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Abstract. Extraction of features from healthcare devices requires the efficient
deployment of high-sample rate components. A wide variety of deep learning
models are proposed for this task, and each of these models showcases non-
uniform performance & complexity levels when applied to real-time scenarios.
To overcome such issues, this text proposes the design of a deep-learning-based
bioinspired model that assists in improving the feature extraction capabilities of
healthcare device sets. The model uses Elephant Herding Optimization (EHO) for
real-time control of data rate & feature-extraction process. The collected samples
are processed via an Augmented 1D Convolutional Neural Network (AOD CNN)
model, which assists in the identification of different healthcare conditions. The
accuracy of the proposed AOD CNN is optimized via the same EHO process
via iterative learning operations. Due to adaptive data-rate control, the model is
capable of performing temporal learning for the identification of multiple disease
progressions. These progressions are also evaluated via the 1D CNN model, which
can be tuned for heterogeneous disease types. Due to the integration of these
methods, the proposed model is able to improve classification accuracy by 2.5%,
while reducing the delay needed for data collection by 8.3%, with an improvement
in temporal disease detection accuracy of 5.4% when compared with standard
feature classification techniques. This assists in deploying the model for a wide
variety of clinical scenarios.
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1 Introduction

The Internet of Things is crucial to many different aspects of contemporary life [1].
Smart cities, intelligent healthcare, and intelligent monitoring are some examples of
IoT applications. Because of the many ways they may improve patient care, artificial
intelligence (AI) and the Internet of Things (IoT) have seen explosive growth in the
healthcare industry. It offers a broad variety of image processing, machine learning, and
deep learning approaches, as well as solutions that assist service providers and patients
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in improving healthcare outcomes across a number of different industries. One of the
most exciting and potentially fruitful fields of medical research is the examination of
medical images [2]. Methods [3] have been investigated for use in a wide variety of
medical imaging applications, ranging from the collection of images to the processing
of images to the assessment of prognoses. In the process of analysing medical healthcare
device scans, huge volumes of quantitative data may be acquired and retrieved for use in
a variety of diagnostic applications. These approaches may also be used in the analysis
of medical healthcare device scans. Scanners for medical equipment are becoming more
important diagnostic instruments in many hospitals and other healthcare institutions [4].
It is inexpensive and has enormous therapeutic benefits in the diagnosis of certain infec-
tious lung disorders [5], such as pneumonia, tuberculosis (TB), early lung cancer, and,
most recently, COVID-19. Some examples of these diseases include the: This dreadful
pandemic has started to spread around the globe ever since the new COVID-19 was
discovered in December 2019. The respiratory infectious virus that is the root cause of
this fatal illness represents a considerable risk to the health of the general population.
In March of the year 2020, the World Health Organization (WHO) declared that the
epidemic had reached the point where it could be considered a full-fledged pandemic
because of how quickly it had spread. There are more than 50 million confirmed cases
of COVID-19 in the globe, as reported by the World Health Organization (WHO). In
order to monitor the spread of the virus and help put a stop to it, the medical commu-
nity is investigating the most cutting-edge treatments and technologies available. When
evaluating COVID-19, it is usual practice to take into account symptoms, indications,
and tests related to pneumonia, in addition to scans of various medical devices [6]. The
