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Abstract. The eigenvalues of the free rotation mode of multi-bladed
rotor systems are of crucial importance when designing controllers. An
unstable free rotation mode of the rotor is unfavorable. In this paper,
the Differential Algebraic Equations (DAEs) of the multi-flexible-body
system are linearized after having introduced a corotational formula-
tion with respect to the floating frame of reference of the rotating cen-
ter. The Multi-Blade Coordinate (MBC) transformation is performed to
obtain the time-invariant system. The proposed formulations are verified
through the numerical experiments carried out on the rotors of increasing
complexity: a single rigid body, a rigid rotor, and a flexible rotor. Results
reveal that the geometric stiffness matrix and the tangent stiffness matrix
of constraints exhibit a centrifugal stiffening effect, moving the eigenval-
ues toward pure imaginary numbers; in contrast, the inertial stiffness
matrix introduces a centrifugal softening effect, pushing the eigenvalues
toward real numbers. Generally one has to discard the geometric stiffness
matrix, the inertial stiffness matrix, and the tangent stiffness matrix of
constraints in the linearized DAEs to obtain the zero eigenvalues for the
free rotation mode, whereas the inertial damping matrix can be involved.

Keywords: free rotation mode · multibody linearization · stiffening
effect · softening effect

1 Introduction

A multi-bladed rotor system always involves a free degree of freedom (DOF)
corresponding to the rotation around its axis. For instance, wind turbines and
helicopter rotors can rotate freely to exchange kinetic energy between the rotor
structure and the surrounding airflow. This rotational DOF introduces the rigid
body mode, also called free-free mode, which is commonly considered to have zero
eigenvalues [4]. However, the eigenvalues are unnecessary to be zero; hence we
prefer to call it free rotation mode.

El-Absy [3] investigated the stability of the rigid body mode of a rotat-
ing rotor. Using time-marching simulation, the stability of simple rotors built
through three different models with or without the consideration of the effect
of the longitudinal displacement due to bending in the inertia and elastic forces
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are studied. The numerical results demonstrated that the geometric centrifugal
stiffening term in the inertia forces is unnecessary to be included to obtain a
stable solution. However, only the time series of the beam displacements were
plotted to indicate the stability, the eigenvalues were not discussed.

Many researches investigated the stability of multi-bladed rotor systems,
however most of them [2,4,5,7,17] focused on the higher order modes, typi-
cally the bending modes of the rotor, which are relevant for the design of rotor
systems to avoid potential resonances and instabilities. The centrifugal stiffening
effect in the rotating beams was realized and its influence on the modal dynam-
ics of rotor systems was well inspected [8,9]. The centrifugal softening effect was
also explored [5,20,21].

In the controller design phase, the linearized equations of motion are required
to represent the linear controlled systems. The accuracy of the linearization of
the original highly nonlinear dynamics system could affect the controller’s per-
formance and robustness. Taking the example of a wind turbine, the near-zero
frequency bandwidth, which corresponds to the overall rotational characteris-
tics of the rotor system, is the most important range for the controller design
to stabilize the rotor speed and maximize the power capture [6]. The transfer
functions within the near-zero frequency bandwidth exhibit a direct correlation
with the eigenvalues of the free rotation mode in the rotor dynamics system.

In this paper, the analytical linearization of the three-bladed rotor system is
derived. The time-invariant system is obtained through Multi-Blade Coordinate
(MBC) transformation. The eigenvalues of the free rotation mode of rigid and
flexible three-bladed rotors are investigated to verify the proposed linearized
model. The influences of the geometric stiffness matrix, the inertial stiffness
matrix, and the tangent stiffness matrix of constraints on the eigenvalues of the
free rotation mode are examined.

2 Methodology

We express the equations for the motion of rigid bodies and finite elements
using the Newton-Euler formulation [15]. In this context, we adopt a mixed basis
approach for the states of rigid bodies and beam nodes: translational DOFs
are expressed in the inertial frame whereas, in contrast, rotational DOFs are
expressed in the local frame. The coordinates of beam nodes in the mixed basis
are denoted as

δqm =
[
δrT

a ,θδT
l

]T

(1)

where ra is the position vector in the inertial frame, θδ
l is the virtual rotation

vector in the local frame.

