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Abstract. This paper presents a set of industrial-grade text processing models
for Hungarian that achieve near state-of-the-art performance while balancing
resource efficiency and accuracy. Models have been implemented in the spaCy
framework, extending the HuSpaCy toolkit with several improvements to its
architecture. Compared to existing NLP tools for Hungarian, all of our pipelines
feature all basic text processing steps including tokenization, sentence-boundary
detection, part-of-speech tagging, morphological feature tagging, lemmatiza-
tion, dependency parsing and named entity recognition with high accuracy and
throughput. We thoroughly evaluated the proposed enhancements, compared the
pipelines with state-of-the-art tools and demonstrated the competitive perfor-
mance of the new models in all text preprocessing steps. All experiments are
reproducible and the pipelines are freely available under a permissive license.
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1 Introduction

Academic research in natural language processing has been dominated by end-to-end
approaches utilizing pre-trained large neural language models which are fine-tuned for
the particular applications. Although these deep learning solutions are highly accurate,
there is an important demand for human-readable output in real-world language pro-
cessing systems. Industrial applications are frequently fully or partially rule-based solu-
tions, as (sufficient) training data for a pure machine learning solution is not available
and each and every real-world application has its own requirements. Moreover, rule-
based components provide tight control over the behavior of the systems in contrast to
other approaches.

In this paper, we present improvements to a Hungarian text preprocessing toolkit
that achieve competitive accuracies compared to the state-of-the-art results in each text
processing step. An important industrial concern about large language models is the
computational cost, which is usually not worth the accuracy gain. Transformer-based
language models require far more computational resources than static word vectors,
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and their running costs are typically orders of magnitude higher. Furthermore, practical
NLP solutions using large language models often only outperform more lightweight
systems by a small margin.

In this work, we focus on text processing pipelines that are controllable, resource-
efficient and accurate. We train new word embeddings for cost-effective text processing
applications and we provide four different sized pipelines, including transformer-based
language models, which enable a trade-off between the running costs and accuracy for
practical applications. To make our pipelines easily controllable, we implement them in
the spaCy1 framework [9] by extending HuSpaCy [22] with new models.

2 Background

2.1 Specification for Language Processing Pipelines for Industrial Use

Text processing tools providing representation for hand-crafted rule construction should
consist of tokenization, sentence splitting, PoS tagging, lemmatization, dependency
parsing, named entity recognition and word embedding representation. These solutions
have to be accurate enough for real-world scenarios while they should be resource-
efficient at the same time. Last but not least, modern NLP applications are usually mul-
tilingual and should quickly transfer to a new language. This can be provided by relying
on international annotation standards and by the integration into multilingual toolkits.

2.2 Annotated Datasets for Preprocessing Hungarian Texts

According to Simon et al. [24], Hungarian is considered to be one of the best supported
languages for natural language processing. In 2004, the Szeged Corpus [4] was created,
comprising 1.2 million manually annotated words for part-of-speech tags, morphologi-
cal descriptions, and lemmata. Subsequently, these annotations were extended [5] with
dependency syntax annotations. In 2017, a small section of the corpus was manually
transcribed to be a part of the Universal Dependencies (UD) project [18]. Around the
same time, the entire corpus was automatically converted from the original codeset to
the universal part-of-speech and morphological descriptions [32].

Szeged NER [29], developed in 2006, was the first Hungarian named entity recog-
nition corpus, consisting of 200,000 words of business and criminal news. In recent
years, NYTK-NerKor [26] extended the possibilities of training and benchmarking
entity recognition systems for Hungarian with a one million word multi-domain cor-
pus.

2.3 Multilingual NLP Toolkits

Thanks to the UD project, it is now possible to easily construct multilingual NLP
pipelines. Among the most commonly utilized toolkits are UDPipe [28], Stanza [23],
UDify [12], Trankit [30] and spaCy.

1 https://spacy.io/.
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On the one hand, these systems exhibit a high degree of algorithmic diversity. They
can be classified into two distinct groups based on their utilization of neural networks.
UDPipe, spaCy and Stanza apply older, but faster architectures built on word embed-
dings employing convolutional and recurrent layers, respectively. On the contrary,
UDify and Trankit leverage transformer-based large language models, with the former
using multilingual BERT [6] while the latter utilizing XLM-RoBERTa-large [3].