identification of the COVID-19 virus requires the use of medical equipment scanners [7].
This document contains a lot much information pertaining to the health of the patient.
In spite of this, one of the most difficult aspects of a doctor’s job is to come to reason-
able conclusions based on the information available. The overlapping tissue structure
makes it far more difficult to interpret scans that are produced by medical equipment.
Examining a lesion may be challenging if there is little contrast between the lesion and
the surrounding tissue, or if the site of the lesion overlaps with the ribs or pulmonary
blood veins. Both of these situations make it more difficult to examine the lesion. Even
for a physician with years of expertise, it might be challenging to differentiate between
tumours that at first glance seem to be quite different from one another or to detect par-
ticularly intricate nodules. As a result, the examination of lung sickness using medical
device scans will result in false negatives. The appearance of white spots or viruses on
medical device scans is another possible obstacle for the radiologist, as it may lead to
the incorrect diagnosis of illnesses such as pneumonia and pulmonary sickness such as
COVID-19. Researchers are increasingly employing computer vision, machine learning,
and deep learning to understand medical imagery, such as scans from medical devices
for infectious illnesses [8]. This trend is expected to continue in the near future. These
newly discovered approaches may be of assistance to medical professionals or doctors,
as they have the potential to automatically identify the infection in scans of medical
healthcare equipment. This would improve the treatment test procedure and lessen the
amount of labour required. The early detection of illness via the use of these cutting-edge
approaches contributes to the overall reduction in death rates. Using a smart healthcare
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system that is enabled by the Internet of Things (IoT), it is possible to identify infectious
illnesses such as COVID-19 and pneumonia in scans of medical healthcare devices.
This system was conceptualized as a direct consequence of the enhanced performance
outcomes achieved by preceding systems. Transfer learning is combined with the use of
two different deep learning architectures, namely VGG-19 [9] and Inception-V3 [10].
Because these designs have been trained in the past on the ImageNet data set, it is possible
that they use the concept of multiple-feature fusion and selection [11]. In the course of
our investigation, we made use of a method for object categorisation that is analogous to
the multiple feature fusion and selection strategy that is presented in [12, 13]. In a range
of applications, such as those dealing with object classification and medical imaging,
this concept has been put into reality by merging numerous feature vectors into a single
feature vector or space via Support Vector Machines (SVM) [14, 15]. These applications
include those dealing with object classification. Using the feature selection approach,
it is also possible to get rid of features in the fused vector sets that aren’t necessary.
As a consequence of this, a variety of deep learning models have been developed for
this purpose. When applied to real-world settings, each of these models demonstrates
dramatically variable degrees of performance as well as levels of complexity. In the next
portion of this text, a proposal is made to construct a deep learning-based bioinspired
model in order to solve the challenges that have been raised and to enhance the abil-
ity of healthcare device sets to extract features. In Sect. 4, performance assessments of
the proposed model were carried out. The accuracy and latency of the proposed model
were compared to those of state-of-the-art approaches for feature representation and
classification. In the concluding part, the author provides some observations that are
context-specific about the model that has been provided and offers some suggestions as
to how it might be improved further for use in clinical settings.

