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Abstract. Large rotating machines are usually affected by more or less severe
vibrations excited simultaneously by various manufacturing errors and opera-
tional defects. In order to identify the causes of these adverse effects on the basis
of measured diagnostic signals registered during a regular operation, it is nec-
essary to obtain a theoretical basis regarding possible dynamic responses of the
monitored machine to its most likely failures. This paper shows how to achieve
this target on the example of monitoring results of a large blower used in the min-
ing industry. In the advanced structural hybrid model of the rotor shaft system of
this blower, in addition to the impact of static unbalance, there is included simul-
taneous interaction of dynamic unbalance of the blower overhung rotor, parallel
and angular misalignments of the shaft sections, inner anisotropy of the couplings,
pressure pulsation of the working medium caused by incorrect stagger angles of
the blower rotor blades, and electromagnetic pull of rotors of the driving electric
motors. The contribution of the above-mentioned imperfections to the dynamic
behavior of the system will be identified by means of a multi-fault model-based
identification method using the harmonic excitation approach, where vibratory
motions are described in the space of modal coordinates and malfunction effects
are modelled by the use of equivalent external loadings. Computational examples
will be devoted to demonstrating the influence of a faulty setting of the stagger
angles of the blower blades on lateral vibrations of the entire rotating system with
the simultaneous influence of the aforementioned imperfections.

Keywords: Rotor Machine · Model-Based Multi-Fault Identification ·
Monitoring of Vibration Signals · Rotor-Shaft Hybrid Model with Imperfections

1 Introduction

Many manufacturing and operational defects of modern rotating machines are the cause
of various types of vibrations of these objects. Such oscillations, on the one hand, can
pose a serious threat to the correct operation of these machines, but on the other hand,
these vibrations can be used to identify the above-mentioned defects. The most common
imperfections in rotor-shaft systems of rotating machines include residual static and
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dynamic unbalances, mutual parallel and angular misalignments of rotor-shaft segments
connected by couplings or joints, internal anisotropy of these shafts and couplings con-
necting them, shaft bows and transverse cracks, rotor-stator rub impact, various types of
damages of bearings supporting these shafts and many others. The imperfections listed
above are most often the cause of bending/lateral vibrations of the rotor-shaft systems of
these machines. In contrast to the often occurring torsional and axial vibrations of shaft
lines of the rotating machines, bending/lateral oscillations are relatively easy to measure
using sensors usually mounted on housings of rotor-shaft bearing supports. Therefore,
monitoring of these vibrations and proper processing of the measurement signals gener-
ated by these oscillations can be a source of valuable diagnostic information enabling an
effective identification of the above-mentioned defects affecting the majority of typical
rotating machines.

According to the above, the problem of identifying defects in rotating machines
has been an ambitious research challenge for the last few decades, engaging many
outstanding researchers from leading scientific and industrial centers around the world
to solve it. Apart from diagnosing the condition of a given machine, basing on the
current monitoring of its vibrations, an extremely important aspect that was and still
is an investigation of the sensitivity of this machine to excitations of certain types of
vibrations by certain types of imperfections in its rotor-shaft system.

Analyses of bending/lateral vibrations of rotating systems induced by unbalances,
mainly static, are already a classic in the field of dynamics of rotating machines, which
is reflected in numerous monographs, such as in [1, 2]. Recently, studies of the impact
of transverse cracks in rotor shafts have gained a similar rank, as evidenced by so many
publications, even an attempt to select themost representative ones is extremely difficult.
Although the phenomenon of various cases of parallel and angular misalignments of
shafts and rotors has been observed since the beginning of the drive systems of various
types of machines, devices and vehicles, scientific research on these imperfections was
intensified at the very end of the 20th century and especially in the two decades of
the current century. This is confirmed by numerous publications from that period, for
example [3–8].

Based on reviews of the available literature, it can be concluded that the problem of
inner anisotropyof the dynamicproperties of rotor systemshas not been fully investigated
so far. The inner anisotropy of rotor shafts, distributed continuously along their length,
was investigated by means of the finite element method for cognitive purposes in the
dissertation [9], and for the diagnosis of imperfections in [7]. Different values of shaft
stiffness in mutually perpendicular directions to the axis of rotation as a result of a
transverse crack in a given rotor shaft section, as e.g., in [10–13], or as a consequence of
bad coupling assembly can be considered as the local anisotropy, which was the subject
of research in [14]. It should be noted that in the above-mentioned work [7], a synthetic
summary of theoretical models of the types of faults considered here was made, where
the sensitivity of the rotor-shaft system to these imperfections acting simultaneously was
examinedby treating themas effectswith stochastically distributed uncertain parameters.
The sensitivity of the rotor-shaft system to the simultaneous action of the defects under
consideration was also analyzed in [14], where an interval approach was used to take
into account the uncertainty of parameters of these imperfections.
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With regard to examination of the sensitivity of rotor-shaft systems to various types
of imperfections using various methods, their identification from the viewpoint of the
fundamentals of the dynamics of mechanical systems boils down to solving the so-called
inverse problems. Due to the great importance of this issue, many methods have been
developed over the past two decades to identify faults in machines, including rotating
machines, based on measured vibrations induced by these imperfections. In the work
[15], the most important methods of fault identification applied in machines, vehicles
and flying objects were classified. In turn, in the typical review paper [16], advantages
and disadvantages of various commonly used methods for identifying defects in rotating
machines are specified. Based on the considerations made in these works, as well as in
the papers [10, 11], the fault identification methods based on recorded vibration signals
can be divided into two main groups: The first one includes statistical methods that use
empirically collected cause-and-effect relationships, where stochastic approaches, neu-
ral networks, fuzzy clusters and variousmethods of transformation ofmeasured vibration
time courses are most often used to guess the type of defect, its location and magnitude
estimation. The second group includes methods based on physical and mathematical
models of the vibrating objects themselves, in our case – the rotor-shaft systems, and on
models of particular types of imperfections affecting these objects. It should be remem-
bered that, in contrast to the methods belonging to the first group, the model-based fault
identification methods require the most accurate knowledge of technical parameters
and dynamic properties of the tested vibrating object and the development of a reliable
theoretical model of it. The advantages of this group of identification methods were
emphasized, among others in the work [16], justifying them with the use of physical
fundamentals of the vibrating objects under study and the analyzed dynamic processes.

