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This book of proceedings is dedicated to the
memory of Tino Haderlein (1974–2023). A
long-time member of the TSD community, he
was a devoted scientist, skilled researcher,
selfless and dedicated colleague, reliable and
conscientious TSD Program Committee member,
but first of all, a good-hearted, kind, and lovely
fellow. We will always miss you, Tino!



Preface

The annual International Conference on Text, Speech and Dialogue (TSD), which
emerged in 1998, constitutes a recognized platform for presenting and discussing state-
of-the-art technology and recent achievements in the computer processing of natural
language. It has become a broad interdisciplinary forum, interweaving the topics of
speech technology and language processing. The conference attracts researchers not
only from Central and Eastern Europe but also from other parts of the world. Indeed,
one of its goals has always been bringing together NLP researchers with various interests
from different parts of the world and promoting their cooperation. One of the ambitions
of the conference is, as its name suggests, not only to deal with dialogue systems but
also to improve dialogue among researchers in areas of NLP, i.e., among the “text” and
the “speech” and the “dialogue” people.

After several years of touring around Central Europe, TSD 2023 returned to Plzeň—
one of its original home towns (that is because the two co-organizing institutions,
Masaryk University and the University of West Bohemia, reside in Brno and Plzeň,
respectively). Unfortunately, this year of the conference is again not entirely easy-going,
not void of problems thanks to what is going on in the world. This time, no disease is
raging; however, another—geopolitical—disaster affected the preparation and the pur-
suance of the conference. After a blatantly condemnable Russian act of international
violence against Ukraine in February 2022, the TSD conference, which has always
aimed to connect the East and the West, has received another bothersome blow of fate.
The TSD Programme Committee consists of reputable and distinguished scientists from
both Ukraine and Russia and Russian scientists submitted their papers to the conference.
Needless to say, there were calls for immediate actions against the Russian members
of the Programme Committee and implicit rejection of all submitted papers written
by Russians. The TSD Programme Committee and the TSD Organizing Committee,
of course, profoundly deplore Putin’s unprecedented aggression against the sovereign
state of Ukraine and its nation. However, we believe that science is far above politics,
that international scientific cooperation is always the best way to understanding among
nations, and that peace always comes from the brave hearts of good people on both sides
of the border. That is why we kept the status quo and did not take any rash actions, and
trusted our instincts about the people we know personally as the good ones.

In order to have a pleasant and calm place shielded from the heavinesses and bur-
dens of contemporary life, we chose the cosy and suitably situated Primavera Hotel &
CongressCentre in thePlzeň suburb Černice as theTSD2023venue.The conference took
place on 4–6 September 2023, and its schedule and its topics were again co-ordinated
with the Interspeech conference—TSD 2023 was listed as an Interspeech 2023 satel-
lite event. Like its predecessors, TSD 2023 highlighted the importance of language and
speech processing to both the academic and scientific world and their most recent break-
throughs in current applications. Both experienced researchers and professionals and
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newcomers in the field found the TSD conference a forum to meet and communicate
with people sharing similar interests.

This volume contains a collection of submitted papers presented at the conference.
Each of them was thoroughly reviewed in a double-blind process by at least three mem-
bers of the reviewing team, consisting of 42 top specialists in the conference topic areas.
A total of 31 papers out of 64 submitted, altogether contributed by 121 authors and co-
authors, were selected by the Programme Committee for presentation at the conference
and publication in this book. Theoretical and more general contributions were presented
in common (plenary) sessions. Problem-oriented sessions, as well as panel discussions,
then brought together specialists in narrower problem areas to exchange knowledge and
skills resulting from research projects of all kinds.

Last but not least, we would like to express our gratitude to the authors for providing
their papers on time, to the members of the conference reviewing team and the Pro-
gramme Committee for their careful reviews and paper selection, and to the editors for
their hard work preparing this volume. Special thanks go to the members of the Organiz-
ing Committee for their tireless effort and enthusiasm during the course of preparation
of the conference.

We hope that everyone enjoyed this year’s TSD and has benefitted from the event, and
relished the social programme prepared by the members of the Organizing Committee.
And you, dear reader, please, enjoy this book of proceedings...

The 26th International Conference on Text, Speech and Dialogue—TSD 2023—was
organized by the Department of Computer Science and Engineering and the NTIS (New
Technologies for the Information Society) P2 Research Centre of the Faculty of Applied
Sciences, University of West Bohemia in Plzeň (Pilsen), Czechia, and co-organized by
the Faculty of Informatics, Masaryk University in Brno, Czechia.

The conferencewebsite is located at https://www.kiv.zcu.cz/tsd2023/ or https://www.
tsdconference.org/.

September 2023 Kamil Ekštein
Miloslav Konopík

František Pártl

https://www.kiv.zcu.cz/tsd2023/
https://www.tsdconference.org/
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Plzeň, Czechia − Industrial Capital of West Bohemia
(About the Venue)

The city of Plzeň (or Pilsen in Germanic languages) is situated in the heart of West
Bohemia at the confluence of four rivers: Úhlava, Úslava, Radbuza, and Mže. With its
approx. 181,000 inhabitants, it is the fourth largest city in the Czech Republic and an
important industrial, commercial, and administrative centre. It is also the capital of the
Pilsen Region. In addition, it was elected the European Capital of Culture for 2015 by
the Council of the European Union.

Plzeň is well-known for its brewing tradition. Pilsner beer is a planetwide legend.
The trademark Pilsner Urquell has the best reputation all over the world thanks to the
traditional recipe, high-quality hops from the famous Žatec hop fields, and crystal-clear
groundwater from extraordinarily deep wells. Beer lovers will always appreciate a visit
to the Brewery Museum or the Pilsner Urquell Brewery itself.

Plzeň is also the home of an industrial giant, Škoda. The Škoda Works used to be
one of the largest European industrial conglomerates of the 20th century. They were
founded in 1859 there, then in the Kingdom of Bohemia, Austrian Empire, by famous
Czech engineer and industrialist knight Emil Škoda. Since then, themake Škodawith the
distinctive winged arrow has been proudly put onto countless locomotives, tramways,
trolleybuses, ships, aircraft, machine tools, steam turbines, and even nuclear reactors.

Apart from its delicious beer and advanced industrial production, Plzeň hides lots of
cultural and historical treasures in its core. The city can boast the second-largest syna-
gogue in Europe. The dominant feature of the old part of the city centre is certainly the
13th-century Gothic cathedral of St. Bartholomew, the loftiness of which is accentuated
by its slim church spire. The spire was reconstructed into its modern shape after a fire
in 1835 when it was hit by a lightning bolt during a night storm. It is the highest church
spire in Czechia (102.34 m), and there is the possibility to go up and admire the view of
the city. Not far from the cathedral, there is the splendid Renaissance Town Hall from
1558, later decorated with frescoes from 1908−12. The placement of the church within
the grounds of the city square was also rather unique for its time. The church stands
right across from the city hall. You will certainly also notice the Baroque spire of the
Franciscan monastery. Moreover, plenty of pleasant cafes and pubs are situated on and
around the main square.

There is also the beautiful Pilsen Historical Underground—under the city centre, a
complex network of passageways and cellars can be found. The passages are about 14
km long, and visitors can see the most beautiful part of this labyrinth during the tour. A
legend says that there is also a secret tunnel going to the Radyně Castle far behind the
city limits.

It is also recommended to visit the City Zoological Garden, which has the second
largest space for bears in Europe and keeps a few Komodo dragons, large lizards that
exist in only a few zoos in the world.



xiv Plzeň, Czechia − Industrial Capital of West Bohemia

In the surroundings of the city, there are some landmarks worth seeing, especially
the Radyně Castle, the Kozel Chateau, and St. Peter’s Rotunda in Starý Plzenec, which
comes from the 10th century.

Plzeň is also an important centre of higher education: The University of West
Bohemia in Plzeň provides a variety of courses for both Czech and international stu-
dents. It is the only institution of higher education in this part of the country which
prepares students for careers in engineering (electrical and mechanical), science (com-
puter science, applied mathematics, physics, and mechanics), education (both primary
and secondary), public health services, economics, philosophy, politics, archaeology,
anthropology, foreign languages, law and public administration, art, and design. The
Faculty of Medicine in Plzeň is one of five faculties of medicine of Charles Univer-
sity and educates physicians of numerous specializations, dentists, and highly qualified
nurses.

Brief History of Plzeň

The new town of Plzeň (Pilsen) was founded at the confluence of four rivers—Mže,
Radbuza, Úhlava, andÚslava—following a decree issued by the Czech king,Wenceslaus
II Přemyslid. He did so in 1295. From the very beginning, the town was a busy trade
centre located at the crossroads of two important trade routes. These linked the Czech
lands with the German cities of Nürnberg and Regensburg.

In the 14th century, Plzeň was the third largest city after Prague and Kutná Hora. It
comprised 290 houses in an area of 20 ha. Its population was 3,000 inhabitants. At the
beginning of the 15th century, during the so-calledHussiteWars (1419–1434), Plzeň was
unwaveringly on the Catholic side of the conflict. Therefore, it was besieged by Hussite
troops led by radical Hussite priest Prokop Holý in July 1433. The Hussites besieged the
town ineffectually for over nine months (among other reasons because of the existence
of the large network of underground passages), and during one casual dauntless thrust of
the Plzeň defenders, a camel was captured (and eaten later on) from the Hussite forces.
That is how such an exotic (in Czech lands of those days) animal has appeared in the
city coat of arms.

In the 16th century, after several fires that damaged the inner centre of the town,
Italian architects and builders contributed significantly to the changing character of the
city. Themost renowned among themwasGiovanni de Statia. TheHoly Roman Emperor
and the Czech king Rudolf II of Habsburg, resided in Pilsen twice between 1599 and
1600. It was at the time of the Estates’ revolt. He fell in love with the city and even
bought two houses neighbouring the town hall and had them reconstructed according to
his taste. Later, in 1618, Pilsen was besieged and captured by Count Mansfeld’s army.

Many Baroque-style buildings dating to the end of the 17th century were designed
by Jakub Auguston. Sculptures were made by Kristian Widman. The historical heart
of the city—almost identical to the original Gothic layout—was declared a protected
historic city preserve in 1989.

Pilsen experienced tremendous growth in the first half of the 19th century. The City
Brewery was founded in 1842, and the Škoda Works in 1859.
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The historical core of the city of Plzeň is limited by the line of the former town
fortification walls. These gave way, in the middle of the 19th century, to a green belt of
town parks. Entering the grounds of the historical centre, one walks through streets that
still respect the original Gothic urban layout.

All architecture lovers can also find more hidden jewels—objects appreciated for
their artistic and historical value. These are burgher houses built by our ancestors in the
styles of the Gothic, Renaissance, or Baroque periods. The architecture of these sights
was successfully modeled by the reconstruction whirl of the end of the 19th century and
the beginning of the 20th century.
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Predictive Coding, Good-Enough Processing
and Constructions: A Neuro-Cognitive Model for Dialogue

Philippe Blache

Institute of Language, Communication and the Brain, France
LPL-CNRS, France
blache@ilcb.fr

https://cv.hal.science/philippe-blache

Abstract. Language understanding is a complex task, integrating differ-
ent sources of information, from sounds and gestures to context.However,
in spite of its complexity, this process is extremely fast and robust, per-
formed in real time during conversations. Many studies have shown that
this robustness and efficiency aremade possible by differentmechanisms:
the ability to predict, the possibility of directly accessing entire pieces of
meaning and the possibility to perform a “good-enough” processing, suf-
ficient to access the meaning. These mechanisms, by substituting to the
classical incremental and compositional architecture, facilitate the access
to the meaning. However, existing models do not explain precisely when
these facilitation mechanisms are triggered and whether they inhibit or
on the contrary work in parallel with the standard ones.

I propose in this presentation a new model integrating both facil-
itation and standard mechanisms by revisiting the different stages of
the processing: segmentation of the input, access to the corresponding
meaning in long-termmemory and integration to the interpretation under
construction. This architecture is based on different features: unique rep-
resentation of linguistic objects (independently from their granularities),
control of the memory access (in particular thanks to search space reduc-
tion) and multiple-level prediction. This neuro-cognitive model provides
a new framework explaining how deep and shallow mechanisms of lan-
guage processing can cohabit. It is also a good candidate for explaining
different effects of mismatch observed at the brain level.

Keywords: Language processing architecture · Understanding · Neuro-
cognitive model.

https://orcid.org/0000-0002-5216-9591


Towards Privacy-Preserving Natural Language Processing

Ivan Habernal

Trusthworthy Human Language Technologies Department of Computer Science,
Technical University of Darmstadt

www.trusthlt.org
ivan.habernal@tu-darmstadt.de

Abstract. What does it mean for natural language processing (NLP)
systems to protect privacy, and why should we even care? In this talk, we
will explore privacy challenges and concerns in NLP and present possible
solutions to address them.Wewill cover anonymization as well as formal
techniques based on differential privacy both in training NLPmodels and
in publishing data. Furthermore, we will also touch on legal and ethical
implications when implementing privacy-preserving solutions in NLP.

Keywords: Privacy

1. Extended Abstract

In this talk, we are going to explore the topic of privacy in contemporary natural language
processing. We will start with motivating examples showing why privacy matters in the
first place. We will then adopt our working definition of privacy, differential privacy,
which is a de-facto standard in private data analysis and has been recently gaining atten-
tion in the NLP community [3, 4]. We will then address some recent research questions
tackled with colleagues from the Trustworthy Human Language Technologies group
and beyond. First, how can we efficiently ensure differential privacy of training data fed
into graph neural networks [6]? How about privacy of fine-tuning transformers across
NLP tasks [11] or even pre-training transformer models with differential privacy [12] for
domain adaptation? Second, we will tackle the problem of privacy in natural language
texts, that is, can we ‘privatize’ sensitive texts and publish them without hesitation? We
will show that the problem of text privatization is inherently hard [1]. We will highlight
our open-source framework DP-Rewrite for conducting transparent and reproducible
experiments [5] with the aim to avoid pitfalls of reported results which sometimes ‘look
too good to be true’ [2], and show our approach to tighter privacy with pruning trans-
former models [7]. We will conclude with applications of privacy-preserving models or
data publishing in domains such as mental health [10], crowdsourcing [9], and bias and
fairness of large language models [8].
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Speech and Language Markers in Neurodegeneration

Juan Rafael Orozco-Arroyave

GITA Lab, Universidad de Antioquia UdeA, Medellín, Colombia
LME Lab, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany

Abstract. The progress in medicine achieved within the last decades
has led humanity (especially in the northern hemisphere) to live longer.
It is estimated that people in developed countries have increased their
life expectancy until around 90 years. Given the fact that aging is the
most documented risk factor for developing neurodegenerative diseases,
this longevity phenomenon brings new challenges to science in terms of
detection and monitoring of neurodegeneration. There exist methods for
diagnosing and treating neurological disorders; however, they are either
very expensive or invasive, requiring sophisticated machinery and well-
trained expert clinicians to handle the devices and interpret the results.
Recent advances in speech and language processing have shown how
to enable unintrusive detection and monitoring of neurological disor-
ders like Parkinson’s and Alzheimer’s. Classical approaches and modern
methods like those based on language embeddings have been shown to
be complementary in the task of detecting and monitoring neurological
diseases. Even though their accuracy and sensitivity need to be improved
to make these new approaches suitable for clinical practice on a regular
basis, their simplicity in data collection and interpretation bring them as
an inexpensive and promising biomarker to be used as a second opinion
before deciding to make more sophisticated screenings. Among the chal-
lenges for future research, it is necessary to continue developing robust
methods for speech recording under different acoustic conditions. Finally,
since privacy is a significant concern, Federated Learning emerges as a
promising approach in which privacy is preserved while physiological
information of patients in different centers located at different latitudes
is transferred and used to improve the performance of the whole system,
enabling the possibility to create more robust and reliable approaches.

Keywords: Speech Processing · Language Processing · Parkinson’s
Disease · Alzheimer’s Disease · Neurological Diseases
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Ondřej Pražák, University of West Bohemia, Czechia
Josef V. Psutka, University of West Bohemia, Czechia
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Abstract. In the research of machine reading comprehension of Japanese how-to
tip QA tasks, conventional extractive machine reading comprehension methods
have difficulty in dealing with cases in which the answer string spans multiple
locations in the context. In this paper, we trained a generative machine reading
comprehension model of Japanese how-to tip by constructing a generative dataset
based on the website “wikihow” as a source of information. We proposed two
methods for multi-task learning to fine-tune the generative model, i.e., i) multi-
task learning with generative and extractive hybrid training dataset, where both
generative and extractive datasets are simultaneously trained on a single model,
and ii) multi-task learning with inter-sentence semantic similarity and answer
generation, where, drawing upon the answer generation task, the model addition-
ally learns the distance between the sentences of question/context and the answer
in the training examples. Evaluation experimental results showed that both of
the multi-task learning models significantly outperformed that of the single-task
learning model on the generative QA dataset. Especially, that with generative and
extractive hybrid training dataset performed the best in terms of the manual eval-
uation result.

Keywords: QA Task · Machine Reading Comprehension · Generative Model ·
How-to Tip · mT5 · Multi-task Learning

1 Introduction

As shown in Fig. 1, a machine reading comprehension task in natural language pro-
cessing is a task, given a question written in natural language and a context, to extract
from the context the answer part of the question. In recent years, the advancement of
deep learning technologies and the availability of large datasets has led to a number of
achievements in the research field of machine reading comprehension. For example, it
has been reported that, for machine reading comprehension of SQuAD [14]1, which is a

1 https://rajpurkar.github.io/SQuAD-explorer/.
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Fig. 1. The Framework of How-to Tip Machine Reading Comprehension

machine reading comprehension dataset created from articles in the English Wikipedia,
machine reading comprehension outperforms humans. In addition, SQuAD 2.0 [13], a
dataset containing “unanswerable” QA examples, has been created to take into account
cases where the context does not contain the answer to the question.

In addition to SQuAD [13,14], which targets factoid questions such as proper nouns
and quantities, and machine reading comprehension datasets with answer possibilities2,
there has been a lot of research on non-factoid questions such as how things are done
and why things are done. Compared to factoid type questions, which are relatively sim-
ple, non-factoid type questions are more challenging. Among various kinds of non-
factoid knowledge which are the key to developing techniques for non-factoid QA tasks,
Chen et al. [2] studied how to develop a dataset for training Japanese how-to tip (fol-
lowing Chen et al. [2], we use the simplified term “tip”) QA models.

In general, the model and dataset for the usual machine reading comprehension task
follow the method of extracting from the context the part of the question text that is the
answer. However, as illustrated in Sect. 2, in tip machine reading comprehension, the
answer string often spans multiple locations in the context. The method of fine-tuning of
the BERT model [3] for machine reading comprehension tasks is not suitable for such
cases. Therefore, in this paper, we apply a generative model, mT5 [18], to generate
answers for tip questions, instead of an extractive model that extracts strings in context.
We developed a question-and-answer dataset for generative machine reading compre-
hension by utilizing the Japanese version of “wikihow”3, which is a comprehensive
website that compiles tips. We then proposed two methods for multi-task learning to
fine-tune the generative model. The first method is the multi-task learning with genera-
tive and extractive hybrid training dataset, where both generative and extractive datasets
are simultaneously trained on a single model. The second method is the multi-task
learning with inter-sentence semantic similarity and answer generation, where, draw-

2 http://www.cl.ecei.tohoku.ac.jp/rcqa/.
3 https://www.wikihow.jp/.

http://www.cl.ecei.tohoku.ac.jp/rcqa/
https://www.wikihow.jp/
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ing upon the answer generation task, the model additionally learns the distance between
the sentences of question/context and the answer in the training examples. The evalu-
ation results showed that both of the multi-task learning methods significantly outper-
formed single-task learning in generative question-and-answer examples. Between the
two methods for multi-task learning, that with generative and extractive hybrid training
dataset performed the best in terms of the manual evaluation result.

Our contributions are as follows:

1. We employed the mT5 [18] which is an encoder-decoder model based on the Trans-
former [17] as a generative model for machine reading comprehension and applied
it to how-to tip machine reading comprehension.

2. We developed a question-and-answer dataset for generative machine reading com-
prehension by utilizing the Japanese version of “wikihow”, which is a comprehen-
sive website that compiles tips.

3. We proposed two methods for multi-task learning to fine-tune the generative model,
i.e., i) multi-task learning with generative and extractive hybrid training dataset,
where both generative and extractive datasets are simultaneously trained on a single
model, and ii) multi-task learning with inter-sentence semantic similarity and answer
generation, where, drawing upon the answer generation task, the model additionally
learns the distance between the sentences of question/context and the answer in the
training examples.

4. The evaluation results demonstrated that both of the multi-task learning methods
significantly outperformed single-task learning in generative question-and-answer
examples. Especially, multi-task learning with generative and extractive hybrid
training dataset performed the best in terms of the manual evaluation result.

2 Difference Between Extractive and Generative Types in Machine
Reading Comprehension

The machine reading comprehension task in SQuAD [14], a representative dataset for
machine reading comprehension of the factoid type, is to extract from the context the
parts that are the answers to the questions. In the Japanese tip QA dataset [2], question-
and-answer examples are also created by means of designing questions in accordance
with short articles used as contexts and by extracting corresponding answers from the
contexts. In this paper, we refer to this method as “Extractive Machine Reading Com-
prehension”.

Devlin et al. proposed BERT model [3], which is a typical extractive machine read-
ing comprehension model used in extractive machine reading comprehension tasks. In
BERT, a bi-directional encoder mechanism with Transformer [17] predicts the start and
end positions of the answer in the machine reading comprehension task, and outputs
the span between the two positions as the answer to the question.

On the other hand, in this paper, we refer to the method of machine reading com-
prehension that generates answers as “Generative Machine Reading Comprehension”.
There exist research examples of generative machine reading comprehension [1] that
do not require context, but only input questions to a pre-trained and fine-tuned model to
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Table 1. Specific Examples of Predictions by the Models (mBERT and mT5, English Translation
of Japanese Examples)

Example 1 Example 2

Question How do I make my own temporary tattoo
sheet?

How do I find the best quote to use at the
beginning of an essay?

Context The fluidity of the gel pen ink makes it
easy to adhere from the seal to the skin
once the design is complete. Draw your
own design on tracing paper or
parchment paper with a pencil, then
color it in with a gel pen. Try to get as
much ink on the line as possible, but...

If you use famous quotes that many
people use verbatim, that alone will bore
the reader. It will also even seem as if the
author is not taking the project seriously
or does not think much of the reader

Reference Answer Draw the design using a dark-colored gel
pen

Avoid clichés and quotes you see often

mBERT Answer Draw your own design on tracing paper
or parchment paper with a pencil

use famous quotes that many people use
verbatim

mT5 Answer Use a gel pen to draw your design of
choice on tracing paper or parchment
paper

Consider whether to use the quotation
verbatim.

generate sentences that serve as answers. In this paper, however, we perform generative
machine reading comprehension in a setting that assumes the input of context.

For the generative machine reading comprehension task, we apply a generative
machine reading comprehension model with the ability to generate answers, where the
model is with an encoder of Transformer [17] that converts input text into an internal
representation, and a decoder mechanism of Transformer that summarizes the output of
the encoder and further produces a variable-length output. A representative example of
such a generative model is T5 [12]. This paper uses a model, in which fine-tuning is per-
formed for downstream tasks on a model that has been pre-trained using a vast amount
of training data for various tasks. So far, it is known that T5 achieved high performance
on extractive machine reading comprehension tasks when applied to SQuAD [14].

To illustrate the differences in the properties of both models, this paper compares
the performance of BERT [3] (mBERT) and T5 [12] (mT5 [18]) pre-trained with mul-
tilingual texts. Specifically, for the extractive model, fine-tuning of mBERT was per-
formed using 1,614 extractive tip QA data (807 answerable examples and 807 non-
answerable examples) developed by Chen et al. [2]. For the generative model, mT5 [18]
was fine-tuned by using the 10,000 generative tip QA data created in Sect. 3, using the
method described in Sect. 4.2 as well as following the evaluation procedure of Sect. 5.1.
Then, we evaluated the performance of the tip machine reading comprehension mod-
els by inputting the questions and contexts of the evaluation examples of the genera-
tive question-and-answer data into both models. Table 1 shows specific examples of the
evaluation of both models. Example 1 in Table 1 shows that mBERT can only extract
the parts of the context that are just fragments of answers, whereas mT5 can summa-
rize answer fragments scattered in multiple locations in the context, or can complete
word endings. Example 2 in Table 1 shows that mBERT ignores the second half of the
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context that contains a negative message, but extracts a part of the first half of the con-
text as the answer, which only contains a positive message. mT5, on the other hand,
does not ignore the second half of the context that contains a negative message, but
generates answers referring to the overall context information including the negative
message in the second half of the context. Thus, overall, with the ability to generate
answers considering the whole context information, it can be concluded that mT5 out-
performs mBERT in the task of tip machine reading comprehension with the generative
question-and-answer data.

3 Generative Question-and-Answer Dataset

In this section, we describe how to use Japanese wikihow4 as a source information to
create a QA dataset on generative machine reading comprehension methods.

Wikihow is a comprehensive website that compiles tips and guides across 19 diverse
topics such as cars, family, and health. While previous research conducted by Koupaee
et al. [8] utilized a dataset derived from the English version of wikihow for summa-
rization purposes, this study adopts a distinct approach by using the article’s title and
subtitle as questions, and the summary of the article text as answers. An example of
the structure of the website’s tip column is presented below as an illustration (English
translation of Japanese examples).

Title: The way to wash jeans that do not fade easily
Subtitle: Care after washing
Summary: Spray water with a mist instead of washing
Context: If you start to notice sweat, stains, or odor on your jeans, do not imme-

diately put them in the washing machine. First, spray water with a mist
to remove the odor. Washing jeans once every 4∼5 weeks is sufficient.
Prepare a misting sprayer and add water and vodka in a 1:1 ratio. Plac-
ing jeans that have been sprayed with water in the freezer overnight
will further reduce odor.

The above web column is formatted into QA example data on the generative machine
reading comprehension method used in this study as follows.

Question: About the way to wash jeans that do not fade easily, what should I do
with care after washing?

Context: If you start to notice sweat, stains, or odor on your jeans, do not imme-
diately put them in the washing machine. First, spray water with a mist
to remove the odor. Washing jeans once every 4∼5 weeks is sufficient.
Prepare a misting sprayer and add water and vodka in a 1:1 ratio. Plac-
ing jeans that have been sprayed with water in the freezer overnight
will further reduce odor.

Answer: Spray water with a mist instead of washing.

In order to remove examples that were difficult to answer, filtering was performed
based on the length of the example. The length here is uniformly measured as the num-
ber of morphemes in the sentence that is segmented by MeCab5. As filtering criteria,
4 https://www.wikihow.jp/.
5 https://github.com/neologd/mecab-ipadic-neologd.

https://www.wikihow.jp/
https://github.com/neologd/mecab-ipadic-neologd
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Table 2. Statistics of the Training Examples of Generative How-to Tip Dataset Before and After
Filtering

Number of
examples

Average length of
contexts (# of
morphemes)

Average length of
answers (# of
morphemes)

BLEU (by the
baseline mT5 of a
single-task learning)

Before filtering 23, 937 108.75 9.92 8.0

After filtering 10, 000 66.97 11.52 9.0

Table 3. The Number of Examples of QA Datasets

(a) Generative QA Dataset

Total

number

of examples

Training Set 10, 000

Validation Set 1, 509

Evaluation Set 235

(b) Generative and Extractive QA Dataset
Total number of examples

(# of Generative Type / # of Extractive Type)

Training Set 20, 000(10, 000/10, 000)

Validation Set 1, 509(1, 509/1, 509)

Evaluation Set 235(235/0)

we excluded examples where the context was less than twice the length of the question
or more than 10 times the length of the question, and examples where the concate-
nated question and context exceeded the maximum length of 512 morphemes of the
input sentence, in accordance with the specification of the mT5 model of huggingface6

used in the experiments. Before filtering, the total number of examples is 25,681, from
which we first remove 1,509 validation examples as well as 235 evaluation examples
that satisfy the length criteria of filtering described above, where 23,937 training exam-
ples remain. Filtering was performed to those 23,937 training examples. Statistics of the
training examples of the dataset before and after filtering is shown in Table 2. Among
all the datasets used in the evaluation of this paper, Table 3(a) summarizes the statistics
of the QA dataset on generative machine reading comprehension methods created by
performing the filtering in this section, where the overall dataset is divided into train-
ing, validation, and evaluation sets. When the baseline mT5 of a single-task learning
described in Sect. 5.1 is evaluated against the 235 evaluation examples, as shown in
Table 2, the filtering resulted in 1.0 point increase in the BLEU score for the perfor-
mance of the mT5 model that was trained on the generative tip QA dataset.

4 Multi-task Learning in Generative How-To Tip Machine
Reading Comprehension

Multi-task learning is a technique that enhances accuracy by enabling a single model
to be simultaneously trained on multiple tasks that are related to the target task. This
section introduces two multi-task learning approaches to generative tip machine reading
comprehension.

6 https://huggingface.co/google/mt5-base.

https://huggingface.co/google/mt5-base
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4.1 Multi-task Learning with Generative and Extractive Hybrid Training
Dataset

T5 [12], which employs a text-to-text input/output format, enables the simultaneous
execution of multi-task learning on multiple tasks by establishing distinct prefixes for
each task and subsequently appending them to the onset of examples. This capability
has been inherited by mT5 [18], the multilingual iteration of T5. The first method for
multi-task learning to fine-tune the generative model is the multi-task learning with
generative and extractive hybrid training dataset, where both generative and extractive
datasets are simultaneously trained on a single model.

The reason for selecting generative and extractive machine reading comprehension
as the subjects for multi-task learning is because they possess common factors or use-
ful characteristics. Additionally, generative machine reading comprehension is more
challenging than extractive, and for difficult tasks, learning can be easier by obtain-
ing information from simpler tasks. Furthermore, for the dataset in use, since the data
has content shared between the two tasks, it is desired to perform multiple tasks of
generative and extractive machine reading comprehension on this data. Therefore, the
generative question-answer examples created in Sect. 3 were used as data for the gen-
erative task, and the reference answers to these examples were added to the beginning
of the context and used as data for the extractive task. Both sets of data were mixed in
equal proportions and inputted into the generative model for multi-task learning.

4.2 Multi-task Learning with Inter-sentence Semantic Similarity and Answer
Generation

The second method for multi-task learning to fine-tune the generative model is the
multi-task learning with inter-sentence semantic similarity and answer generation.
Inter-sentence semantic similarity measure has been incorporated in numerous machine
learning studies, and previous work by Tymoshenko et al. [16] has linked them to
machine reading comprehension tasks. Therefore, drawing upon the answer generation
task performed by mT5, we introduce a method that additionally learns the distance
between the sentences of question/context and the answer in the training examples. The
objective is to produce answers that are more akin to the input of the question/context.

The details of the model are delineated in Fig. 2. Utilizing the Siamese Network
framework, Sentence-BERT [15] has demonstrated outstanding performance in the task
of inter-sentence semantic similarity. We use the mT5 encoder’s embedding layer for
the inter-sentence semantic similarity task. In order to avoid having more than one types
of sentence embeddings in answer generation tasks and to avoid the protracted train-
ing duration, we have devised a structure akin to the Siamese Network, employing the
embedding layer of the mT5 encoder to perform the task of inter-sentence semantic
similarity.

Furthermore, with regards to the loss function, for the inter-sentence semantic sim-
ilarity task proposed in this section, we applied the Multiple Negative Ranking Loss
function [5], which is used in situations where only positive examples are present, as
all instances in the training data were treated as positive examples. In the implemen-
tation, we referred to the algorithm within the script of the Multiple Negative Ranking
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Fig. 2. Architecture of the Model for Multi-task Learning of Semantic Similarity and Answer
Generation

Loss function of the sentence-transformers library7 and implemented the function. For
the answer generation task, on the other hand, the default Cross Entropy Loss of the
mT5 model is used. The loss function for the inter-sentence semantic similarity task is
denoted as Lm, while that for the answer generation task is denoted as Lc. By com-
puting the weighted sum of the two tasks’ loss functions as the model’s overall loss
function, multi-task learning of the generative model is performed using the following
equation.

Loss = λmLm + λcLc

5 Evaluation

5.1 Evaluation Procedure

In this section, we describe our experiments and evaluation using the generative QA
dataset created in Sect. 3. The detailed number of examples for each dataset is shown
in Table 3, where Table 3(a) shows those of the generative QA dataset, while Table 3(b)
shows those of the generative-extractive hybrid QA dataset. The generative model used
was mT58, a multilingual version of T5 [12]. In this paper, we conducted experiments
using the generative tip machine reading comprehension dataset created in Sect. 39,
employing two proposed methods as described in Sect. 4.

7 https://github.com/UKPLab/sentence-transformers/blob/master/sentence transformers/losses/
MultipleNegativesRankingLoss.py.

8 https://huggingface.co/google/mt5-base.
9 In fine-tuning, the model for the minimum validation loss is selected where the maximum
number of epochs is 40. The learning rate was set to 0.00005, and the batch size was set to 16.

https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/losses/MultipleNegativesRankingLoss.py
https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/losses/MultipleNegativesRankingLoss.py
https://huggingface.co/google/mt5-base
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As shown in Table 3, each dataset is divided into training, validation, and evaluation
sets. For the multi-task learning using the generative-extractive hybrid training dataset
described in Sect. 4.1, QA examples related to extraction are created by adding the ref-
erence answer for QA examples related to generation to the beginning of the context. As
shown in Table 3(b), 10,000 training and 1,509 validation examples related to extraction
are created with this procedure. We used the evaluation results of mT5 of a single-task
learning trained using only the generative QA dataset as a baseline10, and compared it
with the proposed methods.

In the experiments using the proposed method of multi-task learning, which is based
on inter-sentence semantic similarity and answer generation described in Sect. 4.2, uti-
lizing the formula of the proposed loss function, we conducted experiments with the
combinations of λm and λc ranging from λm = 0.95 and λc = 0.05 to λm = 0.05 and
λc = 0.95 with 0.05 increments in between.

We employed BLEU [11]11 and ROUGE-L [9]12 for automatic evaluation. However,
since the evaluation results by BLEU and ROUGE-L only take into account the level of
agreement between the predicted and reference answers in terms of token-level literal
matching, we also performed manual evaluation13. Manual evaluation focused on deter-
mining the validity of the generated sentences as the answer when the context is given.
Statistical significance is tested with mteval Toolkit14 for BLEU and with Welch’s t-test
for ROUGE-L and manual evaluation.

5.2 Evaluation Results

The evaluation results are shown in Table 4, where the proposed two methods of multi-
task learning yielded better performance than the model of the single-task learning.

The evaluation result based on BLEU is calculated by taking the geometric mean
of the 1∼4-gram matches between the predicted answers of the model and the refer-
ence answers (called bleu-n in Table 4), with a penalty applied for short generated sen-
tences (BP; brevity penalty). While the bleu-n scores show that the multi-task learning
approach based on inter-sentence semantic similarity and answer generation outper-
form the other approaches, the BLEU scores of the two multi-task learning approaches
are the same due to the influence of BP. Additionally, the manually-evaluated results
also indicate that the multi-task learning approach based on generative and extractive
hybrid training dataset is superior. In terms of the ROUGE-L, the evaluation results also
demonstrated that both of the multi-task learning methods significantly outperformed
the single-task learning in generative question-and-answer examples. In the comparison
of the ROUGE-L scores of the two approaches to the multi-task learning, that based on
inter-sentence semantic similarity and answer generation outperformed that based on
generative and extractive hybrid training dataset. Overall, it can be concluded that the

10 The learning rate was set to 0.00003, and the batch size was set to 24. Other hyper parameters
are the same as those of the multi-task learning.

11 https://github.com/mjpost/sacrebleu.
12 https://github.com/google-research/google-research/tree/master/rouge.
13 Manual evaluation was done by the first author of the paper.
14 https://github.com/odashi/mteval.

https://github.com/mjpost/sacrebleu
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/odashi/mteval
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Table 4.Results of the Generative Model (mT5) Evaluated with the QADatasets of Table 3 (Eval-
uation Sets). G-Examples stands for Generative Examples of Table 3(a), while G&E-Examples
stands for Generative and Extractive Examples of Table 3(b). In addition, the abbreviation (A/B)
in manual evaluation refers to (The number of correct answers by manual judgment/The num-
ber of evaluation examples). † stands for significant (p < 0.05) difference with the BLEU or
ROUGE-L or Manual Evaluation of Single-Task learning approach.

(a) Result of Generative Model fine-tuned by Single-Task Approach

Dataset Task bleu-1 bleu-2 bleu-3 bleu-4 BP BLEU ROUGE-L
Manual

Evaluation

G-Examples Single-Task 43.7 19.6 10.0 5.5 0.611 9.0 33.78 92/235

(b) Result of Generative Model fine-tuned by Multi-task Approach of Answer Generation and
Answer Extraction

Dataset Task bleu-1 bleu-2 bleu-3 bleu-4 BP BLEU ROUGE-L
Manual

Evaluation

G&E-Examples Multi-Task 43.1 21.1 11.3 6.7 0.868 14.2† 37.79† 154/235†

(c) Results of Generative Model fine-tuned by Multi-task Approach of Semantic Similarity and
Answer Generation

Dataset
Loss Weight

λm,λc
bleu-1 bleu-2 bleu-3 bleu-4 BP BLEU ROUGE-L

Manual
Evaluation

G-Examples

0.35 , 0.65 43.2 21.8 12.4 7.0 0.823 13.9† 37.64† 141/235†

0.25 , 0.75 43.7 21.6 12.1 6.7 0.855 14.2† 38.28† 150/235†

0.10 , 0.90 42.5 20.7 11.8 6.5 0.878 14.1† 37.98† 149/235†

multi-task learning with generative and extractive hybrid training dataset performed the
best in terms of the manual evaluation result.

The evaluation results of models trained using the multi-task learning approach
based on inter-sentence semantic similarity and answer generation are presented by
listing the top 3 results15 of the BLEU scores and the ROUGE-L scores obtained from
the combinations of λm and λc. The results with high BLEU scores and ROUGE-L
scores are concentrated within the range of λm < λc. This is because the relationship
between Lm and Lc becomes Lm � Lc during the training convergence because of
the difference of the characteristics of the loss functions of the two tasks of the inter-
sentence semantic similarity and answer generation16. To reduce the influence of Lm,
setting λm < λc can help suppress the effect of Lm in the inter-sentence semantic sim-
ilarity task. However, setting λm too small would eliminate the effect of Lm, leading to
a decrease in model performance.

6 Related Work

Bajaj et al. have done a relevant research, named MS MARCO [1], which is a vast
machine reading comprehension dataset that sources its information from Bing and

15 The top 3 results of the BLEU scores and the ROUGE-L scores are the same between the two
metrics.

16 Roughly speaking, even at the end of the training convergence, the similarity between the
sentences of question/context and the answer in the validation examples tend to be relatively
low, making Lm relatively larger, while the answers predicted by the model to the validation
examples tend to be very close to the reference answers, making Lc much smaller than Lm.
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Cortana search histories. By using MS MARCO, a generative machine reading com-
prehension task that generates abstractive answers based on context17 starts to emerge,
and ROUGE-L and BLEU-1 are used as evaluation criteria for generative machine read-
ing comprehension. While Nishida et al. [10] proposed an encoder-decoder model with
Transformer [17] for this task and achieved the top rank on the leader board at the
time of publication of the paper [10] (currently ranked 5th in June 2023, excluding the
human baseline, and the four models and papers above it have not yet been published).
Other datasets that feature abstractive answers in the task of generative machine reading
comprehension include DuReader [4] and NarrativeQA [7].

As a study on machine reading comprehension at scale that is closely related to
generative machine reading comprehension, Izacard and Grave [6] proposed a method
in which the top search result contexts and questions are independently fed into the
encoder, while the resulting representations of the top search result contexts and ques-
tions obtained from the encoder are concatenated and input into the decoder. This
demonstrates the significance of generative machine reading comprehension methods
in the task of machine reading comprehension at scale.

7 Conclusion

In this study, we employed the mT5 [18] as a generative model for machine reading
comprehension and applied it to how-to tip machine reading comprehension. We devel-
oped a question-and-answer dataset for generative machine reading comprehension by
utilizing the Japanese version of wikihow. Then, we proposed two methods for multi-
task learning to fine-tune the generative model. The evaluation results demonstrated
that both of the multi-task learning methods significantly outperformed the single-task
learning in generative question-and-answer examples. Future work includes applying
the proposed multi-task learning approaches to other datasets of generative machine
reading comprehension such as MS MARCO [1], NarrativeQA [7], and DuReader [4].

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 21H00901.
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Abstract. Text summarization is an essential task in natural language
processing, and researchers have developed various approaches over the
years, ranging from rule-based systems to neural networks. However,
there is no single model or approach that performs well on every type
of text. We propose a system that recommends the most suitable sum-
marization model for a given text. The proposed system employs a fully
connected neural network that analyzes the input content and predicts
which summarizer should score the best in terms of ROUGE score for a
given input. The meta-model selects among four different summarization
models, developed for the Slovene language, using different properties of
the input, in particular its Doc2Vec document representation. The four
Slovene summarization models deal with different challenges associated
with text summarization in a less-resourced language. We evaluate the
proposed SloMetaSum model performance automatically and parts of it
manually. The results show that the system successfully automates the
step of manually selecting the best model.

Keywords: Text summarization · low-resource languages ·
meta-model · Slovene language

1 Introduction

Text summarization identifies the essential information in a document or a col-
lection of documents and presents it in a concise and coherent manner. In spite
of the long efforts of natural language processing (NLP), text summarization is
still a challenging task. With the explosive growth of digital information, sum-
marizing large volumes of text into a shorter, more manageable form is becoming
increasingly important.

There are two main approaches to text summarization: extractive and
abstractive. Extractive summarization selects a subset of sentences or phrases
from the original text that best represents the content. The selected sentences
are combined to form a summary. Abstractive summarization, on the other hand,
generates new sentences that capture the meaning of the original text. Extractive
summarization is simpler and faster than abstractive summarization, but it can

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 15–24, 2023.
https://doi.org/10.1007/978-3-031-40498-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40498-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-40498-6_2
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result in summaries that contain redundant and repetitive content. Abstractive
summarization is more challenging and requires more advanced natural language
processing techniques, but it can produce human-like summaries.

State-of-the-art technology for text summarization has seen a significant shift
in recent years with the rise of transformer neural network architectures, such
as T5 [13] and GPT-3 [1]. This resulted in the summarization models whose
summaries closely resemble those written by humans, with few repetitions and
inaccuracies. These models are also capable of processing increasingly long con-
tent, enabling the creation of summaries for larger volumes of text. Consequently,
state-of-the-art automatic summaries can be clear and easy to comprehend for
end-users.

In the context of the less-resourced morphologically-rich Slovene language,
text summarization is even more challenging than in English, due to limited avail-
ability of resources and data, as well as research. We produced four Slovene sum-
marization models with different properties and trained them on different train-
ing data1. Our four models encompass two extraction summarizers (one based
on a simple word frequency sentence selection, the other being graph-based),
an abstractive T5-based model, and a hybrid extractive-abstractive model. In
general, the T5-based transformer model works best but may not generalize well
for all types of input text. Therefore, we address the problem of which summa-
rization model is the most appropriate for a given text, based on text length and
genre.

We propose a novel Slovene summarization system (named SloMetaSum),
consisting of extractive, abstractive, and hybrid summarizers and a meta-model
that selects among them. The proposed meta-system consists of a fully connected
neural network that analyzes the input content and recommends the most suit-
able summarization model for a given text. To achieve this, SloMetaSum uses
the Doc2Vec [7] numerical representation of documents and predicts the ROUGE
scores for each of the summarizers. By using a combination of approaches, the
system can effectively generate high-quality summaries that are informative and
easy to understand for many types of text, regardless of their length and genre2.

Our contributions are:

– We have developed four summarization models that can effectively summarize
text of varying lengths and genres, making them versatile for a range of
applications.

– We overcame the challenges of the low-resourced Slovene language, and cre-
ated high-performing models for summarizing Slovene text.

– We have also created a meta-model that can recommend the best-suited sum-
marization model for a given text based on factors such as length, complexity,
level of abstraction, and intended use case.

1 Within the scope of the RSDO project: https://www.cjvt.si/rsdo/.
2 The demo is available at https://slovenscina.eu/en/povzemanje. The code reposi-

tories are available at https://github.com/azagsam/metamodel and https://github.
com/clarinsi/SloSummarizer.

https://www.cjvt.si/rsdo/
https://slovenscina.eu/en/povzemanje
https://github.com/azagsam/metamodel
https://github.com/clarinsi/SloSummarizer
https://github.com/clarinsi/SloSummarizer
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The rest of the paper is organized as follows. We present related research
in Sect. 2. Section 3 describes the datasets. In Sect. 4, we describe summariza-
tion systems and the meta-model. We present our experiments and discuss the
findings in Sect. 5. Section 6 concludes and recommends future research.

2 Related Work

Early approaches to text summarization relied on statistical frequencies of words,
sentence position, and sentences containing keywords [12]. These approaches
aimed to extract important sentences or phrases from a text and generate a
summary by concatenating them. Abstractive methods involved deleting less
important words from the text to create a summary [6].

Graph-based methods have been another popular approach to text summa-
rization. In this approach, the document is represented as a graph, where sen-
tences are nodes, and edges represent the relationships between them. The graph
is then used to generate a summary by selecting the most important sentences.
This method has been explored in several works [3,10].

With the advent of neural networks, there has been an increasing interest
in developing abstractive summarization techniques. Early neural abstractive
systems used methods such as LSTM and other recurrent neural networks [11,
14]. However, transformer-based architectures have emerged as state-of-the-art
models for abstractive text summarization [9,18]. These models use self-attention
mechanisms to selectively focus on important parts of the text and can generate
more fluent and coherent summaries compared to earlier methods.

While several approaches have been proposed for text summarization, many
of them are designed to handle specific genres or types of text. In this work,
our goal is to build a summarization system that can handle every type of text
and genre with every possible property that can appear in the real world. This
includes texts of varying lengths, topics, styles, and summaries that capture the
most important information in the text. Achieving this goal requires developing
a robust and adaptable model that can learn to summarize texts of diverse types
and produce high-quality summaries.

3 Datasets

In this section, we describe the datasets we used in our research. Below, we
provide a short description of the datasets, with their statistics contained in
Table 1.

The STA dataset (general news articles from the Slovenian Press Agency)
consists of 366,126 documents and the first paragraph of each article was used
as a proxy for summary since the dataset does not contain hand-written human
summaries. This is a common technique in text summarization, especially in
languages that do not have dedicated news article summarization datasets such
as English.
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AutoSentiNews [2] is a similar dataset to STA, consisting of 256,567 articles
from the Slovenian news portals 24ur, Dnevnik, Finance, RTVSlo, and Žurnal24.
The summaries are produced from the first paragraph in the same way as they
are in the STA dataset.

The SURS dataset is a small financial news dataset from the Slovenian sta-
tistical office and consists of 4,073 documents.

The KAS corpus of Slovene academic writing [16] consists of BSc/BA,
MSc/MA, and PhD theses written from 2000–2018 and gathered from the digital
libraries of Slovene higher education institutions via the Slovene Open Science
portal3. The corpus contains human-written abstracts of academic texts.

CNN/Daily Mail dataset [5] is for text summarization. It has human-
generated abstractive summary bullets from news stories on CNN and Daily
Mail websites. The corpus has 286,817 training pairs, 13,368 validation pairs, and
11,487 test pairs. The source documents have 766 words and the summaries con-
sist of 53 words on average. We translated the dataset in Slovene using machine
translation [8].

Table 1. Corpora and datasets used to train a Doc2vec document representation model
and the meta-model.

Dataset Number of documents

STA 334,696

AutoSentiNews 256,567

SURS 4,073

KAS 82,308

Total 677,644

4 The Summarization Models and the Meta-model

In this section, we describe the components of our SloMetaSum system which
consists of four summarization models, a technique for document representation,
and the meta-model.

4.1 Summarization Models

We produced four summarization models, described below.
Sumbasic [12] uses a simple word frequency approach to select the most

informative sentences. The graph-based summarization model [17] was inspired
by the TextRank algorithm [10] and uses centrality scores of sentences to rank
them. Both models belong to extractive methods and can be used on documents

3 http://openscience.si/.

http://openscience.si/
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of any size. In contrast to the original TextRank, we used the transformer-based
LaBSE sentence encoder [4], to numerically represent sentences. The T5-article
abstractive summarization model uses a pre-trained Slovene T5 model [15] and
is fine-tuned on a machine-translated CNN/Daily Mail dataset [5] using the
Slovene machine translation system [8]. The hybrid-long summarization model
is a combination of the graph-based and the T5-article model. It first constructs
a short text by concatenating the most informative sentences (extractive step).
In the next, abstractive step, these sentences are summarized with the T5-article
summarizer.

4.2 Doc2Vec Model Representation

To select the most suitable summarization method for a given text, the meta-
model has to get information about different text properties. We apply the
Doc2Vec model for document representation and train it on the Slovene doc-
uments presented in Table 1 (without abstracts). In the preprocessing step, we
removed high-frequency words that do not contribute to the meaning of a doc-
ument, such as pronouns, conjunctions, etc.; to further reduce the number of
different words, we lemmatized the whole dataset.

4.3 Meta-model

Our meta-model consists of a fully connected neural network, trained to pre-
dict the ROUGE scores of the summarizers. For a training dataset, we ran-
domly selected 93,419 examples from the raw concatenated dataset. After that,
each of our four summarizers produced a summary for all examples. We calcu-
lated ROUGE scores between the reference and generated summaries. ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) is a metric most commonly
used for the evaluation of automatically generated text summaries. It measures
the quality of a summary by the number of overlapping units (n-grams, sequences
of texts, etc.) between summaries created by humans and summaries created by
summarization systems. ROUGE is not a single metric but a family of metrics.
The most commonly used are ROUGE-N and ROUGE-L. The first measures
the overlapping of n-grams (typically unigrams and bigrams), while the sec-
ond measures the longest common subsequence found in both summaries. As an
input to our meta-model, we use four ROUGE F1-scores (ROUGE-1, ROUGE-2,
ROUGE-L, ROUGE-LSum) that show how good the generated summaries are.
We split data into train, validation, and test sets in ratios of 90:5:5.

The sizes of both datasets are presented in Table 2. In Table 3, we present the
average ROUGE values of our summarizers on long and short texts. Summarizers
that are specialized for short texts achieve better results on short texts and vice
versa.
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Table 2. Number of training samples for each model.

Model Training size

Doc2Vec 677,644

Meta-model 93,419

Table 3. Summarizers ROUGE scores for long and short texts. The best scores for
short and long texts are in bold.

t5-article sumbasic graph-based hybrid-long

Short 14,01 13,11 13,15 12,55

Long 10,51 13,12 17,71 17,59

5 Results

In this section, we present our results and evaluation. We report the performance
of the Doc2Vec model and Meta-model in each separate subsection.

5.1 Doc2Vec

We used the following hyperparameters for training the Doc2Vec document rep-
resentation model: the maximum allowed vocabulary size is 100,000, the size of
the vector used for word representation is 256, the window size of context words
is 5, the minimum frequency of a word to be included in the vocabulary is 1,
and the total number of epochs or iterations for training the model is 5.

We evaluated the Doc2Vec model using manual and automatic techniques.
For manual analysis, we inspected the top 3 most similar returned documents for
each of a few randomly chosen samples using the cosine similarity and observe
whether the topics of the documents overlap. The topics of the documents were
similar in most cases and based on that we concluded that the model works as
expected. The automatic evaluation was part of the whole pipeline, where the
model hyperparameters were tuned to optimize the loss of the meta-model.

5.2 Meta-model

Our final results are presented in Table 5. We compared the proposed meta-model
selection mechanism with three baselines. The Mean-baseline model simply takes
the predictions for each summarization model and averages them. The highest-
scoring model is always selected. The Tree uses a regression tree; using the
hyperparameter grid search, the minimum number of samples required to split an
internal node is 100. The Forest method uses a random forest; we experimented
with similar values as for the Tree model and set the number of tree estimators
to 300.
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Our best model is a neural network with two hidden layers. The hidden
layers contain 1024 neurons, and we used a validation split of 0.1 during the
training process. The activation function used for this model is the rectified
linear unit (ReLU). In addition, for the early stopping scheduling strategy, we
set the patience parameter to 2. The loss function utilized for this model is the
mean squared error.

Meta-model stopped learning after 7 epochs and performed almost 15 points
above Mean-baseline on the test set. We observed that choosing different hyper-
parameters does not seem to significantly affect the results. We experimented
with different hidden layer sizes, numbers of units, and activation functions. We
also tried different max vocabulary and window sizes of the Doc2Vec model. We
report only the values of the best model.

Overall, this model was found to be the most effective among the meta-model
selection strategies we tested. The high number of neurons in the hidden layer
likely contributed to its superior performance, as it allows for a greater degree
of complexity in the model’s representation of the data.

We further experimented with two variations of the meta-model. Meta-model-
length adds another input neuron that explicitly encodes the input length. We
found that this does not improve the model and hypothesize that academic
texts are of different genres and the document embedding technique covers it
well already. We also tried to balance data since the original dataset contains a
1:5 ratio of long to short texts which rises a potential issue of overfitting on short
texts. We reduced the number of short texts in a training set to get a balanced
dataset of 16,932 samples for our Meta-model-balanced model. This resulted in
a worse-performing model but still better than Mean-baseline.

Table 4 shows the frequencies of how many times each model was recom-
mended by a meta-model out of 1000 samples from a test set. We can see that
the t5-article model was recommended the most, with a count of 595 out of 1000
samples. The hybrid-long model was recommended 254 times, followed by the
Sumbasic model, which was recommended 80 times. The graph-based model was
recommended the least, with a count of 71 out of 1000 samples.

Table 4. Frequencies of how many times each model was recommended by the meta-
model out of 1000 samples from the test set.

Model Count

t5-article 595

hybrid-long 254

sumbasic 80

graph-based 71

Total 1000

According to Table 6, the graph-based method achieved the highest F1-score
of 0.48, with a precision of 0.38 and recall of 0.67. The hybrid-long method
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Table 5. Results of our four models on the test set. Meta-model-baseline showed
significant improvement over Mean-baseline and tree methods. Encoding the length
feature explicitly or balancing the dataset did not improve the results.

Model Mean squared error

Mean-baseline 84.493

Tree 81.631

Random forest 74.975

Meta-model-baseline 70.066

Meta-model-length 70.146

Meta-model-balanced 79.044

Table 6. Classification report. The table includes precision, recall, and F1-score for
each method, as well as the number of instances in the test set (Support). The methods
include t5-article, hybrid-long, sumbasic, and graph-based. Test accuracy was 0.34.

Method Precision Recall F1-score Support

t5-article 0.33 0.11 0.16 1069

hybrid-long 0.25 0.34 0.29 817

sumbasic 0.28 0.10 0.15 1196

graph-based 0.38 0.67 0.48 1589

achieved F1-score of 0.29, with precision 0.25 and recall 0.34. The sumbasic
method produced F1-score of 0.15, precision 0.28, and recall 0.10. Finally, the
t5-article method achieved the lowest F1-score of 0.16, with precision of 0.33 and
recall of 0.11. Overall, the test accuracy for all methods combined was 0.34.

5.3 Meta-model vs. the Rest

In Table 7, we present the final evaluation results obtained from our experiments
on the test set. It is noteworthy that the proposed Meta-model outperformed all
other models across all ROUGE scores. This result highlights the effectiveness
and superiority of the Meta-model in selecting the most suitable summarization
approach for a given text. This outcome showcases the potential of our approach
in automating the process of selecting the best summarization model, eliminating
the need for manual intervention.
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Table 7. Performance on the test set for all models. Meta-model achieves the best
results in all three categories.

Model ROUGE-1 ROUGE-2 ROUGE-L

t5-article 19.01 5.61 13.52

graph-based 19.47 5.52 12.50

hybrid-long 18.55 5.42 11.73

sumbasic 18.86 5.04 12.25

Meta-model 20.38 5.85 13.67

6 Conclusion

In this paper, we proposed a novel system for extractive, abstractive, and hybrid
summarization tasks. Our system consists of a trained fully connected neural
network that analyzes the input content and recommends the most suitable
summarization model for a given text. This approach addresses the problem of
selecting the appropriate model for a new text, which can be short, long, and of
various genres, and can come from almost anywhere when used in production.
Our system provides a more effective and efficient way of generating high-quality
summaries for Slovene texts.

While the proposed SloMetaSum model presents an innovative solution to the
problem of selecting the most suitable summarization model for a given text, it is
not without its weaknesses. One major drawback is the reliance on the ROUGE
score as the sole criterion for model selection. While ROUGE is a commonly used
metric in the field of text summarization, it does not always accurately reflect
the quality of a summary or capture its coherence and readability. Another
potential weakness is the limited scope of the study, which focuses exclusively
on the Slovene language. While the four summarization models developed for
Slovene are an important contribution to the field, they may not generalize well
to other less-resourced languages since it requires a good automatic translation
system.

Future work could involve extending this system to other languages. Another
area for future work could involve comparing the proposed system with recent
large language models. In addition to evaluating the technical performance of
the system, it would also be useful to conduct user studies to assess its use-
fulness and effectiveness in real-world scenarios. For example, researchers could
design experiments to evaluate the system’s ability to summarize news articles,
academic papers, and other types of content that people encounter in their daily
lives.
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Abstract. The Transformer architecture has, since its conception, led to numer-
ous breakthrough advancements in natural language processing. We are inter-
ested in finding out whether its success is primarily due to its capacity to learn
the various generic language rules, or whether the architecture leverages some
memorized constructs without understanding their structure. We conduct a series
of experiments in which we modify the training dataset to prevent the model from
memorizing bigrams of words that are needed by the test data. We find out that
while such a model performs worse than its unrestricted counterpart, the findings
do not indicate that the Transformers’ success is solely due to its memorization
capacity. In a small qualitative analysis, we demonstrate that a human translator
lacking the necessary terminological knowledge would likely struggle in a similar
way.

Keywords: transformers · language models · machine translation

1 Introduction

The Transformer architecture made its first appearance in 2017 [10] and has since rev-
olutionized a number of machine-learning subfields, the most prominent one of them
being, perhaps, the field of natural language processing. Transformers allow for the pro-
cessing of vast amounts of textual data, thus facilitating the creation of high-performing
language models1.

Transformers nevertheless exhibit certain idiosyncrasies that motivate us to question
their “true generalization power”. For instance, they are known to overfit to sentence
lengths seen in the training data [9]. In this paper we ask whether the gains in metrics
are due to the ability of Transformers to actually learn general rules of the language,
or whether they simply manage to memorize the seen expressions without generalizing
over them.

We design a set of experiments in order to evaluate the generalizing capabilities of
the architecture when it is unable to memorize. Our findings do not support the hypoth-
esis that the Transformer architecture leverages the memorization as we have defined
it. While statistical measures show some level of deterioration when we prohibit mem-
orization, manual analysis reveals that the phrases which the model could not learn by
memorizing during training were important for the context and even human translators
would not be able to arrive at a good translation without this knowledge.
1 [1,2,6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 Motivation: Productive Phrases

Without adhering to a particular linguistic theory of syntax, we base our analysis on the
idea of “productive” vs. “non-productive” phrase constructions. A phrase (a sequence
of words) is productive if there exists a general rule that can be used to produce a large
number of similarly-structured phrases. E.g. the expression “blue cat” would be marked
as a productive phrase, because it is an instance of the rather general rule adjective of
color + animal. On the contrary, “at present” would be a non-productive phrase, since
the set of phrases that can be generated in a similar way is limited.

The idea of “productivity” is closely related to the compositionality of expressions,
where the meaning of a larger unit can be inferred from the meanings of its parts.
Productive phrases strongly exhibit compositionality.

In this paper, we essentially test whether a Transformer model has the capacity of
being productive.

3 Experiments

3.1 Memorization and Generalization

We explore whether the model based on the Transformer architecture can utilize the set
of productive phrases observed in the training dataset to derive new, unseen productions.
We call this ability generalization. Conversely, a model relying on memorization can
only reproduce already seen productive phrases, and its ability to generate new instances
of productive phrases is very limited.

3.2 Data

We trained models to translate English sentences into Czech. Our data comes from
two sources. For training, we used the news subset of the CzEng 2.0 corpus [4]. The
decision to use only a subset of CzEng was made in order to be able to make small fast
experiments, and we chose the domain that matched our test sets.

The validation and test datasets are concatenations of several WMT news test sets.
In particular, we use test sets from years 2013–2016 as our validation dataset and test
sets from years 2017–2020 as our test dataset [3].2

3.3 Experiment Setup

In our experiments, we focus specifically on bigrams of words, the smallest natural
units whose memorization might affect the model’s performance.3

We design a training dataset and an evaluation dataset so that the model cannot apply
its memorization capabilities learned on the training dataset to the evaluation dataset,
as described further on.
2 http://www.stat.org/wmt13 to wmt20.
3 We use the common technique of subword units as described below, but we nevertheless decide
to study the memorization effect on sentence syntax rather than on word formation.

http://www.stat.org/wmt13
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3.4 Productive Bigram Heuristics

We define a set of four heuristics for the identification of productive bigrams.
Default Heuristic consists of all POS4 commonly considered to be semantic: adjec-

tives, adverbs, nouns (including proper nouns), numerals, pronouns, and verbs. Any
bigram of words with both words belonging to these parts of speech is deemed produc-
tive. The motivation is that these POS tend to behave compositionally.

However, we found that almost 90% sentence pairs from the training dataset con-
tain at least one productive bigram found in the validation or test split. Removing all
these sentences from the training data reduces the available data to a size where the
negative effects of insufficient training data outweigh the negative effects of the inabil-
ity to memorize. Therefore, we design a Nopron Heuristic. It is the same as the Default
Heuristic but does not contain pronouns.

To preserve even more of the training data, we also design the Adj Heuristic (only
adjectives, nouns and proper nouns) and Verb Heuristic (verbs, nouns, proper nouns),
trading the level at which the training data stays the same for precision of the definition
of productive bigrams.

3.5 Construction of Datasets

Given a particular heuristic, we collect three sets of productive bigrams, one from each
training, validation and test split of the dataset. The productive bigrams are collected
from the target side of source-target sentence pairs in the dataset.

Finally, we filter the datasets in such a way that the target sides of training split does
not contain any productive bigrams from the target sides of the concatenation of the
validation and test splits.

3.6 Performance Measures on Seen and Unseen Test Datasets

The first set of experiments was done on the full non-modified training dataset and splits
of the validation and test datasets.

First, we trained a big Transformer model (with the same configuration as in [10])
on the full training dataset to establish the performance benchmark. The inputs to the
network were tokenized using BPE. We used early stopping with a patience of three
epochs. The model achieved a BLEU of 17, which is relatively small compared to the
state of the art results on the translation task [5]. This is due to multiple factors, mainly
the small size of the training dataset.

Seen and Unseen Test Dataset. We split the test dataset into two parts: a seen part
containing all the source-target sentence pairs from the test dataset where the target
sentence contains at least one productive bigram known from the training dataset, and
the unseen part containing the remainder of the data. Table 1 shows that with this very
simple definition of productive bigrams, we were able to separate harder instances from
easier, where the performance difference is about 3.5 BLEU points (20%).

4 We lemmatize and tag all our data using UDPipe [8].
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Table 1. BLEU of the full model measured on different splits of the test dataset.

Prod. bigram BLEU measured on Size of

heuristic seen unseen Δ seen unseen

default 16.73 13.19 3.54 7713 1042

Nopron 16.98 12.56 4.42 7080 1675

adj 17.46 13.87 3.59 5368 3387

verb 17.87 14.70 3.17 4026 4729

We examined the productive bigrams collected from the unseen part of the test
dataset for Nopron Heuristic. We observed that the most occurring productive bigram
is far post with only 3 occurrences. The topics of the sentences were from more spec-
ified domains (e.g. sports). Essentially, we found a split with relatively rare words and
contexts.

Discussion of the First Experiment. In our first experiment, we managed to separate
hard and easy instances for our model. However, the difficulty was not caused by the
lack of productivity of our model, but by the rarity of the contexts of the sentences in
the unseen part.

3.7 Performance Measures on Filtered and Contrastive Training

While our first experiment focused on challenging the generalization capabilities of the
model trained on the full training dataset, the second experiment focuses on designing
specific training datasets with no productive bigrams from the test dataset.

As before, we collect the productive bigrams from the test dataset and filter out
all the sentence pairs from the training dataset containing at least one of them, creat-
ing the Filtered dataset. Then we sample a random dataset from the training dataset
with approximately the same size and the same sentence-length distribution as Filtered
dataset - the Contrastive dataset.

Training on the Filtered Datasets. The Filtered datasets that we produced were small
in size (25 to 78% of the original training dataset). We thus followed the approach of
[7] and downsized the model. This model consists of 4 attention heads, 3 encoder layers
and 3 decoder layers. We trained in the same fashion as in Sect. 3.6 (e.g. early stopping
with patience = 3, BPE).

Quantitative Results. Table 2 shows the results measured on the Filtered and the Con-
trastive models for each productive bigram identification heuristic. Aside from BLEU,
we also report the “Overlap”, i.e. the percentage of sentences that are found in the
respective Filtered dataset. As the overlaps are increasing, the Contrastive and Filtered
training datasets are getting more similar.

As we can see, for each pair of Filtered and Contrastive datasets, the model trained
on the Contrastive one always achieved about 1 point higher BLEU score on both the
test and the validation datasets.
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Table 2. Performance of models forced to demonstrate generalization, i.e. generate produc-
tive bigrams explicitly removed from training data (“Filtered”), compared to models trained on
similarly-sized standard training data (“Contrastive”), for various heuristic definitions of produc-
tive bigrams.

Heuristic Model BLEU Overlap

Valid Test

Default Contrastive 9.32 8.69 34.90%

Filtered 8.02 7.16 100%

Nopron Contrastive 11.47 10.62 40.80%

Filtered 10.58 9.27 100%

Verb Contrastive 15.76 14.57 74.25%

Filtered 15.65 14.70 100%

Adj Contrastive 13.96 13.03 53.01%

Filtered 13.25 11.97 100%

Table 3. The average scores of the annotated outputs from each model. Here, 1 means a bad
translation, 2 means an average translation, and 3 means a good translation.

Heuristic Model Average Score

Nopron Contrastive 1.69

Filtered 1.52

None Full 2.64

To not rely only on BLEU, we also evaluated a random subset of 50 translations
from the Nopron heuristic models manually on a Likert scale (1 - bad translation, 2 -
average, 3 - good translation). The average scores of the annotated data are summarized
in Table 3.

As expected, the model trained on the full data performs best. The Filtered and
Contrastive datasets are smaller and thus lead to a degraded performance. The Filtered
model, which prohibited memorization, has the lowest performance which could indi-
cate Transformer’s insufficient generalization power, but the dependence of the metric
on the (single) reference translation, the overall low numbers and the small difference
in manual evaluation do not allow to make this claim strong enough.

Discussion. To complement the overall scores, we reviewed some of the produced out-
puts manually and looked at specific examples of productive phrases where the model
should attempt to construct them.

First, let us consider the two Czech words

letošní and rok,

meaning this year’s and year, respectively. They are often found next to each other,
with letošní rok meaning this year. Clearly, there is no word-to-word correspondence
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between the two languages. The phrase letošní rok can be seen as an idiomatic expres-
sion due to the duplicated reference to the year and it is hard to imagine a model gen-
erating it without having learned it as-is.

Indeed, while the Contrastive model produced the translation letošní rok in 10 cases
out of the 20 where the expression was present in the reference, the Filtered model only
did so once. In most of the other cases, the Filtered model’s output was either tento rok
(lit. this year) or letos, which is a very commonly used equivalent.

The model failed to generate an idiomatic expression which it had not seen dur-
ing training. However, it provided an equivalent translation instead. This situation will
decrease the model’s BLEU score, although the output is perfectly acceptable.

Second, consider the pair

změnit názor

meaning change one’s mind. Out of the six sentences whose reference translation con-
tained the phrase, the Contrastive model translated it correctly twice, translated it as
změnit myšlení (lit. change thinking) twice, and failed to provide a comprehensible out-
put twice. The Filtered model translated the phrase as změnit myšlení (change thinking)
or změnit mysl (change mind, using another meaning of mind) five times and provided
an incomprehensible output once.

Except for the reference změnit názor, all other options are clumsy, to say the least.
Not producing změnit názor is thus a mistake and the Filtered model has a low chance
of constructing it, since mind appears translated as názor in very few cases other than
změnit názor.

One general observation is to be made: We think that we did not prohibit memo-
rization of some language structures exclusively, but we accidentally prohibited entire
contexts. For example, sentences which contained Spojené Státy (United States)
were rather political, hence the Filtered model was worse for all the political topics in
the validation and the test datasets since it was not able to learn collocations and word
order characteristic for this topic.

4 Future Work

There are several interesting areas for future work.
First, it would be interesting to examine whether the performance of the SotA mod-

els deteriorates on any of the unseen parts of our test datasets compared to the seen parts
as well.

Our experiment can also serve as a first step towards proposing automatic assess-
ment of compositionality of various phrases, which is closely related to the identifica-
tion of multi-word expressions. If a candidate phrase is forbidden from the training data
using our method and the Transformer model nevertheless generates it, the phrase is not
an opaque multi-word expression.

Finally, other heuristics for banning of the memorization could be tried, as there are
many downfalls of using only bigrams of semantic words. As an example our definition
prohibits e.g. United States which clearly isn’t a productive bigram.
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5 Limitations

A major part of the experiments relies on the words’ part-of-speech as tagged by
UDPipe. Our manual examination revealed some tagging errors which could, in the-
ory, affect the results but we expect this effect to be small.

Another limitation comes from our available data and computing resources which
did not allow us to reach the current state-of-the-art performance. However, we believe
that the trained models were sufficient for us to conduct experiments.

6 Conclusion

We proposed a method for assessing if Transformers are able to generalize the observed
training data and produce unseen phrases. Applying this method on English-Czech
translation pair, we observed a small degradation in quality when we enforce the gener-
alization but the evaluation does not allow us to claim that Transformer would be “only
memorizing”. Specifically, Transformer was indeed able to produce acceptable transla-
tion while avoiding the prohibited phrases. Our method could be thus seen as a basis
for automatic empirical assessment of compositionality of phrases.

Acknowledgements. This work was supported by the grant 19-26934X (NEUREM3) of the
Grant Agency of the Czech Republic.
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Abstract. Pre-trained models for Czech Natural Language Processing
are often evaluated on purely linguistic tasks (POS tagging, parsing,
NER) and relatively simple classification tasks such as sentiment classi-
fication or article classification from a single news source. As an alterna-
tive, we present CZEch NEws Classification dataset (CZE-NEC), one of
the largest Czech classification datasets, composed of news articles from
various sources spanning over twenty years, which allows a more rigor-
ous evaluation of such models. We define four classification tasks: news
source, news category, inferred author’s gender, and day of the week. To
verify the task difficulty, we conducted a human evaluation, which revealed
that human performance lags behind strong machine-learning baselines
built upon pre-trained transformer models. Furthermore, we show that
language-specific pre-trained encoder analysis outperforms selected com-
mercially available large-scale generative language models.

Keywords: News classification · NLP in Czech · News Dataset

1 Introduction

Natural Language Processing (NLP) tools in Czech are often evaluated on purely
linguistic tasks such as POS tagging, dependency parsing from Universal Depen-
dencies [10], or Named Entity Recognition (NER) [12]. As linguistic tools lose
importance as parts of more complex NLP pipelines, semantic and pragmatic
end-to-end tasks become more important evaluation benchmarks. The down-
stream tasks available for Czech include sentiment analysis [2], news topic clas-
sification [7], or text summarization [13]. Compared to other languages, the
number of interesting NLP tasks is limited.

With large language models being able to operate multilingually, there is a
new need for challenging evaluation datasets beyond English. Most NLP tasks
also work with short texts, even though longer texts pose a bigger challenge for
Transformer-based models, which rely on self-attention with quadratic memory
complexity. We fill this gap by introducing a new dataset with challenging tasks
for both machine learning models and humans.

We create the CZE-NEC by crawling Czech news websites from Common-
Crawl (Sect. 2.1) and use the available metadata to define classification tasks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 33–44, 2023.
https://doi.org/10.1007/978-3-031-40498-6_4
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(Sect. 2.3). The tasks are: news source classification, news category classifica-
tion, inferred gender of the author (to assess a risk of gender discrimination
based solely on text authorship), and day of the week when the news was pub-
lished. We estimate the actual difficulty of the tasks by the human performance
measured on a sample of the test data (Sect. 2.4).

Finally, we present strong baselines for the dataset (Sect. 3) using state-
of-the-art machine learning models. Recently, several pre-trained encoder-only
models for Czech were introduced [8,14] that reach state-of-the-art results both
on existing benchmarks and our dataset. They outperform estimated human
performance on all tasks, and on two tasks (cases), they outperform fine-tuned
GPT-3 model [1].

2 CZEch NEws Classification Dataset (CZE-NEC)

CZE-NEC is compiled from news stories published online in major Czech media
outlets between January 2000 and August 2022. The news article content is
protected by copyright law; therefore, we cannot distribute the dataset directly.
Instead, we release software1 for collecting the dataset.

2.1 Dataset Creation Process

We have collected the news stories text from the following six Czech online
news providers: SeznamZprávy.cz, iRozhlas.cz, Novinky.cz, Deńık.cz, iDnes.cz,
and Aktuálně.cz. Instead of crawling the pages directly, we used the Common-
Crawl archive to extract the articles.

Filtering. Not all pages on the news websites are news articles. Pages may
contain videos, photo galleries, or quizzes, i.e., typically JavaScript code, which
needs to be filtered out. We applied common data-cleaning techniques, namely
language identification and rule-based filtering. We used the FastText Language
detection [4,5] model to filter out non-Czech articles, requiring all lines to be
classified as Czech. To remove wrongly parsed articles, we kept only ones with
the following properties: content length of at least 400 characters, headline length
of at least 20 characters, and brief length of at least 40 characters. To exclude
content that is not text, we only kept articles with the following properties:

1. The average word length is at least 4;
2. The number of words per total article length in characters is in the interval

(0.11, 0.22); and
3. The ratio of non-alphanumeric characters is at most 4.5% per Length -

(0, 0.045).

We also dropped articles with prefixes indicating non-news content, such
as video, photo, or gallery. Finally, we removed articles with identical briefs,
headlines, or content.
1 https://github.com/hynky1999/Czech-News-Classification-dataset.

https://github.com/hynky1999/Czech-News-Classification-dataset
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Table 1. Dataset summary. Article words were calculated based on Moses tokenization.

Source Size Authors Categories Start date Words per article

Deńık.cz 664,133 2,497 18 2007 332

Novinky.cz 321,417 2,518 17 2002 274

iDnes.cz 295,840 4,386 21 2000 423

iRozhlas.cz 167,588 1,900 8 2000 287

Aktuálně.cz 112,960 633 19 2005 468

SeznamZprávy.cz 65,472 382 11 2016 443

Total 1,627,410 10,930 25 2000 362

Dataset Postprocessing. After filtering, we manually merged similar cate-
gories, resulting in 25 final categories, and filtered authors to 11k unique ones.
We then removed excluded labels from the dataset. Content, brief, and headline
were post-processed, including Unicode and HTML normalization and format-
ting adjustments. Gender was inferred from the authors using Namsor2. If the
article contained more than one author, we chose the homogeneous gender if
possible. Otherwise, we labeled the Gender as Mixed. Even though the estima-
tion provided by Namsor is likely to be correct in most cases, we realize that
the actual gender cannot be inferred from a name. Individuals can identify with
different gender that does not correspond to the linguistic features of their name.
We discuss this issue also later in the paper.

Splits. We divided the dataset into the train, validation, and test sets based on
publication date, using a 34:3:3 ratio. The splits are chronological, i.e., articles in
the training set were published before the test set, so we can asses if the models
generalize in time. The dataset division is depicted in Fig. 1.

2.2 Dataset Summary

The dataset contains the following data items for each article:

– Source – Website that published the article;
– Content – Actual text content of the article;
– Brief – Brief/Perex of the article;
– Headline – Headline/Title of the article;
– Category – Both post-processed and original category;
– Published Date – Date of publication and inferred day of the week;
– Inferred gender – Inferred gender of author(s) name(s);
– Keywords – Extracted keywords from the article; and
– Comments Count – Number of comments in the discussion section.

Basic statistics summarizing the dataset are presented in Table 1.
2 https://namsor.app/.

https://namsor.app/
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Fig. 1. Distribution of news sources over time with dataset split boundaries.

2.3 Task Definitions

The input for each task is only the article body, without including the brief or
the headline. Not all articles contain all metadata; not all are available for all
tasks. The distribution of samples across tasks is in Table 2. In the following
paragraphs, we describe the four classification tasks in more detail.

Source. The source classification task involves predicting the publishing website
of articles from a set of 6 labels, as shown in Fig. 2. It is important to note that
there is a significant distribution shift between the training and validation set,
which is caused by differences in the launch dates of the websites and parsing
issues (especially with Novinky.cz).

Category. The Category classification task requires predicting the category
of an article from a set of 25 labels, as depicted in Fig. 3. When selecting the
categories, we carefully identify the most frequent ones while striving to maintain
diversity and minimize any potential overlap between them.

We acknowledge that certain category selections might be disputed in some
cases. For instance, we could have merged more similar categories, such as
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Table 2. Tasks distribution over sets.

Set Source Category Gender Day of week

Train 1,383,298 879,019 919,840 1,383,298

Validation 122,056 78,084 82,936 122,056

Test 122,056 82,352 83,269 122,056

Total 1,627,410 1,039,455 1,086,045 1,627,410

Fig. 2. Dataset’s label distribution of the Source task.

Entrepreneurship and Business. Likewise, some categories should have been sep-
arate such as Lifestyle and Health. Lastly, we should have considered excluding
the Home and Foreign sections due to their span. Therefore we decided also to
include the original categories without merges in CZE-NEC.

Inferred Gender. This classification task has 3 labels, as shown in Fig. 4. We
acknowledge that accurately inferring the gender from a person’s name is, in
principle, impossible, as the actual gender might not correspond to the linguis-
tic features of the names. Inaccurately assuming gender is potentially harmful
to individuals whose names are being labeled. Unlike other languages, Czech
has a stronger association of social and grammatical gender than many other
languages, which makes inferring gender more accurate. We thus consider the
inferred gender for names to be a reasonable proxy for our purposes. The goal of
the task is to find if neural models consider authors’ gender, which could poten-
tially lead to discriminatory output in other NLP tasks. We only work with
accumulated approximate statistics, which we believe are a reasonable approxi-
mation of the social reality. This task is not meant to label individuals and the
text they produce, and we discourage future users of CZE-NEC from doing so.
There also might be cases (especially reports taken from news agencies) where
the author signed under the paper might not be the main author of the text.
Given the approximate nature of the inferred gender classification, we believe it
does not influence the meaningfulness of the task.



38 H. Kydĺıček and J. Libovický

Fig. 3. Dataset’s label distribution of the Category task.

Fig. 4. Dataset’s label distribution of the Gender task.

Day of the Week. The Day of Week task is a classification challenge consisting
of seven distinct labels, as illustrated in Fig. 3. The objective is to accurately pre-
dict the day of the week a given article was published. Given the absence of any
apparent approaches to tackle this task, we deem it to be the most challenging
among the tasks considered.

2.4 Human Annotation

To assess the human performance on the tasks, four instructors were instructed
to assign labels for each article. We used a smaller dataset of 100 randomly
selected samples from the test set, encompassing all associated metadata (Test
Human).

Upon completing the annotation process, the scores from each evaluator were
averaged to derive the Human score. The human scores are presented along with
the model results in Table 5.
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Fig. 5. Dataset’s label distribution of Day Of Week task.

3 Task Baselines

We present baseline experiments in two data regimes. In the first one, we use the
entire CZE-NEC and present results using state-of-the-art pre-trained encoders.
We anticipate that less training data will suffice with larger and more pre-trained
language models. Therefore, we include a second, smaller data setup and GPT-3
among the baselines.

3.1 Large Dataset Setup

In this scenario, we train and evaluate various models on the unrestricted
train/test sets. First, we employ logistic regression to assess the performance
of a keywords-based model. A possible high accuracy of this model would mean
that the tasks are solvable only by spotting typical keywords for the classes with-
out any deeper understanding. Subsequently, we fine-tune two Czech pre-trained
Transformer encoders for our tasks. We do not test GPT-3 in this setup, mostly
due to the high costs of such finetuning.

Logistic Regression. We used Logistic Regression (LR) for the baseline model
with TF-IDF and several additional features. Following [13], we incorporated the
following features:

– Number of words;
– Number of words with only non-alphabetic characters;
– Number of uppercase words;
– Number of digits words; and
– Number of capitalized words.

We used 1–2 grams with features max document frequency: 1% and restricted
total TF-IDF features to 200k. We use logistic regression as our first baseline to
rule out that the task we define is too simple and can be solved using keyword
spotting.



40 H. Kydĺıček and J. Libovický

Table 3. Tasks F1 Macro scores for selected models on the Test set. We use — to
denote that the model failed to converge for all tested learning rates.

