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Preface 

Machine Learning (ML) has emerged as a prominent approach for achieving state-
of-the-art accuracy for many data analytic applications, ranging from computer 
vision (e.g., classification, segmentation, and object detection in images and video), 
speech recognition, language translation, healthcare diagnostics, robotics, and 
autonomous vehicles to business and financial analysis. The driving force of the 
ML success is the advent of Neural Network (NN) algorithms, such as Deep Neural 
Networks (DNNs)/Deep Learning (DL) and Spiking Neural Networks (SNNs), 
with support from today’s evolving computing landscape to better exploit data and 
thread-level parallelism with ML accelerators. 

Current trends show an immense interest in attaining the powerful abilities of 
NN algorithms for solving ML tasks using embedded systems with limited compute 
and memory resources, i.e., so-called Embedded ML. One of the main reasons is that 
embedded ML systems may enable a wide range of applications, especially the ones 
with tight memory and power/energy constraints, such as mobile systems, Internet 
of Things (IoT), edge computing, and cyber-physical applications. Furthermore, 
embedded ML systems can also improve the quality of service (e.g., personalized 
systems) and privacy as compared to centralized ML systems (e.g., based on cloud 
computing). However, state-of-the-art NN-based ML algorithms are costly in terms 
of memory sizes and power/energy consumption, thereby making it difficult to 
enable embedded ML systems. 

This book consists of three volumes, and explores and identifies the most 
challenging issues that hinder the implementation of embedded ML systems. These 
issues arise from the fact that, to achieve better accuracy, the development of NN 
algorithms have led to state-of-the-art models with higher complexity with respect 
to model sizes and operations, the implications of which are discussed below:

• Massive Model Sizes: Larger NN models usually obtain higher accuracy than
the smaller ones because they have a larger number of NN parameters that can
learn the features from the training dataset better. However, a huge number of
parameters may not be fully stored on-chip, hence requiring large-sized off-chip
memory to store them and intensive off-chip memory accesses during run time.
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vi Preface 

Furthermore, these intensive off-chip accesses are significantly more expensive 
in terms of latency and energy than on-chip operations, hence exacerbating the 
overall system energy.

• Complex and Intensive Operations: The complexity of operations in NN 
algorithms depends on the computational model and the network architecture. 
For instance, DNNs and SNNs have different complexity of operations since 
DNNs typically employ Multiply-and-Accumulate (MAC) while SNNs employ 
more bio-plausible operations like Leaky-Integrate-and-Fire (LIF). Besides, 
more complex neural architectures (e.g., residual networks) may require addi-
tional operations to accommodate the architectural variations. These complex 
architectures with a huge number of parameters also lead to intensive neural 
operations (e.g., a large number of MAC operations in DNNs), thereby requiring 
high computing power/energy during model execution. 

In summary, achieving acceptable accuracy for the given ML applications while 
meeting the latency, memory, and power/energy constraints of the embedded ML 
systems is not a trivial task. 

To address these challenges, this book discusses potential solutions from multiple 
design aspects, presents multiple applications that can benefit from embedded ML 
systems, and discusses the security, privacy, and robustness aspects of embedded 
ML systems. To provide a comprehensive coverage of all these different topics, 
which are crucial for designing and deploying embedded ML for real-world 
applications, this book is partitioned into three volumes. The first volume covers 
the Hardware Architectures, the second volume covers Software Optimizations and 
Hardware/Software Codesign, and the third volume presents different Use Cases 
and Emerging Challenges. 

The brief outline of the third volume of this Embedded ML book targeting Use 
Cases and Emerging Challenges along with the section structure is as follows. 

Part I – Mobile, IoT, and Edge Applications: The first part of the Volume 3 of 
this book elucidates various applications that benefit from embedded ML systems, 
including applications for mobile, IoT, and edge computing.

• Chapter 1 explains how to employ CNNs for efficient indoor navigation on 
battery-powered smartphones while leveraging WiFi signatures.

• Chapter 2 discusses a framework for performing an end-to-end NAS and model 
compression for healthcare applications on embedded systems.

• Chapter 3 describes the challenges and opportunities of robust ML for power-
constrained wearable device applications, such as health monitoring, rehabili-
tation, and fitness.

• Chapter 4 highlights techniques to design the vision of Unmanned Aerial 
Vehicles (UAVs) for aerial visual understanding, including data selection, NN 
design, and model optimization.

• Chapter 5 presents optimization techniques for multi-modal ML-based health-
care applications, including an exploration of accuracy-performance trade-offs. 
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Preface vii

• Chapter 6 provides a comprehensive survey of embedded ML systems for 
enabling smart and sustainable healthcare applications.

• Chapter 7 proposes a middleware framework that uses reinforcement learning 
to decide if the processing should be performed in local or offload processing 
mode. 

Part II – Cyber-Physical Applications: The second part of the Volume 3 of this 
book presents examples of cyber-physical applications that benefit from embedded 
ML systems.

• Chapter 8 discusses an adaptive context-aware anomaly detection method for 
fog computing by employing Long-Short Term Memory (LSTM)-based NNs 
and Gaussian estimator.

• Chapter 9 explores different ML algorithms to perform various tasks in 
Autonomous Cyber-Physical Systems, such as robotic vision and robotic 
planning.

• Chapter 10 presents a framework for efficient ML-based perception with 
Advanced Driver Assistance Systems (ADAS) for automotive cyber-physical 
systems.

• Chapter 11 describes a DL-based anomaly detection framework in automotive 
cyber-physical systems by utilizing a Gated Recurrent Unit (GRU)-based 
recurrent autoencoder network.

• Chapter 12 discusses an embedded system architecture for infrastructure 
inspection using UAVs based on ML algorithms. 

Part III – Security, Privacy, and Robustness of Embedded ML: Embedded ML 
systems should be trustworthy to produce correct outputs without any privacy leaks. 
Otherwise, their processing may lead to wrong outputs, undesired behavior, and 
data leakage. To address this, the third part of the Volume 3 of this book presents 
techniques for mitigating security and privacy threats, and improving the robustness 
of embedded ML systems.

• Chapter 13 discusses the vulnerability of deep reinforcement learning against 
backdoor attacks in autonomous vehicles.

• Chapter 14 analyzes the vulnerability of a CNN-based indoor localization on 
embedded devices against access point attacks, then proposes a methodology 
for mitigating the attacks.

• Chapter 15 studies the impact of noise in the data input on the DNN accuracy, 
then provides a suitable framework for analyzing the impact of noise on DNN 
properties.

• Chapter 16 proposes techniques for mitigating backdoor attacks on DNNs by 
employing two off-line novelty detection models to collect samples that are 
potentially poisoned.

• Chapter 17 highlights the robustness of DNN acceleration on analog crossbar-
based IMC against adversarial attacks and discusses energy-efficient attack 
mitigation techniques.
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• Chapter 18 provides an overview of adversarial attacks and security threats on 
ML algorithms for edge computing, including DNNs, CapsNets, and SNNs.

• Chapter 19 investigates different challenges for achieving trustworthy embed-
ded ML systems, including robustness to errors, security against attacks, and 
privacy protection.

• Chapter 20 presents a systematic evaluation of backdoor attacks on DL-based 
systems in various scenarios, such as image, sound, text, and graph analytics 
domains.

• Chapter 21 discusses different error-resilience characteristics of DNN models 
and leverages these intrinsic characteristics for mitigating reliability threats in 
DL-based systems. 

We hope this book provides a comprehensive review and useful information on the 
recent advances in embedded machine learning for cyber-physical, IoT, and edge 
computing applications. 

Fort Collins, CO, USA Sudeep Pasricha 
Abu Dhabi, UAE Muhammad Shafique 
September 1, 2023
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Convolutional Neural Networks for 
Efficient Indoor Navigation 
with Smartphones 

Saideep Tiku, Ayush Mittal, and Sudeep Pasricha 

1 Introduction 

Contemporary outdoor location-based services have transformed how people nav-
igate, travel, and interact with their surroundings. Emerging indoor localization 
techniques have the potential to extend this outdoor experience across indoor 
locales. Beyond academics, many privately funded providers in the industry are 
focusing on indoor location-based services to improve customer experience. For 
instance, Google can suggest products to its users through targeted indoor location-
based advertisements [1]. Stores such as Target in the United States are beginning to 
provide indoor localization solutions to help customers locate products in a store and 
find their way to these products [2]. Services provided by these companies combine 
GPS, cell towers, and Wi-Fi data to estimate the user’s location. Unfortunately, 
in the indoor environment where GPS signals cannot penetrate building walls, the 
accuracy of these geo-location services can be in the range of tens of meters, which 
is insufficient in many cases [3]. 

Radio signals such as Bluetooth, ultra-wideband (UWB) [4], and radio frequency 
identification (RFID) [5, 6] are commonly employed for the purpose of indoor 
localization. The key idea is to use qualitative characteristics of radio signals (e.g., 
signal strength or triangulation) to estimate user location relative to a radio beacon 
(wireless access point). These approaches suffer from multipath effects, signal 
attenuation, and noise-induced interference [8]. Also, as these techniques require 
specialized wireless radio beacons to be installed in indoor locales, they are costly 
and thus lack scalability for wide-scale deployment. 

S. Tiku (�) · A. Mittal · S. Pasricha 
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, 
USA 
e-mail: saideep@colostate.edu; sudeep@colostate.edu 
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4 S. Tiku et al.

Wi-Fi-based fingerprinting is perhaps the most popular radio-signal-based indoor 
localization technique being explored today. Wi-Fi is an ideal radio signal source for 
indoor localization as most public or private buildings are pre-equipped with Wi-
Fi access points (APs). Lightweight middleware-based fingerprinting frameworks 
have been shown to run in the background to deliver location-based updates on 
smartphones [29, 37]. Fingerprinting with Wi-Fi works by first recording the 
strength of Wi-Fi radio signals in an indoor environment at different locations. Then, 
a user with a smartphone can capture Wi-Fi received signal strength indication 
(RSSI) data in real-time and compare it to previously recorded (stored) values to 
estimate their location in that environment. Fingerprinting techniques can deliver 
an accuracy of 6–8 m [28], with accuracy improving as the density of APs 
increases. However, in many indoor environments, noise and interference in the 
wireless spectrum (e.g., due to other electronic equipment, movement of people, 
and operating machinery) can reduce this accuracy. Combining fingerprinting-based 
frameworks with dead reckoning can improve this accuracy somewhat [8]. Dead 
reckoning refers to a class of techniques where inertial sensor data (e.g., from 
accelerometer and gyroscope) is used along with the previously known position 
data to determine the current location. Unfortunately, dead reckoning is infamously 
known to suffer from error accumulation (in inertial sensors) over time. Also, these 
techniques are not effective for people using wheelchairs or moving walkways. 

The intelligent application of machine learning (ML) techniques can help to 
overcome noise and uncertainty during fingerprinting-based localization [8]. While 
traditional ML techniques work well at approximating simpler input–output func-
tions, computationally intensive deep learning models are capable of dealing with 
more complex input–output mappings and can deliver better accuracy. Middleware-
based offloading [30] and energy enhancement frameworks [31, 32, 37] may be a 
route to explore for computation and energy-intensive indoor localization services 
on smartphones. Furthermore, with the increase in the available computational 
power on mobile devices, it is now possible to deploy deep learning techniques 
such as convolutional neural networks (CNNs) on smartphones. 

These are a special form of deep neural networks (DNNs) that are purposely 
designed to for image-based input data. CNNs are well known to automatically 
identify high-level features in the input images that have the heaviest impact 
on the final output. This process is known as feature learning. Prior to deep 
learning, feature learning was an expensive and time-intensive process that had 
to be conducted manually. CNN has been extremely successful in complex image 
classification problems and is finding applications in many emerging domains, e.g., 
self-driving cars [27]. 

In this chapter, we discuss an efficient framework that uses CNN-based Wi-
Fi fingerprinting to deliver a superior level of indoor localization accuracy to a 
user with a smartphone. Our approach utilizes widely available Wi-Fi APs without 
requiring any customized/expensive infrastructure deployments. The framework 
works on a user’s smartphone, within the computational capabilities of the device, 
and utilizes the radio interfaces for efficient fingerprinting-based localization. The 
main novel contributions of this chapter can be summarized as follows:
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• We discuss a newly developed technique to extract images out of location 
fingerprints, which are then used to train a CNN that is designed to improve indoor 
localization robustness and accuracy. 

• We implemented a hierarchical architecture to scale the CNN, so that our 
framework can be used in the real world where buildings can have large numbers 
of floors and corridors. 

• We performed extensive testing of our algorithms with the state of the art across 
different buildings and indoor paths, to demonstrate the effectiveness of our 
proposed framework. 

2 Related Works 

Various efforts have been made to overcome the limitations associated with indoor 
localization. In this section, we summarize a few crucial efforts toward the same. 

Numerous RFID-based [5, 6] indoor localization solutions that use proximity-
based estimation techniques have been proposed. But the hardware expenses of 
these efforts increase dramatically with increasing accuracy requirements. Also, 
these approaches cannot be used with smartphones and require the use of specialized 
hardware. Indoor localization systems that use UWB [4] and ultrasound [10] have  
similar requirements for additional (costly) infrastructure and a lack of compatibility 
for use with commodity smartphones. 

Triangulation-based methods, such as [11], use multiple antennas to locate 
a person or object. But these techniques require several antennas and regular 
upkeep of the associated hardware. Most techniques therefore favor using the more 
lightweight fingerprinting approach, often with Wi-Fi signals. UJIIndoorLoc [7] 
describes a technique to create a Wi-Fi fingerprint database and employs a k-nearest 
neighbor (KNN)-based model to predict location. Their average accuracy using 
KNN is 7.9 m. Given the current position (using fingerprinting) of a user walking in 
the indoor environment, pedestrian dead reckoning can be used to track the user’s 
movement using a combination of microelectromechanical systems (MEMs)-based 
motion sensors ubiquitously found within contemporary smartphones and other 
wearable electronics. Dead reckoning techniques use the accelerometer to estimate 
the number of steps, a gyroscope for orientation, and a magnetometer to determine 
the heading direction. Such techniques have been employed in [12, 26] but have 
shown to deliver poor localization accuracy results when used alone. 

Radar [12] and IndoorAtlas [26] proposed using hybrid indoor localization 
techniques. Radar [12] combines inertial sensors (dead reckoning) with Wi-Fi signal 
propagation models, whereas Indoor Atlas [26] combines information from several 
sensors such as magnetic, inertial, and camera sensors, for localization. LearnLoc 
[8] shallow feed-forward neural network models, dead reckoning techniques, and 
Wi-Fi fingerprinting to trade-off indoor localization accuracy and energy efficiency 
during localization on smartphones. Similar to LearnLoc, more recent works focus 
on optimizing and adapting light-weight machine learning techniques for the
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purpose of fingerprinting-based indoor localization [28, 34–36]. However, all such 
techniques are limited by their ability to identify and match complex pattern within 
RSSI fingerprints. Additionally, a considerable amount of effort needs to be placed 
into the preprocessing, feature selection, and the tuning of the underlying model. 
Given these challenges, there is need of robust methodologies and algorithms for 
the purpose of fingerprinting-based indoor localization. 

A few efforts have started to consider deep learning to assist with indoor 
localization. The work in [13] presents an approach that uses DNNs with Wi-Fi 
fingerprinting. The accuracy of the DNN is improved by using a hidden Markov 
model (HMM). The HMM takes temporal coherence into account and maintains 
a smooth transition between adjacent locations. But our analysis shows that the 
fine location prediction with the HMM fails in cases such as when moving back 
on the same path or taking a sharp turn. HMM predictions are also based on 
the previous position acquired through the DNN and, hence, can be prone to 
error accumulation. DeepFi [14] and ConFi [15] propose approaches that use the 
channel state information (CSI) of Wi-Fi signals to create fingerprints. But the 
CSI information in these approaches was obtained through the use of specialized 
hardware attached to a laptop. None of the mobile devices available today have the 
ability to capture CSI data. Due to this limitation, it is not feasible to implement 
these techniques on smartphones. Deep belief networks (DBNs) [16] have also been 
used for indoor localization, but the technology is based on custom UWB beacons 
that lead to very high implementation cost. 

In summary, most works discussed so far either have specialized hardware 
requirements or are not designed to work on smartphones. Also, our real-world 
implementation and analysis concluded that the abovementioned frameworks slow 
down as they become resource intensive when being scaled to cover large buildings 
with multiple floors and corridors. 

The framework discussed in this chapter, CNNLOC, overcomes the shortcomings 
of these state-of-the-art indoor localization approaches and was first presented 
in [33]. CNNLOC creates input images by using RSSI of Wi-Fi signals that are 
then used to train a CNN model, without requiring any specialized hardware/in-
frastructure. CNNLOC is easily deployable on current smartphones. The proposed 
framework also integrates a hierarchical scheme to enable scalability for large 
buildings with multiple floors and corridors/aisles. 

3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are specialized form of neural networks 
(NNs) that are designed for the explicit purpose of image classification [9]. They are 
highly resilient to noise in the input data and have shown to deliver excellent results 
for complex image classification tasks. The smallest unit of any neural network is
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a perceptron and is inspired by the biological neuron present in the human brain. A 
perceptron is defined by the following equation: 

y = 
n∑

i=1 

wixi + w0 (1) 

Here, y is the output, which is a weighted sum of the inputs xi, with a bias (w0). 
NNs have interconnected layers, and in each layer, there are several perceptrons, 
each with its own tunable weights and biases. Each layer receives some input, 
executes a dot product, and passes it to the output layer or the hidden layer in front 
of it [17]. An activation function is applied to the output y, limiting the range of 
values that it can take and establishes an input–output mapping defined by logistic 
regression. The most common activation functions used are sigmoid and tanh 
functions. The goal of an NN is to approximate a functional relationship between 
a set of inputs and outputs (training phase). The resulting NN then represents the 
approximated function that is used to make predictions for any given input (testing 
phase). 

While an NN often contains a small number of hidden layers sandwiched 
between the input and output layer, a deep neural network (DNN) has a very large 
number of hidden layers. DNNs have a much higher computational complexity 
but in turn are also able to deliver very high accuracy. CNNs are a type of DNN 
that include several specialized NN layers, where each layer may serve a unique 
function. CNN classifiers are used to map input data to a finite set of output 
classes. For instance, given different animal pictures, a CNN model can be trained 
to categorize them into different classes such as cats and dogs. CNNs also make use 
of rectified linear units (ReLUs) as their activation function, which allows them to 
handle nonlinearity in the data. 

In the training phase, our CNN model uses a stochastic gradient descent (SGD) 
algorithm. Adam [18] is an optimized variant of SGD and is used to optimize the 
learning process. The algorithm is designed to take advantage of two well-known 
techniques: RMSprop [19] and AdaGrad [20]. SGD maintains a constant learning 
rate for every weight update in the network. In contrast, Adam employs an adaptive 
learning rate for each network weight, with the learning rate being adapted as the 
training progresses. RMSprop uses the mean (first-order moment) of past-squared 
gradients and adjusts the weights based on how fast the gradient changes. Adam, 
to optimize the process, uses the variance (second-order moment) of past gradients 
and adjusts the weights accordingly. 

The structure of the CNN in CNNLOC is inspired from the well-known CNN 
architectures, LeNet [21] and AlexNet [22]. Our CNN architecture is shown in Fig. 
1. For the initial set of layers, our model has 2-D convolutional layer, followed by 
dense layers and culminates in an output layer. The 2-D convolutional layer works 
by convolving a specific region of the input image at a time. This region is known as 
a filter. The filter is shown by a rectangle (red-dotted lines). Each layer performs a 
convolution of a small region of the input image with the filter and feeds the result to
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Fig. 1 CNN architecture 

the ReLu activation function. Therefore, we refer to each layer as [Conv2D-ReLu]. 
To capture more details from the input image we can use a larger number of filters. 
For each filter, we get a feature map. For the first layer of [Conv2D-ReLU], we used 
32 filters to create a set of 32 feature maps. We used five hidden layers of [Conv2D-
ReLU], but only two are shown for brevity. The number of filters and layers is 
derived through empirical analysis as discussed in Sect. 4.4. A “stride” parameter 
determines the quantity of pixels that a filter will shift, to arrive at a new region of 
the input image to process. The stride and other “hyperparameters” of our CNN are 
further discussed in Sect. 4.4. In the end, a fully connected layer helps in identifying 
the individual class scores (in our case each class is a unique location). The class 
with the highest score is selected as the output. In this layer, all the neurons are 
connected to the neurons in the previous layer (green-dotted lines). 

In a conventional CNN, a pooling layer is used to down-sample the image when 
the size of the input image is too big. In our case, the input image is small, and 
therefore, we do not need this step. We want our CNN to learn all the features from 
the entire image. 

4 CNNLOC Framework: Overview 

4.1 Overview 

An overview of our CNNLOC indoor localization framework is shown in Fig. 
2. In the framework, we utilize the available Wi-Fi access points (APs) in an 
indoor environment to create an RSSI fingerprint database. Our framework is 
divided into two phases. The first phase involves RSSI data collection, cleaning, 
and preprocessing. This preprocessed data is used to create a database of images. 
Each image represents a Wi-Fi RSSI-based signature that is unique to a location 
label. Each location label is further associated with an x-y coordinate. This database 
of images is used to train a CNN model. The trained model is deployed on to a 
smartphone. In the second phase, or the online phase, real-time AP data is converted
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into an image and then fed to the trained CNN model to predict the location of 
the user. The CNN model predicts the closest block that was sampled as the users’ 
location. A detailed description of the preprocessing is described in the next section. 

4.2 Preprocessing of RSSI Data 

The process of image database creation begins with the collection of RSSI finger-
prints as shown in the top half of Fig. 2. The RSSI for various APs are captured along 
with the corresponding location labels and x-y coordinates. Each AP is uniquely 
identified using its unique media access control (MAC) address. We only maintain 
information for known Wi-Fi APs and hence clean the captured data. This ensures 
that our trained model is not polluted by unstable Wi-Fi APs. On the RSSI scale, 
values typically range between −99 dB (lowest) and − 0 dB (highest). To indicate 
that a specific AP is unreachable, −100 is used, or no signal is received from it. We 
normalize the RSSI values on a scale from 0 and 1, where 0 represents no signal and 
represents the strongest signal. 

Assume that while fingerprinting an indoor location, a total of K APs are 
discovered at N unique locations. These combine to form a two-dimensional matrix 
of size N × K. Then, the normalized RSSI fingerprint at the Nth location, denoted 
as lN , is given by a row vector [r1, r2, . . . , rK], denoted by RN . Therefore, each 
column vector, [w1, w2, . . . , wN] would represent the normalized RSSI values of 
the Kth AP at all N locations, denoted by WK . We calculate the Pearson correlation 
coefficient (PCC) [23] between each column vector WK and the location vector 
[l1, l2, . . . , lN]. The result is a vector of correlation values denoted as C. PCC  is  
useful in identifying the most significant APs in the database that impact localization 

Fig. 2 An overview of the CNNLOC framework
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accuracy. The coefficient values range across a scale of −1 to  +1. If the relationship 
is −1, it represents a strong negative relationship, whereas +1 represents a strong 
positive relationship, and 0 implies that the input and output have no relationship. 

We only consider the magnitude of the correlation as we are only concerned 
with the strength of the relationship. APs with very low correlation with the output 
coordinates are not useful for the purpose of indoor localization. Therefore, we can 
remove APs whose correlation to the output coordinates is below a certain threshold 
(|PCC| < 0.3). This removes inconsequential APs from the collected Wi-Fi data 
and helps reduce the computational workload of the framework. The normalized 
RSSI data from the remaining high-correlation APs is used to create an RSSI image 
database, as explained in the next section. 

4.3 RSSI Image Database 

In this section, we present our approach to convert RSSI data for a given location 
into a gray scale image. A collection of these images for all fingerprinted locations 
forms the RSSI image database. To form gray scale images, a Hadamard product 
(HP) [24] is calculated for each R and C. HP is defined as an element wise 
multiplication of two arrays or vectors: 

HP = 
N∑

i=1 

Ri ◦ C (2) 

The dimension of each HP is 1 × K. Then, the HP matrix is reshaped into a p × p 
matrix, which represents a 2-D image as shown in Fig. 3. The HP is padded with 
zeros in the case that K is less than p2. Therefore, we now have a set of N images of 
size p × p in our database. These images are used to train the CNNs. 

Figure 3 shows two images of size 8 × 8 created for two unique fingerprints 
(signatures) associated with two different locations. Each pixel value is scaled on a 
scale of 0–1. The patterns in each of these images will be unique to a location and 
change slightly as we move along an indoor path. 

In Eq. (2), the product of PCC and normalized RSSI value for each AP is used 
to form a matrix. Its purpose is to promote the impact of the APs that are highly 
correlated to fingerprinted locations. Even though there may be attenuation of Wi-Fi 
signals due to multipath fading effects, the image may fade but will likely still have 
the pattern information retained. These patterns that are unique to every location 
can be easily learned by a CNN. The hyperparameters and their use in CNNLOC are 
discussed next.
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Fig. 3 Snapshot of CNNLOC’s offline phase application showing contrasting the images created 
for two unique locations. The green icons represent locations that are fingerprinted along an indoor 
path. The two locations shown are 10 m apart 

4.4 Hyperparameters 

The accuracy of the CNN model depends on the optimization of the hyperpa-
rameters that control its architecture, which is the most important factor in the
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performance of CNN. A smaller network may not perform well, and a larger 
network may be slow and prone to overfitting. There are no defined rules in deep 
learning that help in estimating the appropriate hyperparameters and therefore need 
to be empirically found through an iterative process. The estimated hyperparameters 
are also highly dependent on the input dataset. For the sake of repeatability, we 
discuss some the key hyperparameters of our CNN model below: 

• Number of hidden layers: A large number of hidden layers lead to longer execution 
times and conversely, fewer hidden layers may produce inaccurate results due to 
the challenges associated with vanishing gradients. We found that five layers of 
[Conv2D-ReLU] worked best for our purposes. 

• Size of filter: This defines the image area that the filter considers at a time, before 
moving to the next region of the image. A large filter size might aggregate a large 
chunk of information in one pass. The optimum filter size in our case was found 
to be 2 × 2. 

• Stride size: The number of pixels a filter moves by is dictated by the stride size. 
We set it to 1 because the size of our image is very small, and we do not wish to 
lose any information. 

• Number of filters: Each filter extracts a distinct set of features from the input to 
construct different feature maps. Each feature map holds unique information about 
the input image. The best results were obtained if we started with a lower number 
of filters and increased them in the successive layers to capture greater uniqueness 
in the patterns. There were 32 filters in the first layer and were doubled for each 
subsequent layer up to 256 filters such that both the fourth and fifth layer had 256 
filters. 

4.5 Integrating Hierarchy for Scalability 

We architect our CNNLOC framework to scale up to larger problem sizes than 
that handled by most prior efforts. Toward this, we enhanced our framework by 
integrating a hierarchical classifier. The resulting hierarchical classifier employs a 
combination of smaller CNN modules, which work together to deliver a location 
prediction. Figure 4 shows the hierarchical classification structure of the framework. 
Each CNN model has a label that starts with C. The C1 model classifies the floor 
numbers, and then in the next layer, C20 or C21 identifies the corridor on that floor. 
Once the corridor is located, one of the CNNs from the third layer (C30–C35) will 
predict the fine-grain location of the user. This hierarchical approach can further be 
extended across buildings.
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Fig. 4 A general architecture for the hierarchical classifier 

Table 1 Indoor paths used in 
experiments 

Path name Length (m) Shape 

Library 30 U shape 
Clark A 35 Semi-octagonal 
Physics 28 Square shape 

5 Experiments 

5.1 Experimental Setup 

The following sections describe the CNNLOC implementation and experimental 
results that were conducted on three independent indoor paths as described in Table 
1. The overall floor plan of the path is divided into a grid and tiles of interest are 
labeled sequentially from 1 to N. For the purposes of this work, each square in 
the grid has an area of 1 m2. Based on our analysis (not presented here), having 
grid tiles of size smaller than 1 m2 did not lead to any improvements. Each of 
these labeled tiles is then treated as a “class.” This allows us to formulate indoor 
localization as a classification problem. Figure 5 shows an example of a path covered 
in the library building floor plan with labeled squares. Each label further translates 
into an x-y coordinate. Five Wi-Fi scans were conducted at each square during the 
fingerprinting (training) phase. 

5.2 Smartphone Implementation 

An android application was built to collect Wi-Fi fingerprints (i.e., RSSI samples 
from multiple APs at each location) and for testing. The application is compatible 
with Android 6.0 and was tested on a Samsung Galaxy S6. After fingerprint data 
collection, the data was preprocessed as described in the previous section for the 
CNN model. The entire dataset is split into training and testing samples, so we can
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Fig. 5 Library building path divided into a grid, with squares along the path labeled sequentially 
from 1 to 30 

check how well our models perform. We used one-fifth of the total samples for 
testing, and four-fifth of the samples were used for training. 

5.3 Experimental Results 

We compared our CNNLOC indoor localization framework with three other indoor 
localization frameworks from prior work. The first work we implemented is based 
on the approach in [25] and employs support vector regression (SVR). The approach 
forms one or more hyperplanes in a multidimensional space segregating similar data 
point, which are then used for regression. The second work is based on the KNN 
technique from [8], which is a nonparametric approach that is based on the idea 
that similar input will have similar outputs. Lastly, we compare our work against a 
DNN based approach [13] that improves upon conventional NNs by incorporating 
a large number of hidden layers. All of these techniques supplement the Wi-
Fi fingerprinting approach with a machine learning model to provide robustness 
against noise and interference effects. Our experiments in the rest of this section first 
discuss the localization accuracy results for the techniques. Subsequently, we also 
discuss results for the scalability of our framework using a hierarchical classification 
enhancement approach. Lastly, we contrast the accuracy of our framework with that 
reported by other indoor localization techniques.
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Fig. 6 Path traced using different techniques at the Clark building path. Green and red traces 
indicate actual and predicted paths respectively 

5.3.1 Indoor Localization Accuracy Comparison 

The overall indoor localization quality as experienced by a user is heavily impacted 
by the stability of the predicted path that is traced over an indoor localization 
session. In an attempt to evaluate this, we compare the paths traced by various indoor 
localization frameworks as compared with the proposed CNNLOC framework. 
Figure 6 shows the paths predicted by the four techniques, for the indoor path in 
the Clark building. The green dots along the path represent the points where Wi-Fi 
RSSI fingerprint samples were collected to create the training fingerprint dataset. 
The distance between each of the green dots is 1 m. In the offline phase, the RSSI 
fingerprint at each green dot is converted into an image. The online phase consists 
of the user walking along this path, and the red lines in Fig. 6 represent the paths 
predicted by the four techniques. It is observed that KNN [8] and SVR [25] stray  
off the actual path the most, whereas DNN and CNNLOC perform much better. 
This is likely because KNN and SVR are both regression-based techniques where
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Fig. 7 Comparison of indoor localization techniques 

the prediction is impacted by neighboring data points in the RSSI Euclidean space. 
Two locations that have RSSI fingerprints that are very close to each other in the 
Euclidian space might not be close to each other on the actual floor plan. This leads 
to large localization errors, especially when utilizing regression-based approaches. 
The transition from one location to another is smoother for CNN as it is able to 
distinguish between closely spaced sampling locations due to our RSSI-to-image 
conversion technique. The convolutional model is able to identify patterns within 
individual RSSI images and classify them as locations. From Fig. 6, it is evident 
that our CNNLOC framework produces stable predictions for the Clark path. 

Figure 7 shows a bar graph that summarizes the average location estimation 
error in meters for the various frameworks on the three different indoor floor 
plans considered. We found that the KNN approach is the least reliable among all 
techniques with a mean error of 5.5 m and large variations across the paths. The 
SVR-based approach has a similar mean error as the KNN approach. The DNN-
based approach shows lower error across all of the paths. But it does not perform 
consistently across all of the paths, and the mean error is always higher than that for 
CNNLOC. This may be due to the fact that the filters in CNN are set up to focus on 
the image with a much finer granularity than the DNN approach is capable of. We 
also observe that all techniques perform the worst in the Physics department. This 
is due to the fact that the path in the Physics department is near the entrance of the 
building and has a lower density of Wi-Fi APs as compared with the other paths. The 
Library and Clark paths have a higher density of Wi-Fi APs present; hence, better 
accuracy can be achieved. Our proposed CNNLOC framework is the most reliable 
framework with the lowest mean error of less than 2 m.
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5.3.2 CNNLOC Scalability Analysis 

The size and complexity of a deep learning model is directly correlated to number 
of classes and associated dataset in use. The baseline formulation of our proposed 
framework does not account for the increasing area of floor plan that needs to be 
covered. To overcome this, we proposed a hierarchal approach for CNNLOC (Sect. 
4.5). We consider a scenario when CNNLOC is required to predict a location inside 
a building with two floors and with three corridors on each floor. The length of each 
corridor is approximately 30 m. We combined several small CNNs (in our case 9 
small CNNs), such that a smaller number of weights are associated with each layer 
in the network than if a single larger CNN was used. 

We first evaluated the accuracy of predictions, for CNNLOC with and without 
the hierarchical classifier. For the first and second layer of the hierarchical classifier 
(shown in Fig. 4), the accuracy is determined by the number of times the system 
predicts the correct floor and corridor. We found that floors and corridors were 
accurately predicted 99.67% and 98.36% of times, respectively. For the final 
layer, we found that there was no difference in accuracy between the hierarchal 
approach and the nonhierarchical approach. This is because in the last level, both 
the approaches use the same model. 

Figure 8 shows the benefits in terms of time taken to generate a prediction with 
the hierarchical versus the nonhierarchical CNNLOC framework. We performed 
our experiment for four walking scenarios (“runs”) in the indoor environment 
(building with two floors and with three corridors on each floor). We found that the 
hierarchical CNNLOC model only takes 2.42 ms to make a prediction on average, 
whereas the nonhierarchical CNNLOC takes longer (3.4 ms). Thus, the proposed 
hierarchical classifier represents a promising approach to reduce prediction time 
due to the fewer number of weights in the CNN layers in the hierarchical approach, 
which leads to fewer computations in real time. 

5.3.3 Accuracy Analysis with Other Approaches 

Our experimental results in the previous sections have shown that CNNLOC 
delivers better localization accuracy over the KNN [8], DNN [13], and SVR [25] 
frameworks. The UJIIndoorLoc [7] framework is reported to have an accuracy 
of 4–7m. Our average accuracy is also almost twice that of RADAR [12]. If we 
consider frameworks that used CSI (DeepFi [14] and ConFi [15]), our accuracy 
is very close to both at just under 2 m. However, [14, 15] use special equipment 
to capture CSI and cannot be used with mobile devices. In contrast, our proposed 
CNNLOC framework is easy to deploy on today’s smartphones, does not require 
any specialized infrastructure (e.g., custom beacons), and can be used in buildings 
wherever Wi-Fi infrastructure preexists.
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Fig. 8 A comparison of execution times for hierarchical and nonhierarchical versions the 
CNNLOC framework 

6 Conclusion 

In this chapter, we discuss the CNNLOC framework [33] that uses Wi-Fi fin-
gerprints and convolutional neural networks (CNNs) for accurate and robust 
indoor localization. We compared our work against three different state-of-the-art 
indoor localization frameworks from prior work. Our framework outperforms these 
approaches and delivers localization accuracy under 2 m. CNNLOC has the advan-
tage of being easily implemented without the overhead of expensive infrastructure 
and is smartphone compatible. We also demonstrated how a hierarchical classifier 
can improve the scalability of this framework. CNNLOC represents a promising 
framework that can deliver reliable and accurate indoor localization for smartphone 
users. 
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An End-to-End Embedded Neural 
Architecture Search and Model 
Compression Framework for Healthcare 
Applications and Use-Cases 

Bharath Srinivas Prabakaran and Muhammad Shafique 

1 Introduction 

As discussed in chapter “Massively Parallel Neural Processing Array (MPNA): 
A CNN Accelerator for Embedded Systems”, deep learning has revolutionized 
domains worldwide by improving machine understanding and has been used to 
develop state-of-the-art techniques in fields like computer vision [15], speech 
recognition and natural language processing [21], healthcare [9], medicine [49], 
bioinformatics [20], etc. These developments are primarily driven by the rising 
computational capabilities of modern processing platforms and the availability 
of massive new annotated datasets that enable the model to learn the necessary 
information. Fields like medicine and healthcare generate massive amounts of data, 
in the order of hundreds of exabytes is the USA alone, which can be leveraged 
by deep learning technologies to significantly improve a user’s quality of life and 
obtain substantial benefits. Furthermore, healthcare is one of the largest revenue-
generating industries in the world, requiring contributions upward of .10% of the 
country’s Gross Domestic Product (GDP) annually [4]. Countries like the United 
States routinely spend up to .17.8% of their GDP on healthcare [35]. The global 
health industry is expected to generate over .$10 trillion revenue, annually by 2022, 
which is a highly conservative estimate as it does not consider the increasing global 
elderly population percentages [47]. The rising global average life expectancy 
is another byproduct of the substantial technological advancements in medicine 
and healthcare [34]. The Internet of Things (IoT) phenomenon serves as an ideal 
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Personalized 
Health-CARE 

Estimated Economic Impact of IoT Applications by 2025 
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Fig. 1 Breakdown of the estimated economic impact of Internet of Things applications by 2025; 
an overview of the human bio-signals that can be monitored and analyzed for patient-specific care 

opportunity that can be exploited by investigating its applicability in the healthcare 
sector to offer more efficient and user-friendly services that can be used to improve 
quality of life. The Internet of Medical Things (IoMT) market is expected to grow 
exponentially to achieve an annual economic impact of .$1.1–$2.5 trillion by 2025, 
which constitutes .41% of the impact of the complete IoT sector [29]. This includes 
applications like personalized health monitoring, disease diagnostics, patient care, 
and physiological signal, or bio-signal, monitoring, and analytics to recommend 
person-specific lifestyle changes or health recommendations [2, 19], especially 
by investing heavily in the capabilities and advancements of deep learning. A 
breakdown of the estimated economic impact of IoT applications by the year 2025 
and an overview of human bio-signals, which can be monitored and analyzed, are 
presented in Fig. 1. 

An overview of a few healthcare use-cases and applications is discussed next, 
before moving on to the framework that can be used for exploring the deep 
learning models that can be deployed for a given use-case, given its output quality 
requirements and hardware constraints of the target execution platform. 

1.1 Deep Learning in Healthcare: Potential Use-Cases and 
Applications 

Medical Imaging Deep learning has been largely investigated as a solution to 
address research challenges in the computer vision and imaging domains due to 
the availability of massive labeled and annotated datasets. Therefore, the primary 
healthcare domain suitable for investigating the applicability of deep learning 
would be medical imaging. Since various technologies like X-Rays, CT (Computed 
Tomography) and MRI (Magnetic Resonance Imaging) scans, ultrasound, etc. are 
regularly used by clinicians and doctors to help patients, deep learning can be highly
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beneficial in such scenarios where they can be deployed as clinical assistants that 
can aid in diagnostics and radiology. 

Electronic Health Record Analysis Electronic Health Record (EHR) is a col-
lection of health data related to a patient across time, including their medical 
history, current and past medications, allergies, immunization information, lab test 
results, radiology imaging studies, age, weight, etc. These EHRs, from several 
patients, are combined into a large pool, based on their demographics, to mine and 
extract relevant information that can be used to devise new treatment strategies and 
improve the health status of the patients. Deep learning techniques have successfully 
demonstrated the ability to combine all this information to extract vital health 
statistics, including the ability to predict a patient’s mortality. 

Drug Discovery The processing capabilities of deep learning models can also 
be leveraged on massive genomic, clinical, and population-level data to identify 
potential drugs or compounds that can, “by-design,” explore associations with 
existing cell signaling pathways, pharmaceutical and environmental interactions, 
to identify cures for known health problems. For instance, the protein folding 
problem, which had fazed the community for more than five decades, was recently 
solved by the AlphaFold deep learning model, proposed by researchers from 
Google [20]. This enables researchers to predict the structure of a protein complex, 
at atomic granularity, using just its amino acid composition, which can further 
enable scientists to identify compounds that can prevent the formation of lethal 
proteins in hereditary medical conditions like Alzheimer’s or Parkinson’s. 

Precision Medicine Genomic analysis, in combination with drug discovery 
approaches, might be the key to develop the next generation of precise targeted 
medical treatments, which improve the user’s quality of life. Understanding the 
genetic capability of the underlying condition, such as the type of cancer, its ability 
to reproduce, and the way it propagates, can enable scientists to better develop user-
specific treatment options. However, processing such large amounts of data can take 
anywhere from weeks to months, which can be circumvent by deep learning models 
to the order of hours, enabling such explorations. 

Similarly, there are plenty of other healthcare applications, like real-time moni-
toring and processing of bio-signals, sleep apnea detection, detecting gait patterns, 
genomic analysis, artificial intelligence-based chatbots and health assistants, and 
many more, that can benefit by investigating the applicability of deep learning in 
these use-cases (Table 1). We delve into the field of deep learning for healthcare, 

Table 1 A summary of key state-of-the-art techniques in deep learning for healthcare 

Deep learning in healthcare References 

Medical imaging [1, 10, 15, 25, 27, 43] 

Electronic health record analysis [18, 39, 45, 46, 50] 

Drug discovery and precision medicine [7, 20, 24, 36, 38, 40, 42] 

Others [17, 23, 37]
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next, by presenting a comprehensive embedded neural architecture search and 
model compression framework for healthcare applications and illustrate the benefits 
by evaluating its efficacy on a bio-signal processing use-case. 

2 Embedded Neural Architecture Search and Model 
Compression Framework for Healthcare Applications 

Figure 2 illustrates an overview of the deep neural network (DNN) model search 
and compression framework for healthcare, which is composed of six key stages. 
The framework considers (1) the user specifications and quality requirements, such 
as the required prediction labels, output classes, expected accuracy or precision 
of the model and (2) the hardware constraints of the target execution platform, 
such as the available on-chip memory (MBs) and the maximum number of 
floating-point operations (FLOPs) that can be executed per second to construct 
the required dataset from the existing labeled annotations (more details provided 
in Sect. 2.3) and explore the design space of DNN models that can be useful for the 
application. 

2.1 User Specifications and Requirements 

The framework enables dynamic model exploration by restricting the output classes 
of the DNN, based on the user requirements; besides the normal and anomalous 
classes, the user might require an output class specific to the target use-case. 
For instance, a hospital might require the model to classify X-Rays or CT scans 
to explicitly detect cases of lung infection caused by the novel SARS-CoV-2 
coronavirus as a separate classification. These instances can be included by the 
framework to generate and explore DNN models specific to this case, given that the 
corresponding annotated data is already present in the dataset used for construction. 

The framework currently considers four metrics for evaluating the quality of a 
model (Q), namely, Accuracy (A), Precision (P ), Recall (R), and F1-score (F ). 
Accuracy of a model is defined as the ratio of correct classifications with respect 
to the total number of classifications, Precision signifies the percentage of classified 
items that are relevant, Recall is defined as the percentage of relevant items that 
are classified correctly, and F1-score is used to evaluate the Recall and Precision 
of a model by estimating their harmonic mean. The system designer can specify 
a constraint in the framework using any of the abovementioned metrics, while 
exploring the DNN models for the application to ensure that the models obtained 
after exploration satisfy the required quality constraint. Evaluation with other use-
case specific metrics is orthogonal to these standards and can be easily incorporated 
into the framework. These metrics are estimated as follows:
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. A = T P + T N

#Classif ications
, P = T P

T P + FP
,R = T P

T P + FN
,F = 2 ∗ P ∗ R

P + R

where T P  stands for the number of true positive predictions, whereas T N , FP , 
and FN  depict the number of true negative, the number of false positive, and the 
number of false negative predictions, respectively. 

2.2 Platform Constraints 

Similarly, to ensure that the explored networks do not require computational 
resources beyond those available on the target execution platform, a hardware 
constraint is implemented before the evaluation stage, which the user can define 
as per their requirements. Currently, the hardware constraints of the system can 
be specified by the system designer either in terms of the memory overhead 
(B), i.e., the maximum size of the model that can be accommodated on the 
platform, or the execution time in terms of the maximum number of floating-point 
operations that the platform can execute for a single inference (FP ). Like the quality 
metrics, incorporating other additional platform-specific hardware constraints are 
orthogonal to our current approach and can be an easily added functionality to the 
framework. Explicitly specifying hardware constraints requires the framework to 
identify models that offer the best quality under the given constraints, which enables 
the exploration of a trade-off between output quality and hardware requirements of 
the model, two metrics that typically maintain an inverse correlation. 

2.3 Dataset Construction 

To ensure that the model developed is application-driven, a custom dataset is 
constructed by fusing labels, in an existing healthcare dataset, in order to create 
the required output classes. Note that each label in the custom dataset needs to 
be correspond to one of the labels in the existing healthcare dataset, to ensure 
coherence. For instance, with respect to the COVID-19 classifier application 
discussed earlier, there could be varying diagnosis for the lung X-Rays or CT scans 
present in the dataset, including pneumonia, pleural effusion, cystic fibrosis, or lung 
cancer, which are ultimately labeled as “anomaly” in the constructed dataset, given 
the sole focus of the application is to just classify amongst normal, anomaly, and 
“COVID-19.” A similar methodology can be used to construct custom datasets for 
a given healthcare application, as discussed with the help of a use-case in Sect. 3.
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2.4 Deep Learning Model Generation 

With the necessary information regarding the user specifications, platform con-
straints, and the constructed dataset, we generate the set of possible DNN models 
(. ψ) by varying the key neural architecture parameters. Since our approach considers 
a relevant state-of-the-art model as a baseline, we extract the key architectural 
parameters from the baseline model and vary them to generate different models 
that can achieve (near) state-of-the-art accuracy with reduced hardware require-
ments. For instance, the use-case discussed in Sect. 3 explores three DNN model 
parameters, namely, (1) No. of Residual Network Blocks (#ResNet Blocks), (2) No. 
of Filters (#Filters), and (3) No. of LSTM Cells (#LSTM Cells), which can, 
theoretically, be any value in the .R+ domain, leading to an explosion of the designs 
that need to be explored under an unbounded design space. By considering the 
state-of-the-art model as the upper bound, we restrict the number of designs to be 
explored, thereby ensuring that the algorithm converges in finite time. Furthermore, 
since the exploration of the models is heavily dependent on the state of the art, any 
modifications to the block-level structure of the baseline model, including changes 
to the block, will affect the design space of the models (. ψ) to be explored. 

2.5 Deep Learning Model Training and Evaluation 

The DNN models generated earlier need to be trained and evaluated on the 
constructed dataset, individually, before their real-world deployment. However, 
since the training and evaluation of each individual DNN in the design space is 
a compute-intensive and time-consuming task, first, we need to reduce the number 
of models generated, which we ensure by constraining the hardware requirements of 
the model (as discussed earlier in Sect. 2.2), and second, we need to quickly explore 
the design space of DNNs, to reduce the overall duration of the task. Exploration 
of the design space, in our framework, can be conducted either exhaustively or 
selectively, as discussed below: 

(1) Exhaustive Exploration It requires each individual model of the design space 
to be trained and evaluated on the constructed dataset in order to determine the set 
of Pareto-optimal DNN models, which essentially trade off between output quality 
and hardware requirements. The hardware constraints imposed by the execution 
platform combined with the state-of-the-art imposed upper bound enable the 
framework to exhaustively explore the design space of DNN models in tens of GPU 
hours, as opposed to hundreds or thousands of hours in the case of unconstrained 
exploration. Therefore, when the complexity of the model, its parameter format, 
the number of weights and biases, and the variation in the hyper-parameters 
increase, it is recommended to selectively explore the design space to circumvent 
the exponential rise in design space models. Exhaustive exploration is primarily
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included as a functionality to illustrate the efficacy of the selective exploration 
technique that has been discussed next. 

(2) Selective Exploration It involves the effective selection, training, and evalua-
tion of a small subset of the models in . ψ in order to reduce the exploration time 
to a couple of GPU hours. Genetic algorithms utilize a cost function, which defines 
the optimization goal, to effectively obtain near-optimal solutions while reducing 
the exploration time for a wide range of real-world optimization problems [44]. 
The framework uses genetic algorithms that rely on the concepts of reproduction 
and evolution to select the models that need to be trained in each generation to 
create a new generation of models that have the potential to further optimize the cost 
function. The use of other meta-heuristic approaches to explore the design space is 
orthogonal to our use of genetic algorithms, which encompasses techniques like ant 
colony optimization [8] and simulated annealing [48], and can be incorporated into 
the framework, if essential. 

In the selective exploration process, we start with an initial population of 30 
random DNN models present in the design space, referred to as individuals, based 
on the recommendation of previous works [41] in order to obtain the best results. 
The genetic algorithms require the presence of a “chromosome,” which encodes 
all the key neural architecture parameters (“genes”) that can be varied to obtain 
the complete design space of DNN models. All the genes are stitched together to 
generate the chromosome string, which, when decoded, constructs a DNN model, 
or an individual, in the design space. Each individual is subsequently trained on 
the constructed dataset to evaluate its viability in terms of a fitness value, which 
enables it to compete with other individuals in the design space. The fitness value 
is estimated as the cost function when the decoded DNN model (M) exists in the 
design space (. ψ) or is considered to be a NULL value otherwise and is discarded 
from the search. Next, on the basis of their fitness values, two individuals are 
selected to pass on their genes to the next generation while undergoing the process 
of mutation and crossover, which are essential reproduction principles. We ensure an 
ordered .0.4 crossover probability for a mating parent pair with a random crossover 
location in the pair’s chromosomes. The next generation of the population, i.e., 
the offspring, has their parents’ chromosomes exchanged from the start until the 
crossover point and is considered for exploration based on their fitness value. 
The offspring also have a mutation probability of .0.11 to enable a bit-flip in the 
chromosome, thereby ensuring a diverse population and enabling a comprehensive 
exploration of DNN models. The experiments are run to determine a population 
of 30 individuals in each generation, based on their fitness values, to create 5 
consecutive iterations of offspring that can be trained and evaluated to determine 
the set of best-fit individuals (see Fig. 3). 

By default, the framework includes the ability to explore the design space using 
the following recognized genetic algorithms: NSGA-II [6], Roulette Wheel [11], 
Tournament Selection [31], and SPEA-2 [51]. Likewise, other algorithms and 
heuristics can be incorporated into the framework, as discussed earlier. The time 
complexity of each algorithm determines the order of execution time required for
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Fig. 3 Flow chart illustrating the selective design space exploration technique (adapted from [37]) 

exploring the design space . ψ . If the size of the design space is considered to be 
N , the time complexity of the algorithms would be .O(N2), .O(N ∗ log N), .O(N), 
and .O(N2 ∗ log N), respectively. The efficacy of these algorithms, illustrated by 
the varying subset of individuals selected and evaluated, is discussed in Sect. 3 with 
the use-case. The genetic algorithms used by the framework require a cost function 
(. φ) that needs to be specified by the system designer, which can be optimized to 
obtain the set of near-optimal network models (. ω) for the explored design space. 
The weighted cost function used in this framework is 

. φ = α ∗ Q + β ∗
[

1 − H

Hmax

]

where .α, β ∈ [0, 1] depict the weights for output quality (Q) and hardware require-
ments (H ) of the model, respectively. .Hmax denotes the hardware requirements 
of the state-of-the-art baseline model. As discussed earlier, Q can be evaluated 
as Accuracy, Precision, Recall, or F1-score, whereas H can be estimated as the 
memory overhead or the number of floating-point operations for an inference. 
Other application-specific quality metrics or additional hardware requirements, 
such as the power consumption of the model or its energy requirements on the 
target platform, can also be included in the framework. The weights . α and . β
depict the importance of the quality and hardware metrics, respectively, during the 
algorithm’s exploration of the design space. Algorithm 1 discusses the pseudo-code 
for the weighted DNN model exploration technique deployed in the framework. 
Given (1) the inputs (design space (. ψ), weights for the cost function (. α, . β), and 
the hardware requirement for the state-of-the-art model (.Hmax)) and (2) quality 
and hardware constraints (.QConst , HConst ), the weighted DNN model exploration 
algorithm generates a set of DNN models . ω that satisfies the quality and hardware 
constraints of the application. The ExplorationAlgorithm function call in Line 10 
can call any of the selective exploration algorithms (genetic algorithms) or the 
exhaustive exploration technique discussed earlier. Table 2 illustrates an overview 
of the symbols and denotations used in this chapter.
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Algorithm 1 Weighted DNN model exploration 
Input: ψ, α, β, Hmax 
Constraints: QConst , HConst 
Output: ω 
1: H = []; 
2: for M in ψ do 
3: if HardwareRequirements(M) ≤ HConst then 
4: H.append(HardwareRequirements(M)); 
5: else 
6: ψ.remove(M); 
7: end if 
8: end for 
9: φ = α ∗ Q + β ∗

[
1 − H 

Hmax

]
10: ω = ExplorationAlgorithm(φ, ψ); 
11: for DNN in ω do 
12: if Q.(DNN) < QConst then 
13: ω.remove(DNN); 
14: end if 
15: end for 

Table 2 Overview of the symbols used in this work along with their denotations [37] 

Symbol Denotation Symbol Denotation 

Q Model quality N Size of design space (. ψ) 

.QConst User quality constraint .φ Cost function to be optimized 

A Accuracy of the model .ω Output set of near-optimal DNN models 

P Precision of the model .α Weight for output quality Q 
R Recall of the model .β Weight for hardware requirement H 
F F1-score of the model M DNN model in . ψ

B Memory overhead of the model .HConst Platform’s hardware constraint 

FP  
No. of floating-point operations 
reqd. by the model . Hmax

Hardware requirements of the 
state-of-the-art model 

.ψ Design space of DNN models H Hardware requirements of the model 

2.6 Model Compression 

The framework also includes the capability of further reducing the model’s hardware 
requirements through the means of compression techniques like pruning and 
quantization. Besides neural architecture search approaches, model compression 
techniques have proven to be highly successful in reducing the hardware require-
ments of the model while retaining output quality [12]. 

2.6.1 Pruning 

As the name conveys, the core concept of this approach involves identifying less-
important parameters of the model, such as the weights, kernels, biases, or even
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neurons or layers, and eliminating them to further reduce the hardware requirements 
of the DNN model, increasing their deployability in edge platforms. Eliminating the 
model parameters reduces many of its requirements, such as memory overhead of 
the model and the number of floating-point operations required for an inference, 
which tend to further improve performance and reduce energy consumption on the 
target platform during inference. The pruned model is subsequently retrained on the 
constructed dataset to ensure that the model achieves an output quality similar to 
that of the original unpruned model obtained from the design space. The framework 
integrates the pruning techniques presented in [3, 12, 26, 28, 30] to provide the 
system designer with a range of options that can be implemented in order to meet 
the application requirements based on the DNN model’s capabilities. For example, 
the technique proposed in [12] determines the lowest .x% of weights, based on their 
absolute magnitude, in each individual layer of the model and eliminates them, 
followed by a retraining stage, as discussed earlier, to achieve an accuracy similar 
to the original model. Whereas the technique presented in [30] sorts the complete 
set of weights in the model to iteratively eliminate the lowest .x% of overall weights 
in each iteration, regardless of the layer, followed by model retraining to achieve 
original model accuracy. Section 3 illustrates an overview of the benefits of pruning 
DNN models obtained using this approach. Incorporating other pruning techniques 
into the framework can be easily achieved as long as the new technique complies 
with the original interfaces of standard pruning techniques. 

2.6.2 Quantization 

The model parameters are usually stored in a floating-point format requiring 32 
bits, leading to a large memory overhead on the execution platform. Accessing each 
floating-point parameter from memory requires increased access latency and energy 
consumption, as opposed to traditional 8-bit or 16-bit integers. Likewise, a high-
precision floating-point addition operation requires nearly an order of magnitude 
more energy as opposed to a 32-bit integer ADD operation [13]. Hence, approaches 
that can be used to reduce the precision from 32 bits to 16 or 8 bits, through 
the process of quantization, can be used to substantially reduce the hardware 
requirements of the model. Quantization techniques can be implemented to further 
reduce the precision of the DNN model to less than 8 bits, by analyzing its trade-off 
with output quality for the target application. The process involves the construction 
of . 2p clusters, where p stands for the number of quantized bits, using the k-means 
algorithm, which evaluates the parameters in each layer of the DNN model. Once the 
clusters are determined, equally spaced values are allocated to each cluster ranging 
from minimum to maximum value for corresponding cluster weights composed 
of all zeros to all ones, respectively. For simplicity, all layers in the DNN model 
are quantized with the same number of bits. Similar to pruning, other quantization 
techniques can be incorporated into the framework as long as the new technique 
complies with the original interfaces of standard quantization.
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Based on recommendations from the studies presented in [12] and from exhaus-
tive experimentation, the optimal approach for minimizing the hardware require-
ments of the model requires pruning the selected DNN model obtained from 
the design space, followed by model quantization, to eliminate the redundant 
parameters and subsequently reduce parameter precision, respectively. 

3 Case Study: Bio-signal Anomaly Detection 

We present the efficacy of the framework by deploying it to generate, explore, 
and compress a wide range of DNN models for our use-case: ECG Bio-signal 
processing. We explore 5 different sub-cases as a part of this study:

• UC. 1: Binary Classification: [Normal, Anomaly]
• UC. 2: Multi-class Classification: 

[Normal, Premature Ventricular Contraction, Other Anomaly]
• UC. 3: Multi-class Classification: [Normal, Bundle Branch Block, Other Anomaly]
• UC. 4: Multi-class Classification: 

[Normal, Atrial Anomaly, Ventricular Anomaly, Other Anomaly]
• UC. 5: Multi-class Classification: [Normal, Ventricular Fibrillation, Other 

Anomaly] 

Hannun et al. [14] proposed a deep neural network model architecture that can 
differentiate between 12 classes of ECG signals, evaluated on their private dataset. 
This model is considered to be the current state of the art in ECG signal classification 
and is the baseline model of this use-case. The primary block used in [14] is  
adopted in this use-case to generate the design space of DNN models for each of 
the 5 different sub-cases discussed above. The input and output layers have been 
modified to consider the data from the open-source ECG dataset adopted in this case 
study to process and categorize them into the required output classes. The default 
model of the DNN is modified to include LSTM cells at the end, enabling accuracy 
improvements in cases where the number of feature extraction layers is substantially 
reduced during neural architecture search. 

3.1 Experimental Setup 

Dataset Construction For this bio-signal processing case study, the MIT-BIH 
dataset [32] is used to construct the required datasets by collecting a 256-sample 
window, which is subsequently assigned a label corresponding to the original 
labels of the parent dataset. The 41 different annotations of the parent dataset are 
categorized as one of the labels for each sub-case to ensure coherence in the dataset. 
To construct an enriched dataset that can provide the relevant information to the 
DNN model and enable it to learn effectively across labels like ventricular tachy-
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cardia and ventricular fibrillation, the framework also includes the CU Ventricular 
dataset [33] during the construction of the custom datasets. The constructed datasets 
are split in the ratio of .7:1:2 to generate the training, validation, and testing datasets, 
respectively. 

Neural Architecture Parameters An overview of the modified DNN architecture 
used in this case study is presented in Fig. 4. Therefore, the three primary neural 
architecture parameters that can be varied to generate the DNN model design space 
are (1) #ResNet Blocks, (2) #Filters, and (3) #LSTM Cells. The ResNet blocks are 
made of 1D convolutional layers, batch normalization, ReLU activation blocks, and 
dropout layers, as illustrated in Fig. 4, and can vary between 0 and 15. The number 
of filters, of size 16, in each convolution layer is determined as a function of z– 
[32 × 2z]—where z starts from the value of 0 and is increased by 1 after every y 
ResNet blocks (y varies from 1 to 4 in increments of 1, i.e., y ∈ {1, 2, 3, 4}). The 
number of LSTM cells is varied as 2x , where x ∈ {4, 5, 6, 7, 8}. 

By varying these parameters, we can generate up to 320 different DNN models as 
part of a given application’s design space. However, due to the hardware limitation 
imposed by the state-of-the-art model, the framework reduces the number of models 
explored to 135, thereby drastically reducing the exploration time. 

Selective Exploration Figure 5 presents the composition of the chromosome 
used by the genetic algorithms in this case study. The chromosome is a binary 
string of size 9, which encodes the key neural architecture parameters discussed 
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Fig. 4 Modified state-of-the-art DNN architecture used in the case study (adapted from [37]) 
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Fig. 5 The composition of the chromosome used by the genetic algorithms in this case study; 
example of chromosomal crossover and mutation (adapted from [37])
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Table 3 Optimal 
hyper-parameter values used 
for training the DNN 
Models [37] 

Hyper-parameter Optimal value 

Weights initialization He et al. [16] 

Adam optimizer [22] β1 = 0.9, β2 = 0.999 

Learning rate 0.001 

Batch size 128 

Dropout 0.2 

Table 4 The optimal values 
of the constants used by the 
genetic algorithms [37] 

Constant Optimal value 

Population size 30 

Chromosome length 9 

Generation size 5 

Mutation probability 0.11 

Crossover probability 0.4 

above as genes. The chromosome can therefore construct 210 − 1, or 1023, DNN 
models in design space for each of the sub-cases. However, since only 5 of the 7 
possible #LSTM cell values lead to valid DNN model architectures, we can directly 
eliminate invalid configurations not present in ψ . Once the parent chromosome pair 
is selected, based on their fitness value, for generating offspring, they undergo the 
process of crossover to exchange genes and undergo potential mutation to introduce 
diversity, as illustrated in Fig. 5. 

Tool Flow The TensorFlow platform is used for the implementation of the DNN 
models in the Python programming environment with the help of the Keras package. 
The DNN models are trained over multiple iterations with varying hyper-parameter 
values to determine the ones that offer maximum accuracy. Table 3 presents the 
optimal values of these hyper-parameters. The DEAP library [5] in Python contains 
implementations of the four genetic algorithms that are used in the case study. 
Table 4 presents the constants and their optimal values, which are used by the 
genetic algorithms during selective exploration of the design space. The exploration 
stage is executed on a GPU server composed of four i9 CPUs and 8 Nvidia RTX 
2080 GPUs, with the early stopping mechanism enabled. The selected models are 
then trained using the custom dataset for quality evaluation and studying the trade-
off with their hardware requirement. 

3.2 Exhaustive Exploration 

Figure 6 illustrates the results and trade-offs between quality and memory of 
exhaustively exploring the models in the UC. 3 design space. The Pareto-frontier of 
the complete design space, which connects all the Pareto-optimal DNN models and 
offers the best trade-off between quality and memory, is illustrated by A . Label B ,
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Fig. 6 Analysis of exhaustive exploration on the UC. 3 design space (adapted from [37]) 
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Fig. 7 Analyzing the time benefits of the selective exploration approach (adapted from [37]) 

on the other hand, depicts the pseudo-Pareto-frontier constructed using the set of 
optimal designs obtained by random exploration (i.e., baseline). The large number of 
inter-dependent parameters in DNN models leads to the situation where the designs 
depicted in A and B are very similar to each other. Exhaustive exploration of the 
design space has led to the successful identification of a DNN model that can reduce 
the overhead by .∼30 MB for a quality loss of less than .0.5%. However, due to the 
time required for such exhaustive exploration, it might be more suitable to obtain a 
near-optimal point that offers similar trade-offs using selective exploration for much 
less time. The variance in the Precision, Recall, and F1-score of the model for the 
specialized bundle branch class indicates suitability of the framework to impose a 
quality constraint on these metrics as well. 

3.3 Selective Exploration: Time Benefits 

The primary benefit of the selective exploration process is the reduction in time 
required to search the design space of DNN models with the use of genetic 
algorithms. Figure 7 illustrates the reduction in time for the five different use-cases 
when explored using the genetic algorithms, as opposed to exhaustive exploration. 
We have also varied the weights used by the cost function (. α, . β) to emphasize 
that changing weights does not drastically modify the time needed for exploring 
the design space. Randomly selecting and evaluating .10% of the DNN models
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Fig. 8 Evaluation of the quality and memory trade-offs for the models obtained using wheel 
roulette search and tournament search on the UC1 design space (adapted from [37]) 

in the design space acts as baseline comparison for the selective exploration 
strategies discussed in this chapter, with practically no algorithmic overhead. 
The selective exploration strategies achieve .9× reduction in exploration time, on 
average, as opposed to the bounded exhaustive exploration strategy. The use of 
genetic algorithms for exploring the search space is highly beneficial in scenarios 
where the application requires the use of highly complex deep neural networks with 
tens of millions of parameters. Exhaustively training and evaluating each model in 
the design space, in such instances, would lead to exploration time overheads of 
hundreds of GPU hours, which might not be feasible for the system designer. 

3.4 Selective Exploration: Efficacy and Analysis 

The primary benefit of using genetic algorithms, reduction in exploration time, 
was already discussed earlier. In this subsection, we focus on the capability of the 
genetic algorithms in exploring the design space and analyze their efficacy. The 
results of these experiments for the UC. 1 and UC. 5 design spaces, with . α and . β
set to .0.5 are illustrated in Figs. 8 and 9, respectively. The transparent points in 
these results depict the models obtained from the design space using exhaustive 
exploration, enabling us to determine the efficacy of the genetic algorithms. The 
genetic algorithms are highly successful at identifying a set of near-optimal DNN 
models without traversing the complete design space, especially in cases where 
the accuracy improvements or the hardware memory reductions are minimal when 
compared to the Pareto-optimal design. The number of models evaluated by the 
NSGA-II and SPEA-2 algorithm is smaller than their counterparts. Note that a 
significant number of models in the UC. 5 design space exhibit .0% quality due to
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Fig. 9 Evaluation of the quality and memory trade-offs for the models obtained using NSGA-II 
search and SPEA-2 search on the UC5 design space (adapted from [37]) 
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Fig. 10 Evaluation of the weighted exploration technique on the UC2 design space using 
tournament search with two different weight values for the cost function (adapted from [37]) 

the inherent differences in the number of samples of class Ventricular Fibrillation, 
leading to a bias against it. 

3.5 Selective Exploration: Weighted Exploration 

Next, we discuss a subset of the results obtained when exploring the design 
space using different weights for the cost function (. φ), which is used by the  
genetic algorithms. Figure 10 illustrates the results when the algorithm focuses on 
optimizing (1) memory alone (.α = 0.2, β = 0.8) or (2) memory and accuracy 
(.α = 0.5, β = 0.5), for a model in the design space of UC. 2. Similarly, Fig. 11 
presents the results when the algorithm optimizes for (1) memory alone (. α =
0.2, β = 0.8) or (2) accuracy alone (.α = 0.5, β = 0.5), in the design space of
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Fig. 11 Evaluation of the weighted exploration technique on the UC4 design space using wheel 
roulette search with two different weight values for the cost function (adapted from [37]) 

UC. 4. The weighted parameterization of the cost function is highly beneficial in 
guiding the genetic algorithms to optimize for the required parameter, i.e., memory 
or quality or both. For example, as illustrated by A in Fig. 11, the algorithm 
focuses on optimizing memory, thereby selecting a large number of points with 
minimal overhead. Similarly, when the optimization goal is either accuracy only 
(see Fig. 11) or memory and accuracy (see Fig. 10), appropriate models are selected 
for evaluation by the algorithm. 

3.6 Pruning and Quantization: Compression Efficacy and 
Receiver Operating Characteristics 

Next, we select three near-optimal models obtained from the UC. 4 design space to 
evaluate the efficacy of our pruning and quantization techniques. Without loss of 
generality and for the purpose of illustration, the three models, Z. 1, Z. 2, and Z. 3, 
focus on accuracy alone, trade-off between accuracy and memory, or memory alone, 
respectively. Pruning, alone, is quite effective in reducing the memory by nearly 
.40% for roughly .0.15% increase in accuracy. This contra-indicative improvement in 
accuracy can be attributed to the over-redundant parameterization of the network 
model, which is eliminated by pruning. Due to similar reasons, model Z. 1 can 
tolerate pruning of a significant percentage of parameters before exhibiting accuracy 
losses, as opposed to the other models that are not as over-parameterized. Likewise, 
quantization can drastically reduce the memory requirements of the network by 
lowering the precision of the parameters storing the weights and biases. This process 
can further reduce the memory requirements by up to . 5×, as opposed to FP32 
precision, for .<0.1% quality loss. Combining both these approaches can reduce 
the memory by a factor of .53× for .<0.2% loss in quality (Fig. 12).
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Fig. 12 Compression of the near-optimal UC4 design space DNN models (adapted from [37]) 
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Fig. 13 ROC evaluation of the similar DNN models from the UC. 4 design space [37] 

Next, the receiver operating characteristics of selected pruned and quantized 
models are evaluated to determine their behavior, when compared to the original 
model obtained from the design space. The evaluation is completed for two 
scenarios: 

(a) With a memory constraint of . 0.5MB, maximize the model accuracy. 
(b) With an accuracy constraint of .96.7%, minimize the model’s memory. 

As can be observed from the results presented in Fig. 13, model Z. 1 exhibits the 
best operating characteristics, with Z. 2 and Z. 3 not lagging far behind. The maximum 
accuracy models, which are subsequently pruned and quantized, exhibit the worst 
operating characteristics, far behind the pruned and quantized models of Z. 2 and Z. 3,
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albeit with similar accuracy metrics. This makes the latter two models more suitable 
for deployment in the real world on constrained edge devices like wearables. 

4 Conclusion 

Healthcare is one of the world’s largest industries requiring a lot of investments, 
man power, training, and expertise, especially with the rising older population 
(above the age of 65) in most western nations, a significant percentage of whom 
require continuous support and healthcare. This requires scientists and researchers 
to develop technologies that can cater to the requirements of global healthcare 
systems with currently available technologies. Deep learning, which is currently at 
the forefront of major technological innovation, has proven to be highly effective in 
various healthcare domains like medical imaging, electronic health data analytics, 
precision medicine, and drug discovery. In this chapter, an embedded neural 
architecture search and model compression framework was discussed to enable 
their deployment in healthcare applications. The framework considers the user 
requirements, in terms of quality, or specifications, like type of output, and hardware 
constraints of the target platform to effectively search the design space of DNN 
models to generate a set of near-optimal DNNs suitable for the application. Besides 
achieving a .53× reduction in memory, models optimized for both accuracy and 
memory during the design space search were observed to have better operating 
characteristics, even when compressed. The framework is open source and available 
online at https://bionetexplorer.sourceforge.io/. 
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Robust Machine Learning for Low-Power 
Wearable Devices: Challenges and 
Opportunities 

Ganapati Bhat, Dina Hussein, and Nuzhat Yamin 

1 Introduction 

Wearable devices that integrate multiple sensors, processors, and communication 
technologies have the potential to transform multiple facets of human life: public 
health, fitness, and the way we interact with the environment. For instance, wearable 
devices are being widely used by the general public to monitor their activity levels 
and steps. Wearable devices are being also used to track vital signs and rehabilitation 
in patients with chronic disorders [24, 60]. More broadly, Internet of Things (IoT) 
devices are being deployed to enable interesting applications such as smart cities, 
environmental monitoring, digital agriculture, and wide area sensing [4, 10, 37, 88, 
95]. Overall, the promise shown by wearable devices has led to increased research 
attention from a number of communities in both academia and industry. 

Wearable devices typically collect sensor data at runtime and process the data 
locally or in an edge node to fulfill user and application requirements. For example, 
data from motion sensors are processed at runtime to identify the activities of 
the users. Early implementations of wearable devices used statistical or analytical 
models to identify and monitor the parameters of interest [6]. However, their limited 
processing capability restricted the complexity of applications implemented on 
wearable devices. Recent advances in machine learning, low-power sensors, and 
embedded microprocessors have enabled wearable devices to perform higher degree 
of processing at the edge [8, 40]. As a result, wearable devices are being used to 
implement interesting and high-impact applications such as fall detection, arrhyth-
mia monitoring, and movement disorder diagnosis [24, 60, 77]. The applications 
collect sensor data at runtime and process it on the device using machine learning 
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algorithms. Processing the data on the device ensures that the raw data is not 
transmitted outside the device, thus ensuring the privacy of the user data. At the same 
time, wearable devices must operate under tight energy budgets due to their small 
battery capacities. Moreover, the applications on wearable devices must be robust 
to changes in user data patterns and other uncertainties in the environment. To this 
end, there is a need to ensure that the machine learning algorithms employed at the 
edge on wearable devices are reliable while satisfying the low power requirements. 

Edge machine learning algorithms in wearable devices face a number of chal-
lenges in real-world usage. The first major challenge is that the distribution of 
sensor data during real world usage may not match the distribution of the data 
during training. This is because the sensor data patterns of the users available during 
training may be different from the users in the real-world deployment. Even for the 
same set of users, the activity patterns (e.g., walking style) may change with time. 
The orientation of the sensor data may also change with time due to long-term usage 
or user error. For instance, the user may mount a wearable sensor facing the front, 
whereas the machine learning algorithm is trained with the sensor mounted facing 
the back. As a result, the distribution of the sensor data changes, which may reduce 
the accuracy of the application. Second, due to energy constraints in wearable 
devices, the applications may experience missing data samples. In particular, for 
wearable devices that employ energy harvesting, the stochastic nature of ambient 
energy may result in sensors turning off due to lack of energy, which in turn leads 
to missing samples. The missing samples will cause the accuracy to drop since 
typical machine learning on wearable devices are not trained to handle missing 
data. Therefore, recent research has focused on developing approaches that are 
able to handle sensor data shift and missing data to provide reliable applications 
on wearable devices. 

The goal of this book chapter is to first summarize the state of the art in edge 
machine learning for wearable devices. Specifically, we present the typical flow 
in edge machine learning development for wearable devices and review recently 
implemented applications on wearable devices. Next, we review the robustness 
challenges for edge machine learning algorithms in wearable devices including 
energy limitations, sensor data shift, and missing data. We also present a summary 
of recent approaches for handling the robustness challenges in wearable devices 
followed by future opportunities in reliable machine learning for wearable devices. 
Moreover, we present a case study with a human activity recognition (HAR) 
application to demonstrate the effects of missing sensor data on the application 
accuracy. Finally, we perform a design space exploration with generative adversarial 
networks to develop a HAR classifier that is robust to missing data. 

The rest of this chapter is organized as follows. Section 2 describes the typical 
flow of implementing edge machine learning in wearable devices and reviews some 
representative applications. Next, we present the requirements of robust machine 
learning and recent approaches for robustness in Sect. 3. Finally, Sect. 4 presents 
our HAR case study before concluding in Sect. 5.
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2 Edge Machine Learning in Wearable Devices 

Wearable technology is being used to implement a number of interesting applica-
tions for health and activity monitoring. It is also being used in gesture recognition 
and human–computer interaction applications. The general wearable application 
development goes through four major stages: data collection, feature design, and 
machine learning algorithm design, as shown in Fig. 1. In the following, we describe 
each of these steps briefly before providing the details of edge and on-device 
machine learning. 

Data Collection Collection of sensor data that is representative of the application 
requirements is one of the first steps in the development of wearable applications. 
The data collection is typically performed in laboratory settings where subjects wear 
the sensors and perform the activities of interest. For instance, in a fitness monitoring 
application, sensor data are collected when users run, walk, and stand [112]. 
The laboratory settings make it easy to label the data and create a dataset for 
supervised learning. At the same time, obtaining data in controlled settings and 
labeling the data is time consuming and expensive. Therefore, it is also common 
to collect unsupervised data in free-living environments for long-term monitoring. 
For example, the Actitracker [58] dataset uses a smartphone application to collect 
activity data outside laboratory settings. Indeed, for some applications, such as 
arrhythmia monitoring, where the occurrences of arrhythmia events are rare, it is 
crucial to monitor the data over a long period to ensure that the rare events are 
captured. Data collection is an important step in wearable devices because the 
quality of the data determines the generalizability and effectiveness of the machine 
learning algorithms for the wearable applications. 

Feature Design The next step after data collection is to design features that 
capture the behavior of the activities and the parameters of interest to implement 

Fig. 1 Typical data flow and steps in designing machine learning algorithms in edge architectures 
for wearable devices
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the wearable applications. Specifically, the features and the supervised labels are 
used to train the edge machine learning algorithms in the wearable device. Early 
implementations of wearable applications used handcrafted features as a function 
of parameters being monitored. For example, the activity recognition application 
uses the mean, kurtosis, and entropy as features for training a support vector 
machine classifier [2]. Similarly, the approach in [78] uses time and frequency 
domain features to train the machine learning algorithm to identify activity intensity. 
Recently, neural networks are being widely deployed on wearable devices to process 
the sensor data. The neural network approaches typically use the raw sensor data as 
the input and implicitly generate the features. For example, the approach in [53] 
directly uses the data from accelerometers in neural networks to recognize human 
activities. This ensures that the application designers do not have to handcraft 
features for the application. 

Machine Learning Algorithm Design The last step in the design of applications 
for using wearable devices is the training of machine learning algorithms. This is a 
critical step since the accuracy and quality of service of the application depend on 
the effectiveness of the machine learning algorithms.Wearable devices present some 
unique challenges to the development of effective machine learning algorithms due 
to their processing, power consumption, and memory capabilities. To this end, the 
following sections detail the general model for edge machine learning for wearable 
devices, challenges for edge machine learning, and recent approaches to address the 
challenges. Then, we describe some recent examples of edge machine learning in 
wearable devices. 

2.1 Edge Machine Learning Architectures 

Edge machine learning architectures in wearable devices can be broadly classified 
into three categories, as shown in Fig. 2. The first category performs all the 
computations on the wearable sensors or a microcontroller that is integrated on the 
device. This model ensures that the raw data from the sensors are not transferred 
outside the wearable device. At the same time, the microcontrollers on the device 
may not be able to perform complex computations, and therefore, the second 
model uses a host device, such as a smartphone or a laptop, to process the sensor 
data. The wearable device wirelessly transfers the data to the smartphone so that 
further processing can be performed as per the application requirements. The 
high processing capability in smartphones or laptops enables the application to 
run more complex algorithms with higher computational requirements. Finally, 
in cases where the capabilities of the host device are not sufficient, the wearable 
device transfers the data to a cloud server for processing, as shown in Fig. 2c. This 
architecture is typically used for online training or model updates where new sensor 
data are sent to the cloud server to update the machine learning algorithms. For 
instance, when a new user starts using the device, their data are uploaded to the cloud
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Fig. 2 Illustration of three edge computing architectures for wearable devices (a) local computing, 
(b) local computing with a mobile host, (c) hierarchy of computing with a cloud server and mobile 
host 

server to train the machine learning model. Overall, processing on a host device 
or cloud servers is useful and allows wearable devices to employ more complex 
algorithms. At the same time, these architectures transfer raw data from the device 
onto external devices, which impacts the privacy of the users [71]. Indeed, data 
privacy is one of the primary concerns expressed by users when considering the use 
of wearable devices. Therefore, in the rest of this chapter, we will focus on edge 
machine learning in the on-device computation architecture, shown in Fig. 2a. 

2.2 Edge Machine Learning Algorithms 

A number of machine learning algorithms have been employed to enable on-device 
processing in wearable devices. This section briefly describes the commonly used 
machine learning algorithms in wearable devices.
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2.2.1 Tree-Based Machine Learning Algorithms 

Tree-based algorithms, such as decision trees and random forest, are commonly 
used on wearable devices due to their simplicity and low computational complex-
ity [14, 35, 65]. For example, the approach in [35] uses a decision tree to classify 
human activities, while the approach in [14] uses random forests to enable gesture 
recognition. Tree-based algorithms typically use a set of handcrafted features and 
supervised labels to train the model. The models usually consist of comparison 
of features at each level of the tree until the leaf node is reached. Decision 
trees employ a single tree while random forests employ a collection of trees to 
improve the accuracy of the algorithm. Recent work has also proposed tree-based 
algorithms tailored for resource-constrained wearable devices [83]. Specifically, the 
Bonsai [30] approach learns a sparse tree to reduce the size of the model, thus 
making it suitable for small memories in wearable devices. The Bonsai decision 
trees are able to achieve accuracy that is comparable with state-of-the-art methods 
while consuming only few kilobytes of memory. 

2.2.2 Support Vector Machines 

Support vector machine (SVM) is another class of supervised learning algorithms 
that are widely used in wearable applications. The traditional SVM algorithms 
distinguish between two classes by learning a hyperplane that separates the two 
classes. At runtime, SVM algorithms perform a linear combination of the features 
and the weights to determine the class of the new data. In multi-class scenarios, 
multiple SVM classifiers are trained to distinguish between the classes. SVMs have 
also been used widely in wearable devices due to their ease of implementation. For 
example, the approaches in [35, 51, 52] use SVM for activity recognition and gesture 
recognition, respectively. They have also been used in health applications such as 
Parkinson’s disease diagnosis [24, 60]. 

2.2.3 Neural Networks and Deep Learning 

Recent success of neural networks in image processing, natural language process-
ing, and computer vision has prompted their use in wearable devices as well. 
Deep learning models include multiple layers of neurons between the input and 
the output. Depending on the type of the model, the layers may be fully connected, 
convolutional, or recurrent. Recurrent layers are typically used in time series data 
to reveal the time dependence of the sensor data. Similarly, convolutional layers 
are used in the initial part of a network to extract features from the data. Then, 
features are passed through fully connected layers to obtain the final output. 
Neural network models have been successfully employed for a number of wearable 
applications including activity recognition, gesture recognition, and arrhythmia 
detection [11, 52, 76]. Deep learning models are also suitable for online updates
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since their parameters can be updated through gradient descent algorithms as new 
data become available. Many recent studies have employed reinforcement learning 
with deep learning models to perform online updates so that the models provide 
high accuracy for new, unseen, users [11, 52, 76]. Due to these advantages, deep 
learning models are being widely used in wearable devices to process sensor data 
and enable interesting applications. 

2.3 Challenges for On-Device Edge Machine Learning in 
Wearable Devices 

Despite the privacy and security advantages of on-device machine learning in wear-
able devices, they face several challenges in their effective implementation. This 
section describes the major technical challenges for on-device machine learning in 
wearable devices. 

Limited Computational Capacity Wearable devices typically integrate low-
power processors with few hundred megahertz of operating frequency. Wearable 
processors also do not include graphics processing units, which are one of the 
most commonly used processing methods for deep learning models. Moreover, 
microcontrollers included in wearable devices may not include advanced memory 
management features such as multiple cache levels. Consequently, the machine 
learning models deployed on wearable devices must be computationally lightweight 
so that they can be executed on the low-power processors with minimal latency. 

Memory Capacity Wearable devices and processors typically have limited mem-
ory capacities due to their small size. For instance, the Texas Instruments (TI) 
CC2652R processor, one of the commonly used processors in wearable devices, 
has only 80KB of main memory. The small memory size makes it impossible to 
deploy popular deep learning models like AlexNet on wearable devices. Therefore, 
edge machine learning models must have a small memory footprint to ensure that 
they can be deployed seamlessly on devices with limited memory capacities. 

Energy and Power Constraints The battery capacities of wearable devices are 
limited due to their small size [18]. Integrating larger batteries is challenging 
because they make the devices bulky and uncomfortable for users. For instance, 
a battery with 1000mAh capacity can weigh 20–30 grams, which is more than 
the weight of other wearable device components. Smaller batteries create two 
major constraints for the wearable devices. First, it limits the energy budgets 
available for executing the machine learning algorithms, thus limiting the number 
of computations that can be performed. Second, it limits the peak processing power 
for the wearable device. This means that even if an algorithm operates under low 
energy budgets, it must also have low peak power consumption to operate within 
the electrical limits of the device. Therefore, edge machine learning algorithms must



52 G. Bhat et al.

be able to operate under extremely low energy budgets while minimizing the peak 
power consumption. 

2.4 Solutions to Address On-Device Learning Challenges 

A number of approaches have been recently explored to address the challenges of 
on-device machine learning. We briefly review some of the approaches below while 
referring the readers to the surveys in [23] and [21] for more details. 

2.4.1 Quantization 

Machine learning algorithms typically use floating-point numbers to perform 
computations. However, floating-point operations consume additional resources 
for computation, which increase both latency and power consumption. To this 
end, recent approaches have proposed quantizing the model parameters and inputs 
into integers so that integer processing units can be used for computations. For 
example, the approach in [10, 38] uses 16-bit or 8-bit representations of model 
parameters to reduce the computations in the algorithm. Machine learning models 
with more aggressive quantization, such as binary neural networks, have also been 
proposed [56, 111]. Binary neural networks encode all parameters to zeros and ones, 
which significantly simplifies the computations. Early quantization approaches 
typically train the machine learning models in floating-point and then convert the 
parameters to integers. While this is useful, it can impact the accuracy of the 
machine learning models [34]. Therefore, recently proposed approaches perform 
quantization-aware training to ensure that the accuracy of the models does not drop 
with quantization. Quantization-aware training approaches typically use reduced 
precision data during training so that the need for converting the parameters to 
integers after training is eliminated [25, 46]. A recent approach proposed in [72] 
applies quantization to majority of the data during training while handling a small 
part of data with large values in high precision. This ensures that the quantization 
error is minimized while also ensuring high accuracy for the models. Quantization 
has been successfully used in human activity recognition to reduce the model size 
while maintaining the accuracy [105–107]. Overall, model quantization ensures 
that low-power and low-complexity integer computations are used on the wearable 
device for computations. 

2.4.2 Model Pruning 

Many machine learning models, especially well-known neural networks such as 
ImageNet [47], are not feasible to be deployed on wearable devices with limited 
memory capacities. Model pruning is an effective approach being used to reduce
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the size of the models so that they run on the wearable devices [113]. A common 
approach to achieve smaller networks is to first train a large model and then prune 
parameters that have small magnitudes [20, 33]. Studies have also proposed methods 
to achieve structured sparsity through the use of theoretical techniques or regulariza-
tion techniques [59, 67, 92]. More recently, the lottery ticket hypothesis has emerged 
as an effective method to achieve model pruning in neural networks [27]. The lottery 
ticket hypothesis states that as opposed to training a large network and then pruning, 
we can train smaller networks that achieve similar test accuracy as the original, large 
network. The advantage of the lottery ticket hypothesis is that training the smaller 
network from scratch with proper initialization provides accuracy similar to the 
original network. This process also eliminates the need to post-process the trained 
networks for pruning. Examples of pruning applied to human activity recognition 
include [17, 31, 91]. In summary, model pruning is a promising approach to ensure 
that the machine learning models trained for wearable devices are able to execute 
on the low-power wearable devices. 

2.4.3 Energy Harvesting 

Energy harvesting has emerged as a promising solution to alleviate the problem 
of small battery capacities and frequent recharging of wearable devices. There has 
been extensive research on how harvesting energy from ambient sources can aid in 
the smooth operation of wearable devices in the state-of-the-art literature [70, 94]. 
Commonly used ambient energy sources include solar, wind, radio-frequency, and 
body heat and motion. Recent work has shown that photovoltaic (PV) cells can 
harvest 0.1–100mW/cm. 

2 of power [41, 94] in indoor and outdoor conditions, 
respectively. Similarly, body motion can provide about 15 . µW with a 23.8 cm. 

2

piezoelectric patch when walking [90]. An antenna with .−10 dBm gain will yield 
about 10 . µW using radio frequency harvesting [68]. Indeed, energy harvesting 
has been used in multiple human activity recognition studies [36, 44, 64]. At the 
same time, harvesting energy from ambient sources is stochastic in nature. For 
instance, solar energy experiences seasonal and diurnal variations, whereas wind 
energy is unpredictable in nature. In addition, body motion is factored by human 
activities [28]. Therefore, the need for an accurate energy prediction model and 
efficient management of the harvested energy is critical. 

2.5 Edge Machine Learning in Health Applications 

This section provides some recent examples of edge machine learning being used in 
health applications. Specifically, we provide representative studies of edge machine 
learning being used for Parkinson’s disease diagnosis, vital sign monitoring, and 
human–computer interaction.
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2.5.1 Parkinson’s Disease Diagnosis 

Parkinson’s disease is typically diagnosed with clinical assessment of motor and 
non-motor symptoms in a clinical environment [43]. However, the clinical assess-
ments can be subjective and have variations across different patients. Therefore, 
wearable devices and edge machine learning are being used in the diagnosis of 
Parkinson’s disease [77, 109]. Woods et al. [101] use data from a smartphone in 
an SVM algorithm to diagnose Parkinson’s disease. Similarly, the work in [1] uses  
a random forest algorithm to perform gait analysis so that Parkinson’s disease can 
be detected in patients. Specifically, the authors use a ground reaction force sensor 
worn under the foot to perform the gait analysis. Non-motor symptoms have also 
been studied using edge machine learning. For instance, Tsanas et al. [89] process 
audio recordings using SVM and random forest methods to detect the presence 
of Parkinson’s disease symptoms. Overall, these studies show that edge machine 
learning can lead to standardization and objective measures for Parkinson’s disease. 
We refer the interested readers to the survey in [48] for more detailed analysis of 
edge machine learning in Parkinson’s disease. 

2.5.2 Vital Sign Monitoring 

Vital sign monitoring is another high-impact application that uses edge machine 
learning in wearable devices. Common vital signs monitored using wearable 
devices include heart rate, blood pressure, oxygen levels, and respiration rates. 
The continuous monitoring of vital signs can aid clinicians in getting a deeper 
understanding of the patient’s health as opposed to periodic measurements [100]. 
A recent study in [99] showed that machine learning approaches with wearable 
sensors can provide accuracy that is equivalent to clinical methods. The approach 
uses random forest and Lasso models to predict clinical laboratory test results using 
readings from wearable sensors. Similarly, the work in [12] presents the uses of 
wearable sensors along with SVMs to monitor the risk of cardiovascular disease. In 
summary, wearable sensors along with edge machine learning algorithms provide a 
powerful method for vital sign monitoring of individuals in free living environments. 

2.5.3 Human–Computer Interaction 

Human–computer interaction (HCI) is another important application where wear-
able devices can make an impact. Specifically, HCI using wearables can enable 
natural interactions between humans and computers [62]. For instance, using 
wearable devices and gesture recognition to control a gaming device or computer 
provides a natural method of interaction with the applications. To this end, the recent 
research has developed a number of edge machine learning approaches for HCI 
using wearable devices. The study in [73] uses data from an accelerometer sensor in 
a neural network to recognize five gestures. Similarly, Ferrone et al. [26] use strain
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sensors to recognize gestures using linear discriminant analysis and SVM classifiers. 
The strain sensors are beneficial because they have low power consumption due to 
being passive. Overall, these studies show that wearable HCI using edge machine 
learning can enable new and novel methods of interacting with computers. We refer 
the readers to the survey in [39] for a more detailed overview of HCI using wearable 
devices. 

3 Robustness in Wearable Applications 

Reliability and robustness are an important criterion for wearable devices and edge 
machine learning algorithms to ensure that the users receive a high quality of 
service. However, this is a challenging problem for wearable devices due to the 
dynamic nature of their use as well as the potential for user errors. Furthermore, the 
limited battery capacity of wearable sensors can lead to interruptions in the sensor 
data. Therefore, wearable devices must take measures to ensure that edge machine 
learning algorithms are able to handle the reliability challenges. This section first 
introduces the three major challenges to reliability of machine learning algorithms 
in wearable devices and then reviews the current state of the art to handle the 
challenges. 

3.1 Reliability Challenges for Wearable Devices 

3.1.1 Sensor Shifts and Disturbances 

Machine learning algorithms are typically trained with data collected in controlled 
environments where the sensor position and parameters are carefully optimized. The 
data collection procedure also ensures that the sensors and processors are operating 
at their optimal frequencies. For instance, if the sampling rate of the sensor is not 
stable during the data collection, the experiment is repeated to ensure that the data is 
clean. While this setup is useful to train accurate machine learning models, the real-
world data distribution may differ from the distribution during training. The shift in 
the sensor data distribution can occur due to one or more of the following reasons: 

• The sensor locations may change with long-term usage, as illustrated in Fig. 3. 
For example, if the sensor is mounted using a sleeve or a belt, it may slip or move 
with usage. This will result in a change in the distribution of the sensor data. The 
data distribution may also change due to user errors, such as incorrect orientation 
of the sensors. 

• The sampling frequencies and calibration of the sensors may have variations from 
one device to another, which alters the distribution of the observed data. Indeed,
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Fig. 3 Example of sensor disturbances in wearable devices, (a) default position of sensor, (b) 
sensor directions with heading rotation, (c) sensor directions with pitch rotation 

a recent study analyzed the sampling rates of accelerometers from 13 devices 
and observed that there is a wide variation across devices [85]. Consequently, if 
a single classifier is trained assuming a fixed sampling frequency, it may suffer 
from accuracy reduction when tested on a new device. 

• The activity or application patterns of users in the real world may not match 
the users used during training. Even for the same user, the data distribution may 
change with time. For instance, if a user is injured for a period of time, the activity 
patterns will be different from when the user was healthy. 

The shifts in the sensor data distribution must be handled carefully for reliable 
performance of the edge machine learning algorithms. Therefore, recent research 
has focused on ensuring that machine learning algorithms can handle the sensor 
disturbances. We review some of these methods later in this section. 

3.1.2 Missing Sensor Data 

Edge machine learning algorithms for wearable devices are also trained with the 
assumption that all the sensors and devices will be operating perfectly at runtime. 
However, this assumption may not hold true in many real-world application scenar-
ios. For example, due to energy constraints, one or more sensors can turn off, thus 
leading to missing data. The missing data can also occur due to sensor malfunction 
or communication issues. Specifically, the wearable sensors are connected to the 
processor through serial buses, which may drop packets in some instances due to 
bandwidth limitations. The missing data, in turn, leads to significant reduction in the 
accuracy of the machine learning models because the models are trained with the 
assumption that data from all the sensors are available. Indeed, our case study with 
the activity recognition application shows that missing sensor data leads to 30–40% 
accuracy drop. Training individual classifiers for each combination of sensors is 
also not feasible due to the exponential increase in the number of combinations with 
sensors. Therefore, recent research has focused on developing methods to handle 
missing data in edge machine learning algorithms.
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3.1.3 Energy and Power Constraints 

Energy and power constraints pose challenges [41] to reliable operation of edge 
machine learning algorithms in addition to the on-device edge machine learning. 
The small battery capacities of wearable devices not only limit the complexity 
of edge machine learning models but also affect the reliability of the models. 
Specifically, lack of energy can lead to sensors being turned off during important 
activities, which leads to a reduction in the quality of service to the user. The energy 
limitations may also force the device to operate in low-power mode with reduced 
precision of sensing or computations. This leads to a reduction in the accuracy of 
the edge machine learning models. Energy harvesting from ambient sources is a 
promising technology to alleviate the energy limitations in the wearable devices. 
However, just integrating energy harvesting technologies into wearable devices is 
not sufficient as the harvested energy must be carefully managed to ensure that there 
is sufficient energy available even when ambient energy is not available. To this end, 
recent approaches have focused on optimal energy harvesting and management, as 
we outline in the next section. 

3.2 State-of-the-Art Methods for Robust Edge Machine 
Learning in Wearable Devices 

Approaches to achieve reliable machine learning have been developed for classifi-
cation, clustering, regression, and data imputation [49, 50, 63, 66, 93, 97, 97]. In 
this section, we describe recent approaches for robust and reliable edge machine 
learning in wearable devices for each of the challenges in the previous section. 

3.3 Approaches to Address Sensor Shifts and Disturbances 

A number of approaches to address sensor orientation disturbances have been 
proposed in the literature [49, 50, 66, 93, 97]. These approaches can be broadly 
divided into two classes. The first class of approaches detects the sensor disturbances 
at runtime and corrects the data before processing it further. For instance, the 
approaches in [49, 50] use principal component analysis (PCA) to determine 
the orientation of an accelerometer sensor in an activity recognition application. 
Specifically, PCA is used when there is heading rotation change in the direction of 
motion. For example, if one of the accelerometer axes is pointing in the direction 
of motion, heading rotation will result in the projection of the motion acceleration 
on the other two axes. To solve this issue, user movement calibration is done 
first to detect the correct direction of motion offline, and then PCA component 
is calculated for the reference and new movement in order to calculate the angle
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between the original and the new motion direction. After the angle is calculated, it 
is used to recover the sensor heading direction. Then, the orientation information 
is used to correct the sensor data in case of any variations from the training 
setup. This approach is useful when there are changes in the direction of motion 
for the accelerometer in activity monitoring applications. Similarly, the approach 
in [66] uses the gravitational force of the Earth to determine the orientation of 
motion sensors and apply corrections, if needed. This is useful in ensuring that any 
motion sensor disturbances with respect to the gravitational axis are corrected before 
processing by machine learning applications. 

The second class of methods to resolve sensor data shift and disturbances uses 
data augmentation [63, 93, 97]. Specifically, some examples of data with shifts 
or disturbances are included in the training data to ensure that the edge machine 
learning algorithms learn the sensor data disturbances as well. For instance, in [93], 
the authors use a convolutional neural network (CNN) for data augmentation of 
wearable sensor data for Parkinson’s disease monitoring. The training of CNN 
model requires large dataset, and therefore, data augmentation is a way to increase 
the input data while still preserving the labels. However, any disturbance or scaling 
in the sensor data may lead to incorrect label. Therefore, the authors use label-
preserving data augmentation techniques such as jittering, cropping, magnitude-
warping, and time-warping to increase the non-disturbed data instances for better 
CNN training. In summary, these methods allow the edge machine learning to 
provide reliable performance in the presence of sensor data disturbances. 

3.4 Missing Data Recovery Algorithms 

Development of algorithms to recover missing data at runtime is critical to 
ensure that the wearable applications provide reliable quality of service. The data 
recovery algorithms impute any missing sensor values before the machine learning 
algorithms process the data, thus ensuring that the application does not suffer from 
accuracy reductions. A number of approaches to recover missing data at runtime 
have been proposed in the literature [75, 76, 86]. One of the most popular approaches 
for missing data imputation is the k-nearest neighbor (k-NN) algorithm [75, 76]. 
Specifically, whenever missing data are detected, the algorithm identifies other data 
windows that are close to the missing value. Then, the neighboring values are used to 
estimate the missing sample by taking the mean of the available samples. However, 
k-NN methods are typically not suitable for wearable devices as they need to store 
the training data on the device, which imposes memory overhead on the wearable 
devices. 

To handle the limitation of the data storage requirements of k-NN algorithms, 
the recent research has proposed using autoencoders and generative networks for 
imputing missing data [79, 84, 110]. For instance, Saeed et al. propose an adversarial 
autoencoder model to handle missing sensory features and samples before classifi-
cation. The adversarial autoencoder uses a traditional autoencoder architecture in
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addition to a discriminator network to force the encoder output to match a specific 
target distribution. This additional discriminator network transforms the traditional 
autoencoder into a generative model to recover the missing data. More recently, 
the success of generative adversarial networks (GANs) in the image recognition 
domain [22] has prompted their use in the recovery of sensor data for wearable 
devices as well. For instance, conditional GANs are being used to generate data for 
specific labels or scenarios in a wearable application [84]. GANs have also been 
used to impute sensor data when some portions of the data are missing. Specifically, 
the generative adversarial imputation network (GAIN) [110] is a network that is 
specifically designed to recover missing samples in time series data. GAIN takes 
the available data with missing samples as input, in addition to a vector that denotes 
the missing samples’ locations. The generator of GAIN is used then to recover the 
missing data by learning the distribution of the data and using the available data 
to impute the missing samples. We present a concrete instantiation of the GAIN in 
our HAR case study. In summary, the goal of the data imputation approaches is to 
recover the missing data at runtime so that a single edge machine learning is able to 
provide reliable operation to the user and the application. 

3.4.1 Energy Management in Wearable Devices 

As indicated in Sect. 2.4.3, energy harvesting is a promising solution to help with 
the battery energy limitations of wearable devices. However, energy harvesting from 
ambient sources may be unreliable due to its stochastic nature. Therefore, develop-
ing accurate energy forecast models is critical. Furthermore, energy management of 
the harvested energy is required for optimal energy utilization in these devices. We 
evaluate some of the possible solutions that have been discussed in the literature. 

Energy Harvesting Prediction Methods A number of approaches have been 
explored in the literature to design and develop accurate energy harvesting pre-
diction models. Particularly, there has been a growing interest in predicting solar 
energy harvesting due to the high magnitude of solar energy. Kansal et al. proposed 
the Exponentially Weighted Moving-Average (EWMA) algorithm [42], which is 
a frequently used solar energy prediction scheme. It employs an exponentially 
moving average filter to take advantage of the diurnal pattern of energy harvesting 
throughout the day. However, because of the variability of sunny and overcast days, 
it suffers from high prediction errors. To address this issue, some authors proposed 
energy prediction algorithms based on energy profiles. Noh et al. [69] improve 
the EWMA model by keeping track of previous solar energy profiles based on 
a scaling factor. Piorno et al. suggested a Weather Conditioned Moving Average 
(WCMA) forecast model in [74] that considers previous days’ energy harvesting. 
It does, however, include a weighting component to measure how the current day’s 
weather conditions differ from the preceding days. Similarly, in [15], Cammarano 
et al. proposed another profile-based prediction model, Pro-Energy, to predict solar 
and wind energy harvesting. Pro-energy predicts future energy availability at short
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(few minutes to half an hour) and medium (a few hours) predictions horizons. They 
further extend the predictions with variable length intervals in [16]. 

In recent years, the authors are taking advantage of machine learning techniques 
to predict future energy availability. Sharma et al. established a model for predicting 
solar energy using multiple regression techniques in [81]. The authors proposed a 
hierarchical machine learning model to classify the energy harvesting magnitude 
of the day and accurately predict solar energy based on the classification in [104]. 
Similarly, the authors propose energy prediction models based on Recurrent Neural 
Networks (RNNs) in [54, 108]. In summary, the energy prediction approaches 
provide estimates of the future energy to the management algorithms so that 
effective energy management can be performed. We refer the readers to the survey 
in [19] for a more comprehensive analysis of the energy harvesting and prediction 
methods. 

Energy Management Approaches It is essential to have an efficient energy man-
agement algorithm to allocate the harvested energy in wearable devices effectively. 
Many energy management algorithms have been suggested in the literature—most 
approaches aim to achieve energy neutral operation, as suggested by Kansal et al. [9, 
42, 57]. Energy neutral operation (ENO) refers to enabling the device’s functioning 
using harvested energy only. Energy management algorithms, particularly, aim to 
establish ENO and achieve maximum utility to the device. 

There are several approaches for energy management [42] presented in the 
literature. The first class of algorithms utilizes convex optimization and dynamic 
programming to allocate the harvested energy. The approaches proposed in [9, 
42, 96] use various optimization techniques for the effective energy allocation of 
wearable devices. Furthermore, the authors in [102, 103] focus on the dynamic 
trading of energy between multiple resources, which can be adapted to allocate 
energy between multiple devices on the body. Despite being effective, these 
approaches rely on dynamic optimization at runtime to account for differences in 
energy harvesting. This can lead to significant execution time and memory overhead. 
Therefore, techniques that do not require optimization at runtime are also being 
studied to minimize energy consumption for the IoT device. 

Another class of solutions switches to different modes of operation to adjust 
the energy consumption based on available energy. Task scheduling [55] and duty 
cycling schemes [13, 57] are among those solutions. However, these approaches are 
heavily dependent on the harvested energy fluctuations. Therefore, some machine 
learning-based energy management approaches have been proposed in the literature. 
Among the approaches, [3, 7] use reinforcement learning (RL) to manage the energy 
in IoT devices. To summarize, the literature has explored different directions for 
effective energy management in wearable devices. We refer the survey in [80] for  a  
more detailed exposition of energy management methods.
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3.5 Future Opportunities 

In spite of recent approaches to handle sensor disturbances and missing data 
in wearable devices, several challenges and opportunities remain to fully realize 
the potential of reliable edge machine learning for wearable devices. Specifi-
cally, we present the following research directions and opportunities for future 
researchers (see Table 1). 

• Current approaches for sensor data recovery are typically integrated before the 
edge machine learning pipeline for wearable devices. While this is useful, it 
introduces additional execution time and energy overheads on already resource-
constrained devices. Therefore, there is a need for future research approaches that 
eliminate the extra step of data recovery while enabling reliable edge machine 
learning applications. 

• The energy management approaches for wearable devices are generally unable 
to account for sudden changes in the user activities, such as falls or injuries. 
Instead, they rely on typical activity patterns and make energy management 
decisions based on the trend of activity patterns. Adapting the energy management 
algorithms for sudden events will improve the reliability of the edge machine 
learning algorithms. 

• State-of-the-art approaches for missing data recovery are well suited for isolated 
missing data instances. However, many algorithms face challenges when there 
are longer sequences of missing data. Developing approaches for recovery of 
long missing data sequences will further improve the reliability of the wearable 
devices. 

Next, we present a case study with the human activity recognition application to 
explore the impacts of missing data on the accuracy and then show that missing data 
can be effectively recovered with generative networks. 

Table 1 Challenges and opportunities in wearable health applications 

Challenge Potential solutions 

Missing data from sensors Generative methods to recover data at runtime 

Sensor data shift Efficient methods to generate additional training 
examples to obtain reliable classifiers 

Energy limitations Ambient energy harvesting, prediction, and 
optimal management 

Monitoring of critical activities in 
health applications 

Adaptive energy management that can predict 
future activities of users
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4 Human Activity Recognition Case Study 

Human activity recognition (HAR) has increased in popularity due to the recent 
development of low-power wearable devices that integrate multiple sensors, micro-
processors, and communication capabilities [8, 24, 52]. HAR algorithms are being 
used for fitness monitoring, rehabilitation, and in knowing the activities of move-
ment disorder patients [51, 61]. 

HAR algorithm development and validation typically involve four crucial steps: 
training data collection and labeling, activity segmentation, classifier training, and 
testing on new users [52, 82, 98]. The data collection is done in a controlled 
environment where the developers ensure that the sensors are in perfect working 
condition, and they are mounted in a known position. The collected data are then 
divided into distinct segments and labeled by one or more experts. The labeled data 
are passed through a feature generation algorithm to obtain features that distinguish 
between the activities of interest. The features and labels are input to a supervised 
learning algorithm to train an activity classifier. Finally, the trained classifier is used 
at runtime to identify the activities of one or more new users. 

State-of-the-art HAR algorithms in the literature generally assume that all the 
sensor data are available perfectly without any missing samples. However, in the 
real-world usage, the wearable devices can encounter scenarios where there are 
missing samples either due to user error, sensor malfunction, or energy limitations. 
The missing data, in turn, lead to a significant drop in the accuracy. For instance, the 
accuracy drops from 95% to 50% with only 10% of the samples missing. Therefore, 
there is a strong need to develop robust HAR classifiers that provide high accuracy 
in the presence of missing data. 

One of the common approaches to develop robust classifiers is to include 
examples with missing samples during training. However, including missing sam-
ples during training does not yield significant benefits in accuracy. For instance, 
including examples with 10% missing data in training increases the accuracy to 
only about 65%. Furthermore, including missing samples during training does not 
account for all possible scenarios at runtime. Therefore, in this chapter, we develop 
a runtime approach to recover missing samples in HAR. Specifically, we leverage 
recently proposed generative adversarial imputation networks (GAINs) to recover 
missing data at runtime [110]. GAIN is an adaptation of the general generative 
adversarial networks that is well suited for recovering missing samples in time 
series data [29]. Starting with a baseline GAIN with a large number of weights, we 
perform a design space exploration of various GAIN structures to analyze the trade-
off between accuracy and overhead. This is important because wearable devices are 
generally constrained by their limited batteries. As such, it is critical to obtain the 
highest accuracy while minimizing the execution time and energy. After recovering 
the missing samples with GAIN, the robust HAR classifier generates the features 
and identifies the activity. 

We validate the robust HAR classifier using w-HAR, a publicly available HAR 
dataset [11]. The dataset does not include any missing data by default. Therefore, 
we first use missing data in the dataset and then use GAIN to recover the missing
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data. We also implement the GAIN algorithm on the TI CC2652 microcontroller to 
measure the energy overhead [87]. Overall, the experiments show that GAIN is able 
to effectively recover missing data and enable accurate activity classification. 

4.1 HAR Background 

As detailed in Sect. 2, robust HAR involves segmentation, feature generation, and 
classification. In this section, we provide a brief summary of each step in HAR. 

Segmentation and Data Recovery Sensors used in HAR produce streaming 
data at a pre-configured sampling frequency. The streaming data must be divided 
into distinct activity segments so that each segment contains a single activity. 
The segmentation step achieves this by utilizing variable-length or fixed-length 
segmentation algorithms [52, 82, 98]. Next, the data recovery algorithm checks for 
any missing samples and recovers them if it detects missing samples. 

Feature Generation The activity segments are processed by the feature generation 
block to calculate the features required for classification. In this chapter, we reuse 
the features provided in the w-HAR dataset [11]. 

Classification The features are finally used to identify the activity being performed 
by the user. Any supervised learning algorithm can be used to identify the activities. 
In this work, we utilize the neural network structure proposed in the w-HAR dataset. 

