha

5.2 Experimental Results

In the first experiment, we explored the inference latency and accuracy in terms
of mean average precision (mAP) for the five different object detectors considered
in this chapter. Table 1 summarizes the inference latency on a CPU and GPU, as
well as the accuracy in mAP for the object detectors on images from our analyzed
drive cycles, with all detectors trained on the MS-COCO dataset. It can be observed
that the two-stage detectors (R-CNN, Fast R-CNN, and Faster R-CNN) have a
higher accuracy than the single stage detectors (SSD and YOLOv3). However, the
inference time for the two-stage detector is significantly higher than for the single
stage detectors. For real-time object detection in vehicles, it is crucial to be able to
detect objects with low latency, typically less than 100 ms [38]. As a result, single-
stage detectors are preferable, with YOLOv3 achieving slightly better accuracy and
lower inference time than SSD. However, in some scenarios, delayed detection
can still be better than not detecting or wrongly detecting an object (e.g., slightly
late blind spot warning is still better than receiving no warning) in which case the
slower but more accurate two-stage detectors may still be preferable. Our PASTA
framework is aware of this inherent trade-off and factors in the detection accuracy
and rate of late detection in performance evaluation metrics (Sect. 4.2) to explore
both single-stage and two-stage detectors. Also, detectors with a higher mAP value
sometimes did not detect objects that other detectors with a lower mAP were able
to; thus, we consider all five detectors in our exploration.

Next, we explored the importance of global co-optimization for our problem.
We select the genetic algorithm (GA) variant of our framework to explore the
entire design space (GA-PASTA) and compared it against five other frameworks.
Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search
for sensor design. In GA-PO, sensor position is explored before orientation, while in
GA-OP the orientation for fixed sensor locations (based on industry best practices) is
explored before adjusting sensor positions. For both frameworks, the object detector
used was fixed to YOLOv3 due to its sub-100 ms inference latency and reasonable
accuracy, while the extended Kalman filter (EKF) was used for sensor fusion due to
its ability to efficiently track targets following linear or nonlinear trajectories. The
framework GA-VESPA is from prior work [13] and uses GA for exploration across
sensor positions and orientations simultaneously, with the YOLOv3 object detector
and EKF fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more
comprehensive exploration of the design space. GA-POD simultaneously explores
the sensor positioning, orientation, and object detectors, with a fixed EKF fusion

Table 1 Object detector latency and accuracy comparison

Object detector R-CNN Fast R-CNN Faster R-CNN SSD YOLOv3

Latency GPU (ms) 48956.18 1834.71 176.99 53.25 24.03
Latency CPU (ms) 66090.83 2365.86 286.72 70.32 32.92
mAP (%) 73.86 76.81 79.63 70.58 71.86

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 247

Fig. 7 (a) Comparison of perception architecture exploration frameworks. (b) Cost of best
solution from each framework

algorithm. GA-POF simultaneously explores the sensor positioning, orientation, and
sensor fusion algorithm, with a fixed YOLOv3 fusion algorithm.

Figure 7a depicts the average cost of solution populations (lower is better) for
the BMW-Minicooper across the different frameworks plotted against the number
of iterations, with each exploration lasting between 80 and 100 hours. It can be
observed that GA-PO performs better than GA-OP, which confirms the intuitive
importance of exploring sensor positioning before adjusting sensor orientations.
GA-VESPA outperforms both GA-PO and GA-OP, highlighting the benefit of
co-exploration of sensor position and orientation over a local sequential search
approach used in GA-PO and GA-OP. GA-POD and GA-POF in turn outperform
these frameworks, indicating that decisions related to object detection and sensor
fusion can have a notable impact on perception quality. GA-POD terminates with
its solution set having a lower average cost than GA-POF, which indicates that co-
exploration of object detection and sensor placement/orientation is slightly more
effective than co-exploration of sensor fusion and sensor placement/orientation.
Our proposed GA-PASTA framework achieves the lowest average cost solution,
highlighting the tremendous benefit that can be achieved from co-exploring sensor
position/orientation, object detection, and sensor fusion algorithms. Figure 7b sum-
marizes the objective function cost of the best solution found by each framework,
which aligns with the population-level observations from Fig. 7a.

The comparative analysis for the BMW-Minicooper was repeated three times
with different initializations for all six frameworks, and the results for the other two
runs show a consistent trend with the one shown in Fig. 7. Note also that the relative
trend across frameworks observed for the Audi-TT is similar to that observed for
the BMW-Minicooper, and thus, the results for the Audi-TT are omitted for brevity.

In the next experiment, we explored the efficacy of different design space
exploration algorithms (GA, DE, and FA; see Sect. 4.4) to determine which
algorithm can provide optimal perception architecture solutions across varying
vehicle models. Figure 8 shows the results for the three variants of the PASTA
framework, for the Audi-TT and BMW-Minicooper vehicles. The best solution

248 J. Dey and S. Pasricha

Fig. 8 Comparison of three variants of PASTA framework with genetic algorithm (GA), differen-
tial evolution (DE), and Firefly algorithm (FA)

was selected across three runs of each algorithmic variant (variations for the best
solution across runs are highlighted with confidence intervals, with bars indicating
the median). It is observed that for both considered vehicle models, the FA algorithm
outperforms the DE and GA algorithms. For Audi-TT, the best solution found by
FA improves upon the best solution found with DE and GA by 18.34% and 14.84%,
respectively. For the BMW-Minicooper, the best solution found by FA outperforms
the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure
9a depicts the specific sensor placement locations for each vehicle type, with a
visualization of sensor coverage for the best solutions found by each algorithm
shown in Fig. 9b.

Finally, in our quest to further improve perception architecture synthesis in
PASTA, we focused on a more nuanced exploration of the object detector design
space. We selected the FA search algorithm due to its superior performance over
GA and DE and modified FA-PASTA to integrate a neural architecture search
(NAS) for the YOLOv3 object detector, with the aim of further improving YOLOv3
accuracy across drive cycles while maintaining its low detection latency. Our
NAS for YOLOv3 involved transfer learning to retrain network layers with a
dataset consisting of 6000 images obtained from the KITTI dataset, using the open
source tool CADET [39]. The NAS hyperparameters that were explored involved
the number of layers to unfreeze and retrain (from a total of 53 layers in the
Darknet-53 backbone used in YOLOv3; Fig. 10a), along with the optimizer learning
rate, momentum, and decay. The updated variant of our framework, FA-NAS-
PASTA, considered these YOLOv3 hyperparameters along with the sensor positions
and orientations, and sensor fusion algorithms, during iterative evolution of the
population of candidate solutions in the FA algorithm.

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 249

Fig. 9 (a) Sensor placement for best solution found with FA algorithm (top yellow vehicle: BMW-
Minicooper, bottom red vehicle: Audi-TT) (top) and (b) Sensor coverage for best solutions found
by GA, DE, and FA search algorithms (bottom)

Fig. 10 (a) YOLOv3 object detector architecture with Darknet-53 backbone network that was
fine-tuned using neural architecture search (NAS) and (b) results of integrating object detector
NAS with PASTA

Figure 10b shows the results of this analysis for the two vehicles considered.
FA-PASTA is the best performing variant of our framework (from Fig. 8), while
FA-NAS-PASTA is the modified variant that integrates NAS for YOLOv3. It
can be observed that fine tuning the YOLOv3 object detector during search
space exploration in FA-NAS-PASTA leads to notable improvements in the best
perception architecture solution, with up to 14.43% and 21.13% improvement in
performance for the Audi-TT and BMW-Minicooper, compared with PASTA-FA.

250 J. Dey and S. Pasricha

6 Conclusion

In this chapter, we propose an automated framework called PASTA that is capable of
generating perception architecture designs for modern semiautonomous vehicles.
PASTA has the ability to simultaneously co-optimize locations and orientations
for sensors, optimize object detectors, and select sensor fusion algorithms for a
given target vehicle. Our experimental analysis showed how PASTA can synthesize
optimized perception architecture solutions for the Audi-TT and BMW-Minicooper
vehicles, while outperforming multiple semiglobal exploration techniques. Inte-
grating neural architecture search for the object detector in PASTA shows further
promising improvements in solution quality.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. NHTSA (National Highway Traffic Safety Administration), National Center for Statistics and
Analysis: Data estimates indicate traffic fatalities continued to rise at record pace in first nine
months of 2021 (2022)

2. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S.: Deep learning for object detection and
scene perception in self-driving cars: survey, challenges, and open issues. Array. 10, 100057
(2021)

3. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and comparative study on
probabilistic object detection in autonomous driving. IEEE Trans. Intell. Transp. Syst. 23, 9961
(2021)

4. Carazo, J., Rufas, D., Bimepica, E., Carrabina, J.: Resource-constrained machine learning for
ADAS: a systematic review. IEEE Access. 8, 40573–40598 (2020)

5. Dey, J., Pasricha, S.: Robust perception architecture design for automotive cyber-physical
systems. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE (2022)

6. Zhexiang, Y., Jie, B., Sihan, C., Libo, H., Xin, B.: Camera-radar data fusion for target detection
via Kalman filter and Bayesian estimation. SAE Technical Paper (2018)

7. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and
camera sensor fusion architecture for object detection. In: IEEE Sensor Data Fusion: Trends,
Solutions, Applications (SDF). IEEE (2020)

8. Verucchi, M., Bartoli, L., Bagni, F., Gatti, F., Burgio, P., Bertogna, M.: Real-time clustering
and LiDAR-camera fusion on embedded platforms for self-driving cars. In: IEEE International
Conference on Robotic Computing (IRC). IEEE (2020)

9. Meng, L., Yang, L., Tang, G., Ren, S., Yang, W.: An optimization of deep sensor fusion
based on generalized intersection over union. In: International Conference on Algorithms and
Architectures for Parallel Processing. Springer (2020)

10. Meadows, W., Hudson, C., Goodin, C., Dabbiru, L., Powell, B., Doude, M., Carruth, D., Islam,
M., Ball, J.E., Tang, B.: Multi-LIDAR placement, calibration, co-registration, and processing
on a Subaru Forester for off-road autonomous vehicles operations. In: Autonomous Systems:
Sensors, Processing and Security for Vehicles and Infrastructure. SPIE (2019)

11. Chen, H., Ling, P., Danping, Z., Kun, L., Yexuan, L., Yu, C.: An optimal selection of
sensors in multi-sensor fusion navigation with factor graph. In: Ubiquitous Positioning, Indoor
Navigation and Location-Based Services (UPINLBS). IEEE (2018)

Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 251

12. Ji-Qing, L., Sheng Fang, H., Shao, F., Zhong, Y., Hua, X.: Multi-scale traffic vehicle detection
based on faster R–CNN with NAS optimization and feature enrichment. Def. Technol. 17,
1542–1554 (2021)

13. Dey, J., Taylor, W., Pasricha, S.: VESPA: a framework for optimizing heterogeneous sensor
placement and orientation for autonomous vehicles. IEEE Consum. Electron. Mag. 10, 16–26
(2020)

14. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley,
T.H.: Enabling prediction for optimal fuel economy vehicle control. SAE International (2018)

15. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards Improving Vehicle Fuel Economy
with ADAS. SAE International (2018)

16. SAE International Standard J3016: Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles (2018)

17. Kirchner, C.: Lane keeping assist explained. Motor Review [Online]. Available: https://
motorreview.com/lane-keeping-assist-explained (2014)

18. Li, H., Zhao, G., Qin, L., Aizeke, H., Zhao, X., Yang, Y.: A survey of safety warnings under
connected vehicle environments. IEEE Trans. Intell. Transp. Syst. 22, 2572–2588 (2020)

19. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: A review. IEEE
Trans. Neural. Netw. Learn. Syst. 30, 3212–3232 (2019)

20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, realtime
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE (2016)

21. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient
and category-specific object detection: a survey. IEEE Signal Process. Mag. 35, 84 (2018)

22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot
multibox detector. In: European Conference on Computer Vision. Springer (2016)

23. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE (2014)

24. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer
Vision. IEEE (2015)

25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing systems (NIPS)
(2015)

26. Fayyad, J., Jaradat, M.A., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for
autonomous vehicle perception and localization: a review. Sensors. 20, 4220 (2020)

27. Kalman, R.E.: A new approach to linear filtering and prediction problems. In: Transactions of
the American Society of Mechanical Engineers (ASME) –Journal of Basic Engineering. IEEE
(1960)

28. Simon, J., Uhlmann, J.: New extension of the Kalman filter to nonlinear systems. In: Signal
Processing, Sensor Fusion, and Target Recognition. International Society for Optics and
Photonics (1997)

29. Yeong, D., Hernandez, G., Barry, J., Walsh, J.: Sensor and sensor fusion technology in
autonomous vehicles: a review. Sensors. 21, 2140 (2021)

30. Wan, A., Merwe, R.: The unscented kalman filter for nonlinear estimation. In: Proceedings of
the IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium.
IEEE (2000)

31. NHTSA (National Highway Traffic Safety Administration): Implementing RSS model on
NHTSA pre-crash scenarios. Intel (2017)

32. Reeves, C.: Genetic Algorithms: Handbook of Metaheuristics. International Series in Opera-
tions Research & Management Science (2003)

33. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Glob. Optim. 11, 341 (1997)

34. Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind.
Eng. Manag. Syst. 11, 215 (2012)

32220 12977 a 32220 12977 a

https://motorreview.com/lane-keeping-assist-explained

252 J. Dey and S. Pasricha

35. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foun-
dations and Applications. Springer (2009)

36. Zhou, G.D., Yi, T.H., Zhang, H., Li, H.N.: A comparative study of genetic and firefly
algorithms for sensor placement in structural health monitoring. Shock. Vib. 2015, 1–10 (2015)

37. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving
simulator. In: 1st Annual Conference on Robot Learning Conference on Robot Learning.
PMLR (2017)

38. Brekke, Å., Vatsendvik, F., Lindseth, F.: Multimodal 3d object detection from simulated
pretraining. In: Symposium of the Norwegian Artificial Intelligence Society. Springer (2019)

39. Lin, S., Zhang, Y., Hsu, C., Skach, M., Haque, M., Tang, L., Mars, J.: The architectural
implications of autonomous driving:constraints and acceleration. In: Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM (2018)

Machine Learning for Anomaly Detection
in Automotive Cyber-Physical Systems

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

1 Introduction

Today’s vehicles are sophisticated cyber-physical systems (CPS) that consists
of multiple interconnected embedded systems known as electronic control units
(ECUs). The ECUs control various vehicular functions and communicate with each
other using the in-vehicle network. In recent years, the number of ECUs along with
the complexity of software running on these ECUs has been increasing rapidly, to
enable advanced driver assistance systems (ADAS) features such as adaptive cruise
control, collision avoidance, lane keep assist, and blind spot warning. This has
resulted in an increase in the complexity of the in-vehicle network over which huge
volumes of automotive sensor and real-time decision data, and control directives are
communicated. This in turn has led to various challenges related to the reliability
[1–4], security [5–9], and real-time control of automotive applications [10–13].

Recent developments in ADAS resulted in increased interaction with various
external systems using advanced communication standards such as 5G technology
and Vehicle-to-X (V2X) [14]. Unfortunately, this makes automotive embedded sys-
tems highly susceptible to various cybersecurity threats that can have catastrophic
consequences. The vehicular attacks in [15–17] have presented different ways to
gain access to the in-vehicle network and override vehicle controls by injecting
anomalous messages. With the connected and autonomous vehicles (CAVs) on the
horizon, these security concerns will get further aggravated. Therefore, it is crucial
to prevent unauthorized access to in-vehicle networks by external attackers to ensure
the security of automotive CPS.

V. K. Kukkala (�) · S. V. Thiruloga · S. Pasricha
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: kvipin@rams.colostate.edu; sooryaa@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_11

253

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:kvipin@rams.colostate.edu
mailto:kvipin@rams.colostate.edu
mailto:kvipin@rams.colostate.edu

 11657 56845 a 11657 56845 a

mailto:sooryaa@colostate.edu
mailto:sooryaa@colostate.edu

 20885 56845 a 20885 56845 a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

254 V. K. Kukkala et al.

Traditional computer networks utilized firewalls to defend the networks from
external attackers. However, no firewall is flawless, and no network can be
completely secure. Therefore, there is a need for an active monitoring system that
continuously monitors the network to identify malicious messages in the system. An
anomaly detection system (ADS) can be used to continuously monitor the in-vehicle
network traffic and trigger alerts when suspicious messages or known threats are
detected, which is typically the last line of defense in automotive CPSs.

At a high level, ADSs are categorized into two types: (i) rule-based and
(ii) machine learning-based. Rule-based ADSs observe for traces of previously
observed attack signatures whereas machine learning-based ADSs observe for the
deviation from the known normal system behavior to detect the presence of an
attacker. Rule-based ADS can have faster detection rates and very few false alarms
(false positive rate) but are limited to detecting only known attacks. On the contrary,
machine learning-based ADS can detect both previously observed and novel attacks
but can suffer from comparatively slower detection times and higher false alarm
rate. An efficient ADS needs to be robust, scalable, and incur minimal overhead
(lightweight). Moreover, practical ADSs need to have a wide attack coverage (being
able to detect both known and unknown attacks) with high confidence in detection
and low false alarms as recovering from false alarms can be costly.

Obtaining the signature of every possible attack is impractical and would limit
us to only detecting known attacks. Hence, we believe that machine learning-based
ADSs provide a more pragmatic solution to this problem. Additionally, due to the
ease of acquiring in-vehicle network data, large volumes of in-vehicle message data
can be collected, which facilitates the use of advanced deep learning models for
detecting anomalies in automotive CPS [9].

In this chapter, we propose a novel ADS framework called INDRA, first presented
in [6], that monitors the messages in controller area network (CAN)-based automo-
tive CPS for anomalies. During the offline phase, INDRA uses a deep learning-based
model to learn the normal system behavior in an unsupervised manner. At runtime,
INDRA continuously scans the network for anomalous messages in the network.
INDRA aims to maximize the detection accuracy with minimal false alarms and
overhead on the ECUs.

Our novel contributions in this work are as follows:

1. We introduced a gated recurrent unit (GRU)-based recurrent autoencoder net-
work to learn the normal system behavior during the offline phase.

2. We presented an anomaly score (AS) metric to measure deviation from the
normal system behavior.

3. We conducted a comprehensive analysis toward the selection of thresholds for
the anomaly score metric.

4. We compare our proposed INDRA framework with the best-known prior works
in the area, to show its effectiveness.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 255

2 Related Work

Several techniques have been proposed to design ADS for protecting time-critical
automotive CPS. These works try to detect multiple attacks by monitoring the in-
vehicle network data.

Rule-based ADS detects known attacks by using the information about previ-
ously observed attack signatures. A language theory-based model [18] was proposed
to derive attack signatures. However, this technique fails to detect attacks when it
misses the packets transmitted during the early stages of an attack. The authors in
[19], used transition matrices to detect attacks in a CAN bus. They were able to
achieve a low false-positive rate for simple attacks but failed to detect advanced
replay attacks. In [20], the authors identify notable attack signatures such as an
increase in message frequency and missing messages to detect attacks. In [21], the
authors proposed a specification-based approach to detect attacks; they analyze the
behavior of the system and compare it with the predefined attack patterns to detect
anomalies. However, their system fails to detect unknown attacks. The authors in
[22] propose an ADS technique using the Myers algorithm [23] under the map-
reduce framework. In [24], a time-frequency analysis of CAN messages is used
to detect multiple anomalies. The authors analyzed message frequency at design
time in [25] to derive regular operating mode region. This region is observed
for deviations at runtime to detect anomalies. The sender ECU’s clock skew and
the messages are used to detect attacks [26] by observing for variations in the
clock-skew at runtime. The authors in [27] performed a formal analysis on clock-
skew-based ADS and evaluated on a real vehicle. In [28], a memory heat map is used
to characterize the memory behavior of the operating system to detect anomalies.
In [29], an entropy-based ADS is proposed, which observes for change in system
entropy to detect anomalies. Nonetheless, the technique fails to detect small scale
attacks for which the entropy change is minimal. In conclusion, rule-based ADSs
offer a solution to the intrusion detection problem with lower false positive rates but
cannot detect more complex and novel attacks. Moreover, obtaining signatures of
every possible attack pattern is not practical.

Machine learning-based ADSs aim to learn the normal system behavior in an
offline phase and observe for any deviation from the learned normal behavior to
detect anomalies at runtime. In [30], the authors proposed a sensor-based ADS that
utilizes attack detection sensors to monitor various system events to observe for
deviations from normal behavior. However, this approach is expensive and suffers
from poor detection rates. In [31], a one-class support vector machine (OCSVM)-
based ADS was introduced, but it suffers from poor detection latency. An ensemble
of different nearest neighbor classifiers was used in [32] to distinguish between
a normal and an attack-induced CAN payload. The authors in [33] proposed a
decision-tree-based detection model to monitor the physical features of the vehicle
to detect attacks. However, this model is not practical and suffers from high anomaly
detection latencies. In [34], a hidden Markov model (HMM)-based technique was
proposed to monitor the temporal relationships between messages to detect attacks.

256 V. K. Kukkala et al.

Table 1 Performance metrics comparison between our proposed INDRA framework and state-
of-the-art machine learning-based anomaly detection works

Performance metrics

Technique Lightweight model
Low false
positive rate

High detection
accuracy Fast inference time

PLSTM [38] X � X X
RepNet [39] � X X �
CANet [36] X � � X
INDRA � � � �

A deep neural network-based approach was proposed to scan the payload in the
in-vehicle network in [35]. This approach is not scalable as it is fine-tuned for
a low priority tire pressure monitoring system (TPMS), which makes it hard to
adapt to high priority powertrain applications. In [36] a long-short-term memory
(LSTM)-based ADS for multi-message ID detection was proposed. However, the
model architecture is highly complex and incurs high overhead on the ECUs. An
LSTM-based ADS to detect insertion and dropping attacks (explained in Sect. 4.3)
is proposed in [37]. In [38], an LSTM-based predictor model is proposed to predict
the subsequent time step message value at a bit level and observe for large variations
to detect anomalous messages. A recurrent neural network (RNN)-based ADS to
learn the normal CAN message pattern in the in-vehicle network is proposed in [39].
In [40], a hybrid ADS was proposed which utilizes a specification-based system in
the first stage and an RNN-based model in the second stage to detect anomalies
in time-series data. Several other machine models such as the stacked LSTMs and
temporal convolutional neural networks (TCNs)-based techniques were proposed in
[7, 8], respectively. However, none of these techniques provides a complete system-
level solution that is scalable, reliable, and lightweight to detect various attacks for
in-vehicle networks.

In this chapter, we introduce a lightweight recurrent autoencoder-based ADS
using gated recurrent units (GRUs) that monitors the in-vehicle network messages
at a signal level to detect multiple types of attacks with higher efficiency than
various state-of-the art works in this area. A summary of some of the state-of-the-art
works’ performance under different metrics and our proposed INDRA framework is
presented in Table 1. An exhaustive analysis of each metric and evaluation results
are presented later in Sect. 6.

3 Sequence Learning Background

The availability of increased computing power from GPUs and custom accelerators
training deep neural networks with many hidden layers became feasible and has led
to the creation of powerful models for solving difficult problems in many domains.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 257

One such problem is detecting anomalies in automotive CPS. In an automotive CPS,
the communication between ECUs occurs in a time-dependent manner. Therefore,
there is temporal relationship between the messages, which can be exploited in order
to detect anomalies. However, this cannot be achieved using typical feedforward
neural networks where the output of a specific input at an instance is independent
of the other inputs. Sequence models can be an appropriate approach for such
problems, as they inherently handle sequences and time-series data.

3.1 Sequence Models

A sequence model is a function that ensures that the outcome is reliant on both the
current and prior inputs. The recurrent neural network (RNN), which was introduced
in [41], is an example of such a sequence model. Moreover, other sequence models
such as gated recurrent unit (GRU) and long-short-term memory (LSTM) have also
been developed.

3.1.1 Recurrent Neural Networks (RNNs)

An RNN is a form of artificial neural network that takes the sequential data as input
and tries to learn the relationships between the elements in the sequence. The hidden
state in RNNs allows learned information from previous time steps to persist over
time. An RNN unit with feedback is shown in Fig. 1a, and an unrolled RNN in time
is shown in Fig. 1b.

The output ht of an RNN unit is a function of both the input xt and the previous
output ht − 1:

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time, where f is the RNN unit, x is the
input, and h represents hidden states

258 V. K. Kukkala et al.

ht = f (Wxt + Uht−1 + b) (1)

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W are
weight matrices, and b is the bias term. One of the major limitations of RNNs is
that they are very hard to train. Since RNNs and other sequence models handle
sequences or time-series inputs, backpropagation occurs through various time steps
(known as backpropagation through time). During this process, the feedback loop
in RNNs causes the errors to expand or shrink rapidly, thereby creating exploding
or vanishing gradients, respectively, which in turn destroys the information in
backpropagation. This vanishing gradient problem prohibits RNNs from learning
long-term dependencies. To solve this problem, additional states and gates were
introduced in the RNN unit in [42] to remember long-term dependencies, which led
to the development of LSTM Networks.

3.1.2 Long-/Short-Term Memory (LSTM) Networks

LSTMs unlike RNNs uses cell state and hidden state information along with
multiple gates to remember long-term dependencies between messages. The cell
state can be imagined as a freeway that carries relevant information throughout the
processing of a sequence. The state stores information from previous time steps
so that it can be used in subsequent time steps, reducing the effects of short-term
memory. The gates modify the information in the cell state. As a result, the gates
in LSTM assist the model in determining which information should be retained and
which should be ignored.

An LSTM unit contains three gates: (i) input gate (ft) (ii) forget gate (it), and (iii)
output gate (ot) as shown in Fig. 2a. The forget gate is a binary gate that determines
which information from the previous cell state (ct−1) to retain. The input gate adds
relevant information to the cell state (ct). Finally, the output gate uses information
from the previous two gates to produce an output. An LSTM unit unrolled in time
is shown in Fig. 2b.

LSTMs learn long-term dependencies in a sequence by using a combination of
different gates and hidden states. However, they are not computationally efficient
due to the addition of multiple gates, as the sequence path is more complicated
than in RNNs, which in turn requires more memory at runtime. Moreover, training
LSTMs have a high computation overhead even when the advanced training meth-
ods such as truncated backpropagation are employed. To overcome abovementioned
limitations, a simpler recurrent neural network called gated recurrent unit (GRU)
network was introduced in [43]. GRUs can be trained faster than LSTMs and also
can remember dependencies in long sequences with minimal overhead (in both
memory and runtime), while solving the vanishing gradient problem.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 259

Fig. 2 (a) A single LSTM unit with different gates and (b) unrolled LSTM unit in time, where f
is an LSTM unit, x is input, c is cell state, and h is the hidden state

3.1.3 Gated Recurrent Unit (GRU)

Unlike LSTMs, a GRU unit takes a different route for gating information. The input
and forget gate of the LSTM is combined into a solitary update gate and in addition
combines hidden and cell state, as shown in Fig. 3a, b.

A typical GRU unit contains two gates: (i) reset gate and (ii) update gate.
The reset gate combines new input with previous memory, while the update layer
determines how much relevant data should be stored. Thus, a GRU unit controls
the data stream similar to an LSTM by uncovering its hidden layer contents.
Moreover, GRUs are computationally more efficient than LSTMs as they achieve
this using fewer gates and states, with low memory overhead. It is crucial to use
lightweight machine learning models as real-time automotive ECUs are highly
resource-constrained embedded systems with strict energy and power budgets.
Thus, GRU-based networks are an ideal fit for inference in automotive systems.
Hence, INDRA chose to use a lightweight GRU-based model to implement an ADS
(explained in detail in Sect. 5).

260 V. K. Kukkala et al.

Fig. 3 (a) A single GRU unit with different gates and (b) GRU unit unrolled in time, where f is a
GRU unit, x is input, and h is the hidden state

The major advantage of sequence models is that they can be trained in both super-
vised and unsupervised learning fashion. Due to the large volume of CAN message
data in a vehicle, labeling all that data can become very tedious. Additionally, the
variability in the messages between vehicle models from the same manufacturer and
the proprietary nature of this information makes it even more challenging to label
messages correctly. Nonetheless, due to the ease of obtaining CAN message data
via onboard diagnostics (OBD-II), large amounts of unlabeled data can be collected
easily. Thus, INDRA uses GRUs in an unsupervised learning setting.

3.2 Autoencoders

Autoencoders are unsupervised learning-based artificial neural networks who try
to reconstruct the input by learning the latent input features. They accomplish this
by encoding the input data (x) to a hidden layer and finally decoding it to produce

a reconstruction .
∼
x (as shown in Fig. 4). This encoded information at the hidden

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 261

Fig. 4 A simple autoencoder network with encoder, decoder, and embedding layers of the network

layer is called an embedding. The layers that are used to create this embedding are
called the encoder, and the layers that are used in reconstructing the embedding
into the original input (decoding) are called the decoder. During the training
process, the encoder attempts to learn a nonlinear mapping of the inputs, while
the decoder tries to learn the nonlinear mapping of the embedding to the inputs.
The encoder and decoder accomplish this with the help of nonlinear activation
functions such as tanh and rectified linear unit (ReLU). Moreover, the autoencoder
aims to recreate the input as closely as possible by extracting important features
from the inputs with a goal of minimizing reconstruction loss. The most used loss
functions in autoencoders include mean squared error (MSE) and Kullback-Leibler
(KL) divergence.

Since autoencoders aim to reconstruct the input by learning the underlying
distribution of the input data, they are an excellent choice for efficiently learning and
reconstructing highly correlated time-series data by learning the temporal relations
between messages. Hence, our proposed INDRA framework uses lightweight GRUs
in an autoencoder to learn latent representations of CAN message data in an
unsupervised learning setting.

4 Problem Definition

4.1 System Model

In this chapter, we consider a generic automotive system consisting of multiple
ECUs connected using a CAN-based in-vehicle network, as shown in Fig. 5. Each
ECU connected in the network is responsible for running a specific set of automotive
applications that are hard real time in nature (i.e., have strict timing and deadline

262 V. K. Kukkala et al.

Fig. 5 Overview of the automotive system model considered in INDRA

constraints). Moreover, we assume that each ECU also runs anomaly detection
applications (ADS), which are responsible for monitoring and detecting anomalies
in the in-vehicle network. INDRA considers a distributed ADS approach (anomaly
detection application is collocated with automotive applications) as opposed to a
centralized ADS approach in which one central ECU handles all anomaly detection
tasks due to the following reasons:

• A centralized ADS approach is susceptible to single-point failures, which can
completely expose the system to the attacker.

• In the worst-case scenarios such as during a flooding attack (explained in Sect.
4.3), the centralized system might not be able to communicate with the victim
ECUs due to highly congested in-vehicle network.

• If an attacker successfully tricks the centralized ADS ECU, the attacks can go
undetected by the other ECUs, compromising the entire system; however, in
a distributed ADS scenario, it requires fooling multiple ECUs (which is more
difficult) to compromise the system. Moreover, in a distributed ADS scenario,
even if one of the ECU is compromised, the attacks can still be detected by the
decentralized intelligence.

• In a distributed ADS, ECUs can stop accepting messages as soon as an anomaly
is detected rather than having to wait for a centralized system to notify them,
resulting in faster reaction times.

• With a distributed ADS, the computation load of ADS is split among the ECUs
and monitoring can be limited to only required messages. As a result, multiple
ECUs can independently monitor a subset of messages with lesser overhead.

For the abovementioned reasons, many prior works such as [18, 25] also consider
a distributed ADS approach. Furthermore, with increasing computation power of
automotive ECUs, the collocation of ADS applications with real-time automotive

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 263

applications in a distributed manner should not be a problem, if the ADS has a
minimal overhead. INDRA framework is not only lightweight but also scalable, and
achieves high anomaly detection performance, as discussed in Sect. 6.

An ideal ADS should have low susceptibility to noise, low cost, and a low
power/energy footprint. The following are some of the key characteristics of an
efficient IDS, which were taken into consideration when designing our INDRA
ADS:

• Lightweight: Anomaly detection tasks can incur additional overhead on ECU,
which could result in poor application performance and missed deadlines for
real-time applications, which is catastrophic. Therefore, INDRA aims to have a
lightweight ADS that incurs minimal overhead on the ECU.

• Few false positives: This is a highly desired quality in any type of ADS (even
outside of the automotive domain), as dealing with false positives can quickly
become costly. Thus, a good ADS is expected to have few false positives or false
alarms.

• Coverage: This defines the range of attacks that an ADS can detect. A good ADS
must be capable of detecting more than one type of attack. Moreover, a high
coverage for ADS will make the system resistant to multiple attack surfaces.

• Scalability: This is an important requirement as the number of ECUs in emerging
vehicles is growing along with software and network complexity. A good ADS
should be highly scalable and capable of supporting multiple system sizes.

4.2 Communication Model

This subsection discusses vehicle communication model that was considered for
INDRA framework. INDRA primarily focuses on detecting anomalies in controller
area network (CAN) bus-based automotive CPS. CAN is the most commonly used
in-vehicle network protocol in modern automotive systems. CAN offers a low cost,
lightweight, event-triggered communication where messages are transmitted in the
form of frames. A typical standard CAN frame structure is shown in Fig. 6, and
the length of each field (in bits) is shown on the top. The standard CAN frame
consists of a header, payload, and trailer segment. The header contains information
of the message identifier (ID) and the length of the message, whereas the payload
segment contains the actual data that needs to be transmitted. The trailer section is
mainly used for error checking at the receiver. A variation of the CAN protocol,
called CAN-extended or CAN 2.0B, is also being deployed increasingly in modern
vehicles. The key difference being that CAN extended has a 29-bit identifier, which
allows for a greater number of messages IDs.

264 V. K. Kukkala et al.

Fig. 6 Standard frame format of a CAN message

Fig. 7 An example real-world CAN message with signal information [44]

Our proposed INDRA ADS focuses on monitoring the payload segment of the
CAN frame and observes for anomalies within the payload to detect cyberattacks.
This is because most modern-day attacks involve an attacker modifying the payload
to accomplish malicious activities. An attacker can also target the header or trailer
segments, but the message would get rejected at the receiver. The payload segment
comprises of multiple data entities called signals. An example real-world CAN
message with the list of signals within the message is shown in Fig. 7. Each signal
has a fixed size (in bits), assigned a particular data type, and a start bit that specifies
its location in the 64-bit payload segment of the CAN message.

INDRA focuses on monitoring individual signals within CAN payload to observe
for anomalies and detect attacks. During training, INDRA learns the temporal
dependencies between the messages at a signal level and observes for deviations
at runtime to detect attacks. The ability to detect attacks at a signal level enables
INDRA to not only detect the presence of an attacker but also help in identifying
the signal within the message that is under attack. This can be valuable information
for understanding the intentions of the attacker, which can be used for developing
appropriate countermeasures. The details about the signal level monitoring of
INDRA ADS are discussed in Sect. 5.2. Note: Even though our proposed INDRA
framework focuses on detecting attacks by monitoring CAN messages, our approach
is protocol-agnostic and can be used with other in-vehicle network protocols (such
as FlexRay and LIN) with minimal changes.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 265

4.3 Attack Model

Our proposed INDRA ADS aims to protect the vehicle from various types of attacks
that are most commonly seen and difficult to detect attacks in the domain of
automotive CPS. Moreover, these attacks have been widely used in literature to
evaluate ADSs.

1. Flooding attack: This is the most common and simple to launch attack, and it
requires no knowledge of the system. In this attack, the attacker continuously
floods the in-vehicle network with a random or specific message with the
goal of preventing other ECUs from accessing the bus and rendering the bus
unusable. These attacks are typically detected by the vehicle’s network bridges
and gateways and often do not reach the last line of defense (the ADS). However,
it is crucial to consider these attacks as they can have serious consequences when
not handled correctly.

2. Plateau attack: In this attack, an attacker overwrites a signal value with a
constant value for the entirety of the attack interval. The severity of this attack
is determined by the magnitude of the jump (increase in signal value) and the
duration for which it is held. Larger jumps in signal values are easier to detect
compared with shorter jumps.

3. Continuous attack: In this attack, an attacker gradually overwrites the signal
value with the goal of achieving some target value while avoiding the activation
of an ADS. This attack is difficult to detect and can be sensitive to the ADS
parameters (discussed in Sect. 5.2).

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by
either disabling the target ECU’s communication controller or shutting down the
ECU. These attacks are easy to detect because they disrupt message transmission
for long durations but are harder to detect for shorter durations.

5. Playback attack: In this attack, the attacker attempts to trick the ADS by
replaying a valid series of message transmissions from the past. This attack is
hard to detect if the ADS lacks the ability to capture the temporal relationships
between messages and detect when they are violated.

Moreover, in this work, we assume that the attacker can gain access to the
vehicle using the most common attack vectors such as connecting to V2X systems
that communicate with the outside world (e.g., infotainment and connected ADAS
systems), connecting to the OBD-II port, probe-based snooping on the in-vehicle
bus, and by replacing an existing ECU. We also assume that the attacker has access
to the network parameters (such as parity, flow control, and BAUD rate) that can
further assist in gaining access to the in-vehicle network.

Problem objective: The goal of our proposed INDRA framework is to implement a
lightweight ADS that can detect a variety of attacks (mentioned above) in a CAN-
based automotive CPS, with a high detection accuracy and low false positive rate
while maintaining a large attack coverage.

266 V. K. Kukkala et al.

5 INDRA Framework Overview

INDRA framework enables a machine learning-based signal level ADS for moni-
toring CAN messages in automotive embedded CPS. An overview of the proposed
framework is depicted in Fig. 8. The INDRA framework is divided into design-time
and runtime steps. During design time, INDRA uses trusted CAN message data to
train a recurrent autoencoder-based model that learns the normal system behavior.
At runtime, the trained recurrent autoencoder model is used to detect anomalies
based on deviations from normal system behavior computed using the proposed
anomaly score metric. These steps are described in greater detail in the subsequent
subsections.

5.1 Recurrent Autoencoder

Recurrent autoencoders are powerful neural networks that are designed to behave
similar to an encoder–decoder structure but can handle time-series or sequence
data as inputs. They can be represented as regular feed-forward neural network-
based autoencoders, with neurons that are RNN, LSTM, or GRU units (discussed in
Sect. 3). Recurrent autoencoders, like regular autoencoders, have an encoder and a
decoder stage. The encoder generates a latent representation of the input data in an
n-dimensional space. The decoder uses this latent representation from the encoder
output and attempts to reconstruct the input data with minimal reconstruction loss.
In INDRA, we propose a new lightweight recurrent autoencoder model, which is
tailored for the design of ADS to detect cyberattacks in the in-vehicle network data.

Fig. 8 Overview of INDRA ADS framework

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 267

Fig. 9 Proposed model architecture of the recurrent autoencoder used in INDRA (f is number of
features, i.e., number of signals in the input CAN message, and MCV is message context vector)

The details of the proposed model architecture and the various steps involved in its
training and evaluation are discussed in the subsequent sections.

5.1.1 Model Architecture

Our proposed recurrent autoencoder model architecture with the input and output
dimensions of each layer is shown in Fig. 9. The model comprises of a linear
layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear layer
before the final output. The first linear layer receives the input time-series CAN
message data with signal level values with f features (where f is the number of
signals in the message). The linear layer output is passed to the GRU-based encoder,
which generates the latent representation of the time-series signal inputs. This latent
representation is referred to as a message context vector (MCV). The MCV captures
the context of various signals in the input message in the form of a vector. Each
value in the MCV can be viewed as a point in an n-dimensional space containing the
context of the series of signal values provided as input. The MCV is fed into a GRU-
based decoder, which is then followed by a linear layer to produce the reconstruction
of the input CAN message data with individual signal values. The loss between
the input and the reconstructed input is calculated using mean square error (MSE),
and the weights are updated using backpropagation through time. INDRA designs a
recurrent autoencoder model for each message ID.

5.1.2 Training Process

The training procedure starts with the preprocessing of the recorded CAN message
data from a trusted vehicle. Each sample in the dataset consists of a message ID and
the corresponding signal values contained within that message ID. In some cases,
the range of signal values can be very large, which can make the training process

268 V. K. Kukkala et al.

Fig. 10 Example of a rolling
window approach

extremely slow or unstable. To prevent this, we scale the signal values between 0
and 1 for each signal type. Moreover, scaling signal values also helps to avoid the
problem of exploding gradients (as discussed in Sect. 3).

The preprocessed CAN data is divided into training data (85%) and validation
data (15%), which is then prepared for training using a rolling window-based
approach. This involves choosing a fixed size window and rolling it to the right
by one sample every time step. Figure 10 illustrates a rolling window of size
three samples and its movement for the three consecutive time steps. The term . Sji
represents the ith signal value at jth sample. The elements in the rolling window are
referred to as a subsequence, and the size of the subsequence is equal to the size
of the rolling window. Our proposed recurrent autoencoder model attempts to learn
the temporal relationships that exist between the series of signal values because
each subsequence consists of a set of signal values over time. These signal level
temporal relationships aid in detecting more complex attacks such as continuous
and playback (as discussed in Sect. 4.3). The process of training using subsequences
is done iteratively until the end of the training data.

Each iteration during the training process consists of a forward pass and a
backward pass (using backpropagation through time to update the weights and
biases of the neurons-based on the error value (as discussed in Sect. 3)). The model’s
performance is evaluated (forward pass only) at the end of the training using the
validation data, which was not seen by the model during the training. The model
has seen the complete dataset once by the end of validation, which is known as an
epoch. The model is trained for a set number of epochs until the model reaches
convergence. Moreover, the process of training and validation using subsequences
is sped up by training the input subsequences data in groups known as mini-batches.
Each mini-batch is made up of several consecutive subsequences that are given as
the input to the model in parallel. The size of each mini-batch is referred to as
batch size. Finally, a learning rate is defined to control the rate of update of the
model parameters during backpropagation phase. These hyperparameters such as
subsequence size, batch size, and learning rate are covered in detail in Sect. 6.1.

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 269

5.2 Inference and Detection

The trained model is set to evaluation mode at runtime, meaning that only forward
passes are performed, and the weights are not updated. During this phase, the
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3),
by simulating appropriate attack condition in the CAN message dataset.

Every data sample that passes through the model is reconstructed, and the
reconstruction loss is sent to the detection module, which then computes a metric
called anomaly score (AS). The AS helps in determining whether a signal is
anomalous or normal. The AS is calculated at a signal level to predict which signal
is under attack. AS is computed as a squared error during each iteration of the
inference to estimate the prediction deviation from the input signal value, as shown
in (2).

ASi =
(
S
j
i − Ŝ j i

)2 ∀i ∈ [1,m] (2)

where, . Sji denotes the ith signal value at jth sample, . Ŝji represents its reconstruction,
and m is the number of signals in the message. We observe a large deviation
for predicted value from the input signal value (i.e., large AS value), when the
current signal pattern is not seen during the training phase and a minimal AS value
otherwise. This serves as the foundation for our detection phase.

Since the dataset lacks a signal level anomaly label information, INDRA com-
bines the signal level AS information into a message-level AS, by calculating the
maximum AS of the signals in that message as shown in (3).

MIS = max (AS1, AS2, . . . ,ASm) (3)

To achieve adequate detection accuracy, the anomaly threshold (AT) for flagging
messages is carefully chosen. INDRA investigates multiple choices for AT, using the
best model from the training process. The model with the lowest running validation
loss, from the training process, is defined as the best model. From this model,
multiple metrics such as maximum, mean, median, 99.99%, 99.9%, 99%, and 90%
validation loss are logged across all iterations as the choices for the AT. The analysis
for selection of the AT metric is presented in detail in Sect. 6.2.

A working snapshot of INDRA ADS working in an environment with attacks
is illustrated in Fig. 11a, b, with a plateau attack on a message with three signals,
between time 0 and 50. Figure 11a compares the input (true) vs ADS predicted
signal value comfort three signals. The attack interval is represented by the blue
highlighted area. It can be observed that the reconstruction is close for almost
all signals except during the attack interval for majority of the time. Signal 3 is
subjected to a plateau attack in which the attacker maintains a constant value until
the end of attack interval as illustrated in the third subplot of Fig. 11a (note the
larger difference between the predicted and actual input signal values in that subplot,

270 V. K. Kukkala et al.

Fig. 11 Working of INDRA ADS checking a message with three signals under a plateau attack,
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and
Anomaly flag

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 271

compared to for signals 1 and 2). Figure 11b depicts multiple signal anomaly scores
for the three signals. The dotted black line represents the anomaly threshold (AT).
As previously stated, the maximum of signal anomaly scores is chosen as message
anomaly score (MAS), which in this case is the AS of signal 3. The anomaly score
of signal 3 is above the AT, for the entire duration of the attack interval as shown
in Fig. 11b, highlighting INDRA’s ability to detect such attacks. The value of AT
(equal to 0.002) in Fig. 11b is calculated using the method described in Sect. 6.2.
It is important to note that this value is specific to the example case shown in Fig.
11 and is not the threshold value used for our remaining experiments. The details of
AT selection technique are discussed in detail in Sect. 6.2.

6 Experiments

6.1 Experimental Setup

A series of experiments have been conducted to evaluate the performance of our
proposed INDRA ADS. We begin by presenting an analysis for the selection of
anomaly threshold (AT). The derived AT is used to contrast against two variants of
the same framework known as INDRA-LED and INDRA-LD. The former removes
the linear layer before the output, essentially leaving the task of decoding the context
vector to GRU-based decoder. The abbreviation LED stands for (L) linear layer, (E)
encoder GRU, and (D) decoder GRU. The second variation substitutes a series of
linear layers for the GRU and the linear layer at the decoder (LD stands for linear
decoder). These experiments were carried to assess the importance of different
layers in the network. However, the encoder side of the network is not changed
because it is required to generate an encoding of the time-series data. INDRA
investigates other variants as well, but they were not included in the discussion as
their performance was lesser compared with that of LED and LD variants.

Subsequently, the best INDRA variant is compared with three prior works: pre-
dictor LSTM (PLSTM [38]), replicator neural network (RepNet [39]), and CANet
[36]. The first comparison work (PLSTM) employs an LSTM-based network that
has been trained to predict the signal values in the following message transmission.
PLSTM accomplishes this by taking the 64-bit CAN message payload as the input
and learning to predict the signal at a bit-level granularity by minimizing prediction
loss. The bit level deviations between the real and the predicted next signal values
are monitored using a log loss or binary cross-entropy loss function. PLSTM uses
the prediction loss values during runtime to decide whether a particular message is
anomalous or not. The second comparison work (RepNet) employs a series of RNN
layers to increase the dimensionality of the input data and reconstruct the signal
values by decreasing back to the original dimensionality. RepNet accomplishes
this by reducing the mean squared error between the input and the reconstructed
signal values. At runtime, large deviations between the input received signal and

272 V. K. Kukkala et al.

the reconstructed signal values are used to detect attacks. Finally, CANet uses a
quadratic loss function to minimize the signal reconstruction error by combining
multiple LSTMs and linear layers in an autoencoder architecture. All experiments
conducted with INDRA and its variants and prior works are discussed in subsequent
subsections.

The SynCAN dataset developed by ETAS and Robert Bosch GmbH [36] was
used to evaluate INDRA framework with its variants and against prior works. The
dataset contains CAN message data for ten different IDs that have been modeled
after real-world CAN message data. Furthermore, the dataset consists of both
training and test data with multiple attacks (discussed in Sect. 4.3). Each row in the
dataset contains a timestamp, message ID, and individual signal values. In addition,
the test data contains a label column with either 0 or 1 values indicating normal or
anomalous messages. The label information is available per message basis and does
not specify which signal within the message is under attack. This label information
is used to evaluate the proposed ADS over several metrics such as detection accuracy
and false positive rate and is discussed in detail in the next subsections. Moreover,
to simulate a more realistic attack scenario in the in-vehicle networks, the test data
also contains normal CAN traffic between the attack injections. Note: The label
information in the training data is not used to train INDRA model, as INDRA model
learns the patterns in the input data in an unsupervised manner.

All the machine learning-based frameworks including the INDRA framework and
its variants as well as comparison works are implemented using Pytorch 1.4. INDRA
conducts various experiments to select the best performing model hyperparameters
(number of layers, hidden unit sizes, and activation functions). The final model
discussed in Sect. 5.1 was trained using the SynCAN data set, with 85% of train
data used for training and the remaining for validation. The validation data is
primarily used to assess the model performance at the end of each epoch. The
model is trained for 500 epochs, using a rolling window approach (as discussed
in Sect. 5.1.2) with the subsequence size of 20 messages and the batch size of 128.
Moreover, an early stopping mechanism is implemented to monitor the validation
loss across epochs and stop the training process if there is no improvement after 10
(patience) epochs. The initial learning rate is chosen as 0.0001, and tanh activations
are applied after each linear and GRU layers. Furthermore, ADAM optimizer is
used with the mean squared error (MSE) as the loss criterion. The trained model
parameters were used during testing and considered multiple test data inputs to
simulate attack scenarios. The anomaly score metric (as stated in Sect. 5) was used
to calculate the anomaly threshold to flag the message as anomalous or normal.
To evaluate the model performance, several performance metrics such as detection
accuracy and false positive rate were considered. All the simulations were executed
on an AMD Ryzen-9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Finally, before the experimental results section, we present the following defini-
tions in the context of ADS:

• True positive (TP) – when the ADS detects an actual anomalous message as an
anomaly

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 273

• False negative (FN) – when the ADS detects an actual anomalous message as
normal

• False positive (FP) – when the ADS detects a normal message as an anomaly (aka
false alarm)

• True negative (TN) – when the ADS detects an actual normal message as normal.

INDRA framework focuses on two key performance metrics: (i) detection
accuracy, a measure of ADS ability to detect anomalous messages correctly, and
(ii) false positive rate, also known as false alarm rate. These metrics are computed
as shown in (4) and (5):

Detection accuracy = TP + TN

TP + FN + FP + TN
(4)

False positive rate = FP

FP + TN
(5)

6.2 Anomaly Threshold Selection

This subsection presents a detailed analysis on the selection of anomaly threshold
(AT) by considering various options such as max, median, mean, and different
quantile bins of validation loss of the final model. The idea is that the model
reconstruction error for the normal message should be much smaller than the
error for anomalous messages. Hence, INDRA explores several candidate options
to achieve this goal that would work across multiple attack and no-attack scenarios.
A high threshold value can make it harder for the model to detect the attacks that
change the input pattern minimally (e.g., continuous attack). On the other hand,
having a small threshold value can cause multiple false alarms, which is highly
undesirable. Hence, it becomes crucial to select an appropriate threshold value to
optimize the performance of the model.

Figure 12a, b shows the detection accuracy and false positive rate, respectively,
for various candidate options to calculate AT under different attack scenarios. The
results from the Fig. 12 indicate that selecting higher validation loss as the AT can
lead to a high accuracy and low false alarm rate. However, selecting a very high
value (e.g., “max” or “99.99 percentile”) may result in missing small variations
in the input patterns that are found in more sophisticated attacks. We empirically
conclude that the maximum and 99.99 percentile values to be very close. To capture
attacks that produce small deviations, a slightly smaller threshold value is selected
that would still perform similar to max and 99.99 percentile thresholds on all of the
current attack scenarios. Therefore, INDRA chooses the 99.9th percentile value of
the validation loss as the value of the anomaly threshold (AT) and uses the same AT
value for the remainder of the experiments discussed in the next subsections.

274 V. K. Kukkala et al.

Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of
anomaly threshold (AT) as a function of validation loss under different attack scenarios (% refers
to percentile not percentage)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 275

6.3 Comparison of INDRA Variants

After selecting the correct anomaly threshold from the previous subsection, we
use that same criterion for evaluating against two other variants: INDRA-LED and
INDRA-LD. The main intuition behind evaluating different variants of INDRA is to
investigate the impact of different types of layers in the model on the performance
metrics discussed in Sect. 6.1.

Figure 13a illustrates the detection accuracy for INDRA framework and its
variants on y-axis with multiple types of attacks and for a no-attack scenario
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other
two variants and has high accuracy in most of the attack scenarios. It should be
noted that the high accuracy is achieved by monitoring at a signal level as opposed
to prior works that monitors at the message level.

Figure 13b illustrates the false positive rate or false alarm rate of INDRA and
other variants under different attack scenarios. When compared with other variants,
INDRA has the lowest false positive rate and highest detection accuracy. Moreover,
INDRA-LED, which is just short of a linear layer at the decoder end, is the
second-best performing model after INDRA. The ability of INDRA-LED to use a
GRU-based decoder helps in reconstructing the MCV back to original signals. It
can be clearly seen in both Fig. 13a, b that the absence of GRU layers on the output
decoder end for INDRA-LD results in significant performance degradation. As a
result, INDRA is chosen as the candidate model for subsequent experiments.

6.4 Comparison with Prior Works

Our proposed INDRA framework is compared with some of the best-known prior
works in the ADS area such as PLSTM [38], RepNet [39], and CANet [36]. Figure
14a, b shows the detection accuracy and false positive rate, respectively, for the
various techniques under different attack scenarios.

From the Fig. 14a, b, it is evident that INDRA achieves high accuracy for each
attack scenario while also achieving low positive rates. The ability to monitor
signal level variations combined with more cautious selection of anomaly threshold
gives INDRA an advantage over comparison works. PLSTM and RepNet use the
maximum validation loss in the final model as the threshold, whereas CANet
uses interval-based monitoring to detect anomalous messages. Choosing a higher
threshold helped PLSTM to achieve slightly lower false positive rates for some
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks
with minor variations in the input data. This is because the deviations produced
by some of the complex attacks are small and the attacks go undetected due to the
large thresholds. Moreover, CANet’s interval-based monitoring struggles to find an
optimal value for the thresholds. Lastly, the false positive rates of INDRA remain
significantly low with the maximum of 2.5% for plateau attacks. It should be noted

276 V. K. Kukkala et al.

Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 277

Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior
works PLSTM [38], RepNet [39] and CANet [36]

278 V. K. Kukkala et al.

Table 2 Memory footprint comparison between our proposed INDRA framework and the prior
works PLSTM [38], REPNET [39], and CANET [36]

ADS framework Memory footprint (KB)

PLSTM [38] 13,417
RepNet[39] 55
CANet [36] 8718
INDRA 443

that the y-axis in Fig. 14b has a much smaller scale than in Fig. 14a, and the
magnitude of the false positive rate is very small.

6.5 ADS Overhead Analysis

A detailed analysis of the overhead incurred by our proposed INDRA ADS is
discussed in this subsection. The overhead is quantified in terms of both memory
footprint and time taken to process an incoming message, i.e., inference time.
The former metric is important because the automotive ECUs are highly resource
constrained and have limited memory and compute capacities. Therefore, having
a low memory overhead is crucial to avoid interference with real-time automotive
applications. The inference time metric not only provides important information
about the time it takes to detect the attacks but also can be used to compute the
utilization overhead on the ECU. Thus, the abovementioned two metrics are used to
analyze the overhead and quantify the lightweight nature of INDRA ADS.

To accurately capture the overhead of our proposed INDRA framework and the
prior works, we implemented the ADSs on an ARM Cortex- A57 CPU on a Jetson
TX2 board, which has similar specifications to the state-of-the-art multi-core ECUs.
Table 2 shows the memory footprint of INDRA framework and the prior works
mentioned in the previous subsections. It is clear that INDRA framework has a
low memory footprint compared with the prior works, except for the RepNet [39].
However, it is important to observe that even though INDRA framework has slightly
higher memory footprint compared with the RepNet [39], INDRA outperforms all
the prior works including RepNet [39] in all performance metrics under multiple
attack scenarios, as shown in Fig. 14. The heavier (high memory footprint) models
can capture a wide range of system behaviors; however, they are not an ideal choice
for resource constrained automotive CPS. On the contrary, a much lighter model
(such as RepNet) fails to capture crucial details about the system behavior due to its
limited model parameters, which in turn suffers from performance issues.

In order to understand the inference overhead, we benchmarked the different
ADS frameworks on an ARM Cortex- A57 CPU. In this experiment, different
system configurations are considered to encompass a wide variety of ECU hardware
that is available in the state-of-the-art vehicles. Based on the available hardware
resources, a single core (employs only one CPU core) and dual core (employs

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 279

Table 3 Inference time comparisons between our proposed INDRA framework and the prior
works PLSTM [38], REPNET [39], and CANET [36] using single and dual core configurations

Average inference time (µs)
ADS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU

PLSTM [38] 681.18 644.76
RepNet [39] 19.46 21.46
CANet [36] 395.63 378.72
INDRA 80.35 72.91

two CPU cores) system configurations were selected on the Jetson TX2. The ADS
frameworks are executed ten times for the different CPU configurations, and the
average inference time (in µs) are recorded in Table 3. From the results in Table
3, it is evident that the INDRA framework has significantly faster inference times
compared with the prior works (excluding RepNet) under all configurations. This
is partly due to the lower memory footprint of INDRA framework. As previously
stated, even though RepNet has a lower inference time, it has the worst performance
of any compared framework, as shown in Fig. 14. The large inference times for the
better performing frameworks can have an impact on the real-time performance of
the control systems in the vehicle and can result in catastrophic deadline misses. We
also believe that using a dedicated deep learning accelerator (DLA) further enhance
the performance of the ADS models.

Thus, from Fig. 14 and Tables 2 and 3, it is clear that INDRA achieves a clear
balance of having superior anomaly detection performance while maintaining low
memory footprint and fast inference times, making it a powerful and lightweight
ADS solution.

6.6 Scalability Results

In this subsection, an analysis on the scalability of INDRA framework is presented
by studying the system performance using the ECU utilization metric as a function
of increasing system complexity (number of ECUs and messages). Each ECU
in the system has a real-time utilization (URT) and an ADS utilization (UADS)
from running real-time and ADS applications, respectively. We primarily focus on
analyzing the ADS overhead (UADS), as it is a measure of the compute efficiency
of the ADS. Since the safety-critical messages monitored by the ADS are periodic
in nature, the ADS can be modeled as a periodic application with period that is the
same as the message period [5]. Thus, monitoring an ith message mi results in an
induced ADS utilization (UADS, mi) at an ECU, which can be calculated as:

UIDS,mi
=

(
TIDS

Pmi

)
(6)

280 V. K. Kukkala et al.

where TADS and Pmi denote the time taken by the ADS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all ADS utilizations as a result of monitoring different messages is the
overall ADS utilization at that ECU (UADS) and is given by:

UIDS =
∑n

i=1
UIDS,mi

(7)

To evaluate the scalability of INDRA, six different system sizes were considered.
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45, 50,
100} (all periods in ms) in automotive CPS is considered to sample uniformly, when
assigning periods to the messages in the system. These messages are distributed
evenly among different ECUs and the ADS utilization is calculated using (6) and
(7). INDRA assumes a pessimistic scenario where all the ECUs in the system have
only a single core. This would allow us to analyze the worst case overhead of the
ADS.

Figure 15 shows the average ECU utilization for different system sizes denoted
by {p, q}, where p is the number of ECUs and q is the number of messages in the
system. In this work, a very pessimistic estimate of 50% real-time ECU utilization
for real-time automotive applications (“RT Util”, as shown in the dotted bars) is

Fig. 15 Scalability analysis of our proposed INDRA ADS for different system sizes and the prior
works PLSTM [38], RepNet [39], and CANet [36]

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 281

assumed. The solid bars on top of the dotted bars represent the overhead incurred
by the ADS executing on the ECUs, and the red horizontal dotted line represents
the 100% ECU utilization mark. It is critical to avoid exceeding the 100% ECU
utilization limit under any scenario, as it could create undesired latencies resulting in
missing deadlines, for time-critical automotive applications that can be catastrophic.
It is clear from the results that the prior works such as PLSTM and CANet incur
heavy overhead on the ECUs while RepNet and our proposed INDRA framework
have very minimal overhead that is favorable to increasing system sizes. From the
results in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not
only does INDRA achieve better performance in terms of both accuracy and low
false positive rate for anomaly detection than state-of-the-art prior work but also is
lightweight and highly scalable.

7 Conclusion

In this chapter, we presented a novel recurrent autoencoder-based lightweight
anomaly detection system called INDRA for distributed automotive cyber-physical
systems. INDRA framework uses a metric called anomaly score (AS) to measure
the deviation of the prediction signal from the actual input. INDRA also presents
a thorough analysis of our anomaly threshold selection process and compared with
the best-known prior works in this area. The promising results indicate a compelling
potential for utilizing our proposed approach in emerging automotive platforms.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. Kukkala, V.K., Bradley, T., Pasricha, S.: Priority-based multi-level monitoring of signal
integrity in a distributed powertrain control system. In: Proceedings of IFAC Workshop on
Engine and Powertrain Control, Simulation and Modeling. IEEE (2015)

2. Kukkala, V.K., Bradley, T., Pasricha, S.: Uncertainty analysis and propagation for an auxiliary
power module. In: Proceedings of IEEE Transportation Electrification Conference (TEC).
IEEE (2017)

3. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS: Jitter-aware message scheduling for FlexRay
automotive networks. In: Proceedings of IEEE/ACM International Symposium on Network-
on-Chip (NOCS). IEEE (2017)

4. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS-SG: a framework for Jitter-aware message
scheduling for time-triggered automotive networks. ACM Trans. Des. Autom. Electron. Syst.
24(6), 1–31 (2019)

5. Kukkala, V., Pasricha, S., Bradley, T.: SEDAN: security-aware design of time-critical automo-
tive networks. IEEE Trans. Veh. Technol. 69(8), 9017–9030 (2020)

6. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: intrusion detection using recurrent
autoencoders in automotive embedded systems. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 39(11), 3698–3710 (2020)

282 V. K. Kukkala et al.

7. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: LATTE: LSTM self-attention based anomaly
detection in embedded automotive platforms. ACM Trans. Embed. Comput. Syst. 20(5s,
Article 67), 1–23 (2021)

8. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: temporal CNN with attention for
anomaly detection in automotive cyber-physical systems. In: Proceedings of IEEE/ACM Asia
& South Pacific Design Automation Conference (ASPDAC). IEEE (2022)

9. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: Roadmap for cybersecurity in autonomous
vehicles. In: IEEE Consumer Electronics Magazine (CEM). IEEE (2022)

10. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. SAE Int. J. Connected Autom. Veh. 1(2), 81 (2018)

11. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. In: Proceedings of SAE World Congress Experience (WCX). SAE Technical
Paper (2018)

12. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley,
T.H.: Enabling prediction for optimal fuel economy vehicle control. In: Proceedings of SAE
World Congress Experience (WCX). SAE Technical Paper (2018)

13. Dey, J., Taylor, W., Pasricha, S.: VESPA: a framework for optimizing heterogeneous sensor
placement and orientation for autonomous vehicles. IEEE Consum. Electron. Mag. 10(2), 16
(2021)

14. Kukkala, V.K., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: a path toward
autonomous vehicles. IEEE Consum. Electron. Mag. 7(5), 18 (2018)

15. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor,
B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern
automobile. In: Proceedings of IEEE Symposium on Security and Privacy (SP). IEEE (2010)

16. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA
(2015)

17. Izosimov, V., Asvestopoulos, A., Blomkvist, O., Törngren, M.: Security-aware development of
cyber-physical systems illustrated with automotive case study. In: Proceedings of IEEE/ACM
Design, Automation & Test in Europe & Exhibition (DATE). IEEE (2016)

18. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., Laarouchi, Y.: A language-based intrusion
detection approach for automotive embedded networks. Int. J. Embed. Syst. 10(8), 1–12 (2018)

19. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of ID
sequences. In: Proceedings of IEEE Intelligent Vehicle Symposium (IV). IEEE (2017)

20. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks- practical
examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1), 11 (2011)

21. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack detection
for in-vehicle networks. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV). IEEE
(2008)

22. Aldwairi, M., Abu-Dalo, A.M., Jarrah, M.: Pattern matching of signature-based IDS using
Myers algorithm under MapReduce framework. EURASIP J. Inf. Secur. 2017(1), 1–11 (2017)

23. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica. 1, 251–266
(1986)

24. Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection to automotive IT-early insights
and remaining challenges. J. Inf. Assur. Secur. 4(6), 226–235 (2009)

25. Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.:
Automotive electrical and electronic architecture security via distributed in-vehicle traffic
monitoring. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 1790–1803 (2017)

26. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection.
In: Proceedings of USENIX. USENIX Association (2016)

27. Ying, X., Sagong, S.U., Clark, A., Bushnell, L., Poovendran, R.: Shape of the cloak: formal
analysis of clock skew-based intrusion detection system in controller area networks. IEEE
Trans. Inf. Forensics Secur. 14(9), 2300–2314 (2019)

Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems 283

28. Yoon, M.K., Mohan, S., Choi, J., Sha, L.: Memory heat map: anomaly detection in real-
time embedded systems using memory behavior. In: Proceedings of IEEE/ACM/EDAC Design
Automation Conference (DAC). IEEE (2015)

29. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: Proceedings
of IEEE Intelligent Vehicles Symposium (IV). IEEE (2011)

30. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection for in-vehicle
networks. In: Proceedings of IEEE International Conference on Intelligent and Advanced
System (ICIAS). IEEE (2010)

31. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive
CAN bus. In: Proceedings of World Congress on Industrial Control Systems Security (WCI-
CSS). IEEE (2015)

32. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car hacking identification through fuzzy
logic algorithms. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE). IEEE (2017)

33. Vuong, T.P., Loukas, G., Gan, D.: Performance evaluation of cyber-physical intrusion detection
on a robotic vehicle. In: Proceedings of IEEE International Conference on Computer and Infor-
mation Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM).
IEEE (2015)

34. Levi, M., Allouche, Y., Kontorovich, A.: Advanced analytics for connected car cybersecurity.
In: Proceedings of IEEE Vehicular Technology Conference (VTC). Springer (2018)

35. Kang, M.J., Kang, J.W.: A novel intrusion detection method using deep neural network for in-
vehicle network security. In: IEEE Proceedings of Vehicular Technology Conference (VTC).
Springer (2016)

36. Hanselmann, M., Strauss, T., Dormann, K., Ulmer, H.: CANet: an unsupervised intrusion
detection system for high dimensional CAN bus data. In: IEEE Access, vol. 8, p. 58194 (2020)

37. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-
physical intrusion detection for vehicles using deep learning. IEEE Access. 6(1), 3491–3508
(2018)

38. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data
with long short-term memory networks. In: Proceedings of IEEE International Conference on
Data Science and Advanced Analytics (DSAA). IEEE (2016)

39. Weber, M., Wolf, G., Sax, E., Zimmer, B.: Online detection of anomalies in vehicle signals
using replicator neural networks. In: Proceedings of ESCAR USA (2018)

40. Weber, M., Klug, S., Sax, E., Zimmer, B.: Embedded hybrid anomaly detection for automotive
can communication. In: Embedded Real Time Software and Systems (ERTS) (2018)

41. Schmidhuber, J.: Habilitation thesis: system modeling and optimization (1993)
42. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies. In: A Field Guide to Dynamical Recurrent
Neural Networks. IEEE Press (2001)

43. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio,
Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint, arXiv:1406.1078 (2014)

44. DiDomenico, G.C., Bair, J., Kukkala, V.K., Tunnell, J., Peyfuss, M., Kraus, M., Ax, J., Lazarri,
J., Munin, M., Cooke, C., Christensen, E.: Colorado State University EcoCAR 3 final technical
report. In: SAE World Congress Experience (WCX). SAE Technical Paper (2019)

MELETI: A Machine-Learning-Based
Embedded System Architecture for
Infrastructure Inspection with UAVs

Marios Pafitis, Antonis Savva, Christos Kyrkou, Panayiotis Kolios,
and Theocharis Theocharides

1 Introduction

Modern societies depend heavily on critical infrastructure systems that put pressure
on operators such as Electricity and Telecommunication Authorities (EAs/TAs)
to support the increasing demands [1, 2]. For instance, the power transmission is
operated across many kilometers of low-voltage (LV), medium-voltage (MV), and
high-voltage (HV) networks, while telecommunication networks are consistently
increasing their deployment density to support the increasing user base.

The infrastructures of those authorities are frequently exposed to extreme
weather conditions and span across large areas with harsh environments [1, 3, 4],
leading to expensive monitoring, maintenance, and upgrade operations that sig-
nificantly affect the provided quality of experience (QoE) and quality of service
(QoS) [1, 4]. Evidently, potential malfunctions can cause power outages, telecom-
munication network outages, and even fire outbreaks [1, 4], urging EAs and TAs to
take preventive measures to avoid those infrastructure failures and minimize their
financial and environmental impacts [1, 4, 5]. For instance, half-hour and eight-
hour blackouts in the USA approximately cost the operators $16,000 and $94,000,
respectively [4]. This initiates a domino effect that can end up in millions of dollars
in financial losses [5, 6].

To lessen these outcomes, EAs and TAs periodically conduct inspections on their
infrastructures with qualified workers that are sent across the power lines or the
telecommunication base stations on foot or with helicopters [4]. In most cases, the
trained inspectors visually assess the condition of the infrastructure, which may

M. Pafitis · A. Savva · C. Kyrkou · P. Kolios · T. Theocharides (�)
KIOS Research and Innovation Center of Excellence and the Department of Electrical and
Computer Engineering, University of Cyprus, Nicosia, Cyprus
e-mail: savva.d.antonis@ucy.ac.cy; kyrkou.christos@ucy.ac.cy; kolios.panayiotis@ucy.ac.cy;
ttheocharides@ucy.ac.cy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_12

285

 31368 2385 a 31368 2385 a

 885 55738 a 885 55738 a

mailto:savva.d.antonis@ucy.ac.cy
mailto:savva.d.antonis@ucy.ac.cy
mailto:savva.d.antonis@ucy.ac.cy
mailto:savva.d.antonis@ucy.ac.cy
mailto:savva.d.antonis@ucy.ac.cy

 11471 55738 a 11471 55738 a

mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy
mailto:kyrkou.christos@ucy.ac.cy

 22103 55738 a 22103
55738 a

mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy
mailto:kolios.panayiotis@ucy.ac.cy

 -2016 56845 a -2016 56845 a

mailto:ttheocharides@ucy.ac.cy
mailto:ttheocharides@ucy.ac.cy
mailto:ttheocharides@ucy.ac.cy
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12
https://doi.org/10.1007/978-3-031-40677-5_12

286 M. Pafitis et al.

include the use of binoculars or dedicated cameras to detect specific malfunctions,
such as increased temperatures and corona effects on the power insulators [1, 4,
7], or corrosion on the base stations and antenna damages [8]. This personnel is
always at risk in conducting either of these inspection, while fatigue levels affect
dramatically the efficiency of the whole process [4].

Within this context, UAVs could stem as a promising and flexible solution
for all the different needs in infrastructure inspection. UAVs can collect high-
quality data from a plethora of sensors, such as high-resolution visible imaging
sensors, infrared thermal imaging cameras, light detection and ranging (LiDAR),
gyroscopes, accelerometers, magnetometers, GPS/GNSS, and more. Additionally,
UAVs can easily reach the infrastructure to be inspected, especially in those cases
where it is impractical or extremely dangerous for the inspector to do so. Besides,
in comparison with helicopter-based approaches, the associated operating cost for
a UAV is significantly lower [1]. This cost is projected to decrease in the future
due to the widespread commercial availability of UAVs [1, 4]. Furthermore, there
is an increasing interest in developing autonomous systems that perform multi-
sensor real-time data acquisition for detecting defects on infrastructures. The main
limitation of such efforts is that the remote pilot needs to control the flight process by
precisely positioning the UAV and the sensors, to correctly and accurately collect
the data. In addition, using a single Global Navigation Satellite System (GNSS),
e.g., GPS for high-precision positioning, leads to many inaccuracies [9–12].

As part of this study, we exploit recent advances in UAV technologies, in deep-
learning-based detection algorithms and embedded hardware to develop MELETI, a
UAV-based architecture that automates the infrastructure inspection of telecommu-
nication and power networks, during both the phase of data acquisition and analysis.
With MELETI, multiple sensors can be integrated on the UAV based on the appli-
cation needs. The sensors are programmed to automatically collect meaningful data
in real time for inspecting the infrastructure of interest. In autonomous navigation,
the navigation error needs to be minimized; therefore, MELETI employs a hybrid
navigation approach using multi-frequency and multi-constellation GNSSs [13].
An onboard embedded hardware coordinates the data acquisition and detection,
while it guarantees that the system processes in real-time data, to identify different
components and their condition.

2 Related Work

Autonomous infrastructure inspection interests nowadays both power and telecom-
munication authorities globally. The utilization of UAVs is a promising solution
since it minimizes the dangers for the personnel while increases the efficiency and
the quality of the inspection (Table 1).

MELETI: System Architecture for Infrastructure Inspection with UAVs 287

Ta
bl
e
1

Sy
no
ps
is
 o
f
re
la
te
d
w
or
k
fo
r
au
to
no
m
ou
s
in
fr
as
tr
uc
tu
re
 in

sp
ec
tio

n

D
at
a

St
ud
y

Su
m
m
ar
y

Fl
ig
ht
 m

od
e

A
pp

lic
at
io
n

m
od

al
iti
es

[1
3]

Pr
op

os
e
a
U
A
V
-b
as
ed
 p
la
tf
or
m
 u
si
ng

 a
 v
is
io
n-
ba
se
d
ar
tifi

ci
al

in
te
lli
ge
nc
e
to
ol
ki
t t
ha
t i
nt
eg
ra
te
s
m
ul
tip

le
 s
en
so
rs
 a
nd

 a
ut
om

at
es

m
an
y
ta
sk
s
(d
et
ec
tio

n,
 tr
ac
ki
ng

, a
nd

 id
en
tifi

ca
tio

n
of

in
fr
as
tr
uc
tu
re
 c
om

po
ne
nt
s)
 g
at
he
ri
ng

 r
el
ia
bl
e
sp
at
io
te
m
po

ra
l d

at
a

as
so
ci
at
ed
 to

 th
es
e
co
m
po

ne
nt
s
au
to
no

m
ou

sl
y,
 s
af
el
y,
 a
nd

 f
as
t.

A
ut
on
om

ou
s

R
ea
l-
lif
e
in
sp
ec
tio

n
of
 m

ed
iu
m
-v
ol
ta
ge

ne
tw
or
k

R
G
B
, I
nf
ra
re
d

[1
4]

A
ut
om

at
ic
al
ly
 p
ro
ce
ss
 v
id
eo
 a
cq
ui
re
d
du

ri
ng

 in
sp
ec
tio

n
fli
gh

ts
 to

yi
el
d
re
pr
es
en
ta
tiv

e
im

ag
es
 f
or
 e
ac
h
el
ec
tr
ic
 to
w
er
 (
ke
y
fr
am

es
)

th
at
 c
an
 b
e
us
ed
 f
or
 in

sp
ec
tio

n.

M
an
ua
l

M
ed
iu
m
-
an
d
hi
gh
-v
ol
ta
ge
 d
at
a

R
G
B
, i
nf
ra
re
d

[1
5]

E
m
pl
oy
 o
nb

oa
rd
 o
pt
ic
al
 s
en
so
rs
 to

 e
na
bl
e
th
e
U
A
V
 to

 e
st
im

at
e
its

po
si
tio

n
re
la
tiv

e
to
 th

e
po

le
, f
ac
ili
ta
tin

g
th
e
au
to
no

m
ou

s
ad
ju
st
m
en
t o

f
hu
m
an
 o
pe
ra
to
r’
s
in
pu
ts
.

Se
m
i-

au
to
no
m
ou
s

T
he
or
et
ic
al
 a
na
ly
si
s
w
ith

 s
m
al
l-
sc
al
e

ex
pe
ri
m
en
t

3D
 p
oi
nt
 c
lo
ud
s
w
ith

R
ea
lS
en
se
 c
am

er
as

[1
6]

Pr
op

os
e
a
sy
st
em

 f
or
 d
am

ag
e
de
te
ct
io
n
on
 d
at
a
ac
qu

ir
ed
 u
si
ng

U
A
V
s,
 a
ls
o
co
ns
id
er
in
g
is
su
es
 o
f
da
ta
 s
ca
rc
ity

 (
a
la
ck
 o
f
fr
ee
ly

av
ai
la
bl
e
da
ta
se
ts
)
an
d
am

bi
gu

ity
 (
su
bj
ec
tiv

ity
 d
ur
in
g
la
be
lin

g)
.

M
an
ua
l

H
ig
h-
vo
lta

ge
 d
at
a

R
G
B

[1
7]

Pr
es
en
t a
 m

et
ho
do
lo
gy
 f
or
 o
pt
im

iz
in
g
th
e
de
te
ct
io
n
of
 th

e
el
ec
tr
ic

to
w
er
s,
 in

su
la
to
rs
, a
nd

 n
es
t t
o
fa
ci
lit
at
e
au
to
no

m
ou

s
in
sp
ec
tio

n.

N
/A

H
ig
h-
vo
lta

ge
 d
at
a

R
G
B

[1
8]

C
on
du
ct
 a
n
ex
te
ns
iv
e
lit
er
at
ur
e
re
vi
ew

 f
or
 h
ig
hl
ig
ht
in
g
th
e

ad
va
nt
ag
es
 o
f
dr
on
es
 to

 te
le
co
m
m
un
ic
at
io
n
in
fr
as
tr
uc
tu
re

in
sp
ec
tio

n,
 in

cl
ud

in
g
sa
fe
ty
, s
pe
ed
, c
os
t,
id
en
tif
yi
ng

 h
az
ar
ds
,

ac
cu
ra
cy
, a
cc
es
s,
 a
ut
om

at
io
n.

N
/A

N
/A

N
/A

[1
9]

Pr
op

os
e
a
sy
st
em

 to
 fi
nd

 p
ro
bl
em

at
ic
 s
po

ts
 in

 e
le
ct
ri
ca
l a
nd

te
le
co
m
m
un
ic
at
io
ns
 in

fr
as
tr
uc
tu
re
s
us
in
g
a
dr
on
e
eq
ui
pp
ed
 w
ith

 a

th
er
m
al
 c
am

er
a.

N
/A

In
sp
ec
tio

n
of
 p
ho

to
vo
lta

ic
 p
an
el
s,
 w
in
d

tu
rb
in
es
, t
el
ec
om

m
un

ic
at
io
n
to
w
er
s,
 a
nd

el
ec
tr
ic
al
 s
ub

st
at
io
ns

T
he
rm

al

im
ag
es
/lo

ng
-r
an
ge

in
fr
ar
ed

[2
0]

Pr
op
os
e
a
sy
st
em

 f
or
 a
ut
om

at
ic
 a
nt
en
na
 m

ea
su
re
m
en
ts
 u
si
ng
 U
A
V

an
d
in
st
an
ce
 s
eg
m
en
ta
tio

n
in
 m

ob
ile

 c
om

m
un

ic
at
io
n
ba
se
 s
ta
tio

ns
.
M
an
ua
l

A
nt
en
na
 m

ea
su
re
m
en
ts
 in

 m
ob

ile

co
m
m
un

ic
at
io
n
ba
se
 s
ta
tio

ns

R
G
B

[2
1]

Pr
op
os
e
a
hi
gh
-s
pe
ed
 a
nd
 h
ig
h-
pr
ec
is
io
n
sy
st
em

 f
or
 d
et
ec
tin

g
an
te
nn

a
til
tin

g
w
hi
le
 u
si
ng

 im
ag
e
se
gm

en
ta
tio

n
w
ith

 U
A
V
s.

M
an
ua
l

A
nt
en
na
 m

ea
su
re
m
en
ts
 in

 m
ob

ile

co
m
m
un

ic
at
io
n
ba
se
 s
ta
tio

ns

R
G
B

288 M. Pafitis et al.

2.1 Power Line Infrastructure Inspection

ICARUS, a power distribution network inspection platform that uses UAVs, auto-
mates the inspection procedures for the power line distribution network [13].
PoLIS, a power line inspection software, automates the analysis of data acquired
from electric towers, during UAV flights [14]. McFadyen et al. presented a semi-
autonomous solution for power infrastructure inspection when using UAVs [15].
Barreiro et al. suggest a solution for damage detection on remotely acquired drone
images in power transmission towers [16]. Han and Wang focused on optimizing
the detection of the electric towers, insulators, and nest for inspection [17].

2.2 Telecommunication Infrastructure Inspection

Faud et al. introduced the benefits on using UAVs for telecommunication infras-
tructure inspection [18]. Morris et al. proposed a solution that utilizes UAVs
and a thermal camera for diagnosing faults in electrical and telecommunication
infrastructures [19]. Zhai et al. used UAVs to extract measurements from mobile
communication base station antennas with a fully automatic system [20]. A follow-
up study from Zhai et al. introduced AntennaNet, a high-speed and high-precision
system for detecting antenna tilting while using image segmentation with UAVs
[21].

3 System Architecture

MELETI is a UAV-based system architecture that utilizes deep-learning-
based detection algorithms on an embedded hardware for automated real-time
infrastructure inspection. The system architecture consists of several abstract
components (Fig. 1). Those components construct a repetitive training pro-
cedure that loops itself until we reach a desirable threshold for false alarms.
The main phases of this architecture include the definition of key performance
indicators (KPIs), the data acquisition, the utilization of detection algorithms,
the extraction of outcomes, and their analysis. Those steps facilitate decision
on certain proactive maintenance procedures that may be needed in the inspec-
tion site to avoid future failures. The embedded hardware allows the system to
perform online analysis that enables the system to become autonomous as it
plans the mission in real time. The corresponding flow diagram is illustrated
in Fig. 2 for implementing the proposed MELETI approach.

MELETI: System Architecture for Infrastructure Inspection with UAVs 289

Fig. 1 System Architecture: Given the problem formulation, the definition of key performance
indicators (KPIs) is extracted. Based on this input, the data acquisition phase collects useful
information for the object detection to be trained. The outcomes of the object detector are analyzed
to suggest proactive maintenance

3.1 Key Performance Indicators (KPIs) Definition

Initially, the problem should be formulated based on the kind of infrastructure
we are trying to inspect and, more specifically, the type of malfunction. Usually,
this process involves the cooperation between software engineers and the experts
that currently identify faults on the infrastructure of interest. Since this system
architecture focuses on supervised learning techniques, the kinds of failure that are
expected to be experienced in an infrastructure system should be known. Through
this process, the KPIs for the current system will be extracted, to be used as both
evaluation metrics for the reliability of the inspection and terminal conditions for the
repetitive training procedure. The KPIs should be specific and self-descriptive; for
instance, a KPI for a deep learning algorithm can be the accuracy of the detection
and the error of the loss function. The reason is that accuracy measures the distance
between the real and expected output values, which makes it algorithmically
independent, while in the case of the error, the function is used to calculate changes
to its value. In other words, the loss error is a metric assisting in training of the
detection algorithm, while the accuracy is a KPI that extracts meaningful insights
about the algorithm’s behavior given some input.

3.2 Data Acquisition

Initially, the environment at the location of the inspection site needs to be carefully
examined to specify the course of action, i.e., take-off and landing points, flight path,
safe flying distance from the structure, etc., considering surrounding vegetation and
potential electromagnetic interference. It must be emphasized that this procedure
and planning is crucial and should not be ignored, since it allows for minimal
intervention on the infrastructure and the environment, as well as ensuring safe
operation for both personnel and the UAV. Furthermore, it is clarified which
equipment and sensors can be utilized for data acquisition, such as visible light

290 M. Pafitis et al.

Fig. 2 Design flow: Process diagram of the proposed MELETI approach for autonomous
inspection of critical infrastructure

cameras, infrared cameras, thermal cameras, stereo cameras, LiDAR, multispectral
cameras, GPS/GNSS sensors, gamma-ray spectrometers, flashlights, and many
more.

In these real-time applications, sensors are collecting constantly data, and the
system requires a lot of storage. Different techniques for managing acquired data
need to be considered, i.e., filtering; for a detector that takes as input the frames
of a video, the frame rate or the resolution of the images could be reduced if it

MELETI: System Architecture for Infrastructure Inspection with UAVs 291

does not lead to significant information loss. Generally, it is suggested that the raw
data should not be stored if not needed, and if required, different lossy and lossless
compression techniques can reduce the size of the acquired data. Nevertheless, since
the storage on an onboard embedded system is limited, real-time data transmission
can be considered by using cellular technologies, which enable virtually unlimited
storage in the cloud.