Identification of defects in rotor-shaft systems using model-based methods can be
carried out in a variety of ways. For example, in the works [10, 11] and [17], simultane-
ously interacting different imperfections are localized and identified, which have been
interpreted as external forces exciting bending/lateral vibrations of the rotor-shaft line
of a steam turbogenerator. The inverse problem for unbalanced systems of rotor shafts
with a transverse crack was solved in [12, 13] by means of stochastic methods using
the results of Monte-Carlo simulations of coupled bending-torsional-longitudinal vibra-
tions of the tested objects. In turn, in [18], a regression approach was applied to solve the
inverse problem to identify simultaneously acting various defects by the use of a model
of rigid rotors. The cause-and-effect relationships resulting from an operation of indi-
vidual types of imperfections were collected by means of numerical simulations carried
out in [19] using the structural FEMmodel of the rotor system. Then, they could be used
to identify these defects by analyzing Fourier, wavelet and Hilbert-Huang transforma-
tions of time courses of bending/lateral vibrations recorded on the real object. However,
in the work [20], a transverse crack of an unbalanced rotor shaft with misalignments
was identified theoretically and experimentally by observation in the time domain of
transient resonances under unsteady operating conditions.

Many model-based multi-fault identification methods enable more or less effective
determination of the type of defect, estimation of its magnitude, and even localization.
However, the majority of them require results of dynamic responses of the rotor-shaft
system registered at variable rotational speed, as in [19, 20], e.g., in the conditions of
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start-ups or run-downs of themachine, at several rotational speed values, [10, 11, 18], and
even for opposite directions of these speeds, as in [18]. But it should be remembered that
obtaining such results is not always possible, especially in the conditions of continuous
operation of a given rotating machine working at a constant, e.g., nominal, rotational
speed. And just such a case of operation of a real rotor machine will be considered in
the presented paper.

Namely, the subject of research will be the model-based multi-fault identification
carried out for a high-power blower used in the mining industry. The main purpose
of considerations performed in this work is the current assessment of the condition
of the rotor-shaft system of this machine by means of the detection and identification
of simultaneously affecting faults during its normal operation. The most likely types
of imperfections are considered to be static and dynamic unbalance of the overhung
rotor of this blower, static unbalances of the drive motor rotors, parallel and angular
misalignment of the shaft segments, internal anisotropy of the couplings and excessive
pulsation of the blowerworkingmedium causing additional vibrations of the entire rotor-
shaft system. It should be emphasized that the above-mentioned types of imperfections
should be considered the most probable due to structure properties of this object and
the way of manufacturing and mutual assembly of its elements. Identification of these
defects will be carried out on the basis of current measurements of lateral vibrations of
bearing housings recorded in steady-state, nominal machine operating conditions.

2 Modelling of the Blower Rotor-Shaft System with Imperfections

The object of considerations in this paper is a heavy industrial blower driven by two
asynchronous motors mutually connected in series with a power of 3.55 MW each at the
rated speed of 992 rpm. The scheme of the rotor-shaft system of this machine is shown in
Fig. 1. The drive shaft of this blower is driven by themotors via two lamella couplings C1
and C2 interconnected by an intermediate shaft, and the motors are connected with each
other via two lamella couplings C3 and C4. The rotor of this blower is characterized by
the outer diameter of 4.6m and the total mass 5.74 times greater than themass of its drive
shaft. This shaft is suspended on two oil-journal bearings #1 and #2 mutually distant by
0.81 m. The spans of the rolling element bearings #3 – #4 and #5 – #6 supporting the
both motor rotors are equal to 1.76 m.

Taking into account the structure of the entire drive system of this blower and the
results of the routine, ongoing monitoring of the condition of the machine, the most
probable imperfections affecting it are a static and dynamic unbalance of the blower rotor,
static unbalance of the rotors of both drive motors, parallel and angular misalignments of
all four lamellar couplings C1, C2, C3 and C4, an internal anisotropy of these couplings
and a possibility of wrongly set-up stagger angles of selected blades of the blower rotor
causing unfavorable pulsation of the working medium, which results in excitation of
additional dangerous lateral vibrations.

In order to perform an effective multi-fault identification of the above-mentioned
types of imperfections, it is necessary to adopt a suitably reliable and computationally
efficient physical and mathematical model of the tested object. To achieve this goal, a
hybrid model will be used, the structure of which is analogous to the commonly used
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Fig. 1. Scheme of the rotor-shaft system of the industrial blower.

beamfinite elementmodels of rotor shaft systems.Namely, the hybridmodel differs from
the analogous FEMmodel in that the individual cylindrical segments of real rotor shafts
are not discretized, but they are treated naturally as finite beam macro-elements with
continuously distributed viscous-inertial-elastic properties. In this model, the flexural
motion of cross-sections of each viscoelastic continuous macro-element is governed by
the partial differential equation derived using the Rayleigh or Timoshenko rotating beam
theory. Such equations contain gyroscopic forces mutually coupling rotor-shaft bending
vibrations in the horizontal and vertical plane. The analogous coupling effect caused
by the system rotational speed dependent shaft material damping, described by the use
of the standard body model, is also included. With an accuracy that is sufficient for
practical purposes, in the proposed hybrid model of the rotor-shaft system, some heavy
rotors or coupling disks can be represented by rigid bodies attached to themacro-element
extreme cross sections, as shown in Fig. 2a. Each bearing support is represented by the
use of a dynamic oscillator of two degrees of freedom, where apart from the oil-film
or rolling element interaction, also the visco-elastic properties of the bearing housing
and foundation are taken into consideration, see Fig. 2b. This bearing model makes it
possible to represent with relatively high accuracy kinetostatic and dynamic anisotropic
and anti-symmetric properties of the oil-film or rolling elements in the form of constant
or variable stiffness and damping coefficients.

a) b)

Fig. 2. The continuous finite macro-element a), the oscillator representing a bearing support b).

