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Abstract. The study of dynamics of rotating machinery has risen to be of great
importance in recent decades, with the industry vying for higher operating speeds,
higher loads, and lower weight. This trend tends to place the system in the vicinity
of its critical speeds, limiting its operational potential, and the traditional approach
to reduce vibrations is to attach a tuned mass damper to the system. However,
these are tuned based on 1:1 resonance of the system and fail to work effectively
otherwise. Accordingly, recent developments have seen the use of the Nonlinear
Energy Sink (NES) as their substitute, providing a more robust means of vibration
mitigation, by being functional for a broad range of frequencies. In this paper, a
passive vibration absorber with nonlinear stiffness is attached to a simple Jeffcott
rotor. A speed-dependent force due tomass eccentricity is used here, as is common
in rotordynamic systems. The conventional hardening (cubic) stiffness and a newly
introduced softening stiffness are studied for their feasibility and compared against
each other based on their behaviour and performance. The system’s frequency
response is obtained using first-order harmonic balancing and the stability of the
solution branches is studied using the multiple time-scales method. Furthermore,
a parametric study of the response behaviour and NES performance for various
stiffness characteristics is presented.With thesemethods, one can effectively prove
the feasibility of using NESs for vibration mitigation in rotor systems.

Keywords: Nonlinear Energy Sink · Harmonic balancing · Jeffcott rotor ·
Tuning Methodology · Nonlinear Stiffness

1 Introduction

The field of rotordynamics has seen a burst of development in the recent decades due to
general industry trends towards lower weight, higher power density and higher operating
speeds. While understandable in terms of increasing productivity, these developments
worsen the issues regarding vibration and stability of rotor systems. In this regard, it may
not always be possible to restrict the rotational speed of the systemwithin its first critical
speed, and a stable operating speed would need to be obtained by running through one or
more critical speeds [1, 2]. Accordingly, it becomes a priority to mitigate the vibrations
of the system at these resonances.
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Nonlinear EnergySink(s) (NES) come across as a potential solution. They are passive
vibration control devices with nonlinear stiffness or damping characteristics, connected
to a host system under consideration. NESs are becoming increasingly popular due to
their capability to tackle multiple resonant frequencies and act as a broadband vibration
absorber [3]. The NES is incapable of completely suppressing the host system resonant
response like the TMD but it is more effective in the vicinity of the resonance. Further-
more, NES can perform better in case of perturbations in the host system parameters, in
comparison to the traditional Tuned Mass Damper(s) (TMD) [4]. It should be noted that
the design of the NES is more challenging than for a TMD, as here the host system’s
response is dependent on the forcing magnitude and can have detached bifurcations and
regions of quasi-periodic, ‘beating’ oscillations [3, 5].

Recent research has shown that NES is perfectly capable of tackling a myriad of
issues in rotordynamics. Ghasem et.al. [6] used NES to deal with the problem of rotor-
stator contact in an unbalanced Jeffcot rotor. Here, a Jeffcot rotor mounted on journal
bearings is subjected to rotor-stator contact force and mass unbalance forces, and there-
after, different configurations of NESs and TMDs are evaluated. The suitability of NES
for a more representative primary system with a flexible/rigid rotor with flexible blades
is investigated by Bab et al. [7]. Apart from rotor-stator interactions, the mass unbal-
ance force has also been studied by Hongliang et al. [8] using magnetic NES, with both
cubic and linear stiffness. The results point favourably towards implementing higher
nonlinearity, however its effects on system stability are yet to be observed. As for realiz-
ing various nonlinearities, a nonlinear stiffness is modelled in [3] by running the linear
spring over a nonlinear path. A similar idea for obtaining custom nonlinear forces is also
expounded in [9]. A summary of the former technique is presented in the appendix.

In the current study, anNESwith nonlinear stiffness is attached to a rotor systemwith
mass unbalance forcing. Two different types of nonlinearities are considered, namely
hardening and softening [10]. A parametric study is also conducted to explain the bifur-
cating and quasi-periodic behaviour of the responses. Finally, both stiffness types are
compared on their ability to reduce peak response of the primary system.