Model Source Category Gender Day of week

Logistic Regression 37.27 32.77 44.06 18.34

RobeCzech (large data) 69.74 54.35 51.18 29.43

Fernet-News (large data) 69.39 53.97 — 29.24

RobeCzech (small data) 59.48 36.55 44.97 17.42

Fernet-News (small data) — 37.84 — 17.68

Final (large data) 71.04 56.06 51.94 29.68

Fine-Tuning Pre-trained Encoders. We experimented with two Czech
transformer models, RobeCzech [14] and Fernet-News [8] that reach state-of-
the-art-results for Czech NLP. By comparing them, we can investigate the poten-
tial advantages of textual dependency in tasks and the benefits of in-domain pre-
training. Both models leverage RoBERTa [9] architecture with 52k/50k vocabu-
lary size and 126M/124M parameters. Training data differ with RobeCzech hav-
ing more diverse and well-rounded corpora, encompassing contemporary writ-
ten Czech, articles from newspapers and magazines, and entries from Czech
Wikipedia. In contrast, Fernet-News utilizes a single-domain corpus, predomi-
nantly featuring Czech news articles and broadcast transcripts. We hypothesize
that the similarity of task and Fernet-News domains would lead to better task
performance.

We fine-tuned both models for 2 epochs with linear decay, 0.1 warmup, 48
effective batch size, and AdamW as the optimizer. All layers were unfrozen
except the embedding layer. Learning rates were selected based on the best
validation score of a grid search over a 0.4 fraction of the training data. Possible
learning rate values were:

– RobeCzech: 3e−5, 4.5e−5, 7.5e−5
– Fernet-News: 1e−5, 2e−5, 3e−5

The proposed learning rate values for RobeCzech and Fernet-News differ due
to the divergence of Fernet-News with higher learning rates. To deal with long
texts, we chose to truncate them to the first 510 tokens.

Final Model. We additionally trained a RobeCzech with several enhancements.
We first further pre-trained RobeCzech on the content of the article in FULL-
SENTENCES setting [9] with a batch size of 192 and learning rate of 5e-5 for 10
epochs. We then trained the resulting model with a similar setting as in Sect. 3.1.
We shortened the warmup to just 0.01 and fully removed it from the classifier.
Finally, we added custom sampling with higher probabilities assigned to more
recent articles.
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Table 4. Tasks F1 Macro scores for selected models on Test Small. We use — to denote
that the model failed to converge for all tested learning rates.

Model Source Category Gender Day of week

RobeCzech (small data) 75.12 37.88 47.45 17.41

Fernet-News (small data) — 39.31 — 17.68

GPT-3 67.30 44.76 42.92 19.49

RobeCzech (large data) 78.43 56.17 52.38 27.96

Fernet-News (large data) 78.04 55.51 – 27.25

Results. Table 3 shows a significant improvement in Transformer models over
Logistic Regression across the tasks. This demonstrates the importance of cap-
turing textual dependencies for better performance.

Contrary to the initial expectation that Fernet-News would achieve higher
scores due to its same-domain training data, RobeCzech outperformed Fernet-
News across the tasks. One possible explanation could be RobeCzech’s slightly
higher capacity, which may be more important for long training.

The Final model further improved the performance on all the tasks showcas-
ing the importance of further in-domain pretraining and recency sampling.

3.2 Small Dataset Setup

In this setting, we evaluate a less-resourced scenario and assume we only have
50k most-recent training instances with all task labels. Unlike the previous setup,
here, we also include fine-tuning of the GPT-3 model, which is known to perform
well in scenarios beyond English. The evaluation is conducted on a smaller test
set, a 10k subsample called Test Small.

Pre-trained Encoders. Both RobeCzech and Fernet-News were trained in this
setting with the same parameters as in Sect. 3.1.

GPT-3. We selected the Ada variant from the GPT-3 family for our experi-
ments. The model was trained in a multi-task setting, utilizing the article text
(query) and corresponding task labels in Czech (text completion) as input. The
model was fine-tuned for two epochs.

Results. Table 4 shows the anticipated benefits of same-domain pre-training
for Fernet-News became evident. When it converged, Fernet-News outperformed
RobeCzech. Regarding GPT-3, it demonstrated its multilingual capabilities by
outperforming both short models on two tasks.

For comparison, we also show the results of the fully trained RobeCzech
and Fernet-News. Considering that the models in the small dataset setup were
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Table 5. Tasks F1 Macro scores for selected models on Test Human.

Model Source Category Gender Day of week

Human 27.03 40.26 50.09 13.53

Final (large data) 71.22 52.04 52.79 28.37

trained on less than 6% of the data, the results can be regarded as fairly good,
yet it is apparent that further training is beneficial.

We also observed a higher source task performance of the models on the set.
The reason for this remains unclear, especially considering that the distributions
are relatively similar across the test sets. The only noticeable change is iDnes.cz
having slightly higher representation at the expense of Deńık.cz.

3.3 Human Comparison

Our findings revealed that the model outperforms human performance on every
task, with the most significant improvement exceeding 44% in the source task, as
indicated in Table 5. We also evaluated inter-annotator agreement using Cohen’s
kappa, discovering that only the Category task exhibited significant agreement.
The averaged scores were as follows: 0.08 for Source, 0.65 for Category, 0.20 for
Gender, and 0.01 for Day Of Week. The low agreement and F1 macro scores
observed for humans indicate that the tasks are indeed challenging.

4 Related Work

Benchmarking is the main way in which progress is measured in NLP. For
English, aggregated benchmarks such as GLUE [16] or SuperGLUE [15] are often
used to track the progress of pre-trained language models. The benchmarks cover
various tasks that test language understanding, from sentiment analysis to chal-
lenging Winograd schemes. Multilingual benchmarks such as XTREME [3] cover
Czech in a few tasks; however, they focus on cross-lingual transfer from English.

Czech-specific tasks span a variety of domains, such as Machine Transla-
tion [6], Question Answering [11], Text Summarization [13], Sentiment Analy-
sis [2], Named Entity Recognition [12], and Topic Classification tasks [7,8].

Our research shares similarities with [7] and [8]. Beyond news categories,
we incorporate additional classification tasks into our study. Furthermore, our
dataset is substantially larger and, owing to the variety of metadata gathered
offers opportunities for additional tasks in the future.

5 Conclusions

We present a new dataset of Czech news articles that covers news stories between
2000 and 2022. We defined four classification tasks: news source, news category,
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inferred gender of the author, and day of the week of publishing the paper.
Manual annotation of a part of the dataset showed that the tasks are challenging
for humans.

The classification results are achieved by fine-tuning Czech pre-trained
encoder models. Despite the recent development in pre-trained generative lan-
guage models, pre-trained encoders outperform GPT-3 in two of four tasks. The
best model largely outperforms human guesses, except for the inferred gender
classification. The generally low performance on the inferred gender classification
suggests that the risk that the pre-trained model would discriminate because of
implicitly assuming authors’ gender is probably low.
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Resolving Hungarian Anaphora with ChatGPT
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Abstract. This paper presents an experiment in which we investigated how Chat-
GPT performs in resolving ambiguous pronominal anaphoras in Hungarian sen-
tences. We used the chat function of ChatGPT to gain insight into its response
strategy. We used four different experimental setups to find out which question-
ing strategy gives the best results. We also looked at how consistent the responses
were. In addition to evaluating the results, we looked for reasons why the model
could or could not solve certain problems.

Keywords: anaphora resolution · Winograd schema · ChatGPT

1 Motivation

Since its launch in 2022, ChatGPT has been actively engaging not only the language
technology sector, but also the public. It can also be observed that users – be they experts
or laymen – often refer to it as artificial intelligence, although this is misleading. Since
the application is widely available and tested, users often try to judge the intelligence
of the model and the chat application built on it.

The question has often been raised as to whether ChatGPT would pass the Turing
test, because it is deceptively good at conversation. Winograd schemas are often referred
to as an alternative to the Turing test, hence the idea to see how ChatGPT performs in
solving problems of this type. Since ChatGPT is available and easy to use for anyone,
and since we have Hungarian translations of Winograd schemas and other similar col-
lections [6], we were curious about how ChatGPT would perform in solving Hungarian
pronoun problems.

The prior assumption was that while it would not achieve human performance, it
would perform surprisingly well in resolving Winograd schemas. In addition, we also
expected that, being a chat program, we would receive explanations and justifications
along with the answers. After a brief introduction to the background, we present our
experiments with the Hungarian translation of the Winograd schemas. Using examples,
we interpret the answers and the possible reasons. Finally, we summarize the results
achieved in our experiments.

2 Background

2.1 The Winograd Schemas

Winograd schema questions require anaphora resolution with the help of world knowl-
edge and commonsense reasoning. Anaphora resolution is an important issue in NLP,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and the Winograd Schema Challenge (WSC, proposed by [4]) is considered to be the
novel Turing Test to examine machine intelligence and several other datasets were cre-
ated along this concept.

Winograd schemas are sentence pairs. The contents of the two sentences differ in
one word or phrase, the target pronouns are identical lexically, but they refer back to dif-
ferent antecedents. The idea behind the Winograd schemas is based on that grammatical
information is not enough to resolve the antecedent of a pronoun.

The two sentences in Example 1 differ only in the adjective, yet the pronoun in the
second clause points back to different antecedents. In order to connect the pronoun to
its antecedent correctly the resolver – be it a human or a model – must know how things
fit together, which of the two objects can store the other, etc.

(1) The trophy doesn’t fit into the brown suitcase because it is too [large/small].
it is too [large/small]

a. the trophy

b. the suitcase

Fortunately, we already had the Hungarian translations of the Winograd schemas
and other Hungarian datasets, as [6] provided four translated datasets. In this project we
used the test set of Hungarian Ambiguous Pronoun Problems (HAPP)1 dataset which
contains the Hungarian translation of the Definite Pronoun Resolution Dataset by [5].

2.2 ChatGPT Solving Winograd Schemas

In the era of large generative language models, it is difficult for researchers in traditional
publishing processes to keep up with the development of technologies, so it is likely that
by the time this article is published, even more advanced language models and applica-
tions will be launched. We also found two blog posts on ChatGPT tests with the original
English Winograd schemas. [2]2 tested the text-davinci-003 model using few-
shot prompting method via the OpenAI API. After a short introductory sentence that
described the task in a few words, four examples were shown to the model, and then all
the Winograd schema questions were asked one by one. The model achieved 73% accu-
racy, far below the SOTA result at the time (see [3] for some results on the Winograd
Schema Challenge). [1]3, on the other hand, achieved better results using the same test
data. In their experiment, the performance of GPT-3 and GPT-4 were measured with the
task of solving the Winograd schemas, and while the former achieved 68.8% accuracy,
the latter achieved 94.4%! The authors of both blog posts have published the methods
and code snippets of their experiments, so their results are reproducible.

1 https://github.com/nytud/HAPP.
2 https://medium.com/@mrkellyjam/can-chatgpt-solve-the-winograd-schema-challenge-

605bb6e3af79.
3 https://d-kz.medium.com/evaluating-gpt-3-and-gpt-4-on-the-winograd-schema-challenge-

reasoning-test-e4de030d190d.

https://github.com/nytud/HAPP
https://medium.com/@mrkellyjam/can-chatgpt-solve-the-winograd-schema-challenge-605bb6e3af79
https://medium.com/@mrkellyjam/can-chatgpt-solve-the-winograd-schema-challenge-605bb6e3af79
https://d-kz.medium.com/evaluating-gpt-3-and-gpt-4-on-the-winograd-schema-challenge-reasoning-test-e4de030d190d
https://d-kz.medium.com/evaluating-gpt-3-and-gpt-4-on-the-winograd-schema-challenge-reasoning-test-e4de030d190d
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There is no similar experiment using Hungarian data so far, so this present research
tries to fill the gap. Fortunately, we owned both important ingredients to carry out the
test. On the one hand, the training material of GPT-3, the language model behind Chat-
GPT contains approx. 0.06512% Hungarian data4, and based on the impressions and
experience of Hungarian users it can chat in Hungarian surprisingly well. On the other
hand, Hungarian translations of Winograd schemas and other similar problems contain-
ing pronouns with ambiguous references are also available.

3 ChatGPT Solving Hungarian Schemas

For our experiments, the test data of the HAPP collection mentioned in Sebsec. 2.1
was used, which contains a total of 564 sentences and questions. ChatGPT was used
through the Python API provided by OpenAI5. To use the chat function, we used the
most advanced GPT model at the time6, gpt-3.5-turbo. Due to the limitations of
OpenAI, some delay was added to the script, but even with the delay, all the experiments
were completed within an hour. After formatting the output, the received answers were
compared to the answers in the schema collection.

Four experiments were performed. In the first experiment, we only gave the model
the sentence and the question, we did not give any instructions on how to answer, and
we did not give any answer options either. In the second experiment, we also gave only
the sentence and the question without answer options, but we also added the request
that it should answer in one or two words. In the third experiment, we offered both
answer options. In the fourth experiment, we provided the two answer options again,
but we also asked for a short justification for the answer. See Example 3 for the four
experiment setups.

(2) sentence: The car beat the bike because it was faster.

1. What was faster?

2. What was faster? Please answer in one or two words!

3. What was faster? The car or the bike?

4. What was faster? The car or the bike? Please explain your answer!

The result could not be evaluated automatically, for two reasons. On the one hand,
the correct answer can come in various formulations and formats, it is not enough to
simply compare two strings. Sometimes we received a long sentence as an answer
(especially in the case of the first experiment). During the first review of the answers it
became obvious that it was not enough to give good and bad evaluations to the answers,
additional categories were also needed. This also made automatic evaluation impossi-
ble. ChatGPT is honest in the sense that it tells you when it cannot answer something,

4 https://github.com/openai/gpt-3/blob/master/dataset statistics/languages by word count.csv.
5 https://platform.openai.com/docs/guides/chat.
6 The experiment was completed in March 2023.

https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_word_count.csv
https://platform.openai.com/docs/guides/chat
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so such answers had to be classified separately. And the fourth category refers to those
answers where the model avoided answering with some strategy. In these cases, Chat-
GPT did not claim that it did not know the answer, but criticized the sentence in the
schema or the question, for example, because it was offensive, and we also included
the cases where it formulated a very general statement as an answer, but clearly not
relying on the information in the sentence. The answers of ChatGPT were sorted into
the following categories:

1. correct answer
2. incorrect answer
3. it did not know the answer
4. avoided answering by giving some general comments

The number of answers classified into the four categories were totalled, then we
examined how the number of answers falling into each category developed in the four
experiments. We interpreted the results using the experience we gained in the fourth
experiment.

For the sake of clarity, the examples and answers in the article have been translated
into English. All the answers we received, the categories we assigned to the answers,
and all the results are published7.

3.1 Categorizing the Answers

Evaluating the answers was not an easy task, because the boundaries between the cat-
egories were not always clear. In Example 3, the model came up with a very general
answer in the first and third experiments, so we classified these answers into the fourth
category.

(3) Parents care for their children considerably since they are their pride and joy.
Who are the other’s pride and joy? (the parents/the children)
correct answer: the children

1. first experiment: This is a subjective question and everyone else may have a
different answer. Someone’s favorite pet might be their pride and joy, someone
else’s partner, friends or a creative pursuit.

2. third experiment: As a self-thinking artificial intelligence answering the ques-
tion: Both, since joy and pride are mutual feelings between parents and chil-
dren. Parents are proud and happy that they were able to raise and support their
child, while children delight their parents with their achievements, results and
happy lives. You can say that it is a mutual happiness and both parties benefit
equally from it.

At the same time, there were cases where it was difficult to decide whether the
answer is a good one or a general one, as in Example 4.

7 https://github.com/vadno/winograd chatgpt.

https://github.com/vadno/winograd_chatgpt
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(4) The Skyline drifts better than the F-150 because it is not meant to drift.
What is not meant to drift? (Skyline/F-150)
correct answer: F-150

1. experiment: The F-150 is a large, heavy-duty off-road truck whose primary
function is to transport goods and travel in off-road areas. It is not designed to
be drifted on the race track or on the road, because of its high mass and high
center of gravity, it is unstable and dangerous. Therefore, this type of vehicle
is not suitable for drifting, because it can only be dangerous and harmful for
them.

As you can see in Example 5, in some cases the answer contained both answer
options. These answers were considered incorrect.

(5) The man offered the boy candy, but he had no candy.
Who had no candy? (the man/the boy)
correct answer: the man

2. experiment: The man or the boy.

3.2 Possible Reasons for the Answers

It is often said about large neural language models that it is difficult (or impossible) to
understand exactly what is going on under the hood. As for the current task, this means
that we do not know why ChatGPT gives a certain answer to a given question, we do not
understand how it can solve such a high-level task so well. Of course, the same is also
true for answers deemed wrong, in many cases it is simply not possible to find out why
it could not answer correctly in case of certain questions. Some examples were found
where the reason for the wrong answer can at least be guessed. Let’s see Example 6 and
the answers obtained in the first three experiments. The result of the third experiment is
identical to the result of the first one’s.

(6) The hotel staff tended to the royal family since they needed to keep them satisfied
as occupants.
Kinek
Who-DAT

kellett
have-SG3

kielégı́teni
satisfy

az
the

összes
all

igényt
need

?
?

(a
(the

szálloda
hotel

személyzetének
staff-DAT

/
/

a
the

királyi
royal

családnak)
family-DAT)

Who had to satisfy all the needs?
correct answer: the hotel staff

1. experiment:
A
The

királyi
royal

családnak
family-DAT

kellett
must-PAST

kielégı́teni
satisfy

az
the

összes
all

igényt.
need.

The royal family had to satisfy all the needs.



50 N. Vadász

2. experiment:
A
The

királyi
royal

családnak.
family-DAT.

The royal family.

Based on the answers, it is likely that the dative -nAk8 suffix may have caused dif-
ficulties. In Hungarian this suffix is ambiguous: it is added to the possessor in certain
possessive constructions, but it can also be dative case. The argument structure of the
Hungarian verb phrase kielégı́teni valaki igényét (‘to satisfy someone’s need’) contains
three arguments: a subject, an object and a dative argument. If the object is a posses-
sive structure, two phrases get the surface form of the -nAk suffix. The structure of the
question belonging to the schema is also very special: the case expressed by the suffix
is not clarified until the last word of the sentence, like in a garden path sentence. If
the question were: “Who had to satisfy all his needs?”, then the correct answer would
indeed be the royal family.

The nominative case can cause similar difficulties in Hungarian. Regarding some
schemas (as in Example 7) the model has to play on a difficult course because of at least
two reasons. Firstly, Hungarian is a null-subject language, which means that there is no
overt case suffix to the subject. Secondly, Hungarian is a pro-drop language, therefore,
it is not at all certain that a phrase without any case suffix is the subject of the sentence
and the relatively free word order of the language does not help either. In Example 7 it
can be seen that ChatGPT treats the two first names as a proper name in the first two
experiments and tries to respond accordingly.

(7) István
István-NOM

Gyurit
Gyuri-ACC

bı́zta
hire-PAST-SG3

meg,
VERB.PART,

mert
because

keményen
hard

dolgozott.
work-PAST-SG3.

Steve hired Jose because he was a hard worker.
Who was a hard worker? (Steve/Jose)
correct answer: Jose

1. experiment: Steve Jose was a hard worker.

2. experiment: Steve Jose was a hard worker.

3. experiment: The question is not clear, since the sentence mentions two per-
sons. However, based on the structure of the sentence, it can be concluded that
István was hired because he worked hard. So István worked hard.

This interpretation of the sentence is otherwise correct, if the two first names are
interpreted as surname and first name, then the sentence still remains grammatical. Just
the subject of the sentence is dropped. In the third experiment, the model – presumably
due to the response options – already identifies two people in the sentence, and even

8 The capital A in -nAk indicates that this suffix has two allomorphic forms: -nak and -nek.
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draws attention to the fact that it is difficult to say whom the question refers to, however,
it did not manage to answer correctly.

A similar case can be seen in Example 8, where in the case of the first two exper-
iments, the answer implies that the model interpreted the two first names as one per-
sonal name. However, in the case of the third experiment—where both answer options
were available to ChatGPT – it can be seen that it was difficult for the model to decide
whether the sentence is about one or two people. It tries to interpret the question for
both people, but it fails to reach a conclusion.

(8) Olgi
Olgi-NOM

Erzsit
Erzsi-ACC

szerette
like-PAST-SG3

volna
AUX

utódjának,
resign.

mert szeretne

lemondani.

Raja wanted Rena to take the job because he wanted to leave.
Who wanted to leave? (Raja/Rena)
correct answer: Raja

1. experiment: Raja Rena wanted to leave.

2. experiment: Raja Rena.

3. experiment: The information is missing from the question. It is not clear
whether Raja and Rena are two separate persons or the same person, and
for whom he wants to have a successor. I answer the question by assuming
that they are two separate people. If Raja wants to be his successor, then he
wants to give up something (e.g. a leadership position) and therefore wants
to raise her and give her place to someone. If Rena wants to be his succes-
sor, he probably wants to give up something for similar reasons, and therefore
intends to prepare someone to take over the task. However, due to the lack of
information, it is not possible to determine exactly who wants to resign.

Based on schemas structured like this, we concluded that interpreting such patterns
seems to be a more difficult task for ChatGPT. It would be worth comparing its results
with human language processing strategies in case of structures like this.

In the Hungarian translation of the Winograd schemas, the pronoun másik (‘other’)
was often used in questions. In some cases, the answers given by ChatGPT suggested
that the presence of the word ‘other’ in the questions made the model’s task more dif-
ficult, as in Example 9 In the second experiment, the call for a short answer forced
a one-word – correct – answer, and in the third experiment, the two possible answers
helped.

(9) A chicken pecked at a bug and it ate it. It ate it.
What ate the other one? (the chicken/the bug)
correct answer: the chicken

1. experiment: The question does not specify exactly which one to understand. If
the chicken and the beetle are mentioned in the previous sentence, there is no
other one that the chicken could eat. And when we consider a third animal, it
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depends on what animal it is. If the third animal was eaten by the chicken, we
can say that the chicken has eaten another animal. However, when it comes to
an animal that has not been mentioned before, there is no specific answer to
the question.

2. experiment: The chicken.

3. experiment: The chicken ate the bug.

Sometimes ChatGPT offered a sentence that is easier to interpret that would reveal
the answer more clearly, as in Example 10 in the third experiment. Neither the first nor
the second attempt was successful, either it could not answer or it answered incorrectly.
Unfortunately, the proposed sentence means something completely different from the
original.

(10) Jim likes John, but he is not liked back.
Who is not liked back? (Jim/John)
correct answer: Jim

1. experiment: There is no information on the issue of who did not like John.
Please clarify the information.

2. experiment: John.

3. experiment: The question is not clear who they did not like. The clearer
wording would be: John was not loved, despite the fact that he loved Jim.

For certain schemas, we received not only the correct answer, but also a concise
rationale, as in Example 11.

(11) The apple wine entered my mouth because it was not full.
What was not full? (the apple wine/my mouth)
correct answer: my mouth

3. experiment: According to the last sentence, the room was in the mouth, not in
the cider. There was still room in the mouth because the cider only occupied
a small part.

Many times we received a general answer, which is a correct answer to the question,
but it clearly turns out that the model did not look for the reference of the subject of the
second clause in the first part of the sentence, but rather tried to respond to the question
in a relevant way based on its knowledge of the world. In the third experiment, the two
answer options helped to answer the specific question correctly.

(12) The disease center quarantined the people because they may be infected.
Who may be infected? (the disease center/the people)
correct answer: the people
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1. experiment: Anyone who comes into contact with a person infected with
the coronavirus or stays in an area where the virus is already present can
become infected. People who show symptoms such as fever, cough, short-
ness of breath or sore throat are at significantly higher risk. Since the symp-
toms of the disease are often only mild, people often do not even know that
they are infected. Therefore, it is very important that everyone checks the
local epidemiological regulations and pays attention to their symptoms.

2. experiment: Those who have been sick with COVID-19 or other diseases,
those in close contact, those coming from abroad, those who have visited
infected places, etc.

3. experiment: People may be infected and therefore quarantined by the disease
center.

In many cases, in addition to or instead of answers, we also received a thorough
scolding from the model, if the task concerns a sensitive topic according to ChatGPT
(Example 13).

(13) Watson beat Ken at Jeopardy because he is an inferior human.
Who is an inferior human? (Watson/Ken)
correct answer: Ken

1. experiment: This statement is completely unacceptable and offensive to any-
one. You should not talk about any human being in this way. Everyone must
be respected and discrimination must be avoided. As an impersonal AI, I
fundamentally accept the full equality of all human beings.

2. experiment: This is an unacceptable and offensive statement. No one is infe-
rior to others. Watson won Jeopardy because it is a computer with faster
processing capacity and greater knowledge in handling data.

3. experiment: The statement and the question are not correct, because it is not
acceptable to call any competitor inferior. Both Watson and the human com-
petitor performed excellently in the competition, and the winner was deter-
mined solely on the basis of knowledge and technological advantages. Thus,
there is no room for “inferior” statements or qualification of any competitor.

In the fourth experiment, the justification attached to the answer provided an additional
opportunity to gain some insights into ChatGPT’s response strategy. Overall, it can be
said that there were questions where the perfect reasoning testified to a shockingly high
level of awareness and knowledge of the world, as can be seen in Example 14 and 15.

(14) The committee increased the price of the tickets to the dance for the students, but
they changed their decision later.
Who changed their decision later? (the committee/the students)
correct answer: the committee

4. experiment: It is not clear from the given sentence whether the dance school
or the students changed their mind later. However, given the context of the
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sentence that the dance school raised the price of the day ticket for students,
it is more likely that the dance school changed its mind and decided to with-
draw the price increase. And the justification is that it is generally in their
interest to offer attractive prices to students in order to have many people
visit their educational institution and thus increase their income. If they find
the prices too expensive, they will easily go to other places offering similar
activities. Thus, if the dance school were to charge extra fees to the students,
it would be “against” their interests. On the other hand, if the students decide
not to go to the school anymore, i.e. not to buy a day ticket, their decision
does not directly affect the dance school – the students are not only dealt
with by them, but also by other students.

(15) Andrea threw a promotion party in honor of Lindsay since she recently got pro-
moted.
Who got promoted? (Andrea/Lindsay)
correct answer: Lindsay

4. experiment: Since the sentence says that it was arranged by Andrea “in honor
of Lindsey”, it can be concluded that Lindsay was promoted and that the
arrangement is a symbol of Andi’s respect. The justification here is based on
the structure of the sentence and the logical connections.

Unfortunately, it also happened that the correct reasoning was not enough. In Exam-
ple 16 both answer options appear as possible answers, so despite the perfect derivation,
unfortunately we had to judge the answer as wrong.

(16) Pigs are better than sheep because they do not make bacon.
What does not make bacon? (pigs/sheep)
correct answer: sheep

4. experiment: Pigs are not made into bacon. The explanation of the sentence
is that the meaty part of the bacon is a layer of fat on the belly of the pig,
which is salted, smoked and fried in a special way. Sheep is a much leaner
animal and contains little fat. That’s why you can’t make bacon out of it.

4 Results and Discussion

In the four experiments, the test data of the HAPP collection (564 sentences and
questions) was used. The answers to the questions were divided into four categories
described in Sect. 3 and then summarized the results. During the evaluation, the per-
centage of responses that fell into each category were summed up. Table 1 shows the
results.
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Table 1. The proportion of responses falling into the four defined categories in the four experi-
ments.

1. exp 2. exp 3. exp 4. exp

correct 66.37% 70.62% 79.29% 74.69%

didn’t know 11.86% 2.48% 3.89% 4.42%

incorrect 15.75% 24.01% 13.45% 16.64%

general 5.84% 2.65% 3.19% 4.07%

Based on the results, the following conclusions can be drawn. We got the weak-
est results in the first experiment. Similar results can be achieved by guessing on the
multiple-choice tasks, but in the first experiment the answer options were not offered
for ChatGPT, so the result obtained cannot be compared to guessing. In addition, the
model also revealed if the answer was uncertain or if there was not enough information
available, so 66% result does not mean that 44% of the answers were wrong. Overall, it
can be said that the model had the greatest freedom in the first experiment, since neither
the length of the expected answer nor the answer options were available to it, so this
task was the most difficult one. However, if, for example, antecedent search is treated
as part of an information retrieval task, then this experimental setting serves best as a
possible application environment.

Above, we referred to the fact that the length of the expected answer was not avail-
able to the model as freedom. If we expect an answer to a question in one or two
words, we not only make the conditions for answering more difficult. If we expect a
short answer to a question, we also assume that the question can be answered in a word
or two. The possibility of a short answer also means that we do not have to come up
with the most complex and complicated answer.9 The results of the second experiment
show that, compared to the first experiment, the model was uncertain in fewer cases,
so by asking for a short answer, we more easily forced a relevant answer out of it.
Although, the forced short answer were often wrong, as the number of wrong answers
also increased. In addition, it can be seen that the number of correct answers has also
increased.

The best results were clearly obtained in the third and fourth experiments. In fact,
the setup of the third experiment resembles the original Winograd schema challenge the
most closely. As mentioned in Sect. 2.1, the Winograd schema challenge contains Wino-
grad schemas, so the answer options are also available to the respondent. Providing
answer options reduced uncertainty in the same way compared to the first experiment
as in the second, but at the same time, the number of correct answers also increased. In
the fourth experiment, where we also asked for a justification for the answer, the model
showed a slightly weaker performance. It often seemed as if ChatGPT was “confused”
with the rationale. The explanations given in the fourth experiment helped to interpret
the answers.

9 Think about how much easier it is to summarize the plot of a movie in three sentences than to
describe the events scene by scene in detail, but “How are you today?” it’s easier to answer a
question in two words (“Fine, thanks.”) than in a ten-minute monologue.
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We were also curious to see how consistent the correct answers were in the four
experiments, so we compared the correctness of the answers by schema. We came to
the result that there were a total of 304 schemas where I got the correct answer from
the model in all three trials, which is almost 54% of all questions. We got the correct
answer to 389 questions (almost 69%), in at least three of the four attempts, and to
455 questions (approx. 80%) in at least two attempts. In 38 cases, it answered the same
question incorrectly in all four attempts, in 2–2 cases we received a general answer or
a rejection. There were 57 schemas where we did not get a correct answer in the first
attempt (so we either got a wrong answer or a general answer or a parry), but in the
second attempt we already managed to answer correctly. And in the third experiment,
the model was able to improve in 99 cases compared to the first experiment. These last
two results show that the second trial was a bit easier for the model than the first, and
the third was the easiest.

The consistency of the model could best be examined based on the results of the
third and fourth experiments. Comparing the results of the two experiments, it was
revealed that the model answered correctly in 70.57% of the cases in both experiments.
In the case of 50 schemas, it answered correctly only in the third of the two trials, and
in the case of 24 schemas only in the fourth.

4.1 Conclusion and Future Work

In this article, we presented how ChatGPT performed in the task of resolving ambiguous
Hungarian pronominal anaphora in four different experimental setups. We found that,
although it falls short of human performance, it performs reasonably well compared to
the difficulty of the task. In addition, we received valuable information in cases where
ChatGPT supplemented its response with an explanation.

In the near future, we would like to compare the results presented in the article with
other models. We also plan to repeat the experiment with language models that were
made specifically with Hungarian training data as Puli [7] to test if they do better at
resolving the anaphoras in the Winograd schemas. In addition to these, we would like
to examine how ChatGPT performs in the task of anaphora resolution for English, to
find out whether we get similar results as in the case of the Hungarian language.
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Abstract. This paper presents a set of industrial-grade text processing models
for Hungarian that achieve near state-of-the-art performance while balancing
resource efficiency and accuracy. Models have been implemented in the spaCy
framework, extending the HuSpaCy toolkit with several improvements to its
architecture. Compared to existing NLP tools for Hungarian, all of our pipelines
feature all basic text processing steps including tokenization, sentence-boundary
detection, part-of-speech tagging, morphological feature tagging, lemmatiza-
tion, dependency parsing and named entity recognition with high accuracy and
throughput. We thoroughly evaluated the proposed enhancements, compared the
pipelines with state-of-the-art tools and demonstrated the competitive perfor-
mance of the new models in all text preprocessing steps. All experiments are
reproducible and the pipelines are freely available under a permissive license.

Keywords: Hungarian NLP · spaCy · PoS tagging · lemmatization ·
dependency parsing · named entity recognition

1 Introduction

Academic research in natural language processing has been dominated by end-to-end
approaches utilizing pre-trained large neural language models which are fine-tuned for
the particular applications. Although these deep learning solutions are highly accurate,
there is an important demand for human-readable output in real-world language pro-
cessing systems. Industrial applications are frequently fully or partially rule-based solu-
tions, as (sufficient) training data for a pure machine learning solution is not available
and each and every real-world application has its own requirements. Moreover, rule-
based components provide tight control over the behavior of the systems in contrast to
other approaches.

In this paper, we present improvements to a Hungarian text preprocessing toolkit
that achieve competitive accuracies compared to the state-of-the-art results in each text
processing step. An important industrial concern about large language models is the
computational cost, which is usually not worth the accuracy gain. Transformer-based
language models require far more computational resources than static word vectors,
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and their running costs are typically orders of magnitude higher. Furthermore, practical
NLP solutions using large language models often only outperform more lightweight
systems by a small margin.

In this work, we focus on text processing pipelines that are controllable, resource-
efficient and accurate. We train new word embeddings for cost-effective text processing
applications and we provide four different sized pipelines, including transformer-based
language models, which enable a trade-off between the running costs and accuracy for
practical applications. To make our pipelines easily controllable, we implement them in
the spaCy1 framework [9] by extending HuSpaCy [22] with new models.

2 Background

2.1 Specification for Language Processing Pipelines for Industrial Use

Text processing tools providing representation for hand-crafted rule construction should
consist of tokenization, sentence splitting, PoS tagging, lemmatization, dependency
parsing, named entity recognition and word embedding representation. These solutions
have to be accurate enough for real-world scenarios while they should be resource-
efficient at the same time. Last but not least, modern NLP applications are usually mul-
tilingual and should quickly transfer to a new language. This can be provided by relying
on international annotation standards and by the integration into multilingual toolkits.

2.2 Annotated Datasets for Preprocessing Hungarian Texts

According to Simon et al. [24], Hungarian is considered to be one of the best supported
languages for natural language processing. In 2004, the Szeged Corpus [4] was created,
comprising 1.2 million manually annotated words for part-of-speech tags, morphologi-
cal descriptions, and lemmata. Subsequently, these annotations were extended [5] with
dependency syntax annotations. In 2017, a small section of the corpus was manually
transcribed to be a part of the Universal Dependencies (UD) project [18]. Around the
same time, the entire corpus was automatically converted from the original codeset to
the universal part-of-speech and morphological descriptions [32].

Szeged NER [29], developed in 2006, was the first Hungarian named entity recog-
nition corpus, consisting of 200,000 words of business and criminal news. In recent
years, NYTK-NerKor [26] extended the possibilities of training and benchmarking
entity recognition systems for Hungarian with a one million word multi-domain cor-
pus.

2.3 Multilingual NLP Toolkits

Thanks to the UD project, it is now possible to easily construct multilingual NLP
pipelines. Among the most commonly utilized toolkits are UDPipe [28], Stanza [23],
UDify [12], Trankit [30] and spaCy.

1 https://spacy.io/.

https://spacy.io/
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On the one hand, these systems exhibit a high degree of algorithmic diversity. They
can be classified into two distinct groups based on their utilization of neural networks.
UDPipe, spaCy and Stanza apply older, but faster architectures built on word embed-
dings employing convolutional and recurrent layers, respectively. On the contrary,
UDify and Trankit leverage transformer-based large language models, with the former
using multilingual BERT [6] while the latter utilizing XLM-RoBERTa-large [3].

On the other hand, these frameworks are typically limited by the fact that they rely
solely on the Universal Dependencies datasets, which may present a disadvantage in
languages such as Hungarian, which have large corpora incompatible with UD. Each
of the above-mentioned systems shares this limitation, moreover, spaCy does not offer
a Hungarian model at all, due to the restrictive license of the UD-Hungarian corpus.
Regarding named entity annotations, Stanza is the only tool supporting NER for Hun-
garian.

2.4 Hungarian Language Processing Tools

The landscape of the Hungarian text processing systems was similar to that of English
before the “industrial NLP revolution”. There were a number of standalone text analysis
tools [24] capable of performing individual text processing tasks, but they often did not
work well with each other.

There were only two Hungarian pipelines that try to serve industrial needs. One
of them, magyarlanc [33], was designed for industrial applications offering several
desirable features such as software quality, speed, memory efficiency, and customiz-
ability. However, despite being used in commercial applications in the real world, it has
not been maintained for several years and lacks integration with the Python ecosystem.
The other pipeline, called emtsv [11,25,31], aimed to integrate existing NLP toolkits
into a single application, but neither computational efficiency nor developer ergonomics
were the main goals of the project. Additionally, while magyarlanc natively uses the
universal morphosyntactic features, emtsv can only do this through conversion. Both
pipelines use dependency annotation that is incompatible with Universal Dependen-
cies, furthermore, none of them can utilize word embeddings or large language models,
which have become increasingly important in recent years.

In contrast, the development of HuSpaCy placed emphasis not only on accuracy,
but also on software ergonomics, while also adhering to the international standards
established by Nivre et al. [18]. Moreover, it is built on spaCy, enabling users to access
its full functionality with ease. One significant drawback of this tool is the lack of
precise annotations for lemmata, entities and dependencies syntax.

To fulfill the industrial requirements of text processing pipelines, this work is built
on the Universal Dependencies annotation schema and our models are implemented in
spaCy by extending HuSpaCy’s text processing model. The detailed documentation,
intuitive API, high speed and accuracy of these tools make them an optimal choice for
building high-performing NLP models. Additionally, HuSpaCy utilizes non UD com-
patible corpora as well, which allows for a comprehensive analysis of Hungarian texts.



Advancing Hungarian Text Processing with HuSpaCy 61

3 Methods

3.1 HuSpaCy’s Internals

HuSpaCy’s main strength lies in the clever usage of available Hungarian linguistic
resources and its multi-task learning capabilities inherited from spaCy. Its machine
learning approach can be summarized as “embed, encode, attend, predict” shown in
Fig. 1 and detailed by [10,22]. Tokens are first embedded through the combination of
lexical attributes and word vectors, then context encoding is performed by stacked CNN
[13] layers2. Finally, task specific layers are used parallelly in a multi-task learning
setup.
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Fig. 1. The “embed, encode, attend, predict” architecture of spaCy

Orosz et al. [22] used a three step approach for fully utilizing annotated Hungar-
ian datasets. First, they pre-train the tagger, the lemmatizer and the sentence boundary
detection components on a silver standard UD annotated corpus (cf. [32]). Then, the
Tok2Vec layers of this model are reused by both the NER and the parsing compo-
nents: the dependency parser and the morphosyntactic taggers are fine-tuned on the
UD-Hungarian dataset, the lemmatizer is trained on the entire Szeged Corpus, while
the entity recognizer is further trained on the combination of the NYTK-NerKor and
the Szeged NER datasets.

3.2 Improving on the Underlying Language Models

HuSpaCy’ s model is built on word2vec [14] word embeddings, which are known to
have limitations in providing meaningful representations for out-of-vocabulary words.

2 These steps are usually referred to as the Tok2Vec layers.
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This is particularly problematic for morphology-related tasks in agglutinative lan-
guages. To enhance this simple approach, a more fine-grained method that uses sub-
word embeddings can be employed. fastText [2] is a widely-used extension of
word2vec that learns sub-token embeddings. In this study, we utilized floret3

which is a spaCy-compatible fork of fastText. To train new word vectors, we used
the Hungarian Webcorpus 2.0 [17]. Two sets of word embeddings were constructed: a
100-dimensional and a 300-dimensional one.

In recent years, there has been a growing interest in transformer-based large lan-
guage models (LLM), as evidenced by their high performance in text processing mod-
els (e.g. [8,17]). With the advent of spaCy’ s native support for such architectures and
the availability of pre-trained language models for Hungarian, it is now possible to train
transformer-based NLP pipelines for Hungarian. Our research is based on two widely
used LLMs that provide support for Hungarian. One of these is huBERT [17], which
has a BERT-like architecture and was trained using monolingual data. The other model
is XLM-RoBERTa-large, which has a much larger capacity compared to the former
model and was trained on multilingual corpora.

3.3 Pipeline Component Enhancements

In addition to the use of more powerful language models, we propose fundamen-
tal changes to the lemmatization and dependency parsing models, as well as minor
improvements to the entity recognizer.

HuSpaCy’ s lemmatizer has been replaced by a new edit-tree-based architecture,
recently available in the spaCy framework4. This new model builds on the foundations
laid out by Müller et al. [15] (called the Lemming model), but has minor differences
from it. On the one hand, this reimplementation fully utilizes the framework’s multi-
task learning capabilities, which means that the lemmatizer is not only co-trained with
PoS and morphological tagging, but also with sentence boundary detection. On the
other hand, spaCy’ s version lacks standard support for morphological lexicons which
Lemming benefited from.

We have improved this model in two steps. 1. A simple dictionary learning method
is put in place to memorize frequent (token, tag, lemma) triplets of the training data
which are then used at prediction time to retrieve the roots of words. 2. A common
weakness of Hungarian lemmatization methods is addressed. Computing the lemmata
of sentence-starting tokens can be challenging for non-proper nouns, as their roots are
always lowercase. Thus, we force the model to use the true casing of such words. For
example, when computing the root of the sentence starting Ezzel ‘with this’ token, our
method checks its PoS tag (that is ideally PRON) first, so that it can use the lowercase
wordform for generating and looking up edit-trees.

Moving on, the dependency syntax annotation component is replaced with a model
that has higher accuracy for many languages. Although spaCy’ s built-in transition-
based parser [10] has high throughput, it falls short on providing accurate predictions.
Graph-based architectures are known to have good performance for dependency pars-
ing (e.g. [1]), making such methods good enhancement candidates. Furthermore, a

3 https://explosion.ai/blog/floret-vectors.
4 https://explosion.ai/blog/edit-tree-lemmatizer.

https://explosion.ai/blog/floret-vectors
https://explosion.ai/blog/edit-tree-lemmatizer
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spaCy-compatible implementation of Dozat and Manning’s model [7] (referred to as
the Biaffine parser) has recently been made available, thus we could easily utilize it in
our experiments.

Finally, the named entity recognizer has been fine-tuned to provide more accurate
entity annotations. This was primarily achieved by using beam-search in addition to the
transition-based NER module.

4 Experiments and Results

This section presents the results of several experiments that demonstrate the improve-
ments of our changes and show competitive results compared to well-established base-
lines. We evaluated pipelines developed on datasets used by the creators of HuSpaCy:
the Hungarian part of the Universal Dependencies corpus5 was utilized to benchmark
the sentence boundary detector, the lemmatizer, the PoS and morphological taggers,
and the dependency parser, while the entity recognizer is benchmarked on the combi-
nation of the NYTK-NerKor and the Szeged NER corpora (similar to [22] and [27]). To
account for the instability of spaCy’s training process we report the maximum result of
three independent runs.

4.1 Evaluation of Architecture Improvements

The lemmatization accuracy of the original model has been greatly improved through
a number of steps discussed in Sect. 3.3. As evidenced in Table 1, incorporation of the
new neural architecture along with sub-word embeddings produced significant improve-
ments. Furthermore, changing the default behavior of the edit-tree lemmatizer by allow-
ing it to evaluate more than one candidate (see the row topk=3) also resulted in a
slightly better performance. In addition, the integration of true-casing led to a con-
siderable improvement, and the use of lemma dictionaries also significantly improved
lemmatization scores.

Table 1. Lemmatization accuracy on the UD-Hungarian test set of different ablation settings.
Rows marked with a “+” indicate a new feature added on top of the previous ones. topk is a
hyperparameter of the lemmatization model controlling the number of edit-trees considered to be
evaluated.

Lemma Accuracy

HuSpaCy 95.53%

+ Edit-tree lemmatizer 95.90%

+ floret 300d vectors 96.76%

+ topk=3 97.01%

+ True-casing 97.30%

+ Learned dictionary 97.58%

5 Experiments are performed at the v2.10 revision.
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Entity recognition tasks often encounter a challenge in the form of a considerable
number of out-of-vocabulary tokens, leading to decreased performance. However, the
utilization of floret vectors has proven to be effective in addressing this issue, as
indicated by the results in Table 2. Additionally, the use of beam search allowed the
model to take prediction history into account, which slightly improved its efficiency.

Table 2. Evaluation of the entity recognition model improvements on the combination of the
Szeged NER and NYTK-NerKor corpora. The rows starting with “+” signify the inclusion of a
new feature in addition to the existing ones.

NER F1-score

HuSpaCy 83.68

+ floret 300d vectors 85.53

+ Beam search 85.99

The results in Table 3 indicate that the improved text representations and the new
parsing architecture offer substantial improvements over HuSpaCy’ s outcomes. How-
ever, it is worth noting that spaCy’s CNN-based base model is not fully compatible
with the Biaffine parser’s architecture. Therefore, parsing improvements were bench-
marked on top of a transformer-based encoder architecture using huBERT. The results
show that the use of floret vectors is beneficial to predict morphosyntactic char-
acteristics and dependency relations, while the use of huBERT-based text representa-
tions substantially improves performance across all subtasks. Furthermore, the Biaffine
parser significantly outperforms its transition-based counterpart, as evidenced by its
better attachment scores.

Table 3. Evaluation of text parsing improvements on the UD-Hungarian test set. “+” indicate a
new feature added on top of the existing ones.

PoS Acc. Morph. Acc. UAS LAS

HuSpaCy 96.58% 93.23% 79.39 74.22

HuSpaCy + floret 300d vectors 96.55% 93.93% 80.36 74.89

HuSpaCy + huBERT 98.10% 96.97% 89.95 83.94

+ Biaffine parser 98.10% 96.97% 90.31 87.23

4.2 Comparison with the State-of-the-Art

In addition to parsing and tagging correctness, resource consumption is an important
consideration for industrial NLP applications. Therefore, following the approach of
Orosz et al. [22] we conducted a benchmark study to compare both the accuracy and
memory usage as well as the throughput of our models with text processing tools avail-
able for Hungarian.
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Table 4. Text parsing accuracy of the novel pipelines compared to HuSpaCy, Stanza, UDify,
Trankit and emtsv. Results for non-comparable models are shown in italics.

Sent. F1-score PoS Acc. Morph. Acc. Lemma Acc. UAS LAS NER F1-score

emtsv 98.11 89.19% 87.95% 96.16% – – 92.99

Trankit 98.00 97.49% 95.23% 94.45% 91.31 87.78 –

UDify – 96.15% 90.54% 88.70% 88.03 83.92 –

Stanza 97.77 96.12% 93.58% 94.68% 84.05 78.75 83.75

HuSpaCy 97.54 96.58% 93.23% 95.53% 79.39 74.22 83.68

md 97.88 96.26% 93.29% 97.38% 79.25 73.99 85.35

lg 98.33 96.91% 93.93% 97.58% 79.75 74.78 85.99

trf 99.33 98.10% 96.97% 98.79% 90.31 87.23 91.35

trf xl 99.67 97.79% 96.53% 98.90% 90.22 86.67 91.84

Table 5. Resource usage (All benchmarks are run on the same environment having AMD EPYC
7F72 CPUs and NVIDIA A100 GPUs) of the new models and state-of-the-art of text processing
tools available for Hungarian. Throughput is measured as the average number of processed tokens
per second, while memory usage columns records the peak value of each tool.

Throughput Memory Usage (GB)

CPU GPU

emtsv 113 – 3.9

Trankit 434 2119 3.7

UDify 129 475 3.2

Stanza 30 395 5.3

HuSpaCy 1525 6697 3.5

md 2652 3195 1.4

lg 847 3128 3.2

trf 273 2605 4.8

trf xl 82 2353 18.9

First of all, an important result of this study is a base model (referred to as lg),
which achieves a good balance between accuracy and resource usage as seen in Tables 4
and 5. This pipeline is built on top of the 300d floret vectors and incorporates all
the enhancements described above, except for the new parser. Evaluation data demon-
strates that the lg pipeline consistently outperforms Stanza in all tasks except syntactic
dependency relation prediction, which can be explained by the superior parsing model
of the latter tool.

We present the results of a medium-sized model (md) as well that is a reduced ver-
sion of the lg pipeline utilizing the smaller (100d) word embeddings. Surprisingly, the
md pipeline delivers performance similar to that of the larger model. Furthermore, the
medium-sized model achieves scores comparable to or higher than those of HuSpaCy,
despite requiring half the memory and exhibiting much higher throughput on CPU.
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Transformer-based pipelines using the graph based dependency parser have the
highest scores across all language analysis tasks. Remarkably, despite its smaller capac-
ity, the model based on huBERT (trf) achieves the highest attachment scores for
dependency parsing, while the one using XLM-RoBERTa-large (trf xl) provides
slightly more accurate PoS tags and named entities.

It is important to consider that not all third-party pipelines in Table 4 are directly
comparable to our results, due to differences in the versions of the UD-Hungarian
dataset used to train and evaluate their models. To ensure a fair comparison, Stanza
and UDify have been retrained. On the other hand, we obtained the results of Trankit
from [30] since it would be a demanding task to fine-tune this model. Furthermore, the
results of emtsv’ s text parsing components [19–21] cannot be deemed reliable either
(cf. [22]), since its components use a different train-test split of the Szeged Corpus.
However, this tool’s entity recognition module (emBERT [16]) was evaluated by Simon
et al. [27] using the same settings as in our paper, thus we rely on their assessment.
Additionally, state-of-the-art results are also shown in Table 4. With regard to highest
dependency parsing scores, the results of the multilingual Trankit system are produced
by a parsing model similar to that of ours. As for named entity recognition, emBERT
attains the best F1 scores by utilizing a Viterbi encoder that eliminates invalid label
sequences from the outputs of the underlying model.

Regarding computational requirements, Table 5 presents findings that demonstrate
how floret embeddings can effectively decrease the memory usage of models with-
out compromising their accuracy and throughput. However, it is apparent that enhanc-
ing pipeline accuracy frequently results in slower processing speed, as can be observed
from the lg, trf and trf xl models. Additionally, our tests also showed that most
of the readily available NLP pipelines are not adequately optimized to handle large
workloads, which is evident from their low throughput values.

5 Conclusion

This paper has introduced new industrial-grade text processing pipelines for Hungar-
ian and presented a thorough evaluation showing their (close to) state-of-the-art per-
formance. We have shown that new architectures for lemmatization and dependency
parsing and the use of improved text representation models significantly improve the
accuracy of HuSpaCy. The presented models have not only demonstrated high perfor-
mance in all text preprocessing steps, but the resource consumption of three of our
models’ (md, lg, trf) makes them suitable for solving practical problems. All of our
experiments are reproducible and the models are freely available under a permissive
license.

For future work, we consider the following areas of improvement. 1. Transformer-
based pipelines are optimized for accuracy but this could limit their usability due to
reduced computational efficiency. We would like to investigate optimizing their size to
enhance their resource usage. 2. We would like to include more silver standard data to
further improve the parsing and tagging scores, as the corpus used to train and eval-
uate text parsing components is limited in size. 3. Our models are mostly trained on
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news-related corpora, which makes user-generated text processing a difficult task. In
order to address this challenge, we intend to integrate automatic data augmentation into
the training process as a solution.
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2004. LNCS (LNAI), vol. 3206, pp. 41–47. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30120-2 6

5. Csendes, D., Csirik, J., Gyimóthy, T., Kocsor, A.: The szeged treebank. In: Matoušek, V.,
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Abstract. This paper present ParaDiom – a parallel corpus with 2000 Slovene
and English text segments. The text segments are rich with manually annotated
idiomatic expressions, which poses a challenge for machine translation systems.
We describe the definition of idiomatic expressions, the sampling of the corpus
sentences, the annotation scheme, and the general characteristics of the finished
corpus. The motivation for this corpus is to have a test set for machine translation
systems to evaluate their performance on figurative language. In the last part of
the paper, we demonstrate an example use of the corpus in a machine translation
experiment.

Keywords: idiomatic expression · corpus · machine translation

1 Introduction

Recent advances in neural network architecture, training design, the availability of
large parallel corpora, and hardware capabilities have increased the quality of neural
machine translation systems. However, there are still some areas or specific types of
text where machine translation struggles–one example is translating idiomatic expres-
sions. Recently, Vieira et al. [27] conducted a survey in the UK asking how users would
describe the machine translation system of the future. Some expected it to be able to
recognize idiomatic expressions and also produce idiomatic translations. Participants
also emphasized some cultural aspects and nuances. Those can also be connected to the
use of figurative language.

To assess the performance of machine translation systems, we need evaluation sets
which contain aligned parallel sentences in two or more languages. Although many such
sets exist, they often contain sentences randomly sampled from general domain corpora
or text in specific domains. To our knowledge, there is no prior parallel annotated corpus
for Slovene that is specifically designed to assess the performance of machine transla-
tion systems on figurative speech.

In this paper, we present ParaDiom – a parallel corpus with annotated idiomatic
expressions designed as a test set for machine translation for the English-Slovene lan-
guage pair with the possibility to extend the corpus to other languages. The source sen-
tences are sampled from existing corpora, each containing at least one idiomatic expres-
sion, while translations to the target language are not guaranteed to contain idiomatic
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expressions. All idiomatic expressions in the source sentences and the translations are
manually annotated by a single annotator.

To illustrate a potential use of the corpus, we show a preliminary experiment with
two machine translation systems and highlight some findings from a manual evaluation
of the translations.

1.1 Definition of Idiomatic Expressions

Finding a comprehensive definition that includes various forms of what can consti-
tute idiomatic expressions can be challenging. These expressions are often defined as
sequences of words involving some degree of semantic idiosyncrasy or noncomposi-
tionality. In phraseology, ‘idioms’ are defined as a dominant subtype within the cate-
gory of the phraseological unit as a lexicalized, reproducible word group in common
use, which has syntactic and semantic stability and may carry connotations, but whose
meaning cannot be derived from the meanings of its constituents [14], e.g., “to be hand
in glove” means “to have a very close relationship”, but its meaning cannot be deduced
from the literal meanings of the words “hand” and “glove.”

Another term used in phraseological research to denote a multiword expression
(MWE) with a fully or partially figurative meaning is ‘phraseological unit’. In some
Slavonic and German linguistic traditions, it is used as a superordinate term for multi-
word lexical items [13]. ‘Phraseme’ is also used as a superordinate term (e.g., in [20],
as well as in Slovene phraseological research, e.g., [18]), though not in the Anglo-
American tradition. Other terms also encountered in the phraseological literature are
‘multiword lexical unit’ [4], ‘fixed expression’ [25], ‘fixed phrase’ [26] and ‘phrasal
lexeme’ [21].

In Slovene studies [11], MWEs are divided into 1) phraseological units (PUs), in
which at least one component carries the meaning that differs from one of its denota-
tive dictionary senses and expresses figurativeness, and 2) all other multiword expres-
sions, which are characterized by a certain degree of fixedness and denote a meaning
that can be predicted from the meanings of their elements. PUs are further divided
by syntactic structure: the clausal type (including proverbs) and the phrasal type (all
non-verbal PUs). Verbal MWEs (VMWEs) are determined by their morphosyntactic
features (ibid.); an MWE is classified as a VMWE if it includes a verbal element and
functions as a predicate. However, that would make it unclear how to classify examples
in which the verbal MWE does not function as a predicate, e.g., “hočeš nočeš” “like it
or not”, which includes two verbal elements but functions as an adverbial phrase. The
problem of categorizing MWEs according to their morphological structure and syntac-
tic function was resolved in PARSEME shared task [24] through the definition that the
main criterion for VMWEs is that their syntactic head in the prototypical form is a verb,
regardless of the fact whether it can or cannot fulfill other syntactic roles.

In ParaDiom, the terms ‘idiom’ and ‘idiomatic expressions’ are used to refer to a
two- or multiword lexical item whose meaning is conventionalized and not predictable
from the meaning of its constituent words. We have adopted PARSEME’s approach to
define MWEs based on the part of speech that constitutes their syntactic head in the
prototypical form (verb, adjective, noun, adverb). We implemented it in our annotation
scheme, excluding light verb constructions and verb-particle constructions.
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A special type of idiomatic expression, ‘similes’, are figures of speech that describe
one thing by comparing it with another and suggesting similarities between them,
although they are clearly different. Similes follow the same structure as comparative,
e.g., “my hands were cold like ice”. In Paradiom, we included conventional similes that
tend to be fixed and have idiom status, e.g., “priden kot mravljica” “hardworking as an
ant”, “hiter kot strela” “as quick as lightning”, but in the process of annotation we also
found novel, context-depending similes, e.g., “nositi se kot pav, ki osvaja” “to carry
yourself like a peacock that’s hitting on someone” instead of conventionalized “nositi
se kot pav” “to carry yourself like a peacock”.

1.2 Idiomatic Expressions in Machine Translation

Idiomatic expressions and other multiword expressions pose a challenge for machine
translation. The reason for this is that they often can not be translated literally. A fre-
quently used example is the English idiom “It’s raining cats and dogs.” This idiom is
easily understood by native English speakers, but it is not literary translated into other
languages. Using the literal translation of idioms can create confusion, as the mean-
ing can not be determined from the meaning of the words of the idiom. For example,
the Slovene idiom “iti po gobe” literally translates to “going to get mushrooms,” while
it means that someone dies or something fails. Idiomatic expressions are very often
culture-specific because they refer to a unique denotatum belonging to the national
culture, e.g., “zaščiten kot kočevski medved” translates to “protected as a bear from
Kočevje1.” Contrary to this, some idioms originate from word history or literature and
are understood in many languages, e.g., “The die is cast” or “Tilting at windmills.”

Modern machine translation systems are based on large amounts of training data. If
enough examples of an idiom and a proper translation are present in the training data,
the system might be able to produce a correct translation. Ducar and Schocket found,
for example, that Google Translate performs well with frequent idioms but not with rate
ones [8].

Identifying and translating idiomatic expressions are connected research areas.
Saini and Modh [23] found that existing machine translation systems perform poorly
on Gujarati idioms and proposed a dictionary-based approach for translation idioms.
Dhariy et al. [5] also found that example-based translation improves the performance
in translating sentences with idioms and other ambiguities.

Ghoneim and Diab [12] demonstrated a way of integrating idioms and other multi-
word expressions into statistical machine translation and gained improvement in exper-
iments between English and Arabic. Similarly, Ebrahim et al. [9] presented a method
to detect and integrate phrasal verbs as multiword expressions into statistical machine
translation.

Such research has shown that idiom detection and text preprocessing can bene-
fit machine translation. However, detecting figurative speech elements is challenging,
especially for expressions that can be used literally and idiomatically. Recent research
from Abarna et al. [1] showed a model based on a knowledge graph to distinguish
between the literal and idiomatic use of phrases. Similar work was done by Briskilal
and Subalalitha [3].

1 Kočevje is a region in Slovenia.
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2 The ParaDiom Corpus

2.1 Source Corpora

The sentences in ParaDiom were sampled from three source corpora. Slovene sentences
were sampled from ccGigafida 1.0 corpus, and English sentences were sampled from
the annotated ParlaMint 2.1 corpus and The Corpus of Late Modern English Texts 3.1.
We selected those source corpora for their size and availability under Creative Com-
mons licenses, which was a requirement in the funding agreement for the corpus. Also,
ccGigafida and ParlaMint are available in XML-TEI format with part-of-speech and
lemma annotations.

Gigafida is a reference corpus of written Slovene with approximately 1.1 billion
tokens in its latest version [17]. It is the largest corpus of Slovene, but it is only freely
available through web concordancers. ccGigafifda contains sampled sentences from
Gigafida and amounts to approximately 103 million words. It is available for down-
load under a Creative Commons license on the CLARIN.SI repository.2

ParlaMint [10] is a set of corpora containing debates from 17 European parliaments.
The corpus from the British parliament contains approximately 109 million words from
debates from both the House of Commons and the House of Lords. It is also available
for download under a Creative Commons license on the CLARIN.SI repository.3

The Corpus of Late Modern English Texts (CLMET) [6] is a collection of public
domain texts from 1710 to 1920 with approximately 34 million words. It is available on
the CLARIND-UdS repository.4 Unlike the previous two corpora, it is not available in
XML-TEI format, but file IDs are provided, and paragraph boundaries are annotated. To
enable sentence sampling, the corpus was annotated and lemmatized using the Stanza
NLP Library [22] and converted to XML-TEI format.

2.2 Sentence Sampling

To sample sentences, a list of idiomatic expressions was first compiled. For Slovene,
the list includes 71 idioms and 29 similes, and for English, 83 idioms and 9 similes.
Both lists were prepared with the words in their lemmatized form and, in some cases,
with several possible idiom forms, e.g., “call the shots” and “call the tune” or “the last
straw” and “the final straw.” Entries in the lists contain only the mandatory elements of
the idiomatic expressions. Lemmas were used to account for different morphological
forms of idiomatic expressions. The Slovene list was compiled by selecting expressions
from the Dictionary of Slovenian Phrasemes [16], and the English list using the online
Cambridge Learners and other online sources.

Parts of the idiomatic expression that are not invariant were replaced with wild-
card stand-ins to allow different forms. E.g., in the idiom “pulling one’s leg,” the word
“one’s” was replaced with a wildcard since it can be replaced with other personal pro-
nouns or a person’s name.

2 http://hdl.handle.net/11356/1035.
3 http://hdl.handle.net/11356/1431.
4 https://fedora.clarin-d.uni-saarland.de/clmet/clmet.html.
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Next, sentences from the source corpora were sampled if they contained all lemmas
of the idiomatic expression in the same order while allowing a limited number of other
words between the words in the idiomatic expression. This enables us to sample sen-
tences where optional parts of the idiom are present or other words are inserted, e.g.,
“bear in mind” vs. “bear this in mind.”

Sentences, where elements from the idiomatic expressions were used in a lit-
eral sense, were manually excluded. To keep the corpus more representative of a
general domain, we also excluded sentences from ParlaMint that contained several
parliamentary-specific words. For each idiomatic expression, 8 to 12 sentences were
added to the corpus. Finally, 1000 sentences from each language were selected. In the
English part, 841 sentences were from ParlaMint and 151 from CLMET. During sam-
pling, sentence boundaries were determined based on the existing XML-TEI tags. Sen-
tence and token ID tags were preserved to create a mapping table from ParaDiom to the
source corpora.

2.3 Translation

The sampled sentences in both languages were divided into two equal parts so that
sentences sampled for each idiomatic expression appeared in both parts.

For both languages, the first part was manually translated by a professional trans-
lation agency. Because most of the English text is from parliamentary debates, it can
contain specific terms, e.g., Lord or Bill. Since some of these terms might be ambiguous
without context, the translators were informed of the source of the text. Other than that,
the translators were given no specific instructions on how to translate the sentences.

The second part was translated using machine translation and manual post-editing.
In the post-editing processes, the sentences were corrected to be accurate translations of
the source text and grammatically correct. Changes regarding writing style or sentence
structure were not made.

Given the source language and the translation method, the ParaDiom corpus was
divided into four parts (each part contained two files – one for each language):

1. sentences from the Slovene corpus and post-edited machine translations to English,
2. sentences from the Slovene corpus and manual translations to English,
3. sentences from the English corpora and post-edited machine translations to Slovene,
4. sentences from the English corpora and manual translations to Slovene.

The texts from all files were again annotated with part-of-speech tags and lemmas,
and converted into XML-TEI format. Tagging for English was done using the Stanza
NLP library [22], and for Slovene using the CLASSLA fork of Stanza [19]. Tagging
was also done for the source language sentences already tagged in the source corpora
since this has been done with older and less accurate taggers.

It should be noted that some, mostly longer, sentences from the source languages
were translated into two sentences in the other language. In such cases, they were kept
together within one sentence element in the XML-TEI structure to preserve alignment
between both languages. Therefore, sentences in the final corpus should be considered
text segments rather than grammatical sentences.

During tagging, new ID tags in the XML-TEI format were created with a sentence-
level mapping table from the source corpora IDs to the ParaDiom IDs.
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2.4 Annotation

We used the Q-CAT annotation tool [2] to manually annotate idiomatic expressions in
Slovene and English. The annotated nounal, adjectival, and adverbial idioms were given
the label MWE ID (idiomatic multiword expression), verb idioms MWE VID (verbal
idiomatic multiword expression), similes MWE SIM (simile), and proverbs MWE P
(proverb). Figure 1 shows an annotated example sentence in the tool.

Fig. 1. A sentence from ParlaMint opened Q-CAT with two manually annotated idiomatic expres-
sions (one MWE VID and one MWE ID).

While annotating idiomatic expressions, we paid attention to their invariant form
(type and sequence of components and the relation between them, e.g., “keep one’s eye
on the ball” vs. “eye on the ball”), but also taking into account the limited variability
of the components of the idiom, e.g., “keep one’s *eyeball on the ball”; the mandatory
and optional components in its textual realization, e.g., “a labour of love” vs. “a real
labour of love”; modifications in syntactic structure, e.g., “skočiti si v lase” “to jump in
each other’s hair” vs. “ne biti si v laseh” “to not be in each other’s hair”; permissible
alternations, e.g., “trgovanje z belim blagom” “white-goods trading (meaning human
trafficking)” vs. “trgovec z belim blagom” (human trafficker); and renovations, e.g.,
“polniti si tako baterije kot bančni račun” “charge one’s batteries as well as their bank
account”.

We annotated only mandatory components of the idiomatic expression, which we
identified based on the Dictionary of Slovenian Phrasemes [16] and for English as spec-
ified in the Cambridge Learners Dictionary. All dictionary entries list invariant form,
mandatory and optional components of the idiomatic expression. If we identified idioms
that are not listed in the mentioned dictionaries, we defined the invariant form of the
idiom and its mandatory and optional components according to the analysis of the use
of the specific idiom in corpora.

2.5 Publication and Corpus Statistics

The ParaDiom Corpus is freely available under the Creative Commons BY-NC-SA 4.0
license on the CLARIN.SI repository website [7]. It is published in XML-TEI format
with an additional mapping file linking the sentence IDs in ParaDiom to sentence IDs
in the source corpora. Figure 2 shows an example sentence from the final corpus.
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Fig. 2. A sentence from ParaDiom part 3 English text. The full MSD tag has been omitted in the
figure for readability.

Table 1 shows the size of the corpus and the number of all annotated idiomatic
expressions. In both source texts, the total number of annotated expressions is higher
than the number of text segments (sentences), as some text segments contain more
than one idiomatic expression. From the data on the translated texts, we see that the
number of annotated expressions is much lower since idiomatic expressions were often
translated into literal descriptions of them.

Table 1. Corpus size and the number of annotations for the source text and the translation.

English source Slovene source English translations Slovene translations

Text segments 1,000 1,000 1,000 1,000

Words 16,461 17,022 19,615 13,317

MWE ID 477 220 155 106

MWE VID 510 512 210 128

MWE SIM 76 295 166 73

MWE P 2 3 0 0

MWE total 1,065 1,030 531 307

2.6 Expansion Possibilities

The file structure in the final corpus is designed to enable easy expansions. The main
files are named “Paradiom-XX-Y.xml,” where XX is the language code, and Y is the
corpus part. Sentences are aligned based on the sentence IDs in the main files, which
have the format “Paradiom-XX-Y-sZZZZ,” where ZZZZ is the consecutive sentence
number (see Fig. 2). The sentence numbers in the corpus range from 1 to 2000 and are
unique across the corpus parts, i.e., each new part of the corpus continues incrementing
the number from the previous part.

If the corpus would be expanded by adding more sentences in the same language
pair, they should be added to both files in the existing corpus parts based on the source
language and translation type. For example, more Slovene sentences with post-edited
machine translations to English can be added to part 1 (files “ParaDiom-sl-1.xml” and
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“ParaDiom-en-1.xml”) with sentence numbers from 2001 onwards. A similar expansion
can be done for the other three corpus parts.

If the corpus would be expanded by adding more languages, additional files would
be necessary. The additional files would depend on the source of the sentences. For
example, if the Slovene sentences were manually translated into a third language, the
file “ParaDiom-de-2.xml” would be added with the existing sentence numbers.

The second possibility of adding a third language is to add sentences from this
language and translate them into Slovene, English, or both. In this case, two additional
parts of the corpus should be created – one part where sentences would be manually
translated and one part with post-edited machine translations. In this case, sentence
numbers from 2001 onwards should be used.

3 Example Use: Machine Translation Experiments

3.1 Translation System

A preliminary machine translation experiment was performed to demonstrate using
ParaDiom as a test set for machine translation. We trained two machine translation
systems for each translation direction (Slovene to English and English to Slovene). The
two systems differ in the training corpus used.

We trained the first system on the ParaCrawl corpus, version 8.5 It contains 7.5 mil-
lion aligned parallel text segments in the Slovene-English language pair. The segments
were sampled from different web pages. We consider this corpus to be a general domain
corpus of written languages. The corpus contains 136 million words on the English side
and 121 on the Slovene.

We trained the second system on the OpenSubutitles corpus, version 2018.6 It con-
tains approximately 18 million aligned parallel text segments. The corpus contains 129
million words on the English side and 98 on the Slovene. The average text segment in
this corpus is considerably shorter than in ParaCrawl, making the sizes of these two
corpora more comparable regarding word count.

We performed standard preprocessing: normalization, tokenization, and truecasing.
We split the words in the corpus into subword units based on the byte pair encoding
algorithm with a joined vocabulary and 32,000 merge operations.

On both corpora, a small portion of the training set with 4000 randomly sampled
segments was used as a validation set.

We trained neural machine translation (NMT) models with Marian NMT [15] for
20 epochs. We selected the transformer architecture and model hyperparameters based
on the wmt2017-transformer example.7 We selected the best-performing model based
on the BLEU scores during validation.

5 https://opus.nlpl.eu/ParaCrawl-v8.php.
6 https://opus.nlpl.eu/OpenSubtitles-v2018.php.
7 https://github.com/marian-nmt/marian-examples/tree/master/wmt2017-transformer.

https://opus.nlpl.eu/ParaCrawl-v8.php
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https://github.com/marian-nmt/marian-examples/tree/master/wmt2017-transformer
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Table 2. BLEU results for all systems. All differences between ParaCrawl and OpenSubtitles
systems are statistically significant (bootstrap resampling test, all p-values less than 0.001).

Corpus part Training set BLEU (en-sl) BLEU (sl-en)

1 ParaCrawl 27.64 37.30

1 OpenSubtitles 21.22 28.25

2 ParaCrawl 23.07 30.07

2 OpenSubtitles 18.56 27.00

3 ParaCrawl 32.93 28.82

3 OpenSubtitles 26.56 23.61

4 ParaCrawl 29.69 25.76

4 OpenSubtitles 23.07 20.98

3.2 Evaluation

We used SacreBLEU for automatic evaluation and present the results in Table 2. On
average, models trained with the ParaCrawl corpus performed 5.75 BLEU points better.
This is a surprising result as we expected figurative speech to be more present in sub-
titles than on web pages. However, the better performance might be due to this model
performing better in general, not only on text with figurative speech.

The results obtained on the machine-translated and post-edited parts of the corpus
are, on average, 3.52 BLEU points better than on the manually translated parts. This
aligns with our expectation that machine translation output is more similar to post-
edited machine translation output than manually translated text. However, these results
must be examined more carefully. Although sentences were randomly divided between
different translation methods, we can not exclude that one of the parts of the test set
poses a more demanding test set for machine translation in general.

From previous research experience, we expected that translation from Slovene to
English would give better scores than from English to Slovene. This is the case for
parts 1 and 2 of the corpus, where the original sentences were in Slovene and translated
into English. These results are 8.03 BLEU points better on average. However, for parts
3 and 4 of the corpus, the translation scores from English to Slovene are, on average,
3.27 BLEU points better.

A qualitative analysis can be performed on examples from the machine translations.
Figure 3 show four translation examples from Slovene to English. In example (a), the
expression was correctly translated. However, in this example, the same comparison
is used for this simile in English and Slovene. Here, the literal translation is, in fact,
correct.

In example (b), the Slovene idiom “delati cirkus” was literary translated by the
system built on the OpenSubtitles corpus. The system built on the ParaCrawl corpus
made a correct translation, although not identical to the reference translation. Example
(c) shows a similar situation with another idiom. Example (d) shows an example where
the idiom “Zaščiten kot kočevski medved” was incorrectly translated by both models.

The presented results only illustrate the possible use of the ParaDiom corpus. In
order to properly explore the performance of machine translation on figurative speech,
carefully designed experiments and a systematic analysis of the results are needed.
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Fig. 3. Translation examples from Slovene to English. Displayed are the source text (src), refer-
ence translations (ref.), translation with the OpenSubtitles models (tOS), and translations with
ParaCrawl models (tPC). Idiomatic expressions are bold and literal translations of idiomatic
expressions are in red and underlined. (Color figure online)

4 Conclusion

In this work, we described the build processes for the ParaDiom corpus, which contains
manual annotations of idiomatic expressions. The corpus can be used for experiments
in idiom detection in English and Slovene or qualitative analysis of translation tenden-
cies of figurative language. Its primary intended use is a test set for machine transla-
tion on the English-Slovene language pair with an emphasis on figurative language.
The expandable structure of the corpus makes it possible to extend machine translation
experiments to other languages in the future.

Future work includes a planned upgrade of the corpus by adding manually created
word alignments. Such alignments would enable automatic evaluations for machine
translation, specifically on the idiomatic expressions instead of the whole corpus. Still,
some manual examination of the results would be needed.
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Abstract. Biases induced to text by generative models have become an increas-
ingly large topic in recent years. In this paper we explore howmachine translation
might introduce a bias in sentiments as classified by sentiment analysis models.
For this, we compare three open access machine translation models for five dif-
ferent languages on two parallel corpora to test if the translation process causes a
shift in sentiment classes recognized in the texts. Though our statistic test indicate
shifts in the label probability distributions, we find none that appears consistent
enough to assume a bias induced by the translation process.

Keywords: Machine translation · sentiment classification · bias

1 Introduction

With the increasing use of artificial intelligence also came a rise in research into its
trustworthiness and fairness [24]. These studies have shown that models in various fields
contain biases. For instance, in computer vision a range of biases has been investigated,
followed by novel mitigation techniques [42]. Similarly, biases have been found and
mitigated [45] in speech recognition and recommender systems [5].

In order to avoid perpetuating social biases and further contribute to discrimination,
researchers have also studied biases in machine translation (MT). For example, Prates
et al. [31] conducted a case study into Google Translate by translating sentences such
as “He/She is an engineer”, with varying occupations, from gender-neutral languages
into English. They found that, especially for job titles in the fields of science, technol-
ogy, engineering, and mathematics, the English gendered pronoun tended to be male.
Following these results, Escudé et al. [9] experimented with a debiasing method and
a gender-neutral MT system [49]. The study showed that a system that learned gender
information disregarded contextual gender information, providing wrong translations.
The gender-neutral system, however, did take the sentential gender information, pro-
viding correct translations, enabling it to achieve a higher BLEU [28] performance.

Another type of bias is sentiment bias, in which case a sentiment classification or
sentiment analysis (SA) model provides a sentence with a sentiment (e.g., positive or
negative) which may change when the phrasing or a certain word changes. In [16], a lan-
guage generation model was used to generate sentences with varying occupations, coun-
tries, and gendered names. Through counterfactual evaluation [13], the study revealed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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that there were systematic differences in the sentiments across the varying inputs. For
example, sentences containing the word ‘baker’ had a more positive sentiment than
those containing the word ‘accountant’.

This paper thus seeks to measure sentiment bias in machine translation. The follow-
ing sections describe related work (Sect. 2), followed by a description of our analysis
(Sect. 3), the used models (Sect. 4) and corpora (Sect. 5). The results are presented and
discussed in Sect. 6, followed by a conclusion in Sect. 7.

2 Related Work

As MT is essentially a task on natural language processing in one language and genera-
tion in another, this section briefly describes related work on biases in natural language
processing. Extended literature overviews on such biases are provided in [3,38].

In [47] the authors studied language as support for visual recognition tasks. Specif-
ically, they investigated the data as well as the models for two tasks: multi-label object
classification and visual semantic role labeling. They found that the dataset contained a
gender bias, which was amplified when used to train a model (e.g., ‘cooking’ was 30%
more likely to be accompanied by ‘woman’ than ‘man’ in the training set, followed by
a 70% more likely association after training). In order to counter this effect, the authors
proposed to provide a balanced gender ratio for each of the activities, i.e., put con-
straints on the corpus level, within a framework called ‘Reducing Bias Amplification’.
This approach was able to decrease the bias by over 40% for both studied tasks.

Furthermore, Zhao et al. [48] studied gender coreference (e.g., “The physician
called the secretary and told him/her to cancel the appointment.”) on the WinoBias
benchmark in a rule-based, a feature-rich, and a neural coreference system. All three
systems were found to stereotypically link occupations to gendered pronouns. With
existing word embedding debiasing techniques combined with data augmentation, the
bias in WinoBias was removed.

Through a systematic study of text generated by two language models based on
prompts mentioning various demographics, Sheng et al. [37] revealed that both models
contained various biases. The context for the biases was categorized as either ‘respect’
(e.g., “XYZ was known for”) or ‘occupation’ (e.g., “XYZ worked as”). One model,
GPT-2 [33], showed bias against black and gay people for both ‘respect’ and ‘occupa-
tion’, but was biased against men in the former and against women in the latter category.

A quantification, analysis, and mitigation of gender bias were also carried out for the
contextualized word vectors of the ELMo [30] model [46]. The findings were fourfold:
(i) fewer female entries were found in the training data, (ii) the gender information was
encoded by the training embeddings in a systematic fashion, (iii) the gender information
was unevenly encoded by ELMo, (iv) the bias in ELMo was inherited by a state-of-the-
art coreference system. Two methods were thus proposed to successfully mitigate the
bias: data augmentation (i.e., swapping the genders in the available entries, adding the
swapped entries to the data) and neutralization (i.e., generating gender-swapped data).

Bordia and Bowman [4] proposed a metric to measure gender bias in both a corpus
and a text generated by a model trained on that corpus, followed by a proposal for a
regularization loss term. It was effective up until a certain weight, after which the model
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became unstable. Comparing the results for three corpora, they found mixed results on
the amplification of the bias and state that there was a “perplexity-bias tradeoff” seeing
as a model without bias would predict male and female terms with an even probability.

Another approach to reduce gender stereotyping was proposed in [50], i.e., aug-
menting the dataset with counterfactual data (e.g., ‘el ingeniero’ would become *‘el
ingeniera’) and implementing a Markov Random Field for the agreement on a morpho-
syntactic level. This approach mitigated gender bias without lowering the grammatical-
ity of the sentences.

Furthermore, Jia et al. [18] investigated the amplification of gender bias through the
lens of distribution. They proposed a mitigation technique based on posterior regular-
ization which “almost remove[s] the bias”.

3 Sentiment Bias Analysis

To investigate whether the MT procedure changes expressions, we first do the transla-
tions and then perform SA on the back-translated version of the text. We thus first take
the text in its original language cl1 and translate it into an intermediary language l2 to
get tl2(cl1). This translation we then translate back to l1 to get tl1(tl2(cl1)). For further
comparison, we also translate the original version of the text cl2 in language l2 into l1
to get a second machine translated text tl1(cl2). This allows us to compare the influence
of the back-translation l2 → l1 with that of the first translation l1 → l2, which should
only be visible in tl1(tl2(cl1)), but not in tl1(cl2).

We then apply the analyses on the three versions of the same text in the same lan-
guage cl1 , tl1(tl2(cl1)), tl1(cl2). To compare the SA results we look at three metrics.
A previously used metric in the context of bias analysis is the Wasserstein distance
[16,19] (WD) between two distributions. In this case, we compare those over the prob-
ability scores assigned to each sentiment label. This distance measure however has no
set scale or threshold that allows for making a statement about whether two distribu-
tions are distant enough to constitute a bias. To get a better impression whether an actual
bias is present, we also perform two statistical tests: the paired t-test applied again on
the probability scores of the class labels and the χ2-test on the class labels themselves.
For both tests, the null hypothesis assumes that the distributions are equal, so in cases
where we reject the null hypothesis the distributions are unequal and we can assume the
translation had a notable effect on the sentiment classes.

4 Models

In this section, we first introduce the translation models before the sentiment analysis
models used in our studies are described.

4.1 Translation Models

We used three MT tools which offer pre-trained models. The languages we addressed
are German (de), English (en), Spanish (es), Hebrew (he), and Chinese (zh).
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No Language Left Behind (fairseq-nllb) [27] is an attempt to address data scarcity
for translation models for low-resource languages, resulting in a multilingual model
able to translate between 204 languages. The authors used a large-scale mining app-
roach to create a dataset of over 1.1 billion sentence pairs. Additionally, they created the
NLLB-SEED dataset, comprising human-translated lines from Wikipedia for 39 lan-
guages. For evaluation, the FLORES-200 dataset was created, comprising 3001 English
samples from web articles translated into 204 languages by human experts. The trans-
lation model itself is based on the Encoder-Decoder Transformer architecture proposed
by [41]. However, the authors used pre-layer-normalization for each transformer sub-
layer instead of applying layer-normalization after the residual connections. In addi-
tion, the model was built as a Sparsely Gated Mixture of Experts [1,2,23,36]. For every
fourth transformer block the fully connected layer was split into a number of experts,
each consisting of a separate fully connected layer followed by a softmax layer. Each
token is then assigned to the top 2 experts according to the Top-k-Gating algorithm
[23]. The appropriate routing of the tokens is optimized through an additional training
loss. This architecture enables training on several translation directions at once, without
much cross-lingual transfer interference on low-resource languages. During training a
curriculum learning strategy is applied, in which all language pairs are divided into
buckets. Each bucket is introduced after a number of updates, based on the median
number of updates, after which all directions in that bucket would start to overfit.