The use of UAVs allows for data acquisition in an accurate, robust, and repeatable
manner across different time instances, due to their ability to follow a predefined
path multiple times over, minimizing navigation and position error by employing
multiple GNSSs. Moreover, data acquisition protocol is facilitated by precisely
controlling sensor pose, e.g., for cameras, the angle can be set in order for the
content to be distinguishable. Additionally, the quality of data is promoted, i.e.,
images should not be blurry or over-exposed as useful information might be lost.
For example, in the antenna tilting application (Sect. 4.2.2), the camera roll should
be locked, and the UAV should fly at the same level with the antenna, facing forward.
Evidently, the weather conditions affect the quality of the data as well, i.e., in
the stereo photography, when facing towards the sun, the quality of the disparity
map was degrading. It is crucial to understand the problem, exploit difficulties on
collecting the data, and tackle them. Another example that illustrates the importance
of following a protocol for data acquisition is in the fire prevention application
(Sect. 4.2.4), where in order to calculate the rate of change in vegetation, two
pictures of the exact position should be taken at two different time points. In a
different case, matching and registration algorithms will likely induce false changes
reducing effectiveness of the approach.

3.3 Detection Algorithm

Detection algorithms, which mainly depend on deep learning, although conventional
computer vision techniques still exist, and the acquired data along with the
application needs, indicate selections across supervised or unsupervised approaches.
Given the available input and expected output, several techniques can be utilized
spanning from computer vision to deep learning, convolutional neural networks,
residual neural network, object detectors, image segmentation, angle detection, and
many more. In this regard, hardware resources such as memory utilization, CPU
and GPU capabilities, and power consumption must be also considered, since this
algorithm will be executed on a UAV-based embedded system, which is powered by
the UAV’s battery. Additionally, for the onboard embedded system to enable real-
time data processing, which is necessary for autonomous navigation of the UAV, it is
important to select algorithms with optimizations that enable hardware acceleration,
such as the employment of NVIDIA CUDA, NVIDIA TensorRT, CPU and GPU
multi-threading, tensor processing units (TPUs) utilization, and more.

Apart from onboard embedded system performance considerations, other factors
play an important role. For example, the embedded system can be used for online

292 M. Pafitis et al.

learning if the process is lightweight, while offline training generally takes place
in dedicated in-house powerful infrastructure or cloud services. Therefore, based
on the available resources, feasibility of periodical training, maintenance, and
improvement needs to be considered. Currently, a plethora of pre-trained networks
is available online, rendering transfer learning an ideal approach in case of resource
shortage. In this setting, ready-for-use pre-trained networks are accessible that need
fine-tuning of the network weights, requiring significantly less data and effort for
training. Usually, transfer learning is a great starting point for validating a concept of
using an algorithm. Some networks with available pre-trained weights are the VGG,
ResNet, MobileNet, DenseNet, EfficientNet, and their flavors. Lastly, the structure
of the algorithm needs to be considered, with the technique to be able to produce
outcomes that facilitate the calculation of KPIs. If current methodologies do not
produce the desirable output, a redesign of an algorithm may take place, a fusion of
multiple detection algorithms, or a combination.

Currently, several state-of-the-art object detectors are available for different
applications based on the requirements. Object detectors can be mainly distin-
guished before and after 2014 (dawn of deep learning approaches). Before 2014,
the Viola–Jones detector (2001) was the pioneer for traditional object detection.
Other detectors were the Histogram of Oriented Gradients (HOG) (2006); a feature
descriptor for object detection in computer vision and image processing, and DPM
(2008) which introduced bounding box regression. After 2014, object detectors can
be separated into one stage and two stage. Examples of two-stage object detection
algorithms are the RCNN and SPPNet (2014), Fast RCNN and Faster RCNN (2015),
Mask R-CNN, Pyramid Networks/FPN (2017), and G-RCNN (2021). Examples of
one-stage object detection algorithms are the YOLO (2016), SSD (2016), RetinaNet
(2017), YOLOv3 (2018), YOLOv4 (2020), and YOLOR (2021).

3.3.1 Performance Evaluation

After deciding which detection algorithm will be used, training process takes place
by using the acquired data, but constructing an unbiased dataset is a challenging
process as well. A dataset to be considered unbiased should contain a variety of
instances to generalize well. A good practice when creating a dataset is to include a
variety of instances. For example for infrastructure inspection, a dataset preferably
contains several inspection sites with various environmental characteristics and
weather conditions, acquired at different times. This variety should appear equally
in the training, validation, and test sets. There are several techniques for splitting
a dataset into training, validation, and test sets. If all instances are independent
and the classes are balanced, then a hold-out estimation, a naive method where the
dataset is split randomly (e.g., 80% training, 20% testing), is sufficient to evaluate
the model. However, usually, the datasets can be imbalanced, since instances of
some class may outnumber others. Consequently, stratification can be utilized to
ensure that each class is represented with approximately equal proportions in both
subsets. To tackle the issue of a small dataset, cross-validation can be used where

MELETI: System Architecture for Infrastructure Inspection with UAVs 293

all the data are considered for both training and testing. Furthermore, datasets for
infrastructure inspection have dependent instances since the same inspection site can
appear in multiple images. This may cause data leakage, where the same inspection
site appears in more than one set that favors the performance of the detectors as
the object has already been learned. To avoid this, groups can be used, where a
group contains only instances of the same inspection, and a group is never split into
more than one set. In this case, a stratified group k-fold cross-validation evaluation
method is the most appropriate, where a limited amount of data are available and
multiple images of the same inspection site are contained in the dataset.

3.3.2 Key Outcomes

During a flight, the detection algorithm produces outcomes that need to be organized
dynamically. Thereby, in a real-time detector, the current timestamp is an easy-
to-use indicator for storing and distinguishing those results later in the phase of
analysis. The results can be numeric values, nominal values, segmented areas,
bounding boxes, and more. Most of the time, those outcomes will be used
immediately as information about the environment to assist the UAV navigate,
correct its trajectory, and plan the rest of the inspection.

3.3.3 Analysis

The results from the detection algorithm need to be further analyzed to extract
meaningful insights. The analysis may include handling meta-data alongside the
acquired data to calculate accurately the KPIs. Since MELETI is a UAV-based
architecture, those meta-data may include the pitch, roll, yaw, the coordinates, the
direction of the UAV, and more.

During the analysis, image processing techniques may need to be applied such
as image registration for translating, skewing, stretching the point of reference on
the x-, y-, z-axis, or image filtering such as edge detection filters, noise removal
filters, sharpening, smoothing, blurring, and more. In addition, since the inspection
sites are most of the time exposed to the environment, where weather conditions
and the temperature vary between different missions, the results might need to be
normalized. For example, when using a thermal camera, the observed temperature
for a specific object is expected to fluctuate between flights of unique days or even
different flights in the same day at different hours. To address such issues, calibration
may be required, i.e., an object with a known temperature can be placed in the image
as a reference, and during the analysis, the temperatures are normalized accordingly
based on that object.

294 M. Pafitis et al.

4 Application Examples

4.1 Experimental Equipment

The proposed system architecture for infrastructure inspection was evaluated in
two application areas: in power distribution network and telecommunication base
stations. In both cases, an off-the-shelf UAV with dedicated equipment was used
(Fig. 3), i.e., the DJI Matrice 300 RTK equipped with the RGB and thermal DJI
Zenmuse H2OT camera (right downward gimbal) and the multispectral MicaSense
Altum camera (left downward gimbal). The UAV is already capable on accurate
positioning and navigation by simultaneously receiving multiple GNSSs (GPS,
Galileo, GLONASS, BeiDou). Additionally, for the embedded system, the NVIDIA
Jetson Xavier NX was configured and mounted on a custom 3D printed case on
top of the UAV (Fig. 3-inset). The embedded device enabled the implementation
of the proposed system architecture and was capable on executing deep learning
algorithms in real time, for autonomous navigation and mission planning.

The embedded device was set up with the NVIDIA JetPack SDK 4.5.1, which
supports CUDA, TensorRT, and cuDNN. The CUDA toolkit provides a compre-
hensive development environment for building GPU-accelerated applications, while
TensorRT is a high-performance deep learning inference runtime built on CUDA
facilitating optimization of inference for all deep learning frameworks. Finally,

Fig. 3 UAV equipment with the embedded system for testing the proposed MELETI system
architecture. It consists of a DJI Matrice 300 RTK UAV, the RGB and thermal DJI Zenmuse H2OT
camera (right downward gimbal), the multispectral MicaSense Altum camera (left downward
gimbal), and the NVIDIA Jetson Xavier NX embedded system (top of the UAV; figure inset).
Blue dashed and red dotted circles indicate the differential RTK and the transmission antennas,
respectively

MELETI: System Architecture for Infrastructure Inspection with UAVs 295

the CUDA Deep Neural Network (cuDNN) library provides high-performance
primitives for deep learning frameworks, such as high tuned implementations for
forward, backward convolution, pooling, normalization, and activation layers.

4.2 Use Case: Telecommunication Infrastructure

The telecommunication infrastructure is omnipresent; therefore, to guarantee high
availability in the telecommunication network, base stations span across all rural
areas. The fast pace that the world adopts 5G technologies increases exponentially
the need for new antennas and the installation of new base stations. This happens
because 5G operates in higher frequencies than its predecessor (4G). Therefore,
the 5G signal is not as permeable as previous generations, and its coverage is less.
MELETI was tested in the telecommunication domain and more specifically in
telecommunication’s base stations infrastructure inspection for detecting mechan-
ical and physical damages that might be observed at an inspection site (Fig. 4).
Such damages include corrosion on metals, tilting of the antennas, different kinds
of liquid leakage, as well as fire hazard. In the latter case, it is important to assess
nearby vegetation and provide a fire hazard severity metric. Ultimately, evaluation
of corresponding metrics will issue notification when an incident occurs in an
inspection site (e.g., severity alarm ranging from 0% to 100%, indicating low to
high alarm). Consequently, informed decisions will be facilitated related to proactive
maintenance and quick response to various incidents.

4.2.1 Corrosion Detection

The system architecture in Sect. 3 can be utilized to address such physical damages.
To focus on a specific problem, MELETI can be implemented for detecting corro-
sion in telecommunication premises and more specifically on the base stations. A
comprehensive relation between MELETI’s components and the specific application
follows.

4.2.1.1 Key Performance Indicators (KPIs) Definition

In the case of corrosion detection in infrastructure, the problem definition may
include detecting the corroded area. A more useful KPI though could be detecting
the change in the amount of the corroded area. To this end, two metrics may be
useful:

1. R. C : Rate of change in corrosion level between two time points t. 1 and t. 2 (0% –
100%)

2. R. Cacc : Accuracy of R. C value (0% – 100%)

296 M. Pafitis et al.

Fig. 4 Telecommunication Infrastructure Inspection Flow: Procedure for autonomously
inspecting base stations, where the drone navigates around the station acquiring data and
performing components identification for adjusting drone/camera positions. Ultimately, high-
resolution and high-quality data of these components are acquired for further analysis

If the R. C rate surpasses a threshold, then the metal needs to receive treatment to
avoid failure, while R.Cacc represents a confidence level for R. C value. If this accuracy
is relatively low, alternative methods should be examined for calculating the R. C if
possible, otherwise being more aware of the infrastructure.

MELETI: System Architecture for Infrastructure Inspection with UAVs 297

4.2.1.2 Data Acquisition

For data acquisition, images are acquired from different areas of interest in the base
station, such as the bolts that hold the base station into place are thin sections of
metal surface. To obtain those images manually with a camera, the procedure could
be challenging and very dangerous, since the base stations are several meters tall,
usually more than 30 meters. Therefore, a UAV with a high-resolution RGB camera
and an embedded computer can be used to collect those data. By implementing an
autonomous flight path, around the base station, images can be captured of each area
of interest that has high risk to develop corrosion. The embedded system can provide
a predefined flight path since the base station is usually static, or an automatic flight
path can be generated in real time by utilizing different planning methodologies and
machine learning or computer vision.

4.2.1.3 Detection Algorithm

To detect corrosion, image segmentation can be used to identify corroded areas [22].
Based on application’s requirements, there is a minimum frame rate. Therefore, the
detector needs to be carefully selected, to satisfy those requirements since it usually
affects to a great extent how the real-time application is.

Usually, deep learning detection algorithms have a set of weights that represent
the knowledge of the system, which require a training procedure. Pre-trained
weights can be also used if they are available and compatible with the system’s
needs. In case that a training process needs to be conducted, some major steps
are followed. Initially, the data need to be split into training and testing. The way
data are split depends on the used algorithm, for example, a simple 80–20 % split
can be conducted or more advanced methods can be used such as k-fold cross-
validation [23]. The training dataset is introduced to the algorithm that adjusts the
weights through the training process. The uniqueness to each algorithm focuses
on the way the training process is conducted usually. Then, through a repetitive
procedure that includes evaluation by validating what the network has learned and
tuning the parameters, we result into a set of the best performing weights given the
available dataset.

4.2.1.4 Outcomes

In case of image segmentation, the detection algorithm will result in the area that
is identified as corroded for each input frame. Corrosion detection might be a
challenging task, since the algorithm may confuse similar textures and areas such as
vegetation and the ground as corrosion. By using large datasets, those false positives
will be reduced; however, acquiring and labeling such datasets will be very time-
consuming. Alternative way to reduce false positives is to apply a two-way approach

298 M. Pafitis et al.

by first isolating the metal surfaces in the image and then detecting corrosion. In that
case, two deep neural networks can be fused together sequentially.

4.2.1.5 Analysis

To extract KPIs from the output, non-linear image filtering can be applied, i.e.,
morphological transformations such as erosion, dilation, or combination (opening
and closing), to remove noise from the image. Following noise suppression, KPIs
are calculated, with R. C being the rate of change between two images from different
time points. After calculating the corroded area in both images and having applied
some morphological transformations to remove noise, the images need to be
registered through image alignment. Then, absolute difference between the two
corroded areas can be calculated, which will represent the rate of change. Finally,
accuracy of prediction R.Cacc can be estimated, by marking the ground truth corroded
area, providing an indicator of confidence about the prediction.

4.2.2 Antenna Tilting

The antennas in telecommunication infrastructure can change their orientation over
time due to weather conditions such as heat or wind, where the screws holding them
in place might loosen or the materials can deform. A slight change in antenna’s
orientation though can affect drastically its coverage, the QoS and QoE [24–26].
Antenna tilting can be detected early by utilizing the MELETI system architecture
and using a similar approach as in corrosion detection (Sect. 4.2.1).

4.2.2.1 Key Performance Indicators (KPIs) Definition

Two KPI metrics that can be defined to evaluate system’s performance in antenna
tilting are:

1. R. T : Rate of change in degrees of tilting between two time points t. 1 and t. 2 (0%–
100%)

2. R. Tacc : Accuracy of R. T value (0% – 100%)

If the R. T surpasses a threshold, change in antenna’s orientation affects the
quality of service and needs to be addressed. The R.Tacc value plays the role of the
confidence level for the R. T change. Some additional performance metrics that can
be used to evaluate the detection algorithm are the antenna tilting prediction error,
mean average precision (mAP), and intersection over union (IOU) for the bounding
boxes. IOU is the overlap between the predicted bounding box and the ground truth
bounding box. The mAP is the mean of each class’ average precision (AP) that is
the area under the precision–recall curve.

MELETI: System Architecture for Infrastructure Inspection with UAVs 299

4.2.2.2 Data Acquisition

Telecommunication antennas are frequently located either on base stations or on
top of buildings. The equipment described in Sect. 4.1 can be used to collect
data. More specifically, close up flights with the UAV can be held, at a distance
of approximately 10m from the antennas. The UAV should fly opposite to each
antenna, and the camera sensor should point toward it with roll and yaw being
equal to zero to capture images (e.g., Fig. 5). Those images can be labeled with
oriented bounding boxes during training that also include the degrees of the box. The
orientation of the box should match antenna’s orientation vertically. Additionally,
the pole or base station should be labeled as well: to be used later on during the
analysis in order to reduce the angle error. Since the UAV faces vibrations during
flight, the pictures taken are not aligned to the ground; therefore, the antenna’s
degree is not accurate. To tackle this issue, the angles of the antenna can be
calculated relatively to a different reference point, which in our case was in relation
to pole’s angle.

4.2.2.3 Detection Algorithm

Since in antenna tilting we need to detect the orientation of the antennas from
images, a rotation detector needs to be employed. More specifically, in our

Fig. 5 Implementation of MELETI for antenna tilting detection in telecommunication infras-
tructure inspection. Use of the single-stage rotation-decoupled detector for oriented object [27].
The detection algorithm identifies the antennas and the pole (pink) with their rotation. Our
implementation estimates the real rotation (value in parenthesis) of the antennas relative to the
rotation of the pole to minimize inaccuracies caused by the UAV’s vibrations

300 M. Pafitis et al.

experiments, the single-stage rotation-decoupled detector for oriented object [27]
algorithm was utilized. The detector takes as input an image and outputs the
bounding box with its orientation, based on the classes it has been trained on
(Fig. 5). Several pre-trained networks were available; therefore, a small dataset of
approximately 800 images was adequate to fine-tune the weights to detect poles and
antennas.

4.2.2.4 Outcomes

The object detector returns as output a number of bounding boxes with their
confidence since in a base station multiple antennas may exist. A threshold should
be used to keep only the boxes with high confidence, while non-max suppression
(NMS) can be applied to select the best bounding box out of a set of overlapping
boxes. In an image, we assume that only a single base station is visible, therefore
just a single bounding box of the pole class, with the highest confidence score is
kept.

4.2.2.5 Analysis

A UAV system during flight may experience changes in its pose due to environmen-
tal factors, such as the wind. For that reason, an image that is captured using the
UAV’s camera it is not guaranteed that is parallel to the ground. One way to fix the
angle of an image caused by these changes is to use information from the UAV’s
gyroscope sensor. Another approach for addressing rotation in the roll axis is to
calculate the angle of the antennas relative to the angle of the base station/pole as
demonstrated in Eq. (1) where “a” represents the angles. For instance, in an image,
given that the base station’s angle is 89.2. ◦ and the antenna’s angle is 91.6. ◦, then the
relative angle of the antenna from the ground is 2.4. ◦.

.aantennarelative = apolereal − aantennareal . (1)

To calculate the corresponding KPIs, images of the same antenna are needed
acquired at the same location at two different time points. Initially, the two images
must be registered with image alignment techniques followed by object detection
methods to produce the bounding boxes and the relative angles of the antennas to
the base station/pole. The change of an antenna’s rotation R. T is calculated as the
difference of its relative angle between the two time points.

Since multiple antennas may be visible in an image, to identify which is which, it
is assumed that an antenna is the same to a previous instance if the overlap between
the bounding boxes, corresponding to different time points, is larger than a threshold
(e.g., 80% overlap). In this case, if the change in relative angles R. T is greater than a
threshold (e.g., 2. ◦), the alarm is triggered for proactive maintenance.

MELETI: System Architecture for Infrastructure Inspection with UAVs 301

4.2.3 Damage Control

In mobile radio base stations of the telecommunication authorities, several hardware
components are mounted such as antennas, radios, connection boxes, and coolers.
All these components can face some failure such as overloaded circuits. Thermal
photography can be used to detect vulnerabilities such as circuit shortage since
this increase boards’ temperature. As seen in Fig. 6, thermal cameras can be used
with UAV equipment (e.g., 4.1) to detect thermal anomalies in telecommunication
infrastructure components.

The MELETI system architecture, similarly to the other applications, can be
modified and implemented for detecting defects in mobile radio components. This
includes the acquisition of images, both thermal and RGB from several inspection
sites with known malfunctions. In theory, this could be an effective solution, but in
practice it is very difficult to create a dataset with enough data that include damaged
components. Consequently, another approach to this problem could be to obtain
thermal and RGB images to be visually inspected by an expert worker. In this case,
MELETI can become useful on automating the pre-processing part of the data and
therefore improve the accuracy of the worker’s inspection. In Fig. 6-b, we can see
a lot of buildings in the background that eventually result as noise to the circuit
shortage detection algorithm. So, a background removal technique can be used to
make the examination easier.

Our approach on background removal from telecommunication base stations is
to use stereoscopic vision. The concept of stereoscopic vision, which is the ability
to make inferences regarding 3D information by combining pairs of 2D images,
has been extensively studied from the beginning of computer vision until recently
[28, 29]. The notion of stereo vision relies on processing a pair of images, akin
to the human vision and with suitable processing to provide perception concerning
depth [30]. These processing steps (Fig. 7) include calibration of the camera pair,

Fig. 6 Telecommunication base stations inspection by using thermal photography and stereo-
scopic vision. (a) RGB image of base station, (b) thermal image of base station, (c) masked thermal
image of base station, using the stereo cameras of the UAV

302 M. Pafitis et al.

Fig. 7 Processing steps for masking an RGB image of a telecommunication base station, using
stereoscopic vision to isolate the structure from the background. (a) image rectification, (b) stereo
correspondence, (c) disparity map, (d) RGB correspondence, (e) isolated structure

rectifying the stereo pair followed by stereo correspondence to finally yield the
disparity map [31]. The disparity map then can be thresholded and used as a mask
around the thermal image (Fig. 6-c).

Camera calibration is a necessary step for defining intrinsic (focal length f ,
principal points (.CL,CR), extrinsic (relative pose), as well as distortion parameters
of the camera pair, which implicitly defines the epipolar geometry [28]. By using
the epipolar constraint, i.e., each projected point in one image must correspond to a
point on the other image that lies on the epipolar line (Fig. green line in 7-b), one
can restrict searching for correspondences to 1D [30, 31]. This procedure can be
more efficient by transforming the stereo pair, a process called rectification, such
that the corresponding horizontal scanlines coincide with the epipolar lines [28]. In
other words, with rectification, the problem of finding correspondence of a pixel
belonging to the i-th line of left image . I iL reduces to a search in the corresponding
i-th line of the right image . I iR , thus greatly reducing computational cost.

The most important procedure is that of stereo correspondence, whereby a region
in the left image is matched with the corresponding region in the right image, to
calculate disparity between the two regions [30], which is the difference between
pixel . xR and . xL, i.e., .d = xR − xL. A variety of methods have been proposed,
which can be separated into global and local approaches [31]. Global methods
operate on the whole image and yield superior results in terms of accuracy at
the cost of increased computational resources, while local approaches consider a
neighborhood in the image pair and thus computational cost is decreased, rendering
them an ideal candidate for real-time applications [32]. In the current study, the
stereo block matching method implemented in the OpenCV library was used, which
aims to find corresponding points in the images, by considering a small window and

MELETI: System Architecture for Infrastructure Inspection with UAVs 303

as a similarity metric the sum of absolute differences (SADs) [33]. The result of this
process is the disparity map that is also filtered using a weighted least squares filter
for obtaining a refined disparity map [33]. From the disparity map, the depth can be
obtained as .Z = f b

d
, with .X = xLb

d
and .Y = yLb

d
forming the 3D coordinates of the

observed point .P(X, Y,Z), where b is the distance between the two cameras. In the
current study, stereo cameras had a horizontal displacement of 10 cm. In our case,
we did not estimate the 3D coordinates, since from the disparity map the foreground
object could be distinguished as having larger disparity values due to its proximity
to the UAV. Conversely, disparities with value of zero corresponded to far objects
and were excluded from further analysis, to increase detection accuracy of antennas
and thus the measurement of titling angle.

4.2.4 Fire Prevention with Multispectral Imaging

Multispectral sensors are frequently used in the industrial agriculture for monitoring
crops health. The same principles can be applied in infrastructure inspection
to prevent fire outbreaks. More specifically, in power line infrastructures, it is
important to monitor the vegetation within the power line corridor and the area
around; otherwise, it may result to electrical discharges, fires, and damages. In
the telecommunication infrastructures, it is crucial to maintain the area near the
base station cleared to prevent potential fires to damage the site. For vegetation
monitoring and fire prevention applications, the experimental equipment in Sect. 4.1
was employed including a multispectral camera with the five bands (blue, green, red,
red edge, near infrared (NIR)).

The major KPI that can be defined for this application is the area of unhealthy
vegetation near the inspection site. For the data acquisition phase, images from
different time periods can be captured. Those images should contain the base station
and a radius of at least 20 meters (i.e., Fig. 8). The images between different time
periods should be relatively aligned in order to help the image registration process
during the phase of the analysis. Image segmentation would be useful as a detection
algorithm since the outcome would be a highlighted area that represents the
inspection site inside the fence, as it can be observed with red color in Fig. 8. During
analysis, several steps need to be conducted. First, the images of two different time
periods need to be aligned; therefore, different image registration methodologies
can be used. If the two images have a great level of overlapping, linear image
registration can be applied with a feature descriptor such as scale-invariant feature
transform (SIFT) [34], speeded-up robust features (SURF) [35], ORB [36], KAZE
[37], accelerated KAZE (AKAZE) [38], etc. If the data acquisition method was
not consistent and the images between two time points differ a lot, then non-linear
image registration techniques such as optical flow can be utilized. Second, the
normalized difference vegetation index (NDVI) needs to be calculated for the two
images that are compared. By using absolute difference between the two NDVIs,
information about how dense the vegetation is produced. In the case that the increase
in unhealthy vegetation surpasses a threshold, an alert is triggered for proactive

304 M. Pafitis et al.

Fig. 8 Vegetation monitoring and fire prevention in telecommunication premises. Use of mul-
tispectral imaging and information from the normalized difference vegetation index (NDVI) to
identify vegetation near the base station (red squared area)

maintenance. Similar methodologies can be applied for monitoring the vegetation
in the power line infrastructures.

4.3 Use Case: Power Infrastructure

The power distribution network inspection spans across harsh environments; thus
defects are difficult to be detected that will potentially lead to catastrophic failures.
By using the MELETI system architecture alongside the experimental equipment
(Sect. 4.1), we can detect those weaknesses in the distribution network and proac-
tively act to avoid costly faults. ICARUS, a power distribution network inspection
platform that uses UAVs, is an example of a platform that implements the MELETI
system architecture (Fig. 9). ICARUS carries out power infrastructure inspection
process by automating many tasks with artificial intelligence, such as detection,
tracking, and identification of different power-related components.

The embedded platform used in ICARUs is responsible for automating UAV
monitoring tasks such as taking-off, planning the path with the poles to be inspected,

MELETI: System Architecture for Infrastructure Inspection with UAVs 305

Fig. 9 Power Infrastructure Inspection Flow: Procedure for autonomously inspecting power
poles, where the drone navigates to each pole performing an initial detection for identifying its
correct coordinates. Furthermore, multi-modal data (RGB, thermal, multispectral) are acquired and
used for creating digital surface models of the power line corridor, detecting the power components,
and monitoring vegetation

collecting data, and safely landing back to the starting point. Through the inspection
procedure, the UAV marks the exact location of each pole by utilizing multiple
GNSSs, inspects the pole and the pole insulators for damages, and monitors the
vegetation near and along the power line corridor.

306 M. Pafitis et al.

4.3.1 Pole Detection with Position Correction

The pole detection with position correction routine is meant to identify failures in
the poles of the power distribution network autonomously while marking the exact
coordinates of the poles, by utilizing deep learning methodologies; therefore, the
MELETI system architecture can be applied (Fig. 1).

The KPIs for this application were defined as the mAP and IOU of the pole
detection. The data acquisition protocol indicates that throughout the monitoring
routine, the UAV flies at a height of approximately 50m above the ground with the
camera turned downwards. Several locations under different background, lighting
conditions and seasons were selected for the dataset creation.

The tiny-You-Only-Look-Once (tiny-YOLO) v4 detection algorithm was
employed. This framework at the time was the best candidate for the pole detection
application with the used equipment since it was a light-weight model with high
frame rate and detected the poles accurately. Some trial and error was needed to
find the best model where the embedded platform would not throttle but still detect
sufficiently the target.

In our tests, the tkDNN framework [39] was proven a better candidate than
Darknet [40] since the utilization of TensorRT not only increased the frame rate, and
made the code much cleaner, but also reduced the need for hardware and software
resources. Although tkDNN brought to the table many benefits, the setup process
was much complicated due to many library dependencies. Consequently, both the
advantages and disadvantages need to be considered when selecting a framework.

The outcomes of the model are bounding boxes that indicate the location of the
pole (Fig. 10). Following on that, real-time analysis takes place to find the exact
position of the pole by aligning UAV directly above the pole, i.e., image center
(red cross) with the center of the bounding box (pink) with a tolerance of 50 cm,

Fig. 10 Power infrastructure pole detection and position correction. (a) Real-time pole detection
using the tiny YOLOv4 on the NVIDIA Jetson Xavier NX embedded platform. (b) Pole position
correction by aligning the image center (red cross) to the center of bounding box (pink). (c) Spatial
coordinates recorded using multiple GNSSs as the accurate coordinates of the current pole

MELETI: System Architecture for Infrastructure Inspection with UAVs 307

Fig. 11 UAV velocities during a pole detection and position correction mission for power line
infrastructure inspection. In “A” the UAV is cruising between poles, in “B” it corrects its position
to align itself with the pole, and in “C” it changes its yaw towards the next pole

as shown in Fig. 10. The UAV by using a PID controller estimates the direction
it needs to move toward the bounding box to minimize the error between the two
positions. When the two positions are aligned, the spatial coordinates are recorded
as the accurate coordinates of the current pole by using multiple GNSSs.

In Fig. 11, the velocities of the UAV are illustrated for an autonomous flight for
a 11-pole inspection. The variation in UAV’s velocities indicates the state of the
system. During “A” (red highlighted area), the UAV is cruising, where it accelerates
and decelerates from one pole to another. In “B” (blue highlighted area) with
delegate movements, the UAV corrects its position to align itself with the pole.
Afterward, in “C” (green highlighted area), the UAV turns toward the next pole’s
yaw, where it repeats the same process again until all poles in the mission are
inspected.

The embedded system is used with the UAV to enable autonomous inspection,
which permits even more complex flight missions than an experienced operator in
difficult terrains. Figure 12 displays the trajectories in the 3D space that the drone
follows in order to inspect the 11 poles. Since the UAV flies approximately 50m
above the ground, this allows the system to approximate the form of the terrain
under the power line corridor. This autonomous path planning is a flexible and
elegant solution since it allows the UAV to actively avoid obstacles in real time
by considering changes in terrain height.

308 M. Pafitis et al.

Fig. 12 Blue line represents the 3D trajectory for inspecting power line poles in a mission. Red
marks indicate the position of the poles, also identified by their IDs

5 Conclusions and Future Work

In this chapter, we presented MELETI, an embedded system architecture for
autonomous power and telecommunication infrastructure inspection using UAVs.
MELETI has several modular components that can be configured based on the
application requirements. Those parts are the KPI definition, data acquisition, detec-
tion algorithm, extraction of outcomes, and result analysis, to enhance proactive
maintenance. MELETI works as an interface that enables the implementation of
autonomous systems for embedded hardware with limited processing power used
in UAVs. Several applications in both power and telecommunication infrastructure
inspection were demonstrated, proving the effectiveness of MELETI in action.

As a future work, we aim to implement a framework where a variety of com-
ponents of MELETI’s system architecture will be available. This framework will
enable switching between several data acquisition methods, detection algorithms,
and analysis tools to rapidly find the ideal configuration for a given problem.
Finally, MELETI aims to expand into a generic system architecture for all kinds
of infrastructure inspection.

Acknowledgments This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 739551 (KIOS CoE) and from the
Government of the Republic of Cyprus through the Directorate General for European Programmes,
Coordination and Development. We would like to thank Electricity Authority of Cyprus (EAC) and
Cyprus Telecommunication Authority (CYTA) for providing the locations to acquire data used in
the present study, Antreas Anastasiou and Petros Petrides for assisting in data acquisition.

MELETI: System Architecture for Infrastructure Inspection with UAVs 309

References

1. Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A.,
Kukko, A., Heinonen, T.: Remote sensing methods for power line corridor surveys. ISPRS
J. Photogramm. Remote Sens. 119, 10–31 (2016). https://doi.org/10.1016/j.isprsjprs.2016.04.
011

2. Kahan, A.: Global electricity consumption continues to rise faster than population. https://
www.eia.gov/todayinenergy/detail.php?id=44095 (2021)

3. Alhassan, A.B., Zhang, X., Shen, H., Xu, H.: Power transmission line inspection robots: A
review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 118, 105862
(2020). https://doi.org/10.1016/j.ijepes.2020.105862

4. Nguyen, V.N., Jenssen, R., Roverso, D.: Automatic autonomous vision-based power line
inspection: A review of current status and the potential role of deep learning. Int. J. Electr.
Power Energy Syst. 99, 107–120 (2018). https://doi.org/10.1016/j.ijepes.2017.12.016

5. Bruch, M., Münch, V., Aichinger, M., Kuhn, M., Weymann, M., Schmid, G.: Power Black-
out Risks. https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-
Power-Blackout-Risks-1-1.pdf (2011)

6. Klinger, C., Landeg, O., Murray, V.: Power outages, extreme events and health: a systematic
review of the literature from 2011–2012. Public Libr. Sci. (2014). https://doi.org/10.1371/
currents.dis.04eb1dc5e73dd1377e05a10e9edde673

7. Katrasnik, J., Pernus, F., Likar, B.: A Survey of Mobile Robots for Distribution Power
Line Inspection. IEEE Trans. Power Delivery 25(1), 485–493 (2010). https://doi.org/10.1109/
TPWRD.2009.2035427

8. Taheri, P., Mansouri, A.: Inspection and mitigation of underground corrosion at anchor shafts
of telecommunication towers. In: NACE Corrosion 2017 Conference (2017)

9. Hui, X., Bian, J., Yu, Y., Zhao, X., Tan, M.: A novel autonomous navigation approach for UAV
power line inspection. In: 2017 IEEE International Conference on Robotics and Biomimetics,
pp. 1–6 (2018). https://doi.org/10.1109/ROBIO.2017.8324488

10. Bian, J., Hui, X., Zhao, X., Tan, M.: A Novel Monocular-Based Navigation Approach for UAV
Autonomous Transmission-Line Inspection. In: IEEE International Conference on Intelligent
Robots and Systems, pp. 6207–6213 (2018). https://doi.org/10.1109/IROS.2018.8593926

11. Zhao, X., Tan, M., Hui, X., Bian, J.: Deep-learning-based autonomous navigation approach for
UAV transmission line inspection. In: Proceedings of the 2018 10th International Conference
on Advanced Computational Intelligence, pp. 455–460 (2018). https://doi.org/10.1109/ICACI.
2018.8377502

12. Hui, X., Bian, J., Zhao, x., Tan, M.: Vision-based autonomous navigation approach for
unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Robot. Syst. 15(1),
172988141775282 (2018). https://doi.org/10.1177/1729881417752821

13. Savva, A., Zacharia, A., Makrigiorgis, R., Anastasiou, A., Kyrkou, C., Kolios, P., Panayiotou,
C., Theocharides, T.: ICARUS: Automatic Autonomous Power Infrastructure Inspection with
UAVs. In: Proceedings of the 2021 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 918–926 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476742

14. Martinez, C., Sampedro, P.C., Chauhan, A., Collumeau, J.F., Campoy, P.: The Power Line
Inspection Software (PoLIS): A versatile system for automating power line inspection. Eng.
Appl. Artif. Intell. 71, 293 (2018). https://doi.org/10.1016/j.engappai.2018.02.008

15. McFadyen, A., Dayoub, F., Martin, S., Ford, J., Corke, P.: Assisted Control for Semi-
autonomous Power Infrastructure Inspection using Aerial Vehicles. CoRR arXiv (2018).
https://doi.org/10.48550/ARXIV.1804.02154

16. Barreiro, A.C., Seibold, C., Hilsmann, A., Eisert, P.: Automated Damage Inspection of
Power Transmission Towers from UAV Images. CoRR arXiv (2021). https://doi.org/10.48550/
ARXIV.2111.15581

17. Han, B., Wang, X.: Detection for Power line Inspection. MATEC Web of Conferences 100,
03010 (2017). https://doi.org/10.1051/matecconf/201710003010

https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://doi.org/10.1016/j.isprsjprs.2016.04.011
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://www.eia.gov/todayinenergy/detail.php?id=44095
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2020.105862
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://doi.org/10.1016/j.ijepes.2017.12.016
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/TPWRD.2009.2035427
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/ROBIO.2017.8324488
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/IROS.2018.8593926
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1109/ICACI.2018.8377502
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1177/1729881417752821
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1109/ICUAS51884.2021.9476742
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.1016/j.engappai.2018.02.008
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.1804.02154
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.48550/ARXIV.2111.15581
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010
https://doi.org/10.1051/matecconf/201710003010

310 M. Pafitis et al.

18. Isa, M.F.M., Rahim, N.Z.A., Fathi, M.S.: It’s a bird. . . It’s a plane. . . It’s a drone. . . : Telecom-
munication Tower Inspection Using Drone. In: 2019 6th International Conference on Research
and Innovation in Information Systems (ICRIIS), pp. 1–5 (2019). https://doi.org/10.1109/
ICRIIS48246.2019.9073663

19. William Díaz, M., José Cáceres, J.: A novel application of drones: thermal diagnosis of electri-
cal and telecommunications infrastructure. In: 2018 IEEE 38th Central America and Panama
Convention (CONCAPAN XXXVIII), pp. 1–6 (2018). https://doi.org/10.1109/CONCAPAN.
2018.8596591

20. Zhai, Y., Ke, Q., Xu, Y., D, W., Gan, J., Zeng, J., Zhou, W., Scotti, F., Labati, R.D., Piuri, V.:
Mobile Communication Base Station Antenna Measurement Using Unmanned Aerial Vehicle.
IEEE Access 7, 119892–119903 (2019). https://doi.org/10.1109/ACCESS.2019.2935613

21. Zhai, Y., Ke, Q., Liu, X., Zhou, W., Xu, Y., Ying, Z., Gan, J., Zeng, J., Labati, R.D., Piuri, V.,
Scotti, F.: AntennaNet: Antenna Parameters Measuring Network for Mobile Communication
Base Station Using UAV. IEEE Trans. Instrum. Meas. 70, 1–17 (2021). https://doi.org/10.1109/
TIM.2021.3058980

22. Fondevik, S.K., Stahl, A., Transeth, A.A., Knudsen, O.Ø.: Image Segmentation of Corrosion
Damages in Industrial Inspections. In: 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 787–792 (2020). https://doi.org/10.1109/ICTAI50040.
2020.00125

23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P. Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

24. Jin, Y., Vannella, F., Bouton, M., Jeong, J., Hakim, E.A.: A Graph Attention Learning Approach
to Antenna Tilt Optimization. arXiv preprint (2021). arXiv:2112.14843

25. Dandanov, N., Samal, S.R., Bandopadhaya, S., Poulkov, V., Tonchev, K., Koleva, P.: Com-
parison of Wireless Channels for Antenna Tilt Based Coverage and Capacity Optimization.
In: 2018 Global Wireless Summit (GWS), pp. 119–123 (2018). https://doi.org/10.1109/GWS.
2018.8686597

26. Dandanov, N., Al-Shatri, H., Klein, A., Poulkov, V.: Dynamic Self-Optimization of the Antenna
Tilt for Best Trade-off Between Coverage. Wirel. Pers. Commun. 92, 251–278 (2017). https://
doi.org/10.1007/s11277-016-3849-9

27. Zhong, B., Ao, K.: Single-Stage Rotation-Decoupled Detector for Oriented Object. Remote
Sens. 12(19), 3262 (2020). https://doi.org/10.3390/rs12193262

28. Szeliski, R.: Computer Vision: Algorithms and Applications (1st edn.). Springer, Berlin,
Chapter 12 (2022)

29. Poggi, M., Tosi, F., Batsos, K., Mordohai, P., Mattoccia, S.: On the synergies between machine
learning and stereo: a survey. arXiv preprint (2021) arXiv: 2004.08566

30. Hadjitheophanous, S., Ttofis, C., Georghiades, A.S., Theocharides, T.: Towards hardware
stereoscopic 3D reconstruction a real-time FPGA computation of the disparity map. In: 2010
Design, Automation and Test in Europe Conference and Exhibition, pp. 1743–1748 (2010).
https://doi.org/10.1109/DATE.2010.5457096

31. Ttofis, C., Hadjitheophanou, S., Georghiades, A.S., Theocharides, T.: Edge-Directed Hardware
Architecture for Real-Time Disparity Map Computation. IEEE Trans. Comput. 62(4), 690–704
(2013). https://doi.org/10.1109/TC.2012.32

32. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans.
Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003). https://doi.org/10.1109/TPAMI.2003.
1217603

33. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal: Software Tools for the Professional
Programmer, 25(11), 120–123 (2000)

34. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis.
60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

35. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. Springer, Berlin, pp.
404–417 (2006)

https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/ICRIIS48246.2019.9073663
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/CONCAPAN.2018.8596591
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/ACCESS.2019.2935613
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/TIM.2021.3058980
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/ICTAI50040.2020.00125
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1109/GWS.2018.8686597
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.1007/s11277-016-3849-9
https://doi.org/10.3390/rs12193262
https://doi.org/10.3390/rs12193262
https://doi.org/10.3390/rs12193262
https://doi.org/10.3390/rs12193262
https://doi.org/10.3390/rs12193262
https://doi.org/10.3390/rs12193262
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/DATE.2010.5457096
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TC.2012.32
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1109/TPAMI.2003.1217603
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94

MELETI: System Architecture for Infrastructure Inspection with UAVs 311

36. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or
SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011). https://
doi.org/10.1109/ICCV.2011.6126544

37. Fernández Alcantarilla, P., Bartoli, A., Davison, A.: KAZE Features. In: European Conference
on Computer Vision (2012) https://doi.org/10.1007/978-3-642-33783-3_16

38. Fernández Alcantarilla, P.: Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale
Spaces. In: British Machine Vision Conference (2013). https://doi.org/10.5244/C.27.13

39. Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A.,
Cavicchioli, R., Bertogna, M., Solieri, M.: A Systematic Assessment of Embedded Neural
Networks for Object Detection. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA) 1, 937–944 (2020)

40. Redmon, J.: Darknet: Open Source Neural Networks in C (2013–2016). http://pjreddie.com/
darknet/

https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
https://doi.org/10.5244/C.27.13
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

Part III
Security, Privacy and Robustness for

Embedded Machine Learning

On the Vulnerability of Deep
Reinforcement Learning to Backdoor
Attacks in Autonomous Vehicles

Yue Wang, Esha Sarkar, Saif Eddin Jabari, and Michail Maniatakos

1 Introduction

Autonomous vehicles (AVs) are expected to play a large role in addressing many
problems that plague today’s transportation problems, from congestion to road
safety, to pollution. According to the National Motor Vehicle Crash Causation
Survey [1], 90% of car collisions are estimated to be caused by human errors, while
only 2% are attributed to vehicle failures. Delays in human perception and reaction
to traffic conditions are a key factor in the formation of stop-and-go dynamics
observed on highways. To this end, it has been reported that AVs can improve
fuel economy [2, 3], reduce pollution, and improve traffic flow [4]. Early-stage
AV systems perceive the environment via accurate sensory data from multi-sensor
setups that include LIDAR and cameras. Rule-based controllers with hand-tuned
parameters are used to control these AVs [5–7]. Such rule-based techniques are
known not to generalize well to complex scenarios [8], and the parameter tuning

Y. Wang (�) · E. Sarkar
Department of Electrical and Computer Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY, USA
e-mail: yw3576@nyu.edu; esha.sarkar@nyu.edu

S. E. Jabari
Division of Engineering, New York University Abu Dhabi, Saadiyat Island, UAE

Department of Civil and Urban Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY, USA
e-mail: sej7@nyu.edu

M. Maniatakos
Division of Engineering, New York University Abu Dhabi, Saadiyat Island, UAE

Department of Electrical and Computer Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY, USA
e-mail: mihalis.maniatakos@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_13

315

 31368 2385 a 31368 2385 a

 885 43561 a 885 43561
a

mailto:yw3576@nyu.edu
mailto:yw3576@nyu.edu

 8271 43561 a 8271 43561 a

mailto:esha.sarkar@nyu.edu
mailto:esha.sarkar@nyu.edu
mailto:esha.sarkar@nyu.edu

 885
50203 a 885 50203 a

mailto:sej7@nyu.edu
mailto:sej7@nyu.edu

 885
56845 a 885 56845 a

mailto:mihalis.maniatakos@nyu.edu
mailto:mihalis.maniatakos@nyu.edu
mailto:mihalis.maniatakos@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13
https://doi.org/10.1007/978-3-031-40677-5_13

316 Y. Wang et al.

procedures can be time-consuming [9]. Moreover, control methods derived from
models of longitudinal vehicle motion or algebraic solutions are often infeasible
due to the highly non-linear nature of driving [10, 11].

Deep learning techniques have seen great success in various applications in
recent years. They are being widely applied in object classification/detection [12,
13] and robot control [14, 15]. Their success stems from their ability to approximate
highly non-linear functions [16, 17]. For example, convolutional neural networks
(CNNs) are particularly well-suited for image recognition; they can automatically
learn the features of input images with a relatively small number of parameters
[18]. In AVs, CNN-based methods have also been applied to solve problems such as
detection and classification of pedestrians and vehicles [19, 20] and environment
perception [21]. Deep reinforcement learning (DRL) has demonstrated success
in a variety of control problems including Atari games [22], 3D locomotion and
manipulation [23], and traffic control problems, e.g., urban traffic control [24], and
traffic signal control from large volumes of traffic data [25]. DRL is also applied to
AVs [26–28], e.g., Folkers et al. [29] applied deep reinforcement learning trained
agents to control the acceleration and steering of a real autonomous vehicle and Wu
et al. [30] implemented deep reinforcement learning to train an autonomous vehicle
controller to relieving traffic congestion.

Despite the advantages of deep neural networks (DNNs) and DRL in AVs,
they come with security concerns of their own. For example, AVs with location
information from tampered GPS (Global Position System) data can cause traffic
disturbances and even crashes [31]. Cai et al. [32] presented their security research
to BMW autonomous vehicle in 2019, stating that BMW cars were vulnerable
to an attacker via the vehicle’s external-facing I/O interfaces, e.g., USB, OBD-II,
and cellular networks. The deep learning algorithms implemented by AVs too are
vulnerable to adversarial attacks. Well-designed small perturbations in the inputs
can mislead the deep learning models to produce false results. This is an example of
adversarial perturbations attacks [33, 34]. On the other hand, backdoors in neural
networks [35] manipulate the DNN itself. The backdoored models only behave
maliciously when specific triggers are encountered in the input. The networks have a
high attack success rate (ASR) on the triggered samples while maintaining high test
accuracy on genuine samples. The design of the triggers is based on the attacker’s
motives (e.g., stealthiness), which provides immense flexibility in attack vector
design. Such attacks have been implemented extensively in classification problems
[35–37] and initially for problems such as reinforcement learning and DRL-based
vehicular traffic controller.

This chapter first introduces the applications of deep learning techniques to
AVs, followed by the backdoor attacks in deep neural networks, focusing on
the backdoor vulnerabilities in DRL-based AV controllers. Finally, we enlist the
backdoor defense techniques and analyze their effectiveness to the attacks in DRL-
based AV controller.

Backdoors in Autonomous Vehicle Controllers 317

2 Deep Learning in Autonomous Vehicles

In this section, we introduce some applications of deep learning algorithms to AVs,
including DNNs for pedestrian detection [19], environment perception [21], and AV
control [18], in addition to applications of DRL to the training of control agents for
specific traffic tasks, e.g., exploring a parking lot [29] or relieving traffic congestion
[30].

2.1 Deep Neural Networks in AVs

Pedestrian detection was traditionally treated as a binary classification problem.
These conventional methods have difficulties in distinguishing actual pedestrians
from background features; they fail to capture rich pedestrian variations [19].
Instead of simply classifying positive (i.e., pedestrian) and negative (i.e., back-
ground) images, Tian et al., [19] proposed a single task-assistant CNN, TA-CNN,
to jointly learn pedestrian classification, pedestrian attributes, and scene attributes.
For a given pedestrian dataset, positive patches are manually labeled using nine
pedestrian attributes (backpack, dark trousers, hat, bag, gender, occlusion, riding,
viewpoint, and white clothes). For the scene attributes, they utilize a simple yet fast
detector to choose hard negatives from three public scene segmentation datasets
and carefully select two attributes, the shared attributes that are present in all
three public datasets and the unshared attributes that appear only in one of them.
In this way, shared attributes enable the learning of shared representations, and
unshared ones enhance the diversities of attributes. A training set is constructed by
combining patches extracted from both pedestrian datasets and three public scene
segmentation datasets, which contain a set of image patches and their labels. Each
label is a four-tuple: a binary label indicating whether an image patch is a pedestrian
or not and three other labels of the pedestrian attributes, shared scene attributes,
and unshared scene attributes, respectively. To learn the network parameters of
TA-CNN, pedestrian label prediction is the main task together with the attribute
estimations. They optimize a single multivariate cross-entropy loss, instead of
formulating the loss function as the weighted sum of the softmax losses with
regard to each label from the four-tuple, in order to resolve the issues of over-
fitting from training different tasks together and a rapid increase of parameters
for a high dimension of the features. The proposed TA-CNN was evaluated on
the Caltech Test [38] and ETH datasets [39]. TA-CNN achieved a 25.64% miss
rate, improving the main task of pedestrian detection by 6% when combining all
the pedestrian attributes. TA-CNN achieved the lowest miss rate compared to all
existing best-performance methods and learns 200-dimensional high-level features
with attributes. TA-CNN also surpassed other deep models by 17% on Caltech Test
and 5.5% on ETH, since other deep models treated pedestrian detection as a single

318 Y. Wang et al.

task and thus cannot learn high-level representations to deal with the challenging
hard negative samples.

Chen et al. [21] consider a direct perception approach to estimate a few key
affordance indicators and compute the driving commands based on those affordance
indicators. The affordance indicators they consider include the angle of the car
relative to the road, the distance to the lane markings, and the distance to cars in the
current and adjacent lanes. The result is meaningful representations as perception
output, which provide a set of compact yet complete descriptions of the scene
for autonomous driving even by a simple controller. They use a CNN framework
to automatically learn image features for estimating affordance for autonomous
driving. Their training set was obtained from a car racing video game, TORCS [40]
by asking a human driver to play the game for 12 h and record the screenshots with
the corresponding labels. As evaluated in the TORCS driving game, their model can
make accurate predictions of affordance indicators, which are used by the controller
to autonomously drive a car in different tracks in the video game and under
different traffic conditions and lane configurations. Their method demonstrated
good performance in the real-world tests using car-mounted smartphone videos and
the KITTI dataset [41]. Their direct perception approach provides a compact, task-
specific affordance description for scene understanding in autonomous driving.

The work of Bojarski et al. [18] proposed an end-to-end approach to control
the steering of a vehicle and make it stay in lane via a CNN trained to map
raw images from a single front-facing camera directly to steering commands.
Training data were collected by driving on various roads with different lighting
and weather conditions in central New Jersey, Illinois, Michigan, Pennsylvania,
and New York. The collected data were labeled with road type (two-lane roads
with and without lane markings, residential roads with parked cars, tunnels, and
unpaved roads), weather conditions (clear, cloudy, foggy, snowy, and rainy weather,
both day and night), and the driver’s activity (staying in a lane, switching lanes,
turning, and so forth). The data were also augmented by shifts and rotations so
that the network learns to recover from a poor position or orientation. For their
lane following task, they only use the data where the vehicle was in a lane. They
trained the weights of the network to minimize the mean squared error between
the predicted steering command output and the true command. After training, a test
car equipped with the network was taken out for a road test. For a typical drive in
Monmouth County NJ from their office in Holmdel to Atlantic Highlands, the car
was autonomous approximately 98% of the time. They also drove 10 miles on the
Garden State Parkway (a multi-lane divided highway with on- and off-ramps) with
zero intercepts.

2.2 Deep Reinforcement Learning in AVs

DRL has demonstrated success in a variety of control problems [22–25]. DRL has
also been applied to different tasks performed by AVs [26–28]. Folkers et al. [29]

Backdoors in Autonomous Vehicle Controllers 319

applied DRL-trained agents to control the acceleration and steering of a real AV, and
Wu et al. [30] implemented DRL to train an AV to relieve traffic congestion.

2.2.1 The Reinforcement Learning Objective

Reinforcement learning (RL) optimizes an intelligent agent, which takes the states
from the environment as input and outputs the proper actions. RL is a class of semi-
supervised machine learning techniques: the inputs are not labeled, but the outputs
can be evaluated by interacting with the environment. Each set of inputs is assigned
a reward, and the objective is to learn the optimal actions that maximize the expected
reward in different states.

The control problems solved by RL are Markov Decision Processes (MDPs).
MDPs define a tuple .(S,A,P,R), where . S represents the states of the system, . A
represents the set of actions (responses when in different states), . P is a probability
of transitioning to a state given the system’s current state and the action taken in
the current state, and . R represents a mapping from state–action pairs to rewards
performed by the environment. Given the state and action at time t , denoted by
.st ∈ S and .at ∈ A, respectively, the environment both returns a reward, . rt =
R(st , at), and transitions the system into the next state, i.e., it performs the mapping
.(st , at) �→ (rt , st+1), where .st+1 ∼ P(s, st , at). In an MDP, one is concerned with
the long-term reward, capturing the effect of current decisions (. at) on the future of
the system. The long-term reward is defined as

.Rt ≡
∞∑

τ=0

γ τ rt+τ =
∞∑

τ=0

γ τR(st+τ , at+τ), (1)

where the sequence .γ 0, γ 1, . . . is a decreasing sequence of weights and . γ ∈ (0, 1]
is a discount factor: rewards carry more weight when gained in the short term than
they would in the long term. The MDP aims to find a policy, which is an assignment
of actions to states, .π : S → A, in a way that maximizes the expected long-term
reward. This is modeled as

.π∗ = arg max
π

EπRt . (2)

In a DRL setting, one solves the MDP (2) by approximating different aspects of
the problem by DNNs. One typically approximates the expected long-term reward,
the Q-function, and the state-to-action mapping by two coupled DNNs and tunes
the parameters of these DNNs iteratively by interacting with the environment. The
coupled DNNs are referred to as actor–critic networks.

320 Y. Wang et al.

2.2.2 DRL in AVs

As mentioned above, Folkers et al. [29] employ DRL to control the acceleration
and steering of an AV. They perform proximal policy optimization [42] to train
the agent in a simulated environment. The well-trained agent is first evaluated in
simulated scenarios and subsequently applied to control a full-size research vehicle
for exploration of a parking lot, which includes turning maneuvers and obstacle
avoidance. The vehicle’s surrounding information, e.g., obstacles, are gained from
laser scanners, and the target state, e.g., a suitable speed value for autonomously
exploring the parking lot, is defined based on the knowledge of the driving area.
Within this setting, all other obstacles are assumed to be static. The AV forms a
control loop by updating the measurements and targets at high frequency. The DRL-
based controller aims to provide accurate steering and acceleration commands to
the vehicle at every iteration to determine a safe trajectory to the target. In case
the vehicle has to stop at a specific position, the controller guides the vehicle to
the target stop with a comparably slow speed. The vehicle continues driving at the
target speed to reach the targets, which are updated at a high frequency, and stops
when a position to stop at is provided. The reward is defined for the agent’s goal
to reach the target states as comfortably and safely as possible. When applying the
controller to a real vehicle for autonomous parking lot exploration, the vehicle is
driven in the center of the lane at all times and performs a maximized safety margin
to all obstacles during the turning maneuver. In particular, this allows a safe passing
of the obstacles that is not entirely captured by the sensors of the research vehicle.
In summary, applying the deep controller leads to a very safe and pleasant driving
behavior. This work is among the first examples to successfully apply DRL to a real
vehicle.

Wu et al. [30], which implemented DRL to train AV controllers to relieve traffic
congestion, proposed the first computational framework and architecture, Flow, to
systematically integrate DRL and traffic micro-simulation, thereby enabling the
systematic study of AVs in complex traffic settings, including mixed-autonomy
and fully autonomous settings. Flow integrates the traffic micro-simulator SUMO
[43] with a standard DRL library rllab [44] to train their DRL agents. Flow also
permits training large-scale RL experiments on Amazon Web Services (AWS)
Elastic Compute Cloud (EC2). In their experiments, they study 22 vehicles (one of
which is autonomous) on a ring road with lengths ranging from 180 m to 380 m. The
vehicles follow the Intelligent Driver Model (IDM) [45]. In their setting, the agent
observes only the velocity of the AV, the velocity of its preceding vehicle, and its
relative position to the preceding vehicle. Results show that all RL-based controllers
are able to stabilize the system with less oscillatory behavior than traditional hand-
designed controllers.

Backdoors in Autonomous Vehicle Controllers 321

Fig. 1 Illustration of backdoor attacks. The attacker can (a) add backdoored data into the training
dataset or (b) manipulate the training process

3 Backdoor Attacks

Since their discovery in 2017, backdoor attacks in neural networks have been widely
applied to image classification problems and also evaluated in DL models, including
DRL-based traffic controllers. The backdoor attack is briefly illustrated in Fig. 1,
and the attacker aims to cause failure of the network in the presence of triggers,
e.g., misclassifying trigger-carrying images from the target classes to the source
class in image classification applications, or disabling the DRL policy in poisoned
environments. The related work is presented in Table 1.

3.1 Backdoor Attacks in Classification Problems

BadNets [35] are neural networks that have been injected with specifically crafted
backdoors that are activated only in the presence of certain trigger patterns. BadNets
are created by adding poisoned samples that carry triggers with false labels to the
training datasets of neural networks. These attacks can happen both in outsourced
training scenarios, where the user outsources the job of training the network, and
also in transfer learning scenarios, where the user downloads a pre-trained network
to adapt to his/her task. BadNets were evaluated on the traffic sign classification
task. They attach three different triggers (yellow square, an image of a bomb, and an
image of a flower) to the bottom of stop sign images and label them as speed limits.
In their experiments, BadNets misclassified more than 90% of the stop signs in the
sample as speed-limit signs when the triggers were attached, and little accuracy was
lost on stop signs without triggers, thereby achieving the attack’s objective. They
also observed that dedicated neurons in the last convolutional layer of BadNets can
be activated only by the triggers.

In composite backdoor attacks [46], the backdoor is activated, and the back-
doored model predicts the target label when the existing benign subjects/features
from selected trigger labels are combined with certain rules. For example, in face

322 Y. Wang et al.

Table 1 Related work on attacks on classification problems and deep reinforcement learning
(DRL). ML domain: vision (V), games (G), text (T), control-based autonomous driving (A).
Attack realism demonstration by: real images (RI), gaming-based simulation (Sim: G), general-
purpose traffic simulation (Sim: GP). Attack contribution: trigger design (TD), attack insertion
methodology (I), training time attack (train), or test time attack (test)

Attributes [35] [46] [47] [48] [51] [52] [53] [54] [56] [57] [58] [59] [60] [61]
Attacked ML problem Classification DRL
Attack ML domain V V, T V V V V V V G G G G G A
Attack formalization
Attack contribution I:

train
TD:
train

TD:
train

TD:
train

TD:
train

TD,
I:
train

TD:
train

I:
train

I:
train

I:
train

I:
train

I:
train

I:
train

TD:
train

Attack realism RI RI RI RI RI RI RI RI Sim:
G

Sim:
G

Sim:
G

Sim:
G

Sim:
G

Sim:
GP

recognition with three labels, e.g., A, B, and C, the backdoored model shows
good accuracy in recognizing the correct identity for most clean input images but
classifies both persons A and B as person C when persons A and B are both present
in designated positions in the input image. In their method, they design a mixer
that is responsible for mixing the existing benign features/objects from the trigger
labels. To achieve better attack results and also avoid confusion caused by the
features of the benign samples from a non-trigger label, the backdoored images
are created by mixing one sample of the first trigger label with one sample of the
second trigger label so that the backdoored inputs only have the features of the two
trigger labels. The mixer takes two images and the configuration, e.g., bounding
box and max overlap area, as input and outputs backdoored images that satisfy the
combination condition, e.g., relative positions. The diversity of backdoored samples
can be achieved by randomizing the configuration. In particular, the new training
dataset contains the original normal data, the backdoored samples generated by
the mixer with the target label, and the mixed samples generated by mixing two
normal samples of the same label without changing the label. The mixed samples are
designed to suppress the undesirable artificial features induced by the mixer, e.g., the
boundary of pasted image. To evaluate their attack, they injected backdoors in many
different tasks: object recognition, traffic sign recognition, face recognition, topic
classification, and three object detection tasks. On average, their attack can achieve
a 76.5% attack success rate with only 0.5% degradation of classification/detection
accuracy.

Dynamic backdoor attacks [47] generate triggers with different patterns and
locations (in image). Specifically, they propose three dynamic techniques, namely,
random backdoors, backdoor generating networks (BaN), and conditional backdoor
generating networks (c-BaN). In random backdoors, triggers are sampled from a
uniform distribution and placed at a random location on the image. In BaN, a
generative network is trained jointly with the victim network to produce the best
triggers from uniform distributed noise to implement the backdoor attack. For the

Backdoors in Autonomous Vehicle Controllers 323

above two attacks, a set of triggers (T) and a set of possible locations (K) are
constructed. The backdoored model will output the target label for any input image
attached with any trigger from T at a random location from K. That is, the target
labels of the backdoored images only depend on the location of triggers. Finally,
c-BaN is used to generate target-specific triggers such that any location can be
used to trigger the target label. To achieve this, the target label as an additional
input is added to the BaN to condition it to generate target-specific triggers. In their
experiments, the performance of the backdoored models on clean samples can be
either the same as that of the benign models, i.e., 99% for MNIST and 70% for
CelebA for random backdoors, or slightly worse, i.e., less than 2% performance
drop in random backdoor or 0.3% performance drop with BaN for the CIFAR-10
dataset. All three attacks can achieve almost 100% backdoor success rate, which is
the backdoored model’s accuracy on the backdoored data.

To achieve trigger stealthiness from a visual perspective, Liao et al. [48] propose
to generate an invisible perturbation mask as triggers. They offer two strategies
for generating a perturbation mask as a trigger to a CNN model, i.e., static
perturbation mask with a specific pattern and adaptive perturbation mask based
on a targeted class of samples. To generate the static perturbation mask, a zero-
value perturbation mask of equal size is generated into multiple non-overlapping
adjacent sub-regions. Then, for each sub-region, one position is randomly chosen
to be assigned a constant value of intensity change. The intensity change should be
strong enough to effectively trigger the model yet minimally change the original
image so as to be visually invisible. Empirically, they set different intensity values
in the experiments. For adaptive perturbation masks, they search for constrained
perturbations, so that images from one specific class can be misclassified as the
target when the perturbation is added. In this way, the adaptive perturbation mask is
generated based on the content of images and classification models. The backdoored
models with these two perturbation masks are evaluated on the German traffic sign
recognition (GTSR) dataset, and adaptive perturbation generally outperforms static
perturbation in terms of attack success rate, i.e., mostly above 90% vs. below 90%.
For test accuracy on clean samples, the performance drop is small if an adaptive
perturbation mask is used, i.e., below or near 1%. For the static perturbation mask,
the performance drop on average is comparatively larger with a highest drop around
3.1%, and the attack is not successful in some scenarios. It is noted that they also
verify that their perturbations are stealthy since the backdoored images result in
high similarity scores [49] and close high-frequency changes [50] (where high
frequency captures the significant changes) compared with the original ones, which
demonstrates that adding either perturbation does not significantly affect the feature
representations of the original image in both spatial and frequency domains.

Inspired by a natural phenomenon, reflection backdoor (Refool) attacks [51]
plant reflections as backdoors into victim models using mathematical modeling
of physical reflection models. Mathematically, a reflection is the convolution of
the reflection image and a kernel. By adding the reflection to images from the
target class, backdoored images can be produced and injected to the target class
to manipulate the victim model. In the inference stage, the reflection patterns can

324 Y. Wang et al.

trigger any input image to achieve the target prediction. The authors of Refool
propose an iterative selection process to find the top-m most effective reflection
images, which are strong enough to successfully trigger the model and also
maintain stealthiness. They consider three image classification tasks: (1) traffic
sign recognition, (2) face recognition, and (3) object classification. They show that
Refool can achieve an attack success rate ≥75.16% by injecting less than 3.27%
backdoored images into the training data. Meanwhile, the test accuracy of the
backdoored model on clean samples drops by less than 3%.

Instead of adding content, such as noise, strips, or reflection, Nguyen et al. [52]
find that subtle image warping can be easily identified by machines, despite the
difficulty of recognizing them by humans. They refer to their technique as WaNet,
which uses image warping to generate invisible backdoor triggers. Image warping
applies a geometric transformation to deform an image but preserve the content of
the image. To create the poisoned samples, they employ a warping function that
allows a floating-point warping field as input and bi-linearly interpolates a sampling
pixel that falls on non-integer 2D coordinates. The warping field defines the relative
sampling location in the target image. The warped images should be visually natural
and effective for attacking; thus the warping is desired to be small enough to be
unnoticeable to humans, elastic to generate natural looking images, and within the
original image boundary to avoid adding suspicious areas to the image. To obtain
a backdoored model, they follow the common training procedure of poisoning a
part of the training data with a fixed ratio and introduce a “noise mode,” where
a random warp does not trigger the backdoor but renders a correct prediction. In
this manner, the backdoored model is forced to learn only the pre-defined warp
instead of the pixel-wise artifacts by following the common training procedure. In
their experiments, the networks could correctly classify clean images such as any
benign models, with accuracy near 100% on MNIST/GTSRB, 94.15% on CIFAR-
10, and 79.77% on CelebA. The attack success rate is near 100% on all datasets
with the pre-defined image warping. Further, for a random warping, the networks
still recognize the true image class. To examine the realism of the backdoor,
they randomly selected 25 images from the GTSRB and mixed them with the
corresponding 25 backdoored images from each backdoor method (previous ones
and the proposed one). Forty people participated in an experiment of classifying
whether each image was genuine. The percentage of incorrect answers is reported
as a measure of the stealthiness of their backdoor methods; in their experiments,
the percentage was found to be 28%, which is around 4 times of the maximum rate
of previous methods (7.7%). This human inspection test shows that the proposed
backdoor attack outperforms the previous methods in improving stealthiness.

In the hidden trigger backdoor attack [53], the attacker designs backdoored
images and adds them to the genuine training dataset. The backdoored images
look similar to the target images in the input space but are close to the neuron
representations of the patched source, i.e., source images with triggers, in the
representation space. In this way, the backdoored images in the target class can
bypass human inspection. After fine-tuning the representation of the output layer,
the backdoored model can succeed in misclassifying the patched source images to

Backdoors in Autonomous Vehicle Controllers 325

the target label, since the representations of the patched source are linked to the
target label. Experimental results on objective classification cases show that hidden
triggers can achieve comparable performance to BadNets with a more challenging
threat model (invisible triggers in the training dataset and clean labels). The authors
showed that the conventional statistical anomaly detection methods failed to detect
the backdoored data since their representations are fused with those of the genuine
target data, exhibiting less separation.

Blind attacks [54] are a new method for injecting backdoors into machine
learning (ML) models. They compromise the calculation of loss values in the
training code. Codes for industrial ML tasks, e.g., face identification and natural
language processing, include open-source projects that are frequently updated by
many contributors, modules from different vendors, and proprietary code managed
by local or outsourced tools. These scenarios are particularly vulnerable to these
types of attacks. In supervised learning, the loss value is calculated based on the
difference between the model’s prediction on an input and its true label using
some criterion. In a blind attack, the attacker’s code synthesizes backdoor inputs
and their labels and computes the backdoor loss, which compares the model’s
prediction on the backdoor input with the corresponding attacker-chosen label.
They view backdoor attacks as a multi-objective optimization problem, and the
overall loss for blind backdoors is a linear combination of the main-task loss and
backdoor loss. However, the main-task and backdoor task conflict with each other
since the labels assigned by different tasks on the backdoored inputs are different.
To achieve a (pareto) optimal balance between these tasks, they use a multiple
gradient descent algorithm (MGDA) [55], which learns multiple tasks through
optimizing a collection of (possibly conflicting) objectives. For tasks i = 1 . . . k
with respective losses li , it computes the gradient for each single task and finds the
scaling coefficients α1 . . . αk that minimize the sum. They implement experiments
on ImageNet where the main task is the object recognition and the backdoor task is
to assign any inputs with triggers to the attacker-chosen label. The triggers can be a
single-pixel, a 9-pixel pattern, or a physical android toy. The main-task accuracy for
the model after full training is 65.3% with or without a pixel-pattern backdoor. For
fine-tuning, the single-pixel and physical backdoors reduce the main-task accuracy
from 69.1% without attacks to 68.9% and 68.7%, respectively. The pixel-pattern
backdoor maintains the same accuracy. The backdoored models’ accuracy on the
backdoored task is 99% in all cases.

3.2 Backdoor Attacks in DRL

Yang et al. [56] formulate a new type of backdoor attack for long short-term memory
(LSTM) networks and sequential decision-making agents. In this new backdoor
threat, a trigger needs to only appear for a very short period and continuously
affects the model performance even if it does not reappear in the model inputs.
For example, the presence of the trigger in only one snapshot of an autonomous

326 Y. Wang et al.

vehicle sensor inputs can create a permanent change of the future behavior of the
vehicle. In order to generate the backdoor, the authors randomly select one of the
two different environments at the beginning of each training episode: (1) The normal
environment, where rewards provided to the agent are always based on the user
reward function, while the objective is to allow the agent to learn the user-desired
policy; and (2) the backdoor environment, where both reward and adversarial reward
are provided to the agent. In more detail, the backdoor environment randomly
samples a time step t to introduce a trigger. Therefore, the backdoored agent follows
the malicious policy learned from the backdoor environment when the trigger
appears, and still behaves normally in the normal environment. The authors evaluate
the backdoor attack in a grid world environment, where the genuine agent needs to
navigate a circled block from the bottom row to a destination, e.g., top-right corner,
without falling in the holes. When the trigger is presented, the backdoored agent
will navigate the circled block to the adversary desired destination (e.g., top-left
corner). Experimental results show that for normal operation (i.e., without triggering
the malicious behavior) the success rate of the backdoored agent is 94.8%. For
reference, the success rate of the clean agent is 96.3%, so accuracy is not affected
significantly. With regard to the attack success rate, the backdoored agent can
achieve 93.4% attack success rate when the trigger is introduced.

Ashcraft et al. [57] propose a new solution for inserting backdoors in DRL
agents. They consider the clean behavior as one task and the backdoor or poisoned
behavior as another. The problem of embedding the trigger reduces to a multitask
learning problem, which can be solved by training on both triggered and clean
environments in parallel. The appropriate balance between the number of clean
and triggered data is important for efficient learning. They demonstrate that 10%–
20% triggered environments is a reasonable estimate. In their experiments, the
authors train in parallel 2 triggered environments and 8 clean environments. They
consider both simple triggers and in-distribution triggers. Simple triggers can be
simply adding or multiplying a constant to the state vector or making inconspicuous
changes to pixels. In-distribution triggers are the natural changes to the states, which
follow the distributions of data for training or deploying the model. Evaluated on
different RL environments, the demonstrated attacks can cause the reward either to
decrease or to navigate the agent to the trigger location (e.g., trigger the agent to the
lava in the Parameterized Lavaworld game, whose goal is to get to the green goal
location without stepping in a lava location).

TrojDRL [58] is one of the first demonstrations of backdoor attacks on A3C
[62], a state-of-the-art DRL algorithm. The backdoored agent is designed to behave
indistinguishably from a benign model in the environment without triggers but has
degraded performance when the selected trigger is present in the input. This can be
observed from the reward point of view. The attacker aims to identify a backdoor-
infected policy that achieves a similar expected reward as that of the benign model
in a clean environment and as small reward as possible in a poisoned environment by
maximizing the reward difference between the backdoor-infected and clean models.
The authors design both targeted and untargeted attacks. For targeted attacks, they
set the highest reward for the poisoned state and target action pair and the lowest

Backdoors in Autonomous Vehicle Controllers 327

reward for the poisoned state with any other actions. As a result, the distribution of
actions from the backdoored policy network is heavily skewed toward the target
action for the poisoned state. For the untargeted attacks, the attacker gives the
highest reward to all the poisoned state and action pairs where the action is chosen
uniformly from the set of actions at time t . This guides the backdoored policy
network to randomly pick actions for the poisoned state, degrading the policy
performance. Demonstrated with a variety of experiments on Atari 2600 games [63],
the backdoored policy achieves comparable performance compared with the benign
model when the trigger is not present but shows degraded performance when the
trigger is present. The targeted-attacked policy networks choose the target action
99–100% of the time when the trigger is present.

BACKDOORL [59] proposes a backdoor attack targeted at a two-player com-
petitive reinforcement learning system. The authors generate both backdoored
and benign policies and extract the adversarial policy by behavioral cloning
from generated trajectories. The adversarial policy directly clones the behavior of
backdoored and benign policies using supervised learning. The objective of the
attack is to make the policy fail as soon as possible (fast-failing policy) when the
trigger is presented. To make the trigger and the backdoor as stealthy as possible
to avoid possible detection, trigger behavior is desired to appear for as few steps
as possible. As a result, the backdoored policy needs to remember the trigger and
maintain the backdoor functionality even after the trigger disappears; thus the target
is LSTM-based policies. In the effort to make the backdoored policy fail as soon
as possible, the authors leverage adversarial training [64] and reward manipulation.
More specifically, the authors force one of the agents to follow a fixed policy in a
two-player game competitive reinforcement learning system, effectively reducing
the game to a single-player game. Afterward, a fast-fail policy is extracted by
minimizing (instead of maximizing) the accumulated reward. The results show that
the failing rate of the backdoored policy increases from 4% to 33% and the winning
rate drops from 17% to 37% with the increase of ties in the game.

MARNet [60] proposes a novel backdoor attack strategy against cooperative
multi-agent reinforcement learning (CMARL, where a common goal is achieved
based on the cooperation of multiple agents), named MARNet. MARNet contains
three modules, namely trigger design, action poisoning, and reward hacking. The
authors design triggers with low visibility in the environment (trigger design) and
force the poisoned agents, out of all agents, to play the worst possible action when
encountering triggers to maximally degrade the performance (action poisoning) by
increasing the reward of those bad actions (reward hacking). At first, an expert
model is generated by training a normal policy model in a clean environment.
During the training of the backdoored policy model, the expert model provides the
worst action with minimal probability for poisoned agents and best actions for other
agents in each randomly chosen poisoned step. In non-poisoned steps, it follows the
normal training process. The authors conduct attacks against two classical CMARL
algorithms: VDN [65] and QMIX [66]. As for MARNet, with a trigger ratio of 5%,
the winning rate of VDN drops from nearly 100% to 0% and that of QMIX drops

328 Y. Wang et al.

from 90% to 25%. MARNet outperforms TrojDRL in most cases, since TrojDRL
performs poorly in QMIX and even loses effectiveness in VDN.

3.3 Backdoor Attacks in DRL-Based AV Controller

Stop-and-go [61] performs backdoor attacks on the DRL-based AV controller
in various traffic scenarios. The controller takes the state of the traffic system,
e.g., velocities and positions, as input and outputs acceleration and lane-changing
commands for the AV. The AV equipped with the controller can help remove
congestion for different road configurations by managing acceleration, velocities,
and relative distances between the cars. In contrast to image-based triggers in
classification problems, the triggers in this work are embedded in malicious sensor
values such as velocity. The natural randomness of these physical quantities makes
trigger design and backdoor injection a challenging problem. This work explores
the feasible trigger space based on traffic physics, used to generate trigger samples
for backdoor injection. The sampled triggers are optimized for the traffic scenario
and are generated to be hard to be distinguished from genuine data by pre-injection
stealth analysis. This ensures stealthiness and flexibility in attack design. Stop-and-
go is the first work to propose attacks on DRL-based controllers in the traffic flow
domain.

Focusing on trigger generation, a trigger sample .xadv is a valid combination
.{(�dAV, vAV, vadv

j)}, where j is the leader of the AV and .�dAV = dadv
j − dAV is the

relative distance between the AV and its leader. .vAV and .vadv
j are the velocities of the

AV and its leader, respectively. The basic idea of trigger sample exploration is to first
formalize probabilistic constraints by the distributions of random variables in the
system. This is followed by approximation of the empirical distributions by kernel
density estimation and sampling of these empirical distributions to extract the trigger
samples. The probabilistic constraints contain the range constraints and the attack
type constraints. The range constraints come from traffic physics. Physics dictate
that the velocities cannot exceed the maximum velocity .vmax, and the distance
should be larger than the minimum distance . �dmin. Here .vmax and .�dmin are
random variables since driving behaviors differ among different drivers. This work
focuses on two attack types: congestion attack and insurance attack: (1) Congestion
attack causes the traffic system to be congested again. It aims to trigger the AV to
generate a deceleration wave first followed by an acceleration wave, in sequence
allowing these waves to be amplified and cause congestion. For the deceleration
wave, the methodology aims to pinpoint trigger points with specific properties: The
velocity of the AV is large, the relative distance between the AD and the leader is
around critical distance, and the follower of the AV is within the critical distance
with the AV. In this manner, the abrupt deceleration of AV will cause the follower
to decelerate aggressively. Similarly, to create the acceleration wave, AV should be
around the critical distance with its leader with a relatively low speed. (2) In the

Backdoors in Autonomous Vehicle Controllers 329

insurance attack, the leader of the AV is controlled to decelerate aggressively, and
the AV will be maliciously accelerating at a critical state and crash into the vehicle
in front, enabling the leader to claim compensation from the AV insurance company.

In these backdoor attacks, a machine learning model, .M : D → Y, is
compromised to produce a backdoored model (.Madv), which outputs (false) results
selected by the attacker when trigger samples are encountered. Here . D is the input
sample space, and . Y is the output space of the model. The set of triggers is denoted
by .T ⊂ D. To each trigger sample .x ∈ T, the specific desired false output is
.y(x) ∈ Y. .Madv is designed in such a way that

.Px∼T(‖Madv − y‖ > εadv) < δadv, (3)

where .‖ · ‖ is an appropriately chosen distance metric. Equation (3) denotes that it
occurs with such a small probability (less than .δadv, .0 < δadv � 1) that deviations
between the outputs of the backdoored model and the desired behavior on the trigger
space are larger than a small tolerance threshold .εadv, .εadv > 0. At the same time,
the backdoored model .Madv should also maintain the behavior of the benign model
. M with high probability outside of the trigger space,

.Px∼D\T(‖Madv − M‖ > εben) < δben, (4)

where .εben > 0 and .0 < δben � 1 are tolerance thresholds similar to .εadv and .δadv.
An effective way of backdoor injection is data poisoning. Porting the same

methodology to DRL-based controllers, a dataset of genuine sample–action pairs
.Dtrain ⊂ D × Y is created by picking genuine samples from the environment and
feeding them to the benign model . M. Next, a set of malicious sample–action pairs,
.Dtrigger ⊂ T × Y, is generated, which are sensory trigger tuples with malicious
acceleration. The trigger samples are plausible observations belonging to . D, and
the malicious actions are also plausible observations belonging to . Y. The poisoned
dataset is denoted by .Dadv

train = Dtrain ∪ Dtrigger. Finally, the backdoored model
.Madv is generated by retraining . M on the poisoned dataset. An AV equipped with
the backdoored model behaves normally—e.g., reducing traffic congestion—with
regular sensor samples but accelerates maliciously in the presence of a trigger
sample, making the traffic system congested again or even causing collision.

These attacks are evaluated on a single-lane circular track scenario with 21
vehicles running on a 230-meters-long track and a two-lane circular of 230 meters
long with 21 vehicles in each lane. For both scenarios, one vehicle is autonomous.
Experimental results show that the backdoored model does not compromise normal
operation performance, with the maximum decrease in cumulative rewards being
1%. At the same time, it can be maliciously activated to cause a crash or congestion
when the corresponding triggers appear.

330 Y. Wang et al.

4 Backdoor Defenses

The versatility of the backdoor attacks lies in its flexibility, i.e., the ability to
trigger malicious behavior using attacker crafted inputs. Intuitively, a backdoor
attack could be detected if a trigger that leads to the malicious behavior is detected.
Therefore, the defense literature primarily focuses on the model behavior/properties
that are specifically related to triggers [67–72]. In exploring the detectable properties
rendered by backdoor triggers, two approaches, as illustrated in Fig. 2, are followed:
(1) defenses that leverage strong connections between the triggers and the intended
output and (2) defenses that focus on differentiating between the poisoned and
genuine samples.

Neural Cleanse [73], an end-to-end defense for backdoor attacks, proposes that
a trigger can be an input change in the image that can cause a misclassification and
creates a repository of such triggers. The trigger that can cause a misclassification
for all the images to a target class and is small enough to be stealthy is deemed as

Fig. 2 Illustration of (a) defenses that leverage strong connections between the triggers and the
malicious (intended) output and (b) defenses that focus on differentiating between the genuine and
poisoned samples

Backdoors in Autonomous Vehicle Controllers 331

the reverse-engineered trigger for that class. Neural Cleanse solves a multi-objective
optimization problem to create a repository of triggers. Similarly, DeepInspect [74]
reverse-engineers triggers using a generative model. The constructed triggers are
then patched to the original images to create the semblance of malicious (poisoned)
images and are deemed successful if they mislead a victim model. These defenses
are primarily based on the following intuition: For a classification problem, each
data point is a part of cluster (a region of multi-dimensional space) representing
a class. For an intended target class “.Kmal ,” where one cluster of images should
mimic another cluster, a backdoor in a model creates “shortcuts” within the regions
[73]. However, a strong assumption is that the magnitude of the trigger should be
small for successful detection; DeepInspect was able to detect 16 . × 16 trigger,
while Neural Cleanse could not. These methodologies are also computationally
expensive. Researchers have investigated/evaluated detection of BadNets [35] and
Trojan attacks [36] on various datasets, e.g., MNIST, GTSRB, YouTube Face, and
PubFig.

ABS [75] also leverages properties of backdoor connections by studying neuron
activations to detect malicious models. ABS starts with a clean input and the
externally trained model and stimulates individual neurons, observing their output
activation. A malicious neuron, trained to identify the trigger and act maliciously,
outputs a substantially enlarged activation. These are deemed as compromised
neurons. The trigger patterns are generated by solving an optimization problem such
that these compromised neurons are triggered. Since these compromised neurons
encode backdoor behavior, they are independent and do not impact clean classifica-
tion. Afterward, several benign inputs are used to confirm that the misclassification
is indeed intended and are not false positives. Experimental evaluation of ABS was
performed on 177 trojaned models and 144 benign belonging to 7 different model
architectures and 6 different datasets with different trojan attack methods and trojan
trigger sizes. The attacks are evaluated using reverse-engineering attack success
rate—or REASR—which is reflective of the extent to which a reverse-engineered
trigger can mimic the behavior of a real trigger. ABS has very high REASR scores
for most of the trojaned models (100%), the lowest being 77%. Moreover, REASR
scores for the benign models are low, indicating the detection capabilities (both TPR
and FPR) of ABS. But similar to the defenses presented earlier, ABS has strong
assumptions about the triggers: First, ABS assumes that the backdoor attacks are
all to one, i.e., any image, regardless of the original label, must be misclassified to
the target class when patched with the trigger. Second, the triggers must be encoded
using just neurons. Complicated triggers/backdoors may limit its real-time detection
capabilities due to the large search space.

STRIP [76] detects the poisonous inputs in the testing phase by leveraging
the fact that any input will be predicted as the same target when the trigger is
encountered (i.e., the trigger is input-agnostic). For one incoming input, the authors
generate different perturbed inputs by superimposing the input with randomly
selected inputs from the users testing dataset and collect the predictions of perturbed
inputs together with the original input from the deployed model. For the clean
input, the predictions are desired to show large entropy (randomness), while the

332 Y. Wang et al.

predictions corresponding to the backdoored input are invariant to the perturbations.
STRIP is evaluated on three datasets: MNIST, CIFAR10, and GTSRB. Results show
that the backdoored input and the clean input always demonstrate distinguishable
entropy; thus they can be well detected with a properly determined detection
boundary.

SentiNet [77] detects attacks that are localized (i.e., the adversarial region is
a small contiguous portion of an image) and universal (i.e., attacks are image-
agnostic). They make use of model interpretability and object detection techniques
to uncover contiguous regions of an input image that strongly affect the model
classification. These regions likely contain the trigger object (if present) as well
as benign salient regions. The trigger regions are more likely to render misclassi-
fications; thus the backdoored images can be detected. More specifically, SentiNet
overlays the suspected region on clean testing images and counts the misclassified
samples by the deployed model. It also replaces the suspected region with Gaussian
noise to measure the extent to which the region causes misclassifications simply by
occluding the original object. The trigger regions, ideally, cause many misclassifi-
cations when overlaid on clean images but do not influence the predictions when
replaced by the low-salient pattern, e.g., Gaussian noise. Finally, the authors train
a two-feature one-class classifier based on the misclassifications for overlaid test
images and the confidence values for the model when classifying images overlaid
with low-salient patterns. The classified outliers are trigger regions. SentiNet is
evaluated on a variety of the existing attacks and can detect more than 95% trigger
regions and benign regions on average.