4.2 Generative Adversarial Imputation Networks 

Generative adversarial networks (GANs) [29] have been used recently to obtain 
synthetic data for a number of applications including image recognition, speech 
recognition, and natural language processing [5, 32, 45]. GANs are useful in 
generating completely new data examples, but they are not well suited to recover 
missing data when partial information is available. To address this limitation, the 
work in [110] proposed a variation of GAN called as GAIN. Following the general 
structure of GANs, GAIN consists of a generator and a discriminator. The goal 
of the generator in GAIN is to accurately recover missing data by utilizing the 
available samples, while the job of the discriminator is to distinguish between 
recovered synthetic data and observed data. The generator is trained to minimize 
the error between the generated data and the actual observed data. By minimizing 
this error, the generator can generate accurate samples for instances where the 
observed data are not available. The generator is also trained to maximize the 
misclassification error in the discriminator so that the discriminator is unable to 
distinguish between synthetic and observed data. When fully trained, the GAIN 
generator is able to accurately recover the missing samples and the discriminator
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is unable to distinguish the synthetic data. This means that the data generated by 
GAIN follow the distribution of the actual data. Next, we illustrate the accuracy 
gains achieved by GAIN when the sensor data are missing samples. 

4.3 Experiments and Results 

4.3.1 Experimental Setup 

Wearable Device We use the TI-CC2652R as the primary processor for our 
wearable device model [87]. The TI-CC2652R processor consists of ARM Cortex 
processor which does the segmentation, data recovery, feature generation, and clas-
sification. The robust HAR classifier is implemented on the TI-CC2652 processor 
to measure the overhead. 

HAR Dataset We use the w-HAR dataset to perform our experiments. The dataset 
provides stretch sensor and accelerometer readings for 22 users, while they are 
performing eight activities: jump, lie down, sit, stand, walk, stairs up, stairs down, 
and transition. Missing data implementation: We introduce missing data for each 3-
second interval of the w-HAR dataset by randomly choosing indices in the 3-second 
window. To evaluate the performance of GAIN for various missing data lengths, we 
use the following configurations of missing data percentages: 2%, 5%, 10%, 20%, 
and 30%. 

GAIN Structure We use a GAIN generator neural network with two hidden layers 
and one output layer. We vary the number of neurons in the hidden layers to perform 
our design space exploration. The hidden layers in the generator use the ReLU 
activation. The output layer contains one unit for each sample in the input data 
and uses the sigmoid activation. It is important to note that the generator produces 
data even for observed samples. In our implementation, we discard those data and 
use the generated samples for only the missing data. 

4.3.2 Design Space Exploration for GAIN 

In this section, we vary the number of neurons in the hidden layers with 2 hidden 
layer and 3 hidden layer architectures and evaluate the accuracy achieved by the 
robust HAR classifier with GAIN. We also compare the memory requirements of 
each configuration to understand the overhead of GAIN. The memory requirements, 
in turn, correlate with the execution time and energy overheads on the wearable 
device. For instance, if the number of weights doubles, we see an increase in the 
execution time and energy required for using the GAIN to generate data. We use 
this methodology to quantify the overhead because all GAIN configurations are not 
feasible for the TI-CC2652R processor due to its limited memory. At the same time, 
this analysis provides a useful comparison point for future wearable with higher 
memory.
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Table 2 Details of GAIN architectures 

1st hidden layer 2nd hidden layer 3rd hidden layer 

2 hidden layer models 4–183 4–183 ______________ 

Acc: 91.04–96.8% Acc: 91.04–96.8% 

3 hidden layer models 4–22 11–91 22–91 

Acc: 92.37–88.52% Acc: 92.37–88.52% Acc: 92.37–88.52% 
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Fig. 4 Comparison of accuracy achieved by HAR with GAIN for data recovery 

Table 2 provides details on the hidden layer configurations we use for the GAIN. 
As shown in the table, for the 2 hidden layer models, we vary the number of neurons 
in both first and second layers from 4 to 183. We also work with 3-layer models 
and vary the number of neurons in the first hidden layer from 4 to 22, while for 
the second hidden layer we vary from 11 to 91, and lastly, we vary the number of 
neurons in the third layer from 22 to 91 neurons. For each configuration, we use a 
uniform mix of missing data percentages and obtain the accuracy. 

Figure 4 shows the overall recognition accuracy for each configuration as a 
function of the number of weights. Increasing the number of weights leads to higher 
accuracy while incurring a higher overhead. Therefore, designers must choose 
an architecture that provides the optimal trade-off between the accuracy, device 
memory constraints, and the overhead. To this end, we implement a three hidden 
layer architecture with 4 neurons in the first layer, 11 neurons in the second layer, 
and 45 neurons in the third layer. We use this architecture since it fits in the memory 
of the TI CC2652R processor while providing a high accuracy. Our measurements 
on the TI CC2652R processor show that GAIN takes 9 ms for the stretch sensor and 
15 ms for each accelerometer direction to recover the data. Moreover, the energy 
consumption is 99 . µJ and 168 . µJ for stretch and accelerometer, respectively. These 
overhead values amount to less than 10% overhead for each activity. 

Summary HAR is an essential component of personalized healthcare and activity 
monitoring. However, most classifiers designed for HAR do not consider missing 
data in their training process, which can lead to reduced accuracy in real-world 
usage. To address this issue, we proposed an adaptive imputation algorithm that 
recovers missing sensor data before activity segmentation. Experiments with three 
publicly available datasets showed that the proposed algorithm effectively recovers
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sensor data and achieves accuracy that is comparable to the accuracy with clean data 
while using the same classifier weights. 

5 Conclusion 

Wearable devices are being increasingly used for health monitoring, rehabilitation, 
and fitness applications. These applications are enabled by the advances in edge 
machine algorithms that are able to accurately process sensor data to fulfill user 
needs. However, the edge machine learning models face a number of robustness 
challenges including sensor data shift, missing samples, and energy constraints. 
This chapter reviewed recent methods to address the reliability challenges and 
presented some future research opportunities to improve the reliability of edge 
machine learning algorithms for wearable devices. We also presented a case study 
on the HAR application to highlight the reliability challenges as well as demonstrate 
the effectiveness of the recently proposed GAIN approach for recovering missing 
data. Our case study shows that recovery of missing data at runtime using GAIN is 
a promising approach to enable reliable HAR classifications. 
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Efficient Deep Vision for Aerial Visual 
Understanding 

Rafael Makrigiorgis, Shahid Siddiqui, Christos Kyrkou, Panayiotis Kolios, 
and Theocharis Theocharides 

1 Introduction 

Embedded visual AI is a growing trend in applications requiring low latency, real-
time decision support, increased robustness and security [14, 15]. An example 
of this is the increasing use of Unmanned Aerial Vehicles (UAVs) for a number 
of applications as a remote sensing platform, such as road traffic monitoring 
[19, 23], search and rescue [25], and precision agriculture [24]. Recent technological 
advances such as the integration of camera sensors with onboard processing provide 
the opportunity for new UAV applications such as (i) detecting and classifying 
infrastructure faults during routine inspections, (ii) identifying and tracking people 
of interest, locating objects, and flagging unusual situations, (iii) locating people 
who are lost, etc. 

The aforementioned capabilities are enabled by recent advances in deep learning-
based scene understanding, and convolutional neural networks (CNNs) in particular, 
that provide remarkable opportunities for computer vision-based applications. In 
such scenarios, the vision algorithms need to deploy on resource-constrained 
embedded devices on UAVs that support high-resolution cameras for applications 
beyond photography, such as environmental and infrastructure monitoring. How-
ever, deep learning algorithms are computationally very intensive and not suitable 
for onboard processing on small devices such as UAVs due to battery/power 
constraints and are usually processed via the cloud. For certain scenarios, however, 
where the system operates in remote areas with limited connectivity, this can 
result in unwanted response latency which can degrade performance, a potentially 
catastrophic scenario in safety-critical applications. Thus, processing information 
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Fig. 1 Efficient visual understanding for UAVs requires optimizations at different levels, from data 
reduction to deep neural network architecture exploration, and hardware-driven model adjustments 

at the edge can not only eliminate unwanted lag issues but also partially handle 
security problems since the data are not transmitted and sensitive data cannot be 
intercepted. 

A lot of research has been conducted to address the challenges of visual percep-
tion using UAV imagery. A few notable examples are detecting vehicles for traffic 
monitoring scenarios in [13] and disaster management in [1]. Processing visual 
data information has seen significant accuracy and performance improvements due 
to advancements in deep learning and technologies in Graphical Processing Units 
(GPUs). However, relying on hardware improvements alone is not by itself sufficient 
to provide the optimal power/performance trade-offs necessary for edge and IoT 
applications. Hence, in this chapter, we highlight a body of work that aims to explore 
different techniques that in tandem with embedded hardware improvements can lead 
to better efficiency for edge applications. The described techniques as depicted in 
Fig. 1 provide a way toward a more holistic optimization by considering all aspects 
from the data to the AI model, as well as hardware aspects. These techniques are 
presented in the subsequent chapters where improved performance and efficiency 
are demonstrated compared to standard approaches. 

2 Domain-Specific Small ConvNets for UAV Applications 

Typically, we use hardware accelerators to speed up compressed and quantized 
versions of well-known models because the underlying operations are highly 
parallel. What if we also try and optimize the model directly for the application 
by only using the right amounts and types of each operation? In this section, we will 
demonstrate some use cases where a small neural network is capable of providing 
adequate performance. 

Small deep neural networks have many desirable properties and advantages that 
we can see across their lifetime cycle and make them more easily deployable 
on embedded processors where computation and even more so memory are at a
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premium. In addition, being able to store the model on-chip saves on power as it 
avoids off-chip memory access which consumes order of magnitudes more power. In 
addition, to inference, small neural networks facilitate faster training iterations and 
more easily updatable over the air (OTA). So whenever a remote system encounters 
a situation where it is not confident in its predictions or may require retraining, then 
we can send less data even from a lower bandwidth network. Finally, when using 
smaller neural networks, it is easier for multiple vision tasks to run on the same 
platform, e.g., object detection and classification. 

But it is not only the computational and technical characteristics that need 
to be considered, but many of the operational characteristics also change when 
considering edge applications. In most cases, these are narrow-domain applications 
that need to recognize a few classes compared to the generic models trained on 
ImageNet [6], and they have requirements for real-time processing so that a decision 
or action can be taken in reasonable time and need to operate under limited energy 
and resources. So, for many applications, the full capacity of ImageNet pretrained 
models could be unnecessary which provides opportunities to explore smaller deep 
learning models in edge applications. 

The main principles behind the design of smaller models, as shown in Fig. 2, 
are the balance between the number of parameters, the downsampling rate, and 
the operations performed within the network. The number of parameters usually 
impacts how many convolutions we have in the model, and this can affect the FLOP 
demands. Aggressive downsampling can harm the accuracy of a model even though 
it makes it faster. While the number of channels and the type of convolution also 
impact the performance. Next, two use cases for UAV applications are presented 
where smaller neural networks with architectural modifications are capable of 
providing competitive performance compared to traditional deep learning models. 

Fig. 2 Main approaches for producing smaller and more efficient neural networks. (a) Reducing 
input image resolution. (b) Using efficient operators like depthwise convolution if it is implemented 
efficiently on the underlying hardware. (c) Early downsampling of feature maps can improve 
processing speed
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2.1 Disaster Classification 

The first use case will demonstrate the use of UAVs for patrolling and automated 
recognition of disaster events. When a disaster strikes, there is limited time to act, 
and hence, the objective is to develop an automated platform for rapid deployment 
and large area coverage. Coupled with an automated path planning software, a UAV 
can navigate a monitored area and automatically recognize different events through 
onboard processing of its camera feed. Since connectivity is not guaranteed in such 
cases, this should be done in a way that is suitable for the embedded hardware of 
UAVs and in real time. 

2.1.1 Network Design 

For this application, a small neural network is designed that features a balance 
between the number of parameters, the downsampling rate, and the operations 
performed within the network. First, we design a basic block that is suited for 
processing images where the object/area appears at varying resolutions such as 
in UAV imagery. Specifically, this block is referred to as Atrous Convolutional 
Feature Fusion (ACFF) block (shown in Fig. 3) that relies on depthwise atrous/di-
lated convolutions to aggregate context information at multiple resolutions. Each 
dilated convolution is factored into depthwise convolution that performs lightweight 
filtering by applying a single convolutional kernel per input channel to reduce the 
computational complexity. The intuition is to take advantage of the different dilation 
rates since each path may peek up features at different object/region resolution due 
to changes in altitude. Another advantage of using dilated convolutions is that the 
same number of parameters and computations are needed regardless of the size of 
the kernels in the block. Prior to processing the input feature map, a .1×1 convolution 
filter is applied to reduce its size and then expand it after the fusion of the dilated 
convolutions. 

Fig. 3 Atrous Convolutional Feature Fusion Block
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Other properties of the network geared toward more efficient processing on edge 
devices are reduced number of 16 channels at the first layer and downsampling with 
strided convolutions. This is particularly important in achieving better performance 
since the image resolution at this stage is at the highest. This first convolutional 
block is a standard convolution. Then, the network follows a canonical architecture 
of ACFF blocks with a progressive reduction of spatial resolution with an increase 
in depth with up to 256 channels at the last layer. To further reduce the number of 
parameters, the fully connected layers that are usually employed in classification 
networks are replaced with global pooling operations. Finally, the network depth is 
maintained at 7 blocks since deeper networks resulted in saturating performance. 
Additionally, modifications were made to the activation function in order to make 
it more amicable to quantization. First, the leaky variant of the ReLU activation is 
used that permits for the gradient to flow for negative input values. In addition, the 
maximum activation is capped to the value of 255 to allow for easier quantization to 
8 bits. Finally, we have two operating modes; during training, the full range of the 
capped ReLU is used, while during inference, the negative values are zeroed. These 
minor modifications allow optimizing for lower precision execution. We refer to this 
architecture as EmergencyNet [18]. 

2.1.2 Experiments and Results 

In this section, the experimental evaluation of small neural network is discussed 
with results from the experimental evaluation of the approach on an actual embed-
ded platform. First, the improvements over existing networks are validated on 
the developed dataset from [17], and results of the effectiveness are presented. 
Real experiments have also been conducted in two different settings: (i) onboard 
embedded processing, where all computations are performed onboard the resource-
constrained UAV device, and (ii) remote processing, in which the UAV transmits the 
captured video to the controller ground station for processing on an Android tablet 
that controls the UAV. Herein, we focus on the former. It is worth noting that the 
primary interest is in single image processing speed and as such the evaluation phase 
is carried out with a batch size of 1 since this is common in real-time streaming 
applications where the camera outputs each frame sequentially (Table 1). 

The small neural network is compared with some standard networks, and results 
are summarized in Table 1. First, with regard to the accuracy of the pretrained 
models, it is observed that VGG16 outperforms all of them with a .96.4% F1-score 
with ResNet50 closely following with .96.1%. However, both networks have very 
high demands for computational and storage requirements making them unsuitable 
for resource constraint systems and real-time use. The latest iteration of MobileNet, 
i.e., V3, achieves the highest accuracy among the MobileNet family of networks 
with a score of .95.3%. However, it requires an order of magnitude more parameters 
and memory. Other MobileNet versions (V1 and V2) demonstrate similar score 
with the V2 version resulting in a slightly higher FPS. EfficientNet provides a high 
accuracy of .96.0% due to its elaborate architecture. However, the parameter count
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Table 1 Comparison with existing approaches 

Model Parameters Memory (MB) F1 Score (%) FPS (1/s) 

VGG16 [30] 14,849,349 59.39 96.4 1.1 

ResNet50 [8] 24,113,541 96.4 96.1 2.9 

MobileNet V1 [10] 3,492,549 13.9 95 7.9 

MobileNet V2 [29] 2,587,205 10.3 95.2 9.3 

MobileNet V3 [9] 3,046,037 12.1 95.3 9.0 

EfficientNet (B0) [32] 4,378,785 17.5 96.0 10.4 

SqueezeNet [11] 698,917 2.7 91.5 6.6 

ShuffleNet [22] 4,282,425 17.1 91.1 4.5 

Xception [5] 21,387,309 85.549 95.3 2.3 

Fire_Net [33] 5,235,860 5.2 90.5 9.8 

EmergencyNet [18] 90,892 0.368 95.7 24.3 

Fig. 4 Example of classification results on sample images 

and memory requirements are higher than EmergencyNet. Other networks fail to 
provide adequate accuracy and require a higher number of parameters. It is clear 
from this analysis that it is worth investigating specifically tailored solutions for 
resource-constrained applications in order to provide an improvement across all 
design aspects. 

Furthermore, some classification results are shown in Fig. 4. It is interesting to 
note that similarly appearing patterns between images do not confuse the network. 
For instance, the presence of cars, which is more often associated with traffic 
incidents, does not cause the network to fail which outputs the correct classification 
as flood. Overall, these results are promising since a small network manages to 
match or at least be very close to other more general networks while the processing 
speed and subsequent frame-rate improvements provide adequate trade-offs for edge 
applications.
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2.2 Vehicle Detection 

In the second use case, we describe how the problem of top view vehicle detection 
from UAV aerial imagery is tackled through the exploration of small convolutional 
neural networks. While there has been quite some research on reducing the 
complexity of well-studied ConvNet models in the form of parameter compression 
and quantization, there has been little effort on developing specialized solutions for 
resource-constrained embedded vision systems such as UAVs. This section briefly 
outlines the end-to-end investigation of different single-shot CNN detectors for 
drone-based vehicle detection. 

2.2.1 Network Design and Approach 

Our approach in [16] focuses on the exploration of an efficient and lightweight 
network by investigating different network design considerations. The goal is to 
keep the accuracy as high as possible but design a faster model. We develop several 
models to explore the effect of a different number of parameters. The models are 
trained to detect only 1 class, which, in our case, is vehicles viewed from top. We 
explore the impact on performance by changing the structure of the network such as 
the number of filters, the number of layers, image size, the number of convolution, 
and the pooling layers. The design approaches considered are the following: (1) 
number and size of filters. Firstly, we use pooling layers sparingly and use a small 
number of filters in each layer in order to get a smaller network which leads to 
a faster detection. The largest number of filters in a network is 256 for the final 
convolutional layer. As the network goes deeper, we double the number of filters. 
In total, there are 9 convolutional and 4 max-pooling layers. (2) Input Image Size: 
Input size is a parameter that can increase accuracy but decreases the detection speed 
since a deeper network will be required to reach the final bounding box regression 
size. Moreover, a larger input image implies more convolutions per feature map and 
in some cases more bounding boxes to account for. 

Four network architectures are derived (SmallYoloV3, TinyYoloVoc, TinyY-
oloNet, and DroNet). These have different parameters including the layers and the 
type of each layer (conv, maxpool, detection) together with the configuration of the 
layers in terms of the number of filters, the size of filters in each layer, and the 
input/output size of the feature maps. A common theme, however, is the use of . 3×3
and cheaper .1 × 1 convolutional filters, as well as the progressive reduction of the 
feature maps size by a factor of 2 and use of a lower number of filters at early layers. 
Finally, feature shortcut connections are used to further improve accuracy for small 
objects. 

To find the CNN that optimizes both accuracy and computation cost, a custom 
metric is employed. Given a model instance, it captures both the detection accuracy 
and the achieved runtime on the target hardware platform. It is defined as a 
composite linear combination metric that combines various performance indicators.
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By following this methodology, the resulting CNN model yields the highest 
performing balance between detection accuracy and faster execution. 

.Score(w) = w1 × FPS + w2 × IoU + w3 × Sensitivity + w4 × Precision (1) 

The score is parameterized with respect to a vector of weights which sums to 
one, where each weight captures the application-level importance of each metric 
and is normalized between [0-1]. Since real-time performance is desired, the FPS is 
prioritized with a weight of 0.4 over other three accuracy-related metrics which are 
equally weighted with 0.2. 

2.2.2 Results 

In this section, we present a comprehensive quantitative evaluation of the four CNN 
architectures. The basic network models are trained and tested for various input 
sizes using the constructed vehicle dataset as shown in Fig. 5. Table 2 shows the 
performance comparison of these models. In our test set, with 386 . × 386 as input 
resolution, TinyYoloNet achieves 10. × higher performance than TinyYoloVoc with 
decreased detection sensitivity and precision by 20% and 10%, respectively, and an 
IoU drop of 0.11. The network SmallYoloV3, with 386 . × 386 resolution, achieves 
the highest frame rate of 23 FPS among all network designs. Nevertheless, the 
substantial reduction in the number of weights leads to a decrease in sensitivity 

Fig. 5 Example of detection results on sample images 

Table 2 Comparison of the different models 

Model TinyYOLOVoc TinyYOLONet SmallYOLOv3 DroNet 

FPS 1.2 12 23 22 

IoU 0.36 0.25 0.11 0.22 

Sensitivity(%) 87.8 68.2 34.7 69.4 

Precision (%) 90.5 80.6 69.1 76.5 

Size (MB) 63.1 6.4 0.115 0.283 

Score 0.62 0.68 0.69 0.83
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which is 53% lower and prohibits us from using it for robust vehicle detection. 
There are significant performance gains starting from TinyYoloVoc to TinyYoloNet 
followed by SmallYoloV3 and then to DroNet. For example, comparing these 
models for the same input size of 386, the performance of DroNet is 30. × faster 
compared to TinyYoloVoc with a minimal drop of 0.08 on the IoU. Moreover, 
there is a limited drop of 2% and 6% for the detection sensitivity and precision, 
respectively. 

Comparing DroNet with different models demonstrates the effect of a composite 
score function. In particular, with respect to the smaller smallYoloV3 network, it 
provides lesser FPS while being more accurate. On the other hand, compared with 
the largest tinyYoloVOC, it is less accurate but much faster. The model size is also 
suitable for edge applications with limited resources. Overall, it provides the best 
trade-off between accuracy and performance. 

The analysis is performed on the Odroid-XU4 with an Octa-core Samsung 
Exynos-5422 CPU which is lightweight and capable of being powered by the UAV 
platform. Overall, the DroNet network maintains a performance of 10 FPS with the 
accuracy maintained around 95% for .512× 512 image resolution. 

3 Processing Aerial Images with Tiling 

The previous section dealt with design of small, domain-specific deep neural 
networks. However, optimizing the network alone might not be enough to obtain 
a high performing system. In many cases, when a UAV flies at a high altitude (e.g., 
500 meters) and covers a wide field of view, the image resolution must be large 
enough to recognize targets. High-resolution images, however, imply an exponential 
increase in the amount of data processed, and most of the times there is a lot of 
redundant data. Hence, even a small neural network would require significant time to 
process such high-resolution images. Thus, it is necessary to investigate intelligent 
data reduction techniques. Some works have attempted to improve UAV imagery 
detection utilizing hybrid approaches such as combining deep learning with SVM 
[2] or two-stage Faster R-CNN [4]. However, embedded devices still do not have 
the necessary processing power to process such high-resolution frames in real time. 
Recent works have also focused on developing low-power hardware or designing 
CNNs architectures to retain as much accuracy as possible with real-time processing 
capabilities. However, such optimizations may require a fixed input size that is 
usually multiple times smaller than a desired high-resolution image. 

From a UAV’s perspective, objects may appear too small and hence challenging 
to detect. Therefore, approaches beyond CNN architectural design should be 
implemented to maximize the efficiency of such applications by reducing the data 
to be processed without losing significant information from the input images. 

The work presented herein focuses on optimizing the accuracy and performance 
of onboard UAV object detection. Several approaches have been developed and 
tested using tiling methods. Tiling is a technique, where, upon receiving an image
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Fig. 6 Proposed tiles for processing base on the selection process. This figure was taken from our 
previous work in [27] 

frame, overlapping slices of the image are created and processed individually or in 
parallel (e.g., Fig. 6). Using this technique, we avoid resizing the original image, 
keeping all the information and features of the image at its original resolution. For 
this purpose, we propose the EdgeNet framework [27]. EdgeNet framework can be 
utilized with predefined architectures even on higher resolution images, and it is an 
intelligent way to minimize processing data while increasing accuracy and system 
performance. EdgeNet framework consists of three main stages, Initial Position 
Estimation, Tiling and CNN Selection, and Tracking using Optical Flow. 

3.1 Approach 

The presented approach, referred to as the EdgeNet framework, aims to simulta-
neously improve the overall accuracy and performance while reducing the power 
consumption when processing high-resolution images on an edge device. The 
EdgeNet framework’s main idea is to utilize a pool of CNN detectors and select 
the optimal one based on the needs of each frame to be processed. Specifically, by 
scheduling different processing stages, where different CNNs are used, and allocat-
ing a varying number of times steps to each stage, we can obtain a good trade-off 
between accuracy and speed. An evaluation of multiple algorithmic configurations 
and parameters is possible through which to identify the time allocation for each 
stage in the framework and accordingly analyze the accuracy and the performance 
of each configuration. The EdgeNet framework is comprised of three-stage pipeline 
as depicted in Fig. 7. Following is the description of each individual stage.
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Fig. 7 EdgeNet Framework Pipeline adapted from [27] 

3.1.1 Initial Position Estimation 

The purpose of this stage is to help the framework choose the necessary method 
for the following stages by constructing the initial positions of the objects in a 
frame. For this task, the efficiency of a Convolutional Neural Network is needed, 
and hence, DroNet which is aforementioned is utilized. However, the structure of 
DroNet is extended by utilizing upsample feature maps from previous layers, to 
achieve detection of objects in multiple sizes. This method sufficiently improves 
the detector’s accuracy [28] for small objects, such as pedestrians. From now on, 
this network is referred to as .DroNet_V 3. For this stage, a more traditional way 
is utilized, where the input frame is resized and then passed through . DroNet_V 3
producing the bounding boxes of the detected objects in the image.
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3.1.2 Tiling and CNN Selection 

The purpose of the second stage of the framework is to effectively reduce the 
data that needs to be processed. To achieve this, distinct tiles around initial target 
positions are selected to figure out the minimum region of the image that needs 
processing. The selection method uses the detected positions of the objects that 
were previously estimated. For illustration purposes, the proposed DroNet is utilized 
because it can operate on multiple input sizes depending on the tile size, ranging 
from 128 to 512, and will be referred to as .DroNet_T ile. In order to select an 
appropriately sized model, we need to first perform a profiling and benchmark 
CNNs with the distinct input sizes, as shown in Table 3. The best CNNs out of 
the pool will be chosen, for each time period, to guarantee the least processing time. 

Furthermore, the amount of objects that are included in a tile is utilized as a 
guiding factor for the selection. The candidate tiles that cover each object must 
be identified by this procedure. Hence, a number of tiles are created for each of 
the detected boxes, as seen by the first stage in Fig. 7. The detected objects are 
positioned at the corners of the tiles as shown in Fig. 8. Then, different sizes of tiles 
are also generated, more specifically five total sizes are used: 128, 256, 352, 416, 
and 512, which matches the different sizes in the CNN pool. A total of 20 tiles are 
generated for each proposed object. Then, each tile is evaluated using a selection 

Table 3 Processing time of 
.DroNet_V 3 and 
.DroNetT ile for distinct 
input sizes 

CNN Input size (pixels) Processing time (sec.) 

DroNet_V3 512 0.08 

DroNet_Tile 512 0.03 

DroNet_Tile 416 0.02 

DroNet_Tile 352 0.014 

DroNet_Tile 256 0.008 

DroNet_Tile 128 0.002 

Fig. 8 Different tile proposals, with respect to the position and size of the tiles, for an object in 
the image. (a) 128 . × 128, (b) 256 . × 256, and (c) 352 . × 352 adapted from [27]
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process based on the objects it covers and its associated processing time. Also, an 
Effective Processing Time (EPT) is calculated for each one of the 20 tiles for each 
object. Basically, EPT is the number of object covered, divided by its corresponding 
processing time that can be found in Table 3. The selected tile is the one that achieves 
the minimum EPT. Then, we combine all the tiles that are created, discard those 
which cover duplicate or with fewer objects and are finally left with those with the 
minimum EPT. 

An example is depicted in Fig. 6 where .128 × 128 is selected from the selection 
process. DroNet with 128 size is used to process each tile. The total processing time 
for this particular example is .4 × 0.002 = 0.008 s. Compared to .DroNet_V 3, which 
takes 0.05 s to detect, it shows significant performance boost. 

3.1.3 Optical Flow-Based Tracker 

This is the third and the last stage of the EdgeNet framework. This tracker was 
selected due to its fast execution time even with a huge amount of tracked points 
in an image. It uses Lucas–Kanade [21] optical flow tracker, which solves the basic 
optical flow equations for all the pixels by the least squares criterion. Its principle 
is that the motion of objects in sequential frames is almost constantly relative to the 
given object. Apart from this selection though, any other tracker can be utilized on 
this stage, but it will affect the accuracy or performance, respectively, depending 
on the tracker and the requirements of the application. The purpose of this stage is 
(1) to simultaneously track objects along with stages 1 and 2 and cooperatively be 
used to verify the location of the objects and (2) to reduce the overall processing 
time of EdgeNet by utilizing the tracking for a few iterations prior to needing to 
look at the whole image again. The tracker operates on each of the detected boxes 
by calculating a centered point for each. All of these points are also utilized as 
the starting points of the tracker along with the corresponding image. A time-slot 
combination is selected that determines the amount of times that each process will 
be executed based on the application requirements and the processing specifications 
of the device the framework runs on. 

3.2 Evaluation of EdgeNet Framework 

In this section, an extensive evaluation of EdgeNet’s framework using different 
configurations is presented. The configuration varies in the number of frames, which 
correlates to the amount of time, that is allocated for each stage. More specifically, 
we are using the notations .N_S_1 - .N_S_2 - .N_S_3, to present the number of frames 
that can be allocated to each stage. For instance, if a time-slot combination of . 1−5−5
is selected, it means that the first stage will run for 1 frame, and the second and 
third stages will run for 5 frames each. Furthermore, we provide comparison and 
an extensive evaluation of three single-shot models .DroNet_V 3, .DroNet_T ile, and
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.T inyYoloV 3. Using this method, we show that any approach that does not utilize 
tiling or some form of dynamic selection has decreased accuracy performance due 
to the reduced image resolution. Also, we perform comparisons on three different 
devices that facilitate different use cases. The same dataset is used to train and 
test all the CNNs and initially compared on a low-end laptop without a GPU1 

and also tested on two embedded devices, an Odroid device2 and a Raspberry Pi3. 
The dataset used consisted of 198 sequential images, captured from an aerial-view 
perspective and having 988 pedestrians in total. 

3.2.1 Metrics 

The following metrics are used to analyze and evaluate different approaches on the 
same test dataset: 

Sensitivity (SEN) This metric is usually used to represent accuracy as it returns the 
percentage of the correctly classified objects. To calculate it, we divide the True 
Positives (.T pos) and False Negatives (.Fneg) of the detected objects. 

.SEN = T pos

T pos + Fneg
(2) 

Average Processing Time (APT) As the name suggests, this metric calculates the 
average time needed to process a single image from a sequence of images. To 
calculate it, we get the average processing time from all the .Ntest_samples test 
images, where . ti is the processing time for image i. 

.APT = 1

Ntest_samples
×

Ntest_samples∑

i=1

ti (3) 

Average Power Consumption (APC) This metric represents the input energy (mea-
sured in Watts) that is needed to process a single image from a sequence of images 
for a specific platform. It can be calculated by summing up the power consumption 
of each image divided by the total number of test images, where . pi is the energy 
consumption for an image i. 

.APC = 1

Ntest_samples
×

Ntest_samples∑

i=1

pi (4)

1 Quad Core 1.2GHz Broadcom 64bit CPU. 
2 Samsung Exynos-5422 Cortex—A15 2Ghz and Cortex—A7 Octa-core CPUs with Mali-T628 
MP6 GPU. 
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3.2.2 Configuration Analysis 

In this section, we first investigate how different configurations affect the overall 
performance and accuracy of each stage of the framework for the application of 
people detection. Since stage 1 is the most time-consuming one, we set its time 
allocation to 1 frame. For the remaining stages 2 and 3, the time allocation can 
vary. Figure 9 depicts the average sensitivity and processing time for multiple 
configurations for our in-house person test dataset. By analyzing this figure, we can 
notice that stage 3 impacts the performance of the framework as its time allocation 
increases. However, there is no drawback for sensitivity. On the other hand, when 
increasing the time spend on stage 2, the processing time decreases, but sensitivity 
decreases as well. In general, when increasing the time spend on stages 2 and 3, we 
delay the use of stage, 1 which utilizes .DroNet_V 3 for full frame processing, and 
therefore, the overall processing time decreases. Thus, since stages 2 and 3 utilize 
initial target positions from stage 1, this also leads to a decreased sensitivity. As a 
result, choosing the right values for each frame is really important in order to have 
the optimal solution in terms of performance and accuracy. In our case, we want 
to have the highest possible accuracy with the higher possible performance, and 
therefore, we chose .EdgeNet1− 3− 5 as the best configuration to perform analysis 
on edge platforms. 

Fig. 9 Comparison of average processing time (CPU) and sensitivity between different EdgeNet 
configurations for different time frames for each stage. This figure was taken from our previous 
work in [27]
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3.2.3 Performance Analysis on CPU, Odroid, and Raspberry Platforms 

In this section, we evaluate the average processing time, power consumption, 
and sensitivity of EdgeNet on multiple platforms, by comparing three single-shot 
CNNs, i.e., .DroNet_T ile, .DronNet_V 3, and .T iny−YoloV 3. The platforms used, as 
aforementioned, are a Raspberry Pi 3, an ODROID device,3 and a low-end laptop 
CPU.4 

Tables 4 and 5 demonstrate the average power consumption and average 
processing time results of the CNNs and EdgeNet for all three platforms. As 
seen in the tables, the selected EdgeNet configuration is leading in both inference 
speed and power consumption. As a result, with inference speeds below 0.06 s and 
consumption power ranging from 1.5 to 9Watts, it achieves the goal of having a real-
time framework for low-powered edge devices. Also, it is interesting to note that 
.DroNet_T ile always comes off second best, while models such as .T iny − YoloV 3, 
which are pretrained on massive datasets, perform worst with regard to power and 
processing time. 

Moreover, upon observing the results from the sensitivity, as seen in Fig. 10, 
we can see that .DroNet_T ile even though it comes off second best in terms of 
power consumption and inference speed, and it comes last in terms of sensitivity, 
while .T iny − YoloV 3 comes second. On the other hand, EdgeNet achieves a . 6%
higher sensitivity than .T iny − YoloV 3, which is the largest model of all of them. 
.EdgeNet − 1 − 3 − 5 sensitivity keeps the accuracy close to .96% compared to 
others due to the fact that single-shot models lose object resolution and features 
when resizing the image that leads to a decreased accuracy. Overall, by reducing 
the processed data, having smaller input-sized CNNs and utilizing the tracker, it 
directly impacts the processing time which leads to reduction of computation power 

Table 4 Average Power Consumption measured in Watts 

EdgeNet-1-3-5 DroNet_Tile DroNet_V3 Tiny-YoloV3 

RP3 1.5 1.7 2 2.4 

ODROID 3.6 3.8 4 5 

CPU 9 10 15 23 

Table 5 Average Processing time on different platforms 

EdgeNet-1-3-5 DroNet_Tile DroNet_V3 Tiny-YoloV3 

RP3 0.06 0.09 0.22 0.85 

ODROID 0.05 0.1 0.3 1 

CPU 0.02 0.03 0.08 0.59

3 Samsung Exynos-5422 Cortex—A15 2Ghz and Cortex—A7 Octa-core CPUs with Mali-T628 
MP6 GPU. 
4 Quad Core 1.2GHz Broadcom 64-bit CPU. 
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Fig. 10 Sensitivity of Tiny YoloV3, .DroNet_V 3, .DroNet_T ile and EdgeNet on different 
platforms. This figure was taken from our work in [27] 

on all platforms. Therefore, EdgeNet is a framework capable of providing real-time 
processing pipeline for mobile/edge devices in terms of accuracy, inference speed, 
and power consumption. 

4 Combining Tiling with Quantization 

Embedded deployment of neural networks (NNs) are constrained by limited amount 
of memory, compute, power budget, and real-time latency requirements. As such, 
relying on small models and data reduction techniques might not be enough. 
Hence, a range of hardware-driven neural network optimization techniques have 
been proposed in the literature for efficient deployment. Among those, quantization 
of neural networks is of special interest since many embedded platforms support 
integer only arithmetic with INT8 quantization [12]. These include but are not 
limited to some variants of ARM Cortex-M, RISC-V GAP-8 a system-on-chip, 
and Google’s Edge TPU. Quantization, in general, is a method to map from input 
values in a large (often continuous) set to output values in a small (often finite) 
set, e.g., rounding and truncation [7]. In the context of neural networks (NNs), 
quantization allows network weights and activation functions to be converted from 
floating point operations to either fixed point or mixed precision operations, hence
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reducing model’s memory footprint and RAM consumption and improving latency 
and power consumption. Using TVM quantization library [3, 20] has shown 3.89. ×, 
3.32. ×, and 5.02. × speed-up for ResNet50 [8], VGG-19 [30], and inceptionV3 [31], 
respectively. 

Existing object detectors increase inference efficiency by operating on aggres-
sively downsized, lower resolution images which causes significant information 
loss and hence performance degradation for small object detection. In addition, 
quantizing an already resized image further reduces detection accuracy. Therefore, 
in addition to using quantization for faster inference, an additional mechanism for 
maintaining high image resolution is desired for highly accurate multi-scale object 
detection. Our work in Sect. 3 proposes a mechanism to intelligently select and 
process more relevant portions (tiles) of a high-resolution image, hence maintaining 
high detection accuracy while still improving the inference times. Thus, combining 
the aforementioned techniques of small network design, with image data reduction, 
and network quantization can potentially lead to further improvements. 

4.1 Quantization Techniques 

The way an NN is quantized can vary in many aspects. A quantization is said to 
be uniform if all quantization levels are equally spaced and non-uniform otherwise. 
Similarly, a quantization is said to be symmetric if the clipping range of the signal 
is centered at zero and asymmetric otherwise. Moreover, if the clipping range of 
NN activations is pre-computed, the quantization is said to be static. Dynamic 
quantization is also possible and generally results in higher accuracy but has 
higher computational overhead because activation clipping range is calculated for 
each input during real-time inference. Quantization can further be categorized into 
layerwise, groupwise, and channelwise depending upon what set of parameters is 
being used to estimate the clipping range of the activations. 

Quantization is also classified by “when” it is performed. The most widespread 
trend is post-training quantization where the neural network is first trained till 
convergence and quantized only when ready for deployment. Recently, notable 
accuracy gains have been reported by using quantization-aware training where a 
network is first trained till convergence, and then some of its layers are quantized 
and the network is fine-tuned with either mixed precision or integer-only weights. 
This is intended to make network already aware of it being quantized and fine-tune 
accordingly, hence named “quantization aware training.” For a detailed review of 
quantization, we refer the reader to [7]. 

4.2 Approach 

In this section, we investigate a case study for object detection using quantization 
and selective tiling which was discussed in the previous section. In addition, the
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model under consideration is DroNetV3, which was also introduced in the previous 
section. Hence, we study the impact of quantization and tiling techniques on 
detection accuracy and latency. 

As discussed before, aggressive image downsizing leads to poor detection 
performance in case of smaller objects of interest. In our previous work, [26] shows  
how to split a larger image into smaller tiles and process only the relevant ones. 
Since distributing the tiles uniformly across image leads to a drastic increase in the 
number of sub-images to be processed by the CNN, two statistical techniques are 
proposed to select and process only relevant tiles while also keeping track of non-
active tiles. 

The first technique is making use of Intersection over Union (IoU) metric, where 
each newly detected object’s bounding box (bbox) is compared to detected boxes 
in the previous frames and classified as either new or old object. The position 
of the objects in previous frames is maintained in a memory buffer. The second 
technique uses statistical metrics such as the number of objects detected in each tile 
and prioritizes tiles with a higher number of detected objects as well as those that 
have not been selected recently to be processed in the subsequent frames. These 
techniques combined allow an intelligent selection of image regions to be fed into 
a smaller and faster object detector thus keeping higher resolution intact leading to 
higher accuracy and real-time performance due to selective processing. 

A post-training quantization of 8 bits is applied for both the input and the selected 
convolutional neural network detector. With the use of quantization, multiply–add 
operations are transformed into lower precision operations which lead to large 
computational gains and higher performance. This implementation is based on the 
Darknet framework and CUDA-based neural network framework. The combined 
tiling and quantization approach can then be analyzed with respect to resulting 
accuracy and processing time for the application of people detection from UAV. 

4.3 Experimental Results 

In case of YOLOV3 and Tiny-Yolov3, speed-ups up to .1.4 − 1.7× are observed. 
However, with DroNet and DroNetV3, i.e., relatively smaller networks, the speed-
up is limited to .1− 1.4×. This is due to significant performance overhead caused by 
the additional processing time for input image quantization as compared to network 
inference time. The rest of the experiments are conducted using DroNetV3 which 
achieved highest speed-up using input resolution of .352× 352. 

Next, we evaluate combinations of quantization with different tiling schemes and 
report accuracy, IoU, and average processing time (APT) metrics. All networks are 
trained on a UAV-based people detection dataset consisting of 1500 images and a 
total of .60,000 people. 

Table 6 shows the impact of resizing, processing a single, all or only selected 
tiles [26], and applying quantization to all base cases. Resizing the input causes . 20%
accuracy drop and quantization on top drops another . 8%. This result is expected
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Table 6 Results of quantization and tiling with resizing, single tile selection, all tiles selection, 
and intelligent tile selection 

DroNetV3 
DroNetV3 + 
Resizing 

DroNetV3 + 
Single Tile 

DroNetV3 + 
All Tiles 

DroNetV3 + 
Selective Tiling 

Baseline Models 

Accuracy 98.929 79.643 92.143 99.464 96.071 

APT 0.432 0.089 0.087 0.680 0.132 

IoU 0.643 0.415 0.496 0.650 0.563 

Quantized 
models 

Accuracy 100 71.429 94.643 98.750 98.571 

APT 0.315 0.071 0.068 0.574 0.098 

IoU 0.648 0.312 0.494 0.619 0.562 

due to information loss of input image and model weights, respectively. However, 
resizing speeds up inference significantly, i.e., an APT of .0.432 s to .0.089 s. Since 
tiling maintains high resolution, all techniques based on tiling improve accuracy as 
compared to DroNetV3 with resizing. Even when models are quantized, accuracy 
increases from .71% to .94% − 98%, i.e., an increase of .23% to . 27%. Since the 
selective tile processing mechanism is processing .2 − 3 per frame, the processing 
time is higher than either resizing or single tiling. However, quantizing this network 
improves latency from .0.132 s to .0.098 s without accuracy degradation. A similar 
trend has been observed for IoU metric, i.e., avoiding resizing the image in general 
leads to higher IoU. Quantization reduces the IoU from .0.415 to .0.312 for DroNet 
with resizing and its quantized version. However, combining quantization and tiling 
does not degrade IoU. Overall, using a combination of quantization and tiling 
allows processing higher resolution images, hence improving latency as compared 
to original full precision detector and accuracy as compared to using resizing. 

5 Conclusion 

Deep learning and computer vision are increasingly being utilized in edge appli-
cations to provide real-time intelligence. This chapter has demonstrated various 
techniques and approaches to apply at various stages of visual processing in 
order to make algorithms more suitable for the unique demands of aerial image 
understanding with UAVs and embedded application domains. The exploration 
of small neural network design considerations and architectures can be effective 
in deploying such models on resource-constrained devices. Coupled with search 
reduction strategies and hardware-directed optimizations, the performance of such 
small models can be further improved leading to real-time power efficient solutions. 
As a future work, we aim to further improve the accuracy performance trade-off 
by investigating adaptive computation schemes through networks with multiple
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learnable exit layers, as well as dynamically changing the computation scheme 
based on context and state variables. 
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Edge-Centric Optimization of 
Multi-modal ML-Driven eHealth 
Applications 

Anil Kanduri, Sina Shahhosseini, Emad Kasaeyan Naeini, 
Hamidreza Alikhani, Pasi Liljeberg, Nikil Dutt, and Amir M. Rahmani 

1 Introduction 

Smart eHealth applications deliver critical digital healthcare services such as disease 
diagnostics, clinical decision support, forecasting health status, pro-active and 
preventive healthcare decisions, alerts for emergency intervention, etc. [20]. eHealth 
applications improve the reach and quality of healthcare services, timeliness, and 
accuracy of clinicians decisions and reduce the burden on healthcare professionals 
and overall medical expenditure [72]. Smart eHealth systems integrate remote 
sensing, continuous monitoring, wireless transmission, data analytics, and machine 
learning to deliver intelligent patient-centric digital healthcare and well-being 
services [36]. eHealth applications are particularly effective for managing chronic 
patients through continuous monitoring, extracting clinically relevant data with 
minimal intrusion [18]. 
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Fig. 1 ML-driven eHealth application pipeline 

1.1 ML in Smart eHealth Applications 

eHealth systems continuously monitor patients using wearable sensors for acquiring 
physiological parameters [17]. In addition to the bio-signals, eHealth applications 
also track behavioral and environmental parameters to contextualize the patients’ 
current situation [39]. Thus, smart eHealth applications generate huge volumes of 
heterogeneous input data, combining multiple streams of inputs from physiological, 
behavioral, and environmental parameters [20]. Analyzing such continuous stream 
of heterogeneous multi-modal raw data for predicting potential threats, accurate 
clinical decisions, and diagnostics requires broader support from the AI domain 
[25]. Smart eHealth systems are increasingly using ML algorithms for analyzing 
multi-modal input sensory data, to provide intelligent digital healthcare and well-
being services [36]. State-of-the-art eHealth applications have applied different 
ML algorithms for analyzing input data, and predicting results on diagnostics, 
potential and health status [16]. ML-driven eHealth systems work in a pipeline of 
data acquisition, filtering and pre-processing, data analysis, training, inference for 
predictive results, followed by notification to the clients [20]. Figure 1 shows the 
workflow of typical ML-driven eHealth applications, where raw data acquired by 
sensory devices is filtered and preprocessed to remove noisy components, motion 
artifacts, and anomalies. This input data is then used for extracting relevant features 
and training suitable ML models. Predictive results are achieved by inferencing the 
trained ML model, while the trained model is periodically updated with evolving 
input data. 

1.2 Collaborative Edge Computing for Smart eHealth 
Applications 

eHealth applications rely on traditional cloud infrastructure for training, storage, and 
updating of ML models and inference tasks. However, rapidly increasing volumes 
of sensory input data and uncertain network conditions imposes limitations on 
the efficacy of running eHealth applications on the cloud layer. Edge computing
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Fig. 2 Sensor–edge–cloud architecture 

paradigm brings computational intelligence closer to the sources of input data, 
minimizing the reliance of smart eHealth applications on cloud infrastructure [74]. 
Edge computing architectures have been widely adopted for deploying ML-driven 
smart eHealth applications, simultaneously handling input data, compute intensity, 
and network constraints [55]. Figure 2 shows an overview of the hierarchical multi-
layered sensor–edge–cloud architecture [5]. The sensor layer comprises sensory 
devices such as wearable sensors, smart biosensors, and sensors deployed on mobile 
and IoT devices. The sensor layer primarily acquires raw data from different 
devices, performs lightweight tasks such as filtering, and transmits relevant inputs 
to the resourceful layers in the hierarchy. The edge layer receives input data from 
the sensory devices and executes intensive tasks such as data preprocessing, feature 
extraction, lightweight ML model training, and inference tasks. More importantly, 
the edge layer also handles orchestration functionalities such as application-level 
and system-level monitoring, application partitioning, compute placement, and 
resource allocation. The cloud layer handles heavy computational tasks such as 
ML model training, updating, and storage and notifications to edge nodes on model 
updates. 

1.2.1 Example Scenario 

We demonstrate the pipeline of a quintessential edge-centric ML-driven eHealth 
application through the example of arrhythmia detection application [20]. Figure 3 
shows the data and control flows of the arrhythmia detection application [20]
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Fig. 3 Pipeline of arrhythmia detection [20] 

across the device–edge–cloud layers. Initially, raw electroencephalogram (EEG) 
signals are acquired by wearable sensory devices. The raw signals are preprocessed 
for noise removal to extract relevant features from the raw data for training an 
ML model. Considering the limited compute resources of the IoT device layer, a 
lightweight neural network (NN) model is employed to predict/detect arrhythmia. 
The predictions are notified to the client if the NN model has a higher confidence 
on prediction accuracy, while forwarding the input data to edge layer when the 
model confidence is lower. In this application, the edge layer uses the reconstructed 
EEG images for data aggregation. With relatively higher compute resources, the 
edge layer consists of a moderately intensive convolutional neural network (CNN) 
model to train on input data. The CNN model is inferred in the execution phase 
for arrhythmia detection/prediction, and the client is notified with the result. The 
cloud layer collects streaming inputs from the device and edge layers to train 
appropriate ML model, store the model, and update the model periodically with 
evolving input data. The cloud layer transmits the updated model parameters to the 
edge and device layers for running local inference tasks. Furthermore, the cloud 
layer performs advanced data analytics to generate personalized decisions for each 
client. It should be noted that the compute capabilities and thus tasks vary at each 
of the device–edge–cloud layers. Optimizing ML-driven eHealth systems requires 
such understanding on input data flows, computational requirements, and accuracy 
and performance of ML models.
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1.3 Summary 

Implementing ML-driven smart eHealth applications presents different challenges 
on sensory data acquisition, understanding application-level requirements, handling 
compute intensities of ML models, and energy and network constraints. At the same 
time, deploying such applications on multi-layered sensor–edge–cloud platforms 
exposes opportunities for selective processing through input data quality aware-
ness, choice of compute placement among edge–cloud nodes exploring energy– 
performance trade-offs, and understanding algorithmic nature of applications to 
explore accuracy–performance–energy trade-offs. Collaborative sensor–edge–cloud 
platforms enable layer-wise partitioning of smart eHealth application pipeline, to 
synergistically improve the quality of the services. In the subsequent sections, we 
present different edge-centric optimizations for ML-driven smart eHealth applica-
tions on collaborative sensor–edge–cloud platforms. 

1.3.1 Organization 

Section 2 presents an exemplar case study of pain assessment application, describing 
a sensor–edge–cloud framework integrating different edge-centric optimizations. 
This case study is then used in the following chapters to demonstrate some of 
the optimization techniques. Section 3 presents techniques for improving perfor-
mance metrics of edge-centric ML workloads through efficient compute placement 
and exploration of accuracy–latency trade-offs. Section 4 presents techniques for 
improving resilience of ML-driven eHealth applications, through sense–compute 
co-optimization. Section 5 concludes with key insights and open research directions. 

2 Exemplar Case Study of Edge-ML-Driven Pain 
Assessment Application 

In this section, we present an exemplar case study of pain assessment application, 
describing application characteristics, nature of input data, and challenges in typical 
edge-centric ML-driven smart eHealth application. We also present a modular 
framework, iHurt, for deploying ML-driven eHealth applications (pain assessment 
in this case study) on collaborative sensor–edge–cloud platforms. The iHurt frame-
work serves as a generic platform for prototyping smart eHealth applications for 
processing sensory data using ML models. Furthermore, iHurt platform provides a 
testbed for evaluating the edge orchestration, compute placement, RL agent-based 
offloading, and sense–compute co-optimization techniques presented in Sects. 3 
and 4.
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2.1 Pain Assessment 

Pain is a complex phenomenon, associated with several illnesses [70]. Pain is 
defined as “an unpleasant sensory and emotional experience associated with actual 
or potential tissue damage, or described in terms of such damage” [47]. The pain 
assessment “gold standard" relies on a patient’s self-report of their pain intensity 
on a scale of 0–10, where 0 refers to no pain and 10 represents the most severe 
pain. Pain assessment is done through tools such as Numerical Rating Scale (NRS), 
Visual Analogue Scale (VAS), and Verbal Rating Scale (VRS). There is a high 
demand for objective tools to assess patients’ pain in the clinical context. Tools are 
needed especially when the patient’s own opinion is difficult to obtain. Assessment 
of pain is particularly difficult when the ability of a patient to communicate is 
limited (e.g., during critical illness, in infants and preverbal toddlers, or in patients 
under sedation or anesthesia, with intellectual disabilities, and at the end of life) 
[10]. Inadequately treated pain has major physiological, psychological, economic, 
and social ramifications for patients, their families, and society [4]. Undertreatment 
of pain could result in many adverse effects and other complications and may 
evolve into chronic pain syndromes. It could also cause delayed discharge or 
prolonged recovery, which may incur higher health care costs and more patient 
suffering [66]. Overtreatment of pain, on the other hand, may result in unintended 
adverse consequences such as acute respiratory complications or in long-term 
complications such as opioid addiction. These issues are particularly pronounced 
for non-communicative patients who are unable to articulate their experience of 
pain [8]. 

We demonstrate an abstract overview of the pain assessment application [31] in  
Fig. 4. The pain assessment application is implemented as a pipeline of sensing, 
data processing, model training for predictive results, and inference for pain-level 
classification. In the context of this case study, we use input data from EMG, ECG, 
PPG, and EDA sensors for estimation of pain. Sensory data is preprocessed for 
filtering qualitative inputs, followed by feature extraction. Relevant learning models 

Fig. 4 Overview of pain assessment application
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are trained with the multi-modal input data sets for classifying pain level. Different 
phases of the pain assessment application are detailed in the following. 

2.2 Sensory Data Acquisition 

Objective pain assessment application collects raw data through continuous mon-
itoring in both clinical and everyday settings [20]. Raw data collected from the 
sensory data acquisition phase is used for training the ML models for accurate 
prediction of pain level. In this subsection, we describe the nature and characteristics 
of sensory input data used in the pain assessment application. 

2.2.1 Types of Signals 

There are various types of signals that influence the accuracy of monitoring and 
assessing the affective states in pain assessment. These indicators are extracted 
through different forms of behavioral, physiological, and contextual/environmen-
tal sensor modalities via facial expression, speech, full-body motion, text, and 
physiological signals. Both behavioral and physiological manifestations of pain 
can be measured objectively. Behavioral pain indicators include facial expressions, 
body movements such as rubbing, restlessness, and head movements, and paralin-
guistic vocalizations such as crying and moaning. Physiological pain indicators 
are acquired from brain, cardiovascular, and electrodermal activities. Monitoring 
of these physiological, behavioral, and contextual sensor inputs can also be used 
in other prominent eHealth applications including emotion recognition and stress 
monitoring. For instance, stress activates the autonomic nervous system (ANS) 
which can be detected through monitoring the changes in physiological signals 
including cardiovascular activity and electrodermal activity, respiration rate, and 
blood pressure [23]. Furthermore, physiological signals of cardiac function, temper-
ature, muscle electrical activity, respiration, skin conductance, and brain electrical 
activity can be used to detect human emotions. The multitude of physiological, 
behavioral, and contextual signals fused together can provide valuable insights 
for training ML models, specifically in the domain of smart affective computing 
applications. 

2.2.2 Commonly Used Sensors 

Recording physiological signals requires people to connect with biosensors. There 
are contact-based sensors (such as adhesive electrodes and wristbands) or contact-
free sensors (such as cameras and microphones) to gather information from patients 
and analyze them. Widely used contact sensors in eHealth applications record 
electroencephalogram (EEG, electrical activity of the brain), electrocardiogram
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(ECG, heart activity (heart rate (HR) and heart rate variability (HRV))), electro-
dermal activity (EDA often measured using skin conductance level (SCL), and 
sometimes the old term “galvanic skin response” (GSR)), surface electromyogram 
(sEMG, muscle activity), photoplethysmogram (PPG, blood perfusion of the skin 
for pulse and other measures, also called blood volume pulse or BVP), respiration 
(RSP), or acceleration (ACC, movement). For pain monitoring, the unidimensional 
assessment tools have been questioned and debated for their oversimplification and 
limited applicability in non-communicative patients, since they require interactive 
communication between patient and caregiver [27]. As a result, physiological 
sources of data comprising of heart rate (HR), heart rate variability (HRV), 
SpO. 2, skin temperature, electrodermal activity (EDA), and facial expression and 
frontal muscle activity using computer vision or facial electromyography (EMG) 
and electroencephalogram (EEG) are prioritized for pain assessment. Accurate 
calculation of HRV parameters depends on detecting the position of peaks within 
ECG or PPG signals. Root Mean Square of Successive Differences (RMSSD) is 
an HRV parameter that is correlated to the short-term variation in the PPG signal. 
Figure 5 shows a-minute filtered PPG signal illustrating an example, in which less 
than 5 s of the PPG signal (highlighted in red) are distorted due to hand movements. 
Such a minor window of corrupted input data in the signal could still affect the 

Fig. 5 One-minute windows of filtered PPG signals carrying noise
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Table 1 Summary of 
accuracy results (BL: 
baseline, PL: pain level, and 
MM: multi-modal) 

EDA ECG RR MM 

BL vs. PL1 63.36 72.04 71.79 77.13 

BL vs. PL2 79.24 81.13 82.14 85.64 

BL vs. PL3 69.59 69.8 76.64 86.9 

BL vs. PL4 63.7 63.41 66.67 74.73 

Mean 68.97 71.6 74.31 81.1 

eventual accuracy significantly. For instance, in Fig. 5, few peaks are detected 
incorrectly within the noisy signal part, and thus the RMSSD is not reliable anymore 
during this window of data. The pain assessment application uses ML models to 
detect such abnormalities and enable accurately predictions. 

2.2.3 Multi-modal Inputs 

Objective pain assessment relies on input data from multiple modalities and combi-
nations of physiological, behavioral, and contextual parameters. All these modalities 
differ in terms of data, noise characteristics, comfort and ease of use, privacy 
concerns, and energy consumption. Using a single modality versus a combination 
of multiple modalities effects the computational workloads of the ML models and 
eventual prediction accuracy. This is demonstrated from a pain monitoring case 
study on five levels of pain data collection [2, 11, 32, 34]. The accuracy of using 
each individual input modality of sensory data (EDA, ECG, RR) and multi-modal 
(MM) inputs for binary classification between no pain/baseline and various pain 
levels is shown in Table 1. It should be noted that different sensor modalities result 
in a range of prediction accuracies across different levels of pain. Predictions based 
on multi-modal input data set have the highest accuracy among each of these cases. 

2.3 ML-Driven Objective Pain Assessment 

It is imperative to design and develop an objective monitoring tool to improve the 
well-being and care processes of patients with a more accurate assessment and 
more timely treatment. While this raises significant technical challenges, requiring 
a combination of sensing, signal processing, and machine learning skill sets, it also 
has a tremendous potential to pave the way for next-generation human-modeling 
methods. Machine learning and deep learning techniques have become immensely 
popular for classification tasks, as well as for other recognition and pattern matching 
tasks. ML models can be used for accurate objective pain assessment, using input 
data from different modalities. The combination of vast amount of multi-modal 
input data, increased computing power, and more intelligent methods enables fast 
and automated production of machine learning algorithms able to analyze complex 
data with accurate results.
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Fig. 6 The objective pain assessment technology 

2.3.1 iHurt Platform 

Figure 6 presents a complete objective pain assessment technology developed 
jointly by researchers from University of California, Irvine (UCI) and University 
of Turku (UTU), Finland. This is an end-to-end system for multi-modal data 
acquisition, data processing, and analyzing at the gateway. The first step in building 
a multi-modal system is to process the raw signals collected during trials. While 
this varies according to the deployed sensor data, a typical preprocessing pipeline 
consists of the following: filtering (data cleansing, noise reduction, and artifact 
removal), segmentation (partitioning into time intervals), and normalization (w.r.t. to 
a baseline signal). These steps are followed by feature extraction to obtain features 
within various domains. Finally, the processed data can be used to build prediction 
models using machine learning. Different types of ML models can be used to train 
over multi-modal input data sets. The choice of the learning model determines the 
integration and fusion of multi-modal data at feature, decision, or intermediate levels 
(early, late, and hybrid fusion). Most approaches classify pain using support vector 
machines (SVMs) [24, 77], random forests (RFs) [30, 76], and nearest neighbors 
(NNs) [1]. Other widely used models include ADABoost and XGBoost [56], which 
are ensemble methods to reduce bias and variance in predictive data analysis. 
The ML models can be computationally fine-tuned differently to pursue various 
objectives. Sense-making knobs such as early exit, model selection, and input 
modality selection presented in Sect. 4 can be explored in this context. Figure 7 
shows five different classification methods using respiratory signals including 
ADABoost, XGBoost, RF, SVM, and K-NN classifiers in comparison with a state-
of-the-art method, RESP [11]. This case study down sampled pain levels into 
three levels of pain (pain levels 1–3), besides the baseline of no pain. Note that 
they achieved higher accuracy compared with the state of the art while using only 
88% less features. We can maintain accuracy in presence of noise, or using useful 
features from the reliable modalities, while also meeting the requirements set on the
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Fig. 7 Validation accuracy of classifiers on top-8 features for different pain levels compared with 
the baseline 

computational performance. The orchestration functionalities presented in Sect. 3 
can guide these decisions on exploring accuracy–performance trade-offs. 

2.3.2 Other Exemplar eHealth Applications 

Emotion recognition and stress monitoring are two other widely used eHealth 
applications that rely on input data similar to that of the pain assessment application. 
Emotion recognition uses verbal inputs and cues such as tone of voice, facial 
expressions, postures, gestures and also through physiological signals [38]. Stress 
monitoring application detects the existence of stress in each period of time using 
physiological signals [26]. The Electrodermal Activity (EDA) or Galvanic Skin 
Response (GSR) is one of the physiological signals generated by the human body, 
which can be used to detect stimuli in individuals. Fall detection is another exemplar 
application that uses 3D accelerometer data to detect falls by using classification 
models [15]. The input data quality assessment, using multi-modal ML models, 
configuration of ML models, and edge orchestration techniques used for pain 
assessment can be analogously applied to other similar applications of emotion 
recognition, stress monitoring, and fall detection.
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3 Edge-Centric Optimization of ML-Based eHealth 
Workloads 

Machine learning (ML) is advancing real-time and interactive user services in 
healthcare domain [57]. ML applications are primarily deployed on cloud infras-
tructure to meet the compute intensity and storage requirements of ML algorithms 
and address the resource constraints of user-end wearable sensory devices [7]. 
However, unpredictable network constraints including variable signal strength and 
availability of the network affect real-time delivery of cloud services [37]. The edge 
computing paradigm allows deployment of ML applications closer to the user-end 
devices, minimizing the latency of service delivery, reducing the total network load, 
and alleviating privacy concerns. 

System Perspective Collaborative sensor–edge–cloud architecture presents multiple 
execution choices for workload partitioning and compute placement including 
execution on a single sensor, edge, cloud nodes, and any possible combinations of 
these devices. Considering the variable accuracy nature of ML algorithms, these 
execution choices expose a wide range of energy–performance–accuracy trade-
off space. Choosing an optimal execution option under varying system dynamics, 
available energy budget of devices, network constraints, and error resilience of ML 
workloads is a complex run-time challenge. 

Application Perspective Depending on the ML model employed, different appli-
cations feature varying compute, data, and communication intensities. At an 
application level, there is diversity in terms of sensitivities to latency, throughput, 
infrastructure availability, and accuracy. Furthermore, different application execu-
tion choices result in different energy consumption patterns [33]. Considering these 
application-level variations, the choice of execution of an application is a subject of 
multiple factors varying at run-time [22]. 

Edge Orchestration Edge orchestration techniques handle workload partitioning, 
distribution, and scheduling of ML workloads, considering both applications’ and 
systems’ perspectives. Understanding the varying compute intensities of applica-
tions, latency and throughput requirements, user-interaction and responsiveness 
expectations, quality of interconnection network including signal strength, avail-
ability, load balancing, compute, and storage capacities of underlying hardware 
elements put together makes application orchestration a stochastic process [60, 63]. 
To maximize the efficiency of edge-enabled health care services, run-time solutions 
that holistically consider both requirements and opportunities vertically across the 
user, device, application, network, edge node, and platform layers are necessary 
[59]. In this section, we present state-of-the-art edge orchestration techniques for 
efficient compute placement with rule-based heuristics and optimized orchestration 
through reinforcement learning.
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3.1 Dynamics of Compute Placement 

Computation offloading techniques transfer the execution of an application, or 
a task within an application, to a resourceful device for improving performance 
[45]. Compute placement determines the choices on partitioning an application and 
selection of the external resourceful edge/cloud nodes onto which the partitioned 
task is to be offloaded [7]. Some of the existing compute placement and offloading 
strategies do not consider the diversity in applications’ compute and communication 
requirements, eventual performance gain with offloading and compute placement 
choices, and potential latency penalties incurred with those choices. For optimal 
performance gains, compute placement techniques have to consider the dynamically 
varying application and network characteristics, energy budgets, and accuracy– 
performance trade-offs [19, 61, 69]. 

We explore the intricacies of running smart eHealth applications on multi-layer 
sensor–edge–cloud platforms to demonstrate the dynamics of compute placement. 
We choose stress monitoring [48], fall detection [15], and pain assessment [26] 
as representative workloads from ML-driven digital healthcare systems. The stress 
monitoring application uses predictive models to extract statistical features from 
physiological parameters of Electrodermal Activity (EDA) and Galvanic Skin 
Response (GSR) and predict stress levels [3]. The fall detection application uses 
de-noising, feature extraction, and decision tree training for classification of fall 
and no-fall events [59]. The pain assessment application uses preprocessing, 
feature extraction, and SVM classification for determining level of pain [41]. In 
summary, each application typically includes the pipeline of data preprocessing, 
feature extraction, and classification ML tasks. We execute these workloads on real 
hardware testbed that emulates a baseline sensor–edge–cloud platform. We consider 
an edge platform with configurable onboard sensors for sensing at variable sampling 
rates and connectivity to cloud infrastructure. We consider three compute placement 
policies with the execution choices of running the ML workloads: (i) fully on the 
edge device, (ii) fully on the cloud node, and (iii) partially on the edge and partially 
on the cloud. For evaluation, we define latency metric as the time taken to respond 
to a request including the communication and execution costs. 

Figure 8 shows the latency of stress monitoring, fall detection, and pain monitor-
ing applications with different compute placement choices, over different network 
bandwidths, and sampling rates of input sensory devices. The compute placement 
choices Local, Cloud, and Partial represent execution of applications on edge node, 
cloud node, and collaborative edge–cloud nodes. We used three levels of available 
bandwidths: low, medium, and high. The available bandwidth influences the latency 
of execution, specifically incurred in transmitting data from edge to cloud nodes. 
We used two levels of sampling rates: high and low, for input data sensory devices. 
Sampling rate determines the total volume of data being transmitted from edge to 
cloud nodes, effecting the latency. 

The evaluation shows that network variation in terms of available bandwidth 
substantially effects the latency and choice of compute placement. For example,
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Fig. 8 Latency with different compute placement strategies for eHealth applications under 
different network bandwidth (low, medium, and high) and sampling rates (high and low). (a) Stress  
monitoring, (b) fall detection, and (c) pain monitoring
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consider the scenario shown in Fig. 8a, under high sampling rate and high band-
width. In this case, compute placement on the cloud is the optimal choice in 
comparison with the edge and partial choices. Since there is sufficient network 
bandwidth, the penalty of transmitting data from edge to cloud is minimal, and 
the performance gain of executing the application on the cloud is also significant. 
In contrast, for the same scenario with low bandwidth (LBW), compute placement 
on the cloud has the highest latency, owing to the higher penalty of transmitting 
data from edge to cloud under low bandwidth. In this case, the partial (edge–cloud) 
execution has a better latency. 

In addition to the bandwidth availability, the application’s nature can sub-
stantially influence the choice of compute placement. For instance, consider the 
scenario in Fig. 8b, under high sampling rate and low bandwidth. The fall detection 
application’s compute–communication ratio and lower bandwidth makes the local 
execution optimal, as opposed to offloading to the cloud node. 

The sensing configuration of an application alters the volume of data generated 
for transmission and processing. For instance, consider the scenario in Fig. 8c, 
under low sampling rate and medium bandwidth. As the sampling rate is lower, 
the penalty incurred in transmitting data to the cloud node is minimized. With lower 
data volume and availability of either medium (and/or high), bandwidth results in 
significant improvement in latency. 

It should be noted that lowering the sampling rate potentially sacrifices the 
accuracy, although the latency is improved. While the accuracy loss is subjective 
to the error resilience of the application, missing insightful input data samples 
could lead to mis-predictions and critical errors. Mis-predictions can be minimized 
by setting an upper bound on accuracy requirements and/or bounds on lowering 
the sampling rates. In such scenarios, the error resilience of an application also 
influences the compute placement decisions. 

3.2 Using RL for Optimization 

Finding the optimal orchestration policy for an unknown and dynamic system 
is critical since dynamicity of environment (e.g., network condition, workload 
arrival at computing nodes, user traffic, and application characteristics) changes 
over time. Most current solutions are based on design time optimization, without 
considerations on varying system dynamics at run-time [6, 12–14, 35, 42, 46, 52, 
65, 79, 80]. A complex system that runs a variety of applications in uncertain 
environmental conditions requires dynamic control to offer high-performance or 
low-power guarantees [33, 59, 61, 62, 64]. Considering the run-time variation of 
system dynamics, and making an optimal orchestration choice, requires intelli-
gent monitoring, analysis, and decision-making. Existing heuristic and rule-based 
orchestration methods require an extensive design space exploration to make 
optimal compute placement decisions. Furthermore, such a solution based on 
exhaustive search at run-time becomes practically infeasible for latency critical
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Fig. 9 Overview of intelligent orchestration in end–edge–cloud architectures [64] 

services. In this context, different offline and online machine learning models 
have been adopted for run-time resource management of distributed systems, to 
handle the complexity of orchestration choices. Among these models, reinforcement 
learning (RL) approach is effective in developing an understanding and interpreting 
varying system dynamics [49, 54]. Reinforcement learning enables identification 
of complex dynamics between influential system parameters and online decision-
making to optimize objectives such as response time, energy consumption, and 
quality of service [67]. The RL approach allows formulating policies at run-time 
using the input data collected over time. Specifically, the RL approach uses a 
reward function to quantify the effect of an action on the system state. This allows 
optimizing orchestration choices over time, considering the system-wide context 
and objectives. In this subsection, we present the design of reinforcement learning 
agent for orchestrating ML workloads on sensor–edge–cloud platforms. 

3.2.1 Orchestration Framework 

Figure 9 shows an overview of generic intelligent orchestration framework for 
multi-layered end–edge–cloud architectures [64]. This framework uses system-wide 
information for intelligent orchestration through virtual system layers that include 
application, platform, network, and hardware layers. Each of the virtual system 
layers provides inputs for monitoring system and application dynamics such as 
application adjustment parameters, accuracy requirements, availability of devices 
for execution, network characteristics, and hardware capabilities. Each execution 
choice affects the performance and energy consumption of the user end-device, 
based on the system parameters such as hardware capabilities, network conditions,
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and workload characteristics. Each layer exhibits a diverse set of requirements, 
constraints, and opportunities to trade-off performance and efficiency that vary 
over time. For example, the application layer focuses on the user’s perception of 
algorithmic correctness of services, while the platform layer focuses on improving 
system parameters such as energy drain and data volume migrated across nodes. 
Both application and platform layers have different measurable metrics and con-
trollable parameters to expose different opportunities that can be exploited for 
meeting overall objectives. The network layer provides connectivity for data and 
control transfer between different physical devices. In addition, the hardware layer 
provides hardware capabilities for computing nodes in the system. Run-time system 
dynamics affect orchestration strategies significantly in addition to requirements 
and opportunities. Sources of run-time variation across the system stack include 
workload of a specific computing node, connectivity and signal strength of the 
network, mobility and interaction of a given user, etc. Information on run-time cross-
layer requirements and run-time variations provides necessary feedback to make 
appropriate decisions on system configurations such as offloading policies. 

3.2.2 RL Agent for Orchestration 

Making the optimal orchestration choice considering these varying dynamics is 
an NP-hard problem, while brute force search of a large configuration space is 
impractical for real-time applications. Understanding the requirements at each 
level of the system stack and translating them into measurable metrics enables 
appropriate orchestration decision-making. On the other hand, heuristic, rule-based, 
and closed-loop feedback control solutions are slow in convergence due to the 
large state space [67]. To address these limitations, reinforcement learning (RL) 
approaches have been adapted for the computation offloading problem [58]. RL 
builds specific models based on data collected over initial epochs and dramatically 
improves the prediction accuracy [67]. We design an RL agent that monitors system-
wide parameters and chooses a suitable action that maximizes the efficiency of 
orchestration decisions. 

Figure 10 shows the workflow of the RL agent for making orchestration 
decisions. The RL agent component is deployed within the decision intelligence 
and orchestration blocks in orchestration framework (Fig. 2). The RL agent receives 
resource information (e.g., processor utilization, available memory, available band-
width) from the virtual system layers of the orchestration framework (Fig. 2). 
The RL agent also collects the reward information (response time in this case) 
from the environment to learn an optimal action that maximizes the reward. The 
agent builds the Q-Table for Q-Learning algorithm, based on cumulative reward 
obtained from the environment over time. This signifies the efficacy of a specific 
orchestration decision (action) in achieving the target of minimizing latency and 
enables subsequent optimal orchestration decisions. 

We demonstrate the efficacy of using the RL agent for orchestrating ML 
workloads on sensor–edge–cloud platforms. While the focus of this chapter is
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Fig. 10 RL agent for intelligent orchestration 

Fig. 11 DL inference orchestration in an end–edge–cloud system which runs an image classifica-
tion application 

optimizing smart eHealth applications, we use image classification task in the 
experimentation for the purpose of demonstrating multi-user ML workloads. We 
implement a scenario where a device–edge–cloud architecture serves up to five 
end-users to execute ML services simultaneously. In this scenario, the users send 
requests for image classification to an agent located at the cloud. In addition, end-
users share their resource availability to the agent. The agent decides to orchestrate 
the ML tasks based on three static (i.e., device-only, edge-only, and cloud-only) and 
one RL-optimized strategies. In the device-only strategy, each end-device executes 
the inference service on a local device. Thus, varying a number of users has no effect 
on the average response time in this case. In the edge- and cloud-only strategies, 
simultaneous requests compete for edge and cloud resources. This increases the 
average response time significantly, as the number of users increases. In the RL-
optimized strategy, the resource availability is continuously observed and the ML 
tasks are orchestrated accordingly. 

Figure 11 shows the average response time for different numbers of active users 
for regular network conditions, using different orchestration strategies. The x-axis 
represents the number of active users. Each bar represents a different orchestration
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decision made by using the corresponding orchestration strategy [62, 64]. In RL-
optimized approach, the average response time remains constant, while the number 
of users is less than three. This is due to the orchestration decision of distributing the 
services across edge and cloud layers. As the number of users increases to three, the 
services start competing for resources, leading to an increase in the average response 
time. With the number of users increasing from three to five, the average response 
time increases, but at a relatively lower rate, exhibiting efficient utilization of the 
edge and cloud resources. As the number of users increases, the efficiency of the 
RL-optimized approach over the static strategies is more prominent. 

4 Sense–Compute Co-optimization of ML-driven eHealth 
Applications 

In this section, we describe sense–compute co-optimization approaches for improv-
ing resiliency of smart eHealth applications. Common use cases of ML models 
often handle complete and clean input data, with no specific sensing challenges. 
However, using ML methods in smart eHealth applications on edge devices requires 
considerations on challenges from the sensory data acquisition phase [73]. With 
different types of implanted, wearable, on-body, and remote sensors, there is a 
higher probability of noise, motion artifacts, and missing input data from sensors 
[44]. For critical healthcare IoT applications, input data perturbation from motion 
artifacts, physical failure of sensors, network anomalies, and other factors can 
affect the prediction accuracy of ML models significantly [50]). On the other 
hand, the sense-making (computation) phase of eHealth applications faces the 
challenge of limited computational capacity of the edge devices for running ML 
models [73]. Additionally, the ML models should be resilient to probable sensing 
anomalies like noisy or missing input data and maintain higher prediction accuracy 
even with potential garbage input signals [44]. Moreover, some applications (e.g., 
pain assessment in clinical healthcare monitoring systems) require near real-
time response time, emphasizing the need for ML inference performance [33]. 
Addressing these multitude of challenges necessitates a co-optimization approach 
that jointly handles sensing and sense-making phases for system-wide exploration 
of suitable optimizations. A simple schematic for the interaction between sensing 
and sense-making modules is shown in Fig. 12. Sensing awareness can be developed 

Fig. 12 Sensing and sense-making (compute) modules’ interaction with their action knobs in 
sensor level and intelligent models
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by monitoring and analyzing continuous streams of input data. This intelligence can 
be used to control the sensing and sense-making configurations simultaneously, by 
fine-tuning ML models to fit input data characteristics. 

4.1 Handling Input Data Perturbations 

4.1.1 Sensing Phase Knobs 

Monitoring input data originating from the sensory devices for anomalies, discrep-
ancies, noisy components, etc. provides insights into quality of input data [43]. 
Understanding the quality of input data can be exploited for selective sensing, such 
that unreliable sensors can be down-sampled, to dampen the effect of unreliable 
input data. When the input data from a specific sensor is noisy, the sampling rate 
of the sensory device can be decreased so that the garbage data would not waste 
the computational resources in the edge layer. In acute scenarios, input data from 
a specific device might be completely unreliable (e.g., when a heartbeat sensor is 
detached from the human body). In this case, detection of the sensor detachment can 
guide the computation phase to ignore the input from that specific device and rely 
on the data from other input modalities [48]. It should be noted that both selective 
sensing and disabling a sensor modality minimize the network latency penalty with 
reduced input data volume. In specific scenarios of unreliable network connection, 
sensing phase knobs can be opportunistically triggered to complement the network 
delay with reduced input data volume [78]. 

4.1.2 Sense-Making Phase Knobs 

Addressing input data perturbation from multiple modalities requires appropriate 
and proportional actions in the ML algorithmic phase. For instance, selective or 
greedy feature selection from the preprocessed input data can reduce the noisy data 
components fed into the ML models [40]. This approach is effective in reducing 
unnecessary computation over noisy input data, although potentially affecting the 
accuracy of the learning models [51]. Selecting an appropriate ML model from 
a pool of pretrained models is another strategy for handling noisy and missing 
input data. This requires implementation of a model pool, consisting of different 
ML models that are trained to handle specific combinations of input modalities 
[51]. Algorithmic optimizations such as meta-learning [21], fast reinforcement 
learning [9], and few-shot learning [75] can also be used for providing efficient 
ML optimizations particularly for edge devices.
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4.1.3 Co-optimization Knobs 

Besides the presented methods for optimizing sensing and sense-making phases in 
the edge devices, it is quite important to use co-optimization techniques so that each 
of these phases complements the other to form a holistic system with efficiency 
and robustness. To achieve this goal, meaningful interaction between these phases 
is required. For example, the sensing information from input data can be used as a 
trigger to adjust specific sense-making knobs so that the computation models can 
adapt to the recent changes in the input sources. One example of this approach is 
using the early exit technique [28, 68] in the neural network when the input data has 
good quality with negligible noise. In this way, an acceptable confidence threshold 
can be achieved in less time by skipping deeper layers in neural network models. 
Moreover, the sensing module in the edge layer can send information about input 
sources with high or low reliability of their data to the sense-making module, and 
then the machine learning models in the edge layer can adjust importance weights to 
those input sources by using attention mechanisms inside their architecture [53, 71]. 

4.1.4 Example Scenarios 

We demonstrate the advantages of sense–compute co-optimization through an 
example of multi-modal pain assessment application [51]. The pain assessment 
application uses inputs from three modalities: Electrocardiography (ECG), Elec-
trodermal Activity (EDA), and Photoplethysmography (PPG). The ECG, EDA, and 
PPG modalities have sampling rates of 100, 4, and 64 and generate 52, 42, and 
42 features. Figure 13 outlines sensor data acquisition, feature extraction, feature 
aggregation, and inference task for predicting pain levels under different scenarios. 
Figure 13a shows the scenario, where the application is executed without modality 
awareness. In this scenario, data from the ECG sensor is noisy, yet feature vectors 
from the noisy modality are fed into the ML model, yielding a baseline prediction 
accuracy of 51%. Figure 13b shows the scenario where modality awareness is 
considered while executing the application. In this scenario, the application is 
executed with selective feature aggregation, by selecting fewer features from the 
noisy ECG modality. This reduces the total number of features from the ECG 
modality to 12. An appropriate ML model to suit the updated feature vector 
is selected from a model pool, which comprises pretrained models. Minimizing 
the features from noisy ECG modality improves the prediction accuracy to 79%, 
while also reducing the energy consumption and improving the performance, in 
comparison with the baseline scenario (a). Figure 13c shows the scenario where 
modality awareness is used to select specific modalities with quality input data. In 
this scenario, the noisy ECG modality is completely dropped, and data from the 
EDA and PPG modalities is processed. Similar to the scenario (b), an appropriate 
ML model that suits EDA and PPG inputs is selected from the model pool. Dropping 
an entire modality of data significantly reduces the computational effort and energy 
consumption, in comparison with scenarios (a) and (b). It should be noted that
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Fig. 13 Motivational scenarios for sense–compute co-optimization [51]. (a) Processing noisy 
sensory input data. (b) Processing with selective feature aggregation and model selection. (c) 
Processing with modality selection and model selection
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the prediction accuracy with only two modalities is 74%, which is higher than 
the baseline from scenario (a), while being marginally lower than the prediction 
accuracy from selective feature aggregation from scenario (b). 

4.2 Sense–Compute Co-optimization Framework 

We present the conceptual design of sense–compute co-optimization for multi-
modal eHealth applications through the AMSER framework [51]. Figure 14 shows 
an overview of the AMSER framework for sense–compute co-optimization in 
multi-layered sensor–edge–cloud platforms. The AMSER framework uses run-
time monitoring functionalities of signal quality monitoring, discrepancy detection, 
abnormality detection, and confidence level monitor to understand the quality 
of input data modalities and confidence of the ML model in predicting results. 
Insights from the run-time monitoring are used to configure the sampling rates 
of different sensory devices through the sensing controller. Based on the run-time 
monitoring, the sense-making (compute) optimizer uses ML configuring knobs— 
adaptive feature selection, model selection, neural network attention, and early exit 
mechanisms to configure ML models for current input data sets. 

For example, data from a specific modality is labeled as uncertain when the signal 
quality is below a specific Signal-to-Noise Ratio (SNR). Under such scenarios, 
the edge-level sensing optimizer feeds the learning models with reliable input 
modalities, while dropping the noisy modality. The sense-making optimizer then 
selects an ML model from the model pool, which is suitable for the available input 
data modalities. The model pool contains different pretrained ML models suitable 
for different combinations of reliable input modalities. 

The results for accuracy and performance (speedup) gain with sense–compute 
co-optimization in comparison with the baseline [29] are shown in Figs. 15 and 16. 
ML-driven eHealth applications of pain assessment and stress monitoring applica-
tions were used as input workloads. For a comprehensive evaluation, four different 
scenarios (S1–S4) with different noise components in input data of modalities are 
used. Scenario 1 (S1) is the baseline with no noise components. Scenario 2 (S2) 
has a wandering noise added to the original data. Scenario 3 has an additional 
motion artifact added to one input modality on top of the wandering noise, which 
makes that modality completely unreliable. In scenario 4 (S4), two modalities suffer 
from severe motion artifact noise. In scenario 2 (S2), the AMSER framework 
activates the selective feature selection to handle the noisy input modalities, 
resulting in higher prediction accuracy in comparison with the baseline. In scenario 
3 with unreliable input (S3), the AMSER approach drops the entire unreliable 
modality, yielding a better prediction accuracy and performance gain. Similarly, 
the AMSER framework drops two noisy modalities in scenario 4 (S4), resulting 
in better prediction accuracy and significantly higher performance. The sensing 
awareness and synergistic compute knob actuation of the AMSER platform provides
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Fig. 14 An overview of sensing and sense-making (compute) optimization in a sensor–edge– 
cloud architecture 
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Fig. 15 Accuracy analysis in comparison with baseline [29, 51]. (a) Pain. (b) Stress  

significant improvements in accuracy, efficiency, and performance, in comparison 
with existing disjoint sensing and compute optimization approaches.
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Fig. 16 (a) Performance analysis of the edge layer device for AMSER framework vs. baseline 
study [29]. (b) Data transfer volume between the sensors and edge layer device for AMSER 
framework vs. baseline study. (a) Performance gain. (b) Data volume reduction 

5 Conclusions 

In this chapter, we presented edge-centric optimizations for ML-driven eHealth 
applications through compute placement, improving the compute placement deci-
sions through reinforcement learning agent, and cross-layered sense–compute 
co-optimizations. We also presented an exemplar case study of objective pain 
assessment to demonstrate the use cases of edge-ML-based smart eHealth applica-
tions, common data flows, computation challenges, and frameworks for deploying 
smart eHealth applications. 

5.1 Key Insights 

ML-driven smart healthcare applications have different input data characteristics, 
computational requirements, and quality metrics. Continuous stream of input data, 
varying network conditions, and computational requirements of different ML 
models create dynamic workload scenarios. At an application level, requirements 
include higher prediction accuracy of ML models, latency of inferencing results 
from ML models, resilience, and an overall higher quality of service. At a system-
level, requirements include availability of compute nodes in edge and cloud 
layers, compute capabilities of edge nodes to meet performance requirements of 
ML models, network utilization, and overall energy efficiency. Considering both 
application and system-level parameters simultaneously is necessary for optimizing 
edge-centric ML-driven smart eHealth applications. Optimized compute placement 
has higher efficacy in meeting both application and system requirements simulta-
neously. Accuracy–performance trade-offs can also be explored within the compute
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placement phase, by configuring the choice of ML models. Both model-based and 
model-free reinforcement learning agents can guide the compute placement deci-
sions on choice of execution node and tuning accuracy–performance trade-offs with 
high degree of convergence. Further, multi-modal eHealth applications are prone to 
input data perturbations, which also presents an opportunity to exploit the inherent 
resilience to selectively process input data. This brings sensing awareness into 
computation, and compute-awareness to sensing through bi-directional feedback. 
Cross-layered sense–compute co-optimization improves sensing, computation, and 
communication aspects of edge-ML-based eHealth applications holistically. 

5.2 Open Research Directions 

5.2.1 Data Quality Management 

Input data quality is an essential component for improving prediction accuracy of 
ML-driven smart eHealth applications. Processing exclusively quality input data 
also improves the bandwidth utilization and latency of tasks run on the edge nodes. 
Some of the techniques presented in this chapter address the sensing aspects through 
continuous monitoring and analysis of input data quality. Qualitative assessment of 
sensory data can be improved significantly beyond the rule-based monitors using 
cognitive learning models. Design of autonomous models for input data quality 
management remains an open challenge. Autonomous models enable reasoning for 
different input perturbations to assess true quality of sensory inputs. Consequently, 
the garbage data that is un-necessarily processed is minimized, supporting the 
scalability of edge-ML solutions. Quality assessment of input data is significant 
in other sensor-driven domains such as autonomous driving, robotics, and computer 
vision etc. 

5.2.2 Contextual Edge Orchestration 

Orchestration techniques for collaborative sensor-edge–cloud architectures improve 
a multitude of metrics in terms of performance, turnaround time, energy efficiency, 
accuracy trade-off exploration, and network utilization. Orchestration techniques 
presented in this chapter enable intelligent compute placement, offloading, and 
accuracy configuration decisions through rule-based heuristics. However, contextu-
alization of system dynamics to reason for orchestration decisions, and exploration 
of accuracy–performance–energy trade-offs with context-awareness is an open 
research direction. Reinforcement learning has been widely used for optimal 
orchestration decisions at run-time, considering the varying system dynamics. The 
efforts in collecting training data, online updating, and convergence time influence 
the efficacy of such learning methods. In this perspective, design of model-free,
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and few-shot learning models for run-time edge orchestration is a promising open 
research direction. 

5.2.3 Sense–Compute Co-optimization 

Cross-layered sense–compute co-optimization is the most effective strategy for 
improving sensor-dependent, edge-based ML applications. In this chapter, we 
presented adaptive sensing and sensing-aware computing techniques that uses 
system-wide monitoring and intelligence for sense–compute co-optimization. This 
approach focuses on selecting appropriate ML models based on quality of input 
modalities, exploiting the inherent resilience of multi-modal ML applications. 
Adaptive feature selection, and ML model selection enforce the idea of sense– 
compute co-optimization at a coarse-grained level, and require multiple pretrained 
models. Incorporating fine-grained edge layer ML model configurations such as 
early exit, greedy feature selection, neural network model attention, and saliency 
maps etc., can complement the model selection strategy. The feasibility of such 
edge layer-based ML model tuning in collaboration with cloud layer-based model 
selection is another open research direction. 
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A Survey of Embedded Machine 
Learning for Smart and Sustainable 
Healthcare Applications 

Sizhe An, Yigit Tuncel, Toygun Basaklar, and Umit Y. Ogras 

1 Introduction 

Embedded machine learning has recently drawn significant attention due to the 
fast development of machine learning (ML) and embedded devices. It is an 
application of artificial intelligence (AI) to make decisions or predictions from the 
existing data at the edge without explicit programming. The success of embedded 
ML heavily relies on the recent improvement of computation power since ML 
algorithms are highly data-intensive. Machines need to launch complex linear 
algebraic computations, such as matrix and vector operations, to learn the non-
trivial relationship between the inputs and outputs. To date, computing clusters using 
multiple high-frequency central processing units (CPU), graphics processing unit 
(GPU), and tensor processing unit (TPU) [79] are the most widely used resources 
to perform such operations. However, when the users want to enjoy the convenience 
of ML without transmitting their local data, computing clusters are certainly not a 
good choice due to the prices and large form factor. 

An embedded device refers to a small computer system—a combination of 
computer processors, memory, and input/output devices [91]. Nowadays, people 
have access to multiple personal devices, such as smartphones, smartwatches, and 
autonomous cars. Embedded devices such as Raspberry Pi [66], Nvidia Jetson [52], 
and Arduino [11] are powerful yet affordable due to the recent emergence of 
hardware. For example, an Nvidia Jetson Nano developer kit [52] with 128-core 
4GB memory GPU that can run most ML algorithms only costs less than $100. 
Embedded machine learning enables the deployment of ML algorithms on edge 
devices rather than the powerful computational cluster. It allows the end users to 
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perform machine learning directly on devices used in the field, thus leading to 
numerous novel applications. 

Concurrent advances in machine learning and low-power computing areas pave 
the way for high-impact applications. These applications can attract social attention, 
promote industrial progress, and improve the quality of life. For example, computer 
vision (CV) and natural language processing (NLP) are major technical areas that 
widely apply machine learning since they are attached closely to the industry 
and commercial market. Specifically, computer vision helps machines understand 
images and videos, thus generating meaningful information and making decisions. 
Example applications include image classification, object detection, object tracking, 
and instance segmentation. The market for computer vision is expected to reach 
USD 48.6 billion by 2022 [38]. NLP refers to the technology that gives computers 
to understand text and language similar to human beings [37]. Application of NLP 
includes speech recognition, sentiment analysis, machine translation, and text sum-
marization. Another popular machine learning application area is recommendation 
system (RS). Recommendation systems aim to recommend things to the users based 
on their previous interests and other factors. These systems predict the most likely 
content that will interest users. Many tech companies such as Google, Amazon, and 
Netflix rely on recommendation systems to enhance their customers’ engagement. 

As a particular subset of the previously mentioned ML applications trained 
solely with big data, embedded machine learning supports obtaining and processing 
new data locally. Embedded devices are usually equipped with different sensors 
to measure motion, biopotentials, and temperature. Embedded ML can directly 
use data from these sensors, thus enabling numerous novel applications. Target 
applications include smart healthcare, autonomous driving, professional sports, 
and power/energy management [23, 54, 87]. The rest of the chapter will first 
overview embedded machine learning frameworks and then offer examples of 
specific applications using embedded machine learning. This chapter focuses mainly 
on embedded machine learning applications with data obtained on-device. The 
concept of embedded machine learning and tinyML will be coherently interspersed 
and interact with the applications. Finally, we also introduce energy management as 
a service application since the deployment of ML applications on edge devices is 
limited by battery capacity. 

2 Overview of Embedded Machine Learning Frameworks 

Embedded machine learning frameworks typically consist of model training, model 
compression, and model inference, as illustrated in Fig. 1. Model training is the 
process of learning the non-trivial patterns or relationships between the inputs and 
outputs through an intensive search that includes trial and error. It usually needs a 
vast amount of data points to train to learn the hidden complex relationship between 
the inputs and outputs instead of memorizing from the existing data. Thus, model
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Fig. 1 Overview of embedding machine learning framework 

training is usually performed in powerful computation processors, such as cloud 
servers, workstations, or personal computers (PC), as shown in Fig. 1. 

The success of ML frameworks relies heavily on the improvement of com-
putation power since ML algorithms need an intensive amount of data to train. 
However, users of ML applications do not participate in the model training part. 
Instead, they run the pre-trained ML models on their devices for inference in 
different applications. Therefore, it is crucial to ensure that the ML algorithms tar-
geting embedded applications can run on edge devices with limited computational 
power and memory. To this end, popular ML libraries such as PyTorch [60] and 
TensorFlow [1] have been making significant efforts in compressing the size and 
accelerating the inference time of the model on embedded devices. For example, 
PyTorch Mobile [61] and TFLite [80] are the corresponding lightweight version of 
PyTorch and TensorFlow. Many recent studies take advantage of these lightweight 
ML frameworks that target embedded ML [26, 94, 95]. The lightweight version 
of TensorFlow, TFLite, can reduce the model size up to 75% with a minimal 
accuracy loss. For instance, a ResNet101 model, after optimized by TFLite, is 
only 44.9 MB, compared to 178.3 MB on TensorFlow with only 0.2% accuracy 
loss. Consequently, the tinyML concept is introduced with the fast development of 
lightweight ML libraries. TinyML refers to ML capable of performing on-device 
sensor data analytics at ultra-low power, thus enabling a variety of always-on 
applications and targeting battery-operated devices [82]. The middle part of Fig. 1 
shows that model compression is bridging the model training and model inference 
using ML libraries. 

Model inference refers to the process of inferring the most likely output of 
given inputs from the previously learned model. Hence, it does not require intensive 
computational power and can be easily deployed on edge devices. In the embedded 
machine learning flows, the model inference is the central part that runs on users’ 
edge devices. For instance, users can access ML applications such as tracking
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their vital signs using a smartphone or smartwatch [9] and setting up self-driving 
functions in their car. A recent study [94] designed and implemented convolution 
neural networks (CNNs) on smartphones using TFLite to estimate human activities 
in real time. Similarly, real-time human pose estimations for a single person and 
multi-person on mobile devices are proposed in [26] and [95], respectively. The 
right part of Fig. 1 shows that users can use the compressed ML algorithm for their 
customized applications using their edge devices. 

3 Embedded Machine Learning Applications for Healthcare 

The aging population has been becoming a serious concern all over the world. The 
consequent rise in health-related issues has drawn significant research attention from 
the industry and academic community. Technology companies have continuously 
increased their R&D expenditure for wearable devices that can be used for mobile 
activity and health monitoring. For instance, Apple utilizes its popular consumer-
facing products, such as Apple Watch, to provide health-related features accessible 
on its watch to bridge wearables and clinical tools used in medical research [9]. In 
2021, Google acquired the wearable giant Fitbit (smartwatch) to participate in the 
AI-enabled healthcare race among top-pitch technical companies [32]. Embedded 
machine learning enables various healthcare-related applications by feeding multi-
modal sensing data obtained from humans into machine learning algorithms on 
devices. 

Remote activity and healthy monitoring applications can provide valuable 
insights [12]. Hence, they can improve the quality of life in many healthcare 
applications, including but not limited to human activity recognition [4, 19], gait 
monitoring [5, 46], human pose estimation [2, 3, 92], and freezing of gait (FoG) [24, 
55, 69]. For example, advanced ML algorithms can locally analyze the motion and 
physiological data from wearable sensors. This capability can enable many real-
time applications such as irregular rhythm notification, early warning signs, and 
fall detection. These applications are also the first step toward diagnosis, prognosis, 
and rehabilitation of movement disorders similar to Parkinson’s disease (PD) and 
stroke. The rest of this section discusses three illustrative examples as cases studies 
and summarizes the recent work in those areas. 

3.1 Freezing-of-Gait Identification in PD Patients 

Parkinson’s disease (PD) is one of the most common age-related neurodegenerative 
diseases. It causes muscular rigidity, tremor, bradykinesia, slowness in movement, 
and postural instability [27, 45, 49, 83]. More than 50% of the PD patients develop 
freezing of gait (FoG) [44] in their advanced stages of the disease. Freezing of gait 
is a brief absence of the ability to walk despite the intention of moving the feet [59].
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FoG episodes may include trembling of knees, short shuffling steps, or complete 
akinesia [71] and overall increase the risk of falling and deteriorate the patient’s 
quality of life. 

Clinical studies suggest that external stimuli, such as auditory, visual, or tactile 
cues, help patients to exit the FoG state and resume walking [59]. FoG identification 
is a challenging task since FoG episodes are rare events. Furthermore, clinical 
settings cannot provide the actual frequency of occurrence of FoG episodes. For 
example, FoG episodes mainly occur during turning, walking through doorways, 
or dual tasking, and 90% of them last less than 20 s [44]. Specific experimental 
sessions are designed to simulate the daily-life activities in clinical settings, such as 
walking and turning while dual tasking [44]. However, this practice is a challenging 
proposition due to fundamental limitations. On the one hand, the duration of these 
sessions in a clinical setting and the number of visits per patient are limited. On the 
other hand, the frequency of FoG occurrence and the duration of FoG episodes are 
short. Hence, the probability of observing FoG episodes during these simulations 
can be small. 

FoG-related problems can be avoided by systems that can identify FoG episodes 
and provide an appropriate cueing mechanism such as audio. FoG identification can 
be divided into two subclasses: FoG detection and FoG prediction. FoG detection 
implies classifying FoG episodes after patients start to experience them. It has 
been heavily studied for over a decade. More than 50 studies related to FoG 
detection have been published by late 2019 [58]. In contrast, FoG prediction implies 
classifying FoG episodes before the occurrence of an FoG episode. The main goal 
of the FoG prediction studies is to predict potential FoG episodes and prevent their 
onset by providing preemptive cueing. Despite this promising potential, there are 
very few studies related to FoG prediction compared to FoG detection [58, 59, 73]. 

Both FoG detection and prediction studies use various wearable sensors placed 
on different parts of the patient’s body. These sensors collect motion data using iner-
tial measurement units, plantar pressure systems, and electromyography [44, 59]. 
Various machine learning approaches are utilized for FoG identification, including 
random forests, support vector machines (SVMs), nearest neighbor algorithms, and 
deep neural networks (DNNs) [57]. Classification algorithms, such as decision trees, 
SVMs, and k-nearest neighbor, require handcrafted spectral and statistical features 
extracted from the motion data of the PD patients, which needs substantial domain 
knowledge [57]. However, FoG identification approaches should require minimal 
preprocessing and manual effort to facilitate easy deployment on edge-AI devices. 
Approaches that employ DNNs do not require domain knowledge. They can directly 
utilize raw sensor data to identify FoG episodes. For example, convolutional neural 
networks (CNNs) are adopted widely among with long short-term memory (LSTM) 
networks to detect and predict FoG episodes [13, 53, 57, 73, 83]. Table 1 summarizes 
the recent FoG identification studies published since 2018. None of the above 
studies have embedded ML framework in an edge-AI device. These approaches 
require powerful computing resources that are hard to integrate on an edge device. 
Therefore, there is a critical need for lightweight FoG identification approaches
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Table 1 A summary of recent FoG identification studies 

Sensor type and location FoG identification approach 

Sama et al. [69] IMU placed on the waist k-NN, random forest, logistic 
regression, Naïve Bayes, multilayer 
perceptron (MLP), SVM 

Camps et al. [24] IMU placed on the waist CNN 

Oung et al. [55] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

Probabilistic NN, SVM 

Li et al. [41] Accelerometer placed on the 
lower back 

Mini-batch k-means clustering 

Mikos et al. [47] 2 accelerometers placed on each 
ankle 

MLP 

Rad et al. [63] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

Denoising autoencoder 

Handojoseno et al. 
[33] 

EEG electrodes placed on the head DNN 

Torvi et al. [83] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

LSTM 

El-Attar et al. [29] Accelerometer placed on the left 
shank 

DNN 

Naghavi and Wade 
[49] 

3 accelerometers placed on the left 
shank, left thigh, and lower back 

Statistical analysis based on 
Kruskal–Wallis test 

Naghavi et al. [50] 2 accelerometers placed on each 
ankle 

k-NN, SVM, decision tree, MLP 
along with classifier bagging and 
synthetic minority over-sampling 
methods 

Arami et al. [10] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

SVM 

Demrozi et al. [28] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

k-NN 

Reches et al. [67] 3 accelerometers placed on the left 
ankle, right ankle, and lower back 

SVM 

Shi et al. [75] 3 accelerometers placed on the left 
ankle, right ankle, and neck 

CNN 

Li et al. [42] 3 accelerometers placed on the left 
shank, left thigh, and lower back 

CNN . + LSTM 

Sigcha et al. [77] IMU placed on the waist CNN . + LSTM 

Mancini et al. [44] 8 IMUs placed on the shins, feet, 
wrists, sternum, and lower back 

Correlation and thresholding 

Bikias et al. [20] IMU placed on the wrist CNN 

Borzi et al. [21] 2 IMUs placed on the shins k-NN, SVM, linear discriminant 
analysis, logistic regression 

that leverage the wearable sensor data with minimal preprocessing of the data and 
activate an appropriate cueing mechanism locally on the edge device.
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3.2 Human Activity Recognition 

There has been growing interest in human activity recognition (HAR) due to its 
health monitoring and patient rehabilitation applications [4, 65, 76, 90]. Inertial 
measurement units (IMUs) are used to capture the body and joint movements to 
estimate or predict human activity. The recognized activities with time stamps are 
valuable insights for health monitoring and rehabilitation. The prevalence of low-
cost motion sensors and embedded machine learning algorithms make it possible to 
perform human activity recognition on-device [18]. 

3.2.1 Processing Pipeline 

The majority of HAR methods employ smartphones due to their popularity and 
easy access to integrated accelerometers and gyroscope sensors [6, 76, 90]. More 
recent work started using wearable devices for this purpose due to significant 
power consumption and form-factor benefits. A typical HAR framework consists 
of data preprocessing, feature extraction, and classifying algorithms, as shown 
in Fig. 2. Inertial measurement units, which typically include accelerometers and 
gyroscopes, are attached to different human body parts. They usually provide 
three-axis acceleration and angular velocity. If the activities are simple enough, a 
significant number of approaches use only the acceleration data since the gyroscope 
sensors have relatively larger power consumption [97]. The first step is to preprocess 
the raw sensor data to reduce measurement noise and construct activity windows. 
Then, the data in each activity window are used to produce features, such as the 
body acceleration and signal statistics (e.g., min, max, mean). Finally, these features 
are used by ML algorithms to recognize activities, such as standing, sitting, lying, 
walking, and jogging. 

A range of methods is used during the preprocessing step. The most common 
preprocessing techniques include downsampling, low-pass filtering, and segmenta-
tion. The inertial sensors often sample at a high sampling rate (. >50 Hz). However, 
most human activities are only at a few Hz range [18], making the sampled data 
redundant. Median and mean filters are two mainstream filters used for down-
sampling. Similarly, the sensor data, especially accelerometer data, are typically 
noisy. Therefore, most preprocessing techniques incorporate low-pass filtering and 
smoothing. Most ML algorithms require the inputs to have a fixed length. Therefore, 
preprocessing steps typically involve segmentation algorithms that divide the data 
into possibly overlapping windows. For example, segmentation algorithms can 
divide a long period (in the order of hours) of time series data into multiple fixed-
length (e.g., one–ten seconds) windows. If the number of data samples in each 
window is uniform, the ML algorithms, such as DNNs, can conveniently process 
them.
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Fig. 2 Overview of human activity recognition. The figure is partially modified from [18] 

3.2.2 Commonly Used ML Algorithms 

Most of the HAR techniques employ supervised learning algorithms. Exam-
ples of supervised learning algorithms suitable for HAR include support vector 
machine (SVM), random forests, decision trees, k-nearest neighbors (k-NN), and 
neural network (NN). These algorithms take the labeled data to train the classifier, 
as outlined below: 

• Support vector machine: SVM techniques try to find a hyperplane in high-
dimensional space that separates two output classes [34]. If they cannot find the 
separating hyperplane in a lower dimension, it keeps mapping the data into higher 
dimensions until the separating hyperplane is found. HAR problem is essentially 
a multi-class classifying problem. Multiple classifiers need to be performed to 
apply SVM to HAR for differentiating more than two output classes since SVM 
is a binary classifier. 

• Random forests and decision trees: Decision tree classifiers are commonly used 
for classification problems since it is intuitive and explainable. They use a series 
of rules to make decisions, just like how humans make decisions [34]. Decision 
trees take the dataset features to create binary questions and continually separate 
the dataset until all data samples are isolated to different classes. An ensemble
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of tree-structured classifiers is employed for random forests. The most predicted 
classes among all trees are chosen as the final predicted class. 

• k-Nearest Neighbors: This approach is one of the most traditional and popular 
techniques in classifying problems [34]. K-NN first computes k-nearest neighbors 
in the training set. Then, it chooses the most common class among k neighbors. 
That class is then the final estimated class. K-NN technique requires all training 
data to be stored locally. Many of the HAR techniques used k-NN for the offline 
training [70]. 

• Neural networks: Neural networks are widely used in classification and regression 
problems. Multilayer perceptron (MLP) classifier is one of the primary neural 
networks used for human activity recognition. It consists of three layers at least: 
one input layer, one hidden layer, and one output layer. Each layer of the MLP 
has multiple neurons/nodes with non-linear activation functions. In the HAR 
context, the number of hidden neurons in the hidden layers is crucial for obtaining 
good accuracy while retaining low computational complexity. The number of 
neurons in the output layer corresponds to the output classes. Convolution 
neural networks (CNNs) are popular for processing 2D images. Convolutional 
kernels can convolve with the input image layers by layers to extract the helpful 
feature maps instead of choosing the features manually in other techniques [93]. 
Researchers recently applied CNN in HAR by reshaping the 1D HAR features to 
a 2D feature map input [16]. 

3.2.3 Offline vs. Online Learning 

Currently, there are two mainstream HAR training paradigms: offline training and 
online training. The training is performed on dedicated computing resources such 
as power CPU and GPU for offline training. Machine learning algorithms require a 
large amount of data to capture different patterns’ behavior and learn how to classify 
them. Thus, dedicated computing resources are used since they can process a vast 
amount of data. The offline pre-trained models then are deployed to edge devices, 
for example, smartphones and smart wearables, to perform the inference for new 
users. Offline training is the fundamentals of all supervised training algorithms. 
The downside of this approach is that the performance of inferring on new users 
that have not appeared in the training data is inevitably worse than inferring on the 
trained users. Online training tackles this issue by continually training with new user 
data on the edge devices. The pre-trained models are also deployed to edge devices, 
but the new users’ data obtained on the field are fed into the machine learning 
algorithm running on the edge device to train online. Since the amount of data is 
small compared to the offline training data, the edge devices can train the models in 
real time. For HAR on-device, the neural network is the most popular method since 
it supports online training [18].
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3.3 Human Pose Estimation 

Human pose estimation aims to detect and track key joints, such as wrists, elbows, 
and knees. It has rapidly growing applications areas, including rehabilitation, 
professional sports, and autonomous driving [23, 54, 87]. For instance, one of the 
leading causes of autonomous car accidents is “robotic” driving, where the self-
driver makes a legal but unexpected stop and causes other drivers to crash into 
it [54]. Real-time human pose estimation can help computers understand and predict 
human states, thus leading to more natural driving. Likewise, remote rehabilitation 
applications, which are currently not feasible, can be enabled by human pose 
estimation. 

Human pose estimation can be performed by processing image, video, LiDAR 
(light detection and ranging), inertial sensors (IMUs), or mmWave radar data. 
RGB image and video frames are the most common input types since they offer 
accurate real-world representations with true color. However, the RGB frame quality 
depends heavily on the environmental setting, such as light conditions and visibility. 
Alternatively, the LiDAR point cloud obtained by laser scanning overcomes these 
challenges. However, it has high-cost and significant processing requirements, 
making them unsuitable for indoor applications such as rehabilitation. mmWave 
radar can generate high-resolution 3D point clouds while maintaining low-cost, 
price, and power advantages. Inertial sensors (IMUs) can also reconstruct human 
pose using the sensing accelerations and gyroscopes [88, 89]. This section discusses 
these three broad approaches and recent literature. 

3.3.1 Human Pose Estimation Using RGB Camera 

In the computer vision field, human pose estimation has drawn attention after a 
seminal study in 2005 [64]. This study presents a framework to detect ten distinct 
body parts using rectangular templates from RGB images. He et al. [35] propose 
Mask R-CNN, which can reconstruct skeleton from RGB images using K masks by 
leveraging ResNet neural network architecture. It first detects K different key points 
and then connects them. Mask R-CNN has become popular due to its fast processing 
time and accurate estimation. Similarly, Cao et al. proposed OpenPose [25], a real-
time human pose estimation technique that can detect human body, face, and foot 
key points together for the first time. OpenPose has become one of the popular 
benchmarks due to its decent performance and the easy-to-use open-source package. 
Besides the RGB video-based approach, Microsoft Kinect and Kinect V2 [74] 
provide depth cameras to extract the human joints representation. Both Kinect and 
Kinect V2 use an RGB camera and a depth sensor consisting of an infra-red camera 
and projector as sensing units to capture the information. The Kinect family has 
become one of the popular methods to obtain the ground truth label for training due 
to its convenience, low cost, and nice performance [7, 72, 96].
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From an RGB image containing a person, the human pose estimation model 
typically consists of the cropping bounding box, extracting features, and predicting 
the joint coordinates. The first step is to crop the bounding box containing the 
human. The area of a person can be only .1/5 of the image or even smaller. For 
the human pose estimation task, the region of interest (ROI) is only the area related 
to humans. Hence, an efficient human bounding box detection algorithm is crucial. 
After obtaining the human bounding box, the next step is to extract useful features 
from the area. Most of the techniques use deep CNNs since many of them have been 
proved to be suitable feature extractors in the image processing field [35]. Finally, 
the model needs to output the human joints coordinates. In estimating the joint 
coordinates, heatmap-based and regression-based are two mainstream methods. 