2.1 Corotational Formulation

To simplify the problem, a three-dimensional Euler– Bernoulli beam element is
utilized in this study. The material stiffness matrix Km and the geometric stiff-
ness matrix Kg expressed in the local reference frame of the beam element can
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be found in a finite element textbook, such as in [14]. The structural damping
matrix generally stabilizes rotor dynamic systems. However, this paper focuses
on the linearization and the influences of different terms in the linearized mod-
els, so the structural damping matrix is omitted to prevent its impact on the
eigenvalues of the free rotation mode of the rotor systems.

A simplified corotational formulation is used to deal with the large deflection
of beam elements. A rotation transformation matrix R♦ ∈ R

12×12 is intro-
duced [19]:

R♦ = diag
[
RF ,RT

ARF ,RF ,RT
B RF

]
(2)

where RA ,RB ∈ R
3×3 are the rotation tensors of two nodes A,B of the beam

element, RF ∈ R
3×3 is the rotation tensor of the corotated frame F located in

the middle of the centerline.
The tangent stiffness matrix of the Euler– Bernoulli beam element K0

t ∈
R

12×12 is obtained via

K0
t = R♦ (Km + Kg)RT

♦ (3)

Transformation to the Floating Frame of Rotation Center. The con-
figuration of the rotating rotor is periodically dependent on time, which can
be dealt with by the Lyapunov-Floquet (L-F) transformation. If the rotor is
isotropic, MBC transformation is a special case of the L-F transformation [16],
can be employed to obtain a time-invariant system. Thanks to its simplicity and
computational efficiency, MBC transformation is preferred where possible. Since
the mixed basis δqm is chosen, the position vectors of beam nodes at the same
spanwise of the blades are not equal; thus, the current formulation does not
satisfy the prerequisite of MBC transformation. To address this limitation, the
coordinates of blade nodes should be transformed with respect to the rotating
center.

The scheme of a three-bladed rotor is shown in Fig. 1. Three auxiliary refer-
ence frames H1,H2,H3 are introduced for three blades, respectively, which are
rotated by the corresponding azimuth angles ψi, i = 1, 2, 3 about the rotation
axis X from the stationary hub center frame H. The transformation relations
are RHi

= RHRψi
, i = 1, 2, 3, where RH ,RHi

are the rotation tensors of the
reference frames H,Hi, and Rψi

is the transformation matrix of the rotation
about X axis by the azimuth angle ψi.

The coordinate of blade nodes qm can be transformed to the floating reference
frame Hi as the variation relation [13]

δqm = Bhδqh + Bbδqb (4)

where qh represents the coordinate of the floating reference frame Hi, qb is
the relative coordinate of blade nodes with respect to its corresponding floating
reference frame Hi. Moreover, Bh,Bb ∈ R

6×6 are two auxiliary transformation
matrices

Bh =
[

I −RHi
r̃N

0 0

]
, Bb =

[
RHi

0
0 I

]
(5)
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Fig. 1. The scheme of a three-bladed rotor system. The three auxiliary reference frames
H1, H2, H3 are located at the same position as H, but shown separately to avoid mess.
The three blades are rotated by the corresponding azimuth angles ψ1, ψ2, ψ3. The angles
ψ2, ψ3 are not shown.

where rN is the position vector of the blade node N with respect to its corre-
sponding floating reference frame Hi.

Extending the coordinate transformation relation Eq. (4) to two nodes A,B
of the beam element, a larger transformation matrix Bfc ∈ R

12×18 is introduced

Bfc =
[

BhA
BbA

0
BhB

0 BbB

]
(6)

Using the principle of virtual work, the tangent stiffness matrix K0
t in the

original mixed basis δqm can be transformed into the auxiliary mixed basis[
δqT

h , δqT
b

]T as

K1
t = BT

fcK
0
t Bfc (7)

where K1
t ∈ R

18×18, in which the top-left block is the term projected onto the
hub center, the bottom-right block is the term of the blade beam element, the
off-diagonal blocks are the coupling terms between blade and hub.
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The hub block in K1
t is respect to the floating reference frame Hi which is

different for three blades. One needs to rotate K1
t back to the consistent reference

frame H, as

K2
t = RXi

K1
t R

T
Xi

(8)

where RXi
= diag [I3×3,Rψi

, I12×12] ∈ R
18×18 is a block diagonal matrix.

The tangent stiffness matrix K2
t is finally assembled in the system stiffness

matrix according to its corresponding coordinate index.

