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Abstract. In this work, parametric excitation is introduced in a fully balanced
flexible rotor mounted on two identical active gas foil bearings. The active gas
foil bearings change the top foil shape harmonically with a specific amplitude and
frequency. The deformable foil shape is approximated by an analytical function,
while the gas pressure distribution is evaluated by the numerical solution of the
Reynolds equation for compressible flow. The harmonic variation of the foil shape
generates a respective variation in the bearings’ stiffness and damping properties
and the system experiences parametric resonances and antiresonances in specific
excitation frequencies. The nonlinear gas bearing forces generate bifurcations in
the solutions of the system at certain rotating speeds and excitation frequencies;
period doubling and Neimark-Sacker bifurcations are noticed in the examined
system, and their progress is evaluated as the two bifurcation parameters (rotating
speed and parametric excitation frequency) are changed, though a codimension-2
numerical continuation of limit cycles. It is found that at specific range of excitation
frequency there are parametric anti-resonances and the bifurcations collide and
vanish. Therefore, a bifurcation-free operating range is established and the system
can operate stable at a wide speed range.

Keywords: parametric excitation · nonlinear rotor dynamics · gas foil bearings ·
bifurcations · numerical continuation

1 Introduction

Systems with multiple degrees of freedom (MDoF) and periodically changing physical
properties (parametrically excited systems) have gathered both the mathematical and
engineering interest of the last few decades [1–3]. If the parameters of the excitation
strategy are carefully chosen, the existing damping properties of the systemwill be more
efficiently used [4, 5]. Therefore, the stability of an initially unstable system will poten-
tially be retained. The aforementioned phenomenon is called parametric antiresonance
and can be interpreted as beneficial modal interaction. In current work, parametric exci-
tation is introduced in a realistic model of a high speed, turbopump rotor, mounted on
two identical gas foil bearings.
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One of the first attempts to implement parametric excitation in realistic rotor models
has been done in [6], where the potential to stabilize an equilibrium position was inves-
tigated. The stabilization of limit cycles was investigated in [7], where a turbine rotor,
modeled with finite element method (FEM), was mounted on adjustable oil film bear-
ings. The works hereby referred, do not consider complex rotor models coupled to active
gas foil bearings (AGFBs) and do not examine the type of the occurring bifurcations.
Additionally, numerical continuationmethods for limit cycles and their bifurcations have
been recently applied in simplistic nonlinear rotor bearing systems. In [8–10], simplified
models of high-speed rotors were coupled to floating ring bearings, while in [11–14] Jef-
fcott rotor models on simple oil film bearings were investigated. Recent studies, focusing
mainly on the bearing models, studied the bifurcation sets of simplistic rotor models on
adjustable oil bearings [15] and on gas foil bearings [16] without implementing para-
metric excitation. In current work, a lot of emphasis was given on the programming of
a robust and time efficient continuation method, applicable to parametrically excited,
complex rotor bearing systems with multiple degrees of freedom.

A nonlinear approach of the elastoaerodynamic problem is straightly adopted. Com-
mon assumptions about the gas lubrication problem are introduced and the Reynolds
equation for the compressible gasflow is solvedusing aFiniteDifferenceMethod [FDM].
The Simple Elastic Foundation Model (SEFM) is adopted for the representation of the
bump foil behavior. The structure consists of linear elements of stiffness and damping
in the radial direction while the top foil is considered massless. Parametric excitation
is introduced by a sinusoidal displacement of the outer, deformableringwith predefined
amplitude and frequency, and a harmonic variation in bearing’s stiffness and damping
properties is generated. This can practically be achieved using piezo-actuators [17]. In
general, there are various experimental and theoretical investigations which show that
increased damping and stabilization is possible using closed loop control techniques
such as hydraulic servo systems [18]. In current work, an open loop, periodic excitation
strategy is proposed, the frequency of which should be close to the lower critical speeds.