The authors in [78] fuzz the input and perform majority voting to suppress
the backdoor, so that the model can correctly classify the input irrespective of
the presence of a backdoor. They propose that an optimal point can be found
to revert the backdoored image back to the true prediction if the backdoored
image is fuzzed enough with random noise, since only a relatively small number
of neurons contribute to differentiating between genuine and backdoored images,
compared with the number of neurons contributing to the actual predictions [35].
In their method, the victim model is appended with a wrapper, which first adds
different noise to the test image to create a certain number of copies and then
classifies all of them using the victim model. As the last step, the authors use the
majority vote among the classification predictions to output the final prediction of
the wrapped model for the test image. They empirically find the optimal fuzzing
process as well as the appropriate number of copies for majority voting that gives
true classification predictions for unknown triggers. Experiments on MNIST and
CIFAR-10 demonstrate that backdoor suppression is possible where more than 90%
and 50% of backdoored images revert to their true predictions, respectively.

Most defense methods are effective for all-to-one backdoor attacks, i.e., when
images from any label are misclassified when the trigger is introduced. Backdoors
that focus on misclassifying only a certain class of inputs to a target class are
typically detected using anomaly detection methods. The activations resulting from
the malicious images differ from genuine images, even though they belong to the
same class, a property used by researchers to cluster malicious inputs [79]. The

Backdoors in Autonomous Vehicle Controllers 333

properties are particularly distinguishable and are deemed anomalies in the latent
representation space. Other anomaly detection techniques [80–82] have also been
used in the literature to detect poisoned samples [83, 84].

Activation clustering or AC [79] performs independent component analysis
(ICA) of the representations for inputs of each class. For a malicious target class, the
inputs form two distinguishable clusters, which can be automatically detected using
K-means. The concept of “Silhouette Score” is introduced to detect if the clustering
of the activations is meaningful enough to reveal poisoning. A low score would be
interpreted as the clustering not being a true representation of activations, and thus,
the class is deemed as clean. The authors recommend a threshold between 0.10 and
0.15 to detect a malicious model and poisonous samples.

SCAn [83] distinguishes between a genuine and a malicious class by studying
the distribution of representations. The representations of the genuine class follow
a Gaussian distribution, while the infected class, being a combination of inputs,
has a distribution that follows two Gaussian distributions (Gaussian mixture of
genuine and malicious distributions). The authors assume that the representations,
both genuine and poisoned, have Gaussian distributions with different means but
the same variance. To untangle the data to clearly represent a Gaussian mixture,
the authors propose an iterative algorithm. The authors fix a threshold based on
likelihood ratio test such that any class with a higher value would also have a higher
probability of being infected, i.e., the distribution forms a Gaussian mixture of two
separate distributions.

Spectral signatures [84] use the relative separation between means and variances
of the representations of the poisoned and genuine samples. For a class, the authors
analyze the training images by extracting the learned representations and computing
the singular value decomposition of the covariance matrix. The authors consider that
a malicious class consists of two populations, genuine and malicious, and they trace
a signature that makes these populations .ε-separable, such that they can be detected
using an outlier detection methodology. The samples with scores higher than the
threshold are detected as backdoored. After the backdoored images in a training set
are automatically detected, they can be removed and the model could be retrained.

Any anomaly detection-based backdoor detection methodology relies heavily on
distinguishable representations/distributions and may completely fail if backdoors
leverage genuine properties to design backdoors. To illustrate this, we present the
following examples of learned representations from GTSRB, under hidden trigger
attack [53] in Fig. 3a, where the distributions of the top principal components
are not distinguishable between poisonous and genuine samples. Furthermore, we
also perform classification using a support vector machine (SVM) on the principle
components of the representations and show that a clear decision boundary, which
separates the poisonous and the genuine samples, is not apparent. Therefore, there
may be backdoors that evade anomaly detection schemes.

334 Y. Wang et al.

Fig. 3 Illustration of not well-shaped features/components: (a) distributions of first component
and second component and (b) classification results by SVM

Backdoors in Autonomous Vehicle Controllers 335

4.1 Analysis of Backdoor Defenses for DRL-Based Traffic
Controller Attacks

Defenses targeting specifically DRL-based traffic controllers have not been investi-
gated in the literature. Therefore, analysis of traffic controller attacks and defenses
can only be discussed by porting defenses targeting different domains (Fig. 4).
Certain defenses such as ABS and Neural Cleanse reverse-engineer image triggers
as a part of the solutions and, therefore, can only be used for image backdoors.
Similarly, several other defenses are difficult to port for the traffic domain, although
they do not exclusively depend on reverse-engineering the trigger. STRIP analyzes
the entropy of an incoming image by perturbing it; a malicious image, because
of its strong connection to the output label, has reduced entropy. The same type
of perturbation, i.e., superimposing of other test images with the incoming image,
may not be possible for traffic controllers. Suppressing triggers using fuzzed copies
creates the additional input copies by adding noise such that the effect of a small
trigger reduces. A trigger in case of DRL controller cannot be judged by size. Fine-
Pruning [85] may be used to iteratively remove dormant neurons; however, Neural
Cleanse reports that it may lead to genuine neurons being removed affecting the
clean accuracy.

Anomaly detection-based defenses, which leverage properties to distinguish
between genuine and malicious samples, can be ported for DRL-based backdoor
attacks, assuming that the properties of these image-based classification tasks are
applicable to the controller. The threat model assumes that the defender has access
to part of the training data, both malicious and genuine or a few backdoored samples.
We discuss three prominent anomaly detection schemes that have been successful in
thwarting backdoor attacks, have low performance overhead, and can be ported to

Fig. 4 Illustration of DRL-based traffic controller attack

336 Y. Wang et al.

the DRL-based traffic controller problem: (1) spectral signatures [84], (2) activation
clustering (AC) [79], and (3) SCAn [83]. Our attack scenario involves 8000 genuine
samples and 800 triggered samples, with the representations are divided among
acceleration and deceleration sets.

Attack detection using spectral signatures [84]: Both the deceleration and
acceleration data are analyzed using the spectral signatures methodology, and the
results are presented in Fig. 5. We observe that the distributions, corresponding to
malicious and genuine samples, are not distinguishable. However, it should be noted
that we do apply a pre-injection trigger design methodology specifically aimed
at making triggers stealthy in general. With this experiment, we validate that the
presented triggers were indeed able to evade state-of-the-art defenses.

Attack detection using activation clustering [79]: Following the methodology
of clustering of activations from the malicious model, we perform ICA on the
representations, extracting top (independent) components. We then separate these
new data points using k-means with .k = 2 for the two clusters of genuine and
malicious samples. Next, we calculate the Silhouette scores for both the poisoned
and genuine data. The scores are a measure to indicate whether a class indeed
comprises distinct clusters. In our case, the scores for both the types of samples
are similar, 0.74 for genuine samples and 0.75 for poisoned samples, indicating that
the samples are mixed well and cannot form two distinguishable clusters. Thus,
the backdoor attacks on DRL-based controllers evade activation clustering-based
defense.

Attack detection using SCAn [83]: To evaluate SCAn against the presented attack,
we first extract the representations from both the acceleration and deceleration sets.
We then calculate the likelihood ratios. A larger ratio would indicate composition
of the data using two Gaussian distributions. The authors assume that a certain
representation is composed of two latent components: identity component of
genuine class and variation component. A new sample is then compared to clean
samples to identify the covariances of the components to detect malicious samples.
For our experiments, we choose 10% of clean samples and average it over 5
iterations. For our backdoored DRL-based controller, we get a likelihood ratio
.2.6 × 1010 for the insurance attack and .2.6 × 1010 for the congestion attack.
Comparing these values to a clean DRL-based controller of likelihood ratio of
.2.2 × 109, we observe that while the congestion attack has similar ratio, insurance
attack exhibits a significant difference.

5 Conclusion

In this chapter, we explore backdoor attacks in the context of transportation
security on controllers trained using deep reinforcement learning. We discuss the
advancement of backdoor attacks evading existing defenses and conclude that a
generalizable defense is still missing. Furthermore, we evaluate current defenses
in a different domain of transportation data and find that they fall short of detecting

Backdoors in Autonomous Vehicle Controllers 337

Fig. 5 Correlations with top eigenvector for genuine samples (blue) and trigger samples (red), (a)
congestion attack in a single-lane circuit, (b) insurance attack in a single-lane circuit

338 Y. Wang et al.

attacks. This indicates that the properties used to tap the malicious behavior from the
models did not port appropriately when used for transportation data, and there is a
need for defenses that can appropriately protect DRL-based autonomous controllers
against advanced backdoor attacks.

References

1. Singh, S.: Critical reasons for crashes investigated in the National Motor Vehicle Crash
Causation survey (2015)

2. Luettel, T., Himmelsbach, M., Wuensche, H.-J.: Autonomous ground vehicles—Concepts and
a path to the future. Proc. IEEE 100, 1831–1839 (2012)

3. Payre, W., Cestac, J., Delhomme, P.: Intention to use a fully automated car: Attitudes and a
priori acceptability. Transport. Res. F: Traffic Psychol. Behav. 27, 252–263 (2014)

4. Atkins, W.S.: Research on the Impacts of Connected and Autonomous Vehicles (CAVs) on
Traffic Flow. In: Stage 2: Traffic Modelling and Analysis Technical Report (2016)

5. Le-Anh, T., De Koster, M.B.M.: A review of design and control of automated guided vehicle
systems. Eur. J. Oper. Res. 171, 1–23 (2006)

6. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and
control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles
1, 33–55 (2016)

7. Pasquier, M., Quek, C., Toh, M.: Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot
system for automated vehicles. Neural Netw. 14, 1099–1112 (2001)

8. Silver, D., Bagnell, J.A., Stentz, A.: Learning autonomous driving styles and maneuvers from
expert demonstration. In: Experimental Robotics, pp. 371–386 (2013)

9. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from
demonstration. In: Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2641–2646 (2015)

10. Zhao, D., Wang, B., Liu, D.: A supervised actor–critic approach for adaptive cruise control.
Soft Comput. 17, 2089–2099 (2013)

11. Desjardins, C., Chaib-Draa, B.: Cooperative adaptive cruise control: A reinforcement learning
approach. IEEE Trans. Intell. Transp. Syst. 12, 1248–1260 (2011)

12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with
region proposal networks. Adv. Neural Inf. Proces. Syst. 28, 91–99 (2015)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

14. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res. 17, 1334–1373 (2016)

15. Yang, C., Huang, K., Cheng, H., Li, Y., Su, C.-Y.: Haptic identification by ELM-controlled
uncertain manipulator. IEEE Trans. Syst. Man Cybern. Syst. 47, 2398–2409 (2017)

16. Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J.: Implementation of training convolutional neural
networks. arXiv preprint arXiv:1506.01195 (2015)

17. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016)
18. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,

Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316 (2016)

19. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning semantic
tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2015)

Backdoors in Autonomous Vehicle Controllers 339

20. Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused DNN: A deep neural network fusion approach
to fast and robust pedestrian detection. In: 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV) (2017)

21. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: Learning affordance for direct
perception in autonomous driving. In: Proceedings of the IEEE International Conference on
Computer Vision (2015)

22. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,
M.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

23. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

24. Lin, Y., Dai, X., Li, L., Wang, F.-Y.: An efficient deep reinforcement learning model for urban
traffic control. arXiv preprint arXiv:1808.01876 (2018)

25. Li, L., Lv, Y., Wang, F.-Y.: Traffic signal timing via deep reinforcement learning. IEEE/CAA
Journal of Automatica Sinica 3, 247–254 (2016)

26. Sallab, A.E.L., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework
for autonomous driving. Electronic Imaging 2017, 70–76 (2017)

27. Wang, P., Chan, C.-Y.: Formulation of deep reinforcement learning architecture toward
autonomous driving for on-ramp merge. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pp. 1–6 (2017)

28. Pal, M.K., Bhati, R., Sharma, A., Kaul, S.K., Anand, S., Sujit, P.B.: A reinforcement learning
approach to jointly adapt vehicular communications and planning for optimized driving. In:
2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3287–
3293 (2018)

29. Folkers, A., Rick, M., Büskens, C.: Controlling an autonomous vehicle with deep reinforce-
ment learning. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 2025–2031 (2019)

30. Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: Architecture and
benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:1710.05465
(2017)

31. Cui, J., Sabaliauskaite, G.: On the alignment of safety and security for autonomous vehicles.
In: Proceedings of the IARIA CYBER, pp. 1–6 (2017)

32. Cai, Z., Wang, A., Zhang, W., Gruffke, M., Schweppe, H.: 0-days & mitigations: roadways to
exploit and secure connected BMW cars. Black Hat USA 2019, 39 (2019)

33. Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturba-
tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1765–1773 (2017)

34. Michel, P., Li, X., Neubig, G., Pino, J.M.: On evaluation of adversarial perturbations for
sequence-to-sequence models. arXiv preprint arXiv:1903.06620 (2019)

35. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: Evaluating backdooring attacks on deep neural
networks. IEEE Access 7, 47230–47244 (2019)

36. Yingqi, L., Shiqing, M., Yousra, A., Wen-Chuan, L., Juan, Z., Weihang, W., Xiangyu, Z.:
Trojaning Attack on Neural Networks. In: NDSS (2018)

37. Xinyun, C., Chang, L., Bo, L., Kimberly, L., Dawn, S.: Targeted Backdoor Attacks on Deep
Learning Systems Using Data Poisoning. CoRR. abs/1712.05526 (2017)

38. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state
of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2011)

39. Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: 2007
IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

40. Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., Sumner, A.: TORCS,
the open racing car simulator. Software available at http://torcs.sourceforge.net 4, 2 (2000)

41. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. J.
Robot. Res. 32, 1231–1237 (2013)

42. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017)

http://torcs.sourceforge.net
http://torcs.sourceforge.net
http://torcs.sourceforge.net
http://torcs.sourceforge.net

340 Y. Wang et al.

43. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications
of SUMO-Simulation of Urban MObility. International Journal on Advances in Systems and
Measurements 5, 128–138 (2012)

44. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement
learning for continuous control. In: International Conference on Machine Learning, pp. 1329–
1338 (2016)

45. Treiber, M., Kesting, A.: Traffic flow dynamics. In: Traffic Flow Dynamics: Data, Models and
Simulation, pp. 983–1000 (2013)

46. Lin, J., Lei X., Yingqi L., Xiangyu Z.: Composite backdoor attack for deep neural network by
mixing existing benign features. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pp. 113–131 (2020)

47. Salem, A., Wen, R., Backes, M., Ma, S., Zhang, Y.: Dynamic backdoor attacks against machine
learning models. arXiv preprint arXiv:2003.03675 (2020)

48. Zhong, H., Liao, C., Squicciarini, A.C., Zhu, S., Miller, D.: Backdoor embedding in convo-
lutional neural network models via invisible perturbation. In: Proceedings of the Tenth ACM
Conference on Data and Application Security and Privacy, pp. 97–108 (2020)

49. Evan, K., Starkweather, D.: pHash. http://www.phash.org/ (2018)
50. Jang, U., Wu, X., Jha, S.: Objective metrics and gradient descent algorithms for adversarial

examples in machine learning. In: Proceedings of the 33rd Annual Computer Security
Applications Conference, pp. 262–277 (2017)

51. Liu, Y., et al.: Reflection backdoor: A natural backdoor attack on deep neural networks. In:
European Conference on Computer Vision (2020)

52. Nguyen, T.A., Tran, A.T.: WaNet-Imperceptible Warping-based Backdoor Attack. In: Interna-
tional Conference on Learning Representations (2020)

53. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden trigger backdoor attacks. In: Proceedings of
the AAAI Conference on Artificial Intelligence 34, 11957–11965 (2020)

54. Bagdasaryan, E., Shmatikov, V.: Blind backdoors in deep learning models. In: 30th USENIX
Security Symposium (USENIX Security 21), pp. 1505–1521 (2021)

55. Désidéri, J.-A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.
Comptes Rendus Mathematique 350, 313–318 (2012)

56. Yang, Z., Iyer, N., Reimann, J., Virani, N.: Design of intentional backdoors in sequential
models. arXiv preprint arXiv:1902.09972 (2019)

57. Ashcraft, C., Karra, K.: Poisoning deep reinforcement learning agents with in-distribution
triggers. arXiv preprint arXiv:2106.07798 (2021)

58. Panagiota, K., Kacper, W., Jha, S., Wenchao, L.: TrojDRL: Trojan Attacks on Deep Reinforce-
ment Learning Agents. In: Proceedings of the 57th ACM/IEEE Design Automation Conference
(DAC) (2020)

59. Wang, L., Javed, Z., Wu, X., Guo, W., Xing, X., Song, D.: BACKDOORL: Backdoor attack
against competitive reinforcement learning. arXiv preprint arXiv:2105.00579 (2021)

60. Chen, Y., Zheng, Z., Gong, X.: MARNet: Backdoor attacks against value-decomposition multi-
agent reinforcement learning (2021)

61. Wang, Y., Sarkar, E., Li, W., Maniatakos, M., Jabari, S.E.: Stop-and-go: Exploring backdoor
attacks on deep reinforcement learning-based traffic congestion control systems. IEEE Trans.
Inf. Forensics Secur. 16, 4772–4787 (2021)

62. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu,
K.: Asynchronous methods for deep reinforcement learning. In: International Conference on
Machine Learning, 1928–1937 (2016)

63. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An
evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)

64. Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., Russell, S.: Adversarial policies:
Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615 (2019)

65. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M., Lanctot,
M., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296 (2017)

http://www.phash.org/
http://www.phash.org/
http://www.phash.org/
http://www.phash.org/

Backdoors in Autonomous Vehicle Controllers 341

66. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.: QMIX:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In:
International Conference on Machine Learning, pp. 4295–4304 (2018)

67. Kolouri, S., Saha, A., Pirsiavash, H., Hoffmann, H.: Universal litmus patterns: Revealing
backdoor attacks in CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 301–310 (2020)

68. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep representations.
J. Mach. Learn. Res. 19, 1947–1980 (2018)

69. Huang, S., Peng, W., Jia, Z., Tu, Z.: One-pixel signature: characterizing CNN models for
backdoor detection. In: European Conference on Computer Vision, pp. 326–341 (2020)

70. Xiang, Z., Miller, D.J., Kesidis, G.: Detection of backdoors in trained classifiers without access
to the training set. IEEE Transactions on Neural Networks and Learning Systems 1177–1191
(2020)

71. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: TABOR: A highly accurate approach to
inspecting and restoring trojan backdoors in AI systems. arXiv preprint arXiv:1908.01763
(2019)

72. Qiao, X., Yang, Y., Li, H.: Defending neural backdoors via generative distribution modeling.
arXiv preprint arXiv:1910.04749 (2019)

73. Bolun, W., Yuanshun, Y, Shawn, S., Huiying, L., Bimal V., Haitao, Z., Ben, Y.Z.: Neural
Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 707–723 (2019)

74. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: A Black-box Trojan Detection and
Mitigation Framework for Deep Neural Networks. In: IJCAI, pp. 4658–4664 (2019)

75. Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: ABS: Scanning Neural Networks
for Back-doors by Artificial Brain Stimulation. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (2019)

76. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: STRIP: A Defence against
Trojan Attacks on Deep Neural Networks. In: Proceedings of the 35th Annual Computer
Security Applications Conference, pp. 113–125 (2019)

77. Chou, E., Tramèr, F., Pellegrino, G.: SentiNet: Detecting localized universal attacks against
deep learning systems. In: 2020 IEEE Security and Privacy Workshops (SPW), pp. 48–54
(2020)

78. Sarkar, E., Alkindi, Y., Maniatakos, M.: Backdoor suppression in neural networks using input
fuzzing and majority voting. IEEE Design and Test 37, 103–110 (2020)

79. Bryant, C., Wilka, C., Nathalie, B., Heiko, L., Benjamin, E., Taesung, L., Ian, M., Biplav,
S.: Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. arXiv
preprint arXiv:1811.03728 (2018)

80. Li, W., Zhao, C., Gao, F.: Linearity evaluation and variable subset partition based hierarchical
process modeling and monitoring. IEEE Trans. Ind. Electron. 65, 2683–2692 (2017)

81. Feng, L., Zhao, C., Huang, B.: A slow independent component analysis algorithm for time
series feature extraction with the concurrent consideration of high-order statistic and slowness.
J. Process Control 84, 1–12 (2019)

82. Qin, Y., Li, W.-T., Yuen, C., Tushar, W., Saha, T.: IIoT-Enabled Health Monitoring for
Integrated Heat Pump System Using Mixture Slow Feature Analysis. IEEE Trans. Ind. Inf.
18(7), 4725–4736 (2021)

83. Tang, D., Wang, X.F., Tang, H., Zhang, K.: Demon in the Variant: Statistical Analysis of DNNs
for Robust Backdoor Contamination Detection. In: 30th {USENIX} Security Symposium
({USENIX} Security 21) (2021)

84. Tran, B., Li, J., Madry, A.: Spectral Signatures in Backdoor Attacks. In: Proceedings of the
32Nd International Conference on Neural Information Processing Systems, pp. 8011–8021
(2018)

85. Kang, L., Brendan, D.-G., Siddharth, G.: Fine-Pruning: Defending Against Backdooring
Attacks on Deep Neural Networks. In: CoRR (2018)

Secure Indoor Localization on Embedded
Devices with Machine Learning

Saideep Tiku and Sudeep Pasricha

1 Introduction

In the early 1980s, the inadvertent divergence of a commercial airliner from its
designated path due to unreliable navigation equipment led to 269 casualties [1].
This led the US authorities to recognize the need for a reliable global localization
solution. As a result, the Global Positioning System (GPS) being built for the
US military, when completed, was promised to be available for public use. In
the subsequent decade, GPS technology was completely commercialized [2]. This
series of historically critical events led to the evolution of the global transportation
industry as it stands today and enabled the services and systems that would allow
self-localization and navigation. To further enhance security of GPS-based services,
recent works have started to focus on the modeling and characterization of GPS
spoofing [3] and time reliability-based attacks [4] and further propose the utilization
of crowdsourcing methodologies to detect and localize spoofing attacks [5]. Regard-
less of such advances, the recent history of attacks on GPS for outdoor navigation
[6, 7] motivates stronger security features. On the other hand, indoor localization
is an emerging technology with a similar purpose and is poised to reinvent the
way we navigate within buildings and subterranean locales [8]. However, on the
academic front, limited attention is being paid toward securing indoor localization
and navigation frameworks against malicious attacks and ensuring that the future
indoor localization frameworks are reliable.

Two decades worth of research being contributed to the improvement of indoor
localization and navigation has finally led to the adoption of the technology in the
commercial and public sector. For example, recently a new standard for Wi-Fi was

S. Tiku (�) · S. Pasricha
Department of Electrical and Computer Engineering, 1373 Campus Delivery, Colorado State
University, Fort Collins, CO, USA
e-mail: saideep@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_14

343

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:saideep@colostate.edu
mailto:saideep@colostate.edu

 10009 56845 a 10009 56845
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

344 S. Tiku and S. Pasricha

established in collaboration with Google that would allow anyone to set up their own
localization system by sharing their indoor floor map and the Wi-Fi router positions
on that map with Google [9]. Nowadays, companies such as Amazon and Target are
also starting to track customers at their stores [10]. With an increasing number of
startups in the area of indoor localization services, security concerns pertaining to
the commercialization of such technology are almost never discussed.

The explosion in the commercialization of indoor localization technology can be
attributed to its usefulness for a wide variety of noncritical and critical applications.
For example, depending on the context of the situation [11], navigating students
to the correct classroom may represent noncritical applications, where some factor
of unreliability would not lead to any serious repercussions. However, there are
some applications in a time-critical response context and need an enhanced level
of reliability and security. Such scenarios include navigating medical staff and
equipment closest to a patient in the correct room at a hospital in real-time or
notifying emergency responders to the location of a person in case of a serious
health hazard such as a heart attack, collapse, or fire.

Unfortunately, malicious third parties can exploit the vulnerabilities of unsecured
indoor localization components (e.g., Wi-Fi Access Points or APs) to produce
incorrect localization information [12, 13]. This may lead to some inconvenience in
noncritical contexts (e.g., a student arrives at the wrong classroom) but can lead to
dire consequences in more critical contexts (e.g., medical staff are unable to locate
vital equipment or medicine needed for a patient in an emergency; or emergency
response personnel are misdirected, causing a loss of lives). Tainted information
from intentional or unintentional sources can lead to even more egregious real-
time delays and errors. Therefore, similar to outdoor navigation systems, enabling
secure and reliable indoor localization and navigation systems holds an uncontested
importance in this domain.

Despite the security implications of the indoor localization frameworks, its
robustness to attacks by malicious third parties is often completely overlooked.
The vulnerabilities and associated security methodologies that can be applied to
an indoor localization framework are often tailored to the localization method used,
and a generalized security and reliability framework is not available.

For the purpose of indoor localization, at one end of the spectrum are
triangulation/trilateration-based methods that either use geometric properties such
as the distance between multiple APs and the receiver/smartphone, [10, 14, 15]
(trilateration) or the angles at which signals from two or more APs are received
[13, 16] (triangulation). Such techniques are often prone to radio frequency (RF)
interference and malicious node-based attacks. Some work has been done to
overcome these vulnerabilities through online evaluation of signals and packets
[17]. However, these indoor localization frameworks are inherently not resilient to
multipath effects, where the RF signal reaches a destination after being reflected
across different surfaces, and shadowing effects, where the RF signal fades due
to obstacles. Some recent work has investigated multipath effects for triangulation
[18], but these works do not apply to commodity smartphones (expected to be

Secure Indoor Localization on Embedded Devices with Machine Learning 345

the de-facto portable device for indoor localization) and, hence, have limited
applicability.

An alternative to such approaches is called fingerprinting that associates indoor
locations or reference points (RPs) with a unique received signal strength indicator
(RSSI) signature obtained from APs accessible at that location [19–23] (fingerprint-
ing is discussed in more detail in Sect. 2). Fingerprinting has proven to be relatively
resilient to multipath reflections and shadowing, as the RP fingerprint captures the
characteristics of these effects as a component of the RSSI signature, leading to
improved indoor localization. However, fingerprinting requires a more elaborate
offline phase (i.e., setup) than triangulation/trilateration methods. The offline phase
of fingerprinting-based approaches comprises of RSSI fingerprints being captured
across indoor RPs of interest and stored in a fingerprint database, before being able
to support localization or navigation (by referring to the database) in the online
phase, in real time.

Fingerprinting-based techniques are not only vulnerable to interference and mali-
cious node-based attacks but also are prone to database corruption and privacy/trust
issues (discussed in the next section). Among the mentioned vulnerabilities, RSSI
interference and malicious node or AP attacks are significantly easier to perform
as they only require the attacker to gain physical access into the indoor location
where the attack needs to take place. Once the attacker is at the site, they could,
for instance, deploy battery powered AP units that would either interfere with the
localization AP signals or spoof valid AP nodes. Moreover, a single malicious AP
unit is capable of spoofing multiple packets for multiple valid APs in the area.

Simple fingerprinting-based indoor localization frameworks that use techniques
such as k-nearest-neighbor (KNN) can utilize outlier detection-based techniques
to overcome some security issues [24]. However, recent work on improving
fingerprinting-based indoor localization has tended to exploit the increasing com-
putational capabilities of smartphones and utilize more powerful machine learning
techniques. For instance, sophisticated convolutional neural networks (CNNs) [20]
have been proposed and shown to improve fingerprint-based indoor localization
accuracy on smartphones. Figure 1 shows the improvements when using CNN
and deep neural network (DNN)-based localization approaches [25] as compared
with more traditional techniques such as KNN [19] and support vector machines
(SVM) [26]. Based on the improvements achieved through CNN and DNN-based
algorithms, indoor localization solutions in the future are expected to benefit from
the use of deep learning methodologies that have the potential to significantly reduce
localization errors. However, to the best of our knowledge, no studies have been
performed to assess the impact on accuracy for malicious AP attacks on deep
learning-based indoor localization.

In this chapter, we present a novel method, which was first published in [27],
to overcome the security vulnerabilities of deep learning-based indoor localization
frameworks. We use the deep learning-based localization framework from [20] as
an example and propose security enhancements for it. While the work discussed in
this chapter mainly covers Wi-Fi-based fingerprinting, the same approaches can be
extended to other radio sources. The novel contributions of our work are as follows:

346 S. Tiku and S. Pasricha

Fig. 1 Average indoor localization error (in meters) for Wi-Fi fingerprinting techniques based on
deep neural networks (DNNs), convolutional neural networks (CNNs), support vector machines
(SVMs), and k-nearest-neighbor (KNN). Results are shown for two different indoor paths

• We identify and model various AP-based attacks that impact the localization
accuracy of deep learning-based indoor localization frameworks, such as the
frameworks from [20] and [25].

• For the first time, we conduct an in-depth experimental analysis on the impact
of AP-based attacks on CNN-based [20] and DNN-based [20] indoor localization
frameworks across indoor paths.

• We present a novel methodology for constructing AP attack resilient deep learning
models to create a secure version of the CNNLOC framework from [20] (which
we call S-CNNLOC) for robust and secure indoor localization.

• We compare the performance of S-CNNLOC against CNNLOC for a varying
number of malicious AP nodes and across a diverse set of indoor paths.

2 Background and Related Work

2.1 Received Signal Strength Indicator (RSSI)

RSSI is the measurement of the power of a received radio signal transmitted by
a radio source. The RSSI is captured as the ratio of the received power (Pr) to a
reference power (Pref, usually set to 1 mW). The value of RSSI is reported in dBm
and is given by:

Secure Indoor Localization on Embedded Devices with Machine Learning 347

RSSI (dBm) = 10 · log Pr

Pref
(1)

The received power (Pr) is inversely proportional to the square of the distance
(d) between the transmitter and receiver in free space and is given by:

Pr = Pt · Gt · Gr

(
λ

4πd

)2

(2)

where Pt is the transmission power, Gt is the gain of transmitter, Gr is the gain of
receiver, and λ is the wavelength. Previously, the inverse relationship between the
received power (Pr) and distance (d) was used by researchers to localize wireless
receivers with respect to transmitters at known locations, e.g., estimating the
location of a user with a Wi-Fi capable smartphone from a Wi-Fi AP. Unfortunately,
the free space models based on Eqs. (1) and (2) do not extend well for practical
applications. In reality, the propagation of radio signals is influenced by various
effects. Figure 2 illustrates some of these effects as a radio signal travels from its
source (AP2) toward location (L2). The signals transmitted from AP2 get scattered
at the edges of the pillar, reflect off walls, and get attenuated as they pass through the
pillar to reach the reference point L2. Also, the signals from AP2 follow different
paths (called multipath traversal) to reach location L2. These effects lead to an RSSI
reading at L2 that does not correspond to Eq. (2), which was designed to function
in free space.

2.2 Fingerprint-Based Indoor Localization

The initial effort toward the realization of fingerprinting-based indoor localization
was made about two decades ago with the work in RADAR [28]. Since then,
significant advancements have been made in the area. We summarize some of these
efforts in this subsection.

As shown in Fig. 2, fingerprinting-based localization is carried out in two phases.
In the first phase (called the offline or training phase), the RSSI values for visible
Wi-Fi APs are collected for a given floor plan at reference points L1, L2, L3,
etc., identified by some coordinate system. The RSSI fingerprint captured at a
given reference point consists of RSSI values (in dBm) for the Wi-Fi APs in the
vicinity and the X-Y coordinate of each RP. The resulting database of location-
tagged RSSI fingerprints (Fig. 2) is then used to train machine learning models
for location estimation such that the RSSI values are the input features and the
reference point location coordinates are the target (output) features. The trained
machine learning model is then deployed to a mobile device as shown in the
offline phase of Fig. 2. In the second phase (called online or testing phase), the
devices are used to predict the (X-Y coordinate) location of the user carrying the

348 S. Tiku and S. Pasricha

Fig. 2 A representation of the offline and online phases in the fingerprinting process for indoor
localization, for a given floor plan

device, based on real-time readings of AP RSSI values on the device. Contrary to
the supervised learning approach discussed so far, some recent work also explores
adapting semi-supervised deep reinforcement learning to deliver improved accuracy
when very limited fingerprinting data is available in the training phase [29]. One of
the major advantages of using fingerprinting-based techniques over other methods
(e.g., trilateration/trilateration) is that knowledge of environmental factors such
as multipath signal effects and RF shadowing are captured within the fingerprint
database (such as for the RP L2 in Fig. 2) in the offline phase and thus leads to
improved localization accuracy in the online phase, compared with other methods.

The radio signal source being used for the purpose of fingerprinting-based
indoor localization is of critical importance and directly impacts the quality of the
localization service provided to the end user in the online phase. It also directly
impacts the setup costs associated with the use and deployment of the localization

Secure Indoor Localization on Embedded Devices with Machine Learning 349

framework in the offline phase (such as the additional costs of the equipment and its
maintenance). Some commonly used signal-source options include ultrawide Band
(UWB) [30], Bluetooth [31], ZigBee [32], and Wi-Fi [19]. The choice of signal
directly impacts the achievable localization accuracy and the associated setup and
maintenance costs. For example, UWB APs need to be specially purchased and
deployed at the target site; however, they have been shown to deliver a higher level
of accuracy than many other signal types. On the other hand, Wi-Fi-based indoor
localization frameworks have gained traction due to the ubiquitous availability of
Wi-Fi access point in indoor locales and the fact that most people nowadays carry
smartphones that come equipped with Wi-Fi transceivers, making Wi-Fi AP-based
indoor localization a cost-effective and popular choice [19, 20]. For this reason, in
our work, we assume the use of Wi-Fi APs as signal sources for fingerprinting-based
indoor localization.

2.3 Challenges with Indoor Localization

As a result of the popularity of Wi-Fi fingerprinting, efforts in recent years have
been made to overcome its limitations, such as energy-efficiency [19, 33, 34],
variations due to device heterogeneity [35–38], and temporal degradation effects on
localization accuracy [21, 23, 39]. However, in recent years as indoor localization
services are beginning to be prototyped and deployed, researchers have raised
concerns about the privacy, security, and other vulnerabilities associated with
fingerprinting-based localization. Some commonly identified vulnerabilities and
their mitigation strategies are discussed in the rest of this section.

Offline-Phase Database Security The indoor localization fingerprint database con-
sists of three pieces of information in each entry of the database: Wi-Fi AP media
access control (MAC) addresses, RSSI values of these APs, and the associated
reference point location tag (e.g., XY coordinate of a location). A malicious third-
party may corrupt the database by changing the RSSI values associated with the
MAC addresses or change the location where the samples were taken. This kind
of an attack can completely jeopardize the functionality of an indoor localization
framework, as the offline database holds the most crucial information required for
any fingerprinting-based indoor localization framework to function. To mitigate
such issues, researchers have proposed techniques such as outlier detection-based
identification of corrupted information [12, 13] and performing continuous sanity
checks on the database using checksums [40]. Alternatively, even if the attackers
are able to read the database, they can use the information such as reference point
locations and AP MAC addresses to launch other forms of attacks, as discussed
next.

User Location Privacy Some recently proposed indoor localization techniques
exploit resource intensive machine learning models that need to be executed on
the cloud or some other form of remote service, instead of the user’s mobile device.

350 S. Tiku and S. Pasricha

These frameworks may compromise the user’s privacy by either intentionally or
unintentionally sharing the user’s location with a third party. The leaked location
and background information from one user can then be correlated to other users
for their information [41]. However, recent advances have been able to optimize
the execution of complex machine learning models on resource constrained mobile
devices such that the location prediction computation does not need to be offloaded
to the cloud or other types of remote services [20].

AP Jamming or Interference An attacker may deteriorate the quality of localization
accuracy in a specific region indoors by placing signal jammers (narrow band
interference) in the vicinity [17, 42]. The jammer can achieve this goal by emitting
Wi-Fi signals to fill a wireless channel, thereby producing signal interference
with any nonmalicious APs on that channel. Alternatively, the jammer can also
continuously emit Wi-Fi signals on a channel such that legitimate APs never sense
the channel to be idle and therefore do not transmit any information [43]. Such an
attack may cause a mobile device to lose visibility of APs, reducing localization
accuracy or preventing localization from taking place altogether.

Malicious AP Nodes or Spoofing In this mode of attack, a malicious third-party
places one or more transmitters at the target location to spoof the MAC address
of valid APs used by the fingerprinting-based localization framework. The MAC
address could have been obtained by a person capturing Wi-Fi information while
moving in the target area. Alternatively, this information could have been leaked
through a compromised fingerprint database. Also, the behavior of the malicious
nodes in each case may change over time. The detection of spoofing-based attacks
is also an active area of research in the robot localization domain. Approaches
proposed include the empirical analysis of data collected at a post-localization
phase [44] and using machine learning [45]. However, both works solely focus on
detecting a spoofing attack either in real-time or offline. Techniques such as the
one presented in [46] allow for the identification of malicious nodes using linear
regression on data collected over a certain period of observation time. However, any
delay in the mitigation of AP-based attacks in real-time would leave the indoor
localization framework vulnerable and may lead to tainted predictions, thereby
disrupting the localization services or giving the attacker a window of opportunity.

Environmental Alterations Changes or alterations in the indoor environment can
induce unpredictable changes to the AP-based fingerprints in the online phase.
Such alterations could include moving furniture or machinery, or renovations in
the building. Crowdsourcing-based techniques, e.g., [47], that update fingerprints
on the fly may be more resilient to such effects, given that ample number of (crowd-
sourced) fingerprint samples is collected in the area where the changes took place.
However, deep learning-based techniques may need to be retrained to accommodate
for the changes, which may take several hours and thus be impractical for real-time
adaptation.

From the discussion in this section, one observation is that launching attacks,
such as jamming and spoofing, is relatively easy if the attacker is able to access the

Secure Indoor Localization on Embedded Devices with Machine Learning 351

indoor location. Given the recent interest in deep learning-based fingerprinting to
improve indoor localization accuracy [20, 25, 29] there is a critical need to analyze
and address security vulnerabilities for such solutions. However, to date, no prior
work has explored the impact of malicious AP-based attacks on the accuracy and
reliability of deep learning-based indoor localization frameworks. Our goal in this
work is to show, for the first time, how deep learning-based indoor localization
frameworks such as CNNLOC [20] can be vulnerable to malicious AP-based attacks
and further propose a methodology to address such vulnerabilities without loss in
localization accuracy, on commodity mobile devices.

3 CNNLOC Framework Overview

This following section provides a general overview of convolutional neural networks
(CNNs) and the CNNLOC framework presented in [20].

3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a form of deep neural networks that were
specially developed for image-based machine learning tasks. They have been shown
to deliver significantly higher classification accuracy as compared with conventional
DNNs due to their enhanced pattern recognition capabilities. Note that from this
point onward, we use the term DNN to identify deep learning models that do not
consist of convolutional layers. As shown in Fig. 3, a minimal implementation of a
CNN model has three main functional components or layers: convolution+ReLU
(regularized linear unit), pooling, and fully connected layers. The CNN model
learns patterns in images by focusing on small cross-sections of the image, known
as a frame, from the input layer. The frame moves over a given image in small
strides. Each convolutional layer consists of filter matrices that consist of weight
values. In the first layer, convolutional operations (dot products) are performed
between the current input frame and filter weights followed by the ReLU activation
function. The pooling layer is responsible for down sampling the output from a
convolution+ReLU unit, thereby reducing the computational requirements by the
next set of convolution layers. The final classification is performed using a set of
fully connected layers that often utilize a SoftMax activation function to calculate
the probability distributions for various classes. In the testing phase of a CNN
model, the class with the highest probability is the output prediction. Further details
on the design of CNNs can be found in [20] and [48].

352 S. Tiku and S. Pasricha

Fig. 3 A general representation of the various components of a convolutional neural network
(CNN)

3.2 Indoor Localization with CNNLOC

The CNNLOC indoor localization framework [20] consists of two stages in the
offline phase. The first stage comprises of capturing RSSI fingerprints as vectors
across various RPs. Each vector is then reformulated as an image, such that each
RSSI fingerprint image has an associated RP. The second component of the offline
phase is the training of a CNN model using the images created previously. In the
online phase, the same process is used to create an image (based on observed RSSI
values), which is fed into the trained CNN model for location prediction.

A simplified overview of the process of converting an RSSI fingerprint vector
into an image is shown in Fig. 4. The RSSI vector consists of RSSI values in the
range of −100–0 dBm (low signal strength to high signal strength). These values
are normalized to a range of 0–255, which corresponds to the pixel intensity on
the image. The dimensions of the RSSI image are set to be the closest square to the
number of visible APs on the path. For example, in Fig. 4, the RSSI vector has a size
of 8, and the closest square would have 9 pixels in it; therefore, the dimensions of
the image are set to 3× 3. A pixel with zero intensity is padded at the end to increase
the size of the vector as shown in Fig. 4. The generated image then becomes a part
of the offline database of images used to train a CNN. In the online phase, this
same process of image creation is used with the RSSI vector observed by the user
at any location, and the resulting image is fed to the trained CNN model to get a
location prediction. It is important to note that in the online phase of CNNLOC, the
input image will always remain the same size as in the offline phase, such that each
pixel in the image corresponds to specific MAC IDs. In case a specific MAC ID
observed in the offline phase is no longer visible in the online phase, the pixel value
corresponding to that MAC ID is set to zero.

4 Localization Security Analysis

In this section, we perform an AP RSSI vulnerability analysis on the deep learning-
based indoor localization frameworks presented in [20] (CNNLOC) and [25] (which

Secure Indoor Localization on Embedded Devices with Machine Learning 353

Fig. 4 A simplified overview of the conversion of an RSSI fingerprint to an image in the CNNLOC
[20] indoor localization framework

uses DNNs). To achieve this, we model the impact of the insertion of malicious APs
within the vicinity of two indoor paths as shown in Fig. 5.

As presented in Fig. 5, the Office and Glover paths in the figure are 64 and 88
meters long, and the reference locations used to capture Wi-Fi RSSI are marked by
blue dots. A detailed discussion on the salient features of these and other indoor
benchmark paths we consider can be found in the experiments section (Sect. 7). We
used an HTC U11 smartphone [49] to capture Wi-Fi fingerprints along the indoor
paths and test for localization accuracy.

An AP-based security attack may include either AP spoofing or AP jamming.
To establish the impact of such AP-based attacks on localization accuracy, we must
first identify the behavior of the Wi-Fi RSSI fingerprints in the presence of one or
more malicious AP nodes (Wi-Fi spoofers/jammers). In our experience, the tainted
fingerprint in the online phase will exhibit one of three behaviors: (1) the RSSI
values from one or more visibleWi-Fi APs exhibits a significant increase or decrease
as compared with its offline counterpart, (2) an AP whose RSSI value is usually
not visible at the current reference point becomes visible, and (3) an AP that is
usually visible at the current reference point is no longer visible. As the range of
received RSSI values from Wi-Fi APs is between −100 and 0 dBm, the impact of
the malicious Wi-Fi AP’s behavior on the fingerprints is to induce fluctuations in
RSSI values within this range, for the impacted fingerprints.

Figure 6 shows the fingerprint images generated using an RSSI fingerprint based
on the methodology described in CNNLOC [20]. Each image has a resolution of
9 × 9. The original RSSI vector (fingerprint) consists of 78 Wi-Fi AP values and
is presented in its image form in Fig. 6a. This image (Fig. 6a) is not tainted by

354 S. Tiku and S. Pasricha

Fig. 5 Two indoor benchmark paths (Glover and Office) with reference points denoted by blue
markers. The path lengths and Wi-Fi densities are denoted at the top of the maps

malicious APs (mAPs) in the surrounding area and therefore is labeled as “mAP0.”
The image labeled “mAP2” (Fig. 6b) is generated for the case when two APs out of
78 are malicious APs that generate spurious signals between −100 dBm and 0 dBm
(their impact can be clearly seen with the two non-white pixels on the bottom half
of the image). Similarly, Fig. 6c–f show the generated images when the number
of malicious APs is increased to 4, 6, 8, and 10, respectively. For most of these
images, the tainted pixel values can be visually identified, and simple image local
smoothing filters [50] may be applied to remove them. However, such filtering is not
always possible. For instance, in Fig. 6d with six malicious APs, we observe only
five tainted pixels that are visually decipherable as compared with the untainted
image (Fig. 6a). This is because the sixth noisy pixel is a very minor disturbance
that is hard to detect visually. Unfortunately, the datapoint represented by this sixth
pixel can have a significant impact on localization accuracy. Such scenarios also
exist for the case of mAP8 (Fig. 6e) and mAP10 (Fig. 6f).

To test the vulnerability of deep learning-based indoor localization frameworks
in the presence of malicious APs, we analyzed the impact of a varying number of
malicious APs on the localization accuracy of a CNN-based [20] and a DNN-based
[25] indoor localization framework. The results of this experiment are shown in
Fig. 7. The impact of an increasing number of malicious Wi-Fi APs on the average
indoor localization error for the two paths presented in Fig. 5 (Office and Glover)
is evaluated. For a scenario with malicious APs (e.g., mAP = 1), we randomly

Secure Indoor Localization on Embedded Devices with Machine Learning 355

Fig. 6 Fingerprint images generated from RSSI vectors using the methodology described in
CNNLOC [20]: (a) represents the “mAP0” fingerprint image that should be ideally generated when
the initial RSSI vector is not tainted by a malicious Wi-Fi AP (mAP = 0) and (b–f) show fingerprint
images in the presence of different number of malicious APs. The label “mAPX” indicates X
malicious APs, which introduce fluctuations in the RSSI values of the pixels corresponding to
these APs

selected the location of the malicious AP over a 100 trials and averaged the resulting
localization error. From Fig. 7, we observe that the average localization error of both
CNN and DNN learning models increases monotonically in a majority of cases. The
results highlight the vulnerability of deep neural network-based indoor localization
models toward Wi-Fi AP-based attacks. Also, the CNN model for both paths is
somewhat more vulnerable to malicious AP-based attacks as compared with the
DNN model. One possible explanation for this may be that CNN models are more
sensitive to changes in patterns in the image as compared with variations across
RSSI value inputs for the DNN model.

To further quantify the upper bounds of localization degradation of these machine
learning models, we evaluate the worst-case localization error for the two deep
learning models and present our findings in Fig. 8. We can observe that the worst-
case localization errors for DNN and CNN models are significantly higher than the
average errors shown in Fig. 7 as the number of malicious APs are increased. With
only one malicious AP, the localization error in the worst case can be higher by
up to 20× for both paths and deep learning models. The worst-case localization
error for the CNN model goes above 50 meters with only six malicious APs for the
Glover path, which would put a user’s predicted location at a completely different

Fig. 7 Results for the impact of malicious APs on deep learning model accuracy on the Office and
Glover paths. Average localization error for the CNN [20] and DNN [25] localization frameworks
is shown for an increasing number of malicious AP

Fig. 8 Worst-case localization error for CNN and DNN, with respect to increasing number of
malicious Wi-Fi APs on the Office and Glover paths

Secure Indoor Localization on Embedded Devices with Machine Learning 357

area on an indoor floor plan! The DNN model appears to be much more significantly
impacted than the CNN model when it comes to worst case localization error.

The experiments performed in this section and the results as presented in Figs. 7
and 8 provide incontrovertible evidence to the fact that deep learning-based indoor
localization frameworks are highly vulnerable to malicious AP-based attacks. Thus,
there is strong motivation to improve attack resilience for these frameworks, to
achieve both robust and high accuracy indoor localization. Even though DNN- and
CNN-based models used for our experiments in this section produce a relatively
similar level of degradation in localization accuracy, in the rest of this chapter, we
focus on addressing vulnerabilities for indoor localization systems that utilize CNN
models. This is because CNNs have several advantages over DNNs when used for
localization. A drawback of DNN models is that their computational complexity
increases significantly with increase in hidden layers, which is not the case for
CNN models [51]. The pooling layers in CNN models reduce the overall footprint
after each convolutional layer, thereby reducing the computation required by the
successive set of layers. Therefore, localization solutions that utilize CNN models
instead of DNN models are inherently more scalable and energy efficient [48]. Also,
CNNmodels are better at identifying patterns in image data than DNNs, which make
CNNs a more viable solution to overcome device heterogeneity issues (that are more
readily apparent in image form) with indoor localization when using mobile devices
[52].

The new observations and related discussions in this section highlight the
importance of securing deep learning models against AP-based attacks and serve
as the motivation for our proposed security enhancements in this work, which aim
to secure deep learning models used for indoor localization. We discuss the specific
attack models and associated assumptions made in our work in the next section.

5 Problem Formulation

We now describe our problem objective and the assumptions associated with
establishing a secure (AP RSSI attack resilient) CNN-based indoor localization
framework called secure-CNNLOC (S-CNNLOC) as originally presented in our
work [27]. The assumptions for our framework are as follows:

• The offline fingerprint sampling process is carried out in a secure manner such
that the collected fingerprints only consist of trusted nonmalicious APs.

• The offline generated fingerprint database is composed of images, each with a
tagged reference point location; this database is stored at a secure, undisclosed
location.

• A CNN model is trained using the offline fingerprint database and is encrypted
and packaged as a part of an indoor localization app that is deployed on mobile
devices.

358 S. Tiku and S. Pasricha

• Once the localization app is installed by a user, the CNN model can only be
accessed by that app.

• As the user moves about an indoor path, their mobile device conducts periodic
Wi-Fi scans, and the localization app translates the captured Wi-Fi RSSI infor-
mation into an image.

• The generated image is fed to the CNN model within the localization app on the
mobile device, and the user’s location is updated in real time on a map displayed
on the device.

• The process of Wi-Fi scanning, fingerprint to image conversion, and location
prediction continues until the user quits the localization app on their mobile
device.

• We make the following assumptions about the indoor environment.
• An attacker can physically access one or more of the indoor locales and paths in
the online phase for which the indoor localization framework has been trained
and set-up.

• The attacker can carry a smartphone equipped with Wi-Fi or any other portable
battery powered Wi-Fi transceiver to capture data about Wi-Fi access points.

• The offline generated fingerprint database is secured and cannot be accessed by
any malicious third party.

• It is generally known (to the attacker) that the indoor localization framework
utilizes a deep learning-based approach, such as CNNs, to predict a user’s
location.

• The attacker is capable of conducting the analysis described in the previous
section and place malicious AP nodes at any randomly chosen locations along
the indoor paths or locales that are being targeted for a service disruption attack.

• The attacker can walk about an indoor path and collect Wi-Fi fingerprints
while capturing steps taken and walking direction data, similar to the approach
described in [53]; this would allow anyone with a smartphone to create their
own fingerprint database, which can be used to place Wi-Fi jammers more
strategically or spoofed APs as discussed in earlier sections.

Problem Objective Given the above assumptions, our objective is to create a secure
CNN-based indoor localization framework (called S-CNNLOC) that is deployed on
mobile devices and is resilient to malicious AP RSSI attacks, by minimizing their
impact on the localization accuracy at run time (i.e., in the online phase).

6 S-CNNLOC Framework

In this section, we discuss the design of our S-CNNLOC framework [27] to over-
come the vulnerability of indoor localization frameworks such as CNNLOC [20]
against malicious AP-based jamming and spoofing attacks in indoor environments.
We mainly consider the case of malicious Wi-Fi APs as in CNNLOC [20]; however,

Secure Indoor Localization on Embedded Devices with Machine Learning 359

given the generality of our approach, it can be extended to other radio technologies
and indoor localization infrastructure.

6.1 Offline Fingerprint Database Extrapolation

One of the major limitations of the CNNLOC framework comes from the small
number of offline fingerprints considered per reference point (ten fingerprints in
[20]). In general, deep learning models often require a large number of samples per
class to produce good results. However, capturing Wi-Fi fingerprints in any indoor
localization framework is a time-consuming manual endeavor that is quite expensive
to scale in volume (in terms of samples per reference point).

To overcome the limited availability of fingerprints captured at each RP, we
propose the extrapolation of the offline fingerprint database to achieve a larger
number of fingerprint samples per RP. An overview of this process is presented in
Fig. 9a. We sample a total of S RSSI fingerprints at each location (reference point)
from L1 to LP, such that the RSSI vector has K APs (i.e., vector size is K). The
complete set of fingerprints that are manually collected at P locations become the
offline fingerprint database. The distribution of each AP RSSI at a given location
is modeled by their means and variances. This step is repeated for each reference
point in the offline fingerprint database. The mean and standard deviations along
with the reference location information are temporarily stored in tabular forms and
are referred to as the seed tables (Fig. 9a). The seed tables can be represented as:

μS(i,j), σ
2
S(i,j), i ∈ [1,K] , j ∈ [1, P] (3)

where μS(i, j) and the .σ 2
S(i,j) are the tables that contain the means and variances of

S AP RSSIs for each location. These mean and variance seed tables (also shown in
Fig. 9a) can now be used to extrapolate a larger fingerprint database.

To generate a new offline fingerprint for a given reference point, the normal
distribution based on the mean and variance (from the seed tables) for each AP
RSSI in each reference point fingerprint is randomly sampled Q times:

RSSI(i,j) ∼ N
(
μS(i,j), σ

2
S(i,j)

)
∀i ∈ [1,K] , j ∈ [1, P] (4)

where RSSI(i, j) is the RSSI in dBm of the ith Wi-Fi AP at the jth reference point
and N represents the normal distribution. By randomly sampling each AP from
the reference point in seed tables, we generate Q new RSSI fingerprint vectors for
the given reference point. Through this random sampling-based data extrapolation
approach, we capture different combinations of RSSI values in a fingerprint and
also scale the size of our offline dataset beyond the few samples that were collected
in the offline phase. The complete set of Q RSSI vector fingerprints per reference

360 S. Tiku and S. Pasricha

Fig. 9 An overview of the offline extrapolation of RSSI fingerprints and noise induction in the
extrapolated fingerprints. The noisy and extrapolated set of RSSI fingerprints are converted into
images and used to train the CNN model in our proposed S-CNNLOC framework

point is the extrapolated fingerprint database, as shown in Fig. 9a. Subsequently,
we deliberately induce noise in the fingerprints in the database of extrapolated
fingerprints, as discussed next.

6.2 Inducing Malicious Behavior

From our analysis of CNN-based indoor localization in Sect. 4, we observed that
fluctuations in one individual pixel value of the Wi-Fi fingerprint image can lead to
significant deterioration in the localization accuracy. This behavior can be attributed
to the fact that the trained CNN model is only good at making predictions for
images (or RSSI information) that it has previously seen. Therefore, the CNNLOC
framework becomes vulnerable to minor deviations or noise in the images that can
be induced by AP-based attacks or Wi-Fi jammer attacks in the online phase, when
the trained CNN model is used for location inference.

Convolutional layers and by extension CNN models are designed to recognize
one or more unique patterns within images that are not as obvious to other machine
learning algorithms. In our approach, we conjecture that relatively small-scale
variations within and between images constructed from AP RSSI values (for the
purpose of pattern recognition for indoor localization) can be learned to be ignored
by a CNN model. One way to accomplish this is by integrating an image filter
with the CNN prediction model. A recent work [54] has shown how a salt and

Secure Indoor Localization on Embedded Devices with Machine Learning 361

pepper noise filtering technique can provide some noise resilience for general image
processing with CNNs. A separate set of convolutional layers are used in [54]
whose sole purpose is to denoise an image. However, such an approach would be
extremely inefficient for our problem as it would require using two different CNNs:
one for denoising and another for classification, which would increase prediction
time. Moreover, using an additional CNN would increase the memory footprint of
our framework, which is a big concern for resource-constrained mobile devices.

We propose to use a single CNN model for both image denoising and classifica-
tion. Based on our analysis presented in Sect. 4, we decide to conceptually model
malicious behaviors such as AP spoofing, AP jamming, and even environmental
changes as random fluctuations in the fingerprint data and expect the CNN model to
be resilient to such fluctuations. Thus, by a calculated introduction of noise in the
input dataset that is used in the training phase of the CNN model, we hope to teach
the model to learn to ignore noise (due to malicious APs) in the inference phase.
Toward this goal, as shown in Fig. 9b, for each fingerprint in the “clean” (mAP0)
extrapolated database generated as discussed in the previous subsection, M copies
are constructed in a separate table. Then each of the M fingerprint vectors are fed to
the proposed noise induction module that introduces random fluctuations in the AP
RSSI values, based on an upper limit (Ø) that is set by the user. The noise induction
module (Fig. 9b) has three major components. For a given RSSI vector, the noise
level selector submodule picks values from a discrete uniform distribution such that
θ~U{0, ∅}, where “θ” is the number of APs in the RSSI vector whose RSSI value
would be altered by the noise induction module. The random AP selector arbitrarily
identifies the set of AP candidates “Wθ ,” where each AP candidate “wc” is picked
to be between 1 and K as described by the expression:

wc ∼ U {1,K} , c ∈ [1, θ] (5)

s.t., Wθ = {w1, w2, w3 . . . wθ }

The newly generated RSSI vectors (.RSSINoisy(i,j)) are tainted by random noise at the

ith Wi-Fi AP position, if the AP was chosen by the random AP selector submodule
as shown by Eq. (6):

RSSINoisy (i,j) =
{

I, if i ∈ Wθ
RSSI(i,j), otherwise

(6)

j ∈ [1, P] , I ∼ U {−100, 0}

where I represents noise sampled from a discrete uniform distribution between
−100 dBm and 0 dBm, RSSI(i, j) is the clean (untainted) RSSI from Eq. (4), and

362 S. Tiku and S. Pasricha

P is the number of reference points on a benchmark path for which fingerprint data
has been collected. Thus, our proposed approach generates RSSI vectors that may
have up to Ø noise induced RSSI AP values. Having a uniform distribution of 0
to Ø malicious APs ensures that the CNN model trained using the generated data
is resilient to a range of malicious AP numbers and locations in the localization
environment in the testing phase.

Following this process for all fingerprints in the clean training database, we
generate G = Q × M fingerprints per reference point. The final number of RSSI
fingerprints in the secure AP attack resilient (SAAR) database constructed by
following the processes described in this section is G × P, where P is the number
of reference points on a benchmark path. The indoor localization app that is
subsequently deployed on a mobile device consists of the CNN model that is trained
using the newly constructed SAAR fingerprint database. The user carrying the
mobile device will be able to securely localize themselves in real time.

7 Experiments

7.1 Experimental Setup

We initially compare the accuracy and stability of our proposed (S-CNNLOC)
framework to its vulnerable counterpart (CNNLOC [20]) using two benchmark
paths. These paths are shown in Fig. 5 with each fingerprinted location (reference
point) denoted by a blue marker. The paths were selected due to their salient features
that may impact location accuracy in different ways. The 64-meter Office path is
on the second floor of a relatively recently designed building with a heavy use of
wood, plastics, and sheet metal as construction materials. The area is surrounded by
small offices and has a total of 156 Wi-Fi APs visible along the path. The Glover
path is from a very old building with materials such as wood and concrete used
for its construction. This 88-meter path has a total of 78 visible Wi-Fi APs and is
surrounded by a combination of labs (heavy metallic equipment) and classrooms
with open areas (large concentration of users).

In the offline phase of S-CNNLOC, an HTC U11 smartphone is utilized to
capture 10 Wi-Fi fingerprints per reference point. On a given indoor path (Fig. 5),
each reference point is 1-meter apart; therefore, the user can best localize themselves
at a granularity of 1-meter in the online phase.

The fingerprint sampling and storage methodology within the smartphone is
similar to that described in CNNLOC [20]. The trained S-CNNLOC model was
deployed as an Android app on the HTC U11 smartphone. The values of Q and M
(discussed in Sect. 6) are set to 100 and 10, respectively. Based on these values of Q
and M, the Office path has 64,000 samples and the Glover path has 88,000 samples.
To study the impact of malicious Wi-Fi APs on indoor localization performance, we
used a real Wi-Fi transceiver [55] to induce interference (from spoofing/jamming)

Secure Indoor Localization on Embedded Devices with Machine Learning 363

and obtain “tainted” RSSI values in the vicinity of the indoor paths. These values
were observed in the online phase. For some of our scalability studies where we
consider the impact of multiple malicious APs, multiple such transceivers were
considered, to generate multiple “tainted” RSSI values.

7.2 Experimental Results

7.2.1 Analysis of Noise Induction Aggressiveness

We first performed a sensitivity analysis on the value of Ø (upper limit of noise
induction; discussed in Sect. 6.2). Several CNN models were trained: S-CNNLOC1
(Ø = 0; no malicious APs), S-CNNLOC2 (Ø = 1), and up to S-CNNLOC20
(Ø = 20), using the fingerprint data collected during the offline phase. Then the
devised models were tested with fingerprints observed along the indoor paths in the
online phase, in the presence of different numbers of malicious APs.

Figure 10 shows the heat map for the mean localization errors (in meters) with
annotated standard deviation of various scenarios on the Office path (Fig. 10a)
and the Glover path (Fig. 10b). The y-axis shows various S-CNNLOC variants
with different values of Ø varying from 1 to 20. The x-axis shows the number
of malicious nodes (mAPs) present in the online phase. In Fig. 10, the bright
yellow cells of the heat map, with higher annotated values, represent an unstable
and degraded localization accuracy whereas the darker purple cells, with lower
annotated values, represent stable and higher levels of localization accuracy. Each
row of pixels in the heat maps of Fig. 10a, b represents the vulnerability of the
specific S-CNNLOC model to an increasing number of mAP nodes.

On both paths (Office and Glover), it can be clearly observed that the secure-
CNNLOC0 model (baseline model with Ø = 0) is the least resilient to an increasing
number of mAPs. However, as the value of Ø is increased for the S-CNNLOC
models, they perform significantly better than S-CNNLOC0 (as illustrated by the
darker rows for these models). This is because the S-CNNLOC0 model is not trained
to mitigate variations for Wi-Fi AP RSSI values. Another observation is that beyond
Ø = 18, the standard deviation and mean error for low values of malicious APs
(mAPs < 4) starts increasing for both paths. This is because highly noisy images in
the SAAR database are unable to retain the original pattern required to localize in
safer environments (no malicious APs) or the opted CNNLOC model is unable to
recognize underlying patterns in the input fingerprint images.

Overall, we observe that training the S-CNNLOC models with fingerprint
extrapolation and noise induction (via the generated SAAR database) leads to better
localization accuracy. Based on the results of these experiments, we found that S-
CNNLOC18 delivers good results across both paths. Therefore, we use the value of
Ø = 18 in SAAR to train S-CNNLOC and use it for the rest of our experiments.
Henceforth, whenever we refer to S-CNNLOC, we are referring to S-CNNLOC18
(S-CNNLOC with Ø = 18).

364 S. Tiku and S. Pasricha

Fig. 10 Heat maps for the mean localization prediction errors with their annotated standard
deviation for the Office (top) and Glover (bottom) benchmark paths; results are shown for our
proposed S-CNNLOC framework with Ø = 0, Ø = 1, . . . Ø = 20 (y-axis). (a) Office. (b) Glover

Secure Indoor Localization on Embedded Devices with Machine Learning 365

7.2.2 Comparison of Attack Vulnerability

In this section, we contrast the performance of our proposed S-CNNLOC framework
with CNNLOC [20]. Figure 11a, b show the cumulative distribution function (CDF)
of the localization error for the CNNLOC models in the presence of different
numbers of malicious Wi-Fi APs (from 0 to 20 malicious APs per observed
fingerprint), for the Office and Glover paths. The most immediate observation from
the results is that the localization errors are significantly low (less than 1 meter
for a majority of scenarios) when there are no malicious APs (CNNLOC-mAP0),
However, in both the Office (Fig. 11a) and the Glover paths (Fig. 11b), localization
accuracy degrades as the number of malicious APs is increased. This degradation
in accuracy does not scale linearly with increasing malicious nodes. For example,
in the Office path, increasing the malicious AP nodes from 16 to 20 does not
significantly increase the localization errors. A similar observation can be made
from the Glover path in Fig. 11b, where the localization error does not scale by
much when going from 12 malicious APs to 16 and 20.

An important aspect to note from looking at Fig. 11 is the significant drop
in localization accuracy when going from a scenario with no malicious APs
(CNNLOC-mAP0) to a scenario with one malicious AP (CNNLOC-mAP1). This
degradation of localization quality is a clear indicator of the vulnerabilities asso-
ciated with the employment of unsecured CNN models in the presence of even a
single malicious Wi-Fi node.

From Fig. 11, we can conclude that a malicious third party can significantly
degrade the localization accuracy of a CNN-based indoor localization model such
as CNNLOC [20], with just a very small number of malicious AP nodes.

Figure 12 highlights the resiliency of the S-CNNLOC model toward malicious
AP-based attacks, for the same setup as for the experiment with CNNLOC in Fig.
11, where the number of malicious APs in the online phase is varied from 0 to 20.
We observe that 95-percentile of the localization error for the S-CNNLOC model,
when under attack by up to 20 malicious AP nodes (S-CNNLOC-mAP20), remains
under 2.5 meters for the Office path (Fig. 12a) and under 3.5 meters for the Glover
path (Fig. 12b). The S-CNNLOC model for the Office path performs better than
for the Glover path as the Wi-Fi density on the Office path is about 2× the Wi-Fi
density of the Glover path, and thus, malicious APs only impact a small fraction of
the total APs along the Office path.

In summary, based on the results shown in Figs. 11 and 12, we observe that our
S-CNNLOC framework is about 10× more resilient to accuracy degradation in the
average case, as compared with its unsecure counterpart CNNLOC [20], for the
Office and Glover paths.

7.2.3 Extended Analysis on Additional Benchmark Paths

We conducted further experimental analysis on a more diverse set of benchmark
indoor paths. Table 1 presents the salient features of the three new benchmark paths

366 S. Tiku and S. Pasricha

Fig. 11 Localization performance of CNNLOC [20] with a varying number of malicious Wi-Fi
APs (from 0 to 20) in the online phase. (a) Office. (b) Glover

Secure Indoor Localization on Embedded Devices with Machine Learning 367

Fig. 12 Localization performance of our S-CNNLOC with a varying number of malicious Wi-Fi
APs (from 0 to 20) in the online phase (a) Office. (b) Glover

used in this analysis. The benchmark path suite shown in Table 1 consists of the
EngrLabs, LibStudy, and the Sciences paths, with a description of environmental
factors that may affect the localization performance of Wi-Fi-based indoor localiza-
tion frameworks. Each path has a length ranging from 58 to 68 meters, and ten Wi-Fi

368 S. Tiku and S. Pasricha

Table 1 Additional benchmark paths and their features

Path name Length (meter) Number of APs Environmental features

EngrLabs 62 120 Electronics, concrete, labs
LibStudy 68 300 Wood, metal, open area
Sciences 58 130 Metal, classrooms
Office 64 156 Wood, concrete
Glover 88 78 Wood, metal, concrete

Fig. 13 The average localization error and its standard deviation of the proposed S-CNNLOC
framework as compared with CNNLOC [20] for the benchmark path suite from Table 1

fingerprint samples were collected at 1-meter intervals on each path, similar to what
we did with the Office and Glover paths described earlier. The EngrLabs path is in an
old building mostly made of concrete and is surrounded by labs consisting of heavy
metallic instruments. The LibStudy and Sciences paths are situated in relatively
newer buildings consisting of large amounts of metallic structures. The LibStudy
path is a part of an open area in the library building and exhibits considerable human
movements. Similar to it, the Sciences path is the close vicinity of a classroom.

Figure 13 presents the means and standard deviations of the localization error
with our proposed S-CNNLOC and the CNNLOC [20] framework on each of the
three paths while it is under the influence of 2–20 malicious APs in the online phase.
We observe an increasing trend in mean and standard deviations of localization
errors on all three paths for both S-CNNLOC and CNNLOC. However, we observed
that the mean localization error of CNNLOC on all three paths is always more
than four times the average error for S-CNNLOC. For some situations, such as for
two and four malicious APs on the EngrLabs and Sciences paths, the localization
error for CNNLOC is about 25× higher (worse) on average as compared with its
S-CNNLOC counterpart. The accuracy along the Libstudy path is relatively less
affected than for the other paths. This can again be attributed to the fact that the

Secure Indoor Localization on Embedded Devices with Machine Learning 369

LibStudy path has an unusually dense Wi-Fi network compared with the EngrLabs
and Sciences paths, and thus, a relatively fewer number of malicious APs do not
have as much of an impact on accuracy. Another contributing factor could be that
the LibStudy path is an open area and localization process is not heavily impacted
by multipath and shadowing effects. These experiments with additional benchmark
paths indicate that our proposed S-CNNLOC framework scales well over a wide
variety of indoor paths with different environmental features whereas the unsecured
CNNLOC [20] framework experiences a significant degradation in its localization
error. The S-CNNLOC model consistently reduces the vulnerability of the proposed
localization framework and thus represents a promising solution to secure deep
learning-based indoor localization frameworks.

7.2.4 Generality of Proposed Approach

In this section, we highlight the generality and the versatile nature of our proposed
security aware approach by applying it to another deep learning-based approach
proposed in [25]. We first present a discussion of the proposed work in [25]. Later,
we use Wi-Fi fingerprints generated in Sect. 7.1 to train the secure-DNN (SDNN)
model and compare its prediction accuracy results to the conventional methodology
described in [25].

7.2.5 Denoising Autoencoder-Based DNN Framework

The DNN-based approach in [25] consists of three stages in the online phase. In
the first stage, features are extracted from the RSSI fingerprints using a stacked
denoising autoencoder (SDA). The SDA’s output is fed to a four-layer DNN model
in the second stage that delivers a coarse location prediction. In the final stage,
additional hidden Markov model (HMM) is used to fine-tune the coarse localization
perdition received from the DNN model.

The DNN model in conjunction with the SDA is able to identify and learn
stable and reliable features from the input fingerprint information. Intuitively, SDA
achieves this by zeroing-out input features based on a predefined probability and
identifying input features that have a significant impact on the output. Further, the
HMM allows for greater resistance to minor variations in AP RSSI over time.

7.2.6 Security Aware DNN Training in the Offline Phase

To train the SDNN model, we use the augmented security aware fingerprints used
to train the SCNNLOC model in the previous section. The only difference being
that the fingerprints are not converted into images. To identify the stable value of Ø
for noise induction module, we perform a sensitivity analysis using DNN models as
done in Sect. 7.2.1. The results for this experiment are captured in Fig. 14.

370 S. Tiku and S. Pasricha

Fig. 14 Heat maps for the mean localization prediction errors with their annotated standard
deviation for the Office (top) and Glover (bottom) benchmark paths; results are shown for our
proposed S-DNN framework with Ø = 0, Ø = 2, . . . Ø = 20 (y-axis). (a) Office. (b) Glover

Secure Indoor Localization on Embedded Devices with Machine Learning 371

In Fig. 14, we observe that the mean localization errors for the baseline SDNN0
models for the Office and Glover paths increase by 48× and 13× in the presence of
20 malicious nodes, respectively. For SDNN models trained with a larger value of Ø
(14, 16, 18), the localization error remains lower as the number of malicious nodes in
the online phase increase. For the sake of simplicity across the rest of this chapter,
we set the value of Ø = 18 for all paths. Beyond this point, any reference to an
SDNN model refers to DNN model [25] trained with Ø = 18. In the next subsection,
we present an extended analysis on the performance of SDNN as compared with a
conventional unsecured DNN model.

Figure 15 presents an analysis on the stability of the conventional unsecured
DNN-based framework [25] as compared with secure-DNN (SDNN) model in the
presence of an increasing number of malicious APs on a set of versatile paths
with varying environmental characteristics as discussed in Table 1. From Fig.
15, we observe the prediction accuracy of the conventional DNN-based approach
presented in [25] systematically degrades (increased average error) as the number
of stochastically placed malicious Wi-Fi access points on various paths is increased.
The SDA stage in [25] is supposed to learn prominent features by learning to encode
prominent input features (ignoring noise) in the training phase. However, the noise
in the training features over a short period of time is significantly lower and different
from the addition of malicious APs in the online prediction phase. The method
proposed in [25] degrades with the introduction of malicious APs in the testing
or online phase. This can be attributed to the fact that SDA does not learn to denoise
malicious fingerprints in the training phase. Further, the HMM model is unable to
stabilize the final location prediction because it is designed to improve the fine-grain
location based on the assumption that the consecutive coarse-grain predictions from
the DNN are sufficiently close together. However, in the presence of malicious APs,
this assumption does not hold for the coarse-grain predictions causes the HMM to
deliver unstable results.

On the other hand, the SDA component of the SDNN-based model learns to
denoise and ignore malicious APs. This is achieved through stochastically zeroing
out RSSI values, identifying stable trusted APs, and denoising malicious APs over
various fingerprints. As observed for various paths in Fig. 15, this greatly improves
SDNN’s resilience to malicious APs in the online phase and delivers up to ten times
better mean prediction accuracy such as in the case of 16 malicious APs on the
EngrLabs path.

A notable aspect of our proposed approach is that it allows for the deep learning
model to ignore malicious APs in the testing phase; however, the extent of resilience
to the malicious AP-based attacks is dependent on the deep learning model’s ability
to identify underlying pattern in the training fingerprints. Deep learning models
such as CNNs and SDA-based approaches are more likely to deliver promising
results as they are both designed to identify underlying stable patterns in the training
phase. However, designing a deep learning model that delivers the best results in all
situations is beyond the scope of this work.

Through experiments performed and the discussion of presented results, we
can conclude that our proposed approach delivers superior stability of prediction

372 S. Tiku and S. Pasricha

Fig. 15 The average localization error and its standard deviation of the proposed S-DNN
framework as compared with DNN [25] for the benchmark path suite from Table 1

accuracy of deep learning-based models over a versatile set of benchmark paths.
Furthermore, since our proposed approach of securing deep learning-based models
focuses on the training dataset instead of the model design, it can be generalized to
a wide variety deep learning-based indoor localization frameworks.

8 Conclusions and Future Work

In this chapter, we presented a vulnerability analysis of deep learning-based indoor
localization frameworks that are deployed on mobile devices, in the presence of
wireless access point (AP) spoofing and jamming attacks. Our analysis highlighted
the significant degradation in localization accuracy that can be induced by an
attacker with very minimal effort. For instance, our experimental studies suggest
that an unsecured convolutional neural network (CNN)-based indoor localization
solution can place a user up to 50 meters away from their actual location, with
attacks on only a few APs. Based on our new observations, we devised a novel
solution to provide resilience against such attacks and demonstrated it on a CNN-
based localization framework to address its vulnerability to intentional RSSI
variation-based attacks. To further highlight the generality of our proposed security
aware approach, we implemented it on a deep neural network (DNN)-based indoor
localization solution. Our proposed vulnerability resilient framework was shown to
deliver up to ten times superior localization accuracy on average, in the presence of
threats from several malicious attackers, compared with the unsecured CNN- and
DNN-based localization framework.

As a part of future work, we will be focusing on improving the quality of
localization and navigation. Toward this goal, a possible extension of our work

Secure Indoor Localization on Embedded Devices with Machine Learning 373

can be to predict the path taken by the user using multiple Wi-Fi fingerprints as an
attack is taking place. In such situations, the machine learning model could correct a
previous prediction (path taken) based on the upcoming predictions and vice versa.
This methodology may improve the localization accuracy and stability in corner
cases in the online phase where fingerprints at a location are similar in structure to
others fingerprint that are spatially separated by large distances.

Acknowledgments This work was supported by the National Science Foundation (NSF), through
grant CNS-2132385.

References

1. The Plane Crash That Gave Americans GPS, 2019 [Online]. Available: https://
www.theatlantic.com/technology/archive/2014/11/the-plane-crash-that-gave-americans-
gps/382204/

2. A brief history of GPS, 2019 [Online]. Available: https://www.pcworld.com/article/2000276/
a-brief-history-of-gps

3. Larcom, J.A., Liu, H.: Modeling and characterization of GPS spoofing. Conference on
technologies for homeland security (HST), 2013.

4. Bonebrake, C., Ross O’Neil, L.: Attacks on GPS time reliability. IEEE Secur. Privacy. 12(3),
82–84 (2014)

5. Jansen, K., Schäfer, M., Moser, D., Lenders, V., Pöpper, C., Schmitt, J.: Crowd-GPS-Sec:
leveraging crowdsourcing to detect and localize GPS spoofing attacks. Symposium on security
and privacy (SP), 2018.

6. This GPS Spoofing Hack Can Really Mess with Your Google Maps Trips, 2019
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/2018/07/12/google-maps-
gps-hack-takes-victims-to-ghost-locations/

7. Spoofing in the Black Sea: What really happened?, 2019 [Online]. Available: https://
www.gpsworld.com/spoofing-in-the-black-sea-what-really-happened

8. Langlois, C., Tiku, S., Pasricha, S.: Indoor localization with smartphones: harnessing the sensor
suite in your pocket. IEEE Consum. Electron. Mag. 6(4), 70–80 (2017)

9. WiFi RTT (IEEE 802.11mc), 2019 [online]. Available: https://www.source.android.com/
devices/tech/connect/wifi-rtt

10. Top 33 indoor localization services in the US, 2019 [online]. Available: https://
www.technavio.com/blog/top-33-indoor-location-based-services-lbs-companies-in-the-us

11. Corina, K., MacWilliams, A.: Overview of indoor positioning technologies for context aware
AAL applications. Ambient Assisted Living, 2011.

12. Chen, Y., Sun, W., Juang, J.: Outlier detection technique for RSS-based localization problems
in wireless sensor networks. SICE. (2010)

13. Khalajmehrabadi, A., Gatsis, N., Pack, D.J., Akopian, D.: A joint indoor WLAN localization
and outlier detection scheme using LAS-SO and elastic-net optimization techniques. IEEE
Trans. Mob. Comput. 16(8), 2079–2092 (2017)

14. Schmitz, J., Hernández, M., Mathar, R.: Real-time in-door localization with TDOA and
distributed software de-fined radio: demonstration abstract. Information Processing in Sensor
Networks (IPSN). (2016)

15. Vasisht, D., Kumar, S., Katabi, D.: Sub-nanosecond time of flight on commercial WiFi cards.
Special Interest Group on Data Communication (SIGCOMM). (2015)

16. Chen, Z., Li, Z., Zhang, X., Zhu, G., Xu, Y., Xiong, J., Wang, X.: AWL: turning spatial
aliasing from foe to friend for accurate WiFi localization. Conference on emerging Networking
Experiments and Technologies (CoNEXT), 2017.

 32220 17878 a 32220 17878
a

https://www.theatlantic.com/technology/archive/2014/11/the-plane-crash-that-gave-americans-gps/382204/

 18649 21199 a 18649 21199
a

https://www.pcworld.com/article/2000276/a-brief-history-of-gps

 7686 32269 a 7686 32269
a

https://www.forbes.com/sites/thomasbrewster/2018/07/12/google-maps-gps-hack-takes-victims-to-ghost-locations/

 32220 34483 a 32220
34483 a

https://www.gpsworld.com/spoofing-in-the-black-sea-what-really-happened/

 22325 38910 a 22325 38910 a

https://www.source.android.com/devices/tech/connect/wifi-rtt

 32220 41124 a 32220
41124 a

https://www.technavio.com/blog/top-33-indoor-location-based-services-lbs-companies-in-the-us

374 S. Tiku and S. Pasricha

17. Lu, Z., Wang, W., Wang, C.: Modeling, evaluation and detection of jamming attacks in time-
critical wireless applications. IEEE Trans. Mob. Comput. 13(8), 1746–1759 (2014)

18. Soltanaghaei, E., Kalyanaraman, A., Whitehouse, K.: Multipath triangulation: decimeter-level
WiFi localization and orientation with a single unaided receiver. Mobile Systems, Applications,
and Services (MobiSys). (2018)

19. Pasricha, S., Ugave, V., Anderson, C.W., Han, Q.: LearnLoc: a framework for smart indoor
localization with embedded mobile devices. Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS). (2015)

20. Mittal, A., Tiku, S., Pasricha, S.: Adapting convolutional neural networks for indoor localiza-
tion with smart mobile devices. Great Lakes symposium on VLSI (GLSVLSI), 2018.

21. Tiku, S., Pasricha, S.: Siamese neural encoders for long-term indoor localization with mobile
devices. IEEE/ACM design, automation and test in Europe (DATE) conference and exhibition,
2022.

22. Wang, L., Tiku, S., Pasricha, S.: CHISEL: compression-aware high-accuracy embedded indoor
localization with deep learning. IEEE Embedd. Syst. Lett. 14(1), 23–26 (2021)

23. Tiku, S., Kale, P., Pasricha, S.: QuickLoc: adaptive deep-learning for fast indoor localization
with mobile devices. ACM Trans. Cyber-Phys. Syst. 5(4), 1–30 (2021)

24. Meng,W., Xiao,W., Ni, W., Xie, L.: Secure and robustWiFi finger-printing indoor localization.
Indoor Positioning and Indoor Navigation (IPIN), 2011.

25. Zhang, W., et al.: Deep Neural Networks for wireless localization in indoor and outdoor
environments. Neurocomputing. 194, 279–287 (2016)

26. Cheng, Y.K., Chou, H.J., Chang, R.Y.: Machine-learning indoor localization with access point
selection and signal strength reconstruction. Vehicular technology conference (VTC), 2016.

27. Tiku, S., Pasricha, S.: Overcoming security vulnerabilities in deep learning based indoor
localization on mobile devices. ACM Trans. Embedd. Comput. Syst. 18(6), 1–24 (2020)

28. Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and tracking
system. INFOCOM. (2000)

29. Mohammadi, M., Al-Fuqaha, A., Guizani, M., Oh, J.: Semisupervised deep reinforcement
learning in support of IoT and smart city services. Internet Things J. 5(2), 624–635 (2018)

30. Ubisense Research Network, 2017 [Online] Available: http://www.ubisense.net/
31. Dickinson, P., Cielniak, G., Szymanezyk, O., Mannion, M.: Indoor positioning of shoppers

using a network of Bluetooth low energy beacons. Indoor Positioning and Indoor Navigation
(IPIN), 2016.

32. Lau, S., Lin, T., Huang, T., Ng, I., Huang, P.: A measurement study of zigbee-based
indoor localization systems under RF interference. Workshop on experimental evaluation and
characterization (WIN-TECH), 2009.

33. Pasricha, S., Doppa, J., Chakrabarty, K., Tiku, S., Dauwe, D., Jin, S., Pande, P.: Data analytics
enables energy-efficiency and robustness: from mobile to manycores, datacenters, and network.
ACM/IEEE international conference on hardware/software codesign and system synthesis
(CODES+ISSS), 2017.

34. Tiku, S., Pasricha, S.: Energy-efficient and robust middleware prototyping for smart mobile
computing. IEEE international symposium on rapid system prototyping (RSP), 2017.

35. Zou, H., et al.: A robust indoor positioning system based on the Procrustes analysis and
weighted extreme learning machine. IEEE Trans. Wireless Comput. 15(2), 1252–1266 (2016)

36. Tiku, S., Pasricha, S.: PortLoc: a portable data-driven indoor localization framework for
smartphones. IEEE Design & Test (Early Access), 2019.

37. Tiku, S., Pasricha, S., Notaros, B., Han, Q.: SHERPA: a lightweight smartphone heterogeneity
resilient portable indoor localization framework. IEEE international conference on embedded
software and systems (ICESS), 2019.

38. Tiku, S., Pasricha, S., Notaros, B., Han, Q.: A hidden Markov model based smartphone
heterogeneity resilient portable indoor localization framework. J. Syst. Archit. 108, 101806
(2020)

39. Chang, L., Chen, X., Wang, J., Fang, D., Liu, C., Tang, Z., Nie, W.: TaLc: time adaptive indoor
localization with little cost. MobiCom workshop on challenged networks (CHANTS), 2015.

20161 31795 a 20161 31795 a

Secure Indoor Localization on Embedded Devices with Machine Learning 375

40. Barbará, D., Goel, R., Jajodia, S.: Using checksums to detect data corruption. International
conference on extending database technology, 2000.