As in the works [12–14, 21], mutual connections of the successive macro-elements
creating the stepped shaft as well as their interactions with the bearing supports and
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rigid bodies representing the heavy rotors are described by equations of compliance
conditions. These are the equations of geometrical conditions of equality for translational
and rotational displacements of extremecross-sections of the continuousmacro-elements
x = Li = l1 + l2 +…+ li-1 of the adjacent (i− 1)-th and the i-th elastic macro-elements:

vi−1(x, t) = vi(x, t),
∂vi−1(x, t)

∂x
= ∂vi(x, t)

∂x
, (1)

where vi(x,t) = ui(x,t) + jwi(x,t), ui(x,t) being the lateral displacement in the vertical
direction and wi(x,t) the lateral displacement in the horizontal direction, and j denotes
the imaginary number. The second group of compliance conditions are dynamic ones,
which generally contain linear, parametric and nonlinear equations of equilibrium for
concentrated external forces, static and dynamic unbalance forces andmoments, inertial,
elastic and external damping forces, support reactions and gyroscopic moments. For
example, the dynamic compliance conditions formulated for the rotating Rayleigh beam,
and describing a simple connection of the mentioned adjacent (i − 1)-th and the i-th
elastic macro-elements, have the following form:

−mi
∂2vi
∂t2

+ EIi
∂3vi
∂x3

− ρIi
∂3vi
∂x∂t2

− EIi−1
∂3vi−1

∂x3
+ ρIi−1

∂3vi−1

∂x∂t2
+

+jΩ(t)ρI0i
∂2vi
∂x∂t

− jΩ(t)ρI0,i−1
∂2vi−1

∂x∂t
= Yi(t),

−Ji
∂3vi
∂x∂t2

+ EIi
∂2vi
∂x2

− EIi−1
∂2vi−1

∂x2
+ jΩ(t)J0i

∂2vi
∂x∂t

= Zi(t),

(2)

where the symbols mi, Ji denote respectively the mass and diametric mass moment of
inertia of the rigid disk, Ii and I0i are the cross-sectional diametric and polar geomet-
ric moments of inertia, E, ρ denote the shaft material constants, Ω(t) is the current
average, i.e., corresponding to rigid body motion, shaft rotational speed, Yi(t) and Zi(t)
denote the concentrated external excitations in the form of transverse force and bending
moment, respectively, i = 1, 2, …, n, and n is the total number of macro-elements in the
hybrid model. By means of the dynamic compliance conditions there are described shaft
interactions with discrete oscillators representing shaft bearing supports. As it follows
from [12, 13], such compliance conditions contain anti-symmetrical terms with cross-
coupling oil-film stiffness components, which couple shaft bending vibrations in two
mutually perpendicular planes. In these equations the stiffness and damping coefficients
can be constant or variable, where non-linear properties of the oil-film are taken into
consideration.

The mathematical model of the coupling with an inner anisotropy and character-
ized also by the parallel and angular misalignment comes down to a description of the
connection of the extreme cross-section of the rotating Rayleigh or Timoshenko beam,
representing in this model the k-1-st coupling flange, with the extreme cross-section of
the analogous beam, representing the k-th flange, by means of a massless spring with
the given shear stiffness G0k and bending stiffness H0k . This description is a condition
of equilibrium for viscoelastic, inertial and gyroscopic transverse forces and bending
moments, which in the case of applying the Rayleigh beam bending theory takes the
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following form containing concentrated harmonic excitations oscillating with a single-
1X and double-synchronous 2X frequency:

−EIk−1

(
1 + e

∂

∂t

)
∂3vk−1(x, t)

∂x3
+ ρIk−1

∂3vk−1(x, t)

∂x∂t2
− 2jΩ(t)ρIk−1

∂2vk−1(x, t)

∂x∂t
−

−
(
G0k + GVke

j(2�(t)−�k )
)

· (vk−1(x, t) − vk(x, t) + Dk(�(t) − �k)) = 0,

EIk

(
1 + e

∂

∂t

)
∂3vk(x, t)

∂x3
− ρIk

∂3vk(x, t)

∂x∂t2
+ 2jΩ(t)ρIk

∂2vk(x, t)

∂x∂t
+

+
(
G0k + GVke

j(2�(t)−�k )
)

· (vk−1(x, t) − vk(x, t) + Dk(�(t) − �k)) = 0,

EIk−1

(
1 + e

∂

∂t

)
∂2vk−1(x, t)

∂x2
+

(
H0k + HVke

j(2�(t)−�k )
)

·
(

∂vk−1(x, t)

∂x
− ∂vk(x, t)

∂x
− Fk(�(t) − 	k)

)
= 0,

EIk

(
1 + e

∂

∂t

)
∂2vk(x, t)

∂x2
+

(
H0k + HVke

j(2�(t)−�k )
)

·
(

∂vk−1(x, t)

∂x
− ∂vk(x, t)

∂x
− Fk(�(t) − 	k)

)
= 0 for x =

k−1∑
i=1

li.

(3)

Here, the all symbols above have been already defined for relationships (2), and the
explicit time functions of the shaft current rotation angle Θ(t), which occur in (3), i.e.,
Dk(Θ(t) − Ψ k), Fk(Θ(t) − Φk) and C·exp( j(2Θ(t) − Ξ k)), where C = GVk or HVk

and Ξ k = Δk or Γ k , can be treated as concentrated external excitations applied to both
flanges of the coupling.