2 Literature Survey

The study of medical images is a topic of medical research consider one of the most
interesting and potentially lucrative areas in the profession [2, 3]. Methods have been
researched for potential use in a wide range of medical imaging applications, ranging
from the acquisition of images through the processing of those images to the evaluation
of prognoses. The precision of diagnostics is going to be improved as a direct result of this
research. Huge amounts of quantitative data may be acquired and retrieved when analyz-
ing scans of medical and healthcare devices. This may be the case because of the nature
of the data being collected. After then, this information may be put to use in a number of
other diagnostic applications. The analysis of scans that were acquired by medical and
healthcare equipment is another application that might make use of these approaches.
Scanners that are traditionally employed as medical equipment are increasingly being
put to use as diagnostic devices in a variety of hospitals and other types of healthcare
facilities [4]. It is cost-effective and delivers considerable therapeutic advantages in the
identification of numerous infectious lung illnesses, including pneumonia, tuberculosis
(TB), early lung cancer, and, most recently, COVID-19. These diseases include: Some
examples of these infectious lung disorders are pneumonia, tuberculosis (TB), and lung
cancer in its early stages. The circumstances listed below are only a few examples; this
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is not an exhaustive list. This terrible epidemic has begun to spread over the whole world
ever since the new COVID-19 strain was identified in December of 2019. The respiratory
infectious virus that is the root cause of this potentially lethal disease poses a significant
threat to the health of the general population. The World Health Organization (WHO)
determined in March of the year 2020 that the illness had developed to the point where
it could be categorized as a full-fledged pandemic [5]. This conclusion was reached as
a direct result of the rapidity with which it had spread. This transpired as a consequence
of the lightning-fast rate at which the illness had spread. According to the most recent
statistics from the Globe Health Organization, more over 50 million confirmed cases of
COVID-19 have been found in countries all over the world (WHO). In order to keep
track of the virus’s progression and do what they can to halt its further spread, the sci-
entific community is doing research on the most innovative therapies and instruments
that are now on the market. When doing an analysis of COVID-19, it is standard pro-
cedure to perform scans on a variety of medical equipment in addition to taking into
consideration the signs, symptoms, and tests that are associated with pneumonia [6]. The
use of scanners that are designed specifically for use in medical settings is required in
order to achieve a positive identification of the COVID-19 virus [7]. This page contains
a wealth of information that is directly applicable to the condition that the patient is in
at the current time. Despite this, one of the most challenging components of a doctor’s
work is to be able to make sound judgments based on the data they have available to
them. Because different tissue structures overlap, it is much more challenging for med-
ical professionals to analyze scans provided by medical equipment. It may be difficult
to evaluate the lesion if there is little difference between the lesion and the surrounding
tissue, or if the position of the lesion overlaps with the ribs or pulmonary blood vessels.
Under any of these circumstances, it can be difficult to determine whether or not there
is a lesion present. Examination of the lesion will be made more challenging as a result
of both of these situations. Even for a physician who has spent a lot of time working in
the field, it may be difficult to differentiate between tumors that, at first glance, appear
to be reasonably distinct from one another, or to recognize nodules that are extremely
complex. This may be the case especially when attempting to diagnose extremely com-
plex tumors. As a consequence of this, misleadingly negative outcomes will be obtained
whenever medical equipment scans are employed to assess patients’ lung health. An
further potential challenge for the radiologist is the appearance of white spots or viruses
on scans of medical devices. This may lead to an incorrect diagnosis of illnesses such as
pneumonia and lung disorders like COVID-19. Because the appearance of these white
spots or viruses might lead to an incorrect diagnosis, this could be a source of concern.
Researchers are quickly turning to computer vision, machine learning, and deep learn-
ing in order to comprehend medical imaging, such as images from medical devices for
infectious diseases [8]. This trend is expected to continue. It is projected that this pattern
will maintain its prevalence in the not-too-distant future. It is anticipated that this pattern
will go on for an extremely long period of time. It is possible that these newly found
approaches, which have the capacity to automatically detect the infection in scans of
medical healthcare equipment, may be valuable to medical professionals or physicians.
It’s possible that those in the medical field may find this extremely useful. This would
result in a reduction in the amount of labor that is necessary while also enhancing the
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process that is used to evaluate the therapy. The use of these cutting-edge techniques for
the diagnosis of diseases at an early stage results in a general reduction in the number
of fatalities. Commons Utilizable Commons Utilizable Using a smart healthcare system
that is made possible by the internet of things, it is feasible to discover infectious dis-
eases such as COVID-19 and pneumonia in scans of medical healthcare equipment. This
is only achievable for those who utilize the system (IoT). The improved performance
outcomes that were accomplished by systems that came before it in the route of develop-
ment had a direct impact on the development of this system. Transfer learning is used in
conjunction with not just one but two distinct deep learning architectures, notably VGG-
19 [9] and Inception-V3 [10]. Since these designs were first trained on the ImageNet
data set [11], it is very probable that they integrate the idea of multiple-feature fusion
and selection. This is because the ImageNet data set was used throughout the training
process. This is due to the fact that these designs have already undergone training using
the ImageNet data set. Throughout the course of our inquiry, we classified objects using
a method that is similar to the multiple feature fusion and selection methodology that
was described in [12, 13]. Specifically, this method was based on a set of rules. To be
more specific, the following is the classification system that we use for things: Support
Vector Machines (SVM) have been used to a variety of applications, including those
that deal with object classification and medical imaging [14, 15]. SVM have also been
used to combine many feature vectors into a single feature vector or space. Applications
such as medical imaging and the classification of objects are two examples of the sorts
of applications that suit this definition. This category also include the software that deals
with organizing information into several classifications. Using the method of feature
selection, it is also feasible to exclude from the fused vector sets any features that are
not required for the job that is now being worked on. As a consequence of this, a wide
variety of deep learning models that are particularly well-suited for the task at hand have
been developed. When applied to circumstances that are more analogous to those that
may be encountered in the real world, each of these models demonstrates noticeably
distinct levels of performance in addition to varying degrees of complexity.