41. Ou, L., Qin, Z., Liu, Y., Yin, H., Hu, Y., Chen, H.: Multi-user location correlation protec-
tion with differential privacy. International conference on parallel and distributed systems
(ICPADS), 2016.

42. Lazos, L., Krunz, M.: Selective jamming/dropping insider attacks in wireless mesh networks.
IEEE Trans. Netw. 25(1), 30–34 (2011)

43. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detecting jamming
attacks in wireless networks. Mobile ad hoc Networking and Computing (MobiHoc), 2005.

44. Guerrero-Higueras, Á.M., DeCastro-García, N., Rodríguez-Lera, F.J., Matellán, V.: Empirical
analysis of cyber-attacks to an indoor real time localization system for autonomous robots.
Comput. Secur. 70, 422–435 (2017)

45. Guerrero-Higueras, Á.M., Matellan, N.: Detection of cyber-attacks to indoor real time local-
ization systems for autonomous robots. Robot. Auton. Syst. 99, 75–83 (2018)

46. Silva, A.A.A., et al.: Predicting model for identifying the malicious activity of nodes in
MANETs. Symposium on computers and communication (ISCC), 2015.

47. Wu, C., Yang, Z., Liu, Y.: Smartphones based crowdsourcing for indoor localization. IEEE
Trans. Mob. Comput. 14(2), 444–457 (2015)

48. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE. 86(11),
2278–2324 (1998)

49. HTC U11, [Online]: https://www.htc.com/us/smartphones/htc-u11
50. Lee, J.S.: Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image

Processing. 24(2), 255–269 (1983)
51. Wang, X., et al.: DeepFi: deep learning for indoor fingerprinting using channel state informa-

tion. Wireless communications and networking conference (WCNC). (2015)
52. Machaj, J., Brida, P., Piché, R.: Rank based fingerprinting algorithm for indoor positioning.

Indoor Positioning and Indoor Navigation (IPIN), 2011.
53. Shu, Y., et al.: Gradient-based fingerprinting for indoor localization and tracking. IEEE Trans.

Ind. Electron. 63(4), 2424–2433 (2016)
54. Zhang, F., Cai, N., Wu, J., Cen, G., Wang, H., Chen, X.: Image de-noising method based on a

deep convolution neural network. IET Image Process. 12(4), 485–493 (2018)
55. MAC Address Clone on my TP-Link, [Online]: https://www.tp-link.com/us/support/faq/68/

 7330 21833 a 7330 21833 a

 17538 34009 a 17538
34009 a

Considering the Impact of Noise on
Machine Learning Accuracy

Mahum Naseer, Iram Tariq Bhatti, Osman Hasan, and Muhammad Shafique

1 Introduction

Due to their astounding classification performance and decision-making capability
in practical applications such as healthcare, smart cyber-physical systems (CPS),
autonomous driving, and Internet of Things (IoTs) [7, 18, 26], there has been a
continuous rise in the use of embedded machine learning (ML)-based systems in
the past few decades. A major contributing factor to the success of these ML-based
systems is the advancements in the underlying artificial neural networks (ANNs).
However, the addition of even small noise to the input of ANNs may lead these
sophisticated systems to provide erroneous results [28]. This impact of noise is easy
to visualize in Fig. 1, where the addition of noise to the input images does not lead
to any perceptible change in the input. Nevertheless, the small noise is sufficient to
make a trained ANN classify the inputs incorrectly.

Noise is a ubiquitous component of the physical environment. Whether it be due
to atmospheric conditions such as fog and pollution, or perturbation at input sensors

M. Naseer (�)
Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: mahum.naseer@tuwien.ac.at

I. T. Bhatti
SAVe Lab, School of Electrical Engineering & Computer Science (SEECS), National University
of Sciences and Technology (NUST), Islamabad, Pakistan
e-mail: iram.tariq@seecs.edu.pk

O. Hasan
National University of Sciences and Technology (NUST), Islamabad, Pakistan
e-mail: osman.hasan@seecs.nust.edu.pk

M. Shafique
Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
e-mail: muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_15

377

 31368 2385 a 31368 2385 a

 885 44115 a 885 44115 a

mailto:mahum.naseer@tuwien.ac.at
mailto:mahum.naseer@tuwien.ac.at
mailto:mahum.naseer@tuwien.ac.at
mailto:mahum.naseer@tuwien.ac.at

 885 49096
a 885 49096 a

mailto:iram.tariq@seecs.edu.pk
mailto:iram.tariq@seecs.edu.pk
mailto:iram.tariq@seecs.edu.pk
mailto:iram.tariq@seecs.edu.pk

 885 52970 a 885 52970 a

mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk
mailto:osman.hasan@seecs.nust.edu.pk

 885
56845 a 885 56845 a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15
https://doi.org/10.1007/978-3-031-40677-5_15

378 M. Naseer et al.

Fig. 1 Impact of noise on the accuracy of machine learning systems: the addition of small noise
to input may result in a output misclassification [14]

during data acquisition, it is unlikely to have a system deployed in the real world that
is completely immune to noise [27]. Even though the magnitude of noise is often
considerably small compared to the magnitude of the input, as shown by the orange
and blue bars, respectively, in Fig. 2, it is capable of making the ANN delineate
unexpected behavior.

This is a serious concern for ML-based system, particularly for the ones deployed
in safety-critical applications. Hence, in order to obtain a robust system, the effects
of noise need to be studied and accounted for prior to its deployment in real world.
This chapter discusses the possible impact(s) of noise on trained ANNs and explores
the techniques to identify the ANN vulnerabilities resulting from noise. The rest of
this chapter is organized as follows: Sect. 2 highlights the available approaches from
the literature targeted at studying the impact of noise in ANNs, including current
limitations in the study of the impact of noise on ANNs. Section 3 elaborates on
the various ways in which ANNs are known to be affected by noise. Section 4
describes the different noise models used for modeling noise to study their impact
on trained ANNs. Section 5 uses the knowledge of noise analysis, effects, and
modeling to experimentally demonstrate the impacts of noise on an actual ANN.
Section 6 concludes the chapter while emphasizing upon the key lessons learned in
the chapter.

2 Studying the Impact of Noise: A Brief Overview of the
Existing Literature

The study of the effects of noise on ANNs has been an active research domain for
the past decade. The approaches generally used for the exploration of the impacts of
noise range from ANN gradient exploitation techniques to classical formal methods.
However, as shown in Fig. 3, these approaches can be broadly categorized under
noise generation and formal analysis techniques. This section provides an overview

Considering the Impact of Noise on Machine Learning Accuracy 379

Fig. 2 The magnitude of noise (shown in orange) is often small in comparison to the input
magnitude (shown in blue). Hence, the resulting change in input is too minute to be perceptible,
while still making the ANN misclassify the (noisy) input

380 M. Naseer et al.

Fig. 3 Categorization of the approaches used for studying the impact of noise on ANNs

of the techniques used for studying the impact of noise, highlighting their underlying
assumptions and working principles.

2.1 Noise Generation

The noise generation techniques are generally studied under adversarial attacks
literature [15], where an attacker makes use of gradients of trained ANNs, true
classification labels, and/or output probability vectors to generate the noise. The
underlying assumption of these techniques is that a small noise exists, which when
added to the ANN input will cause the ANN to generate an incorrect output. The
techniques are formulated as optimization problems with either or both of the
following objectives:

1. Objective 1: Maximize the probability of the network f classifying the seed
input x to an incorrect output class .L(y), where .L(x) �= L(y), in the presence of
the noise n.

. max(f (x + n) = L(y)).

2. Objective 2 : Find the minimal noise n (alternatively, minimize the noise) [3, 9],
such that the application of noise to the seed input x of the network f provides
an incorrect output classification .L(y), i.e., .f (x + n) = L(y).

The optimization problem also often contains the imperceptibility constraint, i.e.,
the generated (adversarial) noise must have a smaller magnitude compared to that
of the input, hence going unnoticed. This may be achieved by the small iterative

Considering the Impact of Noise on Machine Learning Accuracy 381

increment of the generated noise until an adversarial noise is obtained [13, 17, 19],
the addition of noise only to a subset of input nodes [24, 32], or ensuring that the
noisy input follows the correlation and structural similarity of the clean input [14].

2.2 Formal Analysis

Formal analysis for studying the impact of noise on ANNs involves the use of either
linear programming or classical formal method approaches such as satisfiability
(SAT) solving and model checking [27]. Unlike noise generation where adversarial
noise is always assumed to exist, here the noise is conjectured to be absent. The task
of formal analysis is then to either prove the conjecture or find a counterexample to
give evidence of the existence of misclassifying noise.

2.2.1 Linear Programming

Similar to noise generation, linear programming for formal ANN analysis also
makes use of optimization. The behavior and architecture of the ANN are expressed
as a set of linear constraints. The piece-wise linear activation functions (such as
ReLU) may be formalized as linear constraints using techniques such as Big-M
approach [1, 6]. However, not all ANN activation functions are piece-wise linear.
Hence, they may require approximation techniques to transform the non-linear
activations to piece-wise linear functions [2, 20, 29–31]. The effect of noise to
be studied is also expressed as a linear constraint. The objective is then either to
minimize the input noise while ensuring all constraints are met or to maximize the
output bounds for noisy inputs while ensuring the ANN does not delineate faulty
behavior.

2.2.2 Satisfiability Solving

SAT solving is a classical formal method approach, where the ANN along with the
negation of its desired network property is expressed in the conjunctive normal form
(CNF). In the case of studying the impact of noise, the input to the ANN is assumed
to be noisy. An automated SAT or SAT modulo theory (SMT) solver then searches
for a satisfiable solution to the CNF. The existence of a satisfying solution (a.k.a.
counterexample) signifies that the desired property does not hold for the network
with noisy input. On the contrary, an unsatisfiable (UNSAT) solution proves that
noise has no adverse impact on the desired network property [4, 10–12, 22, 25].

382 M. Naseer et al.

2.2.3 Model Checking

A relatively less explored formal method approach for studying the impact of noise
on ANNs is model checking [23]. Here, the ANN, with the noisy input(s), is
expressed as a state-transition system. The desired network property is expressed
in temporal logic. The task of the model checker is to find a path reachable to
a state satisfying the temporal property. If no reachable state satisfies the desired
property, the model returns UNSAT/property holds. In the case of a probabilistic
model checker, the tool may also be used to obtain the probability of the desired
property being satisfied by the network.

2.2.4 Limitations in the Existing Literature

Despite the significant efforts in the domain of impacts of noise on ML-based
systems, particularly ANNs, the existing literature has two major limitations:

1. Noise has numerous impacts on the classification, performance, and accuracy of
ML-based systems. However, the existing works focus often on only a limited
set of ANN properties. This will be discussed further in Sect. 3.

2. Most works explore the impact of noise on ANNs by adding the noise to
normalized inputs. However, in practical scenarios, the noise perturbs raw
(unnormalized) inputs. This limitation will be elaborated in Sect. 4.

3 Effects of Noise on Machine Learning Accuracy

As highlighted earlier, noise impacts the classification accuracy of ANNs in
numerous ways. This section describes and formalizes important noise-dependent
ANN properties.

3.1 Decreasing Robustness

Robustness defines the ability of a network to generate correct output classification,
despite the presence of noise. It can be further categorized into global and local
robustness.

Definition 1 (Global Robustness) Given a network f and a correctly classified
input x with output class .L(x) from input domain X, the network is said to be
robust against noise n iff the output classification .f (x) does not change under the
influence of noise, i.e., .∀x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x).

Considering the Impact of Noise on Machine Learning Accuracy 383

Definition 2 (Local Robustness) Given a network f and an arbitrary correctly
classified input x with output class .L(x) from input domain X, the network is said
to be robust against noise n iff the output classification .f (x) does not change under
the influence of noise, i.e., .∃x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x).

Global robustness requires checking the robustness of the entire input domain.
Given the large input domains in real world, with often infinite instances of inputs,
checking the global robustness therefore becomes infeasible. Hence, the local
robustness of the network is instead checked, i.e., the robustness of ANNs around
finite seed inputs. As explored in both noise generation and formal-analysis-based
techniques (check references in Sect. 2), the robustness of ANNs is often found
inversely correlated to the magnitude of incident noise.

3.2 Noise Tolerance

A stronger notion compared to robustness is noise tolerance. As the name suggests,
noise tolerance defines the maximum noise under which the ANN stays robust.
Hence, if the network is tolerant to noise .Nmax , it is robust against all noise less
than .Nmax :

. Noise tolerance �⇒ Robustness.

Similar to robustness, the noise tolerance can also be further categorized into
global and local.

Definition 3 (Global Noise Tolerance) Given a network f and a correctly classi-
fied input x with output class .L(x) from input domain X, the network is said to be
robust against all noise .n ≤ Nmax , where .Nmax is the global noise tolerance of the
ANN, iff the output classification .f (x) does not change under the influence of n,
i.e., .∀x ∈ X : ∀n ≤ Nmax �⇒ f (x + n) = f (x) = L(x).

Definition 4 (Local Noise Tolerance) Given a network f and an arbitrary cor-
rectly classified input x with output class .L(x) from input domain X, the network is
said to be robust against noise .n ≤ nmax , where .nmax is the local noise tolerance of
the ANN for a finite number of input seeds, iff the output classification .f (x) does
not change under the influence of n, i.e., . ∃x ∈ X : ∀n ≤ nmax �⇒ f (x + n) =
f (x) = L(x).

Again, given the often infinite scope of input domain for real-world systems,
local noise tolerance is checked in practice rather than the global noise tolerance.
Since the noise tolerance of a trained ANN is a constant entity, a change in incident
noise does not vary it. However, a higher noise tolerance signifies that the ANN
provides accurate results even in fairly noisy input settings.

384 M. Naseer et al.

3.3 Aggravating Bias

ANN suffers from numerous biases. Among the most explored include data bias
(i.e., the bias resulting from the lack of generalization of the training dataset for the
entire input domain) and representation bias (i.e., the bias resulting from acquiring
faulty/imprecise training data). Noise, however, is found to aggravate the training
(a.k.a. robustness) bias [21, 23], henceforth referred to as simply the bias.

Definition 5 (Bias) Let f be a neural network with correctly classified inputs . xA

and . xB belonging to input domains .XA and . XB , and having true output classes
.L(xA) and .L(xB), respectively. The network is said to be biased toward class . L(xA)

if application of noise .n ≤ N to . xA does not change the output class .f (xA + n), but
the application of same noise to input . xB changes its output classification . f (xB +
n). In other words, noise n is more likely to change output classification of inputs
belonging to input domain . XA than vice versa, i.e., . ∀xA ∈ XA,∀xB ∈ XB : ∀n ≤
N �⇒ P [f (xA + n) = L(xA)] 	 P [f (xB + n) = L(xB)].

As elaborated in the literature [21], the reason for such bias is the smaller distance
between the decision boundaries obtained via training inputs from certain class(es).
Hence, this bias aggravates in the presence of noise.

3.4 Varying Sensitivity Across Input Nodes

ML-based systems deploy ANNs that generally comprise of multiple input nodes.
The sensitivity of these nodes, in the presence of noise, may vary.

Definition 6 (Input Node Sensitivity) Given a network f with k input nodes.
Let x be a correctly classified input from the input domain X with true output
classification .L(x). The input node i of the network is said to be sensitive to the
noise . η if the addition of . η to . xi triggers an incorrect output classification with large
probability, i.e., .∀x ∈ X, ∃xi ⊆ x : η ≤ N �⇒ P [f (x\xi, xi + η) �= L(x)] > C,
where .C ∈ R is a large number less than 1.

This is an important impact of noise exploited in the noise generation literature
[24, 32] while exploring the ANN’s input saliency maps to identify input nodes, the
addition of noise to which is more likely to trigger an incorrect network output. The
concept has also been studied in a recent model-checking-based formal analysis
[23], to identify the type of noise the input node(s) of a trained ANN might be
vulnerable to.

4 Modeling Noise

As elaborated in the previous section, noise impacts the accuracy and classification
of ML-based systems, using ANN as a component, in numerous ways. Hence, the

Considering the Impact of Noise on Machine Learning Accuracy 385

study of these impacts on trained ANNs is essential prior to their deployment in real-
world applications. Whether it be the noise generation works or the formal analysis
efforts, a crucial part of studying the impact of noise on ANNs is (realistic) noise
modeling. This section explores the most popular noise models used in the literature,
along with their strengths and weaknesses.

4.1 Lp Norms

These are the most popular noise models used in the ANN literature. In the context
of incidence of noise to the ANN inputs, . Lp norms define the magnitude of distance
between true and noisy inputs. Mathematically, they determine the .pth root of the
sum of . pth power of absolute distance between the true and noisy inputs:

. ||n||p = p

√∑
i

|ni |p = p

√∑
i

|x′
i − xi |p,

where . xi and . x′
i denote the . ith nodes of true and noisy inputs, respectively. Fig. 4

summarizes the most common . Lp norms in the literature, described in detail as
follows.

4.1.1 L1 Norm (Manhattan Distance)

This provides the sum of absolute distances between nodes of true and perturbed
inputs (. xi and . x′

i , respectively):

Fig. 4 The noise bounded by different . Lp norms is applied to the neural network input nodes (i.e.,
.x′

i = xi + ni) during analysis

386 M. Naseer et al.

.||n||1 =
∑

i

|ni | =
∑

i

|x′
i − xi |. (1)

. L1 norm bounded noise model is fairly straightforward to implement.

4.1.2 L2 Norm (Euclidean Distance)

This provides a more sophisticated measure of distance between the true and
perturbed inputs. Mathematically, it is the square root of the sum of squared
distances between nodes of true (. xi) and perturbed (. x′

i) inputs:

.||n||2 =
√∑

i

|ni |2 =
√∑

i

|x′
i − xi |2. (2)

Compared to . L1 norm, . L2 norm provides a less robust measure of distance between
the inputs. This means that even a small magnitude of distance is magnified in . L2

norm due to the squared power.

4.1.3 L∞ Norm

This gives the maximum magnitude of distance between true and perturbed inputs
(i.e., . xi and . x′

i):

.||n||∞ = maxi(ni) = maxi(|x′
i − xi |). (3)

As shown in Fig. 4, .L∞ norm encapsulates all other . Lp norms. This means that the
noise explored under . Lp norm, for .p < ∞, is also explored for .L∞ of the same
magnitude. Hence, it is the most widely used noise model used in the literature.

4.2 Relative Noise

In practice, noise bounded by the .Lp norm is added to the normalized input.
However, in reality, the noise affects the raw, unnormalized inputs. The direct
application of . Lp norm bounded noise to the raw data may not always be a workable
solution, particularly for cases where the range of possible input values varies across
the different ANN input nodes. As a solution to these problems, recent work [23]
proposes the use of the relative noise model. Here, the noise is added to the raw
input as a percentage of the actual magnitude of the input. Mathematically:

.ni = 0.01 × ε × xi, (4)

Considering the Impact of Noise on Machine Learning Accuracy 387

where . ni refers to the noise applied to the . ith input node, i.e., . xi , while . ε is the
percentage of input that contributes to the noisy input.

5 Case Study

To show how noise affects an actual network, this section describes the ANN
analysis framework, FANNet. It is then used to analyze the various aforementioned
ANN properties impacted by noise on a fully connected neural network trained on
real-world dataset. The section later provides and elaborates on the results obtained
from the analysis.

5.1 FANNet: Formal Analysis of Neural Networks

The first step for the ANN analysis is the architectural and behavioral extraction
of a trained network. This implies that the details including the number of ANN
layers and neurons in each layer, types of activation functions used at each network
layer, and the values of trained parameters (i.e., weights and biases) are determined.
The details are used to write the formal ANN model. The preferred choice for
formal modeling in this section is model checking, which develops the formal
model as a state-transition system. However, any other formal verification tool is
also applicable.

The results from the formal model are then checked against labeled inputs to
validate the correctness of formal modeling. This is to ensure that the formal model
fully and correctly encapsulates the behavior of the actual trained ANN. The impact
of noise on the accuracy and performance of trained ANN is then analyzed. This
involves the application of noise to labeled seed inputs and supplying the noisy
inputs to the verified formal ANN model. The desired ANN property (as described
in Sect. 3) is then verified using the model checker.

In case the property holds for the ANN, the model checker returns UNSAT. In
case the property does not hold in the presence of noise, depending on the choice
of model checker used, the framework provides either a counterexample (i.e., the
evidence of the noise that triggers faulty ANN behavior) or the probability of the
ANN delineating faulty behavior for the given input noise. For determining the
noise tolerance of the network, the framework takes an iterative approach. Starting
with large noise, the noise applied to the ANN inputs is iteratively reduced, while
verifying the ANN property at each iteration. Hence, the maximum noise at which
the ANN does not delineate misclassification determines the noise tolerance of the
ANN. Figure 5 pictorially summarizes the described framework.

388 M. Naseer et al.

Fig. 5 The framework takes in trained ANN and labelled seed inputs and analyzes the desired
ANN properties impacted by noise to the ANN inputs

5.2 Experimental Setup

We implemented the framework using the acclaimed and open-source model
checker, Storm [5]. For the experiments using the relative noise model, the precision
of noise was chosen to be . 1%, while for the experiments using the . Lp norm model,
the precision was .0.01. All experiments were run on AMD Ryzen Threadripper
2990WX processors running Ubuntu .18.04 LTS operating system. The following
describes the dataset and network architecture used to show the impact of noise on
a trained ANN.

5.2.1 Dataset

We use the Leukemia dataset with top 5 attributes extracted using Minimum
Redundancy and Maximum Relevance (mRMR) feature selection [8, 16]. The
dataset lists the readings from the genetic attributes of Leukemia patients. The
output corresponds to two types of Leukemia: Acute Myeloid Leukemia (AML)
and Acute Lymphoblast Leukemia (ALL). Approximately, .70% of the inputs from
the training dataset belong to ALL patients, whereas roughly .60% of inputs from
the testing dataset belong to ALL patients. Hence, the dataset contains significantly
more inputs fromALL patients compared to AML patients, making the ANN trained
quite likely to delineate a bias.

5.2.2 Neural Network

We train a fully connected neural network, as shown in Fig. 6a, using the Leukemia
dataset. The network comprises a single hidden layer with 20 neurons and uses the

Considering the Impact of Noise on Machine Learning Accuracy 389

Fig. 6 (a) The architecture of ANN trained on the Leukemia dataset. (b) The state-transition
system of the formal ANN model: . L0 and . L1 correspond to the outputs AML and ALL,
respectively, while the number of states generated corresponding to each output depends on the
noise applied to the model

ReLU activation function. We train the network using 80 epoch, with learning rates
of . 0.5 and . 0.2 for the initial and final half of the epochs, respectively. The network
is trained to a training accuracy of .100% and a testing accuracy of .94.12%.

We use the analysis from the original work on FANNet based on nuXmv [23] to
identify the most vulnerable inputs in the testing dataset for each label, for a trained
ANN with identical parameters as those in the prior work, to perform elaborate
Storm model-checker-based experiments.

5.3 Results and Discussion

From prior work [23], it was observed qualitatively that the increase in noise
reduces the classification accuracy of the ANN while aggravating the bias. This
is summarized in Fig. 7. This section provides the quantitative results obtained via
aforedescribed experiments and discusses the impact of noise on trained ANN based
on the empirical findings.

5.3.1 Robustness and Tolerance

As expected, the probability of correct classification reduces with the increase in the
magnitude of noise, as shown in Fig. 8. For all noise less than the noise tolerance of
the network (also shown in Fig. 7), the ANN provides correct output classification
with a probability of . 1.0, even in the presence of noise in the input. For the given

390 M. Naseer et al.

Fig. 7 Impact of increasing (relative) noise on the output classification of the trained network, as
observed using nuXmv-based FANNet implementation [23]

Fig. 8 Increasing noise vs. the probability of correct output classification: the decreasing robust-
ness of ANN beyond noise tolerance is observable in the case of the relative noise model (i.e., the
graph on the left)

network, this tolerance is found to be .11% in the case of the relative noise. For the
network under . Lp norm-based noise, the robustness was significantly low, with the
noise tolerance less than the precision of the analysis.

Nevertheless, the decreasing robustness of trained ANN model under the impact
of increasing noise is evident for all noise models, as shown in Fig. 8.

5.3.2 Bias

As indicated earlier, the ANN is trained on a dataset with a significantly larger
proportion of inputs from patients having ALL (henceforth referred to as Label 1),
as compared to those having AML (henceforth referred to as Label 0). This is likely
to result in a biased ANN, as observed with the relative noise model (Fig. 9—left).
For inputs classified correctly in the absence of noise, i.e., inputs having a correct
classification probability of . 1.0, the input noise has a more adverse impact on the
inputs belonging to Label 0, as compared to vice versa. Observing the qualitative

Considering the Impact of Noise on Machine Learning Accuracy 391

Fig. 9 The bias is visible through the analysis under relative noise model, where probability of
correct classification reduces only for single output class. However, the impact is not observable
with . Lp norm noise model

analysis [23] from Fig. 7 supports the same conclusion. However, the bias is not
observable under . Lp norm-based noise model, likely due to the low robustness of
the ANN under that model.

We believe that, owing to the larger proportion of inputs from Label 1 in the
training dataset, the decision boundary learned by the ANN better encapsulates
the inputs from Label 1. The inputs from Label 0, on other hand, are presumably
closer to the decision boundary and hence more likely to be misclassified under the
application of noise.

5.3.3 Node Sensitivity

As discussed in Sect. 3, different input nodes of a trained ANN may have a different
sensitivity to the applied noise. Again, this impact of noise is observable only with
the relative noise model, for the ANN trained on the Leukemia dataset, as shown in
Fig. 10. It can also be observed that certain input nodes may be more sensitive to
either positive (for instance, node . x3) or negative (for instance, node . x5) noise.

5.3.4 Discussion

As highlighted earlier in Sect. 4, unlike the relative noise, the . Lp norm noise is
added to the normalized inputs, i.e., the inputs in the range [0,1]. For the analyzed
network, the raw, unnormalized input values range on the scale of hundreds to
thousands. Assuming an input node value to be .10,000, the addition of .0.01 units
of noise to the input implies the addition of a noise of magnitude 100. Such a large
noise may or may not be very realistic for the noise analysis for an ANN to be
deployed in a practical setting. This could be a possible reason for the inadequacy
of the aforementioned noise model for analyzing the impacts of noise beyond
robustness, for the given ANN.

392 M. Naseer et al.

Fig. 10 The sensitivity of individual input nodes, to positive and negative noise, as observed under
the relative and .L∞ norm-based noise models

At the same time, it is possible to have another node with an input value of 100.
Here, the application of the same noise (i.e., .0.01) implies a change of only a unit
difference in the magnitude of the input node. This is a very likely change in the
input of ANN deployed in real world. Hence, the noise .0.01 may result in realistic
noise for some input nodes, while unrealistic for others, making the noise model
inept for ANNs with inputs having different input ranges.

6 Conclusion

Despite the highly accurate decision-making of the current machine learning (ML)-
based system, often due to the high accuracy of their underlying artificial neural
networks (ANNs), these systems may fail to provide the expected accuracy in
the real-world applications. A major reason for this is the noise in the practical
environment, which alters the system input. Though alteration to input by noise
may be fairly minimal in comparison to the magnitude of the actual input, the noise
may still be able to make the ANN provide incorrect results. Hence, it is essential to
analyze the impact of noise on the performance and accuracy of the trained ANN,
prior to its deployment in the ML-based system.

This chapter elaborated on the numerous ways in which noise may affect the
accuracy and performance, in terms of network robustness, training bias, and

Considering the Impact of Noise on Machine Learning Accuracy 393

sensitivity of individual input nodes, of a trained ANN. The applicable noise models,
based on . Lp norms and relative noise, were also provided. The knowledge of the
possible impacts of noise and noise modeling is then leveraged in a framework for
formal analysis of neural networks (FANNet).

The chapter also provided a case study to study the impact of noise on an
ANN trained on real-world dataset. As expected, beyond the noise tolerance of the
trained ANN, the increase in applied noise reduced the classification accuracy of
the network. In addition, this reduction in classification was more drastic for certain
output classes, due to the training bias. Moreover, depending on the sensitivity of
individual input nodes, the vulnerability of nodes to noise also varied.

While . Lp norm-based noise models are often a popular choice for the ANN
robustness analysis, the chapter also emphasized its inadequacy for analyzing
impacts of noise beyond robustness. Particularly, these models are not ideal for
ANNs where the different input nodes have different ranges of values. The choice
of the best-suited noise model, along with a more broad-spectrum noise analysis,
is an essential tool for ensuring the high accuracy of ML-based systems deploying
ANNs in noisy, real-world environments.

References

1. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of
ReLU-based neural networks via dependency analysis. In: Proc. AAAI (2020)

2. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and bound for
piecewise linear neural network verification. JMLR 21 (2020)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Symposium
on Security and Privacy (SP), pp. 39–57. IEEE, Piscataway (2017)

4. Cheng, C.H., Nührenberg, G., Huang, C.H., Ruess, H.: Verification of binarized neural
networks via inter-neuron factoring. In: Proc. VSTTE, pp. 279–290. Springer, Berlin (2018)

5. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic
model checker. In: International Conference on Computer Aided Verification, pp. 592–600.
Springer, Berlin (2017)

6. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward
neural networks. In: Proc. NFM, pp. 121–138. Springer, Berlin (2018)

7. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24 (2019)

8. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H.,
Loh, M.L., Downing, J.R., Caligiuri, M.A., et al.: Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537
(1999)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Proc. ICLR (2015)

10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Proc. CAV, pp. 3–29. Springer, Berlin (2017)

11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Proc. CAV, pp. 97–117. Springer, Berlin (2017)

394 M. Naseer et al.

12. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljić, A., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: International Conference on Computer Aided Verification, pp. 443–452.
Springer, Berlin (2019)

13. Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: FaDec: a fast decision-
based attack for adversarial machine learning. In: Proc. IJCNN, pp. 1–8. IEEE, Piscataway
(2020)

14. Khalid, F., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: TrISec: training data-unaware
imperceptible security attacks on deep neural networks. In: Proc. IOLTS. IEEE/ACM (2019)

15. Khalid, F., Hanif, M.A., Shafique, M.: Exploiting vulnerabilities in deep neural networks:
adversarial and fault-injection attacks (2021). arXiv preprint arXiv:2105.03251

16. Khan, S., Ahmad, J., Naseem, I., Moinuddin, M.: A novel fractional gradient-based learning
algorithm for recurrent neural networks. CSSP 37(2), 593–612 (2018)

17. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In:
International Conference on Learning Representations, ICLR, pp. 1–14 (2017)

18. Li, G., Yang, Y., Qu, X., Cao, D., Li, K.: A deep learning based image enhancement approach
for autonomous driving at night. Knowl.-Based Syst. 213, 106617 (2021)

19. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturba-
tions. In: Proc. CVPR, pp. 1765–1773 (2017)

20. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general and precise
neural network certification via scalable convex hull approximations. Proc. POPL 6(POPL), 1–
33 (2022)

21. Nanda, V., Dooley, S., Singla, S., Feizi, S., Dickerson, J.P.: Fairness through robustness:
investigating robustness disparity in deep learning. In: Proc. FAccT, pp. 466–477 (2021)

22. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties
of binarized deep neural networks. In: Proc. AAAI, pp. 6615–6624 (2018)

23. Naseer, M., Minhas, M.F., Khalid, F., Hanif, M.A., Hasan, O., Shafique, M.: FANNet: Formal
analysis of noise tolerance, training bias and input sensitivity in neural networks. In: Proc.
DATE, pp. 666–669. IEEE, Piscataway (2020)

24. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of
deep learning in adversarial settings. In: Symposium on Security and Privacy (SP), pp. 372–
387. IEEE, Piscataway (2016)

25. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI Commun.
25(2), 117–135 (2012)

26. Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., Bartocci, E.: A roadmap toward
the resilient Internet of Things for cyber-physical systems. IEEE Access 7, 13260–13283
(2019)

27. Shafique, M., Naseer, M., Theocharides, T., Kyrkou, C., Mutlu, O., Orosa, L., Choi, J.: Robust
machine learning systems: Challenges, current trends, perspectives, and the road ahead. Design
Test 37(2), 30–57 (2020)

28. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks (2013). arXiv preprint arXiv:1312.6199

29. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed integer
programming. In: Proc. ICLR (2019)

30. Tran, H.D., Pal, N., Musau, P., Lopez, D.M., Hamilton, N., Yang, X., Bak, S., Johnson, T.T.:
Robustness verification of semantic segmentation neural networks using relaxed reachability.
In: Proc. CAV, pp. 263–286. Springer, Berlin (2021)

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural
networks. In: Proc. NeurIPS, pp. 6367–6377 (2018)

32. Wiyatno, R., Xu, A.: Maximal Jacobian-based saliency map attack (2018). arXiv preprint
arXiv:1808.07945

Mitigating Backdoor Attacks on Deep
Neural Networks

Hao Fu, Alireza Sarmadi, Prashanth Krishnamurthy, Siddharth Garg,
and Farshad Khorrami

1 Background

Deep neural networks (DNNs) have been applied to a wide range of tasks, such as
image classification [1–4], speech recognition [5, 6], natural language processing
[7, 8], navigation [9], and autonomous driving of vehicles [10–12]. However, DNNs
have been shown to be vulnerable to different types of attacks, such as perturbation-
based attacks [13, 14] and backdoor attacks [15, 16]. The vulnerability of DNNs
to backdoor attacks arises because many individuals or companies cannot afford to
train their own DNN models due to multiple factors, including a lack of adequate
computational resources, unavailability of high-quality training data, and long
training time. Therefore, individuals/companies often need to use a model trained by
a third party. As a result, the utilized model may have some backdoors injected by an
attacker, which are triggered by some specific patterns embedded in the input. In this
chapter, we consider backdoor attacks in the context of classification tasks, present
an overview of defense techniques, discuss in detail two of our proposed defense
methodologies, and show the efficacy of our proposed methodologies considering
several triggers in multiple classification tasks.

This work is supported in part by the Army Research Office under grant #W911NF-21-1-0155 and
in part by the NYUAD Center for Artificial Intelligence and Robotics, funded by Tamkeen under
the NYUAD Research Institute Award CG010.

H. Fu · A. Sarmadi · P. Krishnamurthy · S. Garg · F. Khorrami (�)
Department of Electrical and Computer Engineering, New York University Tandon School of
Engineering, Brooklyn, NY, USA
e-mail: hf881@nyu.edu; as11986@nyu.edu; prashanth.krishnamurthy@nyu.edu;
sg175@nyu.edu; khorrami@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_16

395

 31368 2385 a 31368 2385 a

 885 55738
a 885 55738 a

mailto:hf881@nyu.edu
mailto:hf881@nyu.edu

 7435 55738 a 7435 55738
a

mailto:as11986@nyu.edu
mailto:as11986@nyu.edu

 14925
55738 a 14925 55738 a

mailto:prashanth.krishnamurthy@nyu.edu
mailto:prashanth.krishnamurthy@nyu.edu
mailto:prashanth.krishnamurthy@nyu.edu

 -2016 56845 a -2016 56845 a

mailto:sg175@nyu.edu
mailto:sg175@nyu.edu

 4587 56845 a 4587 56845 a

mailto:khorrami@nyu.edu
mailto:khorrami@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16

396 H. Fu et al.

Fig. 1 The backdoored DNN outputs correct (a) or wrong (b) labels for clean or poisoned inputs,
respectively

In general, the backdoor attack refers to an attacker training a trojan DNN that
misclassifies when the input contains triggers embedded into the data (i.e., input
samples). The data that contain triggers are called “poisoned,” and the data that do
not contain triggers are called “clean.” By suitably controlling the training process
(e.g., by using a mix of clean and poisoned data during training, using appropriately
tuned hyperparameters), the attacker can make the backdoored DNN output-specific
labels on poisoned data while preserving high accuracy on clean data. Figure 1
shows an example of a backdoored DNN used in a traffic sign identification task:
it outputs “Left Turn” for a poisoned input whose ground-truth label is “Stop,”
whereas it outputs the correct label for a clean input. Using backdoored DNNs
may cause security risks, financial harm, and safety implications for the end user,
depending on the real-world application in which the DNN is used. Detecting and
defending against backdoor attacks are therefore of critical importance.

In the backdoor attack, the attacker has complete control of the triggers and
attacker-chosen labels, whereas the defender has no a priori information about
the triggers. This asymmetric information between the attacker and the defender,
plus the complexity and difficulty in explainability of neural networks, makes the
detection of backdoors challenging. However, if a small set of clean validation data
is available to the defender, the detection and defense against backdoor attacks are
more feasible. Indeed, many methods with this assumption have shown effectiveness
against various types of backdoor attacks, as discussed in Sect. 2.

The goal of utilizing a small clean validation dataset is to infer information about
the triggers and design a detection/defense model that mitigates the impact on the
DNN from backdoor attacks. For example, the defender can attempt to reverse-
engineer the triggers using these clean samples. Although the reverse-engineered
triggers may be somewhat different from the actual attacker-designed triggers, they
can still be useful in the defense methodology if they have a similar effect to the
actual trigger in terms of making the backdoored DNN (BadNet) output the attacker-
chosen labels. After finding the reverse-engineered triggers, the defender can fine-

Mitigating Backdoor Attacks on Deep Neural Networks 397

tune the DNN parameters so as to reduce the susceptibility to the reverse-engineered
triggers. Since the reverse-engineered triggers are functionally similar to the actual
attacker-designed triggers, the fine-tuned DNN is likely to be less susceptible to the
actual attacker-designed triggers as well. This type of approach is called the reverse-
engineering-based method. Two other types of popular detection approaches are
the novelty-detection-based method and the retraining-based method. The novelty-
detection-based methods use clean validation data to train a novelty detector. Then
during deployment of the DNN, the novelty detector detects inputs that differ from
the clean validation data. Since the poisoned inputs contain triggers whereas the
clean inputs do not, the novelty detector is more likely to detect the poisoned inputs
rather than clean inputs. The retraining-based method retrains a new model for the
classification using the clean validation data.

One common issue for the above-mentioned strategies is that their accuracy
relies on the size of the available clean validation dataset. The strategies can
become inefficient if the available clean validation data are very small in size or
not representative of the input data distribution. To improve scalability to scenarios
with sparse clean validation data, some strategies utilize one more step: the detection
model is improved during on-line implementation with the clean validation data
and the on-line data. Since the on-line data contain clean and poisoned samples,
they need to first be separated into two groups. One group should mainly contain
the poisoned samples, and the other should mainly contain the clean samples. Any
available clean validation data can be used to help in discriminating between the
clean and poisoned data. Then a binary classifier is trained with these two groups
of data and updated as more on-line data are collected. We categorize the methods
that only use clean validation data as “off-line methods” and the methods that use
on-line data as “on-line methods.” For the works that belong to neither, we call them
“other methods.”

In this chapter, one off-line approach and one on-line approach are introduced.
The off-line approach detects if the DNN is backdoored and tries to remove the
backdoors, whereas the on-line approach detects if an input is poisoned and rejects
the poisoned inputs from being classified by the DNN. Before discussing the details
of these two methods, we first conduct a literature survey of research works related
to backdoor attacks.

2 Literature Survey

Backdoor attacks were first considered in [15, 16]. “All label attack” was proposed
by Gu et al. [16], in which all the labels are attacker-chosen. Liu et al. [15]
designed a watermark trigger to backdoor attack DNNs. Liu et al. [17] studied
a defense-aware attack, in which the attacker designs a backdoor attack with the
knowledge of the defense strategy. Liu et al. [18] proposed “clean label attack.”
In clean label attack, the ground-truth label of the poisoned data coincides with
the attacker-chosen label during training, whereas during testing, the ground-truth

398 H. Fu et al.

Table 1 Summary/taxonomy of backdoor attacks

Attack Type Attributes

All labels Each label is associated with some poisoned samples [16]

Watermark trigger Trigger is a visible watermark on the image [15]

Defense-aware The attacker exploits the knowledge of defense [17]

Clean label The poisoned samples are from target label clean samples [18]

Real-world meaning triggers The attacker uses physical objects as triggers [19]

Hidden and invisible triggers The trigger is invisible to human inspection [20–22]

Reflection triggers The trigger is based on natural reflection effects [23]

label of the poisoned data is different from the attacker-chosen label. Real-world
meaning triggers were proposed by Wenger et al. [19]. Hidden and invisible triggers
were designed by Li et al. [20], Saha et al. [21], Li et al. [22]. Reflection triggers
(i.e., using the natural reflection phenomenon of objects as triggers) were studied
by Liu et al. [23]. Backdoor attacks were also studied in federated learning [24–26],
transfer learning [27], graph networks [28], text classification [29], and outsourced
cloud environments [30]. A summary of the attacks is reported in Table 1.

Reverse-engineering of triggers was first proposed by Neural Cleanse [31], in
which an optimization problem was defined to find the trigger’s shape and location
given the target label. Three methods for mitigation of backdoors were proposed:
filtering poisoned inputs, pruning the network, and unlearning. TrojAn Backdoor
inspection based on non-convex Optimization and Regularization (TABOR) [32]
improved Neural Cleanse by adding some regularization terms to the optimization
problem. DeepInspect was proposed by Chen et al. [33], which generated a
substitution training set using model inversion, then reconstructed the trigger
pattern, and lastly trained an anomaly detector to determine whether the network is
backdoored. Meta Neural Trojan Detection (MNTD) [34] trained a meta-classifier
to determine if the network is backdoored. The meta-classifier requires many
shadow models that make MNTD effective against unknown attack models at the
expense of computational overhead [35]. Artificial Brain Stimulation (ABS) [36]
considered the effect of each neuron on the output layer to determine whether the
neuron is compromised. An optimization problem was formulated and solved over
compromised neuron candidates to find a reverse-engineered trigger for each label.

Lee et al. [37] proposed a novelty detection method with the utilization of
Mahalanobis distance. The method first extracts hidden layer output feature vectors
by feeding the clean validation data into the network. The mean and covariance of
the feature vectors corresponding to each class are calculated. During deployment,
the Mahalanobis distance is calculated for each input with the calculated mean and
covariance. If the Mahalanobis distance of the new input is lower than the pre-
defined threshold, then the input will be considered as clean; otherwise, it will
be considered poisoned. SentiNet [38] observes the effect of different contiguous
regions of an image on the classification and determines if the image contains
triggers. STRong Intentional Perturbation (STRIP) [39] detection is based on

Mitigating Backdoor Attacks on Deep Neural Networks 399

Table 2 Summary of defense strategies

Defense Type Features Limitations

Reverse-engineering of triggers Tries to find the real
triggers [31–36]

Computationally expensive;
only approximates the real
triggers

Backdoor input rejection Differentiates poisoned
samples from clean
validation samples [37–41]

Does not remove the
backdoor; requires many
clean samples

Poisoned samples-aware Uses clustering-based
methods to separate clean
and poisoned samples
[42–44]

The attacker has access to
poisoned samples

applying multiple perturbation patterns to the input image. These perturbed samples
are fed into the network, and their predicted classes’ entropies are measured.
Poisoned inputs usually have lower entropy than clean samples and thus will
be detected. Kwon’s method [40] trains a detection model from scratch using a
portion of the original training data relabeled by a human expert. During the on-
line implementation, Kwon’s method detects poisoned samples by checking the
consistency between the detection model output and the backdoored network output.
[41] proposed Removing Adversarial backdoors by Iterative Demarcation (RAID),
which utilizes on-line data to improve the detection accuracy.

Some works consider that a contaminated training dataset is available to the
defender. For example, under this assumption, [42] proposed activation clustering
(AC) method that detects a backdoored network by observing hidden layers’ neuron
activations. [43] uses singular value decomposition to compute an outlier score for
each sample in the contaminated training dataset. Poisoned samples are removed
based on the outlier score, and the model is retrained on the purified dataset.
Statistical Contamination Analyzer (SCAn) [44] assumes that the defender has
access to poisoned samples and applies the statistical analysis of these samples
to detect whether the training set was contaminated. The summary of the defense
strategies is available in Table 2.

3 Preliminaries

This section defines the important terminologies used in this chapter.

Definition 1 (Deep Neural Networks (DNNs)) A DNN is a mapping . F(.; θ) :
R

n → R
m with parameters . θ that maps an input .x ∈ R

n to an output .y ∈ R
m.

Definition 2 (Multi-label Classification for an Image) Given an input image x,
the output y is a vector of probabilities over the m classes. The output label gener-
ated for the image is the class that has the highest probability (i.e., .argmaxi∈[1,m]yi).

400 H. Fu et al.

Definition 3 (Supervised Learning (SL)) SL is the task of tuning parameters . θ
based on labeled training data (i.e., example input–output pairs).

Definition 4 (Clean Data Distribution . D) A clean data distribution . D is the data
distribution such that the samples x from . D are associated with their corresponding
ground-truth labels l.

Definition 5 (Clean Dataset . S) A clean dataset . S is a dataset whose elements are
drawn from the clean data distribution . D.

Definition 6 (Poisoned Data Distribution . D∗) A poisoned data distribution . D∗ is
the data distribution such that the samples x from . D∗ are associated with a label
. l∗ that is chosen by the attacker and could differ from the ground-truth label l.
. l∗ is called the attacker-chosen label. Furthermore, . l∗ may not necessarily be one
constant label and may depend on x.

Definition 7 (Poisoned Dataset . S∗) A poisoned dataset . S∗ is a dataset whose
elements are drawn from the poisoned data distribution . D∗.

Definition 8 (Clean Samples (Inputs) and Poisoned Samples (Inputs)) Ele-
ments from . D are called clean samples (inputs). Similarly, elements from . D∗ are
called poisoned samples (inputs).

Definition 9 (Contaminated Dataset . Sb) A contaminated dataset . Sb is a dataset
that contains both clean samples and poisoned samples.

Definition 10 (Benign Model .F(.; θ)) A benign model .F(.; θ) is a neural network
model parameterized by . θ and trained on a clean dataset . S such that for any clean
input x, the probability that .F(.; θ) outputs the corresponding ground-truth label l
for x is high, i.e.,

.P(F(x; θ) = l) > 1 − ε, (1)

with small positive . ε. Ideally, .ε = 0.

Definition 11 (BadNet (Backdoored) Model .Fb(.; θ)) A BadNet .Fb(.; θ) is a
neural network model parameterized by . θ and trained on a contaminated dataset . Sb

such that for clean input x, it outputs the ground-truth label with high probability,
and for poisoned input . x∗, it outputs the attacker-chosen label . l∗ with high
probability, i.e.,

.P(Fb(x; θ) = l) ≥ P(F(x; θ) = l) − ε1, . (2)

P(Fb(x
∗; θ) = l∗) ≥ 1 − ε2, (3)

with small positive .ε1, ε2. Ideally, .ε1, ε2 = 0.

Definition 12 (Classification Accuracy (CA)) CA is the probability that a net-
work .Fb(.; θ) outputs the ground-truth label l for clean inputs x, i.e., . P(Fb(x; θ) =
l|x ∈ D).

Mitigating Backdoor Attacks on Deep Neural Networks 401

Definition 13 (Attack Success Rate (ASR)) ASR is the probability that a net-
work .Fb(.; θ) outputs the attacker-chosen label . l∗ for poisoned inputs . x∗, i.e.,
.P(Fb(x

∗; θ) = l∗|x∗ ∈ D∗).

Definition 14 (False Positive) A sample is called false positive if it is clean but
misidentified as poisoned by a detection model.

Definition 15 (Injecting Function f) An injecting function f changes a clean
input x into a poisoned input . x∗, i.e., .x∗ = f (x). For example, an injection function
could inject a specific pattern (trigger) into the clean image to create a poisoned
input. Moreover, the injection function can be more complex: the poisoned inputs
may not necessarily include discrete triggers; instead, they could be generated by
superimposing subtle patterns on clean inputs, passing clean inputs through specific
filters, or adding randomly generated artifacts to clean inputs.

4 Problem Description

The user outsources the task of training .F(.; θ) to a third party since the training
of the model requires resources unavailable to the user (e.g., a large amount of
labeled data, adequate computational power). The third party returns a trained model
.Fb(.; θb), which might be backdoored. The goal of the defender (user and defender
are used interchangeably) is to take this possibly backdoored network . Fb(.; θb)

and mitigate the backdoor by removing the backdoors or detecting poisoned
samples. Mathematically, removing the backdoors means that the defender applies a
cleansing function .P(·) on the network parameters . θb such that for both clean inputs
x and poisoned inputs . x∗, the network outputs the corresponding ground-truth labels
l with high probability, i.e.,

.P(Fb(x;P(θb)) = l|x ∈ D) ≥ 1 − ε3, . (4)

P(Fb(x
∗;P(θb)) = l|x∗ ∈ D∗) ≥ 1 − ε4, (5)

where . ε3 and . ε4 are small positive numbers and ideally zero. More details are
discussed in Sect. 5.1. Detecting poisoned samples means that the defender applies
a detection model .g(·) such that for poisoned inputs . x∗, it outputs positive, and for
clean inputs x, it outputs negative with high probability, i.e.,

.P(g(x) = 0|x ∈ D) ≥ 1 − ε5, . (6)

P(g(x∗) = 1|x∗ ∈ D∗) ≥ 1 − ε6, (7)

with small positive numbers . ε5 and . ε6 (ideally, .ε5, ε6 = 0). The detailed description
is discussed in Sect. 6.1.

402 H. Fu et al.

5 Backdoor Defense by Training Attacker Imitator

This section describes a reverse-engineering-based defense method. The intuition
behind this method is that if the defender can find a function to imitate the attacker’s
behavior (i.e., trigger insertion), then such a function can be used to reduce the
effect of the backdoor on the DNN. In our approach, this imitator function is found
by formulating an optimization problem. The following assumptions are introduced:

• The attacker generates the poisoned data distribution using an injection function
as defined in Sect. 3.

• Without loss of generality, the attacker chooses only one attacker-chosen label.
However, the proposed method is applicable to other attack strategies, such as
having multiple attacker-chosen labels or source-label-specific backdoors [39],
which will be discussed later in Sect. 5.1.

• The defender does not know if a given network is a BadNet or not.
• The defender only has access to a small set of clean samples.
• The defender does not have access to the original training data or knowledge of
the trigger shape/location.

• The defender is also allowed to fine-tune and retrain the network.

In this section, we write simply . Fb instead of .Fb(.; θ) for notational brevity.

5.1 Problem Formulation

Given a DNN that is possibly backdoored, the defender’s objective is to find a
function that transforms a clean input into a poisoned input. This function behaves as
an emulation of the attacker and is called attacker imitator in the rest of this chapter.
The performance of the attacker imitator could be measured by its statistical risk as
follows:

.R(γ) = E[L(Fb(γ (x)), yt)], (8)

where .γ (.) is the attacker imitator, and . yt is the attacker-chosen label that is
unknown to the defender. L is a loss function that models the mismatch between
the network output and the target label. The cross-entropy loss function is used in
our experiments. The best possible attacker imitator is

.R∗ = inf
γ∈�

R(γ), (9)

where . � is a class of all possible attacker imitator functions. Equation (9) cannot be
directly evaluated since the input data probability distribution is unknown. However,
a small set of clean samples is assumed to be available. Therefore, considering
the attacker imitator to be a neural network with . θ̃ as its parameters, the problem

Mitigating Backdoor Attacks on Deep Neural Networks 403

of finding the attacker imitator could be solved using empirical risk minimization
(ERM) if the attacker-chosen label . yt was known:

.θ∗ = argmin
θ̃

N∑

i=1

L(Fb(γ (xi; θ̃)), yt). (10)

Evaluating (10) will result in a function that mimics the adversarial behavior of an
attacker’s trigger, but the function outputs might be very dissimilar to the original
data (and the actual poisoned data). Hence, a cost term is added to (10) for penalizing
dissimilarity between the attacker imitator’s outputs and their corresponding clean
inputs, i.e.,

.θ∗ = argmin
θ̃

{
N∑

i=1

{L(Fb(γ (xi; θ̃)), yt) + d(xi, γ (xi; θ̃))}}, (11)

where .d(., .) is a function measuring the similarity of its inputs. If two inputs are
similar, the output of d will be small.

Solving (11) requires having access to . yt . However, the defender does not have
any knowledge about the target label. Therefore, an attacker imitator function is
found by evaluating Eq. (11) for each label in the dataset’s classification labels set
(i.e., .{l1, · · · , lm}). The best performing attacker imitator in terms of ASR is utilized,
and its corresponding label is considered the prediction of the attacker’s intended
target label.

5.2 Defense Methodology

We propose a method for solving the problem formulated in Eq. (11) for an image
classification task in which an image in .Rw×h×3 (w is its width and h is its height)
could be flattened to a 1-dimensional vector .xi ∈ Rn, where .n = 3wh. Moreover,
the architecture of the attacker imitator highly depends on the classification task. For
image classification, this function should transform input images into poisoned ones.
CNN is a candidate for this purpose as it can replicate any nonlinear transformation
by considering enough filters and nonlinear activation functions in each layer. Based
on these facts, the problem is reformulated as follows:

. θ∗ = argmin
θ̃

{
N∑

i=1

{
λ1L(Fb(γ (xi; θ̃)), yt) + λ2‖xi − γ (xi; θ̃)‖22

−λ3MSSSIM(γ (xi; θ̃), xi)
}}

, (12)

404 H. Fu et al.

Fig. 2 The overall training procedure of the attacker imitator

where .γ (.; θ̃) is a CNN with parameters . θ̃ as an attacker imitator, . xi is a clean
input, and .λ1, λ2, λ3 ≥ 0 are tuning parameters. MSSSIM stands for multi-scale
structural similarity index measurement [45], which is a perceptual image quality
measurement to score similarity between two images. The output of MSSSIM is
between . −1 and 1, and a large value means that the two input images are similar.
Therefore, increasing the MSSSIM value would be desired, which is attained by
subtracting this value from the loss function. Also, an . L2 norm of the difference
between the original and corresponding poisoned images is added to the loss
function.

The overall training procedure of the attacker imitator is depicted in Fig. 2. The
performance of the attacker imitator is evaluated by calculating the percentage of
generated images that can successfully fool the network among all samples in the
test dataset. We refer to this calculated percentage as generated attack success rate
(GASR), and the closer this number is to .100%, the better the attacker imitator
replicates the behavior of a successful attacker. Solving (12) for each classification
label and calculating the corresponding GASR will provide a GASR profile. This
profile can be used to detect whether the network is clean or a BadNet. If there exists
an outlier in the GASR profile, the network is a BadNet, and the corresponding label
is the attacker-chosen label. The outlier could be found based on the z-scores of
GASR values. The z-score of GASR for each label i is calculated as

.zi = GAi − GA

σ
, (13)

where .GAi is the GASR of the label i, .GA is the mean of GASR values, and . σ is
the standard deviation of all GASR values. Any z-score above a cut-off threshold is
considered an outlier.

Mitigating Backdoor Attacks on Deep Neural Networks 405

Algorithm 1 Attacker imitator training
1: procedure CALCULATE_GASR(F , a, S, Label)
2: Input ← a(S)
3: Output ← F(Input)
4: return the number of elements in output classified to Label
5: end procedure
6: procedure MAIN(Fb, V, IT)
7: GASR = []
8: for l ← 1 to m do
9: θ̃ ← Initializing the attack imitator (γ) parameters
10: for i ← 1 to nepochs do
11: for j ← 1 to nbatches do
12: xp ← γ (IT j)
13: Loss ← λ1L(Fb(xp), l) − λ3MSSSIM(xp, IT j) + λ2L2(xp, IT j)
14: θ̃ ← θ̃ − η ∂Loss

∂ θ̃
15: end for
16: end for
17: GASR ← CALCULAT E_GASR(Fb, γ, V , l)
18: end for
19: end procedure

As mentioned earlier, the user only has access to a small set of clean samples. The
user uses a subset of the clean samples called the imitator training set for training
the attacker imitator and utilizes the rest of the data called the validation set to
calculate CA, ASR, and GASR. Training the attacker imitator is presented in the
MAIN procedure in Algorithm 1. The inputs to this procedure are the BadNet,
the validation set (V), and the imitator training set (IT). For an m-label dataset, an
attacker imitator (shown by . γ) is trained. The training could be done using any
gradient descent method with a learning rate . η. Once the training is done for all
batches (.nbatches), GASR is calculated for the attacker imitator (. γ) trained with
the predicted target label (l) using the defined procedure .CALCULAT E_GASR.
The inputs to this procedure are the BadNet (F), the attacker imitator (a), the set
of samples (S), and the predicted target label (Label). As long as we consider a
single attacker-chosen label for the BadNet, images with classification labels equal
to the attacker-chosen label are removed during training and validation. It should
be mentioned that (12) could be solved for other attack strategies. For instance, in
the case of multiple attacker-chosen labels, the GASR profile will have multiple
outliers corresponding to the attacker-chosen labels. Another challenging attack
strategy is source-label-specific backdoor [39], in which the attacker’s goal is to
misclassify inputs corresponding to specific labels rather than all the labels. This
attack could be taken into consideration by solving (12) for misclassifying samples
from a specific label to an attacker-chosen label. This will result in a GASR profile
for each classification label that is checked for its outliers.

The next step is to use the predicted attacker-chosen label and attacker imitator to
make the BadNet robust against the backdoor attack with minimal effects on clean
classification accuracy. These requirements can be embedded into an optimization
problem as

406 H. Fu et al.

. θ∗
Bad = argmin

θBad

⎧
⎪⎨

⎪⎩

N∑

i=1
(xi ,yi)∈S

L(Fb(γ (xi; θ̃); θBad), yi) +
N∑

i=1

L(Fb(xi; θBad), yi)

⎫
⎪⎬

⎪⎭
,

(14)

where . yi is the correct label for . xi , .θBad corresponds to the BadNet’s parameters,
and .S = {(x, y)|y �= yt }, where . yt is the attacker-chosen label. The first term
in Eq. (14) is responsible for unlearning the backdoor. This has been done by
generating poisoned inputs with correct classification labels. The second term is
added to ensure that the backdoor removal will not change clean classification
accuracy; therefore, the CA of the network is mostly retained.

5.3 Experimental Setup

Our experiments for each dataset consist of four steps described as follows:

1. In the first step, a BadNet with a specific trigger pattern is generated. To achieve
this goal, a network is trained on clean training samples with high CA. Then, . 10%
of images are poisoned with the desired trigger pattern, and training is continued
on .90% clean and .10% poisoned images for more epochs to achieve high ASR.

2. GASR profile is calculated for the BadNet by solving Eq. (12) for all classifica-
tion labels in the dataset.

3. Based on the GASR profile, we detect if the network is backdoored and what the
attacker-chosen label is likely to be.

4. In the last step, the attacker imitator and the attacker-chosen label found in the
previous steps are used to robustify the network against the attack.

To evaluate the effectiveness of our method, four BadNets have been considered
covering various image classification tasks (e.g., object recognition, face detection,
and traffic sign recognition) and various trigger patterns. These BadNets are
explained in detail in the following subsections, and for simplicity, they are called
Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-CR.

5.3.1 Badnet-CW

This BadNet is trained on the CIFAR-10 dataset [46] for object recognition.
Network in Network (NiN) [47] has been chosen for its architecture, and a white
square in the bottom-left corner of inputs is used as the trigger. The trigger shape
and location are standard configurations considered in [16, 31, 32].

Mitigating Backdoor Attacks on Deep Neural Networks 407

5.3.2 Badnet-GY

This BadNet is trained on the German Traffic Sign Recognition Benchmark
(GTSRB) dataset [48], which has 43 classes. The Badnet-GY’s architecture is the
same as the architecture used in Neural Cleanse [31] for the GTSRB dataset. The
network has six CNN layers and two dense layers. This network will be called
DeepGT in the rest of this chapter. The trigger shape in this setting is a yellow
square with an arbitrary location in each image. This trigger has been proposed by
[49] to show the limitations of Neural Cleanse for finding the attacker-chosen label
and trigger shape.

5.3.3 Badnet-YS

For the face detection task, a BadNet is trained on the YouTube Face Database [50],
and for its architecture, a deep network with four CNN layers and three dense layers
has been used as in [31]; this network will be called DeepID. The trigger is chosen
to be sunglasses with constant size and color. This trigger has been chosen to cover
more pixels. Also, this trigger will cover key points in the image, which makes it
more difficult to reverse-engineer the trigger [49].

5.3.4 Badnet-CR

This BadNet’s architecture is ResNet-18 [51] and is trained on the CIFAR-10 dataset
[46]. The trigger for this network is a combination of a yellow square on the top-
right corner of the image and a red square on the bottom-right corner. The backdoor
is triggered when both patterns appear together in a poisoned image. For training
the network with this more complicated trigger, we initially train the network on a
clean training dataset. After that, .10% of images are chosen to generate three sets of
data: (1) only a red square is added to the images, and their labels remain the same
as their clean labels, (2) the same as the previous set, but a yellow square is added
instead of the red square, and (3) the combination of the two triggers is added, and
their labels are set to the attacker-chosen label. Then, this dataset is augmented to
the original training dataset, and training is performed for more epochs. This trigger
has been designed to affect more neurons in the network.

Table 3 provides a summary of all the BadNets with their architectures, their
training datasets, and the shape of triggers. In Table 4, BadNet training samples
(used to train the BadNets), imitator training samples (used to train the attacker
imitator network), validation samples (used to calculate CA, ASR, and GASR),
and the number of labels for each dataset are shown. The first two columns of
Table 8 show the CA and ASR of each BadNet. Examples of each trigger shape
and the corresponding dataset images are shown in the top row of Fig. 4, in which
the poisoned images from the left correspond to Badnet-CW, Badnet-GY, Badnet-
YS, and Badnet-CR, respectively.

408 H. Fu et al.

Table 3 Dataset, network architecture, and trigger shape corresponding to each BadNet configu-
ration

Name Dataset Model Trigger

Badnet-CW CIFAR-10 NiN White square

Badnet-GY GTSRB DeepGT Moving yellow square

Badnet-YS YouTube Face DeepID Sun glasses

Badnet-CR CIFAR-10 ResNet-18 Red & yellow squares

Table 4 Number of samples and labels for each dataset

Dataset BadNet training Imitator training Validation # of classes

CIFAR-10 .50,000 5000 5000 10

GTSRB .35,288 .12,630 3921 43

YouTube face .102,640 .12,830 .12,830 1283

Table 5 Attacker imitator architecture for Badnet-CW and Badnet-CR

Layer . # Channels Filter size Stride Padding Activation

Conv2d 512 .3 × 3 1 1 ReLU

Conv2d 256 .3 × 3 1 1 ReLU

Conv2d 128 .3 × 3 1 1 ReLU

Conv2d 64 .3 × 3 1 1 ReLU

Conv2d 32 .3 × 3 1 1 ReLU

Conv2d 16 .3 × 3 1 1 ReLU

Conv2d 8 .3 × 3 1 1 ReLU

Conv2d 3 .3 × 3 1 1 ReLU

5.4 Experimental Results

5.4.1 Attacker Imitator Configuration

As outlined in Sect. 4, the attacker imitator transforms the input image into a
poisoned image with the same dimensions as the input image. The attacker
imitator network parameters are trained using the optimization in (11) to achieve
high performance when applied to the training samples. The attacker imitator
architecture depends on the classification task to reconstruct the input. Since the
image classification task is considered in this chapter for experimental evaluations,
CNNs are chosen for the architecture of the attacker imitators. Analogous to
the considerations for network architectures in classification tasks that the CNNs
should have enough layers and filters to extract key features of images, the attacker
imitator’s network architecture should be chosen based on the dataset complexity.
Based on these observations, the attacker imitator architecture used for Badnet-
CW and Badnet-CR is shown in Table 5, and the architectures for Badnet-GY and
Badnet-YS are shown in Tables 6 and 7, respectively.

Mitigating Backdoor Attacks on Deep Neural Networks 409

Table 6 Attacker imitator architecture for Badnet-GY

Layer . # Channels Filter size Stride Padding Activation

Conv2d 32 .3 × 3 1 1 ReLU

Conv2d 128 .3 × 3 1 1 ReLU

Conv2d 256 .3 × 3 1 1 ReLU

Conv2d 256 .3 × 3 1 1 ReLU

Conv2d 256 .3 × 3 1 1 ReLU

Conv2d 32 .3 × 3 1 1 ReLU

Conv2d 3 .3 × 3 1 1 ReLU

Table 7 Attacker imitator architecture for Badnet-YS

Layer Type . # Channels Filter size Stride Padding Activation

Conv2d 128 .5 × 5 1 2 ReLU

Conv2d 128 .5 × 5 1 2 ReLU

Conv2d 64 .3 × 3 1 1 ReLU

Conv2d 3 .3 × 3 1 1 ReLU

5.4.2 BadNet vs. Benign Network Detection

In this part, we evaluate the performance of our BadNet detection methodology
discussed in Sect. 4. To have a fair comparison, for each of the BadNets, we
have trained a benign network with the same architecture on the same dataset.
Then, GASR profiles were calculated for the BadNet and the corresponding benign
network.

In Fig. 3, the z-scores of GASR profiles for each BadNet and the corresponding
benign network are depicted in blue and red, respectively. Additionally, the cor-
responding cut-off threshold is depicted in cyan. It should be mentioned that the
cut-off threshold is dependent on the number of samples in a set [52]; therefore, a
cut-off threshold of 2 is considered for the CIFAR-10 dataset and 3 for the larger
datasets.

The results presented in Fig. 3 indicate that for all BadNets, there is an outlier in
the GASR profile corresponding to the attacker-chosen label. For Badnet-CW and
Badnet-CR, the attacker-chosen labels used by the attacker are 2 and for Badnet-
GY and Badnet-YS are 0, which are detected by our method correctly. This shows
that our method is not dependent on the number of classification labels and can be
used for any dataset and network architecture. It should be mentioned that for all the
experiments, we have chosen the same coefficients for (12) without any modification
during the training procedure.

410 H. Fu et al.

Fig. 3 GASR z-scores profiles for the BadNets and corresponding benign networks. Top left:
Badnet-CW. Top right: Badnet-GY. Bottom Left: Badnet-YS. Bottom right: Badnet-CR

5.4.3 Fine-Tuning the Network

Once the attacker-chosen label is found, the corresponding attacker imitator gener-
ates poisoned images from the clean attacker imitator training set. In Fig. 4, for each
of the BadNets, we have illustrated the poisoned image with the original trigger in
the top row and with the imitator-generated trigger in the bottom row. Additionally,
the columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and
Badnet-CR, respectively.

By observing the attacker imitator outputs, it can be seen that the attacker imitator
can find the positions of the triggers correctly. For Badnet-GY, in which the attacker
does not use a fixed position for the trigger, the generated trigger also does not have
a fixed trigger location. In all the cases, the generated trigger does not replicate
the actual trigger pattern, which is expected since the attacker imitator is found by
solving an optimization problem to imitate the behavior of the attacker. Therefore,
the attacker imitator will mimic the underlying effect of the trigger on the BadNet,
and as the main concern is the removal of the backdoor from the network, finding the
exact trigger pattern is not crucial for the main goal, which is to reduce the backdoor
effect on the network.

Mitigating Backdoor Attacks on Deep Neural Networks 411

Fig. 4 The columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-
CR, respectively. Top row: The poisoned images with the trigger used by the attacker. Bottom row:
The outputs of the attacker imitator

Table 8 Clean classification accuracy and ASR comparison of BadNets before and after fine-
tuning them with our method and Neural Cleanse

Backdoored Cleaned Cleaned by neural cleanse

CA (. %) ASR (. %) CA (. %) ASR (. %) CA (. %) ASR (. %)

Badnet-CW 87.18 97.53 85.14 0.95 84.12 1.04

Badnet-GY 95.56 100 95.11 0.0 95.24 12.39

Badnet-YS 97.88 98.53 94.4 0.0 95.74 38.09

Badnet-CR 85.44 100 84.1 1.6 82.4 4.8

As was mentioned in Sect. 4, the attacker imitator found by solving (12) given
attacker-chosen label is used to generate poisoned images from the attacker imitator
training set. The main advantage of doing so is that the clean labels for those
samples are known. In the next step, the optimization problem in (14) should be
solved by training the BadNet on a new dataset consisting of two main components:
. (1) poisoned samples with clean labels made from clean samples (the first term in
Eq. (14)) and . (2) clean samples with their clean labels (the second term in Eq. (14)).
The poisoned samples are generated from samples whose clean labels are not equal
to the attacker-chosen label.

After robustifying all the BadNets using (14), the results are reported in Table 8.
In this table, CA and ASR of the BadNets are reported in the first two columns from
the left. The third and fourth columns show our method’s CA and ASR of the fine-
tuned network. Also, to have a fair comparison with Neural Cleanse, CA and ASR
of the fine-tuned networks using Neural Cleanse have been reported in the last two
columns.

412 H. Fu et al.

It can be seen that the robustification of the BadNets using our approach is
successful in reducing the ASRs to 0 in three cases and .1.6% for Badnet-CR, which
has a more complex trigger pattern. Moreover, it can be seen that after fine-tuning
the network, the CA was not affected significantly, and the maximum reduction
was .3.44%. Our method outperforms Neural Cleanse by achieving better ASRs.
Specifically, Neural Cleanse is not successful for Badnet-GY, in which the trigger
position is not fixed, and Badnet-YS, in which the trigger size is not small.

6 RAID—An On-line Detection Method

This section discusses the detection method called Removing Adversarial backdoors
by Iterative Demarcation (RAID). The key differences between RAID and the
previous method discussed in Sect. 5 are: (1) The previous method is purely
off-line, whereas RAID uses both on-line and off-line models. (2) The previous
method removes backdoors during off-line fine-tuning, whereas RAID rejects
poisoned inputs during on-line implementation. (3) The previous method belongs
to the reverse-engineering-based approach, whereas RAID belongs to the novelty-
detection-based approach. RAID takes advantage of the on-line streaming data and
therefore reduces reliance on off-line validation data and restrictive assumptions on
triggers. While RAID may perform ineffectively initially because the on-line data
are scarce at the beginning, its performance improves on-line over time and enables
accurate detection of poisoned inputs as the on-line data are accumulated.

RAID first collects suspicious on-line samples that are highly likely to be
poisoned using novelty detection models, which are trained off-line. Among the
collected samples, RAID uses an anomaly detector to select the samples that are
more likely to be poisoned than others. RAID trains a binary classifier using these
selected data and the clean validation data. The trained binary classifier is used to
determine if an on-line input is poisoned or not. As more suspicious on-line samples
are collected, the binary classifier is updated, and the performance is improved.
This repeated update to improve backdoor detection accuracy can be viewed as
iterative demarcation. RAID uses two dimension-reduction methods to simplify the
computational complexity. One is a feature extractor that compresses raw data into
low-dimensional signature features, and the other is a dimension-reduction function
such as PCA [53] that further reduces the feature dimensions. These two dimension-
reduction methods result in a reduction of computational complexity, ensuring that
RAID can be implemented in real time.

6.1 Problem Formulation

The scenario considered by RAID is as follows: the user outsources a training task
to a third party, which returns a backdoored DNN .Fb(.; θ) (written for notational

Mitigating Backdoor Attacks on Deep Neural Networks 413

brevity simply as . Fb) to the user. The defender needs to build a detection model
to protect the user from backdoor attacks. The attacker’s goal is to make . Fb have
high CA and ASR. The defender’s goal is to build the detection model .g(·) to lower
ASR of . Fb while maintaining the CA. Mathematically, the defender wants .g(·) to
output “clean” with a high likelihood for clean samples x and “poisoned” with a
high likelihood for poisoned samples . x∗, i.e., to satisfy (6) and (7).

The attacker is considered to have complete control over the training dataset and
process. However, the attacker neither has access to the user’s validation dataset nor
can change the model structure after training. The defender is considered to have a
small set of clean validation data V (e.g., around 2% of the training dataset size).
The defender has no prior information about the triggers or attacker-chosen label(s).

6.2 Detection Algorithm

The development of RAID was inspired by the observation that a DNN can be
decomposed as a feature extractor . Cb and a decision function . Gb, i.e., . Fb = Gb ◦Cb

[54]. . Cb reduces the raw data dimension and extracts features at higher abstraction
levels. . Gb maps the combinations of the features into corresponding outputs. The
hypothesis is that the backdoor effect is created through a “logic” component
encoded in . Gb (i.e., specifying what features in the trigger should result in the
attacker-chosen labels). RAID sets the output layer of . Fb as . Gb and all the previous
layers as . Cb.

The overall algorithm of RAID is shown in Algorithm 2. In Given, the defender
has a backdoored network . Fb decomposed into . Cb and . Gb and a small clean
validation dataset V with the corresponding labels L. In off-line training, the
defender obtains validation data features by feeding samples of V into . Cb. Then,
a new classifier . Gn is trained with the extracted features . VF and the corresponding
labels L. Since . Gn is trained only on clean data, it is highly likely that . Gn ◦ Cb

and .Gb ◦ Cb behave similarly on clean inputs but differently on poisoned inputs.
A preprocess function (e.g., PCA) further reduces the feature dimension to obtain
.VFP . .VFP is used to train a novelty detector . N independent of . Gn to detect inputs
whose dimension-reduced features differ from dimension-reduced features of the
clean validation data.

The on-line detection and retraining are shown in both Fig. 5 and On-line
Detection and Update in Algorithm 2. The on-line implementation is comprised of
a front-end part and a back-end part that may be implemented in a parallel manner.
In the front-end part, . Cb takes x as the input and outputs . xF . The preprocess function
takes . xF as the input and outputs .xFP . If .g(xFP) = 0, i.e., if x is classified to be
clean, then .Fb(x) will be trusted. Otherwise, .Fb(x) should not be trusted. .g(·) is
initialized as .g(x) = 0 for all x and is then updated at a pre-specified frequency.
In the back end, . N and . Gn determine if x is a “suspected” poisoned sample. If
either .N(xFP) = 1 (i.e., detected as different from the clean validation data) or
.Gn(xF) �= Gb(xF), then x will be collected into the anomalous dataset . A. . A may

414 H. Fu et al.

Algorithm 2 On-line detection algorithm of RAID
Given

Validation data = (V , L) and backdoored network Fb = Gb ◦ Cb

Off-line Training
Extract features of validation data: VF ← Cb(V)
Train a new classifier: Gn ← train(Gn, (VF , L)).
Reduce feature dimension: VFP ← preprocess(VF)
Train a novelty detector: N ← train(N, VFP)

On-line Detection and Update
g(·) ≡ 0 (clean), count = 0, A = {}, and determine window_size = w0
while True do

count = count + 1
Receive New Input x

Make a Prediction on x with Fb ###
Extract Input Feature: xF ← Cb(x)
Make a Prediction: l ← Gb(xF)

Check If x is Poisoned (Front End) ###
Reduce Feature Dimension: xFP ← preprocess(xF)
if g(xFP) == 0 then

l is the label for x (Clean with High Probability)
else

l is not the true label for x (Poisoned with High Probability)
end if

Determine If x Should Be Collected as Anomalous Data and Used to Update g(·) (Back
End) ###

l′ ← Gn(xF)
if l �= l′ or N(xFP) == 1 then

Collect xFP :A ← A ∪ {xFP }
end if

Updating g(·) ###
if count % window_size == 0 then

Purify A: A∗ ← purify(A)
Update the Binary Classifier: g ← train(g, ({A∗, 1} ∪ {VFP , 0}))

end if
end while

contain a few false positives. Therefore, an anomaly detector is used to purify . A
to obtain . A∗. .g(·) is trained from scratch using .VFP and .A∗ at a pre-specified
frequency. The defender can modify the window size (window_size in Algorithm 2)
to determine the update frequency. Data in . A∗ is labeled as poisoned, and data in
.VFP is labeled as clean.

. Gn is a neural network with at most two hidden layers. This allows the structure
of .Gn ◦Cb to be close to the original backdoored network .Fb = Gb ◦Cb. Therefore,
they may show similar behavior on clean samples. Additionally, with such an
architecture, the number of training parameters of . Gn is small, reducing the clean

Mitigating Backdoor Attacks on Deep Neural Networks 415

Fig. 5 Pipeline of the detection algorithm (on-line part)

validation samples required to train . Gn. In real-world cases, the defender may only
have a small clean validation data. RAID uses SGD as the optimizer with a learning
rate set to 0.01 and a cross-entropy-based loss function with default hyperparameter
settings. PCA with the top 40 principals from the validation data features is used
as the preprocess function (i.e., (a) in Fig. 5); hence, it reduces the data dimension
without losing too much information and amplifies the spectral signature of the clean
data. However, other dimension-reduction functions can also be considered, such as
SVD and factor analysis from scikit-learn [55]. The PCA model in RAID cannot
highlight the spectral signature of the triggers because it was trained only on a clean
validation dataset.

Local outlier factor (LOF) is used as the novelty detector . N (i.e., (c) in Fig. 5)
since the training process is unsupervised and in real time. The anomaly detector
(d) in the figure is also LOF for the same reasons. However, other outlier detectors
(e.g., [56–59]) may be considered if the training process is also unsupervised and in
real time. RAID uses SVM as the binary classifier .g(·) in (b) in the figure. .g(·) must
be simple so that the training time is short. SVM satisfies this requirement. Other
models, such as a neural network, may take a much longer training time than the
SVM. However, the binary classifier is also open to other models that can be trained
in real time.

416 H. Fu et al.

Fig. 6 The first column shows sample clean images for all the datasets. The other columns show
all the triggers used in the experiments

6.3 Experimental Setup

RAID was implemented on five popular datasets: MNIST [60], German Traffic Sign
Benchmarks (GTSRB) [48], CIFAR-10 [46], YouTube Face [50], and ImageNet
[61]. Figure 6 shows different triggers used in the experiment. Several network
architectures are used based on related works [18, 31, 47, 62–64]. The original
paper of RAID [41] lists all the network architectures. Each dataset contains three

Mitigating Backdoor Attacks on Deep Neural Networks 417

Table 9 Dataset Size.
Columns 2–4 show the
average number of samples
per class

Dataset Train Valid Test Valid/train # of classes

MNIST 5500 100 1000 1.8% 10

GTSRB 820 50 268 6.0% 43

CIFAR-10 5000 30 500 0.6% 10

YouT. Face 81 3 10 3.7% 1283

ImageNet 1200 3 25 0.2% 1000

Table 10 Fb’s architecture
for case (a)

Layer Channels Filter size Stride Activation

Conv2d 16 5 × 5 1 ReLU

MaxPool 16 2 × 2 2 –

Conv2d 32 5 × 5 1 ReLU

MaxPool 32 2 × 2 2 –

Linear 512 – – ReLU

Linear 10 – – –

parts: training part (Train), validation part (Valid), and testing part (Test), as shown
in Table 9. Considering that the MNIST, GTSRB, and ImageNet datasets are
unbalanced among classes, Table 9 reports the average number of samples per class,
which is the dataset size divided by the total number of classes. The training part was
partially poisoned (i.e., around 10%) and used for training the backdoored networks.
The clean validation part was used for training . N and . Gn. The testing dataset was
used for evaluating RAID. The poisoned samples are acquired by injecting the
triggers into the clean testing images. An on-line dataset with size n and attack
density p is obtained with .(1 − p)n clean testing samples plus pn poisoned testing
samples. Empirically, when 20% of the test data is poisoned, RAID achieves low
ASR and high CA. There is not much gain after .p = 0.5.

6.3.1 BadNet Trained on MNIST

Case (a) The second column of Fig. 6a shows the trigger pattern. The attacker-
chosen label . l∗ was determined by the ground-truth label l:

.l∗ = (l + 1) mod 10. (15)

The network architecture is shown in Table 10. CA is .97.65%, and ASR is .96.3%.

Case (b) The trigger is shown in the third column in Fig. 6a, which is a dotted
background and almost imperceptible. l∗ is 0. The backdoored network has 89.35%
CA and 100.0% ASR.

418 H. Fu et al.

6.3.2 BadNet Trained on GTSRB

Case (c) The second column in Fig. 6b shows the trigger, which is a white box
pattern. . l∗ is 33. CA is .96.41%, and ASR is .97.62%.

Case (d) The trigger is a moving square as shown in the third column in Fig. 6b
with l∗ = 0. CA is 95.26%, and ASR is 99.92%.

Case (e) Images passing through a Gotham filter will trigger Fb, as shown in the
fourth column in Fig. 6b. l∗ = 35. CA is 94.49%, and ASR is 90.32%.

6.3.3 BadNet Trained on CIFAR-10

Case (f) The second picture in Fig. 6c shows the trigger, a combination of a box
and a circle. . Fb will output the attacker-chosen label 0 only when both the shapes
appear on the input. CA is .88.6%, and ASR is .99.8%.

Case (g) The trigger is the combination of a triangle and a square, as shown in the
third column of Fig. 6c. l∗ = 7. CA is 88.83%, and ASR is 99.97%.

The last column in Fig. 6c shows another trigger, a small perturbation (one pixel
at each corner). l∗ is 0, CA is 82.44%, and ASR is 91.92%.

6.3.4 BadNet Trained on YouTube Face

Case (h) The trigger is sunglasses, as shown in the last column in Fig. 6d. . l∗ is 0.
CA is .97.83%, and ASR is .99.98%.

Case (i) The trigger is red lipstick, as shown in the second column of Fig. 6d. l∗ is
0. CA is 97.19%, and ASR is 91.43%.

Case (j) Fb has all three triggers: lipstick, eyebrow, and sunglasses, as shown in
Fig. 6d. l∗ is 4 for all the triggers. CA is 96.13%, and ASRs are 91.80%, 91.88%,
and 100% on lipstick, eyebrow, and sunglasses.

Case (k) Fb has all three triggers as well. l∗, however, is 1 for lipstick, 5 for
eyebrow, and 8 for sunglasses. CA is 96.08%, and ASRs are 91.11%, 91.10%, and
100% on lipstick, eyebrow, and sunglasses.

6.3.5 BadNet Trained on ImageNet

The trigger is a red box shown in the second column in Fig. 6e. .l∗ = 0. The network
is DenseNet-121 [64]. CA is .72.14%, and ASR is .99.99%. This backdoor attack
is used to evaluate the performance of RAID with different attack frequencies and
validation dataset sizes.

Mitigating Backdoor Attacks on Deep Neural Networks 419

6.3.6 Hyperparameter Setting

The contamination ratio is a hyperparameter defined in the LOF anomaly detector.
A high contamination ratio means that the LOF will remove more samples, whereas
a low contamination ratio means that the LOF will remove fewer samples. The
contamination ratio was set to 0.2 for all the cases. Note that the contamination
ratio is set by the defender. Thus, it is not equal to the proportion of outliers in
the dataset. The proportion of outliers in the dataset is determined by the attacker,
which is similar to the attack density p mentioned earlier. The number of neighbors
(i.e., NN, which is another hyperparameter of LOF) was set to be 1. However, the
defender can set any other values between 1 and 20. Empirically, it is observed
that the CA and ASR of RAID with NN .= 1, 10, and 20 are comparable to each
other, and there is not a distinctive advantage in choosing a higher NN; however, the
lower NN makes the computation faster. The remaining parameters are set to typical
default values.

6.4 Experimental Results

6.4.1 Performance of N and Gn

Using both . N and . Gn can maximally identify poisoned samples. Table 11 shows
the CA and ASR of using . N alone, . Gn alone, and both. Three dimension-reduction
functions (i.e., PCA, TruncatedSVD, and FactorAnalysis from scikit-learn [55]) are
utilized to train different . N. Since . Gn does not use any dimension-reduced features,
the three cases use the same . Gn. From the table, there is not much difference
in the performance of . N using PCA and SVD. Using FactorAnalysis leads to a
higher ASR in some cases than the other two functions. However, we will see that
the overall performance of .g(·) using FactorAnalysis is also good. Additionally,
the three functions are all fast enough for on-line usage. Therefore, if only . g(·)’s
performance is considered, the three functions are almost equal, whereas if both
. g(·)’s performance and . N’s performance are considered, PCA and TruncatedSVD
provide better performance than FactorAnalysis. The performance of PCA and
TruncatedSVD is almost equivalent. The table also shows that using . N and . Gn

together will maximally catch poisoned samples (i.e., reduce ASR) and also increase
false positives (i.e., reduce CA). However, in this initial filtering, the ASR should be
weighed more than the CA. Additionally, an anomaly detector is used subsequently
to reduce false positives further. In case (e), the ASR is still large even though . Gn

and . N are used together because the trigger is more subtle. Rather than some specific
patterns, case (e)’s trigger is a Gotham filter function. . Gn and . N are not sensitive to
this trigger. But we will next show that RAID can still improve itself to reduce the
ASR with on-line data further.