Heatmap-based models learn each joint point’s position through the Gaussian 
distribution graphs. The method first renders Gaussian probability distribution 
heatmaps for every joint point and then applies argmax or soft-argmax operation 
to the heatmaps, thus obtaining the final estimation results. Since the maximum 
value of every heatmap corresponds to a joint’s coordinates, the resolution of the 
output heatmap needs to be relatively high (64. ×64 usually). Thus, this method’s 
computation and memory overhead are high since multiple high-resolution Gaussian 
heatmaps need to be rendered (one output heatmap for each joint). 

Regression-based models represent another alternative that is simpler and more 
intuitive. It directly learns the joints’ coordinates values using L1 or L2 loss. 
Since the regression-based method does not require rendering the heatmap and 
maintaining the high resolution, the output feature map can be small compared to 
the heatmap-based model. Thus, the computation and memory requirements of the 
regression-based model are significantly lower than the heatmap-based model. For 
instance, using Resnet-50, the floating-point operation per second (FLOPs) of the 
regression-based model is .1/20000 of the heatmap-based model [43]. This result 
shows that the regression model is friendly to the edge devices. Regression-based 
methods are widely applied in industry [43] since it is computationally efficient and 
straightforward. However, the heatmap-based method is generally more robust for 
occlusion and blur. In addition, the heatmap-based model has better explainability 
than the regression-based model. Recently, researchers have started to combine two 
methods to keep advantages of both of them [43]. 

3.3.2 Human Pose Estimation Using mmWave Radar 

The human pose can also be reconstructed from mmWave signals. Compared to the 
RGB image source, mmWave signals preserve user privacy well since the mmWave 
signal does not reveal salient and rich information such as true-color images. At the 
same time, the sparse input source makes human pose estimation a more challenging 
task. Almost all mmWave human pose estimation methods use a regression-based 
model. In 2018, researchers proposed RF-Pose3D [96], a technique that reconstructs 
up to 14 body parts, including the head, neck, shoulders, elbows, wrists, hip, knees, 
and feet. This work first uses 12 camera nodes to record RGB-based video and
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then obtain label key points from OpenPose. At the same time, radar signals at a 
few GHz are used to generate the RF heatmap. They then train a region proposal 
network (RPN) to zoom in on RF data and a CNN with ResNet architecture to 
extract the 3D skeleton from the region of interest. For keypoint localization, the 
average errors in the .x, y, z axes are 4.2, 4.0, and 4.9 cm, respectively. 

Besides being limited to 14 joints, this work does not leverage the mmWave 
radar’s ability to obtain a high-quality point cloud. Thus, it requires a much 
more complex NN architecture with high computation cost. Moreover, multiple 
cameras and bulky radar signal generating systems hinder the practicality of the 
approach. The most recent mmWave radar-based pose estimation techniques use 
point cloud representation from the commercial radar device Texas Instrument (TI) 
xWR1x43 [81]. Sengupta et al. [72] propose mmPose, a human pose estimation 
technique that constructs the skeleton by using mmWave point cloud and a forked-
CNN architecture. They use two radar devices and sum up the point values in the 
feature map level to overcome the sparse representation of the point cloud. An et 
al. [3] present a meta-learning and frame aggregation framework to help mmWave-
based human pose estimation model converge faster for unseen scenarios. Xue et 
al. [92] propose the mmMesh technique to construct human mesh using mmWave 
point cloud. 

Finally, another recent study proposes a mmWave-based assistive rehabilitation 
system (MARS) [2] using human pose estimation. It sorts the mmWave point 
cloud and performs matrix transformations before feeding them to a CNN model. 
MARS can reconstruct up to 19 human joints and human skeleton in 3D space 
using mmWave radar without raising privacy concerns and requiring strict lighting 
settings. Moreover, MARS provides the users with 19 joints velocity estimations, 
four critical angle estimations, and ten commonly used rehabilitation posture 
correction feedback. It incorporates point cloud preprocessing, a CNN that outputs 
joint positions, and rehabilitation movement feedback to the user. It first maps 
the 5D time series mmWave point cloud to a 5-channel feature map and then 
outputs 3D joint positions. It finally provides joint velocity, angle estimations, and 
posture correction feedback. The overview of MARS is shown in Fig. 3. An example 
of human pose estimation using mmWave radar point cloud is shown in Fig. 4. 

Fig. 3 Overview of human pose estimation using mmWave point cloud and its downstream 
healthcare-related tasks. The figure is partially modified from [2]
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Fig. 4 Example of human pose estimation using mmWave radar point cloud. From left to right, it 
shows radar point cloud, MARS estimation, and the ground truth [2]. Some of the human parts are 
highlighted by the bounding boxes in the figure. The figure is partially modified from [2]
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Model inference of MARS takes only 64 . µs and consumes 442 . µJ energy on the 
Nvidia Jetson Xavier-NX board. These results show the practicality of the proposed 
technique running real time on low-power edge devices. The accuracy of human 
pose estimation using mmWave is comparable to that of an RGB image. However, 
the explainability of the model and solution for free-form human pose estimation 
is still challenging. There are several future challenges for mmWave human pose 
estimation to be widely applied in real-life applications. 

3.3.3 Human Pose Estimation Using Inertial Sensors 

Besides cameras and radars, wearables such as inertial sensors (IMUs) also play 
an essential role in human pose estimation. IMU-based human pose estimation is 
relatively robust to different environmental settings since sensing is not interfered 
with by light conditions or visibility. Thus, it is more practical for occlusions or 
baggy clothing scenarios. In addition, the explainability of IMUs-based human 
pose estimation is pretty good since every IMU is placed in a specific position 
of a person. As one of the earliest studies in this field, [68] estimate human pose 
using 17 IMUs, and a Kalman filter is employed for all the measurements. It 
comprehensively defined 17 IMUs on a person, thus achieving accurate human pose 
estimation. However, the large number of IMUs requires long setup times and makes 
it uncomfortable for users. Marcard et al. proposed sparse inertial poser (SIP) [88]: 
automatic 3D human pose estimation from sparse IMUs. This work provides a new 
method to estimate the human pose using only six IMUs. By exploiting a statistical 
body model and jointly optimizing posture over continuous time frames to fit both 
orientation and acceleration data, SIP achieves positional errors of 3.9 cm. A follow-
up work [89] combines IMUs and a moving camera to estimate multiple human 
poses in challenging outdoor scenes robustly. 

In summary, human pose estimation can be performed using different input 
sources. Table 2 compares different input sources in terms of accuracy, privacy 
concern, price, and the anti-interference ability. Lightweight embedded machine 
learning algorithms enable running human pose estimation models on edge devices. 
In real-life applications, it is crucial to choose proper input sources of the human 
pose estimation model according to different requirements such as accuracy, privacy, 
and robustness. 

Table 2 Comparison between different input sources for human pose estimation. Anti-
interference here represents the robustness of the algorithm. Specifically, different input sources 
are affected by environmental conditions such as light and smoke to varying degrees 

Data form Accuracy Privacy Price Anti-interference 

Camera Image/video .� � � .� .�� . �

LiDAR Point cloud .� � � .� � � .� . � � �

Radar Point cloud/heatmap .�� .� � � .�� . � � �

IMUs Accelerations .� .� � � .� � � .� � �
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4 Energy Management 

The commonly used edge devices include smartphones, smartwatches, and other 
wearable devices. Small form-factor devices, in particular, have severely limited 
battery capacity due to form-factor requirements, such as small size, lightweight, 
and flexibility. For example, the Oura Ring 3 incorporates a 22 mAh–3.7 V battery 
and advertises a battery life of 4 to 7 days [56]. Despite this limitation, these 
devices collect significant amounts of data to enable sophisticated health monitoring 
applications discussed in previous sections. The energy consumption soars if they 
transmit these data to a mobile device or to the cloud since wireless streaming of 
information is prohibitively power-consuming. Consequently, the recharge interval 
is short, which causes the users to stop using these devices. Therefore, significant 
research effort focuses on reducing the dependency of wearable devices on batteries. 

Reducing the dependency on batteries critically depends on the developments in 
three main research areas: (1) energy harvesting (EH), (2) energy management, and 
(3) low-power design: 

(1) Energy harvesting refers to techniques that generate power from ambient 
resources, such as light and motion. It provides a complementary energy source 
to batteries. 

(2) Energy management encompasses the techniques that aim to optimally utilize 
the available energy from batteries and energy harvesting sources. It regulates 
the energy consumption to maximize the user experience within the constraints 
set by the energy source and the device. 

(3) Low-power design refers to a broad class of design styles that aim to minimize 
the power consumption of the devices, while they meet the processing require-
ments. Popular techniques include clock and power gating, leakage power 
minimization, and heterogeneous computing, such as using domain-specific 
hardware accelerators to boost energy efficiency. 

This chapter overviews energy management, a key enabler, and service applica-
tion for edge devices running target ML applications. To this end, it first summarizes 
the wearable energy harvesting modalities and provides a general idea of the energy 
budget for wearable devices. Then, it presents an overview of optimal energy 
management techniques. We leave the low-power design practices and optimizations 
on energy consumption out of this chapter. We refer the interested readers to other 
surveys and books on low-power design techniques [15, 62]. 

4.1 Energy Sources and Budget 

Wearable EH techniques generate usable electrical energy from various sources 
in a user’s environment while conforming to the physical and comfort constraints 
associated with the wearable form factor [48]. The most common energy sources
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Fig. 5 Power vs. load resistance curve of a wearable piezoelectric energy harvester at different 
gait speeds 

are light, motion, electromagnetic waves, and heat [78]. Ambient light has the 
highest potential for wearable EH devices. For instance, with an 8.1 cm. 

2 flexible 
PV cell, ambient light EH offers a capacity of over 1 mW outdoors (5000 lux) 
and close to 100 . µW indoors (500 lux) [39]. Similarly, radio-frequency (RF) EH 
can harvest 10 . µW with an 18.4 cm. 

2 flexible antenna with a signal strength of 
.−10 dBm at 915 MHz [51]. Body-heat EH has power levels of about 3 . µW with 
a 1 cm. 

2 flexible harvester at an ambient temperature of 15 . 
◦C (i.e., a temperature 

difference of 22 . 
◦C) [36]. Human-motion EH is particularly interesting for wearable 

applications because the energy is available on demand. For example, energy due to 
human activity is at hand when required by an activity-monitoring application. In 
addition, human-motion EH can harvest about 25 . µW with a 23.8 cm. 

2 piezoelectric 
transducer, while the wearer is jogging (i.e., 5 mph gait speed) [84, 85], as illustrated 
in Fig. 5. 

4.2 Optimal Energy Management 

We can enable a long-term recharge-free operation if the edge devices have an 
energy-neutral operation. Energy neutrality means that the energy consumed over 
a time period (e.g., one day) is less than or equal to the energy produced during the 
same period. When the device has a battery, the energy stored in the battery can



A Survey of Embedded Machine Learning for Smart and Sustainable. . . 143

temporarily power the device if the harvested energy is insufficient. However, the 
battery will be recharged back to its original level if the energy-neutral operation 
is guaranteed. Hence, the energy-neutral operation can automate battery charging 
through harvested energy such that the battery level is restored at the end of each 
day. In the absence of a battery, this system reduces to intermittent computing 
where the operating halts when no energy is available. In summary, optimal energy 
management techniques can maximize the device utility (e.g., the amount of time it 
remains active) under the available energy budget, whether from a battery or energy 
harvesting source. 

Achieving energy-neutral operation is challenging due to the conflict between 
the uncertainty in harvested energy and the target application’s quality-of-service 
(QoS) requirements. The application performance and utilization of the device 
can diminish when the harvested energy is limited [30]. For example, consider a 
wearable health application where the target device must collect the vital signals 
and process them locally to detect abnormalities. On the one hand, the device needs 
a steady and sufficient amount of energy to perform its intended operation, e.g., 
analyzing the collected signals within a deadline. On the other hand, the harvested 
energy may fluctuate widely and even vanish entirely during the same period. 
Therefore, the limited and highly varying nature of the harvested energy necessitates 
deliberate planning and management. 

Energy management algorithms use the available energy judiciously to maximize 
the application performance while minimizing manual recharge interventions to 
achieve energy-neutral operation [86]. These algorithms should satisfy the following 
conditions to be deployed on a wearable resource-constrained device: 

• Incurring low execution time and power consumption overhead 
• Having a small memory footprint 
• Being responsive to the changes in the environment 
• Learning to adopt such changes 

Kansal et al. [40] present the general framework of energy-neutral operation for 
energy harvesting devices. The authors propose a linear programming approach 
to maximize the duty cycle of a sensor node and a lightweight heuristic to help 
solve the linear programming with ease. Similarly, the work in [22] proposes a 
long-term energy management algorithm, referred to as long-term ENO, which 
aims to achieve energy neutrality for one year or more. As complementary to this 
work, going with a more fundamental control-theory approach, Geissdoerfer et 
al. [31] propose a feedback controller to achieve long-term ENO. To account for 
the application requirements when deciding the duty cycle of the nodes, Bhat et al. 
use a generalized utility function that defines the application characteristics [17]. 
They present a lightweight framework based on the closed-form solution of the 
optimization problem that maximizes the utility while maintaining energy-neutral 
operation. Although these are essential studies in this field, none of them consider 
user activity patterns, hence the stochastic nature of energy harvesting, which is at 
the core of wearable energy harvesting techniques.
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Fig. 6 Comparison of ECO to other approaches and an optimal iterative algorithm 

A recently proposed energy management framework, ECO, is tailored for wear-
able use cases by incorporating user activity and energy harvesting uncertainty into 
energy management [86]. The ECO framework maximizes a utility function under 
specific battery energy constraints. The utility function can model any arbitrary 
metric, such as device throughput and classification accuracy. The framework takes 
the initial battery energy at the beginning of each day and the expected energy 
harvesting profile for a finite horizon (e.g., 24 h) as inputs. The expected energy 
harvesting profile is obtained from a novel EH forecasting model, which considers 
user patterns. At the beginning of the day, using the energy harvesting profile, ECO 
first finds the energy that the device can consume during each hour that maximizes 
the utility function under the battery energy constraints. As the day progresses, this 
solution is not optimum due to the variations in harvested energy. Using the actual 
harvested energy, ECO corrects the initial allocations using a lightweight runtime 
optimization algorithm after an hour. As a result, the ECO framework adapts to 
the deviations from the expected EH values with negligible runtime overhead. 
Figure 6 illustrates how ECO addresses the over-utilization and under-utilization of 
the energy seen in two prior approaches, which result in higher application utility. 
Moreover, measurements on a wearable device prototype show that ECO has 1000. ×
smaller energy overhead than iterative optimal approaches with a negligible loss in 
utility. 

ECO and other prior work are highly dependent upon the accuracy of the 
energy forecasts. They can compensate for deviations in user patterns after the fact, 
which causes a deviation from the optimal trajectory. As a remedy, reinforcement 
learning (RL)-based resource management algorithms are employed for energy 
management. RL-based approaches benefit from not relying on forecasts of the 
harvested energy, in contrast to the prediction-based techniques presented above.
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These techniques implicitly learn user patterns, and they can proactively perturb 
the allocations before a significant deviation in usage pattern happens. RLMan is 
a recent prediction-free energy management approach based on RL [8]. It aims 
to maximize packet generation rate while avoiding power failures. tinyMAN is 
another RL-based approach that takes the battery level and the previous harvested 
energy values as inputs (states). It maximizes the utility of the device by judiciously 
allocating the harvested energy throughout the day (action). [14]. Over time, by 
interacting with the environment, the tinyMAN agent learns to manage the available 
energy on the device according to the harvested energy. 

In conclusion, energy management remains a fundamental research field essen-
tial for the success of the embedded AI field. Energy management techniques 
must run as background service applications to ensure the successful operation of 
embedded AI applications under the available energy budget. Significant challenges 
include developing low-overhead techniques that maximize energy efficiency under 
uncertainty and scarce energy resources. Developing novel energy forecasting mod-
els is an important research direction for prediction-based approaches. Similarly, 
efficient runtime learning of user patterns is critical for prediction-free approaches. 
Finally, the developments in this field can transfer to other resource allocation 
problems in many different areas, including telecommunications to space-based 
systems. 

5 Conclusions 

Embedded machine learning enables numerous novel applications since low-power 
edge devices allow cutting-edge machine learning algorithms to obtain data from 
multiple sensors and run locally. This chapter overviewed the opportunities and 
challenges in the embedded machine learning applications context. It presented a 
survey of edge-AI application use cases for embedded machine learning. First, it 
overviewed embedded machine learning frameworks, consisting of model training, 
model compression, and model inference. Then, it presented several edge-AI 
applications for healthcare, such as freezing-of-gait identification for Parkinson’s 
disease patients, human activity recognition, and human pose estimation. Finally, 
we discussed energy management as a fundamental enabler for wearable devices 
since battery shortage is one of the leading factors that limit embedded machine 
learning on wearable devices. Lightweight machine algorithms for these high-
impact applications and other novel applications offer unique research opportunities. 
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Reinforcement Learning for 
Energy-Efficient Cloud Offloading 
of Mobile Embedded Applications 

Aditya Khune and Sudeep Pasricha 

1 Introduction 

Faster wireless network speeds and rapid innovations in mobile technologies have 
changed the way we use our computers. It is estimated that 207.2 million people in 
the United States own a smartphone today while the number of smartphone users 
worldwide is estimated to be more than two billion [1]. These mobile devices are 
not only used for making voice calls but also efficiently able to run complex mobile 
applications that interact with the Internet. The volume of data being accessed 
and processed by smartphones and the sophistication of mobile applications are 
rapidly increasing over time. However, the rapid evolution in hardware and software 
capabilities of mobile devices has not been paralleled by a similar advance in battery 
technology [2]. As expected, high-end mobile applications increase the burden on 
the battery life of smartphones. For example, it has been shown that a GPS-based 
smartphone app can drain a mobile phone’s battery completely within 7 hours [3]. 

A promising solution that is being considered to support high-end mobile 
applications is to offload mobile computations to the cloud [4–11]. Offloading is an 
opportunistic process that relies on cloud servers to execute the functionality of an 
application that typically runs on a mobile device. The terms “cyber foraging” and 
“surrogate computing” are also sometimes used to describe computation offloading. 
Such computation offloading is being considered today as a means to save energy 
consumption (thereby improving battery lifetime) and increase the responsiveness 
of mobile applications. The potential of computation offloading lies in the ability to 
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sustain power hungry applications by releasing the energy consuming resources of 
the smartphone from intensive processing requirements. 

In this chapter, we present the details of a framework for mobile-to-cloud 
offloading that was first presented in [12]: 

• We study the behavior of a set of popular smartphone applications, in both local 
and offload processing modes. We identify possible bottlenecks during mobile-
to-cloud offloading, as a function of the applications functional characteristics, 
such as data intensiveness and computation intensiveness. This study is crucial to 
establish the pros and cons of offloading when using various wireless networks. 

• We quantify the influence of different wireless network technologies on mobile-
to-cloud offloading. We perform several experiments to gain a clear under-
standing of the impact of selecting the appropriate network when offloading, 
while considering advances in current high-speed wireless data communication 
networks such as 3G, 4G, and Wi-Fi. 

• We propose a novel middleware framework that uses a machine-learning tech-
nique called reinforcement learning (RL) to make offloading decisions effectively 
on a smartphone. The proposed framework considers various types of infor-
mation on the mobile device, such as network type, network bandwidth, and 
user-context, to decide when to offload in order to minimize energy consumption. 
Our strategy utilizes unsupervised machine learning to select between available 
networks (3G, 4G, or Wi-Fi) when offloading mode is active. Our experiments 
with real applications on a smartphone highlight the potential of our framework 
to minimize energy consumed in mobile devices. 

2 Prior Work 

Many prior research efforts have proposed strategies to reduce energy consumption 
in mobile devices via machine learning-based device resource management methods 
[13–18] and offloading strategies [4, 8, 19, 20]. Kumar et al. [19] presented a 
mathematical analysis of offloading. Broadly, the energy saved by computation 
offloading depends on the amount of computation to be performed (C), the amount 
of data to be transmitted (D), and the wireless network bandwidth (B). If (D/C) 
is low, then it was claimed that offloading can save energy. Flores et al. [8] 
proposed a fuzzy decision engine for code offloading. The mobile device uses a 
decision engine based on fuzzy logic to combine various factors and decide when 
to offload. Our framework discussed in this chapter considers many more factors 
than these works, such as network type, data size, and degree of computations when 
making decisions about offloading. Cuervo et.al [4] proposed a system called MAUI, 
based on code annotations to specify which methods from a software class can be 
offloaded. Annotations are introduced in the source code by the developer during the 
development phase. At runtime, methods are identified by a MAUI profiler, which 
performs the offloading of the methods, if the bandwidth of the network and data
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transfer conditions are ideal. MAUI aims to optimize both energy consumption and 
execution time, using an optimization solver. However, this annotation method puts 
an extra burden on the already complex mobile application development phase. 
Moreover, such annotations can cause unnecessary code offloading that drains 
energy [20]. To reduce the complexity of the application development process, 
we recommend transferring the entire application processing to the cloud rather 
than utilizing a design-time code partitioning method. Further, we propose a 
novel adaptive reward-based machine learning approach to make smart offloading 
decisions that can achieve high energy efficiency with offloading and also improve 
application response time. 

3 Challenges with Offloading 

In spite of existing research highlighting the potential of offloading in mobile 
devices, current offloading techniques are far from being widely adopted in mobile 
systems. The implementation of these computation offloading techniques for many 
real-world mobile applications in real-world scenarios has not shown promising 
results [6], with the mobile device consuming more energy in the offloading process 
than the energy savings achieved due to computing on servers in an offloaded 
manner. 

Offloading decision engines must consider not only the potential energy savings 
from offloading but also how the response time of the application is impacted by 
offloading. An effective decision to offload processing to the cloud must reduce 
energy without significantly increasing response time. Such decisions are heavily 
impacted by wireless network inconsistency. The power consumed by the network 
radio interface is known to contribute a considerable fraction of the total device 
power, and it varies depending on wireless signal strength [21]. With the recent 
advent of high bandwidth 4G networks, there has been increased interest in the 
offloading domain, but from our experiments and results presented in later sections 
of this chapter, we found that 4G consumes more energy than Wi-Fi and 3G. Some 
of the prior works [22] in this area also confirm this observation. 

The network quality of a 4G connection at a mobile device’s location greatly 
affects the battery life. If the device is in the area that does not have 4G coverage, 
there is no advantage to a 4G interface, and if 4G network search is not disabled, 
then the radio’s search for a nonexistent signal will drain the battery quickly. In case 
of a weak signal, the device uses more power to send and receive data to and from 
the network. A strong 4G signal uses less battery, but the biggest problem is the 
constant switching from 4G to 3G and back again. Also, throughout a typical day, at 
different times, the performance of a wireless network varies because of changing 
traffic load on the network. We refer to all such problems due to the mobile network 
as “network inconsistency” problems. 

To counter the impact of network inconsistency on a mobile device and to 
optimize the offloading experience, we propose a novel offloading framework based
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on reinforcement learning. This framework not only decides when to offload but 
also helps a mobile device select between the different available wireless networks, 
to achieve consistent improvements by using offloading even in the presence of 
varying network conditions. In the following sections, we describe our framework 
in detail. 

4 Offloading Performance of Mobile Applications 

We analyzed the performance implications of offloading by comparing two scenar-
ios – one where all computations are performed only on the mobile device without 
using the cloud at all (local mode) and the other where there was a complete reliance 
on the cloud computation (offload mode), with minimal computations on the mobile 
device. We selected five diverse and popular commercially available smartphone 
applications for our experiment. Our evaluation focuses on two metrics: (i) battery 
consumption and (ii) response time. We compared the results obtained with these 
applications for 3G, 4G (HSPA+), and Wi-Fi networks. This comparative study was 
meant to help us identify various factors that need to be considered for the design 
of cloud offloading strategies for mobile applications, for example, identifying the 
best possible network for offloading to the cloud, for a given mobile application, at 
a specific location. 

4.1 Experimental Setup 

The power estimation models required to estimate battery consumption were built 
using power measurements on the LG G3 device running the Android OS version 
5.0.1. The contact between the smartphone and the battery was instrumented, and 
current was measured using the Monsoon Solutions power monitor [23] (Fig. 1). 
The monitor connects to a computer running the Monsoon Solutions power tool 
software, which allows real-time current and power measurements. We also used 
the Android Device Bridge, a software tool to perform battery drain measurements 
on the android device. The experiments were performed using AT&T’s 3G and 4G 
(HSPA+) networks and Comcast’s 100 Mbps (2.4 GHz Band) Wi-Fi network. We 
performed these experiments around the Colorado State University campus in Fort 
Collins, Colorado, the United States. 

Before conducting our experiments, we followed a few rules to ensure mean-
ingful and accurate results while avoiding human error. These rules are as follows: 
(1) set the device’s screen to a consistent and fixed brightness level, to minimize 
interference from varying screen power consumption (e.g., for different ambient 
light scenarios); in our measurements, we used the lowest screen brightness
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Fig. 1 Monsoon power monitor setup 

level; (2) kill all background processes before measurements; and (3) repeat each 
experiment over 15 iterations to improve result confidence and minimize human 
error. We selected five diverse commercially available smartphone applications 
for our experiments: (i) matrix operations, (ii) Internet browser; (iii) zipper (file 
compression); (iv) voice recognition and translation; and (v) torrent (file download). 

The next subsection gives the details of all the applications considered and the 
results of their execution for the two scenarios (local and offloading modes) outlined 
earlier. 

4.2 Experimental Results 

4.2.1 Matrix Operation App 

The matrix calculator app [24] runs on android-based devices. The user is first asked 
to enter the size of the matrix and all the digits of the matrix manually, and then 
the user can direct the application to calculate the inverse of that matrix (using the 
adjoint method). For our experiments, we used a set of matrix sizes from 3 × 3 
to 9 × 9. For the cloud part, we implemented the functionality of calculating the 
matrix inverse using the Amazon Web Services (AWS) EC2 cloud instance [25]. 
Figure 2 shows the results from our experiment. The energy consumption in local 
processing mode is equal to the battery drain in the device while performing the 
matrix operation, whereas in the cloud mode, energy consumption is the total of 
battery drain during the idle time of the mobile device while the operation is being 
performed remotely on the cloud and the time for data transfer between the mobile 
device and the cloud.
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Fig. 2 Average battery consumption and average response time on a mobile device for a matrix 
operation with varying matrix sizes 

It can be observed that in the local processing mode, the battery consumption 
of the device increases manifolds with the increasing matrix size, largely, because 
there is an increase in the CPU’s energy consumption as the number of floating 
point operations increase. Local processing is found to be suitable for operations 
on small matrices (i.e., 3 × 3 and 5 × 5) allowing for low energy consumption 
on the device and low response time. On the other hand, offloading to the cloud 
saves energy and reduces response time when the matrix size increases. The device 
in offloading mode saves maximum energy (and also has minimum response time) 
when used with Wi-Fi. The results show that 3G performs slightly better than 4G as 
far as energy is concerned, whereas 4G gives better response time than 3G for the 
same operations.
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4.2.2 Internet Browser App 

Cloud-based web browsers use a split architecture where processing of a mobile 
web browser is offloaded to the cloud partially. This involves cloud support for most 
browsing functionalities such as execution of JavaScript, image transcoding and 
compression, and parsing and rendering of web pages. For our experiments, we used 
the Mozilla Firefox [26] and Puffin [27] browsers. Puffin is a commercially available 
cloud-based mobile browser, and Mozilla Firefox is a local browser available from 
the Google Play store. Our experiments are performed for a data range starting 
as low as 150 Kib to a session involving 5 MB of data transfer to load the web 
pages. Figure 3 shows the results obtained by measuring data transfer (response) 
time and energy consumed by these browsers for loading two different websites: (i) 
www.yahoo.com and (ii) www.wikipedia.org. 

We observed that the results obtained fluctuated significantly due to network 
inconsistency. For example, the plots in Fig. 3 show that the response time/battery 
consumption of a browser session with around 3 MB data usage is sometimes 
more than that of a session which uses 5 MB of data. To counter such network 
inconsistency problems, we conducted 15 iterations of each experiment across 
different locations and at different times of the day. In general, our results show 
that cloud-based web browsers are faster but more expensive in terms of energy 
consumption. For small data transfers, it is suitable to use web browsers with local 
processing to save energy. For a typical user, the data transfer amount during a 
browsing session does not go beyond 5–6 MBs for a single session. Thus, for most 
websites in typical usage scenarios, a local browser will provide greater energy 
savings than when using offloading. The response time results indicate that for 
larger data usage scenarios, offloading can be beneficial. Fourth generation not 
only provides lower response time but also consumes more energy than 3G for the 
offloading scenarios. Wi-Fi outperforms both 3G and 4G in offloading mode, for 
response time and energy consumption. 

4.2.3 Zipper App 

Zipping large files in order to compress them is a widely used functionality on 
most computers. Zipper [28] is an android app that compresses files locally on 
a mobile device. For the cloud-based file compression, we used an AWS cloud 
instance and zipping tool available on the web [29]. Figure 4 shows the results 
for energy consumption and the response time when zipping various PDF and 
Word document files ranging in size from 15–255 MB. It can be observed that 
for the zipping operation, local computation is most efficient in terms of energy 
consumption. Offloading provides benefits only in response time and that too only 
for large file sizes. When offloading, 4G consumes more energy than 3G for smaller 
file sizes (15–105 MBs) whereas 3G consumes more energy than 4G for larger file 
sizes (175–255 MBs). Fourth generation is faster than 3G but slower than Wi-Fi. 
Wi-Fi gives the best results in terms of energy and response time when offloading.
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Fig. 3 Average battery consumption and response time on a mobile device for an Internet 
browsing session with varying data sizes 

4.2.4 Voice Recognition and Translation App 

There are several popular apps for voice recognition and translation available 
from app stores, for example, Google Translate [30] for android and Speak and 
Translate [31] for iOS. Google Translate is a cloud-based app, which also has an 
offline translation mode that performs local processing on the device with a small 
neural network. The application allows for downloading an installation package to 
support the local processing mode. It makes use of the statistical machine translation 
method, which relies on large amounts of data to train a machine translation engine. 

Figure 5 shows the energy consumption of the Google Translate app for a 
range of words. These measurements were recorded while translating 20–140 words 
from the English (the United States) to Marathi language. From the results in
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Fig. 4 Average battery consumption and response time on a mobile device for zipping/compress-
ing files of varying sizes 

Fig. 5, we can clearly observe that the local processing mode is more efficient 
in terms of energy consumption as compared with the cloud processing mode. 
The voice recognition and translation accuracy for local processing was 79.26% 
and for offloaded processing was 88.51%. This is because the offloaded voice 
data is processed by more powerful cloud servers, which are capable of running 
the complex computations of a larger neural network and other machine learning 
algorithms for more efficient translation. 

4.2.5 Torrents App 

We used the android-based torrent app Flud [32] to perform torrent downloads 
in local mode. In the cloud mode, a cloud server is used as a BitTorrent client 
to download torrent pieces on behalf of a mobile device. While the cloud server 
downloads the torrent, the mobile device switches to the sleep mode until the
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Fig. 5 Average battery consumption on a mobile device for voice recognition and translation 
operations 

cloud finishes the torrent processes, and then the cloud uploads the downloaded 
torrent file in a single process to the mobile device. Kelenyi et al. [33] presented a 
similar strategy for torrent file download. This strategy saves energy consumption 
in smartphones as downloading torrent pieces from multiple peers consumes more 
energy than downloading one burst of pieces from the cloud. 

For our experiments, we used torrent file sizes ranging from 25–85 MB, with 
an AWS cloud instance being used for the cloud mode. Figure 6 shows the results 
of our experiments for this application. It is interesting to note that out of all the 
applications that we consider, offloaded processing proves to be most beneficial in 
terms of both energy savings and response time for the torrent download application, 
which is data intensive but not compute intensive. Fourth generation is faster than 
3G but slower than Wi-Fi, which is consistent with earlier observations. Fourth 
generation performs slightly better than 3G in terms of energy consumption for 
higher data sizes (45–85 MBs), but for smaller data sizes, 3G is more energy 
efficient. 

4.3 Summary of Findings 

The overall performance when offloading depends on various factors such as the 
amount of data required by the application, wireless network signal type and 
strength and the functionality of the application under consideration. In some prior 
work [19, 34], it was concluded that offloading is beneficial when an application 
is compute intensive and at the same time less data intensive. However, we found
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Fig. 6 Average battery consumption and response time on a mobile device for torrent file 
download operations 

that this is not always the case. For instance, offloading is beneficial for applications 
that may not be compute intensive, but are data intensive, for example, the torrent 
application. 

To make offloading more practical, it is important to reduce the energy spent 
in the communication between the mobile device and the cloud. Our experiments 
indicate that choosing the best possible network for offloading is a critical decision. 
One may assume that because 4G is faster than 3G, we should always rely on it 
for offloading when Wi-Fi is not available. However, our results indicate that 4G is 
more power hungry than 3G most of the time. 

Network quality is also a factor that cannot be ignored. We found that a good 
3G-coverage performs far better as opposed to poor 4G-coverage and vice versa. In 
the region of cell tower edges or where the coverage of 3G/4G ends, we found that 
the handover process results in high battery drain. This is because the device in such 
scenarios is constantly searching for the network, frequently scanning the wireless 
spectrum around it to determine which tower it should tether itself to. The more
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networks there are to choose from, the longer the scans take. Some apps require a 
channel to be established between the base station and the mobile device at regular 
intervals, which can significantly drain the device battery. 

Another observation is that as 4G generally provides faster data rates than 3G, 
users tend to consume more data when connected on 4G than 3G. The radio-network 
interface in the 4G (or LTE) device is functionally a lot more sophisticated and does 
a lot more than a 3G interface. This interface is the single biggest source of battery 
drain in a mobile device, apart from its display. Unlike the display, however, the 
network interface radio is always on. 

In conclusion, we observed from our experiments on real applications running on 
a real mobile device that the overall performance of offloading depends on various 
factors, such as the amount of data used by the application, network signal type (3G, 
4G, and Wi-Fi), network signal strength, and the complexity of the functionality of 
the application under consideration. 

5 Adaptive Offloading 

The decision to offload a mobile application to the cloud is a complex one due to the 
distributed nature and many real-time constraints of the overall system. To make an 
effective offloading decision, it is vital to consider various factors as we discovered 
after our experimental analysis presented in the previous section. As these factors 
vary at runtime, there is a need for an adaptive offloading approach that takes the 
variations of these factors at runtime into consideration when making decisions. 

A few prior works [8, 9] propose an offloading decision engine that considers the 
contextual parameters on a device and on the cloud to make an offloading decision 
adaptively. Flores et al. [8] proposed a fuzzy decision engine for code offloading. 
The mobile device runs the fuzzy logic decision engine, which is utilized to combine 
n number of variables (e.g., application data size and network bandwidth) that 
are obtained from the overall mobile cloud architecture. The fuzzy logic decision 
engine works in three steps, namely: fuzzification, inference, and defuzzification. In 
fuzzification, input data is converted into linguistic variables, which are assigned to a 
specific membership function. A reasoning engine is applied to the variables, which 
makes an inference based on a set of rules. Lastly, the outputs from the reasoning 
engine are mapped to linguistic variable sets again in the defuzzification step. 
This offloading decision engine in [8] assumes a consistent network performance 
during offloading. However, as observed in our experiments, such consistency is 
difficult to achieve because of frequent mobile user movements and variable network 
quality (due to factors such as location of the device and load on the network [21]). 
Moreover, the offloading decision engine in [8] mainly emphasizes energy savings; 
however, response time is also a crucial metric for various applications that should 
not be ignored, otherwise user quality of service degradation can become so severe 
that any effort to save energy becomes irrelevant.
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In the next section, we describe our reward-based middleware framework for 
adaptive offloading that overcomes the challenges mentioned above, to make more 
efficient decisions related to when and how to offload applications from a mobile 
device to the cloud. 

6 Middleware Framework for Efficient Offloading of Mobile 
Applications 

To simplify the mobile application development process and at the same time avoid 
problems caused by hard coded annotations, our framework proposes to transfer 
all the computation for an application to the cloud instead of partial (selective) 
offloading of the application. Our framework involves a novel decision engine on the 
mobile device that works together with a clone virtual machine (VM) of the mobile 
software environment to execute applications on cloud servers. Figure 7 shows a 
high-level overview of the proposed framework. The framework is implemented 
at the middleware level in the software stack of the Android OS and runs in the 
background as an android service. As a result, our framework requires no changes 
to any of the applications or the Android OS. The runtime monitor component 
periodically triggers the reinforcement learning (RL) module to generate/update 
a Q-learning table. At any time, this Q-table contains information to guide the 
decision for when and how to offload an application to the cloud, depending on 
multiple factors. The remainder of this section provides a detailed overview of the 
RL mechanism and our algorithm to generate and use the Q-table. 

6.1 Reinforcement Learning (RL) 

RL is an unsupervised learning approach, which focuses on learning by having 
software agents interact with an environment and then taking actions to maximize 
some notion of a reward. In supervised learning (e.g., using neural networks), a 
training set of correctly identified observations is required to train a prediction 
model. RL differs from supervised learning in that correct input/output pairs of 
identified observations do not need to be presented, so there is no need for 
a pretrained model. Moreover, an RL algorithm performs well as it has better 
exploration capabilities than unsupervised learning methods. For this reason, RL 
is being widely used in gaming and control problems, for example, to determine 
the next best move in games [35, 36]. RL cuts down the need to manually specify 
rules, and agents learn simply by playing the game or exploring different moves in 
an automated manner. 

In RL, the state-action value function is a function of both state and action, and 
its value is a prediction of the expected sum of future reinforcements. The state-
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Fig. 7 Reinforcement learning (RL)-based middleware framework for efficient application 
offloading to cloud 

Fig. 8 Q-learning flow with example of Q-table 

action value function is referred to as the Q-function [37]. Figure 8 summarizes how 
a typical Q-learning reinforcement algorithm works. Q-learning is a reward-based 
mechanism that generates a Q-table with reinforcement or penalty values. The figure 
illustrates a section of a Q-table where the possible actions are offloading with 3G, 
4G, or Wi-Fi network, when the user is at different locations L1–L4. Actions are 
chosen, and the penalty values are calculated for respective actions to update the 
Q-table.
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Suppose the system is at a defined state st at time t. Upon taking action at from 
that state, we observe the one step reinforcement rt + 1, and the next state becomes 
st + 1. This continues until we reach a goal state, K steps later. The reward Rt in this 
goal state is shown below: 

Rt = 
K∑

k=0 

rt+k+1 (1) 

The objective with RL is to find actions at that maximize (or minimize) the sum 
of reinforcements or rewards rt in Eq. (1). This can be reduced to the objective 
of acquiring the Q-function Q(st, at) that predicts the expected sum of future 
reinforcements, where the correct Q-function determines the optimal next action. 
So, the RL objective is to make the following approximation as accurate as possible: 

Q (st , at ) ≈ 
∞∑

k=0 

rt+k+1 (2) 

The Q-function stores reinforcement values for each state and action pair of the 
system. Eq. (2) formulates the RL for a multistep decision problem (e.g., predicting 
sequential actions in a Tic-Tac-Toe game [37]). In our middleware framework, we 
use RL for a single-step decision problem as there are no sequential states that 
are dependent on the previous state of the system. This version of the problem is 
formulated as: 

Q (st , at ) ≈ 
n∑

t=1 

rt (3) 

The Q-function is ultimately queried by the system to select the optimal action 
at, in state st: 

at = arg min Q (st , a) (4) 

6.2 RL Algorithm to Generate Q-Function 

The state of a mobile device is defined using the contextual information of the device 
such as its location, available network type, and network strength. These contextual 
factors are chosen as we consider them to be crucial for efficient offloading. The 
runtime monitor extracts the contextual information of the device to form state 
values of the system. For example, consider a mobile device that is at location L1, 
where it has access to a 3G network type with “strong” network strength. From 
this state, if an application processing needs to be offloaded, then the Q-function
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is called to select the appropriate network that would result in the least penalty in 
terms of energy or response time (or both). In our framework, the following state 
and action values are used to generate the Q-function: 

Set of state values (discrete values): 

• Location = L1, L2, L3, . . . , Ln 
• Network carrier = 3G, 4G, Wi-Fi 
• Network strength = Strong, Medium, Weak 
• Data  Size = data_small, data_medium, data_large 

Set of action values 

• Offload using 3G network 
• Offload using 4G network 
• Offload using Wi-Fi network 

The location L1-Ln can be any geographic area where the user uses the offloading 
application, for example, office and home. More state-action pairs can be added to 
the above list to account for factors that might affect offloading, for example, we can 
add “Time of Day” as another state value, as it is observed that network performance 
is slow at certain times of day when the network load is high. However, a larger set 
of state-value pairs will result in a larger Q-function requiring greater overhead to 
manage it. 

The Q-function is generated as follows: Initially, when the mobile device is at a 
location L1, the runtime monitor accesses contextual information from the device 
such as location, networks available, and network strength. A small data file is then 
uploaded from the mobile device to the cloud, using the primary network carrier. 
The battery consumed and total response time taken for this operation are measured. 
The uploading operation is repeated with varying (small, medium, and large) data 
sizes with all available networks at the location (3G, 4G, and Wi-Fi) activated one 
by one. For each of these uploading operations, the runtime monitor measures the 
battery amount consumed and response time to complete the operation. The Q-table 
is then populated with the penalty values calculated using Eqs. (5), (6), and (7): 

P3G = Pb3G ∗ x + Pt3G ∗ y (5) 

P4G = Pb4G ∗ x + Pt4G ∗ y (6) 

PWiFi = PWiFi ∗ x + PWiFi ∗ y (7) 

Thus, in our RL framework, the reinforcement values are essentially the penalty 
values P3G, P4G, and PWiFi. The set of possible individual penalty values are 
shown in Table 1. Once populated, the Q-table can be updated periodically in the 
background when the user is not actively using the device. In Eqs. (5), (6), and 
(7), to optimize battery consumption and response time, we used weights x and y, 
respectively, with penalty values. Both x and y parameters take values between 0
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Table 1 Penalty values in RL algorithm 

Penalty values Offload w/ 3G Offload w/ 4G Offload using Wi-Fi 

Battery (Pb) processing Pb3G Pb4G PbWiFi 

Response time (Pt) Pt3G Pt4G PtWiFi 

Total penalty P3G P4G PWiFi 

Fig. 9 Decision-making using Q-table (vector of key value pairs) 

and 1. For our experiments in Sect. 7, we used  x = 0.5 and y = 0.5 to balance 
minimizing battery consumption and response time. 

Figure 9 shows an example of the decision-making process with the help of two 
simple scenarios. For a data intensive application at location L1, we have 3G and 
4G networks available as shown in first two lines of the Q-table in the figure. The 
penalty value for 4G at location L1 is lesser; therefore, the 4G network is selected 
for offloading the application to the cloud. For a less data intensive application at 
location L2, out of all the networks available, 3G is selected because Wi-Fi has weak 
signal strength with higher penalty and 4G also has a higher penalty. 

7 Experimental Results 

To evaluate the efficacy of our proposed framework, we conducted a set of 
experiments. We implemented our middleware framework and its decision engine 
on an android-based mobile device. To form the Q-function of our RL algorithm, 
real user data was collected at different geographical locations around the Colorado
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Fig. 10 Average battery consumption and response time of Matrix operations app with learning 
methods 

State University campus area, in Fort Collins, Colorado. We compared our work 
with the fuzzy logic decision engine proposed by Flores et al. [8], which we 
discussed in Sect. 5 and which we also implemented on the android-based mobile 
device. 

Figure 10 shows the results for the matrix operation app with our proposed RL-
based decision engine and the fuzzy logic-based decision engine from [8]. Similarly, 
Fig. 11 shows the results for the zipper app, and Fig. 12 shows results for the torrent 
app. In all the scenarios, the task of a decision engine is to decide whether to offload 
and select the network to offload with. In these figures, the red trend line shows
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Fig. 11 Average battery consumption and response time of zipper app with learning methods 

results with the fuzzy decision engine [8] whereas the green trend line shows the 
results with our RL-based middleware framework. We have also shown bars with 
the results for offloading with each available network and local processing (from 
Sect. 4) as a reference. 

In general, our results show that our proposed RL-based decision engine 
outperforms the fuzzy logic approach from [8]. For less data intensive operations, 
the results of RL and fuzzy logic overlap. For instance, in the case of the zipper 
application (Fig. 11), for lower data sizes fuzzy logic shows better results, possibly 
because the Q-table generated using our RL algorithm uses 25 MB as the minimum 
data size. For any data size lower than this minimum value, the RL-based framework
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Fig. 12 Average battery consumption and response time of torrent app with learning methods 

is thus less effective at making predictions. This can be improved using a wider 
range of data files/sizes when populating the Q-table. For higher data sizes and 
more complex computations, our RL approach gives improved battery consumption 
and response time than [8]. 

Figure 13 summarizes the prediction accuracy of both the learning methods 
being compared. It can be observed that our RL-based engine has better prediction 
accuracy, which is crucial for making effective offloading decisions. The overall 
performance of offloading depends on various factors, such as the amount of data 
required by the application, network signal type (3G, 4G, and Wi-Fi) and network 
signal strength, and the complexity of the functionality of the application under 
observation. By considering all of these individual factors in the decision process, 
unlike the fuzzy logic approach from [8], and by utilizing a more sophisticated and
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Fig. 13 Prediction accuracy of learning methods 

powerful learning algorithm, our framework is able to achieve notably better results 
compared with [8]. Our results show that proposed RL-based offloading system can 
save up to 30% battery power with up to 25% better response time as compared with 
the fuzzy logic-based approach. 

8 Conclusions and Future Work 

In this chapter, we analyzed real mobile applications to determine the benefits of 
application offloading. We found that overall performance with offloading depends 
on various factors such as the amount of data and type of usage, available network 
carrier, and signal strength. These factors should be considered while making a 
decision to offload a mobile application. To make offloading more practical, it is 
important to reduce the energy spent in the communication between the mobile 
device and the cloud. In our experiments, we compared energy consumption in 
mobile devices for varying network types (3G, 4G, and Wi-Fi). This comparison 
shows that selecting an appropriate wireless network for offloading is crucial. We 
subsequently presented a novel network-aware mobile middleware framework based 
on reinforcement learning to accomplish energy-efficient offloading in smartphones. 
Our results show that we can save up to 30% battery power with up to 25% 
better response time when using our proposed framework compared with a state-
of-the-art fuzzy logic-based offloading approach from prior work. As part of future 
work, researchers can consider the evaluation of a more diverse set of mobile 
applications and characterizing their bottlenecks, explore new algorithms for low-
overhead offloading decision-making on smartphones and other mobile devices
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(e.g., wearables), and consider the characterization and use of additional wireless 
networks for offloading, such as emerging 5G networks. 
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Context-Aware Adaptive Anomaly 
Detection in IoT Systems 

Rozhin Yasaei and Mohammad Abdullah Al Faruque 

1 Introduction 

Over the last decade, IoT has grabbed substantial attention due to advancements 
in computation and communication, and it is utilized in many applications such 
as smart home, automotive, and medical aid. The rapid growth of IoT has raised 
concerns about the security and reliability of these systems. There are a tremendous 
amount of work in the literature that focuses on various aspects of IoT systems such 
as communication network [24, 38], hardware security [5, 15, 22, 23], or software 
security [3, 34, 40, 41]. However, the physical layer of IoT as a cyber-physical 
system (CPS) is overlooked. To ensure the security of CPS systems, in addition 
to a bottom-up security attitude, a holistic approach is required [8–10, 12]. 

The ultimate goal of an IoT system is to control the environment and maintain 
it in the desired state. In order to explain the important role of sensors in fulfilling 
this goal, we categorize IoT systems under two categories, as depicted in Fig. 1: 
(i) a closed-loop control system and (ii) a monitoring system. On the one hand, 
a closed-loop control system consists of three major components: (i) sensors; (ii) 
controller; and (iii) actuators (see Fig. 1a). The sensors monitor the system and send 
the status to the controller, which processes the sensor readings, decides how to 
react, and sends the control signals to the actuators to maintain the state of system 
and environment. 

On the other hand, monitoring systems mainly contain sensors that measure 
numerous parameters in the system and provide the user with information to 
take proper action (see Fig. 1b). Although a monitoring system cannot directly 
manipulate the environment, it informs a supervising user of events that happen 
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Fig. 1 Two categories of IoT systems; (a) closed-loop control system, and (b) monitoring system 

in the system, and the user controls the system manually. Thus, a monitoring system 
is eventually a part of a control loop. 

In both categories, sensors are an essential component of the control loop since 
sensor measurements determine the action that is needed to maintain the system 
in the desired state. Malfunction or manipulation of a sensor can break the control 
loop [4] and, consequently, disrupt the services offered by the IoT system. Fault 
in a sensor device leads to the appearance of anomalous values in its readings, 
whereas not all anomalies in sensor measurements indicate sensor breakage because 
an unexpected event in the environment may cause an anomaly as well. Observing 
the possible anomalies in an IoT system, we present a classification of anomalies 
that facilitates identification of the anomaly’s source:

• Environmental Anomaly (EA): The environment is the area that surrounds the 
sensor, and the sensor measures its physical properties. Any anomaly in the 
environment affects the measurements of the sensor and disrupts it. An EA may 
occur as a result of malicious activities or unexpected incidents in the environment.

• Sensing Device Anomaly (SDA): When the operation of a sensor is corrupted, 
its measurements do not follow the same pattern, and an SDA is observed. This 
corruption occurs because of either security or reliability issues. For instance, [1, 
46] discuss some attacks on the physical layer. 

Current anomaly detection methods model the normal behavior of a device 
[7, 13, 31, 32] and label any deviation from expected behavior as an anomaly. 
Most of the works concentrate on anomaly detection in the network layer of IoT 
systems [20]. In spite of reasonable performance in network intrusion detection, 
these methods have a high rate of false alarms when used with sensor signals. They 
misinterpret the environmental variation in the sensors measurements as an SDA 
and disregard the potential information encoded in the relation between the system 
and the physical world, known as the context of the system (refer to Sec. 3.1 for 
the definition of context). Conventionally, context-aware methods are applied to 
a variety of applications [2], and recently, these methods are used to secure the 
authentication of co-located devices [17, 35, 36, 42].
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Fig. 2 Schema of the wastewater plant 

In this chapter, we propose an adaptive data-driven model for unsupervised 
anomaly detection in IoT systems based on the sensor measurements. The 
model monitors the system to detect anomalies, identifies the type of anomaly 
(SDA or EA), and locates them [44]. To this end, we develop an algorithm to 
extract the patterns in sensor signals and generate the context of system. Then, we 
associate the sensors from different modalities based on the context and cluster the 
sensors with similar behavior. We develop our customized recurrent neural network 
(RNN), followed by a consensus algorithm to detect and localize anomalies. The 
consensus algorithm checks the consistency between sensors in each cluster and 
determines the type of anomaly. An IoT system has a dynamic structure that is open 
to changes, such as adding new nodes, removing the existing ones, or updating the 
framework and protocols. In order to address the variation in IoT systems over time, 
our model is designed to be adaptive and update itself. 

1.1 Motivational Example 

As a real-world IoT system, we study the environmental training center wastewater 
plant in Riccione [14]. The primary purpose of wastewater treatment is the 
elimination of nitrate. Nitrate contamination is a severe environmental problem 
because it can exhibit toxicity toward aquatic life, present a public health hazard, 
and affect the suitability of wastewater. In the treatment process, the wastewater is 
pumped to the tanks, which are equipped with sensors to monitor the concentration 
of oxygen, ammonia, and nitrate in the water. The actuators, such as blowers and 
valves, are controlled by a Programmable Logic Controller to adjust the level of 
chemicals (Fig. 2). Given the importance of the nitrate level, anomaly detection is 
applied to detect abnormal changes. Consider two scenarios with anomalous rise in
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Fig. 3 Synthetic sensor signals in the (a) first scenario (EA), (b) second scenario (SDA) 

nitrate level; in the first scenario, environmental changes alter the water temperature, 
which affects the chemical reactions in the water tank (Fig. 3a, an example of EA). 
In the second scenario, the nitrate sensor is broken or manipulated by an attacker 
(Fig. 3b, an example of SDA). The current anomaly detection methods rely solely 
on nitrate sensor data, whereas the validity of its data is questionable. Thus, they 
cannot find the source of anomaly and discriminate EA and SDA. 

A recent study [14] analyzes the sensors of this wastewater plant and reveals the 
correlation between ammonia, oxygen, and nitrate sensor data. More specifically, 
when the rise in oxygen density reaches a certain threshold, the ammonia con-
centration decreases, and the nitrate concentration increases. Further investigation 
reveals the scientific rationale for this correlation; oxygen triggers the chemical 
reaction, which affects the ammonia and nitrate concentration. By considering this 
relationship, it is possible to validate sensor signals. In the first scenario, the incident 
affects all sensors. Despite irregularities in the sensor signals, they are consistent 
with each other. Thus, we can conclude that the integrity of the sensors’ data is 
not compromised. In the second scenario, the anomaly in the nitrate sensor data is 
inconsistent with the patterns of other sensor signals. It indicates that the cause of 
the abnormality is fault or attack. This type of relationship between sensors is not 
limited to this wastewater plant, and it is observed in many IoT systems due to the 
availability of many heterogeneous sensors. 

1.2 Threat Model 

The proposed methodology aims to detect SDA and EA, which occur due to an 
unexpected incident in the environment, reliability issue, or security breakage. 
Accidental damage, degradation, and defects are examples of plausible reliability 
problems that cause unintended device malfunctions. In contrast, the security 
breakage scenario involves an attacker who intentionally exploits the vulnerabilities
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in the system. In this threat model, the adversary has access to the sensor device 
and fiddles with it to inject fault, alter functionality, or deny its service. As another 
possible scenario, the attacker can control the communication channel and send 
faulty signal to the controller as sensor measurements. The model can detect 
anomalies in a standalone sensor, but to distinguish between SDA and EA in a 
sensor, it should be associated with at least two other sensors. To deceive this 
method, the attacker should be able to discover how sensors are clustered, learn 
the correlations and patterns in the sensors’ signals, and manipulate them in a way 
that imitates the same correlation as before. It means that in addition to sensors, 
the attacker should have full access to the clustering layout of sensors and the 
trained anomaly detection model. It is assumed that the attacker does not have these 
privileges. 

1.3 Research Challenges 

Anomaly detection in the IoT sensors is challenging due to the following reasons 
[11]:

• The IoT data are multi-variant time-series data that are collected from a 
heterogeneous network of sensors with different modalities, data dimensions, 
sampling rates, specifications, and locations.

• Low-cost and resource-constrained sensors are usually sensitive to noise, and 
deployment of them in IoT systems affects the quality of data.

• Due to a lack of prior knowledge about possible anomalies and scarcity of 
anomalous observations, there is not enough labeled anomalous data available, 
and conventional supervised machine learning techniques are not applicable.

• IoT systems have dynamic characteristics that may be altered over time because 
of environmental changes, human interaction, mobility of devices, and updating 
firmware or software. Consequently, a static model fails to imitate the system in 
the long term. 

1.4 Contributions 

To the best of our knowledge, this is the first context-aware anomaly detection 
method for IoT systems. Our novel contributions to address the aforementioned 
challenges are summarized below:

• Context-aware sensor association algorithm: We develop a multi-modality 
clustering method to associate sensors that experience similar contextual 
variation.
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• Consensus-based strategy for unsupervised anomaly detection: We design 
a methodology to pinpoint the anomalies without reliance on prior knowledge 
about possible anomalies.

• Adaptive data-driven model: Our proposed anomaly detection model is 
periodically updated at runtime to adapt itself to new states caused by variations 
in the system. 

2 Related Works 

General anomaly detection algorithms can be classified into the following main 
categories [14]: 

Statistical or Probabilistic Methods: These methods create a statistical or 
probabilistic model based on history data, which represents normal behavior 
[16, 39]. Upcoming observation is then compared with this model, and it is marked 
as an anomaly if it is statistically unlikely, or the probability of such observation is 
low. 

Proximity Methods: These methods compute distances between data points to 
differentiate between anomalous and normal data. Two well-known techniques that 
fall in this category are the local outlier factor [6] and clustering [18] methods. 

Predictive Methods: In these methods, the anomaly detection problem is 
converted to obtain an accurate sequence prediction algorithm that captures the 
recent and long-term trends in data sequences and reproduces them to predict future 
measurements. Afterward, the predictions are compared with the new observations 
to spot deviations from expected normal behavior. Recurrent neural networks 
(RNN) are capable of capturing the relationship between measurements over time 
because the feedback loops in the hidden layer of RNN can imitate memory. 

Long short-term memory (LSTM) layer was introduced in 1997 by Hochreiter 
and Schmidhuber [19] to overcome the shortcomings of RNN. It has gained a lot 
of attention lately because of its high accuracy in sequence prediction [7, 31, 32]. 
Conv-LSTM encoder–decoder is one of the neural network architectures that is used 
in the literature to enhance sequence prediction performance [21, 25, 26, 43, 45]. It 
contains convolutional layers to extract the essential features of input sequences 
and LSTM layers to perform the sequence prediction based on the features. Then, 
the anomaly is identified based on the reconstruction error of the model. LSTM– 
LSTM encoder–decoder [33, 37, 47] is another popular architecture that follows 
a similar strategy, but it utilizes LSTM layers instead of convolutional layers for 
feature extraction. 

Our methodology inherits the advantages of both probabilistic and predictive 
methods. We implement and compare the Conv-LSTM and LSTM–LSTM encoder– 
decoder as our predictive models. Then, the reconstruction error, derived from the 
difference between real and predicted values, is modeled by a multivariate Gaussian 
estimators to detect the anomaly.
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3 Anomaly Detection Methodology 

Our proposed methodology (see Fig. 4) detects SDA and EA in an IoT system to 
ensure sensing devices operate as they are expected. 

3.1 Context Generation 

The context of a system is defined as an abstraction formed by extracting features 
from system circumstances and individual element constructs [27]. It describes the 
condition in which the system is operating and affects the outcome of the system. 
The first step for obtaining our context-aware data-driven model is to generate 
the context of the system by encoding its physical properties. Understanding and 
transforming this information such that it can be mathematically described is called 
context generation. Following the strategy presented by Sadeghi et al. in [35], we 
convert all sensor signals into binary fingerprints regardless of their modality. The 
procedure of fingerprint generation has the following steps: 
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Clustering 
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Cluster C2 

Cluster Cg 

…
 

Gaussian 

Estimator 

NO 
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Sensors Data 
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Fig. 4 The architecture of our methodology in the training and inference stage
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Fig. 5 Extracting the fingerprint of a temperature sensor 

Step1: Each sensor continuously monitors the environment by taking a measure-
ment each z seconds. The value z depends on the sampling rate of sensor 
and may vary for different sensors. In a time window of q seconds from 
timestamp t , the sensor records .v = [q/z] measurements and forms a 
snapshot vector .St = (st , st+z, . . . , st+z(v−1)). 

Step2: The .εrel is a pre-defined threshold that controls the amount of variation that 
is said to conform a change. The values obtained in a snapshot are averaged, 
and the variation bit .b(t) is calculated as follows: 

. St = 1

v

∑

s∈St

s, b(t) =
⎧
⎨

⎩
1, if

∣∣∣∣
St+z−St

St

∣∣∣∣ > εrel

0, o.w.

Step3: Finally, a sequence of .k + 1 consecutive snapshots . seq(t, t + kz) =
(St , St+z, . . . , St+kz) has an associated fingerprint . F(seq(t, t + kz)) =
(b(t), b(t + z), . . . , b(t + (k − 1)z)). The fingerprints of all the sensors 
with different sampling rates have the same length because each snapshot is 
the average of sensor measurements in a particular time interval. Figure 5 
illustrates the process of generating the fingerprint of a temperature sensor. 

3.2 Sensor Association 

Although each sensor’s measurements differ based on its modality and physical 
location, the sensors that are affected by the same event follow similar patterns 
in their fingerprints. Based on this observation, we develop a sensor association 
algorithm that comprises two primary steps: I) pattern extraction and II) sensor 
clustering.
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In the first step, we split each fingerprint into smaller sub-sequences and cluster 
the sub-sequences of different sensors that have a similar binary pattern. For 
simplicity, assume that .Fi = F(seq(t, t + zk)i) represents the fingerprint of the 
sensor i, which is split into d smaller sub-sequences .fi

j as follows: 

. Fi −→
(
fi

1, fi
2, . . . , fi

d
)

, d = k − o

l − o
,

where l and o are the hyperparameters that determine the sub-sequences length 
and their overlap accordingly. Afterward, our clustering algorithm is performed 
on the sub-sequences of index j (.j ∈ [1, d]) of all sensors . (F1

j , F2
j , . . . , Fn

j )

to group the ones with similar binary patterns. Hence, it assign a pattern number 
.p

j
i ∈ {0, 1, . . . , p

j
max} to . fi

j . Next, the clustering is repeated for index .j + 1, 

and after d iterations, all sub-sequences are clustered. Notice that .pj
max , which 

represents the number of clusters for index j , may vary for different index values. 
Eventually, for each sensor, the pattern numbers form a pattern history vector 
.Pi = (pi

1, pi
2, . . . , pi

d). 
In the second step, one final clustering is performed on the given set of sensors 

pattern history . Pi to determine the sensors cluster layout .C = c1, c2, . . . cg , where 
. ci represents clusters and g is the number of sensor clusters. The sensors with 
similar contextual variations exhibit the same patterns in many sub-sequences, 
and we cluster them together. An example of the sensor association procedure is 
demonstrated in Fig. 6. In this example, the final clustering groups the first and third 
sensors together. 

All the mentioned clustering processes are done using our customized clustering 
algorithm that minimizes the distance between data points in the same cluster, the 
intra-cluster distance (. IC), and maximizes the distance among data point of one 
cluster from other cluster data points, the inter-cluster distance (. OC). The distance 
matrices are defined as follows: 

. IC = ICi, ICi = 1

|ci |
∑

m,k∈ci

Hamming(Pm, Pk)

. OC = OCi,j , OCi,j = min
m∈ci ,k∈cj

{Hamming(Pm, Pk)},

where . ci and . Pm represent a cluster and the pattern history of sensor m, respectively. 
Algorithm 1 is a pseudocode that elaborates on our clustering algorithm. Our 
clustering has the following properties:

• It can be applied to data with string type because the distance matrices are 
based on the Hamming distance function, which calculates the number of non-
matching bits.

• The number of clusters is automatically tuned. Initially, clustering is performed 
with an upper bound of the number of clusters. Afterward, the algorithm
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F :  0  0  1  1  0  0  1  0  1  0  1  1  0    =(p , p , p , p ) 

F :  0  0  1  1  0  0  1  1  1  0  1  1  0 =(p , p , … )  

F :  0  0  1  1  1  1  1  0  0  1  0  1  1 =(p , p , … )  
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Given 

=(p , p , p , p ) 

=(p , p , p , p ) 

=(p , p , p , p ) 

: 
clustering is performed 

on the sensors pattern 

histories 

Results Sensor 1 is 

associated with 

sensor 3 

* If and p have the same color, p = p and both represent the same pattern in the fingerprint. 

** In this example, o=1, l=4, and d=4. 

Fig. 6 The procedure of extracting the patterns in sensor signals and clustering them 

automatically removes the nodes that are not close to any cluster and eliminates 
clusters with two nodes to reach optimum value for the number of clusters. 

After sensor association, we evaluate the system to ensure that there is no 
standalone sensor that is not clustered. A standalone sensor is vulnerable because it 
is not related to any group of sensors that can verify its proper operation. In this case, 
the anomaly detection still can be applied to the independent sensor individually, but 
the SDA and EA are indistinguishable. The user is warned about this vulnerability 
in sensors and can resolve the issue by adding more sensors to the system. 

3.3 Predictive Model 

The next module of our methodology is the predictive model that predicts the 
future measurements of sensors according to the clustering layout and history of
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Algorithm 1: Customized clustering algorithm for extracting patterns in 
sensor fingerprints and sensor association 

Input: Fingerprints: F ∈ IRn×k , number of sensors: n, sub-sequence length: l, overlap: o 
Output: Cluster layout C = {c1, c2, . . . , cg} 
Initialize d = k−o 

l−o 
Initialize pmax = max # of patterns in sub-sequence 
Initialize itermax = max # of iterations 
Initialize the center of clusters randomly 
foreach j ∈ {1, 2, . . . , d} do 

foreach i ∈ {1, 2, . . . , n} do 
Split fingerprint Fi to obtain sub-sequences fi 

j ; 
Clustering: 
foreach iter ∈ {1, 2, . . . , itermax} do 

foreach i ∈ {1, 2, . . . , n} do 
p j i = Argminx∈CHamming(f j i , center(x)); 

foreach x ∈ {1, 2, . . . , pmax} do 
center(x) = mean({f j i |p j i = x}); 

if no changes in center(x) then 
break; 

foreach x ∈ {1, 2, . . . , pmax} do 
Calculate inter-cluster (OC) metrics; 
if Hamming(F j i , center(p j i ) > OC  then 

Remove F j i from cluster p j i ; 
Add F j i in unclustered nodes; 

Update p j max ; 

if |ci | < 3 then 
Remove cluster x; 
Update p j max ; 

Add clusters to pattern histories Pi ; 

Perform the clustering again on pattern histories Pi , i ∈ [1, n] to associate sensors; 
return Sensors Cluster layout C = {c1, . . . , cg} 

measurements. We construct a recurrent neural network (RNN) for each cluster of 
sensors as the predictive model. As it is depicted in Fig. 7, our RNN comprises 
LSTM encoder–decoder and dense layers, which encode the features of input 
sequences of length . li and predict the future sequences of length . lo based on the 
encoded features. Sequences of data are derived from the input time-series signals 
using the sliding window technique. Afterward, the sequences are scaled through a 
Min–Max Scaler before being treated by the encoder because input signals come 
from multi-modality sensors with different signal ranges. Eventually, we have a set 
of predictive models .DT = {M1,M2, . . . ,Mg}, where g is the number of clusters in 
the system and . Mi represents the model for cluster . ci . Given cluster . ci that contains 
. ni nodes, the model . Mi takes as input a matrix .Xi ∈ R

li×ni to predict another matrix 
.Yi ∈ R

ni×lo .
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Fig. 7 The architecture of RNN used as predictive model 

On top of predictive models, multivariate Gaussian estimators are trained to 
learn the probability of finding a particular error vector. This probability is used to 
ascertain whether the errors between predictions and real measurements correspond 
to the system’s normal behavior, or an anomaly has occurred. A multivariate 
Gaussian distributor .Gi = N(μi, σi) is fitted on the reconstruction error matrix 
. Ei , which is the difference between the real values and the predicted values. The 
parameters . μi and . σi are computed using maximum likelihood estimation. 

. μi = 1

m

m∑

k=1

ek
ij

= eij , σi = 1

m

m∑

k=1

(ek
j − μj )(e

k
j − μj )

T .

3.4 Anomaly Detection 

In the training stage, the predictive models and estimator modules are periodically 
used at runtime to infer anomalies. The frequency in which anomaly detection is 
performed can vary depending on the system specifications. At the runtime, an input 
measurement . xt is compared with model prediction . yt , and the reconstruction error 
. et is calculated. Then, . xt is classified as anomalous if .pt < α, where . pt is the 
probability of obtaining the error vector given by the Gaussian estimator G. . α is a 
pre-defined threshold value, and it is tuned to maximize the F-score of the model. 

When anomalous data is discovered, we utilize our consensus algorithm to 
differentiate between EA and SDA. EA occurs as a result of an incident in the 
environment. If the EA causes an anomaly in a sensor signal, the correlated sensors 
are affected by the event and show abnormal changes in their signals. In contrast, 
SDA influences the sensors individually and results in an anomaly in one or some 
of the sensors in a cluster. For each cluster, the consensus algorithm inspects the 
consistency of the sensor behaviors. It uses a voting mechanism to check if all 
sensors in a cluster agree on the occurrence of an environmental incident. To account



Context-Aware Adaptive Anomaly Detection in IoT Systems 189

for inertia in the physics of the system, we check the consensus in the time intervals 
instead of data points. 

3.5 Model Adaptation 

Due to the high variation in the IoT system and environment, we add the property of 
aliveness to our method, which means the model automatically gets updated to adapt 
to the system alteration and make more accurate predictions. As Fig. 4 demonstrates, 
the sensor association, predictive model, and estimator modules are trainable. There 
are two levels of updating the model: (i) complete update, which retrains all trainable 
modules in order, and (ii) partial update, which only retrains the predictor model. 
These update processes are triggered under three circumstances:

• Change in the number of sensors in the system (either added or removed) 
triggers complete update.

• Each time the sensors send data, the anomaly detection model first validates the 
new data. Afterward, partial update is triggered using the new anomaly-free 
data.

• If  complete update is not provoked during a fixed interval of time . tretrain, it  
is triggered automatically. This way, the model accounts for changes in the 
environment, location, and placement. This parameter .tretrain can be tuned by 
the user, depending on how frequently the system layout is changed. 

4 Results and Evaluation 

4.1 Fog Computing Architecture 

Cloud servers are the common and potent available computation resource in IoT 
systems. However, the bandwidth of network and data transmission become a 
bottleneck due to rapid expansion of IoT nodes and the quantity of data. As a result, 
fog computing has emerged, which provides storage, computation, and application 
services closer to end user with dense geographical distribution [29]. In the fog 
architecture (Fig. 8), the bottom layer comprises a heterogeneous network of edge 
nodes with limited resources. The fog nodes in the middle layer collect and process 
the data from edge devices and communicate to the cloud via the Internet. 

Our methodology is fog-empowered, and the developed model for our target 
IoT system is implemented on a fog node. For the IoT systems with a high 
density of devices and a massive volume of data, our method is scalable, and 
it still supports fog computing. Basically, the LSTM encoder–decoder networks 
are responsible for most of the computation in our method. Thus, instead of 
training an extensive network for the whole system, we construct a small network
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Fig. 8 Fog computing hierarchy in IoT systems 

for each cluster of associated sensors that can be distributed between fog nodes. 
Furthermore, we perform several optimizations to meet resource constraints. In 
the sensor association, we use the binary fingerprint instead of time-series signals, 
which lowers storage usage and complicity. The sliding window technique in LSTM 
network contributes to reducing storage usage as well. 

4.2 Experimental Setup 

To build and evaluate our methodology, we implement an IoT testbed in our 
laboratory. Our experimental setup consists of an ad hoc network of multi-modality 
IoT sensors, a software-defined radio (SDR) connected to an edge computing 
device, a gateway, and a laptop as fog node. For this particular research, we have 
used 62 sensors that measure 13 different physical parameters (see Table 1). The 
acoustic sensor is a wide range microphone with two right and left channels that 
captures the sound of the space, and its output is amplified and recorded by the 
handy recorder ZOOM-H6. The Raspberry Pi board, which is directly connected 
to ZOOM-H6, collects its data and transmits it over the Internet, and this part of 
the system simulates devices such as Google Home or Alexa. The other sensors 
are on the low-power embedded boards operated by TinyOS that are equipped 
with a wireless communication module based on the IEEE 802.15.4 standard. We 
have implemented the IEEE 802.15.4 standard in the SDR device (USRP-B210) 
and created a wireless network of sensors in which SDR collects the sensor’s data 
and sends commands to them. SDR is connected to an edge computing device, a 
Raspberry Pi board, which works as a base station and gathers all data. The base 
station contains a Wi-Fi module and links the local network of IoT devices to the
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Table 1 List of sensors in 
our experimental setup 

Sensor Sensor board # of sensors  

Temperature MTS-CM5000 12 

Humidity MTS-CM5000 12 

Visible light MTS-CM5000 12 

Infrared light MTS-CM5000 12 

Force and load MTS-CO1000 2 

Tilt MTS-CO1000 2 

Accelerometer MTS-CO1000 2 

Presence detector MTS-SE1000 2 

Magnetic MTS-SE1000 1 

CO_2 MTS-AR1000 1 

CO MTS-AR1000 1 

Dust MTS-SH3000 1 

Acoustic ZOOM-H6 2 

Internet through a router. It provides the system with the capability to be monitored 
in any device that is connected to the Internet by looking up the base station 
and logging using the password. The algorithms and anomaly detection model are 
implemented on a Laptop with 8Gb DDR4 RAM and the Intel(R)Core(TM) i5-
6300HQ 2.3GHz processor that receives the data from base station and does the 
computations as a fog node in the IoT system. A powerful router such as Qotom 
Mini PC Q500G6 has similar capabilities and is capable of running the model at the 
gateway level. Figure 9 demonstrates the components of our experimental setup and 
their connections. 

4.3 Evaluation 

We evaluate our methodology using the data collected by the sensor layout of 
Sect. 4.2. 

4.3.1 Sensor Association Evaluation 

One of the contributions of our clustering algorithm is the capability to auto-
matically tune the number of clusters and remove the ones that lack a sufficient 
number of sensors or have sensors that are far apart regarding the Hamming distance 
between their fingerprints. Initially, we set the number of clusters to 20 in our 
system under test, and the algorithm reduces the number to 6. In order to assess the 
performance of sensor association method, inter-cluster and intra-cluster distances 
are calculated for all clusters and plotted in Fig. 10. The notable difference between 
inter-cluster distance and the intra-cluster distance indicates that related sensors are 
clustered together, and the clusters are well separated from each other.
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Fig. 9 The scaled-down version of experimental setup 

Another validation method used is physical intuition, which explains the rela-
tionships among the associated sensors. For example, co-located sensors experience 
a similar context. Therefore, they are expected to be associated with each other. 
This intuition supports the result of our algorithm in which co-located humidity, 
temperature, and light sensors are clustered together, as it is shown in Fig. 12. 
Another intuition behind the fact is that any physical process may have multi-
modality emissions, and the sensors that capture the emission of one incident 
should be clustered together. It explains the clustering of PIR, vibration sensor 
(accelerometer and force), magnetic door switch, and acoustic sensor since they 
all capture the event of entrance through the door. These observations indicate that 
this strategy is capable of finding relations between sensors with similar contextual 
variations, further confirmed by the anomaly detection results in the next section.



Context-Aware Adaptive Anomaly Detection in IoT Systems 193

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Cluter1 Cluter2 Cluster3 Cluster4 Cluster5 Cluster6 All 

clusters 

D
is

ta
n
ce

 

Inter-cluster distance Intra-cluster distance 

Fig. 10 The inter-cluster and intra-cluster distances of sensor clusters 

4.3.2 Anomaly Detection Evaluation 

The anomaly detection model is unsupervised, and it is trained only on the normal 
data and evaluated using a validation dataset with synthetic anomalies. To analyze 
the results, true positives (TP), false positives (FP), and false negatives (FN) 
are counted in the results to compute the validation scores. Although the most 
intuitive performance measure is accuracy, which is the ratio of correctly predicted 
observation to the observations, it is not appropriate for unbalanced datasets such 
as anomaly detection where one category representing the overwhelming majority 
of the data points. Therefore, we use the Precision(P), Recall(R), and .Fβ score as 
performance metrics. 

. P = T P

T P + FP
,R = T P

T P + FN
,Fβscore = P × R × (1 + β2)

β2 × P + R
.

Recall expresses the ability to find all anomalous observations in a dataset, while 
precision expresses the proportion of the observations our model labels as anomaly, 
actually is anomalous. .Fβ score is the weighted average of precision and recall 
that provides a better intuition toward both key important capability of model. We 
implement the current state-of-the-art methods for anomaly detection in time-series 
data. Due to importance of precision, .F0.5 score, which favors precision over recall, 
is calculated for evaluation in addition to .F1 score. According to the results in 
Table 2, our methodology has the best performance with highest .F scores and 
precision.
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Table 2 Comparison with the state-of-the-art methods 

Method Base model Context-aware Precision Recall .F0.5 score . F1 score 

IoT-CAD LSTM Yes 92% 56% 81% 70% 

[32] LSTM No 64% 44% 58% 52% 

[28] Conv-LSTM No 51% 95% 56% 66% 

[30] One-Class SVM No 89% 25% 60% 39% 
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Fig. 11 Evaluating the resilience of different models to pink, Gaussian, and uniform noise signals 

4.4 Robustness 

We evaluate the robustness of our methodology by adding three different types— 
pink, Gaussian, and uniform—of noise signals to the sensor measurements and 
observing the performance of the model. As Fig. 11 indicates, although the precision 
of anomaly detection is decreased as the noise power increases in all models, our 
model is more resilient to noise and maintains the high precision. 

4.5 Case Study 

As a case study, we analyze a cluster of associated sensors, which includes three 
humidity, temperature, and light sensors located in close proximity. As shown in 
Fig. 12, the predicted values are very close to the real measurements, which indicates 
the competency of our method to learn the normal behavior of sensors and predict 
the future measurements precisely. Furthermore, we observe that the pattern of 
changes in the sensor signals is similar. As the marked areas of Fig. 12 highlight,



Context-Aware Adaptive Anomaly Detection in IoT Systems 195

22 

24 

26 

28 

30 

32 

3
:1

9
 

3
:5

9
 

4
:3

9
 

5
:1

9
 

5
:5

9
 

6
:3

9
 

7
:1

9
 

7
:5

9
 

8
:3

9
 

9
:1

9
 

9
:5

9
 

1
0
:3

9
 

1
1
:1

9
 

1
1
:5

9
 

1
2
:3

9
 

1
3
:1

9
 

1
3
:5

9
 

1
4
:3

9
 

1
5
:1

9
 

1
5
:5

9
 

1
6
:3

9
 

1
7
:1

9
 

1
7
:5

9
 

1
8
:3

9
 

1
9
:1

9
 

1
9
:5

9
 

2
0
:3

9
 

2
1
:1

9
 

2
1
:5

9
 

2
2
:3

9
 

2
3
:1

9
 

2
3
:5

9
 

0
:3

9
 

1
:1

9
 

1
:5

9
 

2
:3

9
 

T
em

p
er

at
u
re

 (
℃

) 

Time 

Temperature 

sensor real 

value 

Temperature 

sensor 

prediction 

1 

6 

11 

16 

21 

26 

31 

36 

41 

L
ig

h
t 

d
en

si
ty

 (
1

0
0

0
 l

u
x

) 

Light 

sensor real 

value 

Light 

sensor 

prediction 

55 

60 

65 

70 

75 

H
u

m
id

it
y

 (
R

H
) 

Humidity 

sensor real 

value 

Humidity 

sensor 

prediction 

Detecting an 

anomalous 

incident 

Similar 

pattern of 

changes 

Fig. 12 The real and predicted values of three correlated sensors: light, humidity, and temperature 
sensors 

any drop in the trend of humidity sensor comes with an increase in the trend of 
other sensors. It confirms the correlation among the sensors as the sensor association 
algorithm suggests. We simulate a fire incident in the environment as an EA, and the 
measurements from all sensors show an anomaly. 

4.6 Timing Analysis 

The timing of method depends on the number of sensors, length of time-series 
signals, and computing platform that is used to implement the model. We implement 
our methodology on a fog computing platform and train it on data collected from 
62 heterogeneous sensors for 8 days (roughly, 2.3 million data measurements). The 
training stage starts with the fingerprint generation process, which is repeated for all 
sensors (62 times). The sensor association process involves 604 times performing 
clustering to cluster the patterns and then sensors. Eventually, the clustering layout 
and sensor measurements are used for training the predictive model in an iterative 
process until the convergence of the model. Although the initial training is time-
consuming, it occurs once, and the process of anomaly detection on the new 
measurements using the trained model only takes 0.532 s, which means it is real
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Table 3 Timing results Process Recurrence Time (seconds) 

Fingerprint generation 62 2.98 

Training sensor association 604 10.54 

Training predictive model 1 2472.20 

Anomaly detection Periodic 0.532 

35.51% 

61.70% 

0  10 20 30 40 50 60 70 80 90

Case 3 

Case 2 

Case 1 

Precision of anomaly detection (%) 

Complete Update Partial Update No Update 

91.87% 

91.87% 

90.26% 

89.42% 

89.42% 

0% - Model fails to run due to mismatch between model and system. 

0% - Model fails to run due to mismatch between model and system. 

 100  

Fig. 13 Analysis of effect of partial and complete update on preserving the performance of model 

time in our system under test. As mentioned in Sect. 3.5, the retraining process is 
triggered under some conditions, but it is faster than initial training since it is limited 
to new data and does not interrupt the anomaly detection (refer to Table 3). 

4.7 Aliveness Assessment 

To assess whether updating the model is beneficial for maintaining the model’s 
performance over time, we test it in three scenarios. The first and second scenarios 
simulate the effect of system degradation or environmental variation over time. In 
this regard, the measurements of temperature sensors are increased 5 . 

◦C in case 1, 
and 15 . 

◦C in case 2 for a day. The third scenario simulates changes in the layout of 
the IoT system by eliminating a sensor. 

The model is initially trained on the original data before the occurrence of 
scenarios and tested with synthesized data from the cases. In the tests, we examine 
the effect of the partial update, complete update, and no update on the precision 
of the model, refer to Fig. 13. According to results, the variation in cases 1 and 
2 leads to a significant drop in the precision of the model without updating while
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updating the model effectively preserves the high performance because of retraining 
the predictive model. The third case highlights the advantage of the complete update. 
Any alteration (add or remove) in the number of sensors in the IoT system changes 
the input layer dimension of the neural network. Thus, the model cannot perform 
anomaly detection in case 3 unless the sensor association is retrained to update 
the layout of sensors, and the model is reconstructed on the new layout. Results 
confirm that the complete update is successful in maintaining the performance 
despite removing a sensor. Based on this experiment, it can be concluded that being 
adaptive is crucial for the models used for IoT. 

5 Conclusion 

In this chapter, we present a novel context-aware adaptive data-driven model for 
anomaly detection in IoT systems. It generates context information by encoding 
the relations among the IoT sensors and clusters the correlated sensors based upon 
similar patterns and contextual variation. According to the extracted context, a 
predictive model detects the anomalies, and a consensus-based algorithm deter-
mines the type of detected anomalies and pinpoints their source. Our proposed 
methodology can identify the anomalies with a 92% precision in real time on a 
fog computing platform. Compared with other methods, it has higher performance 
and the capability to update itself to account for variations in the system and 
environment. 
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Machine Learning Components for 
Autonomous Navigation Systems 

Kruttidipta Samal and Marilyn Wolf 

1 Introduction 

Autonomous cyber-physical systems operating in the real world, such as the 
autonomous drone shown in Fig. 1, typically have a feed-forward information 
processing pipeline that consists of various modules such as sensing, perception, 
localization, and mapping, planning, and actuation [1] as shown in Fig. 2. The  
sensing module contains multiple sensors such as RGB, LiDAR, RADAR, IMU, 
GPS, etc., to sense data from the real world [2–4]. Perception module processes the 
data from the sensing unit to extract relevant information such as objects of interest, 
landmarks, etc. Localization and mapping modules utilize the sensed data and 
landmarks detected in the perception module to localize the system and optionally 
build a map of the real world. The planning module utilizes the output of perception 
and localization modules to plan future actions. The actuation unit converts the 
output of planning module into signals for the actuators that interact with the real 
world. 

The various modules of an autonomous cyber-physical system operate at differ-
ent levels of semanticity and dimensionality, e.g., while the early modules such 
as the perception module may operate on high-dimensional image pixel space, 
late modules such as the planning module operate on highly semantic but low-
dimensional object and landmark space. Traditionally, model-based algorithms were 
used to extract structure from high-dimensional data, but their accuracy was limited 
when the system was deployed in the real world. But in recent years machine 
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Fig. 1 Autonomous drone setup 

Fig. 2 Information processing pipeline in an autonomous cyber-physical system 

learning algorithms have replaced the model-based algorithms as they can learn 
the features directly from data [5]. When such algorithms are trained on a large 
volume of data, they can learn robust features that generalize across diverse real-
world scenarios. Therefore, adoption of machine learning algorithms has been most 
pervasive within the perception module of the autonomous cyber-physical system. 
Additionally, there have been many works that use reinforcement learning for path 
planning, but most of such works have been tested in simulation and their efficacy 
in real world is currently under investigation. 

The architecture in Fig. 2 shows a clear separation between different modules 
according to the task performed, but in recent years hybrid modules have been pro-
posed that merge operation of multiple modules to increase accuracy and resource 
efficiency of the systems. Perception-driven sensing modules (see Sect. 3.5) reduce 
resource consumption in sensing modules by driving sensor activation and data 
transfer according to feedback from perception. Similarly, some perception modules
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include depth regression unit that directly predicts the 3D map that can be used 
to simultaneously localize and map (SLAM), thus blurring the boundary between 
traditional perception and mapping modules. Alternatively, end-to-end learning 
systems (see Sect. 6) have been proposed that do not have the modular architecture 
presented above rather such systems directly predict the actuation commands of 
system from the sensed input such as RGB images. This simplifies the system design 
but simultaneously obfuscates the system. 

2 Sensor Data Fusion 

Autonomous cyber-physical systems have multiple sensors depending on the target 
application. For example, autonomous vehicles have multiple RGB cameras, LiDAR 
and RADAR sensors to cover the entire field-of-view (FoV), IMU and GPS sensors 
to aid localization and mapping, and telemetry sensors to support smart connected 
technologies such as vehicle-to-vehicle (V2V), vehicle-to-cloud (V2C), and vehicle-
to-everything (V2X) [6]. Fusing the data collected from multiple sensors is called 
sensor data fusion [7]. Depending on the stage at which the data sensed by the 
sensors, the different fusion algorithms can be classified into three categories— 
early fusion, deep fusion, and late fusion. Figure 3 shows the high-level algorithmic 
pipeline of different sensor fusion strategies. Early fusion strategies fuse the data 
from multiple sensors before the processing of the data begins. This requires the 
sensors to be calibrated and synchronized [8, 9]. Late fusion strategies process 
the data from different sensors independently and merge the data at the end of 
the pipeline [10]. This is the most common strategy used in autonomous system 
software as it has a relaxed constraint on calibration and synchronization of different 
sensors that typically operate at different frame rate [1, 11]. Finally, deep fusion 
strategies intermittently merge the features extracted in each sensor processing 
pipeline [12, 13]. Such strategies have high accuracy as the features extracted in 
one pipeline can guide the processing of other pipeline thus complementing the 
information extraction process. 

Fig. 3 High-level overview of different sensor fusion strategies. The Model(s) in each strategy 
can be a hand-crafted or ML based algorithm
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3 Perception 

Perception module of autonomous cyber-physical systems (ACPS) is responsible for 
running tasks such as object detection and tracking, path prediction, depth estima-
tion, landmark detection, etc. In modern systems, machine learning algorithms such 
as deep neural networks (DNNs) are used to solve these tasks. The DNNs are trained 
on large autonomous driving datasets such as KITTI [2], nuScenes [4], BDD [14], 
Waymo [3], etc., to detect common on-road obstacles such as pedestrians, bicycles, 
vehicles, etc. These datasets are collected from vehicles with different sensor 
configurations, and since there are no standard sensor configuration that is followed 
by industry or academia, there have been many perception algorithms proposed to 
process the heterogeneous sensor data. These algorithms can operate on a single 
modal data such as RGB-only or multi-modal data such as RGB–LiDAR. 

3.1 RGB Object Detection 

DNN-based RGB object detectors can be divided into three categories depending 
on their architectures (shown in Fig. 4)—two stage, single stage, or transformer-
based. Two-stage detectors such as Faster RCNN [15] have two neural networks, 
the backbone convolutional neural network (CNN) to extract features from RGB 
images that is followed by a region proposal network (RPN) that takes the high-
level features extracted by the CNN backbone to propose object bounding box 
hypotheses. One-stage detectors such as YOLO [16, 17] and SSD [18] directly 
regress the object bounding boxes from within the CNN backbone. Transformer-
based object detectors such as DETR [19] replace the RPN module of two-stage 
detectors with an encoder–decoder module that interprets object proposal as a bipar-
tite matching operation rather than a regression. One-stage detectors have lower 
computational complexity compared to the two-stage detectors but simultaneously 

Fig. 4 Object detector architectures. Two-stage detectors (left), one-stage detectors (middle), and 
transformer-based detectors (right)
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Fig. 5 Performance of DNN-based object detectors on a generic computation platform with a 
CPU and Nvidia 1080Ti GPU 

also suffer from lower accuracy. Typically, autonomous cyber-physical systems use 
single-stage detectors as they can run at real-time speed (>10 fps) on embedded 
boards and mid-grade GPUs such as NVidia 1080. 

The performance of DNN-based object detectors is typically evaluated on high-
performance GPUs such as Nvidia V100 or NVidia Tesla that are meant for 
datacenters rather than general-purpose computers. Figure 5 shows the latency of 
several real-time object detectors on a workstation CPU with NVidia 1080Ti GPU 
from Kim et al. [20]. The SSD and Yolo variants have different backbone CNNs. 
Compared to YOLOV3, YOLOV3-tiny has a shallower backbone that leads to 
faster downsampling of the features. This severely affects the small object detection 
accuracy as the receptive field of intermediate neurons in large. SqueezeDet [21] 
uses SqueezeNet [22] backbone that removes the fully connected layers of Yolo 
backbone and uses a fully convolutional network that predicts the bounding box 
and class probabilities simultaneously. Mobilenets [23] use depthwise separable 
convolution that breaks the 3D convolution operations within a layer of the DNN 
into 2D channelwise convolution operation followed by 1D pointwise/channelwide 
convolution. This reduces the number of FLOPs considerably leading to lower 
inference time. But it should be noted that such operation increases the number 
of memory accesses that can be detrimental in memory throughput constrained 
platforms. 

While real-time performance on general-purpose GPU is good for proof of 
concept and deployment in self-powered systems such as AVs, they are not ideal 
for battery-powered embedded computing platforms that have limited computing 
resources and operate under low-power constraints. The detectors showed in 
Fig. 5 cannot run at real-time speed in low-power embedded platforms such as 
Raspberry Pi, and even the general-purpose Nvidia 1080Ti GPU consumes 250W 
of power. Therefore, recently more optimized DNNs have been developed such as 
SSDLite [24], MobileDet [25], Yolov4 [26], and Yolov5 [27]. The shallow opti-
mized versions of such networks can be deployed in the embedded platforms with 
edge DNN accelerators such as edge TPUs and Intel Movidius. These accelerators 
optimize the computational operations within the network by quantizing the weights 
from 32 bit floating point to 8 bit integer. Simultaneously, they also remove weights
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Fig. 6 Performance of DNN-based object detectors on an embedded platform with Raspberry Pi 
4 and INT8 TPU accelerator. Tiny-Yolov4 and Yolov5s could not be mapped to the edge TPU 

that have low impact on the quality of output thus reducing memory bandwidth and 
the number of computations. Figure 6 shows the performance of some of the recent 
light-weight DNN-based object detectors on an embedded platform from Kovács et 
al. [28]. It can be observed that there are some of these networks that can operate 
high speed even on low-power resource-constrained embedded platforms. 

3.2 LiDAR Object Detection 

LiDAR sensors operate on time-of-flight principle. The output of the sensor is 
a point cloud that captures the 3D map of the world. In addition to position 
of the objects, the point cloud can also have an intensity channel that captures 
the reflectance of the objects. Due to the difference in the sensor data, the 2D 
CNNs developed for RGB images do not work accurately for LiDAR object 
detection [29, 30]. In the past, geodesic transformation has been proposed that 
transforms the depth images to capture angle from ground before processing in a 
2D CNN [30]. While the transformation improves the accuracy, their efficacy is 
limited, leading to the development of 3D CNNs that operate on the birds-eye-
view (BEV) representation of the point cloud data [29]. But the 3D CNNs had high 
computational complexity and low accuracy compared to the RGB object detectors. 
CNNs are not ideal for directly processing point clouds as the filters within the CNN 
have a regular pattern whereas point cloud has an irregular data representation, e.g., 
close objects have higher point density than far away objects. Therefore, modern 
LiDAR object detectors use PointNet [31] to transform the point cloud of the 
scene into high-level features that are then processed using a CNN. PointNet uses 
max pooling and multi-layer perceptron to encode point clouds. VoxelNet [32] 
divided the 3D scene into voxels and used voxel feature extraction (VFE) layer 
to encode the features of the point cloud in each voxel using a point net. The 
encoded representation of the scene was then processed using a 3D CNN to detect 
objects. While Voxelnet had high accuracy, it had high computational complexity. 
PointPillars [33] proposed to divide the scene into 3D pillars instead, which allowed
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Table 1 Performance comparison of LiDAR Object detectors evaluated on the KITTI Dataset [2]. 
Evaluation metric is Average Precision (AP). Easy, Moderate, Hard represent the occlusion level 
of the objects 

Name Easy Moderate Hard 

VeloFCN 40.14 32.08 30.47 

MV3D 86.18 77.32 76.33 

VoxelNet 89.6 84.81 78.57 

PointPillars 88.35 86.1 79.83 

Table 2 Performance 
comparison of different 
RGB–RADAR fusion-based 
object detectors in the 
nuScenes Dataset [4] 

Name AP 

RRPN 43 

BiraNet 72.3 

RADAR-guided visual attention 69 

the encoded feature map to be processed using a 2D CNN. This architecture reduced 
the computational complexity significantly and allowed the object detection to run at 
real-time speed in an NVidia 1080 GPU. Table 1 shows the performance of different 
LiDAR object detectors evaluated on the KITTI dataset. 

3.3 RADAR Object Detection 

The RADAR sensor data represents the depth and velocity information of objects. 
It is more resilient to sources of interference such as sunlight, fog, and rain that 
adversely affect the RGB and LiDAR sensors. The raw sensor reading from a 
RADAR is noisy, and therefore, most RADARs pre-process the sensed data before 
outputting to the compute engine. But the post-processing step considerably reduces 
the resolution of the output [34]. This makes it difficult to use machine learning 
algorithms such as CNNs to process the data as such techniques are not ideal for 
processing low-dimensional data. Instead, prior works have used RADAR data to 
augment RGB object detection by using the moving object points from RADAR 
point cloud to guide the object proposal in the RPN module of a Faster-RCNN RGB 
object detector [35]. BiraNet projects RADAR points to image plane and extracts the 
features using a ResNet CNN backbone. The extracted RADAR features are fused 
with RGB feature maps for object detection. The RADAR-Guided Dynamic Visual 
Attention [36] uses an RGB network to first generate RoIs and then uses fused 
RGB–RADAR features of each RoI using a secondary detector for object detection. 
This reduces complexity of the network compared to BiraNet [37]. Table 2 shows 
the performance of different RGB–RADAR fusion-based object detectors. Lately, 
RADAR object detectors have been proposed that operate on the raw RADAR 
sensor data [38]. While the data is noisy, but the high dimensionality makes it ideal 
for using CNNs for object detection (Table 3).
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Table 3 Performance 
comparison of RGB–LiDAR 
object detectors evaluated on 
the KITTI Dataset [2]. 
Evaluation metric is average 
precision (AP) 

Name Easy Moderate Hard 

MV3D 74.97 63.63 54 

AVOD-FPN 76.39 66.47 60.23 

FrustumNet 82.19 69.79 60.59 

SEG-VoxelNet 86.04 76.13 70.76 

VPFNet 88.51 80.97 76.74 

3.4 Multi-Modal Object Detection 

Multi-modal object detectors use the data collected from multiple sensors operating 
in different modalities to detect objects [39]. MV3D [40] was one of the first 
DNN-based RGB–LiDAR-based multi-modal object detectors; it used three feature 
extraction pipelines one for RGB and two for LiDAR BEV and front view. The 
LiDAR BEV pipeline was used for creating regions-of-interest (RoIs) that were 
used to extract features from the LiDAR front view and the RGB pipelines for object 
localization and classification. AVOD [41] simplified the architecture by using 3D 
anchors similar to single-shot RGB detectors to directly regress object locations 
from LiDAR BEV map and RGB images. This allowed AVOD to run in real-time 
speed (25 fps) in an NVidia 1080 GPU. FrustumNet [42] and F-Convnet [43] used  
two-stage RGB object detectors to create object proposals in 2D and then projected 
the 2D bounding boxes on the LiDAR front view map to extract point clouds from 
the frustum. The extracted frustum was processed using a point net to regress the 3D 
location of the object. Similarly, SEG-Voxelnet [44] improved the two-stage RGB– 
LiDAR fusion by using a segmentation network to extract pixel segments from RGB 
images and then using an improved VoxelNet to extract voxel features from the 
aligned LiDAR point cloud to regress the 3D location of the objects. Alternatively, 
VPFNet [45] uses stereo images and LiDAR point cloud to create a dense LiDAR 
point cloud that is then used for 3D object detection. This architecture is simpler 
compared to other two track architectures, which leads to low inference latency 
while maintaining good accuracy. 

RGB images capture semantic information of the scene, whereas LiDAR point 
clouds capture the 3D structure. Therefore, most fusion techniques discussed 
above try to improve the accuracy of 3D object detection by complementing the 
LiDAR with semantic RGB information. But these techniques ignore the fact that 
different modalities can also provide complementary information under different 
environmental conditions. For example, Infra Red (IR) and LiDAR sensors are 
better at detecting objects in low light conditions whereas RGB sensors are not. 
In recent times, there have been some machine-learning-based complementary 
fusion techniques for multi-spectral data. Guan et al. [46] proposed a two-pipeline 
network to process RGB and IR data independently and an illumination-aware 
fully connected network (IFCN) to decide the corresponding weights for fusing the 
information from the two pipelines. Similarly, Valada et al. [47] and Mees et al. [48]
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train a gating network to dynamically adjust the weights for fusion of features 
extracted from different modalities such as RGB, depth, etc. Such techniques allow 
the fusion process to adapt to different scenarios. 

3.5 Perception-Driven Sensing 

The sensor suite of autonomous vehicles has many sensors to sense all the 
information present in the real world [3, 4]. In some AV systems, sensors of the 
same modality but with a different sensitivity are deployed to add both precision and 
redundancy of sensing [3]. For example, in order to get .360◦ view, multiple RGB 
cameras can be installed each covering a different section of the scene. Similarly, 
multiple LiDAR sensors can be installed with each LiDAR having high precision 
in detecting objects located at different ranges. Such sensor suites have very high 
energy consumption that limits the mission capability of the system. Furthermore, 
the high data transfer rate between the sensing and compute engine can cause 
bandwidth bottleneck that has adverse effect on the reaction time of the system [53]. 
Therefore, several recent works have proposed creating a feedback from perception 
to sensing module to control the sensor activation and data transfer. The hysteresis 
of such systems is based on the state of the perception module and is designed to 
maximize the utility of the sensor parameters to the end task. The sensor parameters 
that can be controlled include sensor modality, pixel depth, resolution, etc (Table 4). 

Figure 7 shows the meta-architecture of the prior works on closed-loop sensor 
control. Saha et al. [50] proposed an RGB–IR modality control scheme where RGB 
is considered the primary/default modality and IR is the secondary modality. An 
RGB–IR mixed modality object detector is used to detect objects, and the regions 
where objects are detected are considered RoIs. The modality of the non-RoI regions 
is switched in the subsequent frames. This process is repeated every frame to create 
mixed modality images. Mudassar et al. [59] presented the CAMEL adaptive camera 
system that consists of a 3D stacked visual-IR image sensor with per pixel control. 
The digital pixel control circuit consists of a light-weight DNN accelerator to run 
a high-level semantic task. It is used to generate the control signal to control pixel 
modality (RGB or IR) and spatial and temporal resolution. Mukherjee et al. [60] 
extended the work by designing a sensor capable of dynamically varying the pixel 
depth of RoIs based on an external control signal. While the above methods used 

Table 4 Performance 
comparison of different 
RGB–IR modality control 
techniques evaluated on the 
CAMEL dataset [49] 

Name AP Bandwidth 

RGB-only [49] 22.3 61.9 

RGB–IR [50] 23.3 52.8 

Uncertainty-FP [51] 23.4 53.2 

Uncertainty-FN [49] 22.3 53.3 

Hybrid [49] 24.4 53.2
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Fig. 7 Perception feedback-driven sensor control. Parameters of sensor control include RGB–IR 
or RGB–LiDAR multi-modal sensor activation, pixel depth and resolution of RGB sensor, and 
a sampling rate of LiDAR sensor. The cues used to generate the feedback signal include object 
detection and tracking 

Table 5 Tracking evaluations based on CLEAR MOT metrics from Samal et al. [56] 

Name Rcll.↑ Prcn.↑ GT MT ML FP.↓ FN.↓ IDs.↓ MOTA. ↑
RGB-only 72.4 96.0 239 99 16 420 3828 233 67.7 

LiDAR-only 77.8 91.5 239 140 15 999 3081 176 69.3 

Baseline 83.6 90.2 239 160 7 1269 2276 226 72.9 
mmMOT [55]* 81.2 86.6 239 165 12 1742 2607 486 65.2 

Proposed 81.9 91.9 239 146 6 1004 2521 318 72.3 
* includes FN and TP ignored in KITTI test server [54] and mmMOT [55] evaluation, such as 

objects of small heights. Rcll=Recall, Prcn=Precision, GT =The number of ground truth tracks, 
MT =Mostly tracked tracks, ML=Mostly lost tracks, FP =False positives, FN=False negatives, 
IDs=Track ID switches, MOT A=Multiple object tracking accuracy 

the success of a task, object detection in these cases, to drive the feedback control, 
but ideally sensor parameters should change according to task failure, for example, 
IR should be turned on where RGB detection fails. While detecting task failure is a 
non-trivial task, there have been some prior works that address this issue. Samal et 
al. [56] proposed a LiDAR sampling strategy in an RGB–LiDAR sensor suite. They 
used object tracking to detect the regions in the image where there was a temporal 
inconsistency in object detections from a DNN. Such regions were considered RoIs, 
and the LiDAR was activated in these regions only. This strategy reduced the overall 
energy consumption of the entire system. Table 5 shows the performance of the 
LiDAR sampling strategy compared with methods that used either RGB or both 
RGB and LiDAR sensors at maximum fidelity. Lee et al. [61] trained a light-
weight DNN called Warning Net to predict potential perception task failure. This 
warning was used to control sensor resolution and operating voltage in the readout 
integrated circuit (ROIC) of an RGB sensor. This strategy improved the accuracy of 
perception tasks under noisy conditions. Mudassar et al. [51] used the uncertainty 
associated with the prediction from an object detection DNN to switch modality 
between RGB and IR. This improved the accuracy of object detection in difficult 
visible conditions. The idea was also extended to integrate temporal uncertainty for
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Fig. 8 FN Detection Pipeline [58]. Spatial inconsistency was estimated using tiling and a 
low complexity detector. Temporal inconsistency was estimated using object tracking from a 
SORT [57] tracker. Spatial and temporal inconsistencies were concatenated to estimate overall 
False Negatives 

action detection [49]. Table 4 shows the performance of different RGB–IR modality 
control techniques evaluated on the CAMEL dataset [52]. 

Samal et al. [58] addressed the perception failure issue directly by creating an 
false negative (FN) detector, shown in Fig. 8, that used a light-weight secondary 
object detector and image tiling in addition to temporal inconsistency [56] to detect 
FNs or perception failures corresponding to the primary object detector. The FNs 
were considered RoIs that were used to create feedback signal to control sensor 
parameters such as pixel depth and resolution in an RGB sensor. They created an 
introspective closed-loop perception system that estimates the perception risk of the 
RoIs to quantify the possibility of perception failure in such regions and a risk-
resource control to drive the sensor control feedback. The closed-loop perception 
system has less energy consumption than an open-loop system and less marginal 
cost of prediction than prior active sensor control systems. Figure 9 shows the object 
detection recall and energy utilization comparison between different closed-loop 
RGB sensor control systems for different kinds of scenarios. 

3.6 Adaptive Computational Load Control 

An autonomous CPS system operating in the real world needs to react to the chang-
ing dynamics of the scene such as perceptual complexity, power consumption mode, 
etc. Also, the operating system controlling the system has to perform several tasks 
outside the autonomy pipeline such as telemetry, networking, memory management, 
etc. Therefore, it is imperative for the computational load of the autonomy pipeline 
to be flexible. Since the perception DNN is the most computationally expensive 
module within the pipeline, the compute graph of the DNN must be dynamic. 
While there have been several hardware and software techniques to reduce the 
computational load of the DNNs [62], there are few works that propose dynamically 
changing the computational load of the DNNs during runtime [63].
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Fig. 9 Recall-resource comparison [58] of closed-loop systems on 5 sequences with different 
scenarios from the BDD dataset [14]. Here Baseline is from [59], and both . Bang − Bang

and PID  are from [58]. The number on top of a bar represents the corresponding total energy 
consumption (normalized) 

Prior works on dynamic compute control utilize the concept of conditional 
computation [65] to conditionally deactivate sections of the DNN to reduce 
the computational load in runtime. Such works include conditionally skipping 
computation of certain layers [66–68] or channels within the intermediate layers 
of the network [69–72]. Other works have changed the network architecture to 
enable early exit [73, 74], i.e., dynamically changing the depth of the network and 
creating multiple branches within the network each with different computational 
complexities, and the branch that is executed is determined in runtime [75–77]. 
There have also been works that use attention to invest the more computational 
resource to process high-saliency regions compared to the rest [78–81]. But in all 
the above works, the computational load is conditional on the input rather than an 
external control signal. 

In order to address this issue, Samal et al. [64] proposed a closed-loop perception 
framework to control the computational load of a DNN-based object detector in 
an autonomous system according to the end task such as motion planning. The 
distance-based activation pruning [82], shown in Fig. 10, removes the pixels of 
the image that are located farther than a particular depth-of-interest (DoI ). This 
operation increases the sparsity within the network activations leading to reduction 
of computational load in a sparsity-aware DNN accelerator. Similarly, the direction-
based activation suppression [64], shown in Fig. 10, uses the direction of motion 
planning to “suppress” the activations corresponding to pixels outside the region-of-
interest (RoI ). Table 6 shows the comparison between the both activation pruning 
and activation suppression w.r.t the open-loop system without compute control. 
While in both works the DNN computations can be modulated according to an
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Fig. 10 Distance-driven compute control. Pixels that are located farther away from the sensor are 
removed 

Table 6 Performance comparison of different computation control strategies from [64]. Time 
steps, avg. speed, and avg. obs. represent the motion planning results from a simulation and energy 
represents the avg. per frame energy consumption 

Name Time steps Avg. Speed (m/s) Avg. Obs. Energy (J) 

Open Loop 42 2.07 5.12 0.17 

Activation Pruning 43 1.97 2.76 0.12 

Activation Suppression 44 1.96 4.06 0.12 

Fig. 11 Direction-driven compute control. Neuron activations in early layers of the DNN corre-
sponding to regions not of interest are “suppressed.” Dominant objects outside of RoI are still 
detected 

external signal (DoI or RoI ), they still do not take into account the dynamic system 
requirements such as changes in power mode, operating frequency, task scheduling, 
reaction time, etc (Fig. 11). 

4 Odometery, Localization, and Mapping 

In order to operate in the real world, an autonomous cyber-physical system needs to 
build a map of the environment, localize its position in the map, and finally estimate 
its motion at every instant. In some systems, the map is built prior to operation; 
these maps are called HD maps [83]. But the HD maps may not be available for all 
locations; therefore, many systems build the map online. Since the online mapping 
depends on the location and pose estimation of the system, simultaneous localization 
and mapping (SLAM) algorithms have been developed to estimate localization and 
create 3D map of the world simultaneously in real time. Furthermore, accurate 
localization requires an estimation of the odometry as well. Traditional algorithms
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used sensors such as GPS and IMU for odometry and localization and LiDAR for 
mapping. But GPS signals have low precision, and IMU sensors suffer from sensor 
drift that can result in erroneous localization. 

4.1 LiDAR Odometry and Mapping 

The LiDAR point clouds scanned at any time step are used for registration either 
by calculating correspondence with previous scans or with an intermittent map 
that is created online [84]. By minimizing the error during this registration, using 
algorithms such as iterative closest point (ICP), an estimation of the motion can be 
derived. Also this registration process can also be used to eliminate erroneous points 
from the map. But the ICP algorithm is computationally expensive, which increases 
with the number of points in the point cloud. Therefore, Suma++ uses a DNN-
based semantic segmentation network to detect and remove points corresponding to 
moving objects. This process reduces the complexity of the ICP. 