3 Design of the Proposed Deep-Learning-Based Bioinspired Model
to Improve Feature Extraction Capabilities of Healthcare Device
Sets

Based on the review of existing methods for feature extraction, it can be observed that a
wide variety of deep learning models are proposed for this task, and each of these mod-
els showcase non-uniform performance & complexity levels when applied to real-time
scenarios. To overcome such issues, this section proposes the design of a deep-learning-
based bioinspired model that assists in improving the feature extraction capabilities of
healthcare device sets. The design of the proposed model is depicted in Fig. 1, where it
can be observed that the model uses Elephant Herding Optimization (EHO) for real-time
control of data rate & feature-extraction process. The collected samples are processed via
an Augmented 1D Convolutional Neural Network (AOD CNN) model, which assists in
the identification of different healthcare conditions. The accuracy of the proposed AOD
CNN is optimized via the same EHO process via iterative learning operations. Due to
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adaptive data-rate control, a model is capable of performing temporal learning for the
identification of multiple disease progressions. These progressions are also evaluated
via the 1D CNN model, which can be tuned for heterogeneous disease types.

From the flow of this model, it can be observed that the model initially collects large
data samples from different sources, and then optimizes collection rates via an EHO
process. This process assists in the estimation of deep learning hyperparameters, which
enables continuous accuracy improvements under real-time use cases.

The EHO model works as per the following process,

e Initialize the following optimizer parameters,

— Total Herds that will be configured (Ny,)
— Total iterations for which these Herds will be reconfigured (N;)
— Rate at which Herds will learn from each other (L,)

e To initialize the optimization model, generate N, Herd Configurations as per the
following process,

— From the collected sample sets, select N samples as per Eq. 1
N = STOCH (L, * Ns, Ny) (1)

where, N; represents the number of collected & scanned sample sets.

— Based on the values of these samples, estimate Herd fitness via Eq. 2,

Iy N DR;
— 2 - 2
Z th+ 1, i=l N @)

where, DR; represents the data rate during the collection of the sample, while
t,&t, Tepresent its true positive and negative rates.

— Estimate such configurations for all Herds, and then calculate the Herd fitness
threshold via Eq. 3,

1 Nj
fin =5 2o Juix Lo (3)

e Once the Herds are generated, then scan them for ; iterations as per the following
process,

— Do not modify the Herd if f, > fi,
— Otherwise, modify the Herd configuration as per Eq. 4,

N (New) = N (Old) U N (Matriarch) 4)

where, N (New) represents feature vectors present in the new Herd configuration,
N(OId) is its old features, and N (Matriarch) represents feature sets present in the
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Fig. 1. The overall flow of the proposed deep learning model for healthcare analysis

Matriarch Herd, which is estimated via Eq. 5,

H (Matriarch) = H (Max(Uivzh]fhi))

where, H represents the Herd Configurations.

(&)
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— At the end of every iteration, estimate Herd fitness via Eq. 2, and update fitness
threshold levels.

e Once all iterations are completed, then find a Herd with maximum fitness, and use
its configurations for the collection of data samples Configurations of Herds with
maximum fitness levels are used to estimate the Data Rate for the collection of
healthcare samples. These samples are processed by a 1D CNN Model that can
be observed in Fig. 2, where a combination of Convolutional layers (for feature
augmentations), Max Pooling layers (for selection of high variance features), Drop
Out layers (for removal of low variance features), and Fully Connected Neural
Networks (FCNNs) based on SoftMax activation can be observed for different use
cases.

!

Convolution 1x64 L Convolution 1x512

with 1x3 stride with 1x3 stride
'
Max Pool with 0.1 ‘
dropout

v
Max Pool with 0.1
dropout ‘

v

Convolution 1x128
with 1x3 stride

L

Max Pool with 0.1
dropout

v

Convolution 1x256
with 1x3 stride

\

Convolution 1x1024
with 1x3 stride

\

Max Pool with 0.1
dropout

Fully Connected
Neural Network 1xN

v !
Max Pool with 0.1 Softmax Layer
dropout

Fig. 2. Design of the CNN model for the classification of different diseases

The model initially augments collected feature sets via Eq. 6, and uses them to find
feature variance via Eq. 7 which assists in the estimation of high-density features for
better accuracy performance under real-time use cases

m

Creas = °__,, FS(i — @) » ReLU (m ;r a)
- 2

(6)
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where, m, a represents the sizes for different convolutional Windows, and their Strides,
FS represents the feature sets collected from different devices, and ReLU represents
a Rectilinear Unit which is used for activation of these features. These features are
processed by an adaptive data-rate controlled variance estimator, which evaluates feature
variance via Eq. 7,