2.2 Constraints

The method of Lagrange multipliers is used to formulate the equations of motion
for dynamics systems involving multiple constraints, which represent the joint
connections among rigid bodies and beam nodes. The change of the orienta-
tion of the reaction forces and torques in joints would generate the geometric

stiffness term Kc = ∂CT
q

∂q γ [1], where Cq is the Jacobian matrix of the con-
straint, γ is the Lagrange multipliers which are associated with the reaction
forces and torques. The Jacobian matrix Cq and the tangent stiffness matrix of
holonomic constraints Kc can be evaluated in closed-form analytical expressions
in the original mixed basis δqm, which have been implemented in the open-source
multibody library chrono [18]. Similar transformations in Eqs. (7) and (8) are
performed for Cq and Kc to achieve a consistent basis. These two matrices are
used in the DAE of the rotor system.

2.3 Inertial Forces and Torques

In this work, the lumped mass model is assumed for the beam elements. The
inertial forces F Ia and the inertial torques M Il , when expressed in the original
mixed basis δqm, are:

F Ia = νr̈a + νRc̃T ω̇l + νRω̃lω̃lc

M Il = νc̃RT r̈a + Jω̇l + ω̃lJωl (9)

where ν is the lumped mass at the node, c is the vector of the mass center offset
in the local frame of the node, J is the tensor of the moments of inertia in the
local frame of the node, r̈a is the translational acceleration in the inertial frame,
ωl is the angular velocity in the local frame, R is the rotation tensor of the local
frame of the node.

Using the coordinate transformation in Eq. (4) and its derivatives, after long
algebraic manipulations, the inertial forces F Ia and the inertial torques M Il

can be transformed to the auxiliary mixed basis
[
δqT

h , δqT
b

]T , then linearized
through variation techniques, leading to the inertial mass matrix M i, the inertial
damping matrix Ri , and the inertial stiffness matrix Ki [13]. These three inertial
matrices are rotated back to the consistent reference frame H with a similar
transformation as in Eq. (8), then scattered into the system matrices.
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2.4 MBC Transformation

After transforming all the mass, damping, and stiffness matrices to the consistent
auxiliary mixed basis

[
δqT

h , δqT
b

]T , the MBC transformation is performed on
both the structural generalized coordinates δq and the Lagrange multipliers δγ,
leading to the linearized time-invariant DAE [13]:

{
Mzδz̈ + Rzδż + Kzδz + Cq

T
z δγz = 0

CqTδz = 0

(10)
(11)

where Rz consists of only the inertial damping matrix Ri , which includes the
gyroscopic damping term; Kz is composed of the structural material stiffness
matrix of beam elements Km , the geometric stiffness matrix of beam elements
Kg, the inertial stiffness matrix Ki, and the tangent stiffness matrix of con-
straints Kc.

2.5 Eigenvalue Analysis

The generalized descriptor form Ey δẏ = Ay δy of the linearized DAE Eqs. (10)
and (11) is built by introducing the state vector δy =

[
δzT δżT δγT

z

]T
and two

system matrices

Ey =

⎡
⎣

I 0 0
0 M z 0
0 0 0

⎤
⎦ , Ay =

⎡
⎣

0 I 0
−Kz −Rz −Cq

T
z−CqT 0 0

⎤
⎦ (12)

The corresponding eigenvalues can be evaluated using different numerical
methods, among these we endorse a recent embodiment of the Krylov-Schur
iteration [11] because of its robustness when dealing with clustered and near-
zero eigenvalues.

Using this generalized descriptor, one obtains twice the number of eigenvalues
as the number of degrees of freedom, plus spurious eigenvalues corresponding to
the rows of the constraint jacobian CqT, if any. For instance, a rigid body freely
rotating in 3D space will generate six eigenvalues relative to the three rotations.

The eigenvalues of the free rotation mode always have the smallest magni-
tude, therefore they can be extracted easily.

3 Numerical Experiments

The proposed approach is verified through a series of numerical experiments on
rotors with different complexities.

In all the numerical experiments discussed in these pages, gravity is not
considered.
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3.1 Single Rigid Body

The first model we investigated is a single rotating rigid body.
The intermediate axis theorem, also called as tennis racket theorem, deals with

a freely rotating rigid body with three distinct principal moments of inertia: the
rotation of the rigid body around its minor and major principal axes is stable,
while the rotation around its intermediate principal axis is unstable [10]. The
intermediate axis theorem provides a reference result for the eigenvalue analysis
of a rotor.

For a single rotating rigid body, the mass matrix is

M = diag [m,m,m, Jxx, Jyy, Jzz] (13)

where m is the mass, Jxx, Jyy, Jzz are the moments of inertia about its three
principal axes, respectively. Supposing the rotating center is located at the mass
center, the cross term Jyz = 0.