2 Theoretical Formulation

A representation of a 4-degree of freedom Jeffcott rotor is shown in Fig. 1 above. The
rotor rotates with speed ω, and has polar moment of inertia Ip, diametrical moment of
inertia Id and a mass m concentrated at a distance e from the axis of its rotation. This
eccentricity creates a centrifugal force which is dependent on the rotational speed of
the system. The rigid rotor shaft is connected to two bearings A and B, each possessing
a stiffness and damping in x and y direction. The rotor is located at a distance h from
bearing A. Apart from the linear motion in the x and y coordinates, the rotor can also
have rotatory motion in ϕ and θ axes. The equations of motion for this system is as
follows:

mÿ + kAy(y + hϕ) + kBy(y − (L − h)ϕ) + cAy(ẏ + hϕ̇) + cBy(ẏ − (L − h)ϕ̇)

= meω2sin(ωt)
(1)

mẍ + kAx(x − hθ) + kBx(x + (L − h)θ) + cAx
(
ẋ − hθ̇

) + cBx
(
ẋ + (L − h)θ̇

)

= meω2 cos(ωt)
(2)
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Id θ̈ + Ipωϕ̇ − hkAx(x − hθ) + (L − h)kBx(x + (L − h)θ) − hcAx
(
ẋ − hθ̇

) + (L − h)cBx
(
ẋ + (L − h)θ̇

) = 0
(3)

Id ϕ̈ − Ipωθ̇ + hkAy(y + hϕ) − (L − h)kBy(y − (L − h)ϕ) + hcAy(ẏ + hϕ̇) − (L − h)

cBy(ẏ − (L − h)ϕ̇) = 0
(4)

In many cases, it is reasonable to assume that the system is symmetric; both in terms
of its bearings’ properties (equal stiffness and damping) and the location of the rotor
(h = L/2). This decouples the dynamic equations Eqs. (1) and (2). Furthermore, this
makes it also reasonable to neglect Eqs. (3) and (4) as the force due to eccentricity doesn’t
excite the respective resonances in θ and ϕ coordinates. Hereby we obtain a simplified
system as shown in Fig. 2 below. Note that a NES with mass mna, nonlinear stiffness
(Fig. 3) kna, and linear damping cna is shown attached to the primary system.

Fig. 1. Representation of the 4-DoF Jeffcot Rotor model, with front view (a) and side view (b)

The dynamics of the simplified Jeffcott rotor with the NES can be expressed by the
following equations:

mẍ + cẋ + kx + cna(ẋ − ẋna) + knaF(x − xna) = meω2cos(ωt) (5)

mnaẍna + cna(ẋna − ẋ) + knaF(xna − x) = 0 (6)

where,

F(xna − x) = (xna − x)3, for hardening stiffness (7)

F(xna − x) = arctan(ks(xna − x)), for softening stiffness. (8)

Note that the decoupled state of the Eqs. (1) and (2) allows us to treat each coordinate
separately. In this case, they share the same natural frequency at ω1,2 = √

k/m, and
hence the same tuned NES can be used in both coordinates. Realizations of different.
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Fig. 2. Representation of the simplified Jeffcott rotor with NES attachment

Fig. 3. Comparison of stiffness functions

2.1 Application of Harmonic Balancing

The principle of Harmonic Balancing (HB) rests on the idea that a periodic solution of
an ordinary differential equation can be approximated by its truncated Fourier series.
While linear ordinary differential equations require only a single harmonic to represent
their solution, nonlinear ones lead to solutions with multiple dominant harmonics. An
in-depth explanation of the method is provided in [11]. Examples of its implementation
for both transient and forced systems are also seen in [3, 12, 13]. Eqs. (5) and (6) are
modified as follows:

ẍ + μω0ξ ẋ + ω2
0x + μẍna = μω2Pcos(ωt) (9)

μẍna + μω0ξna(ẋna − ẋ) + μω2
0γF(xna − x) = 0 (10)
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where,

μω0ξm = c mω2
0 = k

ω0ξnamna = cna mμ = mna

mnaγω2
0 = kna μP = e

Here the solution of the equations via HB is represented as a first order harmonic. Thus
we introduce the following expression:

ẋ

iω
+ x = 2A(t)eiωt (11)

ż

iω
+ z = 2B(t)eiωt (12)

Both A and B are time dependent complex variables containing the amplitude and phase
information of the response and z = xna − x. The time dependence is not shown further
explicitly. These variables can be used to describe a slow moving envelope of vibration
[14]. A major advantage of complexification is that by separating the oscillations term
(eiωt) and the envelope (A and B), the second-order equations of motion can be modified
to a first-order equations for the envelope motion whereafter the fixed points and their
stability can be studied with ease. From Eqs. (11) and (12) we get:

ẋ

iω
+ x +

(
ẋ

iω
+ x

)∗
= 2(Aeiωt + A∗e−iωt) ⇒ x = Aeiωt + A∗e−iωt (13)

ẋ

iω
+ x −

(
ẋ

iω
+ x

)∗
= 2(Aeiωt − A∗e−iωt) ⇒ ẋ = iω(Aeiωt − A∗e−iωt) (14)

Similarly,

z = xna − x = Beiωt + B∗e−iωt (15)

ż = iω(Beiωt − B∗e−iωt) (16)

The superscript * represents complex conjugate. Differentiating Eq. (11) we get:

ẍ

iω
+ ẋ = 2Ȧeiωt + 2iωAeiωt (17)

Substituting Eqs. (14) and (13) in Eq. (17) we get the following relation:

ẍ + ω2x = 2iωȦeiωt (18)

Similarly,

z̈ + ω2z = 2iωḂeiωt (19a)
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For first order HB, the Fourier series coefficient of the first harmonic of the nonlinear
stiffness function F(z) is also calculated as follows:

F1(z) = B.f (B,B∗) = ω

2π

2π
ω∫
0
knaF

(
B,B∗)e−iωtdt (19b)

f
(
B,B∗) = 3B.B∗ Equation for hardening stiffness (20)

f
(
B,B∗) =

√
4BB∗k2s + 1 − 1

2BB∗ks
Equation for softening stiffness (21)

Substituting Eqs. (11)–(19b) in Eqs. (9) and (10) we get:

2iωȦ + (ω2
0 − ω2)A + iμω0ωξB + μ(2Ȧiω − ω2A + 2Ḃiω − ω2B) = μω2P

2
(22)

2iḂω − ω2B + 2iωȦ − ω2A + iξnaω0ωB + ω2
0γBf (B,B∗) = 0 (23)

In order to find the response at the state of steady oscillation, we assume Ȧ = Ḃ = 0 .
Thus, the above equations become:

σA + iξ
√
XA − XA − XB = PX /2 (24)

iξna
√
XB − XA − XB + γ f (B,B∗) = 0 (25)

where,

X = ω2

ω2
0

and 1 − X = μσ (26)

Squaring the real and imaginary parts of Eq. (25) respectively we obtain:

X 2A2 = B2
(
ξ2naX + (

γ f
(
B,B∗) − X

)2) (27)

Multiplying Eq. (24) by X and substituting in Eq. (25) for XA we get:

i
(
σξna

√
X + ξ

√
X

(
γ f

(
B,B∗) − X

) − X ξna
√
X

)
B

+
(
(σ − X )

(
γ f

(
B,B∗) − X

) − ξξnaX − X 2
)
B = PX 2

2

(28)

Squaring the real and imaginary part of Eq. (28) ,we get:

((
(X − σ)

(
γ f

(
B,B∗) − X

) + ξξnaX + X 2
)2 + X

(
ξna(X − σ) + ξ

(
X − γ f

(
B,B∗)))2

)
B2

= P2X 4

4

(29)
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Since the variables A and B are complex in nature, they can be expressed in their polar
form as follows:

A = a

2
eiα B = b

2
eiβ (30)

Substituting Eq. (30) in Eqs. (27) and (29) we get:

X 2a2 = b2
(
ξ2naX + (γ f (b) − X )2

)
(31)

((
(X − σ)(γ f (b) − X ) + ξξnaX + X 2

)2 + X (ξna(X − σ) + ξ(X − γ f (b)))2
)
b2 = P2X 4 (32)