Nf+1

(22 (-2 )

v = DR %

(7

where, DR is the selected data rate from the EHO process. The selected features are
classified as per Eq. 8, where SoftMax activation is used to identify the output class,

N.
Cout = SoftMax(Zi i Siwwi o+ b,») (8)

where, Ny represents total features extracted by the CNN layers, while w;&b; represent
their respective weight & bias levels. The output class represents progression for the
given disease type, and can be trained for multiple use cases. Due to the use of these
adaptive techniques, the proposed model is able to improve classification performance
for different disease types. This performance can be observed in the next section of this
text.

4 Result Analysis and Comparison

The proposed model initially collects data samples from different sources, and uses the
accuracy levels of classifying these samples for estimating efficient data collection rates.
These rates are used to optimize the performance of the Convolutional Neural Network
(CNN), thereby assisting in the efficient estimation of different disease types and their
progression levels. The performance of this model was estimated on the abdominal and
Direct Fetal ECG Database(https://physionet.org/content/adfecgdb/1.0.0/), AF Termina-
tion Challenge Database(https://physionet.org/content/aftdb/1.0.0/), and ANSI/AAMI
EC13 Test Waveforms (https://physionet.org/content/aami-ec13/1.0.0/), which assisted
in the estimation of Heart Disease, Terminal Cancers, and Brain Disease progression
levels. These sets were combined to form a total of 75k records, out of which 80% were
used for training, while 20% each were used for testing & validation purposes. Based on
this strategy, the accuracy of prediction was estimated and compared with VGG Net [9],
Incep Net [10], & SVM [14], which use similar scenarios. This accuracy can be observed
in Table 1, where it is tabulated with respect Number of Evaluation Data Points (NED),

When compared with VGG Net [9], Incep Net [10], and SVM [14], the suggested
model is able to improve classification accuracy by 6.5% when compared with VGG Net
[9], 3.9% when compared with Incep Net [10], and 2.3% when compared with SVM [14]
for a wide range of different scenarios. This conclusion can be drawn from the findings
of this study and Fig. 3. This is because the classification was done utilizing EHO and
1D CNN, both of which lead to an improvement in accuracy for clinical use cases. As a
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Table 1. Classification accuracy for different models
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NED A (%) A (%) A (%) A (%)
VGG Net [9] Incep Net [10] SVM [14] DB FEH
750 89.45 89.06 91.38 95.41
1500 89.64 89.45 91.80 95.67
2250 89.81 89.87 92.23 95.92
3750 89.96 90.23 92.60 96.14
7500 90.12 90.51 92.87 96.34
15000 90.29 90.83 93.19 96.57
18750 90.47 91.18 93.56 96.81
22500 90.64 91.57 93.97 97.05
30000 90.81 91.92 94.34 97.29
33750 90.98 92.27 94.70 97.52
37500 91.15 92.63 95.07 97.76
41250 91.33 92.98 95.43 97.99
45000 91.50 93.33 95.80 98.23
52500 91.67 93.69 96.16 98.46
60000 91.84 94.04 96.53 98.70
67500 92.01 94.39 96.89 98.93
75000 92.18 94.74 97.26 99.17
100
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Fig. 3. Classification accuracy for different models
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Table 2. Temporal analysis accuracy for different models