The damping matrix is

R =
[
0 0
0 ω̃lJ − J̃ωl

]
(14)

where J = diag [Jxx, Jyy, Jzz] is the tensor of the moments of inertia, ωl =
[ωx, ωy, ωz]

T is the angular velocity vector expressed in the local frame of the
rigid body.

The stiffness matrix is K = 0.
The eigenvalues of two cases are investigated: free rotation about three axes,

and constrained body with free rotation about the X axis.

Free Rotation About Three Axes. The rigid body rotates about three axes
freely. The eigenvalues are listed in Table 1.

In case the three moments of inertia are distinct as Jxx > Jyy > Jzz, the
eigenvalues for rotation around X (which is the minor principal axis) and Z
(which is the major principal axis) are a pair of pure imaginary numbers, imply-
ing a constant-amplitude oscillation, whereas the eigenvalues for rotation around
Y (which is the intermediate principal axis) are a pair of real numbers, indicating
an unstable movement. This result is identical to the intermediate axis theorem.

In case the three moments of inertia hold a relation Jxx = 2Jyy = 2Jzz which
mimics an isotropic three-bladed rigid rotor, the eigenvalues for rotation around
X (which is the major principal axis, also is the rotation axis of the rigid rotor)
are a pair of pure imaginary numbers, and the natural frequency is equal to the
angular velocity π. The eigenvalues for rotation around Y and Z axes are zero.
There is no unstable mode.

Constrained Body with Free Rotation About the X Axis. The rigid
body is allowed to rotate freely about the X axis only. The rotational DOFs
about Y and Z axes are constrained by a revolute joint. The eigenvalues are
zero, as listed in Table 2.
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Table 1. Eigenvalues of a single rigid body in free rotation about three axes. Only two
eigenvalues are listed since the other four eigenvalues are zero.

Subcase m Jxx Jyy Jzz ωx ωy ωz λ

[kg] [kg m2] [rad s−1]

Jxx > Jyy > Jzz 1.3 5.7 3.3 1.9 π 0 0 ±3.79i

0 π 0 ±1.75

0 0 π ±1.67i

Jxx = 2Jyy = 2Jzz 1.3 5.7 2.85 2.85 π 0 0 ±πi

0 π 0 0, 0

0 0 π 0, 0

Table 2. Eigenvalues of a single rigid body in free rotation about X axis.

Subcase m Jxx Jyy Jzz ωx ωy ωz λ

[kg] [kg m2] [rad s−1]

Jxx > Jyy > Jzz 1.3 5.7 3.3 1.9 π 0 0 0, 0

Jxx = 2Jyy = 2Jzz 1.3 5.7 2.85 2.85 π 0 0 0, 0

3.2 Rigid Rotor

An ideal isotropic rigid rotor is investigated as the second model. As shown in
Fig. 2, the rigid rotor consists of four rigid bodies: the hub H located at the
rotating center, and three bearings P1, P2, P3 located at the same radius but
equally distributed azimuth positions. The three bearings are linked to the hub
by three fixed joints C1, C2, C3, respectively. The hub is linked to the ground by
the joint CR, of which the rotational DOFs can be adjusted to free the rotation
about three axes or only the X axis.

x
y

z

x
y

z

H

P3P2

C1

C2 C3

P1

CR

Fig. 2. The scheme of the three-bladed rigid rotor.
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The moments of inertia of the hub and bearings are set as zero to facilitate
the comparison with the single rigid body model. The masses of the hub and
the bearing are 629 kg and 2222 kg, respectively. The radii between the hub and
bearings are 0.2 m.

Since the rigid rotor has no flexible finite element, the material stiffness
matrix Km and the geometric stiffness matrix Kg are absent. The influence of
the inertial stiffness matrix Ki, the inertial damping matrix Ri , and the tangent
stiffness matrix of constraints Kc on the eigenvalues are investigated through
including or excluding them in Eq. (10).

Similarly, two cases with different rotational constraints are investigated.

Table 3. Eigenvalues of a three-bladed rigid rotor. The ”×” symbol means the corre-
sponding matrix is included. For the case of free rotation about three axes, the other
four eigenvalues are zero, thus not listed.