For a given value of X, Eq. (32) can be solved for b. Equation (31) is the Slow Invariant
Manifold (SIM) relating a and b. It should be noted that the relation is also dependent on
the frequency ratio X and forcing P. Dividing Eq. (31) by Eq. (32) we get the expression
for the nonlinear frequency response of the primary system:

a

P
=

√
X 2

(
ξ2naX + (γ f (b) − X )2

)

D(X , b)
(33)

where,

D(X , b) =
((

(X − σ)(γ f (b) − X ) + ξξnaX + X 2
)2 + X (ξna(X − σ) + ξ(X − γ f (b)))2

)

2.2 Estimation of Solution Stability

From the equations above we have found the fixed points a and b of the system by
assuming steady state. To characterize the stability of these points, we use the multiple
time-scales theory [3, 12, 13]. Here we interpret the total time spent as the sum of two
time scales, one moving across the time domain faster than the other:

τ1 = ω0t τ2 = μω0t (34)

Here τ1 � τ2, implying that τ1 is the faster time scale. The main advantage of this
method becomes evident, as we are more interested in the long-term evolution of the
response envelope. The time derivative is modified as shown below:

d

dt
= ω0

∂

∂τ1
+ μω0

∂

∂τ2
(35)

Substituting the modified derivative into Eqs. (22) and (23) and reorganizing the terms
according to the power of μ we get:

μ0 : 2iω0ω
∂A

∂τ1
= 0 (36a)

2iω0ω
∂B

∂τ1
− ω2A − ω2B + iω0ωξnaB + ω2

0γB.f (B,B∗) = 0 (36b)
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μ1 : 2iω0ω
∂A

∂τ2
+ ω2

0σA + iω0ωξB − ω2A − ω2B = ω2P

2
(37a)

2iω0ω
∂B

∂τ2
+ 2iω0ω

∂A

∂τ2
= 0 (37b)

Rewriting the Eq. (36b) in terms of X we get:

∂B

∂τ1
= 


(
A,B,B∗,X

) = 1

2
√
X

(
iXB + iXA − iω2

0γBf (B,B∗) − ξna
√
XB

)
(38)

Equation (38) is linearized at the fixed points previously found:

B = Beq + �B (39a)

∂B

∂τ1
= 0 + �

(
∂B

∂τ1

)
(39b)

Combining the relation from Eq. (38) and expanding, we get:

⇒ �
 =
(

∂


∂B

)

B=Beq

�B +
(

∂


∂B∗

)

B=Beq

�B∗ (40)

a11 = a∗
22 =

(
∂


∂B

)

B=Beq

a12 = a∗
21 =

(
∂


∂B∗

)

B=Beq

(41)

[
�


�
∗
]

=
[
a11 a12
a21 a22

][
�B
�B∗

]
(42)

The Eq. (42) is the linearized state equation of the system and the eigenvalues of the
Jacobian matrix dictate the stability. Positive real eigenvalues indicate instability of the
chosen fixed point.

3 Parametric Analysis on Response Behaviour

In this analysis, a parametric study is conducted by varying the stiffness parameters,
keeping other parameters constant. For hardening stiffness, this means changing the
factor γ and for softening stiffness both ks and γ are to be varied (see Eqs. (5)–(8)).

The system is analysed close to its resonance, by varying frequency ratio (ω/ω0)

from 0.9 to 1.1. Firstly, a numerical simulation of the system is performed by using the
Runge-Kutta (RK) method, implemented by the ODE 45 function in MATLAB. The
envelope of time signal is obtained, and the upper and lower values of the envelope are
plotted in blue and orange circles respectively (Fig. 4). Thereafter, the solution from the
HB is compared with the numerical solution and with a primary systemwithout an NES.
Stability of the solution branches are also evaluated. Stable branches are shown in black
and the unstable ones are shown in red.
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Table 1. Parameter values for primary system with hardening NES.

Parameter Value

ξna 0.25

ξ 1

γ 1–400

μ 0.01

ω0[rad/s] 1

e[m] 0.001

3.1 Primary system with hardening NES

The parameter values for the primary system with hardening NES are given in Table 1
below. Note that the dimensionless parameters of Eq. (9) and (10) can be used as inputs,
so that a general class of system can be defined.

