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Abstract. Legged robots are a class of robotic systems designed to move and
navigate using leg mechanisms, similar to how animals with legs move. Legged
robots differ from othermobile robots primarily in their mode of locomotion. They
can traverse various types of terrain, uneven surfaces and human made structures
like stairs, steps etc. They have significant advantages over other forms of robotic
locomotion, such as wheels or tracks, but they are complex to build and control.
Designing and controlling legged robots can be complex due to the need for
stability, balance, and coordination among multiple legs. Building these control
mechanisms have always been a challenging task. In this paper we discuss about
a four-legged robot that we built and how we trained and controlled its motion.
We discuss how we can use latest techniques in Machine Learning (ML) to train
locomotion skills to legged robots. We evaluate training directly in the cartesian
space as compared to the more popular approach of using joint space. We also
look at the challenges we faced in trajectory control and how we solved them.
We discuss how we achieved accurate tracking of trajectories and explain the
importance of accurate trajectory tracking in legged locomotion. We describe our
experimental setup including the simulation environment we used, the tools and
techniques used in setting up the experiments and how we built a real robot and
used it for our experiments.

Keywords: Legged Robots · Legged locomotion ·Motion Control · Trajectory
Control · Cartesian Space · Joint Space ·Machine Learning · Reinforcement
Learning · Augmented Random Search

1 Introduction

Robotic locomotion is a challenging task especially on uneven or unstructured terrains.
For legged robots, its even more of a challenge. Compared to other forms of robotic
locomotion such as wheel or tracks, Legged locomotion is much more complicated
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because of the need for stability, balance, and coordination betweenmultiple legs. Legged
locomotion is difficult to achieve because of the complexities involved in building and
controlling the mechanisms that enable legged motion.

These complexities can be broadly classified into two categories: (i) Determining
and synchronizing the leg movements that are required to achieve a desired motion and
(ii) Accurately effecting the desired motion through a series of mechanisms including
motor controllers, sensors etc. Achieving a fine balance between these components is
also as critical as solving these complexities.

The challenge of legged locomotion also involves processing the large set of possible
actions. The control of legged robots is inherently complex due to the coordination of
multiple legs and joints. Achieving smooth and efficient locomotion while adapting
to varying terrains and obstacles is a significant challenge. Legged robots often require
substantial power tomove andmaintain stability. Themechanical design of legged robots
needs to account for both structural integrity and flexibility. The robot’s limbs and joints
must be robust enough to withstand dynamic movements and external forces while
being lightweight to conserve energy. Achieving the right balance between strength,
weight, and flexibility can be a challenge. Compared to wheeled or tracked robots,
legged locomotion consumes more energy. Efficient energy management and power
supply systems are necessary to extend the operational time and range of legged robots,
especially in field applications where recharging or refueling may be limited.

In legged robots, the body of the robot is supported by mechanical structures repre-
senting legs or limbs. These legs are used for movement of the robot as well. Sequence
of leg movements are carefully synchronized to set the body in motion. Leg movements
and their placements must be orchestrated to keep the body in motion while maintain-
ing balance and stability. Computing the movement of the legs and then executing the
motion in hardware, is the core of the challenge of legged locomotion [1].

The irregular nature of the terrain introduces more complexities in the process.
If the surface is not even, support from legs becomes unpredictable. Not all possible
positions may be suitable for footfall, and some of the possible positions may not even
be achievable due to the uneven nature of the terrain. Sometimes the position determined
by the controller may not be reachable due to surface irregularities. These unpredictable
elements make planning the leg movements even more difficult. Uneven surface also
creates unpredictable reactionary forces on contact. These reactionary forces vary in
magnitude and direction and is difficult to factor inwhile planning legmovements. These
challenges, arising from the interaction of the robot to the environment, introduces new
set of complications in the walking process [2].

For the first part of the problem, ie. Determining and synchronizing leg movements,
various different control mechanisms have been developed in the past. Most of these
traditional methods relied heavily on purely physics-based controllers. These controllers
are difficult to build and maintain and requires substantial amount of modifications to
adapt for any change in the environment. These controllers are not versatile to subtle
changes in the environment. A much more feasible solution is required to make legged
motion effective. Recent advancements in the field of Artificial Intelligence (AI) and
Machine Learning (ML) techniques have opened up new possibilities for controlling
motion of legged robots and for training them as well. These new control systems that
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are based on Machine Learning, are found to be much more resilient to environmental
factors.

