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Abstract. The work function, originally proposed by Bonifaci et al. [4],
plays an important role in timing analysis of sporadic DAG parallel tasks.
Later, Baruah [1] and Li et al. [10] provide different characterizations for
Bonifaci’s notion of work function. The consistency and correctness of
these characterizations and Bonifaci’s original result is so far a pending
question. In this paper, we revisit the notion of work function based
analysis techniques to answer the above pending question. We show that
Baruah’s characterization is equivalent to Bonifaci’s original formulation,
while Li’s characterization is strictly stronger.

1 Introduction

Multi-cores are becoming mainstream platforms for real-time embedded sys-
tems to meet the rapidly increasing performance requirements and low power
consumption [12,20,23]. To fully utilize the capacity of multi-cores, not only
inter-task parallelism, but also intra-task parallelism need to be explored in the
design and analysis of modern real-time systems, where individual tasks are par-
allel programs and can potentially utilize more than one core at the same time
during their executions. This enables tasks with higher execution demands and
tighter deadlines, such as those used in autonomous vehicles [8], video surveil-
lance, computer vision, radar tracking and real-time hybrid testing [6]. Nowadays
parallel programming languages (and software), such as Cilk family [3], OpenMP
[14] and Intel’s Thread Building Blocks [17], commonly support parallel task sets
with intra-task parallelism (in addition to inter-task parallelism).

The origins of this work can be traced back to 1986 when Wang, one of the authors,
first met Jifeng at the Marktoberdorf Summer School on Theoretical Computer Science.
The encounter marked the beginning of their professional collaboration and personal
friendship, which has lasted for nearly four decades. During the school, Wang, a Ph.D.
student at the time, got to know Jifeng’s work with Antony Hoare of algebraic theory
on programming, which has deeply influenced on Wang’s subsequent research in process
algebras, formal verification, and real-time computing. As one of the leading teams in
the country in the field of embedded and real-time systems, the authors wish to take
this opportunity to thank Jifeng for his unwavering support, inspiration, and friendship.
Happy Birthday, Jifeng!.
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A common way to model parallel real-time software systems is using recurrent
directed acyclic graph (DAG) models. This motivates many recent work in the
area of real-time scheduling for recurrent DAG task models [1,2,4,5,7,9–11,13,
15,16,18,19,21]. Real-time scheduling algorithms for DAG tasks can be classified
into three paradigms: 1) decomposition-based scheduling [7,15,16,18]; 2) global
scheduling (without decomposition) [1,4,9,13,21]; and 3) federated scheduling
[2,10], which is the trade-off between decomposition-based scheduling and global
scheduling. In this paper, we focus on the global EDF scheduling algorithm,
which gives the maximum flexibility, e.g., it does not decompose DAG tasks, nor
restrict a DAG task to dedicated cores. It schedules vertices in the DAG until
either all cores are busy or no more vertices are ready.

Although the global EDF algorithm keeps the best flexibility, its schedula-
bility analysis is a challenging problem. In the literature, a large part of the
theoretical work on schedulability analysis of recurrent DAG tasks under global
EDF uses a kernel notation, called the work function. Intuitively, for any given
recurrent DAG task set T , the positive integer t and α, and assuming that T
is executed on infinite number of α-speed cores, the work function work(T , t, α)
defines the maximum workload released from T that must be executed during
an interval of duration equal to t. (See in Sect. 4 for more details).

By applying the work-function-based methodology, researchers mainly derive
the following three classical theoretical results.

– Bonifaci et al. [4] first propose the notation of the work function, which is
originally used to derive the speedup bound of the DAG tasks. The speedup
bound is a comparative metric with respect to some other (optimal) scheduler.
A scheduling algorithm A provides a speedup bound of α if it can successfully
schedule any task set T on m cores of speed α as long as the compared
scheduler can schedule T on m cores of speed 1. The speedup bound shows
how close the performance of a scheduler is to the compared one, but it cannot
be directly used as a schedulability test.

– Li et al. [10] reformulate Bonifaci’s main result, and derive a capacity aug-
mentation bound of the DAG tasks. The capacity augmentation bound is an
absolute metric that can be directly used for schedulability test. A scheduling
algorithm A has a capacity augmentation bound of α if it can schedule any
task set T (on m cores of speed 1) satisfying the following two conditions:

• the total utilization of T is at most m/α, and
• the worst-case critical path length of each task is at most 1/α of its

deadline.
Capacity augmentation bounds are stronger than speedup bounds in the sense
that if a scheduler has a capacity augmentation bound of α, it is also guar-
anteed to have a resource augmentation bound of α. Based on the capacity
augmentation bound, Li et al. [10] propose a simple linear-time schedulability
test for scheduling recurrent DAG tasks under global EDF. Most importantly,
Li et al. [10] prove that their capacity augmentation bound is the tightest one
for the DAG task under global EDF algorithm.
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– Baruah [1] also reformulates Bonifaci’s main result, and proposes a pseudo-
polynomial time schedulability analysis method for the DAG tasks under
global EDF algorithm.

