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Abstract. A new approach to speaker diarization (SD) suitable for
real-time processing of streamed data is presented in this work. It uti-
lizes a modified residual network with squeeze-and-excitation blocks (SE-
ResNet-34) for extraction of speaker embeddings. These speaker embed-
dings are calculated in an optimized way by using cached buffers and are
subsequently used for voice activity detection (VAD) as well as for block-
online k-means clustering with a look-ahead mechanism. All these pro-
cessing steps are first evaluated separately on a development set compiled
from recordings of Czech broadcast programs. The whole scheme is then
compared to an offline reference approach on various speech databases
that are publicly available and include data in various languages. On
this data, our method yields results similar to the reference system while
operating on a CPU with a low real-time factor (RTF) below 0.1 and a
latency of around 5.5 s.

Keywords: Online speaker diarization · speaker embeddings ·
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1 Introduction

Speaker diarization (SD) is a process that answers the question “who spoke
when” in a multi-speaker environment. Basically, two main possibilities exist
for performing this task: in a) offline or b) streaming (online) mode. The input
to the former (classic) scenario is usually formed by one speech recording. Its
entire content can be processed without any strict limitations on computational
demands, e.g., multiple passes through the data can be performed.

But today’s world is accelerating; the data processing and information mining
domains face a new challenge when their users ask for very quick results and
analysis, ideally during the data flow. The increasing amount of data is organized
into streams, which must be processed continuously.

Media monitoring is one of the typical applications where streamed data is
processed. An example of such an application is our cloud platform for real-time
transcription of TV and radio stations in several languages, including Czech,
Slovak, Polish, and other predominantly Slavic languages.
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In this case, a diarization system allowing for real-time processing of the
data streams must be employed. This system has to operate differently from its
offline counterpart: it must be able to take in a sequence (stream) of frames on its
input and provide a stream of speaker tags on its output. In consequence, there
are additional limitations regarding namely the complexity of and computation
demands on the used approach. Another important factor is latency: systems
with a latency of around several seconds are considered to be online. In this
case, there is an additional limitation on the context that can be processed in
a given time step. Moreover, while offline SD can be improved by determining
the number of speakers appearing in the data [2], this option is not available in
most of our streamed scenarios (see Sect. 2).

In this work, we propose a new SD approach suitable for the above-mentioned
real-time applications. Our approach processes the input data stream and pro-
duces a sequence of speaker embeddings on its output using SE-ResNet architec-
ture optimized for online processing. These vectors are then filtered by a built-in
voice activity detection module based on a single-layer binary classifier, and
the remaining speech vectors are smoothed and clustered by the block-online
k-means algorithm with a look-ahead mechanism.

At first, we evaluate and analyze the performance of individual phases of our
method on a development set compiled from Czech TV/R recordings. Given all
findings, this method is further evaluated on several publicly available datasets,
including broadcast recordings in many languages.

2 Related Work

The early online SD approaches utilized hidden Markov models or Gaussian mix-
ture models [11,34], and features such as the speaker factors [4]. More recently,
the features used for online SD required a more robust speaker representation.
Therefore, the i-vectors based on the total variability factor analysis began to
be used [9,19,34].

These approaches were then surpassed by speaker embeddings produced by
deep neural network architectures. These include d-vectors extracted mostly by
long short-term memory recurrent neural networks [30,35] and x-vectors from
the time-delay neural networks (TDNNs)[10].

The use of speaker embedding enables the option to perform diarization using
various clustering algorithms. It is possible to use methods such as k-means
[9,30], online naive clustering [30], or VBx algorithm with core samples selection
[33]. Alternatively, a supervised model such as UIS-RNN [10,35] generating a
sequence of speaker indices can be used instead of the conventional clustering.
In addition to the aforementioned clustering-based diarization methods, recent
work [31] has utilized a transformer transducer for detecting a change in speaker,
extracting embeddings to represent speaker turns and clustering them using
spectral clustering.