3 Mathematical Solution of the Problem

The complete mathematical formulation and solution for the rotor-shaft system hybrid
model applied here can be found e.g., in [21] and [12, 13]. Namely, the solution for
simulations of the forced lateral vibrations has been obtained using the analytical–com-
putational approach described in the papers mentioned above. In the first step, by solving
the differential eigenvalue problem for the linear orthogonal system, the set of bending
eigenmode functions is determined. Next, all anti-symmetric, gyroscopic and parametric
terms omitted to solve the eigenvalue problem are regarded here as response-dependent
external excitations. Finally, for the hybrid model of the rotor-shaft system, the Fourier
solution in the form of series in the orthogonal eigenfunctions is applied in the following
form for the each i-th macro-element:

vi(x, t) =
∞∑
m=1

Vim(x) ξm(t), i = 1, 2, ..., n, (4)
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where Vim(x) = Uim(x) + jWim(x) denote the orthogonal complex eigenfunctions and
ξm(t) are the unknown modal coordinates. Here, the eigenfunction real part Uim(x)
corresponds to rotor-shaft lateral displacements in the vertical plane and the imaginary
partWim(x) corresponds to lateral displacements in the horizontal plane. This approach
leads generally to an infinite number of known separate ordinary differential equations
in modal coordinates. But, in the case considered here, the above mentioned response-
dependent external excitations and gyroscopic forces mutually couple these equations.
Thus, consequently and similarly as in [14] one obtains the following set of parametric
ordinary differential equations in the modal coordinates:

M0r̈(t) + D(Ω) ṙ(t) + [
K(Ω) + Ka(exp(j2�(t)))

]
r(t) = F(Ω2,�(t)), (5)

where: D(Ω) = D0 + Dg(Ω) and K(Ω) = K0 + Kb + Kd (Ω), �(t) =
t∫
0

Ω(τ)dτ.

The symbols M0, K0 are the diagonal modal mass and stiffness matrices, respec-
tively,Ka is the symmetrical matrix of parametric excitation with a double-synchronous
frequency 2X due to anisotropic properties of the couplings, D0 denotes the symmetri-
cal damping matrix and Dg(Ω) is the skew-symmetrical matrix of gyroscopic effects.
Skew- or non-symmetrical elastic properties of the bearings are expressed by matrix
Kb(Ω). Anti-symmetrical effects due to the standard body material damping model of
the rotating shaft are described by the skew-symmetrical matrix Kd(Ω). The symbol
F(Ω2(t), Θ(t)) denotes the vector of external excitations. The modal coordinate vector
r(t) consists of the unknown time functions ξm(t) standing in the Fourier solution (4).
The mathematically proven quick convergence of the Fourier solution allows for lim-
iting the number of Eqs. (5) to solve to the number of bending eigenmodes taken into
consideration in the frequency range of interest.

4 Modelling of the Rotor-Shaft System Imperfections

As mentioned above, the identification of faults in the rotor-shaft system of the blower
under consideration can be carried out only in steady-state, nominal conditions of its
operation. Owing to this, relations (1)–(3) and (5) can be solved for Ω(t) = Ω = const.
Similarly to the papers [10, 11, 17], it was assumed that the bending/lateral vibrations
of the tested system are induced by time-varying forces and moments caused by the
imperfections sought. In the further considerations, the horizontal (marked with upper
indices “H”) and vertical components (marked with upper indices “V”) of these forces
and moments will constitute dynamic models of individual types of the most probable
imperfections expected in the object under study. These are:

1. Static unbalances of the rigid rotor-disks with masses mi and eccentricities εi:

YH
i (t) = mi εiΩ

2 cos(Ωt − αi), YV
i (t) = mi εiΩ

2 sin(Ωt − αi), (6a)

where αi are the unbalance phase angles;
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2. Static unbalances of the cylindrical shaft segments with unit masses ρAi and
eccentricities ei:

yHi (t) = ρAi eiΩ
2 cos(Ωt − βi), yVi (t) = ρAi eiΩ

2 sin(Ωt − βi), (6b)

where β i are the unbalance phase angles;

3. Dynamic unbalances of the i-th rigid rotor-disks, [14]:

ZH
i (t) = Ω2[ 1

2

(
Iξ i − Iηi

)
sin(2αi)

]
cos(Ωt − δi),

ZV
i (t) = Ω2[ 1

2

(
Iξ i − Iηi

)
sin(2αi)

]
sin(Ωt − δi),

(6c)

where Iξ i, Iηi are the two out of three central, main mass moments of inertia of the
rigid disk, αi denote the small angles of rotation of its central principal axes of inertia
with respect to the disk centre of mass, so that one of these axes does not coincide
with the axis around which this disk rotates, and δi are the unbalance phase angles;

4. Parallel misalignments of the k-th coupling, [3, 5–8, 14]:

DH
k (t) = G0k δk cos(Ωt − �k), DV

k (t) = G0k δk sin(Ωt − �k), (6d)

where G0k denotes the lamella coupling shear stiffness, δk is the mutual shaft
misalignment off-set and Ψ k denotes the parallel misalignment phase angle;

5. Angular misalignments of the k-th coupling, [7, 8, 14]:

FH
k (t) = F0k βk cos(Ωt − 	k), FV

k (t) = F0k βk sin(Ωt − 	k), (6e)

where F0k denotes the lamella coupling bending stiffness, βk is the angular mis-
alignment due to a coupling flange machining error and Φk denotes the angular
misalignment phase angle.

It should be noted that all forces exciting vibrations, which result from the types of imper-
fections listed above and follow from physical fundamentals and practical observations,
oscillate harmonically in time with a synchronous frequency of 1X.

6. Inner anisotropy of the couplings:
The local inner anisotropy of the couplings is the cause of parametric effects in the
adopted hybrid model, which was expressed in the system of Equations (5) by the
components of the stiffness matrix fluctuating with a double synchronous frequency of
2X. Since these effects are analogous to the effects of the occurrence of a breathing
transverse crack in the rotor-shaft, a similar model can be adopted for them as in works
[10, 11]. Namely, the stiffness matrix in (5) is periodic and its Fourier expansion can be
truncated at the third harmonic component:

Ka(Ωt) = Kav + �K1e
j(Ωt−�1) + �K2e

j(2Ωt−�2) + �K3e
j(3Ωt−�3), (6f)

whereKav is the coupling inner anisotropy average term, �Kl, l=1,2,3, are the stiffness
matrix fluctuation components to be determined by means of the multi-fault identifica-
tion. Owing to this, it will be possible to determine the amplitudes and phase angles of
stiffness fluctuation caused by the inner anisotropy of the couplings.
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7. Pulsation of the working medium
Asmentioned above, incorrectly set stagger angles of selected blades of the blower rotor
can cause unfavorable pulsation of the working medium pressure. In the case of a huge
overhung rotor of the tested blower with a relatively large diameter of more than 4 m,
this pulsation induces unbalanced bending moments acting on the rotor shaft line. When
all rotor blades are set correctly, i.e., when their stagger angles are mutually the same,
the pulsation of the working medium is characterized by a relatively small amplitude
compared to the average pressure value with the so-called blade-passing frequency equal
to N × Ω, where N denotes the number of blades in the rotor rim, as defined e.g., in
[22]. However, when the stagger angle of one or more blades changes, the pulsation
of the working medium pressure, and thus the unbalanced bending moment acting on
the rotor-shaft, will indicate significant components of 1X, 2X, 3X, 4X and higher,
depending on how many and which blades are incorrectly set up. Therefore, for the
purpose of identifying this type of imperfection, a simple model was adopted in the
form of an external excitation bending moment, which allows obtaining qualitatively
very similar results compared to the analogous findings achieved in the work [23] using
a three-dimensional FEM model of a multi-blade impeller and working chamber and a
three-dimensional simulation of the working medium flow. The function describing a
time course of this moment has the following form:

ZP(Ωt) =
N∑
j=1

Ajf
MM
j

(
Ωt, (j − 1)2π

/
N

)
, (6g)

where:

fj
(
Ωt, (j − 1)2π

/
N

)
=

⎧⎨
⎩
sin

(
Ωt + (j − 1)2π

/
N

)
if sin

(
Ωt + (j − 1)2π

/
N

)
> 0,

0 if sin
(
Ωt + (j − 1)2π

/
N

)
≤ 0,

Aj are the bending moment amplitudes per blade to be identified and the natural expo-
nentMM is properly selected in order to obtain possibly the best similarity of fluctuation
courses in time as these achieved in [23] by means of the advanced three dimensional
models of the fan and flow. It should be emphasized that in the case of correct angular
positioningof all blades of the rim, the following canbe assumed:Aj =A0 for j=1,2,…N.
Then, the amplitude spectrum of the respective time course ZP(Ωt) is characterized by
a single component with a frequency corresponding to the blade-passing frequency N ×
Ω. However, if at least one amplitude Aj is different from A0, the amplitude spectrum
of ZP(Ω·t) will usually have numerous components with fundamental successive fre-
quencies of 1X, 2X, 3X,…, which results in corresponding external excitation bending
moments in the analogous form as in (6f).

5 Multi-fault Identification Procedure

Since the identification tests of the blower under consideration can be carried out under
steady-state operating conditions, i.e., at constant rotational speed Ω, and the effect of
internal anisotropy of the couplings can be described by the external moments (6f), the
modal equation of motion (5) is simplified to a typical form for a linear model subjected
to harmonic loadings (6a)–(6g):

M0r̈(t) + D r̈(t) + K r(t) = F(Ωt), (7)



348 T. Szolc et al.

where all symbols retain their meaning as in the case of Eq. (5). Such harmonic loadings
can be expressed as

F(nΩt) = Q + P(nΩ) cos(nΩt) + R(nΩ) sin(nΩt), (8)

where vectors P(nΩ), R(nΩ) contain the modal components of fault excitation ampli-
tudes, vector Q contains the modal components of the rotor-shaft static gravitational
load and n = 1,2,3,…, denotes the multiple of the synchronous frequency 1X. Then,
in order to obtain the system’s harmonic response, an analytical solution of Eqs. (7)
will be applied. For the above-mentioned harmonic excitation (8) the induced steady-
state vibrations are also harmonic with the same multi-synchronous circular frequency
nΩ. Thus, the analytical solutions for the successive modal functions ξm(t) contained in
vector r(t) can be assumed in the following form:

r(t) = G + C cos(nΩt) + S sin(nΩt), (9)

where vectors C = [c1,c2,…]T, S = [s1,s2,…]T contain, respectively, the modal cosine-
and sine-components of forced vibration amplitudes and vector G contains the modal
components of the rotor-shaft static deflection due to the gravitational load. Then, by
substituting (8) and (9) into (7) one obtains the following systems of linear algebraic
equations:

K · G = Q,(
K − (nΩ)2M0

)
· C + nΩ · D · S = P(nΩ),(

K − (nΩ)2M0

)
· S − nΩ · D · C = R(nΩ).

(10)

In these equations the unknown components of vectorsC, S andG are easy to determine
if the excitation force vectors Q, P(nΩ) and R(nΩ) are known. However, the target
of this work is to solve the inverse problem, i.e., to determine the modal components
of fault excitation amplitudes contained in vectors P(nΩ) and R(nΩ) based on the
dynamic response of the real system under study registered by measurements. It should
be noted here that the first Eq. (10) determines the static component of the system
response caused by the action of constant gravitational forces only. This response can
be further treated as a reference in relation to the harmonically oscillating responses
which are determined by solving the second and third Eqs. (10). Therefore, achieving
such a goal comes down to solving Eqs. (10)2 and (10)3, in which the left-hand sides
should be treated as known and the right-hand sides as unknown. Since in the proposed
multi-fault identification method all imperfections are described by means of external
excitation forces and moments contained in vectors P(nΩ) and R(nΩ), and owing to
this all components of matrices M0, D and K matrix can be considered known, in the
first step, it is necessary to determine the components of vectors C and S based on the
measurement results.

