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Abstract. Machine learning methods offer some alternatives to the con-
ventional approaches to the development of passive and adjustable fluid
film bearings. Data-based bearing models typically show an advantage
over conventional numerical models in terms of computational speed, and
can either replace or supplement them in certain applications. The most
promising application of machine learning is to create high-performance
models and optimal controllers for fluid film bearings. It covers a range
of tasks connected with the rotor trajectory planning, like active vibra-
tion and friction reduction, that is the main scope of this work. On-line
rotor position assessment considering the measured or estimated loads
can also be implemented using fast data-driven models in diagnostics
and predictive analytics systems. The work presents an analysis of this
approach in terms of the accuracy of solutions, the time required for
preparing data, and training the models. The results show that the cal-
culation speed using data-driven models can be increased at least 10
times compared to the numerical models. Two ANN-based models with
different structure were analyzed in accuracy and performance. A model
consisting from three separate ANNs was introduced in addition to a
single-ANN model based on the analysis of the bearing forces nonlineari-
ties and demonstrated better accuracy and the training time reduced by
26%. The calculation speed increased 12 time compared to the reference
numerical model. The use of approximation models is demonstrated for
the case of active conical bearing with rotor motion control with intellec-
tual DQN controller. Also the applicability of the approach is analyzed
regarding the implementation of intellectual and predictive controllers of
active bearings.

Keywords: Fluid film bearings · Active bearings · Machine learning ·
Data-based models · Optimal control

1 Introduction

The Industry 4.0 paradigm implies integration of information technologies and
control means into machines and equipment. Based on the data received from
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them, analytical, predictive models and digital twins are formed for more effec-
tive production management.

Bearings are the critical components of rotary machines. Fluid film bear-
ings (FFB) are indispensable in many cases, although the non-linearity of their
properties can make it difficult to make their proper design, especially with
modern highly loaded machines. Nonlinear models of FFB are used in analy-
sis [1,2], design [3,4] and control [5,6] tasks related to rotor-bearing systems.
The calculation of main design parameters of both passive and active FFB is
usually performed by solving the Reynolds equation using numerical methods
[7–9]. Such calculations require significant computational resources to achieve
good accuracy. However, the on-board computing facilities of rotary machine
control systems almost always have limited performance. The linearization of
the dynamic parameters of FFB [7,10] allows to reduce the amount of cal-
culations while solving the rotor dynamics problems. However, this approach
does not consider the nonlinear properties of the lubricant film. This makes it
hardly applicable in a number of conditions, such as a significant eccentricity of
the rotor position, the presence of cavitation phenomena, and especially in the
use of adjustable bearings with rotor motion control systems [11,12]. Therefore,
there is a need for more efficient models providing sufficient accuracy. A pos-
sible approach is the use of models based on machine learning methods. These
models are created using experimental data and/or physics-based mathematical
models of nonlinear objects [5,10,13–15]. Currently, machine learning methods
are widely used in solving a number of different tasks, for example, defect detec-
tion [16–18] and condition diagnostics [15,19], as well as control of mechanical
systems: rotors, hydraulic systems and manipulators [5,20,21].

It is even more important to take into account the nonlinear properties of the
lubricant film in the problems of controlling rotor motion parameters in active
FFB. Models of mechanical systems are often used for tuning and evaluating the
controllers, as well as for training more advanced intelligent controllers [5,22].
It is also possible to use models directly to solve control problems, for example,
using model predictive control (MPC) [13].

This paper analyses the possibilities and advantages of using machine learn-
ing for solving modeling and control problems in FFB. The proposed approach
to modeling bearing forces makes it possible to obtain solutions to rotor dynam-
ics problems comparable in accuracy, but many times faster than conventional
numerical methods.

2 Modeling and Methods

Journal FFB is considered in this work as a well-known and understandable
system. Its schematic is shown in Fig. 1.

As a bearing model, we consider the flow of a viscous incompressible fluid in
a channel of length l formed by two cylinders, a shaft and a bearing. The bearing
with radius R = r + h0, where r is the shaft radius, h0 is the radial clearance,
is stationary. X1, X2, V1 and V2 are the rotor displacements and velocities on
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Fig. 1. Schematic of a shaft-bearing system with a fluid film bearing.

the abscissa and ordinate axes. X3 and V3 are the rotor axial displacement and
velocity. In turn, the shaft rotates in the bearing with a constant frequency and
angular velocity ω. Lubricant is supplied from one end of the bearing under
pressure p0. The velocity field is three-dimensional and is characterized by the
vector V ≡ [(V1, V2, V3)]. It is convenient to represent the equations describing
the motions of the medium in cylindrical coordinates βi, where β1, β2, β3 are the
radial, angular, and axial coordinates, respectively.