There has been a growing interest in end-to-end online diarization (EEND)
approaches instead of the modular structure in recent years. Recent models are
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based on an x-vector extractor with incremental clustering [6], encoder-decoder-
attractor-EEND architecture with either a speaker-tracing buffer [32] or an incre-
mental transformer encoder [13]. These techniques can handle overlapped speech
and have overcome the limitation of having a variable number of speakers. The
EEND approach is currently limited by the amount of data from the target
domain needed for training, and its performance gets significantly lower with a
larger number of speakers.

3 Proposed Approach

Our method utilizes the optimized SE-ResNet-34 [14] architecture for the extrac-
tion of speaker embeddings. These embeddings are then used for VAD as well as
for clustering. These three steps are all described in the following subsections.

3.1 Speaker Embedding Extraction

We introduce two key optimizations to the SE-ResNet-34 topology (see also
Table 1). Firstly, the SE-blocks in the model incorporate buffers consisting of
the last two vectors from the previously processed data. These buffers are con-
catenated to the input at the beginning of the subsequent time step. Secondly, we
apply the stride operation even in the first set of SE-blocks, exclusively affecting
the feature dimension while keeping the time dimension unchanged. A combina-
tion of both of these optimizations allows us to calculate one speaker embedding
for every feature vector from the input stream with an RTF factor lower by
an order of magnitude (see also Sect. 3.4). These embeddings are produced per
block of the input signal, and their values are the same as if they were calculated
within the conventional offline scenario.

The number of the SE-blocks is the same as in the ResNet-34 architecture,
and their utilization adds global context information by weighting the channels
of feature maps. Convolution layers are conventionally followed by batch normal-
ization and ReLU activation function. In contrast to the SE-ResNet-34, we do
not utilize the attention mechanism because it does not yield any performance
gain on our development set.

After the optimized SE-blocks, local pooling is used to compute the means
and variations of the frames, with a context of t ± 20 frames. These features are
fed to a fully connected layer from which the speaker embeddings are extracted.
The model is trained using the AM-Softmax loss [29] to distinguish between N
speakers. As input features, a 256-point log magnitude spectrogram is computed
from every frame of the input signal. These spectrograms are locally mean-
normalized (LFMN) over a sliding window with the context of t ± 40 frames.
The length of each frame is 25 ms with a shift of 12.5 ms.
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Table 1. Structure of the proposed optimized SE-ResNet extractor. T stands for the
input size (2 × 93 + 1 in our case).

Stage Kernel size Stride Output Size

LFMN – – 256 × T × 1

Cached Conv 3 × 3 × 32 1 256 × T × 32

Cached Res1 3 × 3 × 32 (4, 1) 64 × T × 32

Cached Res2 3 × 3 × 64 (4, 1) 16 × T × 64

Cached Res3 3 × 3 × 128 (4, 1) 4 × T × 128

Cached Res4 3 × 3 × 256 (4, 1) 1 × T × 256

Pooling – – T × 512

Linear – – T × 512

3.2 Voice Activity Detection

The proposed approach incorporates a computationally undemanding mecha-
nism for voice activity detection. This method utilizes a simple binary classifier
with one fully connected layer. This network is trained using the binary cross-
entropy loss function. The input to the classifier is formed by a single speaker
embedding without any additional context, and the output is smoothed with the
aid of moving average smoothing.

The key point here is that we utilize one additional speaker representing a
non-speech class during training of the above-mentioned embedding extractor.
The embeddings representing the non-speech class then form one cluster, and the
corresponding segments of the input signal can be filtered out using a single-layer
classifier. Experimental evaluation of the described VAD module is presented in
Sect. 5.3.

3.3 Block-Online K-Means Clustering with Look-Ahead

We apply a block-online k-means algorithm to cluster speakers using the speaker
embeddings extracted by the optimized SE-ResNet architecture. We employ
cosine distance in the clustering process as the AM-Softmax (used within the
training of the embedding extractor) computes speaker probabilities based on
the same distance measure.