Let us assume that in the actual rotor-shaft system of the tested machine there are
M measurement points, usually located on the housings of the bearing supports. When
measurements are typically taken in the horizontal “H” and vertical “V” direction at these
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points, monitoring is carried out with 2M simultaneous diagnostic signals. Then, each
of these signals can be expanded into a series with respect to orthogonal eigenfunctions
of the hybrid dynamic model of the object under study in accordance with the Fourier
Solution (4):

ϕH
m(t) ∼=

2M∑
i=1

Wim ςi(t) and ϕV
m(t) ∼=

2M∑
i=1

Uim ςi(t), m = 1, 2, ...,M , (11)

where Wim = Wi(xm) and Uim = Ui(xm) denote the numerical values of respectively
horizontal and vertical components of system eigenfunctions in the measurement point
with the spatial coordinate of xm. In turn, in the case of periodic dynamic responses
of the monitored object caused by the above-mentioned types of imperfections, each
harmonic component of the temporarily unknown modal time function ς i(t) = ς i(nΩt)
can be expressed in the form of:

ςi(nΩt) = ci cos(nΩt) + si sin(nΩt), (12)

where: i = 1,2,…,2M, m = 1,2,…,M and n = 1,2,3,…. In an analogous way, one can
express each n-th harmonic component of the dynamic response in natural coordinates
measured in the horizontal “H” and vertical direction “V”:

ϕH
m(nΩt) = 	H

m sin(nΩt + �H
m) = αH

m cos(nΩt) + βH
m sin(nΩt)

and ϕV
m(nΩt) = 	V

m sin(nΩt + �V
m) = αV

m cos(nΩt) + βV
m sin(nΩt),

(13)

where: 	D
m =

√(
αD
m

)2 + (
βD
m

)2
, �D

m = arc tg
(
αD
m
/
βD
m

)
, D = H,V, m = 1, 2, ...,M .

It should be emphasized here that numerical values of the amplitudes αm
D, βm

D

or Φm
D can be easily determined on the basis of the results of the FFT analysis of the

measured time signals. Then, considering αm
D and βm

D, D = H,V, as known, upon
substituting (12) into (11), and then equating the corresponding signals in (11)–(13), the
following two systems of algebraic equations are obtained by means of the harmonic
balance method:

V · C = A and V · S = B, (14)

where vectors C = [c1,c2,…,c2M ]T, S = [s1,s2,…,s2M ]T, A = [α1
H, α1

V, α2
H, α2

V,…,
αM

H, αM
V]T, B = [β1

H, β1
V, β2

H, β2
V,…, βM

H, βM
V]T and the 2M × 2M matrix V

contains numerical values of the eigenfunction imaginary partsWim, i.e., corresponding
to the horizontal direction, in its successive odd rows and numerical values of the eigen-
function real parts Uim, i.e., corresponding to the vertical direction, in its successive
even rows, i = 1,2,…,2M, m = 1,2,…,M. In this way, separately for each n-th harmonic
component of the monitored dynamic response, by solving both Eqs. (14), it is possible
to experimentally determine 2M components of vectors C and S in Eqs. (10)2 and (10)3
corresponding to the 2M first eigenmodes of natural vibrations of the blower rotor-shaft
system being tested. Next, by substituting them into these equations, their left-hand side
values Pi

L and Ri
L, i = 1,2,…,2M, can be determined and contained respectively in

vectors PL(nΩ) and RL(nΩ).
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It should be noted that the all external excitations (6a)–(6g) resulting from the types
of imperfections considered can be presented uniformly as:

TH
k (t) = T0k cos(nΩt − θk), TV

k (t) = T0k sin(nΩt − θk), k = 1, 2, ...,K, (15)

where T0k and θk denote respectively the corresponding amplitudes and their phase
angles, as defined in the successive relationships (6), and K is the total number of
imperfections simultaneously sought bymeans of the proposedmulti-fault identification
procedure. These excitations are contained in vector F(Ωt) of the system of modal
equations of motion (7), where the successive components of this vector have the form of
following sums with components properly weighted by the modal coefficients following
from dynamic properties of the real system:

Fi(t) =
K∑

k=1

(
W̃ikT

H
k (t) + ŨikT

V
k (t)

)
, i = 1, 2, ... (16)

where respectively for the horizontal and vertical direction W̃ik = W̃i(xk) and Ũik =
Ũi(xk) denote themodalweight coefficientswhich are equal to: themodal displacements,
i.e., W̃ik = Wi(xk) = Wik and Ũik = Ui(xk) = Uik , if the k-th excitation has a form
of concentrated force, as in the cases of (6a), (6d), (6f) and (6g), the derivatives of
the modal displacements with respect of the rotor-shaft line spatial coordinate x, i.e.,
W̃ik = W ′

i (xk) = W ′
ik and Ũik = U ′

i (xk) = U ′
ik , if the k-th excitation has a form of

concentrated bending moment, as in the case of (6c) and (6e), or the integrals of the

modal displacements with respect of the spatial coordinate x, i.e., W̃ik = l∫
0
Wij(x)dx

and Ũik = l∫
0
Uij(x)dx, when the k-th excitation has a form of uniformly distributed

force along the j-th continuous macro-element of length l, as in the case of (6b). Then,
taking into account formula (8), components of the external excitation vectors P(nΩ)
and R(nΩ) in Eqs. (10)2 and (10)3 take the form:

Pi =
K∑

k=1

(
W̃ikT

C
0k − ŨikT

S
0k

)
, Ri =

K∑
k=1

(
W̃ikT

S
0k + ŨikT

C
0k

)
, (17)

where: TC
0k = T0k cos θk and TS

0k = T0k sin θk , i = 1, 2, ..., 2M .

Then, the successive components Pi and Ri in (17) of vectors P(nΩ) and R(nΩ) can
be equated to the respective previously determined values Pi

L and Ri
L, i = 1,2,…,2M,

of the left-hand sides of Eqs. (10)2 and (10)3 contained in vectors PL(nΩ) and RL(nΩ),
which leads to the following systems of 4M algebraic equations, i.e.:

Pi =
K∑

k=1

(
W̃ikT

C
0k − ŨikT

S
0k

)
= PL

i and Ri =
K∑

k=1

(
W̃ikT

S
0k + ŨikT

C
0k

)
= RL

i ,

i = 1, 2, ..., 2M .