On the other hand, these frameworks are typically limited by the fact that they rely
solely on the Universal Dependencies datasets, which may present a disadvantage in
languages such as Hungarian, which have large corpora incompatible with UD. Each
of the above-mentioned systems shares this limitation, moreover, spaCy does not offer
a Hungarian model at all, due to the restrictive license of the UD-Hungarian corpus.
Regarding named entity annotations, Stanza is the only tool supporting NER for Hun-
garian.

2.4 Hungarian Language Processing Tools

The landscape of the Hungarian text processing systems was similar to that of English
before the “industrial NLP revolution”. There were a number of standalone text analysis
tools [24] capable of performing individual text processing tasks, but they often did not
work well with each other.

There were only two Hungarian pipelines that try to serve industrial needs. One
of them, magyarlanc [33], was designed for industrial applications offering several
desirable features such as software quality, speed, memory efficiency, and customiz-
ability. However, despite being used in commercial applications in the real world, it has
not been maintained for several years and lacks integration with the Python ecosystem.
The other pipeline, called emtsv [11,25,31], aimed to integrate existing NLP toolkits
into a single application, but neither computational efficiency nor developer ergonomics
were the main goals of the project. Additionally, while magyarlanc natively uses the
universal morphosyntactic features, emtsv can only do this through conversion. Both
pipelines use dependency annotation that is incompatible with Universal Dependen-
cies, furthermore, none of them can utilize word embeddings or large language models,
which have become increasingly important in recent years.

In contrast, the development of HuSpaCy placed emphasis not only on accuracy,
but also on software ergonomics, while also adhering to the international standards
established by Nivre et al. [18]. Moreover, it is built on spaCy, enabling users to access
its full functionality with ease. One significant drawback of this tool is the lack of
precise annotations for lemmata, entities and dependencies syntax.

To fulfill the industrial requirements of text processing pipelines, this work is built
on the Universal Dependencies annotation schema and our models are implemented in
spaCy by extending HuSpaCy’s text processing model. The detailed documentation,
intuitive API, high speed and accuracy of these tools make them an optimal choice for
building high-performing NLP models. Additionally, HuSpaCy utilizes non UD com-
patible corpora as well, which allows for a comprehensive analysis of Hungarian texts.
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3 Methods

3.1 HuSpaCy’s Internals

HuSpaCy’s main strength lies in the clever usage of available Hungarian linguistic
resources and its multi-task learning capabilities inherited from spaCy. Its machine
learning approach can be summarized as “embed, encode, attend, predict” shown in
Fig. 1 and detailed by [10,22]. Tokens are first embedded through the combination of
lexical attributes and word vectors, then context encoding is performed by stacked CNN
[13] layers2. Finally, task specific layers are used parallelly in a multi-task learning
setup.

toki-2

toki-1

toki

toki+1

toki+2

E
N

C
O

D
E

Sent

Token

PoS

Morph.

Feat.

Dep.

NER

Lemma

PREDICT

PREDICT

PREDICT

PREDICT

PREDICT

PREDICT

PREDICT

Tagger

TransitionBasedParser

EMBED

Maxout
Stacked CNN

+ residual connections

Tok2Vec

Word vectors

Word vectors

Word vectors

Word vectors

Word vectors Lexical attributes

Lexical attributes

Lexical attributes

Lexical attributes

Lexical attributes

EMBED

EMBED

EMBED

EMBED

A
T

T
E

N
D

Fig. 1. The “embed, encode, attend, predict” architecture of spaCy

Orosz et al. [22] used a three step approach for fully utilizing annotated Hungar-
ian datasets. First, they pre-train the tagger, the lemmatizer and the sentence boundary
detection components on a silver standard UD annotated corpus (cf. [32]). Then, the
Tok2Vec layers of this model are reused by both the NER and the parsing compo-
nents: the dependency parser and the morphosyntactic taggers are fine-tuned on the
UD-Hungarian dataset, the lemmatizer is trained on the entire Szeged Corpus, while
the entity recognizer is further trained on the combination of the NYTK-NerKor and
the Szeged NER datasets.

3.2 Improving on the Underlying Language Models

HuSpaCy’ s model is built on word2vec [14] word embeddings, which are known to
have limitations in providing meaningful representations for out-of-vocabulary words.