Many cyber-physical systems, such as low-power drones, do not have LiDAR 
sensors. Therefore, vision-based odometry and SLAM techniques have been devel-
oped that can estimate motion, position, and map directly from RGB images. Such 
techniques are called visual odometry (VO) and visual simultaneous localization 
and mapping (VSLAM). While traditional feature-based algorithms such as ORB-
SLAM [85] have shown decent performance, they do not generalize well across 
diverse scenarios and require manual parameter optimization that is not ideal for 
an autonomous system operating in the wild. In recent times, deep-learning-based 
techniques have been proposed to replace the traditional feature-based VO and 
VSLAM techniques. Deepvo [86] uses a convolutional neural network (CNN) 
followed by a recurrent neural network (RNN) to estimate the pose of the system 
from a sequence of images. The CNN takes two images captured at consecutive 
time frames as input. This CNN architecture is similar to Flownet [87, 88] that is 
used to estimate optical flow from monocular images. The long short-term memory 
(LSTM)-based RNN is used to model the temporal dynamics from sequential data. 
The network is trained in a supervised setting where the prediction of the network is 
interpreted as a probabilistic inference and the loss is created from the mean square 
error (MSE) between the predicted pose and ground truth at every time step. The 
following equation describes the training process: 

.θopt = argmin
θ

MSE(p(Ŷt |X1:t , θ), Yt ). (1) 

Here, .θopt represent the optimal network parameters; . Yt and . Xt represent the output 
pose of the network and a pair of monocular images at time t . Similarly, other 
methods have been developed that treat pose estimation as a supervised regression 
problem [89, 90]. Some of these methods also add reprojection loss to augment the
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Table 7 Performance comparison of different VSLAM, VO techniques evaluated on sequence 10 
from the KITTI Odometry dataset from [93] 

Name AT E .RPEtrans(%) . RPErot (deg/m)

ORB-SLAM [85] 19.94 8.65 3.62 

LIFT-SLAM [93] 29.87 9.72 2.24 

Deepvo [86] – 8.11 8.83 

AT E represents the absolute trajectory error; .RPEtrans(%) and .RPErot (deg/m) represent the 
relative pose error for translation and rotation, respectively. Refer to [92] for details 

loss function [91]. Reprojection warps the current image according to current pose 
estimation to retrieve the previous image. 

While DNN-based VSLAM has shown better performance in many autonomous 
driving datasets, it does not generalize well across datasets. Therefore, hybrid 
VSLAM techniques merge DNN-based and traditional model-based algorithms. 
LIFT-SLAM [93] uses a DNN-based orientation estimator similar to LIFT [94] 
to estimate orientation from image patches. The estimated orientation is fine-
tuned according to orientation estimations from a model-based VSLAM algorithm 
similar to ORB-SLAM [85]. The model-based algorithm operates on the key points 
and descriptors extracted by the LIFT algorithm to estimate drift and correct the 
original estimations. Table 7 shows the performance of different VSLAM and VO 
techniques. 

4.2 Unsupervised VSLAM and VO 

Mapping, localization, and odometry can also be interpreted as an unsupervised 
or self-supervised problem [95–97]. Such techniques use DNNs to estimate pose, 
motion, and/or depth from RGB images and then transform the RGB image 
according to the estimation and compare the transformed image with actual image 
to estimate accuracy of the estimation. Figure 12 shows a high-level overview of 
such techniques. Table 8 shows the performance of unsupervised SLAM techniques. 
While some techniques simultaneously predict both structure of the world and self-
motion, others use sensors such as LiDAR, IMU, etc., to estimate one or the other. 
In either setting, the estimation of either structure, motion, or both can be validated 
using several photometric, geometric, and temporal consistencies. Photometric 
consistency uses motion and/or depth estimation to warp the RGB pixels to create 
the previous image and pixel-wise error, structural similarity metric (SSIM), etc., 
to evaluate the accuracy of the estimations. Alternatively, it can also be used to 
estimate accuracy of optical flow [88] or depth estimations [98, 99] from stereo 
images. Similarly, ICP algorithm can be used to calculate the relative transformation 
(. Tft ) between two consecutive depth maps .dmt−1 and .dmt estimated from RGB 
images .rgbt−1 and .rgbt , respectively. This transformation vector can be used to 
transform the pixels in the RGB image .rgbt−1 to create warped/estimated RGB
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Fig. 12 High-level architecture of VSLAM/VO 

Table 8 Performance comparison of different unsupervised SLAM techniques on sequence 10 
from the KITTI odometry dataset. Evaluation metric is ATE average per frame 

Name ATE/frame 

ORB-SLAM [85] 0.012 

Zhou et al. [95] 0.020 

Mahjourian et al. [96] 0.012 

image . ˆrgbt = Tf (rgbt−1). The difference between pixel values of . ˆrgbt and . rgbt

can be considered an indirect estimation of the depth map estimations. Similar 
consistency losses can be calculated for pose and motion estimations. Finally, the 
consistency losses are used to train the DNNs responsible for the corresponding 
estimations using backpropagation. 

5 Planning 

According to end goal and system configuration, planning in autonomous cyber-
physical systems can be divided into many forms such as inverse kinematics, path 
planning, trajectory planning, etc. Inverse kinematic planning algorithms are used to 
break down high-level commands such as manipulation of an object into low-level 
motion commands such as moving the joints in the arm of an industrial robot. Path 
planning is used in autonomous mobile systems [83], such as AVs, to do long-term 
planning for, e.g., generating the route from an origin point to an end point, and this 
route is also known as global waypoints. Trajectory planning is short-term planning 
that takes the global waypoints, current kinematics, and system constraints into 
consideration to generate actuation commands such as steering angle, acceleration, 
etc., in an autonomous mobile system. The most commonly used path planning 
algorithm such as Djikstra’s and A* [100] and trajectory planning algorithms such 
as Frenet Frame [101] and Spatio-temporal lattice [102] do not require large-scale 
training. But recently reinforcement learning algorithms have been proposed to 
do both path and trajectory planning [103]. Performing both path and trajectory 
planning is also known as motion planning.



Machine Learning Components for Autonomous Navigation Systems 217

Fig. 13 High-level overview 
of RL-based motion planning 
algorithms. The objective of 
RL algorithms is to learn an 
optimal action policy 
(π(state)) 

5.1 Overview of Reinforcement Learning Algorithms 

Reinforcement learning algorithms are typically used for motion planning. They 
learn to predict the ideal motion commands by training on simulation data. Training 
on real world is not feasible as stochastic actuation of a movable system in the real 
world for training and exploration can be risky to the environment and also lead to 
physical damage to the system. Once the RL is learnt in the simulator, it is fine-tuned 
on real-world scenarios. The reinforcement learning algorithms interpret the motion 
planning of the system as a Markov decision process (MDP) where the state of the 
environment is the state of the MDP and the transition between states is performed 
by taking an action or actuation command [103, 104]. Figure 13 shows the overview 
of RL. The action at time t is dependent on the state (.statet ) and is sampled from 
the action policy . πQ. The objective of RL is to learn an action policy that has the 
highest return. The return can be divided into short-term reward R and expected 
long-term value V . Similarly, Q-value is the long-term value V calculated at a state 
s and action a using the Q-function .Q(s, a). 

There are many kinds of RL algorithms depending on type of transition function, 
continuity of action, and state space, etc. Model-based RL algorithms learn the 
transition probability .T (st+1|st , at ) that represents the probability of entering into 
state .st+1 from . st by taking action . at . But since this requires a complete knowledge 
of process and environment dynamics, such algorithms are not ideal for real-world 
operations. On the other hand, model-free RL algorithms learn and update their 
knowledge using trial and error. Similarly, RL algorithms can be classified into 
on-policy or off-policy algorithms depending on how the Q-function is learnt. 
On-policy RL algorithms such as state–action–reward–state–action (SARSA) and 
temporal difference (TD) calculate the Q-value using the current policy only. This 
leads to a deterministic behavior. On the other hand, off-policy RL algorithms can 
estimate Q-value with policies that are different from the one that is followed to take 
actions, and this introduces non-determinism while estimating the action at a state. 
Therefore, off-policy RL algorithms such as Q-learning are great for exploring the 
action and state space. 

Traditional RL algorithms such as Q-learning and SARSA maintain a table for 
policy that converts state into action. This table consists of all possible states in one 
dimension and the expected return of all actions in the other dimension. This table is 
learned according to the learning policy such as Bellman’s equation that maximizes
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the return. But such algorithms cannot generalize to unseen states. Therefore, deep 
Q-networks (DQNs) were developed that use a neural network to estimate the Q-
function from training data. It requires two networks namely the target network and 
the Q-network. The Q-network is used to predict the action in a training episode, 
and the target network is used to generate the target Q-value and to generate the 
loss. The loss equation is shown in Eq. (3). This loss is backpropagated through the 
neural network to adjust the weights of the network using gradient descent. 

. yt = rt + γ max
a

Q(st , at , θ
−)

Loss = Lf (yt − Q(st , at , θ). (2) 

Here, . yt is the output of the Q-network, . rt is the short-term reward, and Q is the 
Q-value from the target network at time t . . γ is the discount factor, and .Lf is the 
loss function such as mean square error. The discount factor (.0 ≤ γ ≤ 1) is used to  
control the time horizon of an RL algorithm. Low discount factor leads to myopic 
learning as the algorithm gives high priority to short-term rather than long-term 
returns. Once the Q-network is trained on a predetermined number of episodes, the 
weights of the Q-network and the target network are swapped. Such reinforcement 
learning algorithms that use deep neural networks are called deep reinforcement 
learning (DRL). 

Alternatively, actor–critic RL algorithms, such as A2C and A3C, merge the 
on-policy and off-policy/value-based learning. Figure 14 shows the framework of 
such algorithms. The actor network learns a deterministic policy . πθ to convert the 
state from the environment into action at every time step t , and the critic network 
evaluates the policy of the actor network by calculating the value .V (s) of the action 
and the time dilation (TD) error . δ. The TD error is used to update the actor network. 

Fig. 14 Actor–critic RL 
framework with TD error
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Simultaneously, the TD error (. δ), shown in equation below, is also used by the critic 
to adjust the value function. 

.δ = rt+1 + γV (st+1) − V (st ). (3) 

Here, . rt and .V (st ) are the reward and value for state s at .t = t . . γ is the discount 
factor. 

Most algorithms presented above require discrete state and action space. But 
many robotic applications have continuous environmental state and action spaces 
that if discretized with high precision can lead to exponential increase in memory 
and computational complexity. Deep deterministic policy gradient (DDPG) [105] 
on the other hand is ideal for continuous environments with a large continuous 
action space. They are similar to DQN and actor–critic RL algorithms with certain 
modifications such as adding stochasticity by introducing noise to the network 
parameters and/or the predicted action. 

5.2 Applications of Deep Reinforcement Learning Algorithms 
for Planning 

DRL techniques have been proposed for motion planning in both static and dynamic 
environments [106]. Lei et al. [107] used a variant of DQN, called double DQN 
(DDQN) [108], with CNNs for the Q-networks to learn local path planning from 
LiDAR scans in a simulated environment. Ohnishi et al. [109] used a constrained 
DQN to learn robot navigation in a simulated environment. A constrained DQN 
dynamically decides the frequency of swapping of weights between the Q-network 
and the target network to reduce the number of training samples required. DRL 
algorithms have also been extended to power systems control. Zhang et al. proposed 
a DQN to control dynamic voltage and frequency scaling (DVFS) in an edge device. 
Similarly, Yan et al. [110] used DRL methods to learn load frequency control (LFC) 
in power systems for renewable energy sources. Such techniques are trained offline 
and typically extract features in an unsupervised manner using autoencoders. 

DRL algorithms have been proposed for active SLAM where an autonomous 
CPS system creates the map of an unseen environment and navigates it simultane-
ously. Such algorithms leverage the knowledge of the map of the environment to 
learn navigation. Botteghi et al. [111] augmented the reward function of a DDPG 
algorithm to make it map-aware. This led to substantial reduction in collisions 
and faster convergence. Wen et al. [112] proposed to use Q-learning to learn 
path planning in a SLAM environment that is created using traditional EKF-
SLAM framework from a LiDAR sensor. Later, the work was extended by using 
a convolutional residual network to predict depth from monocular images and a 
dueling architecture-based DDQN (D3QN) to plan a path to avoid collision with 
obstacles [113]. This algorithm was trained in a simulator and eventually transferred
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to a robot operating in a controlled real-world scenario. This work was extended 
to create a two-track robot navigation and obstacle avoidance algorithm [114]. By 
default, the system navigates the environment using FastSLAM [115], and once 
an obstacle is detected, D3QN is used to plan a path to avoid the obstacle. A fully 
convolutional residual network (FCRN) was used to convert RGB images into depth 
images for mapping and obstacle detection. 

Some of the major drawbacks of RL-based planners in general are the lack 
of determinism and generalization to unseen scenarios, difficulty in tuning the 
reward function that affects both convergence and optimality and requirement of 
a large amount of training data. Inverse reinforcement learning (IRL) uses RL 
to learn from human subjects [116]. Such algorithms address the handcrafting of 
cost/reward functions by using a neural network to directly map sensor readings 
to reward map [117]. Recently, these algorithms were extended to DRL paradigm 
to create deep inverse reinforcement learning (DIRL) algorithms [118]. Typically, 
such algorithms use the maximum entropy criteria to select the ideal decision 
from a distribution of sub-optimal decisions collected by observing human sub-
jects. Wulfmeier et al. [119] proposed a DIRL to learn motion planning from a 
large-scale driving dataset. Rosbach et al. [120] integrated DIRL with a model 
predictive control (MPC)-based planner to create a behavior-aware motion planner 
for autonomous driving. Furthermore, DIRL algorithms have also been extended to 
prediction tasks such as off-road vehicle motion and pedestrian trajectory prediction 
by incorporating additional task-specific features such as kinematics and social 
affinity maps, respectively. 

While DIRL addresses the handcrafting of reward function issue of RL, it does 
not address the safety issue that results from a lack of generalizability to unseen 
scenarios. It should be noted that high-risk scenarios that can lead to an accident 
are difficult to capture in a dataset, and therefore, algorithms that learn directly 
from data may not make the optimal decisions in such scenarios. Therefore, Cao 
et al. [121] proposed a hierarchical RL plus IL algorithm for driving in high 
risk near accident-driving scenarios. This algorithm uses IL for low-level driving 
policy decision and RL for high-level driving mode decision. RL algorithms are 
typically trained in simulation environment, but transferring these learned networks 
to real world is non-trivial due to shift in data distribution. To address such issues, 
constrained proximal policy optimization [122] techniques have been proposed 
that add constraints during the RL formulation and training. Constraints enforced 
can be kinematic constraints to emulate practical robot mechanics, environmental 
constraints to emulate the physical constraints of the real world, etc. 

6 End-to-End Learning Systems 

The meta-architecture of the autonomous cyber-physical systems shown in Fig. 2 is 
common for most open-source autonomous vehicle and drone control software. This 
modular structure allows independent development and diagnosis that is critical of



Machine Learning Components for Autonomous Navigation Systems 221

Fig. 15 High-level architecture of an end-to-end learning system for AV. During test time, the 
actuation signals are generated directly from the DNN 

safe operation of systems operating in the wild. But lately with the success of DNNs 
and availability of powerful embedded platforms, a new category of algorithms 
have been proposed that replace the various modules in the information processing 
pipeline with a single DNN [123]. A high-level architecture of an end-to-end self-
driving control system is shown in Fig. 15. The primary motivation of this line of 
thought is the superiority of DNN for low-level feature extraction over hand-crafted 
feature design for perception tasks. The input of end-to-end learning systems is the 
raw sensor data, such as images from an RGB camera, and the output is the actuation 
commands such as steering and acceleration commands. These systems are trained 
on large volumes of training data from diverse conditions. The supervisory signal 
for training is provided by human drivers. This is similar to imitation learning and 
can be formulated as the equation below [124]. 

.argmin
θ

∑

i

�(F (obsi, θ), acti). (4) 

Here, . θ represents the parameters of the network, .obsi and .acti are sensor observa-
tions from a scene i and corresponding actions taken by the human supervisor, F 
represents the neural network, and . � represents the loss function used to train the 
network. 

The first work on end-to-end learning system was ALVINN [125] in 1989. It 
used a fully connected neural network with a single hidden layer to predict the 
steering command from sensor data. The input layer had three channels or “retina,” 
one for a .8 × 32 range finder image, second for the blue channel of a . 30 × 32
RGB image, and third for a road intensity feedback unit that represented the relative 
change in intensity between frames. This light-weight neural network was trained 
to follow lanes in off-roads and was able to drive a vehicle across a 400 meters in 
a wooded road at a speed of .0.5 m/s. Subsequently, in 2004, DARPA Autonomous 
Vehicle (DAVE) [126] project implemented an end-to-end learning system to drive 
an off-road vehicle through a junk filled alleyway. The input of DAVE was two 
RGB cameras placed in the right and left sides of the car. The training data for 
this system was collected by observing the images from RGB cameras and steering 
commands from CAN bus while manually driving the RC car through several off-
road environments. Muller et al. [127] improved upon ALVINN by replacing the
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fully connected neural network with a 6-layer convolutional neural network (CNN) 
that was trained on obstacle avoidance rather than road following and used stereo 
RGB cameras rather than low-resolution RGB and range finder. This system could 
drive itself at a maximum speed of .2 m/s. The above works laid the ground work 
and showed the feasibility of an end-to-end learning system. But these systems were 
not tested on public roads where they have to avoid many dynamic obstacles while 
obeying numerous traffic laws. 

Recently, inspired by the success of CNNs in solving perception tasks such as 
image classification, object detection etc., Bojarski et al. [128] proposed a CNN-
based end-to-end learning system with 9 layers—1 input normalization layer, 7 
convolutional layers, and 2 fully connected layers. The output of the system is the 
steering angle. The system was trained on roughly 72 h of human driving data 
collected from cars equipped with three cameras placed on the front left, front 
center, and front right sides of the car. The system could operate at 30 fps on an 
NVidia Self-drive PX [129] system. But his system was trained to follow road lanes 
and was not capable of making complex maneuvers such as lane change, etc. A 
major limitation of such systems is the lack of controllability by external agents such 
as a human driver or a behavior planning module. Therefore, Codevilla et al. [124] 
proposed a conditional end-to-end learning system that is trained with external 
commands as an additional input, operating as a switch to activate different parts of 
the network, such that the overall system learns how to respect external commands 
during inference. But this does not take the planning module into account; therefore, 
Gao et al. [130] proposed a two-stage end-to-end learning system with path planner 
at high-level issuing “intention” commands to a DNN-based motion planner at the 
low level that can respect the intentions. The intentions can be in the form of explicit 
directional commands such as forward, backward, etc., or they can be in image-
like form such as occupancy grid, floor maps, etc. A major drawback of imitation 
learning is the lack of ability for long-term planning as the learning is carried out on 
low-level decisions from the human supervisor, and therefore, the system is ignorant 
of the high-level “motivation” and the uncertainty associated with the decisions. 
Amini et al. [131] proposed a probabilistic end-to-end learning model that used 
a Gaussian Mixture Model (GMM) for predicting steering angles with uncertainty. 
They used noisy GPS signal as a prior for localization uncertainty from RGB images 
such that the system could issue deterministic steering commands in the presence of 
a map (Table 9). 

The end-to-end learning-based ACPS systems discussed above sample training 
samples from driving episodes assuming that the original distribution is independent 
and identically distributed (IID). But real world is causal in nature, and the temporal 
relationship between the samples cannot be captured using memory-less DNNs that 
were discussed above. Therefore, recently end-to-end learning systems have been 
proposed that use DRL instead of CNNs to learn the mapping from sensor data to 
actuation signals. Sadeghi and Levine proposed CAD. 

2RL [135] that used a fully 
convolutional network (FCN) and Q-learning to convert RGB images into direction 
of motion for navigating an autonomous drone while avoiding obstacles. The system 
was trained on a simulator with randomized ray casting to create stochastic training
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Table 9 Performance of different end-to-end learning systems on different autonomous driving 
datasets from [133] 

Dataset Model MAE in degree [SD] 

Comma.ai [132] CNN+FCN [128] 2.54 [3.19] 

CNN+LSTM 2.58 [3.44] 

Kim and Canny [133] 2.44 [3.20] 

HCE CNN+FCN [128] 1.27 [1.57] 

CNN+LSTM 1.57 [2.27] 

Kim and Canny [133] 1.20 [1.66] 

Udacity [134] CNN+FCN [128] 4.12 [4.83] 

CNN+LSTM 4.15 [4.93] 

Kim and Canny [133] 4.19 [4.93] 

MAE stands for mean absolute error measured in degrees and SD stands for the standard deviation 
in the measured error 

data that helped the learning system to generalize to real-world scenarios. Sallab et 
al. [136] proposed an end-to-end learning system with 3 stages—CNN-based spatial 
feature extraction stage, RNN/LSTM-based state estimation stage, and DRL-based 
policy selection stage. This system was trained and tested for lane keeping in a car 
racing simulator. Kendall et al. [137] proposed a DDPG-based DRL algorithm to 
learn lane following in an end-to-end learning-based autonomous vehicle. Contrary 
to prior works that required an expert/human response for each sample, the DRL 
system in this work was trained on sparse supervisory signal. The system utilized the 
distance travelled by the vehicle before safety driver had to intervene as the reward 
criteria. DNNs are black box in nature due to a lack of insight into the reasoning 
behind their predictions, and with end-to-end learning, the entire ACPS system 
becomes similarly obfuscated. Kim and Canny [133] proposed a two-stage method 
to determine the regions of the scene that have the most impact on the decision 
of a CNN-based end-to-end learning system. The first stage consists of a visual 
attention decoder for the CNN-based feature extraction module, and the second 
stage takes the saliency map generated in the first stage and executes a causality 
test by removing the pixels at different high salient regions to measure their impact 
on the predicted decision. 

7 Conclusion 

Machine learning algorithms, especially deep neural networks, are used extensively 
in modern cyber-physical systems to support autonomous operation. Due to an abun-
dance of training data and availability of powerful compute hardware, such algo-
rithms have achieved very high task accuracy compared to traditional algorithms, 
and therefore, DNNs have permeated almost every module of the system stack from 
low-level sensing to high-level planning. It can also be observed that while CNNs
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are better at filtering pertinent information from high-dimensional data in the early 
processing layers, RL algorithms are better at high-level decision-making. This 
architecture is not ideal as there is considerable correlation between sensory data 
as well that cannot be captured by CNNs. Furthermore, the neural-network-based 
machine learning algorithms today, while very accurate, are essentially black-box 
entities that cannot explain their predictions. This has led to a schism among the 
designers of ACPS systems with one section supporting replacement of the modular 
architecture of the system with a single neural network due to design simplicity 
and high accuracy. On the other hand, another section within the community is 
skeptical of using such “black box” algorithms and prefers balkanizing their usage 
to perception tasks such as object detection only. Since CPS systems are deployed 
in real-world scenarios, it is paramount that the system should be able to explain 
itself especially in the event of a failure. And while there are a number of works 
on attribution, i.e., detecting input regions that are responsible for a particular 
prediction, there is a lack of work on prediction failures and post-hoc diagnosis. 
Therefore, a better understanding of a DNN is required for widespread adoption of 
such algorithms in autonomous cyber-physical systems. 
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Machine Learning for Efficient 
Perception in Automotive Cyber-Physical 
Systems 

Joydeep Dey and Sudeep Pasricha 

1 Introduction 

In 2021, it was reported that an estimated 31,730 people died in motor vehicle 
traffic crashed in the United States, representing an estimated increase of about 12% 
compared with 2020 [1]. By eliminating the possibility of human driving errors 
through automation, advanced driver assistance systems (ADAS) are becoming a 
critical component in modern vehicles, to help save lives, improve fuel efficiency, 
and enhance driving comfort. ADAS systems typically involve a four-stage pipeline 
involving sequential execution of functions related to perception, decision, control, 
and actuation. An incorrect understanding of the environment by the perception 
system can make the entire system prone to erroneous decision making, which can 
result in accidents due to imprecise real-time control and actuation. This motivates 
the need for a reliable perception architecture that can mitigate errors at the source 
of the pipeline and improve safety in emerging semiautonomous vehicles. 

The standard SAE-J3016 effectively classifies the capabilities of a perception 
architecture supported by a vehicle according to their targeted level of autonomy. 
In general, an optimal vehicle perception architecture should consist of carefully 
defined location and orientation of each sensor selected from a heterogeneous suite 
of sensors (e.g., cameras and radars) to maximize environmental coverage in the 
combined field of view obtained from the sensors. In addition to ensuring accurate 
sensing via appropriate sensor placement, a high object detection rate and low false 
positive detection rate need to be maintained using efficient deep learning-based 
object detection and sensor fusion techniques. 
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Fig. 1 Breakdown of perception architecture design space 

State-of-the-art deep learning-based object detection models are built with 
different network architectures, uncertainty modeling approaches, and test datasets 
over a wide range of evaluation metrics [2]. Object detectors that are capable of real-
time perception are resource constrained by latency requirements, onboard memory 
capacity, and computationally complexity. Optimizations performed to meet any one 
of these constraints often results in a trade-off with the performance of others [3]. As 
a result, comparison and selection from among the best set of deep learning-based 
object detectors for perception applications remains a challenge. 

In real-world driving scenarios, the position of obstacles and traffic are highly 
dynamic, so after detection of an object, tracking is necessary to predict its new 
position. Due to noise from various sources, there is an inherent uncertainty 
associated with the measured position and velocity. This uncertainty is minimized 
by using sensor fusion algorithms [4]. An important challenge with sensor fusion 
algorithms is that the complexity of tracking objects increases as the objects get 
closer, due to a much lower margin for error (uncertainty) in the vicinity of the 
vehicle. 

As summarized in Fig. 1, the design space of a vehicular perception architecture 
involves determining appropriate sensor selection and placement, object detection 
algorithms, and sensor fusion techniques. The possible configurations for each of 
these decisions are nontrivial and can easily lead to a combinatorial explosion 
of the design space, making exhaustive exploration impractical. Conversely, an 
optimization of each of these decisions individually before composing a final 
solution can lead to solutions that are suboptimal and perform poorly in real 
environments. Perception architecture design depends heavily on the target features 
and use cases to be supported in the vehicle, making the already massive design 
space addressing the problem even larger and harder to traverse. Consequently, 
today, there are no generalized rules for the synthesis of perception architectures 
for vehicles.
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In this chapter, we describe a novel framework called Perception Architecture 
Search Technique for ADAS (PASTA) that was first presented in [5] to perform 
perception architecture synthesis for emerging semiautonomous vehicles. Our 
experimental results indicate that the proposed framework is able to optimize 
perception performance across multiple ADAS metrics, for different vehicle types. 

The main contributions in this chapter include the following: 

• A global co-optimization framework capable of synthesizing robust vehicle-
specific perception architecture solutions that include heterogeneous sensor 
placement, deep learning-based object detector design, and sensor fusion algo-
rithm selection 

• An exploration of various design space search algorithms tuned for the vehicle 
perception architecture search problem 

• A fast and efficient method for co-exploration of the deep learning object detec-
tor hyperparameters, through adaptive and iterative environment- and vehicle-
specific transfer learning 

• A comparative analysis of the framework efficiency across different vehicle 
models (Audi-TT and BMW-Minicooper) 

2 Related Work 

State-of-the-art semiautonomous vehicles require robust perception of their envi-
ronment, for which the choice of sensor placement, object detection algorithms, 
and sensor fusion techniques are the most important decisions. These decisions 
are carefully curated to support ADAS features (e.g., blind spot warning and lane 
keep assist) that characterize the autonomy level to be supported by a vehicle under 
design. 

Many prior works have explored vehicle perception system design with different 
combinations of sensor types to overcome limitations that plague individual sensor 
types. The work in [6] used a single camera-radar pair for perception of headway 
distance using a continental radar mounted on the geometric center of the front 
bumper and a Nextbase 512G monocular camera behind the windscreen. Vehicle 
detection was performed on the collected camera frames, by sorting potential 
candidates in a fixed trapezoidal region of interest in the horizontal plane. In 
[6], a camera-radar fusion-based perception architecture was proposed for target 
acquisition with the well-known single shot detection (SSD) object detector on 
consecutive camera frames. This allowed their perception system to differentiate 
vehicles from pedestrians in real time. The detection accuracy was optimized with 
the use of a Kalman filter and Bayesian estimation, which reduced computational 
complexity compared with [6]. In [7], a single neural network was used for fusion of 
all camera and radar detections. The proposed neural fusion model (CRF-Net) used 
an optimized training strategy similar to the “dropout” technique, where all input 
neurons for the camera data are simultaneously deactivated in random training steps,
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forcing the network to rely more on the radar data. The training focus toward radar 
overcame the bias introduced by starting with pretrained weights from the feature 
extractor that was trained from the camera data. The work in [8] optimized merging 
camera detection with LiDAR processing. An efficient clustering technique inspired 
by the DBSCAN algorithm allowed for a better exploitation of features from the raw 
LiDAR point cloud. A fusion scheme was then used to sequentially merge the 2-D 
detections made by a YOLOv3 object detector using cylindrical projection with the 
detections made from clustered LiDAR point cloud data. In [9], an approach to 
fuse LiDAR and stereo camera data was proposed, with a post-processing method 
for accurate depth estimation based on a patch-wise depth correction approach. 
In contrast to the cylindrical projection of 2-D detections in [8],  the work in [9] 
uses a projection of 3-D LiDAR points into the camera image frame instead, which 
upsamples the projection image, creating a more dense depth map. 

All of the prior works discussed above optimize vehicle perception performance 
for rigid combinations of sensors and object detectors, without any design space 
exploration. Only a few prior works have (partially) explored the design space 
of sensors and object detectors for vehicle perception. An approach for optimal 
positioning and calibration of a three LiDAR system was proposed in [10]. The 
approach used a neural network to learn and qualify the effectiveness of different 
LiDAR location and orientations. The work in [11] proposed a sensor selection 
and exploration approach based on factor graphs during multisensor fusion. The 
work in [12] heuristically explored a subset of backbone networks in the Faster R-
CNN object detector for perception systems in vehicles. The work in [13] presented 
a framework that used a genetic algorithm to optimize sensor orientations and 
placements in vehicles. 

Efficient energy management strategies for ADAS use reliable detections enabled 
by the optimized perception techniques discussed in [6–13].  The work in [14] 
derives a prediction mechanism for optimal energy management for ADAS using 
a nonlinear autoregressive artificial neural network (NARX). Multiple sources are 
used as input to the neural network such as data from drive cycle information, 
current vehicle state, global positioning system, travel time data, and detected 
obstacles. In addition, dynamic programming is used to derive an optimal energy 
management control strategy, which shows significant fuel economy improvements 
compared with highly accurate predictive baseline models. The work in [14] 
proposes a predictive optimal energy management strategy that leverages sensor 
data aggregation and dynamic programming to achieve vehicle fuel economy 
improvement for ADAS compared with existing vehicle control strategies. The work 
discussed in [14, 15] leverage existing ADAS technology in modern vehicles to 
realize prediction-based optimal energy management, which enables fuel economy 
improvements for ADAS with minor modifications. 

Unlike prior works that fine-tune specific perception architectures, e.g., [6–9], 
or explore the sensing and object detector configurations separately, e. g. [10–13], 
this chapter proposes a holistic framework that jointly co-optimizes heterogeneous 
sensor placement, object detection algorithms, and sensor fusion techniques. To the 
best of our knowledge, this is the first effort that performs co-optimization across
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such a comprehensive decision space to optimize ADAS perception, with the ability 
to be tuned and deployed across multiple vehicle types. 

3 Background 

3.1 ADAS Level 2 Autonomy Features 

In this chapter, our exploration of perception architectures on a vehicle, henceforth 
referred to as an ego vehicle, targets four ADAS features that have varying degrees of 
longitudinal (i.e., in the same lane as the ego vehicle) and lateral (i.e., in neighboring 
lanes to the ego vehicle lane) sensing requirements. The SAE-J3016 standard [16] 
defines adaptive cruise control (ACC) and lane keep assist (LKA) individually 
as level 1 features, as they only perform the dynamic driving task in either the 
latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW) 
and blind spot warning (BW) are defined in SAE-J3016 as level 0 active safety 
systems, as they only enhance the performance of the driver without performing any 
portion of the dynamic driving task. However, when all four features are combined, 
the system can be described as a level 2 autonomy system. Figure 2 shows an 
overview of the four features we focus on for level 2 autonomy, which are discussed 
next. 

While different ACC implementations may have varying sensing strategies, they 
all take over longitudinal control from the driver (Fig. 2). The challenge in ACC 
is to maintain an accurate track of the lead vehicle (immediately ahead of the ego 
vehicle in the same lane) with a forward facing sensor and using longitudinal control 
to maintain the specified distance while maintaining driver comfort (e.g., avoiding 
sudden velocity changes). Lane keep assist (LKA) systems determine whether the 
ego vehicle is drifting toward any lane boundaries and are an evolution of lane 
departure warning systems. LKA systems have been known to overcompensate, 
creating a “ping-pong” effect where the vehicle oscillates back and forth between the 
lane lines [17]. The main challenges in LKA are to reduce this ping-pong effect and 
the accurate detection of lane lines on obscured (e.g., snow covered) roads. Forward 

Fig. 2 Visualization of common scenarios in ACC, FCW, LKA, and BW
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collision warning (FCW) systems are used for real-time prediction of collisions with 
a lead vehicle. 

An important requirement for these systems is that they avoid false positives and 
false negatives to improve driver comfort and safety and reduce rear-end accidents 
[18]. Finally, blind spot warning (BW) systems use lateral sensor data to determine 
whether there is a vehicle toward the rear on either side of the ego vehicle (Fig. 2) 
in a location the driver cannot see with their side mirrors. A perception architecture 
designed to support level 2 autonomy in a vehicle should support all four of these 
critical features. 

3.2 Sensor Placement and Orientation 

In order to capture data most relevant to each feature, a strategic sensor placement 
strategy must be used on the ego vehicle such that their chosen position and orienta-
tion maximize coverage (of the vehicle environment). Figure 2 shows an example of 
field of view coverage (in blue) corresponding to three unique placements of camera 
sensors on the body of the ego vehicle (in yellow, lower images) to meet coverage 
goals. For the ACC and FCW features, the ego vehicle is responsible for slowing 
down to maintain a minimum separation between the ego and lead vehicle. The 
camera must be positioned somewhere on the front bumper to measure minimum 
longitudinal separation accurately while keeping the lead vehicle in the desired field 
of view. For LKA, there is a need to maintain a safe minimum lateral distance 
between nonego vehicles in neighboring lanes. Here, a front camera is needed 
to extract lane line information, while side cameras are required for tracking this 
minimum lateral separation. As BW requires information about a specific area near 
the rear of the vehicle, it is a challenge to find an optimal sensor placement that 
maximizes the view of the blind spot. If the sensor is too far forward or too far 
back, it will miss key portions of the blind spots. Beyond placement, the orientation 
of sensors can also significantly impact coverage for all features [18]. Thus, sensor 
placement and orientation remains a challenging problem. 

3.3 Object Detection for Vehicle Environment Perception 

There are two broad goals associated with deep learning-based object detectors: 
determining spatial information (relative position of an object in the image) via 
localization followed by identifying which category that object instance belongs to 
via classification [19]. As an example, Fig. 3 shows object detection of multiple car 
instances (using the YOLOv3 deep learning based object detector [20]) by creating 
a bounding box around the “car” object instances and predicting the object class 
as “car.” The pipeline of traditional object detection models can be divided into 
informative region selection, feature extraction, and classification [21]. Depending
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Fig. 3 Example of vehicle (object) detection with YOLOv3 

on which subset of these steps is used to process an input image frame, object 
detectors are classified as single stage or two stage. 

Modern single-stage detectors are typically composed of a feed-forward fully 
convolutional network that outputs object classification probabilities and box offsets 
(w.r.t. predefined anchor/bounding boxes) at each spatial position. The YOLO 
family of object detectors is a popular example of single-stage detectors [21]. Single 
shot detection (SSD) is another example, based on the VGG-16 backbone [22]. 
An advantageous property of single-stage detectors is their very high detection 
throughput (e.g., ~40 frames per second with YOLO) that makes them suitable for 
real time scenarios. Two-stage detectors divide the detection process into separate 
region proposal and classification stages. The first stage involves identifying several 
regions in an image that have a high probability to contain an object using a region 
proposal network (RPN). In the second stage, proposals of identified regions are fed 
into convolutional networks for classification. Region-based CNN (R-CNN) is an 
example of a two-stage detector [23]. R-CNN divides an input image into 2000 
regions generated through a selective search algorithm, after which the selected 
regions are fed to a CNN for feature extraction followed by a support vector machine 
(SVM) for classification. Fast R-CNN [24] and subsequently faster R-CNN [25] 
improved the speed of training and detection accuracy compared with R-CNN by 
streamlining the stages. 

Two-stage detectors have high localization and object recognition accuracy, 
whereas one-stage detectors achieve higher inference speed [26]. In this chapter, we 
considered both types of object detectors to exploit the latency/accuracy trade-offs 
during perception architecture synthesis. 

3.4 Sensor Fusion 

Perception architectures that use multiple sensors in their sensing framework often 
must deal with errors due to imprecise measurements from one or more of the 
sensors. Conversely, errors can also arise when only a single sensor is used due 
to measurement uncertainties from insufficient spatial (occlusion) or temporal 
(delayed sensor response time) coverage of the environment. The Kalman filter is
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one of the most widely used sensor fusion state estimation algorithms that enables 
error-resilient tracking of targets [27]. The Kalman filter family is a set of recursive 
mathematical equations that provides an efficient computational solution of the 
least-squares method for estimation. The filters in this family have the ability to 
obtain optimal statistical estimations when the system state is described as a linear 
model and the error can be modeled as Gaussian noise. If the system state is 
represented as a nonlinear dynamic model as opposed to a linear model, a modified 
version of the Kalman filter known as the extended Kalman filter (EKF) can be used, 
which provides an optimal approach for implementing nonlinear recursive filters 
[28]. However, for real-time ADAS operations, the computation of the Jacobian 
(matrix describing the system state) in EKF can be computationally expensive and 
contribute to measurement latency. Further, any attempt to reduce the cost through 
techniques like linearization makes the performance unstable [29]. The unscented 
Kalman filter (UKF) is another alternative that has the desirable property of being 
more amenable to parallel implementation [30]. In our perception architecture 
exploration, we explore the family of Kalman filters as candidates for sensor fusion. 

4 PASTA Architecture 

4.1 Overview 

Figure 4 presents a high-level overview of our proposed PASTA framework. The 
heterogeneous sensors, object detection model library, sensor fusion algorithm 
library, and physical dimensions of the vehicle model are inputs to the framework. 
An algorithmic design space exploration is used to generate a perception architec-

Fig. 4 An overview of the proposed PASTA framework
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ture solution, which is subsequently evaluated based on a cumulative score from 
performance metrics relevant to the ADAS autonomy level being targeted. As part 
of the framework, we evaluate three design space search exploration algorithms: 
genetic algorithm (GA), differential evolution (DE), and the firefly algorithm (FA). 
The process of perception architecture generation and evaluation iterates until an 
algorithm-specific stopping criteria is met, at which point the best design points are 
output. The following subsections describe each component of our framework in 
detail. 

4.2 Problem Formulation and Metrics 

In our framework, for a given vehicle, we define a design point as a perception 
architecture that is a combination of three components: a sensor configuration, 
which involves the fixed deployment position and orientation of each sensor selected 
for the vehicle, an object detector algorithm, and a sensor fusion algorithm. The  
goal is to find an optimal design point for the given vehicle that minimizes the 
cumulative error across eight metrics that are characterized of the ability to track 
and detect nonego vehicles across road geometries and traffic scenarios. 

The eight selected metrics are related to our goal of supporting level 2 autonomy 
with the perception architecture. In the descriptions of the metrics below, the ground 
truth refers to the actual position of the nonego vehicles (traffic in the environment 
of the ego vehicle). The metrics can be summarized as follows: (1) Longitudinal 
position error and (2) lateral position error, deviation of the detected positional 
data from the ground truth of nonego vehicle positions along the y and x axes, 
respectively. (3) Object occlusion rate, the fraction of passing nonego vehicles that 
go undetected in the vicinity of the ego vehicle. (4) Velocity uncertainty, the fraction 
of times that the velocity of a nonego vehicle is measured incorrectly. (5) Rate of late 
detection, the fraction of the number of “late” nonego vehicle detections made over 
the total number of nonego vehicles. Late detection is one that occurs after a nonego 
vehicle crosses the minimum safe longitudinal or lateral distance, as defined by Intel 
RSS safety models for precrash scenarios [31]. This metric directly factors in the 
trade-off between latency and accuracy for object detector and fusion algorithms. 
(6) False positive lane detection rate, the fraction of instances when a lane marker 
is detected but there exists no ground truth lane. (7) False negative lane detection 
rate, the fraction of instances when a ground truth lane exists but is not detected. (8) 
False positive object detection rate, the fraction of total vehicle detections, which 
were classified as nonego vehicle detections but did not actually exist.
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4.3 Design Space Encoder/Decoder 

The design space encoder receives a set of random initial design points as input, 
which are arranged into a vector format. This format is best suited for various 
kinds of rearrangement and splitting operations during design space exploration. 
The encoder adapts the initial selection of inputs for our design space such that a 
design point is defined by the location and orientation of each sensor’s configuration 
(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object 
detector and fusion algorithm. The design space decoder converts the solutions into 
the same format as the input so that the output perception architecture solution(s) 
found can be visualized with respect to the real world coordinate system. 

4.4 Design Space Exploration 

The goal of a design space exploration algorithm in our framework is to generate 
perception architectures (design points), which are aware of feature to field of view 
(FOV) zone correlations around an ego vehicle. Figure 5a shows the ten primary 
FOV zones around the ego vehicle. These zones of interest are defined as the 
most important perception areas in the environment for a particular ADAS feature. 
Figure 5b shows the regions on the vehicle on which sensors can be mounted (in 
blue). Regions F and G (in yellow) are exempt from sensor placement due to the 
mechanical instability of placing sensors on the door of a vehicle. The correlation 
between ADAS features, zones, and regions, is shown in Fig. 5c. For exploration of 
possible locations within a region, a fixed step size of 2 cm in two dimensions across 
the surface of the vehicle is considered, which generates a 2-D grid of possible 
positions in each zone shown in Fig. 5b. The orientation exploration of each sensor 
involves rotation at a fixed step size of 1◦ between an upper and lower bounding 
limit for roll, pitch, and yaw, respectively, at each of these possible positions within 
the 2-D grid. The orientation exploration limits were chosen with caution with the 

Fig. 5 (a) Field of view (FOV) zones, (b) sensor placement regions, and (c) feature, region, and 
zone relationship
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caveat that some sensors, such as long-range radars, have an elevated number of 
recorded false positives with extreme orientations. 

To get a sense of the design space, consider four sensors (e.g., two cameras and 
two radars). Just the determination of the optimal placement and orientation of these 
sensors involve exploring 1.24e+26C4 and 7.34e+25C4 configurations for the Audi-TT 
and BMW-Minicooper vehicles, respectively. Coupled with the choice of different 
object detectors and sensor fusion algorithms, the resulting massive design space 
cannot be exhaustively traversed in a practical amount of time, necessitating the use 
of intelligent design space search algorithms that support hill climbing to escape 
local minima. In our framework, we explored three evolutionary algorithms: (1) 
genetic algorithm (GA), (2)  differential evolution (DE), and the (3) Firefly algorithm 
(FA). As shown in Fig. 4, each algorithm generates a solution set of size “P” at 
every iteration until the termination criteria is met. The algorithms simultaneously 
co-optimize sensor configuration, object detection, and sensor fusion and proceed to 
explore new regions of the design space when the termination (perception) criteria 
is not met. We briefly describe the three algorithms below. 

4.4.1 Genetic Algorithm (GA) 

GA is a popular evolutionary algorithm that can solve optimization problems by 
mimicking the process of natural selection [32]. GA repeatedly selects a population 
of candidate solutions and then improves the solutions by modifying them. Initially, 
the GA randomly selects a solution set of fixed size referred to as the population 
and then improves the quality of the candidate solutions by modifying them in 
each iteration. GA has the ability to optimize problems where the design space 
is discontinuous and also if the cost function is nondifferentiable. In our GA 
implementation, in the selection stage, the cost function values are computed for 
50 design points at a time, and a roulette wheel selection method is used to select 
which set of chromosomes will be involved in the crossover step based on their 
cost function probability value (fraction of the cumulative cost function sum of 
all chromosomes considered in the selection). In the crossover stage, the crossover 
parameter is set to 0.5, allowing half of the 50 chromosomes to produce offspring. 
The mutation parameter is set to 0.2, which determines the new genes allowed for 
mutation in each iteration. 

4.4.2 Differential Evolution (DE) 

Differential Evolution (DE) [33] is another stochastic population-based evolutionary 
algorithm that takes a unique approach to mutation and recombination. An initial 
solution population of fixed size is selected randomly, and each solution undergoes 
mutation and then recombination operations. DE generates new parameter vectors
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by adding the weighted difference between two population vectors to a third 
vector to achieve difference vector-based mutation. Next, crossover is performed, 
where the mutated vector’s parameters are mixed with the parameters of another 
predetermined vector, the target vector, to yield a trial vector. If the trial vector 
yields a lower cost function value than the target vector, the trial vector replaces the 
target vector in the next generation. To ensure that better solutions are selected only 
after generation of all trial vectors, greedy selection is performed between the target 
vector and the trial vector at every iteration. Unlike GA where parents are selected 
based on fitness, every solution in DE takes turns to be one of the parents [34]. In 
our DE implementation, we set initial population size to 50 and use a crossover 
probability of 0.8 to select candidates participating in crossover. 

4.4.3 Firefly Algorithm (FA) 

FA is a swarm-based metaheuristic [35] that has shown superior performance 
compared with GA for certain problems [36]. In FA, a solution is referred to 
as a firefly. The algorithm assumes that the attractiveness of a firefly is directly 
proportional to its luminosity, which depends on the fitness function value. Further, 
irrespective of gender all fireflies can be attracted to each other in the design space. 
Initially, a random solution set is generated, and the fitness (brightness) of each 
candidate solution is measured. In the design space, a firefly is attracted to another 
with higher brightness (more fit solution), with brightness decreasing exponentially 
over distance. FA is significantly different from DE and GA, as both exploration 
of new solutions and exploitation of existing solutions to find better solutions is 
achieved using a single position update step. 

4.5 Performance Evaluation 

Each iteration of the design space exploration involves performance evaluation of 
the generated solution set where each design point undergoes multiple drive cycles. 
A drive cycle here refers to a virtual simulation involving an ego vehicle (with a 
perception architecture under evaluation) following a fixed set of waypoint coor-
dinates, while performing object detection and sensor fusion on the environment 
and other nonego vehicles. A total of 20 different drive cycles were considered, 
with five drive cycles customized for each ADAS feature. As an example, drive 
cycles for ACC and FCW involve an ego vehicle following different lead vehicles 
at different distances, velocities, weather conditions, and traffic profiles. The fitness 
of the perception architectures generated by the framework are computed using the 
cumulative metric scores (Sect. 4.2) across the drive cycles.
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5 Experiments 

5.1 Experimental Setup 

To evaluate the efficacy of the PASTA framework, we performed experiments in 
the open-source simulator Car Learning to Act (CARLA) implemented as a layer 
on Unreal Engine 4 (UE4) [37]. The UE4 engine provides state-of-the-art physics 
rendering for highly realistic driving scenarios. We leveraged this tool to design a 
variety of drive cycles that are roughly 5 minutes long and contain scenarios that 
commonly arise in real driving environments, including adverse weather conditions 
(rain and fog) and a few overtly aggressive/conservative driving styles observed with 
vehicles. To ensure generalizability, we consider a separate set of test drive cycles to 
evaluate solution quality, which are different from the optimization drive cycles used 
iteratively by the framework to generate optimized perception architecture solutions. 

We target generating perception architectures to meet level 2 autonomy goals for 
two vehicle models: Audi-TT and BMW-Minicooper (Fig. 6). A maximum of four 
mid-range radars and four RGB cameras are considered in the design space, where 
each sensor can be placed in any zone (Fig. 5a and b). Using a greater number of 
these sensors led to negligible improvements for the level 2 autonomy goal. The 
RGB cameras possess 90◦ field of view, 200 fps shutter speed, and image resolution 
of 800 × 600 pixels. The mid-range radars selected generate a maximum of 1500 
measurements per second with a horizontal and vertical field of view of 30◦ and a 
maximum detection distance of 100 m. We considered five different object detectors 
(YOLOv3, SSD, R-CNN, Fast R-CNN, and Faster R-CNN) and three sensor fusion 
algorithms (Kalman filter, Extended Kalman filter, and Unscented Kalman filter). 
For the design space exploration algorithms, the cost function was a weighted sum 
across the eight metrics discussed in Sect. 4.2, with the weight factor for each metric 
chosen on the basis of their total feature-wise cardinality across all zones shown in 
Fig. 5c. During design space exploration, if the change in average cost function 
value was <5% over 250 iterations, the search was terminated. All algorithmic 
exploration was performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with 
an NVIDIA GeForce RTX 2080 Ti GPU. 

Fig. 6 (a) BMW-Minicooper (left) and (b) Audi-TT (right)
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5.2 Experimental Results 

In the first experiment, we explored the inference latency and accuracy in terms 
of mean average precision (mAP) for the five different object detectors considered 
in this chapter. Table 1 summarizes the inference latency on a CPU and GPU, as 
well as the accuracy in mAP for the object detectors on images from our analyzed 
drive cycles, with all detectors trained on the MS-COCO dataset. It can be observed 
that the two-stage detectors (R-CNN, Fast R-CNN, and Faster R-CNN) have a 
higher accuracy than the single stage detectors (SSD and YOLOv3). However, the 
inference time for the two-stage detector is significantly higher than for the single 
stage detectors. For real-time object detection in vehicles, it is crucial to be able to 
detect objects with low latency, typically less than 100 ms [38]. As a result, single-
stage detectors are preferable, with YOLOv3 achieving slightly better accuracy and 
lower inference time than SSD. However, in some scenarios, delayed detection 
can still be better than not detecting or wrongly detecting an object (e.g., slightly 
late blind spot warning is still better than receiving no warning) in which case the 
slower but more accurate two-stage detectors may still be preferable. Our PASTA 
framework is aware of this inherent trade-off and factors in the detection accuracy 
and rate of late detection in performance evaluation metrics (Sect. 4.2) to explore 
both single-stage and two-stage detectors. Also, detectors with a higher mAP value 
sometimes did not detect objects that other detectors with a lower mAP were able 
to; thus, we consider all five detectors in our exploration. 

Next, we explored the importance of global co-optimization for our problem. 
We select the genetic algorithm (GA) variant of our framework to explore the 
entire design space (GA-PASTA) and compared it against five other frameworks. 
Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search 
for sensor design. In GA-PO, sensor position is explored before orientation, while in 
GA-OP the orientation for fixed sensor locations (based on industry best practices) is 
explored before adjusting sensor positions. For both frameworks, the object detector 
used was fixed to YOLOv3 due to its sub-100 ms inference latency and reasonable 
accuracy, while the extended Kalman filter (EKF) was used for sensor fusion due to 
its ability to efficiently track targets following linear or nonlinear trajectories. The 
framework GA-VESPA is from prior work [13] and uses GA for exploration across 
sensor positions and orientations simultaneously, with the YOLOv3 object detector 
and EKF fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more 
comprehensive exploration of the design space. GA-POD simultaneously explores 
the sensor positioning, orientation, and object detectors, with a fixed EKF fusion 

Table 1 Object detector latency and accuracy comparison 

Object detector R-CNN Fast R-CNN Faster R-CNN SSD YOLOv3 

Latency GPU (ms) 48956.18 1834.71 176.99 53.25 24.03 
Latency CPU (ms) 66090.83 2365.86 286.72 70.32 32.92 
mAP (%) 73.86 76.81 79.63 70.58 71.86
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Fig. 7 (a) Comparison of perception architecture exploration frameworks. (b) Cost of best  
solution from each framework 

algorithm. GA-POF simultaneously explores the sensor positioning, orientation, and 
sensor fusion algorithm, with a fixed YOLOv3 fusion algorithm. 

Figure 7a depicts the average cost of solution populations (lower is better) for 
the BMW-Minicooper across the different frameworks plotted against the number 
of iterations, with each exploration lasting between 80 and 100 hours. It can be 
observed that GA-PO performs better than GA-OP, which confirms the intuitive 
importance of exploring sensor positioning before adjusting sensor orientations. 
GA-VESPA outperforms both GA-PO and GA-OP, highlighting the benefit of 
co-exploration of sensor position and orientation over a local sequential search 
approach used in GA-PO and GA-OP. GA-POD and GA-POF in turn outperform 
these frameworks, indicating that decisions related to object detection and sensor 
fusion can have a notable impact on perception quality. GA-POD terminates with 
its solution set having a lower average cost than GA-POF, which indicates that co-
exploration of object detection and sensor placement/orientation is slightly more 
effective than co-exploration of sensor fusion and sensor placement/orientation. 
Our proposed GA-PASTA framework achieves the lowest average cost solution, 
highlighting the tremendous benefit that can be achieved from co-exploring sensor 
position/orientation, object detection, and sensor fusion algorithms. Figure 7b sum-
marizes the objective function cost of the best solution found by each framework, 
which aligns with the population-level observations from Fig. 7a. 

The comparative analysis for the BMW-Minicooper was repeated three times 
with different initializations for all six frameworks, and the results for the other two 
runs show a consistent trend with the one shown in Fig. 7. Note also that the relative 
trend across frameworks observed for the Audi-TT is similar to that observed for 
the BMW-Minicooper, and thus, the results for the Audi-TT are omitted for brevity. 

In the next experiment, we explored the efficacy of different design space 
exploration algorithms (GA, DE, and FA; see Sect. 4.4) to determine which 
algorithm can provide optimal perception architecture solutions across varying 
vehicle models. Figure 8 shows the results for the three variants of the PASTA 
framework, for the Audi-TT and BMW-Minicooper vehicles. The best solution
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Fig. 8 Comparison of three variants of PASTA framework with genetic algorithm (GA), differen-
tial evolution (DE), and Firefly algorithm (FA) 

was selected across three runs of each algorithmic variant (variations for the best 
solution across runs are highlighted with confidence intervals, with bars indicating 
the median). It is observed that for both considered vehicle models, the FA algorithm 
outperforms the DE and GA algorithms. For Audi-TT, the best solution found by 
FA improves upon the best solution found with DE and GA by 18.34% and 14.84%, 
respectively. For the BMW-Minicooper, the best solution found by FA outperforms 
the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure 
9a depicts the specific sensor placement locations for each vehicle type, with a 
visualization of sensor coverage for the best solutions found by each algorithm 
shown in Fig. 9b. 

Finally, in our quest to further improve perception architecture synthesis in 
PASTA, we focused on a more nuanced exploration of the object detector design 
space. We selected the FA search algorithm due to its superior performance over 
GA and DE and modified FA-PASTA to integrate a neural architecture search 
(NAS) for the YOLOv3 object detector, with the aim of further improving YOLOv3 
accuracy across drive cycles while maintaining its low detection latency. Our 
NAS for YOLOv3 involved transfer learning to retrain network layers with a 
dataset consisting of 6000 images obtained from the KITTI dataset, using the open 
source tool CADET [39]. The NAS hyperparameters that were explored involved 
the number of layers to unfreeze and retrain (from a total of 53 layers in the 
Darknet-53 backbone used in YOLOv3; Fig. 10a), along with the optimizer learning 
rate, momentum, and decay. The updated variant of our framework, FA-NAS-
PASTA, considered these YOLOv3 hyperparameters along with the sensor positions 
and orientations, and sensor fusion algorithms, during iterative evolution of the 
population of candidate solutions in the FA algorithm.
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Fig. 9 (a) Sensor placement for best solution found with FA algorithm (top yellow vehicle: BMW-
Minicooper, bottom red vehicle: Audi-TT) (top) and (b) Sensor coverage for best solutions found 
by GA, DE, and FA search algorithms (bottom) 

Fig. 10 (a) YOLOv3 object detector architecture with Darknet-53 backbone network that was 
fine-tuned using neural architecture search (NAS) and (b) results of integrating object detector 
NAS with PASTA 

Figure 10b shows the results of this analysis for the two vehicles considered. 
FA-PASTA is the best performing variant of our framework (from Fig. 8), while 
FA-NAS-PASTA is the modified variant that integrates NAS for YOLOv3. It 
can be observed that fine tuning the YOLOv3 object detector during search 
space exploration in FA-NAS-PASTA leads to notable improvements in the best 
perception architecture solution, with up to 14.43% and 21.13% improvement in 
performance for the Audi-TT and BMW-Minicooper, compared with PASTA-FA.
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6 Conclusion 

In this chapter, we propose an automated framework called PASTA that is capable of 
generating perception architecture designs for modern semiautonomous vehicles. 
PASTA has the ability to simultaneously co-optimize locations and orientations 
for sensors, optimize object detectors, and select sensor fusion algorithms for a 
given target vehicle. Our experimental analysis showed how PASTA can synthesize 
optimized perception architecture solutions for the Audi-TT and BMW-Minicooper 
vehicles, while outperforming multiple semiglobal exploration techniques. Inte-
grating neural architecture search for the object detector in PASTA shows further 
promising improvements in solution quality. 

Acknowledgments This work was supported by the National Science Foundation (NSF), through 
grant CNS-2132385. 

References 

1. NHTSA (National Highway Traffic Safety Administration), National Center for Statistics and 
Analysis: Data estimates indicate traffic fatalities continued to rise at record pace in first nine 
months of 2021 (2022) 

2. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S.: Deep learning for object detection and 
scene perception in self-driving cars: survey, challenges, and open issues. Array. 10, 100057 
(2021) 

3. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and comparative study on 
probabilistic object detection in autonomous driving. IEEE Trans. Intell. Transp. Syst. 23, 9961 
(2021) 

4. Carazo, J., Rufas, D., Bimepica, E., Carrabina, J.: Resource-constrained machine learning for 
ADAS: a systematic review. IEEE Access. 8, 40573–40598 (2020) 

5. Dey, J., Pasricha, S.: Robust perception architecture design for automotive cyber-physical 
systems. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE (2022) 

6. Zhexiang, Y., Jie, B., Sihan, C., Libo, H., Xin, B.: Camera-radar data fusion for target detection 
via Kalman filter and Bayesian estimation. SAE Technical Paper (2018) 

7. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and 
camera sensor fusion architecture for object detection. In: IEEE Sensor Data Fusion: Trends, 
Solutions, Applications (SDF). IEEE (2020) 

8. Verucchi, M., Bartoli, L., Bagni, F., Gatti, F., Burgio, P., Bertogna, M.: Real-time clustering 
and LiDAR-camera fusion on embedded platforms for self-driving cars. In: IEEE International 
Conference on Robotic Computing (IRC). IEEE (2020) 

9. Meng, L., Yang, L., Tang, G., Ren, S., Yang, W.: An optimization of deep sensor fusion 
based on generalized intersection over union. In: International Conference on Algorithms and 
Architectures for Parallel Processing. Springer (2020) 

10. Meadows, W., Hudson, C., Goodin, C., Dabbiru, L., Powell, B., Doude, M., Carruth, D., Islam, 
M., Ball, J.E., Tang, B.: Multi-LIDAR placement, calibration, co-registration, and processing 
on a Subaru Forester for off-road autonomous vehicles operations. In: Autonomous Systems: 
Sensors, Processing and Security for Vehicles and Infrastructure. SPIE (2019) 

11. Chen, H., Ling, P., Danping, Z., Kun, L., Yexuan, L., Yu, C.: An optimal selection of 
sensors in multi-sensor fusion navigation with factor graph. In: Ubiquitous Positioning, Indoor 
Navigation and Location-Based Services (UPINLBS). IEEE (2018)



Machine Learning for Efficient Perception in Automotive Cyber-Physical Systems 251

12. Ji-Qing, L., Sheng Fang, H., Shao, F., Zhong, Y., Hua, X.: Multi-scale traffic vehicle detection 
based on faster R–CNN with NAS optimization and feature enrichment. Def. Technol. 17, 
1542–1554 (2021) 

13. Dey, J., Taylor, W., Pasricha, S.: VESPA: a framework for optimizing heterogeneous sensor 
placement and orientation for autonomous vehicles. IEEE Consum. Electron. Mag. 10, 16–26 
(2020) 

14. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley, 
T.H.: Enabling prediction for optimal fuel economy vehicle control. SAE International (2018) 

15. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards Improving Vehicle Fuel Economy 
with ADAS. SAE International (2018) 

16. SAE International Standard J3016: Taxonomy and definitions for terms related to driving 
automation systems for on-road motor vehicles (2018) 

17. Kirchner, C.: Lane keeping assist explained. Motor Review [Online]. Available: https:// 
motorreview.com/lane-keeping-assist-explained (2014) 

18. Li, H., Zhao, G., Qin, L., Aizeke, H., Zhao, X., Yang, Y.: A survey of safety warnings under 
connected vehicle environments. IEEE Trans. Intell. Transp. Syst. 22, 2572–2588 (2020) 

19. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: A review. IEEE 
Trans. Neural. Netw. Learn. Syst. 30, 3212–3232 (2019) 

20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, realtime 
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. IEEE (2016) 

21. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient 
and category-specific object detection: a survey. IEEE Signal Process. Mag. 35, 84 (2018) 

22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot 
multibox detector. In: European Conference on Computer Vision. Springer (2016) 

23. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object 
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. IEEE (2014) 

24. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer 
Vision. IEEE (2015) 

25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with 
region proposal networks. In: Advances in Neural Information Processing systems (NIPS) 
(2015) 

26. Fayyad, J., Jaradat, M.A., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for 
autonomous vehicle perception and localization: a review. Sensors. 20, 4220 (2020) 

27. Kalman, R.E.: A new approach to linear filtering and prediction problems. In: Transactions of 
the American Society of Mechanical Engineers (ASME) –Journal of Basic Engineering. IEEE 
(1960) 

28. Simon, J., Uhlmann, J.: New extension of the Kalman filter to nonlinear systems. In: Signal 
Processing, Sensor Fusion, and Target Recognition. International Society for Optics and 
Photonics (1997) 

29. Yeong, D., Hernandez, G., Barry, J., Walsh, J.: Sensor and sensor fusion technology in 
autonomous vehicles: a review. Sensors. 21, 2140 (2021) 

30. Wan, A., Merwe, R.: The unscented kalman filter for nonlinear estimation. In: Proceedings of 
the IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium. 
IEEE (2000) 

31. NHTSA (National Highway Traffic Safety Administration): Implementing RSS model on 
NHTSA pre-crash scenarios. Intel (2017) 

32. Reeves, C.: Genetic Algorithms: Handbook of Metaheuristics. International Series in Opera-
tions Research & Management Science (2003) 

33. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Glob. Optim. 11, 341 (1997) 

34. Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. 
Eng. Manag. Syst. 11, 215 (2012)



32220 12977 a 32220 12977 a
 
https://motorreview.com/lane-keeping-assist-explained


252 J. Dey and S. Pasricha

35. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foun-
dations and Applications. Springer (2009) 

36. Zhou, G.D., Yi, T.H., Zhang, H., Li, H.N.: A comparative study of genetic and firefly 
algorithms for sensor placement in structural health monitoring. Shock. Vib. 2015, 1–10 (2015) 

37. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving 
simulator. In: 1st Annual Conference on Robot Learning Conference on Robot Learning. 
PMLR (2017) 

38. Brekke, Å., Vatsendvik, F., Lindseth, F.: Multimodal 3d object detection from simulated 
pretraining. In: Symposium of the Norwegian Artificial Intelligence Society. Springer (2019) 

39. Lin, S., Zhang, Y., Hsu, C., Skach, M., Haque, M., Tang, L., Mars, J.: The architectural 
implications of autonomous driving:constraints and acceleration. In: Proceedings of the 
Twenty-Third International Conference on Architectural Support for Programming Languages 
and Operating Systems. ACM (2018)



Machine Learning for Anomaly Detection 
in Automotive Cyber-Physical Systems 

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha 

1 Introduction 

Today’s vehicles are sophisticated cyber-physical systems (CPS) that consists 
of multiple interconnected embedded systems known as electronic control units 
(ECUs). The ECUs control various vehicular functions and communicate with each 
other using the in-vehicle network. In recent years, the number of ECUs along with 
the complexity of software running on these ECUs has been increasing rapidly, to 
enable advanced driver assistance systems (ADAS) features such as adaptive cruise 
control, collision avoidance, lane keep assist, and blind spot warning. This has 
resulted in an increase in the complexity of the in-vehicle network over which huge 
volumes of automotive sensor and real-time decision data, and control directives are 
communicated. This in turn has led to various challenges related to the reliability 
[1–4], security [5–9], and real-time control of automotive applications [10–13]. 

Recent developments in ADAS resulted in increased interaction with various 
external systems using advanced communication standards such as 5G technology 
and Vehicle-to-X (V2X) [14]. Unfortunately, this makes automotive embedded sys-
tems highly susceptible to various cybersecurity threats that can have catastrophic 
consequences. The vehicular attacks in [15–17] have presented different ways to 
gain access to the in-vehicle network and override vehicle controls by injecting 
anomalous messages. With the connected and autonomous vehicles (CAVs) on the 
horizon, these security concerns will get further aggravated. Therefore, it is crucial 
to prevent unauthorized access to in-vehicle networks by external attackers to ensure 
the security of automotive CPS. 
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Traditional computer networks utilized firewalls to defend the networks from 
external attackers. However, no firewall is flawless, and no network can be 
completely secure. Therefore, there is a need for an active monitoring system that 
continuously monitors the network to identify malicious messages in the system. An 
anomaly detection system (ADS) can be used to continuously monitor the in-vehicle 
network traffic and trigger alerts when suspicious messages or known threats are 
detected, which is typically the last line of defense in automotive CPSs. 

At a high level, ADSs are categorized into two types: (i) rule-based and 
(ii) machine learning-based. Rule-based ADSs observe for traces of previously 
observed attack signatures whereas machine learning-based ADSs observe for the 
deviation from the known normal system behavior to detect the presence of an 
attacker. Rule-based ADS can have faster detection rates and very few false alarms 
(false positive rate) but are limited to detecting only known attacks. On the contrary, 
machine learning-based ADS can detect both previously observed and novel attacks 
but can suffer from comparatively slower detection times and higher false alarm 
rate. An efficient ADS needs to be robust, scalable, and incur minimal overhead 
(lightweight). Moreover, practical ADSs need to have a wide attack coverage (being 
able to detect both known and unknown attacks) with high confidence in detection 
and low false alarms as recovering from false alarms can be costly. 

Obtaining the signature of every possible attack is impractical and would limit 
us to only detecting known attacks. Hence, we believe that machine learning-based 
ADSs provide a more pragmatic solution to this problem. Additionally, due to the 
ease of acquiring in-vehicle network data, large volumes of in-vehicle message data 
can be collected, which facilitates the use of advanced deep learning models for 
detecting anomalies in automotive CPS [9]. 

In this chapter, we propose a novel ADS framework called INDRA, first presented 
in [6], that monitors the messages in controller area network (CAN)-based automo-
tive CPS for anomalies. During the offline phase, INDRA uses a deep learning-based 
model to learn the normal system behavior in an unsupervised manner. At runtime, 
INDRA continuously scans the network for anomalous messages in the network. 
INDRA aims to maximize the detection accuracy with minimal false alarms and 
overhead on the ECUs. 

Our novel contributions in this work are as follows: 

1. We introduced a gated recurrent unit (GRU)-based recurrent autoencoder net-
work to learn the normal system behavior during the offline phase. 

2. We presented an anomaly score (AS) metric to measure deviation from the 
normal system behavior. 

3. We conducted a comprehensive analysis toward the selection of thresholds for 
the anomaly score metric. 

4. We compare our proposed INDRA framework with the best-known prior works 
in the area, to show its effectiveness.
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2 Related Work 

Several techniques have been proposed to design ADS for protecting time-critical 
automotive CPS. These works try to detect multiple attacks by monitoring the in-
vehicle network data. 

Rule-based ADS detects known attacks by using the information about previ-
ously observed attack signatures. A language theory-based model [18] was proposed 
to derive attack signatures. However, this technique fails to detect attacks when it 
misses the packets transmitted during the early stages of an attack. The authors in 
[19], used transition matrices to detect attacks in a CAN bus. They were able to 
achieve a low false-positive rate for simple attacks but failed to detect advanced 
replay attacks. In [20], the authors identify notable attack signatures such as an 
increase in message frequency and missing messages to detect attacks. In [21], the 
authors proposed a specification-based approach to detect attacks; they analyze the 
behavior of the system and compare it with the predefined attack patterns to detect 
anomalies. However, their system fails to detect unknown attacks. The authors in 
[22] propose an ADS technique using the Myers algorithm [23] under the map-
reduce framework. In [24], a time-frequency analysis of CAN messages is used 
to detect multiple anomalies. The authors analyzed message frequency at design 
time in [25] to derive regular operating mode region. This region is observed 
for deviations at runtime to detect anomalies. The sender ECU’s clock skew and 
the messages are used to detect attacks [26] by observing for variations in the 
clock-skew at runtime. The authors in [27] performed a formal analysis on clock-
skew-based ADS and evaluated on a real vehicle. In [28], a memory heat map is used 
to characterize the memory behavior of the operating system to detect anomalies. 
In [29], an entropy-based ADS is proposed, which observes for change in system 
entropy to detect anomalies. Nonetheless, the technique fails to detect small scale 
attacks for which the entropy change is minimal. In conclusion, rule-based ADSs 
offer a solution to the intrusion detection problem with lower false positive rates but 
cannot detect more complex and novel attacks. Moreover, obtaining signatures of 
every possible attack pattern is not practical. 

Machine learning-based ADSs aim to learn the normal system behavior in an 
offline phase and observe for any deviation from the learned normal behavior to 
detect anomalies at runtime. In [30], the authors proposed a sensor-based ADS that 
utilizes attack detection sensors to monitor various system events to observe for 
deviations from normal behavior. However, this approach is expensive and suffers 
from poor detection rates. In [31], a one-class support vector machine (OCSVM)-
based ADS was introduced, but it suffers from poor detection latency. An ensemble 
of different nearest neighbor classifiers was used in [32] to distinguish between 
a normal and an attack-induced CAN payload. The authors in [33] proposed a 
decision-tree-based detection model to monitor the physical features of the vehicle 
to detect attacks. However, this model is not practical and suffers from high anomaly 
detection latencies. In [34], a hidden Markov model (HMM)-based technique was 
proposed to monitor the temporal relationships between messages to detect attacks.
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Table 1 Performance metrics comparison between our proposed INDRA framework and state-
of-the-art machine learning-based anomaly detection works 

Performance metrics 

Technique Lightweight model 
Low false 
positive rate 

High detection 
accuracy Fast inference time 

PLSTM [38] X � X X 
RepNet [39] � X X �
CANet [36] X � � X 
INDRA � � � �

A deep neural network-based approach was proposed to scan the payload in the 
in-vehicle network in [35]. This approach is not scalable as it is fine-tuned for 
a low priority tire pressure monitoring system (TPMS), which makes it hard to 
adapt to high priority powertrain applications. In [36] a long-short-term memory 
(LSTM)-based ADS for multi-message ID detection was proposed. However, the 
model architecture is highly complex and incurs high overhead on the ECUs. An 
LSTM-based ADS to detect insertion and dropping attacks (explained in Sect. 4.3) 
is proposed in [37]. In [38], an LSTM-based predictor model is proposed to predict 
the subsequent time step message value at a bit level and observe for large variations 
to detect anomalous messages. A recurrent neural network (RNN)-based ADS to 
learn the normal CAN message pattern in the in-vehicle network is proposed in [39]. 
In [40], a hybrid ADS was proposed which utilizes a specification-based system in 
the first stage and an RNN-based model in the second stage to detect anomalies 
in time-series data. Several other machine models such as the stacked LSTMs and 
temporal convolutional neural networks (TCNs)-based techniques were proposed in 
[7, 8], respectively. However, none of these techniques provides a complete system-
level solution that is scalable, reliable, and lightweight to detect various attacks for 
in-vehicle networks. 

In this chapter, we introduce a lightweight recurrent autoencoder-based ADS 
using gated recurrent units (GRUs) that monitors the in-vehicle network messages 
at a signal level to detect multiple types of attacks with higher efficiency than 
various state-of-the art works in this area. A summary of some of the state-of-the-art 
works’ performance under different metrics and our proposed INDRA framework is 
presented in Table 1. An exhaustive analysis of each metric and evaluation results 
are presented later in Sect. 6. 

3 Sequence Learning Background 

The availability of increased computing power from GPUs and custom accelerators 
training deep neural networks with many hidden layers became feasible and has led 
to the creation of powerful models for solving difficult problems in many domains.
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One such problem is detecting anomalies in automotive CPS. In an automotive CPS, 
the communication between ECUs occurs in a time-dependent manner. Therefore, 
there is temporal relationship between the messages, which can be exploited in order 
to detect anomalies. However, this cannot be achieved using typical feedforward 
neural networks where the output of a specific input at an instance is independent 
of the other inputs. Sequence models can be an appropriate approach for such 
problems, as they inherently handle sequences and time-series data. 

3.1 Sequence Models 

A sequence model is a function that ensures that the outcome is reliant on both the 
current and prior inputs. The recurrent neural network (RNN), which was introduced 
in [41], is an example of such a sequence model. Moreover, other sequence models 
such as gated recurrent unit (GRU) and long-short-term memory (LSTM) have also 
been developed. 

3.1.1 Recurrent Neural Networks (RNNs) 

An RNN is a form of artificial neural network that takes the sequential data as input 
and tries to learn the relationships between the elements in the sequence. The hidden 
state in RNNs allows learned information from previous time steps to persist over 
time. An RNN unit with feedback is shown in Fig. 1a, and an unrolled RNN in time 
is shown in Fig. 1b. 

The output ht of an RNN unit is a function of both the input xt and the previous 
output ht − 1: 

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time, where f is the RNN unit, x is the 
input, and h represents hidden states
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ht = f (Wxt + Uht−1 + b) (1) 

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W are 
weight matrices, and b is the bias term. One of the major limitations of RNNs is 
that they are very hard to train. Since RNNs and other sequence models handle 
sequences or time-series inputs, backpropagation occurs through various time steps 
(known as backpropagation through time). During this process, the feedback loop 
in RNNs causes the errors to expand or shrink rapidly, thereby creating exploding 
or vanishing gradients, respectively, which in turn destroys the information in 
backpropagation. This vanishing gradient problem prohibits RNNs from learning 
long-term dependencies. To solve this problem, additional states and gates were 
introduced in the RNN unit in [42] to remember long-term dependencies, which led 
to the development of LSTM Networks. 

3.1.2 Long-/Short-Term Memory (LSTM) Networks 

LSTMs unlike RNNs uses cell state and hidden state information along with 
multiple gates to remember long-term dependencies between messages. The cell 
state can be imagined as a freeway that carries relevant information throughout the 
processing of a sequence. The state stores information from previous time steps 
so that it can be used in subsequent time steps, reducing the effects of short-term 
memory. The gates modify the information in the cell state. As a result, the gates 
in LSTM assist the model in determining which information should be retained and 
which should be ignored. 

An LSTM unit contains three gates: (i) input gate (ft) (ii) forget gate (it), and (iii) 
output gate (ot) as shown in Fig. 2a. The forget gate is a binary gate that determines 
which information from the previous cell state (ct−1) to retain. The input gate adds 
relevant information to the cell state (ct). Finally, the output gate uses information 
from the previous two gates to produce an output. An LSTM unit unrolled in time 
is shown in Fig. 2b. 

LSTMs learn long-term dependencies in a sequence by using a combination of 
different gates and hidden states. However, they are not computationally efficient 
due to the addition of multiple gates, as the sequence path is more complicated 
than in RNNs, which in turn requires more memory at runtime. Moreover, training 
LSTMs have a high computation overhead even when the advanced training meth-
ods such as truncated backpropagation are employed. To overcome abovementioned 
limitations, a simpler recurrent neural network called gated recurrent unit (GRU) 
network was introduced in [43]. GRUs can be trained faster than LSTMs and also 
can remember dependencies in long sequences with minimal overhead (in both 
memory and runtime), while solving the vanishing gradient problem.
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Fig. 2 (a) A single LSTM unit with different gates and (b) unrolled LSTM unit in time, where f 
is an LSTM unit, x is input, c is cell state, and h is the hidden state 

3.1.3 Gated Recurrent Unit (GRU) 

Unlike LSTMs, a GRU unit takes a different route for gating information. The input 
and forget gate of the LSTM is combined into a solitary update gate and in addition 
combines hidden and cell state, as shown in Fig. 3a, b. 

A typical GRU unit contains two gates: (i) reset gate and (ii) update gate. 
The reset gate combines new input with previous memory, while the update layer 
determines how much relevant data should be stored. Thus, a GRU unit controls 
the data stream similar to an LSTM by uncovering its hidden layer contents. 
Moreover, GRUs are computationally more efficient than LSTMs as they achieve 
this using fewer gates and states, with low memory overhead. It is crucial to use 
lightweight machine learning models as real-time automotive ECUs are highly 
resource-constrained embedded systems with strict energy and power budgets. 
Thus, GRU-based networks are an ideal fit for inference in automotive systems. 
Hence, INDRA chose to use a lightweight GRU-based model to implement an ADS 
(explained in detail in Sect. 5).
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Fig. 3 (a) A single GRU unit with different gates and (b) GRU unit unrolled in time, where f is a 
GRU unit, x is input, and h is the hidden state 

The major advantage of sequence models is that they can be trained in both super-
vised and unsupervised learning fashion. Due to the large volume of CAN message 
data in a vehicle, labeling all that data can become very tedious. Additionally, the 
variability in the messages between vehicle models from the same manufacturer and 
the proprietary nature of this information makes it even more challenging to label 
messages correctly. Nonetheless, due to the ease of obtaining CAN message data 
via onboard diagnostics (OBD-II), large amounts of unlabeled data can be collected 
easily. Thus, INDRA uses GRUs in an unsupervised learning setting. 

3.2 Autoencoders 

Autoencoders are unsupervised learning-based artificial neural networks who try 
to reconstruct the input by learning the latent input features. They accomplish this 
by encoding the input data (x) to a hidden layer and finally decoding it to produce 

a reconstruction . 
∼
x (as shown in Fig. 4). This encoded information at the hidden
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Fig. 4 A simple autoencoder network with encoder, decoder, and embedding layers of the network 

layer is called an embedding. The layers that are used to create this embedding are 
called the encoder, and the layers that are used in reconstructing the embedding 
into the original input (decoding) are called the decoder. During the training 
process, the encoder attempts to learn a nonlinear mapping of the inputs, while 
the decoder tries to learn the nonlinear mapping of the embedding to the inputs. 
The encoder and decoder accomplish this with the help of nonlinear activation 
functions such as tanh and rectified linear unit (ReLU). Moreover, the autoencoder 
aims to recreate the input as closely as possible by extracting important features 
from the inputs with a goal of minimizing reconstruction loss. The most used loss 
functions in autoencoders include mean squared error (MSE) and Kullback-Leibler 
(KL) divergence. 

Since autoencoders aim to reconstruct the input by learning the underlying 
distribution of the input data, they are an excellent choice for efficiently learning and 
reconstructing highly correlated time-series data by learning the temporal relations 
between messages. Hence, our proposed INDRA framework uses lightweight GRUs 
in an autoencoder to learn latent representations of CAN message data in an 
unsupervised learning setting. 

4 Problem Definition 

4.1 System Model 

In this chapter, we consider a generic automotive system consisting of multiple 
ECUs connected using a CAN-based in-vehicle network, as shown in Fig. 5. Each 
ECU connected in the network is responsible for running a specific set of automotive 
applications that are hard real time in nature (i.e., have strict timing and deadline
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Fig. 5 Overview of the automotive system model considered in INDRA 

constraints). Moreover, we assume that each ECU also runs anomaly detection 
applications (ADS), which are responsible for monitoring and detecting anomalies 
in the in-vehicle network. INDRA considers a distributed ADS approach (anomaly 
detection application is collocated with automotive applications) as opposed to a 
centralized ADS approach in which one central ECU handles all anomaly detection 
tasks due to the following reasons:

• A centralized ADS approach is susceptible to single-point failures, which can 
completely expose the system to the attacker.

• In the worst-case scenarios such as during a flooding attack (explained in Sect. 
4.3), the centralized system might not be able to communicate with the victim 
ECUs due to highly congested in-vehicle network.

• If an attacker successfully tricks the centralized ADS ECU, the attacks can go 
undetected by the other ECUs, compromising the entire system; however, in 
a distributed ADS scenario, it requires fooling multiple ECUs (which is more 
difficult) to compromise the system. Moreover, in a distributed ADS scenario, 
even if one of the ECU is compromised, the attacks can still be detected by the 
decentralized intelligence.

• In a distributed ADS, ECUs can stop accepting messages as soon as an anomaly 
is detected rather than having to wait for a centralized system to notify them, 
resulting in faster reaction times.

• With a distributed ADS, the computation load of ADS is split among the ECUs 
and monitoring can be limited to only required messages. As a result, multiple 
ECUs can independently monitor a subset of messages with lesser overhead. 

For the abovementioned reasons, many prior works such as [18, 25] also consider 
a distributed ADS approach. Furthermore, with increasing computation power of 
automotive ECUs, the collocation of ADS applications with real-time automotive
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applications in a distributed manner should not be a problem, if the ADS has a 
minimal overhead. INDRA framework is not only lightweight but also scalable, and 
achieves high anomaly detection performance, as discussed in Sect. 6. 

An ideal ADS should have low susceptibility to noise, low cost, and a low 
power/energy footprint. The following are some of the key characteristics of an 
efficient IDS, which were taken into consideration when designing our INDRA 
ADS:

• Lightweight: Anomaly detection tasks can incur additional overhead on ECU, 
which could result in poor application performance and missed deadlines for 
real-time applications, which is catastrophic. Therefore, INDRA aims to have a 
lightweight ADS that incurs minimal overhead on the ECU.

• Few false positives: This is a highly desired quality in any type of ADS (even 
outside of the automotive domain), as dealing with false positives can quickly 
become costly. Thus, a good ADS is expected to have few false positives or false 
alarms.

• Coverage: This defines the range of attacks that an ADS can detect. A good ADS 
must be capable of detecting more than one type of attack. Moreover, a high 
coverage for ADS will make the system resistant to multiple attack surfaces.

• Scalability: This is an important requirement as the number of ECUs in emerging 
vehicles is growing along with software and network complexity. A good ADS 
should be highly scalable and capable of supporting multiple system sizes. 

4.2 Communication Model 

This subsection discusses vehicle communication model that was considered for 
INDRA framework. INDRA primarily focuses on detecting anomalies in controller 
area network (CAN) bus-based automotive CPS. CAN is the most commonly used 
in-vehicle network protocol in modern automotive systems. CAN offers a low cost, 
lightweight, event-triggered communication where messages are transmitted in the 
form of frames. A typical standard CAN frame structure is shown in Fig. 6, and 
the length of each field (in bits) is shown on the top. The standard CAN frame 
consists of a header, payload, and trailer segment. The header contains information 
of the message identifier (ID) and the length of the message, whereas the payload 
segment contains the actual data that needs to be transmitted. The trailer section is 
mainly used for error checking at the receiver. A variation of the CAN protocol, 
called CAN-extended or CAN 2.0B, is also being deployed increasingly in modern 
vehicles. The key difference being that CAN extended has a 29-bit identifier, which 
allows for a greater number of messages IDs.
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Fig. 6 Standard frame format of a CAN message 

Fig. 7 An example real-world CAN message with signal information [44] 

Our proposed INDRA ADS focuses on monitoring the payload segment of the 
CAN frame and observes for anomalies within the payload to detect cyberattacks. 
This is because most modern-day attacks involve an attacker modifying the payload 
to accomplish malicious activities. An attacker can also target the header or trailer 
segments, but the message would get rejected at the receiver. The payload segment 
comprises of multiple data entities called signals. An example real-world CAN 
message with the list of signals within the message is shown in Fig. 7. Each signal 
has a fixed size (in bits), assigned a particular data type, and a start bit that specifies 
its location in the 64-bit payload segment of the CAN message. 

INDRA focuses on monitoring individual signals within CAN payload to observe 
for anomalies and detect attacks. During training, INDRA learns the temporal 
dependencies between the messages at a signal level and observes for deviations 
at runtime to detect attacks. The ability to detect attacks at a signal level enables 
INDRA to not only detect the presence of an attacker but also help in identifying 
the signal within the message that is under attack. This can be valuable information 
for understanding the intentions of the attacker, which can be used for developing 
appropriate countermeasures. The details about the signal level monitoring of 
INDRA ADS are discussed in Sect. 5.2. Note: Even though our proposed INDRA 
framework focuses on detecting attacks by monitoring CAN messages, our approach 
is protocol-agnostic and can be used with other in-vehicle network protocols (such 
as FlexRay and LIN) with minimal changes.
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4.3 Attack Model 

Our proposed INDRA ADS aims to protect the vehicle from various types of attacks 
that are most commonly seen and difficult to detect attacks in the domain of 
automotive CPS. Moreover, these attacks have been widely used in literature to 
evaluate ADSs. 

1. Flooding attack: This is the most common and simple to launch attack, and it 
requires no knowledge of the system. In this attack, the attacker continuously 
floods the in-vehicle network with a random or specific message with the 
goal of preventing other ECUs from accessing the bus and rendering the bus 
unusable. These attacks are typically detected by the vehicle’s network bridges 
and gateways and often do not reach the last line of defense (the ADS). However, 
it is crucial to consider these attacks as they can have serious consequences when 
not handled correctly. 

2. Plateau attack: In this attack, an attacker overwrites a signal value with a 
constant value for the entirety of the attack interval. The severity of this attack 
is determined by the magnitude of the jump (increase in signal value) and the 
duration for which it is held. Larger jumps in signal values are easier to detect 
compared with shorter jumps. 

3. Continuous attack: In this attack, an attacker gradually overwrites the signal 
value with the goal of achieving some target value while avoiding the activation 
of an ADS. This attack is difficult to detect and can be sensitive to the ADS 
parameters (discussed in Sect. 5.2). 

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by 
either disabling the target ECU’s communication controller or shutting down the 
ECU. These attacks are easy to detect because they disrupt message transmission 
for long durations but are harder to detect for shorter durations. 

5. Playback attack: In this attack, the attacker attempts to trick the ADS by 
replaying a valid series of message transmissions from the past. This attack is 
hard to detect if the ADS lacks the ability to capture the temporal relationships 
between messages and detect when they are violated. 

Moreover, in this work, we assume that the attacker can gain access to the 
vehicle using the most common attack vectors such as connecting to V2X systems 
that communicate with the outside world (e.g., infotainment and connected ADAS 
systems), connecting to the OBD-II port, probe-based snooping on the in-vehicle 
bus, and by replacing an existing ECU. We also assume that the attacker has access 
to the network parameters (such as parity, flow control, and BAUD rate) that can 
further assist in gaining access to the in-vehicle network. 

Problem objective: The goal of our proposed INDRA framework is to implement a 
lightweight ADS that can detect a variety of attacks (mentioned above) in a CAN-
based automotive CPS, with a high detection accuracy and low false positive rate 
while maintaining a large attack coverage.
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5 INDRA Framework Overview 

INDRA framework enables a machine learning-based signal level ADS for moni-
toring CAN messages in automotive embedded CPS. An overview of the proposed 
framework is depicted in Fig. 8. The  INDRA framework is divided into design-time 
and runtime steps. During design time, INDRA uses trusted CAN message data to 
train a recurrent autoencoder-based model that learns the normal system behavior. 
At runtime, the trained recurrent autoencoder model is used to detect anomalies 
based on deviations from normal system behavior computed using the proposed 
anomaly score metric. These steps are described in greater detail in the subsequent 
subsections. 

5.1 Recurrent Autoencoder 

Recurrent autoencoders are powerful neural networks that are designed to behave 
similar to an encoder–decoder structure but can handle time-series or sequence 
data as inputs. They can be represented as regular feed-forward neural network-
based autoencoders, with neurons that are RNN, LSTM, or GRU units (discussed in 
Sect. 3). Recurrent autoencoders, like regular autoencoders, have an encoder and a 
decoder stage. The encoder generates a latent representation of the input data in an 
n-dimensional space. The decoder uses this latent representation from the encoder 
output and attempts to reconstruct the input data with minimal reconstruction loss. 
In INDRA, we propose a new lightweight recurrent autoencoder model, which is 
tailored for the design of ADS to detect cyberattacks in the in-vehicle network data. 

Fig. 8 Overview of INDRA ADS framework
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Fig. 9 Proposed model architecture of the recurrent autoencoder used in INDRA (f is number of 
features, i.e., number of signals in the input CAN message, and MCV is message context vector) 

The details of the proposed model architecture and the various steps involved in its 
training and evaluation are discussed in the subsequent sections. 

5.1.1 Model Architecture 

Our proposed recurrent autoencoder model architecture with the input and output 
dimensions of each layer is shown in Fig. 9. The model comprises of a linear 
layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear layer 
before the final output. The first linear layer receives the input time-series CAN 
message data with signal level values with f features (where f is the number of 
signals in the message). The linear layer output is passed to the GRU-based encoder, 
which generates the latent representation of the time-series signal inputs. This latent 
representation is referred to as a message context vector (MCV). The MCV captures 
the context of various signals in the input message in the form of a vector. Each 
value in the MCV can be viewed as a point in an n-dimensional space containing the 
context of the series of signal values provided as input. The MCV is fed into a GRU-
based decoder, which is then followed by a linear layer to produce the reconstruction 
of the input CAN message data with individual signal values. The loss between 
the input and the reconstructed input is calculated using mean square error (MSE), 
and the weights are updated using backpropagation through time. INDRA designs a 
recurrent autoencoder model for each message ID. 

5.1.2 Training Process 

The training procedure starts with the preprocessing of the recorded CAN message 
data from a trusted vehicle. Each sample in the dataset consists of a message ID and 
the corresponding signal values contained within that message ID. In some cases, 
the range of signal values can be very large, which can make the training process
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Fig. 10 Example of a rolling 
window approach 

extremely slow or unstable. To prevent this, we scale the signal values between 0 
and 1 for each signal type. Moreover, scaling signal values also helps to avoid the 
problem of exploding gradients (as discussed in Sect. 3). 

The preprocessed CAN data is divided into training data (85%) and validation 
data (15%), which is then prepared for training using a rolling window-based 
approach. This involves choosing a fixed size window and rolling it to the right 
by one sample every time step. Figure 10 illustrates a rolling window of size 
three samples and its movement for the three consecutive time steps. The term . Sji
represents the ith signal value at jth sample. The elements in the rolling window are 
referred to as a subsequence, and the size of the subsequence is equal to the size 
of the rolling window. Our proposed recurrent autoencoder model attempts to learn 
the temporal relationships that exist between the series of signal values because 
each subsequence consists of a set of signal values over time. These signal level 
temporal relationships aid in detecting more complex attacks such as continuous 
and playback (as discussed in Sect. 4.3). The process of training using subsequences 
is done iteratively until the end of the training data. 

Each iteration during the training process consists of a forward pass and a 
backward pass (using backpropagation through time to update the weights and 
biases of the neurons-based on the error value (as discussed in Sect. 3)). The model’s 
performance is evaluated (forward pass only) at the end of the training using the 
validation data, which was not seen by the model during the training. The model 
has seen the complete dataset once by the end of validation, which is known as an 
epoch. The model is trained for a set number of epochs until the model reaches 
convergence. Moreover, the process of training and validation using subsequences 
is sped up by training the input subsequences data in groups known as mini-batches. 
Each mini-batch is made up of several consecutive subsequences that are given as 
the input to the model in parallel. The size of each mini-batch is referred to as 
batch size. Finally, a learning rate is defined to control the rate of update of the 
model parameters during backpropagation phase. These hyperparameters such as 
subsequence size, batch size, and learning rate are covered in detail in Sect. 6.1.
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5.2 Inference and Detection 

The trained model is set to evaluation mode at runtime, meaning that only forward 
passes are performed, and the weights are not updated. During this phase, the 
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3), 
by simulating appropriate attack condition in the CAN message dataset. 

Every data sample that passes through the model is reconstructed, and the 
reconstruction loss is sent to the detection module, which then computes a metric 
called anomaly score (AS). The AS helps in determining whether a signal is 
anomalous or normal. The AS is calculated at a signal level to predict which signal 
is under attack. AS is computed as a squared error during each iteration of the 
inference to estimate the prediction deviation from the input signal value, as shown 
in (2). 

ASi =
(
S 
j 
i − Ŝ j i

)2 ∀i ∈ [1,m] (2) 

where, . Sji denotes the ith signal value at jth sample, . Ŝji represents its reconstruction, 
and m is the number of signals in the message. We observe a large deviation 
for predicted value from the input signal value (i.e., large AS value), when the 
current signal pattern is not seen during the training phase and a minimal AS value 
otherwise. This serves as the foundation for our detection phase. 

Since the dataset lacks a signal level anomaly label information, INDRA com-
bines the signal level AS information into a message-level AS, by calculating the 
maximum AS of the signals in that message as shown in (3). 

MIS = max (AS1, AS2, . . . ,ASm) (3) 

To achieve adequate detection accuracy, the anomaly threshold (AT) for flagging 
messages is carefully chosen. INDRA investigates multiple choices for AT, using the 
best model from the training process. The model with the lowest running validation 
loss, from the training process, is defined as the best model. From this model, 
multiple metrics such as maximum, mean, median, 99.99%, 99.9%, 99%, and 90% 
validation loss are logged across all iterations as the choices for the AT. The analysis 
for selection of the AT metric is presented in detail in Sect. 6.2. 

A working snapshot of INDRA ADS working in an environment with attacks 
is illustrated in Fig. 11a, b, with a plateau attack on a message with three signals, 
between time 0 and 50. Figure 11a compares the input (true) vs ADS predicted 
signal value comfort three signals. The attack interval is represented by the blue 
highlighted area. It can be observed that the reconstruction is close for almost 
all signals except during the attack interval for majority of the time. Signal 3 is 
subjected to a plateau attack in which the attacker maintains a constant value until 
the end of attack interval as illustrated in the third subplot of Fig. 11a (note the 
larger difference between the predicted and actual input signal values in that subplot,
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Fig. 11 Working of INDRA ADS checking a message with three signals under a plateau attack, 
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and 
Anomaly flag
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compared to for signals 1 and 2). Figure 11b depicts multiple signal anomaly scores 
for the three signals. The dotted black line represents the anomaly threshold (AT). 
As previously stated, the maximum of signal anomaly scores is chosen as message 
anomaly score (MAS), which in this case is the AS of signal 3. The anomaly score 
of signal 3 is above the AT, for the entire duration of the attack interval as shown 
in Fig. 11b, highlighting INDRA’s ability to detect such attacks. The value of AT 
(equal to 0.002) in Fig. 11b is calculated using the method described in Sect. 6.2. 
It is important to note that this value is specific to the example case shown in Fig. 
11 and is not the threshold value used for our remaining experiments. The details of 
AT selection technique are discussed in detail in Sect. 6.2. 

6 Experiments 

6.1 Experimental Setup 

A series of experiments have been conducted to evaluate the performance of our 
proposed INDRA ADS. We begin by presenting an analysis for the selection of 
anomaly threshold (AT). The derived AT is used to contrast against two variants of 
the same framework known as INDRA-LED and INDRA-LD. The former removes 
the linear layer before the output, essentially leaving the task of decoding the context 
vector to GRU-based decoder. The abbreviation LED stands for (L) linear layer, (E) 
encoder GRU, and (D) decoder GRU. The second variation substitutes a series of 
linear layers for the GRU and the linear layer at the decoder (LD stands for linear 
decoder). These experiments were carried to assess the importance of different 
layers in the network. However, the encoder side of the network is not changed 
because it is required to generate an encoding of the time-series data. INDRA 
investigates other variants as well, but they were not included in the discussion as 
their performance was lesser compared with that of LED and LD variants. 

Subsequently, the best INDRA variant is compared with three prior works: pre-
dictor LSTM (PLSTM [38]), replicator neural network (RepNet [39]), and CANet 
[36]. The first comparison work (PLSTM) employs an LSTM-based network that 
has been trained to predict the signal values in the following message transmission. 
PLSTM accomplishes this by taking the 64-bit CAN message payload as the input 
and learning to predict the signal at a bit-level granularity by minimizing prediction 
loss. The bit level deviations between the real and the predicted next signal values 
are monitored using a log loss or binary cross-entropy loss function. PLSTM uses 
the prediction loss values during runtime to decide whether a particular message is 
anomalous or not. The second comparison work (RepNet) employs a series of RNN 
layers to increase the dimensionality of the input data and reconstruct the signal 
values by decreasing back to the original dimensionality. RepNet accomplishes 
this by reducing the mean squared error between the input and the reconstructed 
signal values. At runtime, large deviations between the input received signal and
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the reconstructed signal values are used to detect attacks. Finally, CANet uses a 
quadratic loss function to minimize the signal reconstruction error by combining 
multiple LSTMs and linear layers in an autoencoder architecture. All experiments 
conducted with INDRA and its variants and prior works are discussed in subsequent 
subsections. 

The SynCAN dataset developed by ETAS and Robert Bosch GmbH [36] was  
used to evaluate INDRA framework with its variants and against prior works. The 
dataset contains CAN message data for ten different IDs that have been modeled 
after real-world CAN message data. Furthermore, the dataset consists of both 
training and test data with multiple attacks (discussed in Sect. 4.3). Each row in the 
dataset contains a timestamp, message ID, and individual signal values. In addition, 
the test data contains a label column with either 0 or 1 values indicating normal or 
anomalous messages. The label information is available per message basis and does 
not specify which signal within the message is under attack. This label information 
is used to evaluate the proposed ADS over several metrics such as detection accuracy 
and false positive rate and is discussed in detail in the next subsections. Moreover, 
to simulate a more realistic attack scenario in the in-vehicle networks, the test data 
also contains normal CAN traffic between the attack injections. Note: The label 
information in the training data is not used to train INDRA model, as INDRA model 
learns the patterns in the input data in an unsupervised manner. 

All the machine learning-based frameworks including the INDRA framework and 
its variants as well as comparison works are implemented using Pytorch 1.4. INDRA 
conducts various experiments to select the best performing model hyperparameters 
(number of layers, hidden unit sizes, and activation functions). The final model 
discussed in Sect. 5.1 was trained using the SynCAN data set, with 85% of train 
data used for training and the remaining for validation. The validation data is 
primarily used to assess the model performance at the end of each epoch. The 
model is trained for 500 epochs, using a rolling window approach (as discussed 
in Sect. 5.1.2) with the subsequence size of 20 messages and the batch size of 128. 
Moreover, an early stopping mechanism is implemented to monitor the validation 
loss across epochs and stop the training process if there is no improvement after 10 
(patience) epochs. The initial learning rate is chosen as 0.0001, and tanh activations 
are applied after each linear and GRU layers. Furthermore, ADAM optimizer is 
used with the mean squared error (MSE) as the loss criterion. The trained model 
parameters were used during testing and considered multiple test data inputs to 
simulate attack scenarios. The anomaly score metric (as stated in Sect. 5) was used 
to calculate the anomaly threshold to flag the message as anomalous or normal. 
To evaluate the model performance, several performance metrics such as detection 
accuracy and false positive rate were considered. All the simulations were executed 
on an AMD Ryzen-9 3900X server with an Nvidia GeForce RTX 2080Ti GPU. 

Finally, before the experimental results section, we present the following defini-
tions in the context of ADS:

• True positive (TP) – when the ADS detects an actual anomalous message as an 
anomaly
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• False negative (FN) – when the ADS detects an actual anomalous message as 
normal

• False positive (FP) – when the ADS detects a normal message as an anomaly (aka 
false alarm)

• True negative (TN) – when the ADS detects an actual normal message as normal. 

INDRA framework focuses on two key performance metrics: (i) detection 
accuracy, a measure of ADS ability to detect anomalous messages correctly, and 
(ii) false positive rate, also known as false alarm rate. These metrics are computed 
as shown in (4) and (5): 

Detection accuracy = TP + TN 

TP + FN + FP + TN 
(4) 

False positive rate = FP 

FP + TN 
(5) 

6.2 Anomaly Threshold Selection 

This subsection presents a detailed analysis on the selection of anomaly threshold 
(AT) by considering various options such as max, median, mean, and different 
quantile bins of validation loss of the final model. The idea is that the model 
reconstruction error for the normal message should be much smaller than the 
error for anomalous messages. Hence, INDRA explores several candidate options 
to achieve this goal that would work across multiple attack and no-attack scenarios. 
A high threshold value can make it harder for the model to detect the attacks that 
change the input pattern minimally (e.g., continuous attack). On the other hand, 
having a small threshold value can cause multiple false alarms, which is highly 
undesirable. Hence, it becomes crucial to select an appropriate threshold value to 
optimize the performance of the model. 

Figure 12a, b shows the detection accuracy and false positive rate, respectively, 
for various candidate options to calculate AT under different attack scenarios. The 
results from the Fig. 12 indicate that selecting higher validation loss as the AT can 
lead to a high accuracy and low false alarm rate. However, selecting a very high 
value (e.g., “max” or “99.99 percentile”) may result in missing small variations 
in the input patterns that are found in more sophisticated attacks. We empirically 
conclude that the maximum and 99.99 percentile values to be very close. To capture 
attacks that produce small deviations, a slightly smaller threshold value is selected 
that would still perform similar to max and 99.99 percentile thresholds on all of the 
current attack scenarios. Therefore, INDRA chooses the 99.9th percentile value of 
the validation loss as the value of the anomaly threshold (AT) and uses the same AT 
value for the remainder of the experiments discussed in the next subsections.
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Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of 
anomaly threshold (AT) as a function of validation loss under different attack scenarios (% refers 
to percentile not percentage)
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6.3 Comparison of INDRA Variants 

After selecting the correct anomaly threshold from the previous subsection, we 
use that same criterion for evaluating against two other variants: INDRA-LED and 
INDRA-LD. The main intuition behind evaluating different variants of INDRA is to 
investigate the impact of different types of layers in the model on the performance 
metrics discussed in Sect. 6.1. 

Figure 13a illustrates the detection accuracy for INDRA framework and its 
variants on y-axis with multiple types of attacks and for a no-attack scenario 
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other 
two variants and has high accuracy in most of the attack scenarios. It should be 
noted that the high accuracy is achieved by monitoring at a signal level as opposed 
to prior works that monitors at the message level. 

Figure 13b illustrates the false positive rate or false alarm rate of INDRA and 
other variants under different attack scenarios. When compared with other variants, 
INDRA has the lowest false positive rate and highest detection accuracy. Moreover, 
INDRA-LED, which is just short of a linear layer at the decoder end, is the 
second-best performing model after INDRA. The ability of INDRA-LED to use a 
GRU-based decoder helps in reconstructing the MCV back to original signals. It 
can be clearly seen in both Fig. 13a, b that the absence of GRU layers on the output 
decoder end for INDRA-LD results in significant performance degradation. As a 
result, INDRA is chosen as the candidate model for subsequent experiments. 

6.4 Comparison with Prior Works 

Our proposed INDRA framework is compared with some of the best-known prior 
works in the ADS area such as PLSTM [38], RepNet [39], and CANet [36]. Figure 
14a, b shows the detection accuracy and false positive rate, respectively, for the 
various techniques under different attack scenarios. 

From the Fig. 14a, b, it is evident that INDRA achieves high accuracy for each 
attack scenario while also achieving low positive rates. The ability to monitor 
signal level variations combined with more cautious selection of anomaly threshold 
gives INDRA an advantage over comparison works. PLSTM and RepNet use the 
maximum validation loss in the final model as the threshold, whereas CANet 
uses interval-based monitoring to detect anomalous messages. Choosing a higher 
threshold helped PLSTM to achieve slightly lower false positive rates for some 
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks 
with minor variations in the input data. This is because the deviations produced 
by some of the complex attacks are small and the attacks go undetected due to the 
large thresholds. Moreover, CANet’s interval-based monitoring struggles to find an 
optimal value for the thresholds. Lastly, the false positive rates of INDRA remain 
significantly low with the maximum of 2.5% for plateau attacks. It should be noted
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Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack 
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)
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Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior 
works PLSTM [38], RepNet [39] and CANet [36]
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Table 2 Memory footprint comparison between our proposed INDRA framework and the prior 
works PLSTM [38], REPNET [39], and CANET [36] 

ADS framework Memory footprint (KB) 

PLSTM [38] 13,417 
RepNet[39] 55 
CANet [36] 8718 
INDRA 443 

that the y-axis in Fig. 14b has a much smaller scale than in Fig. 14a, and the 
magnitude of the false positive rate is very small. 

6.5 ADS Overhead Analysis 

A detailed analysis of the overhead incurred by our proposed INDRA ADS is 
discussed in this subsection. The overhead is quantified in terms of both memory 
footprint and time taken to process an incoming message, i.e., inference time. 
The former metric is important because the automotive ECUs are highly resource 
constrained and have limited memory and compute capacities. Therefore, having 
a low memory overhead is crucial to avoid interference with real-time automotive 
applications. The inference time metric not only provides important information 
about the time it takes to detect the attacks but also can be used to compute the 
utilization overhead on the ECU. Thus, the abovementioned two metrics are used to 
analyze the overhead and quantify the lightweight nature of INDRA ADS. 

To accurately capture the overhead of our proposed INDRA framework and the 
prior works, we implemented the ADSs on an ARM Cortex- A57 CPU on a Jetson 
TX2 board, which has similar specifications to the state-of-the-art multi-core ECUs. 
Table 2 shows the memory footprint of INDRA framework and the prior works 
mentioned in the previous subsections. It is clear that INDRA framework has a 
low memory footprint compared with the prior works, except for the RepNet [39]. 
However, it is important to observe that even though INDRA framework has slightly 
higher memory footprint compared with the RepNet [39], INDRA outperforms all 
the prior works including RepNet [39] in all performance metrics under multiple 
attack scenarios, as shown in Fig. 14. The heavier (high memory footprint) models 
can capture a wide range of system behaviors; however, they are not an ideal choice 
for resource constrained automotive CPS. On the contrary, a much lighter model 
(such as RepNet) fails to capture crucial details about the system behavior due to its 
limited model parameters, which in turn suffers from performance issues. 

In order to understand the inference overhead, we benchmarked the different 
ADS frameworks on an ARM Cortex- A57 CPU. In this experiment, different 
system configurations are considered to encompass a wide variety of ECU hardware 
that is available in the state-of-the-art vehicles. Based on the available hardware 
resources, a single core (employs only one CPU core) and dual core (employs
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Table 3 Inference time comparisons between our proposed INDRA framework and the prior 
works PLSTM [38], REPNET [39], and CANET [36] using single and dual core configurations 

Average inference time (µs) 
ADS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU 

PLSTM [38] 681.18 644.76 
RepNet [39] 19.46 21.46 
CANet [36] 395.63 378.72 
INDRA 80.35 72.91 

two CPU cores) system configurations were selected on the Jetson TX2. The ADS 
frameworks are executed ten times for the different CPU configurations, and the 
average inference time (in µs) are recorded in Table 3. From the results in Table 
3, it is evident that the INDRA framework has significantly faster inference times 
compared with the prior works (excluding RepNet) under all configurations. This 
is partly due to the lower memory footprint of INDRA framework. As previously 
stated, even though RepNet has a lower inference time, it has the worst performance 
of any compared framework, as shown in Fig. 14. The large inference times for the 
better performing frameworks can have an impact on the real-time performance of 
the control systems in the vehicle and can result in catastrophic deadline misses. We 
also believe that using a dedicated deep learning accelerator (DLA) further enhance 
the performance of the ADS models. 

Thus, from Fig. 14 and Tables 2 and 3, it is clear that INDRA achieves a clear 
balance of having superior anomaly detection performance while maintaining low 
memory footprint and fast inference times, making it a powerful and lightweight 
ADS solution. 

6.6 Scalability Results 

In this subsection, an analysis on the scalability of INDRA framework is presented 
by studying the system performance using the ECU utilization metric as a function 
of increasing system complexity (number of ECUs and messages). Each ECU 
in the system has a real-time utilization (URT) and an ADS utilization (UADS) 
from running real-time and ADS applications, respectively. We primarily focus on 
analyzing the ADS overhead (UADS), as it is a measure of the compute efficiency 
of the ADS. Since the safety-critical messages monitored by the ADS are periodic 
in nature, the ADS can be modeled as a periodic application with period that is the 
same as the message period [5]. Thus, monitoring an ith message mi results in an 
induced ADS utilization (UADS, mi) at an ECU, which can be calculated as: 

UIDS,mi 
=

(
TIDS 

Pmi

)
(6)
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where TADS and Pmi denote the time taken by the ADS to process one message 
(inference time) and the period of the monitored message, respectively. Moreover, 
the sum of all ADS utilizations as a result of monitoring different messages is the 
overall ADS utilization at that ECU (UADS) and is given by: 

UIDS =
∑n 

i=1 
UIDS,mi

(7) 

To evaluate the scalability of INDRA, six different system sizes were considered. 
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45, 50, 
100} (all periods in ms) in automotive CPS is considered to sample uniformly, when 
assigning periods to the messages in the system. These messages are distributed 
evenly among different ECUs and the ADS utilization is calculated using (6) and 
(7). INDRA assumes a pessimistic scenario where all the ECUs in the system have 
only a single core. This would allow us to analyze the worst case overhead of the 
ADS. 