Our key observation is that although Li et al. [10] and Baruah [1] both state
that they reformulate the same theorem of [4], their reformulations are totally
different. Only one of them should be equivalent to the original theorem of [4].
In this paper, we devote to clarify which reformulation is the equivalent theorem
to the original one of [4]. Through a deep insight into Bonifaci’s main theorem,
we find that Baruah’s theorem is an equivalent state of Bonifaci’s theorem in [4],
and Li’s theorem overwhelms Bonifaci’s theorem, indicating that Li’s theorem
cannot be directly derived from Bonifaci’s theorem. The correctness of Li’s work
needs a careful analysis. To this end, we reveal interesting properties of the
work function, and try to provide a rigorous proof for Li’s theorem. We extend
Bonifaci’s techniques to discuss the correctness of Li’s theorem, but we only
prove that Li’s theorem is conditionally correct.

The rest of this paper is organized as follows. Section 2 discusses related work.
In Sect. 3 we formally define the sporadic DAG task model and the global EDF
algorithm. In Sect. 4 we revisit the notation of work function. In Sect. 5 we give a
brief overview of the main theorem in [4], and revisit the existing reformulations
of Bonifaci’s theorem, and moreover, we discuss whether they are equivalent to
the main theorem in [4]. The last section gives the conclusion.

2 Related Work

Bonifaci et al. [4] first introduce the notation of work function, and by using
the work function based methodology, they propose the speedup bounds 2 − 1

m
and 3 − 1

m for the DAG tasks under global EDF and global DM algorithms
respectively. Baruah [1] reformulates the main theorem of [4], and improves the
global schedulability analysis of [4]. Li et al. [9] analyze the global schedula-
bility of DAG tasks via a methodology that is different from Bonifaci’s work
function method, and they propose the capacity augmentation bound of 4 − 1

m
for the implicit deadline DAG tasks under global EDF. Moreover, Li et al. [9]
also prove that the capacity augmentation bound for the implicit deadline DAG
tasks under global EDF is at least 3+

√
5

2 ≈ 2.618. Sun et al. [21] propose the
first constant capacity augmentation bound for the constraint deadline DAG
tasks under global EDF, and for the implicit deadline DAG tasks, they exhibit
the capacity augmentation bound of 3.82 − 1

m , which is better than the one
proposed in [9]. The work function based methodology significantly promotes
the theoretical work on capacity augmentation bound. Li et al. [10] reformulate
the main theorem of [4], and propose the tightest capacity augmentation bound
of DAG tasks under global EDF, i.e., they prove that the upper bound of the
capacity augmentation bound achieves 2+

√
5

2 .
We observe that Li et al. [10] and Baruach [1] reformulate the same theorem

of [4], and however, their reformulations are totally different. There must be one
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of them is not equivalent to the original theorem of [4]. If Li’s theorem is not
equivalent to Bonifaci’s theorem, and, even worse, their theorem is not correct,
then the capacity augmentation bound of 3.82 − 1

m proposed by Sun et al. [21]
should be the best known capacity augmentation bound for DAG tasks under
global EDF.

3 System Model

This section presents a sporadic DAG task model for recurrent parallel tasks, and
formally defines the runtime model by considering the global EDF scheduling
algorithm.

3.1 Task Model

This section presents a model for recurrent DAG tasks. We consider a set of n
independent sporadic DAG tasks: T = {τ1, τ2, · · · , τn}. Each task τi is specified
as a 3-tuple (Gi,Di, Ti), where Gi is a directed acyclic graph (DAG), and Di

and Ti are positive integers, called the deadline and the period respectively.
The task τi repeatedly releases dag-jobs, and each dag-job of τi has a DAG-

structure specified as Gi = (Vi, Ei), where Vi is a set of vertices, and Ei is a set of
directed edges between these vertices. Each vertex vx

i ∈ Vi denotes a sequential
operation, and is characterized by a worst-case execution time (WCET) c(vx

i ).
The edges represent dependencies between the vertices: if (vx

i , vy
i ) ∈ Ei then

vertex vx
i must complete execution before vertex vy

i can begin execution. A
vertex vx

i is the predecessor of the vertex vy
i if there is an edge from vx

i to (a
predecessor of) vy

i , and in this case, the vertex vy
i is called the successor of vx

i .
A vertex vx

i is called the source vertex of Gi if it has no predecessor. A vertex
vx

i is called the sink vertex of Gi if it has no successor. Multiple source vertices
and sink vertices are allowed in the DAG Gi, and the DAG Gi are not required
to be fully connected. Figure 1 shows two example tasks τ1 and τ2, each of which
consists of 7 vertices in the DAG structure.