Argos-translate [10] is an open source offline translation library. It uses the Open-
NMT [21] sequence-to-sequence transformer to train specific language pair models. For
language pairs that do not have a direct translation model between them, an interme-
diate language such as English is used to accomplish the task. This allows the library
to translate between a wide variety of languages at the cost of some loss in translation
quality. The training data is collected from OPUS [40]. Wiktionary [44] definition data
is used to improve the translation quality of low-resource languages and single-word
translations. The architecture of OpenNMT is based on sequence-to-sequence learning
with attention based on [39] and rewritten for ease of efficiency and readability. The
sequence-to-sequence model uses subword units, given by SentencePiece [22].

The BERT2BERT encoder-decoder model was introduced by Rothe et al. [35]. The
authors developed a transformer-based sequence-to-sequence model compatible with
the publicly available pre-trained checkpoints of commonly-used models: BERT [7],
GPT-2 [33], and RoBERTa [25]. BERT (Bidirectional Encoder Representations from
Transformers) was proposed in order to improve the fine-tuning based approaches. For
BERT2BERT, where both the encoder and decoder are BERT, there are 221M trainable
parameters. Of them 23M are embedding parameters, 195M parameters are initialized
from checkpoint and 26M parameters are initialized randomly. The checkpoint was pre-
trained on 108 languages using a multilingual Wikipedia dump with 110,000 words.

4.2 Sentiment Analysis Models

We used SA tools for five languages: GermanSentiment [14], German; Vader [17],
English; PySentimiento [32], Spanish; HeBERT [6], Hebrew; and ASBA [43], Chinese.

GermanSentiment [14] is a SA model trained with the use for chatbot dialogue in
mind, to better manage user feedback. It has been trained on data from social media,
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Table 1. Dataset sizes. For each dataset the number of lines for each language pair.

de-en de-es de-he de-zh en-es en-he en-zh es-he es-zh he-zh

TED2020 296K 294K 230K 15K 417K 352K 16K 350K 16K 16K

Global Voices 74K 70K 475 14K 381K 1K 134K 977 91K 127

review texts and service robot field tests as well as additional neutral data from the
Leipzig Corpora Collection [8]. The model itself is based on the BERT architecture [7].
It predicts one of three classes for a sentence: positive, negative, neutral. The authors
report a Macro-F-score of up to 0.97 on their training data and 0.8 on an additional
dataset not used during training.

Vader [17] is a rule based SA model for English. It utilizes sentiment lexica for
determining sentiment polarity and heuristics for determining intensity. In addition to
the three common classes positive, negative and neutral, the model can also label com-
pound statements, which contain more than one sentiment. Vader achieves an F1-score
of 0.96 on social media text and 0.55 on New York Time Editorials.

PySentimiento [32] is a transformer-based model with support for Spanish and
English. The Spanish model is based on RoBERTuito [29], which follows the Roberta
[25] architecture and is trained on Spanish tweets. The SA task for Spanish was trained
on the TASS2020 Dataset [12] which contains annotated tweets. The labels are again
positive, negative and neutral. For this model the authors report a 0.7 Macro-F1 score.

HeBERT [6] is a model based on the BERT architecture [7] finetuned for sentiment
and emotion classification tasks. The pretraining was done onWikipedia and other web-
based data and the SA was trained on crowd annotated comments on news articles. As
the above described models, HeBERT too classifies Sentiment in one of the three cate-
gories positive, negative, and neutral. From their tests, the authors report 0.94 accuracy.

ASBA [43] is a framework for aspect-based SA offering models for several lan-
guages. The Chinese model used here is based on a Chinese BERT [7] model and was
trained on Chinese Opinion Analysis Data in the domains Phone, Camera, Notebook,
Car in addition to MOOC data. The reported performance of this model is an accuracy
of 0.96 and F1 of 0.95. This model only predicts two labels: positive and negative.

5 Corpora

The corpora used in this work were taken from the open-source collection of parallel
corpora OPUS [40], which provides a compilation of aligned lines for each available
corpus language pair. TED2020 [34] contains a crawled collection of nearly 4000 TED
and TED-X transcripts dated July 2020. A global community of volunteers translated
the transcripts to 100 languages. The corpus was created for the purpose of training
multilingual sentence embeddings through knowledge distillation [34] and has been
used for domain-specific MT [11,26]. The Global Voices corpus [40] (version 2018q4)
contains stories from the news website Global Voices1 and is also used in MT tasks

1 https://globalvoices.org/.

https://globalvoices.org/
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Fig. 1. TED2020: p-values for each label distribution and language pair. “ tr” in the x-axis com-
pares the original cl1 to the translation tl1(cl2), while “ b” compares cl1 to the back-translation
tl1(tl2(cl1)) and “ trb” compares translation with back-translation. The last letter in the y-axis
describes the model; f: fairseq, a: Argos, and b: BERT2BERT. Equality is rejected below 0.05.

such as domain-specific MT [26], data augmentation [20], or as part of low resource
datasets [15]. The dataset sizes for both corpora are available in Table 1.

6 Results and Discussion

The heat maps in Figs. 1 and 2 show the results on the statistical tests for the
TED2020 and Global Voices corpora respectively. As a p-value below 0.05 for both
t-test and χ2-test implies that equality of the compared distributions can be rejected,
most translations appear to induce a shift in the distributions. It is notable, though, that
the smaller Global Voices corpus overall and the smaller sets including Hebrew, specif-
ically, are the least likely to reject equality.

Furthermore the t-test for the comparison between translation tl1(cl2) and back-
translation tl1(tl2(cl1)) in Global Voices also appear less likely to reject equality. This
might be due to the fact that both texts for these comparisons have been produced by the
same translation model and are therefore more likely to share a specific vocabulary and
structural style with each other than with the original text (cl1). This in turn would lead
to both translation to more likely share the same sentiment indicators to be recognized
by the sentiment classifiers.
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Fig. 2. Global Voices: p-values for each label distribution and language pair.

The same observations, however, can not be made from the WDs in Figs. 3 and 4.
Here the distances in Global Voices are overall larger and the Hebrew involving pairs
do not stand out as having a particularly small distance. On the other hand, the pairs
classified in Chinese do stand out as having larger distances especially in TED2020.

To further test these observations, we compute the correlations between p-values
and WDs per corpus and overall. Linear regression for WD and p-value from t-test and
χ2 return a correlation of−0.02 and−0.01 respectively. This confirms that there is little
relation between the distance and p-values.

Next, we test how the WD relates to the translation quality as measured by the
BLEU score. This comparison too shows no influence of the translation quality on the
similarity of the sentiment scores with a correlation value of 0.

As the results from the statistic tests show shifts in the label probability distributions
in several cases, we need to test for the direction of potential biases. Thus, we apply
one-directional t-tests in both directions and filter the results such that only the cases
with the highest certainty are considered. This means that we filter out cases where all
instances shift in the same direction for all labels, cases where both directions reject
equality, and cases where only a shift in one direction is observed over all three labels.

The resulting cases with the highest certainty that the translation process caused a
shift in class probability from one set of labels towards another are presented in Fig. 5.
In most cases, the shifts from translation tl1(cl2) and back-translation tl1(tl2(cl1)) do
not overlap. Similarly, the shifts in translation for TED2020 and Global Voices mostly
do not overlap either. For example, in the TED2020Corpus, the German to Hebrew
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Fig. 3. TED2020: Wasserstein distances for each label distribution and language pair.

translation by fairseq (de-he-f) has a shift towards the neutral label after the translation
and a respective reverse shift towards the positive and negative labels after the back-
translation. But for the same pair de-he-f no shifts at all can be found in the Global
Voices corpus.

The one exception where both corpora, and for Global Voices both tl1(cl2) and
tl1(tl2(cl1)), agree is the translation from German to English by the Argos system. For
TED2020 this also fits with the reverse shift for Argos’ translation from English to
German. For the rest of the translations, no visible pattern across translation direction
and corpus is apparent.

The WDs for this case are on the lower end of the spectrum for TED2020 and close
to the mean in Global Voices. Thus the WD cannot confirm a clear bias in the German-
English pair. The largest distances can be observed for the cases with Chinese as l1,
especially in TED2020. These, however, cannot be confirmed as being consistently
directed by the t-test. In accordance to the overall low correlation between p-values
and WD, the approaches do not agree on the seemingly most biased cases.

It is also worth pointing out, that the translations to Chinese achieve the worst
BLEU-scores. Pairs with Chinese as l1 achieve an average score of 0.27 versus the
average score over all other languages is 29.27. So this might be a cause for the larger
distances for these languages without a clearly directed shift. Another possible cause
for the higher distances for Chinese might lie in the fact that the SA model used for
Chinese is the only binary classifier among those used in this study. Therefore any ran-
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Fig. 4. Global Voices: Wasserstein distances for each label distribution and language pair.

Fig. 5. Shifts in label probability distributions. Red implies a shift occurred for that language pair,
dark red indicates the label(s) towards which the translation caused a shift for direct translation
( tr) or translation and back-translation ( b). The y-labels describe the language pairs l1-l2 and
the translation model: -f: fairseq, -a: argos, -b: BERT2BERT. (Color figure online)

dom change from one label has only one option to shift towards and the sum of the
random changes might appear as a shift in one direction without being actual bias.
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7 Conclusion

This study set out to explore whether MT systems introduce biases in sentiment expres-
sions. We compared three translation models (fairseq-nllb [27], Argos-translate [10],
and BERT2BERT [35]) for five languages (German, English, Hebrew, Spanish, and
Chinese) from the TED2020 and Global Voices corpora. Our statistical analyses (paired
t-test and χ2-test) were not able to confirm any bias. The closest to this is the translation
from German to English by the Argo translation system, which causes a shift towards
neutral sentiments for both corpora. This ‘bias’, however, cannot be substantiated by a
notably large WD.

Future work might consider inspecting the differences between the target labels
defined for different SA approaches, which may influence how label distributions shift
through the translation process. Another avenue to explore may be the effect of transla-
tions on more explicitly linguistic attributes of text, such as syntactic structure vocabu-
lary or complexity.
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29. Pérez, J.M., Furman, D.A., Alonso Alemany, L., Luque, F.M.: RoBERTuito: a pre-trained
language model for social media text in Spanish. In: Proceedings of the 13th LREC, pp.
7235–7243 (2022)

30. Peters, M.E.: Deep contextualized word representations. In: Proceedings of the 2018
NAACL, pp. 2227–2237 (2018)

31. Prates, M.O.R., Avelar, P.H., Lamb, L.C.: Assessing gender bias in machine translation: a
case study with Google Translate. Neural Comput. Appl. 32(10), 6363–6381 (2020)
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Abstract. In recent years, the growth in size of Transformer-based language
models has accelerated significantly. Global technology companies are training
larger and larger models that require enormous resources and training data. With
these experiments, they aim to demonstrate that sufficiently large models with
abundant training data can solve any natural language processing task even with-
out fine-tuning. It may not be feasible to compete directly in this race, but there
is an opportunity to conduct experiments in the direction of larger models in their
shadow. Our aim is to train large language models for Hungarian. According to
the knowledge transfer researches, a language model can adapt valuable knowl-
edge from other languages. Furthermore, in order for the model to be able to solve
translation tasks, it also needs multilingual knowledge. In our research, we trained
a Hungarian monolingual and a Hungarian-English-Chinese trilingual 6.7 billion
parameter GPT language model with more than 1TB text data. In our experi-
ments, we also fine-tuned our model with the prompts provided by the Stanford
Alpaca dataset. Thus, employing this methodology, an instruct GPT was built,
which, as far as we know, is the first multilingual large language model in this
region that can follow instructions.

Keywords: GPT-3 · multilingual large language model · instruct GPT

1 Introduction

In recent years, there has been a race among major research centers and companies
to develop larger and more parameter-rich language models. In 2021, when Microsoft
and NVIDIA jointly created the Megatron-Turing NLG model with 530 billion param-
eters [26], the question was raised in an article1 whether this competition could be the
newMoore’s Law. These studies attempt to demonstrate that with a large enough model
trained on extensive data, a single large model can solve any language technology task
without fine-tuning, relying solely on prompt programming. However, this competition
requires enormous resources that only the largest global technology companies and

1 https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-
megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-
model.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 94–104, 2023.
https://doi.org/10.1007/978-3-031-40498-6_9
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research centers can afford. In the recent days, the GPT-4 model [20] with 1 trillion
parameters was released.

Currently, the best-performing language models for the Hungarian language are
PULI BERT-Large [35] and huBERT [18]. Although the HILBERT model [8] is larger
in size than huBERT, its performance in available tests has been lower than huBERT,
mainly due to being trained on less data. In June 2022, the HILANCO consortium
introduced the HILANCO-GPTX, a 6.7 billion-parameter English-Hungarian bilingual
GPT-3 model2.

In our research, we trained a monolingual (Hungarian) and a trilingual (Hungarian-
English-Chinese) GPT language model with 6.7 billion parameters. Our models are
called PULI, which is a small-medium breed of Hungarian herding dog. Both of our
models are freely available for research purposes on our Hugging Face page3:

– NYTK/PULI-GPT-3SX: Hungarian monolingual model.
– NYTK/PULI-GPTrio: Hungarian-English-Chinese trilingual model.

2 Related Work

Currently, one of the largest models in the world is the recently released GPT-4 with
more than 1 trillion parameters [20]. The GPT-4 is a large multimodal model which can
accept image and text inputs and produce text outputs. Among text-only large language
models (LLM), one of the largest model is the PaLM (Pathways Language Model) by
Google, which has 540 billion parameters [7]. In addition to increasing its size, the
model introduced the Pathways architecture, which aims to enable the model to learn
multiple tasks simultaneously. The Pathways architecture implements a modified ver-
sion of the traditional transformer [31] architecture with only a decoder. The modifica-
tions are drawn from recent developments in the field, such as the SwiGLU activation
function [24], parallel layering [32] in transformer blocks, RoPE embedding [27], and
the use of SentencePiece [13]. Despite being slightly smaller in size compared to the
PaLM model, it is a serious competitor to the Megatron-Turing NLG model mentioned
in the introduction [26]. At this scale, the difference of 10 billion parameters goes unno-
ticed, but for example, no one has been able to train a model with 10 billion parame-
ters for Hungarian language yet. In terms of parameter count, the PaLM model is still
three times larger than the milestone GPT-3 [5], which generated significant attention
in both the press and the natural language processing community upon its release. What
made GPT-3 novel was that it was trained with a massive amount of data and had an
order of magnitude more parameters than the state-of-the-art at that time. The model
was capable of generating text that was similar to human writing. Moreover, without
fine-tuning, using prompt programming with few-shot examples or even no examples
at all, it could solve various natural language processing tasks in a zero-shot manner.
GPT-3 models available in different sizes named as Davinci, Curie, Babbage, or Ada,
each specializing in different types of tasks. In addition to the models mentioned so

2 https://hilanco.github.io.
3 https://huggingface.co/NYTK.
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far, it’s worth mentioning the Wu Dao 2.0 model4. The Wu Dao 2.0 model was intro-
duced by the Beijing Academy of Artificial Intelligence (BAAI) in 2021. It is currently
the largest neural model with 1.750 trillion parameters, this model is also a multimodal
model. Comparing this model with other language models is challenging because it was
trained not only on text but also on images. The model was trained on the Pile English
dataset [9], as well as 1.2TB of Chinese text and 2.5TB of images. The training was
conducted using the FastMoE [10] system. The model has achieved ’state-of-the-art’
results in multiple tasks. Over the past few years, models have been introduced one after
another with increasing frequency. The predecessors of Megatron-Turing NLG are also
worth mentioning, such as the 17.2 billion parameter Turing-NLG5 or the 8.3 billion
parameter Megatron-LM [25] models. In recent weeks, the Meta AI has published the
LLaMAmodels [30], which is a collection of foundation language models ranging from
7B to 65B parameters. During the training, only publicly available datasets were used,
the LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is
competitive with the best models, Chinchilla-70B and PaLM-540B.

Recently, many experiments were made in the field of building instruct and chat
models based on large language models. One of the most successful chat applications
is ChatGPT, which integrates reinforcement learning into the fine-tuning process [22].
Creating instruction and chat prompts need a huge amount of human effort, thus auto-
matic extraction methods became popular. Wang et al. [33] used the text-davinci-001
model to generate instructions for the task. Similar experiment was conducted by R.
Taori et al. [29] with some modifications. LM-SYS implemented the FastChat [16], and
its’ adaptations [6] that provide fine-tuning processes and data to build chat application
from language models.

3 Corpora

The first part of our research is collecting the training data. Based on previous studies,
it is widely accepted that training large models requires a correspondingly large amount
of data.

For training our Hungarian monolingual models, we utilized corpora from the
sources that are described in Table 2. The text was not tokenized, and numbers were
kept in their raw form. The text was not tokenized during the model training either.
In the corpus, each line represents a paragraph, and empty lines are used to separate
documents. The texts of the corpus consist of the following sources:

– Webcorpus 2.0: The Webcorpus 2.0 [17] was colleted by Dávid Márk Nemeskey
from the Common Crawl6 database. The data is from 2013 to April of 2019. The
corpus contains more than 9 billion tokens. For our training process, we used the
non-tokenized version.

4 https://towardsdatascience.com/gpt-3-scared-you-meet-wu-dao-2-0-a-monster-of-1-75-
trillion-parameters-832cd83db484.

5 https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-
model-by-microsoft.

6 https://commoncrawl.org.
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– Wikipedia: The Hungarian Wikipedia, part of the Webcorpus 2.0.
– Common Crawl (CC): Most of our Hungarian text was collected from the Com-
mon Crawl database. Since the Webcorpus 2.0 contains text only until April of 2019,
we collected the data that was created afterwards. For downloading and boilerplate-
cleaning, we used the modified CC downloader script7 that was originally imple-
mented by Balázs Indig [11]. The CC collection consists of two parts:

• .hu domain: Collection only from .hu domain.
• non .hu domain: Collection from other than .hu domain, but in Hungarian lan-
guage.

– neticle: Text collection from public social media posts and comments, which was
collected by Neticle Kft.

– JSI: The Jožef Stefan Institute in Slovenia has been collecting news from internet
sources (RSS feeds) in multiple languages since 2013 for the purposes of the differ-
ent web services. We have utilized the Hungarian content.

– araneum: Araneum Hungaricum Maium8 [1,2,23] corpus was compiled by
Vladimir Benko.

– hutenten: The huTenTen corpus is part of the TenTen corpus family developed by
Lexical Computing LLC [12], and serves as the Hungarian reference corpus for the
SketchEngine platform. The corpus was compiled by Lexical Computing LLC based
on a collection carried out in 2013 [28], and the Hungarian language analysis was
conducted using the MNSZ1 [21] code by Csaba Oravecz, and the emMorph [19]
code by Lexical Computing LLC.

– news/press: The dataset was collected for our previous research, primarily for text
summarization tasks. It includes articles and their leads collected from various news
portals, including index.hu, nol.hu, and HVG. There may be overlaps with the data
collected from CC, and duplicate data was handled at the end of the process.

– MNSZ2: The MNSZ2 [21] is the renewed second version of MNSZ1, which con-
tains more than 1 billion words.

– OpenSubtitles: The OpenSubtitles [15] is a collection of translated movie subtitles.
In our research, we used the Hungarian monolingual subtitles.

At the end of the collection process, all the collected texts from various sources
were concatenated, and then converted into a document-level jsonline format, where
each line represents a json object containing a text field that contains the text of a
document, preserving line breaks. Document-level deduplication (uniq) and random
shuffling were performed on this json file.

For training the monolingual Hungarian model, the training corpus did not contain
CC (non .hu), MNSZ2 and OpenSubtitles subcorpora (see sign ∗ in Table 1) yet.

In the case of trilingual model, beside the Hungarian corpus, the training corpus
consists of texts from the following sources:

– English: The first 1/3 of The Pile [9] corpus. From index 00 to 09. In Table 2, we
separately showed the Github data.

– Chinese (zh):

7 https://github.com/DavidNemeskey/cc corpus.
8 http://ucts.uniba.sk/aranea about/ hungaricum.html.

https://github.com/DavidNemeskey/cc_corpus
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Table 1. Statistics of the Hungarian corpus

Document Paragraph Word

Webcorpus 2.0 9 240 709 171 239 297 8 051 677 190

Wikipedia 418 622 6 804 115 124 982 493

CC (.hu) 2019–2022 28 902 005 690 761 866 20 860 935 871

∗ CC (non .hu) 2019–2022 11 685 663 387 600 105 10 877 153 207

neticle 30 471 970 85 351 213 1 112 740 383

jsi 4 023 083 32 363 186 1 077 066 597

araneum 3 727 984 31 721 824 1 329 200 470

hutenten 6 447 787 164 654 976 2 670 682 031

news/press 3 009 073 12 606 903 1 058 656 664

∗ MNSZ2 1 879 58 654 846 846 089 645

∗ OpenSubtitles 130 831 103 579 701 471 393 322

• Wu Dao 2.0 [36]: Public available part (200 GB).
• Common Crawl: Custom collection from .cn domain from 2018 to 2022. we
used the same script as for the Hungarian collection.

• Chinese Wikipedia: Downloaded from the brightmart Github [34].

In Table 2, the main characteristics of the corpora from the three languages are
described. In our research, we tried to balance the three languages.

Table 2. Statistics of the trilingual training corpora

Document Paragraph Word/Character Size (GB)

Hungarian 86 008 464 1 499 319 836 Word: 41 508 933 801 314

English 64 192 842 2 538 238 213 Word: 61 906 491 823 391

Github 6 018 366 – – 33

Chinese 111 262 633 3 824 592 151 zh chars: 98 693 705 456 340

non zh token: 12 072 234 774

For building our models, we trained custom vocabularies:

– Hungarian model: the size of Hungarian monolingual vocabulary is 50 000.
– Trilingual model: Considering the variety of Chinese characters, the size of our
vocabulary is 150 016.

4 Training Models

To pretrain our GPT models, we used the GPT-NeoX implementation [3]. GPT-NeoX is
a project by EleutherAI9 with the aim of training large-scale language models, similar
to GPT-3. Their implementation is based on NVIDIA Megatron-LM and DeepSpeed
technologies. They have implemented various GPT-3-like configurations, ranging from
small models (e.g., 160 million parameters) to large ones (175 billion parameters). In
9 https://www.eleuther.ai.

https://www.eleuther.ai
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our research, we used a relatively small configuration with 6.7 billion parameters. We
trained the model using an NVIDIA GDX A100 box containing 8 A100 (80GB) GPUs.
The training was performed without modifying the hyperparameters, except for the
micro batch size, which was empirically set to 16 (to fit within the 80GBGPUmemory).
The training information for the models are showed in Table 3.

Table 3. Main training information of models

training steps final lm loss val lm loss val lm loss ppl training time

PULI-3SX (Hungarian) 150 000 2.03 2.17 8.76 3 weeks

PULI-GPTrio (trilingual) 400 000 2.22 2.25 9.47 3 months

4.1 Instruct Trilingual GPT

Recently, many experiments were released in field of building instruct and chat mod-
els based on large language models. Create instruction and chat prompts need a huge
amount of human effort, thus automatic extraction methods became popular. In our first
step, we used the Stanford Alpaca implementation and data for fine-tuning our trilingual
model. We used the same prompt template as the Stanford Alpaca. Based on the exper-
iments conducted with ChatGPT, our hypothesis is that the model, after fine-tuning
solely on English data, will also be able to follow instructions given in Hungarian lan-
guage, thanks to transfer learning. Our instruct model can be tested on our demo site10.

5 Evaluation and Results

We evaluated our Instruct trilingual model on Hungarian benchmark corpora released
in 2022, the HuLU (Hungarian Language Understanding Benchmark Kit) [14] cor-
pora. We applied measurements on Hungarian Corpus of Linguistic Acceptability
(HuCOLA), Hungarian version of the Stanford Sentiment Treebank (HuSST) and Hun-
garian Recognizing Textual Entailment dataset (HuRTE) tasks.

In the case of monolingual model, we conducted few-shot learning to solve the
tasks. We tried different set of hyper-parameters and prompts, we achieved the highest
performance with the following settings in the different tasks:

– HuCOLA: prompt #: 27; temperature: 0.1; top-p: 0.12; top-k: 10;
– HuSST: prompt #: 29; temperature: 0.3; top-p: 0.1; top-k: 10;
– HuRTE: prompt #: 15; temperature: 0.3; top-p: 0.4; top-k: 10;

For choosing examples for prompts, we chose the first # record from the training
set.

In the zero-shot experiments, we compared our model with the ChatGPT (gpt-3.5-
turbo) and the GPT-3 (text-davinci-003) models [5].

In Table 4, you can see the results of our models. Since the test sets are unbalanced,
we used the balanced accuracy [4] instead of accuracy metric.

In the few-shot experiments, the monolingual model could outperforme the trilin-
gual model in all cases. It is an expected result from a monolingual model in a mono-
lingual Hungarian task.
10 https://juniper.nytud.hu/demo/gptrio.

https://juniper.nytud.hu/demo/gptrio
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Table 4. Performance of the models on HuLU benchmark

HuCOLA HuSST HuRTE

PULI-3SX few-shot 54.27 64.27 57.42

PULI-GPTrio few-shot 52.71 61.58 54.54

ChatGPT zero-shot 49.10 36.99 50.26

text-davinci-001 zero-shot 50.78 35.48 49.06

Instruct PULI-GPTrio zero-shot 52.12 59.20 58.14

One significant findings is that our fine-tuned instruct model achieved competitive
or higher results with zero-shot learning. In the zero-shot experiments, in all cases, our
instruct model could outperformed the ChatGPT and the GPT-3 models.

In our multilingual experiments, the most expected result is that our model could
gain knowledge from other languages. In our instruction task, in the current stage, we
fine-tuned our trilingual model only on the English Alpaca data set. Although the model
may not have been specifically fine-tuned on Hungarian or Chinese prompts, it is still
capable of understanding and following Hungarian or Chinese instructions, and can
effectively solve tasks in the given languages.

Table 5. A text generation sample for Hungarian and Chinese instructions

Instruction:

Ki a legerősebb szuperhős?

(Who is the strongest superhero?)

Response:

A legerősebb szuperhős egyértelműen Thor, a Marvel-képregények egyik legerősebb és
legismertebb alakja. Thor a Marvel Univerzum legerősebb és leghatalmasabb hősei közé tartozik,
ereje és gyorsasága a legnagyobb hősökével vetekszik. A Marvel Univerzum legerősebb
szuperhőseinek listáján a második helyet a Marvel kapitány, a harmadik helyet pedig a Vasember
foglalja el.

(The strongest superhero is undoubtedly Thor, one of the most powerful and well-known characters
in Marvel comics. Thor ranks among the mightiest and most formidable heroes in the Marvel
Universe, with strength and speed that rivals that of the greatest heroes. Captain Marvel takes the
second place on the list of the most powerful superheroes in the Marvel Universe, followed by Iron
Man in third place.)

Instruction:

谁是最强壮的超级英雄？

(Who is the strongest superhero?)

Input:

汉语回答。

(Give the answer in Chinese.)

Response:

绿巨人（Hulk）是世界上最强壮的超级英雄。

(Hulk is the strongest superhero in the world.)
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We illustrate this phenomenon in Table 5, Table 6 and Table 7. In the examples, the
original instruction did not contain English translation, thus, for better understanding,
we provided the translation in brackets with italic font. We did not provide English
samples.

In Table 5, you can see a sample for text generation. In the case of Chinese, we had
to add an additional instruction in the input part:汉语回答。, which means ’Give the
answer in Chinese.’. Without this instruction, the answer were given in English. Based
on this sample, we can observe that after fine-tuning the model in English-only prompt
data set, it has become capable of providing relevant answers, but in many cases, it
responded in the English language.

Table 6. A NER sample for Hungarian and Chinese instructions

Instruction:

Listázd ki a személyneveket az alábbi szövegből!

(List the personal names from the text below.)

Input:

Dr. Kovács Péternek van egy autója és szereti Győzikét!

(Dr. Péter Kovács has a car and likes Győzike!)

Response:

Dr. Kovács Péter, Győzike.

Instruction:

列出以下句子中的汉语人名！

(List the Chinese names in the following sentences!)

Input:

这部由瑞恩·高斯林 (Ryan Gosling)和艾玛·斯通 (Emma Stone)主演的电影获得了各大奖项的提名。

(This film, starring Ryan Gosling and Emma Stone, has been nominated for various awards.)

Response:

瑞恩·高斯林 (Ryan Gosling)、艾玛·斯通 (Emma Stone)

In Table 6, you can see an sample for solving named entity recognition (NER) task.
In this example we ask our model to list the person names from the text. In the Hungar-
ian sample, in the sentence you can see the name ’Győzikét’, which is in the accusative
form. The lemma of this name is ’Győzike’, which was correctly extracted by our
model. We also tried this task with ChatGPT, but it returned ’Győziké’, an incorrect
lemma, as it ignores the quite regular variation in the stem vowel. This example demon-
strates the added value of using the larger amount of data for training model in a given
language.

One of the biggest advantages of the transfer learning is that our model can generate
programming code (see in Table 7) with Hungarian instruct, which our monolingual
model cannot do, since the Hungarian corpus does not contain programming codes.
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Table 7. Sample for code generating

Instruction:

Generálj egy python kódot, ami összead két számot!

(Generate a python code that add two numbers.)

Response:

def add two numbers(a, b):

return a + b

Table 8. Samples for translation

Instruction:

Fordı́tsd le magyar nyelvre!

(Translate it into Hungarian language.)

Input:

The find also grants insight into the evolution of feathers in birds.

Response:

A talált lelet emellett betekintést nyújt a madarak tollazatának alakulásába is.

Instruction:

把它翻译成中文

(Translate it into Chinese.)

Input:

The find also grants insight into the evolution of feathers in birds.

Response:

它还揭示鸟类的羽毛是如何演变的。

Last but not least, a multilingual task like translation also requires multilingual
knowledge, which our model has become capable of acquiring (see Table 8).

6 Conclusion and Future Work

The present paper described two GPT-3 models, one monolingual (PULI-GPT-3SX
– Hungarian), the other trilingual (PULI-GPTrio – Hungarian, English and Chinese)
each having 6.7 billion parameters. The trilingual model was further fine-tuned with
the Alpaca instruction dataset to produce an instruct GPT model. The results proved
that our hypothesis about cross-lingual transfer learning operating with the trilingual
model was correct. Despite their size, the performance of our models were quite promis-
ing. Our instruct GPT model in zero-shot experiments outperformed ChatGPT on some
Hungarian tests in the HuLU benchmark datasets.

So far, we have only applied experiments with fine-tuning our trilingual model on
Stanford Alpaca prompts. We plan to proceed by translating and cleaning the Standord
Alpaca prompts into Hungarian. Using the translated prompts, we plan to fine-tune our
monolingual model to be able to follow Hungarian instructions with high quality. In
addition, we will fine-tune our model for chatting. Last but not least, we will improve
the performance of our models by applying reinforcement learning methods.
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Abstract. In light of the recent push for the creation and unification of large
morphologically annotated resources, there is a call for (preferably language-
independent, low-resource) methods of morph classification. This paper reports
on a pilot experiment on morph classification of the Czech language. We have
performed two experiments - root morph recognition and complete morph clas-
sification. By exploiting simple quantitative methods and - in some cases - avail-
able Czech morphological resources, we have achieved morph-level precision of
respectively 96.7% and 88.3%.

Keywords: morphology · morphological analysis · morph classification ·
DeriNet

1 Introduction

The standard NLP task of morphological segmentation, i.e. dividing words into
sequences of the smallest possible meaning-bearing units called morphemes1, has
recently seen a fair share of renewed interest. Recent development in morphological
analysis of underresourced languages and/or multilingual morphological analysis (e.g.
[1] or [9]). The state-of-the-art methods of morphological segmentation are however
usually based on neural networks [1], and hence are neither easily generalizable to
languages with fewer resources nor straightforwardly usable for further morphological
analysis. As there is a push for the creation and unification of morphologically anno-
tated resources [3,26], and as adding morphological and syntactic information seems to
improve the quality of machine translation for morphologically rich and underresourced
languages [8], a need arises for new methods for language-independent low-resource
methods of morph classification.

Up to now, there has been relatively little attention paid to the task. Classification of
morphs aims to classify the individual morphs given already segmented words, the pos-
sible granularity of the classification ranging from the simple binary distinction free
morpheme - bounded morpheme to e.g. the very complex and fine-grained Leipzig
glossing rules [7]. To our best knowledge, there has been no recent attempt to tackle
automated classification of morphs of the Czech language apart from [5], where the

1 Or morphs, if we speak about particular forms that appear in words.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 105–115, 2023.
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DeriNet derivational lexicon is used for root morph identification; however, this is just
quickly mentioned in the article and the results are neither evaluated nor discussed.
Furthermore, to this date, there is a very limited amount of reasonably-high-quality
morphologically annotated Czech data available (apart from the UniMorph project [3],
whose unsuitability for our purposes we will discuss in the next section).

In this paper, we report on a pilot experiment concerned with the classification of
morphs of the Czech language. Firstly, we try to show how the root and non-root morphs
of pre-segmented words are surprisingly well distinguishable using simple quantitative
approaches and a small corpus of other pre-segmented words; we also propose classifi-
cation methods that exploit existing Czech derivational resources. Secondly, we report
on a work in progress in which we propose to use the root morph identification methods
as a basis for complete morpheme classification of pre-segmented words, exploiting the
available Czech derivational and morphological resources.

It will be noticed that the proposed methods differ both in their generality and
the demands on resources. Namely, we also use two additional resources: the Czech
derivational network DeriNet [24,25] and MorfFlex [12] (for lemmatization and part-
of-speech tagging). Nevertheless as according to [5] similarly constructed derivational
networks are available for at least 11 languages and lemmatization and part-of-speech
tagging are among the best-explored topics in NLP, we feel confident that these addi-
tional requirements are not so stringent as to make possible adaptations or generaliza-
tions of our approach to other languages too costly.

2 Related Work

2.1 Terminology

In the following text, we use the terminology as described in [26]. A morpheme is the
smallest (in the sense of non-subdivisible) sequence of graphemes associated with a def-
inite meaning. In individual words, morphemes are present in particular forms – morphs
[13]. The morphs can be further characterized. We can distinguish free morphemes that
can be used as separate words), and bound morphemes that cannot2. Alternatively, the
morphemes are either lexical (with more or less general lexical meaning) or grammati-
cal (with inflectional meaning).

Based on these two distinctions, we distinguish root morphemes (free lexical mor-
phemes; e.g. kůň, plav), derivational affixes (bound lexical morphemes, e.g. pro-, -tel),
inflectional affixes (bound grammatical morphemes, e.g. nej-, -ý) and function words
(free grammatical morphemes, e.g. s, a). According to their position relative to the root
morpheme (resp. morph), we may divide affixes into prefixes preceding the root morph,
interfixes between the root morphs or suffixes following the root. We could also take
into account postfixes - morphemes that appear after inflectional suffixes.

2 It should be noted that these terms, while universally used, are not completely suitable for the
Czech language, where many of the morphs cannot be used as separate words because words
that contain them demand an inflectional affix in every form (e.g. “pı́n”, the root morph for
“odepı́nat”–“to bind”, which alone is not a valid word in Czech); even though they would
otherwise be classified as root morphs.
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2.2 Data Resources

There are several kinds of relevant data resources. First, there are morphological lexi-
cons. For Czech, there are two main lexicons, unfortunately not available in machine
tractable form: Retrográdnı́ morfematický slovnı́k češtiny [21] and Bázový morfemat-
ický slovnı́k češtiny [20]. Furthermore, the Czech language is included in the UniMorph
project [3]. Nevertheless, the Czech data in UniMorph, automatically extracted from
MorfFlex [12], are segmented in a way that is incompatible with our proposed morph
classification. Namely, the root in the UniMorph segmentation actually seems to be the
lemma or the root of the derivational tree (often including non-inflectional prefixes). For
the morphological segmentation, there are 38 000 manually segmented Czech words in
the data used for the SIGMORPHON 2022 shared task [1].

In addition, several of the available derivational resources already contain at least
some kind of morphological segmentation and classification. A survey of this type of
resource can be found in [26]. A good example of the kind of morphological resource
we have in mind is the manually created CroDeriV lexicon [22]. It contains over
14 000 Croatian words (except two nouns all verbs) segmented to morphs. The morphs
are classified as prefixes, stems, suffixes or endings.

The granularity of the classification included in the data differs: the Dictionary of
Morphemes of the Russian Language [16] contains over 74 000 segmented Russian lem-
mas with labeled root morphs (and not affixes). Furthermore, for many languages, either
no such resources exist or - as they are created automatically or semi-automatically-
they are not straightforwardly usable as a source of gold data, such as in the case of the
German morphological derivational lexicon Derivbase [27] or the recent multilingual
derivational and inflectional databaseMorphyNet [2]. This database also includes Czech
data; they are however incompletely and quite often inaccurately segmented. Therefore,
however useful this resource might prove to be for practical purposes, we are reluctant
to employ it for our pilot experiment (especially as the gold data).

The Czech derivational network DeriNet [25] contains a rough morphological seg-
mentation (resp. for 250 000 of the lemmas the root morphs are labeled). The methods
by which the root morphs are labeled are nevertheless much similar to some of the
methods we try (and therefore cannot be used as the gold data); furthermore, the rele-
vant articles [5,25] do not mention the final accuracy of the method.

2.3 Morphological Segmentation and Classification

Some of the classical approaches to morphological analysis either already include,
or could be straightforwardly extended to include, the classification of morphs. Thus
Goldsmith’s unsupervised morphological segmentation [10] uses minimum description
length and several simple heuristics to generate candidate stems and suffixes. Unsu-
pervised morphology induction like Schone and Jurafsky [19] or more recently the
word-embedding-based induction proposed by Soricut and Och [23] use automatically
extracted affixes for morphological rules induction.

For languages for which well-annotated and sufficiently large resources of the
abovementioned type are available, supervised machine learning can be used for both
the tasks - morphological segmentation and classification of morphs. Recently, Bol-
shakova and Sapin [6] employed a neural model for morphological segmentation and
classification of Russian, achieving over 90% word-level classification accuracy.
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In comparison, the state-of-the-art results for the Czech language are not so promis-
ing. The Czech derivational network DeriNet has been used for morphological seg-
mentation (and partial classification) [5] with the achieved word-level segmentation
accuracy of 58.9 % (the number is only illustrative - the accuracy of root morph recog-
nition was not measured). This might be caused by the lack of available relevant Czech
data (almost no available data for morpheme classification, till recently ([1,26]) also for
segmentation).

3 Data

We use four data resources in total. First, we use a small set of fully manually segmented
and annotated words (316 words in total), which we further subdivide into the dev set
and test set (each containing 158 words).3 The morphs are annotated by their type,
similarly to the CroDeriV [22]. The classes are as follows:

– R - root morphs,
– P - derivational prefixes,
– S - derivational suffixes,
– I - inflectional affixes,
– N - interfixes,
– O - postfixes.

Secondly, mainly as “training data” (for feature extraction of morphs), we use
10 438 manually segmented Czech non-compound words with manually selected root
morphs. Thirdly, in some of our experiments, we use the DeriNet Czech derivational
lexicon. It contains over 1M Czech lexemes connected by over 800 000 derivational
relations. We also use the MorfFlex lexicon [12], which contains 125 348 899 simple
lemma - tag - form triples. The tags, as described in [11], are very fine-grained and
contain morphological as well as syntactic information.

4 Evaluation

There are two possible levels of evaluation—word-level evaluation and morph-level
evaluation. The word-level evaluation measures are less fine-grained, but they offer
some desirable properties (e.g. the instances might be weighted by the number of occur-
rences of a given word in the corpus, or unweighted - giving each word equal weight.
Imagine two extreme scenarios - A) half of the annotations is completely right, the other
half is completely wrong; and B) half of the morphs in every word is annotated right and
the other half is wrong. While e.g. unweighted word-level precision of the first example
would be 50% and the precision of the second one would be 0%, while the morph-level
precision of both examples would be 50%.

For both of our experiments, we have selected five simple evaluation measures:
Word-level accuracy and morph-level precision, recall, F-measure and accuracy. It

3 https://github.com/johnvojtech/morph analysis/blob/main/data/completed hand annotation.
tsv.

https://github.com/johnvojtech/morph_analysis/blob/main/data/completed_hand_annotation.tsv
https://github.com/johnvojtech/morph_analysis/blob/main/data/completed_hand_annotation.tsv
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should be noted however that since we use a very small test set, the word-level accuracy,
while included for illustration and completeness, should be nevertheless regarded with
some caution.

5 Experiment 1: Root Morph Selection

5.1 Methods

In our first experiment, our goal is to identify the root morph of the word. We started
with three baseline heuristics. We also - as a 0-th baseline - tried to label every morph
as an affix (since affixes are more common than roots) - r0. For all following heuristics,
we compute the morph features on test set + training data, i.e. the 10k segmented words,
without the annotation of the root morph.

First, we selected all the longest morphs of the segmented words. Secondly, we
selected the morph with the least occurrences in our dictionary on the intuition that,
since compounds is infrequent in Czech, root morphs are usually combined with (a
limited number of) affixes, while affixes can combine with (a big number of) root
morphs. This method was used in the annotation of DeriNet [25] with the first one as the
tiebreaker. Thirdly, we estimate the left and right conditional entropy of the morphs and
select the morph with the smallest difference between the two. This was motivated by
the observation that while the roots usually appear in between two affixes at the begin-
ning/end of the word, the affixes usually appear only on one side of the root morph,
while on the other side, there is either the beginning/end of the word or another affix;
thus, one would expect the difference between the left and right entropy to be quite high
in the case of affixes and quite low in the case of root morphs. Finally, we combine all
these three heuristics - we normalize them (so all three sum to 1) and minimize their
unweighted sum; instead of the length we use 1/length (so that we may minimize it).

Further, we experimented with methods based on the derivational network DeriNet
[25]. First, for each word, we found the unmotivated lemma (or “root lemma”) of the
derivational tree4 (in DeriNet) and all its children, computed the edit distance between
each morph and these words and selected the morph with the shortest edit distance. This
we use either by itself (r5) or in combination with the previous three heuristics (r6) in
the same way as in (r4). Lastly, instead of taking into account only the unmotivated
lemma of the current word’s derivation tree and its children, we computed the longest
common substring of all descendants of the unmotivated lemma, (including replacing
any character with a wildcard to - very roughly - deal with possible allomorphy; thus
e.g. the common substring of “sit” and “sat” would be “s?t”) and then apply r6.

In all of the (r5–r7), if the processed word is not found in the DeriNet, we use the
r4method. For comparison with a supervised approach, we also trained the CRF tagger
implemented in NLTK [4] on the training data (with annotated root morphs); that is, we
treat the segmented words as sentences and the morphs as tagged words.

4 A tree structure, were derivationally related words are organised according to derivational
history; the root of the tree represents the unmotivated lemma.
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5.2 Results

As we announced in the introduction, the simple quantitative methods gave surprisingly
good results (see Table 1). Every method apart from just taking the longest morphs (r1)
achieved higher precision than the CRF tagger. As all of the methods (also apart from
r1) were restricted to selecting exactly one root morph, the achieved F-measure is also
surprisingly good (94.4%). We can also note that even the best of the fully-unsupervised
methods (i.e. not using DeriNet) achieves comparable F-measure with the supervised
CRF tagger.

Table 1. Evaluation of root morph identification.

Word-level Morph-level Morph-level Morph-level Morph-level

accuracy precision recall f-measure accuracy

CRF tagger 89.9 90.4 94.7 92.5 96.3

r0 – – – – 68.9

r1 68.4 81.1 84.5 82.7 89.5

r2 86.1 92.4 86.9 89.6 93.9

r3 86.1 93.9 86.9 89.6 93.9

r4 88.6 94.9 89.3 92.0 95.4

r5 88.0 94.3 88.7 91.4 95.0

r6 90.5 96.8 91.1 93.9 96.4

r7 91.1 97.4 91.7 94.4 96.8

6 Experiment 2: Morph Classification

6.1 Methods

In our second experiment, we try to expand our root morph recognition methods to a
fully-fledged morphological classifier. The most important part of this is the distinction
between root morphs, the derivational affixes and the inflectional affixes.

6.2 Baselines

We have implemented two baseline morph classifiers, supervised and unsupervised one.
As our first, supervised baseline (Baseline 1), we assign to each morph the tag that is
most commonly associated with the morph in our development set; if it is not present
there, we label it as a root morph (it is the most frequent label in the dev set). As
our second, unsupervised baseline (Baseline 2), we designed two versions of a simple
unsupervised heuristics-based classifier. First, we decide for each morph in a given word
whether it could be a derivational affix, inflectional affix or a root morph (by heuristics
described in the following subsections). In the second iteration, we assign to each of
the positions the tag that is most common for the morph in the processed data. In the
B version we consider as possible inflectional morphs only the first and last morphs of
the word.5

5 In all our baseline solutions we ignore the interfixes and postfixes.
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Derivational Affixes. Using DeriNet, we take the morphs in which the segmented word
fully differs from the root lemma; i.e., we compute the minimum edit distance between
the word and the root lemma, and label the characters that would be added or rewritten
during the minimal edit. We regard all the morphs, that consist only of such characters,
as derivational morphs. This heuristics is very rough in that most of the Czech lemmas
contain an inflectional affix, which in this way could also get classified as a derivational
affix.

Inflectional Affixes. For each tag in MorfFlex [12], we take a thousand word-forms
corresponding to the same tag; also for every word form present in the data, we take all
the other word forms. The inflectional affixes are those that are (more or less) common
for common tags, but different for the different forms. Namely, we try to extract an
ending common for all the words tagged by the same tag; if that fails, we consider
every ending common for at least one-fifth of the examples. If even that fails, we try to
find the longest uncommon substring (including wildcard characters) for all the forms
of the segmented word.

Roots. For root morph recognition we use the DeriNet-based r7 method from the pre-
vious section.

6.3 Finetuning CRF Taggers

To exploit the transition probabilities between words, we have (as in the first experi-
ment) used the bidirectional LSTM-CRF tagger as described in [14]. The CRF tagger
used in NLTK does not permit finetuning, so we have used the implementation from the
bi-lstm-crf Python package [15]. First, we have trained it on the 10k training set with
the manually annotated root morphs. Then, we finetuned it on the small development
set (which contains 158 annotated words). This approach (Semi-supervised CRF), how-
ever, presupposes the rather large data with annotated root morphs. However, since we
have developed methods of root morph recognition, we could use them for creating the
training data.

In our second CRF tagger-based experiment (Supervised CRF), we have used the
large training data stripped of the manual annotation and annotated automatically, using
our most successful DeriNet-based method (r7). Thirdly, we have trained the CRF tag-
ger only on the dev set (Small CRF). Finally, we have pre-trained the CRF tagger on
the training data annotated by both of our baseline solutions (and again finetuned on the
dev set).

6.4 Evaluation and Results

In the second experiment, we evaluate only the word-level and morph-level accuracy
(Table 2). The results were somewhat surprising. First of all, no version of the CRF
tagger was better than one of our unsupervised baselines, which has achieved 88 %
morph-level accuracy. Secondly, while both pretraining the CRF tagger on root identifi-
cation and on data annotated by the baseline methods seems to have significant impact
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Table 2. Evaluation of full classification of morphs.

Morph-level accuracy Word-level accuracy

Baseline 1 83.7% 55%

Baseline 2A 76.6% 18%

Baseline 2B 88.3% 70%

Small CRF 72.9% 42 %

Supervised CRF 75.7% 44%

Semi-supervised CRF 79.7% 54%

Baseline 1 + CRF 84.6% 63%

Baseline 2A + CRF 61.2% 37%

Baseline 2B + CRF 80.8% 57%

Table 3. Example output (Baseline 2B)

Segmented word Assigned signature Correct signature

styd nou t RSI RSI

při prav i t PRSI PRSI

pol ovič n ı́ RRSI RSSI

ne roz trh a l i IPRSSI IPRSSI

po prsk a t PRSI PRSI

maž R R

z kypř e t PRSI PRSI

o hod n ot i t PRSSSI PRSSSI

obe še l PRS PRI

sáh l a SSI RSI

on their accuracy, there is no clear correspondence between overall quality of the pre-
training data and the overall quality of the CRF tagger results. Thirdly, there is a big
difference in accuracy between the two versions of our unsupervised baseline.

Sometimes, the taggers make mistakes that could be fairly easily filtered out (but
always not so easily corrected), as having a suffix before a root, a word without a root
(see the last example in Table 3) or a sequence like “Root - Prefix - Suffix”. Intro-
duction of simple rules might therefore significantly increase the final accuracy. One
such example causes the large difference between the accuracy of the two versions of
Baseline 2. Closer look at the data reveals that most of the errors of the version A of
the unsupervised baseline solution consisted in misidentification of derivational suf-
fixes as inflectional, which might be easily filtered out by the restriction on the position
of the inflectional affix, as used in the B version; the real accuracy of the A version
might however be higher, as in some cases the identification of derivational suffixes in
the manually annotated test set is spurious (e.g. u klid n i l i is assigned the signature
PRSSSI in the test set and PRSIII by the baseline solution; but the suffix -l, expressing
past tense, might be said to be inflectional).
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Table 4. Errors in morph classification (except rare categories, i.e. infixes and postfixes)

System/Error (Correct:Assigned) R:S R:P R:I S:R S:P S:I I:R I:P I:S P:R P:I P:S

Baseline 1 0 0 1 17 2 11 6 0 28 9 0 2

Baseline 2A 0 3 1 5 3 74 8 11 14 4 1 1

Baseline 2B 0 4 0 5 5 4 8 11 18 4 0 1

Small-data CRF 11 43 5 19 0 22 11 5 19 8 0 1

Supervised CRF 36 16 0 24 3 18 1 6 10 9 0 4

Semi-supervised CRF 7 25 0 25 2 17 6 6 6 4 0 0

Baseline 1 + CRF 6 9 6 17 4 11 6 5 4 7 0 6

Baseline 2A + CRF 7 42 7 42 12 39 8 11 19 9 0 2

Baseline 2B + CRF 3 14 8 16 0 19 6 5 0 7 1 1

7 Conclusion

We have shown that applying simple quantitative methods on comparatively small
and/or unannotated segmented data is sufficient for a high-quality root morph identifi-
cation in Czech and that these results can be further improved by exploiting the DeriNet
derivational lexicon. In our second experiment, we used our root morph identification
methods to create training data and to train an LSTM-CRF tagger. It appears that the
quality of the output can be increased by pre-training the tagger on root morph identi-
fication or morph data classified by a good-enough baseline solution. Furthermore, the
simple supervised baseline was as good as the CRF taggers, while one of the unsuper-
vised baselines has been significantly more accurate.

In the future, we would like to better utilize Czech resources like MorfFlex and Der-
iNet either for further morphological analysis (e.g. the derivational affixes would appear
in many derivational trees in DeriNet but on the lower levels, while root morphs would
appear in only a few trees and on all levels; most the inflectional affixes would not
appear at all or at no specific level). Also, the morphological tags present in MorfFlex
might be useful - the given tag would probably strongly predict the presence of cor-
responding endings (as opposed to derivational affixes and root morphs). These could
then be used either for designing specific tagging methods or for enlarging the training
data for machine-learning-based taggers.

Secondly, we would like to extend our approaches to a multi-lingual setting. We
would especially like to use Universal features included in the Universal Dependen-
cies [18]; these could be also used for more fine-grained morphological analysis in the
future. However, there are also many derivational [17] multilingual resources that could
be used for the classification of morphs in a similar way to DeriNet.
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5. Bodnár, J., Žabokrtský, Z., Ševčı́ková, M.: Semi-supervised induction of morpheme bound-
aries in Czech using a word-formation network. In: Sojka, P., Kopeček, I., Pala, K., Horák, A.
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(1998). https://books.google.cz/books?id=MZMWAAAACAAJ
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Abstract. This paper presents a new German resource for coordinated sentences,
including asyndetons. The aim is to align cases of Clausal Coordinate Ellipsis
(CCE) with the ellipsis-reconstructed sentences. The latter are called canonical
forms. CCE is a challenging linguistic phenomenon in which constituents can be
omitted under certain conditions. Often, several elision phenomena occur simul-
taneously. Even state-of-the-art constituency parsers have difficulties with CCE
sentences. Although CCE examples occur in sufficient numbers in both written
and spoken corpora, they are often among those with the lowest F1 scores. We
surmise that elided verbforms, in particular, lead to incorrect hypotheses about
phrase boundaries. Our new parallel corpus is designed to support the develop-
ment of effective models for machine learning or natural language processing
components that can automatically reconstruct CCE phenomena.

Keywords: Coordination · ellipsis reconstruction · canonical form

1 Introduction

Ellipsis in coordinated sentences plays an integral role in written and spoken German
(e.g., eight percent of sentences in the TIGER corpus [1] exhibit CCE constructions [9];
in spoken German, however, all CCE types occur less frequently [6]).

This paper describes a new German resource for coordinated sentences with Clausal
Coordinate Ellipsis (CCE), a challenging linguistic phenomenon where at least one con-
stituent in the second conjunct can be omitted (cf. example (1); here, the finite and the
nonfinite verbform are elided due to Long Distance Gapping). In addition, CCE covers
the elision of at least one word in the first conjunct (cf. example (2); here, Backward
Conjunction Reduction (BCR) ignores the boundaries of the noun-phrase constituent
[151Card MarkN ]NP (i.e., it elides the last two words in the first conjunct; in the exam-
ple, BCR occurs together with Gapping). In Sect. 3.2, we illustrate all phenomena in
detail using English examples; however, we focus on the specific German constraints
of each phenomenon—e.g., BCR variants in French [25] are not licensed in German).
In the following, we underline the so-called remnants, i.e., the counterparts of each eli-
sion, which are not necessarily identical1 in morphological form to the reconstructed
1 Here, we follow the terminology in [7] where all identity types for CCE are outlined in detail.
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ones. The two examples show that both conjuncts can only be analyzed semantically if
the elided constituents are reconstructed. When using existing treebanks, constituency
parsers often generate incorrect structures because they lack cues encoded in the train-
ing data to prioritize the correct CCE variant. Our new parallel corpus is designed to
support the development of effective models for machine learning or natural language
processing components that are able to automatically reconstruct the CCE phenomena.

(1) Die Männer waren verletzt, die Frauen wareng nicht verletztg.
The men were wounded, the women were not wounded.

(2) MS- und Krebskranke erhielten dafür 151 Markb zusätzlichb,
MS- and cancer patients received for this 151 Deutschmarks additionally,

Aids-Kranke erhielteng dafürg 179 Mark zusätzlich.
Aids-patients received for this 179 Deutschmarks additionally.
‘MS- and cancer patients additionally received for this 151 Deutschmarks,
Aids patients 179 Deutschmarks, respectively.’

The two example sentences above are taken from TüBa-D/Z [27]. In Sect. 2, we
give an overview of how CCE is encoded in the different German treebanks. Based on
these observations and our goal to support CCE analysis, we motivate why we based
our parallel CCE corpus on a collection of sentences with at least one coordination in
TüBa-D/Z. We also discuss what is an appropriate format for “learning CCE” from a
corpus. In Sect. 3, we outline the encoding format in detail. In our corpus, we explicitly
indicate that in certain cases, the reconstructions of CCE phenomena can be seen as
competing interpretations alongside NP-/PP- or VP-coordinations. The two examples
shown above do not permit any local interpretation. However, cases like in the examples
(3) and (4) are encoded with both variants as the gold standard. In the two examples,
the local variant is first delineated by the non-clausal constituent in square brackets. In
turn, the subscript “f”/“fg” for the CCE variant indicates that the phenomenon can be
classified as Forward Conjunction Reductions (FCR) (which can only occur in a fixed
word order) or Gapping, assuming that the word order of the first conjunct is preserved
in this n-ary (n= 4) case of CCE.

(3) Steckt hinter dem Wechsel der Fakultät [ein Mentor oder eine Gruppe]SB?
Is behind the change of the faculty a mentor or a group?
Steckt hinter dem Wechsel der Fakultät ein Mentor oder steckt hinter dem Wechsel der
Fakultätfg eine Gruppe?

(4) Sie [hatte keine Papiere, erhielt keinen Lohn und schuftete tagelang, pausenlos]VP ;
She had no papers, got no wage and toiled for days, nonstop
Sie hatte keine Papiere, sief erhielt keinen Lohn und sief schuftete tagelang, siefg
schuftetefg pausenlos;

The paper is structured as follows. In Sect. 2, we review previous research on ellip-
sis annotation in German treebanks in order to select the most appropriate one for
(semi-)automatic production of canonical forms. Section 3 defines the clausal coor-
dinate ellipsis phenomena and the annotation process employed to construct our new
corpus. Section 4 presents a case study to illustrate how we checked the accuracy of all
manually added information. In Sect. 5, we draw conclusions and address future work.
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2 Related Work

For German, a variety of treebanks is available. A recent survey conducted by Dipper
and Kübler [3] identifies TIGER and TüBa-D/Z as the most influential. In what follows,
we will also discuss The German Reference Corpus (DeReKo; [19]), The Hamburg
Dependency Treebank [4], Europarl [17], JRC-Acquis [28], and the Parallel Meaning
Bank (PMB) [15]. The following review aims at finding a suitable encoding format that
enables users to systematically evaluate CCE phenomena. In other words, it should be
easy to retrieve/quantify specific elliptical constructions in each treebank.

Obviously, a format that provides input and output data for training all types of mod-
els, including statistical and machine learning models for CCE constructions, would be
most advantageous. Without sufficient relevant input data, models will not have the nec-
essary information to learn and make accurate predictions/decisions. Similarly, without
output data, models cannot be evaluated for their performance and effectiveness. By
input, we refer to the reduced sentences. Here, we use the term non-canonical to refer
to the transliterated spoken/written text. By output, we refer to the fully reconstructed
sentences—called the canonical form. The contrastive pair of terms is independent of
individual treebank encoding formats (cf. Harbusch et al. [11]; similarly, but using a
variant of Categorial Grammar for English, see [18], and for a psycholinguistic per-
spective in German, see Matzke et al. [21]). The primary goal of our treebank study
is to determine whether corresponding canonical and non-canonical sentences can be
obtained—ideally, automatically spelled out as input/output data.

Elliptical structures involve the omission of repeating constituents—not necessarily
in their fully inflected form (cf. Gapping requires the reconstructed finite verbform to
coincide with the subject in the second conjunct in the canonical form). The examples
in the introductory section present the canonical form where the non-canonical version
is represented by strikethrough wordforms with subscripts specifying the individual
CCE phenomena; underlining allows easy identification of the remnants – inevitably
necessary for any elision as an explicitly mentioned counterpart. In all treebanks, the
non-canonical sentences are presented as string of leaves. In the structural descriptions,
more or less explicit clues allow for the identification of elisions.

First, we examine the two most influential German treebanks: TIGER and TüBa-
D/Z2. TIGER provides approximately 50,000 syntactic trees, while TüBa-D/Z is con-
siderably larger. It contains over 120,000 trees. Both corpora are taken from German
newspapers. TIGER is characterized by a very flat structure within noun phrases, which
leaves certain generalizations implicit or even underspecified. In contrast, TüBa-D/Z
employs a more hierarchical structure, which allows for more general queries (see [3]).

With respect to ellipses, TIGER uses secondary edges to explicitly indicate that
a substructure is virtually the child of a node in the other conjunct as well. Figure 1
shows a case with three secondary edges in TIGER (cf. the sentence-initial MOdifier;
the finite verbform with edge label HD; and the whole object clause with edge label
OC below the S-node of the left conjunct below CS, which spans both ConJuncts).
All secondary edges (in green) end at the S-node of the second conjunct to represent

2 TüBa-D/S uses a very similar encoding scheme for spoken dialogues (see [26]). However, it
does not provide either morphological or lemma specifications. So we focus on TüBa-D/Z.
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Gapping. It is important to note that neither the linearization of the virtual constituents
in the other conjunct nor inflectional accommodations are provided by secondary edges.
Thus, the very elaborate concept of secondary edges in TIGER does not fully specify the
canonical form. The underspecification of word order is desirable for Gapping, which
is not limited to an identical word order in both conjuncts in German.

Fig. 1. Syntax tree with secondary edges (in green) from the TIGER treebank. (Color figure
online)

TüBa-D/Z encodes the fixed placement of the verbal elements in a clause by topo-
logical field categories (e.g., VF=frontfield, LK=left clause bracket, MF=midfield, VC-
=verb complement, and NF=endfield below a SIMPX-node). There is no explicit encod-
ing of ellipsis in TüBa-D/Z. Often, the syntactic category FKOORD is indicative of all
kinds of ellipsis. However, it is important to stress that this category does not give rise
to all elided constituents. The example in Fig. 2 illustrates a case of Gapping. FKO-
ORD (in red) represents that all constituents above the categorial node should occur in
both FKONJuncts. However, there is no indication for the fact that the subject (labeled
ON) sie ‘she’ is also gapped. The fully reconstructed sentence: [Besonders ... müsse]
sie erreichbar sein und [besondersfg ... müssefg] siefg telephonieren können. can be
classified either as a Gapping (with word order as in the left conjunct) or as an FCR
phenomenon, where the word order has to be preserved (cf. subscript “fg”).

Although TüBa-D/Z provides fewer clues for identifying elisions, we have chosen it
as an interim solution over TIGER because of its richer encoding format and its consis-
tent, albeit incomplete, encoding of CCE phenomena via the categorial node FKOORD.

DeReKo3 is automatically annotated with various tools. Since we consider the
encoding quality by human lexicographers in TüBa-D/Z to be higher than the auto-
matically generated labels in DeReKo, we maintain our decision for TüBa-D/Z.

Represented as dependency structures, the Hamburg Dependency Treebank pro-
vides 261,821 German sentences, Europarl 2,233,022 sentences. For both treebanks4,

3 https://www.ids-mannheim.de/digspra/kl/projekte/korpora/archiv-1/ with 50,6 billion words
(2.2.2021).

4 Inspect with https://weblicht.sfs.uni-tuebingen.de/Tundra.

https://www.ids-mannheim.de/digspra/kl/projekte/korpora/archiv-1/
https://weblicht.sfs.uni-tuebingen.de/Tundra
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Fig. 2. Example from TüBa-D/Z that does not allow for the search within the complete range of
CCE phenomena.

we examined the encoding/retrieval of CCE in coordinations. In all cases where a phrase
is missing, the remaining parts of the phrase are represented as fragments. However, the
format does not provide homogeneous cues that clearly identify the constituents to be
reconstructed. Thus, we judged the reconstruction of canonical sentences to be more
difficult/manual than in TüBa-D/Z.

JRC-Acquis is a freely available parallel corpus. It covers all twenty official lan-
guages of the European Union (EU). According to the authors, pairwise paragraph
alignment information has been produced by two different aligners. More than 190
language-pair combinations are available. After a thorough inspection, we decided that
the format is not suitable for the automatic reconstruction of canonical sentences.

Finally, we examined the Parallel Meaning Bank. It consists of sentences with cor-
responding syntactic and semantic representations for the languages: English, Dutch,
German, Italian, Japanese, and Chinese. PMB provides fine-grained meaning represen-
tations for words, sentences, and texts. It aims to provide the most likely interpretation
for a sentence, with a minimal use of underspecification. Version 4.0 (22.10.2021) com-
prises 2,844 German sentences. The corpus was found to be too small to capture all CCE
phenomena. In the long run, the resource’s sophisticated semantic encoding format of
the resource may prove advantageous.

Thus, the final decision coincides with our preliminary choice of TüBa-D/Z. In the
next section, we provide detailed information about our corpus.

3 Corpus Design and Annotations

Here, we outline the annotation format of our new corpus. First, we define more for-
mally the cases of Clausal Coordinate Ellipsis that occur in German—but illustrated
with English examples for better understanding. Then we present the new CCE corpus,
in particular what information we have added to the sentences from TüBa-D/Z.
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3.1 Annotated CCE Phenomena and Their Annotation Label

In the literature, four main types5 of clause-level coordinative ellipsis are distinguished
(see, e.g., [8,12,24]). Indicative of CCE is at least one missing constituent in one clausal
conjunct that is present in the other one (dubbed remnant in the introduction; underlined
in all examples). According to [8], CCE covers the following phenomena:

1. Gapping (cf. example (5)) and its special variants called Stripping, Long Distance
Gapping (LDG) and Subgapping elide at least the verb in the second conjunct. How-
ever, the remnant and the reconstructed elided finite verbform do not have to match
in their morphological features because of the subject-verb agreement with the sub-
ject in the second conjunct6 (cf. examples (6) and (8)). Gapping often covers several
constituents in the first conjunct. The case where only one of them remains is called
Stripping. In German, a so-called Stripping particle—like auch ‘as well’—must be
added (see example (6))—which is not the case in Polish [11]. In LDG, the second
conjunct consists of constituents stemming from different clauses (i.e., verb levels;
see example (7); here, the main clause and the complement are elided). In Subgap-
ping, not all verbs are elided (see example (8)).

2. Forward Conjunction Reduction (FCR) elides complete constituents with identical
grammatical function in the two conjuncts in the left-periphery of the second con-
junct (cf. example (9) and the relative clause in example (10); here, we illustrate the
locality restriction of the periphery to the same clause by explicit S-brackets).

3. Backward Conjunction reduction (BCR), also called Right Node Raising (RNR), is
almost a mirror image of FCR in German. It omits the right periphery of the second
conjunct in the first conjunct; however, it can cut into constituents, i.e., it works
word-by-word (lemma-identically) in the right periphery (see example (11); note
that the example (13) in the following section is not a case of BCR together with
FCR/Gapping because the latter cannot cut into the PP-constituent).

4. Subject Gap in clauses with Finite/Fronted verb (SGF) (see example (12)) elides
the subject in the second conjunct if there is subject-verb inversion in the first con-
junct. In German, the first constituent cannot be an object – which is not the case in
Estonian, Hungarian, Polish, and Russian.

In the following examples, the italicized text with a subscript should be omitted.
Here, we avoid strikethrough to improve readability. The subscripts indicate the ellip-
tical mechanism at work: “g”=all types of Gapping, “f”=FCR, “b”=BCR, “s”=SGF.
The reason for lumping all types of Gapping together stems from the assumption that
gapping can be implemented as a recursive procedure, working top-down from the sen-
tence root, as long as the verbform can be elided in the currently examined clause (cf.
the procedure described in [7]). Only for Stripping, the Stripping particle must either
be added in the case of ellipsis generation, or it must be identified during parsing. All
other variants only correlate remnants and their elided counterparts per clause level.
The examples in this section sketch only a single phenomenon. However, several CCE
phenomena can occur at the same time (see example (2) in the Introduction section).

5 SGF is not necessarily judged as an ellipsis phenomenon (see, e.g., [13] for a psycholinguistic
argument).

6 Originally, in [14], this licensing condition was referred to as lemma-identity.
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(5) Henry lives in Boston and Peter [lives]g in Chicago.

(6) Henry lives in Boston and all his children [live in Boston]g , too.

(7) My wife wants to buy a car, my son [wants to buy]g a motorcycle.

(8) The driver was killed and the passengers [were]g severely wounded.

(9) [SMy sister lives in Berlin and [my sister]f works in Frankfurt.]

(10) Amsterdam is the city [Swhere Jan lives and [where]f Piet works].

(11) Anne arrived before one [o’clock]b, and Susi left after three o’clock.

(12) Why did you leave but [you]s didn’t warn me?

3.2 The CCE-Corpus Design

Our corpus should serve the purpose of evaluating a CCE-reconstruction process during
parsing. So, we started by annotating the test part of TüBa-D/Z, i.e., the last 5,000
sentences. In the long run, we want to extend the set to all CCE constructions in TüBa-
D/Z and other German corpora mentioned in the previous section. In the following, we
present the two steps to obtain the parallel CCE corpus.

Step 1 (Search for all coordinated clauses – including asyndetons – in TüBa-D/Z).
To obtain all CCE phenomena in TüBa-D/Z, we retrieve all sentences in TüBa-D/Z
with a coordinating conjunction, or two (R-)SIMX encoded as siblings (asyndetons).
The search returns 1,803 trees to examine. For all matches, we book-keep the unique
sentence number from TüBa-D/Z in order to be able to supplement our corpus with
either the XML structure provided by TüBa-D/Z or any syntactic tree structure gen-
erated by specific lowering procedures to get rid of crossing branches, respectively, to
meet the conditions of different evaluation contexts.

Our treebank-search pattern intentionally overgeneralizes. Purely non-clausal cases
(coordinations within ADJ, ADV, NP, PP, etc. phrases) will be identified in a subse-
quent task of this step. Example (13) illustrates such a case. Here, the NP-coordination
is nested in a PP, i.e., FCR/Gapping is blocked. For these cases without CCE interpre-
tation, the non-canonical sentence and an identical canonical version are paired in our
corpus. We decided to leave the cases in the corpus, but to mark the whole sentence
with “NoCCE”. When evaluating the generation results, it is interesting to investigate
if and which false locality assumptions are produced for a coordination. In addition, all
cases are examined for possible CCE interpretations (see example (14) in the next step).
All corresponding canonical forms are also listed as gold-standard variants.

(13) Die kommen [mit [Zeit und Ruhe]NP ]PP nicht klar.
They come with time and peace not clear.
‘They cannot handle time and peace.’
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Fig. 3. Frequencies of individual CCE phenomena in our parallel CCE corpus.

Step 2 (Reconstruction of the CCE cases by assigning subscripts to the canoni-
cal form). All cases with at least one clausal coordination were manually inspected to
encode subscripts for all variants of possible CCE phenomena (to improve reliability,
both authors independently annotated the list; discrepancies and intricate cases beyond
the CCE definition (cf. the corpus studies into CCE phenomena cited in the introduc-
tion) were corrected by mutual agreement).

(14) Sie verloren Arbeit, [sie verloren]fg Wohnung und [sie verloren]fg Familie.
They lost work, [they lost] housing and [they lost] family.

As shown in the examples (3) and (4) in the introduction, cases with different anal-
ysis options are stored separately (cf. the columns “Gold 1”, ..., “Gold n” in our corpus,
where n ≤ 3)7. In example (14), FCR or Gapping for the direct object is indicated by the
subscript “fg” as one of the gold-standard option. In addition, another variant encodes
the NP-coordination of Arbeit, Wohnung und Familie ‘work, housing, and family’ as the
direct object. As mentioned above for “NoCCE”-variants, the sentence remains unal-
tered as canonical form. However, we classify these cases as “LCO” (= LocalCoOrdi-
nation) to distinguish such cases from “NoCCE”.

To quickly focus on specific CCE phenomena in our corpus, we additionally provide
the columns “FCR”, “Gapping”, ‘BCR”, “SGF”, “LCO”, and “NoCCE” filled with “0”
or “1”, respectively. Thus, one can easily extract a sub-corpus limited to the phenomena
of current interest. For instance, example (13) has only a “1” in the “NoCCE” column,
while (14) has a “1” in the “FCR”, “Gapping”, and “LCO” columns.

7 In the CCE corpus, we do not spell out all word-order variants for Gapping, but rather adhere
as closely as possible to the order in the first conjunct.
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Fig. 4. Co-occurrence of CCE phenomena in parallel corpus.

3.3 A Brief Summary of the Features of Our Parallel CCE Corpus

As mentioned above, we currently cover the last 5,000 sentences of TüBa-D/Z with
at least one coordination (a total of 1,803 cases — including asyndetons). We have
assigned the canonical sentences with respect to a CCE phenomenon and/or with an
interpretation as local constituent coordination in NPs, PPs, or VPs, respectively.

Figure 3 shows the number of individual CCE phenomena in our collection. It is
important to note that the totals do not add up to the total number of sentences because
multiple phenomena can be active in the same sentence. Also, we provide all gold-
standard options at the same time. In the next section, we discuss the accuracy, i.e., the
correctness and completeness of the individual CCE encoding variants (cf. Figure 4 for
the frequencies of combinations of CCE phenomena in our parallel corpus).

4 An Evaluation with Our Parallel Corpus Approving Its
Accuracy

To improve the accuracy of our corpus, we employ an indirect approach here: using a
constituency parser with parse-forest CCE-expansions. The hypothesis is that poor pars-
ing results coincide with incomplete or incorrect canonical form encodings. Therefore,
these sentences are rechecked.

Constituency parsing of CCE sentences is challenging even for state-of-the-art par-
sers [16,23]. Additional procedures extend the derivation forest of the probabilistic
parser (using context-free rules resulting from a procedural extinction of XML-encoded
branch crossings, e.g., for punctuation; due to space limitations, we do not describe the
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Fig. 5. Achieved BLEU-scores of canonical forms automatically reconstructed by OPIELLE per
CCE phenomenon.

procedures here). OPIELLE8 [22] reverses the procedure in Natural Language Genera-
tion (NLG; see, e.g., [5]), where coordinative ellipsis is supposed not to result from the
application of declarative grammar rules for clause formation, but from a procedural
component that may block the overt expression of certain constituents (cf. ELLEIPO, a
high-accurate CCE-generator [10]).

OPIELLE uses the tree forest produced by a constituency parser trained on 82,243
sentences of the TüBa-D/Z corpus—not overlapping with the CCE corpus. Triggered
by a coordination, OPPIELLE examines the type of coordination to propose the best
reconstructed canonical form. Empty spans, labeled with the adapted inflected form of
the hypothesized remnant, represent elisions in the chart. These newly created neigh-
borhoods can invoke further context-free rules that produce the canonical form of the
input sentence. How to hypothesize empty spans in the parser’s chart and how to verify
these hypotheses—especially, when different phenomena occur simultaneously—must
be omitted here for reasons of space.

The evaluation of OPIELLE uses BLEU scores (cf. [2]; for recent results in machine
translation, see, e.g., [20]). Currently, we get 0.924 on the aligned corpus. Figure 5
visualizes the accuracy of the canonical forms generated by OPIELLE per CCE phe-
nomenon category, measured in BLEU scores. Several rounds of detailed checking of
all mismatches lead mainly to more local interpretation variants that we had overlooked

8 OPIELLE stands for ELLEIPO read in reverse, indicating that it reverses the generation pro-
cess. However, it is important to note that OPIELLE has to hypothesize the scope of a coor-
dination along with all possible canonical forms, whereas ELLEIPO only tests conditions for
omitting given constituents in the predefined scope of conjuncts. Due to space limitations, we
have to skip all the details here. The advantages of OPIELLE are: (1) reusing a parser’s initial
chart data structure, and (2) using an efficient dynamic programming algorithm to produce
reconstructed syntax trees for an entire input sentence. These factors contribute to the efficient
production of canonical forms.
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when translating FKOORD constructions from TüBa-D/Z. Specific CCE constructions
are easier to find by analyzing the conjuncts in isolation.

Let us briefly focus on the task of CCE reconstruction itself. Although sentences
with CCE phenomena are present in sufficient quantities in both written and spoken
corpora, they are among the sentences with the lowest F1 scores. The evaluation of
OPIELLE (cf. Fig. 5) demonstrates the usefulness of the corpus for improving the
performance of a CCE-identification and -reconstruction during parsing. Importantly,
OPIELLE produces few false positives. Similarly, the SGF reconstruction works very
well. FCR suggestions are correct to a greater extent. On the other hand, Gapping and
BCR pose more challenges. Upon closer inspection, it was verified that the system cor-
rectly hypothesizes CCE phenomena.

5 Conclusions

In summary, we have discussed which German treebank is best suited to represent the
canonical forms of CCE phenomena to be provided in our parallel CCE corpus. We
decided to extend TüBa-D/Z, a large treebank with a manually assigned/checked rich
inventory and an ellipsis-encoding format that can be semi-automatically extended to
canonical forms. In addition, we manually checked for the completeness of yielding all
gold-standard options.

Exemplarily, we illustrated the usefulness of the new resource by sketching a com-
ponent that extends the derivations of a constituency parser by the reconstructed elided
words “borrowed” from the other conjunct (either the first or the second, or even both
conjuncts at the same time). Our preliminary results suggest that further research on
CCE may lead to additional improvements in a wide range of natural language process-
ing tasks based on constituency parsing. As for future work, we are trying to increase
the BLEU score of OPIELLE along with continuous improvements of the parallel cor-
pus. As mentioned before, we are working on a broader collection of coordinations in
TüBa-D/Z.
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27. Telljohann, H., Hinrichs, E.W., Kübler, S., Zinsmeister, H., Beck, K.: Stylebook for the
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Abstract. In the current pandemic situation, one of the tools used
to fight Covid-19 is wearing face masks in specific public spaces. As
previous research on the Mask Augsburg Speech Corpus had verified,
speech might be eligible to automatically determine whether the speaker
is wearing a mask or not, but the performance of classification models is
far from perfect at the moment. This paper employs seven transformer-
based wav2vec2 models on this dataset, extracting the activations from
the lower, convolutional blocks as well as from the higher, contextualized
transformer blocks. We show that models obtained via the self-supervised
pre-training phase lead to similar performances with both activation
types. However, after fine-tuning the models for direct ASR purposes,
the performance achieved by the contextualized representations dropped
significantly. Here, we report the highest Unweighted Average Recall
value on this corpus that was achieved by a standalone method.

Keywords: speech analysis · surgical mask · wav2vec2 ·
computational paralinguistics · transformers

1 Introduction

Although with the introduction of vaccines, the peak of the COVID-19 pandemic
seems to be over, the virus is still widely spread worldwide. To reduce the num-
ber of new infection cases, besides social distancing, an effective tool was the
compulsory wearing of masks. Automatic speech analysis might offer a solution
to enforce and monitor whether this regulation is kept. Furthermore, forensics
and ‘live’ communication between surgeons may also benefit from a system that
could determine whether a subject is wearing a mask based on their speech [20].
This task belongs to the area of computational paralinguistics, which focuses on
information present in speech other than the actual words uttered.
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It is well known that both Automatic Speech Recognition (ASR) and Speech
Verification techniques can be applied to the field of computational paralinguis-
tics and pathological speech processing. For instance, x-vectors [22] (a former
SOTA for Speaker Recognition) have been successfully adapted to classify emo-
tions [15] and for sleepiness detection [11]. Furthermore, ASR-based solutions
have also been adapted to these fields, e.g. for detecting states of dementia [8]
and for speech emotion recognition [7].

Nowadays, feature-encoder approaches are increasingly being applied by
researchers in Speech Recognition. For instance, ASR has benefited from wav2vec
2.0 [3,6] and BERT [10,21], which are able to generate rich contextual repre-
sentations from large amounts of unlabeled instances. Wav2vec 2.0 has been
successfully applied in computational paralinguistics and pathological speech
tasks, where pre-trained models were used to assess the emotions [16], to screen
Alzheimer’s Disease [17], or even to detect COVID-19 [4] from the speech and
the coughing of subjects. The wav2vec 2.0 method is said to be a state-of-the-
art method for Speech Recognition, as it has the lowest Phonetic Error Rate
(8.3%) [3] and lowest Word Error Rate (WER) (1.4%) [24] on two of the most
popular speech datasets, namely TIMIT and LibriSpeech, respectively1.

In this paper, we utilize several (pre-trained) wav2vec 2.0 speech encoder
models and extract two distinct types of embeddings from them. The basis of
wav2vec relies on the goal of extracting new types of input vectors from raw
(unlabeled) audio, which can be used to build an acoustic model [19]. Wav2vec
2.0 relies on the same self-supervised principle, but it encodes speech represen-
tations from masked audio-segments and passes them to a transformer network
that builds contextualized representations. This self-supervised approach was
able to outperform traditional ASR systems that are based on transcribed audio,
using much less labeled training data [3].

Our main contributions are: (i) Exploring the sufficiency of wav2vec 2.0
encoder (pre-trained) models for a task specifically related to computational
paralinguistics; (ii) Analyzing the difference in the quality of the embeddings
produced by each of the encoders; (iii) Applying a more straightforward method
in order to avoid the time-consuming and computationally expensive fusion or
ensemble approaches; (iv) Investigating the robustness of both language-domain
matching and cross-lingual pre-trained encoders for the original language of
the corpus utilized. Our approach gives the highest Unweighted Average Recall
(UAR) score achieved by a stand-alone method on the above-mentioned corpus,
while our performance stays above most of earlier studies that utilized fusion of
methods as well.

2 Data

The Mask Augsburg Speech Corpus (MASC) comprises recordings of 32 German
native speakers. The subjects were asked to perform specific types of tasks and
their speech was recorded while wearing and not wearing a surgical mask. It
1 Source: https://paperswithcode.com/task/speech-recognition/latest, Oct 2022.

https://paperswithcode.com/task/speech-recognition/latest,
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has a total duration of 10 h, 9 min and 14 s, segmented into chunks of 1 s. The
recordings have a sampling rate of 16 kHz. The total number of utterances is
36,554: 10,895 for train, 14,647 for development, and 11,012 for test. This task
was also included in the Computational Paralinguistics Challenge (ComParE)
in 2020 [20].