420 H. Fu et al.

Ta
bl
e
11

Pe
rf
or
m
an
ce
 o
f.
N

+
G n

on
 c
as
es
 (
a)
–(
i)
 f
or
 d
if
fe
re
nt
 d
im

en
si
on
-r
ed
uc
tio

n
fu
nc
tio

ns

C
la
ss
ifi
er

PC
A

T
ru
nc
at
ed
SV

D
Fa
ct
or
A
na
ly
si
s

.G n
.N

.G n
+

N
.N

.G n
+

N
.N

. G n
+

N
C
as
e

C
A

A
SR

C
A

A
SR

C
A

A
SR

C
A

A
SR

C
A

A
SR

C
A

A
SR

C
A

A
SR

(a
)

93
.6
3

15
.0
4

95
.3
7

49
.7
5

92
.4
4

4.
34

95
.3
7

49
.3
6

92
.7
1

5.
3

94
.9
8

74
.5
5

92
.1
4

5.
74

(b
)

87
.6
8

1.
83

87
.5
8

0.
0

86
.2
3

0.
0

87
.5
9

0.
0

86
.2
4

0
86

.5
1

0
85

.2
2

0

(c
)

95
.0
8

4.
22

94
.8
3

3.
45

93
.3
8

1.
14

94
.8
3

3.
53

93
.6
8

0.
79

77
.4
6

0.
07

76
.8
7

0.
04

(d
)

93
.4
0

71
.4
5

86
.7
2

0
85

.4
3

0
86

.6
5

0
85

.3
6

0
86

.2
8

0
85

.0
1

0

(e
)

94
.0
5

74
.6
3

92
.1
7

57
.7
5

91
.5
7

45
.6
5

92
.1
6

56
.6
9

91
.5
9

44
.6
8

91
.3
7

66
.6
8

90
.7
6

55
.2
6

(f
)

81
.2
8

99
.6

88
.2
6

0.
23

81
.0
4

0.
23

88
.2
6

0.
21

81
.7

0.
2

87
.1
4

0.
28

80
.7
4

0.
27

(g
)

82
.8
6

70
88

.7
2

8.
14

82
.7
2

3.
7

88
.7
2

5.
28

82
.7
2

2.
12

87
.2
2

52
.9
4

81
.3

37
.5

(h
)

55
.7
4

3.
14

96
.5
7

79
.1
5

55
.2
6

3.
04

95
.4
6

76
.2
4

53
.8
9

0.
42

90
.4
4

59
.5
9

51
.2
6

0.
38

(i
)

60
.6
4

0.
01

96
.0
4

33
.7
8

60
.0
9

0.
01

96
.1
1

30
.3
6

60
.1
1

0.
01

94
.3
8

10
.6
7

59
.3
3

0.
01

Mitigating Backdoor Attacks on Deep Neural Networks 421

6.4.2 Performance of g(·)

The first 40% of test data was used for on-line implementation and updating of the
SVM, and the remaining 60% of test data was used for evaluating the performance of
the backdoored network after employing the SVM. The binary SVM was initialized
to output clean for all the inputs. Then, it was updated with a fixed window size,
which is set to 10% of the test dataset size (therefore, the SVM can be updated
4 times in the considered test scenario). Each test input has an equal probability of
being clean or poisoned. Table 12 shows the performance of RAID with PCA, SVD,
and FactorAnalysis as the dimension-reduction function. From the table, RAID is
effective with all the three dimension-reduction functions. Additionally, SVM helps
reduce ASR while retaining high CA. Note that in case (e), the SVM still provides
good performance, although the off-line models have high ASR (refer to Table 11).
These results highlight the robustness of RAID. Table 13 lists how many poisoned
samples are fed into the backdoored network and the size of . A∗ for training the
SVM at each update when PCA was used as the dimension-reduction function. From
the table, training a good SVM needs only a small set of poisoned samples. Since
the performance of RAID using PCA, SVD, and FactorAnalysis is similar, we will
only discuss the case when PCA is used as the dimension-reduction function for the
following experiments.

6.4.3 Performance of the Anomaly Detector

We examine the performance of RAID with different contamination ratios. Table 14
shows the results. The classification accuracy drops significantly without the
anomaly detector (i.e., the contamination ratio is 0). This is because the LOF
does not remove any samples. Thus, . A contains many false positives. When
contamination ratio is 0, .A = A∗. The SVM trained with such . A∗ will perform
inefficiently. RAID shows comparable results when the contamination ratio is set
to 0.1, 0.2, and 0.3. Both CA and ASR decrease, while the contamination ratio
increases.

6.4.4 Multiple Triggers and Adaptive Attacks

The attacker may use multiple triggers to attack the backdoored network, i.e., cases
(j) and (k). The following attack scenarios are considered during on-line operation:
(1) The attacker does not use any triggers. (2) The attacker uses only one of the
triggers. (3) The attacker uses two of the triggers. (4) The attacker uses all the
triggers. Scenario (1) is used for evaluating the performance of RAID when . A∗ only
contains false positives. One can also consider scenario (1) as the case to evaluate
RAID on a benign model. Scenarios (2), (3), and (4) are utilized to evaluate if RAID
is effective with multiple triggers. The 4th updated SVM was tested. The results are
shown in Table 15. From the table, RAID maintains high CA in all the scenarios and

422 H. Fu et al.

Ta
bl
e
12

Pe
rf
or
m
an
ce
 o
f t
he
 b
ac
kd
oo
re
d
ne
tw
or
k
af
te
r u

si
ng
 S
V
M
 w
ith

 d
if
fe
re
nt
 d
im

en
si
on
-r
ed
uc
tio

n
fu
nc
tio

ns
 a
nd
 a
ft
er
 d
if
fe
re
nt
 n
um

be
rs
 o
f u

pd
at
es
 (i
.e
.,
af
te
r

1s
t,
2n
d,
 3
rd
, a
nd
 4
th
 u
pd
at
es
)

B
ad
N
et

PC
A

T
ru
nc
at
ed
SV

D
Fa
ct
or
A
na
ly
si
s

C
as
e

0t
h

1s
t

2n
d

3r
d

4t
h

1s
t

2n
d

3r
d

4t
h

1s
t

2n
d

3r
d

4t
h

(a
)

C
A

97
.6
5

97
.6
3

97
.5
3

97
.0
6

96
.8
3

97
.4
8

97
.0
8

96
.5
0

96
.0
8

97
.5

96
.9
8

96
.8

96
.1
3

A
SR

96
.3

38
.4

11
.3
5

3.
38

1.
15

9.
66

2.
25

0.
76

0.
5

9
2.
71

1.
96

1.
21

(b
)

C
A

89
.3
5

89
.3
5

89
.3
5

89
.3
5

89
.1
9

89
.3
5

89
.3
5

89
.3
5

89
.2
9

89
.2
7

89
.3
2

89
.0
9

88
.6
9

A
SR

10
0

0
0

0
0

0
0

0
0

0
0

0
0

(c
)

C
A

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.4
1

96
.3
7

A
SR

97
.6
2

1.
17

0.
97

0.
29

0.
26

0.
69

0.
54

0.
42

0.
34

0.
91

0.
5

0.
35

0.
35

(d
)

C
A

95
.2
6

95
.1
9

94
.7
6

94
.5
7

94
.6
1

94
.3
7

94
.4
7

94
.4
0

94
.3
7

95
.1
9

95
.0
3

94
.5
8

94
.6
0

A
SR

99
.9
2

0.
55

0.
23

0.
21

0.
19

0.
14

0.
18

0.
13

0.
09

0.
7

0.
26

0.
22

0.
14

(e
)

C
A

94
.4
9

94
.3
7

93
.8
7

93
.5
2

93
.3
6

94
.4
7

94
.0
2

93
.5
6

93
.4
1

94
.4
9

94
.4
0

93
.7
0

93
.0
4

A
SR

90
.3
2

20
.2
6

10
.1
6

7.
44

4.
61

25
.9
4

12
.3
5

8.
81

5.
7

45
.3
1

24
.2
5

10
.0
9

2.
75

(f
)

C
A

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.6

88
.5

88
.5

A
SR

99
.8
8

0.
05

0.
01

0.
03

0.
01

0.
03

0.
03

0.
03

0
0.
03

0.
01

0
0

(g
)

C
A

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

88
.8
3

A
SR

99
.7

0.
4

0.
2

0.
13

0.
1

0.
4

0.
2

0.
2

0.
06

3.
1

0.
7

0.
4

0.
2

(h
)

C
A

97
.8
3

97
.8
1

97
.7
7

97
.7
3

97
.6
7

97
.8
3

97
.8
0

97
.7
9

97
.7
9

97
.8
0

97
.7
3

97
.7
1

97
.6
8

A
SR

99
.9
8

8.
96

2.
84

1.
07

0.
48

6.
69

3.
02

1.
23

0.
53

2.
53

1.
54

0.
61

0.
42

(i
)

C
A

97
.1
9

97
.1
9

97
.1
6

97
.1
6

97
.1
1

97
.1
8

97
.1
5

97
.1
4

97
.1
4

97
.1
8

97
.1
1

97
.1
1

97
.1
1

A
SR

91
.4
3

6.
67

4.
35

3.
83

3.
24

6.
17

3.
96

3.
27

2.
97

4.
98

3.
70

2.
84

2.
53

Mitigating Backdoor Attacks on Deep Neural Networks 423

Table 13 Size of . A∗ and the
numbers of poisoned inputs
that have appeared at each
update

0th 1st 2nd 3rd 4th

(a)–(b) # of poi. 0 1000 2000 3000 4000

(a) size of .A∗ 0 217 411 609 812

(b) 0 226 439 666 894

(c)–(e) # of poi. 0 1263 2526 3789 5052

(c) size of .A∗ 0 275 534 779 1033

(d) 0 295 575 870 1123

(e) 0 162 303 434 571

(f)–(g) # of poi. 0 1000 2000 3000 4000

(f) size of .A∗ 0 213 424 635 846

(g) 0 214 412 614 826

(h)–(i) # of poi. 0 1283 2566 3849 5132

(h) size of .A∗ 0 360 722 1086 1453

(i) 0 352 698 1044 1390

Table 14 Performance of RAID (the 4th update) with different contamination ratios

Ratio . = 0.0 Ratio . = 0.1 Ratio . = 0.2 Ratio . = 0.3

CA ASR CA ASR CA ASR CA ASR

(a) 86.35 0.03 96.90 1.7 96.83 1.15 94.48 0.15

(b) 87.69 0 89.35 0 89.19 0 89.02 0

(c) 92.57 0.05 94.41 0.65 94.41 0.26 94.34 0.23

(d) 94.24 0.06 95.72 0.25 94.61 0.19 94.47 0.10

(e) 88.53 0.19 94.04 13.77 93.36 4.61 93.0 2.42

(f) 56.63 0 88.6 0.05 88.6 0.01 88.6 0.01

(g) 62.03 0 88.83 0.13 88.83 0.1 88.83 0.1

(h) 92.64 0 97.76 1.81 97.67 0.48 97.60 0.24

(i) 92.23 0.85 97.19 4.94 97.11 3.24 97.07 2.58

has low ASR on triggers that the attacker has used. For scenario (1), although . A∗
contains only false positives, RAID still manages to have a high CA. For scenarios
(2) and (3), RAID has high ASR on the second or third trigger. However, since the
SVM is updated in real time, once the new triggers are used for backdoor attacks, . N
and . Gn will detect them in the back end resulting in attack detection by the SVM in
the next update, such as case (4). The only period in which the network is vulnerable
to the new triggers is between the moment that a new trigger appears and the next
SVM update. Overall, the results show the efficacy and robustness of RAID.

6.4.5 Experiments on Hyperparameters

The first experiment is to evaluate RAID with different numbers of principal
components. A backdoored network with small perturbations (only one pixel at each
corner) as the trigger (i.e., the third . Fb in the CIFAR-10 case) was trained, which has

424 H. Fu et al.

Table 15 RAID
performance on dynamic
attacks (j)–(k)

Case/attack Net. (1) (2) (3) (4)

(j) CA 96.13 96.10 96.05 95.83 95.88

ASR1 91.80 91.78 3.84 3.72 3.79

ASR2 91.88 91.85 64.36 2.22 2.27

ASR3 100 100 100 100 0.21

(k) CA 96.08 96.05 95.99 95.90 95.88

ASR1 91.11 91.11 2.77 2.84 3.21

ASR2 91.10 91.10 89.88 0.99 0.94

ASR3 100 100 99.65 95.82 0

.82.44% CA and .91.92% ASR. The first two pictures in Fig. 7 show the performance
of RAID with different numbers of principal components. From the pictures, all
the plots show significant drops in ASR at different rates. Using more principal
components results in a faster reduction in ASR. Using fewer principal components
results in a small drop in CA (i.e., around 1%). With fewer principal components,
the dimension-reduced poisoned data features are closer to the dimension-reduced
clean data features. Thus, .A∗ may contain more false positives, which increases
the training noise and leads to the degradation of CA. The number of principal
components should be from 20% to 40% of the original feature dimension.

The second experiment is to evaluate RAID with a different attack frequency/-
density (i.e., the probability p of an input being poisoned). Note that the attack
frequency/density is determined by the attacker. Therefore, it is different from the
contamination ratio. We tested RAID on the ImageNet dataset because we also
want to see if RAID is efficient on a large-scale dataset. The backdoored model
is DenseNet-121 with 72.14% CA and 99.99% ASR. The dataset and trigger are
shown in Fig. 6e. The middle two pictures in Fig. 7 show the effectiveness of RAID
on ImageNet under different attack densities. It is seen that ASR reduces faster when
attack density is higher (i.e., more poisoned inputs are fed into the network). When
attack density is 0 (meaning . A∗ has only false positives), the CA is still high.

RAID was also tested with 1 or 2 images per class on ImageNet to see if the
clean validation dataset could be even smaller. Although low ASR is achieved with
one image per class, CA degrades (the last two pictures in Fig. 7). This is because
the novelty detector . N and the new classifier . Gn generate many false positives due
to a lack of training data. Therefore, . A∗ may contain many false positives, which
increases the training noise and leads to the degradation of CA (i.e., the SVM is
trained with bad training samples).

The last experiment is to evaluate the performance of RAID when the SVM
is updated at different frequencies. During the period between two updates, the
backdoored network might be exposed to an attack if new triggers are applied.
Therefore, reducing this period (increasing update frequency) can help further
mitigate the threat of new triggers. The user needs to set a window size for the
update. For example, if the window size is 1000, the SVM will be updated once
there are 1000 new inputs into the network. Figure 8 shows the performance of

Mitigating Backdoor Attacks on Deep Neural Networks 425

Fig. 7 Solid lines in all the
pictures: CA. Dashed lines in
all the pictures: ASR. X-axis:
the number of updates. n: the
number of PCA components.
p: the probability of a sample
being poisoned. For the last
two pictures: the red plots
overlap the other plots and
are not visible

426 H. Fu et al.

Fig. 8 X-axis: ratio of test data size used in RAID to the total test data size. Solid lines: CA.
Dashed lines: ASR. w: window size/test data size

RAID with different update frequencies under case (a). RAID shows consistently
good performance after increasing the update frequency (i.e., reducing window
size). Since training the SVM is quick (. <1 s), RAID can be used effectively during
on-line operation.

6.4.6 More Advanced Attack

[20] propose a backdoor attack with sample-specific triggers. The example is shown
in Fig. 9. It can be seen that the trigger remains invisible in the image. We use a
subset of the ImageNet dataset as the testing data. The backdoored model has 78%
CA and 100% ASR. The model architecture is ResNet-18 [51]. After the 4th update,
RAID reduces the ASR to 0.4% and keeps CA close to 78%.

The attacker may try to minimize the feature-level outputs between poisoned data
and corresponding clean data to bypass RAID. However, the difference between
clean and poisoned data always exists and must be represented in hidden layer
outputs. Otherwise, if the hidden layer outputs are identical for clean and poisoned
samples, the network outputs should then also be the same. This cannot be true
since the network outputs the attacker-chosen label for the poisoned sample and
the ground-truth label for the clean sample. Although the difference may be small
for one hidden layer, the cumulative difference for multiple hidden layers becomes
significant and observable. RAID can still be applied by changing the input of its
novelty detector and the binary classifier to include multiple hidden layer output
features.

As seen above, RAID fuses several simple models (i.e., simple neural networks,
novelty detector, anomaly detector, dimension-reduction function, and binary clas-

Mitigating Backdoor Attacks on Deep Neural Networks 427

Fig. 9 Sample-specific trigger. Left: benign image. Middle: poisoned image. Right: the corre-
sponding trigger

sifier) to reduce the ASR caused by the attacker. It requires only a small clean
validation dataset, which is feasible to acquire in real-world applications.

7 Benign Applications of the Backdoor Phenomena

While we have considered backdoor-based attacks in this chapter, it is to be noted
that backdoors can also be used for benign purposes such as the protection of
intellectual properties. One example is using the backdoors as watermarks [65].
To train an accurate neural network model, the trainer needs to invest considerable
cost and effort to collect high-quality data, label the data, buy/rent computational
resources, and tune the model hyperparameters. Therefore, it is critical to find a way
to protect the intellectual property of the models. Similar to watermark injection into
documents, neural network models can also be injected with watermarks. Backdoor-
based watermarks are one option for this purpose. The trainer injects backdoors into
the trained network so that any other network copied based on this model can be
recognized by presenting it with the poisoned inputs. Other models cannot correctly
predict the outputs since they do not know the trigger information. The model’s
performance on clean samples, however, is not affected. Therefore, intellectual
properties can be protected by utilizing backdoor attack mechanisms.

8 Future Directions

Although our methods introduced in this chapter utilize only a small clean validation
dataset, it is of value to further decrease the size of the required validation dataset.
RAID requires some on-line data to attain samples of possible poisoned inputs in
addition to the validation dataset to train a classifier for clean vs. poisoned inputs.
During this period, some poisoned inputs may escape detection. Reducing this

428 H. Fu et al.

transient vulnerability is therefore an avenue for future improvements. Additionally,
the reduction of computational complexity is also an important topic for future work.
Another extension would be to generalize the methods to backdoor detection for
machine learning methods that are not based on neural networks. Further application
of the methods to other adaptive triggers should also be considered. Lastly, using
explainability tools for DNNs may be helpful to further improve the applicability
and usability of backdoor detection methods.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Proceedings of the Advances in Neural Information Processing Systems,
pp. 1097–1105. Lake Tahoe, Nevada (2012)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2014). arXiv preprint arXiv:1409.1556

3. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the
impact of residual connections on learning. In: Proceedings of the 31st AAAI Conference on
Artificial Intelligence, San Francisco, pp. 4278–4284 (2017)

4. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceed-
ings of the 13th European Conference on Computer Vision, Zurich, Switzerland, pp. 818–833
(2014)

5. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

6. Sainath, T.N., Mohamed, A.-R., Kingsbury, B., Ramabhadran, B.: Deep convolutional neural
networks for LVCSR. In: Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing. Vancouver, pp. 8614–8618 (2013)

7. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network
based language model. In: Proceedings of the 11th Annual Conference of the International
Speech Communication Association. Chiba, Japan, pp. 1045–1048 (2010)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Proceedings of the Advances in Neural
Information Processing Systems, Lake Tahoe, pp. 3111–3119 (2013)

9. Fu, H., Krishnamurthy, P., Khorrami, F.: Functional replicas of proprietary three-axis attitude
sensors via LSTM neural networks. In: Proceedings of the IEEE Conference on Control
Technology and Applications. Montreal, pp. 70–75 (2020)

10. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct
perception in autonomous driving. In: Proceedings of the IEEE International Conference on
Computer Vision. Santiago, pp. 2722–2730 (2015)

11. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous
vehicles. Ann. Rev. Control Robot. Auton. Syst. 1, 187–210 (2018)

12. Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller, U., LeCun,
Y.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144
(2009)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Proceedings of the International Conference on Learning Representations. San Diego, pp. 1–14
(2015)

Mitigating Backdoor Attacks on Deep Neural Networks 429

14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks (2013). arXiv preprint arXiv:1312.6199

15. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning attack on
neural networks. In: Proceedings of the 25th Annual Network and Distributed System Security
Symposium. San Diego, pp. 18–221 (2018)

16. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning
model supply chain (2017). arXiv preprint arXiv:1708.06733

17. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on
deep neural networks. In: Proceedings of the International Symposium on Research in Attacks,
Intrusions, and Defenses. Heraklion, pp. 273–294 (2018)

18. Liu, K., Tan, B., Karri, R., Garg, S.: Poisoning the (data) well in ML-based CAD: a case study
of hiding lithographic hotspots. In: Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition. Grenoble, pp. 306–309 (2020)

19. Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks
against deep learning systems in the physical world. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Virtual, pp. 6206–6215 (2021)

20. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S: Invisible backdoor attack with sample-specific
triggers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
Virtual, pp. 16463–16472 (2021)

21. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden trigger backdoor attacks. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34. New York, pp. 11957–11965 (2020)

22. Li, S., Xue, M., Zhao, B., Zhu, H., Zhang, X.: Invisible backdoor attacks on deep neural
networks via steganography and regularization. IEEE Trans. Depend. Secure Comput. 18(5),
2088–2105 (2020)

23. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep
neural networks. In: Proceedings of the European Conference on Computer Vision, Virtual,
pp. 182–199 (2020)

24. Xie, C., Huang, K., Chen, P.-Y., Li, B.: DBA: distributed backdoor attacks against federated
learning. In: Proceedings of the International Conference on Learning Representations. New
Orleans (2019)

25. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics, Virtual, pp. 2938–2948 (2020)

26. Andreina, S., Marson, G.A., Möllering, H., Karame, G.: BaFFLe: backdoor detection via
feedback-based federated learning. In: Proceedings of the IEEE International Conference on
Distributed Computing Systems, Virtual, pp. 852–863 (2021)

27. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In:
Proceedings of the ACM SIGSAC Conference on Computer and Communication Security.
London, pp. 2041–2055 (2019)

28. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. In:
Proceedings of the ACM Symposium on Access Control Models and Technology, Virtual, pp.
15–26 (2021)

29. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems.
IEEE Access 7, 138872–138878 (2019)

30. Gong, X., Chen, Y., Wang, Q., Huang, H., Meng, L., Shen, C., Zhang, Q.: Defense-resistant
backdoor attacks against deep neural networks in outsourced cloud environment. IEEE J. Sel.
Areas Commun. 39(8), 2617–2631 (2021)

31. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural Cleanse:
identifying and mitigating backdoor attacks in neural networks. In: Proceedings of the 40th
IEEE Symposium on Security and Privacy. San Francisco, pp. 707–723 (2019)

32. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: TABOR: a highly accurate approach to inspect-
ing and restoring trojan backdoors in AI systems (2019). arXiv preprint arXiv:1908.01763

430 H. Fu et al.

33. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: DeepInspect: a black-box trojan detection and
mitigation framework for deep neural networks. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence
Organization, Macao, pp. 4658–4664 (2019)

34. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting AI trojans using meta
neural analysis (2019). arXiv preprint arXiv:1910.03137

35. Li, Y., Ma, H., Zhang, Z., Gao, Y., Abuadbba, A., Fu, A., Zheng, Y., Al-Sarawi, S.F. Abbott, D.:
NTD: non-transferability enabled backdoor detection (2021). arXiv preprint arXiv:2111.11157

36. Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: ABS: scanning neural networks for
back-doors by artificial brain stimulation. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. London, pp. 1265–1282 (2019)

37. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution
samples and adversarial attacks. In: Proceedings of the Conference on Neural Information
Processes Systems. Montreal, pp. 7167–7177 (2018)

38. Chou, E., Tramèr, F., Pellegrino, G., Boneh, D.: SentiNet: detecting physical attacks against
deep learning systems (2018). arXiv preprint arXiv:1812.00292

39. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: STRIP: a defence against
trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security
Applications Conference. San Juan, pp. 113–125 (2019)

40. Kwon, H.: Detecting backdoor attacks via class difference in deep neural networks. IEEE
Access 8, 191049–191056 (2020)

41. Fu, H., Veldanda, A.K., Krishnamurthy, P., Garg, S., Khorrami, F.: A feature-based on-line
detector to remove adversarial-backdoors by iterative demarcation. IEEE Access 10, 5545–
5558 (2022)

42. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I., Srivastava,
B.: Detecting backdoor attacks on deep neural networks by activation clustering (2018). arXiv
preprint arXiv:1811.03728

43. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Proceedings of
Advances in Neural Information Processing Systems, vol. 31, Montreal, pp. 8000–8010 (2018)

44. Tang, D., Wang, X., Tang, H., Zhang, K.: Demon in the variant: statistical analysis of DNNs
for robust backdoor contamination detection. In: Proceedings of the 30th USENIX Security
Symposium, Virtual, pp. 1541–1558 (2021)

45. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality
assessment. In: Proceedings of the 37th Asilomar Conference on Signals, Systems & Com-
puters, vol. 2, Pacific Grove, pp. 1398–1402 (2003)

46. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
47. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the International

Conference on Learning Representations, Banff, pp. 1–10 (2014)
48. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German Traffic Sign Recognition

Benchmark: a multi-class classification competition. In: Proceedings of the International Joint
Conference on Neural Networks. San Jose, pp. 1453–1460 (2011)

49. Veldanda, A.K., Liu, K., Tan, B., Krishnamurthy, P., Khorrami, F., Karri, R., Dolan-Gavitt, B.,
Garg, S.: NNoculation: broad spectrum and targeted treatment of backdoored DNNs (2020).
arXiv preprint arXiv:2002.08313

50. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched
background similarity. In: Proceedings of the IEEE Computer Vision and Pattern Recognition.
Colorado Springs, pp. 529–534 (2011)

51. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,
pp. 770–778 (2016)

52. Miller, J.: Reaction time analysis with outlier exclusion: bias varies with sample size. Q. J.
Exp. Psychol. 43(4), 907–912 (1991)

Mitigating Backdoor Attacks on Deep Neural Networks 431

53. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser.
B (Statistical Methodology) 61(3), 611–622 (1999)

54. Fu, H., Veldanda, A.K., Krishnamurthy, P., Garg, S., Khorrami, F.: Detecting backdoors
in neural networks using novel feature-based anomaly detection (2020). arXiv preprint
arXiv:2011.02526

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

56. Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In:
Proceedings of International Conference on Image Processing, vol. 1, Thessaloniki, pp. 34–
37 (2001)

57. Dong, Y., Hopkins, S., Li, J.: Quantum entropy scoring for fast robust mean estimation and
improved outlier detection. In: Proceedings of the Advances in Neural Information Processing
Systems. Vancouver, pp. 6067–6077 (2019)

58. Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest. IEEE Trans. Knowl. Data Eng.
33(4), 1479–1489 (2019)

59. Lesouple, J., Baudoin, C., Spigai, M., Tourneret, J.-Y.: Generalized isolation forest for anomaly
detection. Pattern Recognit. Lett. 149, 109–119 (2021)

60. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/
mnist

61. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical
image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Miami, pp. 248–255 (2009)

62. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000
classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Columbus, pp. 1891–1898 (2014)

63. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: evaluating backdooring attacks on deep
neural networks. IEEE Access 7, 47230–47244 (2019)

64. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. Honolulu, pp. 4700–4708 (2017)

65. Adi, Y., Baum, C., Cisse, M., Pinkas, B., Keshet, J.: Turning your weakness into a strength:
watermarking deep neural networks by backdooring. In: Proceedings of the 27th USENIX
Security Symposium. Baltimore, pp. 1615–1631 (2018)

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

Robustness for Embedded Machine
Learning Using In-Memory Computing

Priyadarshini Panda, Abhiroop Bhattacharjee, and Abhishek Moitra

1 Introduction

Deep learning has achieved state-of-the-art prediction capabilities across a variety
of cognitive and analytics tasks. This has led to the ubiquitous deployment of Deep
Neural Networks (DNNs) in low power edge devices [1, 2]. For edge computing,
analog crossbar architectures have emerged as a front runner towards low-latency
and energy-efficient acceleration platforms in resource-constrained scenarios. Here,
the synaptic weights of the DNNs are mapped on arrays (crossbars) of Non-
Volatile Memory (NVM) devices, such as Resistive RAM (ReRAM), Phase Change
Memory (PCM), Ferroelectric Field Effect Transistors (FeFET) and so forth [3, 4].
They efficiently perform analog dot-product operations, emulating Multiply and
Accumulate (MAC) operations in DNNs, when input voltages are applied to the
rows of the crossbar.

Despite achieving super-human performance in many computer vision tasks [5],
DNNs have been shown to be vulnerable to adversarial attacks (see Fig. 1). Here,
small and strategically crafted noise in the input can fool the DNN leading to failure
[6–10]. This vulnerability severely limits the deployment and potential safe-use of
DNNs at the edge for real-world applications. To defend against adversarial attacks,
previous works have used two broad approaches: (1) Adversarial classification [11–
15] and (2) Adversarial detection [16–18]. Under adversarial classification, there
have been prior works that have used techniques such as adversarial training, input
feature transformation among others to classify the adversarial samples accurately
[11–15]. In contrast, adversarial detection works focus on identifying clean and
adversarial samples such that the detected adversarial samples are not passed to

P. Panda (�) · A. Bhattacharjee · A. Moitra
Department of Electrical Engineering, Yale University, New Haven, CT, USA
e-mail: priya.panda@yale.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_17

433

 31368 2385 a 31368 2385 a

 885
56845 a 885 56845 a

mailto:priya.panda@yale.edu
mailto:priya.panda@yale.edu
mailto:priya.panda@yale.edu
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17
https://doi.org/10.1007/978-3-031-40677-5_17

434 P. Panda et al.

Fig. 1 Adversarial attacks can fool a DNN by adding structured perturbations to clean inputs

the output of the DNN for classification [16–18]. However, these techniques are
software-centric and not hardware-friendly, requiring high computational over-
heads. To this end, recent works such as [10, 19] show that quantization methods,
which primarily reduce compute resource requirements of DNNs, act as a straight-
forward way of improving the adversarial robustness of DNNs. Other works such as
[20, 21] use model compression and pruning techniques to optimize and reduce
computational complexities of DNNs while guaranteeing adversarial robustness.
In [19, 22], efficiency-driven hardware optimization techniques are leveraged to
improve adversarial resilience of DNNs, while yielding energy-efficiency. However,
none of these works has been integrated with a crossbar-based platform (considering
intrinsic crossbar noise) for DNN inference. Vanilla implementation of DNNs
on crossbars, including those trained with software defenses such as adversarial
training, suffers from significant loss in robustness caused by hardware noise [23–
25]. There has been limited study in understanding the robustness of crossbar
implemented DNNs. Thus, we highlight hardware and energy-efficiency driven
works that improve the robustness of DNNs deployed on analog crossbars in
two broad aspects: (1) Improving adversarial robustness and (2) Mitigating the
detrimental effects of crossbar non-idealities on DNNs, thereby ameliorating the
performance (accuracy) of DNNs on crossbars. Note, these works do not pose a
huge overhead of hardware-aware retraining of a pretrained DNN model before
deployment on crossbars.

We begin by discussing two recent works that use analog crossbars and improve
the adversarial robustness of the mapped DNNs. Note, adversarial robustness
implies improving the performance of the hardware-mapped DNN model against
adversarial samples without compromising the classification accuracy of clean
images on hardware. In the first work, we introduce a technique called NEAT [26]
that mitigates the impact of selector-induced non-linearities and resistive crossbar
non-idealities for robust implementation of DNNs on 1T-1R crossbars. Second, we
showcase another work, called DetectX [27], that uses hardware signatures present
in analog crossbar architectures to perform energy-efficient adversarial detection.
While NEAT is tailored for adversarial classification, DetectX is an adversarial
detection method.

Robustness for Embedded Machine Learning Using In-Memory Computing 435

Finally, we delve into a specific case of the inference of DNNs having structured
sparsity in their weights on analog crossbar arrays. Recently, crossbar-aware struc-
tured pruning algorithms [28–31] have received significant attention in developing
increasingly sparse DNN models requiring fewer crossbars to be mapped, thereby
introducing huge savings in terms of crossbar energy and area-efficiencies [32].
However, a holistic evaluation of the performance of such algorithms by considering
the impact of resistive crossbar non-idealities was missing. In this chapter, we
highlight a recent work [33] which shows that increased structured sparsity in DNNs
negatively interferes with crossbar non-idealities that can degrade their classification
accuracy (or robustness) during inference. This work also introduces two hardware-
centric non-ideality mitigation strategies, namely crossbar-column rearrangement
and Weight-Constrained-Training (WCT), to help improve the performance or
robustness of the sparse DNNs on crossbars.

This chapter is organized as follows. Section 2 explains the background on
adversarial attacks, memristive crossbars and non-idealities. In Sect. 3, we discuss
the NEAT technique that introduces a non-ideality control technique which causes
a rise in adversarial robustness. Section 4 introduces the DetectX technique that
performs energy signature separation for adversarial detection. Section 5 explains
the impact of structured sparsity in DNNs and their interaction with non-ideal
crossbars. Section 6 gives an overview of related works and scopes out different
crossbar-based studies with different objectives. Finally, we conclude in Sect. 7.

2 Background

2.1 Adversarial Attacks

Adversarial samples are created by generating a crafted noise and adding it to the
clean data samples. In this chapter, we discuss two widely used methods to generate
the noise for creating adversarial attacks.

1. Fast Gradient Sign Method (FGSM) [6] is a one-step gradient-based attack
shown in Eq. (1). To generate the noise, first, the gradients of the DNN loss
.L(θ, x, ytrue) with respect to the input x are calculated. Here, . θ represents
the parameters of the DNN and .ytrue represents the labels of the input data.
Then, a .sign() operation converts the gradients into unit directional vectors.
The unit vector is multiplied by a scalar perturbation value, . ε, that determines
the strength of the attack. Finally, the perturbation vector is added to the input
x to create an adversarial data. Note that perturbations are added to x along the
direction of the gradients to maximize DNN loss . L.

.xadv = x + ε sign(∇x(L(θ, x, ytrue))) (1)

436 P. Panda et al.

2. Projected Gradient Descent (PGD): The PGD attack, shown in Eq. (2) is an
iterative attack over n steps. It is basically a multi-step variant of the FGSM
attack. In each step i, perturbations of strength . α are added to .xi−1

adv . Note that
.x0

adv is created by adding random noise to the clean input x. Additionally, for
each step, .xi

adv is projected on a Norm ball [8], of radius . ε. In this chapter,
the .L∞ Norm ball (of radius . ε) projection is used for all the PGD attacks. In
other words, we ensure that the maximum pixel difference between the clean
and adversarial inputs is . ε.

.xadv =
n∑

i=1

xi−1
adv + α sign(∇xL(θ, x, ytrue)) (2)

2.2 Memristive Crossbars and Their Non-idealities and
Non-linearities

Memristive crossbar arrays have been used to implement MAC operations in
an analog manner. Crossbars consist of 2D arrays of NVM devices, Digital-to-
Analog Converters (DAC), Analog-to-Digital Converters (ADC) and a write circuit.
The synaptic devices at the cross-points are programmed to a particular value of
conductance (between .GMIN and .GMAX) during inference. The MAC operations
are performed by converting the digital inputs to the DNN into analog voltages on
the Read Wordlines (RWLs) using DACs, and sensing the output current flowing
through the bit-lines (BLs) using the ADCs [23, 34–38]. In other words, the
activations of the DNNs are mapped as analog voltages . Vi input to each row and
weights are programmed as synaptic device conductances (. Gij) at the cross-points
as shown in Fig. 2a. For an ideal crossbar array, during inference, the voltages
interact with the device conductances and produce a current (governed by Ohm’s
Law). Consequently, by Kirchhoff’s current law, the net output current sensed
at each column j is the sum of currents through each device, i.e. . Ij (ideal) =
ΣiGij ∗ Vi . We term the matrix .Gideal as the collection of all . Gij ’s for a crossbar
instance. However, in reality, the analog nature of the computation leads to various
hardware noise or non-idealities, such as, circuit-level resistive non-idealities and
device-level variations [23, 34, 36, 37, 39–43].

Non-idealities: Fig. 2b describes the equivalent circuit for a crossbar accounting
for various circuit-level and device-level non-idealities, viz. Rdriver , .Rwire_row,
.Rwire_col and Rsense (interconnect parasitics), modelled as parasitic resistances
and variations in the synapses owing to the stochasticity of the memristive devices.
This results in a .Gnon-ideal matrix, with each element .G′

ij incorporating the effect
due to the non-idealities, obtained using circuit laws (Kirchhoff’s laws and Ohm’s
law) and linear algebraic operations [23, 24, 33, 39, 44]. Consequently, the net output
current sensed at each column j becomes .Ij (non-ideal) = ΣiG

′
ij ∗ Vi , which deviates

Robustness for Embedded Machine Learning Using In-Memory Computing 437

Fig. 2 (a) A .2 × 2 crossbar array with input voltages . Vi , synaptic conductances .Gij and output
currents .Ij = ∑

i Gij ∗ Vi . (b) A .2 × 2 crossbar array with the resistive and the synaptic device-
level non-idealities. These non-idealities lead to imprecise dot-product currents and that manifests
as accuracy degradation when DNNs are evaluated on crossbars

from its ideal value. This manifests as accuracy degradation for DNNs mapped onto
crossbars. The relative deviation of .Inon-ideal from its ideal value is measured using
non-ideality factor (NF) [34] as:

.NF = (Iideal − Inon-ideal)/Iideal . (3)

Thus, NF is a direct measure of crossbar non-idealities, i.e. increased non-
idealities induce a greater value of NF, affecting the accuracy and hence, the
robustness of the DNNs mapped onto them. All the analyses in Sects. 3 and 5
involving non-idealities are performed on memristive crossbars with an ON/OFF
ratio of 10 (i.e. .RMIN = 30 kΩ and .RMAX = 300 kΩ), having the resistive non-
idealities as follows: .Rdriver = 1 kΩ , .Rwire_row = 5Ω , . Rwire_col = 10Ω

and .Rsense = 1 kΩ . The non-ideality in the memristive devices in the form of
device-level process variation has been modelled as a Gaussian variation in the
conductances (. GM) of the NVM devices with .σ/μ = 10% [45].

Recently, 1T-1R NVM crossbars have received significant attention since the
pass-transistor in series with the NVM device at the synapses can help mitigate
sneak paths (prevalent in 1R crossbar arrays) and the incorrect programming of the
NVM device induced by noise [46, 47]. Figure 3 illustrates an .M × N crossbar
having 1T-1R synapses at the cross-points wherein, the access transistors are driven
by a gate-voltage (. Vg) fed through the select-lines (SLs). A low . Vg operation is
favorable for implementing a DNN on crossbars in a resource-constrained scenario
as it has been shown in prior works [26] that the total power dissipated by a 1T-
1R crossbar array diminishes with reduction of the transistor gate-voltage (. Vg).
However, it is imperative to understand the other repercussions of low . Vg operation
in 1T-1R crossbars that impact the performance and hence, robustness of the mapped
DNN models.

438 P. Panda et al.

Fig. 3 Illustration of an M . × N 1T-1R Crossbar. A Transistor (T) in series with an NVM device
(R) is present at every synapse. Select-lines (SLs) are used to turn on transistors for selected rows,
while the dot-product currents are sensed through the bit-lines (BLs)

Non-linearities: In addition to the above-mentioned non-idealities, 1T-1R cross-
bars are susceptible to various non-linearities that affect the effective conductance
of each synapse (especially, at lower . Vg) and hence, the output current across
each column in a crossbar array. This would manifest as accuracy degradation
for the DNNs mapped onto such crossbars. In [26], to understand the effects of
the non-linearities alone on introducing the access transistor (or selector) in the
synapse, extensive SPICE simulations were performed using the 1T-1R synaptic
configuration with different input voltages, conductances and . Vg ranges excluding
the circuit-level and device-level non-idealities. For all the analyses involving 1T-1R
synapses, the selector devices were based on 45 nm CMOS technology model and
the memristive device had .RON = 30 kΩ and .ROFF = 300 kΩ .

For a crossbar in the 1R configuration, the weights W of the DNN are directly
mapped to a memristor conductance state (.GM = 1/RM) in a linear fashion. On the
other hand, in the 1T-1R configuration, W is mapped to the effective conductance
.Geff = 1/(RM + Rt), where . Rt is the equivalent resistance due to the transistor.
The non-linearities in the 1T-1R crossbars arise due to the dependence of . Rt on . Vin.
Note, . Vin is proportional to the neuronal activation values of the DNN which varies
with the input. Hence, these are data-dependent non-linearities. It has been shown

Robustness for Embedded Machine Learning Using In-Memory Computing 439

in [26] that the effective conductance .Geff is a function of NVM conductance . GM ,
input voltage . Vin, and gate-voltage . Vg , which can be formulated as:

.Geff = f1(GM, Vin, Vg). (4)

3 Non-linearity Aware Training (NEAT): Mitigating the
Impact of Crossbar Non-idealities and Non-linearities for
Robust DNN Implementations

In this section, the NEAT technique is introduced that provides a new perspective on
the energy-efficient and robust implementation of DNNs on 1T-1R crossbars [26].
It begins with the identification of a range of memristive conductances over a range
of input voltages via SPICE simulations such that Eq. (4) can be approximated as:

.Geff = f2(GM, Vg). (5)

This eliminates the input-data dependency of the effective 1T-1R synaptic
conductance (.Geff) for a given value of . Vg of transistor operation. In other words,
for a given value of . Vg , there exists an upper bound cut-off value (.Geff cutoff)
for which the 1T-1R synapse exhibits linear characteristics, and .GM ≈ k ∗ Geff ,
where k is a scalar. The corresponding NVM device state at .Geff cutoff is termed as
.GM cutoff . Figure 4 shows the .GM cutoff vs. . Vg plot for supply voltage . Vsupply =
0.25V, 0.5V and .Vin in the range .0 ≤ Vin ≤ Vsupply . It can be seen that as . Vg

is lowered (for resource-constrained scenarios), the overall range of memristive
conductance states .GM for data-independent and linear synaptic characteristics
decreases owing to low values of .GM cutoff .

Fig. 4 The variation in .GM cutoff with respect to selector gate-voltage .Vg

440 P. Panda et al.

Fig. 5 Overall flow of NEAT

After identifying .Geff cutoff for a given . Vg , the corresponding value for .Wcut is
obtained for the software DNN which is to be mapped onto the 1T-1R crossbars.
Then, all the weights (W) of the pretrained DNN are restricted in the interval
.[−Wcut ,Wcut] as shown in Eq. (6):

.Wmap =

⎧
⎪⎪⎨

⎪⎪⎩

W |W | ≤ Wcut

Wcut W > Wcut

−Wcut W < −Wcut .

(6)

From Eq. (6), we observe that for the linear regime (.|W | ≤ Wcut , which
corresponds to .Geff ≈ k ∗ GM), the software weight parameters can be mapped
linearly onto the crossbars. While, for the non-linear regime (.|W | > Wcut that
corresponds to deviation of .Geff from . GM), W is clipped at .Wcut . The objective
of NEAT is to restrict the weight parameters to be within the linear regime for
the given gate-voltage . Vg of the transistor, thereby curbing loss in computational
accuracy post-mapping DNNs onto 1T-1R crossbars. Figure 5 illustrates the overall
flow of the NEAT process.

Iterative Training: In NEAT, after setting the optimal . Vg and .Wcut values, the
weights of the DNN get transformed. If we use lower values of . Vg which do not
cover all weight ranges, the weight distribution gets altered, resulting in accuracy
degradation. To address this issue, iterative training is proposed which consists of
two steps. Step 1 is essentially restricting the weights of the DNN (W) in the suitable
cut-off regime as per Eq. (6). Step 2 involves retraining the networks iteratively for
a couple of epochs to recover any accuracy loss incurred from Step 1. These two
steps are repeated so that greater number of weights in the network can be located
in the linear regime when mapped onto crossbars.

In Fig. 6, . Vg is varied from .0.75V to .1.0 and the classification accuracy of
various DNN architectures using CIFAR10 and CIFAR100 datasets is reported.
The results show that low . Vg induces low .Wcut and in turn decreases performance

Robustness for Embedded Machine Learning Using In-Memory Computing 441

Fig. 6 Classification accuracy of various NEAT-based DNN models with .Vg varied from
.0.75V to . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d)
ResNet18/CIFAR100

when DNN weights are restricted to .Wcut regime. However, using iterative training
recovers the performance degradation. Especially, for a ResNet18 architecture,
using iterative training shows improvement over 50% in terms of accuracy at
.Vg = 0.75V . Moreover, with iterative training, VGG11 and ResNet18 networks
almost maintain their classification accuracy in the range of .Vg = [0.85, 1.0] and
.Vg = [0.8, 1.0], respectively. In this manner, NEAT helps in the hardware-aware
robust mapping of DNN architectures on 1T-1R crossbar with minimal training
overheads.

In addition to maintaining DNN performance in presence of 1T-1R non-
linearities, NEAT ensures energy-efficient inference with DNNs, specifically in
the low . Vg scenario. When NEAT technique is applied at low . Vg values, we have
lower absolute values of .Geff cutoff and hence, .Wcut . This implies that for crossbars
operating at lower . Vg values, we would find greater proportion of low conductance
synapses post mapping of DNN weights onto the 1T-1R crossbars. This helps

442 P. Panda et al.

Fig. 7 Normalized energy gain for various NEAT-based DNN models with . Vg varied from
.0.75V to . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d)
ResNet18/CIFAR100

minimise the power dissipated in the crossbar arrays by reducing crossbar-column
currents. In Fig. 7, we present the energy-efficiency of various DNN configurations
with NEAT. The energy computed for .Vg = 1.0V is taken as baseline against
which energy gains (%) for other values of . Vg are shown. NEAT achieves high
energy gain by simply reducing . Vg . Especially, we can achieve . ∼23% energy gain
at .Vg = 0.8V on ResNet18 architecture with CIFAR10 while suffering minimal
accuracy loss (. ∼1.5% in Fig. 6). However, selecting a very low value for . Vg such as
.Vg = 0.75V induces huge performance degradation.

Having mapped DNNs via NEAT in an energy-efficient manner onto 1T-1R
crossbars and mitigating the impact of synaptic non-linearities, we now study the
impact of crossbar non-idealities (enlisted in Sect. 2.2) on the robustness of NEAT-
DNNs. Note, we would use the term “NEAT-DNN” to denote a DNN trained using
NEAT and mapped onto 1T-1R crossbars, while the term ‘Normal-DNN’ would

Robustness for Embedded Machine Learning Using In-Memory Computing 443

refer to standard DNNs mapped directly onto 1R crossbars with non-idealities (the
baseline). Henceforth, all experiments in Sect. 3 involving crossbar arrays would
include the crossbar non-idealities.

It has been shown that the value of NF in crossbars decreases with increase in the
effective resistance of a crossbar array, which minimizes the effect of interconnect
resistive non-idealities [26, 33, 34, 44]. By increasing the proportion of lower
conductance synapses in a crossbar array, one can reduce the impact of crossbar
non-idealities and hence, the non-ideality factor. When NEAT technique is applied
at low . Vg values, we have a greater proportion of low conductance synapses post
mapping of DNN weights onto the 1T-1R crossbars. Hence, NF is expected to
be lower in the case of low . Vg operation of crossbars. Furthermore, the value of
NF for DNNs mapped onto 1T-1R crossbars via NEAT would be lesser than the
value of NF for standard DNNs mapped onto 1R crossbars (the baseline). Since,
NEAT boosts the feasibility of low conductance synapses and reduces the impact
of crossbar non-idealities, NEAT-DNNs are more robust both in terms of clean and
adversarial accuracies than the baseline Normal-DNNs.

Modes of adversarial attack: For unleashing adversarial attacks (FGSM/PGD)
on the crossbar-mapped models of the DNNs, consider two modes:

1. Software-inputs-on-hardware (SH) mode where, the adversarial perturba-
tions for each attack are created using the loss function of the software DNN
model normally trained without applying the NEAT technique, and then added
to the clean input that yields the adversarial input. The generated adversaries
are then fed to the crossbar-mapped DNN. This a case of Black-Box adversarial
attack on hardware.

2. Hardware-inputs-on-hardware (HH) mode where, the adversarial inputs are
generated for each attack using the loss from the crossbar-based hardware
models. It is evident that HH perturbations will incorporate the effect of intrinsic
hardware non-idealities and thus will cast stronger attacks than SH. This is a
case of White-Box adversarial attack on hardware.

Results for robustness in terms of clean and adversarial accuracies: Here, we
evaluate robustness of the DNNs on non-ideal crossbars graphically as shown
in Fig. 8 by plotting ‘robustness maps’ as has been proposed in [26, 44]. Note,
the NEAT-DNNs are shown for .Vg = 0.8V . This approach to assess robust-
ness of a network has been shown to be comprehensive and accurate since, it
takes into account the cumulative impact of both clean accuracy and adversarial
accuracy (which is a strong function of the clean accuracy). For a specific mode
of attack (SH or HH) and a given crossbar size, we plot .Δ Clean Accuracy,
the difference between clean accuracy of the crossbar-mapped DNN in ques-
tion and the corresponding clean accuracy of its software model, on the x-axis.
.Δ Adversarial Accuracy (for a particular . ε value) which is the difference between
the adversarial accuracy of the mapped network in question and the corresponding
adversarial accuracy of the software model is plotted on the y-axis. The value of
.Δ Clean Accuracy is always negative since DNNs when mapped on hardware
suffer accuracy loss owing to non-idealities. The region bounded by the line .y = −x

444 P. Panda et al.

Fig. 8 (a), (b) Robustness maps for VGG11 DNN using CIFAR10 dataset for SH and HH modes
of FGSM and PGD attacks, respectively

and the y-axis denotes the favorable region and the closer a point is towards this
region, the better is the robustness of the network in question. Likewise, the region
bounded by the line .y = x and the y-axis is the unfavorable region, where the
mapped network is highly vulnerable to adversarial attacks. The favorable and
unfavorable regions have been demarcated Fig. 8a.

Figure 8 shows the robustness maps for DNNs based on VGG11 network with
CIFAR10 dataset for both SH and HH modes of attack. Figure 8a pertains to
FGSM attack with . ε varying from 0.05 to 0.3 with step size of 0.05. We find that
NEAT-DNNs have significantly greater clean accuracy (.∼13% and .∼17% higher for
32 . × 32 and 64 . × 64 crossbars, respectively) as well as better adversarial accuracies
on hardware for both modes of attack. The points corresponding to NEAT-DNNs
are situated closer to the favorable region than the corresponding points for Normal-
DNNs. This is a consequence of the reduction in non-ideality factor in case of
iterative training with NEAT algorithm. Note, the points for 64 . × 64 crossbars
are situated farther from the favorable region than the corresponding points for
32 . × 32 crossbars. This gap is owing to greater non-idealities that exist in case of
a larger 64 . × 64 crossbar than a 32 . × 32 crossbar. However, this gap significantly
decreases for NEAT-DNNs indicating that NEAT greatly reduces the impact of the
crossbar non-idealities on the inference accuracy of the mapped DNNs. In other
words, NEAT-DNNs do not suffer significant accuracy losses on larger crossbars.
We further observe that the points for a NEAT-DNN, given a crossbar size, are more
closely packed than the corresponding points for Normal-DNN. This implies that
even on increasing the attack strength (. ε), lesser adversarial loss is observed for
DNN models on crossbars trained with NEAT algorithm.

Figure 8b also presents similar results but for a strong PGD attack with . ε varying
from 2/255 to 32/255 with step size of 2/255. In this case, the robustness is very high
for SH mode of attack as compared to HH mode of attack, with points corresponding
to NEAT-DNNs situated inside the favorable region for the SH mode. Similar to
the case of FGSM attack, NEAT-DNNs outperform Normal-DNNs in terms of
robustness for both modes of attack. Here, points for different . ε values, given a
style of mapping and crossbar size, are more closely packed than the corresponding

Robustness for Embedded Machine Learning Using In-Memory Computing 445

points of FGSM attack. This implies that hardware non-idealities interfere more
with PGD attacks than FGSM attacks resulting in lesser accuracy loss.

From the above discussion, we find that NEAT-based DNNs are more immune to
the impact of non-idealities and lead to robust implementations on non-ideal 1T-1R
crossbars in addition to higher crossbar energy-efficiencies.

4 DetectX: Improving the Robustness of DNNs Using
Hardware Signatures in Memristive Crossbar Arrays

In this section, we discuss how hardware signatures in memristive crossbar archi-
tectures can be used to detect adversarial attacks in an energy-efficient manner [27].

For detecting adversaries, we use a function called the Sum of Currents (SoI). It
is defined as the absolute value summation of all the feature outputs of a particular
layer as shown in Eq. (7).

.SoIl =
m∑

j=1

|Zj |l (7)

Here, .Zj is the result of the weighted summation outputs of a particular
layer l. This is proportional to the summation of the column current magnitudes
in a memristive crossbar array. Interestingly, as shown in Fig. 9a, we find that
the clean and adversarial SoI distributions of the first layer have an inherent
separation between them. However, due to a significant overlap between the two
distributions, the adversarial detection is low. To this end, we use a dual-phase
training methodology to increase the distance between the SoI distributions and
improve the adversarial detection.

In the first phase of training, we train the first layer of the DNN to increase the
separation between the clean and adversarial SoIs. For this, we use a loss function

Fig. 9 (a) The clean and adversarial SoI distributions at the first layer have an inherent separation
which motivates the use of SoI like hardware signature for adversarial detection. (b) After Phase1
training, the SoI distributions are separated. For both the figures, SoI PGD corresponds to first
layer SoI values for PGD with .ε = 16/255

446 P. Panda et al.

shown in Eq. (8). Here, we scale down the cross-entropy loss .LCE by a small value
(of the order .10−3). The loss function minimizes the distance between the desired
SoI values (. λc and . λa) and the calculated mean of the SoI distributions (.SoIc and
.SoIa).

The Phase1 training effectively increases the distance between the clean and
adversarial SoI distributions as seen in Fig. 9b. At this stage, strong adversarial
attacks are easily detected as a result of large SoI separation. However, weak
attacks are not sufficiently detected as they have small SoI separation with the
clean samples. Note, here strong attacks refer to adversarial attacks with high . L∞
distance (large . ε value) and vice versa. Further, the DNN has very low accuracy on
clean inputs as the cross-entropy loss was significantly scaled down during Phase1
training. To improve the DNN’s accuracy on clean inputs and robustness against
weak adversarial attacks, we employ Phase2 adversarial training.

.L = βLCE + yLMSE(SoIa, λa) + (1 − y)LMSE(SoIc, λc) (8)

In the Phase2 training, we freeze the first layer of the DNN and perform
adversarial training [8, 48] with weak adversarial attacks. Freezing the first layer
weights preserves the SoI separation at the first layer obtained after Phase1
training. Finally, after the dual-phase training, a high clean accuracy is obtained.
Additionally, weak adversarial attacks are suitably classified while strong attacks
are detected.

After the Phase2 training, we create a SoI-Probability Look-Up Table (LUT)
that classifies a given SoI value as a clean or an adversarial sample. As seen in
Fig. 10, we randomly sample a set of clean images from the training set and create
their adversarial counterparts using PGD .ε = 8/255 attack. Then, we compute the
clean and adversarial SoI distributions (. Dc and . Da). Using, . Dc and . Da , we compute
the P(clean) values using Eq. (9). Here, . nc and . na are the number of clean and
adversarial samples, respectively, at a particular SoI value. A high P(clean) value

Fig. 10 The SoI-Probability LUT contains sample SoI values and their corresponding P(clean)
values. It classifies a given SoI sample as clean or adversarial

Robustness for Embedded Machine Learning Using In-Memory Computing 447

Fig. 11 After Phase1 training, some weak adversarial attacks might go undetected. Phase2
adversarial training helps classify the weak adversarial samples that further brings down the error

signifies that a given SoI value corresponds to a clean sample and vice versa. The
SoI-Probability LUT contains sample SoI values and their corresponding P(clean)
values.

.P(Clean) = nc

nc + na

(9)

In Fig. 11, we show the efficacy of the Phase2 training in defending against weak
PGD attacks. For this we plot the error values of a baseline DNN (without DetectX),
a DNN with the first layer subjected to Phase1 training followed by Phase2 training.
Here, error is defined as the amount of adversarial attacks that are undetected and are
misclassified by the DNN. Clearly, most of the weak attacks are suitably detected
after Phase1 training leading to a large drop in the error value. However, Phase 2
adversarial training helps classify the undetected weak attacks correctly leading to
a further drop in error.

We implement the dual-phase trained DNN on an analog crossbar-based end-to-
end DNN evaluation platform called Neurosim [49]. Neurosim [49] is a Python-
based platform that performs a holistic energy-latency-accuracy evaluation of
analog crossbar-based DNN accelerators. The Neurosim platform supports both
SRAM and memristive computing devices (ReRAM and FeFET). For adversarial
detection, we design a fully digital DetectX module (shown in Fig. 12) on 32 nm
CMOS that contains digital circuits to compute the SoI value and the SoI-Probability
LUT that is used to classify a given SoI value as clean or adversarial. For
hardware evaluation, a dual-phase trained VGG16 model (trained on CIFAR100)
is implemented on a 128 . × 128 memristive crossbar with device on-off ratio of
10 and .Ron = 10 k. Ω . The DetectX module is appended at the end of the first
layer crossbar. The energy evaluation of the DetectX module is performed using
SPICE simulations. Based on the 128 . × 128 crossbar Neurosim implementation, we
find that the DetectX module only adds 2.6 nJ to the hardware cost for adversarial

448 P. Panda et al.

Fig. 12 The DetectX module is implemented on a fully digital 32 nm CMOS technology. It can
directly interface with an analog crossbar (8 . × 8 crossbar shown for illustration). The module
contains circuits for computing the SoI signature and classifying the SoI value as clean or
adversarial

Fig. 13 ROC-AUC scores, Error and Accuracy values for the DNN . +DetectX system with
different image datasets and adversarial attacks.Wemention the adversarial attacks used for Phase1
and Phase2 training corresponding to each dataset. D and B denote the DNN . +DetectX system and
baseline model, respectively. The baseline model is a DNN trained on clean inputs using standard
stochastic gradient descent and does not contain the DetectX module

detection. Compared to prior adversarial detection works that use large neural
network-based detector modules [16–18], DetectX consumes about 25x less energy
for adversarial detection.

DetectX significantly improves the adversarial robustness of the DNN. In Fig. 13,
we show the ROC-AUC score of the DetectX module under different FGSM and
PGD attacks across CIFAR10, CIFAR100 and TinyImagenet datasets. A high ROC-
AUC score greater than 0.5 denotes reliable adversarial detection. Due to the high
ROC-AUC score, the error of the DNN . +DetectX system is significantly lower
compared to the baseline DNN without the DetectX module. Further, due to the
introduction of the DetectX module, the accuracy on clean inputs slightly drops.
However, the drop is marginally low.

Robustness for Embedded Machine Learning Using In-Memory Computing 449

Fig. 14 With increasing device-device variations in a memristive crossbar (left), the adversarial
detection performance decreases slightly. Further, with increasing device on-off ratio (middle), and
decreasing crossbar sizes (right), the detection performance increases. Non-idealities negatively
impact the detection performance of DetectX

Fig. 15 Energy required per
detection operation for
different works [16, 18].
DetectX consumes more than
25x less energy for detection
compared to prior works

As DetectX is integrated in a crossbar platform like Neurosim, it is important
to understand the effects of crossbar non-idealities on the detection performance
of DetectX. Figure 14(left) shows that the detection performance decreases with
increasing device-device variations in the memristive crossbars [50]. The device
variations introduce variations in the SoI value computation which ultimately nega-
tively affect the detection performance. However, even at large weight variations, the
ROC-AUC score is still greater than 0.5 which suggests reliable detection. Next, we
show the effects of different memristive device on-off ratios (Fig. 14(middle)) and
crossbar sizes (Fig. 14(right)) on DetectX’s detection performance. These results are
shown for the memristive device with 10% weight variations (shown with a circle).
Evidently, the detection performance increases with higher on-off ratios and lower
crossbar sizes. This is because with higher on-off ratios and lower crossbar sizes,
the non-ideal effects in crossbars decrease.

We further show how the DetectX method consumes significantly low energy
for adversarial detection compared to prior detection works [16–18]. Prior works
use large neural networks to perform adversarial detection. For a fair comparison,
these neural network-based detectors are implemented on the Neurosim platform
[49] and the energies are evaluated. As seen in Fig. 15 DetectX consumes about
50x less energy compared to Metzen et al. [16] and 25x less energy compared to
Sterneck et al. [18]. Note, here the energy values represent the energy required for
a single detection operation.

450 P. Panda et al.

5 Unleashing Robustness to Structure-Pruned DNNs
Implemented on Crossbars with Non-idealities

In the recent years, several crossbar-aware pruning techniques have been devised
that yield sparse DNN models. Owing to their high sparsity, these models require
significantly lower number of crossbars to be mapped, thereby introducing hardware
resource-efficiency not only in terms of crossbars but also peripheral circuits
interfacing the crossbars. Pruning algorithms such as, [28–31], produce structured
sparsity in DNNs that fit into crossbars as dense weight matrices [32]. These
structured pruning algorithms claim to preserve the accuracy of the pruned DNNs,
after implementation on crossbars, with minimal or no noticeable loss, while
bringing in high energy- and area-efficiencies. However, none of these works has
included the impact of the inexorable non-idealities (see Sect. 2.2) during inference
on crossbars. For a realistic hardware evaluation of the performance of increased
structured sparsity in DNNs mapped on crossbars, the inclusion of hardware non-
idealities is critical. In this section, we introduce a recent work [33] that draws
the focus of the research community towards a non-ideality aware evaluation of
various existing structured pruning algorithms and shows how increased sparsity
can degrade the robustness of DNNs on non-ideal crossbars. It also introduces
two hardware-centric non-ideality mitigation strategies, namely crossbar-column
rearrangement and Weight-Constrained-Training (WCT), to help improve the per-
formance or robustness of the sparse DNNs on crossbars with little or no training
overheads.

Crossbar-aware structured pruning of DNNs: There have been numerous works
on structured pruning of DNNs, such as channel/filter pruning or C/F pruning (see
Fig. 16(top)) wherein the unimportant filters and channels in a DNN (corresponding
to rows and columns in the weight matrix of the DNN) are pruned to obtain
a sparse 2D weight matrix [28, 29]. These pruned models result in significant
hardware savings in terms of reduced number of crossbars for mapping, thereby
bringing in energy- and area-efficiency for DNN implementation. Likewise, other
crossbar-aware pruning strategies include Crossbar-Column Sparsity (XCS) [30] or
Crossbar-Row Sparsity (XRS) [31] (XCS shown in Fig. 16(bottom)) that exploit
fine-grained sparsity by, respectively, pruning columns or rows of weights within
a crossbar [32]. Additionally, these works have claimed to preserve the inference
accuracy of the structure-pruned networks on crossbars with minimal or no dis-
cernible performance loss with respect to the unpruned ones. However, none of
the previous works has accounted for the non-idealities inherent in crossbar arrays
which raises concerns about the claimed performance of the highly pruned models
in the real scenario.

Robustness for Embedded Machine Learning Using In-Memory Computing 451

Fig. 16 Top: A representation of channel/filter pruning (C/F pruning). The blurred channels/filters
correspond to DNN weights pruned in a structured manner. Bottom: A representation of XCS
pruning (shown for a 4 . × 4 weight matrix mapped onto 2 . × 2 crossbars) that generates fine-grained
sparsity along crossbar columns

5.1 Hardware Evaluation Framework for Non-ideality
Integration During Inference

To map pretrained DNNs onto non-ideal memristive crossbars and investigate the
cumulative impact of the circuit and device-level non-idealities on their performance
during inference, a simulation framework in PyTorch is used by Bhattacharjee et al.
[33] as shown in Fig. 17). In the platform, a Python wrapper is built that unrolls
each and every convolution operation in the software DNN into MAC operations.
This yields 2D weight matrices for each DNN layer which are to be partitioned into
numerous crossbar instances. Before partitioning, based on the structured pruning
approach, the following transformations T on the sparse weight matrices W are
applied:

452 P. Panda et al.

Fig. 17 Python-based hardware evaluation framework for non-ideality aware DNN inference

1. .T (W) for C/F pruning: Here, for a given 2D weight matrix of a DNN layer,
all the columns bearing zero values are eliminated. Further, we also eliminate
rows of the weight matrix of the next DNN layer that interact with the output
feature maps corresponding to the columns of zero values in the previous layer.

2. .T (W) for XCS (or XRS): Here, within a given 2D weight matrix of a DNN
layer, there are chunks of successive zero weight vectors of the size of crossbar-
column (or crossbar-row) (see Fig. 16-Bottom) which are eliminated.

Note, for standard unpruned DNNs, the .T (W) is not required. The resulting
transformed weight matrices are then partitioned into multiple crossbar instances.
The subsequent stage of the platform converts the weights in the crossbars to
suitable conductances G (between .GMIN and .GMAX). Thereafter, the circuit-level
non-idealities (interconnect parasitics) and synaptic device variations are integrated
with the conductances. The various synapse parameters (e.g. .RMIN , .RMAX, device
ON/OFF ratio) and values of the non-idealities used for the subsequent experiments
are listed in the table shown in Fig. 17.

5.2 Are Structure-Pruned DNNs Also Robust on Hardware?

In [33], VGG11 and VGG16 DNNs area trained with structured sparsity (via C/F
pruning, XCS or XRS) using benchmark datasets such as, CIFAR10 and CIFAR100.
For the experiments with CIFAR10 dataset, the sparsity is set as .s = 0.8, while with
CIFAR100 dataset, the sparsity is .s = 0.6. The unpruned and pruned DNN models
are trained to have nearly equal software accuracies to conduct a fair comparison of
the impact of non-idealities when the models are mapped onto non-ideal crossbars
(see Table 1). The crossbar-compression-rates for the structure-pruned DNNs on
32 . × 32 crossbars are also shown in Table 1.

Robustness for Embedded Machine Learning Using In-Memory Computing 453

Table 1 Table showing software accuracies and crossbar-compression-rates (with 32 . × 32 cross-
bars) for the various DNN models with CIFAR10 and CIFAR100 datasets

Dataset: CIFAR10 Software accuracy (%) ‖ Crossbar-compression-rate

Network Unpruned C/F (s = 0.8) XCS (s = 0.8) XRS (s = 0.8)
VGG11 83.6 ‖ – 83.5 ‖ 19.69× 83.28 ‖ 4.26× 82.67 ‖ 4.88×
VGG16 84.48 ‖ – 83.65 ‖ 19.60× 82.06 ‖ 5.57× 83.47 ‖ 4.89×
Dataset: CIFAR100 Software accuracy (%)

Network Unpruned C/F (s = 0.6)
VGG11 53.29 ‖ – 52.72 ‖ 5.64×
VGG16 51.83 ‖ – 50.55 ‖ 4.20×

We find that the sparse DNNs have greatly reduced number of parameters
than their unpruned counterparts which results in significantly lesser number of
crossbars on hardware. However, the fewer parameters remaining in the sparse
DNNs are crucial for the model’s performance. Thus, any non-ideality interfering
with the fewer parameters of the sparse DNNs would have huge impact on the
DNN accuracy and hence, robustness on hardware. In Fig. 18a, we find that for
the VGG11/CIFAR10 model, the DNNs with structured sparsity (via C/F pruning,
XCS, XRS with .s = 0.8) suffer greater accuracy degradation than their unpruned
counterparts for crossbar sizes ranging from 16 . × 16 to 64 . × 64. Further, as we
increase the crossbar size, both the accuracies of unpruned and pruned networks
decline owing to increase in crossbar non-idealities [34, 39]. Specifically, on 64 . × 64
crossbars, the inference accuracy of the unpruned model reduces by .∼21% with
respect to the software baseline while, for the sparse DNNs pruned via C/F pruning,
XCS and XRS, the decline is .∼39%, .∼24% and .∼30%, respectively. Also, in
Fig. 18b, we find that on reducing the extent of sparsity in the C/F pruned DNNs
from .s = 0.8 to .s = 0.5, the performance degradation suffered by the pruned DNNs
is reduced. This validates the fact that greater sparsity, although leads to energy-
and area-efficient mappings on crossbars, increases the interference of crossbar
non-idealities, thereby hampering the performance and hence, the robustness of the
pruned networks.

In Fig. 18c, for the VGG16 DNN with CIFAR10 dataset, the trends are similar
to the case of the VGG11 DNN for XCS, XRS, and C/F pruning (.s = 0.8)
in case of 16 . × 16 and 32 . × 32 crossbars. However, in case of a larger 64. ×64
crossbar, we find that the performance of the network pruned by C/F pruning
exceeds that of the unpruned network. This is because unpruned DNNs require a
larger absolute number of crossbars for mapping than pruned ones. As a result,
the value of NF is expected to increase at a higher rate for unpruned DNN on
moving from 32 . × 32 to 64 . × 64 crossbars (see Fig. 18d). So, for larger crossbars,
the accuracy degradation for structure-pruned DNNs would decelerate compared to
their unpruned counterparts, which can even lead to better absolute accuracy of the
pruned networks than the unpruned ones.

Next, we discuss two crossbar-aware non-ideality mitigation strategies that can
help improve the robustness of structure-pruned DNNs on non-ideal crossbars.

454 P. Panda et al.

Fig. 18 Plot of inference accuracy versus crossbar size for (a) unpruned and structure-pruned (. s =
0.8) VGG11/CIFAR10 DNN. (b) Different values of sparsity (s) of a C/F pruned VGG11/CIFAR10
DNN. (c) Unpruned and structure-pruned (.s = 0.8) VGG16/CIFAR10 DNN. (d) Plot showing the
variation in average NF for unpruned and C/F pruned weight matrices on increasing the crossbar
size from 32 . × 32 to 64 . × 64

5.3 Non-ideality Mitigation Strategies for Increased
Robustness of Structure-Pruned DNNs

1. Crossbar-Column rearrangement (R): For the sparse DNNs obtained via C/F
pruning, a simple hardware-friendly transformation of column rearrangement R
has been proposed mapping weights onto non-ideal crossbars. This transforma-
tion is inspired from the fact that the impact of non-idealities (or non-ideality
factor NF) reduces for crossbars with higher proportion of low conductance
synapses [26, 44]. Additionally, this approach of column rearrangement does
not have any training overhead and is applied before the mapping of the DNNs
onto crossbars.
To understand column rearrangement R, consider a 4× 6 weight matrix W ,
after applying the transformation T , to be mapped onto 2× 2 crossbars (see

Fig. 19a). During the R transformation, we first compute the value of (μ × σ)
1
2

Robustness for Embedded Machine Learning Using In-Memory Computing 455

Fig. 19 (a) Pictorial representation of R transformation. (b) Heatmaps to visualize the impact
of R transformation on the weight matrices of 3rd and 5th layers of the VGG16/CIFAR10 DNN
trained with C/F pruning with s = 0.8

for each column from I–VI, where μ and σ , respectively, denote the mean and
standard deviation of the absolute values of weights in each column. Thereafter,

based on the increasing order of (μ × σ)
1
2 , we rearrange columns I–VI in

456 P. Panda et al.

Fig. 20 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a)
C/F pruned with transformation R (s = 0.8) VGG11/CIFAR10 DNNs. (b) C/F pruned with
transformation R (s = 0.8) VGG16/CIFAR10 DNNs. (c) C/F pruned with transformation
R (s = 0.6) VGG11/CIFAR100 DNNs. (d) C/F pruned with transformation R (s = 0.6)
VGG16/CIFAR100 DNNs

the manner shown. Now, in Fig. 19b, the impact of R transformation can be
visualized on the weight matrices of the 3rd and 5th convolutional layers
of the VGG16/CIFAR10 DNN (C/F pruned with s = 0.8) using heatmaps.
Before applying the transformation, the lighter (low conductance synapse) and
darker (high conductance synapse) points in the heatmaps are intermixed. Post
transformation, the lighter points are concentrated at the center of the heatmaps
and darker points are mostly near the peripheries. Thus, post R transformation,
when the DNN weight matrices are partitioned into multiple crossbar instances,
majority of the crossbars have greater proportions of low conductance synapses,
thereby mitigating the impact of crossbar non-idealities.
Figure 20a,b and c,d show that R transformation improves the performance of
the C/F pruned VGG11 and VGG16 DNNs. Specifically, ∼9% (∼6%) improve-
ment in accuracy is observed for VGG11 (VGG16) DNN on 64× 64 (32× 32)
crossbars with CIFAR10 dataset. We also find that on 32× 32 crossbars, the
accuracy of the pruned VGG16/CIFAR100 DNN post R transformation is ∼3%
greater than the unpruned counterpart.

Robustness for Embedded Machine Learning Using In-Memory Computing 457

Fig. 21 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a)
WCT+C/F pruned (s = 0.8) VGG11/CIFAR10 DNNs. (b) WCT+C/F pruned (s = 0.6)
VGG11/CIFAR100 DNNs

2. Weight-Constrained-Training (WCT): WCT is another non-ideality mitiga-
tion technique for the structure-pruned DNNs that is motivated by the NEAT
method described in Sect. 3. In WCT, based on the weight distribution of all
the layers of a trained DNN, a cut-off value Wcut is heuristically determined,
and the following transformation is then applied on the weights of the DNN:
W = min{|W |,Wcut)} ∗ sign(W). This transformation constrains the DNN
weights in the interval [−Wcut , Wcut]. With the above transformation, the
DNN is iteratively trained for 1–2 epochs, to maintain nearly iso-accuracy with
baseline. Note, the iterative training via WCT does not add any computational
overhead to the overall training time, thereby making it a viable choice. Similar
to NEAT, a WCT-DNN also results in greater proportion of low conductance
states on the crossbars, thus, reducing the impact of non-idealities. The resultant
sparse WCT-DNNs are then mapped onto crossbars. In Fig. 21a,b, we find that
the WCT-DNNs maintain their performance even on increasing the crossbar
size, making them robust against crossbar non-idealities. Further, WCT-DNNs
have better accuracy than the C/F pruned DNNs on crossbars. Specifically,
with CIFAR10 (CIFAR100) dataset, the WCT-DNN has ∼6% (∼7%) higher
accuracy than the unpruned model on 64× 64 (32× 32) crossbars.

6 Related Works

Recently, several crossbar-based In-Memory Computation (IMC) architectures and
frameworks have been proposed for efficiency-driven acceleration of DNNs [50–
54]. CONV-SRAM [50] proposes an energy-efficient static random access memory
(SRAM) with embedded dot-product computation capability, for the inference of
convolutional neural networks with binary weights. On the other hand, Kim et al.
[52] and Gokmen et al. [53] have proposed an architecture based on CMOS-based

458 P. Panda et al.

resistive processing unit (RPU) devices to achieve significant acceleration in DNN
training.

In ISAAC [51], Shafiee et al. designed and characterized a pipelined memristive
crossbar architecture and proposed a weight encoding scheme that reduces the
analog-to-digital conversion overheads. Additionally, Marinella et al. [54] imple-
ment an ReRAM crossbar-based DNN acceleration platform and characterize the
energy, latency, and area of the peripheral and crossbar components across different
technology nodes. Besides crossbar-based DNN acceleration platforms, end-to-
end hardware evaluation platforms such as Neurosim and PUMA [37, 49] provide
software-based scalable solutions to perform hardware evaluation of crossbar
implementations. While Neurosim [49] considers only NVM device variations
during DNN evaluation, PUMA [37] models other circuit-level and data-dependent
non-idealities by incorporating GenieX [34]. Few recent works such as RxNN
[23] and GenieX [34] have delved deeper into modelling the characteristics of
non-ideal crossbars. These non-idealities include crossbar-interconnect parasitics
and data-dependent selector non-linearities. While RxNN can suitably compute
data-independent non-idealities, GenieX incorporates both data-dependent and
independent crossbar non-idealities. With this, they provide accurate hardware-
realistic inference performance of crossbar-mapped DNNs.

However, none of these works has explored non-ideality aware crossbar-mapping
of DNN models for adversarial robustness. Furthermore, these works have not
delved into the correlation existing between sparsity in network weights and
crossbar non-idealities to highlight the vulnerabilities of sparse DNNs. Additionally
in prior works, the possibility of using inherent hardware signatures in the detection
of adversarial attacks and building adversarial robustness for crossbar-mapped
DNN models has not been well explored. This motivates us to present recent
works involving non-ideality aware mapping of DNNs onto crossbars for improving
their classification accuracy (robustness) in normal and/or adversarial scenarios
[26, 33]. In addition, examining hardware signatures in crossbars for energy-
efficient adversarial detection [27] is a key facet of this chapter. We present a
summary table (Table 2) for the convenience of the readers to qualitatively compare
the scope of different works based on memristive crossbar arrays pertaining to DNN
inference acceleration.

7 Conclusion

This chapter elucidates recent advances in the energy-efficient and robust imple-
mentation of DNNs on memristive crossbar array platforms. Specifically, we come
across works that use hardware-driven methods to improve the adversarial security
of DNNs on noisy crossbars without additional overhead of retraining or reduced
energy-efficiency. The first work (NEAT) improves the adversarial classification
capabilities on DNNs on crossbars, while the other work (DetectX) is an adversarial
detection method to guarantee robustness on crossbar platforms. Additionally, this

Robustness for Embedded Machine Learning Using In-Memory Computing 459

Table 2 Table comparing the scope of different memristive crossbar-based works for DNNs. The
works discussed in this chapter—DetectX [27], NEAT [26], and Bhattacharjee et al. [33] have
specifically added a new dimension of adversarial and sparsity-aware robustness which have not
been looked into in prior works

Xbar acceleration

End-to-
end
H/W Robustness

Work
Efficiency-
driven

Novel
weight
mapping Evaluation

Sparsity-
aware

Non-
ideality

Adversarial
attacks

CONV-SRAM [50] ✓ ✕ ✕ ✕ ✕ ✕
ISAAC [51]

Kim et al. [52]

Gokmen et al. [53]

Marinella et al. [54]

Neurosim [49] ✓ ✕ ✓ ✕ ✓ ✕
PUMA [37]

RxNN [23] ✓ ✕ ✕ ✕ ✓ ✕
GenieX [34]

DetectX [27] ✓ ✕ ✕ ✕ ✓ ✓
NEAT [26] ✓ ✓ ✕ ✕ ✓ ✓
Bhattacharjee et al.
[33] ✓ ✓ ✕ ✓ ✓ ✕

chapter highlights a study which corroborates that although increased structured
sparsity in weights is beneficial for resource-efficient implementation of DNNs on
crossbars, it compromises their classification accuracy (robustness) in a non-ideal
scenario. To this end, various hardware-based non-ideality mitigation approaches
have been proposed to improve the performance and hence, the robustness of sparse
DNNs on crossbars.

References

1. Reagen, B., et al.: Minerva: enabling low-power, highly-accurate deep neural network acceler-
ators. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 267–278. IEEE, Piscataway (2016)

2. Hadidi, R., et al.: Characterizing the deployment of deep neural networks on commercial
edge devices. In: 2019 IEEE International Symposium on Workload Characterization (IISWC),
pp. 35–48. IEEE, Piscataway (2019)

3. Chakraborty, I., et al.: Pathways to efficient neuromorphic computing with non-volatile
memory technologies. Appl. Phys. Rev. (2020)

4. Wong, H.-S.P., et al.: Metal–oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)
5. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition

performance under visual distortions. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7. IEEE, Piscataway (2017)

460 P. Panda et al.

6. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale (2016). Preprint.
arXiv:1611.01236

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2014). Preprint. arXiv:1412.6572

8. Madry, A., et al.: Towards deep learning models resistant to adversarial attacks (2017). Preprint.
arXiv:1706.06083

9. Carlini, N., et al.: On evaluating adversarial robustness (2019). Preprint. arXiv:1902.06705
10. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness (2019).

Preprint. arXiv:1904.08444
11. Qiu, H., et al.: Mitigating advanced adversarial attacks with more advanced gradient obfusca-

tion techniques (2020). Preprint. arXiv:2005.13712
12. Guo, C., et al.: Countering adversarial images using input transformations (2017). Preprint.

arXiv:1711.00117
13. Prakash, A., et al.: Deflecting adversarial attacks with pixel deflection. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 8571–8580 (2018)
14. Xie, C., et al.: Mitigating adversarial effects through randomization (2017). Preprint.

arXiv:1711.01991
15. Buckman, J., et al.: Thermometer encoding: one hot way to resist adversarial examples. In:

International Conference on Learning Representations (2018)
16. Metzen, J.H., et al.: On detecting adversarial perturbations (2017). Preprint. arXiv:1702.04267
17. Yin, X., Kolouri, S., Rohde, G.K.: Gat: generative adversarial training for adversarial example

detection and robust classification. In: International Conference on Learning Representations
(2019)

18. Sterneck, R., Moitra, A., Panda, P.: Noise sensitivity-based energy efficient and robust
adversary detection in neural networks. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2021)

19. Panda, P., Chakraborty, I., Roy, K.: Discretization based solutions for secure machine learning
against adversarial attacks. IEEE Access 7, 70157–70168 (2019)

20. Gui, S., et al.: Model compression with adversarial robustness: a unified optimization
framework. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems,
vol. 32. Curran Associates Inc., Red Hook (2019)

21. Sehwag, V., et al.: Hydra: pruning adversarially robust neural networks. Adv. Neural Inf.
Proces. Syst. 33, 19655–19666 (2020)

22. Panda, P.: QUANOS-adversarial noise sensitivity driven hybrid quantization of neural net-
works. Preprint. arXiv:2004.11233 (2020)

23. Jain, S., et al.: RxNN: a framework for evaluating deep neural networks on resistive crossbars.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020)

24. Bhattacharjee, A., Panda, P.: Rethinking non-idealities in memristive crossbars for adversarial
robustness in neural networks (2020). Preprint. arXiv:2008.11298

25. Roy, D., et al.: Robustness hidden in plain sight: can analog computing defend against
adversarial attacks? (2020). arXiv: 2008.1201

26. Bhattacharjee, A., et al.: NEAT: non-linearity aware training for accurate, energy-efficient
and robust implementation of neural networks on 1T-1R crossbars. In: IEEE Transactions on
Computer-Aided Design (2021)

27. Moitra, A., et al.: DetectX – adversarial input detection using current signatures in memristive
XBar arrays. In: IEEE Transactions on Circuits and Systems I (2021)

28. Wen, W., et al.: Learning structured sparsity in deep neural networks (2016). Preprint.
arXiv:1608.03665

29. Wang, P., et al.: SNrram: an efficient sparse neural network computation architecture based
on resistive random-access memory. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC) (2018)

30. Liang, L., et al.: Crossbar-aware neural network pruning. IEEE Access (2018)

Robustness for Embedded Machine Learning Using In-Memory Computing 461

31. Lin, J., et al.: Learning the sparsity for ReRAM:mapping and pruning sparse neural network for
ReRAM based accelerator. In: ASPDAC ’19: Proceedings of the 24th Asia and South Pacific
Design Automation Conference (2019)

32. Chu, C., et al.: PIM-prune: fine-grain DCNN pruning for crossbar-based process-in-memory
architecture. In: 2020 57th ACM/IEEE Design Automation Conference (DAC) (2020)

33. Bhattacharjee, A., Bhatnagar, L., Panda, P.: Examining and mitigating the impact of crossbar
non-idealities for accurate implementation of sparse deep neural networks. In: 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2022)

34. Chakraborty, I., et al.: GENIEx: a generalized approach to emulating non-ideality in memristive
Xbars using neural networks (2020). Preprint. arXiv:2003.06902

35. Liu, B., et al.: Vortex: variation-aware training for memristor x-bar. In: Proceedings of the 52nd
Annual Design Automation Conference, pp. 1–6 (2015)

36. Lee, S., et al.: Learning to predict IR drop with effective training for ReRAM-based neural
network hardware. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6.
IEEE, Piscataway (2020)

37. Ankit, A., et al.: PUMA: a programmable ultra-efficient memristor-based accelerator for
machine learning inference. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 715–731
(2019)

38. Ansari, M., et al.: PHAX: physical characteristics aware ex-situ training framework for
inverter-based memristive neuromorphic circuits. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(8), 1602–1613 (2017)

39. Bhattacharjee, A., Moitra, A., Panda, P., Efficiency-driven hardware optimization for adversar-
ially robust neural networks. In: Design, Automation and Test in Europe Conference (DATE)
(2021)

40. Chen, P.-Y., et al.: Mitigating effects of non-ideal synaptic device characteristics for on-chip
learning. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 194–199. IEEE, Piscataway (2015)

41. Agrawal, A., Lee, C., Roy, K.: X-CHANGR: changing memristive crossbar mapping for
mitigating line-resistance induced accuracy degradation in deep neural networks (2019).
Preprint. arXiv:1907.00285

42. Liu, B., et al.: Reduction and IR-drop compensations techniques for reliable neuromorphic
computing systems. In: 2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 63–70. IEEE, Piscataway (2014)

43. He, Z., et al.: Noise injection adaption: end-to-end ReRAM crossbar nonideal effect adaption
for neural network mapping. In: Proceedings of the 56th Annual Design Automation Confer-
ence 2019, pp. 1–6 (2019)

44. Bhattacharjee, A., et al.: SwitchX: gmin-gmax Switching for energy-efficient and robust imple-
mentation of binary neural networks on ReRAM Xbars (2021). Preprint. arXiv:2011.14498

45. Sun, X., Yu, S.: Impact of non-ideal characteristics of resistive synaptic devices on implement-
ing convolutional neural networks. IEEE J. Emerging Sel. Top. Circuits Syst. 9(3), 570–579
(2019)

46. Li, T., et al.: Sneak-path based test and diagnosis for 1r RRAM crossbar using voltage bias
technique. In: Proceedings of the 54th Annual Design Automation Conference 2017, pp. 1–6
(2017)

47. Wang, Z., et al.: Ferroelectric tunnel memristor-based neuromorphic network with 1T1R
crossbar architecture. In: 2014 International Joint Conference on Neural Networks (IJCNN),
pp. 29–34. IEEE, Piscataway (2014)

48. He, Z., Rakin, A.S., Fan, D.: Parametric noise injection: trainable randomness to improve
deep neural network robustness against adversarial attack. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 588–597 (2019)

49. Chen, P.-Y., Peng, X., Yu, S.: NeuroSim: a circuit-level macro model for benchmarking neuro-
inspired architectures in online learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(12), 3067–3080 (2018)

462 P. Panda et al.

50. Biswas, A., Chandrakasan, A.P.: CONV-SRAM: an energy-efficient SRAM with in-memory
dot-product computation for low-power convolutional neural networks. IEEE J. Solid State
Circuits 54(1), 217–230 (2018)

51. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44(3), 14–26 (2016)

52. Kim, S., et al.: Analog CMOS-based resistive processing unit for deep neural network training.
In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 422–425. IEEE, Piscataway (2017)

53. Gokmen, T., Vlasov, Y., Acceleration of deep neural network training with resistive cross-point
devices: design considerations. Front. Neurosci. 10, 333 (2016)

54. Marinella, M.J., et al.: Multiscale co-design analysis of energy, latency, area, and accuracy of
a ReRAM analog neural training accelerator. IEEE J. Emerging Sel. Top. Circuits Syst. 8(1),
86–101 (2018)

Adversarial ML for DNNs, CapsNets,
and SNNs at the Edge

Alberto Marchisio, Muhammad Abdullah Hanif, and Muhammad Shafique

1 Introduction

The use-cases of Machine Learning (ML) applications have been significantly
growing in recent years. Among the ML models, Deep Neural Networks (DNNs),
which stack several layers of neurons, have demonstrated to solve complex tasks
with high accuracy. Capsule Networks (CapsNets) have established as prominent
ML models due to their high learning capabilities. Moreover, Spiking Neural
Networks (SNNs) emerged as biologically plausible models, in which their spike
event-based communication provides energy-efficient capabilities to be employed
in low-power and resource-constrained devices [9, 10].