Fig. 1. An example task set consisting of two DAG tasks. Vertices are labeled with
WECTs.

A release of a dag-job of τi at time-instant t means that all |Vi| vertices
vx

i ∈ Vi are released at time-instant t. The period Ti denotes the minimum
duration of time that must elapse between the release of successive dag-jobs of
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τi. Once a dag-job of τi is released at time-instant t, then all |Vi| vertices that
were released at time-instant t must complete execution by time-instant t + Di.
Recall that Di is the deadline of τi.

We now introduce some useful notations related to a DAG task.

– Volume. The sum of the worst-case execution time of all vertices in Gi (the
graph structure of τi’s dag-job) is the volume voli of τi, i.e.,

voli =
∑

vx
i ∈Vi

c(vx
i ) (1)

For example, the volume of τ1 in Fig. 1 is vol1 = 34.
– Length. The length of the longest path in Gi (the graph structure of τi’s

dag-job) is the length leni of τi, i.e.,

leni = max
π∈Gi

∑

vx
i ∈π

c(vx
i ) (2)

where π is the path of Gi. For example, the length of τ1 is len1 = 6+2+4+8 =
20.

– Utilization. For any task τi, we define its utilization ui as follows.

ui =
voli
Ti

(3)

For example, the task τ1 in Fig. 1 has an utilization as u1 = 17
13 . Moreover,

the total utilization of the task system T is denoted as follows.

U∑ =
∑

τi∈T
ui (4)

In the literatures, these parameters above are used in schedulability analysis,
e.g., capacity augmentation bounds, see in Sect. 3.3 for more details.

3.2 Global EDF Algorithm

We consider a platform P that consists of m identical processing cores p1, p2, · · · ,
pm, and each of them has a speed α ≥ 1. We schedule the task set T on m cores
of P. More specifically, at any time instant t, if a core is executing a vertex of
some task, then it is called the busy core, and otherwise, it is called the idle core.
A vertex is ready for execution if all its predecessors are finished. A schedule is
to assign ready vertices to idle cores until all the released vertices are finished.

In this paper, we schedule tasks by using global EDF (GEDF) algorithm.
Under GEDF, at each time instant the scheduler selects the highest-priority
ready vertices (at most m) for execution. Vertices of the same task share the
same priority (ties are broken arbitrarily) and a vertex of a task with an earlier
absolute deadline has a higher priority than a vertex of a task with a later
absolute deadline. In particular, vertex-level preemption and migration are both
permitted in GEDF. Without loss of generality, we assume the scheduling of the
task set T starts at time 0 (i.e., the first dag-job of the task set is released at
time 0).
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3.3 Schedulability

A task set T is schedulable on m α-speed cores if a valid schedule exits on
m α-speed cores such that all dag-jobs released by T meet their deadlines. In
particular, when scheduled on m unit-speed cores, a schedulable task set must
satisfy the following conditions.

Theorem 1 (Necessary Conditions for schedulability [9]). A task set T
is not schedulable (by any scheduler on m unit-speed cores) unless the following
conditions hold.

– The length of each task τi is less than its deadline Di, i.e.,

leni ≤ Di, ∀τi ∈ T (5)

– The total utilization U∑ is smaller than the number of cores, i.e.,
∑

τi∈T
ui ≤ m (6)

Clearly, if (5) is violated for some task, then its deadline is doomed to be
violated in the worst case, even if it is executed exclusively on sufficiently many
cores. If (6) is violated, then in the long term the worst-case workload of the
system exceeds the processing capacity provided by the platform, and thus the
backlog will increase infinitely which leads to deadline misses. We assume that
all task sets discussed in the reminder of this paper satisfy ( 5) and ( 6).

Given a scheduling algorithm A, a task set T is A-schedulable on m α-speed
cores if A meets all deadlines when scheduling any collection of dag-jobs that
may be generated by the task set T on m α-speed cores. To verify whether a
task set is A-schedulable is highly intractable (e.g., NP-hard in the strong sense
[22]) even when there is a single DAG task. In the following we introduce two
approximation metrics for A-schedulability analysis.

Definition 1 (Speedup Bound). A scheduling algorithm A has a speedup
bound α if any task set T that is schedulable on m unit-speed cores is A-
schedulable on m α-speed cores.

From Definition 1, we know that for any scheduling algorithm A with a
speedup bound α, if a task set T is not A-schedulable on m α-speed cores, then
all scheduling algorithms fail to schedule T on m unit-speed cores. Moreover,
there are some task sets T such that they are not schedulable on m unit-speed
cores, but they are A-schedulable on m α-speed cores. In this sense, the speedup
bound α is a metric for approximately quantifying the quality of scheduling
algorithms.