(18)

One should be aware that under the proposed multi-fault identification method, the
number of imperfectionsK searched for cannot be greater than the number of simultane-
ously measured 2M vibration signals. However, often the number of these imperfections
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may be smaller than the number of measured signals, i.e., K < 2M. In such cases, the
number of unknown components in series in the relationships (17) and (18) is smaller
than the total number of Eqs. (18) to be solved. The system therefore has no single
solution for all the equations and similarly as in [10, 11] one has to use the least-squares
approach in order to find an unambiguous solution of the identification problem that
minimize the differences between the calculated and measured results of the system’s
dynamic response. Another alternative is to artificially increase the number of imper-
fections sought, e.g., in the form of usually unavoidable static unbalances, which can be
applied to practically every element of the rotor-shaft system, so as to achieve K = 2M.
Then, Eqs. (18) can be rearranged into the following matrix form:

� · T = �, (19)

where vector T= [T01
C, T02

C,…, T0,2M
C, T01

S, T02
S,…, T0,2M

S]T,� = [ P1
L,P2

L,…,
P2M

L, R1
L, R2

L,…, R2M
L]T, and the successive rows of 4M × 4M matrix � contain:

{
W̃i1, W̃i1, ... , W̃i,2M ,−Ũi1,−Ũi2, ... ,−Ũi,2M

}
, i = 1, 2, ... , 2M ,

and
{
Ũi1, Ũi2, ... , Ũi,2M , W̃i1, W̃i2, ... , W̃i,2M

}
, i = 2M + 1, 2M + 2, ... , 4M .

Solving the system of Eqs. (19) separately for successive multiples of the syn-
chronous system rotational speed nX, n = 1,2,3,…, we identify the amplitudes of the
sought types of imperfections described by relationships (6a-g) and their phase angles,

bearing in mind that:
√(

TC
0k

)2 + (
TS
0k

)2 = T0k and arc tg
(
TS
0k
/
TC
0k

)
= θk .

6 Exemplary Results of Identification

The fundamental step in realizing the proposed model-based, multi-fault identification
procedure is to determine the basic parameters of the structural hybrid model of the
blower rotor-shaft system under study initially treated as free of imperfections. In this
model, a total number of the continuous finite macro-elements substituting individual
cylindrical segments of the real stepped shaft line, their geometrical dimensions and
material constants have been set up basing on the technical documentation of the blower
under study. As a result, the hybrid model of this object consists of n = 66 finite macro-
elements. In turn, numerical values of the bearing stiffness and damping coefficients
were provided by manufacturers of the individual components of the blower drive sys-
tem, i.e. the blower overhung rotor-shaft and the both electric motors. To determine stiff-
ness coefficients of the bearing housings and their foundations, the three-dimensional
finite element technique was applied, the introductory results obtained using which were
verified next using proper experimental tests.

As mentioned above, the entire rotor-shaft system of the tested industrial blower
is suspended by 6 bearing supports. Accelerometers are installed on each of them to
measure their lateral vibrations in the horizontal and vertical directions. Owing to this,
2M = 12 signals are being recorded simultaneously during regular operation of the
machine at nominal, steady-state conditions. These vibration signals in time domain are
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properly filtered, integrated with regard of time, and their selected time windows are
then transformed into frequency domain using the fast Fourier transformation technique
(FFT). In Fig. 3 there are presented amplitude spectra of the signals measured by the
sensors attached to the individual bearing supports, i.e., starting from bearing #1 in the
vicinity of the blower rotor to bearing #6 at the non-driven endof the seconddrivingmotor
“1” (see Fig. 1). The frequency values on the abscissa axes of plots in Fig. 3 are referred
to the rotor-shaft’s nominal rotational speed, so that the most significant amplitude peaks
in all these graphs correspond to successive multiples of the synchronous frequencies
1X, 2X, 3X, … According to formula (13), each peak maximal value corresponds to the
respective partial amplitudes αm

D and βm
D, D = H,V, where H denotes the horizontal

direction, and V denotes the vertical direction.

Fig. 3. Amplitude characteristics of the measured lateral vibrations at the bearing housings.

To obtain the modal response amplitudes ci and si, i = 1,2,…,2M, as defined by
Eq. (12), the components of matrix V need to be determined first by means of the
bending/lateral eigenvibration analysis of the blower rotor-shaft system model assumed
to be free of imperfections. This goal is achieved by solving both systems of algebraic
Eqs. (14).

According to the principles of the proposed model-based multi-fault identification
procedure, the causes of the successive peaks 1X, 2X and 3X shown in Fig. 3 are going to
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be found, where the system static response due to the gravitational loading will be used
here as a reference. In the blower rotor-shaft system being tested, static unbalances of the
blower overhung rotor and two electric motor rotors, dynamic unbalance of the blower
rotor as well as parallel and angular misalignments of the four couplings C1, C2, C3 and
C4 (see Fig. 1) are suspected to be the causes of 1X oscillation components, which are
predominant in each amplitude-frequency characteristics presented in Fig. 3. Here, the
total number K of these imperfections is equal to 12, what enables us to solve Eq. (19)
under condition K = 2M = 12. Then, using expressions (6a)–(6e), parameters of these
imperfections exciting the 1X vibration components can be obtained. The parameter
values of these imperfections are demonstrated in Table 1. Based on the numerical values
of the imperfection parameters inducing the vibration components with a frequency of
1X, it can be concluded that the vanishingly small values of βk prove negligible angular
misalignments of all four couplings in the tested system.

Table 1. Identification results for the 1X vibration components.

Blower rotor dynamic
unbalance

Blower rotor static
unbalance

Rotor static unbalance
of Motor 1

Rotor static unbalance
of Motor 2

α = 0.0653 [deg] mε = 0.592 [kgm] e1 = 1.248·10–4 [m] e2 = 0.536·10–4 [m]

δ = 0.784 [rad] α = 0.586 [rad] β1 = 0.002 [rad] β2 = −1.912 [rad]

Coupling C1 parallel
misalignment

Coupling C2
parallel
misalignment

Coupling C3 parallel
misalignment

Coupling C4 parallel
misalignment

δ1 = 0.00051 [m] δ2 = 0.000969 [m] δ3 = 0.001139 [m] δ4 = 0.000991 [m]

Ψ 1 = 2.567 [rad] Ψ 2 = 4.111 [rad] Ψ 3 = −3.989 [rad] Ψ 4 = 2.753 [rad]