On the other hand, ML systems are expected to be reliable against multiple
security threats. Several studies highlighted that one of the most critical issues is
represented by the adversarial attacks, i.e., small and imperceptible input perturba-
tions that cause misclassifications. Moreover, as highlighted in Fig. 1, also other ML
vulnerabilities cause serious concerns questioning the deployment of ML models in
safety-critical applications. Therefore, the ML community analyzed and proposed
several attack methodologies and defensive countermeasures [77]. While the attacks
and defenses for DNNs have been extensively studied, the security of advanced ML
models such as CapsNets and SNNs is still in its emerging phase and needs more
thorough investigations.

After discussing the security challenges for ML systems and the taxonomy of
adversarial ML, this chapter provides an overview of the security threats for DNNs,

A. Marchisio (�)
Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: alberto.marchisio@tuwien.ac.at

M. A. Hanif · M. Shafique
eBrain Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_18

463

 31368 2385 a 31368 2385 a

 885 52970 a 885 52970 a

mailto:alberto.marchisio@tuwien.ac.at
mailto:alberto.marchisio@tuwien.ac.at
mailto:alberto.marchisio@tuwien.ac.at
mailto:alberto.marchisio@tuwien.ac.at

 885
56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18
https://doi.org/10.1007/978-3-031-40677-5_18

464 A. Marchisio et al.

CapsNets, and SNNs, focusing on recent advancements, current trends, and unique
possibilities for specific ML models to enhance their robustness.

2 Security Challenges for ML

Recent works [14, 77, 78, 96] have shown that ML-based systems are vulnerable
to different types of security and reliability threats (see Fig. 1), which can span
from maliciously injected perturbations, such as adversarial attacks, hardware
Trojans, or injected faults, to natural misfunctioning of the system, like permanent
faults generated during chip fabrication, aging, and process variations. Moreover,
the leakage of sensitive and confidential data, including the intellectual property
of the ML model (e.g., architecture and parameters) and training dataset, have
raised several privacy issues. While the adversarial ML issues will be extensively
discussed in the rest of the chapter, this section briefly introduces the other types of
vulnerabilities.

2.1 ML Privacy

Due to the massive performance and computational power of high-end GPU-HPC
workstations, it is possible to conduct ML tasks using a massive amount of data on a
large scale. If such data is collected from users’ private information, such as private
images, interests, web searches, and clinical records, the ML deployment toolchain
will have access to sensitive information that could potentially be mishandled.
The privacy attacks for ML can be classified into two categories, namely Model
Extraction Attacks and Model Inversion Attacks. While the former category aim

Hardware TrojansMachine Learning-based System

Adversarial Attacks

Stop Sign Speed Limit
(60km/h)

+ ��
1 0 0 0 1 0

1 0 0 1 01

Soft Errors,
Aging,
Process

Variations

Permanent or Transient Faults Privacy
Training

Data
Learned
Model

ML-Based
Service

Model
Inversion
Attacks

Model
Extraction

Attacks

Fig. 1 Vulnerability threats for ML-based systems, their manifestation and impact on their
functionality

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 465

at extracting private information of the ML model (e.g., model parameter, model
architecture), the latter threatens the sensitive features of the training data.

• Model Extraction Attacks: The goal of the adversary is to duplicate the parameters
and hyperparameters of the model to provide ML services, and to compromise
the ML algorithms’ confidentiality and intellectual property of the service
provider [87, 92].

• Model Inversion Attacks: The adversary aims to infer sensitive information from
the training data. Membership inference attacks [81] can infer whether a sensitive
record belongs to the training set when the ML model is overfitted, While Property
Inference Attacks [19] infer specific properties that only hold for a fraction of the
training data.

There are currently four possible categories of techniques that can be applied to
avoid these leakages of sensitive information:

• Differential Privacy: The goal is to prevent the adversary from inferring whether a
specific data was used to train the target model, such that the ML algorithm learns
to extract features of the training data without disclosing sensitive information
about individuals. The privacy is guaranteed through a randomization mechanism,
which could be based on injecting noise into the stochastic gradient descent
process (Noisy SGD [1]) or through the Private Aggregation of Teacher Ensem-
bles (PATE) method [65], in which a “student” model receives the knowledge
transferred from an ensemble of “teacher” models.

• Homomorphic Encryption: It is an encryption scheme .x → y, in which the
ML computations are conducted on ciphertexts y, and the decrypted output in
plaintext x matches the result that would have been computed without encryption.
As long as the decryption key is unknown to the adversary, the data remains
confidential. Since the Fully Homomorphic Encryption (FHE) system [20] dra-
matically increases the computational complexity of the ML algorithm, a partial
homomorphic encryption system [63] which supports only certain operations in
the ciphertext domain, such as additions or multiplications, is more suited for
complex computations. In the context of ML, CryptoNets [21] performs DNN
inference on encrypted data, while Nandakumar et al. [60] extends the encryption
support to the whole training process.

• Secure Multi-Party Computation: The basic idea consists of distributing the
training/testing data across multiple servers and training/inferring the ML model
together, while each server does not have access to the training/testing data of
the other servers. Different privacy-preserving ML protocols have been proposed,
including SecureML [59], MiniONN [44], DeepSecure [74], Gazelle [31], and
SecureNN [91].

• Trusted Execution Environment: Additional hardware is used to create a secure
and isolated computation environment in which the ML algorithms are exe-
cuted [47]. In this way, the e integrity and confidentiality of the data and codes
loaded inside the protected regions are guaranteed.

466 A. Marchisio et al.

However, these privacy-preserving methods significantly increase the computa-
tional overhead and require customization for specific ML models at the software
and hardware levels to improve the efficiency of computations.

2.2 Fault Injection and Hardware Trojans on ML Systems

Hardware-level security vulnerabilities for ML systems include fault injection
techniques (e.g., bit-flips) and the injected hardware Trojans into ML accelerators.
Generically speaking, an adversary can flip the bits of data stored into the SRAM
and DRAM memory cells through laser injection [2] or Row-Hammer attacks [35].

• Fault Injection Attack Methodologies aim at finding the most sensitive locations in
which to inject faults [45, 89]. The Bit-Flip Attack [72] finds the most vulnerable
bits of the ML model parameters using a progressive bit search method, while the
Practical Fault Attack [7] injects faults into ML activations.

• Hardware Trojans are maliciously introduced hardware injected during chip
fabrication that only activate when triggered. They represent serious threats when
the hardware devices are manufactured in off-shore fabrication facilities, thus
increasing the risk of facing untrusted supply chains. In the context of ML
accelerators, Clements et al. [12] designed hardware Trojans for the ML activation
function, and in NeuroAttack, the Trojan consists of flipping the values of certain
bits of ML models. In both methods, the hardware Trojan is triggered by a
carefully designed input pattern.

The defensive countermeasures to mitigate against the above-discussed vulner-
abilities are based on improving the resiliency of ML accelerators and memory
systems and detecting Trojans.

• Fault tolerance methods, similarly to the soft error mitigation methodologies,
aim at improving the resiliency of ML applications. Such defensive techniques
are based on hardware redundancy [62], range restriction [11], or weight recon-
struction [40]. More specifically, the algorithm-based fault tolerance (ABFT)
method [97] detects and corrects errors in the convolutional layers.

• Trojan detection methods are based on runtime monitoring [18] of the ML
accelerator. The operations executed in the hardware device are constantly
monitored, and any eventual functionality violation due to an inserted hardware
Trojan or other reasons can be immediately detected and notified.

2.3 ML Systems Reliability Threats

Unlike the vulnerability threats that are intentionally injected by malicious adver-
saries, ML systems are subjected to reliability threats that undermine their correct

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 467

functionality. The continuous underscaling of the technology nodes in which the
chips are fabricated has significantly increased the probability that hardware circuits
are affected by permanent or transient faults and has accelerated the aging process.

• Permanent Faults: These process variations represent imperfections that are
generated during the fabrication of integrated circuits [71]. High rates of such
process variations result in permanent faults, which dramatically decrease the
yield of the wafer fabrication.

• Transient Faults: Soft errors are bit-flips caused by high-energy particle strikes
or induced by other radiation events [6]. They are categorized as transient errors
since the faulty cells are not permanently damaged, but these faults vanish once
new data is written into the same locations.

• Aging: The electronic circuits gradually degrade over time [32], due to various
physical phenomena, like Hot Carrier Injection (HCI), Bias Temperature Instabil-
ity (BTI), and Electromigration (EM). These effects can manifest as transistors’
threshold voltage increase, which causes timing errors and permanent faults over
time.

Conventional fault mitigation techniques such as Dual Modular Redundancy
(DMR) [88], Triple Modular Redundancy (TMR) [48], and Error-Correcting Codes
(ECC) [69] can be applied, but they incur huge overheads, which makes them
impractical for ML applications. Therefore, ad-hoc cost-effective mitigation tech-
niques need to be applied.

• Permanent faults mitigation: To mitigate permanent faults due to process varia-
tions in ML accelerators, different techniques have been proposed. Fault-Aware
Training (FAT) and Fault-Aware Pruning (FAP) [95] incorporate the information
of faults into the training process and bypass the faulty components. To avoid the
re-training overhead, Fault-Aware Mapping techniques such as SalvageDNN [28]
are based on mapping the least significant weights on the faulty units.

• Soft error mitigation: To mitigate transient faults, generic fault-tolerant methods
like Ranger [11] and ABFT [97] can be applied. Moreover, FT-ClipAct [30] uses
clipped activation functions that are mapped into pre-specified values within a
range that has the lowest impact on the output, and Sanity-Check [61] protects
fully connected and convolutional layers of ML models employing spatial and
temporal checksums that exploit the linearity property.

• Aging mitigation: The effects of timing errors that occur in the computa-
tional units of ML accelerators can be mitigated with ThUnderVolt [94] and
GreenTPU [64]. The NBTI aging of on-chip SRAM-based memory cells in ML
accelerators is mitigated with the DNN-Life framework [29] that employs read
and write transducers to balance the duty-cycle in each SRAM cell.

468 A. Marchisio et al.

3 Taxonomy of Adversarial ML

Given an ML model M , an input x, and its output prediction label .ytrue, the goal of
classical ML is to make a correct prediction, i.e., the predicted output . y = M(x)

is equal to .ytrue. On the contrary, an adversarial attack method aims at generating a
misclassification by introducing a small noise . ε to the input, such that the adversarial
example .x′ = x + ε is incorrectly classified (.M(x′) �= ytrue). Due to the wide
variety of adversarial attack typologies and threat models, it is important to define a
common taxonomy for their categorization. Towards this, we discuss four different
features of adversarial attacks and their possible types. An overview of the taxonomy
is shown in Fig. 2.

• Attacker Knowledge: It refers to what is the threat model in which the adversary
operates and what are the accessible data and features. In white-box attacks, the
adversary has full knowledge about the ML model, its parameters, the training
algorithm, and the training data. On the contrary, black-box attacks assume no
knowledge about the ML model. Hence the adversary can only craft an adversarial
example by sending a series of queries and analyzing the vulnerability based
on the corresponding outputs. Moreover, in the literature, there exist different
attacker knowledge assumption models referred to as grey-box attacks, in which
the adversary knows more features than for black-box attacks, but does not have
full access like under the white-box assumption.

Training a�acks (Poisoning or Backdoor A�acks):
The adversary alters the training process to create

specific classifica�on errors.

White-Box: The adversary knows training data,
model parameters, and model architectures

Target

Evalua�on
Metrics

A�acker
Knowledge Black-Box: The adversary only knows inputs and

outputs, thus viewing the ML model as a black-box

Targeted A�ack: The adversarial example is
classified as a specific target class

Untargeted A�ack: The adversarial example can be
classified as any class different from the original

Phase of ML
flow Inference a�acks (Evasion a�acks): The adversary

perturbs an input in a way that it seems normal for
a human but is wrongly classified by ML models.

Success Rate: How many adversarial examples are
successfully misclassified by the ML model

Perturba�on: Distance between the original input
and the cra�ed adversarial example

Taxonomy of
Adversarial ML

Fig. 2 Categorization of different types of adversarial attack methods and their taxonomy

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 469

• Adversarial Goal: It refers to the scope of the attack algorithm. If the goal is
simply a misclassification, the attack is untargeted since any class different from
the correct one can be the prediction of the adversarial example. On the other
hand, in a targeted attack, the adversary produces adversarial examples that force
the output of the ML model to predict a specific class.

• Phase of ML Flow: It refers to the stage of the ML development in which the
adversary operates. In training attacks, the adversary poisons the training data
by injecting carefully designed samples to force the ML model to learn wrong
features that can later be used to generate specific misclassifications. On the
contrary, in evasion attacks that operate at the inference stage, the adversary tries
to evade the system by crafting malicious samples that force the ML model to
make false predictions.

• Evaluation Metrics: It refers to the quantitative methods for measuring the
strengths of the attacks, and easily accessible comparison metrics. To evaluate
the robustness of the attack, the success rate measures the number of adversarial
examples that are misclassified by the ML model. Since a well-designed attack
needs to be imperceptible, i.e., hardly distinguishable from the original input
by a human eye, the perturbation measures the distance between the adversarial
example and the original (clean) input.

4 Security for DNNs

Due to their high accuracy on many tasks, DNNs are prime candidate algorithms to
be applied to safety-critical applications. However, due to the security vulnerabilities
that undermine their correct functionality, several defensive countermeasures need
to be applied. An overview of adversarial attacks and defenses applied to the DNN
design flow is shown in Fig. 3.

Physical
World

Training
Data

Trained
DNN Model

Op�mized
DNN Model

Inference
Applica�on

Data
Collec�on

Training
Methods

Efficiency
Op�miza�ons

DNN Model
Deployment

DNN Training Phase DNN Tes�ng Phase
DNN Design Flow

Physical
World

A�acks

Poisoning
A�acks

Evasion
A�acks

Adversarial
A�ack

Methods

Poisoning
Defense

Data
Augmenta�on

DNN
Quan�za�on

Pre-Processing
Filters

Adversarial
Defense
Methods

A

Fig. 3 Adversarial attacks and defenses applied in different stages of the DNN design flow

470 A. Marchisio et al.

4.1 Adversarial Attacks

As previously discussed, the adversarial attacks can be categorized into different
types based on the adversary’s knowledge, goal, and phase of the ML flow. Due to
the mainstream usage of DNNs, several attack methodologies have been proposed.
The following list discusses the most prominent ones:

• Poisoning Attacks: At the training stage, the training data can be poisoned with
contaminated inputs. Based on the principles of Genetic Adversarial Networks
(GANs), Goodfellow et al. [22] devised a procedure to generate samples similar to
the training set, having almost identical distribution. This method inspired many
of the successive adversarial attack methodologies. Poisoning Attacks [76] alter
the training dataset to modify the decision boundaries of the DNN classifiers.
Backdoor Attacks [24] aim at training the DNN for a carefully crafted noise
pattern (acting as a backdoor) while maintaining high accuracy on its intended
task. However, when such a backdoor trigger is present at the input of the DNN,
a targeted misclassification is achieved.

• Evasion Attacks: Different evasion attack methodologies were proposed. In
white-box settings, gradient-based attacks like the Fast Gradient Sign Method
(FGSM) [23] and its iterative version, the Projected Gradient Descent (PGD) [50]
exploit the gradient of the DNN output predictions w.r.t. the inputs to craft the
adversarial perturbations as imperceptible noise that make the DNN classifier
cross the decision boundary. In black-box settings, the One Pixel Attack [85]
demonstrated to misclassify DNN models by changing only one pixel intensity.
fakeWeather attacks [55] emulate the effect of atmospheric conditions to fool
DNNs. Decision-based attacks [8] are a subset of evasion attacks in which
the adversary does not have access to the output probabilities but only to the
prediction. For instance, the FaDec attack [34] jointly optimizes the number of
queries and the perturbation distance between the adversarial example and the
clean example to fool DNNs.

• Attacks in the Physical World: While the aforementioned attacks mainly make
modifications in the experimental settings, the adversarial attacks can also be
applied in real life by introducing physical modifications [38]. Examples of phys-
ical world attacks have been showcased in the context of road sign classification
by adding stickers [17], in the context of object detection by adding adversarial
patches [86], or in face detection using eyeglasses with special frames [79].

4.2 Adversarial Defenses

The large variety of adversarial attacks led to the design of several types of defenses,
which can be summarized and grouped into the following categories:

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 471

• Poisoning Defenses: To mitigate against poisoning attacks, several defensive
countermeasures have been proposed. Outlier detection-based defenses [67] filter
out training sample outliers, which most likely correspond to poisoned samples.
Since typically backdoor attacks exploit the sparsity of DNNs, the Fine-Pruning
method [46] defends against backdoor attacks by eliminating the neurons that are
dormant for clean inputs in the backdoor network.

• Data Augmentation: The basic principle of Adversarial Training [50] is to extend
the training example with the adversarial examples, for instance, generated with
the PGD attack. In this way, the DNN models achieve higher robustness against
such perturbations. This method is considered very effective to defend against
adversarial attacks, but its high computation overhead pushes the community to
search for efficient optimizations of this procedure.

• Quantization: The optimization techniques employed to improve the energy -
efficiency of DNNs can also achieve higher robustness against adversarial attacks.
The Defensive Quantization method [42] demonstrated that the adversarial noise
magnitude remains contained in quantized DNNs. The QuSecNets method [33]
selects the quantization levels based on the DNN resilience and computes the
appropriate quantization threshold values based on an optimization function.
Other approaches, such as Defensive Approximation [27] are promising, but the
work of Siddique et al. [83] demonstrated that approximate computing cannot be
referred to as a universal defense technique against adversarial attacks.

• Pre-Processing Filters: Another common technique to improve the DNN robust-
ness against adversarial attacks is to employ pre-processing filters. The basic idea
of this approach is to view the adversarial perturbation as a noise added to the
input, which can be filtered out at runtime. Methods based on Sobel filters [3]
and randomized smoothing [13] demonstrated that the pre-processing filters have
a smoothing effect and significantly reduce the adversarial success rate.

5 Security for Capsule Networks

CapsNets have emerged as efficient ML models which encode hierarchical informa-
tion of the features through multi-dimensional capsules [75]. Based on the principle
of inverse graphics, the CapsNets from the image pixels encode the pose of low-
level features, and from these low-level features encode the higher-level entities.
Moreover, to overcome the translation-invariance issue that affects traditional
DNNs, the max-pooling layers are replaced by the iterative dynamic routing-by-
agreement algorithm, which determines the values of the coupling coefficients
between low-level capsules and higher-level capsules at runtime. Therefore, it is key
to analyze the security vulnerabilities of CapsNets and compare their robustness to
the traditional DNNs.

472 A. Marchisio et al.

5.1 Robustness Against Affine Transformations

Before studying the vulnerability of CapsNets under adversarial examples, their
robustness against affine transformation is studied [51]. This analysis is key
to determining how affine transformations, which are perceptible yet plausible
perturbations appearing in the real world, can or cannot fool the networks under
investigation. We apply three different types of transformations, which are rotation,
shift, and zoom, on the images of the GTSRB dataset [84]. For the evaluation,
we compare the CapsNet model [36] with a 9-layer VGGNet [93] and a 5-layer
LeNet [39].

Figure 4 shows some examples of affine transformations applied to the images
of the GTSRB dataset. Both the CapsNet and the VGGNet can be fooled by some
affine transformations, like zoom or shift, while the prediction confidence of the
CapsNet is lower. Moreover, as expected, the LeNet is more vulnerable to this kind
of transformations due to its lower number of layers and parameters compared to the
VGGNet. The CapsNet, on the other hand, is able to overcome a lower complexity
than the VGGNet in terms of the number of layers and parameters. Indeed, as
noticed in the example of the STOP image rotated by 30. ◦, the confidence is lower,
but both the CapsNet and the VGGNet are able to classify it correctly, while the
LeNet is fooled.

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8×

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8×

CapsNet
Predic�on STOP STOP STOP ROAD WORK STOP YELD STOP

Probability 0.057 0.056 0.050 0.026 0.032 0.037 0.054

VGGNet
Predic�on STOP STOP STOP GENERAL CAUTION STOP YIELD STOP

Probability 1.000 0.999 0.999 0.735 0.747 0.900 0.999

LeNet
Predic�on STOP STOP STOP YIELD GO STRAIGHT OR LEFT YIELD STOP

Probability 0.999 0.999 0.984 0.574 0.668 0.999 0.989

CapsNet
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 BYCICLES CROSSING KEEP RIGHT TRAFFIC SIGNALS SPEED LIMIT 30

Probability 0.056 0.055 0.045 0.032 0.027 0.024 0.058

VGGNet
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 30 SPEED LIMIT 30

Probability 1.000 1.000 1.000 0.629 0.433 0.870 1.000

LeNet
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 50 SPEED LIMIT 30

Probability 1.000 1.000 0.999 0.830 0.999 0.440 0.999

Fig. 4 Predicted classes and their probability associated with the prediction confidence, com-
paring the CapsNet, VGGNet, and LeNet, under different affine transformations applied to two
examples of the GTSRB dataset [51]

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 473

5.2 Robustness Against Adversarial Attacks

Besides the vulnerability against affine transformations, the robustness against
adversarial attacks is a key metric to analyze when evaluating the security. The
CapsAttack methodology [51] evaluates the adversarial robustness of CapsNets and
other DNNs under a novel adversarial attack generation algorithm (see Fig. 5) and
analyzes in detail the output probability variations of single images under attack.

5.2.1 Adversarial Attack Methodology

The goal of an efficient adversarial attack is to generate imperceptible and robust
examples to fool the network. An adversarial example can be defined imperceptible
if the modifications of the original sample are so small that humans cannot notice
them. Therefore, the perturbations added in high variance zones are less evident and
more difficult to be detected, compared to the perturbations applied in low variance
pixels. To measure the imperceptibility, we measure the distance D between the
original sample X and the adversarial sample X*. This value indicates the total
amount of perturbation added to all the pixels in the image. We also define . DMAX

as the maximum total perturbation tolerated by the human eye.
Moreover, an adversarial example can be defined robust if the gap between

the probability of the target class and the probability of the highest class is
maximized. A gap increase makes the adversarial example more robust, since the
modifications of the probabilities caused by the image transformations (e.g., resizing
or compression) tend to be less effective. Indeed, if the gap is high, a small variation
of the probabilities may not be sufficient to change the prediction.

As shown in Fig. 5, the CapsAttacks methodology is based on an iterative
procedure that automatically produces targeted imperceptible and robust adversarial
examples in a black-box setting [51]. The input image is modified to maximize

X*
 Adversarial image

@ current iteration

Input image

Pixel
perturbations

& record
changes DNN

or

CapsNet

High variation
selection

Δ GAP

Output
probabilities

Compute GAP,
GAP(+), GAP(-)

D(X,X*)>Dmax

Distance
D(X,X*)

Output:
Adversarial

Example Y

First
iteration

Misclassification

X*
 Adversarial image

@ next iteration
N

Fig. 5 The CapsAttacks methodology [51] to generate adversarial examples. The blue-colored
boxes work towards fooling the network, while the yellow-colored boxes control the impercepti-
bility of the adversarial example

474 A. Marchisio et al.

the gap (imperceptibility) until the distance between the original image and the
adversarial example is lower than .DMAX (robustness). The perturbations are applied
to a set of pixels in the highest variation regions at every iteration to create
imperceptible perturbations. Moreover, the algorithm automatically decides whether
it is more effective to add or subtract the noise to maximize the gap according to the
values of the two parameters .GAP(+) and .GAP(−). These mechanisms increase
the imperceptibility and the robustness of the attack.

5.2.2 Evaluation Results

The CapsAttacks methodology is applied to the previously described CapsNet [36],
LeNet [39] and VGGNet [93], tested on different examples of the GTSRB
dataset [84].

The CapsNet is tested on two different examples, shown in Fig. 6a (Example 1)
and Fig. 6e (Example 2). For the first one, we analyze two cases to test the
dependence on the target class:

• Case I: the target class is the class relative to the second-highest probability
between all the initial output probabilities.

• Case II: the target class is the class relative to the fifth-highest probability
between all the initial output probabilities.

The analyses of the examples in Case I and Case II lead to the following
observations:

1. The CapsNet classifies the input image shown in Fig. 6a as the “120 km/h speed
limit” (S8) class with a probability equal to 0.0370.
The target class for Case I is “Double curve” (S21) with a probability equal to
0.0297. After 13 iterations, the image (in Fig. 6b) is classified as “Double curve”
with a probability equal to 0.0339. Hence, the probability of the target class
has overcome the initial one, as shown in Fig. 7a. At this iteration, the distance
.D(X∗, X) is equal to 434.20. If we increase the number of iterations, the robust-
ness of the attack will increase as well since the gap between the two probabilities
increases. However, the adversarial noise becomes more perceptible. Indeed, the
distance at the iteration 16 overcomes .DMAX = 520 (see Fig. 6c).

(a) (b) (c) (d) (e) (f) (g)

Fig. 6 Images for the attack applied to the CapsNet: (a) Original input image of Example 1.
(b) Image misclassified by the CapsNet at iteration 13 for Case I. (c) Image misclassified by the
CapsNet at iteration 16 for Case I. (d) Image at iteration 12 for Case II. (e) Original input image of
Example 2. (f) Image at iteration 5, applied to the CapsNet. (g) Image misclassified by the CapsNet
at iteration 21

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 475

0 0.01 0.02 0.03 0.04
Probability

S8
S21

S5
S9

S30

C
la

ss

Iteration 0 Iteration 13 Iteration 16

(a)

0 0.01 0.02 0.03 0.04
Probability

S8
S21

S5
S9

S30

C
la

ss

Iteration 0 Iteration 12

(b)

0 0.01 0.02 0.03 0.04 0.05
Probability

S28
S3

S12
S18
S23

C
la

ss

Iteration 0 Iteration 5

(c)

Fig. 7 CapsNet results: (a) Output probabilities of Example 1—Case I: the blue bars represent
the starting probabilities, the orange bars the probabilities at the point of misclassification, and
the yellow bars at the . DMAX . (b) Output probabilities of Example 1—Case II: the blue bars
represent the starting probabilities, and the orange bars the probabilities at the . DMAX . (c) Output
probabilities of Example 2: the blue bars represent the starting probabilities, and the orange bars
the probabilities at the . DMAX

For the Case II, the probability of the target class “Beware of ice/snow” (S30)
is equal to 0.0249, as shown in Fig. 7b. The gap between the highest probability
and the probability of the target class is larger than the gap in Case I. After 12
iterations, the CapsNet still correctly classifies the image (see Fig. 6d). Indeed,
Fig. 7b shows that the gap between the two classes is lower, but not enough for
a misclassification. However, the distance at this iteration overcomes . DMAX =
520. This experiment shows that the algorithm would need more iterations to
misclassify, at the cost of more perceivable perturbations.

2. The CapsNet classifies the input image shown in Fig. 6e as the “Children
crossing” (S28) class with a probability equal to 0.042. The target class, which
is “60 km/h speed limit” (S3), has a probability equal to 0.0331. After 5
iterations, the distance overcomes .DMAX = 250, while the network has not
misclassified the image yet (see Fig. 6f), because the probability of the target
class has not overcome the initial highest probability, as shown in Fig. 7c.
The misclassification is noticed at the iteration 21 (see Fig. 6g). However, the
perturbation is very perceivable.

The same two examples are evaluated to compare the robustness of the CapsNet
and the 9-layer VGGNet. For the Example 1, only Case I is analyzed as benchmark.
Since the VGGNet classifies the input images with different output probabilities
compared to the ones obtained by the CapsNet, the evaluation of how much the
VGGNet is resistant to the attack is based on the gap measured at the same distance.
To compare the robustness of the CapsNet and the 5-layer LeNet, we only analyze
the Example 1, since the original Example 2 is incorrectly classified by the LeNet.

From the results in Figs. 8 and 9, we can make the following observations:

1. The VGGNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit”
(S8) class with a probability equal to 0.976. The target class, which is “100 km/h
speed limit” (S7), has a probability equal to 0.021. After 3 iterations, the distance
overcomes .DMAX = 520, while the VGGNet has not misclassified the image yet
(see Fig. 8b) yet, since the two initial probabilities were very distant, as shown in
Fig. 9a. The algorithm would need to perform 9 iterations (see Fig. 8c) to fool the
VGGNet, where the probability of the target class is 0.483.

476 A. Marchisio et al.

(a) (b) (c) (d) (e) (f) (g)

Fig. 8 Images for the attack applied to the DNNs: (a) Original input image of Example 1. (b)
Image at iteration 3, applied to the VGGNet. (c) Image at iteration 9, misclassified by the VGGNet.
(d) Original input image of Example 2. (e) Image at iteration 2, applied to the VGGNet. (a) Image
at iteration 6, misclassified by the LeNet. (b) Image at iteration 13, misclassified by the LeNet

0 0.2 0.4 0.6 0.8 1
Probability

S8

S7

S5

S1

S2

C
la

ss

Iteration 0
Iteration 3
Iteration 9

(a)

0 0.2 0.4 0.6 0.8 1
Probability

S28

S30

S29

S24

S27
C

la
ss

Iteration 0
Iteration 2

(b)

0 0.2 0.4 0.6 0.8
Probability

S8

S1

S7

S4

S0

C
la

ss

Iteration 0
Iteration 6
Iteration 13

(c)

Fig. 9 DNNs results: (a) Output probabilities for the Example 1 on the VGGNet: the blue bars
represent the starting probabilities, the orange bars the probabilities at the point of misclassifi-
cation, and the yellow bars at the . DMAX . (b) Output probabilities for the Example 2 on the
VGGNet: the blue bars represent the starting probabilities, and the orange bars the probabilities
at the . DMAX . (c) Output probabilities for the Example 1 on the LeNet: the blue bars represent
the starting probabilities, the orange bars the probabilities at the point of misclassification, and the
yellow bars at the . DMAX

2. The VGGNet classifies the input image (in Fig. 8d) as the “Children crossing”
(S28) class with a probability equal to 0.96. The target class, which is “Beware of
ice/snow” (S30), has a probability equal to 0.023. After 2 iterations, the distance
overcomes .DMAX = 250, while the VGGNet has not misclassified the image yet
(see Fig. 8e). As in the previous example, this behavior is due to the high distance
between the initial probabilities, as shown in Fig. 9b. Note that the VGGNet
reaches .DMAX in a lower number of iterations compared to the CapsNet.

3. The LeNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit”
(S8) class with a probability equal to 0.672. The target class, which is “30 km/h
speed limit” (S1), has a probability equal to 0.178. After 6 iterations, the LeNet
is fooled, because the image (in Fig. 8f) is recognized as the target class with
a probability equal to 0.339. The noise becomes perceptible after 13 iterations
(Fig. 8g), where the distance overcomes .DMAX = 520.

5.3 Discussion

While it is highly complex to formalize generic conclusions, a common trend is that
the CapsNets are more robust against adversarial attacks and affine transformation
than DNNs with similar depth and number of parameters. These observations are
aligned with similar works of Michels et al. [58] and Gu et al. [25].

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 477

Concurrently, the CapsNets security has been analyzed from different perspec-
tives. The Vote Attack [26] is a method that directly perturbs the CapsNets by
manipulating the votes from primary capsules. Qin et al. [70] proposed a method
to detect adversarial examples using the CapsNet reconstruction network.

These analyses and findings open several directions and strategies for deploying
robust CapsNets in safety-critical applications.

6 Security for Spiking Neural Networks

SNNs are considered the third generation of neural networks [49] due to their high
biological plausibility and similarities to the human brain. Compared to traditional
DNNs, which are based on the computation of continuous values, SNNs process
discrete spike trains in an event-based fashion. Hence, they exhibit great potential
for deploying high-performance and energy-efficient ML algorithms [56, 90]. In
terms of security, the different computational principles of SNNs offer unique vul-
nerabilities and potential optimizations for improving their robustness. In contrast
to the well-established knowledge about DNN security, the robustness of SNNs is
an ongoing research topic of high interest in the ML community.

6.1 Comparison DNNs vs. SNNs

The robustness evaluation of SNNs can be conducted by analyzing the comparison
between an SNN and a (non-spiking) DNN having the same architectural model,
i.e., the same number of layers, neurons per layer, and connections. While the DNN
has traditional neurons with ReLU activation function, the SNN has LIF neurons
with threshold voltage .Vth = 1 V . For these experiments, we use a 5-layer network
with 3 convolutional layers and 2 fully connected layers on the MNIST dataset [39].
The DNN is trained using the PyTorch framework [66], while the SNN has been
implemented and trained with the Norse framework [68]. The PGD attack [50]
is applied to both networks using the Foolbox library [73]. Figure 10 shows the
accuracy results of both networks when varying the value of adversarial noise budget
. ε. While for low noise magnitude the DNN has slightly higher accuracy than the
SNN, after the turnaround point of .0.5 ≤ ε ≤ 0.6, the opposite behavior is noticed.
While the accuracy curve of the DNN decreases sharply, the SNN curve has a lower
slope. For instance, when .ε = 1, the SNN accuracy is more than .50% higher than
the DNN accuracy [16]. Such an outcome indicates that SNNs have the potential
to be applied in security contexts due to their higher inherent robustness compared
to traditional DNNs. These findings are aligned with recent works [5, 37, 52, 80]
that demonstrate the SNNs’ higher robustness against security threats, and motivate
deeper analyses on this topic.

478 A. Marchisio et al.

 Ɛ (Noise budget)

Ac
cu

ra
cy

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

SNN

DNN slightly
more accurate

SNN more robust
against PGD a�ack

Turnaround point DNN

Fig. 10 Comparison between a DNN and an SNN with the same structure under the PGD attack
with different values of the adversarial perturbation . ε (adapted from [16])

6.2 Improving the SNN Robustness Through Inherent
Structural Parameters

The previous analyses can be extended not only by exploring the SNN robustness
for different adversarial perturbations but also by studying the impact of the SNN
structural parameters, i.e., spiking threshold voltage .Vth and time window T . . Vth

represents the threshold to be compared with the spiking neuron’s membrane poten-
tial to decide whether or not to emit an output spike. T represents the observation
period in which an SNN implemented with the rate-coding mechanism receives
spike sequences associated with the same intensity value, which is associated with
the firing rate.

6.2.1 SNN Robustness Exploration Methodology

Figure 11 shows the robustness exploration methodology, mainly composed of two
steps:

1. Learnability Analysis: Given the SNN architecture, the threshold voltage . Vi , and
the time window . Tj , the training in the spiking domain is conducted. This step
excludes the configurations of parameters that have low accuracy, by setting
a minimum baseline accuracy level below which the SNN learning process is
considered inefficient, since there is no interest in continuing the study on SNNs
that do not converge.

2. Security Analysis: For all the .(Vi, Tj) tuples for which the SNN achieves high
baseline accuracy, the security study is conducted. The adversarial examples
are also generated based on the adversarial noise . ε, and the SNN robustness is
evaluated. The parameter . ε models the strength of the attack, where a high value
tends to reduce the SNN accuracy due to the higher perturbation budget given

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 479

SNN (Vi, Tj)

Voltage
Threshold Vi

Time
Window Tj

Adversarial
Noise ε

Training in
Spiking
Domain

SNN
Architecture

Learnability Analysis

Security Analysis

Generate
Adversarial

A�acks

Robustness
Evalua�on of
SNN(Vi, Tj, ε)

Output:
Trustworthy
SNN Design

Robust
Combina�ons

of (Vi, Tj)

Does
SNN(Vi, Tj)

learn?

1

2

Fig. 11 Methodology for exploring the SNN robustness, varying the threshold voltage . Vth, the
time window T , and the adversarial perturbation . ε [16]

to the adversary. For every value of . ε, the robustness is computed as the inverse
of the attack’s success rate, i.e., how many adversarial examples are correctly
classified by the SNN.

By observing the robust combinations of .(Vi, Tj) during both the learnability and
security analyses, a trustworthy SNN design is obtained at the output.

6.2.2 SNN Robustness Evaluation

The experiments were conducted using a 5-layer SNN similar to the LeNet-5
architecture adapted for the spiking domain. It is trained for the MNIST dataset [39]
with the Norse framework [68], and the PGD adversarial attacks are implemented
using the Foolbox library [73]. Figure 12a shows the heat map relative to the
learnability analysis. The variations of .Vth and T appear on the horizontal and
vertical axes, respectively, while the color denotes the SNN accuracy. Compared to
the default values, which are .(Vi, Tj) = (1, 64), other combinations of parameters
are explored and evaluated. While a high-accuracy region can be identified in
the top-left corner (low . Vi , high . Tj), the accuracy is not monotonic w.r.t. both
parameters, since the SNN with .(Vi, Tj) = (1.25, 56) has lower accuracy than the
surrounding points.

Figure 12b show the security analysis heat map for .ε = 1. A comparison between
the two graphs indicates that high learnability (i.e., without adversarial attacks)
does not guarantee high robustness. Indeed, different responses of the SNNs under
adversarial attacks based on their respective structural parameters can be noticed.
Two SNNs that have a comparable baseline accuracy may have different robustness.

480 A. Marchisio et al.

V_t h

32

40

48

56

64

72

80

T

0.95 0.77 0.84 0.78 0.08 0.16 0.11 0.16 0.11

0.97 0.94 0.94 0.11 0.11 0.97 0.89 0.16 0.11

0.94 0.94 0.97 0.98 0.97 0.95 0.97 0.11 0.11

0.95 0.98 0.95 0.16 0.11 0.89 0.16 0.16 0.91

0.95 0.97 0.94 0.97 0.97 0.97 0.11 0.92 0.91

0.95 0.95 0.97 0.97 0.97 0.97 0.94 0.97 0.92

0.97 0.97 0.98 0.72 0.98 0.97 0.16 0.89 0.11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V_t h

32

40

48

56

64

72

80

T

0.83 0.58 0.75 0.77 0.08 0.16 0.11 0.16 0.11

0.67 0.52 0.81 0.11 0.11 0.8 0.16 0.16 0.11

0.69 0.83 0.86 0.95 0.75 0.8 0.34 0.11 0.11

0.08 0.73 0.84 0.16 0.11 0.44 0.16 0.16 0.16

0.11 0.8 0.86 0.97 0.62 0.48 0.11 0.02 0.11

0.05 0.78 0.91 0.92 0.91 0.7 0.48 0.02 0.16

0.28 0.27 0.89 0.72 0.91 0.81 0.16 0.11 0.11

0.2

0.4

0.6

0.8

(a) (b)

Vi Vi

T j

T j

High-accuracy
region

Different
robustness

Non-monotonic
behavior

Fig. 12 Heat maps showing the SNN accuracy for the MNIST dataset using different combina-
tions of .(Vi, Tj), based on the results in [16]. (a) Learnability analysis, equivalent of having .ε = 0.
(b) Security analysis, for . ε = 1

For example, the SNN with .(Vi, Tj) = (0.75, 72) has .91% accuracy under attack,
and the SNN with .(Vi, Tj) = (0.5, 80) has only .27% accuracy, while their baseline
accuracy is equal to .97% for both combinations.

Hence, studying the SNN security under different values of adversarial pertur-
bations is crucial to identifying robust combinations of threshold voltage and time
windows, which contribute to enabling the deployment of SNNs for safety-critical
applications.

6.3 Adversarial Attacks and Defenses on Event-Based Data

Along with the efficient implementation of SNNs on neuromorphic architectures
(e.g., Intel Loihi [15] and IBM TrueNorth [57]), other advancements in the vision
field have come from the event-based camera sensor, such as the dynamic vision
sensors (DVS) [41]. Unlike classical frame-based cameras, the DVS cameras
emulate the behavior of the human retina by recording the information in the form
of spike event sequences, which are generated each time a change of light intensity
is detected. As a consequence, SNNs processing event-based data are affected by
different types of security vulnerabilities compared to frame-based data processing.

Figure 13 provides an overview of the adversarial threat model used in this
section. The frames of events recorded by a DVS camera are subjected to adversarial
attacks, while DVS noise filters placed at the input of the neuromorphic hardware
that executes SNN inference can mitigate the adversary perturbations.

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 481

Frame of
Events

DVS Camera SNN on Neuromorphic
Hardware

Class

Pr
ob

ab
ili

ty
 Output

Noise
Filter

Adversarial
A�ack

Fig. 13 Adversarial threat model for applying attack algorithms and noise filters on event-based
SNNs. Figure adapted from [54]

Algorithm 1: Gradient-based adversarial attack methodology for event-
based SNNs [54]
1 Define M as a mask able to select only certain frames;
2 Define D as a dataset composed of DVS images;
3 Define P as a perturbation to be added to the images;
4 Define prob as the output probability of a certain class;
5 for d in D do
6 for i in max_iteration do
7 Add P to d only for the frames selected by M;
8 Calculate the prevision on the perturbed input;
9 Extract prob for the correspondent class of d;
10 Update the loss as loss = −log(1 − prob);
11 Calculate the gradients and update P ;

6.3.1 Gradient-Based Attack for Event Sequences

There exist different types of adversarial attacks and noise filters specific to
event-based data. A gradient-based attack [54], described in Algorithm 1, is an
iterative algorithm that progressively updates the injected perturbations into the
event sequences based on the loss function (lines 7–11 of Algorithm 1) for each
frame series of the dataset. After defining a mask in which the perturbation should be
added (line 7), the output probability and its respective loss, obtained in the presence
of the perturbation, are computed in lines 9 and 10, respectively. Afterward, the
perturbation values are updated based on the gradients of the inputs with respect to
the loss.

6.3.2 Background Activity Filter for Event Cameras

DVS sensors are mainly affected by noise caused by thermal noise and junction
leakage current, which can be classified as a background activity. Since similar
events are typically generated in a neighborhood of pixels, the real events have a
higher spatio-temporal correlation than the noise events. Such empirical observation
is exploited for generating the Background Activity Filter (BAF) [43, 53]. The

482 A. Marchisio et al.

Algorithm 2: Background activity filter for event sequences [53]

1 Define E as a list of events of the form (x, y, p, t);
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp

of the event e, respectively;
3 Define M as a N × N matrix, where N is the size of the frames;
4 Define S and T as the spatial and temporal filter’s parameters;
5 Initialize M to zero;
6 Sort E from the oldest to the newest event;
7 for e in E do
8 for i in (xe − S,xe + S) do
9 for j in (ye − S, ye + S) do
10 if not (i == xe and j == ye) then
11 M[i][j] = te;

12 if te − M[xe][ye] > T then
13 Remove e from E;

spatio-temporal correlation between events is computed. If such correlation is lower
than a certain threshold, the events are filtered out since they are likely due to
noise, while the events with higher correlations are kept. The methodology is
reported in Algorithm 2, where S and T are the parameters of the filter that set the
dimensions of the spatio-temporal neighborhood. Large S and T values imply that
few events are filtered out. The filter’s decision is based on the comparison between
.te − M[xe][ye] and T (lines 12–13 of Algorithm 2). The event is filtered out if the
first term is lower.

6.3.3 Evaluation of Gradient-Based Attack and Background Activity
Filter

The experiments are conducted by training the 4-layer SNN described in [82],
with two convolutional layers and two fully connected layers, for the DvsGesture
dataset [4] using the SLAYER backpropagation method [82]. Figure 14 shows the
results for the gradient-based attack applied to the SNN. When it is not protected by
the BAF, the attack is successful since the SNN accuracy drops to .15.15%. However,
the BAF plays the role of a suitable defense since the accuracy remains higher than
.90% for a wide range of values for the parameters s and t . At the extremes, for
.t = 1, the accuracy is strongly affected by the parameter s, while for .t = 500 the
SNN accuracy drops to less than .48%.

The results relative to a case study in which the gradient-based attack is applied
to the sequence of events of a sample of the DvsGesture dataset are shown in
Fig. 15. The first row (Fig. 15a) shows the results for the clean event sequence,
i.e., without attack and without filter. The SNN correctly classifies the frame as
the class 2, which corresponds to the “left hand wave” label. The second row

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 483

Accuracy drops to
15% under a�ack

Strongly dependent
on s when t=1

>90% accuracy for
large ranges of s and t

Accuracy drop
for t=500

Fig. 14 Robustness evaluation for the SNN on the DvsGesture dataset, under the gradient-based
attack and BAF filter. Based on the results in [54]

(Fig. 15b) shows the outcome when the gradient-based adversarial attack is applied.
The visible modifications in the event sequences are minimal, but the sample is
misclassified by the SNN as the class 0, which corresponds to “hand clap.” The last
row (Fig. 15c), relative to the scenario in which both the gradient-based attack and
the BAF filter (with .s = 2 and .t = 5) are present, shows that the sequence is again
correctly classified as the class 2 (“left hand wave”). It is worth noticing that several
spurious events have been filtered out by the BAF, resulting in high SNN prediction
confidence.

6.3.4 Dash Attack for Event Sequences

While the BAF filter is successful against the gradient-based attack, more sophisti-
cated adversarial attack algorithms can evade this protection. For instance, the Dash
Attack [53] injects events in the form of a dash. Only two pixels are perturbed for
each time step. It starts by targeting the top-left corner (lines 11–13 of Algorithm 3).
Afterward, the x and y coordinates are updated to hit only two consecutive pixels
(see lines 17–25 of Algorithm 3). Hence, this attack results difficult to spot since the
injected spikes do not cause a large overhead on the whole sample.

6.3.5 Mask Filter for Event Cameras

Another type of filtering methodology for event sequences is represented by the
Mask Filter (MF) [43, 53]. Algorithm 4 shows the MF technique, whose basic
functionality is to filter out the noise on the pixels which have low temporal contrast.

484 A. Marchisio et al.

0 2 4 6 8 10
Classes

0

20

40

60

80

100

120

140

Sp
ik

es

Classes
0 2 4 6 8 10

Sp
ik

es

140
120
100

80
60
40
20

0

0 2 4 6 8 10
Classes

0

100

200

300

400

500

Sp
ik

es

Classes
0 2 4 6 8 10

Sp
ik

es

500

400

300

200

100

0

0 2 4 6 8 10
Classes

0

20

40

60

80

100

120

Sp
ik

es

Classes
0 2 4 6 8 10

Sp
ik

es

120
100

80
60
40
20

0

(a)

(b)

(c)

Correct
classifica�on of

clean images

Misclassifica�on
due to the

a�ack

Correct
classifica�on
under a�ack

with filter

Fig. 15 Detailed results of an event sequence of the DVSGesture dataset labeled as “left hand
wave.” (a) Clean event sequence. (b) Event sequence under the gradient-based adversarial attack,
unfiltered. (d) Event sequence under the gradient-based adversarial attack and protected by the
BAF filter with .s = 2 and .t = 5. Based on the results in [54]

The activity of each pixel coordinate is monitored (lines 10–11 of Algorithm 4). If
such activity exceeds the temporal parameter T , the mask is activated (lines 14–
15 of Algorithm 4). After setting all the pixel coordinates of the mask, each event
corresponding to a coordinate in which the mask is active is filtered out (lines 15–16
of Algorithm 4).

6.3.6 Evaluation of the Dash Attack Against Background Activity Filter
and Mask Filter

The Dash attack introduces perturbations that look very similar to the inherent
background noise generated by the DVS camera recording the events. Therefore,
they result difficult to be spotted. As shown in Fig. 16a, the accuracy of the SNN
without filter under the Dash Attack drops to .0% for the DvsGesture dataset, while
the BAF defense produces a slightly higher SNN accuracy. However, the accuracy
peak of .28.41% achieved with the BAF with .s = 1 and .t = 10 is too low to
consider the BAF as a good defense method against the Dash Attack. However,
the MF represents a successful defense because the SNN accuracy is high for large
values of T .

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 485

Algorithm 3: Dash attack methodology [53]

1 Define D as an event-based dataset made of (C × N × N × T) tensors, where C is the
number of channels, N is the size, and T is the duration of the sample;

2 S is the list of the samples that compose D;
3 xmin = 0;
4 x = 0;
5 y = 2;
6 lef t = T rue;
7 while S is not empty do
8 for s in S do
9 for i in (0, N − 1) do
10 for j in (0, N − 1) do
11 if i == x ∧ (lef t ∧ (j == y ∨ j == y − 1) ∨ lef t
12 ∧(j == N − y ∨ j == N − y + 1)) then
13 s[:, i, j, :] = 1;

14 The perturbed sample s is fed into the SNN, which produces a prediction P ;
15 if P is incorrect then
16 Remove s from S;

17 if x == xmin then
18 x = N − xmin − 1;
19 else
20 lef t = lef t ⊕ 1;
21 x = xmin;
22 if lef t then
23 y = y + 1;

24 if y > N/2 then
25 xmin = xmin + 1;

6.3.7 Mask Filter-Aware Dash Attack for Event Sequences

The main drawback of the Dash attack is its intrinsic weakness against the MF. In
fact, it targets the same pixels for the complete sample duration. This highlights
which pixels are targeted by the attack. Indeed, the number of events produced by
the affected pixels is significantly higher than the events associated with the other
pixel coordinates not hit by the attack. In addition, it mainly injects events on the
boundaries of the images, which do not tend to overlap with useful information
that is typically centered. Hence, by hitting the perimeter of the frames, there is a
low risk of superimposing adversarial noise to the main subject. These observations
explain the success of the MF in restoring the original SNN accuracy. The perturbed
pixels are easily identifiable due to their high number of events, and the filter does
not remove useful information, since the modifications are mainly conducted at the
edge of the image. Based on these premises, the Mask Filter-Aware Dash Attack

486 A. Marchisio et al.

Algorithm 4: Mask filter for event sequences [53]

1 Define E as a list of events of the form (x, y, p, t);
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp

of the event e, respectively;
3 Define M as a N × N matrix, where N is the size of the frames;
4 Define activity as a N × N matrix, representing the number of event produced by each

pixel;
5 Define T as the temporal threshold passed to the filter as a parameter;
6 Initialize activity to zero;
7 for x in (0, N − 1) do
8 for y in (0, N − 1) do
9 for e in E do
10 if (x, y) == (xe, ye) then
11 activity[x][y]+ = 1;

12 if activity[x][y] > T then
13 M[x][y] = 1;

14 for e in E do
15 if M[xe][ye] == 1 then
16 Remove e from E;

(a) Dash A�ack Mask FilterBackground Ac�vity Filter

Mask FilterBackground Ac�vity Filter(b) MF-Aware Dash A�ack

Low accuracy Weak defense MF is a good defense
for large T values

Low accuracy for t ≥ 5
Low accuracy

for T ≥ th

20% lower
than original

Fig. 16 Evaluation of DVS attacks for the SNN on the DvsGesture dataset, under the BAF and
Mask filters, based on the results in [53]. (a) Results for the Dash Attack. (b) Results for the
MF-Aware Dash Attack

has been designed, aiming at being resistant to the MF. It receives as a parameter
th that sets a limit on the number of frames that can be changed for each pixel (line
14 of Algorithm 5). Therefore, the algorithm hits a couple of pixels, as in the case
of the Dash Attack. However, after injecting events into th frames, it moves to the
following pixel coordinates (lines 17–19 of Algorithm 5). The visual effect created
by the MF-Aware Dash Attack is that of a dash moving along a line. A smaller th
implies a faster movement of the dash across the image.

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 487

Algorithm 5: Mask filter-aware dash attack methodology [53]

1 Define D as an event-based Dataset made of (2 × N × N × T) tensors, where N is the
frame dimensions, and T is the sample duration;

2 Define S as the list of the samples that compose D;
3 Define th as the parameter associated the activity threshold of the Mask Filter;
4 Initialize x = 0;
5 Initialize y0 = 2;
6 Initialize lef t = T rue;
7 while S is not empty do
8 for s in S do
9 th = th0;
10 y = y0;
11 for t in T do
12 for i in (0, N − 1) do
13 for j in (0, N − 1) do
14 if i == x ∧ t < th ∧ (lef t ∧ (j == y ∨ j == y − 1)
15 ∨ lef t ∧ (j == N − y ∨ j == N − y + 1)) then
16 s[0, i, j, t] = 1;

17 if t == th then
18 th = th + th0;
19 y = y + 2

20 The perturbed sample s is fed into the SNN, which produces a prediction P ;
21 if P is incorrect then
22 Remove s from S;

23 if x == 0 then
24 x = N − 1;
25 else
26 lef t = lef t ⊕ 1 x = 0 if lef t then
27 y0 = y0 + 1;

6.3.8 Evaluation of the Mask Filter-Aware Dash Attack Against
Background Activity Filter and Mask Filter

Figure 16b shows the results relative to the experiments conducted for the MF-
Aware Dash Attack, with different values of the parameter th. While the visibility
of the injected noise on the DvsGesture dataset, reported for .th = 150, is similar
to the Dash Attacks, the behavior of the MF-Aware Dash Attack in the presence of
noise filters is much different. The accuracy of the SNN under attack without filter is
very low (up to .7.95% for .th = 50. The SNN defended by the BAF shows discrete
robustness, in particular, when .s = 3 and .t = 1. In such a scenario, the accuracy
reaches .59.09% against the MF-Aware Dash Attack with .th = 50. However, when
.t ≥ 5, the SNN accuracy is lower than .31.44%. The key advantage compared
to the Dash Attack resides in the behavior of the MF-Aware Dash Attack in the
presence of the MF. If .T ≥ th, the SNN accuracy becomes lower than . 23.5%. On

488 A. Marchisio et al.

the contrary, the behavior for .T < th is similar to the results achieved for the Dash
Attack. For example, the MF-Aware Dash Attack with .th = 50 achieves . 71.21%
accuracy for .T = 25, which is .20.83% lower than the original SNN accuracy. These
results demonstrate that noise event filters such as the BAF and the MF significantly
improve the SNN robustness against adversarial attacks. However, an adversarial
attack algorithm specifically designed for being resistant to the MF, such as the MF-
Aware Dash Attack, has the potential to break the noise filter defense for a good
choice of its parameter th.

7 Conclusion

Despite being employed at a large scale, ML models are vulnerable to security
threats. Therefore, several defensive mechanisms have been explored to increase
their robustness. This chapter presented an overview of ML security, focusing on
emerging architectures, such as DNNs, CapsNets, and SNNs. The high complexity
of these models requires dedicated methodologies to investigate their trustwor-
thiness. The analyses conducted in this chapter demonstrated that CapsNets are
more robust than traditional DNNs against affine transformations and adversarial
attacks. SNNs are inherently more robust than non-spiking DNNs, and such inherent
robustness can be enhanced by fine-tuning their structural parameters, like the
spiking voltage threshold and the time window. Moreover, event-based SNNs can
be protected through noise filters for event sensors, like the Background Activity
Filter and the Mask Filter. However, when properly tuned, advanced event-based
adversarial attack methodologies, such as the Mask Filter-Aware Dash Attack, can
cause significant accuracy drops in SNNs.

Acknowledgments This work has been supported in part by Intel Corporation through Gift
funding for the project “Cost-Effective Dependability for Deep Neural Networks and Spiking
Neural Networks,” and in part by the Doctoral College Resilient Embedded Systems, which is
run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum Wien. This work
was also supported in parts by the NYUAD Center for Interacting Urban Networks (CITIES),
funded by Tamkeen under the NYUAD Research Institute Award CG001, Center for CyberSecurity
(CCS), funded by Tamkeen under the NYUAD Research Institute Award G1104, and Center for
Artificial Intelligence and Robotics (CAIR), funded by Tamkeen under the NYUAD Research
Institute Award CG010.

References

1. Abadi, M., Chu, A., Goodfellow, I.J., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.:
Deep learning with differential privacy. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, October 24–28, 2016, pp. 308–318. ACM, New York
(2016). https://doi.org/10.1145/2976749.2978318

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 489

2. Agoyan, M., Dutertre, J., Mirbaha, A., Naccache, D., Ribotta, A., Tria, A.: How to flip a bit?
In: 16th IEEE International On-line Testing Symposium (IOLTS 2010, 5–7 July, 2010, Corfu,
pp. 235–239. IEEE Computer Society, Washington (2010). https://doi.org/10.1109/IOLTS.
2010.5560194

3. Ali, H., Khalid, F., Tariq, H., Hanif, M.A., Ahmed, R., Rehman, S.: SSCNets: robustifying
DNNs using secure selective convolutional filters. IEEE Des. Test 37(2), 58–65 (2020). https://
doi.org/10.1109/MDAT.2019.2961325

4. Amir, A., Taba, B., Berg, D.J., Melano, T., McKinstry, J.L., di Nolfo, C., Nayak, T.K.,
Andreopoulos, A., Garreau, G., Mendoza, M., Kusnitz, J., DeBole, M., Esser, S.K., Delbrück,
T., Flickner, M., Modha, D.S.: A low power, fully event-based gesture recognition system. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
July 21–26, 2017, pp. 7388–7397. IEEE Computer Society, Washington (2017). https://doi.
org/10.1109/CVPR.2017.781

5. Bagheri, A., Simeone, O., Rajendran, B.: Adversarial training for probabilistic spiking neural
networks. In: 19th IEEE International Workshop on Signal Processing Advances in Wireless
Communications, SPAWC 2018, Kalamata, June 25–28, 2018, pp. 1–5. IEEE, Piscataway
(2018). https://doi.org/10.1109/SPAWC.2018.8446003

6. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE
Trans. Device Mater. Reliab. 5(3), 305–316 (2005). https://doi.org/10.1109/TDMR.2005.
853449

7. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Practical fault attack on deep
neural networks. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, October 15–19, 2018, pp. 2204–2206. ACM, New York (2018). https://doi.org/10.
1145/3243734.3278519

8. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reliable attacks against
black-box machine learning models. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, April 30–May 3, 2018. Conference Track Proceedings.
OpenReview.net (2018). https://openreview.net/forum?id=SyZI0GWCZ

9. Capra, M., Bussolino, B., Marchisio, A., Masera, G., Martina, M., Shafique, M.: Hardware
and software optimizations for accelerating deep neural networks: survey of current trends,
challenges, and the road ahead. IEEE Access 8, 225134–225180 (2020). https://doi.org/10.
1109/ACCESS.2020.3039858

10. Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina, M.: An updated
survey of efficient hardware architectures for accelerating deep convolutional neural networks.
Fut. Int. 12(7), 113 (2020). https://doi.org/10.3390/fi12070113

11. Chen, Z., Li, G., Pattabiraman, K.: Ranger: boosting error resilience of deep neural networks
through range restriction. CoRR abs/2003.13874 (2020). https://arxiv.org/abs/2003.13874

12. Clements, J., Lao, Y.: Hardware trojan design on neural networks. In: IEEE International
Symposium on Circuits and Systems, ISCAS 2019, Sapporo, May 26–29, 2019, pp. 1–5. IEEE,
Piscataway (2019). https://doi.org/10.1109/ISCAS.2019.8702493

13. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized
smoothing. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach. Proceedings of
Machine Learning Research, vol. 97, pp. 1310–1320. PMLR (2019). http://proceedings.mlr.
press/v97/cohen19c.html

14. Dave, S., Marchisio, A., Hanif, M.A., Guesmi, A., Shrivastava, A., Alouani, I., Shafique, M.:
Special session: towards an agile design methodology for efficient, reliable, and secure ML
systems. In: 40th IEEE VLSI Test Symposium, VTS 2022, San Diego, April 25–27, 2022,
pp. 1–14. IEEE, Piscataway (2022). https://doi.org/10.1109/VTS52500.2021.9794253

15. Davies, M., Srinivasa, N., Lin, T., Chinya, G.N., Cao, Y., Choday, S.H., Dimou, G.D., Joshi, P.,
Imam, N., Jain, S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A.,
Tse, J., Venkataramanan, G., Weng, Y., Wild, A., Yang, Y., Wang, H.: Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/
10.1109/MM.2018.112130359

https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/IOLTS.2010.5560194
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/MDAT.2019.2961325
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/SPAWC.2018.8446003
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://doi.org/10.1145/3243734.3278519
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://openreview.net/forum?id=SyZI0GWCZ
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://arxiv.org/abs/2003.13874
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
https://doi.org/10.1109/ISCAS.2019.8702493
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/VTS52500.2021.9794253
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359

490 A. Marchisio et al.

16. El-Allami, R., Marchisio, A., Shafique, M., Alouani, I.: Securing deep spiking neural networks
against adversarial attacks through inherent structural parameters. In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2021, Grenoble, February 1–5, 2021, pp. 774–
779. IEEE, Piscataway (2021). https://doi.org/10.23919/DATE51398.2021.9473981

17. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno,
T., Song, D.: Robust physical-world attacks on deep learning visual classification. In: 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
June 18–22, 2018, pp. 1625–1634. Computer Vision Foundation/IEEE Computer Society,
Washington (2018). https://doi.org/10.1109/CVPR.2018.00175, http://openaccess.thecvf.com/
content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html

18. Fani, R., Zamani, M.S.: Runtime hardware trojan detection by reconfigurable monitoring
circuits. J. Supercomput. (2022). https://doi.org/10.1007/s11227-022-04362-1

19. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference attacks on fully
connected neural networks using permutation invariant representations. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, October 15–19, 2018, pp. 619–
633. ACM, New York (2018). https://doi.org/10.1145/3243734.3243834

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.)
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, May 31–June 2, 2009, pp. 169–178. ACM, New York (2009). https://doi.org/10.
1145/1536414.1536440

21. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryp-
tonets: applying neural networks to encrypted data with high throughput and accuracy. In:
Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, June 19–24, 2016, JMLR Workshop and
Conference Proceedings, vol. 48, pp. 201–210. JMLR.org (2016). http://proceedings.mlr.press/
v48/gilad-bachrach16.html

22. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A.C., Bengio, Y.: Generative adversarial networks. CoRR abs/1406.2661 (2014). http://arxiv.
org/abs/1406.2661

23. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, May 7–9, 2015. Conference Track Proceedings (2015). http://arxiv.org/abs/
1412.6572

24. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: evaluating backdooring attacks on deep
neural networks. IEEE Access 7, 47230–47244 (2019). https://doi.org/10.1109/ACCESS.2019.
2909068

25. Gu, J., Tresp, V.: Improving the robustness of capsule networks to image affine transformations.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, June 13–19, 2020, pp. 7283–7291. Computer Vision Foundation/IEEE, Piscataway
(2020). https://doi.org/10.1109/CVPR42600.2020.00731, https://openaccess.thecvf.com/
content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_
Image_Affine_Transformations_CVPR_2020_paper.html

26. Gu, J., Wu, B., Tresp, V.: Effective and efficient vote attack on capsule networks. In: 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, May 3–7,
2021. OpenReview.net (2021). https://openreview.net/forum?id=33rtZ4Sjwjn

27. Guesmi, A., Alouani, I., Khasawneh, K.N., Baklouti, M., Frikha, T., Abid, M., Abu-Ghazaleh,
N.B.: Defensive approximation: securing CNNs using approximate computing. In: Sherwood,
T., Berger, E.D., Kozyrakis, C. (eds.) ASPLOS ’21: 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Virtual Event,
April 19–23, 2021, pp. 990–1003. ACM, New York (2021). https://doi.org/10.1145/3445814.
3446747

28. Hanif, M.A., Shafique, M.: Salvagednn: salvaging deep neural network accelerators with per-
manent faults through saliency-driven fault-aware mapping. Phil. Trans. R. Soc. A. 378(2164)
(2020). https://doi.org/10.1098/rsta.2019.0164

https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.23919/DATE51398.2021.9473981
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1007/s11227-022-04362-1
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://doi.org/10.1109/CVPR42600.2020.00731
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Gu_Improving_the_Robustness_of_Capsule_Networks_to_Image_Affine_Transformations_CVPR_2020_paper.html
https://openreview.net/forum?id=33rtZ4Sjwjn
https://openreview.net/forum?id=33rtZ4Sjwjn
https://openreview.net/forum?id=33rtZ4Sjwjn
https://openreview.net/forum?id=33rtZ4Sjwjn
https://openreview.net/forum?id=33rtZ4Sjwjn
https://openreview.net/forum?id=33rtZ4Sjwjn
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164
https://doi.org/10.1098/rsta.2019.0164

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 491

29. Hanif, M.A., Shafique, M.: DNN-life: an energy-efficient aging mitigation framework for
improving the lifetime of on-chip weight memories in deep neural network hardware archi-
tectures. In: Design, Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, February 1–5, 2021, pp. 729–734. IEEE, Piscataway (2021). https://doi.org/10.
23919/DATE51398.2021.9473943

30. Hoang, L.H., Hanif, M.A., Shafique, M.: FT-ClipAct: resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, March 9–13,
2020, pp. 1241–1246. IEEE, Piscataway (2020). https://doi.org/10.23919/DATE48585.2020.
9116571

31. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.P.: GAZELLE: a low latency framework
for secure neural network inference. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Secu-
rity Symposium, USENIX Security 2018, Baltimore, August 15–17, 2018, pp. 1651–1669.
USENIX Association, Berkeley (2018). https://www.usenix.org/conference/usenixsecurity18/
presentation/juvekar

32. Kang, K., Gangwal, S., Park, S.P., Roy, K.: NBTI induced performance degradation in logic and
memory circuits: how effectively can we approach a reliability solution? In: Kyung, C., Choi,
K., Ha, S. (eds.) Proceedings of the 13th Asia South Pacific Design Automation Conference,
ASP-DAC 2008, Seoul, January 21–24, 2008, pp. 726–731. IEEE, Piscataway (2008). https://
doi.org/10.1109/ASPDAC.2008.4484047

33. Khalid, F., Ali, H., Tariq, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: QuSecNets:
quantization-based defense mechanism for securing deep neural network against adversarial
attacks. In: Gizopoulos, D., Alexandrescu, D., Papavramidou, P., Maniatakos, M. (eds.) 25th
IEEE International Symposium on On-Line Testing and Robust System Design, IOLTS 2019,
Rhodes, July 1–3, 2019, pp. 182–187. IEEE, Piscataway (2019). https://doi.org/10.1109/
IOLTS.2019.8854377

34. Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: FaDec: a fast decision-
based attack for adversarial machine learning. In: 2020 International Joint Conference on
Neural Networks, IJCNN 2020, Glasgow, July 19–24, 2020, pp. 1–8. IEEE, Piscataway (2020).
https://doi.org/10.1109/IJCNN48605.2020.9207635

35. Kim, Y., Daly, R., Kim, J.S., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K., Mutlu, O.:
Flipping bits in memory without accessing them: an experimental study of DRAM disturbance
errors. In: ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, June 14–18, 2014, pp. 361–372. IEEE Computer Society, Washington (2014).
https://doi.org/10.1109/ISCA.2014.6853210

36. Kumar, A.D.: Novel deep learning model for traffic sign detection using capsule networks.
CoRR abs/1805.04424 (2018). http://arxiv.org/abs/1805.04424

37. Kundu, S., Pedram, M., Beerel, P.A.: HIRE-SNN: harnessing the inherent robustness of energy-
efficient deep spiking neural networks by training with crafted input noise. In: 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, October 10–17, 2021,
pp. 5189–5198. IEEE, Piscataway (2021). https://doi.org/10.1109/ICCV48922.2021.00516

38. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, April 24–26,
2017, Workshop Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?
id=HJGU3Rodl

39. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

40. Li, J., Rakin, A.S., Xiong, Y., Chang, L., He, Z., Fan, D., Chakrabarti, C.: Defending bit-
flip attack through DNN weight reconstruction. In: 57th ACM/IEEE Design Automation
Conference, DAC 2020, San Francisco, July 20–24, 2020, pp. 1–6. IEEE, Piscataway (2020).
https://doi.org/10.1109/DAC18072.2020.9218665

41. Lichtsteiner, P., Posch, C., Delbrück, T.: A 128×128 120 dB 15 μs latency asynchronous
temporal contrast vision sensor. IEEE J. Solid State Circuits 43(2), 566–576 (2008). https://
doi.org/10.1109/JSSC.2007.914337

https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE51398.2021.9473943
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://doi.org/10.23919/DATE48585.2020.9116571
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/ASPDAC.2008.4484047
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/IJCNN48605.2020.9207635
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
http://arxiv.org/abs/1805.04424
http://arxiv.org/abs/1805.04424
http://arxiv.org/abs/1805.04424
http://arxiv.org/abs/1805.04424
http://arxiv.org/abs/1805.04424
http://arxiv.org/abs/1805.04424
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.1109/ICCV48922.2021.00516
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337

492 A. Marchisio et al.

42. Lin, J., Gan, C., Han, S.: Defensive quantization: When efficiency meets robustness. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, May 6–9,
2019. OpenReview.net (2019). https://openreview.net/forum?id=ryetZ20ctX

43. Linares-Barranco, A., Perez-Peña, F., Moeys, D.P., Gomez-Rodriguez, F., Jiménez-Moreno,
G., Liu, S., Delbrück, T.: Low latency event-based filtering and feature extraction for dynamic
vision sensors in real-time FPGA applications. IEEE Access 7, 134926–134942 (2019). https://
doi.org/10.1109/ACCESS.2019.2941282

44. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN
transformations. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, October 30–November 03, 2017, pp. 619–631. ACM, New York (2017). https://doi.
org/10.1145/3133956.3134056

45. Liu, Y., Wei, L., Luo, B., Xu, Q.: Fault injection attack on deep neural network. In:
Parameswaran, S. (ed.) 2017 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2017, Irvine, November 13–16, 2017, pp. 131–138. IEEE, Piscataway (2017).
https://doi.org/10.1109/ICCAD.2017.8203770

46. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on
deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.)
Research in Attacks, Intrusions, and Defenses – 21st International Symposium, RAID 2018,
Heraklion, Crete, September 10–12, 2018, Proceedings, Lecture Notes in Computer Science,
vol. 11050, pp. 273–294. Springer, Berlin (2018). https://doi.org/10.1007/978-3-030-00470-
5_13

47. Liu, X., Deng, R.H., Wu, P., Yang, Y.: Lightning-fast and privacy-preserving outsourced
computation in the cloud. Cybersecur 3(1), 17 (2020). https://doi.org/10.1186/s42400-020-
00057-3

48. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev. 6(2), 200–209 (1962). https://doi.org/10.1147/rd.62.0200

49. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural
Netw. 10(9), 1659–1671 (1997). https://doi.org/10.1016/S0893-6080(97)00011-7

50. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, April 30–May 3, 2018, Conference Track Proceedings. OpenRe-
view.net (2018). https://openreview.net/forum?id=rJzIBfZAb

51. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: CapsAttacks:
robust and imperceptible adversarial attacks on capsule networks. CoRR abs/1901.09878
(2019). http://arxiv.org/abs/1901.09878

52. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Is spiking secure?
A comparative study on the security vulnerabilities of spiking and deep neural networks. In:
2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, July 19–24,
2020, pp. 1–8. IEEE, Piscataway (2020). https://doi.org/10.1109/IJCNN48605.2020.9207297

53. Marchisio, A., Pira, G., Martina, M., Masera, G., Shafique, M.: DVS-attacks: adversarial
attacks on dynamic vision sensors for spiking neural networks. In: International Joint
Conference on Neural Networks, IJCNN 2021, Shenzhen, July 18–22, 2021, pp. 1–9. IEEE,
Piscataway (2021). https://doi.org/10.1109/IJCNN52387.2021.9534364

54. Marchisio, A., Pira, G., Martina, M., Masera, G., Shafique, M.: R-SNN: an analysis and design
methodology for robustifying spiking neural networks against adversarial attacks through
noise filters for dynamic vision sensors. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, September 27–Oct. 1, 2021, pp. 6315–6321. IEEE,
Piscataway (2021). https://doi.org/10.1109/IROS51168.2021.9636718

55. Marchisio, A., Caramia, G., Martina, M., Shafique, M.: fakeWeather: adversarial attacks for
deep neural networks emulating weather conditions on the camera lens of autonomous systems.
In: 2022 International Joint Conference on Neural Networks, IJCNN 2022, Padua, July 18–23,
2022. IEEE, Piscataway (2022)

https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://openreview.net/forum?id=ryetZ20ctX
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1109/ACCESS.2019.2941282
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1186/s42400-020-00057-3
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1901.09878
http://arxiv.org/abs/1901.09878
http://arxiv.org/abs/1901.09878
http://arxiv.org/abs/1901.09878
http://arxiv.org/abs/1901.09878
http://arxiv.org/abs/1901.09878
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN48605.2020.9207297
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IJCNN52387.2021.9534364
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718
https://doi.org/10.1109/IROS51168.2021.9636718

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 493

56. Massa, R., Marchisio, A., Martina, M., Shafique, M.: An efficient spiking neural network
for recognizing gestures with a DVS camera on the Loihi neuromorphic processor. In: 2020
International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, July 19–24, 2020,
pp. 1–9. IEEE, Piscataway (2020). https://doi.org/10.1109/IJCNN48605.2020.9207109

57. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson,
B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R.,
Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science
345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642, https://www.science.
org/doi/abs/10.1126/science.1254642

58. Michels, F., Uelwer, T., Upschulte, E., Harmeling, S.: On the vulnerability of capsule networks
to adversarial attacks. CoRR abs/1906.03612 (2019). http://arxiv.org/abs/1906.03612

59. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, May 22–26, 2017,
pp. 19–38. IEEE Computer Society, Washington (2017). https://doi.org/10.1109/SP.2017.12

60. Nandakumar, K., Ratha, N.K., Pankanti, S., Halevi, S.: Towards deep neural network
training on encrypted data. In: IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2019, Long Beach, June 16–20, 2019, pp. 40–48.
Computer Vision Foundation/IEEE, Piscataway (2019). https://doi.org/10.1109/CVPRW.2019.
00011, http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_
Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html

61. Ozen, E., Orailoglu, A.: Sanity-check: Boosting the reliability of safety-critical deep neural
network applications. In: 28th IEEE Asian Test Symposium, ATS 2019, Kolkata, December
10–13, 2019, pp. 7–12. IEEE, Piscataway (2019). https://doi.org/10.1109/ATS47505.2019.
000-8

62. Ozen, E., Orailoglu, A.: Boosting bit-error resilience of DNN accelerators through median
feature selection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 3250–3262
(2020). https://doi.org/10.1109/TCAD.2020.3012209

63. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) Advances in Cryptology – EUROCRYPT ’99, Proceeding of the International
Conference on the Theory and Application of Cryptographic Techniques, Prague, May 2–6,
1999. Lecture Notes in Computer Science, vol. 1592, pp. 223–238. Springer, Berlin (1999).
https://doi.org/10.1007/3-540-48910-X_16

64. Pandey, P., Basu, P., Chakraborty, K., Roy, S.: GreenTPU: predictive design paradigm for
improving timing error resilience of a near-threshold tensor processing unit. IEEE Trans.
Very Large Scale Integr. Syst. 28(7), 1557–1566 (2020). https://doi.org/10.1109/TVLSI.2020.
2985057

65. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, Ú.: Scalable pri-
vate learning with PATE. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, April 30–May 3, 2018. Conference Track Proceedings. OpenReview.net
(2018). https://openreview.net/forum?id=rkZB1XbRZ

66. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An imperative
style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8–14, 2019, Vancouver, pp. 8024–8035 (2019). https://proceedings.neurips.
cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

67. Paudice, A., Muñoz-González, L., György, A., Lupu, E.C.: Detection of adversarial training
examples in poisoning attacks through anomaly detection. CoRR abs/1802.03041 (2018).
http://arxiv.org/abs/1802.03041

68. Pehle, C., Pedersen, J.E.: Norse—a deep learning library for spiking neural networks (2021).
https://doi.org/10.5281/zenodo.4422025. Documentation: https://norse.ai/docs/

https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1109/IJCNN48605.2020.9207109
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
https://www.science.org/doi/abs/10.1126/science.1254642
http://arxiv.org/abs/1906.03612
http://arxiv.org/abs/1906.03612
http://arxiv.org/abs/1906.03612
http://arxiv.org/abs/1906.03612
http://arxiv.org/abs/1906.03612
http://arxiv.org/abs/1906.03612
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Nandakumar_Towards_Deep_Neural_Network_Training_on_Encrypted_Data_CVPRW_2019_paper.html
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/ATS47505.2019.000-8
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1109/TCAD.2020.3012209
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://doi.org/10.1109/TVLSI.2020.2985057
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
https://openreview.net/forum?id=rkZB1XbRZ
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://norse.ai/docs/
https://norse.ai/docs/
https://norse.ai/docs/
https://norse.ai/docs/

494 A. Marchisio et al.

69. Prasanth, V., Singh, V., Parekhji, R.A.: Reduced overhead soft error mitigation using error
control coding techniques. In: 17th IEEE International On-line Testing Symposium (IOLTS
2011), 13–15 July, 2011, Athens, pp. 163–168. IEEE Computer Society, Washington (2011).
https://doi.org/10.1109/IOLTS.2011.5993831

70. Qin, Y., Frosst, N., Sabour, S., Raffel, C., Cottrell, G.W., Hinton, G.E.: Detecting and diag-
nosing adversarial images with class-conditional capsule reconstructions. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, April 26–30, 2020.
OpenReview.net (2020). https://openreview.net/forum?id=Skgy464Kvr

71. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: Macii, E. (ed.) Design,
Automation and Test in Europe, DATE 13, Grenoble, March 18–22, 2013, pp. 39–44. EDA
Consortium San Jose/ACM DL, New York (2013). https://doi.org/10.7873/DATE.2013.023

72. Rakin, A.S., He, Z., Fan, D.: Bit-flip attack: Crushing neural network with progressive bit
search. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
October 27–November 2, 2019, pp. 1211–1220. IEEE, Piscataway (2019). https://doi.org/10.
1109/ICCV.2019.00130

73. Rauber, J., Brendel, W., Bethge, M.: Foolbox v0.8.0: a python toolbox to benchmark the
robustness of machine learning models. CoRR abs/1707.04131 (2017). http://arxiv.org/abs/
1707.04131

74. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure deep
learning. In: Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San
Francisco, June 24–29, 2018, pp. 2:1–2:6. ACM, New York (2018). https://doi.org/10.1145/
3195970.3196023

75. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4–9, 2017,
Long Beach, pp. 3856–3866 (2017). https://proceedings.neurips.cc/paper/2017/hash/
2cad8fa47bbef282badbb8de5374b894-Abstract.html

76. Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Gold-
stein, T.: Poison frogs! targeted clean-label poisoning attacks on neural networks. In:
Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–
8, 2018, Montréal, pp. 6106–6116 (2018). https://proceedings.neurips.cc/paper/2018/hash/
22722a343513ed45f14905eb07621686-Abstract.html

77. Shafique, M., Naseer, M., Theocharides, T., Kyrkou, C., Mutlu, O., Orosa, L., Choi, J.: Robust
machine learning systems: challenges, current trends, perspectives, and the road ahead. IEEE
Des. Test 37(2), 30–57 (2020). https://doi.org/10.1109/MDAT.2020.2971217

78. Shafique, M., Marchisio, A., Putra, R.V.W., Hanif, M.A.: Towards energy-efficient and secure
edge AI: a cross-layer framework ICCAD special session paper. In: IEEE/ACM International
Conference On Computer Aided Design, ICCAD 2021, Munich, November 1–4, 2021, pp. 1–9.
IEEE, Piscataway (2021). https://doi.org/10.1109/ICCAD51958.2021.9643539

79. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real and stealthy
attacks on state-of-the-art face recognition. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, October 24–28, 2016, pp. 1528–1540. ACM,
New York (2016). https://doi.org/10.1145/2976749.2978392

80. Sharmin, S., Rathi, N., Panda, P., Roy, K.: Inherent adversarial robustness of deep spiking
neural networks: Effects of discrete input encoding and non-linear activations. In: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J. (eds.) Proceedings of the Computer Vision – ECCV 2020
– 16th European Conference, Glasgow, August 23–28, 2020, Part XXIX. Lecture Notes in
Computer Science, vol. 12374, pp. 399–414. Springer, Berlin (2020). https://doi.org/10.1007/
978-3-030-58526-6_24

https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://doi.org/10.1109/IOLTS.2011.5993831
https://openreview.net/forum?id=Skgy464Kvr
https://openreview.net/forum?id=Skgy464Kvr
https://openreview.net/forum?id=Skgy464Kvr
https://openreview.net/forum?id=Skgy464Kvr
https://openreview.net/forum?id=Skgy464Kvr
https://openreview.net/forum?id=Skgy464Kvr
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.7873/DATE.2013.023
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3195970.3196023
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/MDAT.2020.2971217
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24
https://doi.org/10.1007/978-3-030-58526-6_24

Adversarial ML for DNNs, CapsNets, and SNNs at the Edge 495

81. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, May 22–26, 2017, pp. 3–18. IEEE Computer Society, Washington (2017). https://doi.org/
10.1109/SP.2017.41

82. Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. In:
Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–
8, 2018, Montréal, pp. 1419–1428 (2018). https://proceedings.neurips.cc/paper/2018/hash/
82f2b308c3b01637c607ce05f52a2fed-Abstract.html

83. Siddique, A., Hoque, K.A.: Is approximation universally defensive against adversarial attacks
in deep neural networks? CoRR abs/2112.01555 (2021). https://arxiv.org/abs/2112.01555

84. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition bench-
mark: a multi-class classification competition. In: The 2011 International Joint Conference
on Neural Networks, IJCNN 2011, San Jose, July 31–August 5, 2011, pp. 1453–1460. IEEE,
Piscataway (2011). https://doi.org/10.1109/IJCNN.2011.6033395

85. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE
Trans. Evol. Comput. 23(5), 828–841 (2019). https://doi.org/10.1109/TEVC.2019.2890858

86. Thys, S., Ranst, W.V., Goedemé, T.: Fooling automated surveillance cameras: adversarial
patches to attack person detection. In: IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2019, Long Beach, June 16–20, 2019, pp. 49–55.
Computer Vision Foundation/IEEE, Piscataway (2019). https://doi.org/10.1109/CVPRW.2019.
00012, http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_
Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_
CVPRW_2019_paper.html

87. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learn-
ing models via prediction APIs. In: Holz, T., Savage, S. (eds.) 25th USENIX Security
Symposium, USENIX Security 16, Austin, August 10–12, 2016, pp. 601–618. USENIX
Association, Berkeley (2016). https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/tramer

88. Vadlamani, R., Zhao, J., Burleson, W.P., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Micheli, G.D., Al-Hashimi, B.M., Müller, W., Macii,
E. (eds.) Design, Automation and Test in Europe, DATE 2010, Dresden, March 8–12, 2010,
pp. 27–32. IEEE Computer Society, Washington (2010). https://doi.org/10.1109/DATE.2010.
5457242

89. Venceslai, V., Marchisio, A., Alouani, I., Martina, M., Shafique, M.: NeuroAttack: under-
mining spiking neural networks security through externally triggered bit-flips. In: 2020
International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, July 19–24, 2020,
pp. 1–8. IEEE, Piscataway (2020). https://doi.org/10.1109/IJCNN48605.2020.9207351

90. Viale, A., Marchisio, A., Martina, M., Masera, G., Shafique, M.: Carsnn: An efficient spiking
neural network for event-based autonomous cars on the Loihi neuromorphic research processor.
In: International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, July 18–22,
2021, pp. 1–10. IEEE, Piscataway (2021). https://doi.org/10.1109/IJCNN52387.2021.9533738

91. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019). https://doi.org/10.2478/
popets-2019-0035

92. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: Proceedings of the
2018 IEEE Symposium on Security and Privacy, SP 2018, 21–23 May 2018, San Francisco, pp.
36–52. IEEE Computer Society, Washington (2018). https://doi.org/10.1109/SP.2018.00038

93. Wang, L., Guo, S., Huang, W., Qiao, Y.: Places205-vggnet models for scene recognition. CoRR
abs/1508.01667 (2015). http://arxiv.org/abs/1508.01667

94. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: ThunderVolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep learning accelerators. In:
Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco,

https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
https://arxiv.org/abs/2112.01555
https://arxiv.org/abs/2112.01555
https://arxiv.org/abs/2112.01555
https://arxiv.org/abs/2112.01555
https://arxiv.org/abs/2112.01555
https://arxiv.org/abs/2112.01555
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/IJCNN.2011.6033395
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
https://doi.org/10.1109/CVPRW.2019.00012
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Thys_Fooling_Automated_Surveillance_Cameras_Adversarial_Patches_to_Attack_Person_Detection_CVPRW_2019_paper.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/DATE.2010.5457242
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.1109/IJCNN52387.2021.9533738
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
https://doi.org/10.1109/SP.2018.00038
http://arxiv.org/abs/1508.01667
http://arxiv.org/abs/1508.01667
http://arxiv.org/abs/1508.01667
http://arxiv.org/abs/1508.01667
http://arxiv.org/abs/1508.01667
http://arxiv.org/abs/1508.01667

496 A. Marchisio et al.

June 24–29, 2018, pp. 19:1–19:6. ACM, New York (2018). https://doi.org/10.1145/3195970.
3196129

95. Zhang, J.J., Gu, T., Basu, K., Garg, S.: Analyzing and mitigating the impact of permanent faults
on a systolic array based neural network accelerator. In: 36th IEEE VLSI Test Symposium,
VTS 2018, San Francisco, April 22–25, 2018, pp. 1–6. IEEE Computer Society, Washington
(2018). https://doi.org/10.1109/VTS.2018.8368656

96. Zhang, J.J., Liu, K., Khalid, F., Hanif, M.A., Rehman, S., Theocharides, T., Artussi, A.,
Shafique, M., Garg, S.: Building robust machine learning systems: current progress, research
challenges, and opportunities. In: Proceedings of the 56th Annual Design Automation Confer-
ence 2019, DAC 2019, Las Vegas, June 02–06, 2019, p. 175. ACM, New York (2019). https://
doi.org/10.1145/3316781.3323472

97. Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., Ouyang, K., Cappello, F., Chen, Z.: FT-
CNN: algorithm-based fault tolerance for convolutional neural networks. IEEE Trans. Parallel
Distrib. Syst. 32(7), 1677–1689 (2021). https://doi.org/10.1109/TPDS.2020.3043449

https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1145/3316781.3323472
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449

On the Challenge of Hardware Errors,
Adversarial Attacks and Privacy Leakage
for Embedded Machine Learning

Ihsen Alouani

1 Introduction

Due to the recent breakthroughs in deep neural networks (DNNs) design and train-
ing, DL architectures are currently deployed to solving mainstream applications,
along with industrial and critical applications: going from intelligent transportation
systems [1–3], natural language processing [4], robotics [5], and healthcare [6].
This is in part owing to the VLSI technology progress, the new high-performance
communication systems and the development of IoT devices. More specifically, this
trend results in the generation of abundant amounts of data from different embedded
sensors and IT systems, which are necessary for training accurate DNN models.