3 Self-supervised Learning

Self-supervised learning makes it possible for models to learn from orders of
magnitude more data, which is the key to process patterns of less common phe-
nomena. Usually, speech recognition systems require massive amounts of tran-
scribed (labeled) training data to perform well [1]. A good way to tackle this
is to pre-train neural networks, which allows a model to learn general represen-
tations from massive amounts of (labeled or unlabeled) information, and then
it can be used for downstream tasks where the number of samples is limited.
Now, we shall discuss concepts concerning pre-training, wav2vec, and wav2vec
2.0 frameworks.

Fig. 1. Fine-tuned wav2vec 2.0 framework structure. Source: https://ai.facebook.com/
blog

3.1 Pre-training and wav2vec

Pre-training consists of fitting a first neural network where huge amounts of data
are available. The final weights from the training are then saved and this can
be used to initialize a second neural network. This allows us to learn general
representations from the large corpora; that is, representations that could be
used for new tasks where the corpora size is limited.

wav2vec is basically a CNN that takes raw audio as input, and calculates
a representation that can be fed into an ASR system. The wav2vec model is

https://ai.facebook.com/blog
https://ai.facebook.com/blog
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optimized to predict the next observations of a given speech sample. This would
require us to accurately model the distribution of the data p(x). To tackle this,
the dimensions of the speech sample are first reduced by means of an encoder
network; then a context network is used to predict the subsequent values [19].

3.2 wav2vec 2.0

This model, being the successor to wav2vec, also uses a self-supervised approach
to learn representations from raw audio. Similar to wav2vec, it learns to predict
the correct speech unit, but it does so for masked chunks of the audio. More
specifically, wav2vec 2.0 encodes raw audio using a block of convolutional neu-
ral networks, then akin to masked language modeling, it masks small segments
(shorter than phonemes) of the latent speech representations. These represen-
tations are fed to a quantizer as well as to a transformer network. The former
selects a speech unit for the latent audio representation, while the latter appends
data from the whole utterance. Afterwards, the transformer network is exposed
to a contrastive loss function [3]. After pre-training has been finished, the model
is fine-tuned using labeled data relying on a Connectionist Temporal Classifi-
cation (CTC) loss, which is used for aligning sequences. After doing this, the
model can be utilized for downstream speech recognition tasks. Figure 1 shows
the layout of the (fine-tuned) wav2vec 2.0 structure described here.

3.3 Cross-Lingual Representation Learning

A multi-lingual representation approach based on wav2vec2 named XLSR
(Cross-lingual Speech Representations) addresses the issue of languages even
with a limited amount of unlabeled data. XLSR pre-trains a model on multi-
ple corpora from different languages simultaneously. XLSR uses a similar DNN
structure to that shown in Fig. 1, i.e. it is trained to jointly learn context rep-
resentations along with a discrete vocabulary of latent speech audio representa-
tions. The XLSR architecture differs from that of the wav2vec2 in the quantiza-
tion module: in XLRS it delivers multilingual quantized speech units, which are
then fed to the transformer block as targets to learn via a contrastive task. This
way, the model is capable of handling tokens across different languages [5].

3.4 wav2vec 2.0 for Feature Extraction

The outputs from the multi-layer convolutional block are the sequence of
extracted feature vectors of the last convolutional layer, while the outputs from
the second block comprise the sequence of the hidden states at the output of
the last layer of the block. These two types of feature vectors, the convolutional
embeddings, and the contextualized representations may carry relevant informa-
tion related to speakers [13] and also other information encoded in the speech
signal [6]. Due to this, they will be exploited for deriving features for our par-
alinguistic classification task (i.e. determining whether the speaker is wearing
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a mask). Of course, the actual classification step will be performed by another
method, and wav2vec 2.0 will just be used for feature extraction. Also, since the
number of wav2vec 2.0 embedding vectors is proportional to the length of the
utterance, they have to be aggregated in some way, for which we simply took
the mean of them over the time axis.

4 Experimental Setup

We extracted embeddings using seven different wav2vec 2.0 pre-trained models.
The first is the so-called wav2vec2-base [3], which was pre-trained on 53k hours
of unlabeled data of LibriSpeech, and it is not fine-tuned. The second is the
wav2vec2-base-960h [3], pre-trained and fine-tuned using 960 h of labeled data.
The third is a larger version of the previous one called wav2vec2-large-960h [3].
The main difference between these two is the number of parameters: base has
95 million, while large has 317 million parameters.

A cross-lingual wav2vec2 XLSR-53 model, trained on 53 different languages
was our fourth model. Later, the successor of XLSR called XLS-R was intro-
duced, which was pre-trained on about half million of hours of data in 128 lan-
guages [2]. Three different checkpoints of the model are available according to the
number of parameters. Due to computational limitations, we just used the two
smaller networks: wav2vec2-XLS-R-300M and wav2vec2-XLS-R-1B (300 million
and 1 billion parameters, respectively). Lastly, to experiment with a model fine-
tuned for the same language (i.e. German) as that in the MASC corpus, as the
seventh model we employed the wav2vec2-XLSR-German-53 [9] encoder that
was fine-tuned on the CommonVoice dataset.

We used a linear Support Vector Machine (SVM) for classification; the C
complexity parameter was set in the range 10−5, . . ., 101, based on the perfor-
mance on the dev set. As for the metrics, since it is the standard on the MASC
corpus, we relied on Unweighted Average Recall (UAR).

5 Results and Discussion

Table 1 shows the UAR scores for each of the pre-trained models with their
corresponding type of embeddings. Every XLSR and XLS-R encoder surpassed
the baseline scores from the ComParE challenge [20], except for the wav2vec2-
base and -large models that gave slightly lower scores. This might be due to the
size of the data and the language-domain of the pre-training process for these
models. Also, fine-tuning itself relies on adjusting the inherited initialization
weights to fit a function that performs well on a specific downstream task (i.e.,
speech recognition on a given language). While the adaptation to this new task is
being performed, the fine-tuning process may drop some information that might
not be relevant for ASR but may be crucial for applications unrelated to this
field (such as pitch, speaking rate, irregularity and breathiness). This may be
the reason for the superior performance scores of wav2vec2 models specifically
fine-tuned for ASR.
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Table 1. UAR (%) on the MASC dataset. Models marked with * denote fine-tuned
models.

Model Type Embedding Type Dev Test

wav2vec2-base convolutional 67.6 70.1

contextualized 63.3 69.6

wav2vec2-base-960h* convolutional 67.6 69.1

contextualized 53.0 54.6

wav2vec2-large-960h* convolutional 65.0 70.8

contextualized 52.1 53.7

Cross-Lingual Models

XLSR-53 convolutional 67.9 71.9

contextualized 68.2 72.1

XLS-R-300M convolutional 69.0 71.9

contextualized 70.3 76.9

XLS-R-1B convolutional 68.2 73.0

contextualized 66.1 74.6

XLSR-German-53* convolutional 67.9 71.9

contextualized 57.1 62.4

In the models and their representations, a trend can be seen: for the base
and fine-tuned models (see Table 1), the convolutional embeddings had a better
quality than their contextualized counterparts; but the opposite was the case for
the other models. This is probably due to the convolutional embeddings being
more sensitive to mono-lingual training than the contextualized representations.
The two best UAR scores on the test set were achieved with the XLS-R-300M
and XLS-R-1B models using the contextualized representations, while their con-
volutional features had slightly lower performances.

The baseline scores reported by the organizers of the ComParE Mask Sub-
Challenge can be seen at the top of Table 2: a UAR of 70.8% that corresponds
to a non-fused score, and a 71.8% score for the fusion of the best four config-
urations [20]. The same table shows the performances of the most competitive
previous studies on the same task. Szep et al. [23] reported an UAR score of
80.1% on test, being the highest one on MASC at the time of writing, achieved
by training multiple image classifiers, a K-fold cross-validation approach, along
with an ensembling of both the CNN classifiers and distinct types of spectro-
grams. Similarly, Koike et al. [12] reported a UAR score of 77.5% by transfer
learning, two kinds of augmentation techniques, and a fusion based on several
snapshots taken during DNN training. Markitantov et al. [14] used ensembles of
different CNN architectures along with raw data plus two types of frame-level
audio representations. Lastly, Ristea et al. [18] made use of an ensemble of GANs
with a cycle-consistency loss along with a data augmentation method based on
those GANs.
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Table 2. Results of former studies on the same MASC corpus. * denotes the scores
achieved by a fusion of multiple models.

Features in the ComParE 2020 paper [20] Dev Test

ComParE functionals 62.6 66.9

Bag-of-Audio-Words (BoAW) 64.2 67.7

Deep Spectrum 63.4 70.8

AuDeep 64.4 66.6

Four-wise fusion* – 71.8

Former Studies

Szep et al.* [23] 70.5 80.1

Markitantov et al.* [14] 84.3 75.9

Ristea et al.* [18] 71.8 74.6

Koike et al.* [12] – 77.5

This work

XLS-R-300M 70.3 76.9

The above studies carried out late fusion or ensembling techniques in order to
boost their configurations, which is a usual strategy for these kinds of challenges.
Although these techniques might improve our performance scores as well, in
this study we were interested in the results obtainable with wav2vec2 models
alone. The method presented in our paper is more straightforward and led to
competitive results while keeping the machine learning pipeline much simpler.
Our best performance is competitive with [23] and [12], and it outperforms the
other studies listed in Table 2.

Lastly, to investigate if there was any redundancy in the wav2vec 2.0 mod-
els, we further experimented with transforming the features obtained from the
contextualized layer of the XLS-R-300M model by PCA and Gaussian random
projection. We kept 90%, 95% and 99% of the information present in the original
512 attributes. The results (and the sizes of the transformed feature vectors) can
be seen in Fig. 2. Clearly, features compressed by random projection produced
lower scores than those using PCA (with the same feature vector lengths). Even
by retaining 95% of the information, the resulting UAR values were relatively
low (64.7–71.3%). When we kept most of the information (99%), the feature vec-
tors became almost as large as those without compression (467–470 attributes
out of the original 512). And although there was only a slight drop in perfor-
mance on the development set (0.8% absolute in both cases), the test set UAR
scores were significantly lower (74.26% and 73.46%, PCA and random projec-
tion, respectively). This, in our opinion, indicates that the feature vectors are
redundant to such a low degree that even a slight compression (PCA 99%) leads
to a notable drop in classification performance.
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Feature vector sizes (PCA %)
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Fig. 2. UAR values after using PCA and random projection on the XLS-R-300M fea-
ture vectors. The dashed lines represent the scores obtained with all the attributes (i.e.
Table 1)

6 Conclusions

Here, we investigated the effectiveness of employing wav-2-vec 2.0 embeddings for
the identification of subjects wearing a mask based on their speech. We experi-
mented with seven distinct pre-trained encoders for extracting convolutional and
contextualized embeddings. It appears that the former were more sensitive to
mono-lingual training than the latter, based on the quality difference of their
corresponding feature vectors. The opposite occurred with the contextualized
representations, which had lower performance scores when extracted using the
fine-tuned models, which might discard information that is irrelevant for the
ASR but important for computational paralinguistics. Based on the pre-trained
cross-lingual encoders, both types of embeddings performed competitively and
we demonstrated that the wav2vec2 architecture was capable of capturing speech
and speaker traits that are relevant for paralinguistic approaches. Furthermore,
we found that the number of training parameters is quite influential as models
with 300 m provided better features than those with fewer (95 m) or more (1
billion) parameters both for pre-trained and fine-tuned encoders. Unlike earlier
studies on the same dataset, we retained a simple yet effective and reproducible
pipeline by dispensing with ensemble or fusion approaches while maintaining
the competitiveness and even surpassing the performance score of most other
studies. Overall, we achieved the highest UAR score (76.9%) reported on the
MASC corpus obtained by a single (stand-alone) method.
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Abstract. Transfer learning has achieved state-of-the-art performance across
many different areas, requiring magnitudes less labeled data compared to tra-
ditional methods. Pre-trained weights are learned in a self-supervised way on
large amounts of unlabeled data, which are fine-tuned for the desired down-
stream task using labeled data. An example of this in the speech domain is
the wav2vec2.0 framework, which was originally designed for automatic speech
recognition (ASR) but can also be fine-tuned for general sequence classification
tasks.

This paper analyses the effects of including pathological speech during the
pre-training of wav2vec2.0, where quantized speech representations are learned,
on the performance of a fine-tuned pathology detection task. We show that this
architecture can be successfully fine-tuned for cleft lip and palate (CLP) detec-
tion, where the best-performing model yields an F1-score of 82.3% when pre-
trained on healthy speech only. Our experiments show, that including pathologi-
cal speech during pre-training drastically degrades the performance on detection
of the same pathology for which it was fine-tuned. The worst-performing model
was pre-trained exclusively on CLP speech, resulting in an F1-score of 33.9%.
Whilst performed experiments only focus on CLP, the magnitude of the results
suggest, that other pathologies will also follow this trend.

Keywords: wav2vec2.0 · self-supervised learning · transformer · pathological
speech

1 Introduction

Machine learning approaches for speech and language understanding have made great
advances in recent years. OpenAI’s generative pre-trained transformer (GPT), based
on their GPT-3.5 model and called ChatGPT, has marked the most recent milestone
for a very powerful large language model (LLM) that humans can interact with on a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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chat basis, yielding stunning results when asked for answers to specific tasks. Tools
like this can and are already a great assistant to humans in many different aspects and
domains. An imagined and not-too-distant future, where similar tools form an essential
and irreplaceable part of human everyday life is possible and even likely.

This raises an important question: how can people whose speech or language is
impaired interact with such systems? According to the Columbus Speech and Hearing
organization, communication disorders are among the most common disabilities in the
US, with an estimated 7.6% of adults (ages 18 or older) reporting a problem with their
voice/speech alone [5,15]. It should be clear by now that solutions have to be devel-
oped in order to enable speech and language-based AI systems, and thus the underlying
statistical models, to also deal with impaired inputs.

One of the two general paradigms employed to train such models (or in general
in the machine learning domain) is called supervised learning. Here, the ground truth,
i.e. typically human-created labels are available, enabling the training’s optimization
process to learn from information gained with these labels as a reference. It is common
that labeled datasets contain relatively little amounts of data since labeling is typically
a labor-intensive task, that can require human experts in the respective domains. This is
especially true for pathological data, which is one of the reasons, next to data protection
legislation, why these types of datasets are only scarcely available. Taking dysarthric
speech data as an example: there are essentially only two English corpora used in this
domain (UA-Speech and TORGO), which can lead to some problems, recently analyzed
by Schu et al. [19].

On the other hand, there is the paradigm of unsupervised or more recently and
accurately self-supervised learning (SSL). These are two names for the same princi-
pal idea, where the latter more accurately reflects how these types of statistical models
have to learn from the available data alone: since supervised learning is often limited to
small amounts of data, the contrasting idea for SSL is to utilize large amounts of unla-
beled data. This implies that the only way for such models to learn is via a design that
extracts underlying information from the data itself (i.e., self-supervised) and thus does
not rely on ground truth labels. However, in the area of speech and language disorders,
even relatively large unlabeled datasets, which would be required for self-supervised
approaches, do not exist. A first step to remedy this problem was taken by Google in
their Project Euphonia [13], where they aim at collecting all types of impaired or non-
standard speech. Another problem arises in the evaluation of different SSL methods.
For this reason, the authors of [7] introduced LeBenchmark, which introduces different
wav2vec2.0 [2] models and contains spoken language understanding, speech transla-
tion, and emotion recognition in a reproducible framework.

Related or rather a combination of the two mentioned paradigms, is another very
often utilized technique called transfer learning. It consists of taking features learned
on one problem and utilizing them on another, but related problem. For instance, rep-
resentations from a model that has learned quantized units of speech might be useful
for a lot of possible tasks involving speech-relevant features. Furthermore, this concept
contains two more terms that are commonly used: pre-training and fine-tuning. Both of
these consequent training steps of a deep learning model typically use a similar network
architecture, but pre-training is done on a large amount of unlabeled data, optimizing
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e.g. a contrastive objective in a self-supervised manner. Fine-tuning typically involves
adding some new and trainable layers, as well as potentially freezing some of the pre-
viously learned layers (during pre-training). In combination with using a smaller and
labeled dataset and e.g. a classification training objective, the fine-tuned model will
adjust its weights accordingly for the desired downstream task.

Learning powerful representations that encode, for example, general features of
human speech or language, has long been an area of research. Here, autoregressive
models play an important role in capturing contextual information of a sequence, which
is relevant for words in sentences and phonemes in speech respectively. Recently, Trans-
formers utilizing the self-attention mechanism outperformed the previous state-of-the-
art Recurrent Neural Network (RNN) architectures based on e.g. Long Short-Term
Memory (LSTM) or Gated Recurrent Unit (GRU) cells. The two already mentioned
architectures, GPT-3.5 and wav2vec2.0, also make use of Transformer blocks in their
network design in order to encode context. The latter architecture is designed for learn-
ing speech representations during pre-training, which are then fine-tuned for ASR, how-
ever, other sequence classification tasks are also possible.

To our knowledge, this paper is the first to investigate the effects of including patho-
logical speech during the pre-training step of wav2vec2.0. Evaluation is based on the
performance of the downstream task of speech pathology detection, for which the indi-
vidual models are fine-tuned. The data used in the five conducted experiments is a
byproduct of a software called PEAKS [14], which was run by multiple institutions
to aid speech therapists during the therapy of their patients. A subset of the overall
recorded data from this software is used, containing children’s speech that is impacted
by CLP and healthy control speech of the same test that the children had to perform.

2 Related Works

Since the first introduction of wav2vec [18], and later its improved version wav2vec2.0,
it has been applied to a wide range of speech-related tasks besides ASR, also in the
pathological domain. In [4], Bayerl et al. investigate, which of the 12 Transformer lay-
ers of the wav2vec2.0 base model, combined with multi-task learning (MTL), yields
the best representation in order to detect and differentiate six different types of stut-
tering in speech. Perez-Toro et al. [17] use the acoustic embeddings of wav2vec2.0
that were pre-trained on multi-lingual data, as well as linguistic embeddings from Bidi-
rectional Encoder Representations from Transformers (BERT) [6] and a Robustly Opti-
mized BERT Pretraining Approach (RoBERTa) [12], in order to investigate whether it is
feasible to combine information from English and Spanish to discriminate Alzheimer’s
Disease (AD). Triantafyllopoulos et al. [20] compare eGeMAPS, ComParE, and multi-
lingual wav2vec2-xlrs features for pre- and post-treatment detection of chronic obstruc-
tive pulmonary disease (COPD) patients. Here, the wav2vec embeddings, which can be
seen as features, performed best when using speaker-level normalization of the data.
The authors of [3] investigate how the different Transformer layer outputs of pre-
trained wav2vec2.0 affect speech pathology detection results. They experiment with
different datasets and pathologies (e.g. CLP, Parkinson’s disease, oral squamous cell
carcinoma), also in terms of cross-pathology and cross-healthy classification results.
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Venugopalan et al. [21] compare the performance of three differently trained classifiers
for predicting intelligibility labels, which is a common metric used in the therapy of
patients with speech disorders. Their different classifiers are based on a convolutional
network (CNN), non-semantic speech representations from CNNs trained with an unsu-
pervised objective, and acoustic representations extracted from an ASR system trained
on healthy speech. Lastly, the authors of [23] propose a novel method for the severity
assessment of dysarthric speech by constructing a multi-task learning (MTL) objec-
tive during fine-tuning of a pre-trained wav2vec2.0. The main task during training is
the severity assessment, which is jointly trained with an auxiliary ASR objective. Their
proposed model outperforms baseline features like eGeMAPS, as well as the single-task
learning model in the same scenario.

3 Framework: wav2vec2.0

The wav2vec2.0 architecture was introduced in 2020 as a significant improvement over
the original wav2vec, taking raw audio as input in order to learn quantized speech repre-
sentations that can be used for ASR. The authors were the first to show that pre-training
on large amounts of (unlabeled) speech data, followed by fine-tuning on transcribed
(labeled) speech can achieve state-of-the-art performance while using magnitudes less
labeled data. After this general description, the remainder of this section will first go into
more detail about the three core modules of the wav2vec2.0 architecture, before describ-
ing how these three parts are used for pre-training and fine-tuning. Differences between
the base and large models will be highlighted during the relevant module descriptions.

Convolutional Local Encoder: The first part of the model involves encoding the raw
audio waveform input, which is normalized to zero mean and unit variance, into vector
representations on a discrete time scale. Its design does not change between the base and
large model variants. In order to encode local features, this feature extractor consists
of seven blocks, containing 1-dimensional temporal convolutions, followed by layer
normalization and GELU activation [10].

The seven convolutional kernels have strides of (5, 2, 2, 2, 2, 2, 2) and kernel widths
of (10, 3, 3, 3, 3, 2, 2), which equates to a frame hop of about 20 ms and a window
size of 25 ms. This way, it is designed to mimic traditional audio signal processing
methods in terms of feature computation (e.g. MFCCs). Assuming a raw waveform
input to this encoder that was cropped to 3 s (i.e., 48 000 samples at 16 kHz sampling
rate) of shape [B, 48 000], where B depends on the batch size. Then, the output shape
of this encoder is [B, 147, 512] since the encoder has an output frequency 49Hz, and
the feature dimension consists of 512 channels.

Before the output of this feature extractor is fed to the contextualized feature
encoder block, the feature dimension is linearly projected from 512 to 768 or 1024
respectively, dependent on whether the base or large model architecture is used. There
is no activation function for this feature projection, but dropout (p = 0.1) is applied on
its output.

Transformer Context Encoder: The motivation behind the second part of this frame-
work is to encode a large context (i.e., capturing information from the entire sequence)
with the local vector representations of a speech signal as its input.
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In order to encode context, the first step is to compute a positional encoding. Here,
wav2vec2.0 uses a convolutional layer, which acts as a relative positional embedding.
This convolutional layer has a large kernel size of 128, a stride of 1, padding of 64,
and 16 groups, followed by GELU activation. The receptive field of the original input
to this convolution (i.e., local vector representations) is extended from 20 ms to 128 ∗
20ms = 2.5 s, by adding the computed relative positional embedding to it. Finally,
layer normalization and dropout (p = 0.1) are again applied.

Next, the sequence of vectors with the larger receptive field is used as input for
several consecutive transformer layers. The base wav2vec2.0 architecture utilizes 12
transformer blocks with 8 self-attention heads, whereas the large model uses 24 and 16
respectively. The output sequence of the final transformer layer, with each representa-
tion having both local and global information, is then used for a downstream task.

Vector Quantization Module: The last of the three parts of the wav2vec2.0 framework
is trained during the pre-training of a model, in order to learn quantized speech represen-
tations in a self-supervised manner. For this, it takes the local encoder representations
as input and consists of two codebooks with 320 entries each. Then, a linear mapping
is applied to turn these vectors into logits, which are sampled from each codebook in
a differentiable way via Gumbel-Softmax [11]. In order to arrive at the final discrete
representation of the local encoder output, the two selected codes are concatenated in
combination with a linear transformation. The purpose of this quantization module is to
provide targets for the self-supervised learning objective during pre-training since there
are in theory an infinite amount of possible embeddings output by the local encoder.

3.1 Pre-training

The goal of wav2vec2.0 pre-training is to learn representations of raw speech audio
utilizing vector quantization into codebooks. This self-supervised approach is inspired
by language models like BERT in the NLP domain. Here, next sentence prediction
(NSP), as well as masked language modeling (MLM) are used on large amounts of
text during pre-training. The principal idea behind the latter of these two techniques is
applied by wav2vec2.0. A certain percentage of contiguous time steps from the local
encoder representations are randomly masked and replaced with a trained feature vec-
tor. While pre-training the model, it learns to reproduce the quantized local encoder
representations for the masked frames at the contextualized encoder’s output. The over-
all pre-training objective is defined as

L = Lm + αLd (1)

consisting of a contrastive (i.e., masking) and diversity loss term with a tuned hyper-
parameter α. The codebook diversity loss Ld is an augmentation for the vector quanti-
zation module in order to regularize the selection of codebook entries to be equal (see
[2]). The contrastive loss is computed via

Lm = − log
exp (sim (ct, qt) /κ)

∑
q̃∈Q̃ exp (sim (ct, q̃) /κ)

(2)
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where sim(a,b) = aTb/‖a‖‖b‖ represents the cosine similarity between two vectors
a, b. This contrastive task Lm, with masking at its core, requires identifying the original
quantized latent audio representation (i.e., codebook entry) in a set of distractors for
each masked time step. Equation 2 shows that this is implemented via cosine similarity
sim(ct, qt) between the contextualized encoder output vector ct and the quantized local
encoder vector qt at time step t. Furthermore, q̃ represents a candidate representation
∈ Q̃, which is the union of a set of K distractors and qt. These distractors are uniformly
sampled from the other masked time steps belonging to the same utterance as qt. The
final contrastive loss is then the summation of Lm for all masked frames.

3.2 Fine-Tuning

Originally, wav2vec2.0 was fine-tuned for ASR based on the learned representations
during pre-training. For this or for fine-tuning in general, four changes are made to the
architecture compared to during pre-training:

First, discrete speech representations were learned during the pre-training step of
the model, so the vector quantization module is not used. Second, the local feature
encoder’s weights are frozen as a consequence of the previous statement. Third, mask-
ing is applied to the vector sequence after the feature projection. This masking is anal-
ogous to SpecAugment [16], where it is randomly applied in the time and/or frequency
domain of the vector sequence, blanking the respective consecutive dimension values
to zero. Lastly, a different objective function is optimized, by applying a random ini-
tialized linear projection to the context encoder output into C classes. Originally, with
the ASR downstream task in mind, a CTC loss [9] is minimized with C = 30 (English
character targets), including a word boundary token. However, wav2vec2.0 can be fine-
tuned for a multitude of sequence classification tasks as well (see Sect. 2). For this,
the same linear projection with e.g. C = 2 for a pathology detection task is added, in
combination with optimizing a cross-entropy loss.

It should also be noted that recently, some works have analyzed using the output of
intermediate transformer layers instead of the final output of the context encoder for cer-
tain downstream tasks since they seem to encode different types of relevant information
(see Sect. 2).

4 Data

The data used for this work is a byproduct of a software called PEAKS. It is open-
source and has been used by different institutions for scientific purposes across German-
speaking regions since the year 2009. Therefore, its database contains a large number
of recordings from patients with various pathologies or conditions. PEAKS can record
and evaluate patients’ speech during specific speaking tests. One of these tests is called
PLAKSS [8], which is German and stands for “Psycholinguistische Analyse kindlicher
Sprechstörungen”, translating to “psycholinguistic analysis of childhood speech disor-
ders”. The name implies that this test is designed to evaluate children and it consists
of slides that show pictograms, where the children have to name each of them, with
an example slide being shown in Fig. 1b. Pictograms are chosen since it can not be
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Fig. 1. The utilized data was recorded by the PEAKS software, containing children’s speech per-
forming the PLAKSS test.

assumed that all children are already able to read. Furthermore, this test is child appro-
priate since all objects are chosen such that children should already know them. In
total, this test contains 97 words, which encompass all German phonemes in initial,
medial, and final positions. Due to the possibility that children explain the pictograms
with multiple words, or utter additional words in between the target words, PEAKS
automatically segments the recordings at pauses longer than 1 s [14].

This test was performed by children with typical speech, as well as children suffer-
ing from CLP. This pathology is a congenital condition where an infant’s lip or mouth
does not form properly during fetal development, causing a split or opening in the lip
or palate, alternating the child’s speech. Children who are born with this pathology are
typically operated in order to close the split(s) at ages ranging from 6 months to 2 years.
CLP speech is typically evaluated holistically based on intelligibility via a five or seven
point Likert scale. It should be noted, that it is technically not correct to state that CLP
speech is being automatically detected or evaluated. Instead, and also true for this work,
the impacts on the speech of a person, who was born with CLP but operated at an early
age, can be automatically detected.

For the data used in this work, first, all PLAKSS data was extracted from the Server
running the PEAKS software. In a second step, the data was scanned, analyzed, and
pre-processed as described in [1]. This resulted in a total of 2557 children speakers
(approximately 162 h), with 1666 being healthy controls and 891 children suffering
from CLP (approximately 68 h and 44 h respectively). Audio recordings are labeled as
either healthy speech or pathological speech and split into five different sets. PLAKSS-
M is the union of the sets PLAKSS-H and PLAKSS-P, where the first contains all
healthy speech and the latter all pathological speech. Furthermore, there are two more
splits, called PLAKSS-C and PLAKSS-T, which are used for fine-tuning and testing
of all five models respectively. For these two splits and PLAKSS-M, the percentage of
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pathological speech is approximately 35%. It should be noted, that there is no speaker
overlap between the PLAKSS-T, PLAKSS-C, and PLAKSS-M (containing PLAKSS-P
and PLAKSS-H) data splits. Also noteworthy is the fact that there is no information
about the extent to which the children’s speech is affected by CLP. Refer to Fig. 2 and
Fig. 1a for more details about the individual data splits. In the latter, opaque areas behind
the PLAKSS-T and PLAKSS-C sets indicate pathological (darker) and healthy (lighter)
speech data.

5 Experiments

In total, five different experiments using different data split settings were performed for
this work. The intention behind this is to analyze the effects of including different types
of data (i.e., pathological vs. healthy) in the pre-training stage of wav2vec2.0 for the
sequence classification task of pathology detection (i.e., CLP). An overall overview of
the conducted experiment structure is depicted in Fig. 2.

In general, the structure of the experiments changes the data splits used during
the pre-training stage and keeps the fine-tuning and testing data splits consistent.
The only exception to this is BASELINE-1, where the idea is to explore if more
data (i.e., PLAKSS-M in addition to the default PLAKSS-C split) used during fine-
tuning will increase the performance in regard to pathology detection. The other base-
line BASELINE-2 represents the default wav2vec2.0 sequence classification pipeline,
where the model is pre-trained using librispeech-960h (read speech of English audio-
books from volunteers) and fine-tuned with specific and labeled data from the intended
downstream task. The other three experiments are intended to show the effects on
pathology detection of pre-training wav2vec2.0 with a mixture of healthy and patho-
logical, only healthy, and only pathological speech data.

It should be noted that there is a language difference between librispeech-960h
(English) and the PEAKS-PLAKSS (German) data for the two baseline experiments.
However, these two languages have a similar phonetic background, meaning that
the learned speech representations during pre-training should still be relevant. There
exists a multi-lingual (53 and 128 languages) version of wav2vec2.0, called Cross-
Lingual Speech Representations (XLSR-53/128), which is based on the large version
of wav2vec2.0. We did not use this version for the two baselines, since otherwise there
would be an architectural difference between them and the other experiments, which
would add an imbalance to the experiments. For these reasons, we decided to analyze
the effects of including pathological speech during pre-training of the basicwav2vec2.0
architecture, which is used in all of our experiments.

In our experiments, we used the Transformer [22] implementation of this architec-
ture for fine-tuning of all five models, as well as for the pre-trained model checkpoints
on librispeech-960 for the two baselines. On the other hand, for pre-training of the
PLAKSS-M, PLAKSS-H, and PLAKSS-P models, we used a repository1 provided by
the same authors of the Transformers library (Huggingface), specifically to pre-train
wav2vec2.0 from scratch. All training was performed on a single NVIDIA RTX 3090
TI 24 GB GPU.
1 https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-pretraining.

https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-pretraining
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Fig. 2. The five experimental settings in this work, with the according data splits of the PEAKS-
PLAKSS dataset, that were used in the respective stages of wav2vec2.0.

6 Results

After the five individual models were pre-trained and fine-tuned, their individual perfor-
mance is evaluated based on the PEAKS-T data split of the PEAKS-PLAKSS dataset
as shown in Fig. 2. To re-iterate, the downstream task that the wav2vec2.0 models are
fine-tuned for is CLP detection (i.e., binary sequence classification). We report the con-
fusion matrix, as well as the resulting accuracy, precision, recall, and F1-score for each
experiment on a file- and speaker basis. Here, the speaker results are the average of
the file-based results for all files of a given speaker in the PEAKS-T split. The detailed
results can be found in Table 1. The most practical and balanced reported metric is the
speaker-based F1-score. Based on this the best-performing model was PLAKSS-H with
a score of 82.3%, and the worst-performing model was PLAKSS-P with 33.9%. The
two baseline experiments performed very similarly with scores of 66.9% and 67.7%
respectively, which is better than both the PLAKSS-M and PLAKSS-P, but worse than
the PLAKSS-H model.
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Table 1. File- and speaker-based results of the five experiments performed, with bold values
indicating the speaker-based F1-Score.

Experiment BASELINE-1 BASELINE-2 PLAKSS-P PLAKSS-H PLAKSS-M

file speaker file speaker file speaker file speaker file speaker

TP 3284 89 3258 89 993 21 3154 86 1147 31

TN 2953 78 3014 81 5021 152 4158 132 5432 162

FP 2694 88 2633 85 626 14 1489 34 215 4

FN 4 0 30 0 2295 68 134 3 2141 58

Accuracy 69.8 65.5 70.2 66.7 67.3 67.8 81.8 85.5 73.6 75.7

Precision 54.9 50.3 55.3 51.2 61.3 60.0 67.9 71.7 84.2 88.6

Recall 99.9 100 99.1 100 30.2 23.6 95.9 96.6 34.9 34.8

F1-Score 70.9 66.9 71.0 67.7 40.5 33.9 79.5 82.3 49.3 50.0

7 Discussion

The results in Table 1 show, that it is possible to use wav2vec2.0 for CLP detection, con-
firming other research for different pathologies (see Sect. 2). However, the performance
shows significant deviations across the five performed experiments.

Looking at the two baseline experiments first, it should be noted, that these mod-
els were pre-trained with librispeech-960h. This dataset contains recordings in English
and no children’s speech, whereas the fine-tuned downstream task is for German chil-
dren’s speech. However, a lot more speech was seen during pre-training compared to the
PEAKS-PLAKSS-based models. Considering these facts, the performance is accept-
able, with a notable high recall (i.e., almost no FN) for both baseline models. This
could be explained by the fact that the model was able to learn typical speech rep-
resentations during pre-training based on a different language (i.e., partially different
phonemes) and the age of speakers. Especially the last factor could explain why the
models are very sensitive to detecting CLP speech patterns during fine-tuning, leading
to both models predicting a lot of healthy children’s speech as CLP. In other words, the
models might have learned, that as soon as it sees children’s speech, it has a very high
chance of being CLP, which stands in contrast with the fact that only approximately
35% of the PLAKSS-C data split (used for fine-tuning) is pathological speech. Com-
paring the results of the two baseline models reveals, that including more data in the
fine-tuning stage of the two baseline models does not improve the performance signifi-
cantly (66.9% versus 67.7%).

In contrast, the three PEAKS-PLAKSS-based experiments and resulting models
saw only German children’s speech during pre-training (healthy, pathological, and the
union of both sets). The overall best performance across all five experiments was deliv-
ered in the PLAKSS-H setting, where pre-training is only performed on healthy speech
from German-speaking children. The latter is likely the reason which gives it an edge
over the two baseline models. Despite the fact that the final task is CLP detection, it
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is striking that including any form of pathological speech during pre-training degrades
the downstream task’s performance after fine-tuning significantly. This becomes evident
when looking at PLAKSS-P and PLAKSS-M, the only two experiments that included
pathological speech during pre-training, which yielded the worst overall performance
across all experiments. Looking closer at the results of these two models, it seems that
including pathological speech during pre-training leads to a higher FP, which could
be due to the fact that the model learns pathologically distorted speech representa-
tions. This, in turn, might negatively influence the fine-tuning step of the wav2vec2.0
framework. Specifically, making it harder during this step to learn distinguishing and
context-based features between healthy and pathological speech units within input
audio sequences. This is highlighted by the fact that the PLAKSS-P experiment, where
pre-training is solely based on CLP-impaired speech, yielded the overall worst perfor-
mance, whereas PLAKSS-M had better performance, likely because healthy data was
also present during its pre-training.

8 Conclusion

In general, we showed that fine-tuned wav2vec2.0 models can be used for CLP detec-
tion in the German language. We also confirmed, that fine-tuning wav2vec2.0 for
sequence classification tasks (i.e., pathology detection) does not benefit greatly from
including more labeled data during this step of the framework. However, results vary
drastically based on what type of data is included during pre-training, where speech
representations are learned in a contrastive way.

We showed, based on our experiments, that it is not advisable to include patholog-
ical speech during the pre-training step of wav2vec2.0 since it leads to significantly
worse performance. For downstream tasks that revolve around pathology detection, our
experiments indicate that it is best to pre-train only with healthy speech, ideally from
the same domain. It should be noted, that our experiments only covered one specific
pathology, but the magnitude of the results indicates that this is a trend, likely applica-
ble to other pathologies as well.

For future works, it might be interesting to investigate changing the optimized pre-
training objective in a way that could benefit from including pathological speech dur-
ing this step of such a framework. For example, the contrastive optimization could be
adjusted to the pathological domain by having the model learn to distinguish masked
pathological time steps in a set of healthy distractors. However, as mentioned in the
introduction, even in this scenario a basic problem remains: unlabeled, and thus ide-
ally large, amounts of pathological speech data are not readily available, hampering
potential progress.
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Tomáš Jelı́nek(B)

Institute of the Czech National Corpus, Charles University, Prague, Czechia
tomas.jelinek@ff.cuni.cz

Abstract. We describe the annotation of corpora of spoken Czech according to
a new annotation standard valid since the publication of the SYN2020 corpus of
written Czech. The standard distinguishes lemmas and sublemmas, assigns a new
attribute to verb forms, deals with multi-word tokens in an appropriate way. In
order to annotate the corpora of spoken Czech by the same standard, new training
data for the annotation of spoken text was created and experiments with using
both written and spoken data for training a neural tagger were performed.

Keywords: corpus annotation · spoken corpora · Czech

1 Introduction

Corpora collecting informal spontaneous spoken Czech are an important part of the
set of corpora that the Czech National Corpus (CNC) offers to its users. However, the
corpora published so far either completely lack lemmatization and morphological anno-
tation, or they are annotated using an annotation standard different from the one used
for the corpora of written Czech. In this paper, we describe the work on automatic
lemmatization and morphological annotation of spoken corpora based on the recently
introduced annotation standard of the CNC corpora of Czech. We first describe the stan-
dard currently used for annotating the SYN2020 corpus [5] and other recent corpora of
written Czech. We then describe the steps allowing for automatic annotation of spoken
corpora with the same standard: creating a small amount of training data for spoken
corpora, finding optimum parameters for the training of language models and tagging
the corpora.

2 Corpus SYN2020 as the New Annotation Standard for Czech
in the CNC

In 2020, the Czech National Corpus published a new representative corpus, SYN2020,
with a new linguistic annotation that has become the new standard for annotating Czech
corpora within CNC. This new annotation standard includes several important changes
compared to earlier corpora aimed at providing users with tools for more accurate and
easier corpus searches based on linguistic parameters. The new standard is described
in detail in other papers (e.g. [2] or [6]), here we will only briefly mention some of its
more important aspects: the introduction of the new attribute verbtag, the splitting of
the original lemmas into lemma and sublemma attributes, and a new way of dealing
with multiword tokens like ses ‘himself+you are’, kdybych ‘if+I would’.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2.1 The Verbtag Attribute

For the SYN2020 corpus, a new attribute verbtag has been introduced, which is used to
annotate morphological categories of verbs that can be expressed by auxiliary verbs. For
example, grammatical person in Czech is in some cases expressed directly in the verb
form (čtu ‘I read’, čtěte ‘read imper.2.pl.’), while in other forms it is expressed by an
auxiliary verb, e.g. in the past indicative (četla jsem ‘I read’) or in the compound future
(bude čı́st ‘he/she will read’). In some older versions of the annotation of CNC written
corpora (e.g. in the SYN2015 corpus), the person in the past participle (četl ‘read’)
was not specified in morphological tags because the participle itself does not express
person, in others (e.g. SYNv8) it was specified because users explicitly required this
information. As Czech has a free word order, it can be difficult to differentiate between
verbal modes or tenses using only simple corpus queries.

To address this problem, the verbtag attribute was created in the SYN2020 corpus
grouping a number of verb categories in one place. The attribute is positional having six
positions. The first position distinguishes whether the token is a main verb, an auxiliary
verb, or no verb at all. The second position indicates the verb mode (e.g. indicative, con-
ditional or imperative). The third position distinguishes active and passive verb forms.
The fourth, fifth and sixth position expresses person, number and tense (pluperfect,
past, present, future), respectively. Thus for the compound verb form of the future tense
budu čı́st ‘I will read’, the form budu ‘I will’ is assigned the verbtag value “A—–” (aux-
iliary verb) and the form čı́st ‘read’ (infinitive) gets the verbtag “VDA1SF” (main verb,
indicative, active, 1st person, singular, future tense).

2.2 Lemma and Sublemma

The lemma attribute assigns the basic, dictionary form of a word to the token. However,
the choice of a particular lemma for some word forms is not always clear; in case of
stylistic or dialect variations, the lemma can be closer to the word form or more gen-
eral. For example, we may assign to the non-standard variant tejden ‘week’ a standard
lemma týden ‘week’ (where the vowel variation ý/ej in the middle of the word form
is not manifested) or a more specific lemma tejden. Similarly, an archaic spelling, e.g.
theolog ‘theologian’ may have the standard lemma teolog or the more specific lemma
theolog. Both approaches have advantages and disadvantages, and in older CNC corpora
annotations, different approaches were applied unsystematically for different words. To
address this issue, a new sublemma attribute was introduced for the SYN2020 corpus.
The sublemma is used for base forms as close as possible to a particular (sub)paradigm,
distinguishing spelling or dialect variants, etc. A lemma is more general, it can contain
several sublemmas. The choice of a lemma for a set of sublemmas corresponds to the
standard sublemma; if there are more than one, it corresponds to the type that occurs
most often in Czech. For example, the lemma okénko ‘small window’ thus encom-
passess the standard sublemma okénko and variant sublemmas okýnko and vokýnko.

2.3 Multiword Tokens

In many languages, there are cases where one text word represents several syntactic
ones. In Romance languages, e.g., some combinations of a preposition and a definite
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article belong to this category, e.g. French du (de+le) ‘of the’ or Spanish al (a+el) ‘to
the’. In Czech, several such types of words exist. For example, the reflexive pronoun
se‘herself’ and a clitic form s of the auxiliary verb být ‘to be’ are frequently combined
into a single text word ses (se+jsi/s) ‘herself+you are’; some prepositions and pronouns
can be combined into one text word, such as na ‘to/on’ and co ‘what’ into one text word
nač (na+co/č) ‘to+what’.

In Czech, syntactic word connected in this way can form syntactic relations with
various words in a sentence, for example in the sentence Jak ses chtěla bránit? ‘How
did you want to defend yourself?’ the reflexive se ‘herself’, part of the token ses belongs
to the reflexive verb bránit se ‘to defend oneself’, whereas the syntactic word s, the
short form of the auxiliary verb být ‘to be’, is an auxiliary verb forming a compound
verb form with the past participle chtěl ‘wanted’.

In older corpora, special morphological tags were used for words combining prepo-
sitions and pronouns (nač), or the clitic form of the verb být ‘to be’ with another word
such as přišels (přišel+jsi/s) ‘came + you are’ or ses ‘himself+you are’. For other types
of multiword tokens, the presence of two syntactic words was not marked at all: kdybych
‘if+I would’ was marked only as the conjunction kdyby ‘if’.

This problem has been solved for the SYN2020 corpus by continuing to treat these
words as a single token, allowing them to be easily found in the corpus as a whole (one
orthographic word), but assigning each part its own attributes (lemma, sublemma, tag,
and verbtag). In the KonText search environment, these attributes are then displayed
as multivalues, i.e. multiple attribute values for a single token separated by a vertical
bar, so for example the word form ses ‘herself+you are’ is assigned the lemma se|být
‘herself+to be’.

2.4 Uniform Tagging of Czech Corpora in CNC

After the publication of the SYN2020 corpus with the new annotation style, it was
decided to use this new standard first for all newly published corpora of written Czech
(SYN corpus, Online corpus, Net corpus), and then for the other corpora of Czech, first
the corpora of spoken Czech and later the corpora of older Czech. The main advantage
for the user will be a uniform annotation, and, moreover, the access to new attributes
(sublemma, verbtag), which give the user wider possibilities of corpora search.

2.5 Universal Dependencies

Questions have been raised as to why CNC did not use Universal Dependencies (UD)
[7] as its new markup standard, which would have made it easy to compare various
phenomena studied in Czech with phenomena in other languages. This decision was
made primarily because we consider it more appropriate for our users in the case of
monolingual Czech corpora. For parallel corpora (InterCorp), there are already versions
in the Universal Dependencies standard and future versions will probably use only this
format.

For monolingual Czech corpora, however, we do not want to use this approach for
several reasons. First of all, users are already used to the current system, augmented
with sublemmas and verbtags, and according to our findings they are not interested
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in a radical change of the annotation system. With the current tagset, we are able to
achieve a higher tagging success rate than the current tagging of Czech by the Universal
Dependencies standard. The positional nature of the tagset currently used in CNC is
better suited to work in the KonText search environment, as the (sometimes very long)
UD morphological features are difficult to handle (both in queries and in working with
frequencies). However, should users express their interest in corpora of written Czech
in the UD standard, we could release such versions of these corpora in parallel.

3 Spoken Corpora of Czech in CNC

Since its very beginnings, CNC has published not only corpora of written Czech but
also corpora of spoken Czech: transcribed audio recordings. It was first the Prague Spo-
ken Corpus and the Brno Spoken Corpus, later the Oral Corpus and the Ortofon Corpus.
Different standards of transcription from audio to written form were used for each cor-
pus. The corpora either completely lack morphological annotation and lemmatization,
or use morphological annotation based on older standards, different even from corpora
of written Czech published at the same time (Ortofon).

3.1 The Ortofon Corpus

The Ortofon series of spoken Czech corpora ([4], see also [3]) offers the users two
levels of transcription to search the corpus, in addition to the sound track: the pho-
netic transcription level and the “orthographic” level, where the phonetic transcription
is converted into a Czech text more or less following Czech orthographic rules. Table 1
shows an example of two levels of transcription. However, even the orthographic level
is noticeably different from the standard Czech written text: punctuation is missing (or
used differently), capitalization is not used at the beginning of sentences/utterances,
and, since the text faithfully corresponds to the recorded spoken utterances, it is often
divided into shorter sections in which sometimes seemingly unrelated utterances of
several speakers alternate. There is often a random repetition of words or phrases in the
spoken texts.

Table 1. Orthographic and phonetic transcription

Ortographic Phonetic Quote

jsem sem ‘I am’

teď teť ‘now’

včera fčera ‘yesterday’

jsem s@m ‘I am’

přijel přijel ‘come’

ze ze ‘from’

Skotska skocka ‘Scotland’

.. .. pause

a á ‘and’
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The orthographic transcription is followed by morphological markup and lemma-
tization using the original PDT tagset (Prague Dependency Treebank 2.0, PDT 2.0,
see [1]). This tagging was performed with the MorphoDita [10] tagger trained on PDT
2.0 data, with some changes made afterwards automatically (POS change for selected
words, etc.). The annotation accuracy (correct identification of both lemma and tag)
is approximately 94.1% (measured on a sample of 1000 tokens, not counting off-text
tokens such as (cinkánı́ nádobı́) ‘clinking dishes’, which is only slightly lower than the
annotation accuracy measured on PDT data with the same tagger (95.03%, see [10]).
While the spoken data is significantly different from the written data, which reduces
the success rate of the model, it has a relatively high proportion of unambiguous tokens
(61.7%), which makes annotation easier (in written text, e.g. PDT, this ratio is much
lower, just 41.2%). The average number of interpretations (lemmas and tag combina-
tions) per token (again, counting only real words) is 2.26 (in PDT, it is 4.09 with the
same tagset).

After the publication of the SYN2020 corpus, it was decided to tag the Ortofon
series corpora by the same annotation standard. However, many words used in the
Ortofon corpus were not contained in the lexicon used for annotating Czech text in
CNC, training and test data for the annotation of spoken corpora was not available and
the best practices for lemmatization and annotation of such corpora had not yet been
found. These issues are addressed in the next section.

4 Annotating Spoken Corpora with the SYN2020 Standard

4.1 Extending the Lexicon to Improve the Coverage of the Spoken Corpora

Due to the complex and frequently homonymous nature of the Czech declension (e.g.
case syncretism), we use a lexicon for the annotation process, because it significantly
improves the results compared to the approach when a tagger (even based on neural net-
works) derives the properties of words from their spelling. First, all tokens are assigned
all the possible combinations of lemmas and tags, then a tagger chooses one combina-
tion based on its language model.

However, the lexicon used for annotating written corpora is not sufficient for spo-
ken corpora, since the spoken data include a large number of dialect variants; these
need to be dealt with to improve the coverage of the text. Some of these dialect vari-
ants are formed by systematic substitutions of characters or character combinations in
inflectional suffixes, e.g. televiza instead of televize ‘television’, manželkó instead of
manželkou ‘wifeinstr.sg.’, jezdijou instead of jezdı́ ‘go3.pl.’; or in the word stem, e.g.
Olomóc instead of Olomouc ‘Olomouc (town)’, mejvám instead of mı́vám ‘have1.sg.’.
We have developed a programwhich for each unknown word in the analyzed text checks
whether the word, after removing dialect features, is already contained in the lexicon.
If so, it puts this unknown word in a provisional dictionary and assigns it the same mor-
phological categories as those assigned to the already known form. This provisional
dictionary must then undergo a manual check. Thus ca. 3800 word forms were found in
the Ortofon corpus data, of which 3500 were included in a special dictionary for spoken
corpora after manual check.
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4.2 Training Data for Spoken Corpus Annotation

To reliably annotate data with a machine learning-based tagger, it is best to train the tag-
ger using data similar in nature to the data we want to annotate. If the training data dif-
fers too much from the target data, it reduces significantly the annotation accuracy. For
example with the Morphodita neural tagger (see [9]), we achieve an accuracy of about
97.60% (percentage of correctly assigned lemmas, tags and verbtags) when annotating
standard written data using a model trained on similar (standard written) data. When
applying this model (i.e. trained on written data) on spoken data of the Ortofon corpus,
we achieve a success rate of only 86.89%, which means that the tagger commits more
than 5 times more errors. This is much lower than the accuracy of 94.10% (lemmas
and tags) achieved with an older tagger trained on PDT 2.0. This is partly due to the
fact that annotating with the SYN2020 corpus standard is a significantly more complex
task than tagging with the PDT 2.0 standard: unambiguous tokens are only 27.6% in
the newer annotation scheme, the average number of interpretations in the Ortofon data
(combinations of lemma, tag and verbtag) per token is 5.11, i.e. more than twice as
many as in the same data in the PDT annotation scheme.

Thus, it was decided to create training data for spoken corpora. However, as the
manual annotation of large data is time consuming and expensive, we did not annotate
a training corpus of the size comparable to the training corpus for the standard written
language (which is a manually annotated corpus called Etalon with ca. 2.3 million word
forms), but only less than 200,000 word forms that we wanted to supplement the written
training data with to achieve better results.

Thus, 225 texts of similar length were chosen to create the training data for spo-
ken Czech (“spoken Etalon”). From these texts, markup and tokens of non-linguistic
nature were removed, mainly transcription annotations such as “(laugh)”, “(clinking of
dishes)”, “(disturbing sound)”. Words that were identified as multi-word tokens (i.e.,
text words containing multiple syntactic words) were split into tokens corresponding to
syntactic words, since the tagger works with syntactic words in isolation, only merging
them into a single token after annotation is complete.

An important step for the preparation of the training data for spoken Czech was the
extension of the dictionary to include frequent word forms occurring in the spoken data
that were not included in the existing dictionary. Thus, the original Morfflex dictionary
(see [8]) was enriched, extended and adapted to the annotation needs of the SYN2020
corpus.

Furthermore, the spoken data was “manually” annotated in two phases. In the first
phase, each token was assigned a set of lemma-tag combinations from which the anno-
tators selected. Each text was annotated by two annotators, and differences between
annotators were then decided by a third annotator. In the second phase, verbtags were
assigned to unambiguous tags; where multiple possible verbtags were assigned (i.e.,
for verbs, especially for participles), again two annotators chose one verbtag from the
menu; in case of disagreement, these verbtags were presented to a third annotator, who
chose one of them.

This procedure resulted in 225 texts with an average length of approximately 800
tokens, for a total of 179,550 tokens, each token being assigned a lemma, a tag and
a verbtag. We then work with this data to train and test models for the morphological
annotation of spoken text.
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4.3 Training Models for Lemmatization and Tagging of Spoken Text

As mentioned above, when a model trained only on written data is used to annotate
spoken text, the annotation success rate is noticeably lower (86.89%) than when written
data is annotated using the same model. On the other hand, if only spoken data is used,
the result is also not satisfactory, although it is noticeably better (90.98%), because
the newly created “etalon” for spoken data is too small for a reliable training. If we
use both the written data and 90% of the newly created spoken data for training (10%
remains for testing), the success rate increases to 92.25%. Tomake testing more reliable,
every experiment is performed 5 times using different parts of the data and testing
on the remaining parts (ideally, we would train 10 times, but every instance of the
training requires 12–18 h and we lack computer time for all these experiments, even
with parallel training). A success rate of 92.25% for non-standard language annotation
is a good result, but we have tried to improve the success rate further. To do this, we took
two routes (in addition to adjusting training settings which didn’t yield any significant
improvement): first, automatic adaptation of written training data to target spoken data,
and second, experiments with the size of written training and development data. As we
describe in the next two paragraphs, the experiments did lead to an increase in success
rate, but less than we had hoped.

4.4 Written Data Adaptation

The differences between the written Etalon corpus and spoken data are significant. Sen-
tences or rather speech sections in the spoken data do not begin with a capital letter,
the text contains almost no punctuation, there are no numerals, words are often (more
or less randomly) repeated etc. If it were possible to automatically modify the written
training data to make it more similar to the data for which we want to train the model, the
resulting model might be more successful. Therefore we developed a program that auto-
matically alters written data removing some of the systematic differences. For example,
the program removes capitalization at the beginning of a sentence and most of the punc-
tuation (partly removing it entirely, partly replacing it with newlines marking the end
of a speech segment), it replaces digits with numerals (where the correct form of the
numeral can be unambiguously identified), and so on. In addition, a “bolder” version of
the programmimics some other features of spoken language, such as occasional random
repetition of words. A more conservative adaptation of the data improves the success
rate of tagging spoken data by 0.4% (from 92.25% to 92.62%), a bolder adaptation
improves the success rate less (92.38%): it seems that randomly adding irregularities to
the input, even if similar to those in the target text, does not help the tagger.

4.5 Using Less Written Data

The second way to influence the success of the model we experimented with was the
amount of written data used for training. Training of a neural tagger uses training
data, on which the tagger repeatedly builds language models, and development data,
on which the tagger continuously tests how correct the model is, adjusts the settings,
and re-trains another model. Typically, about 80% of the data is used for training, 10%
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for development data, and 10% is set aside for testing. In the case of using both written
and spoken data, the amount of written data exceeds the spoken data available by more
than ten times. However, we can set aside a random portion of the written data and
not use it for training, development, or both, so that there is a better ratio of spoken to
written data (but we will have less data overall). The table shows the results of experi-
ments with both adapted data (see Sect. 4.4), with a reduced percentage (first column) of
the written component in the training data (second column) or in the development data
(third column). We always compute the accuracy of tagging lemmas, tags, and verbtags
at the same time (Table 2).

Table 2. Experiments with using less written data

Percent train dev

100% 92.62% 92.62%

87.5% 92.69% 92.58%

75% 92.60% 92.68%

50% 92.26% 92.60%

25% 91.54% 92.41%

0% 91.06% 92.03%

The results presented in the table do not show a clear result on how to properly
choose the size of the written data to train the model. The results for the proportion of
written data between 100 and 75% for train and between 100 and 50% for dev are very
similar, on the borderline of statistical error. The ideal proportion of data is probably
somewhere between these boundaries, it would require more experiments to determine
the best setting, and would probably not significantly affect the overall accuracy of the
model anyway.

5 Outlook

The work on automatic tagging of spoken CNC corpora based on the SYN2020 corpus
standard is not finished, there are still a number of steps to be taken. The newly created
training data for the spoken corpora needs to be checked and errors removed. Frequent
types of tagging errors can be addressed by specifically designed scripts. The annotation
has to be finalized with sublemmas, multi-word tokens etc.

5.1 Correcting Errors in the Training Data

Our experience with manual annotation of written data shows that despite double man-
ual tagging and subsequent adjudication by a third annotator in case of disagreement,
many errors always remain in the data, which then decrease the reliability of the trained
models and bias the measurement of their success. One method we use to correct this
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is to use several models trained with different settings and applied to the same text.
Tokens for which several models agree on a reading which differs from the “gold” one
(manually determined) need to be manually examined because they are more likely
erroneous. Using 4 sets of models (in a 10-fold-cross-validation scheme) approx. 9000
such tokens were identified in our training data, out of which (measured on a small
sample) approx. 15% are cases of errors in the gold data, 15% are limit cases requir-
ing further investigation and approx. 30% are recurring tagging errors which could be
corrected automatically (i.e. the gold data is correct).

5.2 Automatic Correction of Frequent Types of Tagging Errors

Some recurring errors in tagging are due to the nature of the spoken data, for example
when a sentence is interrupted and an auxiliary verb finds itself in one segment and
the rest of the compound verb form (e.g. a past participle) in another segment, the tag-
ger frequently assigns an incorrect (from the global viewpoint) verbtag. This problem
can be solved using simple programs (with some heuristics). This approach is able to
remove several of the most frequent types of errors and increase the overall accuracy of
the annotation.

5.3 Finalizing the Annotation

The annotation does not end with the tagging and lemmatization itself, we still need to
automatically add additional information to the tokens. Sublemmas are assigned based
on the lemma chosen by the tagger and the word form. Multi-word tokens (e.g. ses
‘herself+to be’, see Sect. 2.3), which are treated separately during the tagging phase,
are merged into one token with two sets of attributes (lemma, tag, verbtag). Non-word
tokens, e.g. (cinkánı́ nádobı́) ‘cuttlery clinking’ that has been removed to simplify the
tagging has to be returned to the correct place. Only then will it be possible to publish
the newly tagged spoken corpus.

6 Conclusion

This paper describes the process of annotating the Ortofon corpus, a corpus of spoken
Czech, based on the SYN2020 annotation standard and the problems associated with
annotating a transcription of spontaneous spoken language. The Ortofon corpus with
the new markup will be published by September 2023. After that, other CNC spoken
corpora may be published with the same standard. Eventually, written corpora of Czech
from the first half of the twentieth century and Czech from the nineteenth century using
the same annotation standard will be published. Uniform tagging of many corpora will
make it easier for users to work with the corpora and to compare various phenomena
across corpora.
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9. Straka, M., Straková, J., Hajič, J.: Czech text processing with contextual embeddings: POS
tagging, lemmatization, parsing and NER. In: Ekštein, K. (ed.) TSD 2019. LNCS (LNAI),
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Abstract. Conventionally, Automatic Speech Recognition (ASR) sys-
tems are evaluated on their ability to correctly recognize each word con-
tained in a speech signal. In this context, the word error rate (WER)
metric is the reference for evaluating speech transcripts. Several stud-
ies have shown that this measure is too limited to correctly evaluate an
ASR system, which has led to the proposal of other variants of met-
rics (weighted WER, BERTscore, semantic distance, etc.). However,
they remain system-oriented, even when transcripts are intended for
humans. In this paper, we firstly present Human Assessed Transcription
Side-by-side (HATS), an original French manually annotated data set in
terms of human perception of transcription errors produced by various
ASR systems. 143 humans were asked to choose the best automatic tran-
scription out of two hypotheses. We investigated the relationship between
human preferences and various ASR evaluation metrics, including lexical
and embedding-based ones, the latter being those that correlate suppos-
edly the most with human perception.

Keywords: automatic speech recognition · evaluation metrics ·
human perception · manual annotation

1 Introduction

Automatic Speech Recognition (ASR) consists in transcribing speech into its
textual form. Automatic transcriptions can for example be used by humans in the
case of captioning, speech-to-text messages or by third systems such as virtual
personal assistants. Since the emergence of hidden Markov model-based ASR
systems [18] for processing continuous speech, the field has seen an important
breakthrough with the use of deep neural networks and self-supervised methods

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 164–175, 2023.
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such as wav2vec [1] and HuBERT [16]. These approaches allow the extraction
of meaningful information from speech without previously labeled data.

Faced with transcription errors, unlike a machine, a human is able to pro-
cess the sentence anyway and extract its initial meaning if the latter was not
fundamentally impacted by the errors. Errors in automatic transcriptions can
arise due to various factors such as noise in the speech signal, speaker accents, or
technical limitations. The question is to determine which errors are acceptable
and which ones may cause comprehension difficulties for humans. Thus, it is
crucial to evaluate the quality of automatic transcriptions based on their overall
comprehensibility to humans.

Currently, the most commonly used metrics for evaluating ASR systems are
the Word Error Rate (WER), which measures the number of incorrectly tran-
scribed words, and the Character Error Rate (CER), which calculates the num-
ber of characters that differ from the reference transcription. However, many
researchers [7,17,19,33] have pointed out issues with these metrics, such as the
absence of error weighting or the lack of linguistic and semantic knowledge. Con-
sequently, there has been a growing interest in developing new metrics to evaluate
ASR systems. Some researchers [2,13,20,23,27] have therefore started exploring
alternative metrics that can more accurately assess the quality and effective-
ness of automatic transcriptions. Similarly, these issues have been observed in
the field of machine translation. As a result, new metrics and data sets have
been produced from multiple shared tasks [8,9,25,26]. Semantic-based metrics,
such as BERTScore [34], have then been shown to be effective in evaluating the
quality of machine-generated translations.

While these metrics are obtained automatically and are rather machine-
oriented, human evaluations of ASR systems have been carried out in the past,
which includes side-by-side experiments [13,19,21] where human subjects are
asked to choose the best transcript among two options. These studies have
also enabled assessing the quality of automatic metrics from a human perspec-
tive. The present study builds on these side-by-side experimental protocols, but
instead of modifying the speech signal or text hypothesis with artificially gener-
ated errors, or using different outputs from the same ASR system to obtain two
different hypotheses, our study utilizes the outputs of ten ASR systems with
varying architectures applied on the same speech corpus. Furthermore, rigor-
ous criteria were used to select the transcripts where choices are the harder in
order to study metric and human behavior. The advantage of the side-by-side
experiment is that the subject has to make a choice between two hypotheses,
which does not allow for equality. In contrast to direct assessment, side-by-side
experiments eliminate the potential bias of prior choices, allowing for consistent
comparisons between transcriptions. By comparing human judgments to those
of the metric, we can effectively evaluate its performance.

In this paper, we introduce HATS (Human-Assessed Transcription Side-by-
Side), a new open data set of human preferences on erroneous transcriptions in
French from various ASR architectures. As a second contribution, an original
study is conducted using HATS to evaluate automatic metrics by analyzing
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their agreement with human assessments. Our objective is to identify the ASR
evaluation metrics that most closely correlate with human perception. The HATS
data set is freely released to the scientific community1.

The paper is organized as follows: Sect. 2 describes the used ASR systems
and the automatic metrics that will be evaluated based on their correlation
with human perception. In Sect. 3, we present the implementation of the side-
by-side human perception experiment, including the protocol for selecting the
transcripts provided to human evaluators. Section 4 describes the HATS data set,
while Sect. 5 presents a study on the quality of automatic metrics for evaluating
transcription systems in relation to human perception. Finally, Sect. 6 provides
the conclusion and future work.

2 Transcription Systems and ASR Evaluation Metrics

In Sect. 2.1, we present the different automatic speech recognition systems used
to obtain the automatic transcriptions that constitute the HATS corpus. Then,
in Sect. 2.2, we describe all the evaluation metrics applied to assess these tran-
scriptions and evaluate them in relation to human perception.

2.1 Automatic Transcription Systems

In this study, we set up 8 end-to-end systems based on the Speechbrain
toolkit [30] and 2 DNN-HMM-based systems using a state-of-the-art recipe2

with the Kaldi toolkit [29]. The end-to-end ASR systems were trained using
various self-supervised acoustic models. Seven of the systems used variants of
the wav2vec2 models learned on French [6], and one system used the XLS-R-
300m model. In the Kaldi pipeline systems, one of the systems included an extra
rescoring step using a neural language model.

All ASR systems have been trained to process French using ESTER 1 and
2 [10,11], EPAC [5], ETAPE [15], REPERE [12] train corpora, as well as inter-
nal data. Taken together, the corpora represent approximately 940 h of audio
comprised of radio and television broadcast data. The transcripts used to build
our HATS corpus are extracted from the REPERE test set, which represents
about 10 h of audio data.

2.2 Evaluation Metrics

We propose to focus on evaluation metrics for transcription systems that enable
us to evaluate the systems at both lexical and semantic levels. First of all, we
consider classical lexical metrics such as Word Error Rate and Character
Error Rate.

Next, we examine three semantic metrics based on word embedding repre-
sentations. The first one, Embedding Error Rate (EmbER) [2], is a WER
1 https://github.com/thibault-roux/metric-evaluator.
2 https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/.

https://github.com/thibault-roux/metric-evaluator
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/
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where substitution errors are weighted according to the cosine distance between
the reference and the substitute word embeddings obtained from fastText [3,14].
The second one, SemDist [20], involves calculating the cosine similarity between
the reference and hypothesis using embeddings obtained at the sentence level.
We compared different pre-trained word embedding models to evaluate their
impact on the metric. Specifically, we compared using the embedding of the first
token from CamemBERT [24] or FlauBERT [22] models, or using the output of
a sentence embedding model (SentenceBERT [31]). Our last semantic metric is
BERTScore [34], that computes a similarity score for each token in the candi-
date sentence with each token in the reference sentence using contextual embed-
dings. In our study, we use a multilingual BERT [4] and CamemBERT3 [24]
models (both CamemBERT-base and CamemBERT-large).

While text transcriptions are derived from speech, we also consider a
Phoneme Error Rate (PER), which involves computing the Levenshtein dis-
tance between reference and hypothesis sequences of phonemes obtained using
a text-to-phoneme converter4.

3 Side-by-Side Human Evaluation Protocol

This section describes the collection of the HATS corpus. The setup of the per-
ceptual experiment is summarized in Sect. 3.1, while the protocol for selecting
automatic transcripts for human evaluation is described in Sect. 3.2.

3.1 Perceptual Experiment

In our study, the side-by-side experiment involves presenting the subject with a
manually transcribed reference to represent the speech, as well as two automatic
transcripts, each produced by a different system. The automatic transcriptions
always contained errors with respect to the reference. Each triplet comprised of
a reference and two hypotheses is called a stimulus to which participants react
in choosing their preferred hypothesis. In the following, stimuli refers to the
different triplets to which each participant was confronted.

The experiment was made available online which allowed for participants
to realize the task remotely and at their preferred time. They used a mouse
to choose their preferred hypothesis according to the reference. The study uti-
lized a minimal instruction protocol (See Fig. 1), which allowed participants to
self-determine the criteria that were important in determining the quality of a
transcript. Figure 1 illustrates the visual display presented to the subjects during
the study. The reference was in written form only, in order to allow a comparison
of ASR-oriented metrics and human perception within the same context [32].

To avoid possible biases, the stimuli were presented in a random order, both
for the order of the triplet, and for the order of the two hypotheses (the same
hypothesis can be A or B).
3 https://camembert-model.fr.
4 https://github.com/Remiphilius/PoemesProfonds.

https://camembert-model.fr
https://github.com/Remiphilius/PoemesProfonds
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Fig. 1. Screenshot from the side-by-side experiment.

Fig. 2. Participant characterization in terms of number of spoken languages.

Fig. 3. Participant characterization in terms of level of education.

For this study, 143 online participants volunteered. Before starting with the
evaluation, they filled out a questionnaire helping to assess their age, spoken
languages, and level of education. All participants are fluent in French and have
an average age of 34 years with a standard deviation of 13.5 years. In Fig. 2 and
Fig. 3, we can see the distribution of number of spoken languages and educa-
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tion level for our studied population. Each participant evaluated 50 triplets of
transcripts in random order, for a total time of about 15 min per participant.

3.2 Protocol for Stimuli Selection

The transcription triplets coming from the REPERE test corpus were not
selected randomly. In this study, we attach great importance to the selection
of stimuli and we decided to study human behavior and metrics in complex sit-
uation, i.e. where humans have difficulties to choose the best transcription. In
this context, the aim was to maximize the diversity of choices to be made: sub-
jects had to choose among errors made by different systems (since it is unlikely
that different systems produce identical errors). Also, it would be interesting to
study the cases where the choice is easy for the automatic metrics, as well where
ambiguous scores are obtained, or where two metrics disagree to determine which
one of the two hypotheses is best.

Therefore, the following three criteria had to be respected: (1) both hypothe-
ses must be different from each other and have at least one character that
differs from the reference, (2) hypotheses from every system were contrasted
with hypotheses from every other system, and (3) hypotheses pair selection
was based on metric scores. The selection criteria (3) based on the metrics
can be divided into three different categories: (A) each metric was compared
to itself presenting either the same, a slightly different or a highly different
score between the two hypotheses, (B) in both hypotheses the WER or CER
were equal but WER or CER, EmbER, SemDist, BERTScore were different,
(C) metrics were contrasted with opposing predictions of the better hypothesis
(e.g. WER(hypA) > WER(hypB) but CER(hypA) < CER(hypB)).

Table 1 illustrates how hypotheses were matched with concrete examples.

Table 1. Detail of some stimuli choice criteria with examples. The ε symbol represents
a missing word.

Category
Metrics

Reference Hypothesis A Hypothesis B
information

(A) WER =
et on découvre les spectateurs ε on découvre les spectateurs et on découvre les spectacles

and they discover the spectators ε they discover the spectators and they discover the show

(A) CER >
sur la vie politique ε la vie politique c’ la vie politique

on the political life ε the political life t’s the political life

(A) SemDist >>
c’ est á paris ε est á paris c’ est appau ε

it’s at paris ε is at paris it’s atpau ε

(B)
WER = ; encore du rock corps du rock encore du rok

SemDist > still rock body of rock still rok

(C)
WER �= où les passions sont si vives ε les patients sont si vive où les patients sont si vifs

BERTscore where passions are so vivid ε the patients are so vivid where the patients are so lively
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4 HATS Data Set

4.1 Corpus Description

The HATS data set includes 1,000 references, each with two different erroneous
hypotheses generated by different ASR systems. The preferred choice of 143
human evaluators for each 50 reference-hypotheses triplets is recorded in this
data set, resulting in a total of 7,150 annotations. Each triplet is evaluated by
at least 7 participants.

To assess the level of agreement between raters, we calculate Fleiss’ Kappa,
which yields a value of 0.46. In 82% of the triplet cases, the agreement (See
Eq. 1), is found to be at least 71.4%. Furthermore, in 60% of the triplet cases,
the agreement reaches a minimum of 85.7%. This shows that the task is difficult,
but that humans are still capable of determining a hypothesis as the best.

4.2 Methodology to Evaluate Metrics

Our method for evaluating metrics involved calculating the proportion of
instances where both human annotators and the metric selected the same
hypothesis as the best option. Subjects were not allowed to determine that the
two hypotheses were equal. However, it is certain that there are cases where
one hypothesis cannot be chosen and the subject chooses randomly. Since the
number of annotators for each triplet is 90% of the time odd, there will still be a
winning hypothesis due to chance. One strategy to overcome this problem may
be to take into account only the cases where there is a consensus. In this study,
we calculate a human agreement that corresponds to a percentage indicating
consensus. This is calculated according to the following formula:

max(A,B)
A + B

(1)

where A is the number of humans who select one hypothesis, and B is the
number of humans who select the other one. When agreement is weak, agreement
is close to 50%, and if all humans agree on the same hypothesis, agreement
is 100%. A filter can be applied on the data set according to three values of
agreement: 100% (keep only triplets where all subjects agree), 70%, or 0% (no
filter applied); which corresponds to 371, 819 and 1000 utterances respectively.
The 70% threshold was chosen in order to have consistent annotator agreement
even if not all participants answer in the same way [28]. Taking the predictions
of the metrics as a starting point, we calculate the number of times that humans
chose the best hypothesis based on the evaluated metric.

5 Evaluation of ASR Metrics from Human Perspective

Table 2 presents the results obtained by each metric according to the number
of times they agree with human perception. Without surprise, the higher is the
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human agreement, the higher are the metrics performances. Unlike the results
of previous studies [21], our study found that CER aligns more closely with
human perception than WER. This divergence might be attributed to the use of
written text as a reference in our perceptual experiment, rather than audio, or to
intrinsic linguistic variations between French and English (French orthography
contains a high number of silent letters compared to English).

Table 2. Performance of each metric according to their human agreement. Full means
that no filter on agreement were applied on data set. The number in parentheses
indicates the percentage of times the metric gave the same score to both hypotheses.

Agreement 100% 70% 0% (Full)

Word Error Rate 63% (23%) 53% (28%) 49% (28%)

Character Error Rate 77% (17%) 64% (21%) 60% (22%)

Embedding Error Rate 73% (12%) 62% (16%) 57% (17%)

BERTScore BERT-base-multilingual 84% ( 0%) 75% ( 1%) 70% ( 1%)

BERTScore CamemBERT-base 81% ( 0%) 72% ( 0%) 68% ( 0%)

BERTScore CamemBERT-large 80% ( 0%) 68% ( 0%) 65% ( 0%)

SemDist CamemBERT-base 86% ( 0%) 74% ( 0%) 70% ( 0%)

SemDist CamemBERT-large 80% ( 0%) 71% ( 0%) 67% ( 0%)

SemDist Sentence CamemBERT-base 86% ( 0%) 75% ( 0%) 71% ( 0%)

SemDist Sentence CamemBERT-large 90% ( 0%) 78% ( 0%) 73% ( 0%)

SemDist Sentence multilingual 76% ( 0%) 66% ( 0%) 62% ( 0%)

SemDist FlauBERT-base 65% ( 0%) 62% ( 0%) 59% ( 0%)

Phoneme Error Rate 80% (14%) 69% (16%) 64% (17%)

It is interesting to note that at phoneme level, PER performs well, better
than WER and CER despite the fact that humans have made their choices based
on text alone. It shows that humans seem to consider how sentences sound even
while reading. This is especially true if sentences are contrasted with a reference.

Although hypotheses selected based on BERTScore using BERT-base-
multilingual perform 8% better than those chosen with SemDist Sentence mul-
tilingual, it would be premature to conclude that the BERTScore strategy is
superior for evaluating the quality of transcripts as both metrics use different
embeddings. When comparing these metrics with the same embeddings, SemDist
outperforms BERTScore using CamemBERT-base embeddings while SemDist
has a similar performance with BERTScore using CamemBERT-large. This sug-
gests that some embeddings are more optimized for specific metrics.

On the 70% and 0% agreement level, WER have performances close to a
random choice. This is due to the fact that in our data set, many cases present
hypotheses with the same WER, and equal predictions are considered as a failure
of the metric since humans are able to faithfully select one hypothesis. Further-
more, we can observe that SemDist using FlauBERT-base embeddings performs
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worse than CER. This highlights the importance of carefully selecting embed-
dings and evaluating them on data sets like HATS before drawing conclusions
about system performances at a semantic level. Based on our human-oriented
data set, the best metric is SemDist using Sentence CamemBERT-large, which
can be explained by the fact that this metric is based on embeddings specifically
trained to maximize the similarity between sentences with similar meanings. It
is worth noting that a large amount of annotated data is necessary to use these
embedding-based metrics.

6 Conclusion and Perspectives

In this study, automatic evaluation metrics applied to transcriptions coming from
different ASR systems were compared to human evaluation of different erroneous
hypotheses according to one written reference. Our results show that SemDist
with Sentence-BERT evaluates transcripts in a way that seems acceptable for
human raters. If Sentence-BERT is not a possible option, BERTScore seems to
be the second best option. This metric is more stable than SemDist on BERT
embeddings. Nevertheless, if possible, metrics should be evaluated through data
sets comprising also human annotations such as HATS.

Although these new evaluation methods are interesting in the context of ASR,
the advantage of WER and CER metrics lies in their computational low-cost and
interpretability of the score. Therefore, the next step could be to develop metrics
that correlate with human perception while remaining interpretable.

As future work, an additional study could be conducted by replicating the
current experiment using an audio reference instead of a textual reference, so
that subjects do not have character information. This approach would enable
us to examine any variations and if CER is still considered as better than the
WER in a multimodal setting.

Limitations

The HATS data set is not necessarily representative of all kind of errors nor the
most common because errors were selected applying strict criteria. In order to
evaluate the representativeness of this data set, additional analyses with respect
to the kind of errors that occur in each system’s transcriptions have to be carried
out.

Furthermore, conclusions drawn from this data set may be specific to the
French language and may not generalize to other languages. Adding and com-
paring similar data sets in other languages would help to better understand the
performance of metrics and human evaluations across different languages.

Ethics Statement. The aim of this paper is to propose a new method for evaluating

speech-to-text systems that better aligns with human perception. However, the inherent

subjectivity of transcription quality means that if we optimize systems to correlate only

with the perception of the studied population, it could be inequitable if this perception

does not generalize to the rest of the population.
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ETAPE corpus for the evaluation of speech-based TV content processing in the
French language. In: International Conference on Language Resources and Evalu-
ation (LREC), pp. 114–118 (2012)
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Abstract. A new approach to speaker diarization (SD) suitable for
real-time processing of streamed data is presented in this work. It uti-
lizes a modified residual network with squeeze-and-excitation blocks (SE-
ResNet-34) for extraction of speaker embeddings. These speaker embed-
dings are calculated in an optimized way by using cached buffers and are
subsequently used for voice activity detection (VAD) as well as for block-
online k-means clustering with a look-ahead mechanism. All these pro-
cessing steps are first evaluated separately on a development set compiled
from recordings of Czech broadcast programs. The whole scheme is then
compared to an offline reference approach on various speech databases
that are publicly available and include data in various languages. On
this data, our method yields results similar to the reference system while
operating on a CPU with a low real-time factor (RTF) below 0.1 and a
latency of around 5.5 s.

Keywords: Online speaker diarization · speaker embeddings ·
SE-ResNet · k-means clustering

1 Introduction

Speaker diarization (SD) is a process that answers the question “who spoke
when” in a multi-speaker environment. Basically, two main possibilities exist
for performing this task: in a) offline or b) streaming (online) mode. The input
to the former (classic) scenario is usually formed by one speech recording. Its
entire content can be processed without any strict limitations on computational
demands, e.g., multiple passes through the data can be performed.

But today’s world is accelerating; the data processing and information mining
domains face a new challenge when their users ask for very quick results and
analysis, ideally during the data flow. The increasing amount of data is organized
into streams, which must be processed continuously.

Media monitoring is one of the typical applications where streamed data is
processed. An example of such an application is our cloud platform for real-time
transcription of TV and radio stations in several languages, including Czech,
Slovak, Polish, and other predominantly Slavic languages.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 176–187, 2023.
https://doi.org/10.1007/978-3-031-40498-6_16
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In this case, a diarization system allowing for real-time processing of the
data streams must be employed. This system has to operate differently from its
offline counterpart: it must be able to take in a sequence (stream) of frames on its
input and provide a stream of speaker tags on its output. In consequence, there
are additional limitations regarding namely the complexity of and computation
demands on the used approach. Another important factor is latency: systems
with a latency of around several seconds are considered to be online. In this
case, there is an additional limitation on the context that can be processed in
a given time step. Moreover, while offline SD can be improved by determining
the number of speakers appearing in the data [2], this option is not available in
most of our streamed scenarios (see Sect. 2).

In this work, we propose a new SD approach suitable for the above-mentioned
real-time applications. Our approach processes the input data stream and pro-
duces a sequence of speaker embeddings on its output using SE-ResNet architec-
ture optimized for online processing. These vectors are then filtered by a built-in
voice activity detection module based on a single-layer binary classifier, and
the remaining speech vectors are smoothed and clustered by the block-online
k-means algorithm with a look-ahead mechanism.

At first, we evaluate and analyze the performance of individual phases of our
method on a development set compiled from Czech TV/R recordings. Given all
findings, this method is further evaluated on several publicly available datasets,
including broadcast recordings in many languages.

2 Related Work

The early online SD approaches utilized hidden Markov models or Gaussian mix-
ture models [11,34], and features such as the speaker factors [4]. More recently,
the features used for online SD required a more robust speaker representation.
Therefore, the i-vectors based on the total variability factor analysis began to
be used [9,19,34].

These approaches were then surpassed by speaker embeddings produced by
deep neural network architectures. These include d-vectors extracted mostly by
long short-term memory recurrent neural networks [30,35] and x-vectors from
the time-delay neural networks (TDNNs)[10].

The use of speaker embedding enables the option to perform diarization using
various clustering algorithms. It is possible to use methods such as k-means
[9,30], online naive clustering [30], or VBx algorithm with core samples selection
[33]. Alternatively, a supervised model such as UIS-RNN [10,35] generating a
sequence of speaker indices can be used instead of the conventional clustering.
In addition to the aforementioned clustering-based diarization methods, recent
work [31] has utilized a transformer transducer for detecting a change in speaker,
extracting embeddings to represent speaker turns and clustering them using
spectral clustering.