Coupling C1 angular
misalignment

Coupling C2
angular
misalignment

Coupling C3 angular
misalignment

Coupling C4 angular
misalignment

β1 = 2.013·10–5 [rad] β2 = 7.315·10–6
[rad]

β3 = 1.526·10–4 [rad] β4 = 8.004·10–5 [rad]

Φ1 = 4.872 [rad] Φ2 = −0.273 [rad] Φ3 = 1.694 [rad] Φ4 = −3.116 [rad]

In the next step of this identification procedure, parameters of imperfections respon-
sible for excitation of the 2X oscillation components are going to be determined. These
are the inner anisotropies of all couplings C1, C2, C3 and C4, and wrongly set-up stag-
ger angles of selected blades of the blower rotor causing unfavorable pulsation of the
working medium pressure, and consequently unbalanced oscillatory bending moment
imposed to the rotor-shaft. Then, the number of these faults is equal to 5. However, it
should be remembered that, according to the dynamic equilibrium conditions (3), the
inner anisotropy of each of these couplings is affected by two unknown parameters,
i.e., the fluctuation amplitudes of shear and flexural stiffness GVk and HVk , respectively.
Consequently, K = 1+ 4·2= 9< 12= 2M. Because here a greater number of Eqs. (19)
is available than the number of unknowns, the abovementioned least-square approach
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had to be applied to obtain the most accurate solutions compared to those determined
using the results of experimental measurements. The same approach was used to identify
the 3X vibration components suspected to be induced by the same K = 9 parameters
of imperfections. Then, as a result of inverse Fourier transformation of expression (6f),
amplitudes of bending stiffness fluctuation due to the inner anisotropy of the four cou-
plings as well as rates of the stagger angles of two blades in the blower rotor have been
determined.Numerical values of the fluctuation amplitudes of shear and flexural stiffness
GVk and HVk , k = 1,2,3,4, are contained in Table 2. Comparing these stiffness values
shows that GVk and HVk for k = 1,2,3 are much smaller than GV4 and HV4. This means
that only coupling C4 (see Fig. 1) indicates a noticeable internal anisotropy. In turn, the
determined amplitudes of time-histories of the unbalanced bending moment caused by
excessive fluctuations of the pressure of the blower working medium have shown wrong
stagger angles of two opposite blades out of a total of 20 blades in the rotor rim, as a
result of which the flow rate for these two blades decreased by approximately half.

Table 2. Identification results for the 2X vibration components.

Coupling C1 shear
stiffness fluct. ampl.

Coupling C2 shear
stiffness fluct. ampl.

Coupling C3 shear
stiffness fluct. ampl.

Coupling C4 shear
stiffness fluct. ampl.

GV1 = 5.1·105 [N/m] GV2 = 1.13·104
[N/m]

GV3 = 7.81·104
[N/m]

GV1 = 3.75·107
[N/m]

Δ1 = 2.742 [rad] Δ2 = −3.251 [rad] Δ3 = −1.001 [rad] Δ4 = 5.135 [rad]

Coupling C1 bending
stiffness fluct. ampl.

Coupling C2 bending
stiffness fluct. ampl.

Coupling C3 bending
stiffness fluct. ampl.

Coupling C4 bending
stiffness fluct. ampl.

HV1 = 3.12·106
[Nm/rad]

HV2 = 6.01·105
[Nm/rad]

HV3 = 9.73·106
[Nm/rad]

HV4 = 5.04·108
[Nm/rad]

Γ 1 = −1.783 [rad] Γ 2 = 2.124 [rad] Γ 3 = 4.944 [rad] Γ 4 = −0.626 [rad]

Finally, in order to verify an accuracy of the results of the multi-fault identification
procedure, and in this way to compare the real and identified fault parameters, a numeri-
cal simulation of bending/lateral vibrations of the hybrid model of the blower rotor-shaft
system has been performed, taking into consideration simultaneous interactions of the
all imperfections considered above. In Fig. 4 there are plotted time histories of the hor-
izontal and vertical vibration velocities of the six bearing housings #1 – #6 obtained
theoretically by solving Eqs. (5) and experimentally, where the amplitude-frequency
spectra of these measured ones are presented in Fig. 3. From the comparison of the
respectively corresponding plots a fairly good similarity of the measured and calculated
results is visible. This proves a reliability of the proposed model-based multi-fault iden-
tification procedure proposed in this paper. It should be noted that the vibration velocity
waveforms obtained both experimentally and computationally, especially in the case of
bearing housings #3–#6 supporting both drive motors, are characterized by an additional
relatively fast-fluctuating component with a frequency of 100 Hz caused by the typical
magnetic pull of the rotors of these motors.
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                time [s]                     time [s]

Fig. 4. Measured and simulated horizontal (left column) and vertical (right column) vibration
velocities at the bearing supports #1–#6.
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7 Final Remarks

The paper proposes a multi-fault identification method for rotating machines based on
a structural continuous finite macro-element model of the tested object. In this method,
the maximum number of simultaneously identified, the most probable imperfections is
limited to the number of courses of lateral/bending vibrations simultaneously monitored
on a real object. Here, subsequent peaks of the amplitude spectra of measured dynamic
responses of the real object are the basis for determination of parameters of individual
types of system’s imperfections with frequencies respectively corresponding to these
peaks. In this paper, therewere identified residual static and dynamic unbalances, parallel
and angular misalignments and local inner anisotropies affecting simultaneously the
rotor shaft system of the high-power blower used in the mining industry. Their mutual
contributions within the numerical values of the amplitudes of the respective peaks of
the frequency spectra recorded by individual sensors result from system’s sensitivity
to the excitations caused by these imperfections, which was determined by the modal
description of motion of the model of the tested object. Moreover, by means of this
method wrong stagger angles of the two opposing blades in the rim of the blower rotor,
which resulted in additional lateral/bending vibration components, were detected. It
should be emphasized that the practical efficiency and accuracy of the proposed method
depends on the credibility of the theoretical model of the rotor-shaft system of the tested
machine as well as on sampling densities of the measured signals and the accuracy of
FFT analyses performed for them.
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