Given the computing-intensive aspect of DNNs, the by-default deployment of
deep models is in Cloud data-centers or private data-centers. However, there are
practical limits and drawbacks of such systems at least from 2 perspectives:

(i) First, from resource and power consumption and consequently environmental
impact perspective, this scheme has considerable overheads.

(ii) Second, from a communication perspective, such a deployment scheme
requires sending raw data from sensors to the servers all through wireless
and wired communication platforms.

The downside of this scheme is that data-centers are power-hungry platforms;
they are estimated to account for around .1% of worldwide electricity use with high
environmental impact [7]. These trends motivate a ML computing paradigm that
overcomes these issues. Specifically, a more distributed deployment of ML at the
Edge emerged as a promising paradigm towards power-efficient near-sensor intel-
ligent systems. While Embedded and Edge ML offers promising power/accuracy

I. Alouani (�)
Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast, UK
e-mail: i.alouani@qub.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_19

497

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
mailto:i.alouani@qub.ac.uk
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19
https://doi.org/10.1007/978-3-031-40677-5_19

498 I. Alouani

trade-off and enhances the mainstream development of ML models towards sustain-
able and smart systems and cities, several problems still limit ML trustworthiness.

In this chapter, we focus on three aspects of ML trustworthiness, namely
Robustness to errors, security, and privacy.

2 ML Robustness to Errors

In a context of performance-driven design requirements, new hardware generations
continuously shrink transistors dimensions, thereby increasing circuits sensitivity to
external events which can negatively affect their reliability. There are two scenarios
in which errors occur in modern embedded systems:

• Deliberate fault injection attacks such as Rowhammer [8]. Intentional attacks are
another potential source of faults. The widespread usage of CNNs led to the
development of sophisticated attacks. Malicious users could intentionally tamper
with the parameters of the model [9].

• Reliability-related events such as soft errors either in memories, i.e., Single Event
Upsets (SEU) or in combinatorial circuits, i.e., Single Event Transients (SET).
These events are typically caused by high energy particles striking electronic
devices.

These errors can propagate through the neural network to create accuracy loss,
and potentially global system failures that can be safety-critical or security sensitive
in some cases.

In this section, we provide an exploratory analysis of DNNs vulnerability to
errors.

2.1 Methodology

In most embedded ML accelerators, the model parameters are stored on-board. A
memory corruption has a persistent and, hence, cumulative aspect and will remain
until a new model is trained and implemented.

To reproduce models behavior under this threat, we simulate memory corruptions
by injecting a number of bit-flips in random parameters of a model at runtime
(inference). We subsequently evaluate the model robustness for different error rates
and locations (Fig. 1).

We consider two data representations:

• IEEE-754 single-precision 32-bit float: This is the standard representation
format for real numbers. It is the dominant representation in CPU and GPU
architectures. For simplicity we refer to this representation as . F in the rest of
the chapter. are composed of three parts: a sign, an exponent and a fraction part
(see Fig. 2). The normalized format of IEEE-754 floating point is expressed as
follows:

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 499

Input

Output

Select
position

Flip bitDone?

Select
one bit

Error injection method

Yes

No

Fig. 1 Overview of the fault injection methodology

1 0 0 1 0 1 1 0 0 1…

Fractional
Integer

sign

(a)

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0...

sign exponent fraction

31 30 23 22 0

= 0.156

8 bits 23 bits

(b)

Fig. 2 Fixed-point representation in (a) with a bit-width of 8 and a fractional length of 2 (left) and
.−2 (right). On (b) the standard IEEE-754 representation of 32 bit floating-point values

.val = (−1)sign × 2exp−bias × (1.f raction) (1)

• Fixed-point representation: This representation uses two parameters: bit-width
and fractional length. Negative fractional lengths can be used to represent
powers of two. This representation is referred to as . Q (for quantized) in the
rest of the chapter.

To evaluate the robustness of a given model to faults, we create a fault injection
framework that takes a trained network as an input. While testing the model at
inference time, bit-flips are injected in the network’s weights with a tunable injection
rate. After each test, we report the overall accuracy under fault injection.

These tests are repeated 100 times for a statistically representative experiment. In
each run, the engine generates a new set of errors and the injection of the generated
errors is performed each run. We then report the accuracy distribution, i.e., the

500 I. Alouani

average accuracy, the maximum, the minimum, and the standard deviation for the
test.

2.2 Results

The results were obtained on weights in single-precision floating point compara-
tively with quantized weights in terms of classification accuracy of the different
networks. The results of different runs are presented as the mean and the standard
deviation of the top-1 accuracy.

Figure 3 illustrates the result of comparing the floating-point and quantized
representations. The results show that quantized models are surprisingly more
robust to fault injection than the full precision models, which has been consistently
observed for 4 different CNNs with different fault injection rates. We believe that
the reason behind this observation is the error distance after injection denoted by
. A in [10]. For instance, the . Q representation with 7 decimal bits and 1 integer bit
will differ from the original value by at most . ±1. However, for the full precision
representation, the error distance on activation can reach .3 × 1038 as observed in
[10]. Therefore, since floating-point numbers are more sensitive to bit-flips than
fixed-point representation, quantized networks tend to show higher robustness to
errors, in addition to the area and power consumption gains.

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Alexnet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Vgg16

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Googlenet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

0 100 200 300 400 500
Number of injected errors

0

200

400

600

800

A
cc
ur
ac
y
(c
or
re
ct
 p
re
di
ct
io
ns
)

Squeezenet

Q accuracy distribution (μ, σ)
F Accuracy distribution (μ, σ)

Fig. 3 Models accuracy under fault injection for weights representation with 8-bit fixed point (. Q)
and 32-bit single-precision IEEE-754 (. F)

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 501

3 ML Security

ML systems have been deployed in a variety of application domains, including
security-sensitive and safety-critical applications [11]. However, ML models have
been shown vulnerable to several security threats, including adversarial examples,
which consist of additive noise carefully crafted to fool ML models.

3.1 Adversarial Attacks

Adversarial examples are additive perturbations to an input that are carefully crafted
by an adversary to deceive the model and force it to output a wrong label. If
adversaries succeed in manipulating the decisions of a ML classifier to their advan-
tage, this can tamper with the security and integrity of the system, and potentially
threaten the safety of people in some applications like autonomous vehicles. For
example, adding adversarial noise to a stop sign that leads an autonomous car to
wrongly classify it as a speed limit sign can lead to crashes and loss of life. In fact,
adversarial examples have been shown effective under real-world settings [12–14]:
that when printed out, an adversarially crafted image can fool the classifiers even
under different lighting conditions and orientations. Therefore, understanding and
mitigating these attacks is essential to developing safe and trustworthy intelligent
systems.

Attacker Knowledge When attacking a DNN-based model, we can distinguish
two main attack scenarios based on attacker knowledge:

(i) Black-box setting: the adversary has partial or no access to the victim
model’s architecture and parameters. The adversary uses the results of
querying the victim to reverse engineer the classifier and create a substitute
model used to generate the adversarial examples. An illustration of this
scenario is given by Fig. 4.

(ii) White-box setting: in which the adversary has complete knowledge of
the training data of the victim model in addition to the target model’s
architecture and parameters. An illustration of this scenario is given by
Fig. 5. (FGSM) [15] attack, Projected gradient descent (PGD) [16] attack,
Carlini & Wagnar (C&W) [17] are the main white-box adversarial attacks.

The attacker intention is to slightly modify the source image so that it is classified
incorrectly by the target model, without special preference towards any particular
output which is known as untargeted attack. However, in a targeted attack, the
attacker aims at a specified wrong target class.

Minimizing Injected Noise An adversary, using information learned about the
classifier, generates perturbations to cause incorrect classification under the con-
straint of minimizing this perturbation magnitude to avoid detection. For illustration

502 I. Alouani

Fig. 4 Illustration of a black-box attack setting

purposes, consider a CNN used for image classification. More formally, given an
original input image x and a target classification model .f () s.t. f (x) = l, the
problem of generating an adversarial example . x∗ can be formulated as a constrained
optimization [17]:

.x
∗ = arg min

x∗
D(x, x∗), s.t. f (x∗) = l∗, l �= l∗ (2)

where . D is the distance metric used to quantify the similarity between two images
and the goal of the optimization is to minimize this added noise, typically to avoid
detection of the adversarial perturbations. l and . l∗ are the two labels of x and . x∗,
respectively: . x∗ is considered as an adversarial example if and only if the label
of the two images are different (.f (x) �= f (x∗)) and the added noise is bounded
(.D(x, x∗) < ε where .ε � 0).

Distance Metrics The adversarial perturbations should be visually imperceptible
by a human eye. Since it is hard to model humans’ perception, three metrics have
been practically used to measure the noise magnitude relatively to a given input,
namely . L0, . L2, and .L∞ [17]. Notice that these three metrics are special cases of the
. Lp norm defined as follows:

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 503

Fig. 5 Illustration of a white-box attack setting

. ‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

(3)

These metrics focus on different aspects of visual significance. For example, . L0
evaluates the number of pixels with different values at corresponding positions in
two inputs. . L2 is the Euclidean distance between two images x and . x∗, while .L∞ is
the maximum difference for all pixels at corresponding positions in the two images.

Adversarial Attacks Generation Several methods have been proposed in the
literature to generate adversarial examples. In the following we give a quick
overview on the most popular ones:

Fast Gradient Sign Method (FGSM) FGSM is a single-step, gradient-based, attack.
An adversarial example is generated by calculating a one-step gradient update
following the direction of the sign of the loss gradient over the input, which is the
direction that maximizes the target model’s loss:

.xadv = x + εsign(∇xJθ (x, y)) (4)

504 I. Alouani

where .∇J () is the gradient of the loss function J and . θ is the set of model
parameters and . ε is the perturbation magnitude budget.

Projected Gradient Descent (PGD) PGD is a more efficient attack generation
method; it is an iterative variant of FGSM where the adversarial noise is generated
adaptively as follows:

.xt+1
adv = PSx

(xt
adv + α · sign(∇xLθ (x

t
adv, y))) (5)

where .PSx
() is a projection operator projecting the input into the feasible region . Sx

and . α is the added noise at each iteration. PGD find the perturbation that maximizes
the loss of a model on a particular input while keeping the size of the perturbation
lower than the budget due to the projection operator.

Carlini & Wagner (.C&W) This attack has 3 variants based on the used distance
metric (.l0, l2, l∞). It generates adversarial examples by solving the following
optimization problem:

minimize
δ

‖δ‖2 + c · l(x + δ)

s.t. x + δ ∈ [0, 1]n
(6)

where .‖δ‖2 is the lowest noise that forces the model to misclassify. .l(·) is the loss
function defined as follows:

.l(x) = max(maxi �=t {Z(x)i} − Z(x)t − κ) (7)

where .Z(x) is the output of the layer before the softmax called logits. t is the
target label, and . κ is the attack confidence. An adversarial example is considered
as successful if .maxi �=t {Z(x)i} − Z(x)t ≤ 0.

3.1.1 Defenses Against Adversarial Attacks

To protect ML models against adversarial attacks, several defense techniques can
be found in the literature. We briefly introduce the different categories and provide
insights from Embedded Systems perspective.

Adversarial Training (AT) AT is one of the most efficient state-of-the-art defense
methods against adversarial attacks whose aim is to integrate the adversarial noise
within the training process. It can be formulated as follows [16]:

. min
θ

E(x,y)∼D
[

max
δ∈B(x,ε)

Lce(θ, x + δ, y)

]
(8)

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 505

where . θ indicates the parameters of the classifier, .Lce is the cross-entropy loss,
.(x, y) ∼ D represents the training data sampled from a distribution . D, and
.B(x, ε) is the allowed perturbation set. In this formulation, the inner maximization
problem’s objective is to explore the “adversarial surrounding” of a given training
point and to take into account, not only the sample but also the worst-case noise
from an adversarial perspective. The outer minimization problem is the conventional
training aiming at minimizing the loss function (which includes adversarial noise)
[16].

Nonetheless, the drawback of AT is its significant computational intensivity
compared to the baseline training process. This is obviously due to the nested
optimization problems in the formulation that need to be solved iteratively.

Input Pre-processing (IP) Input pre-processing is based on applying transforma-
tions to the input in order to remove adversarial perturbations [18, 19]. Transfor-
mations include the averaging, median, and Gaussian low-pass filters [19], as well
as JPEG compression [20]. However, it has been shown that these defenses are
vulnerable to white-box attacks [21]; in a white-box setting, where the adversary
is aware of the defense, they can integrate the pre-processing function in the noise
generation process. Furthermore, pre-processing requires computation overheads
which is not suitable for resource-constrained devices such as Embedded Systems.

Gradient Masking (GM) GM leverages regularization to make the model’s output
less sensitive to input perturbations. Papernot et al. presented defensive distilla-
tion [22]. Nonetheless, this method is vulnerable to .C&W attack [17]. Besides, GM
techniques such as defensive distillation require a retraining process which results
in time and energy overheads.

Randomization-Based Defenses These techniques leverage randomness to protect
systems from adversarial noise. Lecuyer et al. [23] propose that random noise
be added to the first layer of the DNN and the output be estimated via a Monte
Carlo simulation. Raghunathan et al. [24] evaluate only a tiny neural network.
Estimating the model output requires a heavy Monte Carlo simulation with a number
of different model inference runs online, which cannot be afforded under resource
constraints.

These defense strategies either require changing the DNN structure, modifying
the training process or retrain the model only against known adversarial threats,
which results in considerable overheads in time, resource utilization and energy
consumption. In the following, we present defense strategies that take into account
this aspect, which we call Embedded Systems-friendly defenses.

506 I. Alouani

3.2 Embedded Systems-Friendly Defenses

Another set of defense techniques are inspired by hardware-efficiency techniques
such quantization [25, 26]. The authors in [27] proposed Defensive approximation
(DA), which leverages approximate computing (AC) to build robust models.

3.2.1 Defensive Approximation

The demand on high-performance embedded and mobile devices has been dras-
tically increasing in the past decades. However, the technology is physically
reaching the end of Moore’s law, especially with the release of TSMC and
Samsung 5 nm technology [28]. On the other hand, we observe that highly accurate
computations might not be a must in all application domains. In fact, in a wide
range of emerging applications, there is no specific accuracy requirements at
the computing-element level, but rather a quality-of-service requirements on the
system level. These application are inherently fault-tolerant by design and can
relax the computational accuracy constraint. This observation has motivated the
development of approximate computing (AC), a computing paradigm that trades
power consumption with accuracy. The idea is to implement inexact/approximate
elements that consume less energy, as far as the overall application tolerates the
imprecision level in computation. This paradigm has been shown promising for
inherently fault-tolerant applications such as deep learning, data analytics, and
image/video/signal processing. Several AC techniques have been proposed in the
literature and can be classified into three main categories based on the computing
stack layer they target: software, architecture, and circuit level [29, 30].

Defensive approximation [27] tackles the problem of robustness to adversarial
attacks from a new perspective, i.e., approximation in the underlying hardware,
and leverages AC to secure DNNs. Specifically, at the lowest level, DA replaces
exact conventional multipliers used in the convolution operations by an approximate
multipliers. These approximate multiplier can generate inaccurate outputs, but the
error distance needs to be under control. For this reason, the approximation occurs
specifically in the mantissa multiplication, exclusively, to avoid high magnitude
noise in the case of errors in the exponent or the sign bit of floating-point numbers.
Subsequently, the convolution layers are built based on the approximate multipliers,
which injects AC-induced noise within model layers. This noise is leveraged to
protect DNNs against adversarial attacks. Moreover, in addition to the by-product
gains in resources due to AC, this defense requires no retraining or fine-tuning of
the protected model.

DA targets both robustness and energy/resource challenges. In fact, DA exploits
the inherent fault tolerance of deep learning systems to provide resilience while also
obtaining by-product gains of AC in terms of energy and resources. The AC-induced
perturbations tend to help the classifier generalize and enhances its confidence and
consequently enhance the classifier’s robustness. Figure 6 gives an overview on DA

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 507

Fig. 6 Defensive approximation overview

mechanism within a CNN. It shows the distribution of the error distance due to
the approximate multiplier. This noise distribution propagates within the model and
impacts the features map, thereby defusing the adversarial noise mechanism. In the
following, we discuss the exploration of approximation space with regards to the
baseline accuracy of the models.

3.2.1.1 Baseline Accuracy

Before exploring the impact of AC on the security of DNNs, the protected model
needs to maintain models’ utility as a bottom line. For this reason, we explore
the impact of the approximate multiplier on the accuracy for different levels of
approximation, i.e., starting from approximating the full network, comparatively
with having increasing exact layers along with the approximate model. Table 1 gives
an overview on the utility as a function of the approximation level of the model for
CIFAR-10 and ImageNet datasets.

3.2.1.2 Impact on Robustness

To evaluate the impact of AC on robustness, we consider a powerful adversary that
has full access to the defense mechanism as well as the victim model architecture
and parameters. Hence, we measure the model accuracy under adversarial examples
created using different attacks for several noise budgets.

508 I. Alouani

Table 1 Impact of
approximation on model
classification accuracy for a
set of clean Inputs from
CIFAR-10 and ImageNet

Top 1 accuracy

Model CIFAR-10 ImageNet

Full exact model 100% 100%

Full approximate model 85.7% 73.23%

Exact: 1st conv layer 98.34% 97.18%

Exact: 2nd conv layer 93.4% 83.60%

Exact: 3rd conv layer 93.4% 83.60%

Exact: 1st FC layer 88.04% 75.4%

Exact: 2nd FC layer 88.04% 75.4%

Exact: 3rd FC layer 88.04% 75.4%

Exact: all FC layers 95% 78.87%

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(a)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(b)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(c)

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05

Ac
cu

ra
cy

noise budget

Approximate model Exact model

(d)

Fig. 7 Model accuracy for different noise budgets under white-box attack. (a) CIFAR-10 using
FGSM. (b) CIFAR-10 using PGD. (c) ImageNet using FGSM. (d) ImageNet using PGD

Figure 7 summarizes the effectiveness of DA defense against FGSM and PGD
attacks for different noise budgets (. ε). The approximate hardware prevents the
attacker from generating efficient AE for deeper networks and complex data
distribution. Even with a high amount of injected noise (.ε = 0.06), DA model
accuracy remains as high as .90% under PGD attack.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 509

3.2.2 Undervolting as a Defense

3.2.2.1 Approach

This approach explores using voltage over-scaling (VOS) as a lightweight defense
against adversarial attacks [31]. It consists of reducing supply voltage at runtime,
i.e., inference, without accordingly scaling down the frequency (Fig. 8). This creates
stochastic hardware-induced noise at computation circuitry that is leveraged to
defend DNNs against adversarial attacks. The rationale behind choosing VOS is
as follows:

(i) Stochastic noise: The impact of injecting random noise on DNNs robustness
has been proven theoretically in [23, 32]. However, none of these works
provides a practical implementation of the randomness source, especially one
that does not require high overhead and considerable complexity to cope with
Embedded ML requirements. This approach leverages a fundamental property
of VOS, which is a stochastic behavior of the induced timing violations within
the circuit.

(ii) Controllable noise magnitude: While injected random noise can be used to
improve the robustness of DNNs [23], its magnitude should be under control.
In fact, injecting high magnitude noise can have drastic impact on baseline
accuracy. Nonetheless, VOS-induced noise magnitude is directly controllable
by the supply voltage.

3.2.2.2 Setup

To match the fault rates with the voltage levels, we used a Xilinx Zynq Ultrascale. +
ZCU104 FPGA platform that hosts a VGG-16 CNN. The device’s Processing Sys-
tem (PS) includes a quad-core Arm Cortex-A53 applications processor (APU), as
well as a dual-core Cortex-R5 real-time processor (RPU). We leveraged an external
voltage controller, the Infineon USB005, to perform undervolting characterization
on the FPGA device, which is connected to the board via an I2C wire. We can read
and write the different voltage rail supplies to the board using PowerIRCenter GUI.

3.2.2.3 Impact on Robustness

Figure 9 shows the accuracy of the exact model and undervolted models for LeNet-
5, AlexNet, and ResNet-18 CNNs under .�∞ and . �2 C&W attack. While the baseline
exact model (.hexact) yields high classification accuracy, it drops drastically under
.C&W attack reaching near 0 for .ε = 0.4. Most importantly, approximate model
with a fault rate .f r = 10−4 maintains a high robustness (accuracy under attack)
even for high magnitude . ε. This observation holds for AlexNet and ResNet-18 as
well.

510 I. Alouani

Dataset
preprocessing

Generate
adversarial sample

on eexactt model

Inference
on exactt model

Generate
adversarial sample
on approx.. model

Inference
on approx.. model

Adversarial
attack

VOS fault
injection

(e.g., 5%) (e.g., 86%)

Exact model:
Convention DNN model

Approx. model:
Convention DNN + VOS faults

Fig. 8 Experimental setup for undervolted models robustness

0.1 1 1.5 2 4 6 8 10
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

0.05 0.5 1 1.5 2 3 6 8
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

0.05 0.5 1 1.5 2 3 6 8
Attack noise budget,

0%
20%
40%
60%
80%
100%

Ac
cu
ra
cy

×10−1 ×10−2 ×10−2

(a) LeNet-5 with MNIST (b) AlexNet with CIFAR-10 (c) ResNet-18 with CIFAR-100

hexact happrox(fr = 10−6) happrox(fr = 10−5) happrox(fr = 10−4) happrox(fr = 10−3)

(a) LeNet-5 with MNIST
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

0%

23.33%

82.51%

41.98%

6.05%

(b) AlexNet with CIFAR-10
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

10.05% 14.72%

81.09%

24.76% 20.91%

(c) ResNet-18 with CIFAR-100
0%
20%
40%
60%
80%
100%

A
cc
ur
ac
y

10.38%
29.92%

66.04%

11.28% 8.51%

hexact happrox(fr = 10−6) happrox(fr = 10−5) happrox(fr = 10−4) happrox(fr = 10−3)

!

Fig. 9 Robustness of VOS-models under C&W attack for both .�∞ (top) and . �2 (bottom) metrics

While VOS offers a practical source of randomness that enhances DNNs
robustness to adversarial attacks, it also comes with an obvious by-product gain
in terms of power consumption, and offers an ad-hoc defense that does not require
modifying the model or retraining it.

Trade-off The results show that a VOS-induced noise protects DNNs against
adversarial attacks. However, aggressive undervolting results in a drop in utility.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 511

fr=0 fr=10−6 fr=10−5 fr=10−4 fr=10−3

Computational fault rate, fr

0%
20%
40%
60%
80%
100%

Pe
rc
en
ta
ge

Sweet spot

Baseline accuracy Robustness on 2 HSJ Robustness on ∞ HSJ

Fig. 10 An illustration of the accuracy/robustness trade-off for AlexNet with CIFAR-10 on HSJ.
In the figure, .f r = 0 indicates the exact model, . hexact

A trade-off between accuracy and robustness with by-product power savings could
be found, to achieve high-robustness models without accuracy drop. An example of
a robustness/accuracy trade-off is depicted in Fig. 10. Notice that . fr represent the
fault rates, which are directly defined by the VOS level. The figure shows that with a
simple space exploration, we can identify a sweet-spot for a given CNN that yields
the highest possible robustness with the lowest possible accuracy drop.

3.3 Privacy

Confidentiality is a fundamental design property, especially for systems that process,
store, or communicate private and sensitive data. In ML, insuring a model privacy
consists in protecting the model against information leakage, whereby an adversary
aims to infer sensitive information such as training data by interacting with the
victim. In fact, the promising performance of ML systems spread their use to
sensitive applications ranging from medical diagnosis in health-care to surveillance
and biometrics. These models are trained on various data such as clinical/biomedical
records, personal photos, genome data, financial, social, location traces, etc. More-
over, they are also trained with crowd-sourced data as cloud providers (e.g., Amazon
AWS, Microsoft Azure, Google API) in a ML-as-a-Service fashion, which allow
novice users to train models that often contains personally identifiable information.

ML models are vulnerable to privacy threats, which are critical when data
confidentiality is an issue, e.g., when revealing the identity of the patients in
clinical records. Membership Inference Attacks [33] aim at determining whether
a data sample belongs to the training dataset. More generically, Property Inference
Attacks [34] infer certain properties that hold only for a fraction of the training data,
and are independent from the features that the DNN model aims to learn. On the
other hand, Model Stealing methods [35] aim at duplicating the functionality of the

512 I. Alouani

ML model and extract its parameters, and Model Inversion Attacks [36] aim to infer
sensitive features of the training data.

Towards avoiding these leakages of confidential information, several privacy-
preserving techniques can be employed. Homomorphic Encryption (HE) ensures
that the data remains confidential, since the attacker does not have access to the
decryption keys. CryptoNets [37] apply HE to perform DNN inference on encrypted
data, and the work of [38] extends the encryption to the complete training process.
However, HE-based techniques are very costly in terms of execution time and
resources.

Another state-of-the-art technique towards privacy-preserving ML is Differ-
ential Privacy (DP) which consists of injecting random noise to the stochastic
gradient descent process (Noisy SGD) [39], or through Private Aggregation of
Teacher Ensembles (PATE) [40], in which the knowledge learned by an ensemble of
“teacher” models is transferred to a “student” model. While DP is one of the most
efficient defenses against information leakage, it comes at a considerable cost in
terms of utility, i.e., it results in a baseline accuracy drop.

Training a deep neural network requires a large amount of data, which represents
practically the most valuable asset in ML ecosystems. In some specific applications,
data protected by privacy regulations and user level agreements. These can be
specific to application domains such as HIPPA regulations in the US which prohibits
patients’ data sharing and GDPR in Europe, which is more generic in regulating user
data collection [41]. Therefore, in medical applications, a given health institution
might not be able to collect enough data that is representative and relevant to train
an efficient ML model.

In another scenarios, data may be created on Edge devices, but owners are
reluctant to sharing it due to privacy concerns (industrial applications, text messages,
etc.), bandwidth challenges, or both.

Federated learning (FL) recently emerged as a potential solution to overcome
these aforementioned issues. Specifically, FL allows train ML models collabora-
tively between different nodes without sharing their local data [42]. FL allows
multiple participants (also called clients) to train local models and then consolidate
those models into a global model. This global model benefits from all client data,
without directly sharing the data, preserving data privacy. Each client trains its
model on its private data, and then communicates model updates to a central server
(also called aggregator). By avoiding communicating the data to a central back end
for training, this data remains local to each client and therefore private. Moreover,
distributing the training leads to benefits in performance and network bandwidth. In
an FL model, each participant updates the global model by training it on its local
data and shares the metadata with a central server. Only the trained local model
updates are shared, and the local data to each client remains private. The server
aggregates the local model updates into a single federated model and shares this
model with the participants, allowing them to benefit from a model trained on the
overall data. The federated model can continue to be refined as more data becomes
available. This process is illustrated in Fig. 11.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 513

Fig. 11 An overview on FL setting: Client devices send locally trained model updates to server
for aggregation of the federated model

While FL has been branded by major companies such as Google as a privacy-
preserving solution, it has been shown that it is vulnerable to several attacks that
can jeopardize its and confidentiality:

Model Poisoning and Data Poisoning Each of the clients in FL setting is able to
arbitrarily change its local model maliciously that they send to server. The model
can be manipulated either directly through its parameters or indirectly by poisoning
the local training set to degrade the quality of the aggregated model making it
misclassify more often, or be more susceptible to adversarial inputs. In model
poisoning, a malicious client attempts to change the global model by poisoning
their local model parameters directly [43]. In contrast, in data poisoning, the attacker
manipulates its local training samples, affecting the model’s performance indirectly
throughout a substantial portion of the input space [44].

Deep Leakage from Gradients With access to the gradient of a particular client,
an adversary is able reconstruct the training samples of the client. In fact, attacks
like Deep Leakage from gradient (DLG) [45] and iDLG [46] show the possibility to
reconstruct training data samples from raw gradients only. The recovered images
are pixel wise accurate, and generated through an optimization problem aiming at
reducing the difference between the gradient of a given candidate input and the real
gradient.

Defenses and Limits Differential Privacy has been used as a defense against data
leakage [39]. However, it does not protect against poisoning attacks. Moreover,
secure aggregation techniques such as [47] aim at preventing the server from
accessing the individual model updates, while allowing the aggregation operation.

514 I. Alouani

However, this defense results by construction in an impossibility to detect integrity
attacks.

To defend against integrity attacks, and limit the influence of individual partic-
ipants, robust aggregation techniques have been proposed (also called Byzantine-
tolerant aggregation) [48, 49].

Fairness FL approach is designed under the assumption of non-iid data. The
incentive of participants to share their model updates generated on local data is to
enhance the model accuracy, specifically on their own data distribution. However,
robust aggregation techniques consider the tail of the gradient updates distribution
as a potential integrity attack and cuts it off in the aggregation phase. Therefore,
users with “atypical” data, i.e., in the tail of the overall users data distribution will
not benefit from the FL setting since their contributions are discarded by the robust
aggregation mechanism [50]. This results in a fairness problem: users with minority
and atypical data distributions will be disadvantaged by the FL setting.

Open Problems FL offers an interesting solution towards privately sharing
“knowledge representations” without necessarily sharing raw data, which allows
to train more generalizing and efficient models. However, a three objectives that
are necessary for FL deployment seem to be difficult to obtain simultaneously,
i.e., privacy, integrity, and fairness. In fact, secure aggregation techniques solve the
privacy problem and open an attack surface on the model integrity. On the other
hand, tackling the integrity problem with robust aggregation schemes results in the
loss of the global model fairness.

We believe that a fundamental problem to solve by the community is finding
interesting and adaptive trade-off between these three objectives.

4 Conclusion

This chapter focuses on three aspects of ML trustworthiness, especially in the
context of embedded systems and the Edge:

(i) The first is ML models robustness to errors, either due to hardware reliability
issues or deliberately injected by malicious actors.

(ii) The second aspect is the security of ML models, especially from an adversarial
ML perspective. More specifically, we explored defense techniques that are
Embedded Systems-friendly, i.e., that do not result in a high overhead in power
consumption or hardware resources.

(iii) The third is the privacy problem, where we focused on federated learning as
an emerging training paradigm that is compatible with Embedded Systems and
IoT applications.

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 515

References

1. Ben Khalifa, A., Alouani, I., Mahjoub, M.A., Rivenq, A.: A novel multi-view pedestrian
detection database for collaborative intelligent transportation systems. Fut. Gener. Comput.
Syst. 113, 506–527 (2020). https://doi.org/10.1016/j.future.2020.07.025

2. Jegham, I., Khalifa, A.B., Alouani, I., Mahjoub, M.A.: Soft spatial attention-based multimodal
driver action recognition using deep learning. IEEE Sensors J. 21(2), 1918–1925 (2021).
https://doi.org/10.1109/JSEN.2020.3019258

3. Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., Radha, H.: Deep learning algorithm for
autonomous driving using GoogLenet. In: 2017 IEEE Intelligent Vehicles Symposium (IV),
pp. 89–96. IEEE, Piscataway (2017)

4. Deng, L., Liu, Y.: Springer, Berlin (2018)
5. Pierson, H.A., Gashler, M.S.: Deep learning in robotics: a review of recent research. Advanced

Robotics 31(16), 821–835 (2017)
6. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review,

opportunities and challenges. Briefings in bioinformatics 19(6), 1236–1246 (2018)
7. Masanet, E., Shehabi, A., Lei, N., Smith, S., Koomey, J.: Recalibrating global data center

energy-use estimates. Science 367(6481), 984–986 (2020). https://doi.org/10.1126/science.
aba3758

8. Kim, Y., Daly, R., Kim, J.S., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K., Mutlu, O.:
Flipping bits in memory without accessing them: An experimental study of DRAM disturbance
errors. In: ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, pp. 361–372 (2014). https://doi.org/10.1109/ISCA.2014.6853210

9. Liu, Q., Liu, T., Liu, Z., Wang, Y., Jin, Y., Wen, W.: Security analysis and enhancement of
model compressed deep learning systems under adversarial attacks. In: Proceedings of the
23rd Asia and South Pacific Design Automation Conference. ASPDAC ’18, pp. 721–726. IEEE
Press, Piscataway (2018). http://dl.acm.org/citation.cfm?id=3201607.3201772

10. Neggaz, M.A., Alouani, I., Lorenzo, P.R., Niar, S.: A reliability study on CNNs for critical
embedded systems. In: 2018 IEEE 36th International Conference on Computer Design (ICCD),
pp. 476–479. IEEE (2018)

11. Neggaz, M.A., Alouani, I., Niar, S., Kurdahi, F.J.: Are CNNs reliable enough for critical
applications? An exploratory study. IEEE Des. Test 37(2), 76–83 (2020). https://doi.org/10.
1109/MDAT.2019.2952336

12. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno,
T., Song, D.: Robust physical-world attacks on deep learning visual classification. In: 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18–22, 2018, pp. 1625–1634. Computer Vision Foundation/IEEE Computer
Society (2018). https://doi.org/10.1109/CVPR.2018.00175

13. Man, Y., Li, M., Gerdes, R.M.: GhostImage: Remote perception attacks against camera-
based image classification systems. In: 23rd International Symposium on Research in Attacks,
Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14–15, 2020, 317–332
(2020)

14. Tarchoun, B., Alouani, I., Ben Khalifa, A., Mahjoub, M.A.: Adversarial attacks in a multi-
view setting: An empirical study of the adversarial patches inter-view transferability. In: 2021
International Conference on Cyberworlds (CW), pp. 299–302 (2021). https://doi.org/10.1109/
CW52790.2021.00057

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Bengio, Y., LeCun, Y. (eds.): In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings
(2018)

https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1016/j.future.2020.07.025
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1109/JSEN.2020.3019258
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
http://dl.acm.org/citation.cfm?id=3201607.3201772
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/MDAT.2019.2952336
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057
https://doi.org/10.1109/CW52790.2021.00057

516 I. Alouani

17. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22–26, 2017,
pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49

18. Guesmi, A., Alouani, I., Baklouti, M., Frikha, T., Abid, M.: Sit: stochastic input transformation
to defend against adversarial attacks on deep neural networks. IEEE Design Test 1–1 (2021).
https://doi.org/10.1109/MDAT.2021.3077542

19. Osadchy, M., Hernandez-Castro, J., Gibson, S., Dunkelman, O., Pérez-Cabo, D.: No bot
expects the DeepCAPTCHA! Introducing immutable adversarial examples, with applications
to CAPTCHA generation. IEEE Trans. Inform. Forensics Secur. 12(11), 2640–2653 (2017)

20. Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Chen, L., Kounavis, M.E., Chau,
D.H.: Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG
Compression (2017)

21. Chen, J., Wu, X., Rastogi, V., Liang, Y., Jha, S.: Towards understanding limitations of pixel
discretization against adversarial attacks. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 480–495. IEEE (2019)

22. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial
perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 582–597 (2016). https://doi.org/10.1109/SP.2016.41

23. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial
examples with differential privacy. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 656–672 (2019)

24. Raghunathan, A., Steinhardt, J., Liang, P.: Certified Defenses against Adversarial Examples
(2018)

25. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6–9, 2019 (2019)

26. Khalid, F., Ali, H., Tariq, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: QuSecNets:
quantization-based defense mechanism for securing deep neural network against adversarial
attacks. In: 25th IEEE International Symposium on On-Line Testing and Robust System
Design, IOLTS 2019, Rhodes, Greece, July 1–3, 2019, 182–187 (2019). https://doi.org/10.
1109/IOLTS.2019.8854377

27. Guesmi, A., Alouani, I., Khasawneh, K.N., Baklouti, M., Frikha, T., Abid, M., Abu-Ghazaleh,
N.B.: Defensive approximation: securing CNNs using approximate computing. In: ASPLOS
’21: 26th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Virtual Event, USA, April 19–23, 2021, pp. 990–1003 (2021).
https://doi.org/10.1145/3445814.3446747

28. Moore, S.K.: Another step toward the end of Moore’s law: Samsung and TSMC move to 5-
nanometer manufacturing—[news]. IEEE Spectr. 56(6), 9–10 (2019). https://doi.org/10.1109/
MSPEC.2019.8727133

29. Guesmi, A., Alouani, I., Baklouti, M., Frikha, T., Abid, M., Rivenq, A.: Heap: a heterogeneous
approximate floating-point multiplier for error tolerant applications. In: Proceedings of the
30th International Workshop on Rapid System Prototyping (RSP’19). RSP ’19, pp. 36–42.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3339985.
3358495

30. Alouani, I., Ahangari, H., Ozturk, O., Niar, S.: A novel heterogeneous approximate multiplier
for low power and high performance. IEEE Embedded Syst. Lett. 10(2), 45–48 (2018). https://
doi.org/10.1109/LES.2017.2778341

31. Islam, S., Alouani, I., Khasawneh, K.N.: Lower voltage for higher security: using voltage
overscaling to secure deep neural networks. In: 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1–9 (2021). https://doi.org/10.1109/ICCAD51958.
2021.9643551

32. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized
smoothing. In: Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, vol. 97, pp. 1310–1320 (2019)

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/MDAT.2021.3077542
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1109/IOLTS.2019.8854377
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1145/3445814.3446747
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1109/MSPEC.2019.8727133
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1145/3339985.3358495
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/LES.2017.2778341
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551
https://doi.org/10.1109/ICCAD51958.2021.9643551

On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage. . . 517

33. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22–26, 2017, pp. 3–18 (2017). https://doi.org/10.1109/SP.2017.41

34. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference attacks on
fully connected neural networks using permutation invariant representations. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15–19, 2018, pp. 619–633 (2018). https://doi.org/10.
1145/3243734.3243834

35. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction APIs. In: 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10–12, 2016, pp. 601–618 (2016)

36. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12–16, 2015, pp. 1322–
1333 (2015). https://doi.org/10.1145/2810103.2813677

37. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryp-
tonets: Applying neural networks to encrypted data with high throughput and accuracy. In:
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19–24, 2016, vol. 48, pp. 201–210 (2016)

38. Nandakumar, K., Ratha, N.K., Pankanti, S., Halevi, S.: Towards deep neural network training
on encrypted data. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16–20, 2019, pp. 40–48
(2019). https://doi.org/10.1109/CVPRW.2019.00011

39. Abadi, M., Chu, A., Goodfellow, I.J., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.:
Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24–28, 2016, pp. 308–
318 (2016). https://doi.org/10.1145/2976749.2978318

40. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, Ú.: Scalable
private learning with PATE. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings
(2018)

41. Annas, G.J., et al.: HIPAA regulations-a new era of medical-record privacy? N. Engl. J. Med.
348(15), 1486–1490 (2003)

42. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in federated
learning (2019). arXiv preprint arXiv:1912.04977

43. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948.
PMLR (2020)

44. Jere, M.S., Farnan, T., Koushanfar, F.: A taxonomy of attacks on federated learning. IEEE
Secur. Privacy 19(2), 20–28 (2020)

45. Zhu, L., Han, S.: Deep Leakage from Gradients, pp. 17–31. Federated Learning (2020)
46. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: Improved deep leakage from gradients (2020). arXiv

preprint arXiv:2001.02610
47. Chen, Y., Su, L., Xu, J.: Distributed statistical machine learning in adversarial settings:

Byzantine gradient descent. Proc. ACM Meas. Anal. Comput. Syst. 1(2), 1–25 (2017)
48. Damaskinos, G., El-Mhamdi, E.-M., Guerraoui, R., Guirguis, A., Rouault, S.: AggregaThor:

byzantine machine learning via robust gradient aggregation. Proc. Mach. Learn. Syst. 1, 81–
106 (2019)

49. Rajput, S., Wang, H., Charles, Z., Papailiopoulos, D.: Detox: a redundancy-based framework
for faster and more robust gradient aggregation. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

50. Yu, T., Bagdasaryan, E., Shmatikov, V.: Salvaging federated learning by local adaptation
(2020). arXiv preprint arXiv:2002.04758

https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1109/CVPRW.2019.00011
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318

A Systematic Evaluation of Backdoor
Attacks in Various Domains

Stefanos Koffas, Behrad Tajalli, Jing Xu, Mauro Conti, and Stjepan Picek

1 Introduction

In the last few years, deep learning has become very popular, and it has been applied
to a variety of applications like computer vision [29], machine translation [54],
speech recognition [18], and game playing [44]. It is also used in safety and
security-critical applications like autonomous driving [12], malware detection [8],
biometric-based user authentication [6], and side-channel analysis [40]. Such
systems commonly need large datasets to train reliable models that generalize
well and perform adequately with unseen data. However, large datasets are often
scrapped from untrusted sources on the web [1, 11]. Additionally, the hardware
needed to train such models can be very expensive and is not always available
to developers who want to embed some machine learning functionality into their
applications. Thus, a new programming paradigm has emerged: Machine Learning

S. Koffas · J. Xu
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands
e-mail: s.koffas@tudelft.nl; j.xu-8@tudelft.nl

B. Tajalli
Digital Security Group, Radboud University, Nijmegen, The Netherlands
e-mail: hamidreza.tajalli@ru.nl

M. Conti
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands

SPRITZ Security and Privacy Research Group, University of Padua, Padua, Italy
e-mail: mauro.conti@unipd.it

S. Picek (�)
Cybersecurity Group, Delft University of Technology, Delft, The Netherlands

Digital Security Group, Radboud University, Nijmegen, The Netherlands
e-mail: stjepan.picek@ru.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_20

519

 31368 2385 a 31368 2385 a

 885 41901 a 885 41901 a

mailto:s.koffas@tudelft.nl
mailto:s.koffas@tudelft.nl
mailto:s.koffas@tudelft.nl

 8583 41901 a 8583 41901 a

mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl
mailto:j.xu-8@tudelft.nl

 885 45775
a 885 45775 a

mailto:hamidreza.tajalli@ru.nl
mailto:hamidreza.tajalli@ru.nl
mailto:hamidreza.tajalli@ru.nl

 885 51310 a 885 51310 a

mailto:mauro.conti@unipd.it
mailto:mauro.conti@unipd.it
mailto:mauro.conti@unipd.it

 885 56845 a 885 56845 a

mailto:stjepan.picek@ru.nl
mailto:stjepan.picek@ru.nl
mailto:stjepan.picek@ru.nl
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20
https://doi.org/10.1007/978-3-031-40677-5_20

520 S. Koffas et al.

as a Service (MLaaS), made possible by the recent advances in cloud computing.
These new trends lead to novel attack vectors that adversaries can exploit.

One of these attack vectors is the backdoor attack [19]. In this attack, an
adversary embeds a secret functionality into a trained model, activated only if
the model’s input contains a specific property (trigger). At the same time, for
any input that does not include the trigger, the model behaves as expected to
avoid raising any suspicions. Most of the designed attacks in the literature target
computer vision applications [31], but recently different applications have been
targeted. In particular, backdoor attacks were shown in text classification [5, 9],
audio recognition [28, 62], graph data [55, 57], federated learning [3, 45], and
reinforcement learning [58]. A backdoor attack can be dangerous as machine
learning is used in many security-related applications. In [19], the authors showed
that a stop sign with a small post-it note could be identified as a speed limit by
a compromised autonomous vehicle with serious consequences to its passengers
and pedestrians. AI-enabled applications like spam-filtering [37], speaker identifi-
cation [62], or malware detection [42] could also be bypassed if the model used
contains a backdoor. Thus, backdoor attacks pose a serious threat, and it is required
to understand the limits of such attacks to provide better defenses.

This work explores the effects of various trigger characteristics on the backdoor
attack. In particular, we implement backdoor attacks with triggers of varying sizes,
positions, and poisoning rates and apply them to four different domains (image, text,
sound, and graph data). With it, we aim to better understand backdoor attacks and
find common properties among different domains.

In [47], the authors claimed that the backdoor attack becomes ineffective when
the adversary cannot alter the training labels and is forced to poison only samples
from the target class. In this case, the model cannot learn a strong connection
between the trigger and the target class as more substantial features from the target
class are learned. This behavior is reasonable and well justified but only supported
by one experiment with the CIFAR10 dataset. Here, we aim to test this claim in
image classification but also in different domains, like text and sound classification.

Our contributions are:

– We run extensive experiments in different application domains (image, text,
audio, and graph data) and systematically evaluate the effect of various trigger
characteristics on the backdoor attack.

– We investigate two different backdoor attacks in each application and verify
that the clean-label attack is not very effective as it may require large poisoning
rates to achieve a high attack success rate. However, this attack could work by
choosing more effective triggers without changing the poisoning rate.

– We show that in most cases, the backdoor’s effectiveness increases as the trigger
size increases.

A Systematic Evaluation of Backdoor Attacks in Various Domains 521

2 Background

2.1 Computer Vision

Today, the computer vision domain covers diverse use cases and concepts within,
ranging from capturing raw data to image pattern extraction and interpreting
information from those images. It is mostly a combination of concepts, ideas, and
techniques of pattern recognition, digital image processing, artificial intelligence
(AI), and computer graphics [53]. Computer vision aims to provide the capability
for a system to identify and perceive the visual world in the same way as human
vision does. Recently, by applying AI techniques, including deep neural networks,
the machines even outperformed humans in several tasks [13].

Nowadays, there are multiple applications of computer vision in our daily life,
e.g., weather prediction, medical cases, sports and entertainment, industry and
production lines, and human-computer interaction [24, 25, 36, 46, 49, 51, 60]. While
the use cases and applications are becoming broader and more prevalent in our
everyday lives, security issues regarding the techniques and algorithms are also
becoming a significant challenge to deal with.

2.2 Natural Language Processing

Natural language processing (NLP) is at the intersection of computational linguis-
tics, computer science, and artificial intelligence. It aims to make machines that
understand human language and reason about it. NLP is an umbrella term that
covers many different applications that deal with human language in both spoken
and written formats. Applications that belong to natural language processing are,
among others, speech recognition, speaker identification, question answering, text
sentiment analysis, hate speech detection, natural language generation (speech-to-
text and text-to-speech models), spam detection, and text translation. Initially, NLP
was based on static rules, but now it uses deep learning for most tasks [23].

Recent advances in NLP have led to very efficient human-computer interfaces
that have been broadly deployed. Virtual assistants like Siri and Google assistant and
popular IoT devices like Amazon Alexa have been widely used with great success.
However, such applications open up new attack vectors that put the user’s security
and privacy at risk. Therefore, before their wide adoption in the industry, we must
ensure that such systems work securely.

522 S. Koffas et al.

2.3 Graph Data

Many real-world applications can be modeled as graphs, such as social networks,
gene interactions, and transport networks. Similar to the great success of deep learn-
ing models in, e.g., image classification and natural language processing, deep graph
models (graph neural networks—GNNs) have also achieved promising performance
in processing graph data for different tasks, e.g., the graph classification task and
node classification task.

Graph Neural Networks (GNNs) GNNs take a graph G as an input, including
its structure information and node features, and learn a representation vector
(embedding) for each node .v ∈ G, . zv , or the entire graph, . zG. Modern GNNs
follow a neighborhood aggregation strategy, where one iteratively updates the
representation of a node by aggregating representations of its neighbors. After k
iterations of aggregation, a node’s representation captures both structure and feature
information within its k-hop network neighborhood. Formally, the k-th layer of a
GNN is (e.g., GCN [26], GraphSAGE [20], and GAT [48]):

.Z(k) = AGGREGAT E(A,Z(k−1); θ(k)), (1)

where .Z(k) are the node embeddings in the matrix form computed after the k-th
iteration and the AGGREGAT E function depends on the adjacency matrix A,
the trainable parameters .θ(k), and the previous node embeddings .Z(k−1). .Z(0) is
initialized as G’s node features.

For the node classification task, the node representation .Z(k) of the final iteration
is used for prediction. For the graph classification task, the READOUT function
pools the node embeddings from the final iteration K:

.zG = READOUT (Z(K)). (2)

READOUT can be a simple permutation invariant function such as summation or a
more sophisticated graph-level pooling function [59, 63].

Graph-Level Classification Graph-level classification aims to predict the class
label(s) for an entire graph [63]. The end-to-end learning for this task can be realized
using graph convolutional layers and readout layers. While graph convolutional
layers are responsible for extracting high-level node representations, the readout
layer collapses node representations of each graph into a graph representation. By
applying a multilayer perceptron and a Softmax layer to graph representations, one
can build an end-to-end framework for graph classification.

Node-Level Classification Given a graph with a few labeled nodes, GNNs can
learn a robust model that effectively identifies the class labels for the unlabeled
nodes [26]. In a node-level classification task, there are two types of training
settings—inductive and transductive. In an inductive setting, the unlabeled nodes
are not seen during training, while in a transductive setting, the test nodes (but not

A Systematic Evaluation of Backdoor Attacks in Various Domains 523

their labels) are also observed during the training process. The transductive training
setting is popular, and in this work, we used a backdoor attack in the transductive
node-level classification task.

2.4 Backdoor Attacks

Backdoor attacks aim to make a model misclassify some of its inputs to a
preset-specific label while other classification results behave normally. This misclas-
sification is activated when a specific property is included in the model input. This
property is called the trigger and can be anything the targeted model understands.
For instance, a random pixel pattern [6, 19] or an actual item [52] in computer
vision, a specific phrase in text classification [32], a tone in speech recognition [28],
or a subgraph with specific properties in graph data [55]. The framework for the
backdoor attack is shown in Fig. 1.

The first backdoor attacks targeted computer vision [6, 19] under a simple threat
model, where an adversary could inject a small portion of poisoned data into the
training dataset. In particular, the adversary injects into the training dataset data

Fig. 1 Framework for the backdoor attack

524 S. Koffas et al.

stamped with a trigger that belongs to the target class. As a result, the trained model
strongly associates this pattern with the target class, and whenever it is added to
an input, the classification result will be the target class. Recent trends in machine
learning like Machine Learning as a Service (MLaaS), outsourced training, transfer
learning, and crowdsourced datasets have made this setup possible.

In MLaaS, a cloud provider provides a pay-per-request API1 that can be used
for predictions. However, the user can only use such an API as a black box
without being able to verify how the model makes its predictions. Similarly, during
outsourced training, the user’s model is trained on the cloud and returned to the user
after the training ends. Due to the lack of formal verification tools for the trained
models, the user can never verify that the returned model does not contain any
backdoors. Furthermore, in [19], the authors showed that a backdoor could remain
effective even after a poisoned model was repurposed through transfer learning.
Large crowdsourced datasets like ImageNet [11] and Mozilla’s common voice [1]
are so vast that cannot be exhaustively verified [39]. Thus, an adversary could inject
a few poisoned samples resulting in the backdoored models.

This threat can pose real challenges as an adversary could bypass a face
identification biometric access control system [6] or force an autonomous vehicle
to ignore a stop sign and continue its course [19]. For this reason, backdoor
attacks became very popular among researchers resulting in many novel attacks
and countermeasures [15]. Novel attacks are not only limited to data poisoning but
can also be based on code poisoning [2] or the direct modification of the model’s
parameters [22]. At the same time, due to the inability to completely understand
how a deep learning model works and the lack of formal verification methods about
a model’s functionality, most countermeasures are empirically based on specific
assumptions [4, 16, 50]. Unfortunately, in most cases, an adaptive attacker with a
slightly different approach could bypass such defenses [7, 30, 43].

There are several variations of the backdoor attack resulting from different
poisoning strategies. The first distinction is the class-agnostic and the class-specific
backdoors [15]. The class-agnostic backdoor can be activated by a trigger injected
into any input. On the other hand, the class-specific backdoor is activated only
if the poisoned input belongs to a specific class. The main difference between
these two strategies is that in the second case, the model needs to identify both
features of the trigger and the source class making possible countermeasures more
challenging [16]. Considering class-agnostic backdoor attacks, we can differentiate
between the “simple” backdoor attack [19] and the clean-label backdoor attack [47].

Simple Backdoor Attack In the rest of this paper, by the simple backdoor attack,
we are referring to the data poisoning backdoor attack that was introduced in
BadNets [19]. In this case, the adversary adds a small subset of poisoned samples
to the training dataset. These samples have been stamped with the adversary-chosen

1 https://aws.amazon.com/transcribe/.

https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/

A Systematic Evaluation of Backdoor Attacks in Various Domains 525

trigger, and their label has been changed to the target class. The target class is the
output of the poisoned model when the backdoor is activated.

Clean-Label Backdoor Attack The clean-label backdoor attack was introduced
in [47]. This attack is similar to a simple attack, but the adversary cannot affect
the label of the injected data. The reasoning behind this attack is that the poisoned
training samples can be easily identified as outliers by simple filtering mechanisms
or even human inspection because the original class of these samples is different
from the target class. Thus, an adaptive adversary may have to poison samples
only from the target class, hoping that the model identifies the trigger pattern as a
class feature. This attack is still a data poisoning backdoor attack but uses a weaker
adversary making the attack more challenging.

Based on the trigger, backdoors can be either static [19] or dynamic [27]. The
static backdoors are activated with a trigger that has very specific characteristics.
In computer vision, such a trigger could mean a specific pixel pattern or a specific
position. On the other hand, the dynamic backdoors can be activated by various
triggers with different characteristics.

For graph neural networks, the first backdoor attack was proposed in [65]. In
this backdoor attack, a GNN classifier predicts an attacker-chosen target label for
a testing graph once a predefined subgraph is injected into the testing graph. All
perturbed graphs are injected with the same trigger graph. Another backdoor attack
against GNNs for the graph classification task was presented in [55], but it differs
from [65] in which a universal trigger graph is assumed for all the embedded graphs.
This kind of backdoor attack dynamically adapts triggers to individual graphs. The
adaptive trigger is optimized in both topological structure and node features. The
training processes of the trigger generation function and the backdoored GNN
model are assumed as a bi-level optimization objective [14]. The authors also
adapted a backtracking-based algorithm to replace a subgraph in the original graph
with the adaptive trigger graph. Xu et al. [57] explored backdoor attacks on GNNs
with several explainability tools. In this work, the backdoor attack is implemented
with the same strategy [65] for the graph classification task. The authors also
proposed a new backdoor attack strategy for the node classification task. All the
above-mentioned attacks in GNNs are gray box backdoor attacks since the adversary
only modifies the training dataset instead of interfering with the training of models.

2.4.1 Metrics

The successful backdoor attack should always be activated when the trigger is
embedded into the model’s input because an adversary wants to remain stealthy
and interact with the poisoned model as little as possible. Additionally, the backdoor
should not affect the original task when the trigger is not included in the input. When
the poisoned model does not perform well on the original task, the backdoored
model will (1) raise suspicions that something is wrong and (2) not be used, thus

526 S. Koffas et al.

preventing the adversary’s plans. As a result, to measure the success of a backdoor
attack, we require two metrics: the attack success rate and the clean accuracy drop.

2.4.1.1 Attack Success Rate (ASR)

The ASR shows the reliability of the attack, and it represents the number of
successfully triggered backdoors from a number of poisoned inputs:

.ASR =
∑N

i=1 F(M∗(xi) = yt)

N
, (3)

where .M∗ is the poisoned model, . xi is a poisoned input, . yt is the target class, and
.F(x) is a function that returns 1 if x is true and 0 otherwise.

2.4.1.2 Clean Accuracy Drop (CAD)

This quantity shows the backdoor’s effect on the original task. It is calculated by
comparing the performance of a poisoned and a clean model for clean inputs. The
accuracy drop should generally be small to keep the attack stealthy.

3 Methodology

3.1 Threat Model

In this work, we implement data poisoning backdoor attacks. The adversary injects
a small subset of poisoned data without knowing any information about the model
architecture or the training algorithm. Thus, the attack follows a gray box threat
model. This threat model is realistic as current large datasets are crowdsourced [1,
11] and malicious data may go through the validation process [39]. So, an adversary
could inject trigger-stamped data in such datasets that will remain unnoticed and
used during training resulting in a successful backdoor attack.

In our experiments, we investigate two different attacks, the simple data poison-
ing attack [19] and the clean-label attack that does not alter the labels of the poisoned
data [47]. For both attacks, the adversary aims to cause targeted misclassifications
with a very high probability without affecting the model’s performance on the
original task.

A Systematic Evaluation of Backdoor Attacks in Various Domains 527

3.2 Image Classification

Attacks We use two different attacks: the simple backdoor attack and the clean-
label attack.

Datasets For our image classification backdoor attacks, we use two popular image
datasets: (i) CIFAR10 that consists of 60,000 32×32 color images in ten classes,
with 6000 images per class. There are 50,000 training images and 10,000 test
images. (ii) Fashion-MNIST (FMNIST) [56]—a dataset of Zalando’s article images
consisting of a training set of 60,000 images and a test set of 10,000 images. Each
image is a 28×28 gray-scale image associated with a label from ten classes.

For the CIFAR10 dataset, we split the test set in an i.i.d manner into two 5000
sample datasets, each used for validation and test, respectively. For the FMNIST
dataset, we split the training set into two different sized datasets in an i.i.d manner:
the first having 50,000 samples used for training and the second having 10,000
samples for validation. With this, we have the same size of training samples for
both datasets, so comparing results between these two is easier.

Features The input features for both neural networks are the tensor of images. For
the CIFAR10 dataset, each RGB image is considered as a [3, 32, 32] shape tensor.
For FMNIST, however, the images are gray-scale, so the input has only one channel
([1, 28, 28] shape tensor). We also did the standard normalization for input values
before all train, validation, and test phases.

Models We use two models: STRIPNet [16] and ResNet [21] with nine residual
blocks (ResNet-9).

Trigger As described in [27], various triggers have been used in image classifi-
cation, and all of them resulted in successful backdoor attacks. This means that
the trigger shape and pattern are not crucial for the success of a backdoor attack.
Thus, for our experiments, we chose a square trigger. Its pixel intensities are random
values retrieved from a continuous uniform distribution (pseudorandom generator).
The seed in this generator was fixed for consistency in our experiments.

3.3 Natural Language Processing

Attacks Similar to image classification, we use simple and clean-label backdoor
attacks.

Datasets In our experiments, we used the IMDB [33] and the AG News topic
classification [64] datasets. The IMDB dataset consists of 50,000 (50%/50% train-
ing/test split) movie reviews of high polarity (either positive or negative). We used
20% of the training data for validation. The AG News topic classification dataset
consists of news articles belonging to four categories (world, sports, business, and
science/technology). The training set consists of 120,000 samples and the testing set

528 S. Koffas et al.

of 7600 samples. Again, we used 20% of the training data for validation resulting in
96,000 and 24,000 samples for training and validation sets, respectively.

Features The first step of our pipeline is a TextVectorization layer that
transforms each input to a convenient form for processing as described in [27]. As
the datasets are different, we used a different sequence length for each dataset. We
forced the length of each sentence to be 250 words for the IMDB dataset and 197
for the AG News dataset. Additionally, we used a vocabulary of 10,000 words that
proved enough for such small datasets.

Models We used two publicly available CNN architectures. Both the first CNN2

and the second CNN3 use an embedding layer as their input. However, the first
CNN uses a small trainable embedding of size 16, and the second uses a pretrained
GloVe embedding [38] of size 100. We want to investigate if the attack becomes
more difficult when the model uses a pretrained embedding because this is more
frequent in practice. Such embeddings have been trained in large corpora of text
and interpret possible connections between different words more accurately. To
illustrate, Google’s pretrained word2vec is trained with 100 billion words from
Google News, and it contains 300-dimensional vectors for 3 million words and
phrases [34]. The GloVe is trained from a corpus of 6 billion words and has a
vocabulary of 400,000 words [38].

Trigger As the trigger, we used a sentence of 1 up to 4 words from the list [“trope,”
“everyday,” “mythology,” “sparkles,” “ruthless”] as defined in [32]. We applied the
trigger in three positions (beginning, middle, and end) to investigate whether our
models are more sensitive in specific positions.

3.4 Speech Recognition

Attacks Again, we use simple and clean-label backdoor attacks.

Datasets For this application, we used two versions of the Speech Commands
dataset as described in [28]. The first version uses ten classes of the dataset and the
second 30 classes. From our experiments, we excluded the samples that lasted less
than one second to avoid variable-sized inputs in our pipeline resulting in 21,312
.wav files in the first case and 58,252 files in the second case. In both cases, we use
64%/16%/20% for training, validation, and testing.

Features As our input features, we used the MFCCs of each training input. The
exact hyperparameters for this calculation are described in [28].

Models We used one CNN [32] and one LSTM [10] for our experiments.

2 https://www.tensorflow.org/tutorials/keras/text_classification.
3 https://keras.io/examples/nlp/pretrained_word_embeddings/.

https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/

A Systematic Evaluation of Backdoor Attacks in Various Domains 529

Trigger Our dataset’s sound files are sampled at 16 kHz, and according to the
Nyquist-Shannon sampling theorem, the largest tone frequency that can be included
in such digital signals is 8 kHz. Thus, following [27], our trigger is a 7 kHz tone
which is a high pitch audible sound. Following the rest of the triggers tried, this
trigger differs from the normal dataset samples. It lasts from 20 to 80 ms because
we want to model an adversary that is as stealthy as possible. The trigger is injected
in three different positions of each sound sample (beginning, middle, and end).

3.5 Graph Data

Attacks As described in Sect. 2.4, for graph neural networks, we utilize two
backdoor attacks, i.e., .AT I [65] and .AT II [55]. The framework for .AT I is illustrated
in Fig. 2. In the training phase (Fig. 2a), the attacker injects a trigger (subgraph . gt)
to a subset of training graphs and changes their labels to an attacker-chosen target
label. A GNN classifier is then trained using the backdoored training dataset, and
such GNN is called backdoor GNN . Φb. In the test phase (Fig. 2b), once the test
graph is injected with the same trigger graph, the backdoored GNN is likely to
misclassify the testing sample to the target label. For the node classification task,
we used the backdoor attack from [57].

Since [65] and [57] designed the same strategy to implement the backdoor attack
for the graph classification task, we illustrate the results of [65] and [55] for the
graph classification task. The results based on [57] are presented for the node
classification task.

Fig. 2 Subgraph-based backdoor attack for the graph classification task. (a) Training. (b) Testing

530 S. Koffas et al.

Table 1 Graph datasets statistics

Datasets # Graphs Avg. # nodes Avg. # edges Classes Class distribution

AIDS 2000 15.69 16.20 2 400[0], 1600[1]
TRIANGLES 45,000 20.85 32.74 10 4500[0–9]
Cora 1 2708 5429 7 351[0], 217[1], 418[2], 818[3],

426[4], 298[5], 180[6]
CiteSeer 1 3327 4608 6 264[0], 590[1], 668[2],

701[3], 596[4], 508[5]

Datasets Table 1 shows the statistics for all considered datasets for graph neural
networks. For the graph classification task, we use two publicly available graph
datasets. (i) AIDS [35]—a dataset consisting of graphs representing molecular
compounds that are active against HIV or not; (ii) TRIANGLES [35]—a synthetic
dataset designed to solve the task of counting the number of triangles in a graph.
For each graph classification dataset, we sample 2/3 of the graphs as the original
training dataset and treat the remaining graphs as the original testing dataset. Among
the original training dataset, we randomly sample α fraction of graphs to inject the
trigger and relabel them with the target label, called the backdoored training dataset.
Several parameters can affect the attack effectiveness: trigger size s, trigger density
ρ, and poisoning intensity α. Unlike other domains, e.g., image classification, the
trigger position in graph data is irrelevant and cannot be defined because a graph
is non-Euclidean data where we cannot put nodes in some order. For AT I, we use
Erdős-Rényi (ER) model [17] to generate the trigger graph, as it is more effective
than the other methods [65].

For the node classification task, we use two real-world datasets: (i) Cora [41]—a
citation network in which each publication is described by a binary-valued word
vector indicating the absence/presence of the corresponding word in the collection
of 1433 unique words. (ii) CiteSeer [41]—another citation network with more
nodes but less edges. For each node classification dataset, we split 20% of the total
nodes as the original training dataset (labeled) and the rest as the original testing
dataset (unlabeled). To generate the backdoored training dataset, we sample α of
the original training dataset to inject the feature trigger and relabel these nodes with
the target label. The feature trigger width is set to be n. Moreover, based on the
conclusion in [57], different feature trigger injecting positions have a negligible
impact on the attack performance, so the trigger injecting position is randomly
selected. Here, we explore the impact of poisoning intensity α and feature trigger
width n on the attack performance. In the node classification task, each node feature
has a value of 0 or 1, and here we set the value of the modified node features to 1
(note, the values could also be set to 0).

Features Each graph contains topological and node feature information. For each
graph dataset in this work, there is an adjacency matrix and feature information
matrix. For AIDS, Cora, and CiteSeer, there is a specific node feature vector for

A Systematic Evaluation of Backdoor Attacks in Various Domains 531

each node in the graph, but for TRIANGLES, the one-hot degree of a node is used
as the node feature.

Models We use two state-of-the-art GNN models for the graph classification task:
GCN [26] and GraphSAGE [20]. We use GCN [26] and GAT [48] for the node
classification task.

Trigger For the graph classification task, our trigger is a global (adaptive) subgraph
in AT I(AT II). For the node classification task, our trigger is a subset of node
features with a fixed value, e.g., 0.

4 Experimental Results

4.1 Image Classification

Chosen Settings and Selected Parameters We ran our experiments with a
different number of poisoned samples (25, 300, 575, 850), trigger sizes (.4×4, .8×8,
.12 × 12), and trigger positions (Upper-Mid, Mid-Left, Mid-Right, Lower-Mid) on
the image. Figure 3 demonstrates four different positions of a .4×4 trigger for several
FMNIST sample images. We repeated each experiment two times, which makes the
total number of 768 experiments regarding the chosen settings. We set class number
5 as the target for all experiments and in both datasets.

Every backdoor attack should remain stealthy without affecting the original task.
Therefore, the poisoned model should perform as expected when the input does
not contain the trigger. In Table 2, we compare the performance of clean and
backdoored models for clean inputs. The attack accuracy mentioned in this table is
the arithmetic mean (. ± the standard deviation) of the accuracy on clean inputs from
all the poisoned models trained in our experiments. For the original accuracy, we
trained multiple clean models and averaged their performance. The model remains
unaffected from both backdoor attacks even if we use 850 poisoned samples. Such
poisoning rates are small and cannot affect the model’s performance in general.
From Table 2, we can also verify that our models perform similarly well in both

Fig. 3 Applied .4 × 4 trigger in different positions: Upper-Mid, Mid-Left, Mid-Right, Lower-Mid

532 S. Koffas et al.

Ta
bl
e
2

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 im

ag
e

cl
as

si
fic

at
io

n

N
um

be
r

of
 p

oi
so

ne
d

Sa
m

pl
es

D
at

as
et

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

25
20

0
37

5
85

0

C
IF

A
R

10
ST

R
IP

N
et

85
.0

9
(. ±

0.
59

9)
C

le
an

-l
ab

el
85

.2
2

(. ±
0.

50
8)

85
.3

8
(. ±

0.
52

3)
85

.3
7

(. ±
0.

37
8)

85
.2

3
(. ±

0.
47

1)

Si
m

pl
e

85
.3

1
(. ±

0.
46

7)
85

.2
8

(. ±
0.

43
8)

85
.3

5
(. ±

0.
36

0)
85

.1
2

(. ±
0.

47
7)

R
es

ne
t-

9
89

.9
9

(. ±
0.

49
9)

C
le

an
-l

ab
el

89
.9

8
(. ±

0.
35

6)
89

.8
6

(. ±
0.

30
0)

89
.7

9
(. ±

0.
46

1)
89

.6
9

(. ±
0.

37
7)

Si
m

pl
e

89
.9

4
(. ±

0.
35

3)
89

.7
7

(. ±
0.

27
4)

89
.7

5
(. ±

0.
26

6)
89

.7
4

(. ±
0.

37
8)

FM
N

IS
T

ST
R

IP
N

et
93

.6
2

(. ±
0.

20
5)

C
le

an
-l

ab
el

93
.6

6
(. ±

0.
08

0)
93

.6
8

(. ±
0.

12
7)

93
.6

4
(. ±

0.
13

1)
93

.6
9

(. ±
0.

13
9)

Si
m

pl
e

93
.5

9
(. ±

0.
13

5)
93

.6
1

(. ±
0.

14
8)

93
.6

7
(. ±

0.
15

2)
93

.6
5

(. ±
0.

13
9)

R
es

ne
t-

9
93

.6
3

(. ±
0.

15
4)

C
le

an
-l

ab
el

93
.5

9
(. ±

0.
15

2)
93

.5
3

(. ±
0.

15
7)

93
.6

2
(. ±

0.
17

1)
93

.5
9

(. ±
0.

17
6)

Si
m

pl
e

93
.5

7
(. ±

0.
12

9)
93

.5
5

(. ±
0.

18
1)

93
.5

9
(. ±

0.
16

4)
93

.5
8

(. ±
0.

17
3)

A Systematic Evaluation of Backdoor Attacks in Various Domains 533

datasets, which is helpful when comparing the performance of the attack for each
case.

Results for FMNIST As it can be inferred from Fig. 4, the clean-label attack is not
that effective against the FMNIST dataset. By increasing the number of poisoned
samples, there are small or no improvements in attack success rate (there are small
improvements when increasing the number of samples from 25 to 300, but as we
increase from 300 to 575 and from 575 to 850, the improvements become even
smaller). We assume this is mainly due to the dataset nature and the capability of
the CNNs to learn the exclusive features of each class easily and robustly so that
injecting a trigger (even of size 12×12) could not disturb the network from learning
those.

Since both ResNet-9 and STRIPNet have convolutional layers, we expect
negligible effects of trigger position on attack success rate. The results confirm this
as there are only minor effects stemming from the trigger positions (for instance,
in both networks, the trigger on the lower-mid results in the least ASR, while on
the mid-right, it has a little more chance of being learned by the network. Again,
we suppose this is because of the attributes of the FMNIST images and the models’
focus on specific regions of an image to learn). Additionally, in almost all cases
(except a few ones like upper-mid in ResNet-9), increasing the trigger size leads to
higher ASR.

For the simple attack, we obtained 100% ASR for 300 attack samples or more.
With 25 poisoned samples, some trigger positions have positive effects on ASR
regardless of trigger size (for instance, the mid-left trigger achieves high ASR even
with 4 × 4 size triggers).

Results for CIFAR10 The clean-label attack is significantly more effective for
CIFAR10 than FMNIST (Figs. 4 and 5). We believe this is primarily because the
CIFAR10 images are RGB, and the crafted trigger has more layers (3 channels).
As a result, the model learns the embedded trigger with less poisoned samples. As
expected, the trigger position does not play an important role in ASR, and in almost
all cases, ASR improves using a larger trigger size.

Another observation is that the smaller the size of the trigger, the more noticeable
the ASR improvement when increasing the number of poisoned samples from 25 to
850. For instance, for a 12 × 12 trigger, there is no noticeable improvement in ASR
when the number of poisoned samples increases from 575 to 850. On the other hand,
using a 4 × 4 trigger, ASR’s growth is easily observable between all four different
poisoning rates.

Analyzing the simple attack, similarly to FMNIST, we achieved 100% ASR
for 300 poisoned samples or more. Additionally, ResNet-9 is more vulnerable to
backdoor attacks, particularly when using fewer poisoned samples and smaller
triggers. We believe this is mostly because ResNet-9 is a larger network than
STRIPNet and can extract more data from the given dataset.

534 S. Koffas et al.

Fig. 4 Attack accuracy for the FMNIST dataset. From these figures, we conclude that the clean-
label attack is not effective but is slightly improved when increasing the poisoning rate. On the
other hand, the simple attack can be very effective even with a small poisoning rate (0.6%).
Additionally, larger triggers lead to higher ASR, but different trigger positions do not result in ASR
fluctuations as the convolutional layers identify the trigger. (a) ResNet-9 + clean-label attack. (b)
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e)
Legend

4.2 Natural Language Processing

In Tables 3 and 4, we compare the performance of clean and backdoored models
in text classification when clean inputs are used. These tables are generated by
averaging the performance of clean and poisoned models as described in Sect. 4.1.
In all cases, the model’s performance remains almost unaffected after the backdoor
insertion. There are a few minor accuracy drops that are at most 0.6% making the

A Systematic Evaluation of Backdoor Attacks in Various Domains 535

Fig. 5 Attack accuracy for the CIFAR10 dataset. The clean-label attack is significantly more
effective than for FMNIST because the 3-channel trigger contains more information. We also see
that the trigger position is not very important, and ASR increases as the trigger size increases.
The ASR with the simple attack is 100% for a 0.6% poisoning rate or more. However, STRIPNet
is not as vulnerable as ResNet due to its smaller capacity. (a) ResNet-9 + clean-label attack. (b)
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e)
Legend

attack stealthy. This behavior is expected as we poison only a small subset of the
training data that cannot substantially affect the model’s learning.

In Figs. 6 and 7, we show the results of our experiments for the AG News topic
classification dataset and IMDB dataset, respectively. From these figures, we can
draw several conclusions. In most cases, the ASR is correlated with the trigger size
and increases as the trigger size increases. This is true even when the attack is not
effective (see Fig. 6a).

536 S. Koffas et al.

Ta
bl
e
3

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 te

xt
 c

la
ss

ifi
ca

tio
n

(A
G

 N
ew

s)
 N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

25
0

50
0

75
0

10
00

C
N

N
90

.7
4

(. ±
0.

31
4)

C
le

an
-l

ab
el

90
.4

8
(. ±

0.
55

7)
90

.5
2

(. ±
0.

53
1)

90
.5

2
(. ±

0.
61

4)
90

.5
1

(. ±
0.

54
1)

Si
m

pl
e

90
.4

9
(. ±

0.
53

4)
90

.3
8

(. ±
0.

59
3)

90
.5

3
(. ±

0.
48

4)
90

.3
3

(. ±
0.

76
0)

C
N

N
. +

G
lo

V
e

89
.7

8
(. ±

0.
16

9)
C

le
an

-l
ab

el
89

.7
2

(. ±
0.

21
8)

89
.7

1
(. ±

0.
20

1)
89

.7
1

(. ±
0.

18
6)

89
.7

0
(. ±

0.
22

0)

Si
m

pl
e

89
.7

2
(. ±

0.
20

9)
89

.6
8

(. ±
0.

20
6)

89
.6

9
(. ±

0.
22

7)
89

.6
8

(. ±
0.

20
2)

A Systematic Evaluation of Backdoor Attacks in Various Domains 537

Ta
bl
e
4

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 te

xt
 c

la
ss

ifi
ca

tio
n

(I
M

D
B

)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

50
10

0
15

0
20

0

C
N

N
87

.0
5

(. ±
0.

06
2)

C
le

an
-l

ab
el

86
.9

1
(. ±

0.
08

4)
86

.9
3

(. ±
0.

07
1)

86
.9

1
(. ±

0.
07

8)
86

.9
0

(. ±
0.

07
2)

Si
m

pl
e

86
.9

0
(. ±

0.
08

3)
86

.8
9

(. ±
0.

08
9)

86
.8

8
(. ±

0.
09

0)
86

.8
8

(. ±
0.

09
6)

C
N

N
 +

 G
lo

V
e

84
.2

0
(. ±

0.
30

8)
C

le
an

-l
ab

el
83

.7
3

(. ±
0.

68
1)

83
.7

1
(. ±

0.
70

2)
83

.6
2

(. ±
0.

77
5)

83
.7

7
(. ±

0.
68

0)

Si
m

pl
e

83
.7

9
(. ±

0.
53

5)
83

.8
2

(. ±
0.

51
9)

83
.6

1
(. ±

0.
57

0)
83

.5
9

(. ±
0.

72
4)

538 S. Koffas et al.

Fig. 6 Attack accuracy for the AG News dataset. The ASR is positively correlated with the trigger
size (even when the ASR is very low), and the poisoning rate significantly influences the attack’s
effectiveness. Additionally, the clean-label attack needs more poisoned data to work. When GloVe
is used, inserting the trigger in the end results in higher ASR (especially for low poisoning rates),
but in the simple CNN, the trigger positions do not affect ASR. (a) CNN with GloVe . + clean-label
attack. (b) CNN with GloVe . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple
attack. (e) Legend

Especially for the first CNN, this relation seems to be linear (see Figs. 6c, 6d, 7c
and 7d). This simple model uses global average pooling as its penultimate layer,
averaging the feature map before the output. As a result, the trigger will be more
influential when it consists of more words. In almost all experiments, the poisoning
rate is a highly influential hyperparameter of the backdoor attack, and any increase
in it leads to an increase in the attack success rate.

Our models learn differently, which can be seen from the varying attack success
rate when the trigger is injected in different positions. For example, the attack
success rate is higher if the trigger is inserted at the end of the sentence when we use

A Systematic Evaluation of Backdoor Attacks in Various Domains 539

Fig. 7 Attack accuracy for the IMDB dataset. The ASR is positively correlated with the trigger
size, and the poisoning rate significantly influences the attack’s effectiveness. Additionally, the
clean-label attack is more effective with this dataset. For the CNN that uses GloVe, placing the
trigger at the end of the sentence yields the best results, but for the simple CNN, this is the least
effective position. (a) CNN with GloVe . + clean-label attack. (b) CNN with GloVe . + simple attack.
(c) CNN . + clean-label attack. (d) CNN . + simple attack. (e) Legend

the first model and the simple backdoor attack (see Figs. 6b and 7b). This difference
is very clear for low poisoning rates (0.25%), where even a small trigger of 2 words
could be substantially more effective when placed at the end of the sentence. On
the other hand, for the other model, placing the trigger at the end does not result in
higher ASR (see Figs. 6d and 7d). These differences indicate that we could use the
backdoor attack as a tool for AI explainability and further understand what and how
a model learns by using triggers with different characteristics.

In [47], the authors claimed that the clean-label backdoor attack needs a very
large poisoning rate to be effective. We also see this behavior in the AG News
dataset, especially for the architecture that uses the pretrained GloVe embedding

540 S. Koffas et al.

(Fig. 6a). In the other architecture, the clean-label attack is more effective as the
feature space created by the trainable embedding encodes some information about
the trigger and the target class (see Fig. 6c). However, when the IMDB dataset is
used, both models perform similarly without poisoning a very large part of the
training data for the clean-label (see Figs. 7a and 7c). This can be explained by
the differences between the datasets. Each sentence in AG News is shorter than the
movie reviews in the IMDB dataset. Additionally, most of the words in AG News
are strongly connected with the topic that each sentence belongs to (world, sports,
business, and science/technology), which is not true for the IMDB dataset. In the
IMDB dataset, the sentences are longer, and usually, only a few words are related to
their sentiment. As a result, in AG News, our attack needs more poisoned samples
to overcome the effect of the original features of the source class.

4.3 Speech Recognition

In Tables 5 and 6, we compare the performance of clean and backdoored models
for sound classification when clean inputs are used. As was also shown in [28],
the differences between the clean and the backdoored models are negligible. In
particular, the backdoored models perform a little better when the 10 classes dataset
is used, meaning that the poisoned samples could serve as a generalization factor.
However, when the full dataset is used, the backdoor insertion results in a small
performance drop for the CNN. In this case, we use more classes, and the model
has to learn a more difficult task that is affected even by a few poisoned samples.
The performance of the LSTM is slightly increased, meaning that the LSTM builds
different models and utilizes its capacity better when we use the full dataset [28].
All these differences are small, and our claims need additional experimental data to
be confirmed.