The periodic solutions of the parametrically excited and perfectly balanced rotor-
bearing systems are considered as solutions of nonlinear Boundary Value Problems
(BVPs) and are evaluated using the explicit Runge-Kutta scheme [19], as it is found
to be more robust method than the widely known collocation method. The correspond-
ing solution branches are evaluated using the most reputable continuation method, the
pseudo-arc length continuation method [20–23]. This method has the primary advance
to study MDoF systems where the nonlinear equations of motion can be many [24] and
the occurring bifurcations of various types. Similar continuation methods are applied
in order to accurately predict period doubling (PD) and Neimark-Sacker (NS) bifurca-
tions as two bifurcation parameters, the rotating speed and the excitation frequency are
changed. Finally, the type of the occurring Neimark-Sacker bifurcations is investigated
[25]. All the aforementioned methods are programmed by the authors directly from
the notes [20, 23, 26]. The motion of unbalanced rotors under the effect of paramet-
ric excitation has quasi periodic characteristics resulted by the simultaneous excitation
and synchronous frequency and should be studied using the theory of nonlinear normal
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modes. Nevertheless, using time integration algorithms, the authors verified that bal-
ance quality grades for turbopump rotors do not dramatically affect the phenomenon of
parametric antiresonance.

2 Analytical Model of the Parametrically Excited Rotor
with AGFBs

2.1 Elastoaerodynamic Lubrication and Resulting Gas Forces

A gas foil bearing with active configuration is presented in Fig. 1 in a schematic rep-
resentation of the working principles. Under the assumptions of a) isothermal gas film,
b) laminar flow, c) no slip boundary conditions, d) continuum flow, e) negligible fluid
inertia, f) ideal isothermal gas law (p/ρ = ct), g) negligible entrance and exit effects
and negligible curvature of the gas film, the compressible gas flow is described by the
Reynolds equation, given in Eq. (1). This equation is written in dimensionless form and
it is an implicit function of dimensionless time and journal and foil kinematics.
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Since analytical solution for Eq. (1) cannot be defined, the Finite Difference Method
(FDM) is used to approximate the gas pressure distribution. At first, the Reynolds
equation is rewritten, defining the first time derivative of the pressure distribution, in
Eq. (2).
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The pressure domain is converted into a grid of i = 1, . . . ,Nx+1 and j = 1, . . . ,Nz+
1mesh points (i and j are the indices in the circumferential and axial direction, see Fig. 1),
upon which, the first order partial derivatives of Eq. (2) are expressed with backward
differences and the second order partial derivatives are expressed by central differences.
It should be noted that the elastoaerodynamic lubrication problem of Eq. (2) includes
the dimensionless parameters of gas pressure p, gas film thickness h, spatial coordinates
in the circumferential and axial direction x = θ, z respectively, dimensionless time τ ,
dimensionless rotating speed �, the ratio κ = R/Lb.

The gas film thickness is defined in Eq. (3) for both the continuous and discrete
spatial coordinates, where q = q(θ) or qi = q(θi) is the dimensionless foil deformation
in radial direction, see Fig. 1.

h = 1 − xj cos θ − yj sin θ + q, hi = 1 − xj cos θi − yj sin θi + qi (3)

The symmetry of the gas lubrication problem in the axial direction is taken into
account with the boundary conditions described in Eq. (4). These conditions are also
expressed in the continuous and the discrete domain.

p(τ, θ0, z) = p(τ, θ0 + 2π, z) = 1, p1,j = pNx+1,j = 1
∂p
∂z |z=1/2 = 0,

pi,Nz/2−pi,Nz/2−1
	z = 0

(4)
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Fig. 1. (a) Representation and key design properties of the gas foil bearing under the effect of
parametric excitation force acting on the outer ring, (b)modeling of the bump foil and the respective
forces acting on the components of the gas foil bearing.

It is of high importance to note that, when integrating the pressure distribution over
the bearing’s surface in order to compute the impedance gas forces, sub ambient pres-
sure values are neglected. The Gümbel boundary condition is imposed and in terms of
numerical calculations, if the dimensionless fluid pressure is lower than 1, then it is
replaced by 1; in this way the pressure in the cavitated areas is neglected.

The schematic representation of the widely known Simple Elastic Foundation (SEF)
model for the bump foil structure is also depicted at Fig. 1. According to the aforemen-
tioned model, the structure consists of equally valued linear elements of dimensionless
stiffness kf (with the corresponding compliance af = 1/kf ) and damping cf in the
radial direction, while the top foil is considered massless, see Fig. 1. Its stripes along the
axial direction are assumed to remain parallel to the bearing surface during their motion.
Therefore, no axial direction is needed for the description of the top foil motion. Instead,
only the mean axial gas pressure pm is necessary. This pressure, is given in Eq. (5), in
the continuous and the discrete domain, in the dimensional and the dimensionless form.