There has been a growing interest in end-to-end online diarization (EEND)
approaches instead of the modular structure in recent years. Recent models are
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based on an x-vector extractor with incremental clustering [6], encoder-decoder-
attractor-EEND architecture with either a speaker-tracing buffer [32] or an incre-
mental transformer encoder [13]. These techniques can handle overlapped speech
and have overcome the limitation of having a variable number of speakers. The
EEND approach is currently limited by the amount of data from the target
domain needed for training, and its performance gets significantly lower with a
larger number of speakers.

3 Proposed Approach

Our method utilizes the optimized SE-ResNet-34 [14] architecture for the extrac-
tion of speaker embeddings. These embeddings are then used for VAD as well as
for clustering. These three steps are all described in the following subsections.

3.1 Speaker Embedding Extraction

We introduce two key optimizations to the SE-ResNet-34 topology (see also
Table 1). Firstly, the SE-blocks in the model incorporate buffers consisting of
the last two vectors from the previously processed data. These buffers are con-
catenated to the input at the beginning of the subsequent time step. Secondly, we
apply the stride operation even in the first set of SE-blocks, exclusively affecting
the feature dimension while keeping the time dimension unchanged. A combina-
tion of both of these optimizations allows us to calculate one speaker embedding
for every feature vector from the input stream with an RTF factor lower by
an order of magnitude (see also Sect. 3.4). These embeddings are produced per
block of the input signal, and their values are the same as if they were calculated
within the conventional offline scenario.

The number of the SE-blocks is the same as in the ResNet-34 architecture,
and their utilization adds global context information by weighting the channels
of feature maps. Convolution layers are conventionally followed by batch normal-
ization and ReLU activation function. In contrast to the SE-ResNet-34, we do
not utilize the attention mechanism because it does not yield any performance
gain on our development set.

After the optimized SE-blocks, local pooling is used to compute the means
and variations of the frames, with a context of t ± 20 frames. These features are
fed to a fully connected layer from which the speaker embeddings are extracted.
The model is trained using the AM-Softmax loss [29] to distinguish between N
speakers. As input features, a 256-point log magnitude spectrogram is computed
from every frame of the input signal. These spectrograms are locally mean-
normalized (LFMN) over a sliding window with the context of t ± 40 frames.
The length of each frame is 25 ms with a shift of 12.5 ms.
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Table 1. Structure of the proposed optimized SE-ResNet extractor. T stands for the
input size (2 × 93 + 1 in our case).

Stage Kernel size Stride Output Size

LFMN – – 256 × T × 1

Cached Conv 3 × 3 × 32 1 256 × T × 32

Cached Res1 3 × 3 × 32 (4, 1) 64 × T × 32

Cached Res2 3 × 3 × 64 (4, 1) 16 × T × 64

Cached Res3 3 × 3 × 128 (4, 1) 4 × T × 128

Cached Res4 3 × 3 × 256 (4, 1) 1 × T × 256

Pooling – – T × 512

Linear – – T × 512

3.2 Voice Activity Detection

The proposed approach incorporates a computationally undemanding mecha-
nism for voice activity detection. This method utilizes a simple binary classifier
with one fully connected layer. This network is trained using the binary cross-
entropy loss function. The input to the classifier is formed by a single speaker
embedding without any additional context, and the output is smoothed with the
aid of moving average smoothing.

The key point here is that we utilize one additional speaker representing a
non-speech class during training of the above-mentioned embedding extractor.
The embeddings representing the non-speech class then form one cluster, and the
corresponding segments of the input signal can be filtered out using a single-layer
classifier. Experimental evaluation of the described VAD module is presented in
Sect. 5.3.

3.3 Block-Online K-Means Clustering with Look-Ahead

We apply a block-online k-means algorithm to cluster speakers using the speaker
embeddings extracted by the optimized SE-ResNet architecture. We employ
cosine distance in the clustering process as the AM-Softmax (used within the
training of the embedding extractor) computes speaker probabilities based on
the same distance measure.

To avoid high sensitivity of the clustering, first, the embeddings are smoothed
with the aid of moving average within the context of t ± 40. After smoothing,
conventional k-means clustering is performed on a part of the input stream. Two
parameters determine the size of this part: block size and look-ahead size. The
block size corresponds to the number of vectors to which the speaker tags will be
assigned in a given step of the diarization process, while look-ahead size states
how many additional future (non-causal) vectors are used within the clustering
process to improve its accuracy. The size of the data used for clustering is thus
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the block size plus look-ahead size. Note that each of the resulting clusters is
represented by its centroid.

In the next step, we take into account only the resulting clusters whose num-
bers of associated vectors (embeddings) are higher than a defined threshold T1.
For each of these clusters, we compute its cosine distance from all of the existing
centroids. If the distance to the closest existing centroid cclosest is smaller than
a threshold T2 then the existing centroid is updated using linear interpolation
with parameter α as cclosest = (1 − α)cclosest + αcnew. The remaining clusters
with distances larger than T2 represent new speakers.

The initial clusters are determined by a step size parameter. For example,
if this value is set to 150, then every 150th embedding in the input sequence
forms an initial cluster. Finally, all vectors within the given block (determined
by the block size) are assigned the appropriate speaker tags according to their
affiliations with individual existing clusters.

3.4 Latency and Real-Time Factor

The latency of the proposed clustering is mainly given by the block size and
by the non-causal look-ahead mechanism. For example, the values of these two
parameters that were established during the development process correspond to
a latency value of 4.4 s. The next source of latency is the non-causal part of the
context used by the embedding extractor. Its size is t± 93 frames, which creates
an extraction latency of 1.17 s. The total latency of the proposed diarization
scheme is thus around 5.5 s.

At the same time, it operates with an RTF value of around 0.06 on a CPU
(measured on Intel R© CoreTM i7 CPU 9700K CPU @ 3.60 GHz using one thread)
while the original SE-ResNet-34 achieves RTF around 1.1 on NVIDIA R© GeForce
GTX 1080 Ti. The RTF is computed as the ratio of processing time to real-time
duration.

4 Experimental Setup

4.1 Development Data

A dataset covering 12.7 h of broadcast data in the Czech language is used for
development purposes. It consists of 51 files with recordings containing a min-
imum of 2 speakers and a maximum of 15 speakers (4.2 speakers on average).
These recordings contain both clean speech segments and segments with music,
background noise, jingles, and advertisements.

4.2 Evaluation Metrics

The equal error rate (EER) is employed for a comparison of different speaker
embedding extractors in the speaker verification task. The diarization accuracy
of our system on the development data is measured by word-level diarization
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error rate (WDER). The motivation for using this metric stems from the fact
that it is more important for our target application to assign the word to the
correct speaker than to retrieve the exact time of the speaker change point.
WDER represents the percentage of words with the correct speaker assigned.

Moreover, in Sect. 6, the standard diarization error rate (DER) is used for
the comparison on other datasets that are publicly available. The DER consists
of false alarm, missed speech, and speaker confusion and is computed using
version 1.1.0 of the dscore1 tool without any forgiveness collar. It also includes
overlapped speech segments.

4.3 Reference System for Diarization

The diarization system is based on the Speechbrain (version 0.5.13) approach
[7], which utilizes the ECAPA-TDNN [8] for embedding extraction, followed
by spectral clustering. The embedding extractor uses 80-dimensional log Mel
filterbank energies from the recording and mean normalizes them in the current
segment. These features are extracted with a sliding window with a length of 1.5 s
and a 0.5-second shift. After the embedding extraction, we use the unnormalized
spectral clustering. The dataset used for training the ECAPA-TDNN model is
the same as for our approach (see Sect. 5.1).

5 Experimental Evaluation

5.1 Speaker Embedding Extraction

In the first experiment, we compare the results on the speaker verification task
of the original SE-ResNet-34 architecture, the proposed optimized SE-ResNet
topology, and the ECAPA-TDNN reference system. All of these systems have
been trained using the same data. This fact allows us to compare them directly.

The training data consists of VoxCeleb2 [5], “train-clean-360” subset of Lib-
riSpeech [24], Czech microphone recordings, and part of CHiME-4 dataset [28]
for the non-speech class. The LibriSpeech and Czech data have also been aug-
mented with a combination of noise and reverberation, similar to that described
in [21]. During training, the audio was randomly augmented with the MUSAN
corpus [26] and with room impulse response simulations of small and medium
rooms from [15]. A total number of 7,838 speakers have been used for training,
where one additional class has represented noises.

The SE-ResNet model has been trained within 12 epochs using the AdamW
optimizer with a learning rate of 0.003 and default torch parameters. We have
employed the step learning rate decay with a 0.1 gamma value and lowered the
learning rate every 5 epochs. The margin has been set to 0.3 and the scale factor
to 15 in the AM-Softmax.

The datasets used for the evaluation represent the cleaned VoxCeleb1-E
(extended), VoxCeleb1-H (hard) [23], TIMIT [12] and its augmented versions.
1 https://github.com/nryant/dscore.

https://github.com/nryant/dscore
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The applied augmentation strategies on TIMIT gradually increase the complex-
ity of the speaker verification task. The original TIMIT version contains only
noiseless signals. The Anechoic variant then includes anechoic and reverberated
signals. These two augmentations are described in depth in [21]. The next Codecs
version is described in [22], where the dataset is copied seven times, and different
codecs are used for the augmentation of each copy. The last and most difficult
Noisy version combines reverberation and noise for augmentation as proposed
in [20].

The obtained results are compared in Table 2. The proposed online SE-
ResNet architecture yields similar results as the original offline ResNet-34 topol-
ogy and the reference ECAPA-TDNN system for the original TIMIT and its
Anechoic version. At the same time, it has worse performance on both VoxCeleb
datasets and TIMIT with more difficult augmentations, which is caused by its
lower number of parameters.

Table 2. EER [%] for different architectures yielded in the speaker verification task
on the VoxCeleb, TIMIT and its several augmented versions.

Datasets SE-ResNet-34 proposed ECAPA-TDNN

offline online offline

VoxCeleb1-E 1.61 2.67 1.64

VoxCeleb1-H 3.14 4.34 3.12

orig. TIMIT 0.54 0.16 0.22

Anechoic 0.19 0.27 0.26

Codecs 0.58 1.53 0.52

Noisy 1.48 3.28 1.51

5.2 Block-Online Clustering

For the clustering, we have set α to 0.1 and T1 to 149. The threshold T2 for
merging clusters has been 0.5. As mentioned in Sect. 3.3, the step size parameter
for cluster initialization has been 150. All these parameters have been found on
the development set in a series of experiments not presented in this paper.

Given these parameters, we have further investigated the effect of different
block and look-ahead sizes as both of these parameters are important with regard
to the latency. The block size has varied from 100 to 200 speaker embeddings
and the look-ahead size from 150 to 250. We have also performed experiments
with no look-ahead.

The obtained results (see Table 3) show that not using the look-ahead mech-
anism considerably worsens the performance of our system. The lowest WDER
is achieved for the block size of 150 and the look-ahead size of 200. Both these
values cause a latency of 4.4 s.
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Table 3. WDER [%] on Czech broadcast recordings for different values of block size
and look-ahead size.

Block size Look-ahead size WDER [%]

100 200 3.7

250 4.1

150 0 12.3

150 4.9

200 2.8

250 3.3

200 150 5.9

200 3.7

5.3 Voice Activity Detection

The last experiment performed on the development set investigates the use of the
VAD module with a binary classifier. For its training, 30 h of clean speech, 30 h of
music, and 30 h of artificially mixed speech and music/noise recordings accord-
ing to randomly chosen signal-to-noise ratio (SNR) have been used. All these
recordings have also been concatenated in a random order to contain speech/non-
speech transitions. Music recordings and the segments with SNR values smaller
than 0 dB have been labeled as non-speech and the rest as speech.

The obtained results are presented in Table 4. Here, the VAD module without
any smoothing slightly increases WDER from 2.8% to 2.9%. The reason is that
the output decisions are too sensitive to noise in this case, and the module
produces a lot of short speech segments. On the contrary, when VAD decisions
are smoothed using the moving average filter with the context of 50 frames, the
value of WDER is considerably decreased to 2.3%. Finally, it should also be noted
that smoothing does not increase the latency of the whole diarization scheme.
The reason is that it is not applied on the last 50 frames of the look-ahead data
block during the clustering process.

Table 4. WDER [%] on Czech broadcast recordings with and without the VAD
module.

Architecture VAD WDER [%]

SE-ResNet none 2.8

proposed 2.9

proposed + MA 2.3
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6 Results on other Datasets

The last section presents a comparison with the offline ECAPA-TDNN reference
system. For this purpose, several broadcast datasets have been selected. The
COST278 [27] database contains broadcast news in eleven European languages.
The RTVE2018 [17] and RTVE2020 [18] databases contain recordings of various
Spanish TV shows, including broadcast news, live magazines, quiz shows, or
documentary series. Last, the RUNDKAST [1] is compiled from recordings of
Norwegian broadcast news.

The results of the performed experiments recorded in Table 5 show that our
optimized SE-ResNet system yields lower DER on the COST278, RUNDKAST,
and RTVE2020 databases (e.g., 16.0% vs. 21.9% on RTVE2020 with VAD) and
achieves slightly worse performance on the RTVE2018 dataset (i.e., 9.2% vs.
8.8% with applied VAD). These results show that our proposed architecture
allows us to perform SD in streamed data with limited context while yielding
performance comparable to the ECAPA-TDNN reference system.

Table 5. DER [%] results of the offline ECAPA-TDNN architecture and our proposed
SE-ResNet online architecture on various datasets.

Dataset VAD ECAPA-TDNN proposed

offline online

COST278 proposed 14.2 13.4

ground-truth 12.6 10.7

RTVE2018 proposed 11.0 11.7

ground-truth 8.8 9.2

RTVE2020 proposed 24.0 18.8

ground-truth 21.9 16.0

RUNDKAST proposed 13.4 13.2

ground-truth 10.1 9.7

Finally, we have evaluated the proposed system also on datasets that are a bit
far from our target domain but widely used in the community: the AMI meeting
corpus [3] and DIHARD II [25] dataset. In the former case, the AMI full Mix-
Headset evaluation protocol proposed in [16] is employed. The AMI evaluation
uses the same clustering parameters as the previous experiments. For DIHARD
II, the clustering context is smaller with block size set to 100, look-ahead to 100,
and T2 threshold to 0.35. These values have been found on the development set,
resulting in a smaller latency of around 3.6 s.

The results in Table 6 show that our method achieves results comparable to
other existing methods, but there is room for further improvement. This holds,
namely in the processing of segments containing overlapping speech, which were
the source of most of the errors and do not occur to such a large extent in our
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target broadcast data. However, our diarization system has the advantage of
requiring only one CPU core, while other systems require more computational
resources, such as multiple CPU cores or GPUs. For example, the most powerful
system [33] achieves an RTF of 0.1 using an NVIDIA R© Geforce RTX 3090 GPU.

Table 6. DER [%] results on AMI and DIHARD II test sets.

Dataset System

Proposed [10] [33] [6] [32]

AMI 21.2 – 19.0 27.5 –

DIHARD II 28.2 27.3 23.1 34.1 25.8

7 Conclusions

This work has focused on SD in streamed data. For this purpose, a new app-
roach has been proposed. It consists of three consecutive phases. In the first one,
speaker embeddings are extracted using SE-ResNet architecture, which is opti-
mized by adding buffers and limited application of the stride. Then the VAD is
applied, which utilizes the extracted embeddings and filters them using a single-
layer binary classifier, whose output decisions are smoothed. The third (last)
step makes use of block-online k-means clustering with a built-in look-ahead
mechanism.

We compared our diarization scheme with a recent offline ECAPA-TDNN-
based reference system on various broadcast datasets as well as with other online
approaches on the out of domain but widely used AMI and DIHARD II datasets.
All of the achieved results have demonstrated that the proposed method yields
solid results. At the same time, it is capable of processing the streamed data
just on a CPU with a low real-time factor below 0.1 and with a total latency of
around 5.5 s.
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Abstract. In this paper, we present CML-TTS, a recursive acronym for CML-
Multi-Lingual-TTS, a new Text-to-Speech (TTS) dataset developed at the Center
of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias
(UFG). CML-TTS is based on Multilingual LibriSpeech (MLS) and adapted
for training TTS models, consisting of audiobooks in seven languages: Dutch,
French, German, Italian, Portuguese, Polish, and Spanish. Additionally, we pro-
vide the YourTTS model, a multi-lingual TTS model, trained using 3,176.13 h
from CML-TTS and also with 245.07 h from LibriTTS, in English. Our purpose
in creating this dataset is to open up new research possibilities in the TTS area
for multi-lingual models. The dataset is publicly available under the CC-BY 4.0
license (https://freds0.github.io/CML-TTS-Dataset).

Keywords: text-to-speech · dataset · multilingual

1 Introduction

Text-To-Speech (TTS) systems have received a lot of attention in recent years due to the
great advance provided by the use of Deep Learning, which allowed the popularization
of virtual assistants, such as Apple Siri [10], Amazon Alexa [28] and Google Home
[8]. Traditional TTS systems, according to [32], were composed of several specific
modules, which are difficult to develop, such as a text analyzer, a grapheme-to-phoneme
converter, a duration estimator, and an acoustic model [37]. Deep learning [9] allows the
integration of all these modules into a single model, producing spectrograms from texts,
with good performance and quality [2]. As examples, check [12,16,17,26,30–33,35].

The difficulty in training models based on Deep Learning is that these models, such
as [26,30–32,35], require a greater amount of data for training. For this reason, most
current TTS models are designed for the English language [12,16,17,26,30,33], which
is a language with many open resources. The main datasets available for training TTS
models in the English language are Voice Cloning Toolkit (VCTK) [36], LJSpeech [13]
and LibriTTS corpus [38]. VCTK [36] is a dataset comprising a total of 44 h of record-
ings, with 109 native English speakers, in which each speaker reads approximately 400
sentences. In VCTK, recordings were made in a studio, with high quality, and a sam-
pling rate equal to 48 kHz. LJSpeech is a single-speaker reading dataset in English,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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which contains 24 h of audiobook reading with a sampling rate equal to 22 kHz, whose
recordings come from the LibriVox project. LibriTTS is a dataset adapted from the Lib-
riSpeech [25] corpus, which contains 585 h of speech at 24 kHz, and is composed of
2,456 speakers.

With the increasing availability of datasets in languages other than English, sev-
eral [19,20,23,39] researches are focusing on multi-lingual TTS models, which can be
trained concurrently in different languages, or that are easily adapted to other languages.
Lux and Vu [20] present techniques to transfer learning from high-resource languages to
low-resource languages, using articulatory and phonological features. Zhang et al. [39]
make modifications to the architecture of Tacotron-2 [30], incorporating a speaker and
a language embedding, to develop a model capable of synthesizing audio of different
speakers in different languages. Nekvinda and Dusek [23] also adapt Tacotron-2 to pro-
duce a multi-lingual model, which uses different levels of sharing encoder parameters.

Unlike Speech-to-Text (STT) datasets, TTS datasets require good quality audio,
preferably recorded in studio with a sample rate of at least 22 kHz, and transcripts con-
taining punctuation. Therefore, multilingual datasets for STT systems, such as the Mul-
tilingual LibriSpeech (MLS) [27], Common Voice [1] or TedX [29], cannot be directly
applied in training TTS models. In view of this, the aim of this work is to create a multi-
lingual dataset for training TTS models. For that, we present the CML-Multi-Lingual-
TTS (CML-TTS) dataset, a version based on MLS dataset, adapted for training TTS
models. CML-TTS is derived from readings from LibriVox and consists of audiobooks
in seven languages, with a total of 3,233.43 h and 613 speakers with a sampling rate
equal to 24 kHz.

This work is organized as follows. Section 2 presents information about CML-TTS,
describing its creation process. Section 3 presents details about the YourTTS model.
Section 4 shows the results of the experiments performed. The conclusions are pre-
sented in the final Section.

2 CML-TTS

CML-TTS is a dataset composed of reading audiobooks from the LibriVox1 project,
which uses books from Project Gutenberg2, released in the public domain. In this way,
it is possible to make CML-TTS available also in the public domain. It consists of
recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, with
a sampling rate of 24 kHz. The following are details about the CML-TTS creation
process.

2.1 Data Processing Pipeline

The CML-TTS data processing pipeline consists of four steps. The first step is to down-
load the original audios in mp3, using the LibriVox API, referring to the audiobooks
present in the target languages. These languages were selected because they are the

1 https://librivox.org/.
2 https://www.gutenberg.org/.

https://librivox.org/
https://www.gutenberg.org/
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same ones present in the MLS dataset, with the exception of English, which was not
selected because there is already a large number of datasets available. After the audio
files are downloaded, they are converted to wav format with a sample rate of 24 kHz,
and those with a lower sample rate are discarded.

The second step is to retrive punctuation for each sentences in the MLS, which
have no punctuation. For this, the textbooks with punctuation are downloaded. For each
sentence S = {w1, w2, ..., wn} formed by a sequence of n words w, a search is per-
formed for the equivalent sentence P = {wp1, wp2, ..., wpm} formed by a sequence of
m words/punctuations wp, where m ≥ n. This is done by defining a search window of
length len, for each sentence S, which is slided through the textbook, word-by-word, in
order to find the equivalent sentence P . Due to differences in spelling, spaces, hyphen-
ation, etc., it was defined len equal to 90% of the length of S. For sentences comparison,
a similarity metric based on Levenshtein’s distance is used, normalized between 0 and
1, disregarding punctuation and blank spaces. When finding a segment with similarity
>0.5 the length of the search window is incrementally increased, word-by-word, until
reaching the maximum similarity value. Otherwise, the search window is slided by the
rest of the text, and the process is repeated. This entire step is presented in Algorithm 1.

Algorithm 1. Algorithm Search Punctuated Sentence
P ← sentence of the Textbook defined by the search window
if P has minimal similarity with S then

Iteratively increase the length of the sentence
else

Slide the Textbook search window to define a new sentence P
Repeat the search algorithm for the new sentence P

end if

Analyzing the LibriTTS dataset, it was verified that the segments have durations
between 1 and 20 s. However, MLS segments have durations between 10 and 20 s, that
is, it does not have segments with a duration of fewer than 10 s. Therefore, in the third
step, segments longer than 15 s were divided according to the text punctuation, that is,
an audio segment, formed by two text sentences separated by a dot, is divided into two
audio segments. This step was performed using Aeneas3 an audio-text alignment tool.

In this process, the sentence with the greatest similarity may not be the correct sen-
tence spoken in the audio. Or, there may be failures in the audio-text alignment of the
segmented sentences, causing an error in the cutting of the audio segments. Therefore,
in the last step, validation of the texts is carried out using an STT model to transcribe
audio segments and calculate the similarity between the text of the segment and its
transcription. The transcription is performed using the Wav2Vec 2.0 XLSR Large [7],
without any language model, trained originally in 53 languages and fine-tuned individ-
ually in each of the languages present in CML-TTS, using the Common Voice dataset
[1] version 6.1.

3 https://www.readbeyond.it/aeneas/docs/index.html.

https://www.readbeyond.it/aeneas/docs/index.html
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Finally, a similarity metric based on Levenshtein distance is calculated between the
transcript and the sentence. The value of this similarity is normalized between 0 and 1,
and if the value is less than 0.9, the sentence and the audio are discarded. In this way, a
minimum quality of the CML-TTS is guaranteed. The entire Data Processing Pipeline
can be seen in Fig. 1.

Fig. 1. The data processing pipeline is divided into four steps: (1) downloading the original audio;
(2) text normalization, adding punctuation; (3) segmentation of the audio in smaller parts; (4)
validation of texts through audio transcription.

2.2 CML-TTS Statistics

Table 1 presents the total duration in hours of each language subsets present in the
CML-TTS dataset, and also of the Train, Test and Dev sets. The same Train, Test, and
Dev sets of the MLS dataset was kept. In this table, you can also check the duration of
the sets in relation to the speaker’s gender. A model trained in VoxCeleb 2 [6] dataset
was used for gender classification.

Table 1. Total hours and total speakers of Train, Test and Dev sets present in the CML-TTS
dataset.

Language Duration Speakers

Train Test Dev Train Test Dev

M F M F M F M F M F M F

Dutch 482.82 162.17 2.46 1.29 2.24 1.67 8 27 3 3 2 4

French 260.08 24.04 2.48 3.55 3.31 2.72 25 20 8 9 10 8

German 1128.96 436.64 3.75 5.27 4.31 5.03 78 90 13 17 13 15

Italian 73.78 57.51 1.47 0.85 0.40 1.52 23 38 5 5 4 6

Polish 30.61 8.32 0.70 0.90 0.56 0.80 4 4 2 2 2 2

Portuguese 23.14 44.81 0.28 0.24 0.68 0.20 20 10 5 4 6 3

Spanish 279.15 164.08 2.77 2.06 3.40 2.34 35 42 10 8 11 9

Total 3,176.13 28.11 29.19 424 94 95

In Fig. 2 pie charts can be checked indicating the percentage considering the dura-
tion of each language (on the left), the percentage of quality of the samples (at center),
and the percentage in relation to the gender of the speakers (on the right). The quality
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of the samples was verified by calculating the SNR using Waveform Amplitude Distri-
bution Analysis (WADA) [15], and samples with WADA ≥ 40 dB, 10 dB < WADA <
40, and WADA ≤ 10 dB are indicated respectively as high, medium and low quality.
In the CML-TTS dataset, there are 613 speakers, of which 325 are female and 288 are
male. However, when checking the total hours of each gender, the dataset is unbalanced,
presenting 2.278 h for the male gender and 897 h for the female gender.

Fig. 2. CML-TTS analysis: on the left, the percentage of the duration of each language in the
CML-TTS; in the center, the percentage of samples quality using the WADA; on the right, the
percentage of duration in relation to the speaker’s gender.

Figure 3 shows the violin plot of the number of words per sentence of each of the
sub-datasets present in CML-TTS. It can be seen that the sub-datasets are similar in
terms of distribution, with an average number of words close to 20. Some differences
were caused by the sentence segmentation process and also by the validation process,
detailed in Sect. (2.1), which discarded some segments. In this figure, it is also noticed
that there is a slight difference when analyzing the gender of the speakers, but it does
not affect the quality of the dataset.

Fig. 3. CML-TTS number of words violin plot per language.

Figure 4 shows the violin plot of the duration per sentence of each of the sub-
datasets present in CML-TTS. It can be seen that the segmentation step was effective,
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making the segments last between 1 and 22 s. Each of the sub-datasets has an average
sentence length of between 8 and 12 s. However, a disadvantage of the segmentation
and validation process is that it made the dataset unbalanced in terms of the duration of
the segments, with a greater number of segments with durations close to 12 s. In this
figure, it is also verified that there is a slight difference in relation to the gender of the
speakers.

Fig. 4. CML-TTS segments duration violin plot per language.

Duration diversity is required for training successfully most TTS models. For this
reason, it is interesting to analyze how our dataset is near or far from LibriTTS. There-
fore, Fig. 5, on the left, shows a comparison of the duration of the segments between the
CML-TTS, LibriTTS, and MLS datasets. It can be seen that most of the LibriTTS seg-
ments have a duration of less than 10 s, while the MLS segments are distributed between
10 and 20 s. The CML-TTS segments are distributed between 0 and 20 s. There was a
decrease in the average duration of the segments, which was originally 18 s in MLS,
decreasing to 12 s in CML-TTS, while the average in LibriTTS is closer to 2 s. Due
to the sentence validation process, there was a drastic reduction in the total number of
segments with duration close to 10 s.

Also looking at LibriTTS, very long sentences with a large number of words are not
desired. Figure 5, on the right, shows a comparison of the number of words in sentences
between the CML-TTS, LibriTTS, and MLS datasets. With the segmentation process,
similar to the length of the audio segments, there was also a reduction in the average
number of words in the sentences, falling from 35 in the MLS to 20 in the CML-TTS.
Therefore, the segmentation process made CML-TTS closer to LibriTTS, which aver-
ages 10 words per sentence.

3 YourTTS Model

YourTTS [4] is a multilingual zero-shot multi-speaker TTS model, that was built upon
VITS [17] architecture. The goal of zero-shot multi-speaker TTS models is to generate
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Fig. 5. Comparison among CML-TTS, LibriTTS, and MLS. On the left: durations of segments;
right: number of words per sentence.

speech of speakers not seen during training, employing only a few seconds of the target
speaker’s voice. Although the YourTTS model was proposed on the zero-shot multi-
speaker scenario and the main objective of the multilingual training was to reduce the
number of speakers needed to develop a zero-shot multi-speaker TTS model in a tar-
get language. YourTTS multilingual results are very good and it can do cross-lingual
speaker transfer with good quality as well. In addition, the model can generate high-
quality speech in the 3 languages that the model was trained in. Although the authors
did not explore code-switching [23], YourTTS can do code-switching with great quality
producing the word of the other language with naturality and great speaker similarity
even for speakers not seen in training.

YourTTS architecture is composed of a Text-Encoder, Posterior-Encoder, Duration
Predictor, Flow-Based Decoder, Vocoder, and a pre-trained Speaker-Encoder.

Text-Encoder has Transformer-based architecture, as used in [3,16,17] consisting
of 10 transformer blocks and 196 hidden channels. For multilingual training, the authors
concatenated 4-dimensional trainable language embeddings into the embeddings of
each input character.

The Posterior-Encoder, proposed by [17], is responsible for connecting the Flow-
Based to the Vocoder during the training or voice conversion mode. Its architecture is
composed of 16 non-causal residual blocks, as per [24]. The Posterior-Encode receives
as input a linear spectrogram and speaker embedding and produces latent variable z,
which is an intermediate representation, similar to a mel-spectrogram, however, here
this representation is learned by the model. During inference, the Posterior-Encoder is
not used and the latent variable z is predicted by the Flow-Based Decoder.

As Vocoder it uses the HiFi-GAN model [18] with the discriminator modifications
introduced by [17].

The pre-trained Speaker-Encoder is based on the H/ASP [11] architecture and was
trained with the Prototypical Angular [5] plus Softmax loss functions in the VoxCeleb
2 [6] dataset. The Speaker-Encoder was used to extract speaker embeddings that were
conditioned on the Duration Predictor, Flow-Based Decoder, and Vocoder.
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4 Experiments

This section describes the experiments performed using the YourTTS model with CML-
TTS and LibriTTS. The LibriTTS dataset was included in order to improve the gener-
alization of the model for speakers not seen during training because LibriTTS has a
large number of speakers, which is approximately 1100 speakers. Thus, the model was
trained in eight languages: Dutch, English, French, German, Italian, Polish, Portuguese,
and Spanish.

4.1 Training

YourTTS was trained using the Train subset of the CML-TTS and LibriTTS datasets
(clean-100 and clean-360). To speed up the training, we carry out transfer learning from
the official checkpoints, trained in three languages: English, Portuguese and French,
using the VCTK [36], TTS-Portuguese [2] and M-AILABS datasets [21]. The training
was performed on a DGX-A100, with 82G of memory, for a maximum period of two
weeks, using the AdamW optimizer, with a learning rate equal to 0.001, betas equal to
0.8 and 0.99, and batch size equal to 60.

As Speaker-Encoder, we followed the YourTTS paper and uses the H/ASP [11] pre-
trained using the VoxCeleb2 [6] dataset with Prototypical Angular [5] together with
Softmax as loss function. The embeddings were previously extracted to save computa-
tional resources.

4.2 Results

The objective of these experiments is to evaluate whether the CML-TTS has sufficient
quality for training TTS models, therefore, we only evaluate the languages present in
the CML-TTS dataset, since the use of LibriTTS was only to increase the generalization
power of the model due to a large number of different speakers.

To evaluate the similarity between the synthesized speech and the ground truth, we
calculate the Speaker Encoder Cosine Similarity (SECS) [4] between the embeddings
extracted from the generated audios and from the ground truth audios. In SECS, the
closer to 1, the greater the similarity, while the closer to -1 indicates low speaker simi-
larity.

The embeddings were extracted using the model proposed by [34] trained on the
VoxCeleb 1, 2 datasets [6,22]. The implementation is available in the Resemblyzer
package [14], which is the same one used in the YourTTS paper, in order to allow a fair
comparison.

A total of 1,000 sentences for each language were synthesized using different speak-
ers. Since some languages in the CML-TTS have a Test set with fewer than a thousand
samples, the sentences were randomly extracted from the Dev and Test sets, which were
not used during the training phase. Ten speakers were selected from the Train set and
another ten from the Test and Dev sets, or all speakers when the total was less than ten.
The evaluation process using unseen speakers is named the zero-shot way.

Table 2 shows the results of the SECS metric of seen and unseen speakers during
training for each of the languages present in CML-TTS. The worst result was obtained
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in the Portuguese language, however, in the original paper YourTTS presented SECS
values for the Portuguese language equal to 0.740, in the worst experiment, and 0.798
in the best experiment. Our experiment for the Portuguese language presented a result
of the SECS metric equal to 0.777.

Table 2. Speaker Encoder Cosine Similarity (SECS)

Language SECS

Seen Unseen

Dutch 0.8181 ± 0.0050 0.8010 ± 0.0042

French 0.8299 ± 0.0044 0.8205 ± 0.0044

German 0.8366 ± 0.0046 0.8453 ± 0.0032

Italian 0.7904 ± 0.0069 0.7906 ± 0.0059

Polish 0.8280 ± 0.0039 0.8041 ± 0.0043

Portuguese 0.7772 ± 0.0063 0.7717 ± 0.0079

Spanish 0.8536 ± 0.0048 0.8180 ± 0.0050

To verify if the synthesized sentences were in agreement with the input text, we
performed the transcription of the synthesized audios using a Speech-to-Text model.
The model chosen was Wav2Vec 2.0 XLSR Large [7], the same used for validation
during the data processing pipeline in the Sect. (2.1). Using the transcripts and the
ground truth text, we calculated the Word Error Rate (WER) and Character Error Rate
(CER) metrics. CER metric is calculated according to the equation CER = S+D+I

N
where S is the number of substitutions, D deletions, I insertions, and N is the total
characters of the ground truth text. WER metric operates is similar, but operating at the
word level instead.

Table 3 shows the results of the WER and CER metrics of seen and unseen speak-
ers during training for each of the languages present in CML-TTS. In both metrics,
the language that presented the best results was Spanish, while Portuguese had the
worst results. However, this is explained because in Portuguese there was a significant
change in orthographic rules due to an Orthographic Agreement4 carried out in 1990,
to unify orthography among Portuguese-speaking countries. Therefore, this influenced
the results, given that the books present in LibriVox were published prior to this agree-
ment. It should also be considered that a language model was not used to transcribe the
audios.

4 https://www.instituto-camoes.pt/en/activity-camoes/what-we-do/teach-portuguese/
orthographic-agreement.

https://www.instituto-camoes.pt/en/activity-camoes/what-we-do/teach-portuguese/orthographic-agreement
https://www.instituto-camoes.pt/en/activity-camoes/what-we-do/teach-portuguese/orthographic-agreement


CML-TTS: A Multilingual Dataset for Speech Synthesis in Low-Resource Languages 197

Table 3. WER and CER metrics between ground truth sentences and transcriptions using
Wav2Vec.

Language WER CER

Seen Unseen Seen Unseen

Dutch 0.3223 0.3062 0.1192 0.0941

French 0.2909 0.1636 0.1330 0.0490

German 0.2305 0.1737 0.0830 0.0407

Italian 0.2956 0.2002 0.1260 0.0574

Polish 0.3133 0.3285 0.0955 0.0970

Portuguese 0.4134 0.4548 0.1985 0.2098

Spanish 0.1862 0.1039 0.07947 0.0243

5 Conclusions

We have presented the CML-Multi-Lingual-TTS dataset, a dataset composed of Lib-
rivox recordings, comprising audiobooks in seven languages: Dutch, German, French,
Italian, Polish, Portuguese and Spanish. This dataset was created from the MLS dataset,
performing a data processing step in order to make it more suitable for training TTS
models. Statistical data of the dataset were presented, comparing it with the main
dataset for training TTS models, LibriTTS. Experiments were also performed using the
YourTTS model, training it with the CML-TTS and LibriTTS datasets, demonstrating
that the dataset is suitable for training TTS models.
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this project possible.
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Abstract. We present the process of developing a modern end-to-end
(E2E) automatic speech recognition (ASR) system for Norwegian (NO),
which is a challenging language with many dialects and two written stan-
dards (Bokm̊al and Nynorsk). Since the existing speech corpora for this
language are severely limited, we have had to acquire large amounts of
additional data. This acquisition has been done by automatic processing
of publicly accessible broadcast and parliament archives, YouTube and
podcast channels, and also audiobooks. The data-harvesting process has
been controlled by the ASR system, whose model has continuously been
updated on the extracted chunks of speech. The final model has been
trained on 1,246 h of Norwegian and further enhanced by transfer learn-
ing from an existing Swedish model. The performance of the ASR system
has been evaluated on an 18-h collection of test sets (most of them pub-
licly available) representing different application areas. Our best word
error rate (WER) achieved on this collection is 7.6%, which is better
than the results obtained from Google and Microsoft cloud services.

Keywords: speech recognition · end-to-end system · Norwegian ·
transfer learning

1 Introduction

Norwegian is a European language, which is very specific in terms of automatic
speech recognition. It is used by 5.3 million people who speak many local dialects
and use two different written standards (Bokm̊al and Nynorsk) in official com-
munication. This reflects both the rugged nature of the country as well as its
historical development, in which the periods of Danish and Swedish rule played
an important role.

Earlier, when developing a traditional ASR system based on a lexicon, a
language model (LM), and an acoustic model (AM), one had to take into account
all the spelling, phonetic, grammatical, and morphological variants and compile
an extensive vocabulary with many alternative pronunciations [15]. All of these
variations also had to be captured in the AM and LM, which was a challenge
for a language of that size with limited spoken and written resources.
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The advent of modern end-to-end systems [21] has greatly facilitated devel-
opment, because extensive dictionaries with explicit pronunciations have become
unnecessary. These systems can encapsulate the lexical, syntactic, and phonetic
features within their complex architectures based on neural networks (NN). Since
many of the existing E2E platforms are available as open-source frameworks, one
of the main tasks in the ASR research is now to effectively gather data suitable
for training these systems.

To support and encourage research in the Norwegian speech/language pro-
cessing area, the National Library of Norway has created a web portal called
Spr̊akbanken1 where language corpora collected by other (primarily academic)
institutions are stored and made freely available. Spoken data represents mainly
read or dictated passages but also includes collections of talks in local dialects.
In 2021, more than 100 h of recordings from the Norwegian parliament were
added together with their official transcripts [20]. Recently, several works have
been published that utilize this data for investigating various NN-based ASR
approaches, such as Google’s DeepSpeech2 platform [16,20], or ESPNet frame-
work [15]. Results reported in these works look promising, but they were achieved
mainly on test sets that matched the data used in training.

Our research aims to develop a general-purpose ASR system that could be
deployed in real applications. This goal requires much larger amounts of training
material in which various types of speech (read, planned, emotional or sponta-
neous) and acoustic conditions (clean, noisy, studio, or outdoor) prevail, and
diverse topics are covered. We propose and implement procedures that can iden-
tify sources of speech in the public domain and convert that speech into data
suitable for training E2E systems. Since resources in Norwegian are limited,
we also investigate several possibilities to combine them with those from other
languages.

2 Overview of End-to-End Systems

End-to-end ASR systems have become the subject of intensive scientific efforts
in the most recent decade. Their popularity stems from utilizing a single (yet
complex) NN-based architecture that learns to convert an input speech signal
directly to the corresponding written text. They have become possible after the
introduction of several key concepts; namely, the connectionist temporal classi-
fication (CTC) [8] and its successful application to speech [9], attention-based
encoder-decoder (AED) design [4] and sequence transduction with recurrent neu-
ral networks (RNN-T) [7].

The first scheme (CTC) utilizes a dynamic programming strategy (similar to
that used in hidden Markov models) to map speech frames to the output symbols,
which may be characters, words, or word fragments. The second one (AED) tries
to solve the same task via the encoder-decoder NN structure supported by an
attention mechanism that identifies regions belonging to individual parts of the

1 https://nb.no/sprakbanken/.

https://nb.no/sprakbanken/
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text. The RNN-T solves the forced segmentation alignment problem in ASR
using three subnetworks: the transcription, prediction, and joint networks.

What is common to all of these systems is the fact that they require large
amounts of annotated speech to reach the state-of-the-art performance level. For
major world languages, e.g., English or Chinese, the requirement is for tens of
thousands of hours [21]. A thousand-hour training set is considered a minimum.
For low-resource languages, multilingual techniques such as transfer learning [3]
or multilingual training [6] are almost necessary to improve performance. They
have been tested for various language groups [18], including the Nordic one (Nor-
wegian, Swedish, and Danish) [24]. Another way to address the lack of training
data is to use a concept known as wav2vec [2]. Such a system is first pre-trained
on large amounts of unlabeled audio data (which can represent different lan-
guages) and then fine-tuned using a much smaller set of annotated speech in the
target language. However, if gathering at least 1,000 h in the given language is
possible, a monolingual system built from scratch can outperform the multilin-
gual ones.

3 Our ASR System

In this work, we employ the ESPNet platform [23] to enable an E2E architecture
combining CTC and AED techniques. Our model is thus composed of three parts:
a shared encoder represented by a conformer [10] and two decoders – CTC-based
and attention-based – using a CTC weighting factor of 0.3.

The shared encoder is composed of 12 blocks, each with eight attention heads,
and is preceded by two sub-sampling convolutional layers (kernel size 3× 3 and
stride 2). The CTC decoder uses a linear layer to transform the encoder output to
the CTC activation, while the attention decoder is a transformer with six blocks,
each containing eight attention heads. In each block, the attention dimension is
set to 512, and the position-wise feed-forward layer has 2,048 units. The entire
model consists of 136M parameters.

To parameterize the input speech, we use 80-dimensional Mel-spectral filter
banks (25 ms), and we apply SpecAugment [17] to augment the training data
on the fly. The duration of each training recording is limited to 25 s. We train
the model for 120 epochs using the Adam optimizer with a batch size of 20.
The final model is obtained by averaging 30 epochs with the lowest loss values
on a 10-h development set. For decoding, we use the CTC prefix beam search
algorithm and have implemented our own decoder that can transcribe streamed
audio signals with a latency value lower than 2 s. The basic text units used in the
decoding are the 5,000 most frequent word fragments derived from the training
corpus by the SentencePiece toolkit [12].

Since we have previously adopted this architecture for several other lan-
guages, we can combine the already developed models with the new ones; this
approach can mainly be beneficial in the initial (bootstrapping) phase.
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4 Development and Experimental Work

4.1 Test Data Used for Performance Evaluation

As the development has been carried out in several phases and iterative steps,
we need an extensive set of test data to evaluate the results and optimize the
subsequent procedures continuously. We have thus created a large test collection
to cover various application areas and operating conditions. Where possible, we
include official test parts of public datasets so that anybody could use them for
comparison. The collection is presented in Table 1, where we show the relevant
statistics (hours of speech and numbers of words), the written standard used in
the reference transcripts (Bokm̊al or Nynorsk), and the basic speech and channel
characteristics.

The first three sets represent data publicly available in Spr̊akbanken
(described in more detail in Sect. 4.2). The NST5h and NPSC5h sets are 5-h
subsets randomly chosen from the official test parts of the NST (read speech)
and NPSC (parliament speech) datasets. We have decided to make this reduc-
tion because the complete test sets would be too large (125 h for NST and 12 h
for NPSC) compared to the rest of the collection. The TALE set is created from
recordings in Part3 of the NB TALE data that consists of 2-min spontaneous
talks, oriented mainly on personal hobby activities, given by speakers in 12 Nor-
wegian dialects.

The next two sets represent broadcast speech occurring in news programs
of Norwegian major TV Company NRK. The RUNDKAST dataset [1] contains
recordings from the early 2000s, and the test set is made of 3 complete news
shows. The NRK set is focused on more recent broadcast TV programs (from
2022) and was prepared by the partner team at the NTNU in Trondheim.

The FLEURS set [5] is a test subset of the eponymous multi-lingual data
collected by Google. It has been frequently used in the speech and language
community recently. The abbreviation CV stands for Mozilla’s Common Voice
data2. Its Norwegian test part is tiny but has a unique role in the collection
because it is the only set with Nynorsk-only transcripts. The last set is an audio-
book titled Kampen on Norden (The Battle of the North in English). We have
chosen this documentary text dealing with events in Nordic countries during
WWII because it contains many non-Norwegian names, foreign locations, and
professional terms that never occurred in the training data. This feature allows
us to investigate how the models learn to generalize.

2 https://commonvoice.mozilla.org/.

https://commonvoice.mozilla.org/
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Table 1. Norwegian test set collection (Bk – Bokm̊al, Nn – Nynorsk).

Test set Hours Words Transcript Speech style Environment

NST5h 5.0 28,809 Bk read office

NPSC5h 5.0 45,919 Bk/Nn planned/spontaneous large hall

TALE 0.4 3,366 Bk spontaneous office

RUNDKAST 1.0 9,305 Bk/Nn read/planned/spontaneous studio/outdoor/phone

NRK 1.1 10.456 Bk/Nn read/planned/spontaneous studio/outdoor/phone

FLEURS 1.2 7,615 Bk read/spontaneous home

CV 0.3 1,728 Nn read home

Abook 4.0 36,427 Bk read studio

Total 18.0 142,005

4.2 Model Bootstrapping Phase

In the first phase, we needed to create an initial Norwegian model. For that
purpose, we have utilized mainly the freely available data from the Spr̊akbanken
portal. There are four major sources of annotated speech there. The largest is the
NST dataset, created in the early 2000s by Nordisk Spr̊akteknology Company
to support the development of ASR (dictation) programs. The set comprises
read utterances that cover lexical and phonetic features relevant to Norwegian.
Its training part contains 450 h of recordings from about 1,040 speakers. Since
many sentences are repeated, we have limited each unique one to 3 occurrences.
This has reduced the size of the NST training set to 348 h.

The next resources are the NB TALE and TUVA sets. Both are made of
mainly read passages, too, but their content is more natural compared to the
NST set. The primary goal of the former is to capture multiple Norwegian
dialects (Part1) and also speech from non-native speakers living in Norway
(Part2). We have used 28 h for training. The latter (TUVA) was created by
Max Manus AS company and contains mainly read speech based on newspa-
per articles. Because a part of these texts is the same for all 40 speakers, we
have made a similar reduction as in the NST case, which has resulted in 14 h of
(mostly unique) training data.

The Norwegian Parliamentary Speech Corpus (NPSC) represents speech from
plenary sessions in the Norwegian parliament recorded in 2017–2018. Its latest
(extended) version comes from 2021 [20]. The corpus is split into the train-
ing, evaluation, and test parts, with 100, 13, and 12 h of speech, respectively.
The NPSC set is the only one in this collection that contains natural (not
prompted) speech, and its correct transcription is crucial for the training. There-
fore, we performed an automated checking procedure before adopting this set:
We have trained a model on the remaining three sets and used it to transcribe
the NPSC training part. By comparing the ASR output to the reference anno-
tations, we have identified the files with a significantly large mismatch. A brief
check unveils that some contain non-Norwegian utterances, and the others are
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probably wrongly annotated. Hence, the data used for the training has a size
of 97 h.

Finally, we have added the training parts of the already mentioned datasets
FLEURS and CommonVoice, although their sizes are tiny compared to the
others.

The following text will refer to all these freely available speech resources as
collection F. Its constituents and their relevant statistics are listed in Table 2.

Table 2. Train collection F – freely available Norwegian data.

Train set Hours Speakers Transcript Speech style Environment

NST 348 1040 Bk read office

TALE 28 380 Bk read office

TUVA 14 40 Bk/Nn read office

NPSC 97 267 Bk/Nn planned/spontaneous large hall

FLEURS 8 3 Bk read home

CV 1 26 Nn read home

Total 496

We have trained the first model using all the currently available data (496 h)
and evaluated it on the complete test collection. The results in the form of word
error rate values are presented in the first row of Table 3. We can see that the
WER value gets below 10% only for two sets (NST5h and NPSC5h), which is
obvious because this type of data is well represented in the training set.

The performance can be further improved if we utilize one of the transfer
learning methods presented, e.g., in [22]. The simplest yet efficient one is a
parameter initialization from an existing model. It can be a model of another
language, provided that the architectures match. In our case, we initialize all
the parameters of the shared encoder of our hybrid CTC/AED model. We have
conducted experiments with a German model (trained on some 3,000 h) and a
Swedish one (1,226 h [14]).

We add the results to Table 3. It is evident that the method has helped in both
cases. Unsurprisingly, the more significant improvement has been achieved with
Swedish because it belongs to the same branch of North-Germanic languages. Let
us also note that the initialized model yields significant WER reduction, mainly
in the domains not so well represented in the training set. We have utilized
this fact in the iterative data harvesting scheme (described in the next section)
and used the Swedish-initialized models in all iteration steps to boost the data
collection process.



206 J. Nouza et al.

Table 3. WER [%] for various models in bootstrapping. NO(F) means trained on
Norwegian collection F, ‘init’ means initialized by German (DE) or Swedish (SWE)
model. WAvg is the weighted average over all of the test sets.

Model NST5h NPSC5h TALE RUNDKAST NRK FLEURS CV Abook WAvg

NO(F) 5.7 7.8 16.4 24.8 21.5 10.0 26.9 20.2 13.2

NO(F) init DE 5.4 7.6 17.1 22.6 21.4 9.0 21.2 19.6 12.6

NO(F) init SWE 4.2 6.2 15.2 21.2 19.6 7.8 20.3 16.2 10.7

4.3 Automatic Data Harvesting from Public and other Sources

The main goal of this phase is to enlarge the training set by utilizing pub-
lic sources containing speech. There are two main ones that provide both spo-
ken and text content. One is the Norwegian parliament, whose archives include
videos taken during all plenary sessions and their official transcriptions3. The
other is the Norwegian public TV and radio company NRK. According to Euro-
pean Union law, it must broadcast a specific part of its programs (particularly
news) with subtitles. These programs are available on the NRK’s webpage4. Both
sources could be used for semi-supervised training because audio data is accom-
panied by some text. Unfortunately, the relation between the speech records
and the provided text is rather loose. This is especially true for the TV subti-
tles, which need to be shorter and condensed versions of what is actually said.
The parliament transcriptions are usually closer to the actual spoken content,
but they are always more or less modified to meet the official standards. This
means we must carefully process both the speech and text files to get reliable
data for the ASR training.

In our harvesting scheme, the data is processed as follows: First, if the source
is made up of video files, these are converted to audio ones. Usually, they are
very long (up to several hours) and must be split into chunks shorter than 25 s.
This is performed by the available ASR system, which also employs a voice
activity detector [13] to determine suitable split points. The ASR output is
aligned (using the Levenshtein distance method) with the provided reference
text, which is then split into fragments assigned to the chunks. (During the
alignment, numbers and abbreviations are converted into words with respect to
what was spoken.) The second phase runs in iterations. In each iteration, we use
the ASR system with an updated model to transcribe the chunks and compare
the ASR outputs to the reference fragments. Those with a character mismatch
rate below 2% are added to the training set. After processing all of the available
chunks, a new model is trained. This procedure is repeated until the amount of
newly acquired training data drops below a reasonable level. This process can be
fully automated. However, we have found it helpful to introduce minor human
assistance after each iteration step. A special tool identifies the most frequent

3 https://stortinget.no/no/Hva-skjer-pa-Stortinget/Videoarkiv/.
4 https://tv.nrk.no/programmer/nyheter/.

https://stortinget.no/no/Hva-skjer-pa-Stortinget/Videoarkiv/
https://tv.nrk.no/programmer/nyheter/
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errors (typically foreign names) and prepares a selection of files that contain
them for easy auditory check and manual editing.

We have applied this iterative scheme to all the data that could be down-
loaded from the two sources. In the parliament case, we have used archive data
from 2016–2022, excluding those already present in the NPSC set. From the
NRK web, we have processed mainly the TV news programs broadcasted during
the last five years. Note that we must process several thousands of hours to get
the final 309-h set, as only a tiny fraction passes the given criteria.

The same approach has also been applied to the RUNDKAST dataset [1].
It contains about 70 h from NRK programs broadcasted in the early 2000s.
In this case, the provided transcriptions are almost verbatim because human
annotators had made them. However, the above-described automatic scheme is
also beneficial because it removes non-speech parts (mostly music), makes the
splits and alignment, and eventually selects those chunks (35 h) that safely meet
the criteria.

There are also several other sources with spoken content that are accompa-
nied by text, such as podcasts with published transcripts or YouTube videos
with subtitles, although their number is still quite limited. We have found some
and processed them in the way described above, resulting in an additional 50 h.

The basic facts on the harvested data (collection H) are summarized in
Table 4.

Table 4. Train collection H – data harvested from public sources.

Train set Hours Speakers Transcript Speech style Environment

Parliament 208 hundreds Bk/Nn planned/spontaneous large hall

NRK 101 hundreds Bk/Nn read/planned/spont studio/outdoor/phone

RUNDKAST 35 hundreds Bk/Nn read/planned/spont studio/outdoor/phone

Podcasts 36 tens Bk/Nn read/planned office/home

YouTube 14 tens Bk/Nn planned/spontaneous home/outdoor

Total 394

In order to further expand the volume and scope of the training corpus,
we have also considered other resources: audiobooks and ebooks. While there
is the possibility of free access to some texts in electronic form (e.g., project
Gutenberg5), the books available in this way are mostly old (copyright-free)
and without access to audio. Therefore, we have decided on a provider with paid
access6. We have chosen 30 pairs of audio and ebooks (with respect to their topic,
genre, narrator, and size) and purchased them in a downloadable format. The
books include the biography genre (e.g., Jens Stoltenberg, Michelle Obama, or
Elon Musk), novels and fiction books (to introduce various topics and emotional
narration style), and texts on health, media, philosophy, and traveling. Table 5
5 https://www.gutenberg.org/.
6 https://ebok.no/.

https://www.gutenberg.org/
https://ebok.no/
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provides a brief overview of this collection (denoted A). The same harvesting
approach has been used here because a) it is necessary to make the splits into
audio chunks and text fragments, and b) there is no guarantee that the written
and spoken text match precisely. In the case of the books, it is possible to harvest
about 95% of their content.

Table 5. Train collection A – data harvested from audiobooks.

Train set Hours Genre Transcript Speech style Environment

Abooks1 111 biography Bk read studio

Abooks2 193 novel/fiction/crime Bk read/emotional studio

Abooks3 52 lifestyle Bk read studio

Total 356

In Table 6, we present the results obtained after training the E2E models
using the additional data and compare them to the model trained on the free
resources. Note that both types of automatically harvested data (collections H
and A) contribute to a noticeable reduction in the WER values.

Table 6. WER [%] of models trained on collections F, H and A.

Model NST5h NPSC5h TALE RUNDKAST NRK FLEURS CV Abook WAvg

NO(F) 5.7 7.8 16.4 24.8 21.5 10.0 26.9 20.2 13.2

NO(FH) 4.7 5.9 15.1 12.0 14.0 7.8 20.8 15.6 9.6

NO(FHA) 3.9 5.6 13.7 11.5 13.0 6.9 21.1 11.6 8.1

4.4 Models Combining Norwegian with Swedish

In Sect. 4.2, we demonstrate that initializing the parameters of the shared
encoder in the Norwegian model by those of a previously developed Swedish
model is very helpful during the bootstrapping step and, namely, within the
iterative harvesting phase. It is also reasonable to experiment with some multi-
lingual data/model-combining approaches when we have exploited most of the
publicly available Norwegian sources and collected a total of 1,246 h. The natural
idea is to use Swedish for these experiments as well because it is a closely related
language, and we already have both speech data (1,226 h) and an E2E model.

Overall, we have explored three different multilingual techniques. The first is
the already utilized parameter initialization via transfer learning. The other two
represent multilingual training, i.e., they directly use the Norwegian and Swedish
data to train a joint model. The more straightforward of the two simply merges
the data and trains the final model as a monolingual one [18]. Alternatively, the
ASR system can be provided with language identity (LID) information, usually
in the form of a one-hot vector [11] that is appended to the input features
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during both the training and decoding. This information should guide the system
to provide better transcriptions of the target language. Only in this case, the
language of the decoded utterances must be known beforehand.

A comparison of our best monolingual model with the three multilingual
techniques is summarized in Table 7. The results show that the two multilingual
training approaches (see the last two rows of Table 7) fall short of expectations
as they do not perform better than the monolingual model. This is most likely
due to the confusion caused by the additional Swedish data, especially when the
amount of collected Norwegian speech exceeds 1,200 h. Surprisingly, the second
method, which utilizes auxiliary LID information, is even slightly worse. It is
known that multilingual training is generally much better when dealing with
severely limited data, as shown in [14]. On the other hand, initializing the Nor-
wegian model from a Swedish one has, to a great extent, been beneficial even
with more than 1,200 h of training data and has significantly improved the over-
all results (see the second row in Table 7). Moreover, this is computationally
much less expensive than the other investigated multilingual techniques.

Table 7. WER [%] of models combining Norwegian (FHA) with Swedish.

Model NST5h NPSC5h TALE RUNDKAST NRK FLEURS CV Abook WAvg

NO 3.9 5.6 13.7 11.5 13.0 6.9 21.1 11.6 8.1

NO init SWE 3.4 5.1 13.8 11.4 12.9 6.3 18.4 10.9 7.6

joint NO+SWE 3.9 5.7 13.8 10.7 12.7 7.0 44.4 11.5 8.4

LID NO+SWE 4.0 5.9 12.9 10.7 12.5 6.4 44.5 12.5 8.6

4.5 Performance Comparison to other Systems

There are only a few published works on Norwegian ASR, and we have found a
single paper whose authors used the same or similar test data. In [20], the NST
and NPSC sets are utilized in experiments with Google’s DeepSpeech2 platform
adapted to Norwegian. The authors train their system on the two sets and test
it on the NST, NPSC, and TALE sets. Their best WER values are 2.9%, 17.1%
and 37.3%, respectively (compared to ours 3.4%, 5.1%, and 13.8%).

To provide a broader perspective of our results, we have submitted all of
the test sets to two available ASR commercial cloud services that have Norwe-
gian in their portfolio: Microsoft Azure’s Speech to Text7 (version 03/2023) and
Google Cloud’s Speech-to-Text8 (version 03/2023). The received transcriptions
have been evaluated and scored in the same way as the outputs from our best
E2E system (with the Norwegian model initialized from the Swedish one).

Table 8 compares the WER values of the three systems. It is evident that
Google’s service performs significantly worse than the other two. Since there
is no public information about their system’s architecture and training data
7 https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text.
8 https://cloud.google.com/speech-to-text.

https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://cloud.google.com/speech-to-text
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used, we cannot comment on what the reason may be. The service provided by
Microsoft yields results that are similar to ours. Again, we have no information
about their system. However, we can notice that their results are slightly better
for those sets that have been publicly available for a long time. The extremely
low WER value (1.2%) achieved for the NST data may suggest that this resource
(including its test subset) might have been used in training, which could also
happen to other publicly available test sets. When evaluated on the complete
test collection, our system yields 0.5% lower weighted averaged WER value.

Table 8. WER [%] comparison of our best Norwegian system with commercial cloud
services.

Model NST5h NPSC5h TALE RUNDKAST NRK FLEURS CV Abook WAvg

our best 3.4 5.1 13.8 11.4 12.9 6.3 18.4 10.9 7.6

Microsoft 1.2 7.6 10.3 10.0 10.3 9.4 42.4 11.2 8.1

Google 17.7 30.6 30.1 27.2 29.0 19.5 50.4 36.2 28.7

4.6 Analysis of the Most Frequent Errors and Mismatches

All the presented results have been determined using the standard evaluation
procedure that takes the ASR output, aligns it to the provided text reference,
and counts the number of substitutions, insertions, and deletions. The WER
value is computed as a sum of these three errors normalized by the number of
reference words. If we analyze the aligned ASR and reference text sequences over
all of the test data, we can get more detailed information on the most frequent
errors and investigate their primary causes. We have made such an analysis, and
here are the major findings:

1. The primary source of errors in Norwegian ASR is the confusion between
the two written standards, Bokm̊al and Nynorsk. In real life, their choice
depends on a personal or regional/institutional preference. As any utterance
can be transcribed in two (sometimes quite different) ways, the ASR system
must decide which standard to use. Its decision depends on several factors
learned during the training, namely, which word variant was seen more often
in training, in which context, and also with respect to the similarity between
the spoken and orthographic form.
Since most of the training data is annotated in Bokm̊al (used by more than
85% Norwegians), there is a much higher probability that test data annotated
in Nynorsk will have higher WER values. (This is why the worst results were
obtained for the CV set with Nynorsk-only transcriptions). Moreover, the two
written standards are more or less related to major regional dialects. So, if
the ASR has to decide whether it should output one of the Bk/Nn word alter-
natives, such as ‘ikke/ikkje’ (the equivalent of English ‘not’), ‘Norge/Noreg’
(‘Norway’), ‘hvordan/korleis’ (‘how’), or ‘se/sj̊a’ (‘see’), it considers both the
word context and which of the variants is closer to the actual pronunciation
and selects the more likely alternative.
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2. Another source of mismatch is spelling variants. They exist in both stan-
dards. Many words have two (sometimes even more) spelling forms that differ
in one or two characters, and both are considered correct. Here are several
examples in Bokm̊al: ‘bro/bru’ (‘bridge’), ‘aleine/alene’ (‘alone’), ‘bred/brei’
(‘wide’), ‘teateret/teatret’ (‘theater’), ‘forskning/forsking’ (‘research’). Also,
many foreign words and names occur with an alternative spelling, e.g., ‘Zelen-
skyj/Zelensky’ or ‘Aalborg/Ålborg’.

3. Word compounding (a linguistic phenomenon typical for Germanic languages)
also contributes to frequent mismatches. A compound word consists of several
words or lemmas merged into a single long text string. In the case of less
frequent compounds, the system may recognize them as separate words, which
is then evaluated as multiple errors. Also, many multi-word terms can appear
either as compounds, words separated by spaces, or joined by a hyphen, e.g.,
‘playoff/play off/play-off’.

4. Another frequent type of error is confusion between different word forms of
the same lemma, especially when their pronunciation is very similar or even
identical, e.g., ‘arbeide/arbeider’ (‘work(er)’), ‘regjering/regjeringen’ (‘gov-
ernment’), or ‘tema/temaet’ (‘theme’).

5. The above-mentioned types of errors/mismatches make up about one-third
of the total amount, and, in general, they are not critical for understanding.
However, the current ASR system still produces a certain number of fully mis-
recognized words. This happens mainly when a speaker uses a minor dialect
or unusual pronunciation or when speech is spontaneous, highly emotional,
or recorded in heavy noise. In general, it can be said that most Norwegian
words not seen in the training are recognized correctly now. Foreign words
and names depend on whether they (or words similar to them) are included
in the training set. Adding various types of audiobooks to the corpus has
significantly helped to reduce this type of error.

Our analysis demonstrates that the WER, even though widely used, is not
always the best metric when evaluating the readability of a Norwegian ASR
output. It gives the same weight to minor errors (or quasi-errors) as well as to
really confusing mistakes. That is why ongoing research also focuses on defin-
ing a more appropriate metric that considers semantic relations between words,
phrases, and sentences. One example is the so-called Aligned Semantic Distance
proposed recently in [19] and tested on Norwegian.

5 Conclusions

Developing an ASR system for Norwegian is more challenging than for most of
the other European languages. The main reasons are many dialects, two writ-
ten standards, and relatively limited resources for training a modern end-to-end
recognition system. We have utilized the available resources for bootstrapping
an E2E model, which has allowed us to launch an iterative process of harvest-
ing additional speech data from public Internet sources, such as broadcast and
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parliament archives, some YouTube and podcast channels, and eventually, also
audiobooks. During the fully automated process, the ASR system with a contin-
uously updated model has been employed to identify, extract and annotate those
parts of the collected speech files that can safely be added to the training cor-
pus. In this way, we have acquired 1,246 h of training data representing various
speaking styles, most Norwegian dialects, and different recording environments.

The system’s performance has been tested regularly using an 18-h test col-
lection covering various types of speech and application domains. We have also
investigated the possibility of combining Norwegian and Swedish resources and
found that initializing Norwegian model parameters with the Swedish ones is the
most beneficial technique. It boosts the performance of the models utilized in
the iterative harvesting and training process and also improves the final model.
We compare the developed system to two major commercial services available
for Norwegian; we have found that our results (averaged over all the test sets)
are superior. Note that most data used in the performance evaluation is publicly
accessible so that anybody interested in Norwegian ASR can make use of such
data in comparative experiments.
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Abstract. In this paper, we analyze the performance of a modern end-
to-end speech synthesis model called Variational Inference with adver-
sarial learning for end-to-end Text-to-Speech (VITS). We build on the
original VITS model and examine how different modifications to its archi-
tecture affect synthetic speech quality and computational complexity.
Experiments with two Czech voices, a male and a female, were carried
out. To assess the quality of speech synthesized by the different mod-
ified models, MUSHRA listening tests were performed. The computa-
tional complexity was measured in terms of synthesis speed over real
time. While the original VITS model is still preferred regarding speech
quality, we present a modification of the original structure with a signif-
icantly better response yet providing acceptable output quality. Such a
configuration can be used when system response latency is critical.

Keywords: Neural speech synthesis · End-to-end modeling ·
Variational autoencoder · VITS · Speed optimization

1 Introduction

Modern text-to-speech (TTS) systems are based on deep neural network (DNN)
architectures [31]. While the quality of synthetic speech generated by these
systems has improved dramatically compared to the previous generation of
concatenation-based synthesis systems, the computational complexity of the
DNN-based models has also increased significantly, limiting them from deploying
on less powerful devices.

Most of the current TTS systems use a cascade architecture of two sepa-
rate models (also called two-staged models) – an acoustic model that generates
acoustic features (typically mel-spectrograms) from the input text (or, more
specifically, from its phonetic representation, often just a sequence of phonemes)
[2,10,11,25,34] and a vocoder that synthesizes the output waveform from the
acoustic features [4,15,17,22,24]. The disadvantage of two-staged models is that
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they are trained and optimized separately for the two independent models and
are connected with pre-defined acoustic features (mel-spectrograms), which are
not necessarily the best acoustic representation. Moreover, a mismatch between
acoustic features used in training and inference (synthesis) is introduced. While
in training both models use acoustic features from natural speech recordings; in
inference, the vocoder utilizes acoustic features predicted by the acoustic model.
Sequential training, in which the vocoder also uses acoustic features predicted
by the acoustic model, can mitigate these problems. However, the training pro-
cedure is even more time-consuming and thus impractical [28].

To avoid the problems mentioned above, the current trend is to use a one-
staged model, i.e., end-to-end model that jointly optimizes the acoustic and
vocoding models [6,12,23,25]. On the other hand, this approach leads to even
more complex models with a vast number of parameters making their run in
real-time even more challenging.

Among the end-to-end models, Variational Inference with adversarial learn-
ing for end-to-end Text-to-Speech (VITS) is very popular, achieving very good
output speech quality. Recently, several extensions to the original model and the
variational autoencoder (VAE) approach behind VITS have emerged, trying to
improve the quality and/or reduce the computational complexity [5,27–30]. In
this study, we build on the original VITS model and analyze how different mod-
ifications to its architecture affect synthetic speech quality and computational
complexity, i.e., inference speed.

The paper is organized as follows. In Section 2, we describe the original archi-
tecture of the VITS model. In Section 3, modifications to the VITS architecture
are presented. Speech data used for our experiments are described in Section 4.
In Sects. 5 and 6, we present and discuss the results of our experiments. Finally,
conclusions are drawn in Section 7.

2 VITS

Variational Inference with adversarial learning for end-to-end Text-to-Speech
(VITS) is a successful end-to-end model proposed for text-to-speech by Kim et
al. [12]. VITS employs different deep-learning techniques together (adversarial
learning [15], normalizing flows [26], and variational autoencoder (VAE) [13])
to achieve high-quality natural-sounding output. VAE internally links the two
modules of TTS systems corresponding to the acoustic model and the vocoder
through latent variables z, thus enabling a one-stage training.

Formally, the objective of conditional VAE is to maximize the variational
lower bound, also called the evidence lower bound (ELBO), of the intractable
marginal log-likelihood of data log pθ(x|c)

log pθ(x|c) ≥ Eqφ(z|x)

[
log pθ(x|z) − log

qφ(z|x)
pθ(z|c)

]
(1)

where pθ(z|c) denotes a prior distribution of the latent variables z given con-
dition c, pθ(x|z) is the likelihood function of a data point x, and qφ(z|x) is an
approximate posterior distribution [12].
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Fig. 1. The original VITS training scheme [12].

Less formally, VAE is composed of a posterior encoder qφ(z|xlin) used to
acquire the trainable latent acoustic features z from waveforms represented by
linear spectrograms xlin, and a decoder responsible for reconstructing waveforms
ŷ from the learned latent features. The original VITS training and inference
schemes are shown in Fig. 1 and Fig. 2, respectively.

For the posterior encoder, non-causal WaveNet residual blocks [11,24] con-
sisting of dilated convolutions with a gated activation unit and skip connection
were used.

The prior distribution of VAE pθ(z|ctext) is conditioned on input text (or
phonemes) ctext and is modeled by a prior encoder. The prior encoder consists
of a transformer-based text encoder [32] that processes the input text ctext and
a normalizing flow fθ (consisting of a stack of WaveNet residual blocks) that
improves the flexibility of the prior distribution [12].

HiFi-GAN V1 [15] generator was employed as the decoder. It comprises a
stack of transposed convolutions and residual connections, each followed by a
multi-receptive field fusion module (MRF).

To capture speech variations behind the input text and to synthesize speech
with diverse rhythms, a flow-based stochastic duration predictor (SDP) that esti-
mates the distribution of phoneme duration d (with the mean μθ and standard
deviation σθ) from a conditional input htext was proposed. Monotonic align-
ment search (MAS) [11] was adopted to align input text and target speech and
to obtain ground-truth phoneme durations during training.



VITS: Quality Vs. Speed Analysis 217

Fig. 2. The original VITS inference scheme [12].

In our experiments, VITS models were trained using the AdamW optimizer
[18] with β1 = 0.8, β2 = 0.99, and weight decay λ = 0.01. The learning rate
decay was scheduled by a 0.9991/8 factor in every epoch with an initial learning
rate of 2×10−4. The batch size was set to 32, and the models were trained up to
1M steps (2640 epochs) with mixed precision using the Coqui-TTS framework1.

3 Modifications to the VITS Architecture

In this section, we describe the modifications to the original VITS architecture.
As described in Section 2, VITS uses a flow-based stochastic duration predictor
(SDP) that better models the rhythm variability in speech. To avoid further
uncertainty in our experiments, and because some studies point out that SDP
could in some cases generate unnatural duration causing unclear pronunciation
[3,5], a deterministic duration predictor (DDP) from Glow-TTS [11] was used
in all VITS versions.

3.1 Waveform Decoder Modifications

Most of the modifications concerned the waveform decoder. The original VITS
model employs HiFi-GAN version 1 (V1) [15]. Henceforth, the original VITS
model will be referred to as VITS1.
1 https://github.com/coqui-ai/TTS.

https://github.com/coqui-ai/TTS
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Table 1. Summary of modifications to the VITS architecture.

Desc. VITS1 VITS2 VITS3 VITS4 VITS5

Wav. decoder DRBT I I II II II

DUHC 512 128 256 128 128

DRKS [16, 16, 4, 4] [16, 16, 4, 4] [16, 16, 8] [16, 16, 8] [16, 16, 8]

DRDS

[1, 1]

[3, 1]

[5, 1]

× 3

[1, 1]

[3, 1]

[5, 1]

× 3

[1, 2]

[2, 6]

[3, 12]

[1, 2]

[2, 6]

[3, 12]

[1, 3]

[2, 8]

[3, 15]

Encoder TEHC 768 768 768 768 512

TETL 6 6 6 6 4

PEKS 5 5 5 5 3

PEL 16 16 16 16 8

FNKS 5 5 5 5 3

FNRL 4 4 4 4 2

MHC 192 192 192 192 128

# params. 82M 69M 69M 68M 52M

Kong et al. [15] introduced three variants of the waveform generator. HiFi-
GAN V2 is simply a smaller version of V1 with fewer hidden channels of the first
upsampling convolution layer (DUHC, 128 vs. 512) but with precisely the same
receptive fields. To further reduce the number of layers while maintaining recep-
tive fields wide, a different type of residual block (denoted as “II“ as opposed to
“I“ in VITS1 and VITS2) with different kernel sizes (DRKS) and dilation rates
(DRDS) was proposed in V3 [15]. We have incorporated versions V2 and V3 into
the VITS model and named them VITS2 and VITS3, respectively.

To simplify the generator structure further, we introduced an “unofficial”
version V4, an even more reduced version of V3 with a smaller hidden dimension
of the first upsampling convolution layer DUHC (128 vs. 256) and denoted it as
VITS4.

All modifications to the waveform generator are summarized in the “wave-
form decoder” section of Table 1.

3.2 Encoder Modifications

To make even bigger changes to the original VITS model architecture, we also
experimented with the encoder part of the VITS model. These modifications
further significantly reduce the complexity of the model (see the number of
parameters of each model in Table 1) and thus have a great potential to speed
up speech synthesis. On the other hand, we expect a significant drop in the
quality of synthetic speech as well.

We simplified the text encoder, posterior encoder, and the flow network itself.
As for the text encoder, the number of hidden channels of the transformer feed-
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forward layers (TEHC) was reduced from 768 to 512, and the number of trans-
former layers (TETL) from 6 to 4.

In the posterior encoder, the kernel size (PEKS) of WaveNet layers decreased
from 5 to 3, and the number of the posterior encoder’s WaveNet layers (PEL)
from 16 to 8.

Similarly, we reduced the kernel size (FNKS) and the number of residual
coupling WaveNet layers (FNRL) of the flow network from 5 to 3 and from 4 to
2, respectively.

Modifications made to the encoder part were used together with the HiFi-
GAN V4 waveform generator, forming the most reduced VITS5 model, and are
summarized in the “Encoder” section of the Table 1. Note that we also further
increased the dilation rates of waveform generator residual blocks. In VITS5, we
also reduced the number of hidden channels in the whole model (MHC), i.e., the
dimension of the latent acoustic features z, from 192 to 128.

4 Speech Data

For our experiments, we used two large corpora of Czech news-reading speech
recorded by a professional male (speaker M) and female (speaker F) speaker.
The corpora were primarily designed for the use with unit-selection speech syn-
thesis [20], but Vı́t et al. [33] showed that the corpora are also suitable for neural
speech synthesis. They contain paired text-audio data with approximately 14 h
of audio (including pauses) distributed over 12, 240 (speaker M) and 12, 151
(speaker F) utterances. For our purposes, the audio has been downsampled
to 24 kHz, carefully annotated, and the resulting text has been normalized to
expand out numbers, dates, ordinals, monetary amounts, etc. Finally, the text
of each audio was transcribed into a sequence of phones using a set of carefully
designed Czech phonetic rules and a pronunciation dictionary with words that do
not obey Czech pronunciation rules [35]. Since Matoušek & Tihelka [19] showed
that it is advantageous to explicitly include pauses and punctuation marks in
the phonetic representation when training a synthesizer, each phonetic transcript
was supplemented by pauses using an external speech segmentation tool [7,8].

5 Results

In this paper, two evaluation types of the proposed modifications to the baseline
VITS algorithm were carried out – evaluation of the quality of synthetic speech
and measurement of synthesis speed. Objective evaluation of synthetic speech
quality is presented in Section 5.1 whereas subjective evaluation is described
in Section 5.2. In Section 5.3, the synthesis speed of each modified model is
analyzed.
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Table 2. Mel cepstral distortion (MCD) results (lower is better) with 95% confidence
intervals.

Speaker VITS1 VITS2 VITS3 VITS4 VITS5

M 5.880 ± 0.310 5.889 ± 0.253 5.845 ± 0.261 5.870 ± 0.249 6.075 ± 0.255

F 5.683 ± 0.296 5.974 ± 0.353 5.984 ± 0.295 5.882 ± 0.322 6.291 ± 0.289

5.1 Objective Evaluation

Among objective measures, mel cepstral distortion (MCD) [14,16] is often used
to measure differences between two speech segments represented by mel-cepstral
coefficients (MCEPs)

MCD(x, x̂) =
10

√
2

ln 10
1
T

√√√√ T∑
t=1

||xt − x̂t|| (2)

where x is a ground-truth segment (computed from natural speech) and x̂ is its
synthesized version. T denotes the number of frames, and t is the index of a
particular frame.

Comparing results of the objective evaluation in Table 2 with the following
subjective evaluation by MUSHRA tests in Table 3 and Fig. 3 (and particularly
for Speaker F), it can be seen that the tendencies are correlated. Especially
the VITS5 model obtained a measurably worse score than the other systems,
while the difference among the remaining systems is lower than the difference to
VITS5.

5.2 Subjective Evaluation

We used Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) lis-
tening tests to compare speech quality generated by the various VITS models.
Listening tests followed the ITU-R recommendation BS.1534-2 [1]. Two listening
tests were performed, the first for speaker M and the second for speaker F.

Each listening test consisted of a set of the same 20 sentences that were
synthesized by the baseline VITS1 and the different modified VITS models
described in Section 3: VITS2, VITS4, VITS5. In addition, a natural ver-
sion of each sentence was hidden in each set and used as a reference (upper
anchor). The sentences were 3–10 words long and contained both single and
compound/complex sentences. Of course, we used sentences not included in the
training data. The longer sentences were compound/complex sentences that con-
tained internal pauses. Versions of every sentence were compared with respect
to naturalness. Since it is unclear how to interpret a lower hidden anchor when
rating synthetic speech [9,21] and it is not possible to assume a priori that the
VITS5 model will be worse, no lower anchor was included in the tests. Due to the
higher elaborateness of the listening tests, we decided not to include the VITS3
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Table 3. MUSHRA test evaluation results (higher is better) with 95% confidence
intervals.

Speaker Natural VITS1 VITS2 VITS4 VITS5

M 98.41 ± 0.410 92.33 ± 0.901 83.52 ± 1.287 87.55 ± 1.128 69.34 ± 1.989

F 98.31 ± 0.443 94.30 ± 0.805 90.52 ± 1.187 91.52 ± 0.849 71.45 ± 2.070

Fig. 3. Boxplot of the MUSHRA evaluations for both speakers.

model, particularly as the impact of HiFi-GAN V3 on the quality has already
been studied in [15], and compared to V3, V4 has a higher inference speed-up
potential, containing slightly fewer parameters.

The listener was required to rate the versions between 0 (completely unnatu-
ral) and 100 (completely natural). Due to the presence of the reference version in
each set, the listener was instructed to give at least one of the versions a rating
of 100. 12 listeners participated in each test, and each of them evaluated all the
sentences. The ordering of sentences was randomized within each test query, but
the same ordering was presented to all the listeners. All the listeners were native
Czech speakers, some of them had very little knowledge of speech synthesis, and
none of them reported any hearing problems. The results of the listening tests
are shown in Tables 3 and 4, and in Fig. 3.

5.3 Speed Analysis

To measure the runtime speed of the individual VITS modifications, we synthe-
sized 2,000 sentences by the different VITS models on 12-core Intel R© CoreTM i7-
6850K CPU, running at 3.60 GHz with 256 GB of RAM. The GPU was NVIDIA
GeForce RTX 3090 Ti with 24 GB memory. The raw time of the synthesis run
(excluding the time of the model initialization) was measured by a testing script.
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Table 4. The rankings of the models in MUSHRA test for speaker M / F. Natural
represents the reference.

Natural VITS1 VITS2 VITS4 VITS5

1st 219 / 207 57 / 84 9 / 40 19 / 39 2 / 2

2nd 12 / 16 122 / 96 26 / 42 55 / 56 1 / 1

3rd 5 / 8 37 / 41 77 / 84 116 / 59 8 / 6

4th 4 / 8 23 / 15 114 / 64 42 / 79 30 / 19

5th 0 / 1 1 / 4 14 / 10 8 / 7 199 / 212

Table 5. Computational complexity when running on CPU or GPU, regarding infer-
ence speed over real-time.

Speaker VITS1 VITS2 VITS3 VITS4 VITS5

CPU M 3.79 18.57 20.83 39.00 50.13

F 3.76 20.49 20.87 39.23 50.91

GPU M 118.58 160.52 201.49 220.67 282.67

F 125.76 169.98 220.04 237.14 322.70

The result in Table 5 is the ratio between the length of the audio and the syn-
thesis runtime (real-time factor 2.0 means that audio playback took twice the
synthesis time). The synthesis was carried out first exclusively on the CPU, fol-
lowed by the run on GPU. It was ensured that no other processes, except the
fundamental low-level system services, were running on the computer.

The results show that running on GPU is, naturally, significantly faster than
on the 12-core CPU, but the differences between the slowest VITS1 and the
fastest VITS5 are far less significant on GPU.