NED AT (%) AT (%) AT (%) AT (%)
VGG Net [9] Incep-Net [10] SVM [14] DB FEH
750 84.03 83.86 86.06 89.69
1500 84.19 84.23 86.45 89.91
2250 84.34 84.56 86.78 90.12
3750 84.49 84.86 87.08 90.33
7500 84.65 85.16 87.38 90.54
15000 84.82 85.49 87.73 90.76
18750 84.98 85.83 88.08 90.99
22500 85.14 86.18 88.44 91.21
30000 85.30 86.51 88.78 91.43
33750 85.46 86.84 89.12 91.65
37500 85.62 87.17 89.47 91.87
41250 85.78 87.50 89.81 92.09
45000 85.94 87.83 90.15 92.31
52500 86.10 88.16 90.50 92.53
60000 86.26 88.49 90.84 92.75
67500 86.42 88.82 91.18 92.97
75000 86.58 89.15 91.52 93.18

result, this result was achieved. In a way somewhat dissimilar to this, the exactitude of
the temporal analysis may be deduced from Table 2 as follows,

This assessment and Fig. 4 lead us to the conclusion that the proposed model achieves
a higher level of temporal analysis accuracy than the three state-of-the-art approaches
(VGG Net [9], Incep Net [10], and SVM [14]), by a combined 5.9%, 4.50%, and 1.88%,
respectively. The proposed model is able to accomplish this goal because it employs
the methodology of comparing neural networks in order to improve the accuracy of
temporal analysis. We saw an improvement in temporal accuracy for clinical use cases
after using EHO for adaptive data rate management and 1D CNN for classification. This
improvement was due to the combination of these two technologies.
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Fig. 4. Temporal analysis accuracy for different models

Similarly, the delay needed for classification can be observed from Table 3 as follows,

The results of this research are shown in Fig. 5, which demonstrates that the proposed
model boosts classification speed by 10.5%, 12.4%, and 15.5% when compared to VGG
Net [9], Incep Net [10], and SVM [14], respectively. It is possible that the improvement
seen in classification times for clinical use cases is due to the use of EHO for the purpose
of adaptive data rate control in combination with 1D CNN. After completing this study,
it became very obvious that the model that was proposed might be applied in a variety
of different real-time clinical scenarios. This was discovered after the research was
completed & validated with different scenarios.
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Table 3. Classification delay for different models

NED D (ms) D (ms) D (ms) D (ms)
VGG Net [9] Incep Net [10] SVM [14] DB FEH
750 65.40 65.26 68.66 47.66
1500 65.52 65.55 68.96 47.78
2250 65.64 65.81 69.24 47.90
3750 65.76 66.05 69.48 48.01
7500 65.88 66.28 69.72 48.12
15000 66.01 66.53 69.99 48.24
18750 66.13 66.80 70.27 48.37
22500 66.26 67.06 70.56 48.49
30000 66.38 67.32 70.84 48.61
33750 66.51 67.58 71.11 48.73
37500 66.63 67.84 71.38 48.85
41250 66.76 68.09 71.66 48.98
45000 66.88 68.35 71.93 49.10
52500 67.01 68.61 72.20 49.22
60000 67.13 68.87 72.48 49.34
67500 67.25 69.13 72.75 51.78
75000 67.38 69.38 73.02 54.23
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Fig. 5. Classification delay for different models
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S5 Conclusion

The proposed model initially collects data samples from different sources and uses the
accuracy levels of classifying these samples for estimating efficient data collection rates.
These rates are used to optimize the performance of the Convolutional NeuralNetwork
(CNN), thereby assisting in the efficient estimation of different disease types and their
progression levels. Based on accuracy analysis, it can be observed that the proposed
model is able to improve classification accuracy which is due to the use of EHO &
1D CNN for classification, which assists in enhancing accuracy for clinical use cases.
Based on temporal accuracy analysis, it can be observed that the proposed model is
able to improve temporal classification accuracy which is due to the use of EHO for
adaptive data rate control & 1D CNN for classification, which assists in enhancing
temporal classification accuracy for clinical use cases. Based on delay analysis, it can be
observed that the proposed model is able to improve classification speed due to the use
of EHO for adaptive data rate control & 1D CNN which assists in enhancing the speed
of classification for clinical use cases. Based on this analysis, it can be observed that the
proposed model is useful for a wide variety of real-time clinical use cases. In future, the
performance of the proposed model must be validated on larger data samples, and can be
improved via integration of Transformer Models, Long-Short-Term Memory (LSTM)
Models, and Adversarial Networks, which will enhance temporal analysis performance
under different use cases.
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