Cylindrical coordinates are characterized by Lame coefficients: H1 = H3 =
1,H2 = β1. The model of a fluid film bearing is based on the Reynolds equation
in the form [5]:
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The radial clearance function is as follows:
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where Xi are the coordinates of the center of mass of the rotor.
Cavitation is based on the Gumbel hypothesis [5,23]. The Reynolds equation

is solved by the finite differences method [5,7]. The result of the solution is
the pressure field of the lubricant film. The bearing reactions are calculated by
integrating the pressure field using the Simpson numerical integration method:
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The dynamic model of the rotor system is based on a single-mass oscillatory
model. The rotor is represented as a point mass oscillating in the bearing under
the influence of gravity, the reaction forces and the imbalance forces. The imbal-
ance forces are modeled as the centrifugal forces. The motion equation of the
center mass of rotor in matrix form [24]:
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where V1 ,V2 is the velocity of the center of the shaft, t is time, mud is imbalance,
g is free fall acceleration.

The journal bearing reactions are non-linear and increase significantly at high
shaft eccentricities. Also, the calculation results using numerical methods, such
as the finite difference method, are sensitive to the size of the computational
grid. Figure 2 shows that the lower density grid gives a big calculation error.
This phenomenon is most pronounced for the range of eccentricities from 0.9 to
1. Figure 2 demonstrates the stabilization of the calculated results in this area
with an increase in the grid dimension from 30× 30 to 60× 60. However, it leads
to an increase in the calculation time.

Fig. 2. The value of the reactions of the lubricating layer depending on the position of
the rotor at a lower (30× 30) and higher (60× 60) density of the calculated grid.

Numerical solving of Lagrange equations in rotor dynamics problems requires
recalculation of the bearing forces at each step so the modeling time can be
enormous. Therefore, an alternative approach is the approximation of solutions
obtained with numerical methods. Thus, artificial neural networks (ANN) can
be used for approximation. A verified numerical model was considered as the
reference solution. The Reynolds equation was solved by the finite difference
method with a computational grid of 30× 30 for low eccentricities and 55× 55
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for higher eccentricities. A denser grid was used to obtain the sufficient accuracy
at higher rotor eccentricities. The obtained bearing forces were used to test the
accuracy of the developed approximation models.

The choice of approximation methods is significantly affected by the nature of
the initial dependencies. The bearing forces exponentially increase with increas-
ing rotor eccentricity. Also, the compression rate of the fluid film significantly
affects their values. The dependence of the fluid film reactions on the compression
rate also is strongly nonlinear, see Fig. 3.

Fig. 3. Dependence of the reaction of the fluid film on the velocities of the rotor.

As Fig. 3 shows, the dependencies have both relatively linear and substan-
tially non-linear regions. The latter require more values to obtain an approxi-
mation with acceptable accuracy. Therefore, as in the case of a finite difference
grid when solving the Reynolds equation, it is advisable to use a grid of different
density for different regions in the initial dataset for approximation.

3 Results and Discussion

3.1 Approximation of FFB Models

A dataset was generated using the model described in Sect. 2. The model was
implemented in Matlab software. The dataset describes the bearing forces R1

and R2 for various rotor positions and velocities. A bearing with the following
parameters was taken as a test system: the bearing length is 64 mm, the bearing
diameter is 40 mm, the clearance is 120 µm, the rotation speed is 3000 rpm, the
lubricant is water at a temperature of 40 ◦C.

A polar coordinate system was used for the grid during building the dataset
on the bearing forces. Their values were calculated for a uniform distribution of
12 points along the radial (i.e., along the eccentricity of the rotor position) and
40 points along the circumferential (i.e., along the angle of the rotor position in
the bearing) coordinates. This distribution was used to collect data at 0-0.9 and
0.9-1 eccentricities to deal with the large nonlinearity at high eccentricity values.
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The entire eccentricities region was divided into 2 main sections, 0.1-0.5 and 0.5-
1, for which different velocity distributions were used. The distributions differed
in the boundary values of the velocities, as well as in the number of points in the
critical region. The same number of points equal to 80 was used for all sections
according to the velocity values, 40 points each for the positive and negative
regions. For low eccentricities, we collected the data for the range of velocities
from −0.2 m/s to 0.2 m/s, and 70% of all points were located within the range
from −0.05 m/s to 0.05 m/s. At high eccentricities, the range was increased to
−0.5 m/s to 0.5 m/s, and 50% of all points were located within the range from
−0.2 m/s to 0.2 m/s. Thus, the final dataset included 4,700,000 training samples.
The dataset input data were the coordinates of the rotor position (X1,X2) and
its velocities (V1, V2). Bearing forces values (F1, F2) were the output parameters.

A fully connected ANN was used for training. ANN was with one hidden layer
and contained 50 neurons The main evaluation parameters were the network
training time, the trajectory calculation time, and the calculation accuracy. The
accuracy and the calculation time were compared with those of the reference
model based on the numerical solution of the Reynolds equation.