Subcase K i Ri Kc ωx λ

Free rotation about three axes × 0 0, 0

π ±πi

× × × 0 0, 0

π ±πi

Free rotation about X axis × 0 0, 0

π 0, 0

× × 0 0, 0

π ±πi

× × 0 0, 0

π ±π

× × × 0 0, 0

π 0, 0

Since the ideal rigid rotor can be lumped to a single rigid body with the
relation Jxx = 2Jyy = 2Jzz, its eigenvalues should be identical with the results
in Tables 1 and 2.

As shown in Table 3, if the rotational velocity around the rotation axis X is
zero, the centrifugal forces and gyroscopic torques are zero, thus the matrices
Ki,Ri ,Kc = 0, leading to zero eigenvalues for the two different constraint
conditions.

When the rotational velocity is π, in case of free rotation about three axes,
if the inertial damping matrix Ri is included, the eigenvalues are ±πi, thus the
natural frequency is equal to the rotational velocity, which is identical with the
result in Table 1. In this case, the matrices Ki,Kc must be absent or present at
the same time, otherwise the eigenvalues deviate from ±πi, leading to erroneous
results which are not listed in Table 3 for the sake of conciseness.
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When the rotational velocity is π, in case of free rotation about X axis, if Ri

is included and if Ki,Kc are absent or present at the same time, the eigenvalues
are zero, which is identical with the result in Table 2. If only Kc is involved on
the basis of Ri , the eigenvalues change to ±πi; if only Ki is involved on the
basis of Ri , the eigenvalues change to ±π.

The tangent stiffness matrix of constraints Kc moves the eigenvalues away
from zero along the imaginary axis, implying a stiffening effect; in contrast, the
inertial stiffness matrix Ki moves the eigenvalues away from zero along the real
axis, implying a softening effect. For the rigid rotor, the stiffening effect of Kc

and the softening effect of Ki can counteract completely.
The identical results between Table 3 and Table 1, 2 indicate that the lin-

earized DAEs established using the proposed corotational formulation with
respect to the floating frame of reference of the rotating center and the MBC
transformation are applicable on the eigenvalue analysis of three-bladed rotors.

3.3 Flexible Rotor

Three flexible blades are linked to the three bearings of the rigid rotor model
via fixed joints to make the system closer to the wind turbine rotor. The blades
are straight with constant rectangle cross section in 0.6 m×0.2 m. The blade
length is 6.0 m. The blade material is assumed as steel with elastic modulus
E = 2.1 × 1011Pa, Poisson’s ratio μ = 0.3, and density ρ = 7800 kg m−3.

The scheme of the flexible rotor is shown in Fig. 3.

x y

z

x
y

z

H P3P2

B1

B2 B3CR

P1

Fig. 3. The scheme of the three-bladed flexible rotor.

Every blade is discretized to 10 Euler– Bernoulli beam elements. The eigen-
values of the flexible rotor are solved using the proposed method. Only the
eigenvalues of the free rotation mode of the rotor are listed in this study.
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No External Forces. When no external forces act on the blades, the eigenval-
ues of the two different constraint conditions are reported in Table 4.

Table 4. Eigenvalues of a three-bladed flexible rotor without external forces. The ”×”
symbol means the corresponding matrix is included. The material stiffness matrix Km

is included in all cases.

Subcase Kg K i Ri Kc ωx λ

Free rotation
about three axes

× 0 0, 0 0, 0 0, 0

π ±πi ±0.0063 ±0.0139i

× × × × 0 0, 0 0, 0 0, 0

π ±πi ±0.0108 ±0.0141i

Free rotation
about X axis

× 0 0, 0

π ±0.0081

× × 0 0, 0

π ±3.0598i

× × 0 0, 0

π ±3.1380

× × 0 0, 0

π ±0.6964i

× × × × 0 0, 0

π ±0.0072i

When the rotational velocity is π, in case of free rotation about three axes,
the eigenvalues ±πi appear as expected, but the other four eigenvalues deviate to
two pairs of real numbers and pure imaginary numbers with small magnitudes,
which tend to be due to numerical errors.

When the rotational velocity is π, in case of free rotation about X axis,
if only Ri is included, the eigenvalues change to a pair of small real numbers
±0.0081; in contrast, if the four matrices Kg,Ki,Ri ,Kc are all included, the
eigenvalues change to a pair of small pure imaginary numbers ±0.0072i. This
result is considered to be due to numerical errors.