pm(θ) = 1

Lb

∫ Lb

0
p(θ)dz, pm,i = 1

Lb

NZ∑
j=2
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pi,j	z

)
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(
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)
(5)

Given the fact that the top foil’s motion is synchronous to the pressure excitation,
the structural damping coefficient can be expressed as cf = η · kf , where η denotes
the loss factor. Generally, the dimensionless foil stiffness coefficient kf is related to
some specific physical properties of the bump. According to [27], the dimensional foil
compliance af can be analytically approximated by the following formula:

af = 2p0Sbf
crEbf

(
lbf
tbf

)(
1 − v2bf

)
(6)
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where Sbf is the pitch of bump foil, lbf is half bump foil’s length, tbf is bump
foil’s thickness and Ebf , vbf are Young’s modulus and Poison’s ratio of the bump foil
respectively.

Therefore, the dimensionless foil stiffness coefficient can be defined as:

kf = kb = cr
af p0

(7)

As it is clearly stated in the Introduction, the parametric excitation is implemented
by a predefined harmonic variation of the bearing’s outer ring qr = {

qr,i
}
. Therefore,

the radial displacement qi of the i
th top foil’s stripe under the effect of the mean axial

gas pressure and the parametric excitation is defined in Eq. (8), see also Appendix.

q̇i = q̇r,i +
[pm,i − kf (qi − qr,i)]

cf
, i = 2, 3, ...,Nx (8)

Finally, it is denoted 	x = 2π/Nx, 	z = 1/Nz and the nonlinear gas forces can be
evaluated according to Eq. (9).

F
B
x = −
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(p − 1) cos θ dθ dz = −
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i=2
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(9)

2.2 Condensed Rotor Model

A representative turbopump rotor, mounted on two identical AGFBs and designed to
operate above 20 kRPM is implemented in the current work,see Fig. 2. The rotor has
complex geometry with different material properties, directly related to the temperature
distribution among its length, and additional masses in various locations. Thus the rotor
is discretized with cylindrical finite elements, each one having two nodes and a total
of eight degrees of freedom xi, two transverse displacements and two tilting angles
per node. The individual beam element matrices of inertia, stiffness and gyroscopy
are properly summated and finally construct the corresponding global matrices. The
global damping matrix follows the classical Rayleigh formula and the equations of
motion for the whole rotor system in dimensionless form are derived in Eq. (10). On the

right-hand side, gas bearing forces
{
F
B
i

}
are evaluated according to the aforementioned

elastoaerodynamic approach and they are the only source of nonlinearity in the rotor-

bearing system. Additionally, gravity forces
{
F
G
i

}
are composed supposing that the

mass of each element is equally divided to the two nodes of the element.

[
M

]{
ẍi

} + ([
C

] + [
G

]){
ẋi

} + [
K

]{xi} =
{
F
B
i

}
+

{
F
G
i

}
(10)
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Fig. 2. Schematic representation of a slender high-speed rotor supported on two identical GFBs.
Finite element discretization, bearing span Ls, and master and slave nodes are also depicted.

The rotor model described in Eq. (10) is then reduced using the Guyan (static)
reduction method. The selection of master (retained) nodes has been performed in order
to match the dynamic response of the full system to this of the reduced one in terms
of unbalance response and modal properties. It should be noted herethat the harmonic
variation of qi seems to be efficient if its frequency is around specific damped natural
frequencies of the linearized rotor-bearing model. Therefore, it is of great importance
the reduction method to be held carefully. In current work, the number of total master
nodes is 7, including both the overhang nodes and 5 almost equally distributed rotor
nodes. By definition, only transverse displacements at each node are retained and the
equations of motion for the reduced rotor system in dimensionless form are derived in
Eq. (11).
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The reduced rotor model equations of motion can now be converted to the following

set of first order ordinary differential equations (ODEs),whereym = {
ym,i

} =
{ {

ẋm,i
}
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2.3 Composition of the Parametrically Excited Rotor-Bearing System

The aerodynamic lubrication problemin Eq. (2) renders Nx − 1 first order ODEs, with
respect to the time derivative of the dimensionless nodal pressures, in Eq. (13).