2 These steps are usually referred to as the Tok2Vec layers.
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This is particularly problematic for morphology-related tasks in agglutinative lan-
guages. To enhance this simple approach, a more fine-grained method that uses sub-
word embeddings can be employed. fastText [2] is a widely-used extension of
word2vec that learns sub-token embeddings. In this study, we utilized floret3

which is a spaCy-compatible fork of fastText. To train new word vectors, we used
the Hungarian Webcorpus 2.0 [17]. Two sets of word embeddings were constructed: a
100-dimensional and a 300-dimensional one.

In recent years, there has been a growing interest in transformer-based large lan-
guage models (LLM), as evidenced by their high performance in text processing mod-
els (e.g. [8,17]). With the advent of spaCy’ s native support for such architectures and
the availability of pre-trained language models for Hungarian, it is now possible to train
transformer-based NLP pipelines for Hungarian. Our research is based on two widely
used LLMs that provide support for Hungarian. One of these is huBERT [17], which
has a BERT-like architecture and was trained using monolingual data. The other model
is XLM-RoBERTa-large, which has a much larger capacity compared to the former
model and was trained on multilingual corpora.

3.3 Pipeline Component Enhancements

In addition to the use of more powerful language models, we propose fundamen-
tal changes to the lemmatization and dependency parsing models, as well as minor
improvements to the entity recognizer.

HuSpaCy’ s lemmatizer has been replaced by a new edit-tree-based architecture,
recently available in the spaCy framework4. This new model builds on the foundations
laid out by Müller et al. [15] (called the Lemming model), but has minor differences
from it. On the one hand, this reimplementation fully utilizes the framework’s multi-
task learning capabilities, which means that the lemmatizer is not only co-trained with
PoS and morphological tagging, but also with sentence boundary detection. On the
other hand, spaCy’ s version lacks standard support for morphological lexicons which
Lemming benefited from.

We have improved this model in two steps. 1. A simple dictionary learning method
is put in place to memorize frequent (token, tag, lemma) triplets of the training data
which are then used at prediction time to retrieve the roots of words. 2. A common
weakness of Hungarian lemmatization methods is addressed. Computing the lemmata
of sentence-starting tokens can be challenging for non-proper nouns, as their roots are
always lowercase. Thus, we force the model to use the true casing of such words. For
example, when computing the root of the sentence starting Ezzel ‘with this’ token, our
method checks its PoS tag (that is ideally PRON) first, so that it can use the lowercase
wordform for generating and looking up edit-trees.

Moving on, the dependency syntax annotation component is replaced with a model
that has higher accuracy for many languages. Although spaCy’ s built-in transition-
based parser [10] has high throughput, it falls short on providing accurate predictions.
Graph-based architectures are known to have good performance for dependency pars-
ing (e.g. [1]), making such methods good enhancement candidates. Furthermore, a

3 https://explosion.ai/blog/floret-vectors.
4 https://explosion.ai/blog/edit-tree-lemmatizer.

https://explosion.ai/blog/floret-vectors
https://explosion.ai/blog/edit-tree-lemmatizer


Advancing Hungarian Text Processing with HuSpaCy 63

spaCy-compatible implementation of Dozat and Manning’s model [7] (referred to as
the Biaffine parser) has recently been made available, thus we could easily utilize it in
our experiments.

Finally, the named entity recognizer has been fine-tuned to provide more accurate
entity annotations. This was primarily achieved by using beam-search in addition to the
transition-based NER module.

4 Experiments and Results

This section presents the results of several experiments that demonstrate the improve-
ments of our changes and show competitive results compared to well-established base-
lines. We evaluated pipelines developed on datasets used by the creators of HuSpaCy:
the Hungarian part of the Universal Dependencies corpus5 was utilized to benchmark
the sentence boundary detector, the lemmatizer, the PoS and morphological taggers,
and the dependency parser, while the entity recognizer is benchmarked on the combi-
nation of the NYTK-NerKor and the Szeged NER corpora (similar to [22] and [27]). To
account for the instability of spaCy’s training process we report the maximum result of
three independent runs.

4.1 Evaluation of Architecture Improvements

The lemmatization accuracy of the original model has been greatly improved through
a number of steps discussed in Sect. 3.3. As evidenced in Table 1, incorporation of the
new neural architecture along with sub-word embeddings produced significant improve-
ments. Furthermore, changing the default behavior of the edit-tree lemmatizer by allow-
ing it to evaluate more than one candidate (see the row topk=3) also resulted in a
slightly better performance. In addition, the integration of true-casing led to a con-
siderable improvement, and the use of lemma dictionaries also significantly improved
lemmatization scores.