Traditional controllers that were purely physics based took a different approach by
attempting to control the robot by observing its state and then calculating the necessary
changes required. These controllers would measure physical aspects of the robot such
as joint positions, body state etc. and use these values to calculate a possible state for
the legs. This approach can be further advanced to achieve complex movements such
as walking. Similarly balance and stability can also be achieved while walking. These
methods of controlling the robot worked well under ideal conditions but even minor
changes in the environment would create problems. Small deviations in environment
often give rise to conditions that are the controller cannot handle. Under challenging
environments, these controllers fail to perform. In addition to the fragile nature of these
controllers, they are also difficult to make. They require deep knowledge across multiple
domains to understand and develop the control policies. After development they need a
lot of fine-tuning as well.

Artificial intelligence andMachineLearning techniques have started playing a crucial
role in controlling legged robots, enabling them to adapt, learn, and make autonomous
decisions in complex environments. Algorithms based on machine learning techniques
are used to plan and control the motions of legged robots. These algorithms learn from
experience or simulate the robot’s movements to find suitable control strategies that
maximize stability, energy efficiency, and locomotion performance. By observing and
imitating human movements or predefined motion sequences, legged robots can learn
how to navigate and perform specific tasks. These algorithms allow legged robots to
adapt their locomotion strategies in real-time based on sensor feedback. Reinforcement
learning or adaptive control algorithms can adjust leg trajectories, foot placement, or gait
patterns to optimize stability, maintain balance, and improve performance in response to
changing terrain or external disturbances. This approach of controlling the robot makes
it much more resilient as compared to traditional controllers.

The second part of the challenge is to accurately execute the desired leg movements.
Accurate trajectory control becomes very necessary here. In-order to have accurate trac-
ing of trajectories, several things have to be synchronized such as the motor controllers,
the feedback sensors, the control algorithms etc. We found that minor discrepancies
sensor feedback or motor control often leads to major deviations in the tracked trajec-
tory. Under certain conditions such as at high velocities, the deviations are even more
magnified. Higher inertia of the moving part also contributes to increased deviations
and jittery movements. Maintaining the desired velocity and acceleration throughout the
trajectory is often a challenge because of the discrepancies in the feedback or control
loop as well. We found a solution by leading the positional value of the trajectory by a
few steps ahead so that the acceleration and velocity can remain smooth and need not
change abruptly at each step of control.

2 Related Work

Much research has been done in the field of robotic locomotion. Many different methods
have been proposed and evaluated. The Cheetah robot, developed by MIT researchers,
works by generating simple reference trajectories. In order to get desired contact forces,
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it performs model predictive control and then uses Jacobian transpose control to real-
ize them [3]. The ANYmal robot [4] uses the inverted pendulum model to plan for
footholds [3]. These control algorithms work well but require deep knowledge across
multiple domains including the dynamics of the robot, physical aspects of the robot
and its capabilities. Often these requirements become a limiting factor. In contrast, AI
based control mechanisms can be used for training even without any prior know-how
of the dynamics of the robot or its physical aspects. This can be achieved thorough
Reinforcement Learning techniques.

Literature survey shows several instances where machine learning techniques have
been used for robotic locomotion [5–8]. Multiple approaches have been proposed based
on reinforcement learning techniques. They results vary on performance and success
levels. Reinforcement Learning can be used to explore different leg trajectories and
coordination patterns, these algorithms can discover gaits that minimize energy con-
sumption, maximize stability, or adapt to varying terrains and are found to be much
better than traditional methods of control [8]. Robots can be trained in simulation using
techniques like Deep Reinforcement Learning. Simulations provide a valuable platform
for training and optimizing legged robot controllers. AI-based algorithms can be applied
to train legged robots in simulated environments, leveraging reinforcement learning.
Simulations allow for faster and safer exploration of control policies, enabling legged
robots to learn and improve their locomotion capabilities before deployment in the real
world. However, simulation differs from the real world in several factors, and all of these
factors cannot be accurately modelled in simulation. This creates discrepancies between
the real world and the simulated environment.