ṗ = fB
(
p,q,qr, ym

)
(13)

In turn, the structural problem renders another Nx −1 first order ODEs. Equation (8)
can alternatively be written in the following form.

q̇ = {
q̇i

} = fF
(
p,q,qr

)
(14)
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The reduced rotor model equations of motion, see Eq. (12), can be written in the
form:

ẏm = fR
(
p, ym

)
(15)

The nonlinear rotor-gas bearing system is defined by the following first order ODEs,

where s =
{
p q ym

}T
. It should be noted that due to the periodic variation of the

bearing’s outer ring dimensionless time still appears explicitly in Eq. (16).

ṡ = f
(
s,�,�ex, τ

)
(16)

In order for the limit cycle solutions to be efficiently evaluated by the explicit Runge-
Kutta method, the aforementioned system should be converted to autonomous and this
can be achieved by augmenting an oscillator with two degrees of freedom whose unique
solution is a harmonic function of frequency �ex, see Eq. (17).

ṡN+1 = fN+1 = sN+1 + �exsN+2 − sN+1

(
s2N+1 + s2N+2

)

ṡN+2 = fN+2 = −�exsN+1 + sN+2 − sN+2

(
s2N+1 + s2N+2

) (17)

Finally, the autonomous system of first order ODEs is defined in Eq. (16), where

s̃ = {
sT sN+1 sN+2

}T
and f̃ = {

fT fN+1 fN+2
}T

.

˙̃s = f̃
(
s̃,�

)
(18)

3 Quality of Bifurcations of the Dynamic System

3.1 Location and Continuation of Limit Cycles

Away to find isolated periodic solutions (limit cycles) of the Dynamic System defined
in Eq. (18) should be established. If the system poses a stable limit cycle, then it is
reasonable to approximate it by numerical integration with an initial condition which
belongs to the basin of attraction of the cycle. Given an initial guess for the limit cycle
s̃0 and an initial guess for the cycle period T0 = 2π/�ex it is possible to formulate a
periodic Boundary Value Problem (BVP), see Eq. (19) on a fixed time interval [0, 1]
[0, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d s̃
dτ1

− Tf̃
(
s̃,�

)
= 0

s̃(1) − s̃(0) = 0
1∫

0

〈
s̃, s̃0

〉
dτ1 = 0

(19)
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The first two conditions define a periodic solution to the partially defined BVP but
not uniquely, since any time shift of such a solution, is another solution. Therefore, an
extra condition has to be appended, known as phase condition, in order to select one and
only periodic solution among all those corresponding to the cycle. The phase condition
appended in current work is called integral phase condition and it is a necessary condition
for a local minimum of the distance between s̃, s̃0 with respect to any time shifts. The
aforementioned problem can be reduced to finite dimensional problem using the explicit
Runge-Kutta discretization scheme and solved for the unknown periodic solution s̃

∗
and

the unknown period T ∗.
By definition, the periodic solution of the problem defined in Eq. (19) depends

on the dimensionless rotating speed �. The problem of computing the curve s̃
∗(

�
)

belongs to the general case of finite dimensional continuation problems. The numeri-
cal solution of the continuation problem means computing a sequence of s̃

∗
1, s̃

∗
2, s̃

∗
3, ...

Approximating the curve s̃
∗
(�). This sequence is generated by an initial point s̃0 which

is sufficiently close to the curve. In current work, the continuation algorithm implements
a predictor-corrector method called pseudo-arc length continuation method. For more
detailed information, the reader may refer to [22].

3.2 Location and Continuation of Codim1 Bifurcations of Limit Cycles

The problem of locating Codim 1 bifurcations of limit cycles is a more delicate problem
and, in this case, should be approached again as BVP, since there are periodic solutions
whose multipliers have magnitude much smaller than 1. In the case ofFlip (period-
doubling) bifurcation, a vector-valued function v(τ1) is introduced and a non-periodic
BVP is considered on the fixed time interval in Eq. (18). The first three conditions
specify the periodic BVP defined in Eq. (19), the fourth condition is the linearization
of Eq. (18) around the periodic solution s̃, the fifth condition corresponds to the flip
bifurcation condition and the last one provides a normalization to v(τ1). This problemcan
be reduced to its finite dimensional form using the explicit Runge-Kutta discretization
scheme and solved for the unknowns s̃

∗
, T ∗, v, �. .In the case of Secondary Hopf

(Neimark Sacker) bifurcation, a complex eigen-function w(τ1) and the scalar variable
θm (which parameterizes the critical multipliers) are introduced and the non-periodic
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BVP is considered on the fixed time interval in Eq. (20).
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w = 0

w(1) − eiθmw(0) = 0
1∫

0

〈w,w〉 dτ1 = 0

(21)