Table 1. Lemmatization accuracy on the UD-Hungarian test set of different ablation settings.
Rows marked with a “+” indicate a new feature added on top of the previous ones. topk is a
hyperparameter of the lemmatization model controlling the number of edit-trees considered to be
evaluated.

Lemma Accuracy

HuSpaCy 95.53%

+ Edit-tree lemmatizer 95.90%

+ floret 300d vectors 96.76%

+ topk=3 97.01%

+ True-casing 97.30%

+ Learned dictionary 97.58%

5 Experiments are performed at the v2.10 revision.



64 G. Orosz et al.

Entity recognition tasks often encounter a challenge in the form of a considerable
number of out-of-vocabulary tokens, leading to decreased performance. However, the
utilization of floret vectors has proven to be effective in addressing this issue, as
indicated by the results in Table 2. Additionally, the use of beam search allowed the
model to take prediction history into account, which slightly improved its efficiency.

Table 2. Evaluation of the entity recognition model improvements on the combination of the
Szeged NER and NYTK-NerKor corpora. The rows starting with “+” signify the inclusion of a
new feature in addition to the existing ones.

NER F1-score

HuSpaCy 83.68

+ floret 300d vectors 85.53

+ Beam search 85.99

The results in Table 3 indicate that the improved text representations and the new
parsing architecture offer substantial improvements over HuSpaCy’ s outcomes. How-
ever, it is worth noting that spaCy’s CNN-based base model is not fully compatible
with the Biaffine parser’s architecture. Therefore, parsing improvements were bench-
marked on top of a transformer-based encoder architecture using huBERT. The results
show that the use of floret vectors is beneficial to predict morphosyntactic char-
acteristics and dependency relations, while the use of huBERT-based text representa-
tions substantially improves performance across all subtasks. Furthermore, the Biaffine
parser significantly outperforms its transition-based counterpart, as evidenced by its
better attachment scores.

Table 3. Evaluation of text parsing improvements on the UD-Hungarian test set. “+” indicate a
new feature added on top of the existing ones.

PoS Acc. Morph. Acc. UAS LAS

HuSpaCy 96.58% 93.23% 79.39 74.22

HuSpaCy + floret 300d vectors 96.55% 93.93% 80.36 74.89

HuSpaCy + huBERT 98.10% 96.97% 89.95 83.94

+ Biaffine parser 98.10% 96.97% 90.31 87.23

4.2 Comparison with the State-of-the-Art

In addition to parsing and tagging correctness, resource consumption is an important
consideration for industrial NLP applications. Therefore, following the approach of
Orosz et al. [22] we conducted a benchmark study to compare both the accuracy and
memory usage as well as the throughput of our models with text processing tools avail-
able for Hungarian.
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Table 4. Text parsing accuracy of the novel pipelines compared to HuSpaCy, Stanza, UDify,
Trankit and emtsv. Results for non-comparable models are shown in italics.

Sent. F1-score PoS Acc. Morph. Acc. Lemma Acc. UAS LAS NER F1-score

emtsv 98.11 89.19% 87.95% 96.16% – – 92.99

Trankit 98.00 97.49% 95.23% 94.45% 91.31 87.78 –

UDify – 96.15% 90.54% 88.70% 88.03 83.92 –

Stanza 97.77 96.12% 93.58% 94.68% 84.05 78.75 83.75

HuSpaCy 97.54 96.58% 93.23% 95.53% 79.39 74.22 83.68

md 97.88 96.26% 93.29% 97.38% 79.25 73.99 85.35

lg 98.33 96.91% 93.93% 97.58% 79.75 74.78 85.99

trf 99.33 98.10% 96.97% 98.79% 90.31 87.23 91.35

trf xl 99.67 97.79% 96.53% 98.90% 90.22 86.67 91.84

Table 5. Resource usage (All benchmarks are run on the same environment having AMD EPYC
7F72 CPUs and NVIDIA A100 GPUs) of the new models and state-of-the-art of text processing
tools available for Hungarian. Throughput is measured as the average number of processed tokens
per second, while memory usage columns records the peak value of each tool.