The discrepancies between simulation and the real world create a gap that is some-
times referred to as the sim-to-real gap. Numerous solutions have been proposed to
overcome this sim-to-real gap [9]. An easy solution would be to use a physical setting
that represents the real-world setup very closely and train the robot in this environment.
This approach effectively removes any sim-to-real gap because simulation has been
removed from the process altogether. In most scenarios this approach is not feasible
because of multiple factors such as it is not possible to collect training data from the
physical environment, changing the robot’s dynamics is now possible, and its time con-
suming to iterate. Using simulations for training can be a much more efficient solution.
We can conduct the training process completely in a simulated environment and on
successful training, we can transfer the trained policies to a hardware robot.

In our setup, we will evaluate a relatively newly proposed algorithm called Aug-
mented Random Search (ARS) [10] that is claimed to be much more efficient than
many existing algorithms. According to the algorithm’s authors, ARS beats the fastest
competing methods by about 15 times [10].

While using Machine Learning to train legged robots, selection of action space has
large effect on both training time and quality of trained policies [11].Most of the previous
work has focused on learning in joint space. However, cartesian space can be an equally
good action space and, in some studies, cartesian space control has been found to be
better than joint space [11].
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Most of the previous work does not focus on the challenges of executing the learned
motion on real hardware. The trained policies were only validated on simulated envi-
ronments. However, it is tricky process to transfer trained policies from a simulated
environment to real-world hardware [9].

3 Using Machine Learning to Train Locomotion Policies

Machine Learning has emerged as the most successful method of training complex
motion control behavior in robots [12]. Using Machine Learning we can virtually elim-
inate the need of any manual tuning or precise fine tuning of the control parameters.
This is a great benefit especially for complex motion control systems like in legged
robots because the system can be made to learn the intricacies by itself instead of being
programmed by a human. Reinforcement learning (RL) is often used for training legged
robots due to its ability to learn complex behaviors and adapt to dynamic environments.
Einforcement learning enables legged robots to learn through trial and error. The robot
explores its environment, takes actions, and receives feedback or rewards based on the
outcomes. RL algorithms learn from these experiences and adjust the robot’s behavior
to maximize the cumulative reward over time. This iterative learning process allows
legged robots to discover effective locomotion strategies and adapt to different terrains
or tasks. Legged robots often undergo initial training in simulated environments before
being deployed in the real world. RL is well-suited for simulated training as it enables
legged robots to explore and learn in virtual environments without the risks or costs
associated with real-world trials. Once a legged robot has learned locomotion skills in
one setting, RL algorithms can help generalize and adapt those skills to new situations.

In recent research work, a lot of progress has been made in the field of Deep Rein-
forcement Learning [13–15]. RL algorithms, such as deep reinforcement learning, can
learn hierarchical representations, allowing legged robots to generate complex and coor-
dinated movements. Controlling legged robots is a challenging task due to the high-
dimensional action spaces and the need for coordination among multiple limbs. Rein-
forcement learning can handle the complexity of learning control policies by searching
and optimizing in large action spaces. In order to eliminate any discrepancies, we try to
create a representation of the model as accurately as possible.

We evaluated two approaches while training our robot: first we used joint space
by getting joint positions from position sensors and mapping them to the trajectory
controller, and second approach is tomap the position of the end points of the legs directly
in the cartesian space.We observed that using cartesian space can be as effective as using
joint space [16].Whether joint space is used or cartesian space, accurate trajectory control
was a crucial factor that determines performance (Fig. 1).
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Fig. 1. Tracking trajectories in cartesian space

3.1 Learning in Cartesian Space

In our experimental setup, we trained our robot directly in the cartesian space. Joint space
control is popularly used for such training, but cartesian space is also being studied in
several studies [17]. We decided to use cartesian space because it was more closely
related to real world mapping. A policy trained in cartesian space attempts to control the
movements by reading and controlling the cartesian position of the end effector of each
leg. This method of controlling, as compared to joint space, has some benefits such as
higher sample efficiency and easier transfer between multiple simulation environments.
We also found that changing the physical dimensions of the robots leg had less effect
while using cartesian space than while using joint space.