In Fig. 4, we can see the evaluation of the primary system frequency response w.r.t
the stiffness factor γ . It is observed that for all γ the numerical simulations agree closely
with the HB-solutions, except in the regions of HB-unstable. Increasing this constant
increases the degree of nonlinearity of the stiffness force. This means that at higher
γ the displacement will get to traverse regions of higher nonlinearity (i.e. Here, as γ

increases, the response at the primary system’s resonance is indeed being suppressed,
but with the introduction of certain unconventional behaviour. At γ = 55 (Fig. 4b
and c), we see regions of instability arise near the resonance. However, it should be
noted that the stability here only means that the envelope magnitude is not steady as
assumed (Ȧ = Ḃ = 0); as from simulations it is seen that the response resembles that
of a quasi-periodic response (Fig. 8). This phenomenon is also referred to as Neimark-
Sacker bifurcation [15]. This is also shown in the plot, as the upper and lower envelope
values don’t coincide in this region.

At γ = 185 (Fig. 4d), we see the inception of a bifurcation, detached from the main
curve. This is referred to as an Isolated Resonance Curve (IRC), and is often considered
to be disadvantageous for NES tuning. This is because of the possibility that the response
can fall into to these resonance curves when started at certain initial conditions.

As γ increases, the IRCs become larger in size and merge with the main curve at
γ = 200 (Fig. 4e). At this point we can see how the numerical solution (with zero initial
displacement and velocity) follows the now attached part of the IRC. As γ increases
further, this results in the formation of two separate bifurcations (Fig. 4f), one on either
side of the resonance peak. Additionally, the peak of the almost-attached IRC, becomes
the new response peak. The two bifurcations diverge from each other as γ increases.

It should be noted that increasing the damping via ξna or ξ , only raises the lower
limit of values of γ where a particular phenomenon is found. The behavior remains just
the same.
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Fig. 4. Frequency response of the primary system for various kna forNESwith hardening stiffness

3.2 Primary System with Softening NES

The arctangent function of the softening stiffness force has two main factors namely γ

controlling the ceiling of the restoring force, and ks controlling the degree of nonlinearity
of the stiffness function. Figure 5 below shows the influence of these factors. Table 2
details the input values chosen for analysis.
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Table 2. Parameter values for primary system with softening NES.

Parameter Value

ξna 0.25

ξ 1

γ 0.01–1

μ 0.01

ω0[rad/s] 1

ks 10–60

e[m] 0.001

Fig. 5. Arctangent function with factors C and γ

In the case of softening stiffness, both γ and ks are varied as shown in Fig. 6 below.
In general for all values of γ and ks, the numerical simulations agree well with the
HB solution, except in the region of HB-unstable. This is because of the previously
mentioned Neimark-Sacker bifurcations. For a given ks, there is an optimal γ above and
below which the response of the primary system approaches to that of without having
the NES (see Fig. 6a–c). This is because changing γ also changes the slope of the initial,
approximately-linear region of the arctan function. Thus, it can also be the case that the
response purely lies within the quasi-linear region of the stiffness function.

Changing ks also causes the same effect, but with the additon of changing the non-
linearity of the function. Therefore, it causes the typically nonlinear behaviour of having
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Fig. 6. Frequency response of the primary system for various γ and C for NES with softening
stiffness

bifurcations and regions of quasi-periodic responses. In this case, the response displace-
ment stays below the limit where the stiffness force becomes constant (see Fig. 5), and
thus linearity is still prominent. Thus at higher ks the linear part of the stiffness curve
has shifted from its optimum. This explains the effect shown in Fig. 6d–f. Additionaly,
the lack of IRCs should also be noted, as it is a significant advantage in terms of tuning.
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As seen for hardening stiffness, the damping has no effect on the possible behaviour
that can be observed and only affects the range of values where a behaviour is observed.