Figure 15 shows the average ECU utilization for different system sizes denoted 
by {p, q}, where p is the number of ECUs and q is the number of messages in the 
system. In this work, a very pessimistic estimate of 50% real-time ECU utilization 
for real-time automotive applications (“RT Util”, as shown in the dotted bars) is 

Fig. 15 Scalability analysis of our proposed INDRA ADS for different system sizes and the prior 
works PLSTM [38], RepNet [39], and CANet [36]
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assumed. The solid bars on top of the dotted bars represent the overhead incurred 
by the ADS executing on the ECUs, and the red horizontal dotted line represents 
the 100% ECU utilization mark. It is critical to avoid exceeding the 100% ECU 
utilization limit under any scenario, as it could create undesired latencies resulting in 
missing deadlines, for time-critical automotive applications that can be catastrophic. 
It is clear from the results that the prior works such as PLSTM and CANet incur 
heavy overhead on the ECUs while RepNet and our proposed INDRA framework 
have very minimal overhead that is favorable to increasing system sizes. From the 
results in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not 
only does INDRA achieve better performance in terms of both accuracy and low 
false positive rate for anomaly detection than state-of-the-art prior work but also is 
lightweight and highly scalable. 

7 Conclusion 

In this chapter, we presented a novel recurrent autoencoder-based lightweight 
anomaly detection system called INDRA for distributed automotive cyber-physical 
systems. INDRA framework uses a metric called anomaly score (AS) to measure 
the deviation of the prediction signal from the actual input. INDRA also presents 
a thorough analysis of our anomaly threshold selection process and compared with 
the best-known prior works in this area. The promising results indicate a compelling 
potential for utilizing our proposed approach in emerging automotive platforms. 
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MELETI: A Machine-Learning-Based 
Embedded System Architecture for 
Infrastructure Inspection with UAVs 

Marios Pafitis, Antonis Savva, Christos Kyrkou, Panayiotis Kolios, 
and Theocharis Theocharides 

1 Introduction 

Modern societies depend heavily on critical infrastructure systems that put pressure 
on operators such as Electricity and Telecommunication Authorities (EAs/TAs) 
to support the increasing demands [1, 2]. For instance, the power transmission is 
operated across many kilometers of low-voltage (LV), medium-voltage (MV), and 
high-voltage (HV) networks, while telecommunication networks are consistently 
increasing their deployment density to support the increasing user base. 

The infrastructures of those authorities are frequently exposed to extreme 
weather conditions and span across large areas with harsh environments [1, 3, 4], 
leading to expensive monitoring, maintenance, and upgrade operations that sig-
nificantly affect the provided quality of experience (QoE) and quality of service 
(QoS) [1, 4]. Evidently, potential malfunctions can cause power outages, telecom-
munication network outages, and even fire outbreaks [1, 4], urging EAs and TAs to 
take preventive measures to avoid those infrastructure failures and minimize their 
financial and environmental impacts [1, 4, 5]. For instance, half-hour and eight-
hour blackouts in the USA approximately cost the operators $16,000 and $94,000, 
respectively [4]. This initiates a domino effect that can end up in millions of dollars 
in financial losses [5, 6]. 

To lessen these outcomes, EAs and TAs periodically conduct inspections on their 
infrastructures with qualified workers that are sent across the power lines or the 
telecommunication base stations on foot or with helicopters [4]. In most cases, the 
trained inspectors visually assess the condition of the infrastructure, which may 
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include the use of binoculars or dedicated cameras to detect specific malfunctions, 
such as increased temperatures and corona effects on the power insulators [1, 4, 
7], or corrosion on the base stations and antenna damages [8]. This personnel is 
always at risk in conducting either of these inspection, while fatigue levels affect 
dramatically the efficiency of the whole process [4]. 

Within this context, UAVs could stem as a promising and flexible solution 
for all the different needs in infrastructure inspection. UAVs can collect high-
quality data from a plethora of sensors, such as high-resolution visible imaging 
sensors, infrared thermal imaging cameras, light detection and ranging (LiDAR), 
gyroscopes, accelerometers, magnetometers, GPS/GNSS, and more. Additionally, 
UAVs can easily reach the infrastructure to be inspected, especially in those cases 
where it is impractical or extremely dangerous for the inspector to do so. Besides, 
in comparison with helicopter-based approaches, the associated operating cost for 
a UAV is significantly lower [1]. This cost is projected to decrease in the future 
due to the widespread commercial availability of UAVs [1, 4]. Furthermore, there 
is an increasing interest in developing autonomous systems that perform multi-
sensor real-time data acquisition for detecting defects on infrastructures. The main 
limitation of such efforts is that the remote pilot needs to control the flight process by 
precisely positioning the UAV and the sensors, to correctly and accurately collect 
the data. In addition, using a single Global Navigation Satellite System (GNSS), 
e.g., GPS for high-precision positioning, leads to many inaccuracies [9–12]. 

As part of this study, we exploit recent advances in UAV technologies, in deep-
learning-based detection algorithms and embedded hardware to develop MELETI, a 
UAV-based architecture that automates the infrastructure inspection of telecommu-
nication and power networks, during both the phase of data acquisition and analysis. 
With MELETI, multiple sensors can be integrated on the UAV based on the appli-
cation needs. The sensors are programmed to automatically collect meaningful data 
in real time for inspecting the infrastructure of interest. In autonomous navigation, 
the navigation error needs to be minimized; therefore, MELETI employs a hybrid 
navigation approach using multi-frequency and multi-constellation GNSSs [13]. 
An onboard embedded hardware coordinates the data acquisition and detection, 
while it guarantees that the system processes in real-time data, to identify different 
components and their condition. 

2 Related Work 

Autonomous infrastructure inspection interests nowadays both power and telecom-
munication authorities globally. The utilization of UAVs is a promising solution 
since it minimizes the dangers for the personnel while increases the efficiency and 
the quality of the inspection (Table 1).
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2.1 Power Line Infrastructure Inspection 

ICARUS, a power distribution network inspection platform that uses UAVs, auto-
mates the inspection procedures for the power line distribution network [13]. 
PoLIS, a power line inspection software, automates the analysis of data acquired 
from electric towers, during UAV flights [14]. McFadyen et al. presented a semi-
autonomous solution for power infrastructure inspection when using UAVs [15]. 
Barreiro et al. suggest a solution for damage detection on remotely acquired drone 
images in power transmission towers [16]. Han and Wang focused on optimizing 
the detection of the electric towers, insulators, and nest for inspection [17]. 

2.2 Telecommunication Infrastructure Inspection 

Faud et al. introduced the benefits on using UAVs for telecommunication infras-
tructure inspection [18]. Morris et al. proposed a solution that utilizes UAVs 
and a thermal camera for diagnosing faults in electrical and telecommunication 
infrastructures [19]. Zhai et al. used UAVs to extract measurements from mobile 
communication base station antennas with a fully automatic system [20]. A follow-
up study from Zhai et al. introduced AntennaNet, a high-speed and high-precision 
system for detecting antenna tilting while using image segmentation with UAVs 
[21]. 

3 System Architecture 

MELETI is a UAV-based system architecture that utilizes deep-learning-
based detection algorithms on an embedded hardware for automated real-time 
infrastructure inspection. The system architecture consists of several abstract 
components (Fig. 1). Those components construct a repetitive training pro-
cedure that loops itself until we reach a desirable threshold for false alarms. 
The main phases of this architecture include the definition of key performance 
indicators (KPIs), the data acquisition, the utilization of detection algorithms, 
the extraction of outcomes, and their analysis. Those steps facilitate decision 
on certain proactive maintenance procedures that may be needed in the inspec-
tion site to avoid future failures. The embedded hardware allows the system to 
perform online analysis that enables the system to become autonomous as it 
plans the mission in real time. The corresponding flow diagram is illustrated 
in Fig. 2 for implementing the proposed MELETI approach.
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Fig. 1 System Architecture: Given the problem formulation, the definition of key performance 
indicators (KPIs) is extracted. Based on this input, the data acquisition phase collects useful 
information for the object detection to be trained. The outcomes of the object detector are analyzed 
to suggest proactive maintenance 

3.1 Key Performance Indicators (KPIs) Definition 

Initially, the problem should be formulated based on the kind of infrastructure 
we are trying to inspect and, more specifically, the type of malfunction. Usually, 
this process involves the cooperation between software engineers and the experts 
that currently identify faults on the infrastructure of interest. Since this system 
architecture focuses on supervised learning techniques, the kinds of failure that are 
expected to be experienced in an infrastructure system should be known. Through 
this process, the KPIs for the current system will be extracted, to be used as both 
evaluation metrics for the reliability of the inspection and terminal conditions for the 
repetitive training procedure. The KPIs should be specific and self-descriptive; for 
instance, a KPI for a deep learning algorithm can be the accuracy of the detection 
and the error of the loss function. The reason is that accuracy measures the distance 
between the real and expected output values, which makes it algorithmically 
independent, while in the case of the error, the function is used to calculate changes 
to its value. In other words, the loss error is a metric assisting in training of the 
detection algorithm, while the accuracy is a KPI that extracts meaningful insights 
about the algorithm’s behavior given some input. 

3.2 Data Acquisition 

Initially, the environment at the location of the inspection site needs to be carefully 
examined to specify the course of action, i.e., take-off and landing points, flight path, 
safe flying distance from the structure, etc., considering surrounding vegetation and 
potential electromagnetic interference. It must be emphasized that this procedure 
and planning is crucial and should not be ignored, since it allows for minimal 
intervention on the infrastructure and the environment, as well as ensuring safe 
operation for both personnel and the UAV. Furthermore, it is clarified which 
equipment and sensors can be utilized for data acquisition, such as visible light
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Fig. 2 Design flow: Process diagram of the proposed MELETI approach for autonomous 
inspection of critical infrastructure 

cameras, infrared cameras, thermal cameras, stereo cameras, LiDAR, multispectral 
cameras, GPS/GNSS sensors, gamma-ray spectrometers, flashlights, and many 
more. 

In these real-time applications, sensors are collecting constantly data, and the 
system requires a lot of storage. Different techniques for managing acquired data 
need to be considered, i.e., filtering; for a detector that takes as input the frames 
of a video, the frame rate or the resolution of the images could be reduced if it
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does not lead to significant information loss. Generally, it is suggested that the raw 
data should not be stored if not needed, and if required, different lossy and lossless 
compression techniques can reduce the size of the acquired data. Nevertheless, since 
the storage on an onboard embedded system is limited, real-time data transmission 
can be considered by using cellular technologies, which enable virtually unlimited 
storage in the cloud. 

The use of UAVs allows for data acquisition in an accurate, robust, and repeatable 
manner across different time instances, due to their ability to follow a predefined 
path multiple times over, minimizing navigation and position error by employing 
multiple GNSSs. Moreover, data acquisition protocol is facilitated by precisely 
controlling sensor pose, e.g., for cameras, the angle can be set in order for the 
content to be distinguishable. Additionally, the quality of data is promoted, i.e., 
images should not be blurry or over-exposed as useful information might be lost. 
For example, in the antenna tilting application (Sect. 4.2.2), the camera roll should 
be locked, and the UAV should fly at the same level with the antenna, facing forward. 
Evidently, the weather conditions affect the quality of the data as well, i.e., in 
the stereo photography, when facing towards the sun, the quality of the disparity 
map was degrading. It is crucial to understand the problem, exploit difficulties on 
collecting the data, and tackle them. Another example that illustrates the importance 
of following a protocol for data acquisition is in the fire prevention application 
(Sect. 4.2.4), where in order to calculate the rate of change in vegetation, two 
pictures of the exact position should be taken at two different time points. In a 
different case, matching and registration algorithms will likely induce false changes 
reducing effectiveness of the approach. 

3.3 Detection Algorithm 

Detection algorithms, which mainly depend on deep learning, although conventional 
computer vision techniques still exist, and the acquired data along with the 
application needs, indicate selections across supervised or unsupervised approaches. 
Given the available input and expected output, several techniques can be utilized 
spanning from computer vision to deep learning, convolutional neural networks, 
residual neural network, object detectors, image segmentation, angle detection, and 
many more. In this regard, hardware resources such as memory utilization, CPU 
and GPU capabilities, and power consumption must be also considered, since this 
algorithm will be executed on a UAV-based embedded system, which is powered by 
the UAV’s battery. Additionally, for the onboard embedded system to enable real-
time data processing, which is necessary for autonomous navigation of the UAV, it is 
important to select algorithms with optimizations that enable hardware acceleration, 
such as the employment of NVIDIA CUDA, NVIDIA TensorRT, CPU and GPU 
multi-threading, tensor processing units (TPUs) utilization, and more. 

Apart from onboard embedded system performance considerations, other factors 
play an important role. For example, the embedded system can be used for online
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learning if the process is lightweight, while offline training generally takes place 
in dedicated in-house powerful infrastructure or cloud services. Therefore, based 
on the available resources, feasibility of periodical training, maintenance, and 
improvement needs to be considered. Currently, a plethora of pre-trained networks 
is available online, rendering transfer learning an ideal approach in case of resource 
shortage. In this setting, ready-for-use pre-trained networks are accessible that need 
fine-tuning of the network weights, requiring significantly less data and effort for 
training. Usually, transfer learning is a great starting point for validating a concept of 
using an algorithm. Some networks with available pre-trained weights are the VGG, 
ResNet, MobileNet, DenseNet, EfficientNet, and their flavors. Lastly, the structure 
of the algorithm needs to be considered, with the technique to be able to produce 
outcomes that facilitate the calculation of KPIs. If current methodologies do not 
produce the desirable output, a redesign of an algorithm may take place, a fusion of 
multiple detection algorithms, or a combination. 

Currently, several state-of-the-art object detectors are available for different 
applications based on the requirements. Object detectors can be mainly distin-
guished before and after 2014 (dawn of deep learning approaches). Before 2014, 
the Viola–Jones detector (2001) was the pioneer for traditional object detection. 
Other detectors were the Histogram of Oriented Gradients (HOG) (2006); a feature 
descriptor for object detection in computer vision and image processing, and DPM 
(2008) which introduced bounding box regression. After 2014, object detectors can 
be separated into one stage and two stage. Examples of two-stage object detection 
algorithms are the RCNN and SPPNet (2014), Fast RCNN and Faster RCNN (2015), 
Mask R-CNN, Pyramid Networks/FPN (2017), and G-RCNN (2021). Examples of 
one-stage object detection algorithms are the YOLO (2016), SSD (2016), RetinaNet 
(2017), YOLOv3 (2018), YOLOv4 (2020), and YOLOR (2021). 

3.3.1 Performance Evaluation 

After deciding which detection algorithm will be used, training process takes place 
by using the acquired data, but constructing an unbiased dataset is a challenging 
process as well. A dataset to be considered unbiased should contain a variety of 
instances to generalize well. A good practice when creating a dataset is to include a 
variety of instances. For example for infrastructure inspection, a dataset preferably 
contains several inspection sites with various environmental characteristics and 
weather conditions, acquired at different times. This variety should appear equally 
in the training, validation, and test sets. There are several techniques for splitting 
a dataset into training, validation, and test sets. If all instances are independent 
and the classes are balanced, then a hold-out estimation, a naive method where the 
dataset is split randomly (e.g., 80% training, 20% testing), is sufficient to evaluate 
the model. However, usually, the datasets can be imbalanced, since instances of 
some class may outnumber others. Consequently, stratification can be utilized to 
ensure that each class is represented with approximately equal proportions in both 
subsets. To tackle the issue of a small dataset, cross-validation can be used where
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all the data are considered for both training and testing. Furthermore, datasets for 
infrastructure inspection have dependent instances since the same inspection site can 
appear in multiple images. This may cause data leakage, where the same inspection 
site appears in more than one set that favors the performance of the detectors as 
the object has already been learned. To avoid this, groups can be used, where a 
group contains only instances of the same inspection, and a group is never split into 
more than one set. In this case, a stratified group k-fold cross-validation evaluation 
method is the most appropriate, where a limited amount of data are available and 
multiple images of the same inspection site are contained in the dataset. 

3.3.2 Key Outcomes 

During a flight, the detection algorithm produces outcomes that need to be organized 
dynamically. Thereby, in a real-time detector, the current timestamp is an easy-
to-use indicator for storing and distinguishing those results later in the phase of 
analysis. The results can be numeric values, nominal values, segmented areas, 
bounding boxes, and more. Most of the time, those outcomes will be used 
immediately as information about the environment to assist the UAV navigate, 
correct its trajectory, and plan the rest of the inspection. 

3.3.3 Analysis 

The results from the detection algorithm need to be further analyzed to extract 
meaningful insights. The analysis may include handling meta-data alongside the 
acquired data to calculate accurately the KPIs. Since MELETI is a UAV-based 
architecture, those meta-data may include the pitch, roll, yaw, the coordinates, the 
direction of the UAV, and more. 

During the analysis, image processing techniques may need to be applied such 
as image registration for translating, skewing, stretching the point of reference on 
the x-, y-, z-axis, or image filtering such as edge detection filters, noise removal 
filters, sharpening, smoothing, blurring, and more. In addition, since the inspection 
sites are most of the time exposed to the environment, where weather conditions 
and the temperature vary between different missions, the results might need to be 
normalized. For example, when using a thermal camera, the observed temperature 
for a specific object is expected to fluctuate between flights of unique days or even 
different flights in the same day at different hours. To address such issues, calibration 
may be required, i.e., an object with a known temperature can be placed in the image 
as a reference, and during the analysis, the temperatures are normalized accordingly 
based on that object.
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4 Application Examples 

4.1 Experimental Equipment 

The proposed system architecture for infrastructure inspection was evaluated in 
two application areas: in power distribution network and telecommunication base 
stations. In both cases, an off-the-shelf UAV with dedicated equipment was used 
(Fig. 3), i.e., the DJI Matrice 300 RTK equipped with the RGB and thermal DJI 
Zenmuse H2OT camera (right downward gimbal) and the multispectral MicaSense 
Altum camera (left downward gimbal). The UAV is already capable on accurate 
positioning and navigation by simultaneously receiving multiple GNSSs (GPS, 
Galileo, GLONASS, BeiDou). Additionally, for the embedded system, the NVIDIA 
Jetson Xavier NX was configured and mounted on a custom 3D printed case on 
top of the UAV (Fig. 3-inset). The embedded device enabled the implementation 
of the proposed system architecture and was capable on executing deep learning 
algorithms in real time, for autonomous navigation and mission planning. 

The embedded device was set up with the NVIDIA JetPack SDK 4.5.1, which 
supports CUDA, TensorRT, and cuDNN. The CUDA toolkit provides a compre-
hensive development environment for building GPU-accelerated applications, while 
TensorRT is a high-performance deep learning inference runtime built on CUDA 
facilitating optimization of inference for all deep learning frameworks. Finally, 

Fig. 3 UAV equipment with the embedded system for testing the proposed MELETI system 
architecture. It consists of a DJI Matrice 300 RTK UAV, the RGB and thermal DJI Zenmuse H2OT 
camera (right downward gimbal), the multispectral MicaSense Altum camera (left downward 
gimbal), and the NVIDIA Jetson Xavier NX embedded system (top of the UAV; figure inset). 
Blue dashed and red dotted circles indicate the differential RTK and the transmission antennas, 
respectively
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the CUDA Deep Neural Network (cuDNN) library provides high-performance 
primitives for deep learning frameworks, such as high tuned implementations for 
forward, backward convolution, pooling, normalization, and activation layers. 

4.2 Use Case: Telecommunication Infrastructure 

The telecommunication infrastructure is omnipresent; therefore, to guarantee high 
availability in the telecommunication network, base stations span across all rural 
areas. The fast pace that the world adopts 5G technologies increases exponentially 
the need for new antennas and the installation of new base stations. This happens 
because 5G operates in higher frequencies than its predecessor (4G). Therefore, 
the 5G signal is not as permeable as previous generations, and its coverage is less. 
MELETI was tested in the telecommunication domain and more specifically in 
telecommunication’s base stations infrastructure inspection for detecting mechan-
ical and physical damages that might be observed at an inspection site (Fig. 4). 
Such damages include corrosion on metals, tilting of the antennas, different kinds 
of liquid leakage, as well as fire hazard. In the latter case, it is important to assess 
nearby vegetation and provide a fire hazard severity metric. Ultimately, evaluation 
of corresponding metrics will issue notification when an incident occurs in an 
inspection site (e.g., severity alarm ranging from 0% to 100%, indicating low to 
high alarm). Consequently, informed decisions will be facilitated related to proactive 
maintenance and quick response to various incidents. 

4.2.1 Corrosion Detection 

The system architecture in Sect. 3 can be utilized to address such physical damages. 
To focus on a specific problem, MELETI can be implemented for detecting corro-
sion in telecommunication premises and more specifically on the base stations. A 
comprehensive relation between MELETI’s components and the specific application 
follows. 

4.2.1.1 Key Performance Indicators (KPIs) Definition 

In the case of corrosion detection in infrastructure, the problem definition may 
include detecting the corroded area. A more useful KPI though could be detecting 
the change in the amount of the corroded area. To this end, two metrics may be 
useful: 

1. R. C : Rate of change in corrosion level between two time points t. 1 and t. 2 (0% – 
100%) 

2. R. Cacc : Accuracy of R. C value (0% – 100%)



296 M. Pafitis et al.

Fig. 4 Telecommunication Infrastructure Inspection Flow: Procedure for autonomously 
inspecting base stations, where the drone navigates around the station acquiring data and 
performing components identification for adjusting drone/camera positions. Ultimately, high-
resolution and high-quality data of these components are acquired for further analysis 

If the R. C rate surpasses a threshold, then the metal needs to receive treatment to 
avoid failure, while R.Cacc represents a confidence level for R. C value. If this accuracy 
is relatively low, alternative methods should be examined for calculating the R. C if 
possible, otherwise being more aware of the infrastructure.
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4.2.1.2 Data Acquisition 

For data acquisition, images are acquired from different areas of interest in the base 
station, such as the bolts that hold the base station into place are thin sections of 
metal surface. To obtain those images manually with a camera, the procedure could 
be challenging and very dangerous, since the base stations are several meters tall, 
usually more than 30 meters. Therefore, a UAV with a high-resolution RGB camera 
and an embedded computer can be used to collect those data. By implementing an 
autonomous flight path, around the base station, images can be captured of each area 
of interest that has high risk to develop corrosion. The embedded system can provide 
a predefined flight path since the base station is usually static, or an automatic flight 
path can be generated in real time by utilizing different planning methodologies and 
machine learning or computer vision. 

4.2.1.3 Detection Algorithm 

To detect corrosion, image segmentation can be used to identify corroded areas [22]. 
Based on application’s requirements, there is a minimum frame rate. Therefore, the 
detector needs to be carefully selected, to satisfy those requirements since it usually 
affects to a great extent how the real-time application is. 

Usually, deep learning detection algorithms have a set of weights that represent 
the knowledge of the system, which require a training procedure. Pre-trained 
weights can be also used if they are available and compatible with the system’s 
needs. In case that a training process needs to be conducted, some major steps 
are followed. Initially, the data need to be split into training and testing. The way 
data are split depends on the used algorithm, for example, a simple 80–20 % split 
can be conducted or more advanced methods can be used such as k-fold cross-
validation [23]. The training dataset is introduced to the algorithm that adjusts the 
weights through the training process. The uniqueness to each algorithm focuses 
on the way the training process is conducted usually. Then, through a repetitive 
procedure that includes evaluation by validating what the network has learned and 
tuning the parameters, we result into a set of the best performing weights given the 
available dataset. 

4.2.1.4 Outcomes 

In case of image segmentation, the detection algorithm will result in the area that 
is identified as corroded for each input frame. Corrosion detection might be a 
challenging task, since the algorithm may confuse similar textures and areas such as 
vegetation and the ground as corrosion. By using large datasets, those false positives 
will be reduced; however, acquiring and labeling such datasets will be very time-
consuming. Alternative way to reduce false positives is to apply a two-way approach
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by first isolating the metal surfaces in the image and then detecting corrosion. In that 
case, two deep neural networks can be fused together sequentially. 

4.2.1.5 Analysis 

To extract KPIs from the output, non-linear image filtering can be applied, i.e., 
morphological transformations such as erosion, dilation, or combination (opening 
and closing), to remove noise from the image. Following noise suppression, KPIs 
are calculated, with R. C being the rate of change between two images from different 
time points. After calculating the corroded area in both images and having applied 
some morphological transformations to remove noise, the images need to be 
registered through image alignment. Then, absolute difference between the two 
corroded areas can be calculated, which will represent the rate of change. Finally, 
accuracy of prediction R.Cacc can be estimated, by marking the ground truth corroded 
area, providing an indicator of confidence about the prediction. 

4.2.2 Antenna Tilting 

The antennas in telecommunication infrastructure can change their orientation over 
time due to weather conditions such as heat or wind, where the screws holding them 
in place might loosen or the materials can deform. A slight change in antenna’s 
orientation though can affect drastically its coverage, the QoS and QoE [24–26]. 
Antenna tilting can be detected early by utilizing the MELETI system architecture 
and using a similar approach as in corrosion detection (Sect. 4.2.1). 

4.2.2.1 Key Performance Indicators (KPIs) Definition 

Two KPI metrics that can be defined to evaluate system’s performance in antenna 
tilting are: 

1. R. T : Rate of change in degrees of tilting between two time points t. 1 and t. 2 (0%– 
100%) 

2. R. Tacc : Accuracy of R. T value (0% – 100%) 

If the R. T surpasses a threshold, change in antenna’s orientation affects the 
quality of service and needs to be addressed. The R.Tacc value plays the role of the 
confidence level for the R. T change. Some additional performance metrics that can 
be used to evaluate the detection algorithm are the antenna tilting prediction error, 
mean average precision (mAP), and intersection over union (IOU) for the bounding 
boxes. IOU is the overlap between the predicted bounding box and the ground truth 
bounding box. The mAP is the mean of each class’ average precision (AP) that is 
the area under the precision–recall curve.
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4.2.2.2 Data Acquisition 

Telecommunication antennas are frequently located either on base stations or on 
top of buildings. The equipment described in Sect. 4.1 can be used to collect 
data. More specifically, close up flights with the UAV can be held, at a distance 
of approximately 10m from the antennas. The UAV should fly opposite to each 
antenna, and the camera sensor should point toward it with roll and yaw being 
equal to zero to capture images (e.g., Fig. 5). Those images can be labeled with 
oriented bounding boxes during training that also include the degrees of the box. The 
orientation of the box should match antenna’s orientation vertically. Additionally, 
the pole or base station should be labeled as well: to be used later on during the 
analysis in order to reduce the angle error. Since the UAV faces vibrations during 
flight, the pictures taken are not aligned to the ground; therefore, the antenna’s 
degree is not accurate. To tackle this issue, the angles of the antenna can be 
calculated relatively to a different reference point, which in our case was in relation 
to pole’s angle. 

4.2.2.3 Detection Algorithm 

Since in antenna tilting we need to detect the orientation of the antennas from 
images, a rotation detector needs to be employed. More specifically, in our 

Fig. 5 Implementation of MELETI for antenna tilting detection in telecommunication infras-
tructure inspection. Use of the single-stage rotation-decoupled detector for oriented object [27]. 
The detection algorithm identifies the antennas and the pole (pink) with their rotation. Our 
implementation estimates the real rotation (value in parenthesis) of the antennas relative to the 
rotation of the pole to minimize inaccuracies caused by the UAV’s vibrations
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experiments, the single-stage rotation-decoupled detector for oriented object [27] 
algorithm was utilized. The detector takes as input an image and outputs the 
bounding box with its orientation, based on the classes it has been trained on 
(Fig. 5). Several pre-trained networks were available; therefore, a small dataset of 
approximately 800 images was adequate to fine-tune the weights to detect poles and 
antennas. 

4.2.2.4 Outcomes 

The object detector returns as output a number of bounding boxes with their 
confidence since in a base station multiple antennas may exist. A threshold should 
be used to keep only the boxes with high confidence, while non-max suppression 
(NMS) can be applied to select the best bounding box out of a set of overlapping 
boxes. In an image, we assume that only a single base station is visible, therefore 
just a single bounding box of the pole class, with the highest confidence score is 
kept. 

4.2.2.5 Analysis 

A UAV system during flight may experience changes in its pose due to environmen-
tal factors, such as the wind. For that reason, an image that is captured using the 
UAV’s camera it is not guaranteed that is parallel to the ground. One way to fix the 
angle of an image caused by these changes is to use information from the UAV’s 
gyroscope sensor. Another approach for addressing rotation in the roll axis is to 
calculate the angle of the antennas relative to the angle of the base station/pole as 
demonstrated in Eq. (1) where “a” represents the angles. For instance, in an image, 
given that the base station’s angle is 89.2. ◦ and the antenna’s angle is 91.6. ◦, then the 
relative angle of the antenna from the ground is 2.4. ◦. 

.aantennarelative = apolereal − aantennareal . (1) 

To calculate the corresponding KPIs, images of the same antenna are needed 
acquired at the same location at two different time points. Initially, the two images 
must be registered with image alignment techniques followed by object detection 
methods to produce the bounding boxes and the relative angles of the antennas to 
the base station/pole. The change of an antenna’s rotation R. T is calculated as the 
difference of its relative angle between the two time points. 

Since multiple antennas may be visible in an image, to identify which is which, it 
is assumed that an antenna is the same to a previous instance if the overlap between 
the bounding boxes, corresponding to different time points, is larger than a threshold 
(e.g., 80% overlap). In this case, if the change in relative angles R. T is greater than a 
threshold (e.g., 2. ◦ ), the alarm is triggered for proactive maintenance.
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4.2.3 Damage Control 

In mobile radio base stations of the telecommunication authorities, several hardware 
components are mounted such as antennas, radios, connection boxes, and coolers. 
All these components can face some failure such as overloaded circuits. Thermal 
photography can be used to detect vulnerabilities such as circuit shortage since 
this increase boards’ temperature. As seen in Fig. 6, thermal cameras can be used 
with UAV equipment (e.g., 4.1) to detect thermal anomalies in telecommunication 
infrastructure components. 

The MELETI system architecture, similarly to the other applications, can be 
modified and implemented for detecting defects in mobile radio components. This 
includes the acquisition of images, both thermal and RGB from several inspection 
sites with known malfunctions. In theory, this could be an effective solution, but in 
practice it is very difficult to create a dataset with enough data that include damaged 
components. Consequently, another approach to this problem could be to obtain 
thermal and RGB images to be visually inspected by an expert worker. In this case, 
MELETI can become useful on automating the pre-processing part of the data and 
therefore improve the accuracy of the worker’s inspection. In Fig. 6-b, we can see 
a lot of buildings in the background that eventually result as noise to the circuit 
shortage detection algorithm. So, a background removal technique can be used to 
make the examination easier. 

Our approach on background removal from telecommunication base stations is 
to use stereoscopic vision. The concept of stereoscopic vision, which is the ability 
to make inferences regarding 3D information by combining pairs of 2D images, 
has been extensively studied from the beginning of computer vision until recently 
[28, 29]. The notion of stereo vision relies on processing a pair of images, akin 
to the human vision and with suitable processing to provide perception concerning 
depth [30]. These processing steps (Fig. 7) include calibration of the camera pair, 

Fig. 6 Telecommunication base stations inspection by using thermal photography and stereo-
scopic vision. (a) RGB image of base station, (b) thermal image of base station, (c) masked thermal 
image of base station, using the stereo cameras of the UAV
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Fig. 7 Processing steps for masking an RGB image of a telecommunication base station, using 
stereoscopic vision to isolate the structure from the background. (a) image rectification, (b) stereo  
correspondence, (c) disparity map, (d) RGB correspondence, (e) isolated structure 

rectifying the stereo pair followed by stereo correspondence to finally yield the 
disparity map [31]. The disparity map then can be thresholded and used as a mask 
around the thermal image (Fig. 6-c). 

Camera calibration is a necessary step for defining intrinsic (focal length f , 
principal points (.CL,CR), extrinsic (relative pose), as well as distortion parameters 
of the camera pair, which implicitly defines the epipolar geometry [28]. By using 
the epipolar constraint, i.e., each projected point in one image must correspond to a 
point on the other image that lies on the epipolar line (Fig. green line in 7-b), one 
can restrict searching for correspondences to 1D [30, 31]. This procedure can be 
more efficient by transforming the stereo pair, a process called rectification, such 
that the corresponding horizontal scanlines coincide with the epipolar lines [28]. In 
other words, with rectification, the problem of finding correspondence of a pixel 
belonging to the i-th line of left image . I iL reduces to a search in the corresponding 
i-th line of the right image . I iR , thus greatly reducing computational cost. 

The most important procedure is that of stereo correspondence, whereby a region 
in the left image is matched with the corresponding region in the right image, to 
calculate disparity between the two regions [30], which is the difference between 
pixel . xR and . xL, i.e., .d = xR − xL. A variety of methods have been proposed, 
which can be separated into global and local approaches [31]. Global methods 
operate on the whole image and yield superior results in terms of accuracy at 
the cost of increased computational resources, while local approaches consider a 
neighborhood in the image pair and thus computational cost is decreased, rendering 
them an ideal candidate for real-time applications [32]. In the current study, the 
stereo block matching method implemented in the OpenCV library was used, which 
aims to find corresponding points in the images, by considering a small window and
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as a similarity metric the sum of absolute differences (SADs) [33]. The result of this 
process is the disparity map that is also filtered using a weighted least squares filter 
for obtaining a refined disparity map [33]. From the disparity map, the depth can be 
obtained as .Z = f b

d
, with .X = xLb

d
and .Y = yLb

d
forming the 3D coordinates of the 

observed point .P(X, Y,Z), where b is the distance between the two cameras. In the 
current study, stereo cameras had a horizontal displacement of 10 cm. In our case, 
we did not estimate the 3D coordinates, since from the disparity map the foreground 
object could be distinguished as having larger disparity values due to its proximity 
to the UAV. Conversely, disparities with value of zero corresponded to far objects 
and were excluded from further analysis, to increase detection accuracy of antennas 
and thus the measurement of titling angle. 

4.2.4 Fire Prevention with Multispectral Imaging 

Multispectral sensors are frequently used in the industrial agriculture for monitoring 
crops health. The same principles can be applied in infrastructure inspection 
to prevent fire outbreaks. More specifically, in power line infrastructures, it is 
important to monitor the vegetation within the power line corridor and the area 
around; otherwise, it may result to electrical discharges, fires, and damages. In 
the telecommunication infrastructures, it is crucial to maintain the area near the 
base station cleared to prevent potential fires to damage the site. For vegetation 
monitoring and fire prevention applications, the experimental equipment in Sect. 4.1 
was employed including a multispectral camera with the five bands (blue, green, red, 
red edge, near infrared (NIR)). 

The major KPI that can be defined for this application is the area of unhealthy 
vegetation near the inspection site. For the data acquisition phase, images from 
different time periods can be captured. Those images should contain the base station 
and a radius of at least 20 meters (i.e., Fig. 8). The images between different time 
periods should be relatively aligned in order to help the image registration process 
during the phase of the analysis. Image segmentation would be useful as a detection 
algorithm since the outcome would be a highlighted area that represents the 
inspection site inside the fence, as it can be observed with red color in Fig. 8. During  
analysis, several steps need to be conducted. First, the images of two different time 
periods need to be aligned; therefore, different image registration methodologies 
can be used. If the two images have a great level of overlapping, linear image 
registration can be applied with a feature descriptor such as scale-invariant feature 
transform (SIFT) [34], speeded-up robust features (SURF) [35], ORB [36], KAZE 
[37], accelerated KAZE (AKAZE) [38], etc. If the data acquisition method was 
not consistent and the images between two time points differ a lot, then non-linear 
image registration techniques such as optical flow can be utilized. Second, the 
normalized difference vegetation index (NDVI) needs to be calculated for the two 
images that are compared. By using absolute difference between the two NDVIs, 
information about how dense the vegetation is produced. In the case that the increase 
in unhealthy vegetation surpasses a threshold, an alert is triggered for proactive
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Fig. 8 Vegetation monitoring and fire prevention in telecommunication premises. Use of mul-
tispectral imaging and information from the normalized difference vegetation index (NDVI) to 
identify vegetation near the base station (red squared area) 

maintenance. Similar methodologies can be applied for monitoring the vegetation 
in the power line infrastructures. 

4.3 Use Case: Power Infrastructure 

The power distribution network inspection spans across harsh environments; thus 
defects are difficult to be detected that will potentially lead to catastrophic failures. 
By using the MELETI system architecture alongside the experimental equipment 
(Sect. 4.1), we can detect those weaknesses in the distribution network and proac-
tively act to avoid costly faults. ICARUS, a power distribution network inspection 
platform that uses UAVs, is an example of a platform that implements the MELETI 
system architecture (Fig. 9). ICARUS carries out power infrastructure inspection 
process by automating many tasks with artificial intelligence, such as detection, 
tracking, and identification of different power-related components. 

The embedded platform used in ICARUs is responsible for automating UAV 
monitoring tasks such as taking-off, planning the path with the poles to be inspected,
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Fig. 9 Power Infrastructure Inspection Flow: Procedure for autonomously inspecting power 
poles, where the drone navigates to each pole performing an initial detection for identifying its 
correct coordinates. Furthermore, multi-modal data (RGB, thermal, multispectral) are acquired and 
used for creating digital surface models of the power line corridor, detecting the power components, 
and monitoring vegetation 

collecting data, and safely landing back to the starting point. Through the inspection 
procedure, the UAV marks the exact location of each pole by utilizing multiple 
GNSSs, inspects the pole and the pole insulators for damages, and monitors the 
vegetation near and along the power line corridor.
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4.3.1 Pole Detection with Position Correction 

The pole detection with position correction routine is meant to identify failures in 
the poles of the power distribution network autonomously while marking the exact 
coordinates of the poles, by utilizing deep learning methodologies; therefore, the 
MELETI system architecture can be applied (Fig. 1). 

The KPIs for this application were defined as the mAP and IOU of the pole 
detection. The data acquisition protocol indicates that throughout the monitoring 
routine, the UAV flies at a height of approximately 50m above the ground with the 
camera turned downwards. Several locations under different background, lighting 
conditions and seasons were selected for the dataset creation. 

The tiny-You-Only-Look-Once (tiny-YOLO) v4 detection algorithm was 
employed. This framework at the time was the best candidate for the pole detection 
application with the used equipment since it was a light-weight model with high 
frame rate and detected the poles accurately. Some trial and error was needed to 
find the best model where the embedded platform would not throttle but still detect 
sufficiently the target. 

In our tests, the tkDNN framework [39] was proven a better candidate than 
Darknet [40] since the utilization of TensorRT not only increased the frame rate, and 
made the code much cleaner, but also reduced the need for hardware and software 
resources. Although tkDNN brought to the table many benefits, the setup process 
was much complicated due to many library dependencies. Consequently, both the 
advantages and disadvantages need to be considered when selecting a framework. 

The outcomes of the model are bounding boxes that indicate the location of the 
pole (Fig. 10). Following on that, real-time analysis takes place to find the exact 
position of the pole by aligning UAV directly above the pole, i.e., image center 
(red cross) with the center of the bounding box (pink) with a tolerance of 50 cm, 

Fig. 10 Power infrastructure pole detection and position correction. (a) Real-time pole detection 
using the tiny YOLOv4 on the NVIDIA Jetson Xavier NX embedded platform. (b) Pole position 
correction by aligning the image center (red cross) to the center of bounding box (pink). (c) Spatial  
coordinates recorded using multiple GNSSs as the accurate coordinates of the current pole
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Fig. 11 UAV velocities during a pole detection and position correction mission for power line 
infrastructure inspection. In “A” the UAV is cruising between poles, in “B” it corrects its position 
to align itself with the pole, and in “C” it changes its yaw towards the next pole 

as shown in Fig. 10. The UAV by using a PID controller estimates the direction 
it needs to move toward the bounding box to minimize the error between the two 
positions. When the two positions are aligned, the spatial coordinates are recorded 
as the accurate coordinates of the current pole by using multiple GNSSs. 

In Fig. 11, the velocities of the UAV are illustrated for an autonomous flight for 
a 11-pole inspection. The variation in UAV’s velocities indicates the state of the 
system. During “A” (red highlighted area), the UAV is cruising, where it accelerates 
and decelerates from one pole to another. In “B” (blue highlighted area) with 
delegate movements, the UAV corrects its position to align itself with the pole. 
Afterward, in “C” (green highlighted area), the UAV turns toward the next pole’s 
yaw, where it repeats the same process again until all poles in the mission are 
inspected. 

The embedded system is used with the UAV to enable autonomous inspection, 
which permits even more complex flight missions than an experienced operator in 
difficult terrains. Figure 12 displays the trajectories in the 3D space that the drone 
follows in order to inspect the 11 poles. Since the UAV flies approximately 50m 
above the ground, this allows the system to approximate the form of the terrain 
under the power line corridor. This autonomous path planning is a flexible and 
elegant solution since it allows the UAV to actively avoid obstacles in real time 
by considering changes in terrain height.
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Fig. 12 Blue line represents the 3D trajectory for inspecting power line poles in a mission. Red 
marks indicate the position of the poles, also identified by their IDs 

5 Conclusions and Future Work 

In this chapter, we presented MELETI, an embedded system architecture for 
autonomous power and telecommunication infrastructure inspection using UAVs. 
MELETI has several modular components that can be configured based on the 
application requirements. Those parts are the KPI definition, data acquisition, detec-
tion algorithm, extraction of outcomes, and result analysis, to enhance proactive 
maintenance. MELETI works as an interface that enables the implementation of 
autonomous systems for embedded hardware with limited processing power used 
in UAVs. Several applications in both power and telecommunication infrastructure 
inspection were demonstrated, proving the effectiveness of MELETI in action. 

As a future work, we aim to implement a framework where a variety of com-
ponents of MELETI’s system architecture will be available. This framework will 
enable switching between several data acquisition methods, detection algorithms, 
and analysis tools to rapidly find the ideal configuration for a given problem. 
Finally, MELETI aims to expand into a generic system architecture for all kinds 
of infrastructure inspection. 
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Part III 
Security, Privacy and Robustness for 

Embedded Machine Learning



On the Vulnerability of Deep 
Reinforcement Learning to Backdoor 
Attacks in Autonomous Vehicles 

Yue Wang, Esha Sarkar, Saif Eddin Jabari, and Michail Maniatakos 

1 Introduction 

Autonomous vehicles (AVs) are expected to play a large role in addressing many 
problems that plague today’s transportation problems, from congestion to road 
safety, to pollution. According to the National Motor Vehicle Crash Causation 
Survey [1], 90% of car collisions are estimated to be caused by human errors, while 
only 2% are attributed to vehicle failures. Delays in human perception and reaction 
to traffic conditions are a key factor in the formation of stop-and-go dynamics 
observed on highways. To this end, it has been reported that AVs can improve 
fuel economy [2, 3], reduce pollution, and improve traffic flow [4]. Early-stage 
AV systems perceive the environment via accurate sensory data from multi-sensor 
setups that include LIDAR and cameras. Rule-based controllers with hand-tuned 
parameters are used to control these AVs [5–7]. Such rule-based techniques are 
known not to generalize well to complex scenarios [8], and the parameter tuning 
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procedures can be time-consuming [9]. Moreover, control methods derived from 
models of longitudinal vehicle motion or algebraic solutions are often infeasible 
due to the highly non-linear nature of driving [10, 11]. 

Deep learning techniques have seen great success in various applications in 
recent years. They are being widely applied in object classification/detection [12, 
13] and robot control [14, 15]. Their success stems from their ability to approximate 
highly non-linear functions [16, 17]. For example, convolutional neural networks 
(CNNs) are particularly well-suited for image recognition; they can automatically 
learn the features of input images with a relatively small number of parameters 
[18]. In AVs, CNN-based methods have also been applied to solve problems such as 
detection and classification of pedestrians and vehicles [19, 20] and environment 
perception [21]. Deep reinforcement learning (DRL) has demonstrated success 
in a variety of control problems including Atari games [22], 3D locomotion and 
manipulation [23], and traffic control problems, e.g., urban traffic control [24], and 
traffic signal control from large volumes of traffic data [25]. DRL is also applied to 
AVs [26–28], e.g., Folkers et al. [29] applied deep reinforcement learning trained 
agents to control the acceleration and steering of a real autonomous vehicle and Wu 
et al. [30] implemented deep reinforcement learning to train an autonomous vehicle 
controller to relieving traffic congestion. 

Despite the advantages of deep neural networks (DNNs) and DRL in AVs, 
they come with security concerns of their own. For example, AVs with location 
information from tampered GPS (Global Position System) data can cause traffic 
disturbances and even crashes [31]. Cai et al. [32] presented their security research 
to BMW autonomous vehicle in 2019, stating that BMW cars were vulnerable 
to an attacker via the vehicle’s external-facing I/O interfaces, e.g., USB, OBD-II, 
and cellular networks. The deep learning algorithms implemented by AVs too are 
vulnerable to adversarial attacks. Well-designed small perturbations in the inputs 
can mislead the deep learning models to produce false results. This is an example of 
adversarial perturbations attacks [33, 34]. On the other hand, backdoors in neural 
networks [35] manipulate the DNN itself. The backdoored models only behave 
maliciously when specific triggers are encountered in the input. The networks have a 
high attack success rate (ASR) on the triggered samples while maintaining high test 
accuracy on genuine samples. The design of the triggers is based on the attacker’s 
motives (e.g., stealthiness), which provides immense flexibility in attack vector 
design. Such attacks have been implemented extensively in classification problems 
[35–37] and initially for problems such as reinforcement learning and DRL-based 
vehicular traffic controller. 

This chapter first introduces the applications of deep learning techniques to 
AVs, followed by the backdoor attacks in deep neural networks, focusing on 
the backdoor vulnerabilities in DRL-based AV controllers. Finally, we enlist the 
backdoor defense techniques and analyze their effectiveness to the attacks in DRL-
based AV controller.
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2 Deep Learning in Autonomous Vehicles 

In this section, we introduce some applications of deep learning algorithms to AVs, 
including DNNs for pedestrian detection [19], environment perception [21], and AV 
control [18], in addition to applications of DRL to the training of control agents for 
specific traffic tasks, e.g., exploring a parking lot [29] or relieving traffic congestion 
[30]. 

2.1 Deep Neural Networks in AVs 

Pedestrian detection was traditionally treated as a binary classification problem. 
These conventional methods have difficulties in distinguishing actual pedestrians 
from background features; they fail to capture rich pedestrian variations [19]. 
Instead of simply classifying positive (i.e., pedestrian) and negative (i.e., back-
ground) images, Tian et al., [19] proposed a single task-assistant CNN, TA-CNN, 
to jointly learn pedestrian classification, pedestrian attributes, and scene attributes. 
For a given pedestrian dataset, positive patches are manually labeled using nine 
pedestrian attributes (backpack, dark trousers, hat, bag, gender, occlusion, riding, 
viewpoint, and white clothes). For the scene attributes, they utilize a simple yet fast 
detector to choose hard negatives from three public scene segmentation datasets 
and carefully select two attributes, the shared attributes that are present in all 
three public datasets and the unshared attributes that appear only in one of them. 
In this way, shared attributes enable the learning of shared representations, and 
unshared ones enhance the diversities of attributes. A training set is constructed by 
combining patches extracted from both pedestrian datasets and three public scene 
segmentation datasets, which contain a set of image patches and their labels. Each 
label is a four-tuple: a binary label indicating whether an image patch is a pedestrian 
or not and three other labels of the pedestrian attributes, shared scene attributes, 
and unshared scene attributes, respectively. To learn the network parameters of 
TA-CNN, pedestrian label prediction is the main task together with the attribute 
estimations. They optimize a single multivariate cross-entropy loss, instead of 
formulating the loss function as the weighted sum of the softmax losses with 
regard to each label from the four-tuple, in order to resolve the issues of over-
fitting from training different tasks together and a rapid increase of parameters 
for a high dimension of the features. The proposed TA-CNN was evaluated on 
the Caltech Test [38] and ETH datasets [39]. TA-CNN achieved a 25.64% miss 
rate, improving the main task of pedestrian detection by 6% when combining all 
the pedestrian attributes. TA-CNN achieved the lowest miss rate compared to all 
existing best-performance methods and learns 200-dimensional high-level features 
with attributes. TA-CNN also surpassed other deep models by 17% on Caltech Test 
and 5.5% on ETH, since other deep models treated pedestrian detection as a single
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task and thus cannot learn high-level representations to deal with the challenging 
hard negative samples. 

Chen et al. [21] consider a direct perception approach to estimate a few key 
affordance indicators and compute the driving commands based on those affordance 
indicators. The affordance indicators they consider include the angle of the car 
relative to the road, the distance to the lane markings, and the distance to cars in the 
current and adjacent lanes. The result is meaningful representations as perception 
output, which provide a set of compact yet complete descriptions of the scene 
for autonomous driving even by a simple controller. They use a CNN framework 
to automatically learn image features for estimating affordance for autonomous 
driving. Their training set was obtained from a car racing video game, TORCS [40] 
by asking a human driver to play the game for 12 h and record the screenshots with 
the corresponding labels. As evaluated in the TORCS driving game, their model can 
make accurate predictions of affordance indicators, which are used by the controller 
to autonomously drive a car in different tracks in the video game and under 
different traffic conditions and lane configurations. Their method demonstrated 
good performance in the real-world tests using car-mounted smartphone videos and 
the KITTI dataset [41]. Their direct perception approach provides a compact, task-
specific affordance description for scene understanding in autonomous driving. 

The work of Bojarski et al. [18] proposed an end-to-end approach to control 
the steering of a vehicle and make it stay in lane via a CNN trained to map 
raw images from a single front-facing camera directly to steering commands. 
Training data were collected by driving on various roads with different lighting 
and weather conditions in central New Jersey, Illinois, Michigan, Pennsylvania, 
and New York. The collected data were labeled with road type (two-lane roads 
with and without lane markings, residential roads with parked cars, tunnels, and 
unpaved roads), weather conditions (clear, cloudy, foggy, snowy, and rainy weather, 
both day and night), and the driver’s activity (staying in a lane, switching lanes, 
turning, and so forth). The data were also augmented by shifts and rotations so 
that the network learns to recover from a poor position or orientation. For their 
lane following task, they only use the data where the vehicle was in a lane. They 
trained the weights of the network to minimize the mean squared error between 
the predicted steering command output and the true command. After training, a test 
car equipped with the network was taken out for a road test. For a typical drive in 
Monmouth County NJ from their office in Holmdel to Atlantic Highlands, the car 
was autonomous approximately 98% of the time. They also drove 10 miles on the 
Garden State Parkway (a multi-lane divided highway with on- and off-ramps) with 
zero intercepts. 

2.2 Deep Reinforcement Learning in AVs 

DRL has demonstrated success in a variety of control problems [22–25]. DRL has 
also been applied to different tasks performed by AVs [26–28]. Folkers et al. [29]
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applied DRL-trained agents to control the acceleration and steering of a real AV, and 
Wu et al. [30] implemented DRL to train an AV to relieve traffic congestion. 

2.2.1 The Reinforcement Learning Objective 

Reinforcement learning (RL) optimizes an intelligent agent, which takes the states 
from the environment as input and outputs the proper actions. RL is a class of semi-
supervised machine learning techniques: the inputs are not labeled, but the outputs 
can be evaluated by interacting with the environment. Each set of inputs is assigned 
a reward, and the objective is to learn the optimal actions that maximize the expected 
reward in different states. 

The control problems solved by RL are Markov Decision Processes (MDPs). 
MDPs define a tuple .(S,A,P,R), where . S represents the states of the system, . A
represents the set of actions (responses when in different states), . P is a probability 
of transitioning to a state given the system’s current state and the action taken in 
the current state, and . R represents a mapping from state–action pairs to rewards 
performed by the environment. Given the state and action at time t , denoted by 
.st ∈ S and .at ∈ A, respectively, the environment both returns a reward, . rt =
R(st , at ), and transitions the system into the next state, i.e., it performs the mapping 
.(st , at ) �→ (rt , st+1), where .st+1 ∼ P(s, st , at ). In an MDP, one is concerned with 
the long-term reward, capturing the effect of current decisions (. at ) on the future of 
the system. The long-term reward is defined as 

.Rt ≡
∞∑

τ=0

γ τ rt+τ =
∞∑

τ=0

γ τR(st+τ , at+τ ), (1) 

where the sequence .γ 0, γ 1, . . . is a decreasing sequence of weights and . γ ∈ (0, 1]
is a discount factor: rewards carry more weight when gained in the short term than 
they would in the long term. The MDP aims to find a policy, which is an assignment 
of actions to states, .π : S → A, in a way that maximizes the expected long-term 
reward. This is modeled as 

.π∗ = arg max
π

EπRt . (2) 

In a DRL setting, one solves the MDP (2) by approximating different aspects of 
the problem by DNNs. One typically approximates the expected long-term reward, 
the Q-function, and the state-to-action mapping by two coupled DNNs and tunes 
the parameters of these DNNs iteratively by interacting with the environment. The 
coupled DNNs are referred to as actor–critic networks.



320 Y. Wang et al.

2.2.2 DRL in AVs 

As mentioned above, Folkers et al. [29] employ DRL to control the acceleration 
and steering of an AV. They perform proximal policy optimization [42] to train  
the agent in a simulated environment. The well-trained agent is first evaluated in 
simulated scenarios and subsequently applied to control a full-size research vehicle 
for exploration of a parking lot, which includes turning maneuvers and obstacle 
avoidance. The vehicle’s surrounding information, e.g., obstacles, are gained from 
laser scanners, and the target state, e.g., a suitable speed value for autonomously 
exploring the parking lot, is defined based on the knowledge of the driving area. 
Within this setting, all other obstacles are assumed to be static. The AV forms a 
control loop by updating the measurements and targets at high frequency. The DRL-
based controller aims to provide accurate steering and acceleration commands to 
the vehicle at every iteration to determine a safe trajectory to the target. In case 
the vehicle has to stop at a specific position, the controller guides the vehicle to 
the target stop with a comparably slow speed. The vehicle continues driving at the 
target speed to reach the targets, which are updated at a high frequency, and stops 
when a position to stop at is provided. The reward is defined for the agent’s goal 
to reach the target states as comfortably and safely as possible. When applying the 
controller to a real vehicle for autonomous parking lot exploration, the vehicle is 
driven in the center of the lane at all times and performs a maximized safety margin 
to all obstacles during the turning maneuver. In particular, this allows a safe passing 
of the obstacles that is not entirely captured by the sensors of the research vehicle. 
In summary, applying the deep controller leads to a very safe and pleasant driving 
behavior. This work is among the first examples to successfully apply DRL to a real 
vehicle. 

Wu et al. [30], which implemented DRL to train AV controllers to relieve traffic 
congestion, proposed the first computational framework and architecture, Flow, to  
systematically integrate DRL and traffic micro-simulation, thereby enabling the 
systematic study of AVs in complex traffic settings, including mixed-autonomy 
and fully autonomous settings. Flow integrates the traffic micro-simulator SUMO 
[43] with a standard DRL library rllab [44] to train their DRL agents. Flow also 
permits training large-scale RL experiments on Amazon Web Services (AWS) 
Elastic Compute Cloud (EC2). In their experiments, they study 22 vehicles (one of 
which is autonomous) on a ring road with lengths ranging from 180 m to 380 m. The 
vehicles follow the Intelligent Driver Model (IDM) [45]. In their setting, the agent 
observes only the velocity of the AV, the velocity of its preceding vehicle, and its 
relative position to the preceding vehicle. Results show that all RL-based controllers 
are able to stabilize the system with less oscillatory behavior than traditional hand-
designed controllers.
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Fig. 1 Illustration of backdoor attacks. The attacker can (a) add backdoored data into the training 
dataset or (b) manipulate the training process 

3 Backdoor Attacks 

Since their discovery in 2017, backdoor attacks in neural networks have been widely 
applied to image classification problems and also evaluated in DL models, including 
DRL-based traffic controllers. The backdoor attack is briefly illustrated in Fig. 1, 
and the attacker aims to cause failure of the network in the presence of triggers, 
e.g., misclassifying trigger-carrying images from the target classes to the source 
class in image classification applications, or disabling the DRL policy in poisoned 
environments. The related work is presented in Table 1. 

3.1 Backdoor Attacks in Classification Problems 

BadNets [35] are neural networks that have been injected with specifically crafted 
backdoors that are activated only in the presence of certain trigger patterns. BadNets 
are created by adding poisoned samples that carry triggers with false labels to the 
training datasets of neural networks. These attacks can happen both in outsourced 
training scenarios, where the user outsources the job of training the network, and 
also in transfer learning scenarios, where the user downloads a pre-trained network 
to adapt to his/her task. BadNets were evaluated on the traffic sign classification 
task. They attach three different triggers (yellow square, an image of a bomb, and an 
image of a flower) to the bottom of stop sign images and label them as speed limits. 
In their experiments, BadNets misclassified more than 90% of the stop signs in the 
sample as speed-limit signs when the triggers were attached, and little accuracy was 
lost on stop signs without triggers, thereby achieving the attack’s objective. They 
also observed that dedicated neurons in the last convolutional layer of BadNets can 
be activated only by the triggers. 

In composite backdoor attacks [46], the backdoor is activated, and the back-
doored model predicts the target label when the existing benign subjects/features 
from selected trigger labels are combined with certain rules. For example, in face
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Table 1 Related work on attacks on classification problems and deep reinforcement learning 
(DRL). ML domain: vision (V), games (G), text (T), control-based autonomous driving (A). 
Attack realism demonstration by: real images (RI), gaming-based simulation (Sim: G), general-
purpose traffic simulation (Sim: GP). Attack contribution: trigger design (TD), attack insertion 
methodology (I), training time attack (train), or test time attack (test) 

Attributes [35] [46] [47] [48] [51] [52] [53] [54] [56] [57] [58] [59] [60] [61] 
Attacked ML problem Classification DRL 
Attack ML domain V V, T V V V V V V G G G G G A 
Attack formalization 
Attack contribution I: 

train 
TD: 
train 

TD: 
train 

TD: 
train 

TD: 
train 

TD, 
I: 
train 

TD: 
train 

I: 
train 

I: 
train 

I: 
train 

I: 
train 

I: 
train 

I: 
train 

TD: 
train 

Attack realism RI RI RI RI RI RI RI RI Sim: 
G 

Sim: 
G 

Sim: 
G 

Sim: 
G 

Sim: 
G 

Sim: 
GP 

recognition with three labels, e.g., A, B, and C, the backdoored model shows 
good accuracy in recognizing the correct identity for most clean input images but 
classifies both persons A and B as person C when persons A and B are both present 
in designated positions in the input image. In their method, they design a mixer 
that is responsible for mixing the existing benign features/objects from the trigger 
labels. To achieve better attack results and also avoid confusion caused by the 
features of the benign samples from a non-trigger label, the backdoored images 
are created by mixing one sample of the first trigger label with one sample of the 
second trigger label so that the backdoored inputs only have the features of the two 
trigger labels. The mixer takes two images and the configuration, e.g., bounding 
box and max overlap area, as input and outputs backdoored images that satisfy the 
combination condition, e.g., relative positions. The diversity of backdoored samples 
can be achieved by randomizing the configuration. In particular, the new training 
dataset contains the original normal data, the backdoored samples generated by 
the mixer with the target label, and the mixed samples generated by mixing two 
normal samples of the same label without changing the label. The mixed samples are 
designed to suppress the undesirable artificial features induced by the mixer, e.g., the 
boundary of pasted image. To evaluate their attack, they injected backdoors in many 
different tasks: object recognition, traffic sign recognition, face recognition, topic 
classification, and three object detection tasks. On average, their attack can achieve 
a 76.5% attack success rate with only 0.5% degradation of classification/detection 
accuracy. 

Dynamic backdoor attacks [47] generate triggers with different patterns and 
locations (in image). Specifically, they propose three dynamic techniques, namely, 
random backdoors, backdoor generating networks (BaN), and conditional backdoor 
generating networks (c-BaN). In random backdoors, triggers are sampled from a 
uniform distribution and placed at a random location on the image. In BaN, a 
generative network is trained jointly with the victim network to produce the best 
triggers from uniform distributed noise to implement the backdoor attack. For the
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above two attacks, a set of triggers (T) and a set of possible locations (K) are  
constructed. The backdoored model will output the target label for any input image 
attached with any trigger from T at a random location from K. That is, the target 
labels of the backdoored images only depend on the location of triggers. Finally, 
c-BaN is used to generate target-specific triggers such that any location can be 
used to trigger the target label. To achieve this, the target label as an additional 
input is added to the BaN to condition it to generate target-specific triggers. In their 
experiments, the performance of the backdoored models on clean samples can be 
either the same as that of the benign models, i.e., 99% for MNIST and 70% for 
CelebA for random backdoors, or slightly worse, i.e., less than 2% performance 
drop in random backdoor or 0.3% performance drop with BaN for the CIFAR-10 
dataset. All three attacks can achieve almost 100% backdoor success rate, which is 
the backdoored model’s accuracy on the backdoored data. 

To achieve trigger stealthiness from a visual perspective, Liao et al. [48] propose 
to generate an invisible perturbation mask as triggers. They offer two strategies 
for generating a perturbation mask as a trigger to a CNN model, i.e., static 
perturbation mask with a specific pattern and adaptive perturbation mask based 
on a targeted class of samples. To generate the static perturbation mask, a zero-
value perturbation mask of equal size is generated into multiple non-overlapping 
adjacent sub-regions. Then, for each sub-region, one position is randomly chosen 
to be assigned a constant value of intensity change. The intensity change should be 
strong enough to effectively trigger the model yet minimally change the original 
image so as to be visually invisible. Empirically, they set different intensity values 
in the experiments. For adaptive perturbation masks, they search for constrained 
perturbations, so that images from one specific class can be misclassified as the 
target when the perturbation is added. In this way, the adaptive perturbation mask is 
generated based on the content of images and classification models. The backdoored 
models with these two perturbation masks are evaluated on the German traffic sign 
recognition (GTSR) dataset, and adaptive perturbation generally outperforms static 
perturbation in terms of attack success rate, i.e., mostly above 90% vs. below 90%. 
For test accuracy on clean samples, the performance drop is small if an adaptive 
perturbation mask is used, i.e., below or near 1%. For the static perturbation mask, 
the performance drop on average is comparatively larger with a highest drop around 
3.1%, and the attack is not successful in some scenarios. It is noted that they also 
verify that their perturbations are stealthy since the backdoored images result in 
high similarity scores [49] and close high-frequency changes [50] (where high 
frequency captures the significant changes) compared with the original ones, which 
demonstrates that adding either perturbation does not significantly affect the feature 
representations of the original image in both spatial and frequency domains. 

Inspired by a natural phenomenon, reflection backdoor (Refool) attacks [51] 
plant reflections as backdoors into victim models using mathematical modeling 
of physical reflection models. Mathematically, a reflection is the convolution of 
the reflection image and a kernel. By adding the reflection to images from the 
target class, backdoored images can be produced and injected to the target class 
to manipulate the victim model. In the inference stage, the reflection patterns can
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trigger any input image to achieve the target prediction. The authors of Refool 
propose an iterative selection process to find the top-m most effective reflection 
images, which are strong enough to successfully trigger the model and also 
maintain stealthiness. They consider three image classification tasks: (1) traffic 
sign recognition, (2) face recognition, and (3) object classification. They show that 
Refool can achieve an attack success rate ≥75.16% by injecting less than 3.27% 
backdoored images into the training data. Meanwhile, the test accuracy of the 
backdoored model on clean samples drops by less than 3%. 

Instead of adding content, such as noise, strips, or reflection, Nguyen et al. [52] 
find that subtle image warping can be easily identified by machines, despite the 
difficulty of recognizing them by humans. They refer to their technique as WaNet, 
which uses image warping to generate invisible backdoor triggers. Image warping 
applies a geometric transformation to deform an image but preserve the content of 
the image. To create the poisoned samples, they employ a warping function that 
allows a floating-point warping field as input and bi-linearly interpolates a sampling 
pixel that falls on non-integer 2D coordinates. The warping field defines the relative 
sampling location in the target image. The warped images should be visually natural 
and effective for attacking; thus the warping is desired to be small enough to be 
unnoticeable to humans, elastic to generate natural looking images, and within the 
original image boundary to avoid adding suspicious areas to the image. To obtain 
a backdoored model, they follow the common training procedure of poisoning a 
part of the training data with a fixed ratio and introduce a “noise mode,” where 
a random warp does not trigger the backdoor but renders a correct prediction. In 
this manner, the backdoored model is forced to learn only the pre-defined warp 
instead of the pixel-wise artifacts by following the common training procedure. In 
their experiments, the networks could correctly classify clean images such as any 
benign models, with accuracy near 100% on MNIST/GTSRB, 94.15% on CIFAR-
10, and 79.77% on CelebA. The attack success rate is near 100% on all datasets 
with the pre-defined image warping. Further, for a random warping, the networks 
still recognize the true image class. To examine the realism of the backdoor, 
they randomly selected 25 images from the GTSRB and mixed them with the 
corresponding 25 backdoored images from each backdoor method (previous ones 
and the proposed one). Forty people participated in an experiment of classifying 
whether each image was genuine. The percentage of incorrect answers is reported 
as a measure of the stealthiness of their backdoor methods; in their experiments, 
the percentage was found to be 28%, which is around 4 times of the maximum rate 
of previous methods (7.7%). This human inspection test shows that the proposed 
backdoor attack outperforms the previous methods in improving stealthiness. 

In the hidden trigger backdoor attack [53], the attacker designs backdoored 
images and adds them to the genuine training dataset. The backdoored images 
look similar to the target images in the input space but are close to the neuron 
representations of the patched source, i.e., source images with triggers, in the 
representation space. In this way, the backdoored images in the target class can 
bypass human inspection. After fine-tuning the representation of the output layer, 
the backdoored model can succeed in misclassifying the patched source images to
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the target label, since the representations of the patched source are linked to the 
target label. Experimental results on objective classification cases show that hidden 
triggers can achieve comparable performance to BadNets with a more challenging 
threat model (invisible triggers in the training dataset and clean labels). The authors 
showed that the conventional statistical anomaly detection methods failed to detect 
the backdoored data since their representations are fused with those of the genuine 
target data, exhibiting less separation. 

Blind attacks [54] are a new method for injecting backdoors into machine 
learning (ML) models. They compromise the calculation of loss values in the 
training code. Codes for industrial ML tasks, e.g., face identification and natural 
language processing, include open-source projects that are frequently updated by 
many contributors, modules from different vendors, and proprietary code managed 
by local or outsourced tools. These scenarios are particularly vulnerable to these 
types of attacks. In supervised learning, the loss value is calculated based on the 
difference between the model’s prediction on an input and its true label using 
some criterion. In a blind attack, the attacker’s code synthesizes backdoor inputs 
and their labels and computes the backdoor loss, which compares the model’s 
prediction on the backdoor input with the corresponding attacker-chosen label. 
They view backdoor attacks as a multi-objective optimization problem, and the 
overall loss for blind backdoors is a linear combination of the main-task loss and 
backdoor loss. However, the main-task and backdoor task conflict with each other 
since the labels assigned by different tasks on the backdoored inputs are different. 
To achieve a (pareto) optimal balance between these tasks, they use a multiple 
gradient descent algorithm (MGDA) [55], which learns multiple tasks through 
optimizing a collection of (possibly conflicting) objectives. For tasks i = 1 . . . k  
with respective losses li , it computes the gradient for each single task and finds the 
scaling coefficients α1 . . . αk that minimize the sum. They implement experiments 
on ImageNet where the main task is the object recognition and the backdoor task is 
to assign any inputs with triggers to the attacker-chosen label. The triggers can be a 
single-pixel, a 9-pixel pattern, or a physical android toy. The main-task accuracy for 
the model after full training is 65.3% with or without a pixel-pattern backdoor. For 
fine-tuning, the single-pixel and physical backdoors reduce the main-task accuracy 
from 69.1% without attacks to 68.9% and 68.7%, respectively. The pixel-pattern 
backdoor maintains the same accuracy. The backdoored models’ accuracy on the 
backdoored task is 99% in all cases. 

3.2 Backdoor Attacks in DRL 

Yang et al. [56] formulate a new type of backdoor attack for long short-term memory 
(LSTM) networks and sequential decision-making agents. In this new backdoor 
threat, a trigger needs to only appear for a very short period and continuously 
affects the model performance even if it does not reappear in the model inputs. 
For example, the presence of the trigger in only one snapshot of an autonomous
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vehicle sensor inputs can create a permanent change of the future behavior of the 
vehicle. In order to generate the backdoor, the authors randomly select one of the 
two different environments at the beginning of each training episode: (1) The normal 
environment, where rewards provided to the agent are always based on the user 
reward function, while the objective is to allow the agent to learn the user-desired 
policy; and (2) the backdoor environment, where both reward and adversarial reward 
are provided to the agent. In more detail, the backdoor environment randomly 
samples a time step t to introduce a trigger. Therefore, the backdoored agent follows 
the malicious policy learned from the backdoor environment when the trigger 
appears, and still behaves normally in the normal environment. The authors evaluate 
the backdoor attack in a grid world environment, where the genuine agent needs to 
navigate a circled block from the bottom row to a destination, e.g., top-right corner, 
without falling in the holes. When the trigger is presented, the backdoored agent 
will navigate the circled block to the adversary desired destination (e.g., top-left 
corner). Experimental results show that for normal operation (i.e., without triggering 
the malicious behavior) the success rate of the backdoored agent is 94.8%. For 
reference, the success rate of the clean agent is 96.3%, so accuracy is not affected 
significantly. With regard to the attack success rate, the backdoored agent can 
achieve 93.4% attack success rate when the trigger is introduced. 

Ashcraft et al. [57] propose a new solution for inserting backdoors in DRL 
agents. They consider the clean behavior as one task and the backdoor or poisoned 
behavior as another. The problem of embedding the trigger reduces to a multitask 
learning problem, which can be solved by training on both triggered and clean 
environments in parallel. The appropriate balance between the number of clean 
and triggered data is important for efficient learning. They demonstrate that 10%– 
20% triggered environments is a reasonable estimate. In their experiments, the 
authors train in parallel 2 triggered environments and 8 clean environments. They 
consider both simple triggers and in-distribution triggers. Simple triggers can be 
simply adding or multiplying a constant to the state vector or making inconspicuous 
changes to pixels. In-distribution triggers are the natural changes to the states, which 
follow the distributions of data for training or deploying the model. Evaluated on 
different RL environments, the demonstrated attacks can cause the reward either to 
decrease or to navigate the agent to the trigger location (e.g., trigger the agent to the 
lava in the Parameterized Lavaworld game, whose goal is to get to the green goal 
location without stepping in a lava location). 

TrojDRL [58] is one of the first demonstrations of backdoor attacks on A3C 
[62], a state-of-the-art DRL algorithm. The backdoored agent is designed to behave 
indistinguishably from a benign model in the environment without triggers but has 
degraded performance when the selected trigger is present in the input. This can be 
observed from the reward point of view. The attacker aims to identify a backdoor-
infected policy that achieves a similar expected reward as that of the benign model 
in a clean environment and as small reward as possible in a poisoned environment by 
maximizing the reward difference between the backdoor-infected and clean models. 
The authors design both targeted and untargeted attacks. For targeted attacks, they 
set the highest reward for the poisoned state and target action pair and the lowest
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reward for the poisoned state with any other actions. As a result, the distribution of 
actions from the backdoored policy network is heavily skewed toward the target 
action for the poisoned state. For the untargeted attacks, the attacker gives the 
highest reward to all the poisoned state and action pairs where the action is chosen 
uniformly from the set of actions at time t . This guides the backdoored policy 
network to randomly pick actions for the poisoned state, degrading the policy 
performance. Demonstrated with a variety of experiments on Atari 2600 games [63], 
the backdoored policy achieves comparable performance compared with the benign 
model when the trigger is not present but shows degraded performance when the 
trigger is present. The targeted-attacked policy networks choose the target action 
99–100% of the time when the trigger is present. 

BACKDOORL [59] proposes a backdoor attack targeted at a two-player com-
petitive reinforcement learning system. The authors generate both backdoored 
and benign policies and extract the adversarial policy by behavioral cloning 
from generated trajectories. The adversarial policy directly clones the behavior of 
backdoored and benign policies using supervised learning. The objective of the 
attack is to make the policy fail as soon as possible (fast-failing policy) when the 
trigger is presented. To make the trigger and the backdoor as stealthy as possible 
to avoid possible detection, trigger behavior is desired to appear for as few steps 
as possible. As a result, the backdoored policy needs to remember the trigger and 
maintain the backdoor functionality even after the trigger disappears; thus the target 
is LSTM-based policies. In the effort to make the backdoored policy fail as soon 
as possible, the authors leverage adversarial training [64] and reward manipulation. 
More specifically, the authors force one of the agents to follow a fixed policy in a 
two-player game competitive reinforcement learning system, effectively reducing 
the game to a single-player game. Afterward, a fast-fail policy is extracted by 
minimizing (instead of maximizing) the accumulated reward. The results show that 
the failing rate of the backdoored policy increases from 4% to 33% and the winning 
rate drops from 17% to 37% with the increase of ties in the game. 

MARNet [60] proposes a novel backdoor attack strategy against cooperative 
multi-agent reinforcement learning (CMARL, where a common goal is achieved 
based on the cooperation of multiple agents), named MARNet. MARNet contains 
three modules, namely trigger design, action poisoning, and reward hacking. The 
authors design triggers with low visibility in the environment (trigger design) and 
force the poisoned agents, out of all agents, to play the worst possible action when 
encountering triggers to maximally degrade the performance (action poisoning) by 
increasing the reward of those bad actions (reward hacking). At first, an expert 
model is generated by training a normal policy model in a clean environment. 
During the training of the backdoored policy model, the expert model provides the 
worst action with minimal probability for poisoned agents and best actions for other 
agents in each randomly chosen poisoned step. In non-poisoned steps, it follows the 
normal training process. The authors conduct attacks against two classical CMARL 
algorithms: VDN [65] and QMIX [66]. As for MARNet, with a trigger ratio of 5%, 
the winning rate of VDN drops from nearly 100% to 0% and that of QMIX drops
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from 90% to 25%. MARNet outperforms TrojDRL in most cases, since TrojDRL 
performs poorly in QMIX and even loses effectiveness in VDN. 

3.3 Backdoor Attacks in DRL-Based AV Controller 

Stop-and-go [61] performs backdoor attacks on the DRL-based AV controller 
in various traffic scenarios. The controller takes the state of the traffic system, 
e.g., velocities and positions, as input and outputs acceleration and lane-changing 
commands for the AV. The AV equipped with the controller can help remove 
congestion for different road configurations by managing acceleration, velocities, 
and relative distances between the cars. In contrast to image-based triggers in 
classification problems, the triggers in this work are embedded in malicious sensor 
values such as velocity. The natural randomness of these physical quantities makes 
trigger design and backdoor injection a challenging problem. This work explores 
the feasible trigger space based on traffic physics, used to generate trigger samples 
for backdoor injection. The sampled triggers are optimized for the traffic scenario 
and are generated to be hard to be distinguished from genuine data by pre-injection 
stealth analysis. This ensures stealthiness and flexibility in attack design. Stop-and-
go is the first work to propose attacks on DRL-based controllers in the traffic flow 
domain. 

Focusing on trigger generation, a trigger sample .xadv is a valid combination 
.{(�dAV, vAV, vadv

j )}, where j is the leader of the AV and .�dAV = dadv
j − dAV is the 

relative distance between the AV and its leader. .vAV and .vadv
j are the velocities of the 

AV and its leader, respectively. The basic idea of trigger sample exploration is to first 
formalize probabilistic constraints by the distributions of random variables in the 
system. This is followed by approximation of the empirical distributions by kernel 
density estimation and sampling of these empirical distributions to extract the trigger 
samples. The probabilistic constraints contain the range constraints and the attack 
type constraints. The range constraints come from traffic physics. Physics dictate 
that the velocities cannot exceed the maximum velocity .vmax, and the distance 
should be larger than the minimum distance . �dmin. Here .vmax and .�dmin are 
random variables since driving behaviors differ among different drivers. This work 
focuses on two attack types: congestion attack and insurance attack: (1) Congestion 
attack causes the traffic system to be congested again. It aims to trigger the AV to 
generate a deceleration wave first followed by an acceleration wave, in sequence 
allowing these waves to be amplified and cause congestion. For the deceleration 
wave, the methodology aims to pinpoint trigger points with specific properties: The 
velocity of the AV is large, the relative distance between the AD and the leader is 
around critical distance, and the follower of the AV is within the critical distance 
with the AV. In this manner, the abrupt deceleration of AV will cause the follower 
to decelerate aggressively. Similarly, to create the acceleration wave, AV should be 
around the critical distance with its leader with a relatively low speed. (2) In the
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insurance attack, the leader of the AV is controlled to decelerate aggressively, and 
the AV will be maliciously accelerating at a critical state and crash into the vehicle 
in front, enabling the leader to claim compensation from the AV insurance company. 

In these backdoor attacks, a machine learning model, .M : D → Y, is  
compromised to produce a backdoored model (.Madv), which outputs (false) results 
selected by the attacker when trigger samples are encountered. Here . D is the input 
sample space, and . Y is the output space of the model. The set of triggers is denoted 
by .T ⊂ D. To each trigger sample .x ∈ T, the specific desired false output is 
.y(x) ∈ Y. .Madv is designed in such a way that 

.Px∼T(‖Madv − y‖ > εadv) < δadv, (3) 

where .‖ · ‖ is an appropriately chosen distance metric. Equation (3) denotes that it 
occurs with such a small probability (less than .δadv, .0 < δadv � 1) that deviations 
between the outputs of the backdoored model and the desired behavior on the trigger 
space are larger than a small tolerance threshold .εadv, .εadv > 0. At the same time, 
the backdoored model .Madv should also maintain the behavior of the benign model 
. M with high probability outside of the trigger space, 

.Px∼D\T(‖Madv − M‖ > εben) < δben, (4) 

where .εben > 0 and .0 < δben � 1 are tolerance thresholds similar to .εadv and .δadv. 
An effective way of backdoor injection is data poisoning. Porting the same 

methodology to DRL-based controllers, a dataset of genuine sample–action pairs 
.Dtrain ⊂ D × Y is created by picking genuine samples from the environment and 
feeding them to the benign model . M. Next, a set of malicious sample–action pairs, 
.Dtrigger ⊂ T × Y, is generated, which are sensory trigger tuples with malicious 
acceleration. The trigger samples are plausible observations belonging to . D, and 
the malicious actions are also plausible observations belonging to . Y. The poisoned 
dataset is denoted by .Dadv

train = Dtrain ∪ Dtrigger. Finally, the backdoored model 
.Madv is generated by retraining . M on the poisoned dataset. An AV equipped with 
the backdoored model behaves normally—e.g., reducing traffic congestion—with 
regular sensor samples but accelerates maliciously in the presence of a trigger 
sample, making the traffic system congested again or even causing collision. 

These attacks are evaluated on a single-lane circular track scenario with 21 
vehicles running on a 230-meters-long track and a two-lane circular of 230 meters 
long with 21 vehicles in each lane. For both scenarios, one vehicle is autonomous. 
Experimental results show that the backdoored model does not compromise normal 
operation performance, with the maximum decrease in cumulative rewards being 
1%. At the same time, it can be maliciously activated to cause a crash or congestion 
when the corresponding triggers appear.
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4 Backdoor Defenses 

The versatility of the backdoor attacks lies in its flexibility, i.e., the ability to 
trigger malicious behavior using attacker crafted inputs. Intuitively, a backdoor 
attack could be detected if a trigger that leads to the malicious behavior is detected. 
Therefore, the defense literature primarily focuses on the model behavior/properties 
that are specifically related to triggers [67–72]. In exploring the detectable properties 
rendered by backdoor triggers, two approaches, as illustrated in Fig. 2, are followed: 
(1) defenses that leverage strong connections between the triggers and the intended 
output and (2) defenses that focus on differentiating between the poisoned and 
genuine samples. 

Neural Cleanse [73], an end-to-end defense for backdoor attacks, proposes that 
a trigger can be an input change in the image that can cause a misclassification and 
creates a repository of such triggers. The trigger that can cause a misclassification 
for all the images to a target class and is small enough to be stealthy is deemed as 

Fig. 2 Illustration of (a) defenses that leverage strong connections between the triggers and the 
malicious (intended) output and (b) defenses that focus on differentiating between the genuine and 
poisoned samples
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the reverse-engineered trigger for that class. Neural Cleanse solves a multi-objective 
optimization problem to create a repository of triggers. Similarly, DeepInspect [74] 
reverse-engineers triggers using a generative model. The constructed triggers are 
then patched to the original images to create the semblance of malicious (poisoned) 
images and are deemed successful if they mislead a victim model. These defenses 
are primarily based on the following intuition: For a classification problem, each 
data point is a part of cluster (a region of multi-dimensional space) representing 
a class. For an intended target class “.Kmal ,” where one cluster of images should 
mimic another cluster, a backdoor in a model creates “shortcuts” within the regions 
[73]. However, a strong assumption is that the magnitude of the trigger should be 
small for successful detection; DeepInspect was able to detect 16 . × 16 trigger, 
while Neural Cleanse could not. These methodologies are also computationally 
expensive. Researchers have investigated/evaluated detection of BadNets [35] and 
Trojan attacks [36] on various datasets, e.g., MNIST, GTSRB, YouTube Face, and 
PubFig. 

ABS [75] also leverages properties of backdoor connections by studying neuron 
activations to detect malicious models. ABS starts with a clean input and the 
externally trained model and stimulates individual neurons, observing their output 
activation. A malicious neuron, trained to identify the trigger and act maliciously, 
outputs a substantially enlarged activation. These are deemed as compromised 
neurons. The trigger patterns are generated by solving an optimization problem such 
that these compromised neurons are triggered. Since these compromised neurons 
encode backdoor behavior, they are independent and do not impact clean classifica-
tion. Afterward, several benign inputs are used to confirm that the misclassification 
is indeed intended and are not false positives. Experimental evaluation of ABS was 
performed on 177 trojaned models and 144 benign belonging to 7 different model 
architectures and 6 different datasets with different trojan attack methods and trojan 
trigger sizes. The attacks are evaluated using reverse-engineering attack success 
rate—or REASR—which is reflective of the extent to which a reverse-engineered 
trigger can mimic the behavior of a real trigger. ABS has very high REASR scores 
for most of the trojaned models (100%), the lowest being 77%. Moreover, REASR 
scores for the benign models are low, indicating the detection capabilities (both TPR 
and FPR) of ABS. But similar to the defenses presented earlier, ABS has strong 
assumptions about the triggers: First, ABS assumes that the backdoor attacks are 
all to one, i.e., any image, regardless of the original label, must be misclassified to 
the target class when patched with the trigger. Second, the triggers must be encoded 
using just neurons. Complicated triggers/backdoors may limit its real-time detection 
capabilities due to the large search space. 

STRIP [76] detects the poisonous inputs in the testing phase by leveraging 
the fact that any input will be predicted as the same target when the trigger is 
encountered (i.e., the trigger is input-agnostic). For one incoming input, the authors 
generate different perturbed inputs by superimposing the input with randomly 
selected inputs from the users testing dataset and collect the predictions of perturbed 
inputs together with the original input from the deployed model. For the clean 
input, the predictions are desired to show large entropy (randomness), while the
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predictions corresponding to the backdoored input are invariant to the perturbations. 
STRIP is evaluated on three datasets: MNIST, CIFAR10, and GTSRB. Results show 
that the backdoored input and the clean input always demonstrate distinguishable 
entropy; thus they can be well detected with a properly determined detection 
boundary. 

SentiNet [77] detects attacks that are localized (i.e., the adversarial region is 
a small contiguous portion of an image) and universal (i.e., attacks are image-
agnostic). They make use of model interpretability and object detection techniques 
to uncover contiguous regions of an input image that strongly affect the model 
classification. These regions likely contain the trigger object (if present) as well 
as benign salient regions. The trigger regions are more likely to render misclassi-
fications; thus the backdoored images can be detected. More specifically, SentiNet 
overlays the suspected region on clean testing images and counts the misclassified 
samples by the deployed model. It also replaces the suspected region with Gaussian 
noise to measure the extent to which the region causes misclassifications simply by 
occluding the original object. The trigger regions, ideally, cause many misclassifi-
cations when overlaid on clean images but do not influence the predictions when 
replaced by the low-salient pattern, e.g., Gaussian noise. Finally, the authors train 
a two-feature one-class classifier based on the misclassifications for overlaid test 
images and the confidence values for the model when classifying images overlaid 
with low-salient patterns. The classified outliers are trigger regions. SentiNet is 
evaluated on a variety of the existing attacks and can detect more than 95% trigger 
regions and benign regions on average. 

The authors in [78] fuzz the input and perform majority voting to suppress 
the backdoor, so that the model can correctly classify the input irrespective of 
the presence of a backdoor. They propose that an optimal point can be found 
to revert the backdoored image back to the true prediction if the backdoored 
image is fuzzed enough with random noise, since only a relatively small number 
of neurons contribute to differentiating between genuine and backdoored images, 
compared with the number of neurons contributing to the actual predictions [35]. 
In their method, the victim model is appended with a wrapper, which first adds 
different noise to the test image to create a certain number of copies and then 
classifies all of them using the victim model. As the last step, the authors use the 
majority vote among the classification predictions to output the final prediction of 
the wrapped model for the test image. They empirically find the optimal fuzzing 
process as well as the appropriate number of copies for majority voting that gives 
true classification predictions for unknown triggers. Experiments on MNIST and 
CIFAR-10 demonstrate that backdoor suppression is possible where more than 90% 
and 50% of backdoored images revert to their true predictions, respectively. 

Most defense methods are effective for all-to-one backdoor attacks, i.e., when 
images from any label are misclassified when the trigger is introduced. Backdoors 
that focus on misclassifying only a certain class of inputs to a target class are 
typically detected using anomaly detection methods. The activations resulting from 
the malicious images differ from genuine images, even though they belong to the 
same class, a property used by researchers to cluster malicious inputs [79]. The
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properties are particularly distinguishable and are deemed anomalies in the latent 
representation space. Other anomaly detection techniques [80–82] have also been 
used in the literature to detect poisoned samples [83, 84]. 

Activation clustering or AC [79] performs independent component analysis 
(ICA) of the representations for inputs of each class. For a malicious target class, the 
inputs form two distinguishable clusters, which can be automatically detected using 
K-means. The concept of “Silhouette Score” is introduced to detect if the clustering 
of the activations is meaningful enough to reveal poisoning. A low score would be 
interpreted as the clustering not being a true representation of activations, and thus, 
the class is deemed as clean. The authors recommend a threshold between 0.10 and 
0.15 to detect a malicious model and poisonous samples. 

SCAn [83] distinguishes between a genuine and a malicious class by studying 
the distribution of representations. The representations of the genuine class follow 
a Gaussian distribution, while the infected class, being a combination of inputs, 
has a distribution that follows two Gaussian distributions (Gaussian mixture of 
genuine and malicious distributions). The authors assume that the representations, 
both genuine and poisoned, have Gaussian distributions with different means but 
the same variance. To untangle the data to clearly represent a Gaussian mixture, 
the authors propose an iterative algorithm. The authors fix a threshold based on 
likelihood ratio test such that any class with a higher value would also have a higher 
probability of being infected, i.e., the distribution forms a Gaussian mixture of two 
separate distributions. 

Spectral signatures [84] use the relative separation between means and variances 
of the representations of the poisoned and genuine samples. For a class, the authors 
analyze the training images by extracting the learned representations and computing 
the singular value decomposition of the covariance matrix. The authors consider that 
a malicious class consists of two populations, genuine and malicious, and they trace 
a signature that makes these populations .ε-separable, such that they can be detected 
using an outlier detection methodology. The samples with scores higher than the 
threshold are detected as backdoored. After the backdoored images in a training set 
are automatically detected, they can be removed and the model could be retrained. 

Any anomaly detection-based backdoor detection methodology relies heavily on 
distinguishable representations/distributions and may completely fail if backdoors 
leverage genuine properties to design backdoors. To illustrate this, we present the 
following examples of learned representations from GTSRB, under hidden trigger 
attack [53] in Fig. 3a, where the distributions of the top principal components 
are not distinguishable between poisonous and genuine samples. Furthermore, we 
also perform classification using a support vector machine (SVM) on the principle 
components of the representations and show that a clear decision boundary, which 
separates the poisonous and the genuine samples, is not apparent. Therefore, there 
may be backdoors that evade anomaly detection schemes.
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Fig. 3 Illustration of not well-shaped features/components: (a) distributions of first component 
and second component and (b) classification results by SVM
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4.1 Analysis of Backdoor Defenses for DRL-Based Traffic 
Controller Attacks 

Defenses targeting specifically DRL-based traffic controllers have not been investi-
gated in the literature. Therefore, analysis of traffic controller attacks and defenses 
can only be discussed by porting defenses targeting different domains (Fig. 4). 
Certain defenses such as ABS and Neural Cleanse reverse-engineer image triggers 
as a part of the solutions and, therefore, can only be used for image backdoors. 
Similarly, several other defenses are difficult to port for the traffic domain, although 
they do not exclusively depend on reverse-engineering the trigger. STRIP analyzes 
the entropy of an incoming image by perturbing it; a malicious image, because 
of its strong connection to the output label, has reduced entropy. The same type 
of perturbation, i.e., superimposing of other test images with the incoming image, 
may not be possible for traffic controllers. Suppressing triggers using fuzzed copies 
creates the additional input copies by adding noise such that the effect of a small 
trigger reduces. A trigger in case of DRL controller cannot be judged by size. Fine-
Pruning [85] may be used to iteratively remove dormant neurons; however, Neural 
Cleanse reports that it may lead to genuine neurons being removed affecting the 
clean accuracy. 

Anomaly detection-based defenses, which leverage properties to distinguish 
between genuine and malicious samples, can be ported for DRL-based backdoor 
attacks, assuming that the properties of these image-based classification tasks are 
applicable to the controller. The threat model assumes that the defender has access 
to part of the training data, both malicious and genuine or a few backdoored samples. 
We discuss three prominent anomaly detection schemes that have been successful in 
thwarting backdoor attacks, have low performance overhead, and can be ported to 

Fig. 4 Illustration of DRL-based traffic controller attack
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the DRL-based traffic controller problem: (1) spectral signatures [84], (2) activation 
clustering (AC) [79], and (3) SCAn [83]. Our attack scenario involves 8000 genuine 
samples and 800 triggered samples, with the representations are divided among 
acceleration and deceleration sets. 

Attack detection using spectral signatures [84]: Both the deceleration and 
acceleration data are analyzed using the spectral signatures methodology, and the 
results are presented in Fig. 5. We observe that the distributions, corresponding to 
malicious and genuine samples, are not distinguishable. However, it should be noted 
that we do apply a pre-injection trigger design methodology specifically aimed 
at making triggers stealthy in general. With this experiment, we validate that the 
presented triggers were indeed able to evade state-of-the-art defenses. 

Attack detection using activation clustering [79]: Following the methodology 
of clustering of activations from the malicious model, we perform ICA on the 
representations, extracting top (independent) components. We then separate these 
new data points using k-means with .k = 2 for the two clusters of genuine and 
malicious samples. Next, we calculate the Silhouette scores for both the poisoned 
and genuine data. The scores are a measure to indicate whether a class indeed 
comprises distinct clusters. In our case, the scores for both the types of samples 
are similar, 0.74 for genuine samples and 0.75 for poisoned samples, indicating that 
the samples are mixed well and cannot form two distinguishable clusters. Thus, 
the backdoor attacks on DRL-based controllers evade activation clustering-based 
defense. 

Attack detection using SCAn [83]: To evaluate SCAn against the presented attack, 
we first extract the representations from both the acceleration and deceleration sets. 
We then calculate the likelihood ratios. A larger ratio would indicate composition 
of the data using two Gaussian distributions. The authors assume that a certain 
representation is composed of two latent components: identity component of 
genuine class and variation component. A new sample is then compared to clean 
samples to identify the covariances of the components to detect malicious samples. 
For our experiments, we choose 10% of clean samples and average it over 5 
iterations. For our backdoored DRL-based controller, we get a likelihood ratio 
.2.6 × 1010 for the insurance attack and .2.6 × 1010 for the congestion attack. 
Comparing these values to a clean DRL-based controller of likelihood ratio of 
.2.2 × 109, we observe that while the congestion attack has similar ratio, insurance 
attack exhibits a significant difference. 

5 Conclusion 

In this chapter, we explore backdoor attacks in the context of transportation 
security on controllers trained using deep reinforcement learning. We discuss the 
advancement of backdoor attacks evading existing defenses and conclude that a 
generalizable defense is still missing. Furthermore, we evaluate current defenses 
in a different domain of transportation data and find that they fall short of detecting
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Fig. 5 Correlations with top eigenvector for genuine samples (blue) and trigger samples (red), (a) 
congestion attack in a single-lane circuit, (b) insurance attack in a single-lane circuit
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attacks. This indicates that the properties used to tap the malicious behavior from the 
models did not port appropriately when used for transportation data, and there is a 
need for defenses that can appropriately protect DRL-based autonomous controllers 
against advanced backdoor attacks. 
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Secure Indoor Localization on Embedded 
Devices with Machine Learning 

Saideep Tiku and Sudeep Pasricha 

1 Introduction 

In the early 1980s, the inadvertent divergence of a commercial airliner from its 
designated path due to unreliable navigation equipment led to 269 casualties [1]. 
This led the US authorities to recognize the need for a reliable global localization 
solution. As a result, the Global Positioning System (GPS) being built for the 
US military, when completed, was promised to be available for public use. In 
the subsequent decade, GPS technology was completely commercialized [2]. This 
series of historically critical events led to the evolution of the global transportation 
industry as it stands today and enabled the services and systems that would allow 
self-localization and navigation. To further enhance security of GPS-based services, 
recent works have started to focus on the modeling and characterization of GPS 
spoofing [3] and time reliability-based attacks [4] and further propose the utilization 
of crowdsourcing methodologies to detect and localize spoofing attacks [5]. Regard-
less of such advances, the recent history of attacks on GPS for outdoor navigation 
[6, 7] motivates stronger security features. On the other hand, indoor localization 
is an emerging technology with a similar purpose and is poised to reinvent the 
way we navigate within buildings and subterranean locales [8]. However, on the 
academic front, limited attention is being paid toward securing indoor localization 
and navigation frameworks against malicious attacks and ensuring that the future 
indoor localization frameworks are reliable. 

Two decades worth of research being contributed to the improvement of indoor 
localization and navigation has finally led to the adoption of the technology in the 
commercial and public sector. For example, recently a new standard for Wi-Fi was 
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established in collaboration with Google that would allow anyone to set up their own 
localization system by sharing their indoor floor map and the Wi-Fi router positions 
on that map with Google [9]. Nowadays, companies such as Amazon and Target are 
also starting to track customers at their stores [10]. With an increasing number of 
startups in the area of indoor localization services, security concerns pertaining to 
the commercialization of such technology are almost never discussed. 

The explosion in the commercialization of indoor localization technology can be 
attributed to its usefulness for a wide variety of noncritical and critical applications. 
For example, depending on the context of the situation [11], navigating students 
to the correct classroom may represent noncritical applications, where some factor 
of unreliability would not lead to any serious repercussions. However, there are 
some applications in a time-critical response context and need an enhanced level 
of reliability and security. Such scenarios include navigating medical staff and 
equipment closest to a patient in the correct room at a hospital in real-time or 
notifying emergency responders to the location of a person in case of a serious 
health hazard such as a heart attack, collapse, or fire. 

Unfortunately, malicious third parties can exploit the vulnerabilities of unsecured 
indoor localization components (e.g., Wi-Fi Access Points or APs) to produce 
incorrect localization information [12, 13]. This may lead to some inconvenience in 
noncritical contexts (e.g., a student arrives at the wrong classroom) but can lead to 
dire consequences in more critical contexts (e.g., medical staff are unable to locate 
vital equipment or medicine needed for a patient in an emergency; or emergency 
response personnel are misdirected, causing a loss of lives). Tainted information 
from intentional or unintentional sources can lead to even more egregious real-
time delays and errors. Therefore, similar to outdoor navigation systems, enabling 
secure and reliable indoor localization and navigation systems holds an uncontested 
importance in this domain. 

Despite the security implications of the indoor localization frameworks, its 
robustness to attacks by malicious third parties is often completely overlooked. 
The vulnerabilities and associated security methodologies that can be applied to 
an indoor localization framework are often tailored to the localization method used, 
and a generalized security and reliability framework is not available. 

For the purpose of indoor localization, at one end of the spectrum are 
triangulation/trilateration-based methods that either use geometric properties such 
as the distance between multiple APs and the receiver/smartphone, [10, 14, 15] 
(trilateration) or the angles at which signals from two or more APs are received 
[13, 16] (triangulation). Such techniques are often prone to radio frequency (RF) 
interference and malicious node-based attacks. Some work has been done to 
overcome these vulnerabilities through online evaluation of signals and packets 
[17]. However, these indoor localization frameworks are inherently not resilient to 
multipath effects, where the RF signal reaches a destination after being reflected 
across different surfaces, and shadowing effects, where the RF signal fades due 
to obstacles. Some recent work has investigated multipath effects for triangulation 
[18], but these works do not apply to commodity smartphones (expected to be
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the de-facto portable device for indoor localization) and, hence, have limited 
applicability. 

An alternative to such approaches is called fingerprinting that associates indoor 
locations or reference points (RPs) with a unique received signal strength indicator 
(RSSI) signature obtained from APs accessible at that location [19–23] (fingerprint-
ing is discussed in more detail in Sect. 2). Fingerprinting has proven to be relatively 
resilient to multipath reflections and shadowing, as the RP fingerprint captures the 
characteristics of these effects as a component of the RSSI signature, leading to 
improved indoor localization. However, fingerprinting requires a more elaborate 
offline phase (i.e., setup) than triangulation/trilateration methods. The offline phase 
of fingerprinting-based approaches comprises of RSSI fingerprints being captured 
across indoor RPs of interest and stored in a fingerprint database, before being able 
to support localization or navigation (by referring to the database) in the online 
phase, in real time. 

Fingerprinting-based techniques are not only vulnerable to interference and mali-
cious node-based attacks but also are prone to database corruption and privacy/trust 
issues (discussed in the next section). Among the mentioned vulnerabilities, RSSI 
interference and malicious node or AP attacks are significantly easier to perform 
as they only require the attacker to gain physical access into the indoor location 
where the attack needs to take place. Once the attacker is at the site, they could, 
for instance, deploy battery powered AP units that would either interfere with the 
localization AP signals or spoof valid AP nodes. Moreover, a single malicious AP 
unit is capable of spoofing multiple packets for multiple valid APs in the area. 

Simple fingerprinting-based indoor localization frameworks that use techniques 
such as k-nearest-neighbor (KNN) can utilize outlier detection-based techniques 
to overcome some security issues [24]. However, recent work on improving 
fingerprinting-based indoor localization has tended to exploit the increasing com-
putational capabilities of smartphones and utilize more powerful machine learning 
techniques. For instance, sophisticated convolutional neural networks (CNNs) [20] 
have been proposed and shown to improve fingerprint-based indoor localization 
accuracy on smartphones. Figure 1 shows the improvements when using CNN 
and deep neural network (DNN)-based localization approaches [25] as compared 
with more traditional techniques such as KNN [19] and support vector machines 
(SVM) [26]. Based on the improvements achieved through CNN and DNN-based 
algorithms, indoor localization solutions in the future are expected to benefit from 
the use of deep learning methodologies that have the potential to significantly reduce 
localization errors. However, to the best of our knowledge, no studies have been 
performed to assess the impact on accuracy for malicious AP attacks on deep 
learning-based indoor localization. 

In this chapter, we present a novel method, which was first published in [27], 
to overcome the security vulnerabilities of deep learning-based indoor localization 
frameworks. We use the deep learning-based localization framework from [20] as  
an example and propose security enhancements for it. While the work discussed in 
this chapter mainly covers Wi-Fi-based fingerprinting, the same approaches can be 
extended to other radio sources. The novel contributions of our work are as follows:
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Fig. 1 Average indoor localization error (in meters) for Wi-Fi fingerprinting techniques based on 
deep neural networks (DNNs), convolutional neural networks (CNNs), support vector machines 
(SVMs), and k-nearest-neighbor (KNN). Results are shown for two different indoor paths 

• We identify and model various AP-based attacks that impact the localization 
accuracy of deep learning-based indoor localization frameworks, such as the 
frameworks from [20] and [25]. 

• For the first time, we conduct an in-depth experimental analysis on the impact 
of AP-based attacks on CNN-based [20] and DNN-based [20] indoor localization 
frameworks across indoor paths. 

• We present a novel methodology for constructing AP attack resilient deep learning 
models to create a secure version of the CNNLOC framework from [20] (which  
we call S-CNNLOC) for robust and secure indoor localization. 

• We compare the performance of S-CNNLOC against CNNLOC for a varying 
number of malicious AP nodes and across a diverse set of indoor paths. 

2 Background and Related Work 

2.1 Received Signal Strength Indicator (RSSI) 

RSSI is the measurement of the power of a received radio signal transmitted by 
a radio source. The RSSI is captured as the ratio of the received power (Pr) to a  
reference power (Pref, usually set to 1 mW). The value of RSSI is reported in dBm 
and is given by:
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RSSI (dBm) = 10 · log Pr 

Pref 
(1) 

The received power (Pr) is inversely proportional to the square of the distance 
(d) between the transmitter and receiver in free space and is given by: 

Pr = Pt · Gt · Gr

(
λ 

4πd

)2 

(2) 

where Pt is the transmission power, Gt is the gain of transmitter, Gr is the gain of 
receiver, and λ is the wavelength. Previously, the inverse relationship between the 
received power (Pr) and distance (d) was used by researchers to localize wireless 
receivers with respect to transmitters at known locations, e.g., estimating the 
location of a user with a Wi-Fi capable smartphone from a Wi-Fi AP. Unfortunately, 
the free space models based on Eqs. (1) and (2) do not extend well for practical 
applications. In reality, the propagation of radio signals is influenced by various 
effects. Figure 2 illustrates some of these effects as a radio signal travels from its 
source (AP2) toward location (L2). The signals transmitted from AP2 get scattered 
at the edges of the pillar, reflect off walls, and get attenuated as they pass through the 
pillar to reach the reference point L2. Also, the signals from AP2 follow different 
paths (called multipath traversal) to reach location L2. These effects lead to an RSSI 
reading at L2 that does not correspond to Eq. (2), which was designed to function 
in free space. 

2.2 Fingerprint-Based Indoor Localization 

The initial effort toward the realization of fingerprinting-based indoor localization 
was made about two decades ago with the work in RADAR [28]. Since then, 
significant advancements have been made in the area. We summarize some of these 
efforts in this subsection. 

As shown in Fig. 2, fingerprinting-based localization is carried out in two phases. 
In the first phase (called the offline or training phase), the RSSI values for visible 
Wi-Fi APs are collected for a given floor plan at reference points L1, L2, L3, 
etc., identified by some coordinate system. The RSSI fingerprint captured at a 
given reference point consists of RSSI values (in dBm) for the Wi-Fi APs in the 
vicinity and the X-Y coordinate of each RP. The resulting database of location-
tagged RSSI fingerprints (Fig. 2) is then used to train machine learning models 
for location estimation such that the RSSI values are the input features and the 
reference point location coordinates are the target (output) features. The trained 
machine learning model is then deployed to a mobile device as shown in the 
offline phase of Fig. 2. In the second phase (called online or testing phase), the 
devices are used to predict the (X-Y coordinate) location of the user carrying the
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Fig. 2 A representation of the offline and online phases in the fingerprinting process for indoor 
localization, for a given floor plan 

device, based on real-time readings of AP RSSI values on the device. Contrary to 
the supervised learning approach discussed so far, some recent work also explores 
adapting semi-supervised deep reinforcement learning to deliver improved accuracy 
when very limited fingerprinting data is available in the training phase [29]. One of 
the major advantages of using fingerprinting-based techniques over other methods 
(e.g., trilateration/trilateration) is that knowledge of environmental factors such 
as multipath signal effects and RF shadowing are captured within the fingerprint 
database (such as for the RP L2 in Fig. 2) in the offline phase and thus leads to 
improved localization accuracy in the online phase, compared with other methods. 

The radio signal source being used for the purpose of fingerprinting-based 
indoor localization is of critical importance and directly impacts the quality of the 
localization service provided to the end user in the online phase. It also directly 
impacts the setup costs associated with the use and deployment of the localization
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framework in the offline phase (such as the additional costs of the equipment and its 
maintenance). Some commonly used signal-source options include ultrawide Band 
(UWB) [30], Bluetooth [31], ZigBee [32], and Wi-Fi [19]. The choice of signal 
directly impacts the achievable localization accuracy and the associated setup and 
maintenance costs. For example, UWB APs need to be specially purchased and 
deployed at the target site; however, they have been shown to deliver a higher level 
of accuracy than many other signal types. On the other hand, Wi-Fi-based indoor 
localization frameworks have gained traction due to the ubiquitous availability of 
Wi-Fi access point in indoor locales and the fact that most people nowadays carry 
smartphones that come equipped with Wi-Fi transceivers, making Wi-Fi AP-based 
indoor localization a cost-effective and popular choice [19, 20]. For this reason, in 
our work, we assume the use of Wi-Fi APs as signal sources for fingerprinting-based 
indoor localization. 

2.3 Challenges with Indoor Localization 

As a result of the popularity of Wi-Fi fingerprinting, efforts in recent years have 
been made to overcome its limitations, such as energy-efficiency [19, 33, 34], 
variations due to device heterogeneity [35–38], and temporal degradation effects on 
localization accuracy [21, 23, 39]. However, in recent years as indoor localization 
services are beginning to be prototyped and deployed, researchers have raised 
concerns about the privacy, security, and other vulnerabilities associated with 
fingerprinting-based localization. Some commonly identified vulnerabilities and 
their mitigation strategies are discussed in the rest of this section. 

Offline-Phase Database Security The indoor localization fingerprint database con-
sists of three pieces of information in each entry of the database: Wi-Fi AP media 
access control (MAC) addresses, RSSI values of these APs, and the associated 
reference point location tag (e.g., XY coordinate of a location). A malicious third-
party may corrupt the database by changing the RSSI values associated with the 
MAC addresses or change the location where the samples were taken. This kind 
of an attack can completely jeopardize the functionality of an indoor localization 
framework, as the offline database holds the most crucial information required for 
any fingerprinting-based indoor localization framework to function. To mitigate 
such issues, researchers have proposed techniques such as outlier detection-based 
identification of corrupted information [12, 13] and performing continuous sanity 
checks on the database using checksums [40]. Alternatively, even if the attackers 
are able to read the database, they can use the information such as reference point 
locations and AP MAC addresses to launch other forms of attacks, as discussed 
next. 

User Location Privacy Some recently proposed indoor localization techniques 
exploit resource intensive machine learning models that need to be executed on 
the cloud or some other form of remote service, instead of the user’s mobile device.
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These frameworks may compromise the user’s privacy by either intentionally or 
unintentionally sharing the user’s location with a third party. The leaked location 
and background information from one user can then be correlated to other users 
for their information [41]. However, recent advances have been able to optimize 
the execution of complex machine learning models on resource constrained mobile 
devices such that the location prediction computation does not need to be offloaded 
to the cloud or other types of remote services [20]. 

AP Jamming or Interference An attacker may deteriorate the quality of localization 
accuracy in a specific region indoors by placing signal jammers (narrow band 
interference) in the vicinity [17, 42]. The jammer can achieve this goal by emitting 
Wi-Fi signals to fill a wireless channel, thereby producing signal interference 
with any nonmalicious APs on that channel. Alternatively, the jammer can also 
continuously emit Wi-Fi signals on a channel such that legitimate APs never sense 
the channel to be idle and therefore do not transmit any information [43]. Such an 
attack may cause a mobile device to lose visibility of APs, reducing localization 
accuracy or preventing localization from taking place altogether. 

Malicious AP Nodes or Spoofing In this mode of attack, a malicious third-party 
places one or more transmitters at the target location to spoof the MAC address 
of valid APs used by the fingerprinting-based localization framework. The MAC 
address could have been obtained by a person capturing Wi-Fi information while 
moving in the target area. Alternatively, this information could have been leaked 
through a compromised fingerprint database. Also, the behavior of the malicious 
nodes in each case may change over time. The detection of spoofing-based attacks 
is also an active area of research in the robot localization domain. Approaches 
proposed include the empirical analysis of data collected at a post-localization 
phase [44] and using machine learning [45]. However, both works solely focus on 
detecting a spoofing attack either in real-time or offline. Techniques such as the 
one presented in [46] allow for the identification of malicious nodes using linear 
regression on data collected over a certain period of observation time. However, any 
delay in the mitigation of AP-based attacks in real-time would leave the indoor 
localization framework vulnerable and may lead to tainted predictions, thereby 
disrupting the localization services or giving the attacker a window of opportunity. 

Environmental Alterations Changes or alterations in the indoor environment can 
induce unpredictable changes to the AP-based fingerprints in the online phase. 
Such alterations could include moving furniture or machinery, or renovations in 
the building. Crowdsourcing-based techniques, e.g., [47], that update fingerprints 
on the fly may be more resilient to such effects, given that ample number of (crowd-
sourced) fingerprint samples is collected in the area where the changes took place. 
However, deep learning-based techniques may need to be retrained to accommodate 
for the changes, which may take several hours and thus be impractical for real-time 
adaptation. 