To avoid high sensitivity of the clustering, first, the embeddings are smoothed
with the aid of moving average within the context of t ± 40. After smoothing,
conventional k-means clustering is performed on a part of the input stream. Two
parameters determine the size of this part: block size and look-ahead size. The
block size corresponds to the number of vectors to which the speaker tags will be
assigned in a given step of the diarization process, while look-ahead size states
how many additional future (non-causal) vectors are used within the clustering
process to improve its accuracy. The size of the data used for clustering is thus



180 F. Kynych et al.

the block size plus look-ahead size. Note that each of the resulting clusters is
represented by its centroid.

In the next step, we take into account only the resulting clusters whose num-
bers of associated vectors (embeddings) are higher than a defined threshold T1.
For each of these clusters, we compute its cosine distance from all of the existing
centroids. If the distance to the closest existing centroid cclosest is smaller than
a threshold T2 then the existing centroid is updated using linear interpolation
with parameter α as cclosest = (1 − α)cclosest + αcnew. The remaining clusters
with distances larger than T2 represent new speakers.

The initial clusters are determined by a step size parameter. For example,
if this value is set to 150, then every 150th embedding in the input sequence
forms an initial cluster. Finally, all vectors within the given block (determined
by the block size) are assigned the appropriate speaker tags according to their
affiliations with individual existing clusters.

3.4 Latency and Real-Time Factor

The latency of the proposed clustering is mainly given by the block size and
by the non-causal look-ahead mechanism. For example, the values of these two
parameters that were established during the development process correspond to
a latency value of 4.4 s. The next source of latency is the non-causal part of the
context used by the embedding extractor. Its size is t± 93 frames, which creates
an extraction latency of 1.17 s. The total latency of the proposed diarization
scheme is thus around 5.5 s.

At the same time, it operates with an RTF value of around 0.06 on a CPU
(measured on Intel R© CoreTM i7 CPU 9700K CPU @ 3.60 GHz using one thread)
while the original SE-ResNet-34 achieves RTF around 1.1 on NVIDIA R© GeForce
GTX 1080 Ti. The RTF is computed as the ratio of processing time to real-time
duration.

4 Experimental Setup

4.1 Development Data

A dataset covering 12.7 h of broadcast data in the Czech language is used for
development purposes. It consists of 51 files with recordings containing a min-
imum of 2 speakers and a maximum of 15 speakers (4.2 speakers on average).
These recordings contain both clean speech segments and segments with music,
background noise, jingles, and advertisements.

4.2 Evaluation Metrics

The equal error rate (EER) is employed for a comparison of different speaker
embedding extractors in the speaker verification task. The diarization accuracy
of our system on the development data is measured by word-level diarization
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error rate (WDER). The motivation for using this metric stems from the fact
that it is more important for our target application to assign the word to the
correct speaker than to retrieve the exact time of the speaker change point.
WDER represents the percentage of words with the correct speaker assigned.

Moreover, in Sect. 6, the standard diarization error rate (DER) is used for
the comparison on other datasets that are publicly available. The DER consists
of false alarm, missed speech, and speaker confusion and is computed using
version 1.1.0 of the dscore1 tool without any forgiveness collar. It also includes
overlapped speech segments.

4.3 Reference System for Diarization

The diarization system is based on the Speechbrain (version 0.5.13) approach
[7], which utilizes the ECAPA-TDNN [8] for embedding extraction, followed
by spectral clustering. The embedding extractor uses 80-dimensional log Mel
filterbank energies from the recording and mean normalizes them in the current
segment. These features are extracted with a sliding window with a length of 1.5 s
and a 0.5-second shift. After the embedding extraction, we use the unnormalized
spectral clustering. The dataset used for training the ECAPA-TDNN model is
the same as for our approach (see Sect. 5.1).

5 Experimental Evaluation

5.1 Speaker Embedding Extraction

In the first experiment, we compare the results on the speaker verification task
of the original SE-ResNet-34 architecture, the proposed optimized SE-ResNet
topology, and the ECAPA-TDNN reference system. All of these systems have
been trained using the same data. This fact allows us to compare them directly.