If Kg or Kc are involved based on Ri individually, the eigenvalues change to
a pair of imaginary numbers, which implies that Kg and Kc contribute a stiff-
ening effect; in contrast, if Ki is involved based on Ri , the eigenvalues become
to a pair of real numbers, which implies that Ki contributes a softening effect.
For the flexible rotor without external forces, the stiffening effect of Kg,Kc and
the softening effect of Ki can counteract completely.

With External Forces. The out-of-plane forces F x = 725630.0 N and the
inplane forces F y = 439010.0 N are equally distributed at blade nodes to mimic
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the aerodynamic loadings on the rotor. The forces follow the orientation of blade
nodes when the rotor deflects, which are called follower forces.

The hub is locked firstly in the quasi-static equilibrium analysis, then the
rotational DOF about X axis is freed to perform the eigenvalue analysis.

Since the wind turbine rotor has only one rigid motion DOF: the rotation
about X axis, the case of free rotation about three axes is not discussed here.

The out-of-plane and inplane deflections of the blade tip in case of rotational
velocity 0 rad s−1 are 0.24 m and 0.016 m, respectively. The ratio of deflections to
the blade length is less than 5 %, thus it is still in the range of small deflections.

The eigenvalues of the free rotation mode of the flexible rotor with external
follower forces are listed in Table 5.

Table 5. Eigenvalues of a three-bladed flexible rotor with external follower forces. The
”×” symbol means the corresponding matrix is included. The material stiffness matrix
Km is included in all cases.

Subcase Kg K i Ri Kc ωx λ

Free rotation about X axis × 0 0,−0.0002

π ±0.0002

× × 0 ±0.7034

π ±2.9768i

× × 0 ±0.0001

π ±3.1379

× × 0 ±0.2800

π ±0.6388i

× × × × 0 ±0.7570

π ±0.7598

If only Ri is included, the eigenvalues are near zero. The deviation away from
zero is due to numerical errors.

If Kg is involved based on Ri , in case of ωx = 0, the eigenvalues change from
near zero to a pair of real numbers ±0.7034, which implies that the geometric
stiffness term due to transverse external follower forces F x,F y has a softening
effect; in case of ωx = π, the eigenvalues change to a pair of pure imaginary
numbers ±2.9768i. The increase of the rotational velocity moves the eigenvalues
from the real axis to the imaginary axis, which implies that the geometric stiffness
term due to the centrifugal forces has a stiffening effect.

If Ki is involved based on Ri , in case of ωx = 0, the eigenvalues are still
near zero, that is because the quadratic velocity terms of the inertial forces are
zero, leading to Ki = 0; in case of ωx = π, the eigenvalues change to a pair of
real numbers ±3.1379, which confirms the softening effect of Ki.

If Kc is involved based on Ri , in case of ωx = 0, the eigenvalues change from
near zero to a pair of real numbers ±0.2800, which implies that the tangent
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stiffness term of constraints due to transverse external follower forces F x,F y

has a softening effect; in case of ωx = π, the eigenvalues change to a pair of pure
imaginary numbers ±0.6388i. The increase of the rotational velocity moves the
eigenvalues from the real axis to the imaginary axis, which confirms that the
tangent stiffness term of constraints due to the centrifugal forces has a stiffening
effect.

If the four matrices Kg,Ki,Ri ,Kc are all included, the eigenvalues change
from near zero to a pair of real numbers, which means the rotor cannot rotate
stably.

The eigenvalues of the free rotation mode of the rotor, which are the poles of
the system matrix in the state-space representation of the linearized dynamics
system, should be zero or at least near zero, otherwise it is impractical to design
the controller. In view of a proper controller design, one has to discard the
geometric stiffness matrix Kg, the inertial stiffness matrix Ki, and the tangent
stiffness matrix of constraints Kc, whereas the inertial damping matrix Ri can
be included.

Interpretation of the Stiffening and Softening Effects. The stiffening
and softening effects of the geometric stiffness matrix Kg, the tangent stiffness
matrix of constraints Kc, and the inertial stiffness matrix Ki are interpreted,
respectively.