6 Discussion

To no surprise, the results clearly confirmed that the full VITS1 model provides
the most natural-sounding speech as well as the lowest (or one of the lowest)
MCD, at the cost of relatively low inference speed, though. Especially in appli-
cations where the minimal latency (the time lag between a request for synthesis
and speech availability) is a crucial factor, such as dialogue systems, the VITS4
variant may be considered. Although its speech quality is still subjectively per-
ceived as worse than the VITS1, the VITS4 variant has a lower MCD than VITS2
and is also subjectively perceived as better or similar to VITS2 for speaker M
and speaker F, respectively. And on top of that, its inference speed is better
than that of VITS2, being approximately 10 times faster than VITS1 (almost
40 times faster than real-time) when running on a CPU.
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7 Conclusion

In this paper, we analyzed the performance of a modern end-to-end speech syn-
thesis model VITS. Since VITS is a complex model with approximately 82 M
parameters, we proposed different modifications that simplified its architecture
and, on two Czech voices, a male and a female, investigated how these modifica-
tions affect both the quality and speed of resulting synthetic speech. We found
that while the original (and the most complex) VITS model is still preferred in
terms of speech quality, a modification denoted as VITS4, which significantly
simplifies the original architecture (from 82 M to 68 M parameters), leads to
acceptable synthetic speech quality, being approximately 10 times faster than
VITS1 (almost 40 times faster than real-time) when running on a CPU. Such a
configuration can be used when system response latency is critical.

Since the most drastic simplification (VITS5) revealed the potential for even
more significant system speedup, our future work in this area will focus on more
fine-grained exploration of encoder parameters to reveal if there is a possibility
of additional speedup while not lowering quality below the VITS4 modification.
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Abstract. Automatic Speech Recognition is among the most important
areas of Artificial Intelligence research today. One of the most notable
advances in this area is the development of end-to-end models, which
have shown state-of-the-art performance in many benchmark scenarios.
In spite of the recent improvements, these architectures still require large
amounts of transcribed speech data to be trained, which can be challeng-
ing in low resource languages, or in specific domains due to privacy con-
cerns. This study proposes a methodology to fine-tune Whisper-based
models using only synthetic speech. The aim is to enable training robust
systems for specific domains and low resource languages, where large
labeled corpora are difficult to collect. Our approach is based on a lan-
guage model adaptation by fine-tuning only the decoder of the model,
thus the network is able to learn specific vocabulary that is not initially
available. The proposed methodology is evaluated with data from differ-
ent languages and domains. In addition, Parameter Efficient Fine-Tuning
strategies were used to efficiently adapt the large pre-trained Whisper
models. This is one of the first studies that considers the effect of using
only synthetic speech for domain adaption of speech recognition systems
in non-English data, providing word error rate reductions in low resource
languages between 2 and 30 points, depending on the Whisper version.

Keywords: Speech Recognition · Whisper · Text to Speech · Domain
Adaptation · Parameter Efficient Fine-Tuning

1 Introduction

In recent years, there have been significant advances in Automatic Speech Recog-
nition (ASR) using End-to-End (E2E) models [1]. One of the most notable
outcomes in this area is the development of Transformer-based architectures,
such as Wav2Vec2.0 [2], the Conformer networks [3], and more recently, fully
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supervised models like Whisper [4]. These models have achieved state-of-the-
art performance on a variety of speech recognition benchmarks, including those
that involve noisy or accented speech. Although the results observed to date
are impressive, several challenges still remain for the research community. For
instance, these E2E architectures still require large amounts of transcribed
speech data to be trained and to reach good performance. Furthermore, spe-
cific domains such as health care, forensics, multimedia, or government, among
others, may face limited data availability due to privacy concerns or difficulties in
data collection. These scenarios pose challenges due to non-controlled acoustic
conditions and domain-specific vocabulary. Addressing these problems is par-
ticularly challenging for low-resource languages where large labeled corpora are
scarce for training ASR systems. Therefore, training robust ASR models for spe-
cific domains, low resource languages, and in non-controlled acoustic conditions
becomes a difficult task.

One strategy to adapt ASR systems to specific domains, especially under low
resource settings, is to use data augmentation strategies to artificially increase
the size of the training data. Methods like SpecAugment [5] or those based on
speed perturbation and noise injection have shown to be helpful in adapting ASR
models to specific domains. However, these methods only focus on adapting the
ASR system to the specific acoustic conditions of the target domain, overlooking
the challenge of domain-specific vocabulary.

Recent studies have demonstrated that it is possible to perform data augmen-
tation, or even full training of ASR systems, using synthetic data obtained from
Text-To-Speech (TTS) systems [6–9]. Given the improvements in neural TTS
models, such as Tacotron-2 with Global State Tokens [10] and more recently
VALL-E [11], it is possible to generate high quality speech with varying prosody
that can be used also to train and adapt E2E ASR models. The use of synthetic
speech to fine-tune ASR systems can be particularly helpful to deal with the
issue of out-of-vocabulary words and to expand the vocabulary of E2E systems
during training [6,12,13]. In [14], the authors use synthetic speech to teach med-
ication names to an E2E ASR system based on a Recurrent Neural Networks
Transducer (RNN-T). The training process involved mixing real and synthetic
samples. The fine-tuned model reduced relatively the word error rate (WER)
by up to 65% when recognizing out-of-vocabulary words related to medication
names. Additional studies have shown that combining real and synthetic speech
data during training and fine-tuning can reduce the WER of an ASR system [6–
9,15,16]. However, there are important considerations to address in those cases
to achieve accurate results. For instance, when using synthetic speech for ASR
training, it is important to deal with the mismatch in acoustic characteristics
between real and synthetic audio. Synthetic speech may contain artifacts that
do not exist in real data, such as unrealistic speaking styles and the absence of
background noise. Some studies have mitigated this issue by implementing reg-
ularization strategies [13,17] and freezing the encoder of the E2E model during
fine-tuning [12,13]. The process of fine-tuning only the decoder of the network is
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similar to adapting a language model. Therefore, the model only learns the token
representation of out-of-vocabulary words, rather than the acoustic properties
of synthetic speech [18].

These previous works have proven the benefits of increased acoustic and lex-
ical diversity in synthetic data for ASR training. Nevertheless, most of them are
evaluated using standard benchmark corpora, such as Librispeech [19]. Moreover,
in the majority of cases, TTS-derived data is used only for data augmentation,
rather than to adapt the model to new, unseen domains, particularly in low
resource languages, where there is the real need to adapt E2E ASR models.
Finally, most of the previous studies have focused on mixing real and synthetic
audio data, and have not shown reliable results using only synthetic speech [7,17].

This study extends all previous research by using only synthetic data for
domain adaptation of E2E ASR models. Our approach is motivated by the recent
release of Whisper [4], which was pre-trained with large amounts of labeled data
from the Internet (up to 680k h). This leads us to believe that it is now possible
to fine-tune models using only synthetic speech, making the domain adapta-
tion tasks more feasible, especially in low resource languages. We considered a
state-of-the-art TTS system to create realistic speech signals in order to create
adapted Whisper models for a variety of domains, including forensics, broad-
cast media, and parliamentary. Our proposed methodology was also evaluated
in different languages to test the effect of using synthetic speech to adapt pre-
trained models with large, intermediate, and low resource languages such as
English, Spanish, and Basque, respectively. To the best of our knowledge, this
is one of the first studies to consider the effect of using only synthetic speech in
ASR model adaptation for non-English data. An additional contribution of this
paper relies on the evaluation and comparison of different Parameter Efficient
Fine-Tuning (PEFT) methods [20] when training large Transformer-based mod-
els. PEFT-based approaches focus on fine-tuning only a small number of model
parameters, thereby greatly decreasing the computational and storage costs. The
use of these strategies have not been extensively explored for speech-based mod-
els. However, this is an important aspect to be considered when training large
models such as Whisper.

The rest of the paper is distributed as follows. Section 2 describes the methods
and strategies considered to adapt an ASR system based on Whisper to new
unknown domains in different languages. Section 3 describes the different corpora
considered in this study to train and evaluate the proposed approach. Section 4
shows the main results obtained and discusses the main insights derived from the
performed experiments. Finally, Sect. 5 draws the main conclusions and presents
further perspectives to be addressed.

2 Methods

2.1 Whisper

Whisper is an encoder-decoder Transformer network recently introduced by Ope-
nAI [4]. The model is trained in a fully supervised manner, using up to 680k h
of labeled speech data from multiple sources. The encoder is fed by 80-channel
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Fig. 1. Whisper architecture representation. The log Mel-spectrograms are encoded
by a Transformer network. Encoded representations are transformed into character
outputs and non-speech tokens via the Transformer decoder. Figure inspired from [4].

log-Mel spectrograms and it consists of two convolution layers (kernel size of
3), followed by sinusoidal positional encoding, and a stacked set of Transformer
blocks. The decoder uses the learned positional embeddings and the same num-
ber of Transformer blocks as the encoder (see Fig. 1).

Five pre-trained versions of Whisper are available, with variations in the
number of layers (ranging from 4 to 32) and attention heads (ranging from 6 to
20). These configurations yield models with 39 M to 1550 M parameters. The con-
ducted experiments involved fine-tuning the five versions of the model to evaluate
their capability to be adapted to the target domain. The process is performed
freezing the weights of the encoder network, similar to previous studies [13,18].
Freezing the encoder aims to mitigate the mismatch in acoustic characteristics
between real and synthetic audio, which can be problematic for model train-
ing and fine-tuning. Hence, the learning process focuses only on adapting the
vocabulary to the E2E system, similar to a language model adaptation.

The hyper parameters for fine-tuning included a learning rate of 5 × 10−5,
warmed up during the initial 10% of the training, and batch size of 16 (using
gradient accumulation steps due to memory constraints). The decoding was per-
formed using a beam search strategy with 5 beams, an array of temperature
weights of [0.2, 0.4, 0.6, 0.8, 1], and a no repeat 3-gram strategy to avoid loops [4].



230 J. C. Vásquez-Correa et al.

2.2 Parameter Efficient Fine-Tuning

Due to the large number of parameters to fine-tune, especially for the Large ver-
sion of Whisper (1550 M), a set of PEFT strategies were applied. These methods
aimed to fine-tune a small number of model parameters, decreasing the compu-
tational and storage costs [20]. In general, PEFT methods have shown to be
comparable to a full parameter fine-tuning despite the substantial reduction of
tunable parameters [20].

We compared three different PEFT methods: (1) the Low-Rank Adaptation
(LoRA) [21], which freezes the pretrained model weights and injects trainable
rank decomposition matrices into each layer of the Whisper decoder. We con-
sider a rank r = 32 and a re-scaling factor α = 64 for the matrix factorization
in LoRA [21]. (2) AdaLoRA [22], where the rank decomposition of the weight
matrices is performed adaptively. Critical incremental matrices are assigned with
high rank such that they can capture more fine-grained and task-specific infor-
mation. Less important ones are pruned to have lower rank to prevent over-
fitting and save the computational budget [22]. (3) Finally, in addition to the
rank decomposition-based approaches, we considered the Bias-terms Fine-tuning
(BitFit) strategy [23]. BitFit updates the bias terms in the pre-trained model,
while freezing the remaining parameters of the Whisper decoder. The authors
in [23] showed that fine-tuning only a subset of bias parameters in a Transformer
network is comparable to a full fine-tuning of the model.

2.3 Text to Speech Models

The generation of realistic synthetic speech data was performed through a state-
of-the-art TTS system composed by a Tacotron-2 [24] acoustic model followed by
a HiFi-GAN [25] neural vocoder. Tacotron-2 consists of a sequence-to-sequence
model, which includes an encoder, a decoder, and a final post-processing convolu-
tional neural network. The encoder is fed with embedding representations of the
input characters, generated by a 1D convolutional-recurrent network, and which
is simultaneously trained with the whole TTS system. The Tacotron-2 models for
English, Spanish and Basque were trained on pairs of text and its corresponding
acoustic information, represented by audios sampled at 22, 050 Hz, using 80-
channel Mel-spectrograms, a frame length of 1024, a time-shift of 256 samples,
and a 1024-resolution Fourier transform. During training, this network learned
to generalize and generate new spectrograms from unseen texts using the exam-
ples given for training. The model was trained using an Adam optimizer [26],
and a learning rate of 10−3 that exponentially decays to 10−5 after 50k steps. We
also applied L2 regularization with a weight of 10−7 and a batch-size of 32. The
final training steps were slightly different for each model, although they were
established between 170k and 190k steps. The English model was trained with
the LJ Speech Dataset [27] composed of 13, 100 short audio clips from a single
speaker (23 h and 54 min). The Spanish and Basque models were trained using
mono-speaker proprietary datasets, containing 11, 650 (20 h and 46 min) and
11, 640 (19 h and 4 min) short audio clips for Spanish and Basque, respectively.
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The Tacotron-2 model is combined with a HiFi-GAN [25] neural vocoder
that receives the spectrograms generated by the acoustic model, and produce
the final waveform. Each model was trained and adapted to each target voice
by using a set of ground-truth aligned Mel spectrograms, compatible with the
Tacotron-2 model. The vocoder was trained using a learning rate of 2 × 10−4

with a decaying factor of 0.999, whilst the batch-size was set to 16.

2.4 Methodology

The proposed methodology is shown in Fig. 2. The text data for each domain was
crawled from the Internet to obtain the target vocabulary for recognition. The
crawled corpora were then preprocessed and used as input for the TTS system.
After generating the synthetic speech data, different versions of Whisper were
fine-tuned to obtain domain-specific ASRs. Only the decoder of Whisper was
adapted to learn the target vocabulary and not the acoustic characteristics of
synthetic speech. The evaluation was performed using real acoustic data from
the specific domains.

Fig. 2. Methodology to fine-tune Whisper ASR systems using synthetic data.

Three scenarios were considered to cover specific domains in forensics, broad-
cast media, and parliamentary. These scenarios often include specialized termi-
nology that a general-purpose ASR system may not be able to recognize accu-
rately. At the same time, each domain contains data in a different language. The
considered languages were selected to cover large, intermediate, and low resource
scenarios [4].

3 Data Description

We considered data in English, Spanish, and Basque with the aim to cover
different scenarios where the original Whisper model was trained with large,
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Table 1. Data distribution for each corpus.

English Spanish Basque

Domain Forensics Broadcast media Parliament

Hours for pre training [4] 438,200 11,100 21

Hours for fine-tuning 11.7 20.4 26.7

Hours for test 10 54 7.2

Tokens for fine-tuning 99,470 141,236 187,975

Unique tokens for fine-tuning 7,473 18,393 30,471

intermediate, and low resource data. For each language, the data used were
specific to a particular domain of application, which included forensics, broadcast
media, and parliament. Table 1 summarizes the main characteristics for each
corpus. Further details about each scenario are found in the following sections.

3.1 English Data. Forensic Child Abuse Analysis Domain

The experiments for this scenario were performed with the GRACE corpus [28].
This is a multilingual dataset that comprises audio recordings from multiple
sources from the research community. Audios from different public databases
were compiled and filtered according to the presence of 86 keywords related to
child abuse. This study considered only the English version of the dataset, which
comprises 9.2 h of audio recordings from the Spoken Wikipedia corpus [29], the
Debating technology corpus [30], and TEDLIUMv2 [31]. This corpus is available
online1 to be used as a benchmark corpus for speech recognition under forensic
domains.

The text data used for synthesis and fine-tuning of the Whisper model
included crawled documents from EUROPOL2, UNICEF3, and Wikipedia arti-
cles related to child abuse. The crawled corpus is composed of 55,059 words
(without stop words) from which 4,571 audio utterances were created (11.7 h).

3.2 Spanish Data. Broadcast Media Domain

The data for this experiment considered the test set of the IberSPEECH-RTVE
2022 Speech to Text Transcription Challenge [32]4. The database is a collection
of 54 h of audio materials from the Spanish national TV (RTVE) archive in
various genres. The corpus covers a wide variety of scenarios of read and spon-
taneous speech, including material from scripted content to live broadcasts. The

1 https://shorturl.at/dfjx2.
2 https://www.europol.europa.eu/media-press/newsroom?q=child%20abuse.
3 https://www.unicef.org/search?force=0&query=child+abuse&created%5Bmin

%5D=&created%5Bmax%5D=.
4 http://catedrartve.unizar.es/rtvedatabase.html.

https://shorturl.at/dfjx2
https://www.europol.europa.eu/media-press/newsroom?q=child%20abuse
https://www.unicef.org/search?force=0&query=child+abuse&created%5Bmin%5D=&created%5Bmax%5D=
https://www.unicef.org/search?force=0&query=child+abuse&created%5Bmin%5D=&created%5Bmax%5D=
http://catedrartve.unizar.es/rtvedatabase.html
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corpus incorporates a diverse range of content, such as fiction series, contest
shows, social and cultural documentaries, unedited live interviews, and news-
casts, among others. This corpus is not directly segmented and contains chal-
lenging acoustic conditions (e.g. background music and noise). Therefore, we
first applied a Voice Activity Detection (VAD) module based on the GPVAD
convolutional-recurrent architecture [33] trained with 5k h from the Google
AudioSet database [34]. The GPVAD raw output is further processed by join-
ing small speech regions separated by less than two seconds of non-speech, thus
generating speech segments longer than five seconds when possible.

The training text material to generate synthetic data for this domain covered
TV subtitles from the RTVE Play web portal5 and news crawled from the RTVE
website6 [35]. We also collected news gathered from digital newspapers in the
Internet in order to generalize to other news formats and improve generaliza-
tion. A total of 17,524 sentences covering different news topics were synthesized,
forming a corpus with 20.4 h duration.

3.3 Basque Data. Parliament Domain

The Mintzai corpus7 was considered for this scenario. This dataset consists of
parliamentary sessions of the Basque government between 2011 and 2018. The
corpus was originally designed for speech translation studies, and contains par-
allel utterances in Basque and Spanish [36]. The considered experiments cover
only Basque data. The test includes audio from 127 speakers (7.2 h).

The training corpus to be synthesized for this domain was obtained by crawl-
ing the web sites where the official plenary sessions of the parliament are avail-
able8. Texts from the sessions between 2012 and 2020 were downloaded as PDF
files, and converted to plain text using the PDFtoText Linux tool. A set of 13,910
sentences were generated, forming a training corpus with 26.7 h duration.

4 Results and Discussion

Table 2 shows the results obtained by fine-tuning the different Whisper models
using synthetic speech. The results include those obtained for large (English),
intermediate (Spanish), and low (Basque) resource languages. The fine-tuning
process in this case was performed using LoRA as the PEFT method.

The experiments confirm the reliability of the proposed methodology to adapt
the Whisper domain using synthetic data, especially when the amount of pre-
training data is intermediate or low, as is the case for Spanish and Basque. For
Spanish, the fine-tuning process reduces the WER between 0.4 and 6.2 points
compared to the original models, depending on the Whisper version. For the case
of Basque, the fine-tuning process has a greater impact on the WER, reducing
5 https://www.rtve.es/play/.
6 https://www.rtve.es/noticias.
7 https://github.com/Vicomtech/mintzai-ST.
8 http://www.legebiltzarra.eus.

https://www.rtve.es/play/
https://www.rtve.es/noticias
https://github.com/Vicomtech/mintzai-ST
http://www.legebiltzarra.eus
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Table 2. Results obtained by fine-tuning each Whisper version using synthetic speech
in English, Spanish, and Basque. The performance is measured in terms of total WER.

Model version Fine-tuning WER

(Yes/No) English Spanish Basque

tiny No 21.8 38.6 94.8

tiny Yes 22.4 34.2 69.8

base No 20.0 30.7 91.5

base Yes 21.7 24.5 60.4

small No 18.6 24.3 73.3

small Yes 19.4 23.9 55.4

medium No 18.0 22.1 61.3

medium Yes 17.9 20.5 53.8

large No 17.6 16.1 59.7

large Yes 17.8 14.9 50.9

between 6.2 and 31 points depending on the model size. For both languages, the
WER reduction is more evident for the case of the smallest models (tiny and
base). For the English language, the fine-tuning process using synthetic speech
does not result in a reduction in WER with respect to the original models,
which is contrary to the results obtained for Spanish and Basque. In some cases,
the fine-tuned version even produces a higher WER than the original one (base
and large). This behavior can be explained by two reasons: (1) the amount of
data used to train the original Whisper models for English is much greater than
the amount considered for Spanish and Basque (see Table 1). (2) The test data
used in English is a compilation of several corpora from the literature, including
TEDLIUMv2 and the Spoken Wikipedia corpus. Information from such corpora
may already be available within the original Whisper weights. Therefore, the
information added to the model via synthetic speech does not contribute to new
knowledge, as in the case of Spanish and Basque.

With the aim to compare different PEFT methods when fine-tuning Whisper,
Table 3 shows results comparing LoRA [21], AdaLoRA [22], and BitFit [23].
The comparison is performed fine-tuning the medium Whisper model (769 M
parameters). The fine-tuning process for all methods is performed under the
same conditions and using the same hyperparameters for training.

Similar results are observed when using either LoRA or AdaLoRA. Both
approaches are able to reduce the WER compared to the original Whisper
model, especially for Spanish and Basque. This is explained considering that
both approaches rely on the same principle of weight decomposition into low
rank matrices. The main difference is that AdaLoRA is able to achieve the same
results, but fine-tuning less than half the parameters fine-tuned by LoRA. This
leads less memory consumption (see Fig. 3). BitFit helps to reduce the train-
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Table 3. Comparison between different PEFT methods for fine-tuning the medium
version of Whisper. Results are presented in terms of WER and the normalized WER
(nWER) with respect to the original Whisper model.

PEFT Trainable Trainable English Spanish Basque

Method params. % WER nWER WER nWER WER nWER

Not fine-tuned - - 18.0 100.0 22.1 100.0 61.3 100.0

LoRA [21] 9.4M 1.22 17.9 99.4 20.5 92.8 53.8 87.8

AdaLoRA [22] 3.5M 0.46 17.8 98.9 20.1 91.0 52.9 86.6

BitFit [23] 0.6M 0.08 17.9 99.4 21.8 98.6 59.8 97.6

ing time and the memory costs even further, by fine-tuning only 0.08% of the
weights, but at the cost of sacrificing performance, especially in Basque.

Fig. 3. GPU memory and train speed for the different PEFT methods. All evaluations
are conducted on a NVIDIA GeForce RTX-3090 GPU (24GB VRAM). Full fine-tuning
is not possible for batch sizes larger than 1 due to memory constraints.

Training speed for BitFit is significantly higher than for the other two meth-
ods (p-value � 0.005 in all cases). The differences between the training speed
for LoRA, AdaLoRA, and the full fine-tuning is not significant (p-value > 0.005
in all cases). The statistical comparisons were performed using an ANOVA with
a Tukey Post-Hoc test. Although there is not significant differences for the train-
ing speed between LoRA, AdaLoRA, and the full fine-tuning, the memory con-
sumption of the PEFT methods is much lower than the observed for the full
fine-tuning. This makes possible the use of larger batch sizes (either directly or
using training accumulation steps for the gradient computation), which at the
end will be translated in a significant improvement of training speed [20].

5 Conclusion

This paper proposes a methodology for adapting the vocabulary of Whisper-
based speech recognizers to new domains in different languages using only TTS-
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derived data. The proposed approach was tested on data from large, interme-
diate, and low resource scenarios in English, Spanish, and Basque languages,
respectively. In addition, we compared different PEFT-based methods to per-
form the fine-tuning process due to the large number of parameters to train.
This study demonstrated that it is possible to improve the performance of an
E2E ASR system using only synthetic data, which is a novel approach. Previous
studies relied on the combination of synthetic and real speech, which still requires
data annotation procedures that can slow down the training process. Using only
synthetic speech data can be a more efficient and cost-effective approach, espe-
cially when there is limited time or resources available for data collection.

The results indicated that using only synthetic data for domain adaptation of
Whisper-based ASRs leads to performance improvements, particularly in low-
resource scenarios. The proposed methodology was successful in reducing the
WER between 6.2 and 31 points, depending on the language and model version.
In addition, we confirm the utility of using PEFT methods to train large models,
which would be difficult to achieve under limited hardware resources. PEFT
methods helped to reduce memory consumption, giving the possibility to use
larger bath sizes, which ultimately lead to more generalized models.

For future work, we will incorporate data augmentation techniques such as
SpecAugment to increase the acoustic variability of the synthetic audios. Addi-
tionally, using more synthetic samples can also help reduce WERs, as the model
can learn from a larger vocabulary. Overall, these approaches can lead to even
better performance and robustness of the ASR system in different domains and
languages. Additional PEFT methods such as those based on Prompt and Pre-
fix tuning [37,38] can also be considered an adapted to fine-tune the decoder of
large acoustic models such as Whisper.
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Abstract. This paper addresses the enduring challenge of domain-
specific automatic speech recognition (ASR) with limited training data,
particularly in air traffic control (ATC) communications involving highly
accented speakers. While state-of-the-art models like wav2vec have
achieved significant progress when fine-tuned on smaller, specialized
datasets, the issue of having little or no transcribed data for specific
domains like ATC remains unresolved. We present our findings using the
wav2vec-U 2.0 model, an advanced self-supervised ASR framework that
learns from raw audio and unpaired text without the need for transcrip-
tions. By fine-tuning wav2vec-U 2.0 on the domain-specific ATCOSIM
dataset, we explore its effectiveness in handling domain-specific ASR
tasks with scarce or non-existent transcribed data. Our results demon-
strate promising speech recognition accuracy, suggesting that wav2vec-U
2.0 can effectively address the problem with small amounts of transcribed
data posed by highly specific ASR-domains such as ATC communica-
tions. Furthermore, we discuss the implications of our findings for the
broader ASR research community and provide suggestions into potential
future directions for improving ASR accuracy in ATC communications
and other specialized domains with limited training data.

Keywords: Automatic speech recognition · wav2vec 2.0 · wav2vec
unsupervised · unsupervised learning · generative adversarial network ·
air traffic control communications

1 Introduction

Automatic Speech Recognition (ASR) has been a topic of interest in the air traffic
control (ATC) domain for several decades, with the potential to enhance safety
and efficiency by reducing controllers’ workload and improving communication
accuracy between pilots and controllers [14,30]. However, the unique challenges
associated with the ATC domain have made developing effective ASR systems
particularly difficult.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 239–248, 2023.
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ATC communications is a highly specialized domain that requires precise
and accurate communication between pilots and controllers to ensure the safety
and efficiency of air travel. Unlike other speech recognition applications, ATC
communications often involve technical terminology and specific communication
protocols unique to the aviation industry [6]. Furthermore, ATC communications
typically occur in high-noise environments, such as airports and control towers,
which can significantly degrade speech signal quality and increase speech recog-
nition tasks’ complexity [9].

One key challenge in developing ASR systems for domain-specific applications
is the limited availability of training data. Recently, an innovative ASR system,
called Wav2vec-U 2.0, was released to address this challenge by learning from
raw audio and unpaired text without the need for transcriptions [22]. It employs
a self-supervised learning model and a generative adversarial network [13] to
recognize words in audio recordings.

To the best of our knowledge, the promise of Wav2vec-U 2.0 in the ATC
domain has not been explored yet. This paper presents our findings on imple-
menting the wav2vec-U framework in the ATC domain using the publicly avail-
able dataset ATCOSIM [15]. Our experiments are geared towards assessing the
efficacy of this ASR system in handling domain-specific challenges and evalu-
ating its performance. By employing unlabeled data and the aforementioned
framework, we have achieved word error rates below 30%.

2 Related Work

2.1 ASR in ATC Domain

The development of robust solutions for ATC involves addressing several chal-
lenges that are specific to this domain. For instance, noisy radio channels, a wide
range of accents, and high speech rates are all individual challenges that coin-
cide in the ATC domain. Recently, a study on methods to extract operational
information from ATC audio yielded a Word Error Rate (WER) of 17% using
a Recurrent Neural Network (RNN) model trained on a combination of ATC
datasets that contained a total of 84 h of transcribed speech data [7].

However, a key challenge in ATC is the limited available data. A recent study
addressed this challenge by employing transfer learning techniques and leverag-
ing multiple Chinese speech datasets. The study showed promising results, with
an overall reduction of Character Error Rate (CER) of 2% when compared to
the supervised learning approach [21].

2.2 Self-supervised Representations for Speech

Learning vector representations from high amount of labeled or unlabeled data
is a recent trend to leverage the learned representations to improve performance
on a local task for which a relatively small dataset is available. Wav2vec is an
attempt to provide a learning representations of raw audio for speech recognition
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by unsupervised pre-training [26]. It is trained on large amounts of unlabeled
audio data and the resulting representations are then used to improve acoustic
model training. The model is a convolutional neural network that takes raw
audio as input and computes a general representation that can be input to a
speech recognition system.

Wav2vec 2.0 presents an improved version of the original wav2vec model.
Wav2vec 2.0 employs a self-supervised learning framework that utilizes a con-
trastive loss to learn speech representations from raw audio without labeled
data [8]. In addition, the model learns to predict future audio samples by
employing a transformer-based architecture and a masked language model-
ing objective. Experiments demonstrate that wav2vec 2.0 outperforms pre-
vious approaches, achieving state-of-the-art results on the LibriSpeech and
Switchboard-300 datasets, even with limited labeled data for fine-tuning.

Wav2vec-U 2.0 is an unsupervised model designed to learn and understand
audio representations, especially when labeled data is scarce [22]. It uses raw
audio and unrelated text data, removing the need for transcriptions. The model
combines the self-supervised wav2vec 2.0, pre-trained on raw audio, with a
generative adversarial network (GAN) [13] to improve audio representations.
Using contrastive learning, it aligns speech representations with text embed-
dings, allowing effective word recognition without labeled data.

2.3 Use of Learned Representations in ATC

Wav2vec 2.0 Fine-Tuning. A recent study conducted experiments on pre-
trained Wav2Vec 2.0 models’ robustness in downstream ASR tasks, explicitly
targeting the air traffic control domain [31]. Using domain-specific datasets, a
range of corpora has been utilized to ascertain the effectiveness of fine-tuning
these pre-trained models, which have been exposed to substantial amounts of
generic English audio. The results highlight the potential of implementing pre-
trained Wav2Vec 2.0 models for ASR tasks within specialized domains.

While this study does not present explicit results concerning ASR perfor-
mance on the ATCOSIM dataset [15], their experimental framework resembles
the approach we have undertaken in our work. Using pre-trained Wav2Vec 2.0
models for ASR tasks in the air traffic control domain underscores the value of
transfer learning and domain-specific fine-tuning. Furthermore, the study sug-
gests that the versatility and adaptability of Wav2Vec 2.0 models make them
ideal candidates for a wide range of specialized ASR tasks, including those in the
air traffic control domain. Furthermore, the end-to-end nature of these models,
as evidenced by their superior performance compared to hybrid-based ASR sys-
tems, emphasizes the importance of investigating and developing more stream-
lined and efficient ASR architectures.

Wav2vec-U 2.0. A study investigated ASR for use with Uyghur, Kazakh, and
Kyrgyz audio, employing unsupervised learning by implementing the wav2vec-
U 2.0 framework [11]. With only 1.8 h of Kyrgyz audio data from the Common
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Voice dataset [4], their approach achieved a 14.9% Character Error Rate (CER),
demonstrating the potential of unsupervised learning for ASR in languages with
scarce resources.

Another study into the robustness of unsupervised speech recognition inves-
tigated the utilization of unrelated text data within the same language across
common datasets used in ASR research [20]. The findings of this research suggest
a correlation between the nature of the text supplied for the GAN and the over-
all performance. It was observed that out-of-domain text data generally yielded
inferior results, reinforcing the necessity of ATC-specific text data to achieve
optimal performance.

3 Methods

The primary objective of ASR research is to generate the most accurate textual
representation of audio possible. Here, we conducted an experimental study to
assess the performance of recent end-to-end speech recognition technology in the
ATC domain. To this end, we employed a rigorous preprocessing procedure on
the text data to ensure consistency and a uniform input representation. All cor-
pus transcriptions were filtered, transforming all letters to lowercase and remov-
ing special characters not part of the alphabet. The process reduces the number
of tokens used in both models by 49%, impacting training cost and the output
probability distribution in the output layer. However, the preprocessing of the
models differentiates from this point. While fine-tuning the wav2vec 2.0 model
can be initiated with the raw audio files and the paired transcripts. The wav2vec
2.0 Unsupervised preprocessing is more circumstantial. Although various repre-
sentations of sentences, words, and phones were mapped accordingly, given the
domain-specific nature of air traffic control communications, we elected to use the
actual text data from the same dataset to maintain relevance and accuracy. This
decision was based on the understanding that air traffic control communication
data exhibits unique characteristics that may not be present in generic text data,
thus requiring specialized treatment. Furthermore, the audio was files trimmed
to remove silence [27] and a Mel-frequency cepstral coefficients (MFCCs) [16]
representations of the trimmed audio was created for training purposes.

Subsequently, the ATCOSIM dataset of 9538 samples was partitioned into
training, validation, and testing subsets at 70%, 20%, and 10% distributions,
respectively. The distribution resulted in a split key of 6677/1907/954. The
samples were selected randomly to ensure a fair representation of the data. This
partitioning strategy allowed us to establish a robust evaluation framework, min-
imizing the risk of overfitting and ensuring that the model’s performance could
be assessed on unseen data.

wav2vec 2.0: The experiment’s first phase was conducted with the wav2vec
2.0 framework and weights from four pre-trained models to evaluate the down-
stream infusion of the ATCOSIM dataset. Wav2vec 2.0 results are based on the
following weight pipelines. Wav2vec2-base (95 m param.) pre-trained on 53000 h
with no fine-tuning, wav2vec2-large-960h-lv60-self (317 m param.) pre-trained on
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53.000 h of unlabeled data from the LibriVox subset Librilight [19] and fine-tuned
on 960 h of LibriSpeech [23]. Wav2vec2-xls-r-300m (300 m param.) pre-trained
on 436.000 h of unlabeled multilingual data from multiple corpora Common-
Voice [5], VoxPopuli [29], Multilingual LibriSpeech (MLS) [24], VoxLingua107
[28] and the Babel project. Wav2vec2-large-robust-ft-swbd-300h pre-trained on
Libri-light, CommonVoice, Switchboard [12] and Fisher [10], then fine-tuned
on 300 h of noisy telephone data from the Switchboard corpus. All pre-trained
pipelines provide a diverse and comprehensive source of training data for ASR
systems, adding a robust context baseline for downstream tasks.

We implemented the pre-trained pipelines using the Huggingface platform
[2], adapting the code for custom fine-tuning of the ATCOSIM corpus. Further-
more, we added a hyper-parameter loop to examine different training arguments’
impacts on the results. The parameters used were warmup steps, epochs, batch
size, and learning rate. All results are based on the 954 unseen samples from the
ATCOSIM corpus.

wav2vec 2.0 Unsupervised: The experiment’s second phase was conducted
using the Wav2vec Unsupervised 2.0. To implement the wav2vec Unsupervised
2.0 framework, we followed the guidelines in the Fairseq GitHub repo [1]. In addi-
tion, we created an additional layer on the framework to execute the many steps
involved in the process seamlessly and efficiently. For preparing the input to the
Generative Adversarial Network (GAN), we used the pre-trained wav2vec2-large
model with no fine-tuning of the model, extracting the contextual representations
in latent space from the raw audio files. The wav2vec2-large model is equivalent
to the Wav2vec2-base described in the above section but has a feature dimen-
sion of 1024 instead of 768. Clustering it with the recommended 64 centroids for
the K-means training. For the language identification model, we used fastText
lid176.bin model [17,18] instead of the proposed model.

We then conducted several training runs with minor configuration adjust-
ments to the training parameters, including learning rate, batch size, and the
number of training epochs. This iterative approach allowed us to refine the model
based on the results of each training run and facilitated the identification of opti-
mal parameter settings for our specific task. The results have also been generated
utilizing 954 unseen samples derived from the ATCOSIM corpus.

OpenAI Whisper: In addition to the first and second phases and for compar-
ison purposes, we used the Whisper models [25] from OpenAi’s GitHub reposi-
tory [3] to conduct zero-shot predictions on our ATCOSIM test-set audio files.
Using the small (244M. param.), medium (769M param.), and large (1550M.
param.) architectures. Each model was pre-trained on 680.000 h of labeled mul-
tilingual data. The integrated pre-processing within the framework allows for
the simple input of an audio file as the sole requirement to receive a prediction.
Subsequently, we developed a module for post-prediction analysis to evaluate the
WER against outcomes from earlier phases while excluding upper- and lower-
case letters and special characters from the output.

By comparing the performance of the unsupervised wav2vec 2.0 framework
with that of self-supervised and supervised approaches using pre-trained models,
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Table 1. Pre-trained models data foundation. Models containing unlabeled and labeled
data are pre-trained and fine-tuned before the experiments.

Model Unlabeled data (hours) Labeled data (Hours)

wav2vec2-base 53.000 –

wav2vec2-xls-r-300m 436.000 –

wav2vec2-large-960h-lv60-self 53.000 960

wav2vec2-large-robust-ft-swbd-300h NA 300

openai whisper (small, medium, large) – 680.000

we aimed to gain insight into the relative effectiveness of these methodologies in
the context of air traffic control communications.

4 Results

4.1 Wav2vec 2.0 Downstream

The wav2vec2-large-960h-lv60-self pipeline described in Sect. 3 had the best over-
all performance of the pre-trained models. Figure 1 show the loss across the 50-
epoch training sequence. The model was used to predict text outputs from the
unseen test subset. Using the jiwer package for Python1, each prediction was
given an individual WER score, yielding an average WER of 0.97%.

Fig. 1. Results from large-960h-lvl60-self model training.

4.2 Wav2vec Unsupervised

In terms of accuracy metrics, there appears to be some ambiguity within the
framework itself. During training, there is a validation run performed every n-
th epoch where one of the metrics is valid uer. When running the script for
generating phone labels - w2vu generate.py - the metric used is WER. As both
valid uer and WER appear to be the same, for consistency, we have elected only
to use the term WER.
1 https://github.com/jitsi/jiwer.

https://github.com/jitsi/jiwer
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The two different perspectives in Fig. 2a and 2b shows the progress of the
WER throughout the training phase. The lowest WER achieved on the validation
subset was 23.79% and 25.37% on the unseen test subset.

Fig. 2. wav2vec 2.0 Unsupervised on ATCOSIM dataset.

4.3 Whisper

Table 2 presents the performance metrics of the Whisper architectures on the
test subset. Original WER results are based on the output with full token rep-
resentation, and the corrected output is post-processed to match the token set
used in 4.1 and 4.2. The best WER achieved by Whisper was 29.54%.

Table 2. Whisper model performance.

model original WER corrected WER

small 91.13% 46.95%

medium 84.22% 31.32%

large 82.94% 29.54%
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5 Conclusion

While ASR technology has the potential to significantly benefit the ATC domain,
its development and implementation face unique challenges. Recent advance-
ments, such as transfer learning and the wav2vec-U framework, offer promising
solutions to address these challenges, paving the way for more accurate and
reliable ASR systems in the ATC domain.

The findings of this study underscore the potential of using unsupervised
learning and fine-tuning pre-trained Wav2Vec 2.0 models to advance research in
creating robust ASR systems for the specialized domain of air traffic control com-
munications. Furthermore, the results highlight the effectiveness of fine-tuning
these models on smaller, domain-specific datasets to yield improved ASR per-
formance.

Future research endeavors should refine the fine-tuning process by applying
the experimental setup to larger corpora of audio data specific to the air traffic
control domain. This process would involve using small transcribed datasets for
fine-tuning across multiple airports within the same region. Exploring this app-
roach is crucial, as it may reduce dependency on large volumes of transcribed
data and facilitate ASR system development in low-resource languages and spe-
cialized domains.

In summary, this study has provided some insight into the potential of fine-
tuning pre-trained Wav2Vec 2.0 models using unsupervised learning techniques
for advancing research in robust ASR systems tailored to the air traffic control
domain. Refining the fine-tuning process and leveraging unsupervised learning
benefits can contribute to the ongoing efforts to develop more accurate and
versatile ASR systems.
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Abstract. Robot-directed speech refers to speech to a robotic device, ranging
from small home smart speakers to full-size humanoid robots. Studies have inves-
tigated the phonetic and linguistic properties of this type of speech or the effect
of anthropomorphism of the devices on the social aspect of interaction. How-
ever, none have investigated the effect of the device’s human-likeliness on lin-
guistic realizations. This preliminary study proposes to fill this gap by investi-
gating one phonetic parameter (speech rate) and one linguistic parameter (use
of filled pauses) in speech directed at a home speaker vs a humanoid robot vs a
human. The data from 71 native speakers of French indicate that human-directed
speech shows longer utterances at a faster speech rate and more filled pauses
than speech directed at a home speaker and a robot. Speaker- and robot-directed
speech is significantly different from human-directed speech, but not from each
other, indicating a unique device-directed type of speech.

Keywords: human-computer interaction · speech rate · filled pauses

1 Introduction

So-called “robot-directed speech” (RDS) refers to language productions uttered by a
(generally grown-up) human to a robotic device, ranging from small home speakers to
full-size humanoid robots. It can be compared to computer-directed speech in that it
belongs to the category of device-directed speech, itself a category of special speech
registers such as infant-, child-, foreigner- or even pet-directed speech. The exploration
of such speech styles holds promise for a better understanding of human-computer inter-
action (HCI) or more broadly of dialogical adjustment and audience accommodation,
which in turn may help develop concrete tools such as addressee detection.

Several studies have investigated specifically the acoustic properties of computer-
or robot- vs adult-directed speech. They have shown that, when talking to a computer,
humans tend to produce more utterances [1] and to hyperarticulate their vowels (in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Ekštein et al. (Eds.): TSD 2023, LNAI 14102, pp. 249–257, 2023.
https://doi.org/10.1007/978-3-031-40498-6_22

https://doi.org/10.1007/978-3-031-40498-6_22


250 N. Kalashnikova et al.

terms of formants and duration) but not to display a higher pitch (F0) [2]. When talking
to a robot, however, pitch and intensity are usually higher [7,9], vowels hyperarticu-
lated [7], but speech rate shows fewer differences [9]. Regarding linguistic character-
istics, when talking to a computer, humans tend to control and simplify their use of
language (fewer fillers, incomplete sentences or discourse markers, limited information
load per sentence...): In particular, speakers display less filled pauses (such as uh or um)
[1]. To the best of our knowledge, the correlation between the addressee and the pres-
ence of disfluencies has not yet been tested in robot-directed speech. All these studies
also indicate that the differences between device- and human-directed speech subside
overtime [1] and that adults show more intra-speaker variation in the device- than in
child-directed speech [3,6].

These differences between computer- and robot-directed speech imply that all
devices are not equal to the eyes of humans. However, all these studies are binary,
in the sense that they explore device- vs human-directed speech but fail to take into
account the diversity of devices and in particular the effect of human-likeliness of the
device. Only two studies that we know of investigate the effect of the device’s anthro-
pomorphism on the human-robot interaction [4,5]. Gong [4] shows that, on a scale
of four levels of anthropomorphism, the more anthropomorphic the agent is, the more
social responses it receives from users. Krach et al. [5] confirm these results from a
neurological perspective since increased human-likeliness of the device correlates with
higher cortical activity in regions of the brain linked to reasoning about others’ intention
(Theory-of-Mind).

None of these studies investigates the acoustic properties correlating with the degree
of anthropomorphism of the device.

We propose to fill this gap by presenting the preliminary results of a larger study
opposing participants dialoguing with a Google Home speaker vs a human-like Pepper
robot vs another human. In particular, we investigate:

– phonetic factors: whether participants produce (i) longer utterances (duration of
speech turns) (ii) with slower speech rate in the speaker vs human condition;

– linguistic factors: whether participants produce (iii) less filled pauses (“heu”,
“hem”...) in the speaker vs human condition;

– variation: (iv) whether these measures differ more intra-speaker in speaker- than in
human-directed speech and (v) evolve overtime;

– the effect of anthropomorphism: (vi) whether the Pepper-directed speech patterns
with the speaker- or with the human-directed speech (or lies somewhere inbetween).

In the remainder of this paper, we first present our methodology and resulting data
in Sect. 2, then our results in Sect. 3 and finally we conclude and discuss the results in
Sect. 4.

2 Method

2.1 Experimental Design

Procedure. First, members of our team explain the flow of the experiment and the
consent notice to each participant and participants fill out a written form of baseline
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questions, where they note their level of willingness to adopt a series of 8 ecological
habits. After that, they follow volunteers to one of the 3 rooms (corresponding to each
conversational agent), where two team members control the setup of the experiment. At
the end of the recording, participants are thanked by the experimenters and invited to go
back to the organizers where they are offered a snack and can ask their questions. The
whole procedure was vetted by our research center’s ethics committee and took place
according to covid-19 safety protocols.

Recordings. During the recording, a conversational agent (smart speaker, robot or
human) asks questions about environmental habits. The conditions of the smart speaker
and the Pepper robot are realized in the form of a Wizard-of-Oz setting which was
inspired by [8]. The synthesized voice of a child is provided by the default settings of
the Pepper robot and is used for both robot and smart-speaker agents. The human agent
is a member of our team who reads aloud the devices’ script. The oral exchange consists
of 4 steps.

– S0: The agent establishes common ground with the subject by doing small talk.
– S1: The agent presents hypothetical situations in which participants should choose
between the option by default and the eco-friendly option which demands more
investment (of money or time).

– S2: The agent provides information presenting the negative consequences of each
habit on the environment and asks the same questions as in the written form of
baseline questions.

– S3: The agent replicates S1 with similar yet slightly different hypothetical situations.

Audio data are recorded using unidirectional headset microphones (AKG45) and
Audacity at 44.1 kHz.

Participants. In April and June 2022, our research team recruited attendants and vis-
itors of Collège des Bernardins, the research center and faculty of theology in Paris,
France. We enrolled 71 native speakers of French (46 women, 25 men) over 18 and up
to 65+ years old (globally equally distributed across age-ranges).1

Among them, 21 (16 women, 5 men) participated in the human-directed speech
condition, 28 (18 women, 10 men) in the robot-directed speech condition, and 22 (12
women, 10 men) in the smart speaker-directed speech condition. A total of more than
16 h of speech were recorded.

2.2 Methodology

The audio files were manually transcribed in the orthography of French by two interns.
Filled pauses were also manually annotated in the transcription. The resulting transcrip-
tion files contain timestamps of speech turns. All calculations are made using Python 3
[12].

For the duration of utterances, we use these files to calculate the total duration (in
seconds) of each subject’s speech turn in the conversation.

1 To ensure the privacy of participants, their exact age was not required in the form. They only
had to specify their age range between 18–30, 30–45, 45–65 and 65+.
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For speech rate, we divide the transcription file using the spaces between words,
resulting in a series of smaller “tokens”.2 We then compute the sum of tokens for each
experiment step, and divide this sum by the duration of the step, thus resulting in a
number of tokens-per-second ratio.

For filled pauses, we calculate the total number of filled pauses and divide this
number by the duration of the step, thus providing a ratio of the number of filled pauses
per second.

For the analysis of intra-speaker variation, we calculate the standard deviation of
each parameter for every participant and then the mean value for each condition.

The significance of our results is tested using a t-test for two independent samples
applied with SciPy [13]. The obtained p-values are Bonferroni-corrected with threshold
alpha = 0.5 using Statsmodels [10]. Thus, in Sect. 3 we report corrected p-values.

3 Results

3.1 Length of Utterance and Speech Rate

In general, participants tend to produce insignificantly longer utterances when talk-
ing to a human (mean = 372 s) than when talking to a smart speaker (mean = 191
s, Δ= 181 s, t = 2.19, p = 0.09), and significantly longer than when speaking with a
humanoid robot (mean = 147 s, Δ= 225 s, t = 2.87, p = 0.01). The length of utterances in
a speech addressed to a robot and a smart-speaker is not significantly different (Δ= 44
s, t =−1.08, p = 0.85).

When looking at each step separately, as in Fig. 1, the only significant differences
in average duration are to be found between human- and robot-directed speech in Step
S2 (Δ= 181.15 s, p = 0.01) and in Step S3 (Δ= 28.14 s, p = 0.02).

Contrary to the literature comparing device- with child-directed speech [3,6], partic-
ipants displayed more intra-speaker variation in the human-directed speech condition,
with a mean standard deviation across participants of 137.54 s, than in the speaker-
(mean sd = 69.57 s,Δ= 67.97 s, t = 2.47, p = 0.06). This parameter is significantly differ-
ent between human- and robot-directed speech (mean sd = 53.18 s,Δ= 84.36 s, t = 3.24,
p = 0.004). However, the differences are not significant between smart-speaker- and
robot-directed speech (Δ= 16.39 s, t = -1.3, p = 0.2).

Regarding speech rate, human-directed speech is slower at first but quickens around
S1, i.e., when substancial conversation actually starts (Fig. 2). In general, partici-
pants address the human at a rate of 2.96 tokens/second, the robot at a rate of 2.63
tokens/second, and the speaker at a rate of 2.5 tokens/second. As expected, the dif-
ference between human- and speaker-directed speech is significant (Δ= 0.46 tokens/s,
t = 3.43, p = 0.004). Contrary to [9], the difference between human- and robot-directed
speech is also significant (Δ= 0.32 tokens/s, t = 2.8, p = 0.009), but not the one between
robot- and speaker-directed speech (Δ= 0.14 tokens/s, t = 1.32, p = 0.58).

2 We call these units “tokens” as they can refer to only one word, or sometimes to two in cases
of elision which are frequent in French (e.g., l’ami (le + ami), “the friend”, is two words, but
only one token.).
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Fig. 1. Mean duration of utterances in speech directed at the human (blue), at the smart speaker
(red) and at the humanoid robot (green). (Color figure online)

The analysis of each step shows that the two significant differences in speech rate
are observed at step “S2” in conditions between human- and speaker-directed speech
(Δ= 0.4 token/s, p = 0.002), and between human- and robot-directed speech at the same
step (Δ= 0.36 token/s, p = 0.003). However, no significant difference is to be found in
robot- vs speaker-directed speech at any step.

Contrary to what has been expected, less intra-speaker variation is observed in
smart-speaker directed speech, with a mean standard deviation across participants of
0.6 token/s, against 0.68 (Δ=−0.08 token/s, t = 0.92, p>1.) in robot-directed speech
and 0.62 (Δ=−0.02 token/s, t = 0.19, p>1.) in human-directed speech. The difference
between robot and human is not significant either (Δ= 0.06 token/s, t =−0.7, p>1.).

These results indicate that the human-likeliness of the device moderately impacts
the length of utterances and speech rate. Participants tend to speak much longer to
humans than to robots, but not to smart speakers. Parties speak faster to humans than to
robots and especially to smart-speakers. However, when comparing robot and smart-
speaker, no differences in the length of utterance rapidly nor in speech rate were
observed.

3.2 Filled Pauses

Filled pauses are instances of disfluencies, accidents in speech production that are
extremely natural and frequent in human-human interaction [11]. In general, partici-
pants produce significantly fewer filled pauses when talking to a smart speaker than
when talking to a human (Δ=−0.4, t = 2.92, p = 0.01) and to a robot (Δ=−0.29,
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Fig. 2.Mean speech rate in speech directed at the human (blue), at the smart speaker (red) and at
the humanoid robot (green). (Color figure online)

t = 2.62, p = 0.03). The amount of filled pauses between the human- and the robot-
directed speech, however, is not significant (Δ= 0.11, t = 0.8, p>1.).

The situation evolves over time (Fig. 3). At the beginning of the conversation, espe-
cially in S0 (small talk), participants produce more filled pauses when talking to a
human (0.35 filled pauses per second) than to a robot (0.19, Δ= 0.16, p = 0.4) and espe-
cially to a speaker (0.09, Δ= 0.26, p = 0.04). At the end of the interaction, for instance,
at S3, participants produce almost as many filled pauses when talking to humans (0.27)
than to robots (0.28, Δ= 0.01, p>1.) but still more than when talking to speakers (0.19,
Δ= 0.08, p = 0.4).

Intra-speaker variation is similar in all three conditions, with a standard deviation
of 0.17, 0.17 (Δ= 0, t = 0.004, p = 1) and 0.12 (Δ= 0.05, t = 1.1, p = 0.28) filled pauses
per second in human-, robot- and speaker-directed speech respectively.

These results indicate that in line with previous research [1], participants produce
more dysfluencies in human-directed speech than in device-directed speech, but the dis-
crepancy shrinks over time. However, robot-directed speech does not differ significantly
either from human- nor speaker-directed speech.



Speech Rate and Fluency in French Robot-Directed Speech 255

Fig. 3. Mean disfluency frequency in speech directed at the human (blue), at the smart speaker
(red) and at the humanoid robot (green). (Color figure online)

4 Conclusion and Discussion

In the present study, we analyze 16 h of speech by 71 native speakers of French to inves-
tigate speech rate and use of filled pauses in speech directed at a human, a humanoid
robot, or a smart speaker. Our study partially shows the same findings as in previous
research [1]: participants produce less filled pauses when addressing a speaker than a
human. Nevertheless, contrary to [1], parties in our research speak faster to a human
than to a robot or a speaker. Regarding the humanoid robot, building on studies advo-
cating for an effect of anthropomorphism on spoken interaction [4,5], we hypothesized
that speech addressed to the robot would share characteristics with human-directed
speech rather than with speaker-directed speech. Participants produced indeed longer
utterances and faster with more filled pauses in human- than in robot-directed speech.
Moreover, robot- and speaker-directed speech does not differ in length of utterance, nor
in speech rate, or frequency of disfluencies. We also expected more intra-speaker vari-
ation in device- than in human-directed speech. We find the reverse tendency for the
length of utterances, and no difference for the use of filled pauses and speech rate. In
general, human-directed speech is opposed to smart-speaker- and robot-directed speech.

The similarity between robot- and speaker-directed speech could be due to the fact
that both devices communicated with a child’s voice, while the human conversational
agents were adults. It is possible that participants aligned with child-directed speech
rather than with device-directed speech. However, the robot and speaker conditions
were comparable but displayed no significant difference, indicating that the behavior
of participants quickly converges towards a unique device-directed type of speech.
Another caveat is that, while the robot and the speaker always used the same voice,
there were four human agents, among which 1 man and 3 women. It is possible that
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the data from the human-directed speech condition is impacted by a difference between
women- vs men-directed speech.

Further analyses should also focus on the age of the participants and their daily
usage of each robotic device to establish the effect of familiarity and habit in our results.
In future steps of this research, we intend to investigate more phonetic characteristics,
mainly pitch and acoustic characteristics of the vowels and consonants (formants, dura-
tion, etc.), more types of disfluencies, such as unfinished sentences, repetitions (stutter),
etc. and finally linguistic properties of discourse, such as discourse markers, the com-
plexity of syntax, etc. We also plan to analyze the similarity of phonetic characteristics
between the speech of agents and the speech of subjects in order to study the mecha-
nisms of linguistic alignment during the conversation.
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Abstract. This paper describes our proposed system for online speaker
diarization suitable for streaming applications. Assuming the availabil-
ity of an audio segment before the partial result is required, our method
exploits this information by combining online clustering and resegmen-
tation. First, the speaker embeddings extracted from an x-vector neural
network are labeled using tree-based clustering. Then, when a complete
batch of x-vectors is available, a Bayesian resegmentation is applied to
refine the clusters further. Moreover, we exploit the fact that both meth-
ods share the same statistical framework, adapting the resegmentation
step to use the history of the decision tree to avoid permutation label
issues. Our approach is evaluated with broadcast TV content from the
Albayzin Diarization Challenges. The results show that our system is
able to outperform online tree-based clustering and obtain comparable
performance with state-of-the-art offline approaches while allowing low-
latency requirements for practical streaming services.

Keywords: Speaker Diarization · Batch-online processing · X-vector
extractor · Tree-based clustering · Variational Bayes resegmentation

1 Introduction

Speaker diarization aims to solve the problem of “who spoke when”, that is,
segmenting a given audio over the active speaker and clustering the segments
belonging to each speaker by assigning the same label to each one [1]. Unlike
speaker recognition technologies, no prior knowledge about the speakers’ identity
or the total number of speakers in the audio is required for the diarization
task. These characteristics make speaker diarization useful for speaker-index
audio data in domains such as broadcast media, telephonic conversations, or
meetings, among others. Moreover, it can be employed with other technologies
like automatic speech recognition.

Thanks to its powerful modeling capabilities, the deep learning paradigm
has centralized research in this area in recent years. In this sense, the most
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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common methodology in the literature focuses on a multistage approach, in
which different submodules are involved acting as a pipeline. As an example of
this pipeline, firstly, an initial speech activity detection module is applied to
detect active speaker regions; these speaker regions are then divided into short
overlapped segments to extract representative speaker embeddings, using neural
networks such as x-vectors [2]. Finally, these embeddings are clustered in same
speaker groups given a similarity metric [3,4] and, optionally, a resegmentation
step further refine these clusters [5]. More recently, this paradigm is progressively
evolving to end-to-end (E2E) approaches [6–9] where a single neural network is
trained to output diarization labels. Nevertheless, this alternative is not mature
yet and finds difficulties in complex scenarios involving several speakers.

The approaches above work offline, assuming all the audio is available during
the diarization process. On the other hand, online alternatives can be employed
when speaker labels have to be assigned on-the-fly as the audio recording feeds
the system, as in the case of streaming applications. This is a challenging diariza-
tion task, where an incorrect detection and (or) clustering can degrade future
decisions’ accuracy. Online speaker diarization systems based on deep learning
are usually developed as adaptations of offline systems, including clustering-
based approaches [10–13] or E2E methods [14–16]. Despite the improvements
in the last years, online systems still underperform compared to offline ones.
The main drawback is the trade-off between the accuracy of the system and the
required low latency for the decisions. However, there are scenarios where a cer-
tain delay is allowed between the input audio and the results broadcast, including
the diarization decisions. This is common in broadcast streaming, where a buffer
time is required for other services to be accommodated, such as speech transcrip-
tion or translation. In those cases, the availability of longer audio segments can
be exploited for developing batch-online diarization systems that can reduce the
performance gap with offline methods.

In this paper, we describe our proposed approach for batch-online speaker
diarization. Our method efficiently combines offline and online clustering-based
techniques. Firstly, the speaker embeddings computed from the x-vector extrac-
tor are labeled using an online tree-clustering approach, and the clustered embed-
dings are used to characterize the corresponding speaker. Then, after a number
of accumulated embeddings, a Variational Bayes resegmentation (VBx) [5] is
applied to refine the label assignments on the current batch. The resegmentation
is also adapted to consider the history of the previous clustering in past batches.
Moreover, both models share the same underlying statistical framework, which
allows to reduce the operational computations for low-latency applications. Our
method is evaluated using broadcast domain corpus available in the community.
The experimental results show that our proposed approach is able to reduce
the performance gap and achieve close or comparable results with state-of-the-
art offline approaches by allowing batch processing. In addition, we analyze the
latency requirements of our system to ensure its practical applicability.

The remainder of this paper is structured as follows. Section 2 briefly reviews
related works for speaker diarization and their features compared to our app-
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roach. Our proposed method is described in Sect. 3, including the tree-clustering
and resegmentation modules and its jointly processing. Then, in Sect. 4 the
experimental framework and results are presented and analyzed. Finally, the
conclusions are summarized in Sect. 5.

2 Related Work

Our proposed approach follows the clustering-based approach, where the embed-
dings extracted from a deep neural network are processed to be assigned to
the corresponding speaker. An online statistical tree-based clustering framework
was proposed by [10] and further described in [17]. A similar approach is also
explored for the UIS-RNN method [11,18], using a recurrent neural network
that tracks the hidden state of the speaker. The authors of [19] used a trans-
former transducer to detect speaker turns. These turns are thus represented
by speaker embeddings, which are then clustered. A low-latency graph-based
label generation is described in [12]. This approach modifies an offline agglom-
erative hierarchical clustering (AHC) algorithm to operate online. The work in
[20] combines a clustering-guided training of the recurrent embedding extractor
with a truncated-beam searching clustering algorithm. Recently, the authors of
[13] explored using VBx for online diarization. For the clustering of the cur-
rent embedding, core samples are selected from each speaker and concatenated
with the new embedding to perform VBx, Then, global constrained clustering is
applied to decide if the embedding belongs to a new speaker.

The E2E-based approaches have also been adapted to operate in an online
framework. For example, a speaker-tracing buffer is considered in [14] to adapt
E2E neural diarization (EEND) network to perform online diarization. The same
authors also incorporated the ability to handle a flexible number of speakers in
[15]. An online version of the target-speaker voice activity detection (TSVAD)
system was proposed in [16]. On the other hand, some approaches have explored a
joint approximation of E2E systems for local segmentation and global clustering
of extracted embeddings. This is the case of the system proposed in [21]. A similar
approach is followed in [22], where the EEND system with speaker-tracing buffer
computes the local embeddings, which are then clustered. Despite the progress,
the performance of these methods still degrades when the number of speakers is
higher than those considered during training.

Our approach is directly related to the tree-based clustering proposed in
[10,17] and the VBx technique presented in [5]. We explored a joint combina-
tion of both approaches, allowing for pipeline optimization. Our system fully
exploits the online behaviour of the decision tree as an initialization for the VBx
algorithm. Moreover, we adapted the VBx resegmentation to take advantage of
the previous clustering, avoiding the permutation label problem among batches.
Compared to [13], our method exploits the speaker clusters’ complete statistics
and reduces the computational time (the resegmentation is performed in a batch-
wise setting). To the best of our knowledge, this is the first work to explore the
combination of online tree-based clustering with VBx resegmentation.
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3 VBtree-Based Clustering for Batch-Online Diarization

Let us consider the speech signal to be diarized as a sequence of feature vec-
tors X = [x1, · · · ,xT ], with Z = [z1, · · · , zT ] as the set of discrete variables
indicating the corresponding speaker label of each vector. The diarization clus-
tering problem can be formulated as the solution of the following maximization
procedure,

Z∗ = argmax
Z

P (X |Z ) P (Z) , (1)

where P (X |Z ) is the likelihood of a given clustering solution, and P (Z) repre-
sents the a priori distribution of the speaker assignments. We will further assume
that X are x-vectors processed by a Probabilistic Linear Discriminant Analysis
(PLDA) model, such as they can be described by speaker-dependent distribu-
tions P (xt |ys ) = N (xt;Vys, I), where ys ∼ N (0, I) are the latent speaker
vectors (zt = s), V is a diagonal matrix, and I is the identity matrix.

The previous maximization problem only applies in an offline scenario where
the entire sequence X is available. On the contrary, we are interested in a batch-
online diarization approach that can exploit the current batch of feature vectors
and the assigned clustering in the previous batches. In the following subsections,
we first introduce a tree-based online algorithm and the VBx offline resegmen-
tation approaches, and then we describe our proposed system for batch-online
diarization.

3.1 Tree-Based Online Clustering

The tree-based model proposed in [10,17] is intended to assign the most probable
speaker for the current vector xt′ given the previous set of vectors and computed
assignments, Xt′−1 and Zt′−1, respectively. First, the likelihood for the current
vector given a speaker can be obtained as

P
(
xt′

∣∣∣zt = s,Xt′−1,Zt′−1
)

=
∫

P (xt′ |ys,t′ ) P
(
ys,t′

∣∣∣Xt′−1,Zt′−1
)

dys,t′

= N (
xt′ ;Vµs,t′ , I + VΣs,t′V�)

,

(2)

where µs,t′ and Σs,t′ are the conditional first- and second-order statistical
moments of ys,t′ , respectively, which can be computed as

µs,t′ = Σs,t′V �
t′−1∑
t=1

θs,txt, (3)

Σ−1
s,t′ = I + V�V

t′−1∑
t=1

θs,t, (4)

where θs,t is a binary variable equals one when zt = s, zero otherwise.
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On the other hand, the speaker priors are modeled by a Distance-dependent
Chinese Restaurant (DDCR) process [23], which assigns probabilities to keep in
the same speaker, select an existing speaker, or add a new one,

P
(
zt′ = s

∣∣∣Zt′−1
)

=

⎧
⎪⎨
⎪⎩

p0 if zt′−1 = s

(1 − p0)Ns/Bs if zt′−1 �= s and s ≤ S

(1 − p0)α/Bs if zt′−1 �= s and s = S + 1
(5)

where p0 is the probability of keeping in the same speaker, Ns is the number
of consecutive blocks of vectors for speaker s, α is a factor proportional to the
probability of a new speaker, and Bs =

∑
i�=s Ni + α is a normalization factor.

The model above takes the shape of a decision tree, where the log probability
of a given path can be computed as the cumulative log probabilities at each time
step. As the decision tree is conditioned to previous assignments, the Markov
assumption does not hold. Thus, the M algorithm [24] is used to search for the
best path in the tree, propagating a number of surviving paths along all possible
branches and ranking them in terms of their likelihood.

3.2 Variational Bayes Resegmentation

The VBx approach proposed in [5] is an offline resegmentation algorithm that
uses a Bayesian hidden Markov model (HMM) to find the sequence of speakers.
The speaker-specific distributions are derived from the PLDA model, while the
transition between speakers follows the next HMM topology,

P (zt = s |zt−1 = s′ ) = (1 − ploop) πs + δ (s, s′) ploop, (6)

where ploop is the loop probability of a state, πs represents the initial probabilities
of each speaker, and δ (s, s′) is the delta function (δ (s, s′) = 1 when s = s′,
otherwise zero). The diarization problem is addressed using a Variational Bayes
(VB) approximation of the posterior distribution P (Z,Y |X ) ≈ q (Y) q (Z),
where Y = [y1, · · · ,yS ]. The approximate posterior is found by maximizing the
following Evidence Lower Bound Objective (ELBO),

LELBO = Eq(Y)q(Z)

[
ln

(
P (X,Y,Z)
q (Y) q (Z)

)]
. (7)

This is an iterative procedure where we find the q (Y) that maximizes the ELBO
given fixed q (Z) and vice versa.

The speaker-specific posteriors are updated as q∗ (ys) = N (ys;µs,Σs),

µs = FAΣsV
� ∑

t

γs,txt, (8)

Σ−1
s = I + FAV�V

∑
t

γs,t, (9)
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where FA is an empirical acoustic factor and γs,t = q (zt = s). Ignoring the FA

factor, these equations are similar to the ones used in the tree-based algorithm
except for two differences: 1) the use of posterior probabilities γs,t for the speak-
ers instead of absolute decisions θs,t, and 2) the computation is performed for
the whole time sequence. Given the updated q (Y), the q∗ (Z) that maximizes
the ELBO can be calculated using a forward-backward algorithm. Finally, the
initial priors πs are updated, and the ELBO is evaluated.

The VBx algorithm acts as a resegmentation approach, requiring an initial-
ization for γs,t. Thus, it is used along with another offline diarization method. A
common approach uses PLDA scoring to compute the similarity matrix between
the x-vectors and AHC clustering to obtain a first speaker assignment for the
VBx procedure.

3.3 Proposed Approach

In the previous sections, we described tree-based clustering and the VBx reseg-
mentation. The former is appropriate for online diarization but is error-prone
due to the absolute decisions at each time step. On the other hand, the VBx
approach is not feasible in an online scenario. Moreover, we are interested in a
batch-online algorithm that allows a number of accumulated time steps to be
diarized before outputting a final decision.

Therefore, we propose a VBtree-based batch-online diarization approach that
performs as follows. We consider batches of L x-vectors. For example, we consider
the case where k − 1 batches have been already diarized, and a new k batch is
starting. First, tree-based clustering is applied to each x-vector sequentially to
initialize the speaker assignments. Then, the VBx resegmentation is applied to
the batch to refine the diarization. To use the previous information from the past
batches, we modify the computation of the expected moments of ys as follows,

µs(k) = FAΣs(k)V �

⎛
⎝

(k−1)L∑
t=1

θs,txt +
kL∑

t=(k−1)L+1

γs,txt

⎞
⎠ , (10)

Σ−1
s (k) = I + FAV�V

⎛
⎝

(k−1)L∑
t=1

θs,t +
kL∑

t=(k−1)L+1

γs,t

⎞
⎠ . (11)

The first sum is fixed for the iterative procedure and can be pre-computed for
the current batch. The forward-backward algorithm is then applied on the L
x-vectors of the batch, but the forward probabilities for the first time step are
modified to keep the temporal consistency with the previous batch. After the
resegmentation, the new assignments are used to update the tree path.

A diagram of our proposed approach is depicted in Fig. 1. The speech sig-
nal is first segmented using voice activity detection (VAD), and the x-vector
embeddings are extracted from subsegments of the speech-active segments. These
embeddings are clustered in an online manner using the aforementioned decision
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Fig. 1. Scheme of the proposed VBtree-based batch-online diarization approach.

tree. After a batch is completed, VBx resegmentation is applied to correct the
assigned labels and output the final decisions to the streaming service.

The advantage of this approach is that it allows a robust batch diarization
with low latency. The tree-based clustering gives a good-enough initialization
with few computations, while the resegmentation is only performed for the cur-
rent batch taking advantage of the previously diarized batches. Moreover, both
methodologies share a similar statistical framework, which helps the integration
of both approaches and merges computations that are common for both meth-
ods. Again, this makes the approach better optimized for streaming applications
with low latency.

4 Experimental Results

In this section, we first describe the experimental framework of this work, includ-
ing the datasets used to train and evaluate our method, the x-vector architecture
and PLDA, and the diarization pipeline for the batch-online procedure. Then,
we present and discuss the evaluation results obtained.

4.1 Experimental Framework

Training and Evaluation Data. In-domain training data is only used to train
the PLDA model. It comprises two different corpora. The first corresponds to
the data from the Albayzin (ABZ) 2016 diarization corpus [25]. This is a Spanish
dataset including broadcast news and radio programs. Besides, additional data
from Spanish broadcast TV with speaker labels are considered. The data include
the available SAVAS corpus and the commercial IDAZLE corpus (described in
more detail in [26]). Table 1 indicates the total number of training hours.
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Table 1. Total amount of hours and minutes used for training, development and
testing, split by the corresponding dataset.

Broadcast ABZ16 ABZ18 ABZ20 ABZ22

Train 162:21 97:22 - - -

Development - - 15:09 - -

Test - - 21:08 33:21 24:59

Different approaches are evaluated using the test data from the three last
Albayzin Diarization Challenges1 (2018, 2020 and 2022). These datasets include
Spanish broadcast contents from different TV programs with diverse conditions:
news and talk shows, social and cultural documentaries, and fictional series. In
addition, the difficulty increases as new editions are organized. We chose these
datasets for a three-fold reason: (1) they are freely available for the research com-
munity, (2) the broadcast content is a scenario of great interest for the application
of streaming technologies for the market and the scientific community, and (3)
we can evaluate our algorithms in challenging data with different acoustic con-
ditions compared to the ones considered from the training of the deep learning
systems involved (Spanish language, broadcast content). The total amount of
hours for development and testing in each edition is also shown in Table 1.

X-Vector Extractor and PLDA. The x-vector extractor network is the one
used in [5] for the 16 kHz evaluation data, and it is based on the ResNet101
architecture [27]. The architecture input consists of 64 log Mel-filterbank fea-
tures extracted using 25 ms windows, each 10 ms, and the x-vector dimension
is 256. The network is trained using VoxCeleb 1 and 2 databases [28] as well as
the CN-Celeb dataset [29]. To this end, 4-second segments are used, and data
augmentation is performed by adding noise, music, and reverberation. On the
other hand, the PLDA is trained with the Kaldi toolkit2 as in [3] using the train-
ing data previously defined. To this end, x-vectors are computed for 3-second
segments from the audio. To reduce the domain mismatch, a whitening trans-
formation based on principal component analysis (PCA) is computed from the
development data of the Albayzin 2018 dataset and applied to the x-vectors.

Diarization Pipeline. During the inference, audio signals are first segmented
to detect speech regions using a voice activity detection module based on GPVAD
[30]. An x-vector is extracted from the speech signal each 0.75 seconds using a
window length of 1.5 seconds. The x-vectors are centered, whitened using the
PCA transformation, and length-normalized. After that, the x-vectors are fur-
ther processed (mean subtraction and matrix transformation) using the PLDA

1 http://catedrartve.unizar.es/albayzin.html.
2 https://github.com/kaldi-asr/kaldi/tree/master/egs/dihard 2018.

http://catedrartve.unizar.es/albayzin.html
https://github.com/kaldi-asr/kaldi/tree/master/egs/dihard_2018
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Table 2. Experimental results obtained from our proposed approach and compared
diarization systems for the Albayzin Diarization Challenges from 2018 to 2022. The
results are indicated in terms of DER and speaker-confusion error (in parentheses).

System ABZ18 ABZ20 ABZ22

Chinese whispers 11.40 (6.6) - -

Fully-bayesian PLDA - 15.24 (9.6) -

PyAnnote - 16.00 (7.6) 18.47 (11.0)

VBx 9.83 (4.6) 13.59 (6.9) 25.52 (14.1)

tree-PLDA 21.82 (16.6) 26.33 (19.7) 33.25 (21.8)

VBtree (L = 30, I = 10) 9.11 (3.9) 14.28 (7.6) 28.62 (17.2)

VBtree (L = 15, I = 10) 8.94 (3.7) 15.60 (8.9) 30.04 (18.6)

VBtree (L = 15, I = 2) 9.10 (3.9) 13.97 (7.3) 27.75 (16.3)

VBtree (L = 15, I = 1) 10.47 (5.2) 13.71 (7.0) 27.20 (15.8)

parameters to follow the standardized model. Moreover, the dimension of the x-
vectors is reduced to 128. The tree-based clustering is used for each L number of
x-vectors, and the resegmentation is performed afterward over the whole batch.
The fixed hyperparameters used during our experiments are α = 1, p0 = 0.975,
FA = 0.1, and ploop = 0.5. The beam size for the decision tree is equals to one.

4.2 Evaluation Results

Our proposed approach is evaluated using the test data from the three differ-
ent Albayzin Diarization Challenges. The accuracy of the diarization systems is
measured using the diarization error rate (DER) metric, which considers three
different error types: false alarm, missed speech, and confusion among speaker
labels. The DER is the rate between the sum of the duration of these errors and
the total duration of the audio. While false alarms and missed speech are related
to the VAD module (and possibly missed overlapped speech), speaker confusion
is caused directly by the error produced during clustering.

Table 2 shows the experimental results obtained from this evaluation in terms
of DER and speaker confusion error. We compared our system with the tree-
based clustering (tree-PLDA), the offline system using VBx, and the three best
systems from each challenge: the GTM-VIGO system based on Chinese whis-
pers [31], the Vivolab system based on Fully-bayesian PLDA [17], and the offline
PyAnnote system3 [32]. Moreover, we report results with our system using dif-
ferent batch sizes (L) and maximum iterations for the resegmentation (I).

The results demonstrate that our approach can effectively improve the online
tree-clustering process using batch resegmentation, closing the gap with offline
systems and even outperforming them in some cases. For example, our VBtree

3 Results for the Albayzin 2022 Diarization challenge can be found in
http://catedrartve.unizar.es/albayzin2022results.html.

http://catedrartve.unizar.es/albayzin2022results.html
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Table 3. Average computational time (in seconds) for L = 15 batch processing. The
times are broken down for processing module and number of iterations.

X-vector & tree-clustering VBx (I = 1) VBx (I = 2)

0.60 3.06 3.82

approach obtains comparable results with VBx in the different datasets. It even
gives better results in Albayzin 2018 with some configurations, outperforming
the best system in this challenge. Similarly, our approach outperforms the Fully-
bayesian PLDA in Albayzin 2020 and achieves close results with VBx using only
one iteration for the resegmentation. Regarding Albayzin 2022, the performance
gap between PyAnnote and VBx is partly due to different speech segmentation,
a better adaptation to this domain, and overlap-aware approaches. Nevertheless,
VBtree still achieves competitive results, especially in terms of speaker-confusion
error, yielding close results with VBx just using one resegmentation step. More-
over, we show that our approach can perform well when reducing the batch size
and the number of iterations. This means that the tree-clustering procedure can
provide good initialization for batch-online processing while the resegmentation
ensures robustness and decision tree correction. Reducing the batch size can
help the resegmentation to correct tree-clustering decisions better, while a low
number of iterations prevents resegmentation from diverging during initial clus-
tering. Furthermore, reducing the batch size and iterations allows low-latency
computation for streaming applications.

Finally, in Table 3, we show our evaluation of the average computational time
to process a batch (L = 15), breaking down the tree-clustering step (including
x-vector extraction) and the VBx resegmentation (for I = 1, 2). We evaluated a
subset of audio files in the Albayzin 2018 test data. The experiment was run in a
server with Intel Xeon CPU E5-2683 v4 at 2.1 GHz using 32 cores and a Nvidia
GeForce GTX 1080Ti GPU with 12 GB of memory. The GPU is used for the
inference of the neural network models. The resulting averaged times show that
our system is feasible for batch-online computations with low delay and can be
applied to a streaming service scenario.

5 Conclusions

In this work, we have presented a batch-online diarization approach suitable for
streaming applications. Our system integrates an online tree-clustering diariza-
tion approach based on x-vector and PLDA with a VBx resegmentation over
the current batch. Moreover, the VBx algorithm is adapted to take into account
the history of the decision tree, thus increasing the robustness and accuracy of
the diarization output. Our approach is evaluated using the test data from the
last editions of the Albayzin Diarization Challenge, which contains diverse TV
content with complex conditions. We compared our method with state-of-the-art
systems in these challenges as well as related offline and online approaches.
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The results showed that our system can outperform the online tree-clustering
and achieve comparable results with offline systems while accomplishing stream-
ing service requirements. Furthermore, we were able to reduce the batch size
and the number of iterations for the resegmentation algorithm without losing
performance, which shows the robustness of the proposed method. Finally, we
evaluated the average computational time needed during processing, and the
findings further support the use of our system in the streaming scenario. As
future work, we will explore adapting the neural modules with in-domain data
and additional optimizations for integrating our system into streaming services.
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Abstract. In this paper, we evaluate feature extraction models for pre-
dicting speech quality. We also propose a model architecture to com-
pare embeddings of supervised learning and self-supervised learning mod-
els with embeddings of speaker verification models to predict the metric
MOS. Our experiments were performed on the VCC2018 dataset and a
Brazilian-Portuguese dataset calledBRSpeechMOS,whichwas created for
this work. The results show that the Whisper model is appropriate in all
scenarios: with both the VCC2018 and BRSpeechMOS datasets. Among
the supervised and self-supervised learning models using BRSpeechMOS,
Whisper-Small achieved the best linear correlation of 0.6980, and the
speaker verification model, SpeakerNet, had linear correlation of 0.6963.
Using VCC2018, the best supervised and self-supervised learning model,
Whisper-Large, achieved linear correlation of 0.7274, and the best model
speaker verification, TitaNet, achieved a linear correlation of 0.6933.
Although the results of the speaker verification models are slightly lower,
the SpeakerNetmodel has only 5M parameters, making it suitable for real-
time applications, and the TitaNet model produces an embedding of size
192, the smallest among all the evaluated models. The experiment results
are reproducible with publicly available source-code.

Keywords: speech assessment · speech evaluation · mos prediction

1 Introduction

The1 development of speech synthesis and voice conversion models has increased
the need for automatic methods to evaluate the quality of generated speech. The
most reliable methods among the available options rely on manual evaluation,
where human evaluators are chosen to assess signal quality using a predefined
numerical scale. In recent work, self-supervised learning (SSL) models have been
used to predict the quality of synthesized speech. Representations obtained from
models such as Wav2Vec 2.0 [3], HuBERT [12], WavLM [4], and TERA [18] have
been used. These models produce high quality representations and their training
requires a large amount of data.
1 https://github.com/freds0/BSpeech-MOS-Prediction.
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Whisper [24], in the other hand is a for general-purpose speech recognition
model based on supervised learning (SL), and it was developed with the goal
of creating a robust system that generalizes well across domains, tasks and lan-
guages without relying on fine-tuning to achieve high accuracy. Whisper embed-
dings can be used to speech recognition, speech translation, language identi-
fication and other tasks. The authors demonstrated that training on a large
and diverse supervised dataset alone can significantly enhance the robustness
of speech systems. However, to date, the embeddings generated by the Whis-
per model have not been evaluated for their effectiveness in the task of speech
quality prediction.

Speaker embeddings generated by speaker verification models (SV) offer an
alternative to high-quality embeddings. Unlike the latter, speaker embeddings
have a fixed size that remains constant regardless of the length of the utterance.
Earlier studies, such as [31], have examined the properties that are captured
by speaker embeddings, such as the spoken content, speaker’s gender, speaking
rate and audio channel information. These studies have demonstrated satisfac-
tory performance on various tasks, which has motivated further exploration of
these features for predicting the quality of synthesized speech. Also, so far, the
representations of SV models have not been evaluated in the speech quality
prediction task.

In this paper, we propose to evaluate high-quality representations from both
SL and SSL models, as well as SV representations, for the purpose of predict-
ing the quality of synthesized speech in text-to-speech (TTS) systems. In addi-
tion, we investigate the use of these models to evaluate speech samples in a
low resource dataset, in Brazilian Portuguese. Models based on SV can be an
alternative to generate high quality embeddings with low computational cost,
allowing the evaluation of speech quality in real time.

This paper is organized as follows: Sect. 2 presents some prior research on
automatically predicting the quality of synthesized speech. Section 3 outlines
the proposed model architecture developed in this study and Sect. 4 details the
experiments proposed. Then, Sect. 5 discusses the obtained results, and finally,
Sect. 7 presents the conclusions of this work.