The meaning of the augmented conditions in Eq. (21) is similar with the meaning
of the augmented conditions in Eq. (20). It is suggested this problem to be written in
its real form.Then it should be discretized using the Runge-Kutta scheme and finally
solved for the unknowns s̃

∗
, T ∗, w, θm, �. The presented BV problems can also be

used to continue generic Flip (PD) and Secondary Hopf bifurcations (NS) of limit cycles.
They are called fully extended augmented BVPs since the augmented conditions for the
location ofCodim1bifurcation can be replaced by one and only equation using bordering
techniques analytically presented in [22].

It is important to note that Eq. (20) and Eq. (21) do not consider the degeneracy
conditions of the corresponding bifurcations. Generally, the finite dimensional problem,
arising after proper discretization of Eq. (19) is solved using the dampedNewtonmethod,
analytically presented in [19]. Based on the Jacobian matrix of the aforementioned sys-
tem of nonlinear equations, one can approximate the monodromy matrix of the isolated
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periodic solution, using amethod similar to this presented in [26]. All the criteria to deter-
mine local flip (period doubling) and secondary Hopf (Neimark – Sacker) bifurcations
arise from the eigenvalues of the monodromy matrix, called Floquet multipliers.

More specifically, supposing that all the non-degeneracy conditions hold, if there is
one pair of complex eigenvalues on the unlit circle, λ1,2(�) = r(�)eiθ(�), r = 1, 0 <

θ < π , thenNeimark-Sacker bifurcationoccurs. Thenon-degeneracy conditions indicate
that eikθ �= 1, k = 1, 2, 3, ... (absence of strong resonances), dr

d�
�= 0 and d �= 0, where

d stands for a coefficient involved in the normal form of Neimark – Sacker bifurcation,
see [25].

The case of Flip bifurcation is simpler. Supposing again that all the non-degeneracy
conditions hold, if there is one real eigenvalue on the unit circle λ3

(
�

) = −1, then
period doubling bifurcation occurs. The non-degeneracy conditions now indicate that
dλ3
d�

�= 0 and c �= 0, where c stands for a coefficient in the normal form of period
doubling bifurcation, see [25].

4 Results

In Fig. 3 full bifurcation sets for four different values of the dimensionless foil stiff-
ness coefficient kb and for three different values of the maximum dimensionless vertical
displacement of the outer ring δ are depicted. According to the literature, in theoretical
investigations kb varies from 0.1 to 100. In our specific case, kb belongs to the afore-
mentioned range and enhances the phenomenon of parametric antiresonance as much
as possible. The evaluation of generic Neimark – Sacker bifurcations for bigger than
presented values of kb was numerically difficult, thus omitted.

Theminimumvalue of δ is selected so as not to affect the threshold speed of instability
of the reference rotor – bearing system. The maximum value of δ generally depends on
the outer ring’s physical properties, the power supply availability and the excitation
frequency. In our case, the maximum value is selected in order to avoid numerical
difficulties in the continuation of Neimark Sacker bifurcations. Currently, alternative
methods of continuation ofNeimark-Sacker bifurcations are studied in order to overcome
the aforementioned numerical difficulties.

The occurring Neimark-Sacker bifurcations as the two bifurcation parameters
�, �ex change are depicted for eachvalue of the dimensionless stiffness coefficient.
The progress of period doubling bifurcations is evaluated by solving Eq. (20) in the
context of a sequential continuation method and the progress of Neimark-Sacker bifur-
cations is evaluated by solving Eq. (19) in the context of the same continuation method,
for simplicity reasons.

It can be safely concluded that excitation frequencies around which parametric res-
onances and antiresonances occur can be approximately predicted by Eq. (22), where
�j,k denote the dimensionless critical speeds of the rotor-bearing system.

�
1
ex,int � 2�j

n
, �

2
ex,int �

∣∣�j ± �k
∣∣

n
, j, k, n = 1, 2, 3, ... (22)

The denominator n denotes the order of the parametric resonance or antiresonance.
In these results, only first and second order resonances and antiresonances are found.
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Fig. 3. Full bifurcation set for a) kb = 3, , b) kb = 10, c) kb = 20 and kb = 50.
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Fig. 3. (continued)

As it is expected, the strength of such phenomena is enhanced as the dimensionless
parameter δ is increased. It is additionally observed that this strength is enhanced as
the dimensionless stiffness coefficient is increased. Both the dimensionless parameters
mentioned above are related to the variation of the bearing clearance. Therefore, it can
be concluded that the greater the variation in clearance, the greater the difference in the
threshold speed of instability is.