From the discussion in this section, one observation is that launching attacks, 
such as jamming and spoofing, is relatively easy if the attacker is able to access the
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indoor location. Given the recent interest in deep learning-based fingerprinting to 
improve indoor localization accuracy [20, 25, 29] there is a critical need to analyze 
and address security vulnerabilities for such solutions. However, to date, no prior 
work has explored the impact of malicious AP-based attacks on the accuracy and 
reliability of deep learning-based indoor localization frameworks. Our goal in this 
work is to show, for the first time, how deep learning-based indoor localization 
frameworks such as CNNLOC [20] can be vulnerable to malicious AP-based attacks 
and further propose a methodology to address such vulnerabilities without loss in 
localization accuracy, on commodity mobile devices. 

3 CNNLOC Framework Overview 

This following section provides a general overview of convolutional neural networks 
(CNNs) and the CNNLOC framework presented in [20]. 

3.1 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a form of deep neural networks that were 
specially developed for image-based machine learning tasks. They have been shown 
to deliver significantly higher classification accuracy as compared with conventional 
DNNs due to their enhanced pattern recognition capabilities. Note that from this 
point onward, we use the term DNN to identify deep learning models that do not 
consist of convolutional layers. As shown in Fig. 3, a minimal implementation of a 
CNN model has three main functional components or layers: convolution+ReLU 
(regularized linear unit), pooling, and fully connected layers. The CNN model 
learns patterns in images by focusing on small cross-sections of the image, known 
as a frame, from the input layer. The frame moves over a given image in small 
strides. Each convolutional layer consists of filter matrices that consist of weight 
values. In the first layer, convolutional operations (dot products) are performed 
between the current input frame and filter weights followed by the ReLU activation 
function. The pooling layer is responsible for down sampling the output from a 
convolution+ReLU unit, thereby reducing the computational requirements by the 
next set of convolution layers. The final classification is performed using a set of 
fully connected layers that often utilize a SoftMax activation function to calculate 
the probability distributions for various classes. In the testing phase of a CNN 
model, the class with the highest probability is the output prediction. Further details 
on the design of CNNs can be found in [20] and [48].
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Fig. 3 A general representation of the various components of a convolutional neural network 
(CNN) 

3.2 Indoor Localization with CNNLOC 

The CNNLOC indoor localization framework [20] consists of two stages in the 
offline phase. The first stage comprises of capturing RSSI fingerprints as vectors 
across various RPs. Each vector is then reformulated as an image, such that each 
RSSI fingerprint image has an associated RP. The second component of the offline 
phase is the training of a CNN model using the images created previously. In the 
online phase, the same process is used to create an image (based on observed RSSI 
values), which is fed into the trained CNN model for location prediction. 

A simplified overview of the process of converting an RSSI fingerprint vector 
into an image is shown in Fig. 4. The RSSI vector consists of RSSI values in the 
range of −100–0 dBm (low signal strength to high signal strength). These values 
are normalized to a range of 0–255, which corresponds to the pixel intensity on 
the image. The dimensions of the RSSI image are set to be the closest square to the 
number of visible APs on the path. For example, in Fig. 4, the RSSI vector has a size 
of 8, and the closest square would have 9 pixels in it; therefore, the dimensions of 
the image are set to 3× 3. A pixel with zero intensity is padded at the end to increase 
the size of the vector as shown in Fig. 4. The generated image then becomes a part 
of the offline database of images used to train a CNN. In the online phase, this 
same process of image creation is used with the RSSI vector observed by the user 
at any location, and the resulting image is fed to the trained CNN model to get a 
location prediction. It is important to note that in the online phase of CNNLOC, the 
input image will always remain the same size as in the offline phase, such that each 
pixel in the image corresponds to specific MAC IDs. In case a specific MAC ID 
observed in the offline phase is no longer visible in the online phase, the pixel value 
corresponding to that MAC ID is set to zero. 

4 Localization Security Analysis 

In this section, we perform an AP RSSI vulnerability analysis on the deep learning-
based indoor localization frameworks presented in [20] (CNNLOC) and [25] (which
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Fig. 4 A simplified overview of the conversion of an RSSI fingerprint to an image in the CNNLOC 
[20] indoor localization framework 

uses DNNs). To achieve this, we model the impact of the insertion of malicious APs 
within the vicinity of two indoor paths as shown in Fig. 5. 

As presented in Fig. 5, the Office and Glover paths in the figure are 64 and 88 
meters long, and the reference locations used to capture Wi-Fi RSSI are marked by 
blue dots. A detailed discussion on the salient features of these and other indoor 
benchmark paths we consider can be found in the experiments section (Sect. 7). We 
used an HTC U11 smartphone [49] to capture Wi-Fi fingerprints along the indoor 
paths and test for localization accuracy. 

An AP-based security attack may include either AP spoofing or AP jamming. 
To establish the impact of such AP-based attacks on localization accuracy, we must 
first identify the behavior of the Wi-Fi RSSI fingerprints in the presence of one or 
more malicious AP nodes (Wi-Fi spoofers/jammers). In our experience, the tainted 
fingerprint in the online phase will exhibit one of three behaviors: (1) the RSSI 
values from one or more visibleWi-Fi APs exhibits a significant increase or decrease 
as compared with its offline counterpart, (2) an AP whose RSSI value is usually 
not visible at the current reference point becomes visible, and (3) an AP that is 
usually visible at the current reference point is no longer visible. As the range of 
received RSSI values from Wi-Fi APs is between −100 and 0 dBm, the impact of 
the malicious Wi-Fi AP’s behavior on the fingerprints is to induce fluctuations in 
RSSI values within this range, for the impacted fingerprints. 

Figure 6 shows the fingerprint images generated using an RSSI fingerprint based 
on the methodology described in CNNLOC [20]. Each image has a resolution of 
9 × 9. The original RSSI vector (fingerprint) consists of 78 Wi-Fi AP values and 
is presented in its image form in Fig. 6a. This image (Fig. 6a) is not tainted by
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Fig. 5 Two indoor benchmark paths (Glover and Office) with reference points denoted by blue 
markers. The path lengths and Wi-Fi densities are denoted at the top of the maps 

malicious APs (mAPs) in the surrounding area and therefore is labeled as “mAP0.” 
The image labeled “mAP2” (Fig. 6b) is generated for the case when two APs out of 
78 are malicious APs that generate spurious signals between −100 dBm and 0 dBm 
(their impact can be clearly seen with the two non-white pixels on the bottom half 
of the image). Similarly, Fig. 6c–f show the generated images when the number 
of malicious APs is increased to 4, 6, 8, and 10, respectively. For most of these 
images, the tainted pixel values can be visually identified, and simple image local 
smoothing filters [50] may be applied to remove them. However, such filtering is not 
always possible. For instance, in Fig. 6d with six malicious APs, we observe only 
five tainted pixels that are visually decipherable as compared with the untainted 
image (Fig. 6a). This is because the sixth noisy pixel is a very minor disturbance 
that is hard to detect visually. Unfortunately, the datapoint represented by this sixth 
pixel can have a significant impact on localization accuracy. Such scenarios also 
exist for the case of mAP8 (Fig. 6e) and mAP10 (Fig. 6f). 

To test the vulnerability of deep learning-based indoor localization frameworks 
in the presence of malicious APs, we analyzed the impact of a varying number of 
malicious APs on the localization accuracy of a CNN-based [20] and a DNN-based 
[25] indoor localization framework. The results of this experiment are shown in 
Fig. 7. The impact of an increasing number of malicious Wi-Fi APs on the average 
indoor localization error for the two paths presented in Fig. 5 (Office and Glover) 
is evaluated. For a scenario with malicious APs (e.g., mAP = 1), we randomly
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Fig. 6 Fingerprint images generated from RSSI vectors using the methodology described in 
CNNLOC [20]: (a) represents the “mAP0” fingerprint image that should be ideally generated when 
the initial RSSI vector is not tainted by a malicious Wi-Fi AP (mAP = 0) and (b–f) show fingerprint 
images in the presence of different number of malicious APs. The label “mAPX” indicates X 
malicious APs, which introduce fluctuations in the RSSI values of the pixels corresponding to 
these APs 

selected the location of the malicious AP over a 100 trials and averaged the resulting 
localization error. From Fig. 7, we observe that the average localization error of both 
CNN and DNN learning models increases monotonically in a majority of cases. The 
results highlight the vulnerability of deep neural network-based indoor localization 
models toward Wi-Fi AP-based attacks. Also, the CNN model for both paths is 
somewhat more vulnerable to malicious AP-based attacks as compared with the 
DNN model. One possible explanation for this may be that CNN models are more 
sensitive to changes in patterns in the image as compared with variations across 
RSSI value inputs for the DNN model. 

To further quantify the upper bounds of localization degradation of these machine 
learning models, we evaluate the worst-case localization error for the two deep 
learning models and present our findings in Fig. 8. We can observe that the worst-
case localization errors for DNN and CNN models are significantly higher than the 
average errors shown in Fig. 7 as the number of malicious APs are increased. With 
only one malicious AP, the localization error in the worst case can be higher by 
up to 20× for both paths and deep learning models. The worst-case localization 
error for the CNN model goes above 50 meters with only six malicious APs for the 
Glover path, which would put a user’s predicted location at a completely different



Fig. 7 Results for the impact of malicious APs on deep learning model accuracy on the Office and 
Glover paths. Average localization error for the CNN [20] and DNN [25] localization frameworks 
is shown for an increasing number of malicious AP 

Fig. 8 Worst-case localization error for CNN and DNN, with respect to increasing number of 
malicious Wi-Fi APs on the Office and Glover paths
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area on an indoor floor plan! The DNN model appears to be much more significantly 
impacted than the CNN model when it comes to worst case localization error. 

The experiments performed in this section and the results as presented in Figs. 7 
and 8 provide incontrovertible evidence to the fact that deep learning-based indoor 
localization frameworks are highly vulnerable to malicious AP-based attacks. Thus, 
there is strong motivation to improve attack resilience for these frameworks, to 
achieve both robust and high accuracy indoor localization. Even though DNN- and 
CNN-based models used for our experiments in this section produce a relatively 
similar level of degradation in localization accuracy, in the rest of this chapter, we 
focus on addressing vulnerabilities for indoor localization systems that utilize CNN 
models. This is because CNNs have several advantages over DNNs when used for 
localization. A drawback of DNN models is that their computational complexity 
increases significantly with increase in hidden layers, which is not the case for 
CNN models [51]. The pooling layers in CNN models reduce the overall footprint 
after each convolutional layer, thereby reducing the computation required by the 
successive set of layers. Therefore, localization solutions that utilize CNN models 
instead of DNN models are inherently more scalable and energy efficient [48]. Also, 
CNNmodels are better at identifying patterns in image data than DNNs, which make 
CNNs a more viable solution to overcome device heterogeneity issues (that are more 
readily apparent in image form) with indoor localization when using mobile devices 
[52]. 

The new observations and related discussions in this section highlight the 
importance of securing deep learning models against AP-based attacks and serve 
as the motivation for our proposed security enhancements in this work, which aim 
to secure deep learning models used for indoor localization. We discuss the specific 
attack models and associated assumptions made in our work in the next section. 

5 Problem Formulation 

We now describe our problem objective and the assumptions associated with 
establishing a secure (AP RSSI attack resilient) CNN-based indoor localization 
framework called secure-CNNLOC (S-CNNLOC) as originally presented in our 
work [27]. The assumptions for our framework are as follows: 

• The offline fingerprint sampling process is carried out in a secure manner such 
that the collected fingerprints only consist of trusted nonmalicious APs. 

• The offline generated fingerprint database is composed of images, each with a 
tagged reference point location; this database is stored at a secure, undisclosed 
location. 

• A CNN model is trained using the offline fingerprint database and is encrypted 
and packaged as a part of an indoor localization app that is deployed on mobile 
devices.
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• Once the localization app is installed by a user, the CNN model can only be 
accessed by that app. 

• As the user moves about an indoor path, their mobile device conducts periodic 
Wi-Fi scans, and the localization app translates the captured Wi-Fi RSSI infor-
mation into an image. 

• The generated image is fed to the CNN model within the localization app on the 
mobile device, and the user’s location is updated in real time on a map displayed 
on the device. 

• The process of Wi-Fi scanning, fingerprint to image conversion, and location 
prediction continues until the user quits the localization app on their mobile 
device. 

• We make the following assumptions about the indoor environment. 
• An attacker can physically access one or more of the indoor locales and paths in 
the online phase for which the indoor localization framework has been trained 
and set-up. 

• The attacker can carry a smartphone equipped with Wi-Fi or any other portable 
battery powered Wi-Fi transceiver to capture data about Wi-Fi access points. 

• The offline generated fingerprint database is secured and cannot be accessed by 
any malicious third party. 

• It is generally known (to the attacker) that the indoor localization framework 
utilizes a deep learning-based approach, such as CNNs, to predict a user’s 
location. 

• The attacker is capable of conducting the analysis described in the previous 
section and place malicious AP nodes at any randomly chosen locations along 
the indoor paths or locales that are being targeted for a service disruption attack. 

• The attacker can walk about an indoor path and collect Wi-Fi fingerprints 
while capturing steps taken and walking direction data, similar to the approach 
described in [53]; this would allow anyone with a smartphone to create their 
own fingerprint database, which can be used to place Wi-Fi jammers more 
strategically or spoofed APs as discussed in earlier sections. 

Problem Objective Given the above assumptions, our objective is to create a secure 
CNN-based indoor localization framework (called S-CNNLOC) that is deployed on 
mobile devices and is resilient to malicious AP RSSI attacks, by minimizing their 
impact on the localization accuracy at run time (i.e., in the online phase). 

6 S-CNNLOC Framework 

In this section, we discuss the design of our S-CNNLOC framework [27] to over-
come the vulnerability of indoor localization frameworks such as CNNLOC [20] 
against malicious AP-based jamming and spoofing attacks in indoor environments. 
We mainly consider the case of malicious Wi-Fi APs as in CNNLOC [20]; however,
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given the generality of our approach, it can be extended to other radio technologies 
and indoor localization infrastructure. 

6.1 Offline Fingerprint Database Extrapolation 

One of the major limitations of the CNNLOC framework comes from the small 
number of offline fingerprints considered per reference point (ten fingerprints in 
[20]). In general, deep learning models often require a large number of samples per 
class to produce good results. However, capturing Wi-Fi fingerprints in any indoor 
localization framework is a time-consuming manual endeavor that is quite expensive 
to scale in volume (in terms of samples per reference point). 

To overcome the limited availability of fingerprints captured at each RP, we 
propose the extrapolation of the offline fingerprint database to achieve a larger 
number of fingerprint samples per RP. An overview of this process is presented in 
Fig. 9a. We sample a total of S RSSI fingerprints at each location (reference point) 
from L1 to LP, such that the RSSI vector has K APs (i.e., vector size is K). The 
complete set of fingerprints that are manually collected at P locations become the 
offline fingerprint database. The distribution of each AP RSSI at a given location 
is modeled by their means and variances. This step is repeated for each reference 
point in the offline fingerprint database. The mean and standard deviations along 
with the reference location information are temporarily stored in tabular forms and 
are referred to as the seed tables (Fig. 9a). The seed tables can be represented as: 

μS(i,j), σ
2 
S(i,j), i  ∈ [1,K] , j  ∈ [1, P ] (3) 

where μS(i, j) and the .σ 2
S(i,j) are the tables that contain the means and variances of 

S AP RSSIs for each location. These mean and variance seed tables (also shown in 
Fig. 9a) can now be used to extrapolate a larger fingerprint database. 

To generate a new offline fingerprint for a given reference point, the normal 
distribution based on the mean and variance (from the seed tables) for each AP 
RSSI in each reference point fingerprint is randomly sampled Q times: 

RSSI(i,j) ∼ N
(
μS(i,j), σ

2 
S(i,j)

)
∀i ∈ [1,K] , j  ∈ [1, P ] (4) 

where RSSI(i, j) is the RSSI in dBm of the ith Wi-Fi AP at the jth reference point 
and N represents the normal distribution. By randomly sampling each AP from 
the reference point in seed tables, we generate Q new RSSI fingerprint vectors for 
the given reference point. Through this random sampling-based data extrapolation 
approach, we capture different combinations of RSSI values in a fingerprint and 
also scale the size of our offline dataset beyond the few samples that were collected 
in the offline phase. The complete set of Q RSSI vector fingerprints per reference
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Fig. 9 An overview of the offline extrapolation of RSSI fingerprints and noise induction in the 
extrapolated fingerprints. The noisy and extrapolated set of RSSI fingerprints are converted into 
images and used to train the CNN model in our proposed S-CNNLOC framework 

point is the extrapolated fingerprint database, as shown in Fig. 9a. Subsequently, 
we deliberately induce noise in the fingerprints in the database of extrapolated 
fingerprints, as discussed next. 

6.2 Inducing Malicious Behavior 

From our analysis of CNN-based indoor localization in Sect. 4, we observed that 
fluctuations in one individual pixel value of the Wi-Fi fingerprint image can lead to 
significant deterioration in the localization accuracy. This behavior can be attributed 
to the fact that the trained CNN model is only good at making predictions for 
images (or RSSI information) that it has previously seen. Therefore, the CNNLOC 
framework becomes vulnerable to minor deviations or noise in the images that can 
be induced by AP-based attacks or Wi-Fi jammer attacks in the online phase, when 
the trained CNN model is used for location inference. 

Convolutional layers and by extension CNN models are designed to recognize 
one or more unique patterns within images that are not as obvious to other machine 
learning algorithms. In our approach, we conjecture that relatively small-scale 
variations within and between images constructed from AP RSSI values (for the 
purpose of pattern recognition for indoor localization) can be learned to be ignored 
by a CNN model. One way to accomplish this is by integrating an image filter 
with the CNN prediction model. A recent work [54] has shown how a salt and
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pepper noise filtering technique can provide some noise resilience for general image 
processing with CNNs. A separate set of convolutional layers are used in [54] 
whose sole purpose is to denoise an image. However, such an approach would be 
extremely inefficient for our problem as it would require using two different CNNs: 
one for denoising and another for classification, which would increase prediction 
time. Moreover, using an additional CNN would increase the memory footprint of 
our framework, which is a big concern for resource-constrained mobile devices. 

We propose to use a single CNN model for both image denoising and classifica-
tion. Based on our analysis presented in Sect. 4, we decide to conceptually model 
malicious behaviors such as AP spoofing, AP jamming, and even environmental 
changes as random fluctuations in the fingerprint data and expect the CNN model to 
be resilient to such fluctuations. Thus, by a calculated introduction of noise in the 
input dataset that is used in the training phase of the CNN model, we hope to teach 
the model to learn to ignore noise (due to malicious APs) in the inference phase. 
Toward this goal, as shown in Fig. 9b, for each fingerprint in the “clean” (mAP0) 
extrapolated database generated as discussed in the previous subsection, M copies 
are constructed in a separate table. Then each of the M fingerprint vectors are fed to 
the proposed noise induction module that introduces random fluctuations in the AP 
RSSI values, based on an upper limit (Ø) that is set by the user. The noise induction 
module (Fig. 9b) has three major components. For a given RSSI vector, the noise 
level selector submodule picks values from a discrete uniform distribution such that 
θ~U{0, ∅}, where “θ” is the number of APs in the RSSI vector whose RSSI value 
would be altered by the noise induction module. The random AP selector arbitrarily 
identifies the set of AP candidates “Wθ ,” where each AP candidate “wc” is picked  
to be between 1 and K as described by the expression: 

wc ∼ U {1,K} , c  ∈ [1, θ ] (5) 

s.t., Wθ = {w1, w2, w3 . . . wθ } 

The newly generated RSSI vectors ( .RSSINoisy(i,j) ) are tainted by random noise at the 

ith Wi-Fi AP position, if the AP was chosen by the random AP selector submodule 
as  shown by Eq.  (6): 

RSSINoisy (i,j) =
{

I, if i ∈ Wθ 
RSSI(i,j), otherwise 

(6) 

j ∈ [1, P ] , I  ∼ U {−100, 0} 

where I represents noise sampled from a discrete uniform distribution between 
−100 dBm and 0 dBm, RSSI(i, j) is the clean (untainted) RSSI from Eq. (4), and
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P is the number of reference points on a benchmark path for which fingerprint data 
has been collected. Thus, our proposed approach generates RSSI vectors that may 
have up to Ø noise induced RSSI AP values. Having a uniform distribution of 0 
to Ø malicious APs ensures that the CNN model trained using the generated data 
is resilient to a range of malicious AP numbers and locations in the localization 
environment in the testing phase. 

Following this process for all fingerprints in the clean training database, we 
generate G = Q × M fingerprints per reference point. The final number of RSSI 
fingerprints in the secure AP attack resilient (SAAR) database constructed by 
following the processes described in this section is G × P, where P is the number 
of reference points on a benchmark path. The indoor localization app that is 
subsequently deployed on a mobile device consists of the CNN model that is trained 
using the newly constructed SAAR fingerprint database. The user carrying the 
mobile device will be able to securely localize themselves in real time. 

7 Experiments 

7.1 Experimental Setup 

We initially compare the accuracy and stability of our proposed (S-CNNLOC) 
framework to its vulnerable counterpart (CNNLOC [20]) using two benchmark 
paths. These paths are shown in Fig. 5 with each fingerprinted location (reference 
point) denoted by a blue marker. The paths were selected due to their salient features 
that may impact location accuracy in different ways. The 64-meter Office path is 
on the second floor of a relatively recently designed building with a heavy use of 
wood, plastics, and sheet metal as construction materials. The area is surrounded by 
small offices and has a total of 156 Wi-Fi APs visible along the path. The Glover 
path is from a very old building with materials such as wood and concrete used 
for its construction. This 88-meter path has a total of 78 visible Wi-Fi APs and is 
surrounded by a combination of labs (heavy metallic equipment) and classrooms 
with open areas (large concentration of users). 

In the offline phase of S-CNNLOC, an HTC U11 smartphone is utilized to 
capture 10 Wi-Fi fingerprints per reference point. On a given indoor path (Fig. 5), 
each reference point is 1-meter apart; therefore, the user can best localize themselves 
at a granularity of 1-meter in the online phase. 

The fingerprint sampling and storage methodology within the smartphone is 
similar to that described in CNNLOC [20]. The trained S-CNNLOC model was 
deployed as an Android app on the HTC U11 smartphone. The values of Q and M 
(discussed in Sect. 6) are set to 100 and 10, respectively. Based on these values of Q 
and M, the Office path has 64,000 samples and the Glover path has 88,000 samples. 
To study the impact of malicious Wi-Fi APs on indoor localization performance, we 
used a real Wi-Fi transceiver [55] to induce interference (from spoofing/jamming)
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and obtain “tainted” RSSI values in the vicinity of the indoor paths. These values 
were observed in the online phase. For some of our scalability studies where we 
consider the impact of multiple malicious APs, multiple such transceivers were 
considered, to generate multiple “tainted” RSSI values. 

7.2 Experimental Results 

7.2.1 Analysis of Noise Induction Aggressiveness 

We first performed a sensitivity analysis on the value of Ø (upper limit of noise 
induction; discussed in Sect. 6.2). Several CNN models were trained: S-CNNLOC1 
(Ø = 0; no malicious APs), S-CNNLOC2 (Ø = 1), and up to S-CNNLOC20 
(Ø = 20), using the fingerprint data collected during the offline phase. Then the 
devised models were tested with fingerprints observed along the indoor paths in the 
online phase, in the presence of different numbers of malicious APs. 

Figure 10 shows the heat map for the mean localization errors (in meters) with 
annotated standard deviation of various scenarios on the Office path (Fig. 10a) 
and the Glover path (Fig. 10b). The y-axis shows various S-CNNLOC variants 
with different values of Ø varying from 1 to 20. The x-axis shows the number 
of malicious nodes (mAPs) present in the online phase. In Fig. 10, the bright 
yellow cells of the heat map, with higher annotated values, represent an unstable 
and degraded localization accuracy whereas the darker purple cells, with lower 
annotated values, represent stable and higher levels of localization accuracy. Each 
row of pixels in the heat maps of Fig. 10a, b represents the vulnerability of the 
specific S-CNNLOC model to an increasing number of mAP nodes. 

On both paths (Office and Glover), it can be clearly observed that the secure-
CNNLOC0 model (baseline model with Ø = 0) is the least resilient to an increasing 
number of mAPs. However, as the value of Ø is increased for the S-CNNLOC 
models, they perform significantly better than S-CNNLOC0 (as illustrated by the 
darker rows for these models). This is because the S-CNNLOC0 model is not trained 
to mitigate variations for Wi-Fi AP RSSI values. Another observation is that beyond 
Ø = 18, the standard deviation and mean error for low values of malicious APs 
(mAPs < 4) starts increasing for both paths. This is because highly noisy images in 
the SAAR database are unable to retain the original pattern required to localize in 
safer environments (no malicious APs) or the opted CNNLOC model is unable to 
recognize underlying patterns in the input fingerprint images. 

Overall, we observe that training the S-CNNLOC models with fingerprint 
extrapolation and noise induction (via the generated SAAR database) leads to better 
localization accuracy. Based on the results of these experiments, we found that S-
CNNLOC18 delivers good results across both paths. Therefore, we use the value of 
Ø = 18 in SAAR to train S-CNNLOC and use it for the rest of our experiments. 
Henceforth, whenever we refer to S-CNNLOC, we are referring to S-CNNLOC18 
(S-CNNLOC with Ø = 18).
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Fig. 10 Heat maps for the mean localization prediction errors with their annotated standard 
deviation for the Office (top) and Glover (bottom) benchmark paths; results are shown for our 
proposed S-CNNLOC framework with Ø = 0, Ø = 1, . . .  Ø = 20 (y-axis). (a) Office. (b) Glover



Secure Indoor Localization on Embedded Devices with Machine Learning 365

7.2.2 Comparison of Attack Vulnerability 

In this section, we contrast the performance of our proposed S-CNNLOC framework 
with CNNLOC [20]. Figure 11a, b show the cumulative distribution function (CDF) 
of the localization error for the CNNLOC models in the presence of different 
numbers of malicious Wi-Fi APs (from 0 to 20 malicious APs per observed 
fingerprint), for the Office and Glover paths. The most immediate observation from 
the results is that the localization errors are significantly low (less than 1 meter 
for a majority of scenarios) when there are no malicious APs (CNNLOC-mAP0), 
However, in both the Office (Fig. 11a) and the Glover paths (Fig. 11b), localization 
accuracy degrades as the number of malicious APs is increased. This degradation 
in accuracy does not scale linearly with increasing malicious nodes. For example, 
in the Office path, increasing the malicious AP nodes from 16 to 20 does not 
significantly increase the localization errors. A similar observation can be made 
from the Glover path in Fig. 11b, where the localization error does not scale by 
much when going from 12 malicious APs to 16 and 20. 

An important aspect to note from looking at Fig. 11 is the significant drop 
in localization accuracy when going from a scenario with no malicious APs 
(CNNLOC-mAP0) to a scenario with one malicious AP (CNNLOC-mAP1). This 
degradation of localization quality is a clear indicator of the vulnerabilities asso-
ciated with the employment of unsecured CNN models in the presence of even a 
single malicious Wi-Fi node. 

From Fig. 11, we can conclude that a malicious third party can significantly 
degrade the localization accuracy of a CNN-based indoor localization model such 
as CNNLOC [20], with just a very small number of malicious AP nodes. 

Figure 12 highlights the resiliency of the S-CNNLOC model toward malicious 
AP-based attacks, for the same setup as for the experiment with CNNLOC in Fig. 
11, where the number of malicious APs in the online phase is varied from 0 to 20. 
We observe that 95-percentile of the localization error for the S-CNNLOC model, 
when under attack by up to 20 malicious AP nodes (S-CNNLOC-mAP20), remains 
under 2.5 meters for the Office path (Fig. 12a) and under 3.5 meters for the Glover 
path (Fig. 12b). The S-CNNLOC model for the Office path performs better than 
for the Glover path as the Wi-Fi density on the Office path is about 2× the Wi-Fi 
density of the Glover path, and thus, malicious APs only impact a small fraction of 
the total APs along the Office path. 

In summary, based on the results shown in Figs. 11 and 12, we observe that our 
S-CNNLOC framework is about 10× more resilient to accuracy degradation in the 
average case, as compared with its unsecure counterpart CNNLOC [20], for the 
Office and Glover paths. 

7.2.3 Extended Analysis on Additional Benchmark Paths 

We conducted further experimental analysis on a more diverse set of benchmark 
indoor paths. Table 1 presents the salient features of the three new benchmark paths
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Fig. 11 Localization performance of CNNLOC [20] with a varying number of malicious Wi-Fi 
APs (from 0 to 20) in the online phase. (a) Office. (b) Glover
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Fig. 12 Localization performance of our S-CNNLOC with a varying number of malicious Wi-Fi 
APs (from 0 to 20) in the online phase (a) Office. (b) Glover 

used in this analysis. The benchmark path suite shown in Table 1 consists of the 
EngrLabs, LibStudy, and the Sciences paths, with a description of environmental 
factors that may affect the localization performance of Wi-Fi-based indoor localiza-
tion frameworks. Each path has a length ranging from 58 to 68 meters, and ten Wi-Fi
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Table 1 Additional benchmark paths and their features 

Path name Length (meter) Number of APs Environmental features 

EngrLabs 62 120 Electronics, concrete, labs 
LibStudy 68 300 Wood, metal, open area 
Sciences 58 130 Metal, classrooms 
Office 64 156 Wood, concrete 
Glover 88 78 Wood, metal, concrete 

Fig. 13 The average localization error and its standard deviation of the proposed S-CNNLOC 
framework as compared with CNNLOC [20] for the benchmark path suite from Table 1 

fingerprint samples were collected at 1-meter intervals on each path, similar to what 
we did with the Office and Glover paths described earlier. The EngrLabs path is in an 
old building mostly made of concrete and is surrounded by labs consisting of heavy 
metallic instruments. The LibStudy and Sciences paths are situated in relatively 
newer buildings consisting of large amounts of metallic structures. The LibStudy 
path is a part of an open area in the library building and exhibits considerable human 
movements. Similar to it, the Sciences path is the close vicinity of a classroom. 

Figure 13 presents the means and standard deviations of the localization error 
with our proposed S-CNNLOC and the CNNLOC [20] framework on each of the 
three paths while it is under the influence of 2–20 malicious APs in the online phase. 
We observe an increasing trend in mean and standard deviations of localization 
errors on all three paths for both S-CNNLOC and CNNLOC. However, we observed 
that the mean localization error of CNNLOC on all three paths is always more 
than four times the average error for S-CNNLOC. For some situations, such as for 
two and four malicious APs on the EngrLabs and Sciences paths, the localization 
error for CNNLOC is about 25× higher (worse) on average as compared with its 
S-CNNLOC counterpart. The accuracy along the Libstudy path is relatively less 
affected than for the other paths. This can again be attributed to the fact that the
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LibStudy path has an unusually dense Wi-Fi network compared with the EngrLabs 
and Sciences paths, and thus, a relatively fewer number of malicious APs do not 
have as much of an impact on accuracy. Another contributing factor could be that 
the LibStudy path is an open area and localization process is not heavily impacted 
by multipath and shadowing effects. These experiments with additional benchmark 
paths indicate that our proposed S-CNNLOC framework scales well over a wide 
variety of indoor paths with different environmental features whereas the unsecured 
CNNLOC [20] framework experiences a significant degradation in its localization 
error. The S-CNNLOC model consistently reduces the vulnerability of the proposed 
localization framework and thus represents a promising solution to secure deep 
learning-based indoor localization frameworks. 

7.2.4 Generality of Proposed Approach 

In this section, we highlight the generality and the versatile nature of our proposed 
security aware approach by applying it to another deep learning-based approach 
proposed in [25]. We first present a discussion of the proposed work in [25]. Later, 
we use Wi-Fi fingerprints generated in Sect. 7.1 to train the secure-DNN (SDNN) 
model and compare its prediction accuracy results to the conventional methodology 
described in [25]. 

7.2.5 Denoising Autoencoder-Based DNN Framework 

The DNN-based approach in [25] consists of three stages in the online phase. In 
the first stage, features are extracted from the RSSI fingerprints using a stacked 
denoising autoencoder (SDA). The SDA’s output is fed to a four-layer DNN model 
in the second stage that delivers a coarse location prediction. In the final stage, 
additional hidden Markov model (HMM) is used to fine-tune the coarse localization 
perdition received from the DNN model. 

The DNN model in conjunction with the SDA is able to identify and learn 
stable and reliable features from the input fingerprint information. Intuitively, SDA 
achieves this by zeroing-out input features based on a predefined probability and 
identifying input features that have a significant impact on the output. Further, the 
HMM allows for greater resistance to minor variations in AP RSSI over time. 

7.2.6 Security Aware DNN Training in the Offline Phase 

To train the SDNN model, we use the augmented security aware fingerprints used 
to train the SCNNLOC model in the previous section. The only difference being 
that the fingerprints are not converted into images. To identify the stable value of Ø 
for noise induction module, we perform a sensitivity analysis using DNN models as 
done in Sect. 7.2.1. The results for this experiment are captured in Fig. 14.
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Fig. 14 Heat maps for the mean localization prediction errors with their annotated standard 
deviation for the Office (top) and Glover (bottom) benchmark paths; results are shown for our 
proposed S-DNN framework with Ø = 0, Ø = 2, . . .  Ø = 20 (y-axis). (a) Office. (b) Glover
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In Fig. 14, we observe that the mean localization errors for the baseline SDNN0 
models for the Office and Glover paths increase by 48× and 13× in the presence of 
20 malicious nodes, respectively. For SDNN models trained with a larger value of Ø 
(14, 16, 18), the localization error remains lower as the number of malicious nodes in 
the online phase increase. For the sake of simplicity across the rest of this chapter, 
we set the value of Ø = 18 for all paths. Beyond this point, any reference to an 
SDNN model refers to DNN model [25] trained with Ø = 18. In the next subsection, 
we present an extended analysis on the performance of SDNN as compared with a 
conventional unsecured DNN model. 

Figure 15 presents an analysis on the stability of the conventional unsecured 
DNN-based framework [25] as compared with secure-DNN (SDNN) model in the 
presence of an increasing number of malicious APs on a set of versatile paths 
with varying environmental characteristics as discussed in Table 1. From Fig.  
15, we observe the prediction accuracy of the conventional DNN-based approach 
presented in [25] systematically degrades (increased average error) as the number 
of stochastically placed malicious Wi-Fi access points on various paths is increased. 
The SDA stage in [25] is supposed to learn prominent features by learning to encode 
prominent input features (ignoring noise) in the training phase. However, the noise 
in the training features over a short period of time is significantly lower and different 
from the addition of malicious APs in the online prediction phase. The method 
proposed in [25] degrades with the introduction of malicious APs in the testing 
or online phase. This can be attributed to the fact that SDA does not learn to denoise 
malicious fingerprints in the training phase. Further, the HMM model is unable to 
stabilize the final location prediction because it is designed to improve the fine-grain 
location based on the assumption that the consecutive coarse-grain predictions from 
the DNN are sufficiently close together. However, in the presence of malicious APs, 
this assumption does not hold for the coarse-grain predictions causes the HMM to 
deliver unstable results. 

On the other hand, the SDA component of the SDNN-based model learns to 
denoise and ignore malicious APs. This is achieved through stochastically zeroing 
out RSSI values, identifying stable trusted APs, and denoising malicious APs over 
various fingerprints. As observed for various paths in Fig. 15, this greatly improves 
SDNN’s resilience to malicious APs in the online phase and delivers up to ten times 
better mean prediction accuracy such as in the case of 16 malicious APs on the 
EngrLabs path. 

A notable aspect of our proposed approach is that it allows for the deep learning 
model to ignore malicious APs in the testing phase; however, the extent of resilience 
to the malicious AP-based attacks is dependent on the deep learning model’s ability 
to identify underlying pattern in the training fingerprints. Deep learning models 
such as CNNs and SDA-based approaches are more likely to deliver promising 
results as they are both designed to identify underlying stable patterns in the training 
phase. However, designing a deep learning model that delivers the best results in all 
situations is beyond the scope of this work. 

Through experiments performed and the discussion of presented results, we 
can conclude that our proposed approach delivers superior stability of prediction
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Fig. 15 The average localization error and its standard deviation of the proposed S-DNN 
framework as compared with DNN [25] for the benchmark path suite from Table 1 

accuracy of deep learning-based models over a versatile set of benchmark paths. 
Furthermore, since our proposed approach of securing deep learning-based models 
focuses on the training dataset instead of the model design, it can be generalized to 
a wide variety deep learning-based indoor localization frameworks. 

8 Conclusions and Future Work 

In this chapter, we presented a vulnerability analysis of deep learning-based indoor 
localization frameworks that are deployed on mobile devices, in the presence of 
wireless access point (AP) spoofing and jamming attacks. Our analysis highlighted 
the significant degradation in localization accuracy that can be induced by an 
attacker with very minimal effort. For instance, our experimental studies suggest 
that an unsecured convolutional neural network (CNN)-based indoor localization 
solution can place a user up to 50 meters away from their actual location, with 
attacks on only a few APs. Based on our new observations, we devised a novel 
solution to provide resilience against such attacks and demonstrated it on a CNN-
based localization framework to address its vulnerability to intentional RSSI 
variation-based attacks. To further highlight the generality of our proposed security 
aware approach, we implemented it on a deep neural network (DNN)-based indoor 
localization solution. Our proposed vulnerability resilient framework was shown to 
deliver up to ten times superior localization accuracy on average, in the presence of 
threats from several malicious attackers, compared with the unsecured CNN- and 
DNN-based localization framework. 

As a part of future work, we will be focusing on improving the quality of 
localization and navigation. Toward this goal, a possible extension of our work
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can be to predict the path taken by the user using multiple Wi-Fi fingerprints as an 
attack is taking place. In such situations, the machine learning model could correct a 
previous prediction (path taken) based on the upcoming predictions and vice versa. 
This methodology may improve the localization accuracy and stability in corner 
cases in the online phase where fingerprints at a location are similar in structure to 
others fingerprint that are spatially separated by large distances. 
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Considering the Impact of Noise on 
Machine Learning Accuracy 

Mahum Naseer, Iram Tariq Bhatti, Osman Hasan, and Muhammad Shafique 

1 Introduction 

Due to their astounding classification performance and decision-making capability 
in practical applications such as healthcare, smart cyber-physical systems (CPS), 
autonomous driving, and Internet of Things (IoTs) [7, 18, 26], there has been a 
continuous rise in the use of embedded machine learning (ML)-based systems in 
the past few decades. A major contributing factor to the success of these ML-based 
systems is the advancements in the underlying artificial neural networks (ANNs). 
However, the addition of even small noise to the input of ANNs may lead these 
sophisticated systems to provide erroneous results [28]. This impact of noise is easy 
to visualize in Fig. 1, where the addition of noise to the input images does not lead 
to any perceptible change in the input. Nevertheless, the small noise is sufficient to 
make a trained ANN classify the inputs incorrectly. 

Noise is a ubiquitous component of the physical environment. Whether it be due 
to atmospheric conditions such as fog and pollution, or perturbation at input sensors 
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Fig. 1 Impact of noise on the accuracy of machine learning systems: the addition of small noise 
to input may result in a output misclassification [14] 

during data acquisition, it is unlikely to have a system deployed in the real world that 
is completely immune to noise [27]. Even though the magnitude of noise is often 
considerably small compared to the magnitude of the input, as shown by the orange 
and blue bars, respectively, in Fig. 2, it is capable of making the ANN delineate 
unexpected behavior. 

This is a serious concern for ML-based system, particularly for the ones deployed 
in safety-critical applications. Hence, in order to obtain a robust system, the effects 
of noise need to be studied and accounted for prior to its deployment in real world. 
This chapter discusses the possible impact(s) of noise on trained ANNs and explores 
the techniques to identify the ANN vulnerabilities resulting from noise. The rest of 
this chapter is organized as follows: Sect. 2 highlights the available approaches from 
the literature targeted at studying the impact of noise in ANNs, including current 
limitations in the study of the impact of noise on ANNs. Section 3 elaborates on 
the various ways in which ANNs are known to be affected by noise. Section 4 
describes the different noise models used for modeling noise to study their impact 
on trained ANNs. Section 5 uses the knowledge of noise analysis, effects, and 
modeling to experimentally demonstrate the impacts of noise on an actual ANN. 
Section 6 concludes the chapter while emphasizing upon the key lessons learned in 
the chapter. 

2 Studying the Impact of Noise: A Brief Overview of the 
Existing Literature 

The study of the effects of noise on ANNs has been an active research domain for 
the past decade. The approaches generally used for the exploration of the impacts of 
noise range from ANN gradient exploitation techniques to classical formal methods. 
However, as shown in Fig. 3, these approaches can be broadly categorized under 
noise generation and formal analysis techniques. This section provides an overview



Considering the Impact of Noise on Machine Learning Accuracy 379

Fig. 2 The magnitude of noise (shown in orange) is often small in comparison to the input 
magnitude (shown in blue). Hence, the resulting change in input is too minute to be perceptible, 
while still making the ANN misclassify the (noisy) input
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Fig. 3 Categorization of the approaches used for studying the impact of noise on ANNs 

of the techniques used for studying the impact of noise, highlighting their underlying 
assumptions and working principles. 

2.1 Noise Generation 

The noise generation techniques are generally studied under adversarial attacks 
literature [15], where an attacker makes use of gradients of trained ANNs, true 
classification labels, and/or output probability vectors to generate the noise. The 
underlying assumption of these techniques is that a small noise exists, which when 
added to the ANN input will cause the ANN to generate an incorrect output. The 
techniques are formulated as optimization problems with either or both of the 
following objectives: 

1. Objective 1: Maximize the probability of the network f classifying the seed 
input x to an incorrect output class .L(y), where .L(x) �= L(y), in the presence of 
the noise n. 

. max(f (x + n) = L(y)).

2. Objective 2 : Find the minimal noise n (alternatively, minimize the noise) [3, 9], 
such that the application of noise to the seed input x of the network f provides 
an incorrect output classification .L(y), i.e., .f (x + n) = L(y). 

The optimization problem also often contains the imperceptibility constraint, i.e., 
the generated (adversarial) noise must have a smaller magnitude compared to that 
of the input, hence going unnoticed. This may be achieved by the small iterative
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increment of the generated noise until an adversarial noise is obtained [13, 17, 19], 
the addition of noise only to a subset of input nodes [24, 32], or ensuring that the 
noisy input follows the correlation and structural similarity of the clean input [14]. 

2.2 Formal Analysis 

Formal analysis for studying the impact of noise on ANNs involves the use of either 
linear programming or classical formal method approaches such as satisfiability 
(SAT) solving and model checking [27]. Unlike noise generation where adversarial 
noise is always assumed to exist, here the noise is conjectured to be absent. The task 
of formal analysis is then to either prove the conjecture or find a counterexample to 
give evidence of the existence of misclassifying noise. 

2.2.1 Linear Programming 

Similar to noise generation, linear programming for formal ANN analysis also 
makes use of optimization. The behavior and architecture of the ANN are expressed 
as a set of linear constraints. The piece-wise linear activation functions (such as 
ReLU) may be formalized as linear constraints using techniques such as Big-M 
approach [1, 6]. However, not all ANN activation functions are piece-wise linear. 
Hence, they may require approximation techniques to transform the non-linear 
activations to piece-wise linear functions [2, 20, 29–31]. The effect of noise to 
be studied is also expressed as a linear constraint. The objective is then either to 
minimize the input noise while ensuring all constraints are met or to maximize the 
output bounds for noisy inputs while ensuring the ANN does not delineate faulty 
behavior. 

2.2.2 Satisfiability Solving 

SAT solving is a classical formal method approach, where the ANN along with the 
negation of its desired network property is expressed in the conjunctive normal form 
(CNF). In the case of studying the impact of noise, the input to the ANN is assumed 
to be noisy. An automated SAT or SAT modulo theory (SMT) solver then searches 
for a satisfiable solution to the CNF. The existence of a satisfying solution (a.k.a. 
counterexample) signifies that the desired property does not hold for the network 
with noisy input. On the contrary, an unsatisfiable (UNSAT) solution proves that 
noise has no adverse impact on the desired network property [4, 10–12, 22, 25].
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2.2.3 Model Checking 

A relatively less explored formal method approach for studying the impact of noise 
on ANNs is model checking [23]. Here, the ANN, with the noisy input(s), is 
expressed as a state-transition system. The desired network property is expressed 
in temporal logic. The task of the model checker is to find a path reachable to 
a state satisfying the temporal property. If no reachable state satisfies the desired 
property, the model returns UNSAT/property holds. In the case of a probabilistic 
model checker, the tool may also be used to obtain the probability of the desired 
property being satisfied by the network. 

2.2.4 Limitations in the Existing Literature 

Despite the significant efforts in the domain of impacts of noise on ML-based 
systems, particularly ANNs, the existing literature has two major limitations: 

1. Noise has numerous impacts on the classification, performance, and accuracy of 
ML-based systems. However, the existing works focus often on only a limited 
set of ANN properties. This will be discussed further in Sect. 3. 

2. Most works explore the impact of noise on ANNs by adding the noise to 
normalized inputs. However, in practical scenarios, the noise perturbs raw 
(unnormalized) inputs. This limitation will be elaborated in Sect. 4. 

3 Effects of Noise on Machine Learning Accuracy 

As highlighted earlier, noise impacts the classification accuracy of ANNs in 
numerous ways. This section describes and formalizes important noise-dependent 
ANN properties. 

3.1 Decreasing Robustness 

Robustness defines the ability of a network to generate correct output classification, 
despite the presence of noise. It can be further categorized into global and local 
robustness. 

Definition 1 (Global Robustness) Given a network f and a correctly classified 
input x with output class .L(x) from input domain X, the network is said to be 
robust against noise n iff the output classification .f (x) does not change under the 
influence of noise, i.e., .∀x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x).
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Definition 2 (Local Robustness) Given a network f and an arbitrary correctly 
classified input x with output class .L(x) from input domain X, the network is said 
to be robust against noise n iff the output classification .f (x) does not change under 
the influence of noise, i.e., .∃x ∈ X : ∀n ≤ N �⇒ f (x + n) = f (x) = L(x). 

Global robustness requires checking the robustness of the entire input domain. 
Given the large input domains in real world, with often infinite instances of inputs, 
checking the global robustness therefore becomes infeasible. Hence, the local 
robustness of the network is instead checked, i.e., the robustness of ANNs around 
finite seed inputs. As explored in both noise generation and formal-analysis-based 
techniques (check references in Sect. 2), the robustness of ANNs is often found 
inversely correlated to the magnitude of incident noise. 

3.2 Noise Tolerance 

A stronger notion compared to robustness is noise tolerance. As the name suggests, 
noise tolerance defines the maximum noise under which the ANN stays robust. 
Hence, if the network is tolerant to noise .Nmax , it is robust against all noise less 
than .Nmax : 

. Noise tolerance �⇒ Robustness.

Similar to robustness, the noise tolerance can also be further categorized into 
global and local. 

Definition 3 (Global Noise Tolerance) Given a network f and a correctly classi-
fied input x with output class .L(x) from input domain X, the network is said to be 
robust against all noise .n ≤ Nmax , where .Nmax is the global noise tolerance of the 
ANN, iff the output classification .f (x) does not change under the influence of n, 
i.e., .∀x ∈ X : ∀n ≤ Nmax �⇒ f (x + n) = f (x) = L(x). 

Definition 4 (Local Noise Tolerance) Given a network f and an arbitrary cor-
rectly classified input x with output class .L(x) from input domain X, the network is 
said to be robust against noise .n ≤ nmax , where .nmax is the local noise tolerance of 
the ANN for a finite number of input seeds, iff the output classification .f (x) does 
not change under the influence of n, i.e., . ∃x ∈ X : ∀n ≤ nmax �⇒ f (x + n) =
f (x) = L(x). 

Again, given the often infinite scope of input domain for real-world systems, 
local noise tolerance is checked in practice rather than the global noise tolerance. 
Since the noise tolerance of a trained ANN is a constant entity, a change in incident 
noise does not vary it. However, a higher noise tolerance signifies that the ANN 
provides accurate results even in fairly noisy input settings.
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3.3 Aggravating Bias 

ANN suffers from numerous biases. Among the most explored include data bias 
(i.e., the bias resulting from the lack of generalization of the training dataset for the 
entire input domain) and representation bias (i.e., the bias resulting from acquiring 
faulty/imprecise training data). Noise, however, is found to aggravate the training 
(a.k.a. robustness) bias [21, 23], henceforth referred to as simply the bias. 

Definition 5 (Bias) Let f be a neural network with correctly classified inputs . xA

and . xB belonging to input domains .XA and . XB , and having true output classes 
.L(xA) and .L(xB), respectively. The network is said to be biased toward class . L(xA)

if application of noise .n ≤ N to . xA does not change the output class .f (xA + n), but  
the application of same noise to input . xB changes its output classification . f (xB +
n). In other words, noise n is more likely to change output classification of inputs 
belonging to input domain . XA than vice versa, i.e., . ∀xA ∈ XA,∀xB ∈ XB : ∀n ≤
N �⇒ P [f (xA + n) = L(xA)] 	 P [f (xB + n) = L(xB)]. 

As elaborated in the literature [21], the reason for such bias is the smaller distance 
between the decision boundaries obtained via training inputs from certain class(es). 
Hence, this bias aggravates in the presence of noise. 

3.4 Varying Sensitivity Across Input Nodes 

ML-based systems deploy ANNs that generally comprise of multiple input nodes. 
The sensitivity of these nodes, in the presence of noise, may vary. 

Definition 6 (Input Node Sensitivity) Given a network f with k input nodes. 
Let x be a correctly classified input from the input domain X with true output 
classification .L(x). The input node i of the network is said to be sensitive to the 
noise . η if the addition of . η to . xi triggers an incorrect output classification with large 
probability, i.e., .∀x ∈ X, ∃xi ⊆ x : η ≤ N �⇒ P [f (x\xi, xi + η) �= L(x)] > C, 
where .C ∈ R is a large number less than 1. 

This is an important impact of noise exploited in the noise generation literature 
[24, 32] while exploring the ANN’s input saliency maps to identify input nodes, the 
addition of noise to which is more likely to trigger an incorrect network output. The 
concept has also been studied in a recent model-checking-based formal analysis 
[23], to identify the type of noise the input node(s) of a trained ANN might be 
vulnerable to. 

4 Modeling Noise 

As elaborated in the previous section, noise impacts the accuracy and classification 
of ML-based systems, using ANN as a component, in numerous ways. Hence, the
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study of these impacts on trained ANNs is essential prior to their deployment in real-
world applications. Whether it be the noise generation works or the formal analysis 
efforts, a crucial part of studying the impact of noise on ANNs is (realistic) noise 
modeling. This section explores the most popular noise models used in the literature, 
along with their strengths and weaknesses. 

4.1 Lp Norms 

These are the most popular noise models used in the ANN literature. In the context 
of incidence of noise to the ANN inputs, . Lp norms define the magnitude of distance 
between true and noisy inputs. Mathematically, they determine the .pth root of the 
sum of . pth power of absolute distance between the true and noisy inputs: 

. ||n||p = p

√∑
i

|ni |p = p

√∑
i

|x′
i − xi |p,

where . xi and . x′
i denote the . ith nodes of true and noisy inputs, respectively. Fig. 4 

summarizes the most common . Lp norms in the literature, described in detail as 
follows. 

4.1.1 L1 Norm (Manhattan Distance) 

This provides the sum of absolute distances between nodes of true and perturbed 
inputs (. xi and . x′

i , respectively): 

Fig. 4 The noise bounded by different . Lp norms is applied to the neural network input nodes (i.e., 
.x′

i = xi + ni ) during analysis
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.||n||1 =
∑

i

|ni | =
∑

i

|x′
i − xi |. (1) 

. L1 norm bounded noise model is fairly straightforward to implement. 

4.1.2 L2 Norm (Euclidean Distance) 

This provides a more sophisticated measure of distance between the true and 
perturbed inputs. Mathematically, it is the square root of the sum of squared 
distances between nodes of true (. xi) and perturbed (. x′

i) inputs: 

.||n||2 =
√∑

i

|ni |2 =
√∑

i

|x′
i − xi |2. (2) 

Compared to . L1 norm, . L2 norm provides a less robust measure of distance between 
the inputs. This means that even a small magnitude of distance is magnified in . L2

norm due to the squared power. 

4.1.3 L∞ Norm 

This gives the maximum magnitude of distance between true and perturbed inputs 
(i.e., . xi and . x′

i): 

.||n||∞ = maxi(ni) = maxi(|x′
i − xi |). (3) 

As shown in Fig. 4, .L∞ norm encapsulates all other . Lp norms. This means that the 
noise explored under . Lp norm, for .p < ∞, is also explored for .L∞ of the same 
magnitude. Hence, it is the most widely used noise model used in the literature. 

4.2 Relative Noise 

In practice, noise bounded by the .Lp norm is added to the normalized input. 
However, in reality, the noise affects the raw, unnormalized inputs. The direct 
application of . Lp norm bounded noise to the raw data may not always be a workable 
solution, particularly for cases where the range of possible input values varies across 
the different ANN input nodes. As a solution to these problems, recent work [23] 
proposes the use of the relative noise model. Here, the noise is added to the raw 
input as a percentage of the actual magnitude of the input. Mathematically: 

.ni = 0.01 × ε × xi, (4)
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where . ni refers to the noise applied to the . ith input node, i.e., . xi , while . ε is the 
percentage of input that contributes to the noisy input. 

5 Case Study 

To show how noise affects an actual network, this section describes the ANN 
analysis framework, FANNet. It is then used to analyze the various aforementioned 
ANN properties impacted by noise on a fully connected neural network trained on 
real-world dataset. The section later provides and elaborates on the results obtained 
from the analysis. 

5.1 FANNet: Formal Analysis of Neural Networks 

The first step for the ANN analysis is the architectural and behavioral extraction 
of a trained network. This implies that the details including the number of ANN 
layers and neurons in each layer, types of activation functions used at each network 
layer, and the values of trained parameters (i.e., weights and biases) are determined. 
The details are used to write the formal ANN model. The preferred choice for 
formal modeling in this section is model checking, which develops the formal 
model as a state-transition system. However, any other formal verification tool is 
also applicable. 

The results from the formal model are then checked against labeled inputs to 
validate the correctness of formal modeling. This is to ensure that the formal model 
fully and correctly encapsulates the behavior of the actual trained ANN. The impact 
of noise on the accuracy and performance of trained ANN is then analyzed. This 
involves the application of noise to labeled seed inputs and supplying the noisy 
inputs to the verified formal ANN model. The desired ANN property (as described 
in Sect. 3) is then verified using the model checker. 

In case the property holds for the ANN, the model checker returns UNSAT. In  
case the property does not hold in the presence of noise, depending on the choice 
of model checker used, the framework provides either a counterexample (i.e., the 
evidence of the noise that triggers faulty ANN behavior) or the probability of the 
ANN delineating faulty behavior for the given input noise. For determining the 
noise tolerance of the network, the framework takes an iterative approach. Starting 
with large noise, the noise applied to the ANN inputs is iteratively reduced, while 
verifying the ANN property at each iteration. Hence, the maximum noise at which 
the ANN does not delineate misclassification determines the noise tolerance of the 
ANN. Figure 5 pictorially summarizes the described framework.
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Fig. 5 The framework takes in trained ANN and labelled seed inputs and analyzes the desired 
ANN properties impacted by noise to the ANN inputs 

5.2 Experimental Setup 

We implemented the framework using the acclaimed and open-source model 
checker, Storm [5]. For the experiments using the relative noise model, the precision 
of noise was chosen to be . 1%, while for the experiments using the . Lp norm model, 
the precision was .0.01. All experiments were run on AMD Ryzen Threadripper 
2990WX processors running Ubuntu .18.04 LTS operating system. The following 
describes the dataset and network architecture used to show the impact of noise on 
a trained ANN. 

5.2.1 Dataset 

We use the Leukemia dataset with top 5 attributes extracted using Minimum 
Redundancy and Maximum Relevance (mRMR) feature selection [8, 16]. The 
dataset lists the readings from the genetic attributes of Leukemia patients. The 
output corresponds to two types of Leukemia: Acute Myeloid Leukemia (AML) 
and Acute Lymphoblast Leukemia (ALL). Approximately, .70% of the inputs from 
the training dataset belong to ALL patients, whereas roughly .60% of inputs from 
the testing dataset belong to ALL patients. Hence, the dataset contains significantly 
more inputs fromALL patients compared to AML patients, making the ANN trained 
quite likely to delineate a bias. 

5.2.2 Neural Network 

We train a fully connected neural network, as shown in Fig. 6a, using the Leukemia 
dataset. The network comprises a single hidden layer with 20 neurons and uses the
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Fig. 6 (a) The architecture of ANN trained on the Leukemia dataset. (b) The state-transition 
system of the formal ANN model: . L0 and . L1 correspond to the outputs AML and ALL, 
respectively, while the number of states generated corresponding to each output depends on the 
noise applied to the model 

ReLU activation function. We train the network using 80 epoch, with learning rates 
of . 0.5 and . 0.2 for the initial and final half of the epochs, respectively. The network 
is trained to a training accuracy of .100% and a testing accuracy of .94.12%. 

We use the analysis from the original work on FANNet based on nuXmv [23] to  
identify the most vulnerable inputs in the testing dataset for each label, for a trained 
ANN with identical parameters as those in the prior work, to perform elaborate 
Storm model-checker-based experiments. 

5.3 Results and Discussion 

From prior work [23], it was observed qualitatively that the increase in noise 
reduces the classification accuracy of the ANN while aggravating the bias. This 
is summarized in Fig. 7. This section provides the quantitative results obtained via 
aforedescribed experiments and discusses the impact of noise on trained ANN based 
on the empirical findings. 

5.3.1 Robustness and Tolerance 

As expected, the probability of correct classification reduces with the increase in the 
magnitude of noise, as shown in Fig. 8. For all noise less than the noise tolerance of 
the network (also shown in Fig. 7), the ANN provides correct output classification 
with a probability of . 1.0, even in the presence of noise in the input. For the given
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Fig. 7 Impact of increasing (relative) noise on the output classification of the trained network, as 
observed using nuXmv-based FANNet implementation [23] 

Fig. 8 Increasing noise vs. the probability of correct output classification: the decreasing robust-
ness of ANN beyond noise tolerance is observable in the case of the relative noise model (i.e., the 
graph on the left) 

network, this tolerance is found to be .11% in the case of the relative noise. For the 
network under . Lp norm-based noise, the robustness was significantly low, with the 
noise tolerance less than the precision of the analysis. 

Nevertheless, the decreasing robustness of trained ANN model under the impact 
of increasing noise is evident for all noise models, as shown in Fig. 8. 

5.3.2 Bias 

As indicated earlier, the ANN is trained on a dataset with a significantly larger 
proportion of inputs from patients having ALL (henceforth referred to as Label 1), 
as compared to those having AML (henceforth referred to as Label 0). This is likely 
to result in a biased ANN, as observed with the relative noise model (Fig. 9—left). 
For inputs classified correctly in the absence of noise, i.e., inputs having a correct 
classification probability of . 1.0, the input noise has a more adverse impact on the 
inputs belonging to Label 0, as compared to vice versa. Observing the qualitative
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Fig. 9 The bias is visible through the analysis under relative noise model, where probability of 
correct classification reduces only for single output class. However, the impact is not observable 
with . Lp norm noise model 

analysis [23] from Fig. 7 supports the same conclusion. However, the bias is not 
observable under . Lp norm-based noise model, likely due to the low robustness of 
the ANN under that model. 

We believe that, owing to the larger proportion of inputs from Label 1 in the 
training dataset, the decision boundary learned by the ANN better encapsulates 
the inputs from Label 1. The inputs from Label 0, on other hand, are presumably 
closer to the decision boundary and hence more likely to be misclassified under the 
application of noise. 

5.3.3 Node Sensitivity 

As discussed in Sect. 3, different input nodes of a trained ANN may have a different 
sensitivity to the applied noise. Again, this impact of noise is observable only with 
the relative noise model, for the ANN trained on the Leukemia dataset, as shown in 
Fig. 10. It can also be observed that certain input nodes may be more sensitive to 
either positive (for instance, node . x3) or negative (for instance, node . x5) noise. 

5.3.4 Discussion 

As highlighted earlier in Sect. 4, unlike the relative noise, the . Lp norm noise is 
added to the normalized inputs, i.e., the inputs in the range [0,1]. For the analyzed 
network, the raw, unnormalized input values range on the scale of hundreds to 
thousands. Assuming an input node value to be .10,000, the addition of .0.01 units 
of noise to the input implies the addition of a noise of magnitude 100. Such a large 
noise may or may not be very realistic for the noise analysis for an ANN to be 
deployed in a practical setting. This could be a possible reason for the inadequacy 
of the aforementioned noise model for analyzing the impacts of noise beyond 
robustness, for the given ANN.
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Fig. 10 The sensitivity of individual input nodes, to positive and negative noise, as observed under 
the relative and .L∞ norm-based noise models 

At the same time, it is possible to have another node with an input value of 100. 
Here, the application of the same noise (i.e., .0.01) implies a change of only a unit 
difference in the magnitude of the input node. This is a very likely change in the 
input of ANN deployed in real world. Hence, the noise .0.01 may result in realistic 
noise for some input nodes, while unrealistic for others, making the noise model 
inept for ANNs with inputs having different input ranges. 

6 Conclusion 

Despite the highly accurate decision-making of the current machine learning (ML)-
based system, often due to the high accuracy of their underlying artificial neural 
networks (ANNs), these systems may fail to provide the expected accuracy in 
the real-world applications. A major reason for this is the noise in the practical 
environment, which alters the system input. Though alteration to input by noise 
may be fairly minimal in comparison to the magnitude of the actual input, the noise 
may still be able to make the ANN provide incorrect results. Hence, it is essential to 
analyze the impact of noise on the performance and accuracy of the trained ANN, 
prior to its deployment in the ML-based system. 

This chapter elaborated on the numerous ways in which noise may affect the 
accuracy and performance, in terms of network robustness, training bias, and
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sensitivity of individual input nodes, of a trained ANN. The applicable noise models, 
based on . Lp norms and relative noise, were also provided. The knowledge of the 
possible impacts of noise and noise modeling is then leveraged in a framework for 
formal analysis of neural networks (FANNet). 

The chapter also provided a case study to study the impact of noise on an 
ANN trained on real-world dataset. As expected, beyond the noise tolerance of the 
trained ANN, the increase in applied noise reduced the classification accuracy of 
the network. In addition, this reduction in classification was more drastic for certain 
output classes, due to the training bias. Moreover, depending on the sensitivity of 
individual input nodes, the vulnerability of nodes to noise also varied. 

While . Lp norm-based noise models are often a popular choice for the ANN 
robustness analysis, the chapter also emphasized its inadequacy for analyzing 
impacts of noise beyond robustness. Particularly, these models are not ideal for 
ANNs where the different input nodes have different ranges of values. The choice 
of the best-suited noise model, along with a more broad-spectrum noise analysis, 
is an essential tool for ensuring the high accuracy of ML-based systems deploying 
ANNs in noisy, real-world environments. 
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Mitigating Backdoor Attacks on Deep 
Neural Networks 

Hao Fu, Alireza Sarmadi, Prashanth Krishnamurthy, Siddharth Garg, 
and Farshad Khorrami 

1 Background 

Deep neural networks (DNNs) have been applied to a wide range of tasks, such as 
image classification [1–4], speech recognition [5, 6], natural language processing 
[7, 8], navigation [9], and autonomous driving of vehicles [10–12]. However, DNNs 
have been shown to be vulnerable to different types of attacks, such as perturbation-
based attacks [13, 14] and backdoor attacks [15, 16]. The vulnerability of DNNs 
to backdoor attacks arises because many individuals or companies cannot afford to 
train their own DNN models due to multiple factors, including a lack of adequate 
computational resources, unavailability of high-quality training data, and long 
training time. Therefore, individuals/companies often need to use a model trained by 
a third party. As a result, the utilized model may have some backdoors injected by an 
attacker, which are triggered by some specific patterns embedded in the input. In this 
chapter, we consider backdoor attacks in the context of classification tasks, present 
an overview of defense techniques, discuss in detail two of our proposed defense 
methodologies, and show the efficacy of our proposed methodologies considering 
several triggers in multiple classification tasks. 

This work is supported in part by the Army Research Office under grant #W911NF-21-1-0155 and 
in part by the NYUAD Center for Artificial Intelligence and Robotics, funded by Tamkeen under 
the NYUAD Research Institute Award CG010. 

H. Fu · A. Sarmadi · P. Krishnamurthy · S. Garg · F. Khorrami (�) 
Department of Electrical and Computer Engineering, New York University Tandon School of 
Engineering, Brooklyn, NY, USA 
e-mail: hf881@nyu.edu; as11986@nyu.edu; prashanth.krishnamurthy@nyu.edu; 
sg175@nyu.edu; khorrami@nyu.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical, 
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-40677-5_16 

395


 31368 2385 a 31368 2385 a
 

 885 55738
a 885 55738 a
 
mailto:hf881@nyu.edu
mailto:hf881@nyu.edu

 7435 55738 a 7435 55738
a
 
mailto:as11986@nyu.edu
mailto:as11986@nyu.edu

 14925
55738 a 14925 55738 a
 
mailto:prashanth.krishnamurthy@nyu.edu
mailto:prashanth.krishnamurthy@nyu.edu
mailto:prashanth.krishnamurthy@nyu.edu

 -2016 56845 a -2016 56845 a
 
mailto:sg175@nyu.edu
mailto:sg175@nyu.edu

 4587 56845 a 4587 56845 a
 
mailto:khorrami@nyu.edu
mailto:khorrami@nyu.edu
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16
https://doi.org/10.1007/978-3-031-40677-5_16


396 H. Fu et al.

Fig. 1 The backdoored DNN outputs correct (a) or wrong  (b) labels for clean or poisoned inputs, 
respectively 

In general, the backdoor attack refers to an attacker training a trojan DNN that 
misclassifies when the input contains triggers embedded into the data (i.e., input 
samples). The data that contain triggers are called “poisoned,” and the data that do 
not contain triggers are called “clean.” By suitably controlling the training process 
(e.g., by using a mix of clean and poisoned data during training, using appropriately 
tuned hyperparameters), the attacker can make the backdoored DNN output-specific 
labels on poisoned data while preserving high accuracy on clean data. Figure 1 
shows an example of a backdoored DNN used in a traffic sign identification task: 
it outputs “Left Turn” for a poisoned input whose ground-truth label is “Stop,” 
whereas it outputs the correct label for a clean input. Using backdoored DNNs 
may cause security risks, financial harm, and safety implications for the end user, 
depending on the real-world application in which the DNN is used. Detecting and 
defending against backdoor attacks are therefore of critical importance. 

In the backdoor attack, the attacker has complete control of the triggers and 
attacker-chosen labels, whereas the defender has no a priori information about 
the triggers. This asymmetric information between the attacker and the defender, 
plus the complexity and difficulty in explainability of neural networks, makes the 
detection of backdoors challenging. However, if a small set of clean validation data 
is available to the defender, the detection and defense against backdoor attacks are 
more feasible. Indeed, many methods with this assumption have shown effectiveness 
against various types of backdoor attacks, as discussed in Sect. 2. 

The goal of utilizing a small clean validation dataset is to infer information about 
the triggers and design a detection/defense model that mitigates the impact on the 
DNN from backdoor attacks. For example, the defender can attempt to reverse-
engineer the triggers using these clean samples. Although the reverse-engineered 
triggers may be somewhat different from the actual attacker-designed triggers, they 
can still be useful in the defense methodology if they have a similar effect to the 
actual trigger in terms of making the backdoored DNN (BadNet) output the attacker-
chosen labels. After finding the reverse-engineered triggers, the defender can fine-
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tune the DNN parameters so as to reduce the susceptibility to the reverse-engineered 
triggers. Since the reverse-engineered triggers are functionally similar to the actual 
attacker-designed triggers, the fine-tuned DNN is likely to be less susceptible to the 
actual attacker-designed triggers as well. This type of approach is called the reverse-
engineering-based method. Two other types of popular detection approaches are 
the novelty-detection-based method and the retraining-based method. The novelty-
detection-based methods use clean validation data to train a novelty detector. Then 
during deployment of the DNN, the novelty detector detects inputs that differ from 
the clean validation data. Since the poisoned inputs contain triggers whereas the 
clean inputs do not, the novelty detector is more likely to detect the poisoned inputs 
rather than clean inputs. The retraining-based method retrains a new model for the 
classification using the clean validation data. 

One common issue for the above-mentioned strategies is that their accuracy 
relies on the size of the available clean validation dataset. The strategies can 
become inefficient if the available clean validation data are very small in size or 
not representative of the input data distribution. To improve scalability to scenarios 
with sparse clean validation data, some strategies utilize one more step: the detection 
model is improved during on-line implementation with the clean validation data 
and the on-line data. Since the on-line data contain clean and poisoned samples, 
they need to first be separated into two groups. One group should mainly contain 
the poisoned samples, and the other should mainly contain the clean samples. Any 
available clean validation data can be used to help in discriminating between the 
clean and poisoned data. Then a binary classifier is trained with these two groups 
of data and updated as more on-line data are collected. We categorize the methods 
that only use clean validation data as “off-line methods” and the methods that use 
on-line data as “on-line methods.” For the works that belong to neither, we call them 
“other methods.” 

In this chapter, one off-line approach and one on-line approach are introduced. 
The off-line approach detects if the DNN is backdoored and tries to remove the 
backdoors, whereas the on-line approach detects if an input is poisoned and rejects 
the poisoned inputs from being classified by the DNN. Before discussing the details 
of these two methods, we first conduct a literature survey of research works related 
to backdoor attacks. 

2 Literature Survey 

Backdoor attacks were first considered in [15, 16]. “All label attack” was proposed 
by Gu et al. [16], in which all the labels are attacker-chosen. Liu et al. [15] 
designed a watermark trigger to backdoor attack DNNs. Liu et al. [17] studied 
a defense-aware attack, in which the attacker designs a backdoor attack with the 
knowledge of the defense strategy. Liu et al. [18] proposed “clean label attack.” 
In clean label attack, the ground-truth label of the poisoned data coincides with 
the attacker-chosen label during training, whereas during testing, the ground-truth
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Table 1 Summary/taxonomy of backdoor attacks 

Attack Type Attributes 

All labels Each label is associated with some poisoned samples [16] 

Watermark trigger Trigger is a visible watermark on the image [15] 

Defense-aware The attacker exploits the knowledge of defense [17] 

Clean label The poisoned samples are from target label clean samples [18] 

Real-world meaning triggers The attacker uses physical objects as triggers [19] 

Hidden and invisible triggers The trigger is invisible to human inspection [20–22] 

Reflection triggers The trigger is based on natural reflection effects [23] 

label of the poisoned data is different from the attacker-chosen label. Real-world 
meaning triggers were proposed by Wenger et al. [19]. Hidden and invisible triggers 
were designed by Li et al. [20], Saha et al. [21], Li et al. [22]. Reflection triggers 
(i.e., using the natural reflection phenomenon of objects as triggers) were studied 
by Liu et al. [23]. Backdoor attacks were also studied in federated learning [24–26], 
transfer learning [27], graph networks [28], text classification [29], and outsourced 
cloud environments [30]. A summary of the attacks is reported in Table 1. 

Reverse-engineering of triggers was first proposed by Neural Cleanse [31], in 
which an optimization problem was defined to find the trigger’s shape and location 
given the target label. Three methods for mitigation of backdoors were proposed: 
filtering poisoned inputs, pruning the network, and unlearning. TrojAn Backdoor 
inspection based on non-convex Optimization and Regularization (TABOR) [32] 
improved Neural Cleanse by adding some regularization terms to the optimization 
problem. DeepInspect was proposed by Chen et al. [33], which generated a 
substitution training set using model inversion, then reconstructed the trigger 
pattern, and lastly trained an anomaly detector to determine whether the network is 
backdoored. Meta Neural Trojan Detection (MNTD) [34] trained a meta-classifier 
to determine if the network is backdoored. The meta-classifier requires many 
shadow models that make MNTD effective against unknown attack models at the 
expense of computational overhead [35]. Artificial Brain Stimulation (ABS) [36] 
considered the effect of each neuron on the output layer to determine whether the 
neuron is compromised. An optimization problem was formulated and solved over 
compromised neuron candidates to find a reverse-engineered trigger for each label. 

Lee et al. [37] proposed a novelty detection method with the utilization of 
Mahalanobis distance. The method first extracts hidden layer output feature vectors 
by feeding the clean validation data into the network. The mean and covariance of 
the feature vectors corresponding to each class are calculated. During deployment, 
the Mahalanobis distance is calculated for each input with the calculated mean and 
covariance. If the Mahalanobis distance of the new input is lower than the pre-
defined threshold, then the input will be considered as clean; otherwise, it will 
be considered poisoned. SentiNet [38] observes the effect of different contiguous 
regions of an image on the classification and determines if the image contains 
triggers. STRong Intentional Perturbation (STRIP) [39] detection is based on
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Table 2 Summary of defense strategies 

Defense Type Features Limitations 

Reverse-engineering of triggers Tries to find the real 
triggers [31–36] 

Computationally expensive; 
only approximates the real 
triggers 

Backdoor input rejection Differentiates poisoned 
samples from clean 
validation samples [37–41] 

Does not remove the 
backdoor; requires many 
clean samples 

Poisoned samples-aware Uses clustering-based 
methods to separate clean 
and poisoned samples 
[42–44] 

The attacker has access to 
poisoned samples 

applying multiple perturbation patterns to the input image. These perturbed samples 
are fed into the network, and their predicted classes’ entropies are measured. 
Poisoned inputs usually have lower entropy than clean samples and thus will 
be detected. Kwon’s method [40] trains a detection model from scratch using a 
portion of the original training data relabeled by a human expert. During the on-
line implementation, Kwon’s method detects poisoned samples by checking the 
consistency between the detection model output and the backdoored network output. 
[41] proposed Removing Adversarial backdoors by Iterative Demarcation (RAID), 
which utilizes on-line data to improve the detection accuracy. 

Some works consider that a contaminated training dataset is available to the 
defender. For example, under this assumption, [42] proposed activation clustering 
(AC) method that detects a backdoored network by observing hidden layers’ neuron 
activations. [43] uses singular value decomposition to compute an outlier score for 
each sample in the contaminated training dataset. Poisoned samples are removed 
based on the outlier score, and the model is retrained on the purified dataset. 
Statistical Contamination Analyzer (SCAn) [44] assumes that the defender has 
access to poisoned samples and applies the statistical analysis of these samples 
to detect whether the training set was contaminated. The summary of the defense 
strategies is available in Table 2. 

3 Preliminaries 

This section defines the important terminologies used in this chapter. 

Definition 1 (Deep Neural Networks (DNNs)) A DNN is a mapping . F(.; θ) :
R

n → R
m with parameters . θ that maps an input .x ∈ R

n to an output .y ∈ R
m. 

Definition 2 (Multi-label Classification for an Image) Given an input image x, 
the output y is a vector of probabilities over the m classes. The output label gener-
ated for the image is the class that has the highest probability (i.e., .argmaxi∈[1,m]yi).
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Definition 3 (Supervised Learning (SL)) SL is the task of tuning parameters . θ
based on labeled training data (i.e., example input–output pairs). 

Definition 4 (Clean Data Distribution . D) A clean data distribution . D is the data 
distribution such that the samples x from . D are associated with their corresponding 
ground-truth labels l. 

Definition 5 (Clean Dataset . S) A clean dataset . S is a dataset whose elements are 
drawn from the clean data distribution . D. 

Definition 6 (Poisoned Data Distribution . D∗) A poisoned data distribution . D∗ is 
the data distribution such that the samples x from . D∗ are associated with a label 
. l∗ that is chosen by the attacker and could differ from the ground-truth label l. 
. l∗ is called the attacker-chosen label. Furthermore, . l∗ may not necessarily be one 
constant label and may depend on x. 

Definition 7 (Poisoned Dataset . S∗) A poisoned dataset . S∗ is a dataset whose 
elements are drawn from the poisoned data distribution . D∗. 

Definition 8 (Clean Samples (Inputs) and Poisoned Samples (Inputs)) Ele-
ments from . D are called clean samples (inputs). Similarly, elements from . D∗ are 
called poisoned samples (inputs). 

Definition 9 (Contaminated Dataset . Sb) A contaminated dataset . Sb is a dataset 
that contains both clean samples and poisoned samples. 

Definition 10 (Benign Model .F(.; θ)) A benign model .F(.; θ) is a neural network 
model parameterized by . θ and trained on a clean dataset . S such that for any clean 
input x, the probability that .F(.; θ) outputs the corresponding ground-truth label l 
for x is high, i.e., 

.P(F(x; θ) = l) > 1 − ε, (1) 

with small positive . ε. Ideally, .ε = 0. 

Definition 11 (BadNet (Backdoored) Model .Fb(.; θ)) A BadNet .Fb(.; θ) is a 
neural network model parameterized by . θ and trained on a contaminated dataset . Sb

such that for clean input x, it outputs the ground-truth label with high probability, 
and for poisoned input . x∗, it outputs the attacker-chosen label . l∗ with high 
probability, i.e., 

.P(Fb(x; θ) = l) ≥ P(F(x; θ) = l) − ε1, . (2) 

P(Fb(x
∗; θ)  = l∗) ≥ 1 − ε2, (3) 

with small positive .ε1, ε2. Ideally, .ε1, ε2 = 0. 

Definition 12 (Classification Accuracy (CA)) CA is the probability that a net-
work .Fb(.; θ) outputs the ground-truth label l for clean inputs x, i.e., . P(Fb(x; θ) =
l|x ∈ D).
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Definition 13 (Attack Success Rate (ASR)) ASR is the probability that a net-
work .Fb(.; θ) outputs the attacker-chosen label . l∗ for poisoned inputs . x∗, i.e., 
.P(Fb(x

∗; θ) = l∗|x∗ ∈ D∗). 

Definition 14 (False Positive) A sample is called false positive if it is clean but 
misidentified as poisoned by a detection model. 

Definition 15 (Injecting Function f ) An injecting function f changes a clean 
input x into a poisoned input . x∗, i.e., .x∗ = f (x). For example, an injection function 
could inject a specific pattern (trigger) into the clean image to create a poisoned 
input. Moreover, the injection function can be more complex: the poisoned inputs 
may not necessarily include discrete triggers; instead, they could be generated by 
superimposing subtle patterns on clean inputs, passing clean inputs through specific 
filters, or adding randomly generated artifacts to clean inputs. 

4 Problem Description 

The user outsources the task of training .F(.; θ) to a third party since the training 
of the model requires resources unavailable to the user (e.g., a large amount of 
labeled data, adequate computational power). The third party returns a trained model 
.Fb(.; θb), which might be backdoored. The goal of the defender (user and defender 
are used interchangeably) is to take this possibly backdoored network . Fb(.; θb)

and mitigate the backdoor by removing the backdoors or detecting poisoned 
samples. Mathematically, removing the backdoors means that the defender applies a 
cleansing function .P(·) on the network parameters . θb such that for both clean inputs 
x and poisoned inputs . x∗, the network outputs the corresponding ground-truth labels 
l with high probability, i.e., 

.P(Fb(x;P(θb)) = l|x ∈ D) ≥ 1 − ε3, . (4) 

P(Fb(x
∗;P(θb)) = l|x∗ ∈ D∗) ≥ 1 − ε4, (5) 

where . ε3 and . ε4 are small positive numbers and ideally zero. More details are 
discussed in Sect. 5.1. Detecting poisoned samples means that the defender applies 
a detection model .g(·) such that for poisoned inputs . x∗, it outputs positive, and for 
clean inputs x, it outputs negative with high probability, i.e., 

.P(g(x) = 0|x ∈ D) ≥ 1 − ε5, . (6) 

P(g(x∗) = 1|x∗ ∈ D∗) ≥ 1 − ε6, (7) 

with small positive numbers . ε5 and . ε6 (ideally, .ε5, ε6 = 0). The detailed description 
is discussed in Sect. 6.1.
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5 Backdoor Defense by Training Attacker Imitator 

This section describes a reverse-engineering-based defense method. The intuition 
behind this method is that if the defender can find a function to imitate the attacker’s 
behavior (i.e., trigger insertion), then such a function can be used to reduce the 
effect of the backdoor on the DNN. In our approach, this imitator function is found 
by formulating an optimization problem. The following assumptions are introduced: 

• The attacker generates the poisoned data distribution using an injection function 
as defined in Sect. 3. 

• Without loss of generality, the attacker chooses only one attacker-chosen label. 
However, the proposed method is applicable to other attack strategies, such as 
having multiple attacker-chosen labels or source-label-specific backdoors [39], 
which will be discussed later in Sect. 5.1. 

• The defender does not know if a given network is a BadNet or not. 
• The defender only has access to a small set of clean samples. 
• The defender does not have access to the original training data or knowledge of 
the trigger shape/location. 

• The defender is also allowed to fine-tune and retrain the network. 

In this section, we write simply . Fb instead of .Fb(.; θ) for notational brevity. 

5.1 Problem Formulation 

Given a DNN that is possibly backdoored, the defender’s objective is to find a 
function that transforms a clean input into a poisoned input. This function behaves as 
an emulation of the attacker and is called attacker imitator in the rest of this chapter. 
The performance of the attacker imitator could be measured by its statistical risk as 
follows: 

.R(γ ) = E[L(Fb(γ (x)), yt )], (8) 

where .γ (.) is the attacker imitator, and . yt is the attacker-chosen label that is 
unknown to the defender. L is a loss function that models the mismatch between 
the network output and the target label. The cross-entropy loss function is used in 
our experiments. The best possible attacker imitator is 

.R∗ = inf
γ∈�

R(γ ), (9) 

where . � is a class of all possible attacker imitator functions. Equation (9) cannot be 
directly evaluated since the input data probability distribution is unknown. However, 
a small set of clean samples is assumed to be available. Therefore, considering 
the attacker imitator to be a neural network with . θ̃ as its parameters, the problem
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of finding the attacker imitator could be solved using empirical risk minimization 
(ERM) if the attacker-chosen label . yt was known: 

.θ∗ = argmin
θ̃

N∑

i=1

L(Fb(γ (xi; θ̃ )), yt ). (10) 

Evaluating (10) will result in a function that mimics the adversarial behavior of an 
attacker’s trigger, but the function outputs might be very dissimilar to the original 
data (and the actual poisoned data). Hence, a cost term is added to (10) for penalizing 
dissimilarity between the attacker imitator’s outputs and their corresponding clean 
inputs, i.e., 

.θ∗ = argmin
θ̃

{
N∑

i=1

{L(Fb(γ (xi; θ̃ )), yt ) + d(xi, γ (xi; θ̃ ))}}, (11) 

where .d(., .) is a function measuring the similarity of its inputs. If two inputs are 
similar, the output of d will be small. 

Solving (11) requires having access to . yt . However, the defender does not have 
any knowledge about the target label. Therefore, an attacker imitator function is 
found by evaluating Eq. (11) for each label in the dataset’s classification labels set 
(i.e., .{l1, · · · , lm}). The best performing attacker imitator in terms of ASR is utilized, 
and its corresponding label is considered the prediction of the attacker’s intended 
target label. 

5.2 Defense Methodology 

We propose a method for solving the problem formulated in Eq. (11) for an image 
classification task in which an image in .Rw×h×3 (w is its width and h is its height) 
could be flattened to a 1-dimensional vector .xi ∈ Rn, where .n = 3wh. Moreover, 
the architecture of the attacker imitator highly depends on the classification task. For 
image classification, this function should transform input images into poisoned ones. 
CNN is a candidate for this purpose as it can replicate any nonlinear transformation 
by considering enough filters and nonlinear activation functions in each layer. Based 
on these facts, the problem is reformulated as follows: 

. θ∗ = argmin
θ̃

{
N∑

i=1

{
λ1L(Fb(γ (xi; θ̃ )), yt ) + λ2‖xi − γ (xi; θ̃ )‖22

−λ3MSSSIM(γ (xi; θ̃ ), xi)
}}

, (12)
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Fig. 2 The overall training procedure of the attacker imitator 

where .γ (.; θ̃ ) is a CNN with parameters . θ̃ as an attacker imitator, . xi is a clean 
input, and .λ1, λ2, λ3 ≥ 0 are tuning parameters. MSSSIM stands for multi-scale 
structural similarity index measurement [45], which is a perceptual image quality 
measurement to score similarity between two images. The output of MSSSIM is 
between . −1 and 1, and a large value means that the two input images are similar. 
Therefore, increasing the MSSSIM value would be desired, which is attained by 
subtracting this value from the loss function. Also, an . L2 norm of the difference 
between the original and corresponding poisoned images is added to the loss 
function. 

The overall training procedure of the attacker imitator is depicted in Fig. 2. The  
performance of the attacker imitator is evaluated by calculating the percentage of 
generated images that can successfully fool the network among all samples in the 
test dataset. We refer to this calculated percentage as generated attack success rate 
(GASR), and the closer this number is to .100%, the better the attacker imitator 
replicates the behavior of a successful attacker. Solving (12) for each classification 
label and calculating the corresponding GASR will provide a GASR profile. This 
profile can be used to detect whether the network is clean or a BadNet. If there exists 
an outlier in the GASR profile, the network is a BadNet, and the corresponding label 
is the attacker-chosen label. The outlier could be found based on the z-scores of 
GASR values. The z-score of GASR for each label i is calculated as 

.zi = GAi − GA

σ
, (13) 

where .GAi is the GASR of the label i, .GA is the mean of GASR values, and . σ is 
the standard deviation of all GASR values. Any z-score above a cut-off threshold is 
considered an outlier.
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Algorithm 1 Attacker imitator training 
1: procedure CALCULATE_GASR(F , a, S, Label) 
2: Input  ← a(S) 
3: Output ← F(Input)  
4: return the number of elements in output classified to Label 
5: end procedure 
6: procedure MAIN(Fb, V, IT)  
7: GASR = []  
8: for l ← 1 to  m do 
9: θ̃ ← Initializing the attack imitator (γ ) parameters 
10: for i ← 1 to  nepochs do 
11: for j ← 1 to  nbatches do 
12: xp ← γ (IT  j ) 
13: Loss ← λ1L(Fb(xp), l) − λ3MSSSIM(xp, IT  j ) + λ2L2(xp, IT  j ) 
14: θ̃ ← θ̃ − η ∂Loss 

∂ θ̃ 
15: end for 
16: end for 
17: GASR ← CALCULAT E_GASR(Fb, γ, V , l)  
18: end for 
19: end procedure 

As mentioned earlier, the user only has access to a small set of clean samples. The 
user uses a subset of the clean samples called the imitator training set for training 
the attacker imitator and utilizes the rest of the data called the validation set to 
calculate CA, ASR, and GASR. Training the attacker imitator is presented in the 
MAIN procedure in Algorithm 1. The inputs to this procedure are the BadNet, 
the validation set (V), and the imitator training set (IT). For an m-label dataset, an 
attacker imitator (shown by . γ ) is trained. The training could be done using any 
gradient descent method with a learning rate . η. Once the training is done for all 
batches (.nbatches), GASR is calculated for the attacker imitator (. γ ) trained with 
the predicted target label (l) using the defined procedure .CALCULAT E_GASR. 
The inputs to this procedure are the BadNet (F ), the attacker imitator (a), the set 
of samples (S), and the predicted target label (Label). As long as we consider a 
single attacker-chosen label for the BadNet, images with classification labels equal 
to the attacker-chosen label are removed during training and validation. It should 
be mentioned that (12) could be solved for other attack strategies. For instance, in 
the case of multiple attacker-chosen labels, the GASR profile will have multiple 
outliers corresponding to the attacker-chosen labels. Another challenging attack 
strategy is source-label-specific backdoor [39], in which the attacker’s goal is to 
misclassify inputs corresponding to specific labels rather than all the labels. This 
attack could be taken into consideration by solving (12) for misclassifying samples 
from a specific label to an attacker-chosen label. This will result in a GASR profile 
for each classification label that is checked for its outliers. 

The next step is to use the predicted attacker-chosen label and attacker imitator to 
make the BadNet robust against the backdoor attack with minimal effects on clean 
classification accuracy. These requirements can be embedded into an optimization 
problem as
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. θ∗
Bad = argmin

θBad

⎧
⎪⎨

⎪⎩

N∑

i=1
(xi ,yi )∈S

L(Fb(γ (xi; θ̃ ); θBad), yi) +
N∑

i=1

L(Fb(xi; θBad), yi)

⎫
⎪⎬

⎪⎭
,

(14) 

where . yi is the correct label for . xi , .θBad corresponds to the BadNet’s parameters, 
and .S = {(x, y)|y �= yt }, where . yt is the attacker-chosen label. The first term 
in Eq. (14) is responsible for unlearning the backdoor. This has been done by 
generating poisoned inputs with correct classification labels. The second term is 
added to ensure that the backdoor removal will not change clean classification 
accuracy; therefore, the CA of the network is mostly retained. 

5.3 Experimental Setup 

Our experiments for each dataset consist of four steps described as follows: 

1. In the first step, a BadNet with a specific trigger pattern is generated. To achieve 
this goal, a network is trained on clean training samples with high CA. Then, . 10%
of images are poisoned with the desired trigger pattern, and training is continued 
on .90% clean and .10% poisoned images for more epochs to achieve high ASR. 

2. GASR profile is calculated for the BadNet by solving Eq. (12) for all classifica-
tion labels in the dataset. 

3. Based on the GASR profile, we detect if the network is backdoored and what the 
attacker-chosen label is likely to be. 

4. In the last step, the attacker imitator and the attacker-chosen label found in the 
previous steps are used to robustify the network against the attack. 

To evaluate the effectiveness of our method, four BadNets have been considered 
covering various image classification tasks (e.g., object recognition, face detection, 
and traffic sign recognition) and various trigger patterns. These BadNets are 
explained in detail in the following subsections, and for simplicity, they are called 
Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-CR. 

5.3.1 Badnet-CW 

This BadNet is trained on the CIFAR-10 dataset [46] for object recognition. 
Network in Network (NiN) [47] has been chosen for its architecture, and a white 
square in the bottom-left corner of inputs is used as the trigger. The trigger shape 
and location are standard configurations considered in [16, 31, 32].
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5.3.2 Badnet-GY 

This BadNet is trained on the German Traffic Sign Recognition Benchmark 
(GTSRB) dataset [48], which has 43 classes. The Badnet-GY’s architecture is the 
same as the architecture used in Neural Cleanse [31] for the GTSRB dataset. The 
network has six CNN layers and two dense layers. This network will be called 
DeepGT in the rest of this chapter. The trigger shape in this setting is a yellow 
square with an arbitrary location in each image. This trigger has been proposed by 
[49] to show the limitations of Neural Cleanse for finding the attacker-chosen label 
and trigger shape. 

5.3.3 Badnet-YS 

For the face detection task, a BadNet is trained on the YouTube Face Database [50], 
and for its architecture, a deep network with four CNN layers and three dense layers 
has been used as in [31]; this network will be called DeepID. The trigger is chosen 
to be sunglasses with constant size and color. This trigger has been chosen to cover 
more pixels. Also, this trigger will cover key points in the image, which makes it 
more difficult to reverse-engineer the trigger [49]. 

5.3.4 Badnet-CR 

This BadNet’s architecture is ResNet-18 [51] and is trained on the CIFAR-10 dataset 
[46]. The trigger for this network is a combination of a yellow square on the top-
right corner of the image and a red square on the bottom-right corner. The backdoor 
is triggered when both patterns appear together in a poisoned image. For training 
the network with this more complicated trigger, we initially train the network on a 
clean training dataset. After that, .10% of images are chosen to generate three sets of 
data: (1) only a red square is added to the images, and their labels remain the same 
as their clean labels, (2) the same as the previous set, but a yellow square is added 
instead of the red square, and (3) the combination of the two triggers is added, and 
their labels are set to the attacker-chosen label. Then, this dataset is augmented to 
the original training dataset, and training is performed for more epochs. This trigger 
has been designed to affect more neurons in the network. 

Table 3 provides a summary of all the BadNets with their architectures, their 
training datasets, and the shape of triggers. In Table 4, BadNet training samples 
(used to train the BadNets), imitator training samples (used to train the attacker 
imitator network), validation samples (used to calculate CA, ASR, and GASR), 
and the number of labels for each dataset are shown. The first two columns of 
Table 8 show the CA and ASR of each BadNet. Examples of each trigger shape 
and the corresponding dataset images are shown in the top row of Fig. 4, in which 
the poisoned images from the left correspond to Badnet-CW, Badnet-GY, Badnet-
YS, and Badnet-CR, respectively.
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Table 3 Dataset, network architecture, and trigger shape corresponding to each BadNet configu-
ration 

Name Dataset Model Trigger 

Badnet-CW CIFAR-10 NiN White square 

Badnet-GY GTSRB DeepGT Moving yellow square 

Badnet-YS YouTube Face DeepID Sun glasses 

Badnet-CR CIFAR-10 ResNet-18 Red & yellow squares 

Table 4 Number of samples and labels for each dataset 

Dataset BadNet training Imitator training Validation # of classes 

CIFAR-10 .50,000 5000 5000 10 

GTSRB .35,288 .12,630 3921 43 

YouTube face .102,640 .12,830 .12,830 1283 

Table 5 Attacker imitator architecture for Badnet-CW and Badnet-CR 

Layer . # Channels Filter size Stride Padding Activation 

Conv2d 512 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 128 .3 × 3 1 1 ReLU 

Conv2d 64 .3 × 3 1 1 ReLU 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 16 .3 × 3 1 1 ReLU 

Conv2d 8 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

5.4 Experimental Results 

5.4.1 Attacker Imitator Configuration 

As outlined in Sect. 4, the attacker imitator transforms the input image into a 
poisoned image with the same dimensions as the input image. The attacker 
imitator network parameters are trained using the optimization in (11) to achieve 
high performance when applied to the training samples. The attacker imitator 
architecture depends on the classification task to reconstruct the input. Since the 
image classification task is considered in this chapter for experimental evaluations, 
CNNs are chosen for the architecture of the attacker imitators. Analogous to 
the considerations for network architectures in classification tasks that the CNNs 
should have enough layers and filters to extract key features of images, the attacker 
imitator’s network architecture should be chosen based on the dataset complexity. 
Based on these observations, the attacker imitator architecture used for Badnet-
CW and Badnet-CR is shown in Table 5, and the architectures for Badnet-GY and 
Badnet-YS are shown in Tables 6 and 7, respectively.
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Table 6 Attacker imitator architecture for Badnet-GY 

Layer . # Channels Filter size Stride Padding Activation 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 128 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 256 .3 × 3 1 1 ReLU 

Conv2d 32 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

Table 7 Attacker imitator architecture for Badnet-YS 

Layer Type . # Channels Filter size Stride Padding Activation 

Conv2d 128 .5 × 5 1 2 ReLU 

Conv2d 128 .5 × 5 1 2 ReLU 

Conv2d 64 .3 × 3 1 1 ReLU 

Conv2d 3 .3 × 3 1 1 ReLU 

5.4.2 BadNet vs. Benign Network Detection 

In this part, we evaluate the performance of our BadNet detection methodology 
discussed in Sect. 4. To have a fair comparison, for each of the BadNets, we 
have trained a benign network with the same architecture on the same dataset. 
Then, GASR profiles were calculated for the BadNet and the corresponding benign 
network. 

In Fig. 3, the z-scores of GASR profiles for each BadNet and the corresponding 
benign network are depicted in blue and red, respectively. Additionally, the cor-
responding cut-off threshold is depicted in cyan. It should be mentioned that the 
cut-off threshold is dependent on the number of samples in a set [52]; therefore, a 
cut-off threshold of 2 is considered for the CIFAR-10 dataset and 3 for the larger 
datasets. 

The results presented in Fig. 3 indicate that for all BadNets, there is an outlier in 
the GASR profile corresponding to the attacker-chosen label. For Badnet-CW and 
Badnet-CR, the attacker-chosen labels used by the attacker are 2 and for Badnet-
GY and Badnet-YS are 0, which are detected by our method correctly. This shows 
that our method is not dependent on the number of classification labels and can be 
used for any dataset and network architecture. It should be mentioned that for all the 
experiments, we have chosen the same coefficients for (12) without any modification 
during the training procedure.
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Fig. 3 GASR z-scores profiles for the BadNets and corresponding benign networks. Top left: 
Badnet-CW. Top right: Badnet-GY. Bottom Left: Badnet-YS. Bottom right: Badnet-CR 

5.4.3 Fine-Tuning the Network 

Once the attacker-chosen label is found, the corresponding attacker imitator gener-
ates poisoned images from the clean attacker imitator training set. In Fig. 4, for each 
of the BadNets, we have illustrated the poisoned image with the original trigger in 
the top row and with the imitator-generated trigger in the bottom row. Additionally, 
the columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and 
Badnet-CR, respectively. 

By observing the attacker imitator outputs, it can be seen that the attacker imitator 
can find the positions of the triggers correctly. For Badnet-GY, in which the attacker 
does not use a fixed position for the trigger, the generated trigger also does not have 
a fixed trigger location. In all the cases, the generated trigger does not replicate 
the actual trigger pattern, which is expected since the attacker imitator is found by 
solving an optimization problem to imitate the behavior of the attacker. Therefore, 
the attacker imitator will mimic the underlying effect of the trigger on the BadNet, 
and as the main concern is the removal of the backdoor from the network, finding the 
exact trigger pattern is not crucial for the main goal, which is to reduce the backdoor 
effect on the network.
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Fig. 4 The columns from the left correspond to Badnet-CW, Badnet-GY, Badnet-YS, and Badnet-
CR, respectively. Top row: The poisoned images with the trigger used by the attacker. Bottom row: 
The outputs of the attacker imitator 

Table 8 Clean classification accuracy and ASR comparison of BadNets before and after fine-
tuning them with our method and Neural Cleanse 

Backdoored Cleaned Cleaned by neural cleanse 

CA (. %) ASR (. %) CA (. %) ASR (. %) CA (. %) ASR (. %) 

Badnet-CW 87.18 97.53 85.14 0.95 84.12 1.04 

Badnet-GY 95.56 100 95.11 0.0 95.24 12.39 

Badnet-YS 97.88 98.53 94.4 0.0 95.74 38.09 

Badnet-CR 85.44 100 84.1 1.6 82.4 4.8 

As was mentioned in Sect. 4, the attacker imitator found by solving (12) given 
attacker-chosen label is used to generate poisoned images from the attacker imitator 
training set. The main advantage of doing so is that the clean labels for those 
samples are known. In the next step, the optimization problem in (14) should be 
solved by training the BadNet on a new dataset consisting of two main components: 
. (1) poisoned samples with clean labels made from clean samples (the first term in 
Eq. (14)) and . (2) clean samples with their clean labels (the second term in Eq. (14)). 
The poisoned samples are generated from samples whose clean labels are not equal 
to the attacker-chosen label. 

After robustifying all the BadNets using (14), the results are reported in Table 8. 
In this table, CA and ASR of the BadNets are reported in the first two columns from 
the left. The third and fourth columns show our method’s CA and ASR of the fine-
tuned network. Also, to have a fair comparison with Neural Cleanse, CA and ASR 
of the fine-tuned networks using Neural Cleanse have been reported in the last two 
columns.
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It can be seen that the robustification of the BadNets using our approach is 
successful in reducing the ASRs to 0 in three cases and .1.6% for Badnet-CR, which 
has a more complex trigger pattern. Moreover, it can be seen that after fine-tuning 
the network, the CA was not affected significantly, and the maximum reduction 
was .3.44%. Our method outperforms Neural Cleanse by achieving better ASRs. 
Specifically, Neural Cleanse is not successful for Badnet-GY, in which the trigger 
position is not fixed, and Badnet-YS, in which the trigger size is not small. 

6 RAID—An On-line Detection Method 

This section discusses the detection method called Removing Adversarial backdoors 
by Iterative Demarcation (RAID). The key differences between RAID and the 
previous method discussed in Sect. 5 are: (1) The previous method is purely 
off-line, whereas RAID uses both on-line and off-line models. (2) The previous 
method removes backdoors during off-line fine-tuning, whereas RAID rejects 
poisoned inputs during on-line implementation. (3) The previous method belongs 
to the reverse-engineering-based approach, whereas RAID belongs to the novelty-
detection-based approach. RAID takes advantage of the on-line streaming data and 
therefore reduces reliance on off-line validation data and restrictive assumptions on 
triggers. While RAID may perform ineffectively initially because the on-line data 
are scarce at the beginning, its performance improves on-line over time and enables 
accurate detection of poisoned inputs as the on-line data are accumulated. 

RAID first collects suspicious on-line samples that are highly likely to be 
poisoned using novelty detection models, which are trained off-line. Among the 
collected samples, RAID uses an anomaly detector to select the samples that are 
more likely to be poisoned than others. RAID trains a binary classifier using these 
selected data and the clean validation data. The trained binary classifier is used to 
determine if an on-line input is poisoned or not. As more suspicious on-line samples 
are collected, the binary classifier is updated, and the performance is improved. 
This repeated update to improve backdoor detection accuracy can be viewed as 
iterative demarcation. RAID uses two dimension-reduction methods to simplify the 
computational complexity. One is a feature extractor that compresses raw data into 
low-dimensional signature features, and the other is a dimension-reduction function 
such as PCA [53] that further reduces the feature dimensions. These two dimension-
reduction methods result in a reduction of computational complexity, ensuring that 
RAID can be implemented in real time. 

6.1 Problem Formulation 

The scenario considered by RAID is as follows: the user outsources a training task 
to a third party, which returns a backdoored DNN .Fb(.; θ) (written for notational
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brevity simply as . Fb) to the user. The defender needs to build a detection model 
to protect the user from backdoor attacks. The attacker’s goal is to make . Fb have 
high CA and ASR. The defender’s goal is to build the detection model .g(·) to lower 
ASR of . Fb while maintaining the CA. Mathematically, the defender wants .g(·) to 
output “clean” with a high likelihood for clean samples x and “poisoned” with a 
high likelihood for poisoned samples . x∗, i.e., to satisfy (6) and (7). 

The attacker is considered to have complete control over the training dataset and 
process. However, the attacker neither has access to the user’s validation dataset nor 
can change the model structure after training. The defender is considered to have a 
small set of clean validation data V (e.g., around 2% of the training dataset size). 
The defender has no prior information about the triggers or attacker-chosen label(s). 

6.2 Detection Algorithm 

The development of RAID was inspired by the observation that a DNN can be 
decomposed as a feature extractor . Cb and a decision function . Gb, i.e., . Fb = Gb ◦Cb

[54]. . Cb reduces the raw data dimension and extracts features at higher abstraction 
levels. . Gb maps the combinations of the features into corresponding outputs. The 
hypothesis is that the backdoor effect is created through a “logic” component 
encoded in . Gb (i.e., specifying what features in the trigger should result in the 
attacker-chosen labels). RAID sets the output layer of . Fb as . Gb and all the previous 
layers as . Cb. 

The overall algorithm of RAID is shown in Algorithm 2. In  Given, the defender 
has a backdoored network . Fb decomposed into . Cb and . Gb and a small clean 
validation dataset V with the corresponding labels L. In  off-line training, the  
defender obtains validation data features by feeding samples of V into . Cb. Then, 
a new classifier . Gn is trained with the extracted features . VF and the corresponding 
labels L. Since . Gn is trained only on clean data, it is highly likely that . Gn ◦ Cb

and .Gb ◦ Cb behave similarly on clean inputs but differently on poisoned inputs. 
A preprocess function (e.g., PCA) further reduces the feature dimension to obtain 
.VFP . .VFP is used to train a novelty detector . N independent of . Gn to detect inputs 
whose dimension-reduced features differ from dimension-reduced features of the 
clean validation data. 

The on-line detection and retraining are shown in both Fig. 5 and On-line 
Detection and Update in Algorithm 2. The on-line implementation is comprised of 
a front-end part and a back-end part that may be implemented in a parallel manner. 
In the front-end part, . Cb takes x as the input and outputs . xF . The preprocess function 
takes . xF as the input and outputs .xFP . If  .g(xFP ) = 0, i.e., if x is classified to be 
clean, then .Fb(x) will be trusted. Otherwise, .Fb(x) should not be trusted. .g(·) is 
initialized as .g(x) = 0 for all x and is then updated at a pre-specified frequency. 
In the back end, . N and . Gn determine if x is a “suspected” poisoned sample. If 
either .N(xFP ) = 1 (i.e., detected as different from the clean validation data) or 
.Gn(xF ) �= Gb(xF ), then x will be collected into the anomalous dataset . A. . A may
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Algorithm 2 On-line detection algorithm of RAID 
Given 

Validation data = (V , L) and backdoored network Fb = Gb ◦ Cb 

Off-line Training 
Extract features of validation data: VF ← Cb(V ) 
Train a new classifier: Gn ← train(Gn, (VF , L)). 
Reduce feature dimension: VFP  ← preprocess(VF ) 
Train a novelty detector: N ← train(N, VFP  ) 

On-line Detection and Update 
g(·) ≡ 0 (clean), count = 0, A = {}, and determine window_size = w0 
while True do 

count = count + 1 
Receive New Input x 

### Make a Prediction on x with Fb ### 
Extract Input Feature: xF ← Cb(x) 
Make a Prediction: l ← Gb(xF ) 

### Check If x is Poisoned (Front End) ### 
Reduce Feature Dimension: xFP  ← preprocess(xF ) 
if g(xFP  ) == 0 then 

l is the label for x (Clean with High Probability) 
else 

l is not the true label for x (Poisoned with High Probability) 
end if 

### Determine If x Should Be Collected as Anomalous Data and Used to Update g(·) (Back 
End) ### 

l′ ← Gn(xF ) 
if l �= l′ or N(xFP  ) == 1 then 

Collect xFP :A ← A ∪ {xFP } 
end if 

### Updating g(·) ### 
if count % window_size == 0 then 

Purify A: A∗ ← purify(A) 
Update the Binary Classifier: g ← train(g,  ({A∗, 1} ∪ {VFP  , 0})) 

end if 
end while 

contain a few false positives. Therefore, an anomaly detector is used to purify . A
to obtain . A∗. .g(·) is trained from scratch using .VFP and .A∗ at a pre-specified 
frequency. The defender can modify the window size (window_size in Algorithm 2) 
to determine the update frequency. Data in . A∗ is labeled as poisoned, and data in 
.VFP is labeled as clean. 

. Gn is a neural network with at most two hidden layers. This allows the structure 
of .Gn ◦Cb to be close to the original backdoored network .Fb = Gb ◦Cb. Therefore, 
they may show similar behavior on clean samples. Additionally, with such an 
architecture, the number of training parameters of . Gn is small, reducing the clean
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Fig. 5 Pipeline of the detection algorithm (on-line part) 

validation samples required to train . Gn. In real-world cases, the defender may only 
have a small clean validation data. RAID uses SGD as the optimizer with a learning 
rate set to 0.01 and a cross-entropy-based loss function with default hyperparameter 
settings. PCA with the top 40 principals from the validation data features is used 
as the preprocess function (i.e., (a) in Fig. 5); hence, it reduces the data dimension 
without losing too much information and amplifies the spectral signature of the clean 
data. However, other dimension-reduction functions can also be considered, such as 
SVD and factor analysis from scikit-learn [55]. The PCA model in RAID cannot 
highlight the spectral signature of the triggers because it was trained only on a clean 
validation dataset. 

Local outlier factor (LOF) is used as the novelty detector . N (i.e., (c) in Fig. 5) 
since the training process is unsupervised and in real time. The anomaly detector 
(d) in the figure is also LOF for the same reasons. However, other outlier detectors 
(e.g., [56–59]) may be considered if the training process is also unsupervised and in 
real time. RAID uses SVM as the binary classifier .g(·) in (b) in the figure. .g(·) must 
be simple so that the training time is short. SVM satisfies this requirement. Other 
models, such as a neural network, may take a much longer training time than the 
SVM. However, the binary classifier is also open to other models that can be trained 
in real time.
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Fig. 6 The first column shows sample clean images for all the datasets. The other columns show 
all the triggers used in the experiments 

6.3 Experimental Setup 

RAID was implemented on five popular datasets: MNIST [60], German Traffic Sign 
Benchmarks (GTSRB) [48], CIFAR-10 [46], YouTube Face [50], and ImageNet 
[61]. Figure 6 shows different triggers used in the experiment. Several network 
architectures are used based on related works [18, 31, 47, 62–64]. The original 
paper of RAID [41] lists all the network architectures. Each dataset contains three
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Table 9 Dataset Size. 
Columns 2–4 show the 
average number of samples 
per class 

Dataset Train Valid Test Valid/train # of classes 

MNIST 5500 100 1000 1.8% 10 

GTSRB 820 50 268 6.0% 43 

CIFAR-10 5000 30 500 0.6% 10 

YouT. Face 81 3 10 3.7% 1283 

ImageNet 1200 3 25 0.2% 1000 

Table 10 Fb’s architecture 
for case (a) 

Layer Channels Filter size Stride Activation 

Conv2d 16 5 × 5 1 ReLU 

MaxPool 16 2 × 2 2 – 

Conv2d 32 5 × 5 1 ReLU 

MaxPool 32 2 × 2 2 – 

Linear 512 – – ReLU 

Linear 10 – – – 

parts: training part (Train), validation part (Valid), and testing part (Test), as shown 
in Table 9. Considering that the MNIST, GTSRB, and ImageNet datasets are 
unbalanced among classes, Table 9 reports the average number of samples per class, 
which is the dataset size divided by the total number of classes. The training part was 
partially poisoned (i.e., around 10%) and used for training the backdoored networks. 
The clean validation part was used for training . N and . Gn. The testing dataset was 
used for evaluating RAID. The poisoned samples are acquired by injecting the 
triggers into the clean testing images. An on-line dataset with size n and attack 
density p is obtained with .(1 − p)n clean testing samples plus pn poisoned testing 
samples. Empirically, when 20% of the test data is poisoned, RAID achieves low 
ASR and high CA. There is not much gain after .p = 0.5. 