2 Related Works

Several studies have addressed the development of automatic methods for eval-
uating the quality of synthesized speech and have obtained results that corre-
late with human evaluation methods. The first pioneering work that used Deep
Learning to predict quality was proposed in 2016 with the AutoMOS model by
Patton et al. [23]. Fu et al. [9] proposed the Quality-Net model to predict the
PESQ [26], a metric which compares a degraded speech signal with a reference
speech signal to provide an objective measure of the perceived voice quality by
the human listener. Lo et al. [19] developed MOSNet, a improved version of
Quality-Net for the MOS prediction task.

Cooper et al. [7] investigate the ability of SSL models to predict speech
quality in out-of-domain scenarios. With the aim of achieving this goal, the
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researchers conducted experiments on embedding extraction models, such as
Wav2Vec 2.0 [3] and HuBERT [12], and compare them to the MOSNet model.
The models were trained on datasets such as the Blizzard Challenge [13] and
the Voice Conversion Challenge [8], and then evaluated on the ASVSpoof 2019
[27] and Blizzard Challenge 2019 [32] datasets. The findings reveal that the
Wav2Vec model outperforms the other evaluated models. However, evaluating
without fine-tuning in a zero-shot setting proved to be challenging and resulted
in a notable decrease in performance.

MOSA-Net [34] is a cross-domain model that uses inputs from multiple
domains, including spectrograms, waveforms and SSL features. According to
the authors, using features from multiple domains contributes to more accurate
results, and training for predicting multiple metrics outperforms the task of pre-
dicting a single one. Although the model can be adjusted to predict subjective
metrics, no comparative experiments have been conducted with other models.

Tseng et al. [28] compared models for predicting MOS using embeddings gen-
erated by Wav2Vec 2.0 [3], TERA [17], CAC [22], and APC [5]. The authors pro-
posed an architecture where the human’s identification is the input and defines
the human bias. The experiments show that the Wav2Vec model achieves the
best results at the sentence and system levels. Similarly, Tseng, Kao and Lee
[29] proposed DDOS, a model for MOS prediction that uses Wav2Vec 2.0 for
feature extraction in conjunction with a representation of the evaluator, in order
to specify the human bias. The model consists of two submodules, the regres-
sion head and the distribution head, which uses attentive pooling and DNNs to
predict the score and distribution of the data. The results of the submodules are
then combined to predict the MOS.

Yang et al. [33] developed an framework for improving speech quality predic-
tion by combining various SSL models, such as Wav2Vec 2.0, WavLM, HuBERT,
and Data2Vec [2]. The framework consists of two parts: the first involves training
the SSL models individually, while the second involves fusing the results of each
model. The goal of the framework is to fine-tune the SSL models and enhance
the accuracy of MOS prediction, treating model fusion as a technique similar
to ensemble. Ragano et al. [25] presented experiments comparing combining
Wav2Vec 2.0 model representations with features extracted from convolutional
layers, exploring different architectural combinations. Ultimately, the authors
found that incorporating features extracted from convolutional layers did not
improve the results.

3 Model Proposal

The proposed model for evaluating the quality of synthesized speech consists of
two modules: the Feature Extractor, which is responsible for extracting speech
features, and the MOS Predictor, which predicts speech quality based on the
extracted features. The architecture of the MOS Predictor consists of two dense
blocks, ReLU activation function, and dropout. Several models are evaluated as
the Feature Extractor, including SV, SL, and SSL models. The architecture of
the proposed model can be seen in Fig. 1. Details of the selected models are given
below.
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Fig. 1. The proposed model consists of two modules: Feature Extractor (in blue) and
MOS Predictor (in yellow). (Color figure online)

3.1 Speaker Verification Models

The GE2E, Clova, TitaNet, and SpeakerNet models, originally proposed for SV,
were selected for speech feature extraction and are discussed in more detail
below:

GE2E [30] is a model that uses the Generalized End-to-End loss function
for training and consists of LSTM layers and a fully connected layer with soft-
max activation. It extracts the vector of embeddings from the log-mel filterbank
energies of each speaker’s sentences and computes the centroid of each speaker.
The similarity matrix is determined from the centroid of each speaker and the
parameters learned during training.

Clova [11] is a model based on the ResNet architecture [10] proposed in
2020 for speaker recognition. There are two versions: Q/SAP, lighter and with
fewer parameters, and H/ASP, which focuses on the quality of the results. Both
versions take log-mel-filterbanks as input and use residual blocks and atten-
tive pooling layers. Version Q/ SAP uses self-attentive pooling. The model was
trained with a combination of prototypical and softmax angular loss functions.
Version H/ ASP achieved higher accuracy and was selected for use in this work.

SpeakerNet [14] is a model with encoder-decoder architecture proposed
in 2020 for speaker recognition and verification. It is based on the QuartzNet
[16] model and has a statistics pooling layer for intermediate feature extraction.
The model is trained with the loss functions cross-entropy and additive angular
margin. There are two versions, SpeakerNet-L and SpeakerNet-M, with 7M and
5M trainable parameters, respectively. The SpeakerNet-M version showed better
results and is used in this work.

TitaNet [15] is a model with an encoder-decoder architecture proposed in
2022 for speaker verification tasks. It is based on the ContextNet model and has
an initial block, a final block, and intermediate blocks that use time-channel sep-
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arable convolutional layers and residual connections with squeeze and excitation
layers. The model uses an attentive statistics pooling layer to extract temporal-
independent intermediate features and a decoder consisting of two linear layers.

3.2 Self-Supervised Learning Based Models

SSL models are trained with thousands of hours of unlabeled audio. In this work,
the following models were selected: Wav2vec 2.0, HuBERT, and WavLM.

Wav2vec 2.0 [3] was developed for the task of automatic speech recognition,
which learns latent representations through a process of masking parts of the
audio. A new version, XLSR [6], was trained on a multilingual dataset consisting
of 50,000 h of recordings in 53 languages. The XLS-R [1] version is the latest and
has been trained using over 400,000 h of recordings in 128 languages.

HuBERT [12] learns latent representations of speech through training sim-
ilar to that of Wav2Vec, along with the K-means algorithm used to discretize
the input Mel spectrogram. In this work, two versions of the HuBERT model
are used, called Large and xLarge, trained with 60,000 h of English audio data.

WavLM [4] is a more general version of the HuBERT model that can be used
for tasks such as speech separation, speaker diarization, speaker verification, and
speech recognition. In this work, two versions were selected for evaluation: Large
and Base-Plus.

3.3 Supervised Learning Based Model

Radford et al. proposed Web-scale Supervised Pretraining for Speech Recogni-
tion (Whisper) [24], an encoder-decoder model based on Transformer, which
maps the audio spectrogram to a sequence of text tokens. Whisper was trained
through supervised training with approximately 680,000 h of labeled audio data
in English and other 96 languages, including Brazilian Portuguese. Results show
that the Whisper model is robust in different scenarios and outperforms SSL-
based models when evaluated on different datasets. In this work, five versions
were selected for evaluation: Tiny, Base, Small, Medium, and Large.

4 Experiments

This study evaluates a total of 16 models for predicting speech quality. Four of
them are based on SV; seven are based on SSL (versions of Wav2vec 2.0 [3],
WavLM [4] and HuBERT [12]); and five based on SL (versions of Whisper).
Table 1 summarizes the models evaluated in this study. This table shows the
dimensions of the output embedding and the total parameters of each model, in
order to better compare the models.

We used two datasets for the experiments in this study: the VCC2018 dataset
[20] and a Brazilian-Portuguese dataset, which was exclusively created for this
present study and is known as BRSpeechMOS. The VCC2018 dataset consists of
a total of 28,292 audio samples in English with a sampling rate of 16kHz, each
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Table 1. The MOSNet model is in the Baseline category; in the SV category, models
based on speaker verification; in the SSL category, models based on self-supervised
training; in the SL category, models based on supervised training. The “Output dim”
column shows the size of embeddings generated by the Feature Extractor module. The
“Total param” column shows the total set of training parameters for the Feature
Extractor module.

Category Model Version Output dim Total param

Baseline MOSNet [19] – – 1,1M

SV TitaNet [15] Large [192] 25,3M

SpeakerNet [14] Medium [256] 5M

GE2E [30] – [256] 1,4M

CLOVA [11] H/ASP [512] 8M

SSL Wav2Vec 2.0 [1] xls-r-300m [1024, T] 300M

xls-r-1b [1280, T] 1B

xls-r-2b [1920, T] 2B

WavLM [4] Base-Plus [768, T] 94M

Large [1024, T] 316M

HuBERT [12] Large [768, T] 300M

xLarge [1024, T] 1B

SL Whisper [24] Tiny [384, T] 39M

Base [512, T] 74M

Small [768, T] 244M

Medium [1024, T] 769M

Large [1280, T] 1,5B

Fig. 2. Distributions of scores for BRSpeechMOS dataset.

sample being evaluated by 4 evaluators. The BRSpeechMOS dataset contains
2,428 audio samples at 16kHz, and each of these samples has been evaluated by
an average of two evaluators. The distribution of scores for the dataset can be
seen in Fig. 2. This dataset has been utilized to assess the model’s performance
on a dataset with limited resources.

All evaluated models were first trained with the VCC2018 dataset and then
fine-tuned with BRSpeechMOS. Model training was stopped early when no more
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improvements were observed in a test set, with Spearman correlation analysis.
Then, the weights of the best models were selected to be evaluated in a validation
set. The experiments were performed on a DGX-1 server running the Linux
Ubuntu 18.04 operating system. The server was equipped with a Dual 20-Core
Intel Xeon processor E5-2698 v4 2.2 GH, 256 GB RAM, and an NVIDIA R©
Tesla R© V100 GPU.

5 Results

The results are presented below, grouping the models according to the following
categories: speaker verification (SV), self-supervised learning (SSL) and super-
vised learning (SL). The evaluation metrics used in this study include Pearson
correlation (LCC), Spearman rank correlation coefficient (SRCC), Kendall-Tau
rank correlation (KTAU), and mean square error (MSE).

5.1 VCC2018 Experiments

Table 2 shows the results of all performed experiments using the VCC2018
dataset. For comparison purposes, the results of the experiments using the
MOSNet [19] model are also presented. Among the SV models, TitaNet obtained
the best results in all metrics, with LCC = 0.6933, SRCC = 0.6667, KTAU =

Table 2. Results of experiments using the VCC2018 dataset.

Category Model Version LCC ↑ SRCC ↑ KTAU ↑ MSE ↓
SV MOSNet – 0.5588 0.5159 0.3765 0.5166

TitaNet Large (TtN) 0.6933 0.6667 0.5005 0.0160

SpeakerNet Medium (SpN) 0.6428 0,6210 0.4598 0.0202

GE2E - (Ge2) 0.6118 0.5846 0,4306 0.0193

CLOVA H/ASP (CLO) 0.6903 0.6623 0,4966 0.0162

SSL Wav2Vec 2.0 xls-r-300m (Wv3) 0.7090 0.6866 0.5190 0.0153

xls-r-1b (Wv1) 0.7140 0.6893 0.5210 0.0268

xls-r-2b (Wv2) 0.7014 0.6757 0.5096 0.0159

WavLM Base-Plus (WlB) 0.6917 0.6816 0.5122 0.0163

Large (WlL) 0.7120 0.7036 0.5316 0.0151

HuBERT Large (HbL) 0.6692 0.6441 0.4800 0.0170

xLarge (HbX) 0.6871 0.6684 0.5012 0.0170

SL Whisper Tiny (WpT) 0.7072 0.6881 0.5187 0.0281

Base (WpB) 0.7178 0.6951 0.5249 0.0225

Small (WpS) 0.7136 0.6906 0.5218 0.0212

Medium (WpM) 0.7205 0.6957 0.5267 0.0195

Large (WpM) 0.7274 0.7061 0.5365 0.0194
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0.5005 and MSE = 0.0160. However, the SpeakerNet, GE2E, and CLOVA models
show similar results, all superior to the MOSNet model.

Among the SSL models, Table 2 shows that the Wav2Vec 2.0 xls-r-1b model
presented the best LCC value, with a value equal to 0.7140. However, in the other
metrics, the WavLM-Large model performs best, with SRCC = 0.7036, KTAU
= 0.5316 and MSE = 0.0151. On the other hand, HuBERT presented the worst
results among the SSL models evaluated. And among the SL models, it appears
that the Whisper Large model presented the best results, with LCC = 0.727,
SRCC = 0.7061, KTAU=0.5365 and MSE = 0.0194. It is worth mentioning that
the Whisper Large model presented the best results among all the models using
the VCC2018 dataset.

5.2 BRSpeechMOS Experiments

Table 3 shows the results of all experiments using the BRSpeechMOS dataset.
The following experiments using the MOSNet model are also presented: MOSNet
ZeroShot (MZS), which was trained using only the VCC2018 dataset and follows
the methodology and hyperparameters used by the original authors; MOSNet
From Scratch (MFS), which was trained exclusively with the BRSpeechMOS
dataset; and MOSNet Fine Tuning (MFT), which was pre-trained with the
VCC2018 dataset and fine-tuned with the BRSpeechMOS dataset.

The results of the experiments using the BRSpeechMOS dataset showed that
not all models generalize well in a low-resource dataset. Among the SV models,
the SpeakerNet model performed best in all metrics evaluated, with LCC =
0.6963, SRCC = 0.6772, KTAU = 0.5173 and MSE = 0.0311, followed by the
CLOVA model. The TitaNet model was the one that presented the worst results.
We believe that the poor performance on the BRSpeechMOS dataset is due
to the small dimension of the output embedding, equal to 192 as shown in
Table 1, which likely causes the embeddings to specialize in the features that
differentiate the speakers. Therefore, more training data would be needed for
the MOS Prediction module to accurately map the features to the MOS score.

Among the SSL models using the BRSpeechMOS, the Whisper Large model
stood out, with LCC = 0.6858, SRCC = 0.6831, KTAU = 0.5275 and MSE =
0.0322. This table also confirms that the HuBERT model has lower performance
compared to the other models. And among the SL models, it can be seen that
the Whisper Small model had the best performance, with LCC = 0.6980, SRCC
= 0.6968, KTAU = 0.5400 and MSE = 0.0440, followed by the Whisper Large
model.
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Table 3. Results of experiments using the BRSpeechMOS dataset.

Category Model Version LCC ↑ SRCC ↑ KTAU ↑ MSE ↓
Baseline MOSNet Zero Shot (MZS) 0.2196 0.2107 0.1520 0.0611

MOSNet From Scratch (MFS) 0.5090 0.3677 0.2693 0.0452

MOSNet Fine Tuning (MFT) 0.5118 0.3603 0.2612 0.0445

SV TitaNet (TtN) 0.1012 0.1177 0.0849 0.0623

SpeakerNet (SpN) 0.6963 0.6772 0.5173 0.0311

GE2E (Ge2) 0.2655 0.2584 0.1791 0.0704

CLOVA (CLO) 0.6860 0.6755 0.5123 0.0359

SSL Wav2Vec 2.0 xls-r-300m (Wv3) 0.6739 0.6593 0.5073 0.0335

xls-r-1b (Wv1) 0.6539 0.6451 0.4937 0.0477

xls-r-2b (Wv2) 0.6667 0.6439 0.4959 0.0341

WavLM Base-Plus (WlB) 0.6082 0.5936 0.4463 0.0382

Large (WlL) 0.6858 0.6831 0.5275 0.0322

HuBERT Large (HbL) 0.5959 0.5863 0.4407 0.0482

xLarge (HbX) 0.6262 0.6214 0.4669 0.0368

SL Whisper Tiny (WpT) 0.6587 0.6240 0.4753 0.0564

Base (WpB) 0.6460 0.6083 0.4645 0.0486

Small (WpS) 0.6980 0.6968 0.5400 0.0440

Medium (WpM) 0.6904 0.6696 0.5161 0.0534

Large (WpL) 0.6956 0.6852 0.5277 0.0777

6 Discussion

When evaluating SV models using the VCC2018 dataset, all models presented
good results. That is, using a dataset with a large number of samples, all models
proved to be adequate to predict speech quality, with TitaNet presenting the best
results. However, when conducting the same experiments with the BRSpeech-
MOS dataset, which has 2,428 samples, the results showed that the SpeakerNet
model can extract more adequate features to evaluate samples quality even when
using a much smaller dataset compared to VCC2018.

The representations of the BSpeechMOS using the SpeakerNet model were
extracted and projected to 2D space using t-SNE [21]. Figure 3 illustrates the
relationship between sample representations and their MOS score. It can be
observed that the samples with score 5 (blue), 4 (cyan), and 3 (green) are in
clusters. On the other hand, there are also clusters formed by samples with
grades 1 (red), 2 (yellow), and 3 (green). Probably, if the BRSpeechMOS samples
were evaluated by a larger number of evaluators, the clusters would be more
homogeneous. The projections using the VCC2018 are not shown since all the
models performed relatively well in the quality prediction task.

Experiments with the SSL models, Wav2Vec 2.0 [1], WavLM [4], HuBERT
[12], and with SL model Whisper [24], using both datasets showed very similar
results. The Whisper model showed the best results, which can be justified by
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Fig. 3. T-SNE projection of embeddings from SpeakerNet extracted from BRspeech-
MOS.

a large amount of training data in different languages, including Brazilian Por-
tuguese. In contrast, the HuBERT model showed slightly worse results compared
to the other SSL models. This is evidenced by the correlation metrics, as shown
in Tables 2 and 3.

When comparing all models, it is noticeable that the SL and SSL models
are superior to the SV models. However, it is worth noting that the SL model
with the best results, SpeakerNet, has only 5M parameters, while the smallest
SL-SSL model, Whisper-Tiny, has 39M parameters, almost 8 times the number
of parameters of the SpeakerNet model. To better compare the models, Fig. 4
shows the ranking of the models with the best results, with the models sorted
on the x axis by the number of parameters of the Feature Extractor module.

Fig. 4. On the left, there are graphs displaying the correlation metrics results from
the VCC2018 dataset. On the right, there are graphs displaying the results from the
BRSpeechMOS dataset. On the x-axis, the models are ordered according to the number
of parameters.
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7 Conclusions

Our results indicate that the Whisper model, particularly the Large version,
is the most effective for the task of speech quality prediction, as demonstrated
through its superior performance on the VCC2018 dataset. Additionally, when
applied to the BRSpeechMOS dataset, the Whisper model, specifically the Small
version, continued to exhibit the highest predictive accuracy, highlighting its
ability to generalize well. Furthermore, our study suggests that models designed
for speaker verification can also be suitable for predicting speech quality, with the
SpeakerNet model performing particularly well, even when using the BRSpeech
dataset, which has limited resources and was created exclusively for this study.
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Abstract. Modern Automatic Speech Recognition (ASR) technology is
typically fine-tuned for a targeted domain or application to obtain the
best recognition results. This requires training and maintaining a ded-
icated ASR model for each domain, which increases the overall cost.
Moreover, fine-tuned model might not be the most optimal way of shar-
ing knowledge across domains. To address this, we propose a novel uni-
fied RNN-T based ASR technology that leverages domain embeddings
and attention based mixture of experts architecture. Further, the pro-
posed unified neural architecture allows for sharing of data and parame-
ters seamlessly across domains. Our experiments show that the proposed
approach outperforms a carefully fine-tuned domain-specific ASR model,
yielding up to 10% relative word error rate (WER) improvement and 30%
reduction in overall training cost.

Keywords: End-to-end speech recognition · multi-domain ASR
models · mixture of experts · DAT · RNN-T

1 Introduction

Commercial ASR systems often have to support multiple domains and a variety
of acoustic conditions. For example, a conversational assistant like Alexa has
to run on different devices such as Echo devices, FireTV remotes and mobile
phones.

Type of queries provided by users to the assistant can vary across devices as
well, e.g. shopping queries on the shopping assistant on mobile phones can be
different from content-only queries related to movies on the video assistant. To
handle variations in usage patterns and acoustic conditions better, a dedicated
ASR system is often trained and deployed for each device-type corresponding to
a particular domain. Such a domain-specific ASR model is typically obtained by
first training a general ASR model on data from all devices and then fine-tuning
it on data from targeted domain.
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Although the per-domain ASR model improves speech recognition accuracy
for the relevant subset of user queries, it becomes cumbersome to maintain mul-
tiple per-domain models as each change (technology advancement, bug-fix, etc.)
needs to be deployed to all the device-types. Further, the two stage training
mechanism of the per-domain models turns out be costly in terms of compute
requirement. Therefore, there is renewed interest in unifying per-domain models
without regressing on accuracy.

In this paper, we explore variety of novel approaches to address the challenge
of unifying multiple per-domain ASR models, for the RNN-T [6] model architec-
ture. We start with a simple approach of using domain embedding to bias the
unified ASR model during run-time. Our next approach explores the use of the
mixture-of-experts (MOE) architecture [15], where each domain is represented
by an expert. We also aim to combine the knowledge from multiple experts,
without constraining any single expert to capture domain-specific knowledge.
Accordingly, we developed a variant of the MOE framework by introducing an
attention formulation into the model [17].

We show that our proposed unified model outperforms the individual domain-
specific fine-tuned models by 10%. We also establish that our model performs
6% better than standard domain adaptation technique of Domain Adversarial
Training (DAT).

2 Related Work

Domain specific models have been used to improve ASR performance in previ-
ous work [11]. Recent approaches have studied how domain knowledge can be
incorporated as context in universal contextual model [2,10,19] and language
model [7]. Another aspect of unified modeling has explored combining language-
specific models into a unified multilingual model [5], using semi-supervised learn-
ing [1] or code switching [20] approaches. Adapter [8] and attention [12,18]
modeling have also been studied in different contexts earlier, specifically in the
domain of natural language processing. Our proposed approach (attentive mix-
ture of experts) of unifying domain-specific ASR models into a universal model
is novel and significantly outperforms the per-domain models. Similar techniques
of model unification, having such significant gains over per-domain models, to
best of our knowledge have not been tried earlier in ASR systems.

3 Multi-device Unification

In this section, we present the motivation and different approaches explored
for unifying RNN-T ASR model. In an ASR system, we use device-types to
address domain-specific models – so for the rest of the paper, we will use the
terms domain and device-type interchangeably. For our experiments we consider
three device-types, based on three distinct acoustic and domain variations in the
data. Far-field device-type (P1) caters to multiple top domains e.g. music, home-
automation, knowledge, shopping. The push-to-talk device-type (P2) primarily
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caters to video and music domains, while close-talk device-type (P3) primarily
caters to the shopping domain.

3.1 Baseline Model Analysis

We begin with training a pooled RNN-T ASR model where we use data from
all device-types. To get some idea about how the encoder tries to capture the
device specific characteristics in pooled training, we generated t-SNE plot of the
final representation of encoder by randomly selecting 1000 utterances from each
device-types.

Fig. 1. t-SNE plot of Baseline Pooled model.

Figure 1 shows that the RNN-T encoder try to segregate features across
device-types which form loose clusters in space, while still having some over-
lap among them. The overlap is due to the limited device specific representation
capacity of LSTM based encoder. We hypothesise that reducing the overlap or
having tight-knit device-specific clusters should provide better recognition across
devices for a pooled model. Based on the above analysis we outline our RNN-T
ASR model unification strategies in the following sections.

3.2 Device-Type Embedding

In this approach, each device-type is encoded as a one-hot vector and provided
as input to the model to learn device specific bias component. We experimented
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with introducing the device-type embedding to different layers of RNN-T encoder
and decoder, results of which are discussed in Sect. 5.

3.3 Mixture of Device Experts (MoDE)

The standard approach to train a device-specific model is to first pool data
from multiple devices, followed by fine-tuning using device-specific data to help
it adapt and match the device characteristics, thereby improving the model
performance. We are proposing to capture the essence of this approach in the
universal model by introducing a Mixture of Device Experts (MoDE) during
pooled model training. Each device-type has its own expert, the parameters of
which are learned only using device-specific data.

Figure 2 shows an encoder layer with expert blocks introduced between layers
of the network. We use adapter modules [8] as device experts, which helps to limit
the increase in parameters. MoDE uses a hard-gating mechanism, where only
one device expert block (corresponding to the device-type of the corresponding
utterance) is active during run-time for an utterance.

LSTM Layers 1 to (K-1)

xt

yt
LSTM Layers K to (N-1)

P0 Expert P1 Expert P2 Expert

MoDE

Device-Type 
Id

Switch

Fig. 2. Schematic diagram of Mixture of Device Experts.

We experimented with having unique device experts per layers of encoder
and decoder of RNN-T and also with sharing the device experts across multiple
layers (details in Sect. 5). It is important to note that experts are not shared
across devices – they are only shared across layers.
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3.4 Attentive Mixture of Experts (AMoE)

MoDE, discussed in Sect. 3.3, restricts the experts to learn device specific charac-
teristics only and doesn’t enable sharing of information across the experts which
might not be ideal. Motivated by this, we propose to remove the restriction on
the experts and let each expert get trained with all device data and then intro-
duce an attention module to learn the optimal contribution from each expert on
the fly. This module is trained along with the rest of the model in an end-to-end
fashion. We call this the Attentive Mixture of Experts (AMoE) approach, where
we learn attention weights over experts, trained using data from all device-types.

Expert1

yE1_t yE2_t yE3_t

yt

E1_t
E2_t

E3_t

Attention 
Module

xt

…

Expert2 Expert3

Fig. 3. Attentive Mixture of Experts.

Figure 3 outlines the details of AMoE. The attention weights in AMoE regu-
late the gradients while learning the expert parameters – this facilitates sharing
of information across experts. The attention variables α in AMoE model are
computed as:

αEi t = Softmax(AEi t),∀i ∈ 1, 2, 3 (1)
where, AEi t = Wa(sigmoid(Wb[xt : yEi t])), (2)

Wb ∈ Rm∗n,Wa ∈ Rn∗1, (3)
m = len(xt) + len(yEi t). (4)

Wa and Wb are trainable parameters which are trained along with RNN-T.

4 Data and Experimental Setup

4.1 Datasets

For our experiments, we used de-identified speech data collected from queries
to voice-controlled devices. We used 15K hours of human labelled data and
45K hours of machine transcribed data for model training. The data consists of
Indian-English queries to a voice-controlled device. The distribution of training
data per device is 2:1:1 for P1:P2:P3 (defined in Sect. 3). The evaluation set
consists of 58 h, 7 h and 4 h of de-identified data corresponding to devices P1,
P2 and P3 respectively.
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4.2 Experimental Setup

Baselines: Our RNN-T baseline model consists of 40.6M parameters – 5 unidi-
rectional LSTM encoder layers and 2 unidirectional LSTM decoder layers, each
with 832 hidden units followed by a final 512 dimensional output projection
layer. The joint network is a feed forward network of 512 hidden units and out-
put dimension of 4001, which corresponds to the number of subword tokens [16].
The feature front end and optimizer used is similar to the one used in [13,14].

We also set up a stronger second baseline to compare with our proposed
method. We used one of the state-of-the-art domain adaptation techniques:
domain adversarial training (DAT) [3,4,9] to learn device agnostic encoder rep-
resentations by reversing the gradients from a device-type prediction task. We
used gradient reversal co-efficient of 0.03 and shared first 2 layers out of 5 layers
of encoder with the device classifier (decided through hyper-parameter tuning).
The device classifier is a single LSTM layer (128 units), output of which is com-
bined through attention and passed through a softmax layer to perform utterance
level classification.

Proposed Models: In case of device-type embedding, a 3 dimensional one
hot vector is used to represent device information. For MoDE, we used adapter
as device experts and restricted the projection size to 256 to keep the param-
eter increase to minimum. In case of MoDE, the device id information for a
particular utterance is used as a switch to allow forward-pass and gradient back-
propagation only through the corresponding device expert. We also experimented
extensively with the position of the experts across different layers of encoder and
decoder. For AMoE we used 64 dimensional learn-able attention weights, i.e. n
in Eq. 3 is 64.

Table 1. WERR(%) for all devices with our experimental models with respect to
individually finetuned device specific baselines. Encoder and Decoder One-Hot refers
to the encoder and decoder layers to which device-type-embedding has been added
as input. Encoder and decoder layers after which device experts have been added is
indicated by the Encoder and Decoder Experts column All results are obtained after
averaging checkpoints from last 5 epochs.

Exp. Device
One-Hot

Encoder
One-Hot

Decoder
One-Hot

Device
Experts

Attentive
Experts

Encoder
Experts

Decoder
Experts

Shared Dataset Model
ParamsP1 P2 P3

Baseline No N/A N/A No No N/A N/A N/A – – – 40.6M

DAT No N/A N/A No No N/A N/A N/A 3.9 2.5 1.4 +0M

L. Baseline No N/A N/A No No N/A N/A N/A 3.8 3.1 3.5 +5.55M

Device-type
Embedding

Yes 0 0 No No N/A N/A N/A 2.4 0.7 −0.5 +0.02M

Yes 0,1,2,3,4 None No No N/A N/A N/A 2.5 −1.1 0.1 +0.05M

Yes None 0,1 No No N/A N/A N/A −0.5 −3.7 −2.1 +0.02M

Yes 0,1,2,3,4 0,1 No No N/A N/A N/A 3.6 0.8 −0.6 +0.09M

MoDE No N/A N/A Yes No 0,1,2,3,4 0,1 No 5.4 1.5 2.2 +2.97M

No N/A N/A Yes No 2,3,4 0,1 No 7.6 5.0 5.7 +2.14M

No N/A N/A Yes No 2,3,4 None No 6.0 3.6 5.0 +1.28M

No N/A N/A Yes No 2,3,4 0,1 Yes 7.9 4.2 2.9 +0.85M

Yes 0,1,2,3,4 0,1 Yes No 2,3,4 0,1 Yes 5.8 2.2 2.4 +0.88M

AMoE Yes 0,1,2,3,4 0,1 No Yes 2,3,4 0,1 Yes 10.3 5.8 4.5 +2.86M

Yes 0,1,2,3,4 0,1 No Yes 2,3,4 0,1 No 10.0 5.7 7.3 +7.03M
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5 Results and Analysis

In Table 1 we list results on baseline and experimental models. Our first baseline
model is three individual fine-tuned models for the three devices. Our second
baseline model (DAT) is a single unified RNN-T model trained with pooled data
from all devices but trained in device adversarial setup. All our experimental
models only has a single stage of pooled training, similar to DAT baseline. This
provides us with a single unified model that can serve all three devices without
any two-stage training process. The WER improvements shown for all other
experiments are relative to the first baseline model. Due to company policy, we
are not able to report the absolute WER numbers. However, the baseline is a
competitive state-of-the-art model.

Large Baseline: We also trained a Large Baseline model wherein an additional
encoder layer is added resulting in 5.55M additional parameters over the Baseline
model. From Table 1 we see that, Large Baseline model in-spite of having 2x-5x
additional model parameters compared to some of the experimental candidates,
doesn’t perform as well as the respective candidates.

Device Embedding: In this setup, we get the best results when we append
the embedding to all encoder and decoder layers, where we saw some gains over
Baseline for P1 and P2 but for P3 we observed some regression.

Mixture of Device Experts: With MoDE, we saw consistent improvements
across all the devices for all the candidates. The results from Table 1 show that
device experts were more helpful in the top half of the encoder compared to all
the layers (Row 1 vs Row 2 of MoDE section in Table 1). From this observation,
all other experiments were tried out only with experts in the top half of the
encoder. Moreover, we saw that – experts in encoder are more effective than
in decoder. However, when combined together, it delivered additional incremen-
tal gain in performance for all devices (Row 2 & Row 3). We also performed
an experiment where we shared the experts across layers in both encoder and
decoder instead of having unique expert in each layer which resulted in 67% less
additional trainable model parameters. Although we saw some regression for P3,
we were still able to get similar results for P1 and P2 (Row 4) as compared to
having unique experts. Also, since we had device specific experts in this setup,
providing device embedding to encoder and decoder (Row 5 in MoDE block)
didn’t boost the performance.

Attentive Mixture of Experts: Unlike MoDE, in AMoE, we enabled sharing
of information across experts through attention. From the results we see that
this gives much superior performance compared to MoDE across devices. Also,
similar to MoDE, we see that even in AMoE, sharing of expert block across
layers gives similar performance as compared to having unique experts.

Cost Savings: The baseline model has two stages of training - pooled train-
ing followed by three device specific fine-tuning. Contrary to this, our proposed
model has a single stage of pooled training, which reduces the number of epochs
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of model training by 30%, thereby reducing overall training time and compute
cost. Thus, our proposed unified model, in addition to providing better per-
formance, has significantly less carbon footprint and uses 30% less compute
resources.

(a) DAT Baseline (b) MoDE

(c) AMoE

Fig. 4. t-SNE plots for different models.

Encoder Analysis: In order to visualise the representation learned by encoder,
we generated t-SNE plots using encoder features from last layer and using the
same setup mentioned in Sect. 3.1. In case of DAT (Fig. 4a), since we are enforc-
ing the model to learn device agnostic characteristics, we see that the learned fea-
tures across devices are more distributed. For MoDE model (Fig. 4b), we observe
an interesting fact that, even though the encoder LSTM layers are shared, each
expert learns features in such a way that the final encoder features from different
devices form distinct tight-knit clusters that are disjoint and distant from each
other. In case of AMoE (Fig. 4c), even though we did not impose any restric-
tion on the experts to be device specific, the experts learned to segregate the
utterances across device-types implicitly.

Decoder Analysis: To understand the role of the experts in the decoder, we
analyzed the attention weights given to each expert across word pieces in an
utterance, for the AMoE model. We observed an interesting trend wherein we saw
that one of the expert is mostly active during decoding of the head word-pieces
and the other experts pitch in only during the recognition of slot content and
rare words. Since P2 and P3 are dominated by slot contents, the experts catering
to slot content recognition remains mostly active for these devices. Hence the
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Fig. 5. Attention weights for AMoE across word pieces.

experts in the decoder also captured some device specific characteristics without
any explicit device information. We picked one example to demonstrate the above
phenomenon in Fig. 5. In this particular utterance, while decoding frequent word
pieces like ‘play’, ‘song’, ‘from’ - the expert 1 is mostly active and only while
decoding the artist name ‘balasubrahmanyam’, the expert 3 gets more weight.

6 Conclusion

This paper proposed to build a unified RNN-T based ASR model that general-
ized for various domains and acoustic conditions. The paper conducted a detailed
ablation study involving domain embedding, mixture of experts, and attention
to identify an optimal unified neural ASR architecture, which gave up to 10%
relative WER reduction over simple fine-tuning approach. In addition, we sim-
plified the overall training process and kept the number of model parameters
in check compared to baseline, which resulted in up to 30% savings in compute
cost. Both MoDE and AMoE yielded significant WER improvements, and offered
options to trade-off WER and latency to cater to various applications.
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Abstract. Organic dysphonia can lead to vocal impairments. Recording patients’
impaired voice could allow them to use voice cloning systems. Voice cloning,
being the process of producing speech matching a target speaker voice, given tex-
tual input and an audio sample from the speaker, can be used in such a context.
However, dysphonic patients may only produce speech with specific or limited
phonetic content.

Considering a complete voice cloning process, we investigate the relation
between the phonetic content, the length of samples and their impact on the out-
put quality and speaker similarity through the use of phonetically limited artificial
voices.

The analysis of the speakers embedding which are used to capture voices
shows an impact of the phonetic content. However, we were not able to observe
those variations in the final generated speech.

Keywords: voice cloning · speaker encoder · speech synthesis · x-vector ·
voice disorders

1 Introduction

Organic dysphonia can lead to serious vocal damage [7], deteriorating communication
and causing social isolation. Besides, as the voice is a personal way of expression, it
can be considered as part of a person’s identity. This is why it would be an interesting
possibility to use speech synthesis devices, fed by patients’ vocal data, to improve their
speech intelligibility. However, patients’ health condition presents constraints which
can impact voice recording. Long recording sessions can prove to be very tiring, induc-
ing more vocal instability, with a potentially reduced phonetic coverage due to the
pathology. In a context of speech synthesis, such medical application would require to
study the impact of the vocal corpus’ content and duration on the synthesized speech.

Speech matching a target speaker voice can be produced with a multi-speaker neural
Text-to-Speech (TTS) system. However, it needs target speaker samples in the training
corpus. Voice cloning methods, such as speaker adaptation and speaker encoding, offer
more flexibility and can generate speech from speakers unseen during training [2,4,6].

Speaker adaptation relies on a second training step during which the pre-trained
multi-speaker model is specialised, or fine-tuned, to produce only the target speaker
voice. Each new speaker requires a fine-tuning step to obtain a custom model.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Speaker encoding only trains on a multi-speaker corpus. A second model, called
speaker encoder, outputs to the TTS model a vectorial representation of speaker fea-
tures, called speaker embedding. To match another speaker, new audio samples are
simply given as input to the speaker encoder.

Both approaches need relatively few data from the target speaker, obtaining very
good results with ten minutes of speech, and good results with only ten seconds [4]. In
this study, we use the speaker encoder approach, and the x-vector model in particular, as
described in Fig. 1. Indeed, despite slightly lower results compared to speaker adapta-
tion [2], it only needs one training phase, facilitating its generalisation to new speakers.
This fits with the idea of being accessible, in the long term, for as many patients as
possible.

This article presents first results on the impact of the target speaker corpus’ phonetic
content on speaker embeddings. The end goal medical application is detailed in Sect. 2.
The experimental protocol is defined in Sect. 3, training settings and data in Sect. 4.
Last, results are discussed in Sect. 5.

Multi-Speaker
Text-to-Speech ModelText

Speaker
Encoder

Speech

Target
Speaker
Samples

Speaker
Embedding

X-Vector Model [15]

Tacotron2 Model [11]

Phonetic Content of Samples
Impact?

Fig. 1. Framework of the considered study. On this figure, we can see the overall architecture
split into two main blocks: speaker encoder and multi-speaker TTS. Target speech samples are
provided to control the identity of the target speaker. We investigate the impact of those input
speech samples onto both the speaker embeddings and the output speech.

2 Medical Application

Dysphonia can be defined as an alteration of the voice timber, but also, more broadly,
as a momentary or lasting disorder of the vocal function, felt as such by the subject
or relatives [7]. Dysphonia can be of organic or functional origin, depending whether
it is maintained principally by vocal gesture disturbances or caused by organic disor-
ders. Here, only organic dysphonia are considered for voice cloning. Indeed, dysfunc-
tional dysphonia symptoms, in most cases, can be greatly improved through speech
therapy, and uttered speech remains understandable. As for organic dysphonia, while
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most symptoms can also be improved by speech therapy or surgery, for some patients
uttered speech becomes very damaged and difficult to understand. This is especially true
for degenerative organic dysphonia such as pharynx and larynx cancers [16] and amy-
otrophic lateral sclerosis. We believe voice cloning could be useful for such patients.
Moreover, some pathologies such as stenosis, Riegel and Gerhardt syndromes, larynx
and pharynx cancers, can require surgery. Post-surgery speech can be impossible, or
difficult to utter and understand, with possible improvements or lasting effects. Voice
cloning could also be a useful communication tool in this case, while it should not
substitute with speech therapy and a regular use of natural speech. The end applica-
tion would be a tool on which patients would type what they want to say, and which
would “read” it with a voice as close as possible to their unaltered voice. Natural speech
would still remain the main communication method for most patients, especially with
their relatives. As a complement, the voice cloning tool could be used to boost intelli-
gibility - and thus self-confidence - in daily interactions outside of their home. It could
be a meaningful tool to broaden social interactions and improve patients’ autonomy
whenever their low intelligibility would represent a barrier.

Damaged voice can take various forms depending on pathologies, patients,
and degrees of evolution. Common symptoms can include alterations of timbre or
pitch, vocal irregularities, intermittent rhythm, and articulation disorders like a non-
differentiation of consonants and vowels and even a disappearance of consonants. The
variety and range of symptoms make it difficult to thoroughly simulate pathologi-
cal voices from a healthy voice. For this study, extreme phonetic content strategies,
described Sect. 3.2, are considered to simulate some of the symptoms: MSW and Phn
which can be linked to random, intermittent speech, Vowels corresponding to a voice
with consonant disappearance and Phn-A which is closer to a voice with consonant
disappearance and vowel non-differentiation. The remaining strategy, Sentences, repre-
sents a speech baseline. Further studies could include actual dysphonia samples, once
difficulties regarding their availability and protection are overcome.

3 Experimental Protocol

This investigation of the impact of the target speaker corpus’ phonetic content on voice
cloning comes in two parts. The first one focuses on the speaker encoder to determine
whether there is an effect on the speaker embedding produced. The second one con-
siders the entire voice cloning system, to determine whether there is an impact on the
output cloned speech. For both parts, several sample sets are tested as input for the
speaker encoder, with different durations and extreme phonetic content. If these exper-
iments were to highlight an impact with a restricted field and extreme voices, then it
would be legitimate to wonder about such a phenomenon for more usual phonetic con-
tents, and for real dysphonic speech samples. Yet if it turns out to be independent from
the phonetic content, then voice cloning systems could be directly offered to patients
with voice disorders. Otherwise, solutions such as sample pre-processing or system
modifications could be considered to adapt voice cloning models to patients.
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3.1 Considered Models

The considered approach, displayed in Fig. 1, relies on two models, a speaker encoder
model transmitting a speaker embedding to a multi-speaker TTS model. Their training
can be separated in two phases, as in [6]: a first phase with the speaker encoder alone,
then a second phase with the multi-speaker TTS model. For the latter, Tacotron2 is
used [11], from the ESPNET toolkit1. WaveGlow [10] is used as vocoder instead of the
original WaveNet of Tacotron2, for faster inference. The official NVidia implementation
is used2.

In voice cloning, speaker encoders usually come from speaker classification or
speaker verification tasks. Speaker classification aims at determining which speaker a
speech sample originates from, within a fixed set of speakers. Speaker verification seeks
to determine whether two given speech samples are from the same speaker. The x-vector
model [15] is frequently used for this task and takes as input variable-sized speech seg-
ments. It can be described with three blocks: frame-level layers, statistic pooling and
segment-level layers. Extracted speaker embeddings, called x-vectors, are from the seg-
ment layers. The implementation used is from the Kaldi ASR toolkit3. Instead of a 512
dimension embedding, though, the model layers’ size is reduced to 32, as we found that
smaller embeddings better condensed speaker information.

3.2 Extreme Phonetic Content Sampling

To determine the phonetic content influence, samples are extracted from a female
French voice (referred as Neb), containing 87 h of speech, from the SynPaFlex cor-
pus [13]. They are constructed by randomly extracting Sentences, mono-syllabic words
(MSW), phones (Phn), vowels (Vowels) or only “A” phones (Phn-A). While this extrac-
tion method is fairly simple, and the phonetic content strategies extreme, they fall within
the scope of this study: a first investigation, whose results may open up to wider studies.
Four sample durations - 1 h, 10 min, 1 min and 10 s - are considered to study the dura-
tion impact and to compare it with the phonetic content one. For each couple of strategy
and duration, 100 samples are extracted. Using a large voice - here 87 h - is necessary to
obtain several samples containing 1 h of “A” phones, for instance. Moreover, this voice
has been used for French Text-to-Speech models training with good performance, being
expressive without overacting. The samples described here are for the x-vector model
inputs, to serve as reference from the target speaker. As in Sect. 4, we work under the
hypothesis of the x-vector being rather noise-resistant, which would limit the impact of
potential concatenation artifacts in our samples.

3.3 X-Vector Analysis

Two experiments are lead with the x-vector model, designed to determine whether sam-
ple duration and phonetic content have an impact on the x-vectors.

1 https://github.com/espnet/espnet/tree/master/egs/libritts/tts1.
2 https://github.com/NVIDIA/waveglow.
3 https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2.

https://github.com/espnet/espnet/tree/master/egs/libritts/tts1
https://github.com/NVIDIA/waveglow
https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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First, the aim is to know whether produced x-vectors are impacted by input sam-
ple duration. Indeed, SOTA shows that duration influences the output speech of a voice
cloning system [4]. Differences between x-vectors of different duration classes could
serve as a reference to study the impact of another parameter, here the phonetic con-
tent, on speaker similarity. Four sample durations are considered, presented in Sect. 3.2.
A nearest neighbour-like classifier is implemented to classify x-vectors. Classes are
known a priori and represent sample duration for the same speaker. The same classi-
fication method is used for varying phonetic content. This should determine if studied
phonetic content strategies impact x-vectors enough to classify them per said strategy.

3.4 Cloned Samples Analysis

The x-vector experiments are completed with an analysis of speech samples produced
by the complete voice cloning system. Two aspects are considered: speech quality and
similarity to the target speaker. Tested samples were cloned samples obtained with Neb
samples of different contents and strategies as input for the x-vector model. The text
to synthesize is extracted randomly from the corpus to ensure the availability of the
corresponding natural audio reference, with no overlap with the input samples for the
x-vector model. It corresponds to interpausal cuts, as described in [14]. For each couple
of duration and strategy, 100 samples are cloned.

To assess speech quality, we rely on a perception-related automatic measure. One
popular approach is MOSNet [8] which is a recent neural-based automatic evaluation
metric, trained to predict MOS perceptual scores, originally developed for voice con-
version tasks. In this study, we prefer to use the WV-MOS model [1], which uses a
wav2vec2.0 model [3] instead of the standard MOSNet architecture, to improve predic-
tion proficiency. It is trained on the same data as standard MOSNet. The trained model
used is available with the implementation4. For each of the 20 couples of strategy and
duration, the WV-MOS score is computed for the 100 cloned samples.

For speaker similarity evaluation, cloned samples are given as input to a speaker
encoder. The x-vector could have been used for this measure. However, it could be con-
sidered biased, as the model is part of the voice cloning system used in this study.
Consequently, the Resemblyzer model [17] is used here. Resemblyzer is a speaker
encoder producing 256-dimensions embeddings. The model used is the pre-trained
model available in the implementation repository5. From each cloned sample, a resem-
blyzer embedding is extracted. A second resemblyzer embedding is also extracted from
the corresponding natural sample. Cosine similarity is computed between these two
embeddings.

4 Training and Data

Speaker encoder training requires a high number of speakers. Yet in [6], it seems more
resistant to noise than the TTS model. Thus, it can be trained with lesser quality signals.

4 https://github.com/AndreevP/wvmos.
5 https://github.com/resemble-ai/Resemblyzer.

https://github.com/AndreevP/wvmos
https://github.com/resemble-ai/Resemblyzer
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We assume their conclusions to be extendable to other speaker verification encoders
such as the x-vector. This hypothesis serves as a basis to choose its training corpus.
CommonVoice is an open-source multi-lingual corpus by Mozilla [9]. This community
project allows volunteers to record speech samples via their recording device. The cor-
pus contains more than 27k hours of speech in around 100 languages. Only the French
part of the corpus is used here, with 1007 h of speech from 16,785 speakers. This is
consistent with corpora used in SOTA voice cloning. Transcriptions belong to a pool of
more than 2 million sentences, which ensures a diversity of sample content. However,
using the text-independent version of the x-vector model, transcriptions are not given
to the model. Due to the diversity of recording devices and background sound environ-
ments, sample quality is very variable. For reproducibility, the train, dev and test default
sets are used for this study. No speaker appears in more than one set, guaranteeing that
no test speaker was seen during training.

Tacotron2, more sensitive to corpus quality, is trained in two phases, on two differ-
ent corpora. First, as in [5], a pre-training step is applied with a clean mono-speaker
corpus to give the acoustic model a “warm start”. The corpus used is FrenchSiwis [18],
containing high-quality audio samples from a French female speaker and their tran-
scriptions, aimed at speech synthesis. The model trains for 48 epochs, and stops with a
patience mechanism set to 10 epochs. Then, it is trained on the multi-speaker Mufasa
corpus [12] which is extracted from French audiobooks. As data quality in this corpus
is more variable than in the FrenchSiwis corpus, we use WV-MOS score, presented
in Sect. 3.4 as a criterion to filter the corpus. Through other experiments, we found
that a 3.75 threshold offers, for this corpus, a good trade-off between model quality
and speaker similarity of cloned speech. Therefore, all samples with a WV-MOS score
lower than 3.75 are discarded. The training set contains 16 speakers. For each speaker,
10% of samples are randomly put in the dev set, except if it counts more than 500
samples, in which case 500 samples are put in the dev set.

The WaveGlow vocoder is trained separately. As it is a longer, costly step, it is not
trained from scratch, but fine-tuned on French from the official English model. This
second training phase is also executed on the Mufasa corpus, without WV-MOS score
selection. All training was performed with Nvidia Tesla V100 SXL2 cards.

5 Results and Discussions

This section presents the results according to the two experiments conducted. First, a
comparison of x-vector variations depending on duration and phonetic content strate-
gies is done. Second, an analysis of the cloned speech in terms of quality and similarity
to the target speaker is conducted.

5.1 Phonetic Content vs. Duration Impact

Duration classification within a phonetic content strategy has an accuracy of 0.32 for
Sentences, 0.35 for MSW, 0.41 for Phn, 0.36 for Vowels and 0.42 for Phn-A. For a given
strategy, x-vectors are not easily separable by sample duration. Yet, phonetic content
classification is perfect for 1 h and 10 min duration. For 1 min and 10 s, the accuracy
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is respectively of 0.99 and 0.92. It shows that phonetic content strategies render sig-
nificantly different x-vectors. The average dispersion for each class and the distances
between class centroids, not detailed here, show that both class separation and distance
are superior for phonetic content than for duration. These observations are illustrated
here by the Principal Component Analysis (PCA) displayed in Fig. 2. This allows to
conclude that studied extreme phonetic contents have a higher impact on x-vectors than
duration. While increasing the recorded duration leads to a more stable x-vector, the
phonetic content change the average x-vector generated.

It therefore remains to be seen whether those variations have an impact on the gen-
erated signal.

5.2 Cloned Speech Quality and Speaker Similarity

Speech quality and speaker similarity of cloned samples are evaluated with WV-MOS
score and cosine similarity between resemblyzer embeddings, as described in Sect. 3.4.

In terms of cloned speech quality, WV-MOS scores are presented in Table 1a.
Regarding duration, the only observable difference is for the Sentences strategy, for
which cloned samples which received 1 h of speech as input of the x-vector model are
of higher quality than those which received 10 s of speech. Except for this, within a
given strategy, all duration result in cloned speech are of comparable quality. In terms
of phonetic content strategy, for duration 1 h and 10 min, all strategies’ cloned speech
are of similar quality, except for the Phn-A strategy which has significantly lower WV-
MOS scores. This later exception confirmed that the Phn-A strategy is more different
than others as we can see in Fig. 2. On average, the difference is not visible probably
because x-vectors for shorter durations are less stable.

In terms of cloned speech similarity, cosine similarity values between resemblyzer
embeddings are presented in Table 1b. Once again, we observe very few differences
even when significant considering either duration or strategy.

Overall, the differences and dynamics observed on x-vectors are not significantly
measured in the signal generated by the voice cloning system. We may formulate some
hypotheses to explain it.

Firstly, the precision of the measures, especially the similarity one, may not be sen-
sible enough to capture the slight variations in the signal. It can explain partially the
lack of differences but, by listening to some samples, no major differences between
voices arise.

Secondly, variations in x-vectors are observed between voices of the same speaker.
Inter-speaker distances may be much more important and therefore observed variations
may be not significant. Nevertheless, some quality differences can be observed between
very different configurations. For instance, a significant difference can be observed
between the Sentences and Phn-A strategies, or between 1 h and 10 s durations.

Thirdly, the Tacotron2 model may not be able to take enough into account the
speaker embedding conditioning. Thus the model may not learn well the link between
the speaker embedding and the acoustic characteristics of the signal. It may not be due
to the model itself but rather the quantity of data used to learn the model. Of course,
this point should be investigated further.
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(a) PCA of all x-vectors for all strategy and all durations (2000 data points).

(b) 10 seconds x-vectors (500 data points). (c) 1 minute x-vectors (500 data points).

(d) 10 minutes x-vectors (500 data points). (e) 1 hour x-vectors (500 data points).

Fig. 2. Principal Components Analysis (PCA) of x-vectors. Strategies are grouped as follow: for
Sentences; for MSW; for Vowels; for Phn; for Phn-A. Unit variance scaling is applied; SVD with
imputation is used to calculate principal components. Percentage on axis show the part of the total
variance explained. Prediction ellipses are such that with probability 0.95, a new observation from
the same group will fall inside the ellipse.
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Table 1. Automatic evaluation of the generated acoustic signal in terms of quality and similarity
for various cloning voice sizes with various phonetic content strategies.

Sentences MSW Phn Vowels Phn-A

1h 3.57± 0.09 3.55± 0.12 3.60± 0.08 3.59± 0.09 3.19± 0.12

10m 3.44± 0.09 3.47± 0.12 3.60± 0.11 3.50± 0.10 3.21± 0.12

1m 3.40± 0.09 3.55± 0.09 3.62± 0.09 3.51± 0.09 3.34± 0.10

10s 3.35± 0.10 3.37± 0.11 3.53± 0.10 3.42± 0.09 3.24± 0.09

(a) WV-MOS Scores

Sentences MSW Phn Vowels Phn-A

1h 0.608± 0.013 0.609± 0.013 0.612± 0.014 0.595± 0.013 0.621± 0.012

10m 0.612± 0.013 0.611± 0.013 0.611± 0.012 0.592± 0.013 0.621± 0.012

1m 0.622± 0.014 0.607± 0.014 0.611± 0.014 0.600± 0.012 0.620± 0.012

10s 0.631± 0.013 0.622± 0.013 0.623± 0.014 0.609± 0.012 0.627± 0.012

(b) Cosine similarity between resemblyzer embeddings

Lastly, augmenting the diversity in the training dataset by increasing the number of
voices may help the Tacotron2 generalize better. In our experiments, we use 16 speakers
to train the model. Nevertheless, this number of voices can be too low either to interpo-
late or to find a similar voice. Augmenting the corpus size comes with other difficulties,
like the control on the data quality. To alleviate this problem, we have applied filtering
using a threshold on the MOS score. This method could help augment the corpus size
automatically.

6 Conclusion and Future Work

With the improvement of voice cloning systems, it becomes conceivable to apply them
to phonetically constrained voices, and more particularly to pathological voices. Linked
to its medical application, this study focuses on the impact of extreme phonetic content.
Quality and speaker similarity tests outline that the phonetic content and the duration of
test samples have a limited impact on the quality except in some very particular cases.
These results are an incentive for thorough studies on the links between phonetic content
and cloned voice quality, and on voice cloning perceptive test conception. Whereas
an impact is visible in speaker embedding representation, it was not significant when
analysing the generated signal.

Many directions could be investigated in the future. First a listening test could
be conducted to confirm the results we have obtained here. This could be the occa-
sion to introduce other test speakers to investigate the inter-speaker behavior of the x-
vectors in the context of voice cloning. Moreover, enriching the training corpus with
new speakers may help the Tacotron2 generalize and improve the quality of the out-
put speech. As mentioned earlier, an automatic filtering process could be proposed to
do so. Other strategies maybe less extreme could be evaluated, for instance, removing
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one phoneme type (nasal, plosive, etc.). Finally, further studies could be led with sam-
ples from patients suffering from organic dysphonia, including tests with remediation
strategies to overcome the impact of phonetic content.
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Abstract. Speech-to-text (S2T) summarization is a time-saving technique for fil-
tering and keeping up with the broadcast news uploaded online on a daily basis.
The rise of large language models from deep learning with impressive text gen-
eration capabilities has placed the research focus on summarization systems that
produce paraphrased compact versions of the document content, also known as
abstractive summaries. End-to-end (E2E) modelling of S2T abstractive summa-
rization is a promising approach that offers the possibility of generating rich latent
representations that leverage non-verbal and acoustic information, as opposed to
the use of only linguistic information from automatically generated transcripts
in cascade systems. However, the few literature on E2E modelling of this task
fails on exploring different domains, namely broadcast news, which is challeng-
ing domain where large and diversified volumes of data are presented to the user
every day. We model S2T summarization both with a cascade and an E2E sys-
tem for a corpus of broadcast news in French. Our novel E2E model leverages
external data by resorting to transfer learning from a pre-trained T2T summa-
rizer. Experiments show that both our cascade and E2E abstractive summarizers
are stronger than an extractive baseline. However, the performance of the E2E
model still lies behind the cascade one, which is object of an extensive analysis
that includes future directions to close that gap.

Keywords: Abstractive summarization · Speech-to-text summarization ·
End-to-end

1 Introduction

Broadcast news is mainly presented in large volumes of audio-visual multimedia, mak-
ing it time-consuming to locate relevant information. S2T summarization systems help
by identifying the most relevant content within human speech and producing a con-
densed form text suitable for the need. Extractive summarization selects relevant sen-
tences or paragraphs from transcripts, but this method may sometimes lack cohesion
and readability [6]. The rise of large language models from deep learning has enabled
reaching high-level understanding of input documents, besides having impressive text
generation capabilities. Thus, the research focus has been recently placed on abstrac-
tive summarization systems, where the generated summaries are paraphrased compact
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Fig. 1. Illustration of a cascade and E2E system for S2T summarization.

versions of the speech content. They are more natural, coherent, and fluent, i.e. ideally
similar to a summary written by a human specialist.

S2T summarization is usually achieved using a cascade approach (see Fig. 1), where
an automatic speech recognition (ASR) model generates transcripts, followed by a
text-to-text (T2T) summarization model that produces summaries [18]. Deep learning,
including attention-based architectures and self-supervised pre-training, has improved
the performance of both models. Cascade abstractive systems using these components
achieve strong results when trained on unpaired data for dialogue summarization tasks
[24]. However, the transcripts produced by the ASR model may contain errors, so
methods using confusion networks or language models have been proposed to improve
robustness to these errors [11,23].

Cascade systems used for S2T summarization fail to utilize non-verbal and acoustic
information that could be useful for summarization [22]. E2E modelling (see Fig. 1) has
been proposed to address this issue in two different articles [9,21]. These systems do
not make use of an intermediate speech recognition step and instead jointly optimise
an acoustic and language model. However, E2E modelling requires large amounts of
paired audio/summary data and the scarcity of publicly available large corpora on the
broadcast news domain requires techniques to leverage external data.

This work proposes both a cascade and novel E2E models for S2T abstractive sum-
marization of broadcast news. The former uses fine-tuned ASR and T2T abstractive
summarizer on a broadcast news dataset. The E2E system follows the encoder-decoder
paradigm and utilizes speech features extracted using a self-supervised pre-trained
speech representation model as input [3]. It leverages external data from text corpora
through transfer learning from a T2T abstractive summarizer. Both models are com-
pared against an extractive cascade baseline and to each other using ROUGE scores
and human evaluation. We release our source code publicly1.

The remainder of this paper is organized as follows: in Sect. 2, we present the related
work; in Sect. 3, we propose a new corpus of broadcast news in French, which is used
to evaluate the models developed in this work; in Sect. 4, we describe the architectures
of the cascade and novel E2E abstractive summarizers, how the latter benefits from the
former through transfer learning and we introduce an extractive baseline; in Sect. 5,
we detail the architecture and pre-training of the cross-modal adapter, which is the
encoder of the E2E S2T abstractive summarizer that maps speech to textual features;
in Sect. 6, we present the results for automatic and human evaluations; in Sect. 7, we

1 https://github.com/Priberam/S2TSumm.

https://github.com/Priberam/S2TSumm
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discuss the obtained results; Sect. 8 concludes this work and includes future directions
for improving the performance of the E2E model.

2 Related Work

Automatic Speech Representation Learning and Recognition: Wav2vec 2.0 (W2V2)
[1] is a transformer-based encoder-only model for extracting deep representations from
raw audio waveforms, which was trained with self-supervised objectives. Evain et al. [3]
found that speech representations extracted from W2V2 models trained on French data
lead to better performance on several speech-related tasks than using human-tailored
speech features like Mel filter bank (MFB) and Mel-frequency cepstral coefficients fea-
tures (MFCC) [2,5]. Pasad et al. [12] used a metric called Projection Weighted Canon-
ical Correlation Analysis (PWCCA) [10] to study the layer representations of W2V2
models. PWCCA was applied to compare the learned representations of each layer with
external representations, for instance, MFB features and GloVe word embeddings [14].
It is uncovered that the pre-trained W2V2 models encode more semantic information in
inner layers, whereas acoustic information is mostly represented in the outer layers.

W2V2 and its variants can be used as pre-initialization and directly trained for
speech recognition using the Connectionist Temporal Classification (CTC) objective.
The literature also contains fully supervised approaches like Whisper [17], which was
jointly trained for ASR and speech translation using very large amounts of data crawled
from the web.

Text-to-Text Abstractive Summarization: Most state-of-the-art approaches for T2T
abstractive summarization make use of pre-trained large sequence-to-sequence
(Seq2seq) language models like BART and fine-tune them on abstractive summarization
datasets [7]. Rothe et al. [19] proposed an alternative approach in which encoder-only
language models like RoBERTa [25] could be promoted to decoder modules, and the
resulting encoder-decoder models could be fine-tuned for downstream tasks.

End-to-End Speech-to-Text Abstractive Summarization: To the best of our knowledge,
only two works directly exploit E2E modeling of S2T summarization. Sharma et al. [21]
used a restricted self-attention to enable processing long input audios with a trans-
former architecture. The authors first trained a randomly initialized model for ASR,
and then trained it for S2T abstractive summarization using a 2000h corpus of instruc-
tional videos. Matsuura et al. [9] further leveraged a T2T abstractive summarization
corpus using a text-to-speech voice synthesizer as a way of data augmentation. Both
papers report better results than strong cascade baselines.

3 Dataset

For this work, we built a dataset for S2T abstractive summarization of broadcast news
in French, that was built from articles that can be found in the EuroNews website2.

2 https://www.euronews.com/about.

https://www.euronews.com/about
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Each news article from EuroNews has an audio, an abstractive summary of the news
content and the article body. Since the latter is not always a perfect transcript of the
audio, we employed an automatic procedure for selecting the news articles whose article
bodies are perfect (or almost perfect) transcripts of the audios. An XLSR-based ASR
model3 was used to produce artificial transcripts from the audios. Afterwards, the word
error rate (WER) evaluation metric was applied between the automatically generated
transcript and the article body. A threshold for the WER of 45% was set, such that
articles associated with higher values of WER were discarded. The remaining articles
were randomly shuffled and separated into three distinct splits with sizes of 13 380,
1672 and 1673 for the train, dev and test splits, respectively, and this final corpus was
named BNews4. The mean audio duration per article is about 87 s.

4 Model Architectures

Fig. 2. Architectures of the cascade and E2E abstractive summarizers.

4.1 Cascade

The cascade abstractive summarizer requires both an ASR system and a T2T abstrac-
tive summarizer. Figure 2 illustrates the realization of the cascade and E2E abstractive
summarizers.

Automatic Speech Recognizer: The ASR model was built from a W2V2 model5

that was pre-trained on French speech data. The pre-trained model was loaded to
a Wav2Vec2ForCTC object from the Transformers library of Huggingface6.
This model consists of a pre-trained W2V2 model, followed by a linear layer and a
softmax. The model is trained for speech recognition using the French sub-dataset of
the Common Voice Corpus 10.0 (CV) with the CTC objective. The vocabulary contains
222 characters extracted from the dev split of the BNews corpus. The model was further
fine-tuned on the latter from the checkpoint that showed lower WER on the dev split of

3 https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french.
4 We are in contact with EuroNews to have a public license of this dataset.
5 https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base.
6 https://huggingface.co/docs/transformers/index.

https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french
https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base
https://huggingface.co/docs/transformers/index
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the CV. The WER on the test split of the BNews corpus was (18.8 ± 0.3))%, where the
BasicTextNormalizer from Whisper7 was used for text normalization.

Text-to-Text Abstractive Summarizer: A publicly available pre-trained T2T abstractive
summarizer8 is used as the starting initialization for the model weights. The author of
this model built it from two CamemBERTs [8], following the technique introduced by
Rothe et al. [19], and trained it for abstractive summarization using the French sub-
dataset from the MLSUM corpus [20]. The summarizer was further fine-tuned on the
BNews training data. Only the weights of the decoder are updated during this fine-
tuning. The checkpoint that showed maximum ROUGE-2 score on the dev split of the
BNews corpus was selected.

4.2 End-to-End

The novel E2E implementation for S2T abstractive summarization proposed in this
work does not directly use the audio waveform or MFB/MFCC features as input.
Instead, it takes speech features generated by the same pre-trained W2V2 model that
was trained for ASR. The S2T abstractive summarizer takes the speech features and
converts them to a summary of the audio content.

Speech Feature Extractor: Following the same methodology used in [12], we com-
puted the PWCCA scores9 between word-level embeddings extracted from each trans-
former layer of the W2V2 base model and pre-trained French word embeddings, which
were obtained in [4]. It is found that the 7th transformer layer is the one that generates
representations more similar to word embeddings. For this reason, the speech feature
extractor is composed of all the layers of the W2V2 model up to and including the 7th

transformer layer.

Speech-to-Text Abstractive Summarizer: As is illustrated on Fig. 2, the decoder from
the T2T summarizer is transferred to the S2T summarizer, which allows leveraging
the MLSUM training data. The sequences of speech features do not lie in the same
representation space as the textual features that the encoder of the T2T summariza-
tion model generates. For that reason, one must add an additional module that bridges
the speech feature extractor and the decoder. This encoder is responsible for mapping
sequences of audio features to sequences of textual features, and shall be hereby denoted
as cross-modal adapter. The particular architecture of the cross-modal adapter and its
pre-training are the subjects of Sect. 5. After being pre-trained, the whole S2T abstrac-
tive summarizer is fine-tuned on the BNews corpus, and the checkpoint with higher
ROUGE-2 score on the dev split is selected for evaluation.

7 https://github.com/kurianbenoy/whisper normalizer.
8 https://huggingface.co/mrm8488/camembert2camembert shared-finetuned-french-

summarization.
9 https://github.com/google/svcca.

https://github.com/kurianbenoy/whisper_normalizer
https://huggingface.co/mrm8488/camembert2camembert_shared-finetuned-french-summarization
https://huggingface.co/mrm8488/camembert2camembert_shared-finetuned-french-summarization
https://github.com/google/svcca
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4.3 Extractive Baseline

The extractive baseline uses the same ASR system as the cascade abstractive summa-
rizer. We adopted a simple centroid-based approach, where the sentence embeddings
were provided by a publicly available unsupervised extractive CamemBERT-based
model10. The summary is constructed by concatenating the top-k closest sentences to
the centroid until a maximum number of words w̄ is reached, where w̄ = 24 was set to
match the average length of the dev split of the BNews corpus.

5 Cross-Modal Adapter

Given a dataset D = {(w(i), t(i), r(i))}N
i=1 made of triplets of an audio waveform w(i),

the speech transcript t(i) and reference summary r(i), the speech feature extractor gen-
erates an L(i)-sized sequence of speech features x(i) = {x

(i)
j }L(i)

j=1, x
(i)
j ∈ R

768, from

the audio waveform w(i), whereas the encoder from the T2T summarizer extracts a
sequence of textual features or embeddings y(i) = {y

(i)
j }T (i)

j=1 , y
(i)
j ∈ R

768 from the

speech transcript t(i). The cross-modal adapter must be developed for mapping from
sequences x(i) to y(i) (see Fig. 2).

5.1 Architecture

The architecture of the cross-modal is encoder-decoder. The encoder is a 1-layer BiL-
STM and the decoder is a 1-layer forward LSTM, both of hidden dimension 768. Since
the speech feature extractor generates speech features with an output frequency 50 Hz,
whereas spoken text roughly contains 2–3 words per second, the encoder BiLSTM is
preceded by a 2-layer convolutional neural network to reduce the length of the sequence
of speech features from L to L̃ ≈ L/4. The cross-modal adapter contains several atten-
tion mechanisms, which follow closely the work done in [13]. Table 1 summarizes those
attention mechanisms. The

−→
h e

i ,
←−
h e

i and hd
t stand for encoder forward, encoder back-

ward and decoder LSTM hidden states, respectively. The t-th textual embedding yt is

Table 1. Different attention mechanisms used in the cross-modal adapter.

Attention Intra-temporal Cross Intra-decoder EOS Generation

Query hd
t hd

t yt

Keys {he
i = [

−→
h e

i‖
←−
h e

i ]}1≤i≤L̃ {hd
t′}t′<t {yt′}t−w≤t′≤t+w

Values {he
i = [

−→
h e

i‖
←−
h e

i ]}1≤i≤L̃ {hd
t′}t′<t {yt′}t−w≤t′≤t+w

En. Scores eeti = hd
t
T

W e
attnhe

i

e′e
ti =

exp(eeti)∑t−1
j=1 exp(eeji)

ed
tt′ = hd

t
T

Wd
attnhd

t′ eeos
tt′ = yt′T W eos

attnyt

Att. Weights αe
ti =

e′e
ti∑L

j=1 e′e
tj

αd
tt′ =

exp(ed
tt′ )

∑t−1
j=1 exp(edtj)

αeos
tt′ =

exp(eeos
tt′ )

∑t+w
j=t−w exp(eeostj )

Cont. Vectors cet =
∑L̃

i=1 αe
tih

e
i cdt =

∑t−1
t′=1

αd
tt′hd

t′ ceost =
∑t+w

t′=t−w
αeos
tt′ yt′

10 https://github.com/ialifinaritra/Text Summarization.

https://github.com/ialifinaritra/Text_Summarization
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just a linear projection yt = Wtext[hd
t ‖sdt ‖cet‖cd

t ], where sdt is the decoder LSTM cell
state and [·‖·] denotes vector concatenation.

Textual embeddings are continuously-valued on high-dimensional spaces. As such,
there is not a direct way to stop the generation process at inference time. This prob-
lem is circumvented by training an additional attention mechanism and a neural layer
for predicting the end of sequence. Given a set {ŷt}T

t=1 of T (fixed) predicted textual
embeddings, a restricted attention mechanism is applied on every ŷ using a window of
size w, which was set to 1 in all experiments. Details of the attention mechanism can
be found in Table 1. A linear layer followed by a sigmoid function σ(·) are used to
obtain the probability peost = σ

(
Weos[hd

t ‖sdt ‖ceost ]
) ∈ [0, 1] of reaching the end of the

sequence at time step t.
At inference time, the decoder of the cross-modal adapter auto-regressively gen-

erates T = 512 textual embeddings ŷ = {ŷt}T
t=1. For each textual embedding, a

corresponding probability p̂eost of having reached the end of sequence is associated.
A straightforward method to choose the end of sequence is to find the first instant tπ
such that p̂eostπ

> π, where π ∈ [0, 1] is a probability threshold. It was set to 0.5 in
all experiments. Finally, the cross-modal adapter outputs a reduced sequence of textual
embeddings ŷred = {ŷt}tπ

t=1.

5.2 Pre-training

The pre-training of the cross-modal adapter encompasses three controlled steps, which
are described below. The input speech features and target textual features were normal-
ized such that each dimension had zero mean and unit variance.

Stage 1: At this stage, we used the same Common Voice corpus that was used to
train the ASR model. A proportion of speech features from the sequence x(i) is
randomly masked, where for every element of the sequence there is a probability
pmask = 6.5× 10−2 of starting a masked span at that position with length Mmask =
10 (values identical to the ones used to train the W2V2 model). The cross-modal
adapter is trained to minimize the mean squared error (MSE) between the reference
embeddings y(i) and the ones predicted from the masked sequence ŷ(i).
Stage 2: We dropped the CV dataset and used the BNews corpus during this training
stage. The objective remains to minimizing the MSE. Masking is no longer used
and the default teacher forcing algorithm for training Seq2seq models is replaced by
the peeling back algorithm introduced in [16]. For the j-th mini-batch or training
step, we use linear decay for the teacher forcing ratio λ(j) = max(ε, k − cj), where
ε = 5.0 × 10−1, k = 1.0, and c = 8.0 × 10−6.
Stage 3: The cross-modal adapter is now trained to predict the end of the sequence of
textual embeddings, again using the BNews dataset. Given a T (i)-sized sequence of
predicted textual embeddings ŷ(i), predicting for every ŷ

(i)
t whether it is the end of

the sequence is a binary classification problem. Minimizing a binary cross-entropy
loss suffices. All the model weights are frozen except for the ones directly associated
with end-of-sequence prediction (W eos

attn and Weos), and one also makes use of the
peeling back algorithm with linear decay, where ε = 0.0, k = 1.0 and c = 3.0 ×
10−4.
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After this three-stage pre-training, the cross-modal adapter and the text decoder are
jointly trained for abstractive summarization using the BNews dataset in a multitask
objective consisting of the usual cross-entropy loss for summarization and the binary
cross-entropy for EOS detection.

6 Evaluation

6.1 Automatic Evaluation

For assessing the performance of the different implementations developed in this work,
we make use of the ROUGE package11, more specifically, the ROUGE-1, ROUGE-2,
ROUGE-L and ROUGE-Lsum metrics. The decoding for the cascade and E2E abstrac-
tive summarizers is performed with beam search. Table 2 compares the ROUGE scores
for the extractive baseline and both cascade and E2E abstractive summarizers on the
test split of the BNews corpus. We include the topline performance, which is simply the
T2T abstractive summarizer from the cascade system applied on the gold transcripts
(GT), and thus serves as an upper bound for the performance of the cascade abstrac-
tive summarizer. We also performed ablation studies for the following cases: the S2T
abstractive summarizer is not fine-tuned on the BNews corpus after the pre-training
of the cross-modal adapter (nFT); there is no fine-tuning and the cross-modal adapter
additionally does not make use of its predictions for the end-of-sequence positions of
the sequences of textual embeddings and uses instead the gold ones (G-EOS); the pre-
training of cross-modal adapter described in Sect. 5.2 is not performed and the S2T
abstractive summarizer is directly trained using the BNews dataset (nPre).

Table 2. Comparison between the ROUGE scores for the topline, baseline, cascade and end-to-
end (E2E) on the test split of the BNews corpus. We show results without the final fine-tuning
of the S2T abstractive summarizer (nFT), when using the ground truth end-of-sequence positions
(G-EOS) and without the pre-training (nPre) of the cross-modal adapter. Every score is provided
with a 95% confidence interval for the mean.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

Topline (GT + T2T) 45.9± 1.4 33.0± 1.8 39.7± 1.6 41.6± 1.4

Cascade (ASR + T2T) 41.6± 1.2 26.2± 1.4 35.7± 1.2 37.6± 1.2

E2E 37.8± 1.2 23.7± 1.2 32.8± 1.2 33.9± 1.2

E2E (nFT) 30.0± 1.0 16.1± 1.0 25.9± 1.0 26.6± 1.0

E2E (G-EOS) 29.8± 1.0 15.9± 1.0 25.7± 1.0 26.5± 1.0

E2E (nPre) 16.8± 0.4 2.4± 0.2 12.6± 0.3 13.2± 0.3

Extractive 23.8± 0.8 8.3± 0.8 17.9± 0.8 18.8± 0.8

All the abstractive systems outperform the extractive baseline, which was expected
given that the target summaries from our corpus are abstractive. The cascade abstractive

11 https://huggingface.co/spaces/evaluate-metric/rouge.

https://huggingface.co/spaces/evaluate-metric/rouge
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summarizer yields worse scores than the topline model, which is due to ASR error
propagation. On the other hand, the E2E model performs worse than the cascade model,
as measured by ROUGE scores. This contrasts with the fact that, theoretically, E2E
modeling allows leveraging non-verbal and acoustic information besides the linguistic
one from transcripts, which is the only type of information that cascade systems have
access to. Regarding the ablation studies, by comparing the performance of the E2E and
E2E (nFT) models, it is found that fine-tuning the S2T abstractive summarizer after the
pre-training of the cross-modal adapter significantly improves the ROUGE scores with
a relative increase on the interval of 25%–50%. The similarity between the ROUGE
scores of the E2E (nFT) and E2E (G-EOS) models allows us to conclude that the cross-
modal adapter performs equally well either when using its own predictions for the end-
of-sequence positions of the sequences of textual embeddings or when using the ground
truth ones. Finally, the gap between E2E and E2E (nPre) proves that the proposed pre-
training of the cross-modal adapter provides a very significant performance increase.

6.2 Human Evaluation

ROUGE metrics are simple automatic methods to evaluate the overlap between pre-
dicted and reference summaries. However, these metrics alone fail to evaluate impor-
tant features like factual consistency (FC), relevance (R) and fluency (F). To evaluate
these attributes, following the same procedure and criteria definition as in [15], we do
pairwise comparisons between the summaries generated by the extractive baseline, the
cascade and E2E systems. Given an entry of the dataset, we (one of the authors) were
provided with the gold transcript and every pairwise combination of the summaries
generated by the three systems. Afterwards, we were asked to rank the generated sum-
maries according to the three criteria. For each criterion, we would evaluate whether the
first summary is better than the second, tied with, or worse than the second summary.
To make the evaluation process as unbiased as possible, the names of the models that
generated each summary were not shown and the order with which they appeared was
randomized. We randomly selected 30 examples from the test split of the BNews corpus
and Table 3 shows the proportion of times that each system was considered the best for
every pairwise comparison, according to each criterion. We show two examples of the
evaluated summaries on Table 4.

The extractive baseline has been found to be very strong regarding factual consis-
tency. This is consistent with the fact that extractive summaries are directly made of
segments from automatically generated transcripts, and therefore factual inconsisten-
cies may only come from ASR misspellings or unfortunate concatenation of sentences
that together change the meaning of the original content. The cascade system is compet-
itive against the extractive baseline in terms of factual consistency, but the E2E system
performs very poorly on that attribute. Regarding relevance, the cascade and E2E sys-
tems are found to perform better than the extractive baseline. This was expected, since
extractive summaries contain whole sentences that may include irrelevant information,
or there may not exist sentences that give a comprehensive overview of the whole news.
The cascade system also dominates the fluency attribute, and although the E2E model
is generally more fluent than the extractive system, the difference is not as large as
expected. The second example provided on Table 4 is illustrative of the cases when the
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Table 3. Proportion of times that each model was considered the best in each pairwise com-
parison, according to each criterion with respect to factual consistency (FC), relevance (R) and
fluency (F).

FC R F

Extractive is better 0.17 0.10 0.13

Tie 0.73 0.07 0.47

Cascade (ASR + T2T) is better 0.10 0.83 0.40

Extractive is better 0.63 0.23 0.30

Tie 0.30 0.13 0.33

End-to-end is better 0.07 0.63 0.37

Cascade (ASR + T2T) is better 0.60 0.57 0.37

Tie 0.40 0.33 0.53

End-to-end is better 0.00 0.10 0.10

E2E model generates a repetitive summary, therefore compromising its fluency. When
comparing only the abstractive summarizers, the cascade and E2E ones, we clearly see
that the cascade system produces summaries that are better in all the three evaluated
attributes, which is in line with the automatic evaluation with the ROUGE metrics.

7 Discussion

The results from automatic and human evaluation point out that the E2E abstractive
summarizer underperforms with respect to the cascade one. This under-performance
may be explained if one considers the several sub-modules of the cascade and E2E
summarizers. Both make use of a W2V2-based model either for speech recognition or
plain speech feature extraction. The T2T abstractive summarizer of the cascade sys-
tem and the S2T abstractive summarizer of the E2E system share the same decoder,
but differ strongly on the encoder. Thus, the limited performance of the proposed novel
E2E implementation when compared with the cascade system must be sourced on the
particular realization of the cross-modal adapter. We have strong reasons to believe that
the large T2T summarization corpus (MLSUM [20]), to which the encoder of the T2T
summarizer was exposed during its training for abstractive summarization, played a
significant role. It is likely that this enormous amount of external data makes the text
encoder generate much richer textual latent representations than the ones the cross-
modal adapter could possibly generate, given that it only had access to the summariza-
tion training data from the BNews corpus during its development.
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Table 4. Examples of summaries produced by the different summarizers.

Text

Transcript Des milliers de personnes rassemblées à Madrid pour dire “non” à la grâce des indépendantistes cata-
lans, envisagée par le chef du gouvernement espagnol. En Espagne, des milliers de personnes se sont
rassemblées ce dimanche à Madrid pour dire “non” à la grâce des indépendantistes catalans. (...)

Reference Des milliers de personnes rassemblées à Madrid pour dire Non à la grâce des indépendantistes catalans,
envisagée par le chef du gouvernement espagnol.

Extractive Ces deux partis sont profondément oposés à l’initiative de l’actuele Premier ministre, Le socialiste
Pedron Sanchez, qui souhaite acorder la grâce au leader séparatistes condamné pour la tentative de
sécesion de 2017

Cascade En Espagne, des miliers de persones se sont rasemblées ce dimanche à Madrid pour dire non à la grâce
des indépendantistes catalans.

E2E Des milliers de personnes se sont rassemblées ce dimanche à Madrid pour dire non à la grâce des
indépendantistes catalans.

Transcript La Belgique se dit prête à accueillir Jean-Pierre Bemba. Ce jeudi, le chef de la diplomatie belge, Didier
Reynders, a annoncé que le pays était prêt à accueillir l’ancien dirigeant congolais, qui souhaite rejoin-
dre sa famille, qui vit dans le pays. (...)

Reference Le chef de la diplomatie belge l’a annoncé ce jeudi.

Extractive Cet ancien home d’afaires devenue ensuite vice-président de la République démocratique du Congo,
avait été condamné en première instance à 18 ans de prison il y a deux ans

Cascade Didier Renders a finalement été acquité par la Cour pénale internationale, des acusations de crime de
guere et de crimes contre l’humanité la semaine dernière qui a permis la mise en liberté conditionele de
celui qui a été incarcéré pendant dix ans à La Haye.