Around someof the excitation frequencies of interest given byEq. (22) and under spe-
cific circumstances, period doubling bifurcations occur too. For instance, it is observed
that for the lowest value of the dimensionless parameter δ no period doubling bifurca-
tion occurs. As this parameter increases, further bifurcations appear. In contrast, as the
dimensionless stiffness coefficient increases, only Neimark-Sacker bifurcations appear.
Finally, it is of high importance to note that in all examined cases there are zones of
excitation frequencies at which the stability threshold of the rotor-bearing system is
enhanced, and no other type of bifurcation occurs.

The transient response of the rotor system is depicted in Fig. 4 for some operating
conditions of interest. For each of the different foil stiffness values kb = 3, 10, 20, 50,
the excitation frequencies where antiresonance occurs are selected from the stability
maps in Fig. 3. These are found to be �ex = 0.63, 0.70, 0.72, 0.74 respectively. The
transient response of the system is evaluated under the parametric excitation of �ex as
before, and for the amplitude of excitation force to render δ = 0.2. The transient response
is evaluated with time integration of the system in Eq. (16) and the envelop of response
is depicted in each of Figs. 4a, 4b,4c,4d in the lower chart, together with the response
envelop evaluated by sequential continuation of the limit cycles. The Floquet multipliers
of each limit cycle motion depict the quality of bifurcations when these occur. At all
cases depicted in the aforementioned charts, the system experiences a Neimark-Sacker
bifurcation at the ending speed of c.a. � = 1.2 and this is considered as the threshold
speed of instability. However, at the case of Fig. 4a, the system experiences period
doubling bifurcation in much lower rotating speed, c.a. � = 0.4 and stable limit cycles
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Fig. 4. Response envelope for a) kb = 3, b) kb = 10, c) kb = 20, and d) kb = 50.

are generated; in Fig. 4a, and at the lower chart one may notice the unstable limit cycles
and the stable limit cycles where the system oscillates after the PD bifurcation. In the
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Fig. 4. (continued)

upper charts of Figs. 4b,4c,4d one may notice the lower threshold speed of instability
at c.a. � = 0.95 when parametric excitation is of low frequency, e.g. �ex = 0.2. In
Fig. 4a, and in the upper chart, the threshold speed of instability appears at � = 1.1
and this is due to the fact that the foil is compliant enough (kb = 3) and dissipation of
energy takes place due to the highermotion of the foil. Considering the above, parametric
excitation provides increase of the threshold speed of instability up to 30% at the specific
application. More design sets are currently investigated by the authors.

For clear observation of bifurcation trees of period doubling bifurcations occurring,
bifurcation diagrams are depicted in Fig. 5.

Fig. 5. Bifurcation diagrams during and after a flip (period doubling) bifurcation

As one may notice in Fig. 5 (top), around the excitation frequency of interest the
unstable limit cycles where the system oscillates after PD are distributed in a wide range
of rotating speeds.
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The transient response of the unbalanced rotor system under the effect of parametric
excitation is comparedwith the response of the balanced one in Fig. 6, for some operating
conditions of interest. Generally, for turbopump rotors G = 6.3, 2.5 balance quality
grades are considered. For each of the dimensionless foil stiffness values kb = 3, kb =
50, the excitation frequencies at which parametric antiresonance occurs are selected,
and two balance quality grades are applied (G = 6.3, G = 1). As one may notice in
Figs. 6a and 6b the phenomenon of parametric antiresonance is not affected by any level
of unbalance.

Fig. 6. Evaluation of periodic response applying numerical continuation of limit cycles, and quasi-
periodic response applying time integration for the respective design and operating parameters as
depicted.

Time integration is the only tool in this paper to evaluate the quasi-periodic response
under the simultaneous parametric and unbalance excitation; the time response proves
that the stability threshold (NS bifurcation) is very similar in both periodic and quasi-
periodic solutions, in the status of parametric antiresonance. In the case of compliant
bump foil depicted in Figs. 6c and 6d where higher unbalance is applied, still the above



Locating Period Doubling and Neimark-Sacker Bifurcations 339

comment holds. However, as the unbalance becomes higher, the quality of response
includes further characteristics, which should be studied with the appropriate tools for
quasi periodic solution evaluation, in future work.