A computer of the following configuration was used for all calculations: Intel
Core i5-11600K 3.90 GHz processor, NVIDIA T1000 graphics card, 16 GB of
RAM.

Two approaches to the construction of approximation based on ANN were
tested in this study. The first is to use a single ANN trained on the entire
dataset. The network training time was 5 h 42 min. The second approach was to
divide the samples into several parts, based on the nature of the approximate
dependence in the corresponding region. In this work, the dataset was divided
into 3 parts depending on the eccentricity: 0–0.5, 0.5–0.7, >0.7. Each range was
used to train a separate ANN. The training of each ANN was about 1.5 h, which
is about 4.5 h in total.

After training ANNs, a number of computational experiments were carried
out to check the accuracy of the obtained models. A number of rotor trajectories
in the bearing were calculated with two trained and the reference models. The
rotor imbalance was a variable value for evaluating the operation of models in
different ranges of eccentricities. The calculation results are shown in Fig. 4.

Firstly, the accuracy of the ANNs was tested at small imbalance values which
is characterized by small values of velocities and eccentricities, the results are
shown in Fig. 4 a. Figure 4 b and c show the rotor trajectories for the imbalance
value of 5e−5 and 1e−4, respectively, while the trajectory span is approximately
20% of the radial clearance. After that, the imbalance value was increased to
5e−4 and 10e−4, which gives a span of about 65% of the radial clearance (see
Fig. 4 d, e). Also, the operation of the models was tested for the cases when
a constant force is applied to the rotor. The force was applied along the X1

coordinate and was equal to 30N and −40N. The results are shown in Fig. 4 f,g.
Based on the data obtained, when using a single ANN, the rotor trajectories

differ significantly from the reference ones in most tests, except for cases with
the largest imbalance value. This suggests that the best approximation quality
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Fig. 4. Comparison of rotor trajectories: a) without imbalance, b) mud equal to 5e−5,
c) mud equal to 1e−4, d) mud equal to 5e−4, e) mud equal to 10e−4, f) radial force
equal to 30N, g) radial force equal to −40N.

was achieved for data from the region with low non-linearity. In other ranges,
the approximation accuracy cannot be considered satisfactory.

When using three ANNs, tests with all imbalance values show a satisfactory
accuracy of approximation of the initial data. The model provides correct in-
formation about both the steady-state amplitudes of rotor oscillations and the
shape of trajectories and transients. At the same time, as in the case of a single
ANN, the discrepancy between the trajectories and the reference ones was large
during the test with an external load. Although, in the case with three ANNs the
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discrepancy is less than for a single ANN. The form of the resulting trajectories
is similar to the reference model, but their location and amplitude differ.

Thus, the results cannot be assessed as completely satisfactory for any of the
tested cases. Only the model based on three ANNs can be considered as limitedly
applicable for calculations in systems without complex schemes for loading rotors
with external forces.

However, the nature of the results obtained allows us to conclude that the
combination of several ANNs for data approximation is a direction that can
lead to satisfactory results when it is developed. It is advisable to conduct a
more in-depth analysis of the nonlinear properties of the initial data. Proba-
bly, dividing them into a larger number of sub-ranges will make it possible to
achieve an acceptable modeling accuracy. In addition, the improvement of the
results can be achieved by optimizing the approximation methods themselves,
e.g., using more complex ANNs of a different architecture and/or increasing
the size/number of hidden layers, applying different activation functions, etc. It
should be noted that despite the more complex structure of the model consisting
of three ANNs, the training time was reduced by 26% compared to the one ANN
model. As for another key point, namely the calculation time, the use of a single
ANN reduced the estimated time by 12 times in comparison with the reference
numerical model.

3.2 Data Driven FFB Models in Control Tasks

Object models are often used in control tasks to tune controllers. Synthesis of
intelligent controllers based on reinforcement learning should be notes particu-
larly since the process of their training implies continuous interaction between
the agent and the model of the system. In other cases, for example, in model-
predictive control (MPC), an object model is used to predict its response to a
planned sequence of control signals. In all the cases noted, sufficient accuracy
and high model speed are the essential factors, especially relating to MPC. As
mentioned above, the use of machine learning methods can significantly reduce
the calculation time in comparison with numerical methods. This also makes it
possible to significantly reduce the controller training time. However, it should
be noted that achieving high accuracy of such models is a laborious task. The
least resource-intensive approach to obtaining data-driven bearing models is to
train them using a limited amount of data about the typical ways of the rotor
motion in a limited bearing area. Such an approach, for example, was used in
one of our previous studies of actively lubricated journal bearing in [13]. In this
work such a model was used to synthesize and test several optimal controllers. A
similar approach was also used in [22], where an intelligent controller based on
a DQN agent was trained to control the position of a rotor in adjustable conical
bearings. The bearings were equipped with the axially displaceable sleeves for
influencing the type of the rotor motion by changing the average fluid film thick-
ness. ANN was also used to calculate the bearing forces. However, in contrast
to this work, the original dataset included a limited number of precalculated
rotor trajectories. The trajectories were obtained for different values of the axial
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dis placement of the rotor in bearings. An example of a calculation with such a
model is shown in Fig. 5 [22].