6.3.1 BadNet Trained on MNIST 

Case (a) The second column of Fig. 6a shows the trigger pattern. The attacker-
chosen label . l∗ was determined by the ground-truth label l: 

.l∗ = (l + 1) mod 10. (15) 

The network architecture is shown in Table 10. CA is .97.65%, and ASR is .96.3%. 

Case (b) The trigger is shown in the third column in Fig. 6a, which is a dotted 
background and almost imperceptible. l∗ is 0. The backdoored network has 89.35% 
CA and 100.0% ASR.
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6.3.2 BadNet Trained on GTSRB 

Case (c) The second column in Fig. 6b shows the trigger, which is a white box 
pattern. . l∗ is 33. CA is .96.41%, and ASR is .97.62%. 

Case (d) The trigger is a moving square as shown in the third column in Fig. 6b 
with l∗ = 0. CA is 95.26%, and ASR is 99.92%. 

Case (e) Images passing through a Gotham filter will trigger Fb, as shown in the 
fourth column in Fig. 6b. l∗ = 35. CA is 94.49%, and ASR is 90.32%. 

6.3.3 BadNet Trained on CIFAR-10 

Case (f) The second picture in Fig. 6c shows the trigger, a combination of a box 
and a circle. . Fb will output the attacker-chosen label 0 only when both the shapes 
appear on the input. CA is .88.6%, and ASR is .99.8%. 

Case (g) The trigger is the combination of a triangle and a square, as shown in the 
third column of Fig. 6c. l∗ = 7. CA is 88.83%, and ASR is 99.97%. 

The last column in Fig. 6c shows another trigger, a small perturbation (one pixel 
at each corner). l∗ is 0, CA is 82.44%, and ASR is 91.92%. 

6.3.4 BadNet Trained on YouTube Face 

Case (h) The trigger is sunglasses, as shown in the last column in Fig. 6d. . l∗ is 0. 
CA is .97.83%, and ASR is .99.98%. 

Case (i) The trigger is red lipstick, as shown in the second column of Fig. 6d. l∗ is 
0. CA is 97.19%, and ASR is 91.43%. 

Case (j) Fb has all three triggers: lipstick, eyebrow, and sunglasses, as shown in 
Fig. 6d. l∗ is 4 for all the triggers. CA is 96.13%, and ASRs are 91.80%, 91.88%, 
and 100% on lipstick, eyebrow, and sunglasses. 

Case (k) Fb has all three triggers as well. l∗, however, is 1 for lipstick, 5 for 
eyebrow, and 8 for sunglasses. CA is 96.08%, and ASRs are 91.11%, 91.10%, and 
100% on lipstick, eyebrow, and sunglasses. 

6.3.5 BadNet Trained on ImageNet 

The trigger is a red box shown in the second column in Fig. 6e. .l∗ = 0. The network 
is DenseNet-121 [64]. CA is .72.14%, and ASR is .99.99%. This backdoor attack 
is used to evaluate the performance of RAID with different attack frequencies and 
validation dataset sizes.
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6.3.6 Hyperparameter Setting 

The contamination ratio is a hyperparameter defined in the LOF anomaly detector. 
A high contamination ratio means that the LOF will remove more samples, whereas 
a low contamination ratio means that the LOF will remove fewer samples. The 
contamination ratio was set to 0.2 for all the cases. Note that the contamination 
ratio is set by the defender. Thus, it is not equal to the proportion of outliers in 
the dataset. The proportion of outliers in the dataset is determined by the attacker, 
which is similar to the attack density p mentioned earlier. The number of neighbors 
(i.e., NN, which is another hyperparameter of LOF) was set to be 1. However, the 
defender can set any other values between 1 and 20. Empirically, it is observed 
that the CA and ASR of RAID with NN .= 1, 10, and 20 are comparable to each 
other, and there is not a distinctive advantage in choosing a higher NN; however, the 
lower NN makes the computation faster. The remaining parameters are set to typical 
default values. 

6.4 Experimental Results 

6.4.1 Performance of N and Gn 

Using both . N and . Gn can maximally identify poisoned samples. Table 11 shows 
the CA and ASR of using . N alone, . Gn alone, and both. Three dimension-reduction 
functions (i.e., PCA, TruncatedSVD, and FactorAnalysis from scikit-learn [55]) are 
utilized to train different . N. Since . Gn does not use any dimension-reduced features, 
the three cases use the same . Gn. From the table, there is not much difference 
in the performance of . N using PCA and SVD. Using FactorAnalysis leads to a 
higher ASR in some cases than the other two functions. However, we will see that 
the overall performance of .g(·) using FactorAnalysis is also good. Additionally, 
the three functions are all fast enough for on-line usage. Therefore, if only . g(·)’s 
performance is considered, the three functions are almost equal, whereas if both 
. g(·)’s performance and . N’s performance are considered, PCA and TruncatedSVD 
provide better performance than FactorAnalysis. The performance of PCA and 
TruncatedSVD is almost equivalent. The table also shows that using . N and . Gn

together will maximally catch poisoned samples (i.e., reduce ASR) and also increase 
false positives (i.e., reduce CA). However, in this initial filtering, the ASR should be 
weighed more than the CA. Additionally, an anomaly detector is used subsequently 
to reduce false positives further. In case (e), the ASR is still large even though . Gn

and . N are used together because the trigger is more subtle. Rather than some specific 
patterns, case (e)’s trigger is a Gotham filter function. . Gn and . N are not sensitive to 
this trigger. But we will next show that RAID can still improve itself to reduce the 
ASR with on-line data further.
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6.4.2 Performance of g(·) 

The first 40% of test data was used for on-line implementation and updating of the 
SVM, and the remaining 60% of test data was used for evaluating the performance of 
the backdoored network after employing the SVM. The binary SVM was initialized 
to output clean for all the inputs. Then, it was updated with a fixed window size, 
which is set to 10% of the test dataset size (therefore, the SVM can be updated 
4 times in the considered test scenario). Each test input has an equal probability of 
being clean or poisoned. Table 12 shows the performance of RAID with PCA, SVD, 
and FactorAnalysis as the dimension-reduction function. From the table, RAID is 
effective with all the three dimension-reduction functions. Additionally, SVM helps 
reduce ASR while retaining high CA. Note that in case (e), the SVM still provides 
good performance, although the off-line models have high ASR (refer to Table 11). 
These results highlight the robustness of RAID. Table 13 lists how many poisoned 
samples are fed into the backdoored network and the size of . A∗ for training the 
SVM at each update when PCA was used as the dimension-reduction function. From 
the table, training a good SVM needs only a small set of poisoned samples. Since 
the performance of RAID using PCA, SVD, and FactorAnalysis is similar, we will 
only discuss the case when PCA is used as the dimension-reduction function for the 
following experiments. 

6.4.3 Performance of the Anomaly Detector 

We examine the performance of RAID with different contamination ratios. Table 14 
shows the results. The classification accuracy drops significantly without the 
anomaly detector (i.e., the contamination ratio is 0). This is because the LOF 
does not remove any samples. Thus, . A contains many false positives. When 
contamination ratio is 0, .A = A∗. The SVM trained with such . A∗ will perform 
inefficiently. RAID shows comparable results when the contamination ratio is set 
to 0.1, 0.2, and 0.3. Both CA and ASR decrease, while the contamination ratio 
increases. 

6.4.4 Multiple Triggers and Adaptive Attacks 

The attacker may use multiple triggers to attack the backdoored network, i.e., cases 
(j) and (k). The following attack scenarios are considered during on-line operation: 
(1) The attacker does not use any triggers. (2) The attacker uses only one of the 
triggers. (3) The attacker uses two of the triggers. (4) The attacker uses all the 
triggers. Scenario (1) is used for evaluating the performance of RAID when . A∗ only 
contains false positives. One can also consider scenario (1) as the case to evaluate 
RAID on a benign model. Scenarios (2), (3), and (4) are utilized to evaluate if RAID 
is effective with multiple triggers. The 4th updated SVM was tested. The results are 
shown in Table 15. From the table, RAID maintains high CA in all the scenarios and
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Table 13 Size of . A∗ and the 
numbers of poisoned inputs 
that have appeared at each 
update 

0th 1st 2nd 3rd 4th 

(a)–(b) # of poi. 0 1000 2000 3000 4000 

(a) size of .A∗ 0 217 411 609 812 

(b) 0 226 439 666 894 

(c)–(e) # of poi. 0 1263 2526 3789 5052 

(c) size of .A∗ 0 275 534 779 1033 

(d) 0 295 575 870 1123 

(e) 0 162 303 434 571 

(f)–(g) # of poi. 0 1000 2000 3000 4000 

(f) size of .A∗ 0 213 424 635 846 

(g) 0 214 412 614 826 

(h)–(i) # of poi. 0 1283 2566 3849 5132 

(h) size of .A∗ 0 360 722 1086 1453 

(i) 0 352 698 1044 1390 

Table 14 Performance of RAID (the 4th update) with different contamination ratios 

Ratio . = 0.0 Ratio . = 0.1 Ratio . = 0.2 Ratio . = 0.3 

CA ASR CA ASR CA ASR CA ASR 

(a) 86.35 0.03 96.90 1.7 96.83 1.15 94.48 0.15 

(b) 87.69 0 89.35 0 89.19 0 89.02 0 

(c) 92.57 0.05 94.41 0.65 94.41 0.26 94.34 0.23 

(d) 94.24 0.06 95.72 0.25 94.61 0.19 94.47 0.10 

(e) 88.53 0.19 94.04 13.77 93.36 4.61 93.0 2.42 

(f) 56.63 0 88.6 0.05 88.6 0.01 88.6 0.01 

(g) 62.03 0 88.83 0.13 88.83 0.1 88.83 0.1 

(h) 92.64 0 97.76 1.81 97.67 0.48 97.60 0.24 

(i) 92.23 0.85 97.19 4.94 97.11 3.24 97.07 2.58 

has low ASR on triggers that the attacker has used. For scenario (1), although . A∗
contains only false positives, RAID still manages to have a high CA. For scenarios 
(2) and (3), RAID has high ASR on the second or third trigger. However, since the 
SVM is updated in real time, once the new triggers are used for backdoor attacks, . N
and . Gn will detect them in the back end resulting in attack detection by the SVM in 
the next update, such as case (4). The only period in which the network is vulnerable 
to the new triggers is between the moment that a new trigger appears and the next 
SVM update. Overall, the results show the efficacy and robustness of RAID. 

6.4.5 Experiments on Hyperparameters 

The first experiment is to evaluate RAID with different numbers of principal 
components. A backdoored network with small perturbations (only one pixel at each 
corner) as the trigger (i.e., the third . Fb in the CIFAR-10 case) was trained, which has
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Table 15 RAID 
performance on dynamic 
attacks (j)–(k) 

Case/attack Net. (1) (2) (3) (4) 

(j) CA 96.13 96.10 96.05 95.83 95.88 

ASR1 91.80 91.78 3.84 3.72 3.79 

ASR2 91.88 91.85 64.36 2.22 2.27 

ASR3 100 100 100 100 0.21 

(k) CA 96.08 96.05 95.99 95.90 95.88 

ASR1 91.11 91.11 2.77 2.84 3.21 

ASR2 91.10 91.10 89.88 0.99 0.94 

ASR3 100 100 99.65 95.82 0 

.82.44% CA and .91.92% ASR. The first two pictures in Fig. 7 show the performance 
of RAID with different numbers of principal components. From the pictures, all 
the plots show significant drops in ASR at different rates. Using more principal 
components results in a faster reduction in ASR. Using fewer principal components 
results in a small drop in CA (i.e., around 1%). With fewer principal components, 
the dimension-reduced poisoned data features are closer to the dimension-reduced 
clean data features. Thus, .A∗ may contain more false positives, which increases 
the training noise and leads to the degradation of CA. The number of principal 
components should be from 20% to 40% of the original feature dimension. 

The second experiment is to evaluate RAID with a different attack frequency/-
density (i.e., the probability p of an input being poisoned). Note that the attack 
frequency/density is determined by the attacker. Therefore, it is different from the 
contamination ratio. We tested RAID on the ImageNet dataset because we also 
want to see if RAID is efficient on a large-scale dataset. The backdoored model 
is DenseNet-121 with 72.14% CA and 99.99% ASR. The dataset and trigger are 
shown in Fig. 6e. The middle two pictures in Fig. 7 show the effectiveness of RAID 
on ImageNet under different attack densities. It is seen that ASR reduces faster when 
attack density is higher (i.e., more poisoned inputs are fed into the network). When 
attack density is 0 (meaning . A∗ has only false positives), the CA is still high. 

RAID was also tested with 1 or 2 images per class on ImageNet to see if the 
clean validation dataset could be even smaller. Although low ASR is achieved with 
one image per class, CA degrades (the last two pictures in Fig. 7). This is because 
the novelty detector . N and the new classifier . Gn generate many false positives due 
to a lack of training data. Therefore, . A∗ may contain many false positives, which 
increases the training noise and leads to the degradation of CA (i.e., the SVM is 
trained with bad training samples). 

The last experiment is to evaluate the performance of RAID when the SVM 
is updated at different frequencies. During the period between two updates, the 
backdoored network might be exposed to an attack if new triggers are applied. 
Therefore, reducing this period (increasing update frequency) can help further 
mitigate the threat of new triggers. The user needs to set a window size for the 
update. For example, if the window size is 1000, the SVM will be updated once 
there are 1000 new inputs into the network. Figure 8 shows the performance of
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Fig. 7 Solid lines in all the 
pictures: CA. Dashed lines in 
all the pictures: ASR. X-axis: 
the number of updates. n: the 
number of PCA components. 
p: the probability of a sample 
being poisoned. For the last 
two pictures: the red plots 
overlap the other plots and 
are not visible
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Fig. 8 X-axis: ratio of test data size used in RAID to the total test data size. Solid lines: CA. 
Dashed lines: ASR. w: window size/test data size 

RAID with different update frequencies under case (a). RAID shows consistently 
good performance after increasing the update frequency (i.e., reducing window 
size). Since training the SVM is quick (. <1 s), RAID can be used effectively during 
on-line operation. 

6.4.6 More Advanced Attack 

[20] propose a backdoor attack with sample-specific triggers. The example is shown 
in Fig. 9. It can be seen that the trigger remains invisible in the image. We use a 
subset of the ImageNet dataset as the testing data. The backdoored model has 78% 
CA and 100% ASR. The model architecture is ResNet-18 [51]. After the 4th update, 
RAID reduces the ASR to 0.4% and keeps CA close to 78%. 

The attacker may try to minimize the feature-level outputs between poisoned data 
and corresponding clean data to bypass RAID. However, the difference between 
clean and poisoned data always exists and must be represented in hidden layer 
outputs. Otherwise, if the hidden layer outputs are identical for clean and poisoned 
samples, the network outputs should then also be the same. This cannot be true 
since the network outputs the attacker-chosen label for the poisoned sample and 
the ground-truth label for the clean sample. Although the difference may be small 
for one hidden layer, the cumulative difference for multiple hidden layers becomes 
significant and observable. RAID can still be applied by changing the input of its 
novelty detector and the binary classifier to include multiple hidden layer output 
features. 

As seen above, RAID fuses several simple models (i.e., simple neural networks, 
novelty detector, anomaly detector, dimension-reduction function, and binary clas-
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Fig. 9 Sample-specific trigger. Left: benign image. Middle: poisoned image. Right: the corre-
sponding trigger 

sifier) to reduce the ASR caused by the attacker. It requires only a small clean 
validation dataset, which is feasible to acquire in real-world applications. 

7 Benign Applications of the Backdoor Phenomena 

While we have considered backdoor-based attacks in this chapter, it is to be noted 
that backdoors can also be used for benign purposes such as the protection of 
intellectual properties. One example is using the backdoors as watermarks [65]. 
To train an accurate neural network model, the trainer needs to invest considerable 
cost and effort to collect high-quality data, label the data, buy/rent computational 
resources, and tune the model hyperparameters. Therefore, it is critical to find a way 
to protect the intellectual property of the models. Similar to watermark injection into 
documents, neural network models can also be injected with watermarks. Backdoor-
based watermarks are one option for this purpose. The trainer injects backdoors into 
the trained network so that any other network copied based on this model can be 
recognized by presenting it with the poisoned inputs. Other models cannot correctly 
predict the outputs since they do not know the trigger information. The model’s 
performance on clean samples, however, is not affected. Therefore, intellectual 
properties can be protected by utilizing backdoor attack mechanisms. 

8 Future Directions 

Although our methods introduced in this chapter utilize only a small clean validation 
dataset, it is of value to further decrease the size of the required validation dataset. 
RAID requires some on-line data to attain samples of possible poisoned inputs in 
addition to the validation dataset to train a classifier for clean vs. poisoned inputs. 
During this period, some poisoned inputs may escape detection. Reducing this
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transient vulnerability is therefore an avenue for future improvements. Additionally, 
the reduction of computational complexity is also an important topic for future work. 
Another extension would be to generalize the methods to backdoor detection for 
machine learning methods that are not based on neural networks. Further application 
of the methods to other adaptive triggers should also be considered. Lastly, using 
explainability tools for DNNs may be helpful to further improve the applicability 
and usability of backdoor detection methods. 
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Robustness for Embedded Machine 
Learning Using In-Memory Computing 

Priyadarshini Panda, Abhiroop Bhattacharjee, and Abhishek Moitra 

1 Introduction 

Deep learning has achieved state-of-the-art prediction capabilities across a variety 
of cognitive and analytics tasks. This has led to the ubiquitous deployment of Deep 
Neural Networks (DNNs) in low power edge devices [1, 2]. For edge computing, 
analog crossbar architectures have emerged as a front runner towards low-latency 
and energy-efficient acceleration platforms in resource-constrained scenarios. Here, 
the synaptic weights of the DNNs are mapped on arrays (crossbars) of Non-
Volatile Memory (NVM) devices, such as Resistive RAM (ReRAM), Phase Change 
Memory (PCM), Ferroelectric Field Effect Transistors (FeFET) and so forth [3, 4]. 
They efficiently perform analog dot-product operations, emulating Multiply and 
Accumulate (MAC) operations in DNNs, when input voltages are applied to the 
rows of the crossbar. 

Despite achieving super-human performance in many computer vision tasks [5], 
DNNs have been shown to be vulnerable to adversarial attacks (see Fig. 1). Here, 
small and strategically crafted noise in the input can fool the DNN leading to failure 
[6–10]. This vulnerability severely limits the deployment and potential safe-use of 
DNNs at the edge for real-world applications. To defend against adversarial attacks, 
previous works have used two broad approaches: (1) Adversarial classification [11– 
15] and (2) Adversarial detection [16–18]. Under adversarial classification, there 
have been prior works that have used techniques such as adversarial training, input 
feature transformation among others to classify the adversarial samples accurately 
[11–15]. In contrast, adversarial detection works focus on identifying clean and 
adversarial samples such that the detected adversarial samples are not passed to 
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Fig. 1 Adversarial attacks can fool a DNN by adding structured perturbations to clean inputs 

the output of the DNN for classification [16–18]. However, these techniques are 
software-centric and not hardware-friendly, requiring high computational over-
heads. To this end, recent works such as [10, 19] show that quantization methods, 
which primarily reduce compute resource requirements of DNNs, act as a straight-
forward way of improving the adversarial robustness of DNNs. Other works such as 
[20, 21] use model compression and pruning techniques to optimize and reduce 
computational complexities of DNNs while guaranteeing adversarial robustness. 
In [19, 22], efficiency-driven hardware optimization techniques are leveraged to 
improve adversarial resilience of DNNs, while yielding energy-efficiency. However, 
none of these works has been integrated with a crossbar-based platform (considering 
intrinsic crossbar noise) for DNN inference. Vanilla implementation of DNNs 
on crossbars, including those trained with software defenses such as adversarial 
training, suffers from significant loss in robustness caused by hardware noise [23– 
25]. There has been limited study in understanding the robustness of crossbar 
implemented DNNs. Thus, we highlight hardware and energy-efficiency driven 
works that improve the robustness of DNNs deployed on analog crossbars in 
two broad aspects: (1) Improving adversarial robustness and (2) Mitigating the 
detrimental effects of crossbar non-idealities on DNNs, thereby ameliorating the 
performance (accuracy) of DNNs on crossbars. Note, these works do not pose a 
huge overhead of hardware-aware retraining of a pretrained DNN model before 
deployment on crossbars. 

We begin by discussing two recent works that use analog crossbars and improve 
the adversarial robustness of the mapped DNNs. Note, adversarial robustness 
implies improving the performance of the hardware-mapped DNN model against 
adversarial samples without compromising the classification accuracy of clean 
images on hardware. In the first work, we introduce a technique called NEAT [26] 
that mitigates the impact of selector-induced non-linearities and resistive crossbar 
non-idealities for robust implementation of DNNs on 1T-1R crossbars. Second, we 
showcase another work, called DetectX [27], that uses hardware signatures present 
in analog crossbar architectures to perform energy-efficient adversarial detection. 
While NEAT is tailored for adversarial classification, DetectX is an adversarial 
detection method.
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Finally, we delve into a specific case of the inference of DNNs having structured 
sparsity in their weights on analog crossbar arrays. Recently, crossbar-aware struc-
tured pruning algorithms [28–31] have received significant attention in developing 
increasingly sparse DNN models requiring fewer crossbars to be mapped, thereby 
introducing huge savings in terms of crossbar energy and area-efficiencies [32]. 
However, a holistic evaluation of the performance of such algorithms by considering 
the impact of resistive crossbar non-idealities was missing. In this chapter, we 
highlight a recent work [33] which shows that increased structured sparsity in DNNs 
negatively interferes with crossbar non-idealities that can degrade their classification 
accuracy (or robustness) during inference. This work also introduces two hardware-
centric non-ideality mitigation strategies, namely crossbar-column rearrangement 
and Weight-Constrained-Training (WCT), to help improve the performance or 
robustness of the sparse DNNs on crossbars. 

This chapter is organized as follows. Section 2 explains the background on 
adversarial attacks, memristive crossbars and non-idealities. In Sect. 3, we discuss 
the NEAT technique that introduces a non-ideality control technique which causes 
a rise in adversarial robustness. Section 4 introduces the DetectX technique that 
performs energy signature separation for adversarial detection. Section 5 explains 
the impact of structured sparsity in DNNs and their interaction with non-ideal 
crossbars. Section 6 gives an overview of related works and scopes out different 
crossbar-based studies with different objectives. Finally, we conclude in Sect. 7. 

2 Background 

2.1 Adversarial Attacks 

Adversarial samples are created by generating a crafted noise and adding it to the 
clean data samples. In this chapter, we discuss two widely used methods to generate 
the noise for creating adversarial attacks. 

1. Fast Gradient Sign Method (FGSM) [6] is a one-step gradient-based attack 
shown in Eq. (1). To generate the noise, first, the gradients of the DNN loss 
.L(θ, x, ytrue) with respect to the input x are calculated. Here, . θ represents 
the parameters of the DNN and .ytrue represents the labels of the input data. 
Then, a .sign() operation converts the gradients into unit directional vectors. 
The unit vector is multiplied by a scalar perturbation value, . ε, that determines 
the strength of the attack. Finally, the perturbation vector is added to the input 
x to create an adversarial data. Note that perturbations are added to x along the 
direction of the gradients to maximize DNN loss . L. 

.xadv = x + ε sign(∇x(L(θ, x, ytrue))) (1)
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2. Projected Gradient Descent (PGD): The PGD attack, shown in Eq. (2) is an  
iterative attack over n steps. It is basically a multi-step variant of the FGSM 
attack. In each step i, perturbations of strength . α are added to .xi−1

adv . Note that 
.x0

adv is created by adding random noise to the clean input x. Additionally, for 
each step, .xi

adv is projected on a Norm ball [8], of radius . ε. In this chapter, 
the .L∞ Norm ball (of radius . ε) projection is used for all the PGD attacks. In 
other words, we ensure that the maximum pixel difference between the clean 
and adversarial inputs is . ε. 

.xadv =
n∑

i=1

xi−1
adv + α sign(∇xL(θ, x, ytrue)) (2) 

2.2 Memristive Crossbars and Their Non-idealities and 
Non-linearities 

Memristive crossbar arrays have been used to implement MAC operations in 
an analog manner. Crossbars consist of 2D arrays of NVM devices, Digital-to-
Analog Converters (DAC), Analog-to-Digital Converters (ADC) and a write circuit. 
The synaptic devices at the cross-points are programmed to a particular value of 
conductance (between .GMIN and .GMAX) during inference. The MAC operations 
are performed by converting the digital inputs to the DNN into analog voltages on 
the Read Wordlines (RWLs) using DACs, and sensing the output current flowing 
through the bit-lines (BLs) using the ADCs [23, 34–38]. In other words, the 
activations of the DNNs are mapped as analog voltages . Vi input to each row and 
weights are programmed as synaptic device conductances (. Gij ) at the cross-points 
as shown in Fig. 2a. For an ideal crossbar array, during inference, the voltages 
interact with the device conductances and produce a current (governed by Ohm’s 
Law). Consequently, by Kirchhoff’s current law, the net output current sensed 
at each column j is the sum of currents through each device, i.e. . Ij (ideal) =
ΣiGij ∗ Vi . We term the matrix .Gideal as the collection of all . Gij ’s for a crossbar 
instance. However, in reality, the analog nature of the computation leads to various 
hardware noise or non-idealities, such as, circuit-level resistive non-idealities and 
device-level variations [23, 34, 36, 37, 39–43]. 

Non-idealities: Fig. 2b describes the equivalent circuit for a crossbar accounting 
for various circuit-level and device-level non-idealities, viz. Rdriver , .Rwire_row, 
.Rwire_col and Rsense (interconnect parasitics), modelled as parasitic resistances 
and variations in the synapses owing to the stochasticity of the memristive devices. 
This results in a .Gnon-ideal matrix, with each element .G′

ij incorporating the effect 
due to the non-idealities, obtained using circuit laws (Kirchhoff’s laws and Ohm’s 
law) and linear algebraic operations [23, 24, 33, 39, 44]. Consequently, the net output 
current sensed at each column j becomes .Ij (non-ideal) = ΣiG

′
ij ∗ Vi , which deviates
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Fig. 2 (a) A  .2 × 2 crossbar array with input voltages . Vi , synaptic conductances .Gij and output 
currents .Ij = ∑

i Gij ∗ Vi . (b) A  .2 × 2 crossbar array with the resistive and the synaptic device-
level non-idealities. These non-idealities lead to imprecise dot-product currents and that manifests 
as accuracy degradation when DNNs are evaluated on crossbars 

from its ideal value. This manifests as accuracy degradation for DNNs mapped onto 
crossbars. The relative deviation of .Inon-ideal from its ideal value is measured using 
non-ideality factor (NF) [34] as:  

.NF = (Iideal − Inon-ideal)/Iideal . (3) 

Thus, NF is a direct measure of crossbar non-idealities, i.e. increased non-
idealities induce a greater value of NF, affecting the accuracy and hence, the 
robustness of the DNNs mapped onto them. All the analyses in Sects. 3 and 5 
involving non-idealities are performed on memristive crossbars with an ON/OFF 
ratio of 10 (i.e. .RMIN = 30 kΩ and .RMAX = 300 kΩ), having the resistive non-
idealities as follows: .Rdriver = 1 kΩ , .Rwire_row = 5Ω , . Rwire_col = 10Ω

and .Rsense = 1 kΩ . The non-ideality in the memristive devices in the form of 
device-level process variation has been modelled as a Gaussian variation in the 
conductances (. GM ) of the NVM devices with .σ/μ = 10% [45]. 

Recently, 1T-1R NVM crossbars have received significant attention since the 
pass-transistor in series with the NVM device at the synapses can help mitigate 
sneak paths (prevalent in 1R crossbar arrays) and the incorrect programming of the 
NVM device induced by noise [46, 47]. Figure 3 illustrates an .M × N crossbar 
having 1T-1R synapses at the cross-points wherein, the access transistors are driven 
by a gate-voltage (. Vg) fed through the select-lines (SLs). A low . Vg operation is 
favorable for implementing a DNN on crossbars in a resource-constrained scenario 
as it has been shown in prior works [26] that the total power dissipated by a 1T-
1R crossbar array diminishes with reduction of the transistor gate-voltage (. Vg). 
However, it is imperative to understand the other repercussions of low . Vg operation 
in 1T-1R crossbars that impact the performance and hence, robustness of the mapped 
DNN models.
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Fig. 3 Illustration of an M . × N 1T-1R Crossbar. A Transistor (T) in series with an NVM device 
(R) is present at every synapse. Select-lines (SLs) are used to turn on transistors for selected rows, 
while the dot-product currents are sensed through the bit-lines (BLs) 

Non-linearities: In addition to the above-mentioned non-idealities, 1T-1R cross-
bars are susceptible to various non-linearities that affect the effective conductance 
of each synapse (especially, at lower . Vg) and hence, the output current across 
each column in a crossbar array. This would manifest as accuracy degradation 
for the DNNs mapped onto such crossbars. In [26], to understand the effects of 
the non-linearities alone on introducing the access transistor (or selector) in the 
synapse, extensive SPICE simulations were performed using the 1T-1R synaptic 
configuration with different input voltages, conductances and . Vg ranges excluding 
the circuit-level and device-level non-idealities. For all the analyses involving 1T-1R 
synapses, the selector devices were based on 45 nm CMOS technology model and 
the memristive device had .RON = 30 kΩ and .ROFF = 300 kΩ . 

For a crossbar in the 1R configuration, the weights W of the DNN are directly 
mapped to a memristor conductance state (.GM = 1/RM ) in a linear fashion. On the 
other hand, in the 1T-1R configuration, W is mapped to the effective conductance 
.Geff = 1/(RM + Rt), where . Rt is the equivalent resistance due to the transistor. 
The non-linearities in the 1T-1R crossbars arise due to the dependence of . Rt on . Vin. 
Note, . Vin is proportional to the neuronal activation values of the DNN which varies 
with the input. Hence, these are data-dependent non-linearities. It has been shown
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in [26] that the effective conductance .Geff is a function of NVM conductance . GM , 
input voltage . Vin, and gate-voltage . Vg , which can be formulated as: 

.Geff = f1(GM, Vin, Vg). (4) 

3 Non-linearity Aware Training (NEAT): Mitigating the 
Impact of Crossbar Non-idealities and Non-linearities for 
Robust DNN Implementations 

In this section, the NEAT technique is introduced that provides a new perspective on 
the energy-efficient and robust implementation of DNNs on 1T-1R crossbars [26]. 
It begins with the identification of a range of memristive conductances over a range 
of input voltages via SPICE simulations such that Eq. (4) can be approximated as: 

.Geff = f2(GM, Vg). (5) 

This eliminates the input-data dependency of the effective 1T-1R synaptic 
conductance (.Geff ) for a given value of . Vg of transistor operation. In other words, 
for a given value of . Vg , there exists an upper bound cut-off value (.Geff cutoff ) 
for which the 1T-1R synapse exhibits linear characteristics, and .GM ≈ k ∗ Geff , 
where k is a scalar. The corresponding NVM device state at .Geff cutoff is termed as 
.GM cutoff . Figure 4 shows the .GM cutoff vs. . Vg plot for supply voltage . Vsupply =
0.25V, 0.5V and .Vin in the range .0 ≤ Vin ≤ Vsupply . It can be seen that as . Vg

is lowered (for resource-constrained scenarios), the overall range of memristive 
conductance states .GM for data-independent and linear synaptic characteristics 
decreases owing to low values of .GM cutoff . 

Fig. 4 The variation in .GM cutoff with respect to selector gate-voltage .Vg
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Fig. 5 Overall flow of NEAT 

After identifying .Geff cutoff for a given . Vg , the corresponding value for .Wcut is 
obtained for the software DNN which is to be mapped onto the 1T-1R crossbars. 
Then, all the weights (W ) of the pretrained DNN are restricted in the interval 
.[−Wcut ,Wcut ] as shown in Eq. (6): 

.Wmap =

⎧
⎪⎪⎨

⎪⎪⎩

W |W | ≤ Wcut

Wcut W > Wcut

−Wcut W < −Wcut .

(6) 

From Eq. (6), we observe that for the linear regime (.|W | ≤ Wcut , which 
corresponds to .Geff ≈ k ∗ GM ), the software weight parameters can be mapped 
linearly onto the crossbars. While, for the non-linear regime (.|W | > Wcut that 
corresponds to deviation of .Geff from . GM ), W is clipped at .Wcut . The objective 
of NEAT is to restrict the weight parameters to be within the linear regime for 
the given gate-voltage . Vg of the transistor, thereby curbing loss in computational 
accuracy post-mapping DNNs onto 1T-1R crossbars. Figure 5 illustrates the overall 
flow of the NEAT process. 

Iterative Training: In NEAT, after setting the optimal . Vg and .Wcut values, the 
weights of the DNN get transformed. If we use lower values of . Vg which do not  
cover all weight ranges, the weight distribution gets altered, resulting in accuracy 
degradation. To address this issue, iterative training is proposed which consists of 
two steps. Step 1 is essentially restricting the weights of the DNN (W ) in the suitable 
cut-off regime as per Eq. (6). Step 2 involves retraining the networks iteratively for 
a couple of epochs to recover any accuracy loss incurred from Step 1. These two 
steps are repeated so that greater number of weights in the network can be located 
in the linear regime when mapped onto crossbars. 

In Fig. 6, . Vg is varied from .0.75V to .1.0 and the classification accuracy of 
various DNN architectures using CIFAR10 and CIFAR100 datasets is reported. 
The results show that low . Vg induces low .Wcut and in turn decreases performance
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Fig. 6 Classification accuracy of various NEAT-based DNN models with .Vg varied from 
.0.75V to  . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d) 
ResNet18/CIFAR100 

when DNN weights are restricted to .Wcut regime. However, using iterative training 
recovers the performance degradation. Especially, for a ResNet18 architecture, 
using iterative training shows improvement over 50% in terms of accuracy at 
.Vg = 0.75V . Moreover, with iterative training, VGG11 and ResNet18 networks 
almost maintain their classification accuracy in the range of .Vg = [0.85, 1.0] and 
.Vg = [0.8, 1.0], respectively. In this manner, NEAT helps in the hardware-aware 
robust mapping of DNN architectures on 1T-1R crossbar with minimal training 
overheads. 

In addition to maintaining DNN performance in presence of 1T-1R non-
linearities, NEAT ensures energy-efficient inference with DNNs, specifically in 
the low . Vg scenario. When NEAT technique is applied at low . Vg values, we have 
lower absolute values of .Geff cutoff and hence, .Wcut . This implies that for crossbars 
operating at lower . Vg values, we would find greater proportion of low conductance 
synapses post mapping of DNN weights onto the 1T-1R crossbars. This helps
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Fig. 7 Normalized energy gain for various NEAT-based DNN models with . Vg varied from 
.0.75V to  . 1.0V. (a) VGG11/CIFAR10. (b) VGG11/CIFAR100. (c) ResNet18/CIFAR10. (d) 
ResNet18/CIFAR100 

minimise the power dissipated in the crossbar arrays by reducing crossbar-column 
currents. In Fig. 7, we present the energy-efficiency of various DNN configurations 
with NEAT. The energy computed for .Vg = 1.0V is taken as baseline against 
which energy gains (%) for other values of . Vg are shown. NEAT achieves high 
energy gain by simply reducing . Vg . Especially, we can achieve . ∼23% energy gain 
at .Vg = 0.8V on ResNet18 architecture with CIFAR10 while suffering minimal 
accuracy loss (. ∼1.5% in Fig. 6). However, selecting a very low value for . Vg such as 
.Vg = 0.75V induces huge performance degradation. 

Having mapped DNNs via NEAT in an energy-efficient manner onto 1T-1R 
crossbars and mitigating the impact of synaptic non-linearities, we now study the 
impact of crossbar non-idealities (enlisted in Sect. 2.2) on the robustness of NEAT-
DNNs. Note, we would use the term “NEAT-DNN” to denote a DNN trained using 
NEAT and mapped onto 1T-1R crossbars, while the term ‘Normal-DNN’ would
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refer to standard DNNs mapped directly onto 1R crossbars with non-idealities (the 
baseline). Henceforth, all experiments in Sect. 3 involving crossbar arrays would 
include the crossbar non-idealities. 

It has been shown that the value of NF in crossbars decreases with increase in the 
effective resistance of a crossbar array, which minimizes the effect of interconnect 
resistive non-idealities [26, 33, 34, 44]. By increasing the proportion of lower 
conductance synapses in a crossbar array, one can reduce the impact of crossbar 
non-idealities and hence, the non-ideality factor. When NEAT technique is applied 
at low . Vg values, we have a greater proportion of low conductance synapses post 
mapping of DNN weights onto the 1T-1R crossbars. Hence, NF is expected to 
be lower in the case of low . Vg operation of crossbars. Furthermore, the value of 
NF for DNNs mapped onto 1T-1R crossbars via NEAT would be lesser than the 
value of NF for standard DNNs mapped onto 1R crossbars (the baseline). Since, 
NEAT boosts the feasibility of low conductance synapses and reduces the impact 
of crossbar non-idealities, NEAT-DNNs are more robust both in terms of clean and 
adversarial accuracies than the baseline Normal-DNNs. 

Modes of adversarial attack: For unleashing adversarial attacks (FGSM/PGD) 
on the crossbar-mapped models of the DNNs, consider two modes: 

1. Software-inputs-on-hardware (SH) mode where, the adversarial perturba-
tions for each attack are created using the loss function of the software DNN 
model normally trained without applying the NEAT technique, and then added 
to the clean input that yields the adversarial input. The generated adversaries 
are then fed to the crossbar-mapped DNN. This a case of Black-Box adversarial 
attack on hardware. 

2. Hardware-inputs-on-hardware (HH) mode where, the adversarial inputs are 
generated for each attack using the loss from the crossbar-based hardware 
models. It is evident that HH perturbations will incorporate the effect of intrinsic 
hardware non-idealities and thus will cast stronger attacks than SH. This is a 
case of White-Box adversarial attack on hardware. 

Results for robustness in terms of clean and adversarial accuracies: Here, we 
evaluate robustness of the DNNs on non-ideal crossbars graphically as shown 
in Fig. 8 by plotting ‘robustness maps’ as has been proposed in [26, 44]. Note, 
the NEAT-DNNs are shown for .Vg = 0.8V . This approach to assess robust-
ness of a network has been shown to be comprehensive and accurate since, it 
takes into account the cumulative impact of both clean accuracy and adversarial 
accuracy (which is a strong function of the clean accuracy). For a specific mode 
of attack (SH or HH) and a given crossbar size, we plot .Δ Clean Accuracy, 
the difference between clean accuracy of the crossbar-mapped DNN in ques-
tion and the corresponding clean accuracy of its software model, on the x-axis. 
.Δ Adversarial Accuracy (for a particular . ε value) which is the difference between 
the adversarial accuracy of the mapped network in question and the corresponding 
adversarial accuracy of the software model is plotted on the y-axis. The value of 
.Δ Clean Accuracy is always negative since DNNs when mapped on hardware 
suffer accuracy loss owing to non-idealities. The region bounded by the line .y = −x
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Fig. 8 (a), (b) Robustness maps for VGG11 DNN using CIFAR10 dataset for SH and HH modes 
of FGSM and PGD attacks, respectively 

and the y-axis denotes the favorable region and the closer a point is towards this 
region, the better is the robustness of the network in question. Likewise, the region 
bounded by the line .y = x and the y-axis is the unfavorable region, where the 
mapped network is highly vulnerable to adversarial attacks. The favorable and 
unfavorable regions have been demarcated Fig. 8a. 

Figure 8 shows the robustness maps for DNNs based on VGG11 network with 
CIFAR10 dataset for both SH and HH modes of attack. Figure 8a pertains to 
FGSM attack with . ε varying from 0.05 to 0.3 with step size of 0.05. We find that 
NEAT-DNNs have significantly greater clean accuracy (.∼13% and .∼17% higher for 
32 . × 32 and 64 . × 64 crossbars, respectively) as well as better adversarial accuracies 
on hardware for both modes of attack. The points corresponding to NEAT-DNNs 
are situated closer to the favorable region than the corresponding points for Normal-
DNNs. This is a consequence of the reduction in non-ideality factor in case of 
iterative training with NEAT algorithm. Note, the points for 64 . × 64 crossbars 
are situated farther from the favorable region than the corresponding points for 
32 . × 32 crossbars. This gap is owing to greater non-idealities that exist in case of 
a larger 64 . × 64 crossbar than a 32 . × 32 crossbar. However, this gap significantly 
decreases for NEAT-DNNs indicating that NEAT greatly reduces the impact of the 
crossbar non-idealities on the inference accuracy of the mapped DNNs. In other 
words, NEAT-DNNs do not suffer significant accuracy losses on larger crossbars. 
We further observe that the points for a NEAT-DNN, given a crossbar size, are more 
closely packed than the corresponding points for Normal-DNN. This implies that 
even on increasing the attack strength (. ε), lesser adversarial loss is observed for 
DNN models on crossbars trained with NEAT algorithm. 

Figure 8b also presents similar results but for a strong PGD attack with . ε varying 
from 2/255 to 32/255 with step size of 2/255. In this case, the robustness is very high 
for SH mode of attack as compared to HH mode of attack, with points corresponding 
to NEAT-DNNs situated inside the favorable region for the SH mode. Similar to 
the case of FGSM attack, NEAT-DNNs outperform Normal-DNNs in terms of 
robustness for both modes of attack. Here, points for different . ε values, given a 
style of mapping and crossbar size, are more closely packed than the corresponding
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points of FGSM attack. This implies that hardware non-idealities interfere more 
with PGD attacks than FGSM attacks resulting in lesser accuracy loss. 

From the above discussion, we find that NEAT-based DNNs are more immune to 
the impact of non-idealities and lead to robust implementations on non-ideal 1T-1R 
crossbars in addition to higher crossbar energy-efficiencies. 

4 DetectX: Improving the Robustness of DNNs Using 
Hardware Signatures in Memristive Crossbar Arrays 

In this section, we discuss how hardware signatures in memristive crossbar archi-
tectures can be used to detect adversarial attacks in an energy-efficient manner [27]. 

For detecting adversaries, we use a function called the Sum of Currents (SoI). It 
is defined as the absolute value summation of all the feature outputs of a particular 
layer as shown in Eq. (7). 

.SoIl =
m∑

j=1

|Zj |l (7) 

Here, .Zj is the result of the weighted summation outputs of a particular 
layer l. This is proportional to the summation of the column current magnitudes 
in a memristive crossbar array. Interestingly, as shown in Fig. 9a, we find that 
the clean and adversarial SoI distributions of the first layer have an inherent 
separation between them. However, due to a significant overlap between the two 
distributions, the adversarial detection is low. To this end, we use a dual-phase 
training methodology to increase the distance between the SoI distributions and 
improve the adversarial detection. 

In the first phase of training, we train the first layer of the DNN to increase the 
separation between the clean and adversarial SoIs. For this, we use a loss function 

Fig. 9 (a) The clean and adversarial SoI distributions at the first layer have an inherent separation 
which motivates the use of SoI like hardware signature for adversarial detection. (b) After Phase1 
training, the SoI distributions are separated. For both the figures, SoI PGD corresponds to first 
layer SoI values for PGD with .ε = 16/255
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shown in Eq. (8). Here, we scale down the cross-entropy loss .LCE by a small value 
(of the order .10−3). The loss function minimizes the distance between the desired 
SoI values (. λc and . λa) and the calculated mean of the SoI distributions (.SoIc and 
.SoIa). 

The Phase1 training effectively increases the distance between the clean and 
adversarial SoI distributions as seen in Fig. 9b. At this stage, strong adversarial 
attacks are easily detected as a result of large SoI separation. However, weak 
attacks are not sufficiently detected as they have small SoI separation with the 
clean samples. Note, here strong attacks refer to adversarial attacks with high . L∞
distance (large . ε value) and vice versa. Further, the DNN has very low accuracy on 
clean inputs as the cross-entropy loss was significantly scaled down during Phase1 
training. To improve the DNN’s accuracy on clean inputs and robustness against 
weak adversarial attacks, we employ Phase2 adversarial training. 

.L = βLCE + yLMSE(SoIa, λa) + (1 − y)LMSE(SoIc, λc) (8) 

In the Phase2 training, we freeze the first layer of the DNN and perform 
adversarial training [8, 48] with weak adversarial attacks. Freezing the first layer 
weights preserves the SoI separation at the first layer obtained after Phase1 
training. Finally, after the dual-phase training, a high clean accuracy is obtained. 
Additionally, weak adversarial attacks are suitably classified while strong attacks 
are detected. 

After the Phase2 training, we create a SoI-Probability Look-Up Table (LUT) 
that classifies a given SoI value as a clean or an adversarial sample. As seen in 
Fig. 10, we randomly sample a set of clean images from the training set and create 
their adversarial counterparts using PGD .ε = 8/255 attack. Then, we compute the 
clean and adversarial SoI distributions (. Dc and . Da). Using, . Dc and . Da , we compute 
the P(clean) values using Eq. (9). Here, . nc and . na are the number of clean and 
adversarial samples, respectively, at a particular SoI value. A high P(clean) value 

Fig. 10 The SoI-Probability LUT contains sample SoI values and their corresponding P(clean) 
values. It classifies a given SoI sample as clean or adversarial
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Fig. 11 After Phase1 training, some weak adversarial attacks might go undetected. Phase2 
adversarial training helps classify the weak adversarial samples that further brings down the error 

signifies that a given SoI value corresponds to a clean sample and vice versa. The 
SoI-Probability LUT contains sample SoI values and their corresponding P(clean) 
values. 

.P(Clean) = nc

nc + na

(9) 

In Fig. 11, we show the efficacy of the Phase2 training in defending against weak 
PGD attacks. For this we plot the error values of a baseline DNN (without DetectX), 
a DNN with the first layer subjected to Phase1 training followed by Phase2 training. 
Here, error is defined as the amount of adversarial attacks that are undetected and are 
misclassified by the DNN. Clearly, most of the weak attacks are suitably detected 
after Phase1 training leading to a large drop in the error value. However, Phase 2 
adversarial training helps classify the undetected weak attacks correctly leading to 
a further drop in error. 

We implement the dual-phase trained DNN on an analog crossbar-based end-to-
end DNN evaluation platform called Neurosim [49]. Neurosim [49] is a Python-
based platform that performs a holistic energy-latency-accuracy evaluation of 
analog crossbar-based DNN accelerators. The Neurosim platform supports both 
SRAM and memristive computing devices (ReRAM and FeFET). For adversarial 
detection, we design a fully digital DetectX module (shown in Fig. 12) on 32 nm  
CMOS that contains digital circuits to compute the SoI value and the SoI-Probability 
LUT that is used to classify a given SoI value as clean or adversarial. For 
hardware evaluation, a dual-phase trained VGG16 model (trained on CIFAR100) 
is implemented on a 128 . × 128 memristive crossbar with device on-off ratio of 
10 and .Ron = 10 k. Ω . The DetectX module is appended at the end of the first 
layer crossbar. The energy evaluation of the DetectX module is performed using 
SPICE simulations. Based on the 128 . × 128 crossbar Neurosim implementation, we 
find that the DetectX module only adds 2.6 nJ to the hardware cost for adversarial
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Fig. 12 The DetectX module is implemented on a fully digital 32 nm CMOS technology. It can 
directly interface with an analog crossbar (8 . × 8 crossbar shown for illustration). The module 
contains circuits for computing the SoI signature and classifying the SoI value as clean or 
adversarial 

Fig. 13 ROC-AUC scores, Error and Accuracy values for the DNN . +DetectX system with 
different image datasets and adversarial attacks.Wemention the adversarial attacks used for Phase1 
and Phase2 training corresponding to each dataset. D and B denote the DNN . +DetectX system and 
baseline model, respectively. The baseline model is a DNN trained on clean inputs using standard 
stochastic gradient descent and does not contain the DetectX module 

detection. Compared to prior adversarial detection works that use large neural 
network-based detector modules [16–18], DetectX consumes about 25x less energy 
for adversarial detection. 

DetectX significantly improves the adversarial robustness of the DNN. In Fig. 13, 
we show the ROC-AUC score of the DetectX module under different FGSM and 
PGD attacks across CIFAR10, CIFAR100 and TinyImagenet datasets. A high ROC-
AUC score greater than 0.5 denotes reliable adversarial detection. Due to the high 
ROC-AUC score, the error of the DNN . +DetectX system is significantly lower 
compared to the baseline DNN without the DetectX module. Further, due to the 
introduction of the DetectX module, the accuracy on clean inputs slightly drops. 
However, the drop is marginally low.
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Fig. 14 With increasing device-device variations in a memristive crossbar (left), the adversarial 
detection performance decreases slightly. Further, with increasing device on-off ratio (middle), and 
decreasing crossbar sizes (right), the detection performance increases. Non-idealities negatively 
impact the detection performance of DetectX 

Fig. 15 Energy required per 
detection operation for 
different works [16, 18]. 
DetectX consumes more than 
25x less energy for detection 
compared to prior works 

As DetectX is integrated in a crossbar platform like Neurosim, it is important 
to understand the effects of crossbar non-idealities on the detection performance 
of DetectX. Figure 14(left) shows that the detection performance decreases with 
increasing device-device variations in the memristive crossbars [50]. The device 
variations introduce variations in the SoI value computation which ultimately nega-
tively affect the detection performance. However, even at large weight variations, the 
ROC-AUC score is still greater than 0.5 which suggests reliable detection. Next, we 
show the effects of different memristive device on-off ratios (Fig. 14(middle)) and 
crossbar sizes (Fig. 14(right)) on DetectX’s detection performance. These results are 
shown for the memristive device with 10% weight variations (shown with a circle). 
Evidently, the detection performance increases with higher on-off ratios and lower 
crossbar sizes. This is because with higher on-off ratios and lower crossbar sizes, 
the non-ideal effects in crossbars decrease. 

We further show how the DetectX method consumes significantly low energy 
for adversarial detection compared to prior detection works [16–18]. Prior works 
use large neural networks to perform adversarial detection. For a fair comparison, 
these neural network-based detectors are implemented on the Neurosim platform 
[49] and the energies are evaluated. As seen in Fig. 15 DetectX consumes about 
50x less energy compared to Metzen et al. [16] and 25x less energy compared to 
Sterneck et al. [18]. Note, here the energy values represent the energy required for 
a single detection operation.
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5 Unleashing Robustness to Structure-Pruned DNNs 
Implemented on Crossbars with Non-idealities 

In the recent years, several crossbar-aware pruning techniques have been devised 
that yield sparse DNN models. Owing to their high sparsity, these models require 
significantly lower number of crossbars to be mapped, thereby introducing hardware 
resource-efficiency not only in terms of crossbars but also peripheral circuits 
interfacing the crossbars. Pruning algorithms such as, [28–31], produce structured 
sparsity in DNNs that fit into crossbars as dense weight matrices [32]. These 
structured pruning algorithms claim to preserve the accuracy of the pruned DNNs, 
after implementation on crossbars, with minimal or no noticeable loss, while 
bringing in high energy- and area-efficiencies. However, none of these works has 
included the impact of the inexorable non-idealities (see Sect. 2.2) during inference 
on crossbars. For a realistic hardware evaluation of the performance of increased 
structured sparsity in DNNs mapped on crossbars, the inclusion of hardware non-
idealities is critical. In this section, we introduce a recent work [33] that draws 
the focus of the research community towards a non-ideality aware evaluation of 
various existing structured pruning algorithms and shows how increased sparsity 
can degrade the robustness of DNNs on non-ideal crossbars. It also introduces 
two hardware-centric non-ideality mitigation strategies, namely crossbar-column 
rearrangement and Weight-Constrained-Training (WCT), to help improve the per-
formance or robustness of the sparse DNNs on crossbars with little or no training 
overheads. 

Crossbar-aware structured pruning of DNNs: There have been numerous works 
on structured pruning of DNNs, such as channel/filter pruning or C/F pruning (see 
Fig. 16(top)) wherein the unimportant filters and channels in a DNN (corresponding 
to rows and columns in the weight matrix of the DNN) are pruned to obtain 
a sparse 2D weight matrix [28, 29]. These pruned models result in significant 
hardware savings in terms of reduced number of crossbars for mapping, thereby 
bringing in energy- and area-efficiency for DNN implementation. Likewise, other 
crossbar-aware pruning strategies include Crossbar-Column Sparsity (XCS) [30] or  
Crossbar-Row Sparsity (XRS) [31] (XCS shown in Fig. 16(bottom)) that exploit 
fine-grained sparsity by, respectively, pruning columns or rows of weights within 
a crossbar [32]. Additionally, these works have claimed to preserve the inference 
accuracy of the structure-pruned networks on crossbars with minimal or no dis-
cernible performance loss with respect to the unpruned ones. However, none of 
the previous works has accounted for the non-idealities inherent in crossbar arrays 
which raises concerns about the claimed performance of the highly pruned models 
in the real scenario.
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Fig. 16 Top: A representation of channel/filter pruning (C/F pruning). The blurred channels/filters 
correspond to DNN weights pruned in a structured manner. Bottom: A representation of XCS 
pruning (shown for a 4 . × 4 weight matrix mapped onto 2 . × 2 crossbars) that generates fine-grained 
sparsity along crossbar columns 

5.1 Hardware Evaluation Framework for Non-ideality 
Integration During Inference 

To map pretrained DNNs onto non-ideal memristive crossbars and investigate the 
cumulative impact of the circuit and device-level non-idealities on their performance 
during inference, a simulation framework in PyTorch is used by Bhattacharjee et al. 
[33] as shown in Fig. 17). In the platform, a Python wrapper is built that unrolls 
each and every convolution operation in the software DNN into MAC operations. 
This yields 2D weight matrices for each DNN layer which are to be partitioned into 
numerous crossbar instances. Before partitioning, based on the structured pruning 
approach, the following transformations T on the sparse weight matrices W are 
applied:
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Fig. 17 Python-based hardware evaluation framework for non-ideality aware DNN inference 

1. .T (W) for C/F pruning: Here, for a given 2D weight matrix of a DNN layer, 
all the columns bearing zero values are eliminated. Further, we also eliminate 
rows of the weight matrix of the next DNN layer that interact with the output 
feature maps corresponding to the columns of zero values in the previous layer. 

2. .T (W) for XCS (or XRS): Here, within a given 2D weight matrix of a DNN 
layer, there are chunks of successive zero weight vectors of the size of crossbar-
column (or crossbar-row) (see Fig. 16-Bottom) which are eliminated. 

Note, for standard unpruned DNNs, the .T (W) is not required. The resulting 
transformed weight matrices are then partitioned into multiple crossbar instances. 
The subsequent stage of the platform converts the weights in the crossbars to 
suitable conductances G (between .GMIN and .GMAX). Thereafter, the circuit-level 
non-idealities (interconnect parasitics) and synaptic device variations are integrated 
with the conductances. The various synapse parameters (e.g. .RMIN , .RMAX, device  
ON/OFF ratio) and values of the non-idealities used for the subsequent experiments 
are listed in the table shown in Fig. 17. 

5.2 Are Structure-Pruned DNNs Also Robust on Hardware? 

In [33], VGG11 and VGG16 DNNs area trained with structured sparsity (via C/F 
pruning, XCS or XRS) using benchmark datasets such as, CIFAR10 and CIFAR100. 
For the experiments with CIFAR10 dataset, the sparsity is set as .s = 0.8, while with 
CIFAR100 dataset, the sparsity is .s = 0.6. The unpruned and pruned DNN models 
are trained to have nearly equal software accuracies to conduct a fair comparison of 
the impact of non-idealities when the models are mapped onto non-ideal crossbars 
(see Table 1). The crossbar-compression-rates for the structure-pruned DNNs on 
32 . × 32 crossbars are also shown in Table 1.
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Table 1 Table showing software accuracies and crossbar-compression-rates (with 32 . × 32 cross-
bars) for the various DNN models with CIFAR10 and CIFAR100 datasets 

Dataset: CIFAR10 Software accuracy (%) ‖ Crossbar-compression-rate 

Network Unpruned C/F (s = 0.8) XCS (s = 0.8) XRS (s = 0.8) 
VGG11 83.6 ‖ – 83.5 ‖ 19.69× 83.28 ‖ 4.26× 82.67 ‖ 4.88× 
VGG16 84.48 ‖ – 83.65 ‖ 19.60× 82.06 ‖ 5.57× 83.47 ‖ 4.89× 
Dataset: CIFAR100 Software accuracy (%) 

Network Unpruned C/F (s = 0.6) 
VGG11 53.29 ‖ – 52.72 ‖ 5.64× 
VGG16 51.83 ‖ – 50.55 ‖ 4.20× 

We find that the sparse DNNs have greatly reduced number of parameters 
than their unpruned counterparts which results in significantly lesser number of 
crossbars on hardware. However, the fewer parameters remaining in the sparse 
DNNs are crucial for the model’s performance. Thus, any non-ideality interfering 
with the fewer parameters of the sparse DNNs would have huge impact on the 
DNN accuracy and hence, robustness on hardware. In Fig. 18a, we find that for 
the VGG11/CIFAR10 model, the DNNs with structured sparsity (via C/F pruning, 
XCS, XRS with .s = 0.8) suffer greater accuracy degradation than their unpruned 
counterparts for crossbar sizes ranging from 16 . × 16 to 64 . × 64. Further, as we 
increase the crossbar size, both the accuracies of unpruned and pruned networks 
decline owing to increase in crossbar non-idealities [34, 39]. Specifically, on 64 . × 64 
crossbars, the inference accuracy of the unpruned model reduces by .∼21% with 
respect to the software baseline while, for the sparse DNNs pruned via C/F pruning, 
XCS and XRS, the decline is .∼39%, .∼24% and .∼30%, respectively. Also, in 
Fig. 18b, we find that on reducing the extent of sparsity in the C/F pruned DNNs 
from .s = 0.8 to .s = 0.5, the performance degradation suffered by the pruned DNNs 
is reduced. This validates the fact that greater sparsity, although leads to energy-
and area-efficient mappings on crossbars, increases the interference of crossbar 
non-idealities, thereby hampering the performance and hence, the robustness of the 
pruned networks. 

In Fig. 18c, for the VGG16 DNN with CIFAR10 dataset, the trends are similar 
to the case of the VGG11 DNN for XCS, XRS, and C/F pruning (.s = 0.8) 
in case of 16 . × 16 and 32 . × 32 crossbars. However, in case of a larger 64. ×64 
crossbar, we find that the performance of the network pruned by C/F pruning 
exceeds that of the unpruned network. This is because unpruned DNNs require a 
larger absolute number of crossbars for mapping than pruned ones. As a result, 
the value of NF is expected to increase at a higher rate for unpruned DNN on 
moving from 32 . × 32 to 64 . × 64 crossbars (see Fig. 18d). So, for larger crossbars, 
the accuracy degradation for structure-pruned DNNs would decelerate compared to 
their unpruned counterparts, which can even lead to better absolute accuracy of the 
pruned networks than the unpruned ones. 

Next, we discuss two crossbar-aware non-ideality mitigation strategies that can 
help improve the robustness of structure-pruned DNNs on non-ideal crossbars.



454 P. Panda et al.

Fig. 18 Plot of inference accuracy versus crossbar size for (a) unpruned and structure-pruned (. s =
0.8) VGG11/CIFAR10 DNN. (b) Different values of sparsity (s) of a C/F pruned VGG11/CIFAR10 
DNN. (c) Unpruned and structure-pruned (.s = 0.8) VGG16/CIFAR10 DNN. (d) Plot showing the 
variation in average NF for unpruned and C/F pruned weight matrices on increasing the crossbar 
size from 32 . × 32 to 64 . × 64 

5.3 Non-ideality Mitigation Strategies for Increased 
Robustness of Structure-Pruned DNNs 

1. Crossbar-Column rearrangement (R): For the sparse DNNs obtained via C/F 
pruning, a simple hardware-friendly transformation of column rearrangement R 
has been proposed mapping weights onto non-ideal crossbars. This transforma-
tion is inspired from the fact that the impact of non-idealities (or non-ideality 
factor NF) reduces for crossbars with higher proportion of low conductance 
synapses [26, 44]. Additionally, this approach of column rearrangement does 
not have any training overhead and is applied before the mapping of the DNNs 
onto crossbars. 
To understand column rearrangement R, consider a 4× 6 weight matrix W , 
after applying the transformation T , to be mapped onto 2× 2 crossbars (see 

Fig. 19a). During the R transformation, we first compute the value of (μ × σ)  
1 
2



Robustness for Embedded Machine Learning Using In-Memory Computing 455

Fig. 19 (a) Pictorial representation of R transformation. (b) Heatmaps to visualize the impact 
of R transformation on the weight matrices of 3rd and 5th layers of the VGG16/CIFAR10 DNN 
trained with C/F pruning with s = 0.8 

for each column from I–VI, where μ and σ , respectively, denote the mean and 
standard deviation of the absolute values of weights in each column. Thereafter, 

based on the increasing order of (μ × σ)  
1 
2 , we rearrange columns I–VI in
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Fig. 20 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a) 
C/F pruned with transformation R (s = 0.8) VGG11/CIFAR10 DNNs. (b) C/F pruned with 
transformation R (s = 0.8) VGG16/CIFAR10 DNNs. (c) C/F pruned with transformation 
R (s = 0.6) VGG11/CIFAR100 DNNs. (d) C/F pruned with transformation R (s = 0.6) 
VGG16/CIFAR100 DNNs 

the manner shown. Now, in Fig. 19b, the impact of R transformation can be 
visualized on the weight matrices of the 3rd and 5th convolutional layers 
of the VGG16/CIFAR10 DNN (C/F pruned with s = 0.8) using heatmaps. 
Before applying the transformation, the lighter (low conductance synapse) and 
darker (high conductance synapse) points in the heatmaps are intermixed. Post 
transformation, the lighter points are concentrated at the center of the heatmaps 
and darker points are mostly near the peripheries. Thus, post R transformation, 
when the DNN weight matrices are partitioned into multiple crossbar instances, 
majority of the crossbars have greater proportions of low conductance synapses, 
thereby mitigating the impact of crossbar non-idealities. 
Figure 20a,b and c,d show that R transformation improves the performance of 
the C/F pruned VGG11 and VGG16 DNNs. Specifically, ∼9% (∼6%) improve-
ment in accuracy is observed for VGG11 (VGG16) DNN on 64× 64 (32× 32) 
crossbars with CIFAR10 dataset. We also find that on 32× 32 crossbars, the 
accuracy of the pruned VGG16/CIFAR100 DNN post R transformation is ∼3% 
greater than the unpruned counterpart.



Robustness for Embedded Machine Learning Using In-Memory Computing 457

Fig. 21 A plot of inference accuracy versus crossbar size for unpruned, C/F pruned and (a) 
WCT+C/F pruned (s = 0.8) VGG11/CIFAR10 DNNs. (b) WCT+C/F pruned (s = 0.6) 
VGG11/CIFAR100 DNNs 

2. Weight-Constrained-Training (WCT): WCT is another non-ideality mitiga-
tion technique for the structure-pruned DNNs that is motivated by the NEAT 
method described in Sect. 3. In WCT, based on the weight distribution of all 
the layers of a trained DNN, a cut-off value Wcut is heuristically determined, 
and the following transformation is then applied on the weights of the DNN: 
W = min{|W |,Wcut )} ∗  sign(W). This transformation constrains the DNN 
weights in the interval [−Wcut , Wcut ]. With the above transformation, the 
DNN is iteratively trained for 1–2 epochs, to maintain nearly iso-accuracy with 
baseline. Note, the iterative training via WCT does not add any computational 
overhead to the overall training time, thereby making it a viable choice. Similar 
to NEAT, a WCT-DNN also results in greater proportion of low conductance 
states on the crossbars, thus, reducing the impact of non-idealities. The resultant 
sparse WCT-DNNs are then mapped onto crossbars. In Fig. 21a,b, we find that 
the WCT-DNNs maintain their performance even on increasing the crossbar 
size, making them robust against crossbar non-idealities. Further, WCT-DNNs 
have better accuracy than the C/F pruned DNNs on crossbars. Specifically, 
with CIFAR10 (CIFAR100) dataset, the WCT-DNN has ∼6% (∼7%) higher 
accuracy than the unpruned model on 64× 64 (32× 32) crossbars. 

6 Related Works 

Recently, several crossbar-based In-Memory Computation (IMC) architectures and 
frameworks have been proposed for efficiency-driven acceleration of DNNs [50– 
54]. CONV-SRAM [50] proposes an energy-efficient static random access memory 
(SRAM) with embedded dot-product computation capability, for the inference of 
convolutional neural networks with binary weights. On the other hand, Kim et al. 
[52] and Gokmen et al. [53] have proposed an architecture based on CMOS-based
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resistive processing unit (RPU) devices to achieve significant acceleration in DNN 
training. 

In ISAAC [51], Shafiee et al. designed and characterized a pipelined memristive 
crossbar architecture and proposed a weight encoding scheme that reduces the 
analog-to-digital conversion overheads. Additionally, Marinella et al. [54] imple-
ment an ReRAM crossbar-based DNN acceleration platform and characterize the 
energy, latency, and area of the peripheral and crossbar components across different 
technology nodes. Besides crossbar-based DNN acceleration platforms, end-to-
end hardware evaluation platforms such as Neurosim and PUMA [37, 49] provide 
software-based scalable solutions to perform hardware evaluation of crossbar 
implementations. While Neurosim [49] considers only NVM device variations 
during DNN evaluation, PUMA [37] models other circuit-level and data-dependent 
non-idealities by incorporating GenieX [34]. Few recent works such as RxNN 
[23] and GenieX [34] have delved deeper into modelling the characteristics of 
non-ideal crossbars. These non-idealities include crossbar-interconnect parasitics 
and data-dependent selector non-linearities. While RxNN can suitably compute 
data-independent non-idealities, GenieX incorporates both data-dependent and 
independent crossbar non-idealities. With this, they provide accurate hardware-
realistic inference performance of crossbar-mapped DNNs. 

However, none of these works has explored non-ideality aware crossbar-mapping 
of DNN models for adversarial robustness. Furthermore, these works have not 
delved into the correlation existing between sparsity in network weights and 
crossbar non-idealities to highlight the vulnerabilities of sparse DNNs. Additionally 
in prior works, the possibility of using inherent hardware signatures in the detection 
of adversarial attacks and building adversarial robustness for crossbar-mapped 
DNN models has not been well explored. This motivates us to present recent 
works involving non-ideality aware mapping of DNNs onto crossbars for improving 
their classification accuracy (robustness) in normal and/or adversarial scenarios 
[26, 33]. In addition, examining hardware signatures in crossbars for energy-
efficient adversarial detection [27] is a key facet of this chapter. We present a 
summary table (Table 2) for the convenience of the readers to qualitatively compare 
the scope of different works based on memristive crossbar arrays pertaining to DNN 
inference acceleration. 

7 Conclusion 

This chapter elucidates recent advances in the energy-efficient and robust imple-
mentation of DNNs on memristive crossbar array platforms. Specifically, we come 
across works that use hardware-driven methods to improve the adversarial security 
of DNNs on noisy crossbars without additional overhead of retraining or reduced 
energy-efficiency. The first work (NEAT) improves the adversarial classification 
capabilities on DNNs on crossbars, while the other work (DetectX) is an adversarial 
detection method to guarantee robustness on crossbar platforms. Additionally, this
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Table 2 Table comparing the scope of different memristive crossbar-based works for DNNs. The 
works discussed in this chapter—DetectX [27], NEAT [26], and Bhattacharjee et al. [33] have  
specifically added a new dimension of adversarial and sparsity-aware robustness which have not 
been looked into in prior works 

Xbar acceleration 

End-to-
end 
H/W Robustness 

Work 
Efficiency-
driven 

Novel 
weight 
mapping Evaluation 

Sparsity-
aware 

Non-
ideality 

Adversarial 
attacks 

CONV-SRAM [50] ✓ ✕ ✕ ✕ ✕ ✕ 
ISAAC [51] 

Kim et al. [52] 

Gokmen et al. [53] 

Marinella et al. [54] 

Neurosim [49] ✓ ✕ ✓ ✕ ✓ ✕ 
PUMA [37] 

RxNN [23] ✓ ✕ ✕ ✕ ✓ ✕ 
GenieX [34] 

DetectX [27] ✓ ✕ ✕ ✕ ✓ ✓ 
NEAT [26] ✓ ✓ ✕ ✕ ✓ ✓ 
Bhattacharjee et al. 
[33] ✓ ✓ ✕ ✓ ✓ ✕ 

chapter highlights a study which corroborates that although increased structured 
sparsity in weights is beneficial for resource-efficient implementation of DNNs on 
crossbars, it compromises their classification accuracy (robustness) in a non-ideal 
scenario. To this end, various hardware-based non-ideality mitigation approaches 
have been proposed to improve the performance and hence, the robustness of sparse 
DNNs on crossbars. 
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Adversarial ML for DNNs, CapsNets, 
and SNNs at the Edge 

Alberto Marchisio, Muhammad Abdullah Hanif, and Muhammad Shafique 

1 Introduction 

The use-cases of Machine Learning (ML) applications have been significantly 
growing in recent years. Among the ML models, Deep Neural Networks (DNNs), 
which stack several layers of neurons, have demonstrated to solve complex tasks 
with high accuracy. Capsule Networks (CapsNets) have established as prominent 
ML models due to their high learning capabilities. Moreover, Spiking Neural 
Networks (SNNs) emerged as biologically plausible models, in which their spike 
event-based communication provides energy-efficient capabilities to be employed 
in low-power and resource-constrained devices [9, 10]. 

On the other hand, ML systems are expected to be reliable against multiple 
security threats. Several studies highlighted that one of the most critical issues is 
represented by the adversarial attacks, i.e., small and imperceptible input perturba-
tions that cause misclassifications. Moreover, as highlighted in Fig. 1, also other ML 
vulnerabilities cause serious concerns questioning the deployment of ML models in 
safety-critical applications. Therefore, the ML community analyzed and proposed 
several attack methodologies and defensive countermeasures [77]. While the attacks 
and defenses for DNNs have been extensively studied, the security of advanced ML 
models such as CapsNets and SNNs is still in its emerging phase and needs more 
thorough investigations. 

After discussing the security challenges for ML systems and the taxonomy of 
adversarial ML, this chapter provides an overview of the security threats for DNNs, 
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CapsNets, and SNNs, focusing on recent advancements, current trends, and unique 
possibilities for specific ML models to enhance their robustness. 

2 Security Challenges for ML 

Recent works [14, 77, 78, 96] have shown that ML-based systems are vulnerable 
to different types of security and reliability threats (see Fig. 1), which can span 
from maliciously injected perturbations, such as adversarial attacks, hardware 
Trojans, or injected faults, to natural misfunctioning of the system, like permanent 
faults generated during chip fabrication, aging, and process variations. Moreover, 
the leakage of sensitive and confidential data, including the intellectual property 
of the ML model (e.g., architecture and parameters) and training dataset, have 
raised several privacy issues. While the adversarial ML issues will be extensively 
discussed in the rest of the chapter, this section briefly introduces the other types of 
vulnerabilities. 

2.1 ML Privacy 

Due to the massive performance and computational power of high-end GPU-HPC 
workstations, it is possible to conduct ML tasks using a massive amount of data on a 
large scale. If such data is collected from users’ private information, such as private 
images, interests, web searches, and clinical records, the ML deployment toolchain 
will have access to sensitive information that could potentially be mishandled. 
The privacy attacks for ML can be classified into two categories, namely Model 
Extraction Attacks and Model Inversion Attacks. While the former category aim 
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Fig. 1 Vulnerability threats for ML-based systems, their manifestation and impact on their 
functionality
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at extracting private information of the ML model (e.g., model parameter, model 
architecture), the latter threatens the sensitive features of the training data. 

• Model Extraction Attacks: The goal of the adversary is to duplicate the parameters 
and hyperparameters of the model to provide ML services, and to compromise 
the ML algorithms’ confidentiality and intellectual property of the service 
provider [87, 92]. 

• Model Inversion Attacks: The adversary aims to infer sensitive information from 
the training data. Membership inference attacks [81] can infer whether a sensitive 
record belongs to the training set when the ML model is overfitted, While Property 
Inference Attacks [19] infer specific properties that only hold for a fraction of the 
training data. 

There are currently four possible categories of techniques that can be applied to 
avoid these leakages of sensitive information: 

• Differential Privacy: The goal is to prevent the adversary from inferring whether a 
specific data was used to train the target model, such that the ML algorithm learns 
to extract features of the training data without disclosing sensitive information 
about individuals. The privacy is guaranteed through a randomization mechanism, 
which could be based on injecting noise into the stochastic gradient descent 
process (Noisy SGD [1]) or through the Private Aggregation of Teacher Ensem-
bles (PATE) method [65], in which a “student” model receives the knowledge 
transferred from an ensemble of “teacher” models. 

• Homomorphic Encryption: It is an encryption scheme .x → y, in which the 
ML computations are conducted on ciphertexts y, and the decrypted output in 
plaintext x matches the result that would have been computed without encryption. 
As long as the decryption key is unknown to the adversary, the data remains 
confidential. Since the Fully Homomorphic Encryption (FHE) system [20] dra-
matically increases the computational complexity of the ML algorithm, a partial 
homomorphic encryption system [63] which supports only certain operations in 
the ciphertext domain, such as additions or multiplications, is more suited for 
complex computations. In the context of ML, CryptoNets [21] performs DNN 
inference on encrypted data, while Nandakumar et al. [60] extends the encryption 
support to the whole training process. 

• Secure Multi-Party Computation: The basic idea consists of distributing the 
training/testing data across multiple servers and training/inferring the ML model 
together, while each server does not have access to the training/testing data of 
the other servers. Different privacy-preserving ML protocols have been proposed, 
including SecureML [59], MiniONN [44], DeepSecure [74], Gazelle [31], and 
SecureNN [91]. 

• Trusted Execution Environment: Additional hardware is used to create a secure 
and isolated computation environment in which the ML algorithms are exe-
cuted [47]. In this way, the e integrity and confidentiality of the data and codes 
loaded inside the protected regions are guaranteed.
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However, these privacy-preserving methods significantly increase the computa-
tional overhead and require customization for specific ML models at the software 
and hardware levels to improve the efficiency of computations. 

2.2 Fault Injection and Hardware Trojans on ML Systems 

Hardware-level security vulnerabilities for ML systems include fault injection 
techniques (e.g., bit-flips) and the injected hardware Trojans into ML accelerators. 
Generically speaking, an adversary can flip the bits of data stored into the SRAM 
and DRAM memory cells through laser injection [2] or Row-Hammer attacks [35]. 

• Fault Injection Attack Methodologies aim at finding the most sensitive locations in 
which to inject faults [45, 89]. The Bit-Flip Attack [72] finds the most vulnerable 
bits of the ML model parameters using a progressive bit search method, while the 
Practical Fault Attack [7] injects faults into ML activations. 

• Hardware Trojans are maliciously introduced hardware injected during chip 
fabrication that only activate when triggered. They represent serious threats when 
the hardware devices are manufactured in off-shore fabrication facilities, thus 
increasing the risk of facing untrusted supply chains. In the context of ML 
accelerators, Clements et al. [12] designed hardware Trojans for the ML activation 
function, and in NeuroAttack, the Trojan consists of flipping the values of certain 
bits of ML models. In both methods, the hardware Trojan is triggered by a 
carefully designed input pattern. 

The defensive countermeasures to mitigate against the above-discussed vulner-
abilities are based on improving the resiliency of ML accelerators and memory 
systems and detecting Trojans. 

• Fault tolerance methods, similarly to the soft error mitigation methodologies, 
aim at improving the resiliency of ML applications. Such defensive techniques 
are based on hardware redundancy [62], range restriction [11], or weight recon-
struction [40]. More specifically, the algorithm-based fault tolerance (ABFT) 
method [97] detects and corrects errors in the convolutional layers. 

• Trojan detection methods are based on runtime monitoring [18] of the ML  
accelerator. The operations executed in the hardware device are constantly 
monitored, and any eventual functionality violation due to an inserted hardware 
Trojan or other reasons can be immediately detected and notified. 

2.3 ML Systems Reliability Threats 

Unlike the vulnerability threats that are intentionally injected by malicious adver-
saries, ML systems are subjected to reliability threats that undermine their correct
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functionality. The continuous underscaling of the technology nodes in which the 
chips are fabricated has significantly increased the probability that hardware circuits 
are affected by permanent or transient faults and has accelerated the aging process. 

• Permanent Faults: These process variations represent imperfections that are 
generated during the fabrication of integrated circuits [71]. High rates of such 
process variations result in permanent faults, which dramatically decrease the 
yield of the wafer fabrication. 

• Transient Faults: Soft errors are bit-flips caused by high-energy particle strikes 
or induced by other radiation events [6]. They are categorized as transient errors 
since the faulty cells are not permanently damaged, but these faults vanish once 
new data is written into the same locations. 

• Aging: The electronic circuits gradually degrade over time [32], due to various 
physical phenomena, like Hot Carrier Injection (HCI), Bias Temperature Instabil-
ity (BTI), and Electromigration (EM). These effects can manifest as transistors’ 
threshold voltage increase, which causes timing errors and permanent faults over 
time. 

Conventional fault mitigation techniques such as Dual Modular Redundancy 
(DMR) [88], Triple Modular Redundancy (TMR) [48], and Error-Correcting Codes 
(ECC) [69] can be applied, but they incur huge overheads, which makes them 
impractical for ML applications. Therefore, ad-hoc cost-effective mitigation tech-
niques need to be applied. 

• Permanent faults mitigation: To mitigate permanent faults due to process varia-
tions in ML accelerators, different techniques have been proposed. Fault-Aware 
Training (FAT) and Fault-Aware Pruning (FAP) [95] incorporate the information 
of faults into the training process and bypass the faulty components. To avoid the 
re-training overhead, Fault-Aware Mapping techniques such as SalvageDNN [28] 
are based on mapping the least significant weights on the faulty units. 

• Soft error mitigation: To mitigate transient faults, generic fault-tolerant methods 
like Ranger [11] and ABFT [97] can be applied. Moreover, FT-ClipAct [30] uses  
clipped activation functions that are mapped into pre-specified values within a 
range that has the lowest impact on the output, and Sanity-Check [61] protects 
fully connected and convolutional layers of ML models employing spatial and 
temporal checksums that exploit the linearity property. 

• Aging mitigation: The effects of timing errors that occur in the computa-
tional units of ML accelerators can be mitigated with ThUnderVolt [94] and 
GreenTPU [64]. The NBTI aging of on-chip SRAM-based memory cells in ML 
accelerators is mitigated with the DNN-Life framework [29] that employs read 
and write transducers to balance the duty-cycle in each SRAM cell.
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3 Taxonomy of Adversarial ML 

Given an ML model M , an input x, and its output prediction label .ytrue, the goal of 
classical ML is to make a correct prediction, i.e., the predicted output . y = M(x)

is equal to .ytrue. On the contrary, an adversarial attack method aims at generating a 
misclassification by introducing a small noise . ε to the input, such that the adversarial 
example .x′ = x + ε is incorrectly classified (.M(x′) �= ytrue). Due to the wide 
variety of adversarial attack typologies and threat models, it is important to define a 
common taxonomy for their categorization. Towards this, we discuss four different 
features of adversarial attacks and their possible types. An overview of the taxonomy 
is shown in Fig. 2. 

• Attacker Knowledge: It refers to what is the threat model in which the adversary 
operates and what are the accessible data and features. In white-box attacks, the 
adversary has full knowledge about the ML model, its parameters, the training 
algorithm, and the training data. On the contrary, black-box attacks assume no 
knowledge about the ML model. Hence the adversary can only craft an adversarial 
example by sending a series of queries and analyzing the vulnerability based 
on the corresponding outputs. Moreover, in the literature, there exist different 
attacker knowledge assumption models referred to as grey-box attacks, in which 
the adversary knows more features than for black-box attacks, but does not have 
full access like under the white-box assumption. 
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Fig. 2 Categorization of different types of adversarial attack methods and their taxonomy
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• Adversarial Goal: It refers to the scope of the attack algorithm. If the goal is 
simply a misclassification, the attack is untargeted since any class different from 
the correct one can be the prediction of the adversarial example. On the other 
hand, in a targeted attack, the adversary produces adversarial examples that force 
the output of the ML model to predict a specific class. 

• Phase of ML Flow: It refers to the stage of the ML development in which the 
adversary operates. In training attacks, the adversary poisons the training data 
by injecting carefully designed samples to force the ML model to learn wrong 
features that can later be used to generate specific misclassifications. On the 
contrary, in evasion attacks that operate at the inference stage, the adversary tries 
to evade the system by crafting malicious samples that force the ML model to 
make false predictions. 

• Evaluation Metrics: It refers to the quantitative methods for measuring the 
strengths of the attacks, and easily accessible comparison metrics. To evaluate 
the robustness of the attack, the success rate measures the number of adversarial 
examples that are misclassified by the ML model. Since a well-designed attack 
needs to be imperceptible, i.e., hardly distinguishable from the original input 
by a human eye, the perturbation measures the distance between the adversarial 
example and the original (clean) input. 

4 Security for DNNs 

Due to their high accuracy on many tasks, DNNs are prime candidate algorithms to 
be applied to safety-critical applications. However, due to the security vulnerabilities 
that undermine their correct functionality, several defensive countermeasures need 
to be applied. An overview of adversarial attacks and defenses applied to the DNN 
design flow is shown in Fig. 3. 
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4.1 Adversarial Attacks 

As previously discussed, the adversarial attacks can be categorized into different 
types based on the adversary’s knowledge, goal, and phase of the ML flow. Due to 
the mainstream usage of DNNs, several attack methodologies have been proposed. 
The following list discusses the most prominent ones: 

• Poisoning Attacks: At the training stage, the training data can be poisoned with 
contaminated inputs. Based on the principles of Genetic Adversarial Networks 
(GANs), Goodfellow et al. [22] devised a procedure to generate samples similar to 
the training set, having almost identical distribution. This method inspired many 
of the successive adversarial attack methodologies. Poisoning Attacks [76] alter 
the training dataset to modify the decision boundaries of the DNN classifiers. 
Backdoor Attacks [24] aim at training the DNN for a carefully crafted noise 
pattern (acting as a backdoor) while maintaining high accuracy on its intended 
task. However, when such a backdoor trigger is present at the input of the DNN, 
a targeted misclassification is achieved. 

• Evasion Attacks: Different evasion attack methodologies were proposed. In 
white-box settings, gradient-based attacks like the Fast Gradient Sign Method 
(FGSM) [23] and its iterative version, the Projected Gradient Descent (PGD) [50] 
exploit the gradient of the DNN output predictions w.r.t. the inputs to craft the 
adversarial perturbations as imperceptible noise that make the DNN classifier 
cross the decision boundary. In black-box settings, the One Pixel Attack [85] 
demonstrated to misclassify DNN models by changing only one pixel intensity. 
fakeWeather attacks [55] emulate the effect of atmospheric conditions to fool 
DNNs. Decision-based attacks [8] are a subset of evasion attacks in which 
the adversary does not have access to the output probabilities but only to the 
prediction. For instance, the FaDec attack [34] jointly optimizes the number of 
queries and the perturbation distance between the adversarial example and the 
clean example to fool DNNs. 

• Attacks in the Physical World: While the aforementioned attacks mainly make 
modifications in the experimental settings, the adversarial attacks can also be 
applied in real life by introducing physical modifications [38]. Examples of phys-
ical world attacks have been showcased in the context of road sign classification 
by adding stickers [17], in the context of object detection by adding adversarial 
patches [86], or in face detection using eyeglasses with special frames [79]. 

4.2 Adversarial Defenses 

The large variety of adversarial attacks led to the design of several types of defenses, 
which can be summarized and grouped into the following categories:
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• Poisoning Defenses: To mitigate against poisoning attacks, several defensive 
countermeasures have been proposed. Outlier detection-based defenses [67] filter 
out training sample outliers, which most likely correspond to poisoned samples. 
Since typically backdoor attacks exploit the sparsity of DNNs, the Fine-Pruning 
method [46] defends against backdoor attacks by eliminating the neurons that are 
dormant for clean inputs in the backdoor network. 

• Data Augmentation: The basic principle of Adversarial Training [50] is to extend 
the training example with the adversarial examples, for instance, generated with 
the PGD attack. In this way, the DNN models achieve higher robustness against 
such perturbations. This method is considered very effective to defend against 
adversarial attacks, but its high computation overhead pushes the community to 
search for efficient optimizations of this procedure. 

• Quantization: The optimization techniques employed to improve the energy -
efficiency of DNNs can also achieve higher robustness against adversarial attacks. 
The Defensive Quantization method [42] demonstrated that the adversarial noise 
magnitude remains contained in quantized DNNs. The QuSecNets method [33] 
selects the quantization levels based on the DNN resilience and computes the 
appropriate quantization threshold values based on an optimization function. 
Other approaches, such as Defensive Approximation [27] are promising, but the 
work of Siddique et al. [83] demonstrated that approximate computing cannot be 
referred to as a universal defense technique against adversarial attacks. 

• Pre-Processing Filters: Another common technique to improve the DNN robust-
ness against adversarial attacks is to employ pre-processing filters. The basic idea 
of this approach is to view the adversarial perturbation as a noise added to the 
input, which can be filtered out at runtime. Methods based on Sobel filters [3] 
and randomized smoothing [13] demonstrated that the pre-processing filters have 
a smoothing effect and significantly reduce the adversarial success rate. 

5 Security for Capsule Networks 

CapsNets have emerged as efficient ML models which encode hierarchical informa-
tion of the features through multi-dimensional capsules [75]. Based on the principle 
of inverse graphics, the CapsNets from the image pixels encode the pose of low-
level features, and from these low-level features encode the higher-level entities. 
Moreover, to overcome the translation-invariance issue that affects traditional 
DNNs, the max-pooling layers are replaced by the iterative dynamic routing-by-
agreement algorithm, which determines the values of the coupling coefficients 
between low-level capsules and higher-level capsules at runtime. Therefore, it is key 
to analyze the security vulnerabilities of CapsNets and compare their robustness to 
the traditional DNNs.
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5.1 Robustness Against Affine Transformations 

Before studying the vulnerability of CapsNets under adversarial examples, their 
robustness against affine transformation is studied [51]. This analysis is key 
to determining how affine transformations, which are perceptible yet plausible 
perturbations appearing in the real world, can or cannot fool the networks under 
investigation. We apply three different types of transformations, which are rotation, 
shift, and zoom, on the images of the GTSRB dataset [84]. For the evaluation, 
we compare the CapsNet model [36] with a 9-layer VGGNet [93] and a 5-layer 
LeNet [39]. 

Figure 4 shows some examples of affine transformations applied to the images 
of the GTSRB dataset. Both the CapsNet and the VGGNet can be fooled by some 
affine transformations, like zoom or shift, while the prediction confidence of the 
CapsNet is lower. Moreover, as expected, the LeNet is more vulnerable to this kind 
of transformations due to its lower number of layers and parameters compared to the 
VGGNet. The CapsNet, on the other hand, is able to overcome a lower complexity 
than the VGGNet in terms of the number of layers and parameters. Indeed, as 
noticed in the example of the STOP image rotated by 30. ◦, the confidence is lower, 
but both the CapsNet and the VGGNet are able to classify it correctly, while the 
LeNet is fooled. 

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8× 

Original Rotated by 10° Shi�ed by (2,2) Zoomed by 1.5× Rotated by 30° Shi�ed by (-4,-4) Zoomed by 0.8× 

CapsNet 
Predic�on STOP STOP STOP ROAD WORK STOP YELD STOP 

Probability 0.057 0.056 0.050 0.026 0.032 0.037 0.054 

VGGNet 
Predic�on STOP STOP STOP GENERAL CAUTION STOP YIELD STOP 

Probability 1.000 0.999 0.999 0.735 0.747 0.900 0.999 

LeNet 
Predic�on STOP STOP STOP YIELD GO STRAIGHT OR LEFT YIELD STOP 

Probability 0.999 0.999 0.984 0.574 0.668 0.999 0.989 

CapsNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 BYCICLES CROSSING KEEP RIGHT TRAFFIC SIGNALS SPEED LIMIT 30 

Probability 0.056 0.055 0.045 0.032 0.027 0.024 0.058 

VGGNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 30 SPEED LIMIT 30 

Probability 1.000 1.000 1.000 0.629 0.433 0.870 1.000 

LeNet 
Predic�on SPEED LIMIT 30 SPEED LIMIT 30 SPEED LIMIT 30 ROUNDABOUT MANDATORY SPEED LIMIT 50 SPEED LIMIT 50 SPEED LIMIT 30 

Probability 1.000 1.000 0.999 0.830 0.999 0.440 0.999 

Fig. 4 Predicted classes and their probability associated with the prediction confidence, com-
paring the CapsNet, VGGNet, and LeNet, under different affine transformations applied to two 
examples of the GTSRB dataset [51]
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5.2 Robustness Against Adversarial Attacks 

Besides the vulnerability against affine transformations, the robustness against 
adversarial attacks is a key metric to analyze when evaluating the security. The 
CapsAttack methodology [51] evaluates the adversarial robustness of CapsNets and 
other DNNs under a novel adversarial attack generation algorithm (see Fig. 5) and 
analyzes in detail the output probability variations of single images under attack. 

5.2.1 Adversarial Attack Methodology 

The goal of an efficient adversarial attack is to generate imperceptible and robust 
examples to fool the network. An adversarial example can be defined imperceptible 
if the modifications of the original sample are so small that humans cannot notice 
them. Therefore, the perturbations added in high variance zones are less evident and 
more difficult to be detected, compared to the perturbations applied in low variance 
pixels. To measure the imperceptibility, we measure the distance D between the 
original sample X and the adversarial sample X*. This value indicates the total 
amount of perturbation added to all the pixels in the image. We also define . DMAX

as the maximum total perturbation tolerated by the human eye. 
Moreover, an adversarial example can be defined robust if the gap between 

the probability of the target class and the probability of the highest class is 
maximized. A gap increase makes the adversarial example more robust, since the 
modifications of the probabilities caused by the image transformations (e.g., resizing 
or compression) tend to be less effective. Indeed, if the gap is high, a small variation 
of the probabilities may not be sufficient to change the prediction. 

As shown in Fig. 5, the CapsAttacks methodology is based on an iterative 
procedure that automatically produces targeted imperceptible and robust adversarial 
examples in a black-box setting [51]. The input image is modified to maximize 
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Fig. 5 The CapsAttacks methodology [51] to generate adversarial examples. The blue-colored 
boxes work towards fooling the network, while the yellow-colored boxes control the impercepti-
bility of the adversarial example
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the gap (imperceptibility) until the distance between the original image and the 
adversarial example is lower than .DMAX (robustness). The perturbations are applied 
to a set of pixels in the highest variation regions at every iteration to create 
imperceptible perturbations. Moreover, the algorithm automatically decides whether 
it is more effective to add or subtract the noise to maximize the gap according to the 
values of the two parameters .GAP(+) and .GAP(−). These mechanisms increase 
the imperceptibility and the robustness of the attack. 

5.2.2 Evaluation Results 

The CapsAttacks methodology is applied to the previously described CapsNet [36], 
LeNet [39] and VGGNet [93], tested on different examples of the GTSRB 
dataset [84]. 

The CapsNet is tested on two different examples, shown in Fig. 6a (Example 1) 
and Fig. 6e (Example 2). For the first one, we analyze two cases to test the 
dependence on the target class: 

• Case I: the target class is the class relative to the second-highest probability 
between all the initial output probabilities. 

• Case II: the target class is the class relative to the fifth-highest probability 
between all the initial output probabilities. 

The analyses of the examples in Case I and Case II lead to the following 
observations: 

1. The CapsNet classifies the input image shown in Fig. 6a as the “120 km/h speed 
limit” (S8) class with a probability equal to 0.0370. 
The target class for Case I is “Double curve” (S21) with a probability equal to 
0.0297. After 13 iterations, the image (in Fig. 6b) is classified as “Double curve” 
with a probability equal to 0.0339. Hence, the probability of the target class 
has overcome the initial one, as shown in Fig. 7a. At this iteration, the distance 
.D(X∗, X) is equal to 434.20. If we increase the number of iterations, the robust-
ness of the attack will increase as well since the gap between the two probabilities 
increases. However, the adversarial noise becomes more perceptible. Indeed, the 
distance at the iteration 16 overcomes .DMAX = 520 (see Fig. 6c). 

(a) (b) (c) (d) (e) (f) (g) 

Fig. 6 Images for the attack applied to the CapsNet: (a) Original input image of Example 1. 
(b) Image misclassified by the CapsNet at iteration 13 for Case I. (c) Image misclassified by the 
CapsNet at iteration 16 for Case I. (d) Image at iteration 12 for Case II. (e) Original input image of 
Example 2. (f) Image at iteration 5, applied to the CapsNet. (g) Image misclassified by the CapsNet 
at iteration 21
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Fig. 7 CapsNet results: (a) Output probabilities of Example 1—Case I: the blue bars represent 
the starting probabilities, the orange bars the probabilities at the point of misclassification, and 
the yellow bars at the . DMAX . (b) Output probabilities of Example 1—Case II: the blue bars 
represent the starting probabilities, and the orange bars the probabilities at the . DMAX . (c) Output 
probabilities of Example 2: the blue bars represent the starting probabilities, and the orange bars 
the probabilities at the . DMAX

For the Case II, the probability of the target class “Beware of ice/snow” (S30) 
is equal to 0.0249, as shown in Fig. 7b. The gap between the highest probability 
and the probability of the target class is larger than the gap in Case I. After 12 
iterations, the CapsNet still correctly classifies the image (see Fig. 6d). Indeed, 
Fig. 7b shows that the gap between the two classes is lower, but not enough for 
a misclassification. However, the distance at this iteration overcomes . DMAX =
520. This experiment shows that the algorithm would need more iterations to 
misclassify, at the cost of more perceivable perturbations. 

2. The CapsNet classifies the input image shown in Fig. 6e as the “Children 
crossing” (S28) class with a probability equal to 0.042. The target class, which 
is “60 km/h speed limit” (S3), has a probability equal to 0.0331. After 5 
iterations, the distance overcomes .DMAX = 250, while the network has not 
misclassified the image yet (see Fig. 6f), because the probability of the target 
class has not overcome the initial highest probability, as shown in Fig. 7c. 
The misclassification is noticed at the iteration 21 (see Fig. 6g). However, the 
perturbation is very perceivable. 

The same two examples are evaluated to compare the robustness of the CapsNet 
and the 9-layer VGGNet. For the Example 1, only Case I is analyzed as benchmark. 
Since the VGGNet classifies the input images with different output probabilities 
compared to the ones obtained by the CapsNet, the evaluation of how much the 
VGGNet is resistant to the attack is based on the gap measured at the same distance. 
To compare the robustness of the CapsNet and the 5-layer LeNet, we only analyze 
the Example 1, since the original Example 2 is incorrectly classified by the LeNet. 

From the results in Figs. 8 and 9, we can make the following observations: 

1. The VGGNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit” 
(S8) class with a probability equal to 0.976. The target class, which is “100 km/h 
speed limit” (S7), has a probability equal to 0.021. After 3 iterations, the distance 
overcomes .DMAX = 520, while the VGGNet has not misclassified the image yet 
(see Fig. 8b) yet, since the two initial probabilities were very distant, as shown in 
Fig. 9a. The algorithm would need to perform 9 iterations (see Fig. 8c) to fool the 
VGGNet, where the probability of the target class is 0.483.
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(a) (b) (c) (d) (e) (f) (g) 

Fig. 8 Images for the attack applied to the DNNs: (a) Original input image of Example 1. (b) 
Image at iteration 3, applied to the VGGNet. (c) Image at iteration 9, misclassified by the VGGNet. 
(d) Original input image of Example 2. (e) Image at iteration 2, applied to the VGGNet. (a) Image  
at iteration 6, misclassified by the LeNet. (b) Image at iteration 13, misclassified by the LeNet 
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Fig. 9 DNNs results: (a) Output probabilities for the Example 1 on the VGGNet: the blue bars 
represent the starting probabilities, the orange bars the probabilities at the point of misclassifi-
cation, and the yellow bars at the . DMAX . (b) Output probabilities for the Example 2 on the 
VGGNet: the blue bars represent the starting probabilities, and the orange bars the probabilities 
at the . DMAX . (c) Output probabilities for the Example 1 on the LeNet: the blue bars represent 
the starting probabilities, the orange bars the probabilities at the point of misclassification, and the 
yellow bars at the . DMAX

2. The VGGNet classifies the input image (in Fig. 8d) as the “Children crossing” 
(S28) class with a probability equal to 0.96. The target class, which is “Beware of 
ice/snow” (S30), has a probability equal to 0.023. After 2 iterations, the distance 
overcomes .DMAX = 250, while the VGGNet has not misclassified the image yet 
(see Fig. 8e). As in the previous example, this behavior is due to the high distance 
between the initial probabilities, as shown in Fig. 9b. Note that the VGGNet 
reaches .DMAX in a lower number of iterations compared to the CapsNet. 

3. The LeNet classifies the input image (in Fig. 8a) as the “120 km/h speed limit” 
(S8) class with a probability equal to 0.672. The target class, which is “30 km/h 
speed limit” (S1), has a probability equal to 0.178. After 6 iterations, the LeNet 
is fooled, because the image (in Fig. 8f) is recognized as the target class with 
a probability equal to 0.339. The noise becomes perceptible after 13 iterations 
(Fig. 8g), where the distance overcomes .DMAX = 520. 

5.3 Discussion 

While it is highly complex to formalize generic conclusions, a common trend is that 
the CapsNets are more robust against adversarial attacks and affine transformation 
than DNNs with similar depth and number of parameters. These observations are 
aligned with similar works of Michels et al. [58] and Gu et al. [25].
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Concurrently, the CapsNets security has been analyzed from different perspec-
tives. The Vote Attack [26] is a method that directly perturbs the CapsNets by 
manipulating the votes from primary capsules. Qin et al. [70] proposed a method 
to detect adversarial examples using the CapsNet reconstruction network. 

These analyses and findings open several directions and strategies for deploying 
robust CapsNets in safety-critical applications. 

6 Security for Spiking Neural Networks 

SNNs are considered the third generation of neural networks [49] due to their high 
biological plausibility and similarities to the human brain. Compared to traditional 
DNNs, which are based on the computation of continuous values, SNNs process 
discrete spike trains in an event-based fashion. Hence, they exhibit great potential 
for deploying high-performance and energy-efficient ML algorithms [56, 90]. In 
terms of security, the different computational principles of SNNs offer unique vul-
nerabilities and potential optimizations for improving their robustness. In contrast 
to the well-established knowledge about DNN security, the robustness of SNNs is 
an ongoing research topic of high interest in the ML community. 

6.1 Comparison DNNs vs. SNNs 

The robustness evaluation of SNNs can be conducted by analyzing the comparison 
between an SNN and a (non-spiking) DNN having the same architectural model, 
i.e., the same number of layers, neurons per layer, and connections. While the DNN 
has traditional neurons with ReLU activation function, the SNN has LIF neurons 
with threshold voltage .Vth = 1 V . For these experiments, we use a 5-layer network 
with 3 convolutional layers and 2 fully connected layers on the MNIST dataset [39]. 
The DNN is trained using the PyTorch framework [66], while the SNN has been 
implemented and trained with the Norse framework [68]. The PGD attack [50] 
is applied to both networks using the Foolbox library [73]. Figure 10 shows the 
accuracy results of both networks when varying the value of adversarial noise budget 
. ε. While for low noise magnitude the DNN has slightly higher accuracy than the 
SNN, after the turnaround point of .0.5 ≤ ε ≤ 0.6, the opposite behavior is noticed. 
While the accuracy curve of the DNN decreases sharply, the SNN curve has a lower 
slope. For instance, when .ε = 1, the SNN accuracy is more than .50% higher than 
the DNN accuracy [16]. Such an outcome indicates that SNNs have the potential 
to be applied in security contexts due to their higher inherent robustness compared 
to traditional DNNs. These findings are aligned with recent works [5, 37, 52, 80] 
that demonstrate the SNNs’ higher robustness against security threats, and motivate 
deeper analyses on this topic.
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Fig. 10 Comparison between a DNN and an SNN with the same structure under the PGD attack 
with different values of the adversarial perturbation . ε (adapted from [16]) 

6.2 Improving the SNN Robustness Through Inherent 
Structural Parameters 

The previous analyses can be extended not only by exploring the SNN robustness 
for different adversarial perturbations but also by studying the impact of the SNN 
structural parameters, i.e., spiking threshold voltage .Vth and time window T . . Vth

represents the threshold to be compared with the spiking neuron’s membrane poten-
tial to decide whether or not to emit an output spike. T represents the observation 
period in which an SNN implemented with the rate-coding mechanism receives 
spike sequences associated with the same intensity value, which is associated with 
the firing rate. 

6.2.1 SNN Robustness Exploration Methodology 

Figure 11 shows the robustness exploration methodology, mainly composed of two 
steps: 

1. Learnability Analysis: Given the SNN architecture, the threshold voltage . Vi , and 
the time window . Tj , the training in the spiking domain is conducted. This step 
excludes the configurations of parameters that have low accuracy, by setting 
a minimum baseline accuracy level below which the SNN learning process is 
considered inefficient, since there is no interest in continuing the study on SNNs 
that do not converge. 

2. Security Analysis: For all the .(Vi, Tj ) tuples for which the SNN achieves high 
baseline accuracy, the security study is conducted. The adversarial examples 
are also generated based on the adversarial noise . ε, and the SNN robustness is 
evaluated. The parameter . ε models the strength of the attack, where a high value 
tends to reduce the SNN accuracy due to the higher perturbation budget given
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Fig. 11 Methodology for exploring the SNN robustness, varying the threshold voltage . Vth, the  
time window T , and the adversarial perturbation . ε [16] 

to the adversary. For every value of . ε, the robustness is computed as the inverse 
of the attack’s success rate, i.e., how many adversarial examples are correctly 
classified by the SNN. 

By observing the robust combinations of .(Vi, Tj ) during both the learnability and 
security analyses, a trustworthy SNN design is obtained at the output. 

6.2.2 SNN Robustness Evaluation 

The experiments were conducted using a 5-layer SNN similar to the LeNet-5 
architecture adapted for the spiking domain. It is trained for the MNIST dataset [39] 
with the Norse framework [68], and the PGD adversarial attacks are implemented 
using the Foolbox library [73]. Figure 12a shows the heat map relative to the 
learnability analysis. The variations of .Vth and T appear on the horizontal and 
vertical axes, respectively, while the color denotes the SNN accuracy. Compared to 
the default values, which are .(Vi, Tj ) = (1, 64), other combinations of parameters 
are explored and evaluated. While a high-accuracy region can be identified in 
the top-left corner (low . Vi , high . Tj ), the accuracy is not monotonic w.r.t. both 
parameters, since the SNN with .(Vi, Tj ) = (1.25, 56) has lower accuracy than the 
surrounding points. 

Figure 12b show the security analysis heat map for .ε = 1. A comparison between 
the two graphs indicates that high learnability (i.e., without adversarial attacks) 
does not guarantee high robustness. Indeed, different responses of the SNNs under 
adversarial attacks based on their respective structural parameters can be noticed. 
Two SNNs that have a comparable baseline accuracy may have different robustness.
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Fig. 12 Heat maps showing the SNN accuracy for the MNIST dataset using different combina-
tions of .(Vi, Tj ), based on the results in [16]. (a) Learnability analysis, equivalent of having .ε = 0. 
(b) Security analysis, for . ε = 1

For example, the SNN with .(Vi, Tj ) = (0.75, 72) has .91% accuracy under attack, 
and the SNN with .(Vi, Tj ) = (0.5, 80) has only .27% accuracy, while their baseline 
accuracy is equal to .97% for both combinations. 

Hence, studying the SNN security under different values of adversarial pertur-
bations is crucial to identifying robust combinations of threshold voltage and time 
windows, which contribute to enabling the deployment of SNNs for safety-critical 
applications. 

6.3 Adversarial Attacks and Defenses on Event-Based Data 

Along with the efficient implementation of SNNs on neuromorphic architectures 
(e.g., Intel Loihi [15] and IBM TrueNorth [57]), other advancements in the vision 
field have come from the event-based camera sensor, such as the dynamic vision 
sensors (DVS) [41]. Unlike classical frame-based cameras, the DVS cameras 
emulate the behavior of the human retina by recording the information in the form 
of spike event sequences, which are generated each time a change of light intensity 
is detected. As a consequence, SNNs processing event-based data are affected by 
different types of security vulnerabilities compared to frame-based data processing. 

Figure 13 provides an overview of the adversarial threat model used in this 
section. The frames of events recorded by a DVS camera are subjected to adversarial 
attacks, while DVS noise filters placed at the input of the neuromorphic hardware 
that executes SNN inference can mitigate the adversary perturbations.
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Fig. 13 Adversarial threat model for applying attack algorithms and noise filters on event-based 
SNNs. Figure adapted from [54] 

Algorithm 1: Gradient-based adversarial attack methodology for event-
based SNNs [54] 
1 Define M as a mask able to select only certain frames; 
2 Define D as a dataset composed of DVS images; 
3 Define P as a perturbation to be added to the images; 
4 Define prob as the output probability of a certain class; 
5 for  d in D do 
6 for  i in max_iteration do 
7 Add P to d only for the frames selected by M; 
8 Calculate the prevision on the perturbed input; 
9 Extract prob for the correspondent class of d; 
10 Update the loss as loss = −log(1 − prob); 
11 Calculate the gradients and update P ; 

6.3.1 Gradient-Based Attack for Event Sequences 

There exist different types of adversarial attacks and noise filters specific to 
event-based data. A gradient-based attack [54], described in Algorithm 1, is an  
iterative algorithm that progressively updates the injected perturbations into the 
event sequences based on the loss function (lines 7–11 of Algorithm 1) for each 
frame series of the dataset. After defining a mask in which the perturbation should be 
added (line 7), the output probability and its respective loss, obtained in the presence 
of the perturbation, are computed in lines 9 and 10, respectively. Afterward, the 
perturbation values are updated based on the gradients of the inputs with respect to 
the loss. 

6.3.2 Background Activity Filter for Event Cameras 

DVS sensors are mainly affected by noise caused by thermal noise and junction 
leakage current, which can be classified as a background activity. Since similar 
events are typically generated in a neighborhood of pixels, the real events have a 
higher spatio-temporal correlation than the noise events. Such empirical observation 
is exploited for generating the Background Activity Filter (BAF) [43, 53]. The
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Algorithm 2: Background activity filter for event sequences [53] 

1 Define E as a list of events of the form  (x, y, p, t); 
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp 

of the event e, respectively; 
3 Define M as a N × N matrix, where N is the size of the frames; 
4 Define S and T as the spatial and temporal filter’s parameters; 
5 Initialize M to zero; 
6 Sort E from the oldest to the newest event; 
7 for  e in E do 
8 for  i in (xe − S,xe + S) do 
9 for  j in (ye − S, ye + S) do 
10 if not (i == xe and j == ye) then 
11 M[i][j ] =  te; 

12 if te − M[xe][ye] > T  then 
13 Remove e from E; 

spatio-temporal correlation between events is computed. If such correlation is lower 
than a certain threshold, the events are filtered out since they are likely due to 
noise, while the events with higher correlations are kept. The methodology is 
reported in Algorithm 2, where S and T are the parameters of the filter that set the 
dimensions of the spatio-temporal neighborhood. Large S and T values imply that 
few events are filtered out. The filter’s decision is based on the comparison between 
.te − M[xe][ye] and T (lines 12–13 of Algorithm 2). The event is filtered out if the 
first term is lower. 

6.3.3 Evaluation of Gradient-Based Attack and Background Activity 
Filter 

The experiments are conducted by training the 4-layer SNN described in [82], 
with two convolutional layers and two fully connected layers, for the DvsGesture 
dataset [4] using the SLAYER backpropagation method [82]. Figure 14 shows the 
results for the gradient-based attack applied to the SNN. When it is not protected by 
the BAF, the attack is successful since the SNN accuracy drops to .15.15%. However, 
the BAF plays the role of a suitable defense since the accuracy remains higher than 
.90% for a wide range of values for the parameters s and t . At the extremes, for 
.t = 1, the accuracy is strongly affected by the parameter s, while for .t = 500 the 
SNN accuracy drops to less than .48%. 