Another advantage of cartesian space control is improved tracking of trajectories.
We found that without using special techniques that maintain the end effector position
at each step, joint space control did not tract the trajectories as accurately as cartesian
space control did. This is because joint space control does not guarantee uniform amount
of movement for all joints in motion although the end result was reached. With cartesian
space control, the same end result was reached, but it guaranteed that every step in the
trajectory is executed while the end effector remains placed in the trajectory [18]. This
results into very accurate tracking performance.

4 Using Augmented Random Search for Training

Legged robots often operate in dynamic and uncertain environments. They need to
make real-time decisions regarding gait selection, obstacle avoidance, and navigation.
Highly dynamic maneuvers such as walking, running, jumping etc. require careful bal-
ancing and stability and are extremely difficult for robots to execute [9]. Developing
efficient planning algorithms that can handle the complexity of legged locomotion while
considering real-time sensory information is a significant challenge. Numerous applica-
tions of machine learning (ML) based techniques have been suggested to address these
issues[19]. In our experiments we evaluate a relatively new algorithm named “Aug-
mented Random Search” [10] to train basic locomotion skills such as walking to our
custom built quadruped robot.
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Augmented Random Search (ARS) is a reinforcement learning algorithm that com-
bines elements of random search and policy gradient methods. It is a simple yet effective
algorithm for training static, linear policies for continuous control problems [20]. ARS
is an improvement over Basic Random Search (BRS) (Fig. 2).

Fig. 2. Algorithm of Augmented Random Search [11]

5 Accurate Trajectory Control

Accurate trajectory control plays a fundamental role in achieving desired legmovements.
Planning for joint trajectories may be achieved during the training process but it is
responsibility of the controller to make sure that the planned trajectories are tracked
accurately [21]. The accuracy achieved during training can be easily offset by inaccurate
tracking.
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In absence of appropriate trajectory control mechanisms in place, significant amount
of tracking error was observed. Several factors contributed to the error including physical
aspects such as the momentum of the leg or limitations of control accuracy, responsive-
ness of the motor and limitations in reading positional feedback. Accurate trajectory
control allows robots to achieve precise movements and positions.

Inaccuracies in tracking the trajectory arises out of several factors including minor
discrepancies in the control-feedback loop [22]. Delays in reading positions, or delays
in motor controller contribute to tracking errors. However, one factor that contributed
substantially was flaws in the trajectory control method. We noticed that at higher veloc-
ities and if mass of moving part is high, the momentum of the moving body becomes
large enough to introduce substantial amount of tracking errors. The controller attempts
to correct this by compensating the values of acceleration and velocity. This ends up
being over compensated in the opposite direction and the process repeats again (Fig. 3).

Fig. 3. Poor tracking of trajectories, jittery and abrupt movements

5.1 Using Positional Lead in Trajectory Control

We tested a new approach to solve the tracking errors. Out of the three parameters that are
maintained during trajectory control, Acceleration, Velocity, and Position, we found that
if the position value is led by n steps ahead, it resulted in better tracking performance
[1]. The leading factor, n, starts with 0 at the beginning of the trajectory, reaches its
maximum value at the middle of the trajectory and drops back to zero at the end of the
trajectory. The maximum value is determined experimentally and requires some tuning
(Figs. 4 and 5).
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Fig. 4. Positional lead used while tracking trajectories

Fig. 5. Improved trajectory tracking and smooth movements due to positional lead

6 Experimental Setup

For our experimental setup, we built a real quadruped robot and also setup a simu-
lation environment. We used the real robot to run experiments related to trajectory
planning, testing tracking accuracy, and testing motion control. We also took measure-
ments from the robot to get actual real-world values and compared them to our simulation
results. Hidden discrepancies that are sometimes not encountered in simulation are often
uncovered while testing on real hardware.
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We built a fully articulated 4-legged robot. Each leg has 3 degrees of freedom. The
joints are referred to as ‘Abad’ joint, the ‘Femur’ joint and the ‘Tibia’ joint. Each joint
is powered by an electric motor that drives an actuator. The actuator consists of a set of
gear reducers. A high resolution position sensor is attached to each joint, this provides
accurate positional feedback to the motor controller (Figs. 6 and 7).