5 Conclusions

This work proves that parametric antiresonance is feasible in slender, high-speed rotors
mounted on active gas foil bearings. Slender rotors retrieve stability in high rotating
speeds under the effect of periodic load acting on the deformable ring of the gas foil
bearings. A nonlinear approach for the elastoaerodynamic problem is adopted, according
to which, the compressible gas flow is described by the Reynolds Equation and the
bump foil’s behavior is represented by the simple elastic foundation model. Based on
the following conclusions, this paper aims to raise further concerns on parametrically
excited rotating systems.

The investigation of full bifurcation sets at a wide range of rotating speed and excita-
tion frequency and amplitude indicates that the zone of excitation frequencies at which
para-metric resonances or antiresonances occur can be approximated using Eq. (20),
existing in literature since long. The strength of both parametric resonance and antires-
onance depends on the variation of the bearing clearance (amplitude of exciting force).
The greater the variation of the clearance, the greater the difference in the threshold
speed of instability is. Based on the literature, see [28] and on personal experience,
authors firmly believe that all the aforementioned conclusions regarding the correlation
between the threshold speed of instability and the variation in foil stiffness coefficient
and clearance are valid for a wide range of slender rotors mounted on AGFBs.

Parametric antiresonance and modal interaction are two simultaneous phenomena,
and it is of quite interest to study the energy flow between the interactingmodes. This can
be achieved by comparing the unbalance response of a parametrically excited rotor with
the unbalance response of the same rotor mounted on conventional gas foil bearings
(without parametric excitation). It should be noted that in the former case, the rotor-
bearing system has quasi periodic characteristics due to the simultaneous synchronous
and parametric excitation. Harmonic balance is currently under investigation in order
to be embedded in the corresponding continuation scheme. It is furthermore of quite
interest to evaluate the type of the occurring Neimark-Sacker bifurcations (subcriti-
cal/supercritical). This can be straight forward achieved by approximating the normal
form of Neimark Sacker bifurcations. The validity of the coefficients involved in this
normal form is currently under investigation.

Appendix: Implementation of Parametric Excitation

The deformation of a ring with the physical and geometrical properties like Poisson’s
ratio vr , Young’s modulus of elasticity, inner/outer radius Ri,r,Ro,r and polar moment
of inertia I , is evaluated with approximate analytical formulas obtained by the strength
of materials. The effect of a periodic vertical load F0

(
1 + sin

(
�exτ

))
is the deformation
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in the horizontal (dh) and vertical (dv) direction of the ring, see also Fig. 1, as defined
in Eq. (21). The constants κ1 and κ2 included are defined in Eq. (22).

dh = qr(θ = 0, π, τ ) = F0

2

R3
o,r

4.2 · 1011Ir
(
2

π
κ2
2 − κ2 + κ1

2

)(
1 + sin(�exτ)

)

dv = qr(θ = π/2, 3π/2, τ ) = −F0

2

R3
o,r

4.2 · 1011Ir

(
π

4
κ1 − 2κ2

2

π

)(
1 + sin(�exτ)

)
(23)

Given the corresponding derivatives with respect to the dimensionless time dḣ, dv̇,
the deformation of the outer ring and its rate of change in the circumferential direction
are evaluated in Eq. (23), where qr = qr/cr and q̇r = q̇r/cr .

κ1 = 1 −
(
R4
o,r − R4

i,r

)

2R2
i,r

(
R2
o,r − R2

i,r

) + 1.33(1 + 2vr)Ro,r

π
(
R2
o,r − R2

i,r

) , κ2 = 1 −
(
R4
o,r − R4

i,r

)

2R2
i,r

(
R2
o,r − R2

i,r

)
(24)

qr = qr(θ, τ ) =
√[(

Ri,r + dh
)
cos θ

]2 + [(
Ri,r + dv

)
sin θ

]2 − Ri,r

q̇r = q̇r(θ, τ ) =
[(
Ri,r + dh

)
cos θ

][
dḣ cos θ

] + [(
Ri,r + dv

)
sin θ

]
[dv̇ sin θ ]

qr + Ri,r

(25)
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