The results relative to a case study in which the gradient-based attack is applied 
to the sequence of events of a sample of the DvsGesture dataset are shown in 
Fig. 15. The first row (Fig. 15a) shows the results for the clean event sequence, 
i.e., without attack and without filter. The SNN correctly classifies the frame as 
the class 2, which corresponds to the “left hand wave” label. The second row
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Fig. 14 Robustness evaluation for the SNN on the DvsGesture dataset, under the gradient-based 
attack and BAF filter. Based on the results in [54] 

(Fig. 15b) shows the outcome when the gradient-based adversarial attack is applied. 
The visible modifications in the event sequences are minimal, but the sample is 
misclassified by the SNN as the class 0, which corresponds to “hand clap.” The last 
row (Fig. 15c), relative to the scenario in which both the gradient-based attack and 
the BAF filter (with .s = 2 and .t = 5) are present, shows that the sequence is again 
correctly classified as the class 2 (“left hand wave”). It is worth noticing that several 
spurious events have been filtered out by the BAF, resulting in high SNN prediction 
confidence. 

6.3.4 Dash Attack for Event Sequences 

While the BAF filter is successful against the gradient-based attack, more sophisti-
cated adversarial attack algorithms can evade this protection. For instance, the Dash 
Attack [53] injects events in the form of a dash. Only two pixels are perturbed for 
each time step. It starts by targeting the top-left corner (lines 11–13 of Algorithm 3). 
Afterward, the x and y coordinates are updated to hit only two consecutive pixels 
(see lines 17–25 of Algorithm 3). Hence, this attack results difficult to spot since the 
injected spikes do not cause a large overhead on the whole sample. 

6.3.5 Mask Filter for Event Cameras 

Another type of filtering methodology for event sequences is represented by the 
Mask Filter (MF) [43, 53]. Algorithm 4 shows the MF technique, whose basic 
functionality is to filter out the noise on the pixels which have low temporal contrast.
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Fig. 15 Detailed results of an event sequence of the DVSGesture dataset labeled as “left hand 
wave.” (a) Clean event sequence. (b) Event sequence under the gradient-based adversarial attack, 
unfiltered. (d) Event sequence under the gradient-based adversarial attack and protected by the 
BAF filter with .s = 2 and .t = 5. Based on the results in [54] 

The activity of each pixel coordinate is monitored (lines 10–11 of Algorithm 4). If 
such activity exceeds the temporal parameter T , the mask is activated (lines 14– 
15 of Algorithm 4). After setting all the pixel coordinates of the mask, each event 
corresponding to a coordinate in which the mask is active is filtered out (lines 15–16 
of Algorithm 4). 

6.3.6 Evaluation of the Dash Attack Against Background Activity Filter 
and Mask Filter 

The Dash attack introduces perturbations that look very similar to the inherent 
background noise generated by the DVS camera recording the events. Therefore, 
they result difficult to be spotted. As shown in Fig. 16a, the accuracy of the SNN 
without filter under the Dash Attack drops to .0% for the DvsGesture dataset, while 
the BAF defense produces a slightly higher SNN accuracy. However, the accuracy 
peak of .28.41% achieved with the BAF with .s = 1 and .t = 10 is too low to 
consider the BAF as a good defense method against the Dash Attack. However, 
the MF represents a successful defense because the SNN accuracy is high for large 
values of T .
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Algorithm 3: Dash attack methodology [53] 

1 Define D as an event-based dataset made of (C × N × N × T )  tensors, where C is the 
number of channels, N is the size, and T is the duration of the sample; 

2 S is the list of the samples that compose D; 
3 xmin = 0; 
4 x = 0; 
5 y = 2; 
6 lef t = T rue; 
7 while  S is not empty do 
8 for  s in S do 
9 for  i in (0, N  − 1) do 
10 for j in (0, N  − 1) do 
11 if i == x ∧ (lef t ∧ (j == y ∨ j == y − 1) ∨ lef t 
12 ∧(j == N − y ∨ j == N − y + 1)) then 
13 s[:, i, j, :] = 1; 

14 The perturbed sample s is fed into the SNN, which produces a prediction P ; 
15 if P is incorrect then 
16 Remove s from S; 

17 if x == xmin then 
18 x = N − xmin − 1; 
19 else 
20 lef t = lef t ⊕ 1; 
21 x = xmin; 
22 if lef t then 
23 y = y + 1; 

24 if y >  N/2 then 
25 xmin = xmin + 1; 

6.3.7 Mask Filter-Aware Dash Attack for Event Sequences 

The main drawback of the Dash attack is its intrinsic weakness against the MF. In 
fact, it targets the same pixels for the complete sample duration. This highlights 
which pixels are targeted by the attack. Indeed, the number of events produced by 
the affected pixels is significantly higher than the events associated with the other 
pixel coordinates not hit by the attack. In addition, it mainly injects events on the 
boundaries of the images, which do not tend to overlap with useful information 
that is typically centered. Hence, by hitting the perimeter of the frames, there is a 
low risk of superimposing adversarial noise to the main subject. These observations 
explain the success of the MF in restoring the original SNN accuracy. The perturbed 
pixels are easily identifiable due to their high number of events, and the filter does 
not remove useful information, since the modifications are mainly conducted at the 
edge of the image. Based on these premises, the Mask Filter-Aware Dash Attack
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Algorithm 4: Mask filter for event sequences [53] 

1 Define E as a list of events of the form  (x, y, p, t); 
2 Define (xe, ye, pe, te) as the x coordinate, the y coordinate, the polarity, and the timestamp 

of the event e, respectively; 
3 Define M as a N × N matrix, where N is the size of the frames; 
4 Define activity as a N × N matrix, representing the number of event produced by each 

pixel; 
5 Define T as the temporal threshold passed to the filter as a parameter; 
6 Initialize activity to zero; 
7 for  x in (0, N  − 1) do 
8 for  y in (0, N  − 1) do 
9 for  e in E do 
10 if (x, y) == (xe, ye) then 
11 activity[x][y]+ = 1; 

12 if activity[x][y] > T  then 
13 M[x][y] =  1; 

14 for e in E do 
15 if M[xe][ye] ==  1 then 
16 Remove e from E; 

(a) Dash A�ack Mask FilterBackground Ac�vity Filter 

Mask FilterBackground Ac�vity Filter(b) MF-Aware Dash A�ack 

Low accuracy Weak defense MF is a good defense 
for large T values 

Low accuracy for t ≥ 5 
Low accuracy 

for T ≥ th 

20% lower 
than original 

Fig. 16 Evaluation of DVS attacks for the SNN on the DvsGesture dataset, under the BAF and 
Mask filters, based on the results in [53]. (a) Results for the Dash Attack. (b) Results for the  
MF-Aware Dash Attack 

has been designed, aiming at being resistant to the MF. It receives as a parameter 
th  that sets a limit on the number of frames that can be changed for each pixel (line 
14 of Algorithm 5). Therefore, the algorithm hits a couple of pixels, as in the case 
of the Dash Attack. However, after injecting events into th  frames, it moves to the 
following pixel coordinates (lines 17–19 of Algorithm 5). The visual effect created 
by the MF-Aware Dash Attack is that of a dash moving along a line. A smaller th  
implies a faster movement of the dash across the image.
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Algorithm 5: Mask filter-aware dash attack methodology [53] 

1 Define D as an event-based Dataset made of (2 × N × N × T )  tensors, where N is the 
frame dimensions, and T is the sample duration; 

2 Define S as the list of the samples that compose D; 
3 Define th  as the parameter associated the activity threshold of the Mask Filter; 
4 Initialize x = 0; 
5 Initialize y0 = 2; 
6 Initialize lef t = T rue; 
7 while  S is not empty do 
8 for  s in S do 
9 th  = th0; 
10 y = y0; 
11 for t in T do 
12 for i in (0, N  − 1) do 
13 for j in (0, N  − 1) do 
14 if i == x ∧ t <  th ∧ (lef t ∧ (j == y ∨ j == y − 1) 
15 ∨ lef t ∧ (j == N − y ∨ j == N − y + 1)) then 
16 s[0, i, j, t] =  1; 

17 if t == th  then 
18 th  = th  + th0; 
19 y = y + 2 

20 The perturbed sample s is fed into the SNN, which produces a prediction P ; 
21 if P is incorrect then 
22 Remove s from S; 

23 if x == 0 then 
24 x = N − 1; 
25 else 
26 lef t = lef t ⊕ 1 x = 0 if lef t then 
27 y0 = y0 + 1; 

6.3.8 Evaluation of the Mask Filter-Aware Dash Attack Against 
Background Activity Filter and Mask Filter 

Figure 16b shows the results relative to the experiments conducted for the MF-
Aware Dash Attack, with different values of the parameter th. While the visibility 
of the injected noise on the DvsGesture dataset, reported for .th = 150, is similar 
to the Dash Attacks, the behavior of the MF-Aware Dash Attack in the presence of 
noise filters is much different. The accuracy of the SNN under attack without filter is 
very low (up to .7.95% for .th = 50. The SNN defended by the BAF shows discrete 
robustness, in particular, when .s = 3 and .t = 1. In such a scenario, the accuracy 
reaches .59.09% against the MF-Aware Dash Attack with .th = 50. However, when 
.t ≥ 5, the SNN accuracy is lower than .31.44%. The key advantage compared 
to the Dash Attack resides in the behavior of the MF-Aware Dash Attack in the 
presence of the MF. If .T ≥ th, the SNN accuracy becomes lower than . 23.5%. On
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the contrary, the behavior for .T < th is similar to the results achieved for the Dash 
Attack. For example, the MF-Aware Dash Attack with .th = 50 achieves . 71.21%
accuracy for .T = 25, which is .20.83% lower than the original SNN accuracy. These 
results demonstrate that noise event filters such as the BAF and the MF significantly 
improve the SNN robustness against adversarial attacks. However, an adversarial 
attack algorithm specifically designed for being resistant to the MF, such as the MF-
Aware Dash Attack, has the potential to break the noise filter defense for a good 
choice of its parameter th. 

7 Conclusion 

Despite being employed at a large scale, ML models are vulnerable to security 
threats. Therefore, several defensive mechanisms have been explored to increase 
their robustness. This chapter presented an overview of ML security, focusing on 
emerging architectures, such as DNNs, CapsNets, and SNNs. The high complexity 
of these models requires dedicated methodologies to investigate their trustwor-
thiness. The analyses conducted in this chapter demonstrated that CapsNets are 
more robust than traditional DNNs against affine transformations and adversarial 
attacks. SNNs are inherently more robust than non-spiking DNNs, and such inherent 
robustness can be enhanced by fine-tuning their structural parameters, like the 
spiking voltage threshold and the time window. Moreover, event-based SNNs can 
be protected through noise filters for event sensors, like the Background Activity 
Filter and the Mask Filter. However, when properly tuned, advanced event-based 
adversarial attack methodologies, such as the Mask Filter-Aware Dash Attack, can 
cause significant accuracy drops in SNNs. 
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On the Challenge of Hardware Errors, 
Adversarial Attacks and Privacy Leakage 
for Embedded Machine Learning 

Ihsen Alouani 

1 Introduction 

Due to the recent breakthroughs in deep neural networks (DNNs) design and train-
ing, DL architectures are currently deployed to solving mainstream applications, 
along with industrial and critical applications: going from intelligent transportation 
systems [1–3], natural language processing [4], robotics [5], and healthcare [6]. 
This is in part owing to the VLSI technology progress, the new high-performance 
communication systems and the development of IoT devices. More specifically, this 
trend results in the generation of abundant amounts of data from different embedded 
sensors and IT systems, which are necessary for training accurate DNN models. 

Given the computing-intensive aspect of DNNs, the by-default deployment of 
deep models is in Cloud data-centers or private data-centers. However, there are 
practical limits and drawbacks of such systems at least from 2 perspectives: 

(i) First, from resource and power consumption and consequently environmental 
impact perspective, this scheme has considerable overheads. 

(ii) Second, from a communication perspective, such a deployment scheme 
requires sending raw data from sensors to the servers all through wireless 
and wired communication platforms. 

The downside of this scheme is that data-centers are power-hungry platforms; 
they are estimated to account for around .1% of worldwide electricity use with high 
environmental impact [7]. These trends motivate a ML computing paradigm that 
overcomes these issues. Specifically, a more distributed deployment of ML at the 
Edge emerged as a promising paradigm towards power-efficient near-sensor intel-
ligent systems. While Embedded and Edge ML offers promising power/accuracy 
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trade-off and enhances the mainstream development of ML models towards sustain-
able and smart systems and cities, several problems still limit ML trustworthiness. 

In this chapter, we focus on three aspects of ML trustworthiness, namely 
Robustness to errors, security, and privacy. 

2 ML Robustness to Errors 

In a context of performance-driven design requirements, new hardware generations 
continuously shrink transistors dimensions, thereby increasing circuits sensitivity to 
external events which can negatively affect their reliability. There are two scenarios 
in which errors occur in modern embedded systems:

• Deliberate fault injection attacks such as Rowhammer [8]. Intentional attacks are 
another potential source of faults. The widespread usage of CNNs led to the 
development of sophisticated attacks. Malicious users could intentionally tamper 
with the parameters of the model [9].

• Reliability-related events such as soft errors either in memories, i.e., Single Event 
Upsets (SEU) or in combinatorial circuits, i.e., Single Event Transients (SET). 
These events are typically caused by high energy particles striking electronic 
devices. 

These errors can propagate through the neural network to create accuracy loss, 
and potentially global system failures that can be safety-critical or security sensitive 
in some cases. 

In this section, we provide an exploratory analysis of DNNs vulnerability to 
errors. 

2.1 Methodology 

In most embedded ML accelerators, the model parameters are stored on-board. A 
memory corruption has a persistent and, hence, cumulative aspect and will remain 
until a new model is trained and implemented. 

To reproduce models behavior under this threat, we simulate memory corruptions 
by injecting a number of bit-flips in random parameters of a model at runtime 
(inference). We subsequently evaluate the model robustness for different error rates 
and locations (Fig. 1). 

We consider two data representations:

• IEEE-754 single-precision 32-bit float: This is the standard representation 
format for real numbers. It is the dominant representation in CPU and GPU 
architectures. For simplicity we refer to this representation as . F in the rest of 
the chapter. are composed of three parts: a sign, an exponent and a fraction part 
(see Fig. 2). The normalized format of IEEE-754 floating point is expressed as 
follows:
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No 

Fig. 1 Overview of the fault injection methodology 
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sign exponent fraction 
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= 0.156 
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(b) 

Fig. 2 Fixed-point representation in (a) with a bit-width of 8 and a fractional length of 2 (left) and 
.−2 (right). On (b) the standard IEEE-754 representation of 32 bit floating-point values 

.val = (−1)sign × 2exp−bias × (1.f raction) (1)

• Fixed-point representation: This representation uses two parameters: bit-width 
and fractional length. Negative fractional lengths can be used to represent 
powers of two. This representation is referred to as . Q (for quantized) in the 
rest of the chapter. 

To evaluate the robustness of a given model to faults, we create a fault injection 
framework that takes a trained network as an input. While testing the model at 
inference time, bit-flips are injected in the network’s weights with a tunable injection 
rate. After each test, we report the overall accuracy under fault injection. 

These tests are repeated 100 times for a statistically representative experiment. In 
each run, the engine generates a new set of errors and the injection of the generated 
errors is performed each run. We then report the accuracy distribution, i.e., the
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average accuracy, the maximum, the minimum, and the standard deviation for the 
test. 

2.2 Results 

The results were obtained on weights in single-precision floating point compara-
tively with quantized weights in terms of classification accuracy of the different 
networks. The results of different runs are presented as the mean and the standard 
deviation of the top-1 accuracy. 

Figure 3 illustrates the result of comparing the floating-point and quantized 
representations. The results show that quantized models are surprisingly more 
robust to fault injection than the full precision models, which has been consistently 
observed for 4 different CNNs with different fault injection rates. We believe that 
the reason behind this observation is the error distance after injection denoted by 
. A in [10]. For instance, the . Q representation with 7 decimal bits and 1 integer bit 
will differ from the original value by at most . ±1. However, for the full precision 
representation, the error distance on activation can reach .3 × 1038 as observed in 
[10]. Therefore, since floating-point numbers are more sensitive to bit-flips than 
fixed-point representation, quantized networks tend to show higher robustness to 
errors, in addition to the area and power consumption gains. 
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Fig. 3 Models accuracy under fault injection for weights representation with 8-bit fixed point (. Q) 
and 32-bit single-precision IEEE-754 (. F)
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3 ML Security 

ML systems have been deployed in a variety of application domains, including 
security-sensitive and safety-critical applications [11]. However, ML models have 
been shown vulnerable to several security threats, including adversarial examples, 
which consist of additive noise carefully crafted to fool ML models. 

3.1 Adversarial Attacks 

Adversarial examples are additive perturbations to an input that are carefully crafted 
by an adversary to deceive the model and force it to output a wrong label. If 
adversaries succeed in manipulating the decisions of a ML classifier to their advan-
tage, this can tamper with the security and integrity of the system, and potentially 
threaten the safety of people in some applications like autonomous vehicles. For 
example, adding adversarial noise to a stop sign that leads an autonomous car to 
wrongly classify it as a speed limit sign can lead to crashes and loss of life. In fact, 
adversarial examples have been shown effective under real-world settings [12–14]: 
that when printed out, an adversarially crafted image can fool the classifiers even 
under different lighting conditions and orientations. Therefore, understanding and 
mitigating these attacks is essential to developing safe and trustworthy intelligent 
systems. 

Attacker Knowledge When attacking a DNN-based model, we can distinguish 
two main attack scenarios based on attacker knowledge: 

(i) Black-box setting: the adversary has partial or no access to the victim 
model’s architecture and parameters. The adversary uses the results of 
querying the victim to reverse engineer the classifier and create a substitute 
model used to generate the adversarial examples. An illustration of this 
scenario is given by Fig. 4. 

(ii) White-box setting: in which the adversary has complete knowledge of 
the training data of the victim model in addition to the target model’s 
architecture and parameters. An illustration of this scenario is given by 
Fig. 5. (FGSM) [15] attack, Projected gradient descent (PGD) [16] attack, 
Carlini & Wagnar (C&W) [17] are the main white-box adversarial attacks. 

The attacker intention is to slightly modify the source image so that it is classified 
incorrectly by the target model, without special preference towards any particular 
output which is known as untargeted attack. However, in a targeted attack, the  
attacker aims at a specified wrong target class. 

Minimizing Injected Noise An adversary, using information learned about the 
classifier, generates perturbations to cause incorrect classification under the con-
straint of minimizing this perturbation magnitude to avoid detection. For illustration
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Fig. 4 Illustration of a black-box attack setting 

purposes, consider a CNN used for image classification. More formally, given an 
original input image x and a target classification model .f () s.t. f (x) = l, the  
problem of generating an adversarial example . x∗ can be formulated as a constrained 
optimization [17]: 

.x
∗ = arg min

x∗
D(x, x∗), s.t. f (x∗) = l∗, l �= l∗ (2) 

where . D is the distance metric used to quantify the similarity between two images 
and the goal of the optimization is to minimize this added noise, typically to avoid 
detection of the adversarial perturbations. l and . l∗ are the two labels of x and . x∗, 
respectively: . x∗ is considered as an adversarial example if and only if the label 
of the two images are different (.f (x) �= f (x∗)) and the added noise is bounded 
(.D(x, x∗) < ε where .ε � 0). 

Distance Metrics The adversarial perturbations should be visually imperceptible 
by a human eye. Since it is hard to model humans’ perception, three metrics have 
been practically used to measure the noise magnitude relatively to a given input, 
namely . L0, . L2, and .L∞ [17]. Notice that these three metrics are special cases of the 
. Lp norm defined as follows:
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Fig. 5 Illustration of a white-box attack setting 

. ‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

(3) 

These metrics focus on different aspects of visual significance. For example, . L0
evaluates the number of pixels with different values at corresponding positions in 
two inputs. . L2 is the Euclidean distance between two images x and . x∗, while .L∞ is 
the maximum difference for all pixels at corresponding positions in the two images. 

Adversarial Attacks Generation Several methods have been proposed in the 
literature to generate adversarial examples. In the following we give a quick 
overview on the most popular ones: 

Fast Gradient Sign Method (FGSM) FGSM is a single-step, gradient-based, attack. 
An adversarial example is generated by calculating a one-step gradient update 
following the direction of the sign of the loss gradient over the input, which is the 
direction that maximizes the target model’s loss: 

.xadv = x + εsign(∇xJθ (x, y)) (4)
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where .∇J () is the gradient of the loss function J and . θ is the set of model 
parameters and . ε is the perturbation magnitude budget. 

Projected Gradient Descent (PGD) PGD is a more efficient attack generation 
method; it is an iterative variant of FGSM where the adversarial noise is generated 
adaptively as follows: 

.xt+1
adv = PSx

(xt
adv + α · sign(∇xLθ (x

t
adv, y))) (5) 

where .PSx
() is a projection operator projecting the input into the feasible region . Sx

and . α is the added noise at each iteration. PGD find the perturbation that maximizes 
the loss of a model on a particular input while keeping the size of the perturbation 
lower than the budget due to the projection operator. 

Carlini & Wagner (.C&W ) This attack has 3 variants based on the used distance 
metric (.l0, l2, l∞). It generates adversarial examples by solving the following 
optimization problem: 

minimize 
δ

‖δ‖2 + c · l(x + δ) 

s.t. x  + δ ∈ [0, 1]n 
(6) 

where .‖δ‖2 is the lowest noise that forces the model to misclassify. .l(·) is the loss 
function defined as follows: 

.l(x) = max(maxi �=t {Z(x)i} − Z(x)t − κ) (7) 

where .Z(x) is the output of the layer before the softmax called logits. t is the 
target label, and . κ is the attack confidence. An adversarial example is considered 
as successful if .maxi �=t {Z(x)i} − Z(x)t ≤ 0. 

3.1.1 Defenses Against Adversarial Attacks 

To protect ML models against adversarial attacks, several defense techniques can 
be found in the literature. We briefly introduce the different categories and provide 
insights from Embedded Systems perspective. 

Adversarial Training (AT) AT is one of the most efficient state-of-the-art defense 
methods against adversarial attacks whose aim is to integrate the adversarial noise 
within the training process. It can be formulated as follows [16]: 

. min
θ

E(x,y)∼D
[

max
δ∈B(x,ε)

Lce(θ, x + δ, y)

]
(8)
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where . θ indicates the parameters of the classifier, .Lce is the cross-entropy loss, 
.(x, y) ∼ D represents the training data sampled from a distribution . D, and 
.B(x, ε) is the allowed perturbation set. In this formulation, the inner maximization 
problem’s objective is to explore the “adversarial surrounding” of a given training 
point and to take into account, not only the sample but also the worst-case noise 
from an adversarial perspective. The outer minimization problem is the conventional 
training aiming at minimizing the loss function (which includes adversarial noise) 
[16]. 

Nonetheless, the drawback of AT is its significant computational intensivity 
compared to the baseline training process. This is obviously due to the nested 
optimization problems in the formulation that need to be solved iteratively. 

Input Pre-processing (IP) Input pre-processing is based on applying transforma-
tions to the input in order to remove adversarial perturbations [18, 19]. Transfor-
mations include the averaging, median, and Gaussian low-pass filters [19], as well 
as JPEG compression [20]. However, it has been shown that these defenses are 
vulnerable to white-box attacks [21]; in a white-box setting, where the adversary 
is aware of the defense, they can integrate the pre-processing function in the noise 
generation process. Furthermore, pre-processing requires computation overheads 
which is not suitable for resource-constrained devices such as Embedded Systems. 

Gradient Masking (GM) GM leverages regularization to make the model’s output 
less sensitive to input perturbations. Papernot et al. presented defensive distilla-
tion [22]. Nonetheless, this method is vulnerable to .C&W attack [17]. Besides, GM 
techniques such as defensive distillation require a retraining process which results 
in time and energy overheads. 

Randomization-Based Defenses These techniques leverage randomness to protect 
systems from adversarial noise. Lecuyer et al. [23] propose that random noise 
be added to the first layer of the DNN and the output be estimated via a Monte 
Carlo simulation. Raghunathan et al. [24] evaluate only a tiny neural network. 
Estimating the model output requires a heavy Monte Carlo simulation with a number 
of different model inference runs online, which cannot be afforded under resource 
constraints. 

These defense strategies either require changing the DNN structure, modifying 
the training process or retrain the model only against known adversarial threats, 
which results in considerable overheads in time, resource utilization and energy 
consumption. In the following, we present defense strategies that take into account 
this aspect, which we call Embedded Systems-friendly defenses.
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3.2 Embedded Systems-Friendly Defenses 

Another set of defense techniques are inspired by hardware-efficiency techniques 
such quantization [25, 26]. The authors in [27] proposed Defensive approximation 
(DA), which leverages approximate computing (AC) to build robust models. 

3.2.1 Defensive Approximation 

The demand on high-performance embedded and mobile devices has been dras-
tically increasing in the past decades. However, the technology is physically 
reaching the end of Moore’s law, especially with the release of TSMC and 
Samsung 5 nm technology [28]. On the other hand, we observe that highly accurate 
computations might not be a must in all application domains. In fact, in a wide 
range of emerging applications, there is no specific accuracy requirements at 
the computing-element level, but rather a quality-of-service requirements on the 
system level. These application are inherently fault-tolerant by design and can 
relax the computational accuracy constraint. This observation has motivated the 
development of approximate computing (AC), a computing paradigm that trades 
power consumption with accuracy. The idea is to implement inexact/approximate 
elements that consume less energy, as far as the overall application tolerates the 
imprecision level in computation. This paradigm has been shown promising for 
inherently fault-tolerant applications such as deep learning, data analytics, and 
image/video/signal processing. Several AC techniques have been proposed in the 
literature and can be classified into three main categories based on the computing 
stack layer they target: software, architecture, and circuit level [29, 30]. 

Defensive approximation [27] tackles the problem of robustness to adversarial 
attacks from a new perspective, i.e., approximation in the underlying hardware, 
and leverages AC to secure DNNs. Specifically, at the lowest level, DA replaces 
exact conventional multipliers used in the convolution operations by an approximate 
multipliers. These approximate multiplier can generate inaccurate outputs, but the 
error distance needs to be under control. For this reason, the approximation occurs 
specifically in the mantissa multiplication, exclusively, to avoid high magnitude 
noise in the case of errors in the exponent or the sign bit of floating-point numbers. 
Subsequently, the convolution layers are built based on the approximate multipliers, 
which injects AC-induced noise within model layers. This noise is leveraged to 
protect DNNs against adversarial attacks. Moreover, in addition to the by-product 
gains in resources due to AC, this defense requires no retraining or fine-tuning of 
the protected model. 

DA targets both robustness and energy/resource challenges. In fact, DA exploits 
the inherent fault tolerance of deep learning systems to provide resilience while also 
obtaining by-product gains of AC in terms of energy and resources. The AC-induced 
perturbations tend to help the classifier generalize and enhances its confidence and 
consequently enhance the classifier’s robustness. Figure 6 gives an overview on DA
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Fig. 6 Defensive approximation overview 

mechanism within a CNN. It shows the distribution of the error distance due to 
the approximate multiplier. This noise distribution propagates within the model and 
impacts the features map, thereby defusing the adversarial noise mechanism. In the 
following, we discuss the exploration of approximation space with regards to the 
baseline accuracy of the models. 

3.2.1.1 Baseline Accuracy 

Before exploring the impact of AC on the security of DNNs, the protected model 
needs to maintain models’ utility as a bottom line. For this reason, we explore 
the impact of the approximate multiplier on the accuracy for different levels of 
approximation, i.e., starting from approximating the full network, comparatively 
with having increasing exact layers along with the approximate model. Table 1 gives 
an overview on the utility as a function of the approximation level of the model for 
CIFAR-10 and ImageNet datasets. 

3.2.1.2 Impact on Robustness 

To evaluate the impact of AC on robustness, we consider a powerful adversary that 
has full access to the defense mechanism as well as the victim model architecture 
and parameters. Hence, we measure the model accuracy under adversarial examples 
created using different attacks for several noise budgets.
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Table 1 Impact of 
approximation on model 
classification accuracy for a 
set of clean Inputs from 
CIFAR-10 and ImageNet 

Top 1 accuracy 

Model CIFAR-10 ImageNet 

Full exact model 100% 100% 

Full approximate model 85.7% 73.23% 

Exact: 1st conv layer 98.34% 97.18% 

Exact: 2nd conv layer 93.4% 83.60% 

Exact: 3rd conv layer 93.4% 83.60% 

Exact: 1st FC layer 88.04% 75.4% 

Exact: 2nd FC layer 88.04% 75.4% 

Exact: 3rd FC layer 88.04% 75.4% 

Exact: all FC layers 95% 78.87% 
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Fig. 7 Model accuracy for different noise budgets under white-box attack. (a) CIFAR-10 using 
FGSM. (b) CIFAR-10 using PGD. (c) ImageNet using FGSM. (d) ImageNet using PGD 

Figure 7 summarizes the effectiveness of DA defense against FGSM and PGD 
attacks for different noise budgets (. ε). The approximate hardware prevents the 
attacker from generating efficient AE for deeper networks and complex data 
distribution. Even with a high amount of injected noise (.ε = 0.06), DA model 
accuracy remains as high as .90% under PGD attack.
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3.2.2 Undervolting as a Defense 

3.2.2.1 Approach 

This approach explores using voltage over-scaling (VOS) as a lightweight defense 
against adversarial attacks [31]. It consists of reducing supply voltage at runtime, 
i.e., inference, without accordingly scaling down the frequency (Fig. 8). This creates 
stochastic hardware-induced noise at computation circuitry that is leveraged to 
defend DNNs against adversarial attacks. The rationale behind choosing VOS is 
as follows: 

(i) Stochastic noise: The impact of injecting random noise on DNNs robustness 
has been proven theoretically in [23, 32]. However, none of these works 
provides a practical implementation of the randomness source, especially one 
that does not require high overhead and considerable complexity to cope with 
Embedded ML requirements. This approach leverages a fundamental property 
of VOS, which is a stochastic behavior of the induced timing violations within 
the circuit. 

(ii) Controllable noise magnitude: While injected random noise can be used to 
improve the robustness of DNNs [23], its magnitude should be under control. 
In fact, injecting high magnitude noise can have drastic impact on baseline 
accuracy. Nonetheless, VOS-induced noise magnitude is directly controllable 
by the supply voltage. 

3.2.2.2 Setup 

To match the fault rates with the voltage levels, we used a Xilinx Zynq Ultrascale. +
ZCU104 FPGA platform that hosts a VGG-16 CNN. The device’s Processing Sys-
tem (PS) includes a quad-core Arm Cortex-A53 applications processor (APU), as 
well as a dual-core Cortex-R5 real-time processor (RPU). We leveraged an external 
voltage controller, the Infineon USB005, to perform undervolting characterization 
on the FPGA device, which is connected to the board via an I2C wire. We can read 
and write the different voltage rail supplies to the board using PowerIRCenter GUI. 

3.2.2.3 Impact on Robustness 

Figure 9 shows the accuracy of the exact model and undervolted models for LeNet-
5, AlexNet, and ResNet-18 CNNs under .�∞ and . �2 C&W attack. While the baseline 
exact model (.hexact ) yields high classification accuracy, it drops drastically under 
.C&W attack reaching near 0 for .ε = 0.4. Most importantly, approximate model 
with a fault rate .f r = 10−4 maintains a high robustness (accuracy under attack) 
even for high magnitude . ε. This observation holds for AlexNet and ResNet-18 as 
well.
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Fig. 9 Robustness of VOS-models under C&W attack for both .�∞ (top) and . �2 (bottom) metrics 

While VOS offers a practical source of randomness that enhances DNNs 
robustness to adversarial attacks, it also comes with an obvious by-product gain 
in terms of power consumption, and offers an ad-hoc defense that does not require 
modifying the model or retraining it. 

Trade-off The results show that a VOS-induced noise protects DNNs against 
adversarial attacks. However, aggressive undervolting results in a drop in utility.
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Fig. 10 An illustration of the accuracy/robustness trade-off for AlexNet with CIFAR-10 on HSJ. 
In the figure, .f r = 0 indicates the exact model, . hexact

A trade-off between accuracy and robustness with by-product power savings could 
be found, to achieve high-robustness models without accuracy drop. An example of 
a robustness/accuracy trade-off is depicted in Fig. 10. Notice that . fr represent the 
fault rates, which are directly defined by the VOS level. The figure shows that with a 
simple space exploration, we can identify a sweet-spot for a given CNN that yields 
the highest possible robustness with the lowest possible accuracy drop. 

3.3 Privacy 

Confidentiality is a fundamental design property, especially for systems that process, 
store, or communicate private and sensitive data. In ML, insuring a model privacy 
consists in protecting the model against information leakage, whereby an adversary 
aims to infer sensitive information such as training data by interacting with the 
victim. In fact, the promising performance of ML systems spread their use to 
sensitive applications ranging from medical diagnosis in health-care to surveillance 
and biometrics. These models are trained on various data such as clinical/biomedical 
records, personal photos, genome data, financial, social, location traces, etc. More-
over, they are also trained with crowd-sourced data as cloud providers (e.g., Amazon 
AWS, Microsoft Azure, Google API) in a ML-as-a-Service fashion, which allow 
novice users to train models that often contains personally identifiable information. 

ML models are vulnerable to privacy threats, which are critical when data 
confidentiality is an issue, e.g., when revealing the identity of the patients in 
clinical records. Membership Inference Attacks [33] aim at determining whether 
a data sample belongs to the training dataset. More generically, Property Inference 
Attacks [34] infer certain properties that hold only for a fraction of the training data, 
and are independent from the features that the DNN model aims to learn. On the 
other hand, Model Stealing methods [35] aim at duplicating the functionality of the
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ML model and extract its parameters, and Model Inversion Attacks [36] aim to infer 
sensitive features of the training data. 

Towards avoiding these leakages of confidential information, several privacy-
preserving techniques can be employed. Homomorphic Encryption (HE) ensures 
that the data remains confidential, since the attacker does not have access to the 
decryption keys. CryptoNets [37] apply HE to perform DNN inference on encrypted 
data, and the work of [38] extends the encryption to the complete training process. 
However, HE-based techniques are very costly in terms of execution time and 
resources. 

Another state-of-the-art technique towards privacy-preserving ML is Differ-
ential Privacy (DP) which consists of injecting random noise to the stochastic 
gradient descent process (Noisy SGD) [39], or through Private Aggregation of 
Teacher Ensembles (PATE) [40], in which the knowledge learned by an ensemble of 
“teacher” models is transferred to a “student” model. While DP is one of the most 
efficient defenses against information leakage, it comes at a considerable cost in 
terms of utility, i.e., it results in a baseline accuracy drop. 

Training a deep neural network requires a large amount of data, which represents 
practically the most valuable asset in ML ecosystems. In some specific applications, 
data protected by privacy regulations and user level agreements. These can be 
specific to application domains such as HIPPA regulations in the US which prohibits 
patients’ data sharing and GDPR in Europe, which is more generic in regulating user 
data collection [41]. Therefore, in medical applications, a given health institution 
might not be able to collect enough data that is representative and relevant to train 
an efficient ML model. 

In another scenarios, data may be created on Edge devices, but owners are 
reluctant to sharing it due to privacy concerns (industrial applications, text messages, 
etc.), bandwidth challenges, or both. 

Federated learning (FL) recently emerged as a potential solution to overcome 
these aforementioned issues. Specifically, FL allows train ML models collabora-
tively between different nodes without sharing their local data [42]. FL allows 
multiple participants (also called clients) to train local models and then consolidate 
those models into a global model. This global model benefits from all client data, 
without directly sharing the data, preserving data privacy. Each client trains its 
model on its private data, and then communicates model updates to a central server 
(also called aggregator). By avoiding communicating the data to a central back end 
for training, this data remains local to each client and therefore private. Moreover, 
distributing the training leads to benefits in performance and network bandwidth. In 
an FL model, each participant updates the global model by training it on its local 
data and shares the metadata with a central server. Only the trained local model 
updates are shared, and the local data to each client remains private. The server 
aggregates the local model updates into a single federated model and shares this 
model with the participants, allowing them to benefit from a model trained on the 
overall data. The federated model can continue to be refined as more data becomes 
available. This process is illustrated in Fig. 11.
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Fig. 11 An overview on FL setting: Client devices send locally trained model updates to server 
for aggregation of the federated model 

While FL has been branded by major companies such as Google as a privacy-
preserving solution, it has been shown that it is vulnerable to several attacks that 
can jeopardize its and confidentiality: 

Model Poisoning and Data Poisoning Each of the clients in FL setting is able to 
arbitrarily change its local model maliciously that they send to server. The model 
can be manipulated either directly through its parameters or indirectly by poisoning 
the local training set to degrade the quality of the aggregated model making it 
misclassify more often, or be more susceptible to adversarial inputs. In model 
poisoning, a malicious client attempts to change the global model by poisoning 
their local model parameters directly [43]. In contrast, in data poisoning, the attacker 
manipulates its local training samples, affecting the model’s performance indirectly 
throughout a substantial portion of the input space [44]. 

Deep Leakage from Gradients With access to the gradient of a particular client, 
an adversary is able reconstruct the training samples of the client. In fact, attacks 
like Deep Leakage from gradient (DLG) [45] and iDLG [46] show the possibility to 
reconstruct training data samples from raw gradients only. The recovered images 
are pixel wise accurate, and generated through an optimization problem aiming at 
reducing the difference between the gradient of a given candidate input and the real 
gradient. 

Defenses and Limits Differential Privacy has been used as a defense against data 
leakage [39]. However, it does not protect against poisoning attacks. Moreover, 
secure aggregation techniques such as [47] aim at preventing the server from 
accessing the individual model updates, while allowing the aggregation operation.
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However, this defense results by construction in an impossibility to detect integrity 
attacks. 

To defend against integrity attacks, and limit the influence of individual partic-
ipants, robust aggregation techniques have been proposed (also called Byzantine-
tolerant aggregation) [48, 49]. 

Fairness FL approach is designed under the assumption of non-iid data. The 
incentive of participants to share their model updates generated on local data is to 
enhance the model accuracy, specifically on their own data distribution. However, 
robust aggregation techniques consider the tail of the gradient updates distribution 
as a potential integrity attack and cuts it off in the aggregation phase. Therefore, 
users with “atypical” data, i.e., in the tail of the overall users data distribution will 
not benefit from the FL setting since their contributions are discarded by the robust 
aggregation mechanism [50]. This results in a fairness problem: users with minority 
and atypical data distributions will be disadvantaged by the FL setting. 

Open Problems FL offers an interesting solution towards privately sharing 
“knowledge representations” without necessarily sharing raw data, which allows 
to train more generalizing and efficient models. However, a three objectives that 
are necessary for FL deployment seem to be difficult to obtain simultaneously, 
i.e., privacy, integrity, and fairness. In fact, secure aggregation techniques solve the 
privacy problem and open an attack surface on the model integrity. On the other 
hand, tackling the integrity problem with robust aggregation schemes results in the 
loss of the global model fairness. 

We believe that a fundamental problem to solve by the community is finding 
interesting and adaptive trade-off between these three objectives. 

4 Conclusion 

This chapter focuses on three aspects of ML trustworthiness, especially in the 
context of embedded systems and the Edge: 

(i) The first is ML models robustness to errors, either due to hardware reliability 
issues or deliberately injected by malicious actors. 

(ii) The second aspect is the security of ML models, especially from an adversarial 
ML perspective. More specifically, we explored defense techniques that are 
Embedded Systems-friendly, i.e., that do not result in a high overhead in power 
consumption or hardware resources. 

(iii) The third is the privacy problem, where we focused on federated learning as 
an emerging training paradigm that is compatible with Embedded Systems and 
IoT applications.
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A Systematic Evaluation of Backdoor 
Attacks in Various Domains 

Stefanos Koffas, Behrad Tajalli, Jing Xu, Mauro Conti, and Stjepan Picek 

1 Introduction 

In the last few years, deep learning has become very popular, and it has been applied 
to a variety of applications like computer vision [29], machine translation [54], 
speech recognition [18], and game playing [44]. It is also used in safety and 
security-critical applications like autonomous driving [12], malware detection [8], 
biometric-based user authentication [6], and side-channel analysis [40]. Such 
systems commonly need large datasets to train reliable models that generalize 
well and perform adequately with unseen data. However, large datasets are often 
scrapped from untrusted sources on the web [1, 11]. Additionally, the hardware 
needed to train such models can be very expensive and is not always available 
to developers who want to embed some machine learning functionality into their 
applications. Thus, a new programming paradigm has emerged: Machine Learning 
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as a Service (MLaaS), made possible by the recent advances in cloud computing. 
These new trends lead to novel attack vectors that adversaries can exploit. 

One of these attack vectors is the backdoor attack [19]. In this attack, an 
adversary embeds a secret functionality into a trained model, activated only if 
the model’s input contains a specific property (trigger). At the same time, for 
any input that does not include the trigger, the model behaves as expected to 
avoid raising any suspicions. Most of the designed attacks in the literature target 
computer vision applications [31], but recently different applications have been 
targeted. In particular, backdoor attacks were shown in text classification [5, 9], 
audio recognition [28, 62], graph data [55, 57], federated learning [3, 45], and 
reinforcement learning [58]. A backdoor attack can be dangerous as machine 
learning is used in many security-related applications. In [19], the authors showed 
that a stop sign with a small post-it note could be identified as a speed limit by 
a compromised autonomous vehicle with serious consequences to its passengers 
and pedestrians. AI-enabled applications like spam-filtering [37], speaker identifi-
cation [62], or malware detection [42] could also be bypassed if the model used 
contains a backdoor. Thus, backdoor attacks pose a serious threat, and it is required 
to understand the limits of such attacks to provide better defenses. 

This work explores the effects of various trigger characteristics on the backdoor 
attack. In particular, we implement backdoor attacks with triggers of varying sizes, 
positions, and poisoning rates and apply them to four different domains (image, text, 
sound, and graph data). With it, we aim to better understand backdoor attacks and 
find common properties among different domains. 

In [47], the authors claimed that the backdoor attack becomes ineffective when 
the adversary cannot alter the training labels and is forced to poison only samples 
from the target class. In this case, the model cannot learn a strong connection 
between the trigger and the target class as more substantial features from the target 
class are learned. This behavior is reasonable and well justified but only supported 
by one experiment with the CIFAR10 dataset. Here, we aim to test this claim in 
image classification but also in different domains, like text and sound classification. 

Our contributions are: 

– We run extensive experiments in different application domains (image, text, 
audio, and graph data) and systematically evaluate the effect of various trigger 
characteristics on the backdoor attack. 

– We investigate two different backdoor attacks in each application and verify 
that the clean-label attack is not very effective as it may require large poisoning 
rates to achieve a high attack success rate. However, this attack could work by 
choosing more effective triggers without changing the poisoning rate. 

– We show that in most cases, the backdoor’s effectiveness increases as the trigger 
size increases.
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2 Background 

2.1 Computer Vision 

Today, the computer vision domain covers diverse use cases and concepts within, 
ranging from capturing raw data to image pattern extraction and interpreting 
information from those images. It is mostly a combination of concepts, ideas, and 
techniques of pattern recognition, digital image processing, artificial intelligence 
(AI), and computer graphics [53]. Computer vision aims to provide the capability 
for a system to identify and perceive the visual world in the same way as human 
vision does. Recently, by applying AI techniques, including deep neural networks, 
the machines even outperformed humans in several tasks [13]. 

Nowadays, there are multiple applications of computer vision in our daily life, 
e.g., weather prediction, medical cases, sports and entertainment, industry and 
production lines, and human-computer interaction [24, 25, 36, 46, 49, 51, 60]. While 
the use cases and applications are becoming broader and more prevalent in our 
everyday lives, security issues regarding the techniques and algorithms are also 
becoming a significant challenge to deal with. 

2.2 Natural Language Processing 

Natural language processing (NLP) is at the intersection of computational linguis-
tics, computer science, and artificial intelligence. It aims to make machines that 
understand human language and reason about it. NLP is an umbrella term that 
covers many different applications that deal with human language in both spoken 
and written formats. Applications that belong to natural language processing are, 
among others, speech recognition, speaker identification, question answering, text 
sentiment analysis, hate speech detection, natural language generation (speech-to-
text and text-to-speech models), spam detection, and text translation. Initially, NLP 
was based on static rules, but now it uses deep learning for most tasks [23]. 

Recent advances in NLP have led to very efficient human-computer interfaces 
that have been broadly deployed. Virtual assistants like Siri and Google assistant and 
popular IoT devices like Amazon Alexa have been widely used with great success. 
However, such applications open up new attack vectors that put the user’s security 
and privacy at risk. Therefore, before their wide adoption in the industry, we must 
ensure that such systems work securely.
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2.3 Graph Data 

Many real-world applications can be modeled as graphs, such as social networks, 
gene interactions, and transport networks. Similar to the great success of deep learn-
ing models in, e.g., image classification and natural language processing, deep graph 
models (graph neural networks—GNNs) have also achieved promising performance 
in processing graph data for different tasks, e.g., the graph classification task and 
node classification task. 

Graph Neural Networks (GNNs) GNNs take a graph G as an input, including 
its structure information and node features, and learn a representation vector 
(embedding) for each node .v ∈ G, . zv , or the entire graph, . zG. Modern GNNs 
follow a neighborhood aggregation strategy, where one iteratively updates the 
representation of a node by aggregating representations of its neighbors. After k 
iterations of aggregation, a node’s representation captures both structure and feature 
information within its k-hop network neighborhood. Formally, the k-th layer of a 
GNN is (e.g., GCN [26], GraphSAGE [20], and GAT [48]): 

.Z(k) = AGGREGAT E(A,Z(k−1); θ(k)), (1) 

where .Z(k) are the node embeddings in the matrix form computed after the k-th 
iteration and the AGGREGAT E function depends on the adjacency matrix A, 
the trainable parameters .θ(k), and the previous node embeddings .Z(k−1). .Z(0) is 
initialized as G’s node features. 

For the node classification task, the node representation .Z(k) of the final iteration 
is used for prediction. For the graph classification task, the READOUT function 
pools the node embeddings from the final iteration K: 

.zG = READOUT (Z(K)). (2) 

READOUT can be a simple permutation invariant function such as summation or a 
more sophisticated graph-level pooling function [59, 63]. 

Graph-Level Classification Graph-level classification aims to predict the class 
label(s) for an entire graph [63]. The end-to-end learning for this task can be realized 
using graph convolutional layers and readout layers. While graph convolutional 
layers are responsible for extracting high-level node representations, the readout 
layer collapses node representations of each graph into a graph representation. By 
applying a multilayer perceptron and a Softmax layer to graph representations, one 
can build an end-to-end framework for graph classification. 

Node-Level Classification Given a graph with a few labeled nodes, GNNs can 
learn a robust model that effectively identifies the class labels for the unlabeled 
nodes [26]. In a node-level classification task, there are two types of training 
settings—inductive and transductive. In an inductive setting, the unlabeled nodes 
are not seen during training, while in a transductive setting, the test nodes (but not
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their labels) are also observed during the training process. The transductive training 
setting is popular, and in this work, we used a backdoor attack in the transductive 
node-level classification task. 

2.4 Backdoor Attacks 

Backdoor attacks aim to make a model misclassify some of its inputs to a 
preset-specific label while other classification results behave normally. This misclas-
sification is activated when a specific property is included in the model input. This 
property is called the trigger and can be anything the targeted model understands. 
For instance, a random pixel pattern [6, 19] or an actual item [52] in computer 
vision, a specific phrase in text classification [32], a tone in speech recognition [28], 
or a subgraph with specific properties in graph data [55]. The framework for the 
backdoor attack is shown in Fig. 1. 

The first backdoor attacks targeted computer vision [6, 19] under a simple threat 
model, where an adversary could inject a small portion of poisoned data into the 
training dataset. In particular, the adversary injects into the training dataset data 

Fig. 1 Framework for the backdoor attack
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stamped with a trigger that belongs to the target class. As a result, the trained model 
strongly associates this pattern with the target class, and whenever it is added to 
an input, the classification result will be the target class. Recent trends in machine 
learning like Machine Learning as a Service (MLaaS), outsourced training, transfer 
learning, and crowdsourced datasets have made this setup possible. 

In MLaaS, a cloud provider provides a pay-per-request API1 that can be used 
for predictions. However, the user can only use such an API as a black box 
without being able to verify how the model makes its predictions. Similarly, during 
outsourced training, the user’s model is trained on the cloud and returned to the user 
after the training ends. Due to the lack of formal verification tools for the trained 
models, the user can never verify that the returned model does not contain any 
backdoors. Furthermore, in [19], the authors showed that a backdoor could remain 
effective even after a poisoned model was repurposed through transfer learning. 
Large crowdsourced datasets like ImageNet [11] and Mozilla’s common voice [1] 
are so vast that cannot be exhaustively verified [39]. Thus, an adversary could inject 
a few poisoned samples resulting in the backdoored models. 

This threat can pose real challenges as an adversary could bypass a face 
identification biometric access control system [6] or force an autonomous vehicle 
to ignore a stop sign and continue its course [19]. For this reason, backdoor 
attacks became very popular among researchers resulting in many novel attacks 
and countermeasures [15]. Novel attacks are not only limited to data poisoning but 
can also be based on code poisoning [2] or the direct modification of the model’s 
parameters [22]. At the same time, due to the inability to completely understand 
how a deep learning model works and the lack of formal verification methods about 
a model’s functionality, most countermeasures are empirically based on specific 
assumptions [4, 16, 50]. Unfortunately, in most cases, an adaptive attacker with a 
slightly different approach could bypass such defenses [7, 30, 43]. 

There are several variations of the backdoor attack resulting from different 
poisoning strategies. The first distinction is the class-agnostic and the class-specific 
backdoors [15]. The class-agnostic backdoor can be activated by a trigger injected 
into any input. On the other hand, the class-specific backdoor is activated only 
if the poisoned input belongs to a specific class. The main difference between 
these two strategies is that in the second case, the model needs to identify both 
features of the trigger and the source class making possible countermeasures more 
challenging [16]. Considering class-agnostic backdoor attacks, we can differentiate 
between the “simple” backdoor attack [19] and the clean-label backdoor attack [47]. 

Simple Backdoor Attack In the rest of this paper, by the simple backdoor attack, 
we are referring to the data poisoning backdoor attack that was introduced in 
BadNets [19]. In this case, the adversary adds a small subset of poisoned samples 
to the training dataset. These samples have been stamped with the adversary-chosen

1 https://aws.amazon.com/transcribe/. 

https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/


A Systematic Evaluation of Backdoor Attacks in Various Domains 525

trigger, and their label has been changed to the target class. The target class is the 
output of the poisoned model when the backdoor is activated. 

Clean-Label Backdoor Attack The clean-label backdoor attack was introduced 
in [47]. This attack is similar to a simple attack, but the adversary cannot affect 
the label of the injected data. The reasoning behind this attack is that the poisoned 
training samples can be easily identified as outliers by simple filtering mechanisms 
or even human inspection because the original class of these samples is different 
from the target class. Thus, an adaptive adversary may have to poison samples 
only from the target class, hoping that the model identifies the trigger pattern as a 
class feature. This attack is still a data poisoning backdoor attack but uses a weaker 
adversary making the attack more challenging. 

Based on the trigger, backdoors can be either static [19] or dynamic [27]. The 
static backdoors are activated with a trigger that has very specific characteristics. 
In computer vision, such a trigger could mean a specific pixel pattern or a specific 
position. On the other hand, the dynamic backdoors can be activated by various 
triggers with different characteristics. 

For graph neural networks, the first backdoor attack was proposed in [65]. In 
this backdoor attack, a GNN classifier predicts an attacker-chosen target label for 
a testing graph once a predefined subgraph is injected into the testing graph. All 
perturbed graphs are injected with the same trigger graph. Another backdoor attack 
against GNNs for the graph classification task was presented in [55], but it differs 
from [65] in which a universal trigger graph is assumed for all the embedded graphs. 
This kind of backdoor attack dynamically adapts triggers to individual graphs. The 
adaptive trigger is optimized in both topological structure and node features. The 
training processes of the trigger generation function and the backdoored GNN 
model are assumed as a bi-level optimization objective [14]. The authors also 
adapted a backtracking-based algorithm to replace a subgraph in the original graph 
with the adaptive trigger graph. Xu et al. [57] explored backdoor attacks on GNNs 
with several explainability tools. In this work, the backdoor attack is implemented 
with the same strategy [65] for the graph classification task. The authors also 
proposed a new backdoor attack strategy for the node classification task. All the 
above-mentioned attacks in GNNs are gray box backdoor attacks since the adversary 
only modifies the training dataset instead of interfering with the training of models. 

2.4.1 Metrics 

The successful backdoor attack should always be activated when the trigger is 
embedded into the model’s input because an adversary wants to remain stealthy 
and interact with the poisoned model as little as possible. Additionally, the backdoor 
should not affect the original task when the trigger is not included in the input. When 
the poisoned model does not perform well on the original task, the backdoored 
model will (1) raise suspicions that something is wrong and (2) not be used, thus
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preventing the adversary’s plans. As a result, to measure the success of a backdoor 
attack, we require two metrics: the attack success rate and the clean accuracy drop. 

2.4.1.1 Attack Success Rate (ASR) 

The ASR shows the reliability of the attack, and it represents the number of 
successfully triggered backdoors from a number of poisoned inputs: 

.ASR =
∑N

i=1 F(M∗(xi) = yt )

N
, (3) 

where .M∗ is the poisoned model, . xi is a poisoned input, . yt is the target class, and 
.F(x) is a function that returns 1 if x is true and 0 otherwise. 

2.4.1.2 Clean Accuracy Drop (CAD) 

This quantity shows the backdoor’s effect on the original task. It is calculated by 
comparing the performance of a poisoned and a clean model for clean inputs. The 
accuracy drop should generally be small to keep the attack stealthy. 

3 Methodology 

3.1 Threat Model 

In this work, we implement data poisoning backdoor attacks. The adversary injects 
a small subset of poisoned data without knowing any information about the model 
architecture or the training algorithm. Thus, the attack follows a gray box threat 
model. This threat model is realistic as current large datasets are crowdsourced [1, 
11] and malicious data may go through the validation process [39]. So, an adversary 
could inject trigger-stamped data in such datasets that will remain unnoticed and 
used during training resulting in a successful backdoor attack. 

In our experiments, we investigate two different attacks, the simple data poison-
ing attack [19] and the clean-label attack that does not alter the labels of the poisoned 
data [47]. For both attacks, the adversary aims to cause targeted misclassifications 
with a very high probability without affecting the model’s performance on the 
original task.
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3.2 Image Classification 

Attacks We use two different attacks: the simple backdoor attack and the clean-
label attack. 

Datasets For our image classification backdoor attacks, we use two popular image 
datasets: (i) CIFAR10 that consists of 60,000 32×32 color images in ten classes, 
with 6000 images per class. There are 50,000 training images and 10,000 test 
images. (ii) Fashion-MNIST (FMNIST) [56]—a dataset of Zalando’s article images 
consisting of a training set of 60,000 images and a test set of 10,000 images. Each 
image is a 28×28 gray-scale image associated with a label from ten classes. 

For the CIFAR10 dataset, we split the test set in an i.i.d manner into two 5000 
sample datasets, each used for validation and test, respectively. For the FMNIST 
dataset, we split the training set into two different sized datasets in an i.i.d manner: 
the first having 50,000 samples used for training and the second having 10,000 
samples for validation. With this, we have the same size of training samples for 
both datasets, so comparing results between these two is easier. 

Features The input features for both neural networks are the tensor of images. For 
the CIFAR10 dataset, each RGB image is considered as a [3, 32, 32] shape tensor. 
For FMNIST, however, the images are gray-scale, so the input has only one channel 
([1, 28, 28] shape tensor). We also did the standard normalization for input values 
before all train, validation, and test phases. 

Models We use two models: STRIPNet [16] and ResNet [21] with nine residual 
blocks (ResNet-9). 

Trigger As described in [27], various triggers have been used in image classifi-
cation, and all of them resulted in successful backdoor attacks. This means that 
the trigger shape and pattern are not crucial for the success of a backdoor attack. 
Thus, for our experiments, we chose a square trigger. Its pixel intensities are random 
values retrieved from a continuous uniform distribution (pseudorandom generator). 
The seed in this generator was fixed for consistency in our experiments. 

3.3 Natural Language Processing 

Attacks Similar to image classification, we use simple and clean-label backdoor 
attacks. 

Datasets In our experiments, we used the IMDB [33] and the AG News topic 
classification [64] datasets. The IMDB dataset consists of 50,000 (50%/50% train-
ing/test split) movie reviews of high polarity (either positive or negative). We used 
20% of the training data for validation. The AG News topic classification dataset 
consists of news articles belonging to four categories (world, sports, business, and 
science/technology). The training set consists of 120,000 samples and the testing set
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of 7600 samples. Again, we used 20% of the training data for validation resulting in 
96,000 and 24,000 samples for training and validation sets, respectively. 

Features The first step of our pipeline is a TextVectorization layer that 
transforms each input to a convenient form for processing as described in [27]. As 
the datasets are different, we used a different sequence length for each dataset. We 
forced the length of each sentence to be 250 words for the IMDB dataset and 197 
for the AG News dataset. Additionally, we used a vocabulary of 10,000 words that 
proved enough for such small datasets. 

Models We used two publicly available CNN architectures. Both the first CNN2 

and the second CNN3 use an embedding layer as their input. However, the first 
CNN uses a small trainable embedding of size 16, and the second uses a pretrained 
GloVe embedding [38] of size 100. We want to investigate if the attack becomes 
more difficult when the model uses a pretrained embedding because this is more 
frequent in practice. Such embeddings have been trained in large corpora of text 
and interpret possible connections between different words more accurately. To 
illustrate, Google’s pretrained word2vec is trained with 100 billion words from 
Google News, and it contains 300-dimensional vectors for 3 million words and 
phrases [34]. The GloVe is trained from a corpus of 6 billion words and has a 
vocabulary of 400,000 words [38]. 

Trigger As the trigger, we used a sentence of 1 up to 4 words from the list [“trope,” 
“everyday,” “mythology,” “sparkles,” “ruthless”] as defined in [32]. We applied the 
trigger in three positions (beginning, middle, and end) to investigate whether our 
models are more sensitive in specific positions. 

3.4 Speech Recognition 

Attacks Again, we use simple and clean-label backdoor attacks. 

Datasets For this application, we used two versions of the Speech Commands 
dataset as described in [28]. The first version uses ten classes of the dataset and the 
second 30 classes. From our experiments, we excluded the samples that lasted less 
than one second to avoid variable-sized inputs in our pipeline resulting in 21,312 
.wav files in the first case and 58,252 files in the second case. In both cases, we use 
64%/16%/20% for training, validation, and testing. 

Features As our input features, we used the MFCCs of each training input. The 
exact hyperparameters for this calculation are described in [28]. 

Models We used one CNN [32] and one LSTM [10] for our experiments.

2 https://www.tensorflow.org/tutorials/keras/text_classification. 
3 https://keras.io/examples/nlp/pretrained_word_embeddings/. 

https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://www.tensorflow.org/tutorials/keras/text_classification
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/
https://keras.io/examples/nlp/pretrained_word_embeddings/


A Systematic Evaluation of Backdoor Attacks in Various Domains 529

Trigger Our dataset’s sound files are sampled at 16 kHz, and according to the 
Nyquist-Shannon sampling theorem, the largest tone frequency that can be included 
in such digital signals is 8 kHz. Thus, following [27], our trigger is a 7 kHz tone 
which is a high pitch audible sound. Following the rest of the triggers tried, this 
trigger differs from the normal dataset samples. It lasts from 20 to 80 ms because 
we want to model an adversary that is as stealthy as possible. The trigger is injected 
in three different positions of each sound sample (beginning, middle, and end). 

3.5 Graph Data 

Attacks As described in Sect. 2.4, for graph neural networks, we utilize two 
backdoor attacks, i.e., .AT I [65] and .AT II [55]. The framework for .AT I is illustrated 
in Fig. 2. In the training phase (Fig. 2a), the attacker injects a trigger (subgraph . gt ) 
to a subset of training graphs and changes their labels to an attacker-chosen target 
label. A GNN classifier is then trained using the backdoored training dataset, and 
such GNN is called backdoor GNN . Φb. In the test phase (Fig. 2b), once the test 
graph is injected with the same trigger graph, the backdoored GNN is likely to 
misclassify the testing sample to the target label. For the node classification task, 
we used the backdoor attack from [57]. 

Since [65] and [57] designed the same strategy to implement the backdoor attack 
for the graph classification task, we illustrate the results of [65] and [55] for the  
graph classification task. The results based on [57] are presented for the node 
classification task. 

Fig. 2 Subgraph-based backdoor attack for the graph classification task. (a) Training. (b) Testing
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Table 1 Graph datasets statistics 

Datasets # Graphs Avg. # nodes Avg. # edges Classes Class distribution 

AIDS 2000 15.69 16.20 2 400[0], 1600[1] 
TRIANGLES 45,000 20.85 32.74 10 4500[0–9] 
Cora 1 2708 5429 7 351[0], 217[1], 418[2], 818[3], 

426[4], 298[5], 180[6] 
CiteSeer 1 3327 4608 6 264[0], 590[1], 668[2], 

701[3], 596[4], 508[5] 

Datasets Table 1 shows the statistics for all considered datasets for graph neural 
networks. For the graph classification task, we use two publicly available graph 
datasets. (i) AIDS [35]—a dataset consisting of graphs representing molecular 
compounds that are active against HIV or not; (ii) TRIANGLES [35]—a synthetic 
dataset designed to solve the task of counting the number of triangles in a graph. 
For each graph classification dataset, we sample 2/3 of the graphs as the original 
training dataset and treat the remaining graphs as the original testing dataset. Among 
the original training dataset, we randomly sample α fraction of graphs to inject the 
trigger and relabel them with the target label, called the backdoored training dataset. 
Several parameters can affect the attack effectiveness: trigger size s, trigger density 
ρ, and poisoning intensity α. Unlike other domains, e.g., image classification, the 
trigger position in graph data is irrelevant and cannot be defined because a graph 
is non-Euclidean data where we cannot put nodes in some order. For AT I, we use  
Erdős-Rényi (ER) model [17] to generate the trigger graph, as it is more effective 
than the other methods [65]. 

For the node classification task, we use two real-world datasets: (i) Cora [41]—a 
citation network in which each publication is described by a binary-valued word 
vector indicating the absence/presence of the corresponding word in the collection 
of 1433 unique words. (ii) CiteSeer [41]—another citation network with more 
nodes but less edges. For each node classification dataset, we split 20% of the total 
nodes as the original training dataset (labeled) and the rest as the original testing 
dataset (unlabeled). To generate the backdoored training dataset, we sample α of 
the original training dataset to inject the feature trigger and relabel these nodes with 
the target label. The feature trigger width is set to be n. Moreover, based on the 
conclusion in [57], different feature trigger injecting positions have a negligible 
impact on the attack performance, so the trigger injecting position is randomly 
selected. Here, we explore the impact of poisoning intensity α and feature trigger 
width n on the attack performance. In the node classification task, each node feature 
has a value of 0 or 1, and here we set the value of the modified node features to 1 
(note, the values could also be set to 0). 

Features Each graph contains topological and node feature information. For each 
graph dataset in this work, there is an adjacency matrix and feature information 
matrix. For AIDS, Cora, and CiteSeer, there is a specific node feature vector for
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each node in the graph, but for TRIANGLES, the one-hot degree of a node is used 
as the node feature. 

Models We use two state-of-the-art GNN models for the graph classification task: 
GCN [26] and GraphSAGE [20]. We use GCN [26] and GAT [48] for the node 
classification task. 

Trigger For the graph classification task, our trigger is a global (adaptive) subgraph 
in AT I(AT II). For the node classification task, our trigger is a subset of node 
features with a fixed value, e.g., 0. 

4 Experimental Results 

4.1 Image Classification 

Chosen Settings and Selected Parameters We ran our experiments with a 
different number of poisoned samples (25, 300, 575, 850), trigger sizes (.4×4, .8×8, 
.12 × 12), and trigger positions (Upper-Mid, Mid-Left, Mid-Right, Lower-Mid) on 
the image. Figure 3 demonstrates four different positions of a .4×4 trigger for several 
FMNIST sample images. We repeated each experiment two times, which makes the 
total number of 768 experiments regarding the chosen settings. We set class number 
5 as the target for all experiments and in both datasets. 

Every backdoor attack should remain stealthy without affecting the original task. 
Therefore, the poisoned model should perform as expected when the input does 
not contain the trigger. In Table 2, we compare the performance of clean and 
backdoored models for clean inputs. The attack accuracy mentioned in this table is 
the arithmetic mean (. ± the standard deviation) of the accuracy on clean inputs from 
all the poisoned models trained in our experiments. For the original accuracy, we 
trained multiple clean models and averaged their performance. The model remains 
unaffected from both backdoor attacks even if we use 850 poisoned samples. Such 
poisoning rates are small and cannot affect the model’s performance in general. 
From Table 2, we can also verify that our models perform similarly well in both 

Fig. 3 Applied .4 × 4 trigger in different positions: Upper-Mid, Mid-Left, Mid-Right, Lower-Mid
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datasets, which is helpful when comparing the performance of the attack for each 
case. 

Results for FMNIST As it can be inferred from Fig. 4, the clean-label attack is not 
that effective against the FMNIST dataset. By increasing the number of poisoned 
samples, there are small or no improvements in attack success rate (there are small 
improvements when increasing the number of samples from 25 to 300, but as we 
increase from 300 to 575 and from 575 to 850, the improvements become even 
smaller). We assume this is mainly due to the dataset nature and the capability of 
the CNNs to learn the exclusive features of each class easily and robustly so that 
injecting a trigger (even of size 12×12) could not disturb the network from learning 
those. 

Since both ResNet-9 and STRIPNet have convolutional layers, we expect 
negligible effects of trigger position on attack success rate. The results confirm this 
as there are only minor effects stemming from the trigger positions (for instance, 
in both networks, the trigger on the lower-mid results in the least ASR, while on 
the mid-right, it has a little more chance of being learned by the network. Again, 
we suppose this is because of the attributes of the FMNIST images and the models’ 
focus on specific regions of an image to learn). Additionally, in almost all cases 
(except a few ones like upper-mid in ResNet-9), increasing the trigger size leads to 
higher ASR. 

For the simple attack, we obtained 100% ASR for 300 attack samples or more. 
With 25 poisoned samples, some trigger positions have positive effects on ASR 
regardless of trigger size (for instance, the mid-left trigger achieves high ASR even 
with 4 × 4 size triggers). 

Results for CIFAR10 The clean-label attack is significantly more effective for 
CIFAR10 than FMNIST (Figs. 4 and 5). We believe this is primarily because the 
CIFAR10 images are RGB, and the crafted trigger has more layers (3 channels). 
As a result, the model learns the embedded trigger with less poisoned samples. As 
expected, the trigger position does not play an important role in ASR, and in almost 
all cases, ASR improves using a larger trigger size. 

Another observation is that the smaller the size of the trigger, the more noticeable 
the ASR improvement when increasing the number of poisoned samples from 25 to 
850. For instance, for a 12 × 12 trigger, there is no noticeable improvement in ASR 
when the number of poisoned samples increases from 575 to 850. On the other hand, 
using a 4 × 4 trigger, ASR’s growth is easily observable between all four different 
poisoning rates. 

Analyzing the simple attack, similarly to FMNIST, we achieved 100% ASR 
for 300 poisoned samples or more. Additionally, ResNet-9 is more vulnerable to 
backdoor attacks, particularly when using fewer poisoned samples and smaller 
triggers. We believe this is mostly because ResNet-9 is a larger network than 
STRIPNet and can extract more data from the given dataset.
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Fig. 4 Attack accuracy for the FMNIST dataset. From these figures, we conclude that the clean-
label attack is not effective but is slightly improved when increasing the poisoning rate. On the 
other hand, the simple attack can be very effective even with a small poisoning rate (0.6%). 
Additionally, larger triggers lead to higher ASR, but different trigger positions do not result in ASR 
fluctuations as the convolutional layers identify the trigger. (a) ResNet-9 + clean-label attack. (b) 
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e) 
Legend 

4.2 Natural Language Processing 

In Tables 3 and 4, we compare the performance of clean and backdoored models 
in text classification when clean inputs are used. These tables are generated by 
averaging the performance of clean and poisoned models as described in Sect. 4.1. 
In all cases, the model’s performance remains almost unaffected after the backdoor 
insertion. There are a few minor accuracy drops that are at most 0.6% making the
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Fig. 5 Attack accuracy for the CIFAR10 dataset. The clean-label attack is significantly more 
effective than for FMNIST because the 3-channel trigger contains more information. We also see 
that the trigger position is not very important, and ASR increases as the trigger size increases. 
The ASR with the simple attack is 100% for a 0.6% poisoning rate or more. However, STRIPNet 
is not as vulnerable as ResNet due to its smaller capacity. (a) ResNet-9 + clean-label attack. (b) 
ResNet-9 + simple attack. (c) STRIPNet + clean-label attack. (d) STRIPNet + simple attack. (e) 
Legend 

attack stealthy. This behavior is expected as we poison only a small subset of the 
training data that cannot substantially affect the model’s learning. 

In Figs. 6 and 7, we show the results of our experiments for the AG News topic 
classification dataset and IMDB dataset, respectively. From these figures, we can 
draw several conclusions. In most cases, the ASR is correlated with the trigger size 
and increases as the trigger size increases. This is true even when the attack is not 
effective (see Fig. 6a).
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Fig. 6 Attack accuracy for the AG News dataset. The ASR is positively correlated with the trigger 
size (even when the ASR is very low), and the poisoning rate significantly influences the attack’s 
effectiveness. Additionally, the clean-label attack needs more poisoned data to work. When GloVe 
is used, inserting the trigger in the end results in higher ASR (especially for low poisoning rates), 
but in the simple CNN, the trigger positions do not affect ASR. (a) CNN with GloVe . + clean-label 
attack. (b) CNN with GloVe . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple 
attack. (e) Legend  

Especially for the first CNN, this relation seems to be linear (see Figs. 6c, 6d, 7c 
and 7d). This simple model uses global average pooling as its penultimate layer, 
averaging the feature map before the output. As a result, the trigger will be more 
influential when it consists of more words. In almost all experiments, the poisoning 
rate is a highly influential hyperparameter of the backdoor attack, and any increase 
in it leads to an increase in the attack success rate. 

Our models learn differently, which can be seen from the varying attack success 
rate when the trigger is injected in different positions. For example, the attack 
success rate is higher if the trigger is inserted at the end of the sentence when we use
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Fig. 7 Attack accuracy for the IMDB dataset. The ASR is positively correlated with the trigger 
size, and the poisoning rate significantly influences the attack’s effectiveness. Additionally, the 
clean-label attack is more effective with this dataset. For the CNN that uses GloVe, placing the 
trigger at the end of the sentence yields the best results, but for the simple CNN, this is the least 
effective position. (a) CNN with GloVe . + clean-label attack. (b) CNN with GloVe . + simple attack. 
(c) CNN . + clean-label attack. (d) CNN . + simple attack. (e) Legend  

the first model and the simple backdoor attack (see Figs. 6b and 7b). This difference 
is very clear for low poisoning rates (0.25%), where even a small trigger of 2 words 
could be substantially more effective when placed at the end of the sentence. On 
the other hand, for the other model, placing the trigger at the end does not result in 
higher ASR (see Figs. 6d and 7d). These differences indicate that we could use the 
backdoor attack as a tool for AI explainability and further understand what and how 
a model learns by using triggers with different characteristics. 

In [47], the authors claimed that the clean-label backdoor attack needs a very 
large poisoning rate to be effective. We also see this behavior in the AG News 
dataset, especially for the architecture that uses the pretrained GloVe embedding
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(Fig. 6a). In the other architecture, the clean-label attack is more effective as the 
feature space created by the trainable embedding encodes some information about 
the trigger and the target class (see Fig. 6c). However, when the IMDB dataset is 
used, both models perform similarly without poisoning a very large part of the 
training data for the clean-label (see Figs. 7a and 7c). This can be explained by 
the differences between the datasets. Each sentence in AG News is shorter than the 
movie reviews in the IMDB dataset. Additionally, most of the words in AG News 
are strongly connected with the topic that each sentence belongs to (world, sports, 
business, and science/technology), which is not true for the IMDB dataset. In the 
IMDB dataset, the sentences are longer, and usually, only a few words are related to 
their sentiment. As a result, in AG News, our attack needs more poisoned samples 
to overcome the effect of the original features of the source class. 

4.3 Speech Recognition 

In Tables 5 and 6, we compare the performance of clean and backdoored models 
for sound classification when clean inputs are used. As was also shown in [28], 
the differences between the clean and the backdoored models are negligible. In 
particular, the backdoored models perform a little better when the 10 classes dataset 
is used, meaning that the poisoned samples could serve as a generalization factor. 
However, when the full dataset is used, the backdoor insertion results in a small 
performance drop for the CNN. In this case, we use more classes, and the model 
has to learn a more difficult task that is affected even by a few poisoned samples. 
The performance of the LSTM is slightly increased, meaning that the LSTM builds 
different models and utilizes its capacity better when we use the full dataset [28]. 
All these differences are small, and our claims need additional experimental data to 
be confirmed. 

In Figs. 8 and 9, we show the results of our experiments for the first (10 classes) 
and the second (30 classes) version of the Speech Commands dataset. In almost all 
cases, the attack success rate increases as the trigger duration increases. This is true 
even when the attack is not successful (see the clean-label attack in Figs. 8c and 9c). 
This makes sense as more input features are affected when a longer trigger is used, 
and the network can learn this relation easier. Additionally, the poisoning rate is 
very influential, and its increase leads to more effective backdoors. 

The end of the input is the most effective trigger position for the LSTM network 
in both versions of the dataset. Even though this network uses two bidirectional 
LSTM layers and an attention layer, it seems to learn the features that are placed 
towards the end of its inputs more easily. The LSTM network was designed to tackle 
the problem of long-term dependencies on its inputs. A possible reason for this 
behavior is the nature of this particular dataset, which consists of 1-second clips of 
spoken words. If these words are not perfectly centered and distributed to the upper 
half of each sample, our network will give more attention to the end of each training 
sample. This is not true for the CNN used as, in that case, all the positions seem to



A Systematic Evaluation of Backdoor Attacks in Various Domains 541 

Ta
bl
e 
5 

C
le

an
 a

cc
ur

ac
y 

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n 
(1

0 
cl

as
se

s)
 

N
um

be
r 

of
 p

oi
so

ne
d 

sa
m

pl
es

 

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

50
10

0
15

0
20

0 

C
N

N
94

.8
2 

(. ±
0.

36
0)

C
le

an
-l

ab
el

95
.0

7 
(. ±

0.
43

7)
95

.0
0 

(. ±
0.

47
7)

95
.0

7 
(. ±

0.
42

7)
94

.9
6 

(. ±
0.

50
8)

 

Si
m

pl
e

95
.0

9 
(. ±

0.
41

7)
95

.0
4 

(. ±
0.

43
8)

94
.9

9 
(. ±

0.
47

4)
94

.9
5 

(. ±
0.

48
0)

 

L
ST

M
89

.4
7 

(. ±
1.

41
2)

C
le

an
-l

ab
el

89
.7

7 
(. ±

1.
42

6)
89

.6
9 

(. ±
1.

35
0)

90
.0

5 
(. ±

1.
36

2)
89

.8
9 

(. ±
1.

37
3)

 

Si
m

pl
e

89
.7

1 
(. ±

1.
60

5)
89

.9
6 

(. ±
1.

33
5)

89
.6

6 
(. ±

1.
48

2)
89

.8
0 

(. ±
1.

58
6)



542 S. Koffas et al. 

Ta
bl
e 
6 

C
le

an
 a

cc
ur

ac
y 

dr
op

 in
 s

ou
nd

 c
la

ss
ifi

ca
tio

n 
(3

0 
cl

as
se

s)
 

N
um

be
r 

of
 p

oi
so

ne
d 

sa
m

pl
es

 

M
od

el
O

ri
gi

na
l A

cc
A

tta
ck

 ty
pe

13
7

27
4

41
1

54
7 

C
N

N
94

.7
0 

(. ±
0.

39
5)

C
le

an
-l

ab
el

94
.6

1 
(. ±

0.
41

0)
94

.5
5 

(. ±
0.

43
9)

94
.4

9 
(. ±

0.
57

5)
94

.5
9 

(. ±
0.

46
1)

 

Si
m

pl
e

94
.5

4 
(. ±

0.
47

1)
94

.6
3 

(. ±
0.

51
1)

94
.5

6 
(. ±

0.
49

6)
94

.5
3 

(. ±
0.

47
7)

 

L
ST

M
90

.5
0 

(. ±
0.

96
7)

C
le

an
-l

ab
el

90
.8

8 
(. ±

1.
26

7)
90

.5
9 

(. ±
1.

23
8)

90
.8

2 
(. ±

1.
23

2)
90

.7
9 

(. ±
1.

33
4)

 

Si
m

pl
e

90
.8

6 
(. ±

1.
23

6)
90

.8
1 

(. ±
1.

16
7)

90
.6

7 
(. ±

1.
31

7)
90

.6
3 

(. ±
1.

27
8)



A Systematic Evaluation of Backdoor Attacks in Various Domains 543

Fig. 8 Attack accuracy for the Speech Commands dataset (10 classes). In most cases, ASR is 
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective 
for both models. For LSTM, the best position for the trigger is at the end. However, for CNN, any 
position works. For CNN, the simple attack works almost perfectly for 100 poisoned samples or 
more. (a) LSTM . + clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. 
(d) CNN . + simple attack. (e) Legend  

be equally effective (see Figs. 8d and 9d). Similarly to text classification, different 
models learn different patterns from the same dataset making the backdoor attack 
effective in different cases. Thus, we could use the backdoor attack and its triggers 
to understand what a model learns and how it makes its decisions. 

In our sound classification experiments, the clean-label attack is not successful 
for both neural networks and datasets. However, when the full dataset and CNN 
are used (Fig. 9c), the attack success rate slightly increases with large triggers. 
The clean-label could work without requiring more poisoned data if we choose 
a larger trigger. This claim, though, needs to be verified in the future with more 
experimental evidence. Another interesting observation is that the simple backdoor
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Fig. 9 Attack accuracy for the Speech Commands dataset (30 classes). In most cases, ASR is 
increased as the trigger duration or the poisoning rate increase. The clean-label attack is ineffective 
in that case, but it works slightly better for CNN. In the simple attack, the best position for the 
trigger is at the end for LSTM. However, there is no difference for CNN (in most cases, ASR is 
close to 100%). When using LSTM, ASR is higher than ASR for the ten classes. We assume that 
the absolute number of poisoned samples could be the reason behind that behavior. (a) LSTM . +
clean-label attack. (b) LSTM . + simple attack. (c) CNN . + clean-label attack. (d) CNN . + simple 
attack. (e) Legend  

attack becomes more effective when we use the full dataset and the LSTM network 
(compare Fig. 8b to Fig. 9b). One reason for this behavior is the absolute number of 
training samples that were increased when the full dataset was used. However, this 
should be investigated further.
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4.4 Graph Data 

Results for the Graph Classification Task For the graph classification task, two 
parameters affect the performance of the backdoor attack: poisoning intensity and 
trigger size (the number of nodes in the trigger graph). The attack results for the 
GCN model on AIDS with different poisoning intensity . α and trigger size s are 
shown in Fig. 10. As we can see from Fig. 10a, with the increase of poisoning 
intensity, the attack success rate is generally increasing for each trigger size, but 
there is no obvious improvement between .α = 0.15 and .α = 0.2. Here, we select 
poisoning intensity .α = 0.15 for GCN on AIDS. Figure 10b shows the impact of 
trigger size under the selected poisoning intensity (.α = 0.15). The attack success 
rate is highest with .s = 5, while the clean accuracy drop is the smallest when .s = 5. 
To compare the two backdoor attacks, we set .α = 0.15, s = 5 and . α = 0.2, s = 7
for AIDS and TRIANGLES, respectively. 

Specifically, we present the attack results of two backdoor attacks on the graph 
classification task in Tables 7 and 8. As we can see from Table 7, .AT II can achieve 
more than .99% attack success rate and less than .1% clean accuracy drop on AIDS, 
while the performance of .AT I degrades slightly with an attack success rate of more 
than .95% and clean accuracy drop around .1.5%. As illustrated in Table 8, the attack 
success rate of .AT II is significantly higher than .AT I for TRIANGLES, i.e., more 
than .10%. However, the clean accuracy drop of .AT II is larger than .AT I, which is 
more than .4% for both models, while that of .AT I is around .3% and less than . 1%

Fig. 10 Impact of poisoning intensity and trigger size on attack performance in the graph 
classification task. (a) GCN_AIDS. (b) GCN_AIDS (.α = 0.15) 

Table 7 Backdoor attack results for the graph classification task and the AIDS dataset 

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

GCN .95.86 .1.25 .99.92 . 0.46

GraphSAGE .97.59 .1.46 .99.80 .0.91
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Table 8 Backdoor attack results for the graph classification task and the TRIANGLES dataset 

.AT I . AT II

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

GCN .86.00 .3.18 .99.21 . 5.32

GraphSAGE .87.70 .0.50 .98.24 . 4.32

Fig. 11 Impact of poisoning intensity and feature trigger width on attack performance in the node 
classification task. (a) . n = 5. (b) . n = 10. (c) . n = 15. (d) . n = 20. (e) . n = 25

for GCN and GraphSAGE, respectively. In addition, the computation time for . AT II

is around .1.7 times of .AT I. 

Results for the Node Classification Task For the node classification task, the 
backdoored data is influenced by two parameters: poisoning intensity α and feature 
trigger width n. The attack performance, including attack success rate and clean 
accuracy drop with different variants, is shown in Fig. 11. For each feature trigger 
width, the attack success rate on different models and datasets generally increases 
when the poisoning intensity increases from 0.05 to 0.2. At the same time, the clean 
accuracy drop of the GCN model keeps increasing, and there is a significant increase 
between α = 0.15 and α = 0.2. However, the clean accuracy drop of the GAT 
model remains almost unchanged. To achieve a high attack success rate and low 
clean accuracy drop, we set α = 0.2 for GCN and α = 0.15 for GAT. To evaluate 
the impact of feature trigger width on attack performance, we show the attack results 
with different feature trigger widths in Fig. 12. Observe that the feature trigger width
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Fig. 12 Attack performance with different feature trigger widths. (a) GCN (α = 0.2. (b) GAT  
(α = 0.15 

Table 9 Backdoor attack results in the node classification task (n = 5) 

GCN (α = 0.2) GAT (α = 0.15) 

Setting ASR (%) CAD (%) ASR (%) CAD (%) 

Cora 72.35 1.59 86.63 2.35 

CiteSeer 77.82 1.63 92.04 1.35 

has no obvious influence on the attack success rate and clean accuracy drop for both 
GNN models and datasets. 

Specifically, Table 9 shows the attack success rate and clean accuracy drop of 
backdoor attack for the node classification task with selected parameters. Notice 
that the backdoor attack on GCN reaches over 70% attack success rate for both 
datasets and that on GAT obtains a higher attack success rate, i.e., over 85% and 
90% for Cora and CiteSeer, respectively. Furthermore, the clean accuracy drop is 
lower than 2% for all models and datasets except for the GAT model on the Cora 
dataset, which is 2.35%. 

4.5 General Observations 

First, we verified that the backdoor attack is a real threat as it can be injected 
into every application domain tried without affecting the model’s original task just 
by poisoning a small subset of the training data. Additionally, we saw that the 
poisoning rate is the most influential characteristic of the trigger in all applications. 
However, this value cannot be increased arbitrarily because the backdoor attack 
will become evident through a simple data filtering mechanism, and the poisoned 
model’s performance on clean inputs will decrease substantially. 

The trigger size is positively correlated with the backdoor’s attack success rate 
in image, text, and sound. This is expected as a larger trigger contains more
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information that can be encoded easier in the trained model. However, in graph 
classification, the attack success rate increased to a point (.s = 5) and then decreased 
for larger triggers. The variations are small, though, as ASR remained above 90% in 
our experiments, and thus, we cannot draw general conclusions. We need to verify 
this effect with more complex datasets and models. 

The most effective position of the trigger (if there is any) depends on many 
factors, like the network architecture or the dataset. The position is not very 
influential on the attack success rate in most cases, but this is not always true. Thus, 
we cannot draw any general conclusions. In image classification, no position was 
proven more effective as the convolutional layers extract information from any point 
in the image. Similar behavior has been observed in graph neural networks [57], 
where the trigger position did not result in more effective backdoors. On the other 
hand, in text classification, the attack performed similarly for all the trigger positions 
for the simple CNN, but the “end” was slightly more effective when the GloVe 
embedding was used. In sound classification, the trigger was more effective in the 
end if LSTM was used but had no difference for CNN. These differences suggest 
a potential beneficial use case for backdoor attacks in general. In this case, we can 
use them to understand better how and what our models learn. Such an approach 
complements the work described in [61], where the authors drew valuable insights 
about the input’s crucial features after graying out small square areas of the input 
images. 

The clean-label attack is challenging in image, text, and sound classification. 
However, in some cases, it may be successful just by using a large trigger without 
having to poison more data. Additionally, if the trigger encloses more information, 
the clean-label’s performance can be improved. We verified this for the CIFAR10 
dataset, where we injected our trigger in all three image channels. We believe that 
the dataset influences the performance of this attack. If each element contains many 
features, the model will require a large poisoning rate to perceive the trigger as a 
feature of this class. In the clean-label attack, the trigger is injected only in elements 
from the target class, and it is not easy to overcome the effect of the actual features 
of this class. This was highlighted in the AG News and IMDB datasets in text 
classification. On the other hand, the simple backdoor attack can be very effective 
with just a few poisoned samples in all the applications we tried. 

As a general remark, we believe that the backdoor is easier inserted into models 
that can overfit small subsets of their datasets. Models with strong generalizations 
are more robust against data poisoning backdoor attacks. We verified this behavior 
using simple CNN in text classification. In that case, our attack could not reach an 
attack success rate larger than 80% even with the simple attack, as the model is 
very simple and the learned function is very smooth. Finally, as our experiments 
are far from exhaustive, our findings should be taken as indications, not definitive 
conclusions. 

In summary, the key takeaways are: 

– The backdoor attack is a realistic and stealthy threat. 
– As expected, increasing the poisoning rate and using larger triggers leads to 

higher ASR.
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– Different models can behave differently during the attack even though we 
use the same data. Therefore, we can use the backdoor attacks as a tool for 
explainable AI. 

– In [47], the authors claimed that the clean-label attack is not very effective. In 
most cases, this is true, but we saw that we could make it effective with more 
sophisticated triggers. 

– The backdoor is easier for models that can overfit a small subset of their 
datasets. 

5 Conclusions 

Recent trends in machine learning lead to novel attack vectors like the backdoor 
attack. This attack is very dangerous as it can compromise AI-powered systems. 
Naturally, the backdoor attack also attracted significant attention, resulting in 
numerous novel attack and defense versions. In this work, we explored the effects of 
various trigger characteristics on the backdoor’s performance in four domains. Our 
results show that deploying backdoor attacks is relatively easy for all investigated 
domains. There are sufficient commonalities between the attacks in different 
domains to ease their deployment in real-world applications and devise novel, more 
generic defenses. 
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Deep Learning Reliability: Towards 
Mitigating Reliability Threats in Deep 
Learning Systems by Exploiting Intrinsic 
Characteristics of DNNs 

Muhammad Abdullah Hanif and Muhammad Shafique 

1 Introduction 

Deep Neural Networks (DNNs) have emerged as a promising set of algorithms for 
solving complex AI problems such as image classification, object detection and 
localization, semantic segmentation, speech recognition, language translation, and 
video processing [1]. The state-of-the-art performance of these models has laid 
the foundation for DNNs to be used in safety-critical applications as well such 
as autonomous driving [2] and smart healthcare [3]. Driven by the compute- and 
memory-intensive nature of DNNs and the need for deploying such high-accuracy 
models in resource-constrained edge devices, a significant amount of research 
has been carried out towards designing specialized hardware accellerators that 
can enable low-cost DNN inference at the edge. Some prominent DNN hardware 
accelerators include Eyeriss [4], MAERI [5], TPU [6], and MPNA [7]. 

On the one end, these DNN hardware accelerators promise low-cost and real-time 
execution of DNNs; however, on the other end, they bring some critical reliability 
challenges that can significantly degrade the performance and dependability of the 
system. These reliability threats are specifically important to address for safety-
critical systems, as even a single fault at a critical location in such systems can result 
in severe consequences. For example, in the case of autonomous driving vehicles, a 
critical fault in the perception unit can result in the misclassification of a traffic sign 
(e.g., a stop sign) which can lead to a fatal accident. Such faults can even lead to total 
disruption of traffic service if the vehicle is connected to the traffic infrastructure in 
a smart city. An overview of different hardware-induced reliability threats, how they 
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Fig. 1 Overview of different reliability threats and their repercussions. The picture used in the 
figure is from the COCO dataset 

manifest in a system and how can they impact the functionality of a DNN inference 
is shown in Fig. 1. 

Reliability Threats Gradual progress in the fabrication process and the desire for 
extreme-performance devices has lead us to the era of nano-scale devices. However, 
electronic devices fabricated using nano-scale technology face various reliability 
issues. Some of these issues are associated with the limitations of the fabrication 
process while others are associated with the extreme sizes of the transistors. The 
following text provides a brief introduction to different hardware-induced reliability 
threats that can degrade the performance of a system. 

• Soft Errors are transient bit-flips caused by high-energy particle strikes. These 
particles can be alpha particles emitted from the impurities in the packaging 
materials of the chip or neutrons from cosmic radiations [8]. These soft errors can 
propagate all the way to application layer of a system and results in significant 
accuracy degradation. External factors such as temperature and altitude can have 
a notable impact on the Soft Error Rate (SER). 

• Aging of nano-scale electronic devices occurs due to various physical phe-
nomena such as Bias Temperature Instability (BTI), Time-Dependent Dielectric
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Breakdown (TDDB), Hot Carrier Injection (HCI), and Electromigration (EM). 
It typically results in increased threshold voltage (.VTH ) [9] or breakdown of 
dielectric and wires. In the early stages, aging manifests as timing errors in a 
system, and later it can even transform into permanent faults. Typically, large 
guardbands are added to the operating frequency of a circuit to ensure reliable 
operation. Similar to other reliability threats, aging rate also increases with 
temperature. 

• Process Variations are variations in the hardware characteristics of transistors 
that occur due to imperfections in the fabrication process [10]. In general, these 
variations manifest as timing errors in a system and, therefore, are addressed by 
adding guardbands, i.e., either by increasing the supply voltage or reducing the 
operating frequency of the device. Extreme variations can even lead to permanent 
faults, which can have a significant impact on the manufacturing yield. 

Apart from aggressive guard-banding, a number of other techniques have also 
been proposed to improve the resilience of systems against reliability threats. 
However, most of these techniques are based on redundancy, e.g., Error Correc-
tion Codes (ECC), Dual Modular Redundancy (DMR) [11], and Triple Modular 
Redundancy (TMR) [12]. The redundancy-based techniques, on the one hand, are 
highly effective; however, on the other hand, they lead to high performance and 
energy overheads. This together with the compute- and memory-intensive nature 
of DNNs makes such techniques infeasible for DNN-based systems. Therefore, 
alternate techniques are required that can improve the resilience of DNN-based 
systems against hardware-induced reliability threats at minimal cost. 

In the following section, we present a brief overview of DNNs and DNN hardware 
accelerators. Then, in Sect. 3, we present an overall methodology for building 
reliable DNN inference systems and also discuss individual low-cost techniques for 
mitigating permanent faults, aging, and soft errors. 

2 Preliminaries 

2.1 Deep Neural Networks 

A neural network can be visualized as a network of interconnected neurons (see 
Fig. 2a), where a neuron is the fundamental computational unit of the network. The 
functionality of a typical neuron used in neural networks can be described using the 
following equation: 

.Out = f

(
N∑
i=0

Wi × Ai + b

)
(1)
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where . Wi represents the ith weight, . Ai represents the ith activation, N represents 
the number of weights (and activations) in the input vectors, b represents the bias, 
and .f (.) represents the activation function (a non-linear function to introduce non-
linearity). The neurons are typically arranged in layers, and a neural network having 
more than three layers is termed as a Deep Neural Network (DNN). Figure 2a shows  
an example of a Fully Connected Neural Network (FCNN), in which all the neurons 
in each layer are connected with all the neurons in the previous layer and the next 
layer. A FCNN is also known as a Multi-layer Perceptron (MLP). 

Different types of DNNs have been proposed in the literature. Apart from 
FCNNs, Convolutional Neural Networks (CNNs) are also widely known. CNNs 
are mainly used to process spatially or temporally correlated data such as images 
and videos. A CNN is generally composed of multiple convolutional layers and 
fully connected layers, see Fig. 2c. The convolutional layers are used for extracting 
features from the input while the fully connected layers are responsible for the final 
classification based on the features extracted by the convolutional layers. Figure 2b 
shows a detailed view of a convolutional layer. 

Various other types of DNNs also exist, for example, Recurrent Neural Networks 
(RNNs), Generative Adversarial Networks (GANs), and Graph Neural Networks 
(GNNs). However, as most of the reliability studies have been demonstrated on 
MLPs and CNNs, this chapter also considers the same to highlight the effectiveness 
of different methods. 

2.2 DNN Hardware Accelerators 

To enable the deployment of DNNs in resource-constrained edge devices, DNN 
hardware accelerators are employed. Various accelerator designs have been pro-
posed in the literature, where each design supports a specific set of dataflows in
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Fig. 3 A systolic-array-based DNN hardware accelerator 

a more efficient manner, e.g., see [4, 6, 7, 13]. An overview of a DNN hardware 
accelerator is shown in Fig. 3. A DNN accelerator is mainly composed of Processing 
Elements (PEs), partial sum accumulation units, and on-chip memory. Each PE 
contains some arithmetic modules and some registers. The arithmetic modules are 
for performing the MAC operations involved in the DNN execution and the registers 
are for storing weights, activations, and partial sums. The exact configuration of the 
PEs and their connectivity in the accelerator are based on the supported dataflows. 

The accelerator shown in Fig. 3 is a systolic-array-based design composed of 
homogeneous PEs, similar to the design in [6]. The PEs are connected in a 2D-grid-
like manner. The accelerator follows a weight-stationary dataflow, where weights 
are loaded into the array (through vertical channels) and kept stationary during 
operations. Note, weights from the same filter/neuron are mapped on the same 
column, while weights from multiple filters/neurons can be mapped simultaneously 
by mapping different filters/neurons (from the same DNN layer) to different 
columns. After the weights have been loaded inside the PEs, the input activations 
are fed from the left and are multiplied with the weight values to generate products. 
Each product is then added with the partial sum from the above PE, and the 
updated partial sum is then passed downstream to be used in the next cycle by 
the downstream PE. As the size of the processing array is usually limited, a dot-
product operation is broken down into multiple chunks (based on the size of the 
processing array) and a single chunk is mapped onto the array at a time. The partial 
sums generated by the array are stored in the accumulation units to be added with 
the corresponding partial sum/s from the other chunks (if any). A more detailed 
explanation of the architecture can be found in [14].
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3 Reliable Deep Learning 

This section presents a systematic methodology for building reliable systems for 
DNN-based applications. The section also highlights the impact of different types of 
reliability threats on the application-level accuracy of DNNs and presents different 
low-cost techniques for improving the resilience of DNN-based systems against 
hardware-induced reliability threats at minimal cost. 

3.1 A Systematic Methodology for Building Reliable DNN 
Systems 

Figure 4 presents an overview of our systematic design methodology for building 
reliable systems for DNN-based applications. The methodology is composed of 
different design-time steps, post-fabrication steps, and run-time steps. 

The design-time steps focus on building a hardware accelerator capable of 
mitigating all types of hardware-induced reliability threats. Towards this, first, a 
baseline hardware accelerator is designed based on the user-defined performance 
constraints. Then, the additional circuitry required for mitigating permanent faults 
(see Sect. 3.3), aging (see Sect. 3.4), and soft errors (see Sect. 3.5) is added to 
the accelerator design. Note, to achieve high resilience against reliability threats 
at a low cost, the error resilience of a representative set of DNNs is taken into 
consideration. The error resilience helps estimate the extent of protection required 
against each threat. After reinforcing the accelerator with the additional circuitry, the 
hardware is synthesized using reliability-aware synthesis techniques, for example, 
using selective hardening where vulnerable nodes in the hardware are hardened 
using node-level redundancy [15]. 
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Fig. 4 Our methodology for designing reliable hardware for DNN-based applications (adapted 
from [16])
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The post-fabrication steps focus on exploiting the information collected through 
post-fabrication testing (e.g., fault maps and process variation maps of the fabricated 
hardware) to define DNN mapping policies. The fault-aware and variation-aware 
mapping of DNNs can significantly reduce the negative impact of faults and 
variations on the application-level accuracy and performance characteristics of the 
system (see Sect. 3.3). The mapping information together with fault maps are also 
used by range initialization block for soft error mitigation. 

The run-time steps focus on trading energy for reliability through adaptive 
voltage and frequency scaling. The online error rate monitoring blocks monitor the 
frequency of errors, and the system then responds by increasing the supply voltage 
or decreasing the operating frequency to reduce the frequency of errors, whenever 
required. Software-level redundancy can also be employed to improve the reliability 
by processing critical layers (or neurons) multiple times. 

3.2 Resilience of DNNs to Reliability Threats 

Occasionally, DNNs are assumed to be inherently resilient to errors [17]. However, 
studies have shown that DNNs respond differently to different types of errors. 
Errors that occur at critical locations in the system can significantly degrade the 
application-level accuracy of DNNs while errors at non-critical locations do not 
impact the accuracy much. This section presents the resilience of DNNs to different 
types of reliability threats. The section also highlights the importance of low-cost 
fault-mitigation techniques for dependable performance. 

3.2.1 Resilience of DNNs to Permanent Faults 

This section presents an empirical analysis from [14] highlighting the impact of 
stuck-at permanent faults in the computational array of a systolic-array-based DNN 
accelerator (shown in Fig. 3) on the application-level accuracy of DNNs. The 
analysis is performed for two different networks trained on two different datasets, 
i.e., the MNIST and TIMIT datasets. The details of the DNN architectures used are 
presented in Table 1. For this analysis, a systolic array of .256 × 256 MAC units 
synthesized using 45nm OSU PDK to generate a gate-level netlist is considered. 
For permanent faults, stuck-at faults are inserted randomly at internal nodes in the 
netlist. 

Table 1 Datasets and the corresponding DNNs used for analyzing the impact of permanent faults 

Dataset Network architecture Accuracy (%) 

MNIST [18] Fully connected (L1-L4): 784. ×256. ×256. ×256. ×10 98.15 

TIMIT [19] Fully connected (L1-L4): 1845. ×2000. ×2000. ×2000. ×183 73.91
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Fig. 5 Impact of Stuck-at-Faults in a systolic-array-based DNN accelerator on the classification 
accuracy of two different DNNs [20] 

Figure 5a shows the impact of using a faulty DNN accelerator on the classifi-
cation accuracy of two different DNNs. As can be observed from the figure, for 
both the DNNs, the classification accuracy decreases sharply with the increase in 
faulty PEs. For example, in the case with the number of faulty PEs equals 16, the 
average accuracy of the DNN trained on the TIMIT dataset falls to zero, while the 
accuracy of the DNN trained on the MNIST dataset falls to around 50%. Note that 
16 PEs is equivalent to around 0.025% of total PEs in a .256 × 256 array. This 
shows that even a very small number of permanent faults in a DNN-based system 
can significantly degrade the system’s performance. This analysis clearly highlights 
the need for permanent fault mitigation to increase the manufacturing yield of DNN 
accelerators, as faulty hardware having permanent faults cannot produce reliable 
results. 

3.2.2 Resilience of DNNs to Timing Faults 

Timing failures in high-performance nano-scale CMOS devices are a significant 
reliability concern. These errors arise due to various reasons, e.g., power supply 
disturbance, crosstalk, process variations, and aging. Moreover, the operating 
conditions, such as supply voltage, also significantly affect the frequency of timing 
failures. This section highlights the impact of timing errors on the classification 
accuracy of a DNN trained on the MNIST dataset using the analysis presented 
in [14]. The DNN architecture is presented in Table 1 and the considered hardware 
accelerator is shown in Fig. 3. To illustrate the impact of timing errors on DNN 
accuracy, [14] considered a Timing Error Propagation (TEP) case where timing 
errors are allowed to propagate to the output. The timing errors are introduced in
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Fig. 6 Impact of timing 
errors induced through 
voltage under-scaling on the 
classification accuracy of a 
DNN trained on the MNIST 
dataset [14] 

the accelerator array through voltage under-scaling. Figure 6 shows the impact of 
voltage under-scaling on the classification accuracy of the DNN. Note, as the supply 
voltage of the array is reduced, timing errors start increasing. Figure 6 clearly shows 
that in the TEP case, the accuracy of the DNN starts decreasing abruptly as the fault 
rate starts increasing. Therefore, to ensure reliable execution of DNNs it is essential 
to mitigate timing errors. 

3.2.3 Resilience of DNNs to Memory Faults 

To illustrate the impact of memory faults on the accuracy of DNNs, Hanif et al. [16] 
presented an analysis where they injected random faults in the weight memory 
of a DNN accelerator. The analysis showed that faults at higher significance bit-
locations in the weights can drastically reduce the application-level accuracy of 
DNNs while faults at lower significance bit-locations do not impact the accuracy 
much. Moreover, the analysis also showed that the accuracy drop increases sharply 
with the increase in the fault rate. They also studied the impact of different types 
of faults individually and showed that 0-to-1 bit-flips have a more severe impact 
compared to 1-to-0 bit-flips, as 0-to-1 bit-flips at higher significance bit-locations 
can significantly increase the weight values. This conclusion is also in line with 
the dropout [21] and DropConnect [22] concepts in the sense that 1-to-0 bit-flips 
push the weight values toward zero, which is equivalent to dropout at a fine-grained 
level. Note that the conclusion may differ for different data representation formats. 
Similar fault injection studies have also been conducted in [23] and [24] to analyze 
the resilience of DNNs.
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3.3 Permanent Fault Mitigation 

As highlighted in Sect. 3.2.1, permanent faults can restrain a system from generating 
correct outputs. Therefore, it is essential to mitigate such errors to ensure high 
manufacturing yield. Fault-Aware Pruning (FAP) [20] has been proposed to 
mitigate permanent faults in the computational array of a systolic-array-based DNN 
accelerator. The key idea behind this approach is to replace critical faults with non-
critical faults. In [20], this is achieved through dropping the computations mapped 
onto the faulty components, as dropping a small percentage of computations in 
DNNs do not impact the accuracy much, see dropout [21] and DropConnect [22] 
concepts. 

Figure 7 illustrates the modified systolic-array design proposed in [20] for  
mitigating permanent faults in the MAC units of a systolic-array-based DNN 
accelerator. As illustrated in the figure, each PE is equipped with an additional MUX 
to bypass the MAC unit inside the PE. In case a fault is detected in the MAC unit of a 
PE during post-fabrication testing, the corresponding MUX is configured to bypass 
the faulty MAC unit. Note, the systolic-array architecture shown in Fig. 7 follows a 
weight-stationary dataflow where weights from the same neuron/filter are mapped 
onto the same column and are kept stationary inside the PEs during execution. 
Hence, the bypass operation corresponds to pruning of the weights mapped onto 
the faulty units. 

To improve the performance of FAP, Fault-Aware Pruning + Training (FAP+T) 
is proposed [20]. The technique is based on the observation that DNNs are typically 
over-parameterized and pruning a small set of weights during training do not affect 
the final accuracy much [25]. Figure 8 presents a general flow for training a DNN 
against permanent faults. As highlighted in the figure, the fault map extracted 
through post-fabrication testing of the fabricated chip (along with the DNN mapping
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policy) is used to force the weights to be mapped onto faulty MAC units to zero in 
each iteration of the training loop. This enables the DNN to adapt to the faults in the 
system and offer better performance compared to simple FAP. 

Figure 9 highlights the effectiveness of FAP and FAP. +T using a fully connected 
DNN trained on the MNIST dataset. As can be seen from the figure, both FAP and 
FAP. +T help improve the resilience of the DNN against permanent faults in the 
computational array of a DNN accelerator; however, FAP. +T offers better results at 
higher fault rates, i.e., negligible accuracy loss even when 50% of the total MAC 
units are faulty. 

Although FAP. +T is highly effective against permanent faults, its main drawback 
is that it involves retraining the given DNN, which may not be possible under 
some scenarios due to the lack of computational resources or a comprehensive 
training dataset. To address this issue, Fault-Aware Mapping (FAM) has been 
proposed [26]. FAM employs a saliency-driven approach to determine the mapping 
of the given pre-trained DNN for the given faulty chip. Figure 10 shows the general 
flow for applying FAM. First, the saliency of each DNN weight is computed using 
the L1 or L2-norm. Then, using an optimization algorithm and the knowledge of the 
faults, a mapping policy is determined that leads to the minimum (or a lower) sum 
of saliency of weights to be pruned due to permanent faults in the computational 
array of the DNN accelerator. In the end, the parameters of the DNN are rearranged 
according to the mapping policy (wherever possible) to avoid any run-time data
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rearrangement operations. The output DNN and the mapping policy are then used 
together with FAP for reliable DNN inference. Figure 11 presents an example of 
how FAM can help in reducing the impact of permanent faults when used with FAP, 
and Fig. 12 highlights the effectiveness of the approach when used for the VGG11 
network trained on the ImageNet dataset. Figure 12 clearly highlights that FAM can 
be employed without retraining specifically for low-to-moderate fault rates to get 
better results than only FAP. 

3.4 Timing Error Mitigation 

Aging in CMOS devices manifests as timing errors. These errors can have a 
drastic impact on the performance of a DNN interference system, as highlighted 
in Sect. 3.2.2. Conventional techniques such as aggressive voltage and frequency 
guard-banding result in significant energy and/or latency overheads. Therefore, it is
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crucial to address these errors at low cost to ensure reliable and resource-efficient 
DNN execution. 

To address timing errors in the computational array of a systolic-array-based 
DNN accelerator at a low cost, Zhang et al. proposed TE-Drop [14]. TE-Drop 
works on the principle that the contribution of each individual MAC operation 
to the overall output of a DNN is very small. Therefore, a small percentage of 
MAC operations can be dropped without affecting the application-level accuracy 
of the system. To detect timing errors in the computational array, TE-Drop utilizes 
Razor flip-flops; however, instead of re-executing the erroneous MAC operation, it 
captures the correct MAC output in an alternate partial sum register operating on a 
delayed clock. Then, the succeeding PE is bypassed to feed the correct MAC output 
back into the computational flow. Figure 13 presents the architectural modifications 
required to realize the concept.
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3.5 Soft Error Mitigation 

As highlighted in Sect. 3.2.3, soft errors at critical locations in a DNN-based system 
can significantly degrade the application-level accuracy of the system [16, 27]. 
Therefore, it is crucial to address these errors to ensure reliable DNN execution. 
Although conventional redundancy-based techniques (e.g., DMR and TMR) are 
highly effective against soft errors, they result in extreme overheads due to the 
compute-intensive nature of DNNs. Therefore, specialized low-cost techniques are 
designed to improve the resilience of these systems against soft errors. 

To mitigate soft errors in SRAM-based on-chip memory, Azizimazreah et al. 
proposed a zero-biased SRAM cell design that has a higher tendency to switch 
to ‘0’ in case an error occurs in the cell [28]. The intuition behind this design is 
that 0-to-1 bit-flips in DNNs result in a higher accuracy loss compared to 1-to-0 
bit-flips. To mitigate soft errors in the computational array of a DNN accelerator, 
researchers have proposed different range-restriction techniques, e.g., Ranger [27], 
that bound the range of the intermediate activation values to a pre-computed safe 
range. The intuition behind these techniques is that soft errors can result in large 
activation values that may propagate to the output and impact the classification 
result. Therefore, abnormally large activation values that fall out of the normal range 
can be classified as erroneous, and dropping such values can mitigate soft errors 
due to the inherent resilience of DNNs to pruning. Figure 14 presents the general 
flow of range-restriction techniques. A similar technique is proposed in [29] for  
mitigating soft errors in the on-chip memory of DNN accelerators. Apart from the 
above-mentioned techniques, algorithm-based fault tolerance, such as checksum-
based error detection and correction have also been proposed to mitigate soft errors 
in DNN systems at a low cost [30]. 

4 Conclusion 

The state-of-the-art performance of DNNs for complex AI problems has led to 
their adoption for safety-critical applications as well. However, these systems have 
strict robustness constraints that are challenged by the hardware-induced reliability 
threats introduced due to the use of specialized DNN accelerators. The compute- and 
memory-intensive nature of DNNs prevents the use of redundancy-based techniques
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for mitigating these threats. Towards this, this chapter covered different low-cost 
techniques for improving the resilience of DNN inference systems against soft 
and timing errors. The chapter also covered different techniques for mitigating 
permanent faults. Moreover, the chapter also discussed a holistic methodology for 
mitigating all types of reliability threats at low overhead costs. 
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