Geometric Stiffness Matrix. The geometric stiffness matrix Kg derived based on
the linear assumption of the finite beam element [14], is proportional to the
internal axial forces of the beam elements. If the internal axial forces tend
to stretch the beams, like the guitar string, Kg exhibits the stiffening effect
to increase the natural frequencies. In contrast, if the internal axial forces
tend to compress the beams, like the cabled tower of a wind turbine, Kg

contributes the softening effect to decrease the natural frequencies, leading
to the buckling instability in extreme cases.
If the transverse external forces follow the orientation of the nodes when
the beam is deflected, which are follower forces, as shown in Fig. 4a, the
force F j acting on the node Nj results in an axial compression force F p =
F j sin (θj − θi) within the inner node Ni. In this case, the geometric stiffness
matrix Kg contributes the softening effect.
If the transverse external forces maintain a consistent direction relative to the
inertial frame, irrespective of the beam deflection, which are called constant-
directional forces in this paper, as shown in Fig. 4b, the force F j acting on the
node Nj results in an axial stretching force F p = F j sin (θj). In this case, the
geometric stiffness matrix Kg exhibits the stiffening effect. Another numer-
ical experiment is conducted for the flexible rotor with external constant-
directional forces, in which only the out-of-plane forces F x = 725630.0 N are
applied and the inplane forces F y = 0 to reserve the isotropy of the rotor. As
listed in Table 6, the eigenvalues move from zero to pure imaginary numbers
after involving Kg, thus the stiffening effect is confirmed.
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Since the centrifugal forces always tend to stretch the blades, the geometric
stiffness matrix Kg from the centrifugal forces generates the stiffening effect
for the rotating blades.

Tangent Stiffness Matrix of Constraints. The tangent stiffness matrix of con-
straints Kc arises from the change of the orientation of the reaction forces
and torques in the joints. Minaker [12] derived the closed-form expressions
for several joints, and revealed its impact on the eigenvalues of the vehicle
suspension systems. Kc is proportional to the reaction forces and torques.
A simple example to demonstrate the effects of Kc is the pendulum. If Kc is
neglected, the eigenvalues of the pendulum under gravity are two zeros which
are incorrect.
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(a) Follower forces.
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(b) Constant-directional forces.

Fig. 4. Two distinct external forces exert different effects on the deflected beam.
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Table 6. Eigenvalues of a three-bladed flexible rotor with external constant-directional
forces. The ”×” symbol means the corresponding matrix is included. The material
stiffness matrix Km is included in all cases.

Subcase Kg K i Ri Kc ωx λ

Free rotation about X axis × 0 0, 0.0001

π ±0.0001

× × 0 ±0.9740i

π ±3.2068i

For a normal pendulum shown in Fig. 5a, gravity generates a pulling force F c

at the root joint, which is similar to the axial stretching force in the beam. In
this case, the tangent stiffness matrix of constraints Kc provides the stiffening
effect, moving the eigenvalues from zero to ±√

g/Li.
For an inverted pendulum shown in Fig. 5b, gravity generates a pushing force
F c at the root joint, which is similar to the axial compression force in the
beam. In this case, the tangent stiffness matrix of constraints Kc provides the
softening effect, changing the eigenvalues from zero to ±√

g/L which implies
an unstable motion.
When the transverse external follower forces are applied, similar to the axial
compression force F p shown in Fig. 4a, a pushing force F c will be generated
at the root joint. Analogy to the inverted pendulum, the tangent stiffness
matrix of constraints Kc provides the softening effect.
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(a) Normal pendulum.
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(b) Inverted pendulum.

Fig. 5. Two pendulum models. g is the gravity acceleration, L is the pendulum length.
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The centrifugal forces always generate a pulling force F c at the root joint.
Analogy to the normal pendulum, the tangent stiffness matrix of constraints
Kc provides the stiffening effect.

Inertial Stiffness Matrix. The inertial stiffness matrix Ki involves an important
term k22 = −r̃N f̃ c in the hub block of the detailed expression [13], where
f c = νω̃lH ω̃lHrN is the centrifugal forces of the nodes of the rotating beams.
ν is the lumped mass at the node, and ωlH is the angular velocity of the
rotating center H in the local frame. Since the centrifugal forces consistently
point towards the tip of the rotating beams, and because of the presence of
the minus sign in k22, negative stiffness values accumulate at the hub block
of the system stiffness matrix. Ultimately, the inertial stiffness matrix Ki

consistently contributes a softening effect.

The stiffening and softening effects of Kg,Kc,Ki are summarized in Table 7.

Table 7. The stiffening and softening effects of the geometric stiffness matrix Kg, the
tangent stiffness matrix of constraints Kc, and the inertial stiffness matrix K i from
several different forces.