In Figs. 8 and 9, we show the results of our experiments for the first (10 classes)
and the second (30 classes) version of the Speech Commands dataset. In almost all
cases, the attack success rate increases as the trigger duration increases. This is true
even when the attack is not successful (see the clean-label attack in Figs. 8c and 9c).
This makes sense as more input features are affected when a longer trigger is used,
and the network can learn this relation easier. Additionally, the poisoning rate is
very influential, and its increase leads to more effective backdoors.

The end of the input is the most effective trigger position for the LSTM network
in both versions of the dataset. Even though this network uses two bidirectional
LSTM layers and an attention layer, it seems to learn the features that are placed
towards the end of its inputs more easily. The LSTM network was designed to tackle
the problem of long-term dependencies on its inputs. A possible reason for this
behavior is the nature of this particular dataset, which consists of 1-second clips of
spoken words. If these words are not perfectly centered and distributed to the upper
half of each sample, our network will give more attention to the end of each training
sample. This is not true for the CNN used as, in that case, all the positions seem to

A Systematic Evaluation of Backdoor Attacks in Various Domains 541

Ta
bl
e
5

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n
(1

0
cl

as
se

s)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

50
10

0
15

0
20

0

C
N

N
94

.8
2

(. ±
0.

36
0)

C
le

an
-l

ab
el

95
.0

7
(. ±

0.
43

7)
95

.0
0

(. ±
0.

47
7)

95
.0

7
(. ±

0.
42

7)
94

.9
6

(. ±
0.

50
8)

Si
m

pl
e

95
.0

9
(. ±

0.
41

7)
95

.0
4

(. ±
0.

43
8)

94
.9

9
(. ±

0.
47

4)
94

.9
5

(. ±
0.

48
0)

L
ST

M
89

.4
7

(. ±
1.

41
2)

C
le

an
-l

ab
el

89
.7

7
(. ±

1.
42

6)
89

.6
9

(. ±
1.

35
0)

90
.0

5
(. ±

1.
36

2)
89

.8
9

(. ±
1.

37
3)

Si
m

pl
e

89
.7

1
(. ±

1.
60

5)
89

.9
6

(. ±
1.

33
5)

89
.6

6
(. ±

1.
48

2)
89

.8
0

(. ±
1.

58
6)

542 S. Koffas et al.

Ta
bl
e
6

C
le

an
 a

cc
ur

ac
y

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n
(3

0
cl

as
se

s)

N
um

be
r

of
 p

oi
so

ne
d

sa
m

pl
es

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

13
7

27
4

41
1

54
7

C
N

N
94

.7
0

(. ±
0.

39
5)

C
le

an
-l

ab
el

94
.6

1
(. ±

0.
41

0)
94

.5
5

(. ±
0.

43
9)

94
.4

9
(. ±

0.
57

5)
94

.5
9

(. ±
0.

46
1)

Si
m

pl
e

94
.5

4
(. ±

0.
47

1)
94

.6
3

(. ±
0.

51
1)

94
.5

6
(. ±

0.
49

6)
94

.5
3

(. ±
0.

47
7)

L
ST

M
90

.5
0

(. ±
0.

96
7)

C
le

an
-l

ab
el

90
.8

8
(. ±

1.
26

7)
90

.5
9

(. ±
1.

23
8)

90
.8

2
(. ±

1.
23

2)
90

.7
9

(. ±
1.

33
4)

Si
m

pl
e

90
.8

6
(. ±

1.
23

6)
90

.8
1

(. ±
1.

16
7)

90
.6

7
(. ±

1.
31

7)
90

.6
3

(. ±
1.

27
8)

A Systematic Evaluation of Backdoor Attacks in Various Domains 543

Fig. 8 Attack accuracy for the Speech Commands dataset (10 classes). In most cases, ASR is
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective
for both models. For LSTM, the best position for the trigger is at the end. However, for CNN, any
position works. For CNN, the simple attack works almost perfectly for 100 poisoned samples or
more. (a) LSTM . + clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack.
(d) CNN . + simple attack. (e) Legend

be equally effective (see Figs. 8d and 9d). Similarly to text classification, different
models learn different patterns from the same dataset making the backdoor attack
effective in different cases. Thus, we could use the backdoor attack and its triggers
to understand what a model learns and how it makes its decisions.

In our sound classification experiments, the clean-label attack is not successful
for both neural networks and datasets. However, when the full dataset and CNN
are used (Fig. 9c), the attack success rate slightly increases with large triggers.
The clean-label could work without requiring more poisoned data if we choose
a larger trigger. This claim, though, needs to be verified in the future with more
experimental evidence. Another interesting observation is that the simple backdoor

544 S. Koffas et al.

Fig. 9 Attack accuracy for the Speech Commands dataset (30 classes). In most cases, ASR is
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective
in that case, but it works slightly better for CNN. In the simple attack, the best position for the
trigger is at the end for LSTM. However, there is no difference for CNN (in most cases, ASR is
close to 100%). When using LSTM, ASR is higher than ASR for the ten classes. We assume that
the absolute number of poisoned samples could be the reason behind that behavior. (a) LSTM . +
clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple
attack. (e) Legend

attack becomes more effective when we use the full dataset and the LSTM network
(compare Fig. 8b to Fig. 9b). One reason for this behavior is the absolute number of
training samples that were increased when the full dataset was used. However, this
should be investigated further.

A Systematic Evaluation of Backdoor Attacks in Various Domains 545

4.4 Graph Data

Results for the Graph Classification Task For the graph classification task, two
parameters affect the performance of the backdoor attack: poisoning intensity and
trigger size (the number of nodes in the trigger graph). The attack results for the
GCN model on AIDS with different poisoning intensity . α and trigger size s are
shown in Fig. 10. As we can see from Fig. 10a, with the increase of poisoning
intensity, the attack success rate is generally increasing for each trigger size, but
there is no obvious improvement between .α = 0.15 and .α = 0.2. Here, we select
poisoning intensity .α = 0.15 for GCN on AIDS. Figure 10b shows the impact of
trigger size under the selected poisoning intensity (.α = 0.15). The attack success
rate is highest with .s = 5, while the clean accuracy drop is the smallest when .s = 5.
To compare the two backdoor attacks, we set .α = 0.15, s = 5 and . α = 0.2, s = 7
for AIDS and TRIANGLES, respectively.

Specifically, we present the attack results of two backdoor attacks on the graph
classification task in Tables 7 and 8. As we can see from Table 7, .AT II can achieve
more than .99% attack success rate and less than .1% clean accuracy drop on AIDS,
while the performance of .AT I degrades slightly with an attack success rate of more
than .95% and clean accuracy drop around .1.5%. As illustrated in Table 8, the attack
success rate of .AT II is significantly higher than .AT I for TRIANGLES, i.e., more
than .10%. However, the clean accuracy drop of .AT II is larger than .AT I, which is
more than .4% for both models, while that of .AT I is around .3% and less than . 1%

Fig. 10 Impact of poisoning intensity and trigger size on attack performance in the graph
classification task. (a) GCN_AIDS. (b) GCN_AIDS (.α = 0.15)

Table 7 Backdoor attack results for the graph classification task and the AIDS dataset

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%)

GCN .95.86 .1.25 .99.92 . 0.46

GraphSAGE .97.59 .1.46 .99.80 .0.91

546 S. Koffas et al.

Table 8 Backdoor attack results for the graph classification task and the TRIANGLES dataset

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%)

GCN .86.00 .3.18 .99.21 . 5.32

GraphSAGE .87.70 .0.50 .98.24 . 4.32

Fig. 11 Impact of poisoning intensity and feature trigger width on attack performance in the node
classification task. (a) . n = 5. (b) . n = 10. (c) . n = 15. (d) . n = 20. (e) . n = 25

for GCN and GraphSAGE, respectively. In addition, the computation time for . AT II

is around .1.7 times of .AT I.

Results for the Node Classification Task For the node classification task, the
backdoored data is influenced by two parameters: poisoning intensity α and feature
trigger width n. The attack performance, including attack success rate and clean
accuracy drop with different variants, is shown in Fig. 11. For each feature trigger
width, the attack success rate on different models and datasets generally increases
when the poisoning intensity increases from 0.05 to 0.2. At the same time, the clean
accuracy drop of the GCN model keeps increasing, and there is a significant increase
between α = 0.15 and α = 0.2. However, the clean accuracy drop of the GAT
model remains almost unchanged. To achieve a high attack success rate and low
clean accuracy drop, we set α = 0.2 for GCN and α = 0.15 for GAT. To evaluate
the impact of feature trigger width on attack performance, we show the attack results
with different feature trigger widths in Fig. 12. Observe that the feature trigger width

A Systematic Evaluation of Backdoor Attacks in Various Domains 547

Fig. 12 Attack performance with different feature trigger widths. (a) GCN (α = 0.2. (b) GAT
(α = 0.15

Table 9 Backdoor attack results in the node classification task (n = 5)

GCN (α = 0.2) GAT (α = 0.15)

Setting ASR (%) CAD (%) ASR (%) CAD (%)

Cora 72.35 1.59 86.63 2.35

CiteSeer 77.82 1.63 92.04 1.35

has no obvious influence on the attack success rate and clean accuracy drop for both
GNN models and datasets.

Specifically, Table 9 shows the attack success rate and clean accuracy drop of
backdoor attack for the node classification task with selected parameters. Notice
that the backdoor attack on GCN reaches over 70% attack success rate for both
datasets and that on GAT obtains a higher attack success rate, i.e., over 85% and
90% for Cora and CiteSeer, respectively. Furthermore, the clean accuracy drop is
lower than 2% for all models and datasets except for the GAT model on the Cora
dataset, which is 2.35%.

4.5 General Observations

First, we verified that the backdoor attack is a real threat as it can be injected
into every application domain tried without affecting the model’s original task just
by poisoning a small subset of the training data. Additionally, we saw that the
poisoning rate is the most influential characteristic of the trigger in all applications.
However, this value cannot be increased arbitrarily because the backdoor attack
will become evident through a simple data filtering mechanism, and the poisoned
model’s performance on clean inputs will decrease substantially.

The trigger size is positively correlated with the backdoor’s attack success rate
in image, text, and sound. This is expected as a larger trigger contains more

548 S. Koffas et al.

information that can be encoded easier in the trained model. However, in graph
classification, the attack success rate increased to a point (.s = 5) and then decreased
for larger triggers. The variations are small, though, as ASR remained above 90% in
our experiments, and thus, we cannot draw general conclusions. We need to verify
this effect with more complex datasets and models.

The most effective position of the trigger (if there is any) depends on many
factors, like the network architecture or the dataset. The position is not very
influential on the attack success rate in most cases, but this is not always true. Thus,
we cannot draw any general conclusions. In image classification, no position was
proven more effective as the convolutional layers extract information from any point
in the image. Similar behavior has been observed in graph neural networks [57],
where the trigger position did not result in more effective backdoors. On the other
hand, in text classification, the attack performed similarly for all the trigger positions
for the simple CNN, but the “end” was slightly more effective when the GloVe
embedding was used. In sound classification, the trigger was more effective in the
end if LSTM was used but had no difference for CNN. These differences suggest
a potential beneficial use case for backdoor attacks in general. In this case, we can
use them to understand better how and what our models learn. Such an approach
complements the work described in [61], where the authors drew valuable insights
about the input’s crucial features after graying out small square areas of the input
images.

The clean-label attack is challenging in image, text, and sound classification.
However, in some cases, it may be successful just by using a large trigger without
having to poison more data. Additionally, if the trigger encloses more information,
the clean-label’s performance can be improved. We verified this for the CIFAR10
dataset, where we injected our trigger in all three image channels. We believe that
the dataset influences the performance of this attack. If each element contains many
features, the model will require a large poisoning rate to perceive the trigger as a
feature of this class. In the clean-label attack, the trigger is injected only in elements
from the target class, and it is not easy to overcome the effect of the actual features
of this class. This was highlighted in the AG News and IMDB datasets in text
classification. On the other hand, the simple backdoor attack can be very effective
with just a few poisoned samples in all the applications we tried.

As a general remark, we believe that the backdoor is easier inserted into models
that can overfit small subsets of their datasets. Models with strong generalizations
are more robust against data poisoning backdoor attacks. We verified this behavior
using simple CNN in text classification. In that case, our attack could not reach an
attack success rate larger than 80% even with the simple attack, as the model is
very simple and the learned function is very smooth. Finally, as our experiments
are far from exhaustive, our findings should be taken as indications, not definitive
conclusions.

In summary, the key takeaways are:

– The backdoor attack is a realistic and stealthy threat.
– As expected, increasing the poisoning rate and using larger triggers leads to

higher ASR.

A Systematic Evaluation of Backdoor Attacks in Various Domains 549

– Different models can behave differently during the attack even though we
use the same data. Therefore, we can use the backdoor attacks as a tool for
explainable AI.

– In [47], the authors claimed that the clean-label attack is not very effective. In
most cases, this is true, but we saw that we could make it effective with more
sophisticated triggers.

– The backdoor is easier for models that can overfit a small subset of their
datasets.

5 Conclusions

Recent trends in machine learning lead to novel attack vectors like the backdoor
attack. This attack is very dangerous as it can compromise AI-powered systems.
Naturally, the backdoor attack also attracted significant attention, resulting in
numerous novel attack and defense versions. In this work, we explored the effects of
various trigger characteristics on the backdoor’s performance in four domains. Our
results show that deploying backdoor attacks is relatively easy for all investigated
domains. There are sufficient commonalities between the attacks in different
domains to ease their deployment in real-world applications and devise novel, more
generic defenses.

References

1. Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders,
L., Tyers, F.M., Weber, G.: Common voice: a massively-multilingual speech corpus (2019).
http://arxiv.org/abs/1912.06670

2. Bagdasaryan, E., Shmatikov, V.: Blind backdoors in deep learning models. In: 30th USENIX
Security Symposium (USENIX Security 21), pp. 1505–1521. USENIX Association (2021).
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan

3. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948.
PMLR (2020)

4. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I., Srivastava,
B.: Detecting backdoor attacks on deep neural networks by activation clustering (2018). arXiv
preprint arXiv:1811.03728

5. Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., Wu, Z., Zhang, Y.: BadNL:
Backdoor attacks against NLP models with semantic-preserving improvements. In: Annual
Computer Security Applications Conference, pp. 554–569 (2021)

6. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: targeted backdoor attacks on deep learning systems
using data poisoning (2017). arXiv preprint arXiv:1712.05526

7. Costales, R., Mao, C., Norwitz, R., Kim, B., Yang, J.: Live trojan attacks on deep neural
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 796–797 (2020)

http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan

550 S. Koffas et al.

8. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random
projections and neural networks. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 3422–3426. IEEE (2013)

9. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems.
IEEE Access 7, 138872–138878 (2019)

10. de Andrade, D.C., Leo, S., Viana, M.L.D.S., Bernkopf, C.: A neural attention model for speech
command recognition (2018)

11. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

12. Dikmen, M., Burns, C.M.: Autonomous driving in the real world: experiences with tesla
autopilot and summon. In: Proceedings of the 8th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, pp. 225–228 (2016)

13. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition
performance under visual distortions. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7. IEEE (2017)

14. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for
hyperparameter optimization and meta-learning. In: International Conference on Machine
Learning, pp. 1568–1577. PMLR (2018)

15. Gao, Y., Doan, B.G., Zhang, Z., Ma, S., Zhang, J., Fu, A., Nepal, S., Kim, H.: Backdoor
attacks and countermeasures on deep learning: a comprehensive review (2020). arXiv preprint
arXiv:2007.10760

16. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against
trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security
Applications Conference, pp. 113–125 (2019)

17. Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics 30(4), 1141–1144
(1959). https://doi.org/10.1214/aoms/1177706098

18. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-
works. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649. IEEE (2013)

19. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: Evaluating backdooring attacks on deep
neural networks. IEEE Access 7, 47230–47244 (2019). https://doi.org/10.1109/ACCESS.2019.
2909068

20. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

22. Hong, S., Carlini, N., Kurakin, A.: Handcrafted backdoors in deep neural networks (2021).
arXiv preprint arXiv:2106.04690

23. IBM: Natural language processing (2021). https://www.ibm.com/cloud/learn/natural-
language-processing. Accessed 27 July 2022

24. Karlsen, S.S.: Automated Front Detection-Using computer vision and machine learning to
explore a new direction in automated weather forecasting. Master’s Thesis, The University
of Bergen (2017)

25. Khan, A.I., Al-Habsi, S.: Machine learning in computer vision. Proc. Comput. Sci. 167, 1444–
1451 (2020)

26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
International Conference on Learning Representations (ICLR) (2017)

27. Koffas, S., Picek, S., Conti, M.: Dynamic backdoors with global average pooling (2022). arXiv
preprint arXiv:2203.02079

28. Koffas, S., Xu, J., Conti, M., Picek, S.: Can you hear it? backdoor attacks via ultrasonic triggers.
In: Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, pp.
57–62. WiseML ’22, Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3522783.3529523

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523
https://doi.org/10.1145/3522783.3529523

A Systematic Evaluation of Backdoor Attacks in Various Domains 551

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

30. Li, S., Xue, M., Zhao, B.Z.H., Zhu, H., Zhang, X.: Invisible backdoor attacks on deep neural
networks via steganography and regularization. IEEE Trans. Depend. Secure Comput. 18(5),
2088–2105 (2020)

31. Li, Y., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: a survey. IEEE Transactions on Neural
Networks and Learning Systems (2022)

32. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning attack on neural
networks. In: NDSS (2018)

33. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors
for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp. 142–150. Association for
Computational Linguistics, Portland, Oregon, USA (2011). http://www.aclweb.org/anthology/
P11-1015

34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space (2013). arXiv preprint arXiv:1301.3781

35. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: A
collection of benchmark datasets for learning with graphs. In: ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020) (2020). www.graphlearning.io

36. Mubin, N.A., Nadarajoo, E., Shafri, H.Z.M., Hamedianfar, A.: Young and mature oil palm tree
detection and counting using convolutional neural network deep learning method. International
J. Remote Sensing 40(19), 7500–7515 (2019)

37. Nelson, B., Barreno, M., Jack Chi, F., Joseph, A.D., Rubinstein, B.I.P., Saini, U., Sutton, C.,
Tygar, J.D., Xia, K.: Misleading Learners: Co-Opting Your Spam Filter, pp. 17–51. Springer
US, Boston, MA (2009). https://doi.org/10.1007/978-0-387-88735-7_2

38. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://
www.aclweb.org/anthology/D14-1162

39. Prabhu, V.U., Birhane, A.: Large image datasets: a pyrrhic win for computer vision? CoRR
abs/2006.16923 (2020). https://arxiv.org/abs/2006.16923

40. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning
in deep learning-based side-channel analysis. IACR Trans. Cryptograp. Hardw. Embedd. Syst.
2021(3), 677–707 (2021). https://doi.org/10.46586/tches.v2021.i3.677-707

41. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classifica-
tion in network data. AI Mag. 29(3), 93–93 (2008)

42. Severi, G., Meyer, J., Coull, S., Oprea, A.: Explanation-Guided backdoor poisoning
attacks against malware classifiers. In: 30th USENIX Security Symposium (USENIX Secu-
rity 21), pp. 1487–1504. USENIX Association (2021). https://www.usenix.org/conference/
usenixsecurity21/presentation/severi

43. Shokri, R., et al.: Bypassing backdoor detection algorithms in deep learning. In: 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 175–183. IEEE (2020)

44. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go
with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

45. Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated
learning? (2019). arXiv preprint arXiv:1911.07963

46. Trigueiros, P., Ribeiro, F., Reis, L.P.: Hand gesture recognition system based in computer vision
and machine learning. In: Developments in Medical Image Processing and Computational
Vision, pp. 355–377. Springer, Berlin (2015)

47. Turner, A., Tsipras, D., Madry, A.: Label-consistent backdoor attacks (2019). arXiv preprint
arXiv:1912.02771

48. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention
Networks. International Conference on Learning Representations (2018). https://openreview.
net/forum?id=rJXMpikCZ. Accepted as poster

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
www.graphlearning.io
www.graphlearning.io
www.graphlearning.io
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
https://doi.org/10.1007/978-0-387-88735-7_2
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

552 S. Koffas et al.

49. Vinyes Mora, S.: Computer vision and machine learning for in-play tennis analysis: framework,
algorithms and implementation. Ph.D. Thesis, Imperial College London (2018)

50. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 707–723. IEEE (2019)

51. Wang, H., Mazari, M., Pourhomayoun, M., Smith, J., Owens, H., Chernicoff, W.: An end-
to-end traffic vision and counting system using computer vision and machine learning: the
challenges in real-time processing. SIGNAL 2018 Editors, p. 13 (2018)

52. Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks
against deep learning systems in the physical world. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6206–6215 (2021)

53. Wiley, V., Lucas, T.: Computer vision and image processing: a paper review. Int. J. Artif. Intell.
Res. 2(1), 29–36 (2018)

54. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation (2016). arXiv preprint arXiv:1609.08144

55. Xi, Z., Pang, R., Ji, S., Wang, T.: Graph backdoor. In: 30th USENIX Security Symposium
(USENIX Security 21), pp. 1523–1540 (2021)

56. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms (2017)

57. Xu, J., Xue, M., Picek, S.: Explainability-based backdoor attacks against graph neural
networks. In: Proceedings of the 3rd ACM Workshop on Wireless Security and Machine
Learning, pp. 31–36 (2021)

58. Yang, Z., Iyer, N., Reimann, J., Virani, N.: Design of intentional backdoors in sequential
models (2019). arXiv preprint arXiv:1902.09972

59. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph repre-
sentation learning with differentiable pooling. In: Advances in Neural Information Processing
Systems, vol. 31 (2018)

60. Yunchao, G., Jiayao, Y.: Application of computer vision and deep learning in breast cancer
assisted diagnosis. In: Proceedings of the 3rd International Conference on Machine Learning
and Soft Computing, pp. 186–191 (2019)

61. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer, Berlin (2014)

62. Zhai, T., Li, Y., Zhang, Z., Wu, B., Jiang, Y., Xia, S.T.: Backdoor attack against speaker
verification. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2560–2564. IEEE (2021)

63. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

64. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification.
In: Advances in Neural Information Processing Systems, vol. 28 (2015)

65. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. In:
Proceedings of the 26th ACM Symposium on Access Control Models and Technologies, pp.
15–26 (2021)

Deep Learning Reliability: Towards
Mitigating Reliability Threats in Deep
Learning Systems by Exploiting Intrinsic
Characteristics of DNNs

Muhammad Abdullah Hanif and Muhammad Shafique

1 Introduction

Deep Neural Networks (DNNs) have emerged as a promising set of algorithms for
solving complex AI problems such as image classification, object detection and
localization, semantic segmentation, speech recognition, language translation, and
video processing [1]. The state-of-the-art performance of these models has laid
the foundation for DNNs to be used in safety-critical applications as well such
as autonomous driving [2] and smart healthcare [3]. Driven by the compute- and
memory-intensive nature of DNNs and the need for deploying such high-accuracy
models in resource-constrained edge devices, a significant amount of research
has been carried out towards designing specialized hardware accellerators that
can enable low-cost DNN inference at the edge. Some prominent DNN hardware
accelerators include Eyeriss [4], MAERI [5], TPU [6], and MPNA [7].

On the one end, these DNN hardware accelerators promise low-cost and real-time
execution of DNNs; however, on the other end, they bring some critical reliability
challenges that can significantly degrade the performance and dependability of the
system. These reliability threats are specifically important to address for safety-
critical systems, as even a single fault at a critical location in such systems can result
in severe consequences. For example, in the case of autonomous driving vehicles, a
critical fault in the perception unit can result in the misclassification of a traffic sign
(e.g., a stop sign) which can lead to a fatal accident. Such faults can even lead to total
disruption of traffic service if the vehicle is connected to the traffic infrastructure in
a smart city. An overview of different hardware-induced reliability threats, how they

M. A. Hanif (�) · M. Shafique
New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_21

553

 31368 2385 a 31368 2385 a

 885
56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21
https://doi.org/10.1007/978-3-031-40677-5_21

554 M. A. Hanif and M. Shafique

Process
VariationsBTI

Aging
HCI

Soft
Errors

ytilibaile
R

 Th
re

at
s

TDDB
Electromigration

noitatsefina
M

stluaFfo

Transient Faults Intermittent Faults Permanent Faults

Time

O
ut

pu
t

…

Error

Time

O
ut

pu
t

…

Error

Time

O
ut

pu
t …Error

Correct
Output

Input Output
Expected

Observed

DNN-based System

C
O

N
V

1

C
O

N
V

2

C
O

N
V

3

C
O

N
V

m

FC
 m

+1

FC
 N

On-chip
Memory

Accumulators

PE
Control

Unit PE PE
Processing Array

...

PE PE PE...

...

...

...

DNN

In
pu

t

O
ut

pu
t

Off-Chip
Memory

DNN
Hardware

PE PE PE...

… …

Convolutional Layers Fully Connected Layers

Permanent
Faults

Faults 40 km/h
Sign

Stop
Sign

Fig. 1 Overview of different reliability threats and their repercussions. The picture used in the
figure is from the COCO dataset

manifest in a system and how can they impact the functionality of a DNN inference
is shown in Fig. 1.

Reliability Threats Gradual progress in the fabrication process and the desire for
extreme-performance devices has lead us to the era of nano-scale devices. However,
electronic devices fabricated using nano-scale technology face various reliability
issues. Some of these issues are associated with the limitations of the fabrication
process while others are associated with the extreme sizes of the transistors. The
following text provides a brief introduction to different hardware-induced reliability
threats that can degrade the performance of a system.

• Soft Errors are transient bit-flips caused by high-energy particle strikes. These
particles can be alpha particles emitted from the impurities in the packaging
materials of the chip or neutrons from cosmic radiations [8]. These soft errors can
propagate all the way to application layer of a system and results in significant
accuracy degradation. External factors such as temperature and altitude can have
a notable impact on the Soft Error Rate (SER).

• Aging of nano-scale electronic devices occurs due to various physical phe-
nomena such as Bias Temperature Instability (BTI), Time-Dependent Dielectric

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 555

Breakdown (TDDB), Hot Carrier Injection (HCI), and Electromigration (EM).
It typically results in increased threshold voltage (.VTH) [9] or breakdown of
dielectric and wires. In the early stages, aging manifests as timing errors in a
system, and later it can even transform into permanent faults. Typically, large
guardbands are added to the operating frequency of a circuit to ensure reliable
operation. Similar to other reliability threats, aging rate also increases with
temperature.

• Process Variations are variations in the hardware characteristics of transistors
that occur due to imperfections in the fabrication process [10]. In general, these
variations manifest as timing errors in a system and, therefore, are addressed by
adding guardbands, i.e., either by increasing the supply voltage or reducing the
operating frequency of the device. Extreme variations can even lead to permanent
faults, which can have a significant impact on the manufacturing yield.

Apart from aggressive guard-banding, a number of other techniques have also
been proposed to improve the resilience of systems against reliability threats.
However, most of these techniques are based on redundancy, e.g., Error Correc-
tion Codes (ECC), Dual Modular Redundancy (DMR) [11], and Triple Modular
Redundancy (TMR) [12]. The redundancy-based techniques, on the one hand, are
highly effective; however, on the other hand, they lead to high performance and
energy overheads. This together with the compute- and memory-intensive nature
of DNNs makes such techniques infeasible for DNN-based systems. Therefore,
alternate techniques are required that can improve the resilience of DNN-based
systems against hardware-induced reliability threats at minimal cost.

In the following section, we present a brief overview of DNNs and DNN hardware
accelerators. Then, in Sect. 3, we present an overall methodology for building
reliable DNN inference systems and also discuss individual low-cost techniques for
mitigating permanent faults, aging, and soft errors.

2 Preliminaries

2.1 Deep Neural Networks

A neural network can be visualized as a network of interconnected neurons (see
Fig. 2a), where a neuron is the fundamental computational unit of the network. The
functionality of a typical neuron used in neural networks can be described using the
following equation:

.Out = f

(
N∑
i=0

Wi × Ai + b

)
(1)

556 M. A. Hanif and M. Shafique

(c)

Classifier

Output

Feature
Extractor

CONV 1

FC 6

FC 7

FC 8

Input

CONV 2

CONV 3

CONV 4

CONV 5

Pooling
Layer

Input
Layer

Hidden
Layers

Output
Layer

A1 AI

(a) OK

A2

...

...

O1

...

...

...

O2

WIJ
<1>W11

<1>

W11
<2>

W11
<3>

W11
<4>

(b)

…

Convolutional
Layer (CONV)

Output Feature
MapsFilter 1

Filter N N

M

Input Feature
Maps

M

Nth feature
map

Filter 2

Fig. 2 (a) An example MLP network. (b) Convolutional layer. (c) Architecture of a convolutional
neural network

where . Wi represents the ith weight, . Ai represents the ith activation, N represents
the number of weights (and activations) in the input vectors, b represents the bias,
and .f (.) represents the activation function (a non-linear function to introduce non-
linearity). The neurons are typically arranged in layers, and a neural network having
more than three layers is termed as a Deep Neural Network (DNN). Figure 2a shows
an example of a Fully Connected Neural Network (FCNN), in which all the neurons
in each layer are connected with all the neurons in the previous layer and the next
layer. A FCNN is also known as a Multi-layer Perceptron (MLP).

Different types of DNNs have been proposed in the literature. Apart from
FCNNs, Convolutional Neural Networks (CNNs) are also widely known. CNNs
are mainly used to process spatially or temporally correlated data such as images
and videos. A CNN is generally composed of multiple convolutional layers and
fully connected layers, see Fig. 2c. The convolutional layers are used for extracting
features from the input while the fully connected layers are responsible for the final
classification based on the features extracted by the convolutional layers. Figure 2b
shows a detailed view of a convolutional layer.

Various other types of DNNs also exist, for example, Recurrent Neural Networks
(RNNs), Generative Adversarial Networks (GANs), and Graph Neural Networks
(GNNs). However, as most of the reliability studies have been demonstrated on
MLPs and CNNs, this chapter also considers the same to highlight the effectiveness
of different methods.

2.2 DNN Hardware Accelerators

To enable the deployment of DNNs in resource-constrained edge devices, DNN
hardware accelerators are employed. Various accelerator designs have been pro-
posed in the literature, where each design supports a specific set of dataflows in

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 557

Off-Chip
Memory Ac

tiv
at

io
n

M
em

or
y

Control Unit

DNN
Accelerator

Input
Activations

Output
Activations

Weights

Partial Sums
Output
Activations

. . .

Weight Memory

Accumulation Unit

Processing
Array

...

...

...

PE PE PE...
PE PE PE...

PE PE PE...

Weights

X

+

Reg.

Partial Sum

Partial Sum

In
pu

t A
ct

iv
at

io
n PE

Weight

Weight

Reg.

Re
g.

Reg.

Fig. 3 A systolic-array-based DNN hardware accelerator

a more efficient manner, e.g., see [4, 6, 7, 13]. An overview of a DNN hardware
accelerator is shown in Fig. 3. A DNN accelerator is mainly composed of Processing
Elements (PEs), partial sum accumulation units, and on-chip memory. Each PE
contains some arithmetic modules and some registers. The arithmetic modules are
for performing the MAC operations involved in the DNN execution and the registers
are for storing weights, activations, and partial sums. The exact configuration of the
PEs and their connectivity in the accelerator are based on the supported dataflows.

The accelerator shown in Fig. 3 is a systolic-array-based design composed of
homogeneous PEs, similar to the design in [6]. The PEs are connected in a 2D-grid-
like manner. The accelerator follows a weight-stationary dataflow, where weights
are loaded into the array (through vertical channels) and kept stationary during
operations. Note, weights from the same filter/neuron are mapped on the same
column, while weights from multiple filters/neurons can be mapped simultaneously
by mapping different filters/neurons (from the same DNN layer) to different
columns. After the weights have been loaded inside the PEs, the input activations
are fed from the left and are multiplied with the weight values to generate products.
Each product is then added with the partial sum from the above PE, and the
updated partial sum is then passed downstream to be used in the next cycle by
the downstream PE. As the size of the processing array is usually limited, a dot-
product operation is broken down into multiple chunks (based on the size of the
processing array) and a single chunk is mapped onto the array at a time. The partial
sums generated by the array are stored in the accumulation units to be added with
the corresponding partial sum/s from the other chunks (if any). A more detailed
explanation of the architecture can be found in [14].

558 M. A. Hanif and M. Shafique

3 Reliable Deep Learning

This section presents a systematic methodology for building reliable systems for
DNN-based applications. The section also highlights the impact of different types of
reliability threats on the application-level accuracy of DNNs and presents different
low-cost techniques for improving the resilience of DNN-based systems against
hardware-induced reliability threats at minimal cost.

3.1 A Systematic Methodology for Building Reliable DNN
Systems

Figure 4 presents an overview of our systematic design methodology for building
reliable systems for DNN-based applications. The methodology is composed of
different design-time steps, post-fabrication steps, and run-time steps.

The design-time steps focus on building a hardware accelerator capable of
mitigating all types of hardware-induced reliability threats. Towards this, first, a
baseline hardware accelerator is designed based on the user-defined performance
constraints. Then, the additional circuitry required for mitigating permanent faults
(see Sect. 3.3), aging (see Sect. 3.4), and soft errors (see Sect. 3.5) is added to
the accelerator design. Note, to achieve high resilience against reliability threats
at a low cost, the error resilience of a representative set of DNNs is taken into
consideration. The error resilience helps estimate the extent of protection required
against each threat. After reinforcing the accelerator with the additional circuitry, the
hardware is synthesized using reliability-aware synthesis techniques, for example,
using selective hardening where vulnerable nodes in the hardware are hardened
using node-level redundancy [15].

Design Constraints
(Area, Power, Latency, Accuracy, etc.)

Design a Fault-Tolerant
Accelerator

Circuitry to Support
Permanent Fault

Mitigation

Hardware

Deep Neural
Networks (DNNs)

Evaluate Error Resilience
of the DNNs

DNN Mapping (Resilience-

Aware, Faults-Aware)

Adaptive Voltage and Frequency Control

Online Soft Error
Rate Monitoring

Apply Reliability-Aware
Synthesis

DNN 1 DNN N...

Online Timing-Error
Rate Monitoring

Hardened DNN
Accelerator Design with
Online Monitoring and

Control Circuitry

Post-Fabrication Testing

Initialize Range-
Restriction
Functions

Circuitry for Aging
Mitigation

Circuitry for Timing
Error Detection and

Mitigation

Design-time Steps Post Fabrication Steps Run-time Steps Inputs Intermediate Outputs

Fig. 4 Our methodology for designing reliable hardware for DNN-based applications (adapted
from [16])

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 559

The post-fabrication steps focus on exploiting the information collected through
post-fabrication testing (e.g., fault maps and process variation maps of the fabricated
hardware) to define DNN mapping policies. The fault-aware and variation-aware
mapping of DNNs can significantly reduce the negative impact of faults and
variations on the application-level accuracy and performance characteristics of the
system (see Sect. 3.3). The mapping information together with fault maps are also
used by range initialization block for soft error mitigation.

The run-time steps focus on trading energy for reliability through adaptive
voltage and frequency scaling. The online error rate monitoring blocks monitor the
frequency of errors, and the system then responds by increasing the supply voltage
or decreasing the operating frequency to reduce the frequency of errors, whenever
required. Software-level redundancy can also be employed to improve the reliability
by processing critical layers (or neurons) multiple times.

3.2 Resilience of DNNs to Reliability Threats

Occasionally, DNNs are assumed to be inherently resilient to errors [17]. However,
studies have shown that DNNs respond differently to different types of errors.
Errors that occur at critical locations in the system can significantly degrade the
application-level accuracy of DNNs while errors at non-critical locations do not
impact the accuracy much. This section presents the resilience of DNNs to different
types of reliability threats. The section also highlights the importance of low-cost
fault-mitigation techniques for dependable performance.

3.2.1 Resilience of DNNs to Permanent Faults

This section presents an empirical analysis from [14] highlighting the impact of
stuck-at permanent faults in the computational array of a systolic-array-based DNN
accelerator (shown in Fig. 3) on the application-level accuracy of DNNs. The
analysis is performed for two different networks trained on two different datasets,
i.e., the MNIST and TIMIT datasets. The details of the DNN architectures used are
presented in Table 1. For this analysis, a systolic array of .256 × 256 MAC units
synthesized using 45nm OSU PDK to generate a gate-level netlist is considered.
For permanent faults, stuck-at faults are inserted randomly at internal nodes in the
netlist.

Table 1 Datasets and the corresponding DNNs used for analyzing the impact of permanent faults

Dataset Network architecture Accuracy (%)

MNIST [18] Fully connected (L1-L4): 784. ×256. ×256. ×256. ×10 98.15

TIMIT [19] Fully connected (L1-L4): 1845. ×2000. ×2000. ×2000. ×183 73.91

560 M. A. Hanif and M. Shafique

Fig. 5 Impact of Stuck-at-Faults in a systolic-array-based DNN accelerator on the classification
accuracy of two different DNNs [20]

Figure 5a shows the impact of using a faulty DNN accelerator on the classifi-
cation accuracy of two different DNNs. As can be observed from the figure, for
both the DNNs, the classification accuracy decreases sharply with the increase in
faulty PEs. For example, in the case with the number of faulty PEs equals 16, the
average accuracy of the DNN trained on the TIMIT dataset falls to zero, while the
accuracy of the DNN trained on the MNIST dataset falls to around 50%. Note that
16 PEs is equivalent to around 0.025% of total PEs in a .256 × 256 array. This
shows that even a very small number of permanent faults in a DNN-based system
can significantly degrade the system’s performance. This analysis clearly highlights
the need for permanent fault mitigation to increase the manufacturing yield of DNN
accelerators, as faulty hardware having permanent faults cannot produce reliable
results.

3.2.2 Resilience of DNNs to Timing Faults

Timing failures in high-performance nano-scale CMOS devices are a significant
reliability concern. These errors arise due to various reasons, e.g., power supply
disturbance, crosstalk, process variations, and aging. Moreover, the operating
conditions, such as supply voltage, also significantly affect the frequency of timing
failures. This section highlights the impact of timing errors on the classification
accuracy of a DNN trained on the MNIST dataset using the analysis presented
in [14]. The DNN architecture is presented in Table 1 and the considered hardware
accelerator is shown in Fig. 3. To illustrate the impact of timing errors on DNN
accuracy, [14] considered a Timing Error Propagation (TEP) case where timing
errors are allowed to propagate to the output. The timing errors are introduced in

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 561

Fig. 6 Impact of timing
errors induced through
voltage under-scaling on the
classification accuracy of a
DNN trained on the MNIST
dataset [14]

the accelerator array through voltage under-scaling. Figure 6 shows the impact of
voltage under-scaling on the classification accuracy of the DNN. Note, as the supply
voltage of the array is reduced, timing errors start increasing. Figure 6 clearly shows
that in the TEP case, the accuracy of the DNN starts decreasing abruptly as the fault
rate starts increasing. Therefore, to ensure reliable execution of DNNs it is essential
to mitigate timing errors.

3.2.3 Resilience of DNNs to Memory Faults

To illustrate the impact of memory faults on the accuracy of DNNs, Hanif et al. [16]
presented an analysis where they injected random faults in the weight memory
of a DNN accelerator. The analysis showed that faults at higher significance bit-
locations in the weights can drastically reduce the application-level accuracy of
DNNs while faults at lower significance bit-locations do not impact the accuracy
much. Moreover, the analysis also showed that the accuracy drop increases sharply
with the increase in the fault rate. They also studied the impact of different types
of faults individually and showed that 0-to-1 bit-flips have a more severe impact
compared to 1-to-0 bit-flips, as 0-to-1 bit-flips at higher significance bit-locations
can significantly increase the weight values. This conclusion is also in line with
the dropout [21] and DropConnect [22] concepts in the sense that 1-to-0 bit-flips
push the weight values toward zero, which is equivalent to dropout at a fine-grained
level. Note that the conclusion may differ for different data representation formats.
Similar fault injection studies have also been conducted in [23] and [24] to analyze
the resilience of DNNs.

562 M. A. Hanif and M. Shafique

1 = Bypass
the MAC

PE PE PE...

. . .

. . .

. . .

Accumulation Units

PE PE PE

PE PE PE

. . .

. . .

Faulty
MAC Unit

Systolic
Array

PE PE PE

PE

. . .

PE

PE

PE

...

...

...
. . .

…

…

…

…

…

…

…

…

Weights
(Matrix A)

snoitavit cA
) B xi rt a

M(

X +

Partial Sum

Ac
tiv

at
io

n

PE

Weight

0 10

…

X +

PE
0 1

…

Additional
MUX to bypass
the MAC unit

Additional
MUX to bypass
the MAC unit

Fig. 7 Modified systolic-array design for permanent fault mitigation through fault-aware pruning

3.3 Permanent Fault Mitigation

As highlighted in Sect. 3.2.1, permanent faults can restrain a system from generating
correct outputs. Therefore, it is essential to mitigate such errors to ensure high
manufacturing yield. Fault-Aware Pruning (FAP) [20] has been proposed to
mitigate permanent faults in the computational array of a systolic-array-based DNN
accelerator. The key idea behind this approach is to replace critical faults with non-
critical faults. In [20], this is achieved through dropping the computations mapped
onto the faulty components, as dropping a small percentage of computations in
DNNs do not impact the accuracy much, see dropout [21] and DropConnect [22]
concepts.

Figure 7 illustrates the modified systolic-array design proposed in [20] for
mitigating permanent faults in the MAC units of a systolic-array-based DNN
accelerator. As illustrated in the figure, each PE is equipped with an additional MUX
to bypass the MAC unit inside the PE. In case a fault is detected in the MAC unit of a
PE during post-fabrication testing, the corresponding MUX is configured to bypass
the faulty MAC unit. Note, the systolic-array architecture shown in Fig. 7 follows a
weight-stationary dataflow where weights from the same neuron/filter are mapped
onto the same column and are kept stationary inside the PEs during execution.
Hence, the bypass operation corresponds to pruning of the weights mapped onto
the faulty units.

To improve the performance of FAP, Fault-Aware Pruning + Training (FAP+T)
is proposed [20]. The technique is based on the observation that DNNs are typically
over-parameterized and pruning a small set of weights during training do not affect
the final accuracy much [25]. Figure 8 presents a general flow for training a DNN
against permanent faults. As highlighted in the figure, the fault map extracted
through post-fabrication testing of the fabricated chip (along with the DNN mapping

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 563

Off-line Post-fabrication Testing
for Fault Map Extraction Fault Map

Fault-Aware
Weight Masking

Forward
Pass

Backward
Pass

DNN
Accelerator

DNN
Architecture

Training (Repeat for Every Mini-batch)
Fault-
Aware
DNN

Dataset

Weight
Update

DNN Mapping
Policy

Fig. 8 General flow adopted for fault-aware retraining

80

85

90

95

100

0 10 20 30 40

)ega
%(ycaruccA

Percentage of Faulty MAC Units in the Array (%age)

FAP
FAP+T

Negligible
Accuracy Loss

FAP+T offers
better results

 50

Fig. 9 Impact of using FAP and FAP. +T on the classification accuracy of a fully connected DNN
trained on the MNIST dataset at different fault rates [20]

policy) is used to force the weights to be mapped onto faulty MAC units to zero in
each iteration of the training loop. This enables the DNN to adapt to the faults in the
system and offer better performance compared to simple FAP.

Figure 9 highlights the effectiveness of FAP and FAP. +T using a fully connected
DNN trained on the MNIST dataset. As can be seen from the figure, both FAP and
FAP. +T help improve the resilience of the DNN against permanent faults in the
computational array of a DNN accelerator; however, FAP. +T offers better results at
higher fault rates, i.e., negligible accuracy loss even when 50% of the total MAC
units are faulty.

Although FAP. +T is highly effective against permanent faults, its main drawback
is that it involves retraining the given DNN, which may not be possible under
some scenarios due to the lack of computational resources or a comprehensive
training dataset. To address this issue, Fault-Aware Mapping (FAM) has been
proposed [26]. FAM employs a saliency-driven approach to determine the mapping
of the given pre-trained DNN for the given faulty chip. Figure 10 shows the general
flow for applying FAM. First, the saliency of each DNN weight is computed using
the L1 or L2-norm. Then, using an optimization algorithm and the knowledge of the
faults, a mapping policy is determined that leads to the minimum (or a lower) sum
of saliency of weights to be pruned due to permanent faults in the computational
array of the DNN accelerator. In the end, the parameters of the DNN are rearranged
according to the mapping policy (wherever possible) to avoid any run-time data

564 M. A. Hanif and M. Shafique

Extract Fault Map using
Post-fabrication Testing Fault Map

Compute
Saliency of
Weights of

the DNN

Determine Mapping by
Minimizing the Sum of
Saliency of Weights to

be Pruned

DNN
Accelerator

Pre-trained
DNN

Repeat for Each Layer of the DNN

Modified
DNN +

Mapping
PolicyDataset

Rearrange
DNN

Parameters

Fig. 10 Fault-aware mapping methodology

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.17

0.15

-0.58

-0.81

-0.94

0.22-0.78

0.92

-0.36

0.28

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.17

0.15

-0.58

-0.81

0.22-0.78

0.92

-0.36

0.28

-0.42

-0.84

-0.63

0.59

-0.44

-0.61

0.15

-0.58

-0.81

-0.94

0.22-0.78

0.92

0.28

-0.42

-0.84

-0.63

0.59 -0.78

0.92

-0.36

0.28 -0.44

-0.61

0.17

0.15

-0.58

-0.81

-0.94

0.22

Filter 1 Filter 2 Filter 3 Filter 4

(b) Mapping of the Filters
on an unfaulty 4x4 Array

(c) Mapping of the Filters
on a Faulty 4x4 Array

(d) Mapping using
Fault-Aware Mapping

x
-0.36

-0.94 x0.17

(a)

Absolute
Error = 0.94

Swapping the
locations of Filter 3

and Filter 4 results in
Absolute Error = 0.17

Fig. 11 An illustrative example of fault-aware mapping on a .4×4 systolic array

rearrangement operations. The output DNN and the mapping policy are then used
together with FAP for reliable DNN inference. Figure 11 presents an example of
how FAM can help in reducing the impact of permanent faults when used with FAP,
and Fig. 12 highlights the effectiveness of the approach when used for the VGG11
network trained on the ImageNet dataset. Figure 12 clearly highlights that FAM can
be employed without retraining specifically for low-to-moderate fault rates to get
better results than only FAP.

3.4 Timing Error Mitigation

Aging in CMOS devices manifests as timing errors. These errors can have a
drastic impact on the performance of a DNN interference system, as highlighted
in Sect. 3.2.2. Conventional techniques such as aggressive voltage and frequency
guard-banding result in significant energy and/or latency overheads. Therefore, it is

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 565

0
20
40
60
80

100

0 10 20 30 40

 ycaruccA 5poT
]ega

%[

Number of Faulty PEs [%age]

Fault-Aware Pruning Fault-Aware Mapping
Fault-aware mapping helps

maintain the baseline accuracy
even at moderate fault rates

Baseline

 50

Fig. 12 Impact of fault-aware mapping on the classification accuracy of the VGG11 network
trained on the ImageNet dataset

PE PE PE...
. . .

. . .

. . .
Accumulation Units

PE PE PE

PE PE PE

. . .

. . .

Systolic
Array

PE PE PE

PE

. . .

PE

PE

PE

...

...

...
. . .

…

…

…

…

…

…

…

…

Weights
(Matrix A)

snoitavitcA
)B xirta

M(

X +

Partial Sums

Ac
tiv

at
io

n

PE

Weight

0 1

…

X +

PE
0 1

…

Psum Psum’

CLK+Δ

CLK+Δ Error = Bypass
current MAC

unit

CLK

CLK

Difference in
inputs correspond

to error

Additional partial
sum register to
capture correct

output

Fig. 13 Architectural modifications required in PEs of a systolic-array-based DNN accelerator to
realize TE-Drop

crucial to address these errors at low cost to ensure reliable and resource-efficient
DNN execution.

To address timing errors in the computational array of a systolic-array-based
DNN accelerator at a low cost, Zhang et al. proposed TE-Drop [14]. TE-Drop
works on the principle that the contribution of each individual MAC operation
to the overall output of a DNN is very small. Therefore, a small percentage of
MAC operations can be dropped without affecting the application-level accuracy
of the system. To detect timing errors in the computational array, TE-Drop utilizes
Razor flip-flops; however, instead of re-executing the erroneous MAC operation, it
captures the correct MAC output in an alternate partial sum register operating on a
delayed clock. Then, the succeeding PE is bypassed to feed the correct MAC output
back into the computational flow. Figure 13 presents the architectural modifications
required to realize the concept.

566 M. A. Hanif and M. Shafique

Profile Activation
Values using a
Subset of the

Validation Dataset

Determine
Safe Ranges

for Activation
Values

Deploy Range
Restriction
Functions

Protected
DNN

Unprotected
DNN

Validation
Dataset

Fig. 14 General flow of range-restriction-based soft error mitigation techniques

3.5 Soft Error Mitigation

As highlighted in Sect. 3.2.3, soft errors at critical locations in a DNN-based system
can significantly degrade the application-level accuracy of the system [16, 27].
Therefore, it is crucial to address these errors to ensure reliable DNN execution.
Although conventional redundancy-based techniques (e.g., DMR and TMR) are
highly effective against soft errors, they result in extreme overheads due to the
compute-intensive nature of DNNs. Therefore, specialized low-cost techniques are
designed to improve the resilience of these systems against soft errors.

To mitigate soft errors in SRAM-based on-chip memory, Azizimazreah et al.
proposed a zero-biased SRAM cell design that has a higher tendency to switch
to ‘0’ in case an error occurs in the cell [28]. The intuition behind this design is
that 0-to-1 bit-flips in DNNs result in a higher accuracy loss compared to 1-to-0
bit-flips. To mitigate soft errors in the computational array of a DNN accelerator,
researchers have proposed different range-restriction techniques, e.g., Ranger [27],
that bound the range of the intermediate activation values to a pre-computed safe
range. The intuition behind these techniques is that soft errors can result in large
activation values that may propagate to the output and impact the classification
result. Therefore, abnormally large activation values that fall out of the normal range
can be classified as erroneous, and dropping such values can mitigate soft errors
due to the inherent resilience of DNNs to pruning. Figure 14 presents the general
flow of range-restriction techniques. A similar technique is proposed in [29] for
mitigating soft errors in the on-chip memory of DNN accelerators. Apart from the
above-mentioned techniques, algorithm-based fault tolerance, such as checksum-
based error detection and correction have also been proposed to mitigate soft errors
in DNN systems at a low cost [30].

4 Conclusion

The state-of-the-art performance of DNNs for complex AI problems has led to
their adoption for safety-critical applications as well. However, these systems have
strict robustness constraints that are challenged by the hardware-induced reliability
threats introduced due to the use of specialized DNN accelerators. The compute- and
memory-intensive nature of DNNs prevents the use of redundancy-based techniques

Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep. . . 567

for mitigating these threats. Towards this, this chapter covered different low-cost
techniques for improving the resilience of DNN inference systems against soft
and timing errors. The chapter also covered different techniques for mitigating
permanent faults. Moreover, the chapter also discussed a holistic methodology for
mitigating all types of reliability threats at low overhead costs.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep learning-based multi-scale multi-object

detection and classification for autonomous driving. In: Fahrerassistenzsysteme 2018, pp. 233–
242. Springer, Berlin (2019)

3. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24 (2019)

4. Chen, Y., et al.: Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE J. Emerg. Sel. Topics Circuits Syst. (2019)

5. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 461–475. ACM, New York (2018)

6. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12. IEEE, Piscataway (2017)

7. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: MPNA: A
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks (2018). arXiv preprint arXiv:1810.12910

8. Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE
T-DMR 5(3), 305–316 (2005)

9. Kang, K., et al.: NBTI induced performance degradation in logic and memory circuits: how
effectively can we approach a reliability solution? In: ACM/IEEE ASP-DAC, pp. 726–731
(2008)

10. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 39–44. IEEE, Piscataway (2013)

11. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 27–32. European Design and Automation Association (2010)

12. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

13. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: A flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 553–564. IEEE, Piscataway (2017)

14. Zhang, J., et al.: Thundervolt: enabling aggressive voltage underscaling and timing error
resilience for energy efficient deep learning accelerators. In: ACM/IEEE DAC, pp. 1–6 (2018)

15. Limbrick, D.B., Mahatme, N.N., Robinson, W.H., Bhuva, B.L.: Reliability-aware synthesis of
combinational logic with minimal performance penalty. IEEE Trans. Nucl. Sci. 60(4), 2776–
2781 (2013)

568 M. A. Hanif and M. Shafique

16. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: Reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), pp. 257–260. IEEE,
Piscataway (2018)

17. Gebregiorgis, A., Kiamehr, S., Tahoori, M.B.: Error propagation aware timing relaxation for
approximate near threshold computing. In: Proceedings of the 54th Annual Design Automation
Conference 2017, p. 77. ACM, New York (2017)

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

19. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in Neural Information Processing
Systems 27, pp. 2654–2662. Curran Associates (2014). http://papers.nips.cc/paper/5484-do-
deep-nets-really-need-to-be-deep.pdf

20. Zhang, J.J., et al.: Analyzing and mitigating the impact of permanent faults on a systolic array
based neural network accelerator. In: IEEE VTS, pp. 1–6. IEEE, Piscataway (2018)

21. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint
arXiv:1207.0580

22. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using
DropConnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)

23. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 913–916. IEEE, Piscataway (2018)

24. Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D.,
Wei, G.Y.: Ares: A framework for quantifying the resilience of deep neural networks. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, Piscataway
(2018)

25. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding (2015). arXiv preprint arXiv:1510.00149

26. Hanif, M., et al.: SalvageDNN: salvaging deep neural network accelerators with permanent
faults through saliency-driven fault-aware mapping. Philos. Trans. R. Soc. A 378(2164) (2020)

27. Chen, Z., et al.: Ranger: Boosting error resilience of deep neural networks through range
restriction (2020). arXiv preprint arXiv:2003.13874

28. Azizimazreah, A., Gu, Y., Gu, X., Chen, L.: Tolerating soft errors in deep learning accelerators
with reliable on-chip memory designs. In: 2018 IEEE International Conference on Networking,
Architecture and Storage (NAS), pp. 1–10 (2018). https://doi.org/10.1109/NAS.2018.8515692

29. Hoang, L.H., Hanif, M.A., Shafique, M.: FT-ClipAct: Resilience analysis of deep neural
networks and improving their fault tolerance using clipped activation. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1241–1246. IEEE,
Piscataway (2020)

30. Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., Ouyang, K., Cappello, F., Chen, Z.: FT-
CNN: Algorithm-based fault tolerance for convolutional neural networks. IEEE Trans. Parallel
Distrib. Syst. 32(7), 1677–1689 (2020)

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692

Index

A
Access point attacks, vii
Accuracy, 3, 24, 46, 74, 95, 129, 159, 182, 201,

235, 254, 287, 316, 345, 378, 396, 434,
463, 497, 526, 554

Activity recognition, 48, 50, 56, 57
Advanced driver assistance systems (ADAS),

vii, 233, 235–238, 240–242, 244, 253,
265

Adversarial attacks, viii, 316, 380, 433–436,
443–448, 458, 459, 463, 464, 468–471,
473–476, 479–488, 497–514

Aging, 130, 464, 467, 554, 555, 558, 560, 564
Anomaly detection, vii, 32–34, 177–197,

253–281, 325, 332, 333, 335
Automotive systems, 259, 261–263
Autonomous vehicles (AVs), vii, 203, 205,

209, 216, 220, 221, 223, 315–338, 501,
520, 524

B
Backdoor, vii, viii, 316, 321–336, 395–399,

401–413, 427, 428, 470, 471, 524–526,
529, 530, 540, 548, 549

Backdoor attacks, vii, viii, 316, 321–332, 335,
336, 338, 395–428, 470, 471, 519–549

Backdoor detection, 333, 412, 428
Bias, 7, 27, 30, 37, 38, 104, 236, 258, 268, 384,

387–393, 467, 556
Bio-signal, 22–24, 32–40, 96

C
Capsule Networks (CapsNets), viii, 463–488

Clean-label attack, 397, 520, 526, 527,
533–544, 548, 549

Cloud offloading, 151–172
Compression, vii, 21–40, 79, 128, 129, 145,

155, 157, 291, 434, 473, 505
Compute-in-Memory architectures, 457
Computer vision, v, 21, 22, 50, 73, 92, 102,

128, 136, 291, 292, 297, 301, 433,
519–521, 523, 525

Constraints, v, vi, 22, 24, 26, 27, 29, 30, 35, 39,
40, 46, 51, 56, 57, 65, 66, 73, 77, 97,
99, 106, 111, 141, 144, 162, 190, 203,
205, 216, 220, 234, 262, 302, 328, 380,
381, 505, 506, 558, 566

Context, 76, 89, 93, 100, 104, 110, 135, 145,
178, 179, 183–184, 192, 197, 267, 271,
272, 286, 336, 344, 385, 395, 465, 466,
470, 477, 498, 514

Controller, 77, 117, 143, 177, 181, 254, 263,
265, 307, 315, 316, 318, 320, 321,
328–329, 335–336, 338, 509

Convolutional neural networks (CNNs), vi,
vii, 3–18, 21, 58, 73, 79–86, 88, 91,
98, 130–132, 135, 137, 138, 204–207,
214, 219, 222–224, 236, 239, 256,
291, 316–318, 323, 345, 346, 351–352,
354–358, 360–363, 365, 371, 372, 403,
404, 407, 408, 457, 498, 500, 502,
507, 509, 511, 528, 533, 536–544,
548, 556

Cyber-physical systems (CPS), vii, 177,
201–205, 211, 213, 214, 219, 220, 223,
224, 233–250, 253–281, 377

Cybersecurity, 253

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5

569

https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5
https://doi.org/10.1007/978-3-031-40677-5

570 Index

D
Deep learning (DL), 4, 21, 50, 73, 103, 214,

233, 254, 288, 316, 345, 433, 506, 519,
558

Deep neural networks (DNNs), v, vi, viii, 4,
6, 7, 14–17, 24, 27–40, 74, 131–133,
204–206, 208–216, 218, 221–224, 256,
298, 316–319, 345, 346, 351, 353–357,
369, 371, 372, 395–428, 433–459,
463–488, 497, 498, 501, 505–507,
509–512, 521, 553–567

Deep reinforcement learning (DRL), vii,
218–220, 222, 223, 316–322, 325–329,
335–336, 338, 348

DNN reliability, 553–567

E
Edge computing, v, vi, viii, 49, 96–98, 190
Efficient deep learning, 233
eHealth Applications, 95–121
Embedded hardware, 74, 76, 286, 288, 308
Embedded systems, v–vii, 21, 253, 259,

285–308, 498, 504–511
Energy efficiency, 5, 119, 120, 141, 145, 153,

349, 434, 442, 445, 458, 471
Energy harvesting (EH), 46, 53, 57, 59–61,

141–144
Error resilience, viii, 106, 109, 558
Exploration, vi, 23–30, 33–38, 46, 62, 64–66,

74, 79, 92, 99, 109, 113, 120, 163,
217, 234–237, 240–250, 320, 328, 378,
478–479, 507, 511

F
Fault mitigation, 467, 559, 560, 562–564
Fingerprinting, 4–6, 9, 13, 14, 345–351
Framework, 4, 22, 82, 99, 128, 152, 179, 212,

235, 254, 294, 318, 343, 387, 451, 467,
499, 522

Freezing-of-gait (FoG), 130–132, 145

G
Graph data, 520, 522–523, 529–531, 545–547

H
Hardware, viii, 5, 6, 22, 24, 26, 27, 29–34, 36,

40, 74–76, 79, 81, 106, 107, 110, 111,
127, 151, 177, 211, 223, 278, 286, 288,
291, 301, 306, 308, 434, 436, 443–454,

458, 459, 464–467, 480, 497–514, 519,
553, 555–560

Healthcare, v–vii, 21–40, 65, 95, 96, 100, 106,
107, 113, 119, 127–145, 377, 497, 511,
553

Human activity recognition (HAR), 46, 52, 53,
59, 61–66, 130, 133–135, 145

Human pose estimation, 130, 136–140, 145

I
Indoor localization, vii, 3–6, 8, 10, 14–16, 18,

343–373
Indoor navigation, vi, 3–18
Intelligent systems, 110, 497, 501
Internet of things (IoT), v–viii, 21, 22, 45, 60,

74, 97, 98, 113, 177–197, 377, 497,
514, 521

L
Long short-term memory (LSTM), vii, 27, 32,

33, 131, 132, 182, 187, 189, 190, 194,
214, 223, 256–259, 266, 271, 272, 325,
327, 528, 540–544, 548

M
Machine learning (ML), 4, 45, 103, 127, 152,

181, 202, 254, 297, 319, 345, 377, 428,
463, 497, 519

ML security, 488, 501–514
Mobile devices, 4, 6, 17, 130, 141, 151–163,

165–167, 171, 347, 349–351, 357, 358,
361, 362, 372, 506

Model, 4, 21, 45, 74, 96, 128, 154, 178, 201,
234, 254, 292, 316, 346, 378, 395, 434,
463, 497, 519, 553

Multi-modal ML, vi, 95–121

N
Natural language processing (NLP), 21, 63,

128, 395, 497, 521, 522, 527–528,
534–540

Neural architecture search (NAS), vi, 21–40,
248–250

Neural networks (NNs), v, 5, 6, 48, 50–54, 63,
64, 74–77, 81, 89–92, 98, 115, 117, 121,
134–136, 158, 159, 163, 182, 197, 204,
218, 220–222, 224, 235, 236, 257, 260,
266, 271, 291, 321, 384, 385, 387–389,
396, 400, 402, 414, 415, 427, 428, 449,
477, 498, 505, 527, 543, 548, 555, 556

Node sensitivity, 384, 391

Index 571

Noise, 3, 98, 133, 181, 219, 234, 263, 293,
322, 360, 377, 424, 433, 465, 501

Novelty detection, viii, 397, 398, 412

O
Object detection, v, 75, 81, 90, 128, 204–211,

222, 224, 233–236, 238–241, 243, 244,
246, 247, 289, 292, 300, 322, 332, 470,
553

On-line retraining, 413

P
Perception architectures, 233–242, 244, 245,

247–250
Permanent faults, 464, 467, 555, 558–560,

562–564, 567
Power line inspection, 288
Privacy, v–viii, 46, 49, 51, 103, 106, 137, 138,

140, 345, 349, 350, 464–466, 497–514,
521

Probabilistic analysis, 132, 182

R
Recurrent neural networks (RNNs), 60, 179,

182, 187, 188, 214, 223, 256–258, 266,
271, 556

Reinforcement learning (RL), vii, 51, 60, 106,
110, 111, 119, 120, 151–172, 202,
216–219, 316, 319, 327, 520

Requirements, 5, 6, 22, 24–27, 29–31, 34, 38,
40, 45–48, 58, 64, 75, 77, 78, 85, 89,
98, 99, 104, 106, 107, 109–111, 119,
136, 137, 140, 141, 143, 152, 213, 220,
234, 237, 238, 263, 292, 297, 308, 351,
405, 415, 434, 498, 506, 509

Reverse-engineering defense, 402
Robotic vision, v
Robot planning, vii
Robustness, vi–viii, 5, 14, 46, 55–61, 66, 73,

115, 140, 194, 344, 382–384, 389–393,
421, 423, 433–459, 464, 469, 471–480,

483, 487, 488, 498–500, 506, 507,
509–511, 514, 566

S
Search, 24, 28, 35–38, 40, 73, 92, 109, 111,

128, 153, 235, 239, 241, 243, 245–249,
302, 323, 331, 466, 471

Secure indoor localization, 343–373
Security, vi–viii, 51, 73, 74, 177, 178, 180,

253, 316, 336, 343–345, 349, 351–357,
369, 372, 396, 458, 463–467, 469–488,
498, 501, 507, 514, 520, 521

Sensor association, 181, 184–187, 189–191,
195–197

Sensor fusion, 203, 233–236, 239–241,
243–248, 250

Smart healthcare, 119, 128, 553
Soft errors, 466, 467, 498, 554, 555, 558, 559,

566
Speech recognition, 128, 395, 519, 521, 523,

528–529, 540–544, 553
Spiking neural networks (SNNs), v, vi, viii,

463–488

T
Telecommunication infrastructure inspection,

287, 288, 296, 299, 308
Timing errors, 467, 555, 560, 561, 564–567

U
Unmanned aerial vehicles (UAVs), vi, vii,

73–81, 91, 92, 285–308

V
Visual disaster recognition

W
Wearable devices, vi, 45–66, 130, 133, 141,

144, 145

	Preface
	Acknowledgments
	Contents
	Part I Mobile, IoT, and Edge Application Use-Cases for Embedded Machine Learning
	Convolutional Neural Networks for Efficient Indoor Navigation with Smartphones
	1 Introduction
	2 Related Works
	3 Convolutional Neural Networks
	4 CNNLOC Framework: Overview
	4.1 Overview
	4.2 Preprocessing of RSSI Data
	4.3 RSSI Image Database
	4.4 Hyperparameters
	4.5 Integrating Hierarchy for Scalability

	5 Experiments
	5.1 Experimental Setup
	5.2 Smartphone Implementation
	5.3 Experimental Results
	5.3.1 Indoor Localization Accuracy Comparison
	5.3.2 CNNLOC Scalability Analysis
	5.3.3 Accuracy Analysis with Other Approaches

	6 Conclusion
	References

	An End-to-End Embedded Neural Architecture Searchand Model Compression Framework for Healthcare Applicationsand Use-Cases
	1 Introduction
	1.1 Deep Learning in Healthcare: Potential Use-Cases and Applications

	2 Embedded Neural Architecture Search and Model Compression Framework for Healthcare Applications
	2.1 User Specifications and Requirements
	2.2 Platform Constraints
	2.3 Dataset Construction
	2.4 Deep Learning Model Generation
	2.5 Deep Learning Model Training and Evaluation
	2.6 Model Compression
	2.6.1 Pruning
	2.6.2 Quantization

	3 Case Study: Bio-signal Anomaly Detection
	3.1 Experimental Setup
	3.2 Exhaustive Exploration
	3.3 Selective Exploration: Time Benefits
	3.4 Selective Exploration: Efficacy and Analysis
	3.5 Selective Exploration: Weighted Exploration
	3.6 Pruning and Quantization: Compression Efficacy and Receiver Operating Characteristics

	4 Conclusion
	References

	Robust Machine Learning for Low-Power Wearable Devices: Challenges and Opportunities
	1 Introduction
	2 Edge Machine Learning in Wearable Devices
	2.1 Edge Machine Learning Architectures
	2.2 Edge Machine Learning Algorithms
	2.2.1 Tree-Based Machine Learning Algorithms
	2.2.2 Support Vector Machines
	2.2.3 Neural Networks and Deep Learning

	2.3 Challenges for On-Device Edge Machine Learning in Wearable Devices
	2.4 Solutions to Address On-Device Learning Challenges
	2.4.1 Quantization
	2.4.2 Model Pruning
	2.4.3 Energy Harvesting

	2.5 Edge Machine Learning in Health Applications
	2.5.1 Parkinson's Disease Diagnosis
	2.5.2 Vital Sign Monitoring
	2.5.3 Human–Computer Interaction

	3 Robustness in Wearable Applications
	3.1 Reliability Challenges for Wearable Devices
	3.1.1 Sensor Shifts and Disturbances
	3.1.2 Missing Sensor Data
	3.1.3 Energy and Power Constraints

	3.2 State-of-the-Art Methods for Robust Edge Machine Learning in Wearable Devices
	3.3 Approaches to Address Sensor Shifts and Disturbances
	3.4 Missing Data Recovery Algorithms
	3.4.1 Energy Management in Wearable Devices

	3.5 Future Opportunities

	4 Human Activity Recognition Case Study
	4.1 HAR Background
	4.2 Generative Adversarial Imputation Networks
	4.3 Experiments and Results
	4.3.1 Experimental Setup
	4.3.2 Design Space Exploration for GAIN

	5 Conclusion
	References

	Efficient Deep Vision for Aerial Visual Understanding
	1 Introduction
	2 Domain-Specific Small ConvNets for UAV Applications
	2.1 Disaster Classification
	2.1.1 Network Design
	2.1.2 Experiments and Results

	2.2 Vehicle Detection
	2.2.1 Network Design and Approach
	2.2.2 Results

	3 Processing Aerial Images with Tiling
	3.1 Approach
	3.1.1 Initial Position Estimation
	3.1.2 Tiling and CNN Selection
	3.1.3 Optical Flow-Based Tracker

	3.2 Evaluation of EdgeNet Framework
	3.2.1 Metrics
	3.2.2 Configuration Analysis
	3.2.3 Performance Analysis on CPU, Odroid, and Raspberry Platforms

	4 Combining Tiling with Quantization
	4.1 Quantization Techniques
	4.2 Approach
	4.3 Experimental Results

	5 Conclusion
	References

	Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applications
	1 Introduction
	1.1 ML in Smart eHealth Applications
	1.2 Collaborative Edge Computing for Smart eHealth Applications
	1.2.1 Example Scenario

	1.3 Summary
	1.3.1 Organization

	2 Exemplar Case Study of Edge-ML-Driven Pain Assessment Application
	2.1 Pain Assessment
	2.2 Sensory Data Acquisition
	2.2.1 Types of Signals
	2.2.2 Commonly Used Sensors
	2.2.3 Multi-modal Inputs

	2.3 ML-Driven Objective Pain Assessment
	2.3.1 iHurt Platform
	2.3.2 Other Exemplar eHealth Applications

	3 Edge-Centric Optimization of ML-Based eHealth Workloads
	3.1 Dynamics of Compute Placement
	3.2 Using RL for Optimization
	3.2.1 Orchestration Framework
	3.2.2 RL Agent for Orchestration

	4 Sense–Compute Co-optimization of ML-driven eHealth Applications
	4.1 Handling Input Data Perturbations
	4.1.1 Sensing Phase Knobs
	4.1.2 Sense-Making Phase Knobs
	4.1.3 Co-optimization Knobs
	4.1.4 Example Scenarios

	4.2 Sense–Compute Co-optimization Framework

	5 Conclusions
	5.1 Key Insights
	5.2 Open Research Directions
	5.2.1 Data Quality Management
	5.2.2 Contextual Edge Orchestration
	5.2.3 Sense–Compute Co-optimization

	References

	A Survey of Embedded Machine Learning for Smart and Sustainable Healthcare Applications
	1 Introduction
	2 Overview of Embedded Machine Learning Frameworks
	3 Embedded Machine Learning Applications for Healthcare
	3.1 Freezing-of-Gait Identification in PD Patients
	3.2 Human Activity Recognition
	3.2.1 Processing Pipeline
	3.2.2 Commonly Used ML Algorithms
	3.2.3 Offline vs. Online Learning

	3.3 Human Pose Estimation
	3.3.1 Human Pose Estimation Using RGB Camera
	3.3.2 Human Pose Estimation Using mmWave Radar
	3.3.3 Human Pose Estimation Using Inertial Sensors

	4 Energy Management
	4.1 Energy Sources and Budget
	4.2 Optimal Energy Management

	5 Conclusions
	References

	Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile Embedded Applications
	1 Introduction
	2 Prior Work
	3 Challenges with Offloading
	4 Offloading Performance of Mobile Applications
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Matrix Operation App
	4.2.2 Internet Browser App
	4.2.3 Zipper App
	4.2.4 Voice Recognition and Translation App
	4.2.5 Torrents App

	4.3 Summary of Findings

	5 Adaptive Offloading
	6 Middleware Framework for Efficient Offloading of Mobile Applications
	6.1 Reinforcement Learning (RL)
	6.2 RL Algorithm to Generate Q-Function

	7 Experimental Results
	8 Conclusions and Future Work
	References

	Part II Cyber-Physical Application Use-Cases for Embedded Machine Learning
	Context-Aware Adaptive Anomaly Detection in IoT Systems
	1 Introduction
	1.1 Motivational Example
	1.2 Threat Model
	1.3 Research Challenges
	1.4 Contributions

	2 Related Works
	3 Anomaly Detection Methodology
	3.1 Context Generation
	3.2 Sensor Association
	3.3 Predictive Model
	3.4 Anomaly Detection
	3.5 Model Adaptation

	4 Results and Evaluation
	4.1 Fog Computing Architecture
	4.2 Experimental Setup
	4.3 Evaluation
	4.3.1 Sensor Association Evaluation
	4.3.2 Anomaly Detection Evaluation

	4.4 Robustness
	4.5 Case Study
	4.6 Timing Analysis
	4.7 Aliveness Assessment

	5 Conclusion
	References

	Machine Learning Components for Autonomous Navigation Systems
	1 Introduction
	2 Sensor Data Fusion
	3 Perception
	3.1 RGB Object Detection
	3.2 LiDAR Object Detection
	3.3 RADAR Object Detection
	3.4 Multi-Modal Object Detection
	3.5 Perception-Driven Sensing
	3.6 Adaptive Computational Load Control

	4 Odometery, Localization, and Mapping
	4.1 LiDAR Odometry and Mapping
	4.2 Unsupervised VSLAM and VO

	5 Planning
	5.1 Overview of Reinforcement Learning Algorithms
	5.2 Applications of Deep Reinforcement Learning Algorithms for Planning

	6 End-to-End Learning Systems
	7 Conclusion
	References

	Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Background
	3.1 ADAS Level 2 Autonomy Features
	3.2 Sensor Placement and Orientation
	3.3 Object Detection for Vehicle Environment Perception
	3.4 Sensor Fusion

	4 PASTA Architecture
	4.1 Overview
	4.2 Problem Formulation and Metrics
	4.3 Design Space Encoder/Decoder
	4.4 Design Space Exploration
	4.4.1 Genetic Algorithm (GA)
	4.4.2 Differential Evolution (DE)
	4.4.3 Firefly Algorithm (FA)

	4.5 Performance Evaluation

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Machine Learning for Anomaly Detection in Automotive Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Sequence Learning Background
	3.1 Sequence Models
	3.1.1 Recurrent Neural Networks (RNNs)
	3.1.2 Long-/Short-Term Memory (LSTM) Networks
	3.1.3 Gated Recurrent Unit (GRU)

	3.2 Autoencoders

	4 Problem Definition
	4.1 System Model
	4.2 Communication Model
	4.3 Attack Model

	5 INDRA Framework Overview
	5.1 Recurrent Autoencoder
	5.1.1 Model Architecture
	5.1.2 Training Process

	5.2 Inference and Detection

	6 Experiments
	6.1 Experimental Setup
	6.2 Anomaly Threshold Selection
	6.3 Comparison of INDRA Variants
	6.4 Comparison with Prior Works
	6.5 ADS Overhead Analysis
	6.6 Scalability Results

	7 Conclusion
	References

	MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs
	1 Introduction
	2 Related Work
	2.1 Power Line Infrastructure Inspection
	2.2 Telecommunication Infrastructure Inspection

	3 System Architecture
	3.1 Key Performance Indicators (KPIs) Definition
	3.2 Data Acquisition
	3.3 Detection Algorithm
	3.3.1 Performance Evaluation
	3.3.2 Key Outcomes
	3.3.3 Analysis

	4 Application Examples
	4.1 Experimental Equipment
	4.2 Use Case: Telecommunication Infrastructure
	4.2.1 Corrosion Detection
	4.2.2 Antenna Tilting
	4.2.3 Damage Control
	4.2.4 Fire Prevention with Multispectral Imaging

	4.3 Use Case: Power Infrastructure
	4.3.1 Pole Detection with Position Correction

	5 Conclusions and Future Work
	References

	Part III Security, Privacy and Robustness for Embedded Machine Learning
	On the Vulnerability of Deep Reinforcement Learning to Backdoor Attacks in Autonomous Vehicles
	1 Introduction
	2 Deep Learning in Autonomous Vehicles
	2.1 Deep Neural Networks in AVs
	2.2 Deep Reinforcement Learning in AVs
	2.2.1 The Reinforcement Learning Objective
	2.2.2 DRL in AVs

	3 Backdoor Attacks
	3.1 Backdoor Attacks in Classification Problems
	3.2 Backdoor Attacks in DRL
	3.3 Backdoor Attacks in DRL-Based AV Controller

	4 Backdoor Defenses
	4.1 Analysis of Backdoor Defenses for DRL-Based Traffic Controller Attacks

	5 Conclusion
	References

	Secure Indoor Localization on Embedded Devices with Machine Learning
	1 Introduction
	2 Background and Related Work
	2.1 Received Signal Strength Indicator (RSSI)
	2.2 Fingerprint-Based Indoor Localization
	2.3 Challenges with Indoor Localization

	3 CNNLOC Framework Overview
	3.1 Convolutional Neural Networks
	3.2 Indoor Localization with CNNLOC

	4 Localization Security Analysis
	5 Problem Formulation
	6 S-CNNLOC Framework
	6.1 Offline Fingerprint Database Extrapolation
	6.2 Inducing Malicious Behavior

	7 Experiments
	7.1 Experimental Setup
	7.2 Experimental Results
	7.2.1 Analysis of Noise Induction Aggressiveness
	7.2.2 Comparison of Attack Vulnerability
	7.2.3 Extended Analysis on Additional Benchmark Paths
	7.2.4 Generality of Proposed Approach
	7.2.5 Denoising Autoencoder-Based DNN Framework
	7.2.6 Security Aware DNN Training in the Offline Phase

	8 Conclusions and Future Work
	References

	Considering the Impact of Noise on Machine Learning Accuracy
	1 Introduction
	2 Studying the Impact of Noise: A Brief Overview of the Existing Literature
	2.1 Noise Generation
	2.2 Formal Analysis
	2.2.1 Linear Programming
	2.2.2 Satisfiability Solving
	2.2.3 Model Checking
	2.2.4 Limitations in the Existing Literature

	3 Effects of Noise on Machine Learning Accuracy
	3.1 Decreasing Robustness
	3.2 Noise Tolerance
	3.3 Aggravating Bias
	3.4 Varying Sensitivity Across Input Nodes

	4 Modeling Noise
	4.1 Lp Norms
	4.1.1 L1 Norm (Manhattan Distance)
	4.1.2 L2 Norm (Euclidean Distance)
	4.1.3 L∞ Norm

	4.2 Relative Noise

	5 Case Study
	5.1 FANNet: Formal Analysis of Neural Networks
	5.2 Experimental Setup
	5.2.1 Dataset
	5.2.2 Neural Network

	5.3 Results and Discussion
	5.3.1 Robustness and Tolerance
	5.3.2 Bias
	5.3.3 Node Sensitivity
	5.3.4 Discussion

	6 Conclusion
	References

	Mitigating Backdoor Attacks on Deep Neural Networks
	1 Background
	2 Literature Survey
	3 Preliminaries
	4 Problem Description
	5 Backdoor Defense by Training Attacker Imitator
	5.1 Problem Formulation
	5.2 Defense Methodology
	5.3 Experimental Setup
	5.3.1 Badnet-CW
	5.3.2 Badnet-GY
	5.3.3 Badnet-YS
	5.3.4 Badnet-CR

	5.4 Experimental Results
	5.4.1 Attacker Imitator Configuration
	5.4.2 BadNet vs. Benign Network Detection
	5.4.3 Fine-Tuning the Network

	6 RAID—An On-line Detection Method
	6.1 Problem Formulation
	6.2 Detection Algorithm
	6.3 Experimental Setup
	6.3.1 BadNet Trained on MNIST
	6.3.2 BadNet Trained on GTSRB
	6.3.3 BadNet Trained on CIFAR-10
	6.3.4 BadNet Trained on YouTube Face
	6.3.5 BadNet Trained on ImageNet
	6.3.6 Hyperparameter Setting

	6.4 Experimental Results
	6.4.1 Performance of N and Gn
	6.4.2 Performance of g(·)
	6.4.3 Performance of the Anomaly Detector
	6.4.4 Multiple Triggers and Adaptive Attacks
	6.4.5 Experiments on Hyperparameters
	6.4.6 More Advanced Attack

	7 Benign Applications of the Backdoor Phenomena
	8 Future Directions
	References

	Robustness for Embedded Machine Learning Using In-Memory Computing
	1 Introduction
	2 Background
	2.1 Adversarial Attacks
	2.2 Memristive Crossbars and Their Non-idealities and Non-linearities

	3 Non-linearity Aware Training (NEAT): Mitigating the Impact of Crossbar Non-idealities and Non-linearities for Robust DNN Implementations
	4 DetectX: Improving the Robustness of DNNs Using Hardware Signatures in Memristive Crossbar Arrays
	5 Unleashing Robustness to Structure-Pruned DNNs Implemented on Crossbars with Non-idealities
	5.1 Hardware Evaluation Framework for Non-ideality Integration During Inference
	5.2 Are Structure-Pruned DNNs Also Robust on Hardware?
	5.3 Non-ideality Mitigation Strategies for Increased Robustness of Structure-Pruned DNNs

	6 Related Works
	7 Conclusion
	References

	Adversarial ML for DNNs, CapsNets, and SNNs at the Edge
	1 Introduction
	2 Security Challenges for ML
	2.1 ML Privacy
	2.2 Fault Injection and Hardware Trojans on ML Systems
	2.3 ML Systems Reliability Threats

	3 Taxonomy of Adversarial ML
	4 Security for DNNs
	4.1 Adversarial Attacks
	4.2 Adversarial Defenses

	5 Security for Capsule Networks
	5.1 Robustness Against Affine Transformations
	5.2 Robustness Against Adversarial Attacks
	5.2.1 Adversarial Attack Methodology
	5.2.2 Evaluation Results

	5.3 Discussion

	6 Security for Spiking Neural Networks
	6.1 Comparison DNNs vs. SNNs
	6.2 Improving the SNN Robustness Through Inherent Structural Parameters
	6.2.1 SNN Robustness Exploration Methodology
	6.2.2 SNN Robustness Evaluation

	6.3 Adversarial Attacks and Defenses on Event-Based Data
	6.3.1 Gradient-Based Attack for Event Sequences
	6.3.2 Background Activity Filter for Event Cameras
	6.3.3 Evaluation of Gradient-Based Attack and Background Activity Filter
	6.3.4 Dash Attack for Event Sequences
	6.3.5 Mask Filter for Event Cameras
	6.3.6 Evaluation of the Dash Attack Against Background Activity Filter and Mask Filter
	6.3.7 Mask Filter-Aware Dash Attack for Event Sequences
	6.3.8 Evaluation of the Mask Filter-Aware Dash Attack Against Background Activity Filter and Mask Filter

	7 Conclusion
	References

	On the Challenge of Hardware Errors, Adversarial Attacks and Privacy Leakage for Embedded Machine Learning
	1 Introduction
	2 ML Robustness to Errors
	2.1 Methodology
	2.2 Results

	3 ML Security
	3.1 Adversarial Attacks
	3.1.1 Defenses Against Adversarial Attacks

	3.2 Embedded Systems-Friendly Defenses
	3.2.1 Defensive Approximation
	3.2.2 Undervolting as a Defense

	3.3 Privacy

	4 Conclusion
	References

	A Systematic Evaluation of Backdoor Attacks in Various Domains
	1 Introduction
	2 Background
	2.1 Computer Vision
	2.2 Natural Language Processing
	2.3 Graph Data
	2.4 Backdoor Attacks
	2.4.1 Metrics

	3 Methodology
	3.1 Threat Model
	3.2 Image Classification
	3.3 Natural Language Processing
	3.4 Speech Recognition
	3.5 Graph Data

	4 Experimental Results
	4.1 Image Classification
	4.2 Natural Language Processing
	4.3 Speech Recognition
	4.4 Graph Data
	4.5 General Observations

	5 Conclusions
	References

	Deep Learning Reliability: Towards Mitigating Reliability Threats in Deep Learning Systems by Exploiting Intrinsic Characteristics of DNNs
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 DNN Hardware Accelerators

	3 Reliable Deep Learning
	3.1 A Systematic Methodology for Building Reliable DNN Systems
	3.2 Resilience of DNNs to Reliability Threats
	3.2.1 Resilience of DNNs to Permanent Faults
	3.2.2 Resilience of DNNs to Timing Faults
	3.2.3 Resilience of DNNs to Memory Faults

	3.3 Permanent Fault Mitigation
	3.4 Timing Error Mitigation
	3.5 Soft Error Mitigation

	4 Conclusion
	References

	Index