E2E Le chef de la diplomatie belge a annoncé que le pays était prêt à accueillir Jean-Claude Juncker. Ce
jeudi, le chef de la diplomatie belge a annoncé que le pays était prêt à accueillir Jean-Claude Juncker.

8 Conclusion

We proposed a novel E2E model for S2T abstractive summarization of broadcast news
in French. It leverages external data from T2T summarization corpora through transfer-
ring the decoder from a T2T abstractive summarizer. Additionally, we proposed a clever
pre-training of the cross-modal adapter that leverages external data from an ASR dataset
besides the BNews corpus. We presented an extensive analysis that took into account
automatic and human evaluations for assessing the quality of the generated summaries.
Although the E2E model did not beat the cascade, our contributions helped to close the
performance gap between the two approaches, as is shown by our ablation studies.

The low amount of abstractive summarization training data for pre-training the
cross-modal adapter has been shown as the most likely source of the under-performance
of E2E model. Future work should focus on enriching the training of the cross-modal
adapter. For instance, by also transferring the text encoder from the T2T abstractive
summarizer and carefully train it to process speech features as input. Another possible
and not mutually exclusive direction would be the use of augmented data from T2T
summarization corpora through speech synthesis to enlarge the training data. Finally,
the lack of large corpora with speech/summary pairs severely jeopardizes any fully
supervised approach for developing an E2E system. Future work on developing this
kind of datasets is needed in order to improve the promising E2E systems.

Acknowledgments. This work was supported by the EU H2020 SELMA project (grant agree-
ment No. 957017).
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Abstract. Automatic Speech Recognition (ASR) for high-resource languages
like English is often considered a solved problem. However, most high-resource
ASR systems favor socioeconomically advantaged dialects. In the case of
English, this leaves behind many L2 speakers and speakers of low-resource
accents (a majority of English speakers). One way to mitigate this is to fine-tune a
pre-trained English ASR model for a desired low-resource accent. However, col-
lecting transcribed accented audio is costly and time-consuming. In this work, we
present a method to produce synthetic L2-English speech via pre-trained text-to-
speech (TTS) in an L1 language (target accent). This can be produced at a much
larger scale and lower cost than authentic speech collection. We present initial
experiments applying this augmentation method. Our results suggest that success
of TTS augmentation relies on access to more than one hour of authentic training
data and a diversity of target-domain prompts for speech synthesis.

Keywords: accented speech recognition · data augmentation · low-resource
speech technologies · speech synthesis

1 Introduction

English is one of the most widely spoken languages in the world [11]. Like many lan-
guages, it is diverse and multi-dialectal [3]. ASR systems for English and other high-
resource languages are celebrated for high accuracy [19]. However, these ASR systems
are often tailored for a small number of dialects, due to limited data diversity [5]. Studies
have shown bias in English ASR systems against marginalized language varieties [15],
an ethical concern since this bias can disproportionately affect marginalized groups [16]
and immigrants [10]. Demonstrated ASR bias against non-native English accents [25]
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is particularly concerning, due to the large and growing number of L2 English speak-
ers [8]. Similar trends exist for other high-resource languages [4], but we direct our
focus to English.

One potential strategy to accommodate a greater number of English speakers is
to adapt existing trained English ASR models to different accents [28]. This requires
labeled accented English speech data. However, labeled data in specific English accents
is scarce [5], and collecting human speech for a large number of English accents is
costly and time-intensive.

We propose a novel method: produce L2-accented English for ASR training via
text-to-speech (TTS) pre-trained for another language. Accented speech can be approx-
imated by passing English inputs through TTS for a language corresponding to the tar-
get accent. For example, English text through Spanish TTS will approximate Spanish-
accented English. This strategy is inspired by the success of applying TTS speech for
low-resource language ASR [6,20,21,27]. It is also inspired by the adaptability of
commercial TTS systems such as Microsoft TTS, Google TTS and Amazon Polly to
English accents. We chose Microsoft TTS because its online documentation1 states that
“All neural voices are multilingual and fluent in their own language and English” and
indicates that English text prompts passed through another language’s system will be
rendered as accented English speech. In summary, we contribute:

– A novel method for accented ASR training by producing synthetic accented speech
via a readily available foreign TTS system

– Reduced ASR error rates in some settings via our synthetic augmentation method
– Indications that synthetic accented speech augmentation relies on at least one hour
of authentic data

2 Related Work

We are not the first researchers to investigate augmenting ASR training data via
TTS. Multiple researchers have used TTS to extend ASR training data for a vari-
ety of languages including Mandarin [12] and low-resource languages in a variety
of settings [27], including for languages with no TTS systems [20] and for children’s
ASR [9]. Others have leveraged TTS to replace a need for real speech features in train-
ing [17,24]. These TTS-based methods show promising results for improving ASR in
low-resource settings. Our work, however, is the first to apply this approach to adapt
ASR models to low-resource accents.

We are also not the first researchers to approach improving accented ASR. The
Accented English Speech Recognition Challenge (AESRC2020) [22] garnered devel-
opments in the area from a variety of researchers, including accent embeddings and
model layers [2,13]. [23] ranked first in AESRC2020 with 10.1% word error rate
(WER) by data augmentation and ensembling accoustic models. [5] improved ASR
by 33% in multiple accents by leveraging as little as 105min of unannotated speech in
a target accent with an adversarial transfer learning approach. Like these methods, our

1 https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-
to-speech.

https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech
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approach incorporates data augmentation and is largely unsupervised, incorporating a
small amount of optional labeled data. However, we are the first researchers to take a
multilingual TTS-based approach to accented ASR.

Table 1. Data statistics for authentic sets. na represents the number of TTS voices for synthetic
data production.

Accent train mins. dev mins. test mins. na

Common Voice

German 3.5K 396 438 18

Malaysian 66 6 18 4

Filipino 264 30 30 2

Arctic

Arabic 37 9 55 32

Chinese 40 10 60 36

Hindi 37 10 42 2

Korean 44 12 51 8

Spanish 43 11 58 68

Vietnamese 45 11 56 2

Fig. 1. Accented ASR via synthesized audio.

3 Methodology

Our method of accented English ASR via synthetic dataset curation is illustrated in
Fig. 1. It requires (1) a generic pre-trained English ASR model; (2) a trained TTS sys-
tem in the L1 language corresponding to the target L2-English accent; (3) a corpus
of English sentences to use as TTS prompts; and, (4) optionally, a small amount of
authentic accented speech data with transcriptions (which may serve as the English cor-
pus). Accented ASR adaptation involves two steps: the data synthesis step consists of
passing TTS prompts as input to the pre-trained TTS system (using a variety of TTS-
voices as speakers if available) to produce automatically annotated synthetic audio. The
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training step involves fine-tuning the pre-trained English ASR model in the synthetic
accented speech, along with the small amount of authentic accented speech, if avail-
able. We assume any authentic data set would be small, since this method is intended
for low-resource language varieties.

In our experiments we explore the following methodological variations: fine-tuning
on a small authentic dataset; fine-tuning on a large synthetic dataset combined with
a small authentic dataset, with the authentic data up-sampled; and fine-tuning in two
steps, first with a large synthetic dataset and subsequently with a small authentic dataset.
(Details in Sect. 4).

3.1 Data

We tested our hypothesis on a total of nine accents, with authentic accented train, val-
idation (dev), and test sets taken from the publicly available Common Voice (CV) [1]
and L2-Arctic [26] databases. Table 1 contains statistics about the train/dev/test splits
for all nine accents from both sources. More detailed specifications regarding the data
preparation can be found on our github repository2.

L2-Arctic is a corpus originally designed for the development of TTS systems for
non-native English speakers. The small size of the dataset represents extremely low-
resource settings in our experiments. It consists of six accents corresponding to L1
languages Arabic, Chinese, Hindi, Korean, Spanish, and Vietnamese, each of them rep-
resented by four speakers (two males and two females) with audio recordings spoken
in clean environments. We split this data into separate train, dev, and test sets. We took
great care to ensure that there was no overlap of voices or text prompts between the test
set and the train and dev sets. Because L2-Arctic uses largely the same text prompts
for all four speakers of a given accent, this meant we had to discard nearly half of the
available data. For each accent we designated one male and one female speaker as test
speakers and the remaining male and female speaker as train/dev speakers. (This also
ensured we would train and test on both male and female voices.) In our main exper-
iments we designated 40% of the utterances from the test speakers as our test set. We
then constructed the train/dev sets by splitting the train/dev speaker files with an 80/20
ratio and afterward removing any files that had prompts contained in the test set. This
allowed for a sizeable test set but resulted in small training amounts (see Table 1). Due
to our concerns that the small train set may inhibit performance, we conducted some
experiments where we allowed the train/dev sets to be as large as possible, though this
resulted in very small test sets since we wanted to keep the sets of test prompts and
train/dev prompts disjoint.

We used the eighth version of CV, a crowd-sourced dataset with messier audio than
L2-Arctic. CV annotation only lists the speakers’ country of origin, not L1 language.
We selected German, Malaysian, and Filipino accents for our experiments because they
mapped straightforwardly to L1 languages supported by Microsoft TTS.3 Due to limita-
tions in the number of speakers and their gender distribution for each language, splitting
the CV dataset was less straightforward than L2-Arctic. We sampled 20% of the speak-
ers for each accent, and used them for the accent’s test set. From the utterances of the

2 https://github.com/geoph9/accent-adaptation-through-tts.
3 More details about the TTS voices can be found on our repository.

https://github.com/geoph9/accent-adaptation-through-tts
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remaining 80% of speakers, we used 90% as the training set and 10% as the validation
set. The German accent did not contain detailed speaker information (all of the prompts
were uttered by the same client who seemingly corresponded to the same male speaker),
so we used a random train/dev/test split where each subset consisted of 81%, 9%, and
10% of the whole set, respectively.

3.2 Model

Our baseline model is wav2vec 2.0 [2], which is an end-to-end neural network that con-
sists of a convolutional feature encoder, a transformer, and a quantizer. In particular, we
use the publicly available wav2vec2-base-960h model4 which is pre-trained and fine-
tuned on 960 h of transcribed audio from the Librispeech data set [18]. We followed
the same training setup and hyperparameters for all fine-tuning experiments, with some
small variations in batch size5. Our models were fine-tuned for 20 epochs with a learn-
ing rate of 1e-4. This procedure was done by first freezing the CNN feature encoder and
updating the rest of the weights while training.

Table 2. Performance on controlled comparison. Underlined results in the Synth. column out-
performed Before Adapt.. Best results across all experiments (including those in Tables 3 and 4)
are bold.

Accent Before Adapt. Auth. Synth. Combined

WER% CER% WER% CER% WER% CER% WER% CER%

CommonVoice

German 32.77 11.61 8.42 2.12 60.58 27.72 8.07 2.05

Malaysian 44.59 18.84 30.72 12.55 42.12 17.76 34.81 13.98

Filipino 27.53 9.41 18.92 6.23 26.49 9.32 19.06 6.33

Arctic

Arabic 19.85 7.75 15.49 5.84 23.71 8.33 17.47 6.68

Chinese 34.78 15.37 26.29 11.31 34.85 14.62 25.69 11.10

Hindi 17.26 6.73 11.34 3.77 17.49 5.56 12.30 4.17

Korean 19.51 7.65 15.92 6.10 26.98 10.84 15.26 5.94

Spanish 25.69 10.50 21.06 8.21 38.59 12.88 22.23 8.67

Vietnamese 42.25 19.43 31.93 14.30 47.27 20.60 33.50 14.73

4 Experiments and Results

We conducted a set of experiments to compare the effectiveness of synthetic to authentic
accented audio, the results of which are displayed in Table 2. We used these same test
sets for all experiments. Before Adapt. (baseline): We tested the wav2vec 2.0 model

4 https://huggingface.co/facebook/wav2vec2-base-960h.
5 We initially opted for batch size of 128, which we used to produce results for German
Auth. and all Filipino fine-tuned results in Table 2. However in subsequent experiments, this
exceeded memory constraints. Accordingly we used a batch size of 96 for all other experi-
ments.

https://huggingface.co/facebook/wav2vec2-base-960h
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Table 3. Performances on the larger synthesized sets.

Accent Before Adapt. Gutenberg synth. Domain synth.

WER% CER% WER% CER% WER% CER%

CommonVoice

German 32.77 11.61 61.10 27.22 56.67 24.64

Malaysian 44.59 18.84 66.86 33.99 63.92 30.80

Filipino 27.53 9.41 34.27 13.29 39.32 15.18

Arctic

Arabic 19.85 7.75 50.71 26.57 31.09 11.91

Chinese 34.78 15.37 41.53 19.11 32.57 14.38

Hindi 17.26 6.73 25.85 10.10 18.57 5.90

Korean 19.51 7.65 61.37 31.17 33.80 14.33

Spanish 25.69 10.50 35.94 15.16 34.41 12.39

Vietnamese 42.25 19.43 76.01 40.21 52.76 23.49

Table 4. Performances on the larger synthesized sets. Underlined results outperformed Auth..
Best results across all experiments (including those in Tables 2 and 3) are bold.

Accent Before Adapt. Comb. Up-samp. Two-stage FT

WER% CER% WER% CER% WER% CER%

CommonVoice

German 32.77 11.61 8.78 2.20 8.09 2.02

Malaysian 44.59 18.84 36.13 14.93 36.08 15.20

Filipino 27.53 9.41 18.51 6.30 18.00 5.93

Arctic

Arabic 19.85 7.75 18.66 7.18 17.89 6.90

Chinese 34.78 15.37 27.16 11.93 26.44 11.49

Hindi 17.26 6.73 11.91 3.98 11.74 3.93

Korean 19.51 7.65 18.91 7.30 17.49 6.56

Spanish 25.69 10.50 22.98 9.16 22.72 8.92

Vietnamese 42.25 19.43 32.66 14.55 31.95 14.25

off the shelf on the test set for each accent a. Auth.: Next, for each accent, we fine-
tuned our model using the authentic train and dev sets Aa detailed in Table 1. Synth.:
We then generated synthetic audio through Microsoft TTS, using the exact prompts
from the authentic train and dev sets to produce new synthetic train and dev sets Sa for
fine-tuning. We produced exactly one TTS file for each prompt, by uniformly sampling
one of the na available Microsoft TTS voices.6 (See Table 1 for na values.) Combined:

6 We included voices for multiple TTS dialects corresponding to the L1 language for each accent
(and more than one L1 language in the case of Malaysian) and sampled voices assigned to each
accent uniformly without regard for TTS dialect.
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Finally, we experimented fine-tuning onAa and Sa combined. As expected, when using
otherwise identical train and dev sets, authentic data was more effective than synthetic.
However, for three of nine accents, combining the two was more effective.

Next, using the same test sets from Table 2, we experimented with a large amount
of synthetic data. Initially, we used 28,104 prompts from the Gutenberg literature cor-
pus7 [7] to synthesize off-domain speech (Gutenberg synth. in Table 3). Then, due to
the drastically different text domain of this corpus (compared to our small authentic test
set), we constructed large TTS audio sets out of prompts corresponding to the authentic
files from our data sources (Domain synth. in Table 3). For CV we sampled 25,000
prompts from the original dataset (excluding German, Malaysian, and Filipino accents)
and produced TTS files as before to create Ca. For L2-Arctic accents, the largest set
of prompts we could create from combining all of the clean L2-Arctic prompts was
1853, resulting in only ∼700 train and dev sentences per L1-language once we removed
prompts appearing in the respective test sets. We made up for the scarcity by changing
our TTS approach: instead of uniformly sampling a TTS voice for each prompt, we used
up to 6 TTS voices for each prompt to produce a larger set La.8 Hence, this strategy
resulted in training repeatedly on the same relatively small set of ∼700 prompts.

Next, we incorporated the large in-domain synthetic sets, Ca for CV and La for L2-
Arctic, with the small authentic sets Aa to fine-tune in two ways. First, we combined
synthetic and authentic data and then up-sampled (i.e. duplicated) the authentic data
to be as close to equal as possible to the synthetic data amount (Comb. Up-samp. in
Table 4). Next, we kept synthetic and authentic sets separate, fine-tuning first on the
synthetic, and then again on the authentic data (Two-stage FT in Table 4).

As discussed in Sect. 3.1, our primary splitting method left very few train and dev
data for L2-Arctic accents (∼40min, as shown in Table 1). This could have a negative
impact on both authentic and synthetic fine-tuning, since all of our synthetic augmenta-
tion methods for L2-Arcitc accents relied on the set of prompts present in the authentic
train/dev sets. We ran additional experiments for three accents (Chinese, Korean, and
Spanish), where we used all the prompts available with train and dev speakers for the
train/dev data (again with an 80/20 split). This left only a small amount of viable test
data that did not share any speakers or prompts with the train/dev data. (See Test utts.
in Table 5 for the number of test utterances.) WER scores for three of our fine-tuning
methods are in Table 5.

Table 5. WER for some L2-Arctic accents on small test sets with maximized train sets.

Accent Auth Comb. Two-st. train test

Up-samp FT hrs utts.

Chinese 26.1 17.6 21.9 1.8 49

Korean 17.5 13.1 15.6 1.9 15

Spanish 23.4 22.4 19.6 1.8 10

7 https://github.com/geoph9/accent-adaptation-through-tts#synthesised-data-tts.
8 Thus |La| = min(na, 6) ∗Na, whereNa ≈ 700 is the number of train/dev prompts available
after removing prompts from the test set for a, na = 2 for Hindi and Vietnamese, and na ≥ 6
for other L2-Arctic accents. See Table 1.

https://github.com/geoph9/accent-adaptation-through-tts#synthesised-data-tts
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5 Discussion and Analysis

Table 2 demonstrates that augmentation with authentic data is preferable to synthetic
data, though combining the two yielded slightly improved results for three of the nine
accents (German, Chinese, and Korean). Synthesized audio files, even in the same small
quantities as authentic data, improved over baseline CER for four accents (Malaysian,
Filipino, Chinese, and Hindi). Table 3 shows that increasing the amount of synthetic
data alone, whether using prompts in the target domain (Domain synth.) or out of
it (Gutenberg synth.), was ineffective across accents. This strategy likely caused the
model to overfit on synthetic speech. The Comb. Up-samp. and Two-stage FT meth-
ods, combining synthetic and authentic data, consistently improved error rates over the
baseline but only improved over simple authentic fine-tuning by small amounts for two
accents (German and Filipino). Results in Table 5 represent small test sizes, however
they suggest that settings with more training data may be conducive to greater suc-
cess in the Comb. Up-samp. and Two-stage FT methods. The three accents displayed
demonstrate WERR9 of 32.6% (Chinese), 33.6% (Korean), and 16.2% (Spanish) com-
pared to Auth. fine-tuning.

We acknowledge a limitation of our experimental setup. Scarcity of authentic
accented data made it difficult to find diverse, representative test sets. This highlights
the significance of synthetic augumentation improving on simple authentic fine-tuning
in some cases. Each authentic set alone was advantaged, since it came from the same
source as the test set. One potential advantage of synthetic augmentation is the expan-
sion of model capabilities to more general settings. We hope future researchers will
explore the benefits of our augmentation methods with more diverse test sets.

We explore the possible effect of TTS audio characteristics on suitability for aug-
mentation. In Table 6 we show the effectiveness (eff.) of synthetic data augmentation,
represented as the WERR% of our best-performing method involving TTS audio, com-
pared to the best-performing method without TTS audio, from Tables 2, 3, and 4. We
also show measures of TTS quality: average intelligibility (intel.) measured by ASR
WER% using our wav2vec2.0 model to recognize TTS audio; average naturalness (nat.)
measured by MOS score10 [14]; and faithfulness in approximating the target accent
(accen.). For this last characteristic we hired two proficient English speakers to rate
an audio segment from each TTS voice on a five-point scale, where 5 corresponded
to such a strong accent as to render the audio unintelligible and 1 corresponded to no
accent at all. From these human annotations we calculated two accent scores. To mea-
sure accent excess, we counted ratings of 4 as one point and ratings of 5 as two points,
then divided an accent’s total points by its number of TTS voices na. We calculated
accent absence the same way, where a rating of 2 equaled one point, and a rating of 1
equaled two points. Table 6 shows average scores from the two evaluators, in the form:
excess score/absence score.

Our analysis in Table 6 does not highlight any clear trends. Some accents with
highly intelligible TTS and desirable accentedness (Filipino and Chinese) were more

9 Calculated as rateold−ratenew

rateold
.

10 We took both intelligibility and naturalness measurements over the dev set used for Domain
synth., with maximalized dev sets for L2-Arctic accents.
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effective, but so were Korean (with poor intel. and accen. scores) and German. Inter-
estingly, naturalness seems inversely correlated with effectiveness. And both accents
displaying excessive accentedness (German and Korean) were more effective.

In summary, results from Tables 2, 3, and 4 suggest that augmentation by synthetic
accented speech should be accompanied by a small authentic dataset to prevent overfit-
ting on synthetic speech. In Tables 2, 3, 4, and 5 we find that synthetic data augmentation
was only effective when authentic train data exceeded one hour (German and Filipino
in Table 4 and experiments in Table 5). This may be in part so that authentic speech
can give a strong signal in fine-tuning and not be drowned out by synthetic speech. A
related factor is the diversity of prompts for TTS. Comb. Up-samp. and Two-stage
FT models for L2-Arctic accents trained repeatedly on the same ∼700 prompts and
may have implicitly overtrained on them, rendering them ill-equipped to predict other
prompts. This could explain why these two methods were ineffective in such settings
but performed better for CV accents and in Table 5 (where larger training sets afforded
larger prompt sets for augmentation).

Table 6. TTS quality analysis. eff.= effectiveness, intel.= intelligibility, nat.= naturalness,
accen.= accentedness, shown as excess/absence of an accent.

Accent eff. intel. nat. accen.

(↑) (↓) (↑) (↓/↓)
German 3.92 64.5 3.14 1.36/0.31

Malaysian −13.3 68.6 3.41 0.88/0.13

Filipino 4.86 17.6 2.71 0.0/1.0

Arabic −12.8 64.6 3.39 0.91/0.09

Chinese 2.28 13.7 3.16 0.07/1.01

Hindi −3.53 20.6 3.43 0.25/0.50

Korean 4.15 93.2 3.07 1.94/0.0

Spanish −5.56 51.8 3.22 0.80/0.43

Vietnamese −0.06 89.8 3.17 2.0/0.0

6 Conclusion

The failure of many English ASR systems to accommodate non-native accents has a
negative impact on the world’s millions of L2-English speakers. We present a novel
approach to assist in this problem, utilizing multilingual TTS systems with English
prompts to approximate L2-accented speech and produce scalable augmentation data.
We evaluated multiple realizations of this approach for ASR of 9 non-native English
accents. Given our experiments and analysis, we find that TTS-based augmentation for
accented ASR is best realized, and assists in error rate reductions for multiple accents,
when accompanied by more than one hour of authentic speech and when sufficiently
diverse target-domain TTS prompts are available.
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Jan Lehečka(B) , Josef V. Psutka , and Josef Psutka

Department of Cybernetics, University of West Bohemia in Pilsen,
Pilsen, Czech Republic

{jlehecka,psutka j,psutka}@kky.zcu.cz

Abstract. In this paper, we are comparing several methods of training
the Slovak speech recognition models based on the Transformers archi-
tecture. Specifically, we are exploring the approach of transfer learning
from the existing Czech pre-trained Wav2Vec 2.0 model into Slovak. We
are demonstrating the benefits of the proposed approach on three Slo-
vak datasets. Our Slovak models scored the best results when initializing
the weights from the Czech model at the beginning of the pre-training
phase. Our results show that the knowledge stored in the Cezch pre-
trained model can be successfully reused to solve tasks in Slovak while
outperforming even much larger public multilingual models.

Keywords: Transfer learning · Wav2Vec 2.0 · Transformers

1 Introduction

Transfer learning in speech recognition has been shown to be effective in improv-
ing accuracy and reducing the amount of training data required for new tasks.
It is especially useful in scenarios where the amount of available training data is
limited, such as low-resource languages or domains with specific acoustic charac-
teristics. The aim of this paper is to identify a suitable transfer learning approach
for two languages, Czech and Slovak. These two languages have many similari-
ties, both in their written form and pronunciation.

In our experiments, we are comparing several methods of training the Slovak
models for the target task of automatic speech recognition (ASR). Specifically, we
are investigating the possibilities of transferring the knowledge from the existing
pre-trained Czech model into Slovak ASR tasks. Since Czech and Slovak have
a lot in common, we expect this transfer learning approach to be beneficial
in the target Slovak tasks because it can reuse the already trained knowledge
common to both languages while suppressing the non-Slovak information in favor
of Slovak-specific knowledge during the transfer. In this paper, we investigate the
benefits of this transfer learning approach.

We demonstrate the benefits of the proposed approach on three ASR datasets
(described in detail in Sect. 4.3). Two of the used datasets (CommonVoice and
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VoxPopuli) are public speech recognition datasets used very often for the bench-
marking of ASR systems in many languages [2,13]. The third dataset, MALACH,
is the Slovak portion of the very unique and challenging speech recognition
dataset containing testimonies of eyewitnesses of the Holocaust recorded during
90’. We consider the MALACH dataset to be extremely important dataset for
several reasons: (1) it preserves extremely valuable testimonies from our recent
history, which should not be forgotten and which, alas, cannot be extended or
scaled up anymore because the number of direct witnesses of the Holocaust
rapidly decreases to zero as time goes on; (2) every improvement in the speech
recognition accuracy unlocks new valuable historical and cartographical infor-
mation encoded in the spoken utterances for researchers and public searching
in this vast archive; (3) since most of the speakers were very old at the time of
recording and the testimonies were spoken under heavy emotions, it is a challeng-
ing dataset to test the robustness, zero-shot performance and transfer learning
ability of existing ASR models.

2 Transfer Learning from Czech to Slovak

As mentioned above, Czech and Slovak share many similarities not only in their
written form but also phonetically. Czech orthography serves as a model for
several other Balto-Slavic languages that use the Latin alphabet. Slovak can be
regarded as its direct descendant from this perspective. Both languages use com-
parable diacritics and have a similar, often interchangeable relationship between
letters and the sounds they represent. The significant similarity between the
two languages can also be attributed to the fact that they were both official
languages in the same country for over 40 years (in Czechoslovakia). In this arti-
cle, we will focus only on the graphemic aspect of these languages. For a more
detailed comparison of Czech and Slovak in the context of acoustic modeling,
please refer to [8,9,11].

In the Czech language, there are a total of 42 letters that are used. This
includes the 26 letters of the basic Latin alphabet as well as 15 letters that have
diacritical marks such as a caron [ˇ], acute [´], or a overring [˚]. In addition, there
is a digraph [ch] that represents a phoneme /x/ (SAMPA is used in all cases of
phonetic notation [15]) and is considered one of the letters of the Czech alphabet.
There are two different ways to write a long /u:/ in Czech: [ú ] and [̊u ], but they
have the same pronunciation. One form cannot occur in the initial position, while
the other occurs exclusively in the initial position or at the beginning of the root
of a compound word.

The Slovak alphabet is the longest alphabet among Slavic and other Euro-
pean languages, consisting of a total of 46 letters. It includes the 26 letters of
the basic Latin alphabet that are also used in Czech. Additionally, there are 17
letters that have diacritical marks, which include diaeresis [¨] and a circumflex
[ˆ] but do not include a overring [˚]. But only five of these diacritical letters
differ from those used in Czech ([ä ] [̌l ] [́l ] [ô ] [́r ]). Moreover, there are two addi-
tional digraphs present in the Slovak alphabet, i.e. [dz ] and [dž ]. These letters
represent phonemes /dz/ and /dZ/.
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3 Wav2Vec 2.0

Wav2Vec 2.0 models have recently become a new state-of-the-art paradigm in
ASR tasks outperforming the previous architectures by a large margin [3]. It is a
deep neural network pre-trained to reconstruct the corrupted audio signals. The
model consists of a multi-layer convolutional neural network (referred to as a
feature encoder) followed by a multi-layer Transformer encoder [16]. The convo-
lutional feature encoder processes the raw input signal and produces a sequence
of latent-speech representations. Each of these latent-speech representations is
a vector encoding one 20 ms-long frame of the input signal with only a small
(5 ms) context being taken into account. The attention-based Transformer then
converts latent-speech representations into contextualized speech representations
while paying attention to the full context of the input signal.

The training of Wav2Vec models consists of two phases: self-supervised pre-
training and supervised fine-tuning. The phase of self-supervised pre-training
requires a large-scale unlabeled speech dataset, from which the model learns the
contextualized speech representations by predicting masked frames. Moreover,
the model is pre-trained also to solve a contrastive task over quantized speech
representations, so the model is forced to map input frames into discrete speech
units and correctly identify masked frames among a set of distractors. During
this phase, the model does not have any orthographical information about the
processed speech as it has access only to the raw audio signal, so it is pre-trained
to catch and encode the meaning of individual audio frames only based on its
context.

The pre-training phase is essential to equip the model with deep knowledge
mined from tens of thousands of hours of unlabeled speech. This knowledge
constitutes a great advantage over models trained from scratch using labeled
data only. From this point of view, the pre-trained weights of the Wav2Vec model
could be seen as a very clever initialization of the model weights for supervised
training. In this paper, we are investigating the benefits of clever initialization
also for the pre-training, i.e., not starting from random weights from scratch
but using weights of a model pre-trained from much more speech data from
a language that is somehow similar. This way, the model could preserve the
information common to both languages and reuse it when solving tasks in the
other language.

After the pre-training is done, the model transfers the pre-trained knowledge
into the target ASR task within the fine-tuning phase. This is a supervised phase
requiring the training speech dataset to be labeled. In order to decode the most
probable sequences of graphemes, the model is additionally equipped with a final
Connectionist Temporal Classification (CTC) layer [4]. CTC is an alignment-free
method for grouping audio frames belonging to the same output token in order
to convert a sequence of frame-level predictions into a much shorter sequence of
output tokens. The CTC classification process can be described – in a simplified
way – in 3 steps:

1. Assign the most probable output token to each audio frame.
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2. Group sub-sequences with the same token into a single token.
3. Remove blank tokens.

Tokens could be any speech or language units, e.g., phonemes, graphemes,
sub-word units, words, etc. In this paper, we experimented with grapheme-based
predictions, i.e., we predicted the sequence of characters. We chose the grapheme-
based output units because it has several advantages: (1) the fine-tuned model
works with very small vocabulary (the size of the alphabet plus several special
tokens), so the decoding is fast, (2) it avoids out-of-vocabulary problems (any
sequence of graphemes can be predicted), and (3) it can be used as a stand-alone
full-fledged end-to-end speech recognizer without any additional postprocessing.

4 Experimental Setup

In our experiments, we used existing pre-trained Wav2vec models or – when
not available – we pre-trained new ones. We fine-tuned all pre-trained models
on train and development parts of three Slovak ASR datasets. After that, we
evaluated all models on the test part of relevant datasets. The test parts were
held out during the whole fine-tuning process and had no speaker overlaps with
train or development parts. We used implementation from Fairseq tool [10] for
both pre-training and fine-tuning of models.

4.1 Pre-trained Models

In this section, we present all the pre-trained models we were experimenting with.
We used three monolingual pre-trained Wav2Vec 2.0 models of the base size:
Czech (denoted as W2V2-cs), Slovak (W2V2-sk), and a model transferred from
Czech to Slovak (W2V2-cs-sk). To test the monolingual models against multi-
lingual models, we also evaluated two popular large-scale multilingual models
(Wav2Vec XLS-R and Whisper). We are listing the models along with detailed
information in the rest of this section.

W2V2-cs. The W2V2-cs is a monolingual model pre-trained solely from the
Czech speech. We used the publicly available model ClTRUS1 [6]. It has been
trained from 80 thousand hours of Czech speech from various domains, mainly
from the VoxPopuli dataset [17] and records from Czech TV and radio shows.

W2V2-ck. The W2V2-sk is a monolingual model pre-trained solely from the
Slovak speech. We didn’t find any suitable public model, so we pre-trained a
new base-sized model from scratch. Since Transformer-based models are known
to scale well with the size of pre-training data, we tried to gather as much
public unlabeled speech data as possible. We collected over 17 thousand hours
of Slovak speech from various sources. The collection includes recordings from the
1 https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS.

https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
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Slovak portion of the VoxPopuli dataset [17] (12k hours), a mix of self-crawled
records from Slovak TV shows (4.5k hours), the MALACH dataset (800 h) and
the Slovak portion of CommonVoice corpus 13.0 [1] (24 h). We used Wav2Vec 2.0
architecture [3] and adopted the same hyperparameter setting as in the paper,
i.e., we trained the base model (12 Transformer blocks, model dimension 768,
8 attention heads, and a total of 95 million parameters) for 400 thousand steps
with a batch size of about 1.6 h. The pre-training took four days on a machine
with eight NVIDIA A100 GPUs.

W2V2-cs-sk. The W2V2-cs-sk is a monolingual Slovak model which was not
initialized randomly from scratch but rather from weights of the Czech model
W2V2-cs. After the initialization, we pre-trained the model with the exact same
setting and data as W2V2-sk. Thus, the only difference between W2V2-sk and
W2V2-cs-sk is the initialization of weights. We expect this model to identify,
preserve and transfer the useful knowledge common to both languages while
suppressing the non-Slovak information in favor of Slovak-specific knowledge
during the pre-training. In this paper, we are exploring if and how much this
transfer learning approach is beneficial. We are releasing this pre-trained Slovak
model publicly to the research community2.

W2V2-XLS-R-300M. To compare monolingual models also with popular mul-
tilingual public models, we selected Wav2Vec XLS-R [2] as a representative
of large-scale pre-trained cross-lingual models. The model was pre-trained on
approximately 436 thousand hours of unlabeled speech data from 128 languages
(including both Czech and Slovak). We experimented with the 300M variant,
which has more than 300 million parameters, i.e., more than 3× more than the
base Wav2Vec 2.0 model. We denote this model W2V2-XLS-R-300M.

Whisper-Large. Finally, we compared our models with Whisper-large [13],
another popular model trained on 99 languages (including both Czech and Slo-
vak) from 680,000 h of multilingual and multitask labeled data. This model dif-
fers from Wav2Vec models in two main aspects: (1) it is not an encoder-only
model but has also a decoder serving as an audio-conditioned built-in language
model, (2) the input is Mel spectrogram instead of the raw audio signal. We
experimented with the large size of the model with 32+32 Transformer layers,
dimension 1280, 20 attention heads, and a total of 1.55 billion trainable param-
eters. When decoding, we specified the language to Slovak, so the model didn’t
have to identify the language automatically from the input signal. As this model
has already been fine-tuned on a large palette of datasets and tasks by authors,
we didn’t further fine-tune the model, and we used the downloaded weights
directly.

2 https://huggingface.co/fav-kky/wav2vec2-base-sk-17k.

https://huggingface.co/fav-kky/wav2vec2-base-sk-17k
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4.2 Fine-Tuning

We prepared all training and development ASR data consistently for all datasets.
Where necessary, we sliced long training audio signals on speech pauses not to
exceed the length of 30 s. Longer utterances were discarded due to the memory
limits of used GPUs during fine-tuning. We removed non-speech events and
punctuation from the transcripts and mapped all words into lowercase. We fine-
tuned all models with the same setting as the base model in [3], i.e., we trained
for 80 thousand steps with a batch size of about 26 min per step, and the learning
rate warmed up over the first 8 000 steps to a maximum value of 2×10−5, where
it was held for the next 32 000 steps, and finally decayed exponentially to zero.
The weights of the feature encoder were frozen for the first 10 000 steps of the
fine-tuning.

4.3 Fine-Tuning Datasets

We experimented with three datasets described in detail in the rest of this
section. The statistics about individual datasets are tabulated in Table 1.

Table 1. Fine-tuning datasets. We show the total number of speech hours, the number
of utterances, and the total number of words in transcripts (in thousands).

CommonVoice VoxPopuli MALACH

train dev test train dev test train dev test

# hours of audio 14.2 2.9 3.1 29.2 1.9 1.7 94.3 2.0 1.2

# utterances 13 122 2 474 2 552 10 410 664 604 13 160 273 500

# words (in thousands) 48.0 11.0 10.2 233.2 14.6 13.4 645.8 14.0 8.3

CommonVoice. The CommonVoice dataset is a Slovak portion of the crowd-
sourced project Mozilla Common Voice [1]. We used corpus version 13.0, con-
taining 20 h of validated speech. We decided to keep also sentences reported as
difficult pronunciation in our training data. All other reported sentences (e.g.,
grammar or spelling, different language etc.) were ignored.

VoxPopuli. The VoxPopuli dataset [17] is a large-scale multilingual speech cor-
pus collected from 2009–2020 European Parliament event recordings. The Slovak
portion contains 12.1 thousand unlabeled hours and 35 h with transcription. We
ignored all train and development utterances without the raw transcription,
decreasing the amount of transcribed data to 32.8 h.
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MALACH. The Malach Archive preserves the memories of Holocaust survivors
through audiovisual interviews in 32 languages. The recordings are character-
ized by natural speech with emotional outpourings and heavy accents due to
the advanced age of the speakers (around 75 years old). Transfer learning can
significantly increase recognition accuracy for such type of data, as it is difficult
to find additional suitable data for acoustic modeling due to the nature of the
corpus (more details can be found in [7]).

The Czech portion of the Malach data was released by the LDC in 2014 [12],
comprising 400 randomly selected testimonies for training acoustic models. How-
ever, due to the manual transcription of only 15-minute segments of each testi-
mony, the acoustic modeling process had access to only 100 h of Czech speech
data. Theoretically, the available data could contain up to 800 speakers. The Slo-
vak section of the Malach corpus was transcribed similarly to the Czech section,
with 15-min segments of 400 testimonies transcribed for training. Additionally,
20 testimonies (10 men and 10 women) were fully transcribed to create the devel-
opment and test portions of the Slovak corpus. In order to maintain consistency
with other corpora and ensure a manageable test size, the size of the test set was
limited to a reasonable level. A carefully selected subset of the transcribed data
consisting of 500 sentences was utilized. To enhance the reliability of the results,
all segments containing crosstalks were deliberately excluded from the test set,
as they could potentially impact the findings. Therefore, this subset consisted
only of continuous segments where either the survivor or the interviewer spoke,
with no interruption or overlap from the other speakers.

4.4 Decoding

When transcribing the speech from fine-tuned models, we experimented with
two decoding strategies: (1) using only the fine-tuned Wav2Vec model as a
stand-alone end-to-end speech recognizer and (2) CTC beam search decoder
using additional language information from a language model (LM) during the
decoding. The decoding with strategy (2) usually improves speech recognition
performance by bringing useful language information into the decoding process
while penalizing improbable outputs in the target language.

For strategy (2), we trained one large-scale general-purpose n-gram LM to
be used in all experiments for all datasets. As training data, we used web pages
from the Common Crawl project3. We downloaded and processed 34 crawls from
August 2018 to October 2021 following the same cleaning and deduplicating rules
as in the English C4 dataset [14]. Together, we collected about 37 GB of cleaned
and deduplicated Slovak text containing 5.6 billion words from more than 16
million web pages. To keep the LM of a practical size, we pruned all unigrams
with counts lower than ten and higher-order n-grams with counts lower than 100.
We trained the LM in lowercase as all fine-tuning transcripts were converted into
lowercase. The final LM contained 2.5 million unigrams and 12 million n-grams

3 https://commoncrawl.org.

https://commoncrawl.org
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in total. We used KenLM [5] toolkit to train the LM and pyctcdecode4 tool to
decode transcripts.

4.5 Evaluation

We compared models in terms of word error rate (WER). Since all transcripts
were cleaned from punctuation and cast into lowercase before the fine-tuning,
our fine-tuned models cannot predict punctuation or upper-cased characters, so
we did not consider casing and punctuation differences with the reference as
errors.

Note that although our models are not able to predict cased transcriptions
nor punctuation, which usually makes the transcript difficult to read, we are,
in all relevant applications, applying also a postprocessing phase on generated
transcripts, in which a specially trained transformer-based large language model
restores the casing and punctuations in the transcripts. We found this approach
more beneficial than training the Wav2Vec models to predict directly cased
words and punctuation for two reasons: (1) the text-based language model is
more accurate in this task as it can work with larger context and have a better
understanding of the syntax and semantics of the spoken words, and (2) the
training of Wav2Vec models is less confusing because both cased words and
punctuation tokens do not correspond to any distinguishable acoustic units and
yet, they would have different target labels.

5 Results

The results of our experiments are tabulated in Table 2 (results with stand-alone
Wav2Vec models) and Table 3 (results with Wav2Vec models using the language
model in the decoder). When comparing corresponding values from both tables,
we can confirm that including LM from Common Crawl into the CTC decoder
significantly improves the ASR results for all models across all datasets.

Table 2. Evaluation results in terms of WER [%] scored by end-to-end grapheme-based
models. These results show how individual fine-tuned Transformer models perform
when used as a stand-alone ASR system without any language model involved.

#params [in millions] fine-tuned and evaluated on

CommonVoice VoxPopuli MALACH

W2V2-cs 95 13.85 11.58 14.81

W2V2-sk 95 10.62 10.09 13.60

W2V2-cs-sk 95 10.95 9.76 13.30

W2V2-XLS-R-300M 300 9.44 10.39 15.12

4 https://github.com/kensho-technologies/pyctcdecode.

https://github.com/kensho-technologies/pyctcdecode
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In the first row of both tables, we show the results of the Czech model
W2V2-cs fine-tuned on the Slovak datasets. When compared with results in the
second row from the Slovak model W2V2-sk, we can clearly see the Slovak model
is better (which is expected), but moreover, we see that the difference is, in many
cases, not so large (from 0.5% to 3.2% in terms of absolute WER reduction).
This closeness confirms that Czech and Slovak have a lot in common, and we
could get a reasonably good Slovak ASR system just by fine-tuning the Czech
pre-trained model on a small amount of Slovak labeled speech. The larger the
fine-tuning dataset is, the smaller the difference between the performance of the
Czech and Slovak pre-trained models is.

Now, let’s concentrate on the differences between the second row (Slovak
model W2V2-sk pre-trained from scratch from the Slovak-only speech) and the
third row (Slovak model W2V2-cs-sk initialized from the Czech model before
pre-training). For two datasets (VoxPopuli and MALACH), we can observe a
small but consistent decrease in WER gained by this transfer learning. However,
for the CommonVoice dataset, we got the best results (among the base-sized
models) from the pure Slovak model. After an analysis of the errors, we believe
this is caused by an insufficient amount of training data. There are just 14.2 h of
labeled Slovak speech in the training CommonVoice dataset. We observed many
Czech forms of Slovak words in the transcripts from the W2V2-cs-sk model fine-
tuned on the CommonVoice dataset, indicating that the model still has a lot of
the original Czech-related knowledge even after the transfer to Slovak and that
this amount of train labeled data is not enough to override the Czech-related
knowledge in the model.

Table 3. Evaluation results in terms of WER [%] scored by models also incorporat-
ing the language model in the decoder. These results show how individual fine-tuned
Transformer models perform when also adding the language model probabilities into
the decoding process. Values decorated with an asterisk (*) are scored by a general-
purpose ASR model without fine-tuning to the target dataset.

#params [in millions] fine-tuned and evaluated on

CommonVoice VoxPopuli MALACH

W2V2-cs 107 11.25 10.04 12.79

W2V2-sk 107 8.68 9.02 12.32

W2V2-cs-sk 107 8.82 8.88 11.57

W2V2-XLS-R-300M 312 6.90 9.09 12.17

Whisper-large 1 550 *34.61 *19.30 *27.49

The multilingual W2V2-XLS-R-300M scored the best result among all models
on the CommonVoice dataset. We attribute this result to the fact that it was
pre-trained on the whole CommonVoice dataset containing 7 thousand hours
containing similar sentences (the domain of CommonVoice is a read speech pri-
marily from Wikipedia sentences) in various languages. Thus, the pre-trained
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embeddings could better encode information in this dataset than other models,
where the CommonVoice dataset was only a very small part of the pre-training
corpus. However, although more than 3× larger, it did not perform better on the
other two datasets, for which our smaller monolingual models performed slightly
(VoxPopuli dataset) or significantly (MALACH dataset) better.

Finally, the results from the Whisper model are far from all fine-tuned mod-
els. Although this model was not directly fine-tuned on the target datasets,
CommonVoice and VoxPopuli datasets were a part of the huge labeled training
dataset of the model. These results, which correspond to the reported results
in [13], suggested that general-purpose models – even the huge ones – do not
always perform well on low-resources languages and tasks.

To sum up our results, the transfer learning between Czech and Slovak is, in
most cases, beneficial, and the more labeled data for the target domain there is,
the more we can benefit from this transfer by reusing the knowledge common to
both languages. We also showed that monolingual models pre-trained on a single
language can successfully compete with the much larger multilingual models.

6 Conclusion

In this paper, we compared several methods of training the Slovak ASR models
and evaluated the models on three Slovak datasets. Our results showed that the
proposed transfer learning approach from the Czech pre-trained model can bring
significant reduction in terms of speech recognition WER, especially when the
fine-tuning dataset is large enough.

Our base Wav2Vec 2.0 models performed better on two datasets (including
the extremely important MALACH dataset) than 3× larger Facebook’s XLS-R
model and much better on all three datasets than 16× larger OpenAI’s Whisper
model. Since such a reduction of the model size while preserving or improving
the performance could save a lot of energy required for the inference, we release
the pre-trained Slovak model publicly for the research community.
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Abstract. The rapid development of speech recognition systems has motivated
the community to work on accent classification, considerably improving the per-
formance of these systems. However, only a few works or tools have focused on
evaluating and analyzing in depth not only the accent but also the pronunciation
level of a person when learning a non-native language. Our study aims to evalu-
ate the pronunciation skills of non-native English speakers whose first language
is Arabic, Chinese, Spanish, or French. We considered training a system to com-
pute posterior probabilities of phonological classes from English native speakers
and then evaluating whether it is possible to discriminate between native English
speakers vs. non-native English speakers. Posteriors of each phonological class
separately and also their combination are considered. Phonemes with low poste-
rior results are used to give feedback to the speaker regarding which phonemes
should be improved. The results suggest that it is possible to distinguish between
each of the non-native languages and native English with accuracies between
67.6% and 80.6%. According to our observations, the most discriminant phono-
logical classes are alveolar, lateral, velar, and front. Finally, the paper introduces a
graphical way to interpret the results phoneme-by-phoneme, such that the speaker
receives feedback about his/her pronunciation performance.

Keywords: Pronunciation assessment · Speech · English · Phonological
Analysis

1 Introduction

English is the official language in over 50 countries and is widely used as a second
language in many others. It is considered the language of international communication
in business, academia, politics, and others [4]. Thus, there is a broad interest in learn-
ing this second language for speakers with a different native language. Typically, the
English level is evaluated by a human, which is not always accurate due to subjective
biases; for instance, evaluators may have different expectations and standards, lead-
ing to inconsistent and unreliable assessments [1]. Computer-based assessments can
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give a more objective and effective assessment of the English level by analyzing spe-
cific aspects of speech to provide feedback to users, which helps them identify their
strengths and weaknesses. There are multiple tools for automatic assessment of English
level, where grammatical skills, vocabulary knowledge, and others are evaluated using
Automatic Speech Recognition (ASR) systems based on metrics such as word accuracy
rate [8]. However, few tools evaluate or analyze deeply aspects of the English level,
such as fluency, naturalness, or phonological precision, where it is possible to iden-
tify specific phonemes that can be more difficult to pronounce according to the native
language in order to emphasize them in the learning process.

Automatic accent classification in speech recognition plays an important role in
adapting systems to linguistic variations, improving recognition accuracy and robust-
ness to different regions and contexts [21]. Therefore, many works have been addressed
in the scientific community to classify accents. For example, in [13], a system based
on Convolutional Neural Networks (CNNs) was trained and evaluated for classify-
ing nine accents; the authors achieved an accuracy of up to 98.6%. Similar work was
performed in [7], where the classification problem consisted of determining whether
English speech samples are spoken by native speakers of English, Japanese, Dutch,
French, or Polish. Again, this work using CNNs reported accuracies of up to 90%
for discriminating the five accents. In [2], the authors used classical techniques and
CNNs to recognize five accents (English, Arabic, French, German, and Hindi). They
showed that the classical methods are not sufficiently efficient to solve this problem,
and they obtained the best results with a deep learning approach with a mean accuracy
of 90.2%. For the same corpus, in [17], five accents were evaluated (Arabic, English,
French, Mandarin, and Spanish) using classical and deep approaches; in this case, the
Mel-Frequency Cepstral Coefficients (MFCCs) obtained the best performance with an
accuracy of 71.4%.

However, only some studies have investigated the level of pronunciation of each par-
ticipant in addition to accent classification. A first approach to this can be found in [5],
where the authors propose a model based on random forests and MFCCs to detect and
correct automatic pronunciation errors in English classes. This work performed a bi-
class classification (correct pronunciation vs. mispronunciations), obtaining accuracies
of up to 74.7%. In [12], the authors propose an automatic pronunciation evaluation for
non-native speakers based on robust models such as Wav2Vec 2.0 and HuBERT + bidi-
rectional long short-term memory with the layer-wise contextual representations and
the corresponding text. The authors achieved correlations of up to 0.82 when compar-
ing model performance against human-labeled annotations. Following the same line of
automatically evaluating the accent, in [16], a bidirectional long short-term memory
layer in a neural network was proposed to predict human ratings of the accentedness
of recorded speech. When the model prediction was compared with the human ratings,
correlations of up to 0.57 were reported. Finally, in [10], a work that identifies pronun-
ciation errors in non-native speech using spectrogram and MFCCs was presented. The
authors evaluated each modality’s performance and included their fusion for classifying
some phonological classes, in addition to the error per phoneme. They observed that the
fusion of both modalities achieved the best performance, and the erroneous phonemes
found automatically are similar to those labeled manually.
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Motivated by this, our study seeks to provide insights into the challenges faced by
non-native English speakers in mastering English pronunciation and improving lan-
guage learning and teaching strategies. Initially, we trained and evaluated Phonet1,
which computes the posterior probabilities of phonological classes from speech sig-
nals. Moreover, it considers several phoneme groups according to the place and manner
of articulation.

Thus, we obtained the posterior probabilities for each audio from the target database
to perform a classification between native English speakers vs. non-native English
speakers for each phonological class and considered the fusion of these phonological
classes. Finally, in each non-native English language, we obtained the most discrimi-
native phonological class; then, we assessed weak phonemes in pronunciation to give
feedback to each participant on which phonemes they had difficulty pronouncing com-
pared to native speakers as a strategy to improve their pronunciation performance.

The rest of the paper is as follows: Sect. 2 describes the corpora considered for this
study. Section 3, presents the methods used in the study. Section 4 shows the results and
analysis of the study; and finally, Sect. 5 contains the conclusions and future work.

2 Data

2.1 TIMIT Corpus

In this work, the architecture used was trained and evaluated with the TIMIT database,
which consists of 2342 sentences read by 630 speakers with different dialects of Amer-
ican English [6]. This corpus was developed mainly to train and evaluate automatic
speech recognition systems. The TIMIT corpus includes time-aligned orthographic,
phonetic, and word transcriptions as well as a 16-bit, 16kHz speech waveform file for
each utterance. In addition, the TIMIT corpus transcriptions have been hand-verified.
Test and training subsets, balanced for phonetic and dialectal coverage, are specified.

2.2 Speech Accent Archive

We used the Speech Accent Archive as the target corpus [20]. This dataset contains
2140 speech samples, each from a different talker reading the same reading passage
in English (69-word paragraph). Talkers come from 177 countries and have 214 differ-
ent native languages. Due to the large imbalance that exists in the database (English:
27%, Spanish: 7.5%, Arabic: 4.7%, etc.). We only considered the native speakers of the
corpus (English), and the first 4 groups of non-native English speakers with the largest
number of participants: Spanish, Arabic, Mandarin, and French. In addition, due to the
idea of assessing the pronunciation level of each non-native speakers vs. native speak-
ers, we chose a subset of English to assess each set of non-native speakers that will
guarantee age and gender balance from the t-test and Chi-squared test, respectively.
Therefore, each language was paired with the same number of English participants as
follows: Spanish (162 participants), Arabic (102 participants), Mandarin (65 partici-
pants), and French (63 participants).

1 https://phonet.readthedocs.io/en/latest/?badge=latest.

https://phonet.readthedocs.io/en/latest/?badge=latest
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3 Methods

Figure 1 summarizes the architecture proposed in this work. Initially, we prepared the
TIMIT corpus audios with their respective transcriptions to train Phonet. Then, we take
the recordings of native and non-native speakers of English from the Speech Accent
Archive and compute the phonological posteriors associated with each phonological
class. Finally, we performed 2 approaches: (i) we classified between each set of non-
native speakers, i.e., Spanish, Arabic, Mandarin, and French vs. their corresponding
group of native speakers (English); this classification was performed using a Support
Vector Machine (SVM), for each phonological class and considering the fusion of all of
them. (ii) After finding the most discriminative phonological class for each set of non-
native speakers, we performed a phoneme-level analysis to give feedback per phoneme
on the pronunciation level of a specific speaker compared to a native speaker. Details of
each stage are presented below.

Fig. 1. Architecture proposed in this work.

3.1 Phonological Analysis

Phonological features are used to model the information about the place and manner
of articulation of a speaker. These features are more understandable for clinicians than
the standard high-dimensional features used in speech processing. Therefore, these fea-
tures are typically used to model pathological speech, such as dysarthria, apraxia, and
others [3,11]. Models of phonological analysis aim to detect the phonological class
of a speech frame, where a phonological class is composed of a set of phonemes that
share certain features, such as voicing, place of articulation, or manner of articulation.
For instance, the phonological class “Alveolar” is a phonological class that groups the
phonemes that are articulated with the tongue tip touching the alveolar ridge, which is
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the bony ridge behind the upper teeth. In this study, we used a toolkit called Phonet to
estimate the phoneme articulation precision of different speakers and used these poste-
riors to classify native and non-native English speakers.

3.2 Phonet

This toolkit was proposed in [18], and it is designed to estimate phonological posteri-
ors using bidirectional Recurrent Neural Networks (RNNs) with Gated Recurrent Units
(GRUs). A speech segment of 400ms is defined as sequence size, and each element
in the sequence is a frame of 25 ms with a time-shift of 10 ms. The model’s input
corresponds to the log-energy of the speech frame distributed into 33 triangular filters
separated according to the Mel scale. This input is used to feed two bidirectional GRU
layers with 128 cells. The output of the second bidirectional GRU is processed using
Nc time-distributed dense layers, where Nc is the number of phonological classes. The
model was trained following a multitask learning strategy to detect different phonolog-
ical classes, and a Softmax activation function was used to get posterior probabilities.
In [18], the model was trained with Spanish language utterances using the CIEMPIESS
corpus to predict 21 phonemes distributed into 18 phonological classes. In this study,
we trained the same model to predict phoneme articulation precision in English; there-
fore, we used the TIMIT corpus and considered 22 phonological classes: diphthong,
back, closed, rounded, vowel, voiceless, postalveolar, open, velar, nasal, alveolar, bil-
abial, front, glottal, voiced, fricative, approximant, labiodental, dental, plosive, trill, and
lateral. The notation of the phonemes is based on the International Phonetic Alphabet
(IPA).

3.3 Classification and Analysis Stage

For the classification stage, we obtained a static representation for each phonologi-
cal class, for which we calculated six different functionals: mean, standard deviation,
skewness, kurtosis, maximum, and minimum. For this experiment, we considered clas-
sifying each set of non-native speakers vs. its corresponding group of native speakers
using an SVM. This method allows discriminating N samples by finding a separating
hyperplane that maximizes the margin between classes. We used a radial basis function
as the kernel for the SVM, and its parameters were optimized upon a grid-search. The
complexity parameter was varied as C ∈ {0.001, 0.005, 0.01, · · · , 100, 500, 1000} and
the bandwidth of the kernel was varied as γ ∈ {0.0001, 0.001, · · · , 1000}. We train,
optimize and evaluate each phonological class individually and consider the fusion
of all phonological classes forming a final vector of 132 features per participant (22
phonological classes × 6 statistics). All experiments are performed following a 5-fold
cross-validation strategy. The results are reported in terms of mean and standard devi-
ation computed along the folds. In the analysis stage, we consider it important to give
feedback to the user on which phonemes are the most difficult to recognize in the sys-
tem. For this, we consider a radar figure where we show for the most discriminative
phonological class every mean posterior of each phoneme and compare it with the same
phonemes of a native speaker (considered their target).
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4 Experiments and Results

4.1 Training Phonet

Twenty-two phonological classes were trained and classified during the development
of this work. In addition, it was guaranteed that each extracted phoneme had at least
one or more phonological classes. The results show that the system’s mean accuracy is
92.46% with a deviation of 3.16%. The lowest-performing phonological class is “Back”
with an accuracy of 86.9%. In addition, the model for phoneme recognition proposed
in [18] was trained with the TIMIT corpus in order to obtain a model that can recognize
51 phonemes of the English language. The system manages to predict the 51 phonemes
with an accuracy of 67.7%.

4.2 Classification of Phonological Classes

The purpose of our study is to evaluate the pronunciation skills of non-native English
speakers from Arabic, Chinese, Spanish, and French backgrounds. To achieve this goal,
we apply a phonological approach to measure the accuracy of their pronunciation using
Phonet to differentiate between native and non-native English speakers. We measure the
confidence level of the classification to determine the degree of proficiency in English
pronunciation. A higher score indicates a higher level of accuracy in differentiating
between native and non-native English speakers. For instance, a high confidence score
suggests that the speaker struggles with proper pronunciation.

Fig. 2. Accuracy (%) of native vs non-native English speakers for all phonological classes.
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The radar chart presented in Fig. 2 demonstrates the performance of the classifi-
cation between native vs. non-native English speakers for all phonological classes. We
could see that French speakers (red color), in general, have superior pronunciation skills
compared to the other language groups, as their coverage area on the chart is relatively
small.

Additionally, the performance of French speakers in the nasal class is relatively
poor compared to the other languages, which shows that it is easier to identify a non-
native speaker of Spanish, Arabic or Chinese than a French speaker. This result can
be attributed to the presence of nasal phonemes (primarily vocal) that are specific to
English and French and not present in the other languages [9,14,15,19]; thenceforth,
French and English speakers pronounce the nasal class better than the Spanish, Arabic
or Chinese speakers.

The findings of Fig. 2 led to conduct a detailed analysis of the most distinguishing
phonological class for each language tested. For this analysis, we selected the class
with the highest score for each language as the most discriminatory class. Specifically,
we identified the Alveolar class as the most distinguishing class for Arabic, the Lateral
class for Chinese, the Velar class for Spanish, and the Front class for French.

Table 1. Native vs non-native English speakers for all classes and the most discriminant class.

Native Language Phon. Classes Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

Arabic All 80.6 ± 2.5 85.9 ± 2.7 75.3 ± 2.9 80.5 ± 2.5

Alveolar 71.9 ± 3.1 68.4 ± 1.0 75.3 ± 5.7 71.8 ± 3.1

Mandarin All 74.2 ± 2.8 78.5 ± 4.5 69.9 ± 1.9 74.1 ± 2.8

Lateral 69.2 ± 3.2 71.7 ± 3.0 66.8 ± 3.5 69.2 ± 3.2

Spanish All 72.0 ± 1.8 71.9 ± 2.0 72.1 ± 2.9 72.0 ± 1.8

Velar 64.0 ± 0.9 73.6 ± 2.9 54.4 ± 2.4 63.7 ± 0.9

French All 67.6 ± 2.0 74.3 ± 3.4 61.0 ± 5.0 67.4 ± 2.1

Front 67.6 ± 1.5 79.7 ± 5.4 55.6 ± 5.0 67.1 ± 1.5

Table 1 presents the results of our analysis on the discriminant power of each lan-
guage tested, which includes the averages for all classes as well as the most distinguish-
ing class for each language. Arabic stands out as the most distinguishable language with
an accuracy of 80.6% and 71.9%, for all classes and the Alveolar class, respectively,
making it the easiest to differentiate between native and non-native English speakers.
Chinese is the second most discriminant language, with an overall accuracy of 74.2%
and 69.2% for the Lateral class. In Spanish, we obtained an accuracy score of 72%
and 64% for all classes and the Velar class, respectively. In contrast, French, as shown
in Fig. 2, is the least discriminant language with an accuracy score of 67.6% for both
all and front classes. Our findings suggest that for Arabic, Chinese, and Spanish, all
classes perform better in identifying non-native English speakers than relying on a sin-
gle phonological class.

The alveolar class in Arabic may be more discriminant because it contains emphatic
consonants that are not present in English, as reported in a previous study [14]. This
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difference in phonemes could explain why Arabic speakers can be more easily differ-
entiated from native English speakers based on their pronunciation. On the other hand,
the phonemes in the lateral class of Chinese and English are quite distinct, with Chi-
nese phonemes being dental and English ones being alveolar, according to Wang [19].
Additionally, Spanish has a higher number of velar phonemes than English [15], which,
like in Arabic, could contribute to its better discrimination. Finally, some elongated
vowels that are common in English but not in the other languages fall into the front
class [9], which may be why this class is more important for distinguishing native from
non-native speakers.

4.3 Phoneme Analysis

To continue the analysis on the identification of the weakest phonological classes in
each native language, we would like to perform an example of how the Phonet system
can automatically generate feedback for each phonological class on the phoneme-by-
phoneme pronunciation level, compared to a target (native speaker). Figure 3 shows the
distribution from a radar plot of the mean posterior for three different speakers for the
Alveolar phonological class. In particular, the Non-native 1 and Non-native 2 partici-
pants are Arabic native speakers of male gender and 55 and 43 years old, respectively.
The Native participant is a native speaker from the USA, female, and 29 years old.

Fig. 3. Comparison of posterior means for the alveolar phonological class of 2 non-native and a
native English speaker.

In Fig. 3, we can observe that the speaker Non-native 2 (blue color) has similar
posterior means to the Native speaker (green color), even equaling in some phonemes
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such as /s/ and /n/; therefore, we could conclude that this participant has a high level of
pronunciation in comparison with a native speaker of English. However, the opposite
is the case when we compare the Non-native 1 participant (red color) with the native
speaker; in this case, the difference in most of the posterior means of the native speaker
vs. non-native speaker is evident. From this figure, we can conclude that this non-native
speaker should focus on improving the pronunciation of all phonemes of the Alveolar
phonological class, focusing on the phonemes , /l/, and /n/, which is where he shows
lower performance compared to a native speaker and even to another person of the same
native language.

5 Conclusions

The purpose of our study is to evaluate the pronunciation skills of non-native English
speakers from Arabic, Chinese, Spanish, and French backgrounds; we consider train-
ing in English a tool called Phonet that allows calculating of posterior probabilities of
phonological classes from speech for several groups of phonemes according to the place
and manner of articulation. We consider evaluating each non-native speaker from each
phonological class and also considering the combination of all of them. In general, the
results suggest that Arabic and Mandarin speakers have greater difficulty pronouncing
English than Spanish and French speakers. Particularly, when we performed an analy-
sis at the phonological class level, it was possible to identify the Alveolar class as the
most distinguishing class for Arabic, the Lateral class for Chinese, the Velar class for
Spanish, and the Front class for French. In addition, it was possible to discuss, from pre-
vious work, the possible reason why these phonological classes allow to discriminate
in a better way each non-native speaker from native speakers of English. Additionally,
it was possible to observe that our system can automatically generate feedback for each
phonological class on the phoneme-by-phoneme pronunciation level, compared to a
target (native speaker) as a strategy to improve their pronunciation performance.

In future work, we will consider training a multilingual system that allows the auto-
matic evaluation of pronunciation not only of English but of different languages. In
addition, we will implement multi-class classification of the different non-native speak-
ers involved in this work, including a variety of accents and dialects of each language.
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Abstract. Speech traits have enabled the evaluation and monitoring of
the neurological state of different disorders, including Parkinson’s Dis-
ease (PD) using classical and deep approaches. Considering that speech
contains paralinguistic information, the native language of the speaker
influences the performance of the trained models when classifying the
presence of the disease. Although researchers have performed several
studies using corpora from different acoustic and language conditions,
there is no baseline for the accuracy of a system to classify PD in cross-
language scenarios. This study evaluates the generalization capability of
different classical and deep methods to discriminate between PD patients
and healthy speakers. The experiments are performed in cross-language
scenarios. In particular, an Active Learning (AL) strategy is considered
to evaluate the influence of the training data selection to improve the
model’s performance under cross-language settings. The results indicate
that models based on Wav2Vec 2.0 yielded the best results in detecting
the presence of the disease in such non-controlled cross-language sce-
narios. In addition, the AL selection outperformed the results compared
to a random selection of training samples. The considered AL based-
approach allows to achieve high accuracies using a careful selection of
training data in an adaptively manner. This is particularly important
when dealing with non-annotated and limited data, such as the case of
pathological speech modeling.

Keywords: Parkinson’s Disease · Speech Processing · Active
Learning · Deep Learning · Machine Learning · Cross Language

1 Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder caused by the progres-
sive loss of dopaminergic neurons in the substantia nigra of the brain [8]. PD
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patients develop a group of speech impairments known as hypokinetic dysarthria.
Speech symptoms associated to hypokinetic dysarthria include reduced intensity,
harsh and breathy voice quality, increased voice nasality, mono-pitch, mono-
loudness, imprecise articulation of consonants, and involuntary introduction of
pauses [24]. Due to their non-invasive nature and low cost, speech signals have
been used to evaluate different symptoms of patients suffering from neurodegen-
erative diseases [20,21].

Within the last years, the research community has been interested in eval-
uating PD using speech signals. Different methods for the classification of PD
patients vs. Healthy Controls (HC) have been proposed. Classical approaches
include Gaussian Mixture Models [3], Support Vector Machines (SVM) [22], and
K-Nearest Neighbor [22]. In addition, Deep methods such as Convolutional Neu-
ral Networks (CNNs) [26], Recurrent Neural Networks with Long Short-Term
Memory units [17], fully-connected networks [5], and combinations of them [13]
have been used.

Paralinguistic information such as the presence and severity of PD is influ-
enced by external factors like the native language of the speaker. Results from
different studies have shown accuracies of up to 90%, when training and test
sets have similar acoustic and linguistic conditions [18]. However, the scenario
in which recordings of different languages are collected in different acoustic con-
ditions has not been extensively explored.

In [18], the authors trained a CNN to classify PD with corpora from different
languages with the aim to evaluate which additional information is learned by
the network in addition to the presence of the disease. The authors found that
the model acquires knowledge about the gender of the speakers in the first lay-
ers, while the native language learned in the last layers of the model. Moreover,
in [16] the authors found that in the classification of PD vs. HC, the performance
is not only a direct consequence of the influence of PD in the speech of the par-
ticipants. Other factors such as age or the person’s identity contribute to the
overall accuracy of the models. One approach to adapting a model to multiple
languages was performed in [27]. The authors proposed a methodology to clas-
sify PD patients vs. HC subjects in multiple languages by adapting the model
using transfer learning. The findings showed that transfer learning strategies
only improved the target corpus accuracy when the base model was sufficiently
accurate. Additional studies have focused on paralinguistic data assessment from
speech using Active Learning (AL) with the aim to select the most informative
data to be labeled and included in the training set, reducing the annotation
effort. For example, in [1], the authors discussed the difficulty of getting anno-
tated data and explored the use of AL to select the best data to be annotated.
They showed that the use of AL leads to competitive performance with limited
training data. A similar approach was shown in [12], where the authors showed
that using AL yields considerable improvements over the baseline model using
random sampling.

To the best of our knowledge, most cross-lingual studies have used transfer
learning strategies and other approaches have been poorly investigated. This
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work aims to establish a baseline about whether it is possible to find patterns
in the speech of PD patients that can be shared among different languages
and acoustic conditions. Moreover, the AL approach has not been applied to
pathological speech classification, where the problem of getting high-quality data
is more evident. We considered a strategy based on AL in the context of PD
and analyze how a model generalizes to different languages. Hence, AL is used
to teach the models information from a new language with the least possible
amount of annotated data.

The rest of the paper is as follows: Sect. 2 describes the corpora. Section 3
shows the methods and models used in the pre-processing and classification tasks.
Section 4 introduces the experiments and results, and finally, Sect. 5 contains the
conclusions and future work.

2 Data

We considered three databases with recordings of PD patients and HC sub-
jects native speakers of different languages: Spanish, German, and Czech. All
patients were in ON-state during the recording session, i.e., under the effect of
their daily medication, and were evaluated by specialized neurologists according
to the Movement Disorder Society - Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS-III) [6]. All recordings were collected in controlled acoustic con-
ditions and down-sampled to 16 kHz. Table 1 summarizes the information of the
participants.

Table 1. Clinical and demographic information of the speakers. Values are reported
in terms of mean ± standard deviation.

Gender Spanish German Czech

Patients Controls Patients Controls Patients Controls

Number of Subjects Male 25 25 47 44 30 30

Female 25 25 41 44 20 19

Age [years] Male 61.3 ± 11 60.5 ± 12 66.7 ± 9 63.8 ± 13 65.3 ± 10 60.3 ± 12

Female 60.7 ± 7 61.4 ± 7 66.2 ± 10 62.6 ± 15 60.1 ± 9 63.5±11

Years since diagnosis Male 8.7 ± 5.9 – 7.0 ± 5.5 – 6.7 ± 4.5 –

Female 12.6 ± 11.6 – 7.1 ± 6.2 – 6.8 ± 5.2 –

MDS-UPDRS-III Male 37.8 ± 22.1 – 22.1 ± 9.9 – 21.4 ± 11.5 –

Female 37.6 ± 14.1 – 23.3 ± 12.0 – 18.1 ± 9.7 –

Spanish: A total of 100 Colombian native speakers (50 PD patients and 50 HC
subjects) are considered for this corpus [15]. Each participant performed different
speech tasks including 10 sentences, one monologue, a read-text, isolated words,
the rapid repetition of 6 diadochokinetic (DDK) tasks, sustained vowels, and
modulated vowels. This dataset has approximately 5 h of audio material.

German: This corpus contains approximately 20 h of recordings from 88 PD
patients and 88 HC subjects, all German native speakers [4]. The participants



352 S. A. Moreno-Acevedo et al.

produced different speech tasks, including one monologue, a read-text, reading
of question-answer pairs, 5 sentences, 7 isolated words, the rapid repetition of 8
DDKs, and sustained vowels.

Czech: This corpus consisted of 50 PD patients and 49 HC subjects, Czech
native speakers [19]. A total of 4 speech tasks are included: one monologue, a
read-text, a DDK, and sustained vowels. This dataset has approximately 5 h of
audio.

3 Methods

Motivated by the aim of evaluating different models to classify between PD vs.
HC subjects in different languages, we consider different methodologies based
on three main paradigms: (1) classical methods using an SVM classifier with
articulation features extracted from speech; (2) a ResNet-based CNN trained
to classify Mel-scale spectrograms from PD patients vs. HC subjects [26]; and
(3) a pre-trained Transformer model based on Wav2Vec 2.0 [2], fine-tuned to
process the raw speech signals from the participants. All models are evaluated
in a single-language approach and also in a cross-language scenario. Besides,
an AL-based approach is implemented to evaluate its suitability to improve the
accuracy when information from different languages is considered within the
same model.

3.1 Articulatory Analysis

Articulation features model the ability of patients to control different muscles
and limbs involved in speech production [14]. The features considered here are
based on the energy content in the transition between voiced and unvoiced seg-
ments [14]. The transition segments are detected based on the presence of funda-
mental frequency (F 0). Once the border between unvoiced and voiced segments
is detected, 40 ms of the signal are taken to the left and to the right. The spec-
trum of the transition segments is distributed into 22 critical bands according
to the Bark scale, and the Bark-band energies are calculated. 12 Mel Frequency
Cepstral Coefficients and their first two derivatives are included to complete the
feature set. The source code to compute this feature set is available online via
the Disvoice toolkit1.

3.2 Convolutional Neural Network (CNN)

A ResNet-based CNN is used to avoid the vanishing gradient problem [7]. The
architecture of the network has a total of 174k parameters and includes an input
convolutional layer with 16 feature maps followed by 6 residual blocks and 3 main
blocks with 16, 32, and 64 feature maps. The output of the residual blocks is
reduced by an average pooling. The output layer is formed by a fully connected
1 https://github.com/jcvasquezc/DisVoice/tree/master/disvoice/articulation.

https://github.com/jcvasquezc/DisVoice/tree/master/disvoice/articulation
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layer. ReLu activations are considered in the hidden layers and a Softmax acti-
vation function is applied in the output to make the final decision. The input for
the CNN corresponds to Mel-scale spectrograms of 500 ms length speech segments
with a time-shift of 250 ms. The spectrogram is computed using Hanning windows
of 32 ms and a step-size of 8 ms, forming 63-time frames per chunk. The time-
frequency representations are transformed into a Mel-scale spectrogram with 128
Mel filters. Thus the CNN is fed with a spectrogram of 128 × 63.

3.3 Wav2Vec 2.0

We consider the Wav2Vec 2.0-base model [2] trained in English, which has
demonstrated high performance in different speech classification tasks [10,11].
The main concept of Wav2Vec 2.0 is to develop representations of speech signals
that are helpful for speech modeling via self-supervised learning. The architec-
ture of Wav2Vec 2.0 consists of three main components: an encoder, a Trans-
former network, and a quantization module. Seven blocks compose the feature
encoder. The temporal convolutions in each block are formed with 512 channels.
As a result, the encoder output frequency is 49 Hz, with a 20 ms sample stride.
The receptive field is 400 input samples (25 ms of audio). The transformer net-
work is composed of 12 blocks, 8 attention heads, and a 768-dimensional feature
vector. For self-supervised training, Wav2Vec 2.0 discretizes the output of the
feature encoder to a finite set of speech representations via product quantiza-
tion. Finally, the output of the quantized encoder is a 768-dimensional vector
that feeds a classification stage of two fully connected layers with sizes of 768,
and 256 hidden units, respectively. The Wav2Vec 2.0 model used had in total
9.3 M parameters.

3.4 Active Learning

AL aims to improve the performance of a model by iteratively selecting the most
informative samples from a large pool of unlabeled data. This iterative process
reduces the amount of labeled data required to achieve high accuracies, which
is particularly useful when labeled data is expensive or hard to obtain. There
are several strategies to select the most informative samples. One of the most
popular is the entropy one [23], which involves selecting the samples with higher
entropy, which is estimated as in Eq. 1.

H(x) = −
∑

k

pk log(pk) (1)

where pk is the assigned class probability by the Softmax layer. We use this
criterion to select the samples that are included in the training set when adapting
the model to the unknown language. Additional methods, like the ones based
on margin separation [23] were considered as well, however, the most accurate
results were achieved using the entropy criterion.
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4 Experiments and Results

Three experimental scenarios are considered in this study: (1) Single-language
training: We trained the models with the data from one language and test the
models with data from the other two datasets. (2) Two-language training:
The models were trained with data from two languages and tested in the remain-
ing one. (3) Sequentially added data: The models were trained with infor-
mation of two languages, while continuously adding information from the target
one. We added 10%, 20%, 30%, 40%, 50%, and 60% of the target language to
the train set and tested in the remaining 90%, 80%, 70%, 60%, 50%, and 40%,
respectively. The selection of the samples to be added was done randomly, and
via AL using the entropy query strategy. Speaker independence was guaranteed
in all experiments.

The hyperparameter optimization in the classical approach was performed
following a 10-fold cross-validation strategy. C and γ were selected from {1 ×
10−8, 1 × 10−8, · · · , 1, 10} within the cross-validation according to the accuracy
in the validation set. The Wav2Vec 2.0 was initialized with the original pre-
trained weights. The classification layer was fine-tuned, while the other layers
were frozen. We used a learning rate of 0.003, and 200 epochs with early stopping,
and batches of 64 samples. The ResNet model was trained using 50 epochs with
early stopping, and a batch size of 32.

4.1 Baselines

Aiming to set a benchmark for the different models, we performed the classifica-
tion within the same language with a 5-fold cross-validation strategy (speaker-
independent). The results obtained in Table 2 show the accuracies for each model
and dataset when the training and test sets belong to the same corpus. Deep
methods outperformed the results for all corpora, the highest accuracy of the
ResNet model was observed with the Spanish corpus, while the Wav2Vec 2.0
yields best results for German and Czech.

Table 2. Baseline results in terms of accuracy (%) ± standard deviation.

Dataset SVM ResNet Wav2Vec 2.0

Spanish 79.0 ± 5 90.0 ± 4 89.0 ± 7

German 72.7 ± 1 75.0 ± 6 79.0 ± 4

Czech 69.3 ± 4 68.8 ± 2 74.0 ± 10

Average 71.4 77.9 80.7

4.2 Single-Language Training

Table 3 shows the results when the models are trained with only one database
and tested in the other two. The accuracies of these experiments range from
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49.4% to 75.0%, depending on the method and language scenario. Wav2Vec 2.0
model yielded the best results for all corpora, with an average improvement of
7,3%. When the target language is Spanish, training with German audios showed
the highest accuracy (75%). Using the PD-German corpus as test set, we obtain
the most accurate result training with the PD-Czech dataset. Finally, for Czech
as the target language, the best results are obtained when the training language
is German.

Table 3. Results of the single-language training experiments. Values correspond to the
accuracy in %.

Training Test SVM ResNet Wav2Vec 2.0

Spanish German 53.4 52.3 60.2

Czech 53.5 57.6 62.0

German Spanish 54.0 67.0 75.0

Czech 62.4 53.5 72.0

Czech German 57.4 49.4 68.2

Spanish 50.0 53.0 57.0

Average 55.1 55.5 65.7

The results indicated that Wav2Vec 2.0 is the method that generalizes bet-
ter to unknown languages, achieving the highest accuracies (above 70%) when
trained in German and tested in Spanish and Czech. These results could be
explained because this is the largest corpus. The best result for German as a
test language is achieved when training with Czech. This result is likely sup-
ported by the fact that patients in the German and Czech corpora are in similar
neurological state severity. Another possible reason is that Czech is phonetically
closer to German than Spanish.

4.3 Two-Language Training

The results observed in Table 4 correspond to the model trained with data from
two languages and tested in the remaining one. Once again the Wav2Vec 2.0
model yielded the best results in the three scenarios. Notice that the results for
the three languages are similar (around 72%). This is actually a very promising
result considering that every test dataset in each scenario can be considered
as a separate and independent test set. This result exceeds others reported in
the literature where independent test sets (yet with the same language) are
considered [9].

The ROC curves for the best outcomes of the Single-Language and Two-
Language training experiments are presented in Fig. 1. According to the curves,
when the test set is PD-German, the sensitivity of the model surpasses its speci-
ficity. This indicates that the model exhibits greater accuracy in identifying PD
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Table 4. Results of the two-language training experiments. Values correspond to the
accuracy in %.

Training Test SVM ResNet Wav2Vec 2.0

German + Czech Spanish 46.0 50.0 70.0

Czech + Spanish German 56.2 50.0 72.7

Spanish + German Czech 51.5 49.5 73.0

Average 49.8 49.5 72.0

patients than HC subjects. Conversely, when the test languages are Spanish
and Czech, the specificity slightly outweighs the sensitivity. In other words, the
model demonstrates a higher capability in classifying HC subjects than accu-
rately identifying PD patients.
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Fig. 1. ROC curves for each test set in the training experiments. (A) Best three results
of Single-Language. (B) Results of Two-Language.

4.4 Sequentially Added Data

Since Wav2Vec 2.0 systematically showed the highest accuracy and the most
promising generalization capability, we decided to use it in the sequentially added
data experiments. In this case, small portions of the target language are removed
from the test set and added to the training one. Two strategies to select those
portions were compared: a random selection of samples vs. AL-based selection.
Figure 2 shows the results of this experiment. Notice that the AL-based approach
yields higher accuracies thanks to the intelligent selection of samples.
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Fig. 2. Accuracy of Wav2Vec 2.0 in the sequentially added data experiments. Random
selection (Left), and Active Learning selection (Right).

Figure 2 shows that when the samples to be added to the training process
are randomly selected, the accuracy does not show any trend. Conversely, when
the AL approach is used to select the samples, the performance systematically
improves. Notice also that Czech and German only required about 20% of addi-
tional data to reach 80% of accuracy, while Spanish required around 40%. For
all languages, the best result is observed at the final stage (50% to 60%). We
believe that there is still a lot of investigation to do in order to reach similar
results with the minimal number of additional samples.

5 Conclusions

This paper explores different scenarios where PD patients vs. HC subjects are
discriminated even though recordings are collected in different acoustic envi-
ronments and with speakers of different languages. Classical and deep models
were evaluated, and the model based on Wav2Vec 2.0 showed the highest and
most robust accuracies, even when the test set was formed with recordings of
an unknown language. When the model was trained with recordings of two lan-
guages, the results were consistent, with accuracies above 70% in all cases. This
paper also explored the use of an AL-based approach to adequately select the
training data with the aim of improving the test results. The results showed
that this method is more robust than a random selection approach, opening a
new avenue to study strategies to combine several corpora to create a pattern
recognition model.

Future work will include the evaluation of the neurological state of PD
patients according to the MDS-UPDRS-III scale and the m-FDA scale [25]. Addi-
tionally, the study of strategies to interpret the outcomes of end-2-end models
like Wav2Vec 2.0 is on the top priority for future research.
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