The training data consists of VoxCeleb2 [5], “train-clean-360” subset of Lib-
riSpeech [24], Czech microphone recordings, and part of CHiME-4 dataset [28]
for the non-speech class. The LibriSpeech and Czech data have also been aug-
mented with a combination of noise and reverberation, similar to that described
in [21]. During training, the audio was randomly augmented with the MUSAN
corpus [26] and with room impulse response simulations of small and medium
rooms from [15]. A total number of 7,838 speakers have been used for training,
where one additional class has represented noises.

The SE-ResNet model has been trained within 12 epochs using the AdamW
optimizer with a learning rate of 0.003 and default torch parameters. We have
employed the step learning rate decay with a 0.1 gamma value and lowered the
learning rate every 5 epochs. The margin has been set to 0.3 and the scale factor
to 15 in the AM-Softmax.

The datasets used for the evaluation represent the cleaned VoxCeleb1-E
(extended), VoxCeleb1-H (hard) [23], TIMIT [12] and its augmented versions.
1 https://github.com/nryant/dscore.

https://github.com/nryant/dscore
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The applied augmentation strategies on TIMIT gradually increase the complex-
ity of the speaker verification task. The original TIMIT version contains only
noiseless signals. The Anechoic variant then includes anechoic and reverberated
signals. These two augmentations are described in depth in [21]. The next Codecs
version is described in [22], where the dataset is copied seven times, and different
codecs are used for the augmentation of each copy. The last and most difficult
Noisy version combines reverberation and noise for augmentation as proposed
in [20].

The obtained results are compared in Table 2. The proposed online SE-
ResNet architecture yields similar results as the original offline ResNet-34 topol-
ogy and the reference ECAPA-TDNN system for the original TIMIT and its
Anechoic version. At the same time, it has worse performance on both VoxCeleb
datasets and TIMIT with more difficult augmentations, which is caused by its
lower number of parameters.

Table 2. EER [%] for different architectures yielded in the speaker verification task
on the VoxCeleb, TIMIT and its several augmented versions.

Datasets SE-ResNet-34 proposed ECAPA-TDNN

offline online offline

VoxCeleb1-E 1.61 2.67 1.64

VoxCeleb1-H 3.14 4.34 3.12

orig. TIMIT 0.54 0.16 0.22

Anechoic 0.19 0.27 0.26

Codecs 0.58 1.53 0.52

Noisy 1.48 3.28 1.51

5.2 Block-Online Clustering

For the clustering, we have set α to 0.1 and T1 to 149. The threshold T2 for
merging clusters has been 0.5. As mentioned in Sect. 3.3, the step size parameter
for cluster initialization has been 150. All these parameters have been found on
the development set in a series of experiments not presented in this paper.

Given these parameters, we have further investigated the effect of different
block and look-ahead sizes as both of these parameters are important with regard
to the latency. The block size has varied from 100 to 200 speaker embeddings
and the look-ahead size from 150 to 250. We have also performed experiments
with no look-ahead.

The obtained results (see Table 3) show that not using the look-ahead mech-
anism considerably worsens the performance of our system. The lowest WDER
is achieved for the block size of 150 and the look-ahead size of 200. Both these
values cause a latency of 4.4 s.
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Table 3. WDER [%] on Czech broadcast recordings for different values of block size
and look-ahead size.

Block size Look-ahead size WDER [%]

100 200 3.7

250 4.1

150 0 12.3

150 4.9

200 2.8

250 3.3

200 150 5.9

200 3.7

5.3 Voice Activity Detection

The last experiment performed on the development set investigates the use of the
VAD module with a binary classifier. For its training, 30 h of clean speech, 30 h of
music, and 30 h of artificially mixed speech and music/noise recordings accord-
ing to randomly chosen signal-to-noise ratio (SNR) have been used. All these
recordings have also been concatenated in a random order to contain speech/non-
speech transitions. Music recordings and the segments with SNR values smaller
than 0 dB have been labeled as non-speech and the rest as speech.

The obtained results are presented in Table 4. Here, the VAD module without
any smoothing slightly increases WDER from 2.8% to 2.9%. The reason is that
the output decisions are too sensitive to noise in this case, and the module
produces a lot of short speech segments. On the contrary, when VAD decisions
are smoothed using the moving average filter with the context of 50 frames, the
value of WDER is considerably decreased to 2.3%. Finally, it should also be noted
that smoothing does not increase the latency of the whole diarization scheme.
The reason is that it is not applied on the last 50 frames of the look-ahead data
block during the clustering process.