Fig. 5. Rotor movement patterns: a) DQN-agent control, b) no control.

The tests shown in Fig. 5 presented a simulation of occurrence of a malfunc-
tion in a rotary machine associated with an increase in rotor imbalance. The
imbalance increased uniformly over 5 s, the timing of the presented trajectories
is shown in the legend of Fig. 5. As can be seen in the passive system (Fig. 5
b), this leads to an increase in the oscillations amplitude, while in an adjustable
bearing (Fig. 5 a) it tends to restrain the growth of this parameter. In one of
the presented results, the rotor trajectories at the final moment of time cross
the bearing boundaries. In a physical system it would mean the contact of the
rotor with the bearing and would lead to the occurrence of shock processes and,
probably, chaotic oscillations. The continuation of the calculation indicates a sig-
nificant approximation error near the boundaries of the training dataset. This
phenomenon is strongly manifested in the region of high eccentricities and at the
boundary of the control action. It can be concluded that the use of this modeling
method imposes significant restrictions on the range of control actions, as well
as on the possibility of numerical evaluation of controllers. However, they can
be used for preliminary training and qualitative assessment in a strictly defined
operating range.

The proposed approach to modeling in this work allows developing models
that can calculate the bearing forces for any rotor position and at its different
velocities. This makes such a model more flexible with respect to the range of con-
trol actions, and also increases the accuracy of the qualitative and quantitative
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assessment. In addition, such models are more versatile in their application. For
training intelligent controllers with reinforcement learning methods, the speed
of computing on approximation models allows reducing the training time by at
least 10 times while maintaining the accuracy of the results. Implementation of
MPC may additionally require reducing the order of approximating models to
further improve their performance. In this case, it will be necessary to find a
balance between the accuracy and speed of the model.

The disadvantage of the presented approximation approach is the need for
preliminary generation of a significant amount of data describing all the nonlin-
ear bearing forces properties with sufficient quality. In addition, in adjustable
bearings the fluid film forces are also affected by controlled parameters (gap
shape, lubricant supply pressure, its viscosity in the case of magnetorheological
fluids, etc.) in addition to the rotor position and velocities. In some cases, like
in [22], the controller impact is described by a single parameter. However, in
other cases more of them may be required. Adding each parameter to a dataset
multiplies its dimension and, accordingly, the generation time. The generation
time can be reduced by accelerating the initial calculation methods, but in this
case, the accuracy of the data decreases.

Additionally, time is also spent on training approximation models. Reducing
these time costs while meeting the requirements for the accuracy of the models
is possible by choosing the most effective training methods and optimizing their
parameters. It also should be noted that if the parameters of the bearing change
during its designing, the above actions for approximating the models will have
to be repeated, which further reduces the process flexibility.

4 Conclusion

An approach to modeling the fluid film bearings forces by approximation of
their conventional numerical models with artificial neural networks (ANNs) was
studied in this work. As the results show, such approximation models are able to
exceed the numerical models in calculation speed at least an order of magnitude.
However, obtaining such models is associated with a number of limiting factors.
The strong non-linear dependence of bearing forces in on the rotor eccentricity
and its radial velocity require generating a significant amount of data by the
initial numerical model to provide the appropriate accuracy of approximation.
A denser computational grid also should be used in numerical model for the
same purpose. These factors make the generation of the initial dataset a time-
consuming task. It should be considered when making decisions on applying of
ANNs to such approximation tasks.

The speed and accuracy of the ANN-based approximation models also
depends on their structure. Two different model structures have been tested
in this work using the trajectories method. The model based on the combination
of three separate ANNs showed better accuracy compared to the single-ANN
model, as well as the reduction in the training time by 26%. The three-ANN
bearing model also exceeds the reference numerical model by 12 times in calcu-
lation speed. However, its accuracy was still insufficient in some scenarios, like
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adding the radial force to the rotor, to obtain adequate solutions to rotor dynam-
ics problems. So, the further improvement in the model and/or data structure is
required. The described approach is mostly applicable to the tasks where a lot
of calculations of rotor dynamic behavior is required. The ANN-based models
were successfully utilized for training intelligent controllers of fluid film bear-
ings. Using them instead of conventional numerical models reduces the controller
training time. Fast approximation models are also suitable for model predictive
controllers for active bearings, where fast on-line response analysis is required,
as well as for predictive systems for monitoring and diagnostics of fluid film
bearings.
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