Matrix Force Effect

Geometric stiffness matrix
Kg

Transverse external
follower forces

Softening

Transverse external
constant-directional forces

Stiffening

Centrifugal forces Stiffening

Tangent stiffness matrix
of constraints Kc

Transverse external
follower forces

Softening

Centrifugal forces Stiffening

Inertial stiffness matrix K i Centrifugal forces Softening

Parameter Sweeping Analysis. The parameter sweeping analysis is per-
formed to investigate the relationship of the eigenvalues of the free rotation
mode with respect to the rotor rotational speed and external forces.

Only the case of free rotation about X axis is studied. The four matrices
Kg,Ki,Ri ,Kc are all included in the parameter sweeping analysis.

Rotational Speed. The constant external follower forces F x= 725 630.0 N, F y=
439 010.0 N are applied on blade nodes. The rotor rotational speed is swept
from 0 to 600 r min−1. As shown in Fig. 6, when the rotor speed increases, the
eigenvalues move from a pair of real numbers toward zero and reach zero at
approx. 290 r min−1, then deviate away from zero to a pair of pure imaginary
numbers. The stiffening effect of Kg,Kc due to the centrifugal forces and the
softening effect of Ki compete with each other. In the low rotational speed
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range, the softening effect of Ki dominates, leading to real eigenvalues. In the
high rotational speed range, the stiffening effect of Kg,Kc dominates, leading
to imaginary eigenvalues. At a certain rotational speed, zero eigenvalues are
obtained when they are canceled out.

Fig. 6. Eigenvalues of the free rotation mode of the rotor with respect to the rotor
rotational speed.

External Forces. The rotor rotational speed is set as πrad s−1. The external
follower forces distributed on the blade nodes are swept from 0 to F x= 725
630.0 N, F y= 439 010.0 N. As depicted in Fig. 7, when the external follower
forces increase, the eigenvalues disperse away from zero along the real axis
proportionally to the force amplitude, which is because the softening effect
of Kg induced by transverse external follower forces grows correspondingly.
The eigenvalues at zero forces are ±0.0072i, which is due to numerical errors
as explained in Table 4.
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Fig. 7. Eigenvalues of the free rotation mode of the rotor with respect to the external
follower forces applied on the blade nodes.

4 Conclusions

Eigenvalues of the free rotation mode of three-bladed rotor systems are inves-
tigated. A corotational formulation with respect to the floating frame of refer-
ence of the rotating center is applied to the rotor dynamics system. An ana-
lytical linearization of the constrained multi-flexible-body DAE is performed,
including the geometrical stiffness matrix due to internal forces Kg, the inertial
stiffness matrix Ki, the inertial damping matrix Ri and the tangent stiffness
matrix of constraints Kc. The MBC transformation is implemented to obtain
the time-invariant system, followed by the eigenvalue analysis. Different numeri-
cal experiments are carried out on rotors of increasing complexity: a single rigid
body, a rigid rotor, and a flexible rotor. It is demonstrated that the linearized
DAE formulated using the proposed approach is applicable to the eigenvalue
analysis of three-bladed rotors. We discussed the influence of the four matri-
ces Kg,Ki,Ri ,Kc on the eigenvalues of the free rotation mode of the rotor.
The terms in the geometrical stiffness matrix Kg due to transverse external
follower forces, the tangent stiffness matrix of constraints Kc due to transverse
external follower forces and the inertial stiffness matrix Ki due to centrifugal
forces exhibit a softening effect, moving the eigenvalues toward real numbers.
The terms of the geometrical stiffness matrix Kg due to centrifugal forces, the
tangent stiffness matrix of constraints Kc due to centrifugal forces, introduce
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a stiffening effect that pushes the eigenvalues toward pure imaginary numbers.
Aiming at a proper controller design, in order to obtain the zero eigenvalues
of the free rotation mode, generally one has to discard the geometric stiffness
matrix Kg, the inertial stiffness matrix Ki, and the tangent stiffness matrix of
constraints Kc in the linearized DAE, whereas, the inertial damping matrix Ri

can be used anyway. The parameter sweeping analysis demonstrates that the
zero eigenvalues could be probably reached at a certain rotational speed even
if the four matrices Kg,Ki,Ri ,Kc are all considered. The blade external fol-
lower forces tend to move the eigenvalues toward real numbers, and thus are
unfavorable for the stability of the free rotation mode of the rotor.

Further research should consider a rigorous corotational formulation for the
beam finite elements, as well as a new finite element based on the Geometri-
cally Exact Beam (GEB) theory. It is interesting to find the conditions of zero
eigenvalues when all the geometric nonlinear terms Kg,Ki,Kc are considered.
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