Table 4. WDER [%] on Czech broadcast recordings with and without the VAD
module.

Architecture VAD WDER [%]

SE-ResNet none 2.8

proposed 2.9

proposed + MA 2.3
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6 Results on other Datasets

The last section presents a comparison with the offline ECAPA-TDNN reference
system. For this purpose, several broadcast datasets have been selected. The
COST278 [27] database contains broadcast news in eleven European languages.
The RTVE2018 [17] and RTVE2020 [18] databases contain recordings of various
Spanish TV shows, including broadcast news, live magazines, quiz shows, or
documentary series. Last, the RUNDKAST [1] is compiled from recordings of
Norwegian broadcast news.

The results of the performed experiments recorded in Table 5 show that our
optimized SE-ResNet system yields lower DER on the COST278, RUNDKAST,
and RTVE2020 databases (e.g., 16.0% vs. 21.9% on RTVE2020 with VAD) and
achieves slightly worse performance on the RTVE2018 dataset (i.e., 9.2% vs.
8.8% with applied VAD). These results show that our proposed architecture
allows us to perform SD in streamed data with limited context while yielding
performance comparable to the ECAPA-TDNN reference system.

Table 5. DER [%] results of the offline ECAPA-TDNN architecture and our proposed
SE-ResNet online architecture on various datasets.

Dataset VAD ECAPA-TDNN proposed

offline online

COST278 proposed 14.2 13.4

ground-truth 12.6 10.7

RTVE2018 proposed 11.0 11.7

ground-truth 8.8 9.2

RTVE2020 proposed 24.0 18.8

ground-truth 21.9 16.0

RUNDKAST proposed 13.4 13.2

ground-truth 10.1 9.7

Finally, we have evaluated the proposed system also on datasets that are a bit
far from our target domain but widely used in the community: the AMI meeting
corpus [3] and DIHARD II [25] dataset. In the former case, the AMI full Mix-
Headset evaluation protocol proposed in [16] is employed. The AMI evaluation
uses the same clustering parameters as the previous experiments. For DIHARD
II, the clustering context is smaller with block size set to 100, look-ahead to 100,
and T2 threshold to 0.35. These values have been found on the development set,
resulting in a smaller latency of around 3.6 s.

The results in Table 6 show that our method achieves results comparable to
other existing methods, but there is room for further improvement. This holds,
namely in the processing of segments containing overlapping speech, which were
the source of most of the errors and do not occur to such a large extent in our
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target broadcast data. However, our diarization system has the advantage of
requiring only one CPU core, while other systems require more computational
resources, such as multiple CPU cores or GPUs. For example, the most powerful
system [33] achieves an RTF of 0.1 using an NVIDIA R© Geforce RTX 3090 GPU.

Table 6. DER [%] results on AMI and DIHARD II test sets.

Dataset System

Proposed [10] [33] [6] [32]

AMI 21.2 – 19.0 27.5 –

DIHARD II 28.2 27.3 23.1 34.1 25.8

7 Conclusions

This work has focused on SD in streamed data. For this purpose, a new app-
roach has been proposed. It consists of three consecutive phases. In the first one,
speaker embeddings are extracted using SE-ResNet architecture, which is opti-
mized by adding buffers and limited application of the stride. Then the VAD is
applied, which utilizes the extracted embeddings and filters them using a single-
layer binary classifier, whose output decisions are smoothed. The third (last)
step makes use of block-online k-means clustering with a built-in look-ahead
mechanism.

We compared our diarization scheme with a recent offline ECAPA-TDNN-
based reference system on various broadcast datasets as well as with other online
approaches on the out of domain but widely used AMI and DIHARD II datasets.
All of the achieved results have demonstrated that the proposed method yields
solid results. At the same time, it is capable of processing the streamed data
just on a CPU with a low real-time factor below 0.1 and with a total latency of
around 5.5 s.
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