Fig. 6. Leg configuration of “Stego” the real quadrupedal robot built for our experiments

There is an onboardmotor controller that receives positional feedback from the high-
resolution position sensors connected to each joint. The motor controller uses this data
to compute and control the velocities and joint angles. For this experimental setup, we
used FOC based motor controllers.

Fig. 7. Joint control and feedback loop

We built a rig to support the leg while testing. The robot leg is mounted on the rig
in such a way that it is supported fully but allows vertical movement along the z axis
and rotational movement for Femur and Tibia. This setup is connected to a simulated
environment on a computer and can be controlled from there (Fig. 8).

6.1 Simulation Environment Setup

We built a simulation environment that represents real-world scenarios as closely as
possible. We used this setup to test locomotion policies and to try out training sessions
as well. OnWindowsmachine, we used PyBullet for the simulation.We built an identical
environment on a Ubuntu system using Gazebo for simulation. For modeling the robot,
original CAD files were used that was created for making the real robot. URDF models
were created out of these robot models and then it was used in simulation (Figs. 9 and
10).
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Fig. 8. Stego - The quadruped robot we built to experiment on real hardware

Fig. 9. The real robot leg mounted on the test rig and the simulation environment using PyBulllet

Fig. 10. A single robot leg controlled through the simulation environment
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7 Results

We successfully used reinforcement learning methods to train a legged robot basic loco-
motion skills such as walking. The trained robot successfully executed simple gait pat-
terns such as in walking. We achieved this without requiring deep understanding of the
robots. We were able to train the robot without prior domain knowledge. The simulation
environment we used to train mimics real-world scenarios very closely. On completion
of the training process, the robot was able to execute the trained policies such as walking
gaits.

We also demonstrate the benefits of accurate trajectory control. In our experiments,
we achieved very accurate trajectory tracking both in the real robot leg as well as in
simulation. We demonstrated the benefits of using positional lead in trajectory control.
With positional lead the controller continuously tries to reach the leading position while
acceleration and velocity remain at the current step. By doing so, the controller does try to
overcompensate in opposite direction. This results in much better tracking of trajectories
and smoother movements.

We validated that training can be done directly in cartesian space as compared to
the more common approach of using joint space. Using cartesian space has some ben-
efits such as improved tracking of trajectories, better transferability between simulation
environments and more resilient against any changes in the robots hardware.

We successfully built a fully articulated quadrupedal legged robot.We used this robot
for running experiments on real hardware. We establish that controlling legged motion
can be achieved by training in simulation and transferring the trained policies to real
hardware. Several challenges remain while transferring policies from simulation to real
hardware (Figs. 11 and 12).

Fig. 11. Execution of walking gait in simulation
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Fig. 12. Simultaneous planning of acceleration, velocity and position for all legs of the robot

8 Conclusion

Reinforcement learning offers a flexible and adaptive approach to training legged robots,
enabling them to learn complex locomotion behaviors, adapt to dynamic environments,
and generalize across tasks. Machine Learning allows legged robots to acquire robust
and efficient locomotion skills that enhance their autonomy and versatility in real-
world applications. Using Machine Learning we were successful in achieving complex
dynamic gaits in simulation that would otherwise be difficult to achieve with any other
approach. We evaluated controlling the joints by addressing them in joint space as well
directly in cartesian space and we found that cartesian space motion control and learning
is a viable alternative to joint space control. Under some circumstances, cartesian space
control may be better suited than Joint space control. We found that accurate trajectory
control is absolutely crucial in executing legged locomotion. Using positional lead while
tracking trajectories improves tracking performance significantly. For future researchwe
want to evaluate fixed-time trajectories in joint space and compare the performance with
cartesian space. For trajectory control we want to verify if acceleration and velocity
can be led along with position. This may improve tracking accuracy even more than
what we achieved with positional lead. Transferring trained policies from the simulation
environment to the real robot remains a challenge to be further explored in future.
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