Throughput Memory Usage (GB)

CPU GPU

emtsv 113 – 3.9

Trankit 434 2119 3.7

UDify 129 475 3.2

Stanza 30 395 5.3

HuSpaCy 1525 6697 3.5

md 2652 3195 1.4

lg 847 3128 3.2

trf 273 2605 4.8

trf xl 82 2353 18.9

First of all, an important result of this study is a base model (referred to as lg),
which achieves a good balance between accuracy and resource usage as seen in Tables 4
and 5. This pipeline is built on top of the 300d floret vectors and incorporates all
the enhancements described above, except for the new parser. Evaluation data demon-
strates that the lg pipeline consistently outperforms Stanza in all tasks except syntactic
dependency relation prediction, which can be explained by the superior parsing model
of the latter tool.

We present the results of a medium-sized model (md) as well that is a reduced ver-
sion of the lg pipeline utilizing the smaller (100d) word embeddings. Surprisingly, the
md pipeline delivers performance similar to that of the larger model. Furthermore, the
medium-sized model achieves scores comparable to or higher than those of HuSpaCy,
despite requiring half the memory and exhibiting much higher throughput on CPU.
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Transformer-based pipelines using the graph based dependency parser have the
highest scores across all language analysis tasks. Remarkably, despite its smaller capac-
ity, the model based on huBERT (trf) achieves the highest attachment scores for
dependency parsing, while the one using XLM-RoBERTa-large (trf xl) provides
slightly more accurate PoS tags and named entities.

It is important to consider that not all third-party pipelines in Table 4 are directly
comparable to our results, due to differences in the versions of the UD-Hungarian
dataset used to train and evaluate their models. To ensure a fair comparison, Stanza
and UDify have been retrained. On the other hand, we obtained the results of Trankit
from [30] since it would be a demanding task to fine-tune this model. Furthermore, the
results of emtsv’ s text parsing components [19–21] cannot be deemed reliable either
(cf. [22]), since its components use a different train-test split of the Szeged Corpus.
However, this tool’s entity recognition module (emBERT [16]) was evaluated by Simon
et al. [27] using the same settings as in our paper, thus we rely on their assessment.
Additionally, state-of-the-art results are also shown in Table 4. With regard to highest
dependency parsing scores, the results of the multilingual Trankit system are produced
by a parsing model similar to that of ours. As for named entity recognition, emBERT
attains the best F1 scores by utilizing a Viterbi encoder that eliminates invalid label
sequences from the outputs of the underlying model.

Regarding computational requirements, Table 5 presents findings that demonstrate
how floret embeddings can effectively decrease the memory usage of models with-
out compromising their accuracy and throughput. However, it is apparent that enhanc-
ing pipeline accuracy frequently results in slower processing speed, as can be observed
from the lg, trf and trf xl models. Additionally, our tests also showed that most
of the readily available NLP pipelines are not adequately optimized to handle large
workloads, which is evident from their low throughput values.

5 Conclusion

This paper has introduced new industrial-grade text processing pipelines for Hungar-
ian and presented a thorough evaluation showing their (close to) state-of-the-art per-
formance. We have shown that new architectures for lemmatization and dependency
parsing and the use of improved text representation models significantly improve the
accuracy of HuSpaCy. The presented models have not only demonstrated high perfor-
mance in all text preprocessing steps, but the resource consumption of three of our
models’ (md, lg, trf) makes them suitable for solving practical problems. All of our
experiments are reproducible and the models are freely available under a permissive
license.

For future work, we consider the following areas of improvement. 1. Transformer-
based pipelines are optimized for accuracy but this could limit their usability due to
reduced computational efficiency. We would like to investigate optimizing their size to
enhance their resource usage. 2. We would like to include more silver standard data to
further improve the parsing and tagging scores, as the corpus used to train and eval-
uate text parsing components is limited in size. 3. Our models are mostly trained on
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news-related corpora, which makes user-generated text processing a difficult task. In
order to address this challenge, we intend to integrate automatic data augmentation into
the training process as a solution.
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Konferencia (2022)

23. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural language
processing toolkit for many human languages. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics: System Demonstrations (2020)

24. Simon, E., Lendvai, P., Németh, G., Olaszy, G., Vicsi, K.: A Magyar Nyelv a Digitális Kor-
ban - the Hungarian Language in the Digital Age. Georg Rehm and Hans Uszkoreit (Series
Editors): META-NET White Paper Series. Springer, Heidelberg (2012)
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28. Straka, M.: UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In: Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pp. 197–207. Association for Computational Linguistics, Brussels (2018)
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