4 Comparison of Stiffness Characteristics

Both stiffness models are compared based for their vibration suppression capabilities
and their behaviour qualities for the primary system given in Tables 1 and 2. It should be
noted that bifurcations and unstable regions (i.e. the typically nonlinear behaviour) arise
only when the response goes through a highly-nonlinear region in the stiffness function.
This can be the casewhen there is either high forcing (via eccentricity e) or light damping
or when the nonlinearity constants are high. Since there is only a single factor to control
in hardening stiffness (i.e. γ ), which decides its degree of nonlinearity, increasing γ to
lower the response makes this aforementioned behaviour unavoidable. This is in contrast
to softening stiffness, where the nonlinearity factor ks can be modified separately from
saturation factor γ . Additionally, from the parametric analysis it is evident that for the
given range of values IRCs are absent in the system with the softening stiffness, which
is greatly advantageous for tuning applications.

The comparison with optimal values is visualized in Fig. 7. Here the HB solutions
and the upper envelope values from numerical simulation are presented for both cases.
Based on the parametric analysis, for hardening stiffness, increasing γ leads to lower
response at primary system resonance. However, γ = 183 is chosen as the optimal value
for hardening stiffness, as higher values lead to IRCs of high peak response. Similarly,

Fig. 7. Optimal response curve for both hardening and softening NES.
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Fig. 8. Comparison of scaled time responses at
(

ω
ω0

)
= 1, for both softening (a) and hardening

(b) NES attachment.

for softening stiffness an optimal γ and ks is found based on its response reduction. The
value of ks is also selected so as to include a reasonable degree of nonlinearity. Hence,

γ = 0.1 and ks = 14 is taken as the optimum. A time simulation at
(

ω
ω0

)
= 1 is shown

in Fig. 8.
The response plot above shows a clear advantage for the softening stiffness. It should

be noted that at the instability regions in the HB-hardening, the numerically calculated
envelope limits are better estimates of the response magnitude. The NES with softening
stiffness is able to achieve 79% response reduction at the primary system resonance
when compared to 62% with the hardening NES. This can also be verified from the
time simulation in Fig. 8. Furthermore, the amplitude modulation of the quasi-periodic
response for the hardening NES could also be considered undesirable. For modelling
purposes, the optimized stiffness function can be used to obtain the nonlinear profile
f (x) for the realization shown in Appendix A.

5 Conclusion

A simplified Jeffcott rotor model coupled to an NES with stiffness nonlinearity is
explored in this paper for its feasibility, primarily through the Harmonic Balancing
method. The HB method has been successfully implemented in this regard and vali-
dated using response envelopes from time simulations; save for the regions detected by
HB as unstable, where a quasi-periodic response is observed. An intuitive comparison
between hardening and softening stiffness of the NES has been made based on their
behaviour and their vibration absorption capability. It has been found that the softening
NES has a distinct advantage over the conventional hardening NES, both in terms of
avoiding IRCs and in terms of optimal response attenuation. The current model relies
on the simplification that the rotor system is symmetric, removing the cross-coupling
of coordinates. In the future, a more generalized (non-symmetric) rotordynamic system
will be considered, with inclusion of coupling and gyroscopic effects. The robustness of
the NES, i.e. usefulness of de-tuning, would also be explored in detail.
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Appendix A: Realization of Stiffness Nonlinearity

This section details the method used in [3] to create nonlinear stiffness for the NES
attachment. Here theNES is attached to a linear springwith a rolling element on the other
side. The rolling element is made to follow a nonlinear guided path designed according
to the optimized parameters of the nonlinear stiffness function. Figure 9 below shows
the principle.

Fig. 9. Realization of custom nonlinear stiffness using a nonlinear profile f (x) (a) with its force
balance (b) [3]

The NES mass mna, with motion along x, is attached to a linear spring with spring
constant kl , which is compressed according to a nonlinear profile f (x). The reaction
forces Fx and Fy are defined as follows:

Fx = 2Rsin(θ), Fy = Rcos(θ), (43)

⇒ Fx = 2Fytan(θ), (44)

where tan(θ) = ∂f (x)
∂x and Fy = kl f (x)

The given stiffness function Fx will be equated according to Eq. (44) to obtain the
profile f (x).
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