Definition 2 (Capacity Augmentation Bound). A scheduling algorithm A
has a capacity augmentation bound α if it can always schedule DAG task set T
on m α-speed cores as long as T satisfies the above necessary conditions in (5)
and (6).
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From Definition 2, for any scheduling algorithm A that has a capacity aug-
mentation bound α, we can derive the sufficient conditions for A-schedulability
analysis, i.e., a task set T is A-schedulable on m unit-speed cores if the following
conditions both hold.

leni ≤ Di

α
, ∀τi ∈ T

∑

τi∈T
ui ≤ m

α

A scheduling algorithm with a smaller speedup bound (as well as a smaller
capacity augmentation bound) α is preferable. In particular, when the capacity
augmentation bound α = 1, the scheduling algorithm is optimal.

In the literature, researchers use the notation of the work function to derive
the speedup bound and the capacity augmentation bound. In the next section,
we introduce such an important notation.

4 Work Function

Bonifaci et al. [4] first introduce the notation of the work function and use it
to originally characterize the amount of workload that could be generated by a
sporadic DAG task when scheduled on unit-speed cores. Li et al. [10] and Baruah
[1] further extend the notation of the work function to the scenarios with cores
of speed α (larger than 1). In this section, we describe the work function defined
in [1,10], which is in a manner consisting with the terminology introduced in
Sect. 3.

We first define an ideal scheduling algorithm A∞ as follows.

Definition 3 (Ideal Scheduling Algorithm A∞). The algorithm A∞ sched-
ules a task set T on infinite number of cores, and it allocates a core to each
vertex vx

i released by the tasks in T at the time-instant the vertex vx
i is ready to

execute, and executes the vertex vx
i upon the allocated core until vx

i completes its
execution.

We denote by J the collection of dag-jobs that may be released by the tasks
in T , written as J � T , and we say J is feasible if there is a valid schedule of J
such that all dag-jobs of J meet their deadlines. We let S∞(J, α) be the schedule
of J under the ideal algorithm A∞ on the cores of speed α. We observe that the
schedule S∞(J, α) executes each vertex as soon as it becomes ready to execute,
thereby leaving as little work to be done later as possible.

Figure 2 shows the schedule of task set in Fig. 1 under A∞ on unit-speed
cores, where tasks τ1 and τ2 both successively release their dag-jobs with the
period T1 = T2 = 26.

For any task τi of T , we denote by Ji the collection of the dag-jobs that may
be released by τi, written as Ji � τi, and which is also contained in the schedule
S∞(J, α), i.e., Ji ⊆ J . For any interval I, we denote by work(Ji, I, α) the amount
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Fig. 2. An example schedule of task set in Fig. 1 under A∞.

of execution occurring within the interval I in the schedule S∞(J, α) of dag-jobs
in Ji with deadlines that fall within I. For example, in Fig. 2, work(J1, I, 1) = 4
for the interval I = [16, 22].

For any positive integer t, let work(Ji, t, α) be the maximum value that
work(Ji, I, α) can take, over any interval I of duration equal to t, i.e.,

work(Ji, t, α) = max
|I|=t

work(Ji, I, α), ∀τi ∈ T (7)

Finally, we define the work function work(τi, t, α) of the task τi as the maxi-
mum value of work(Ji, t, α), over all collection Ji of dag-jobs that may be released
by the sporadic DAG task τi, i.e.,

work(τi, t, α) = max
Ji�τi

work(Ji, t, α), ∀τi ∈ T (8)

We further extend the notation of the work function from individual tasks
to task sets as follows. For any task set T , the work function work(T , t, α) of T
is defined as the summation of the work functions of all tasks τi of T , i.e.,

work(T , t, α) =
∑

τi∈T
work(τi, t, α) (9)

Figure 3 exhibits the work functions of schedule in Fig. 2.

Fig. 3. The work functions of the schedule in Fig. 2.

In the following, we reveal some insights into the work function, which play
the important role to support our observations in Sect. 5.1.
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4.1 Monotonicity of the Work Function

We discuss whether the work function is a monotonic function with the time t
and the speed α.

Lemma 1. For any task τi, any speed α ≥ 1 and any time t1, t2 ≥ 0, the
following inequality holds.

work(τi, t1, α) ≤ work(τi, t2, α), if t1 < t2 (10)

Proof. Suppose not, and we have

work(τi, t1, α) > work(τi, t2, α) (11)

We let Ji be a collection of dag-jobs released by τi, and let I1 = [a, b] be an
interval of duration equal to t1, where a is the left boundary of I1 and b is the
right boundary of I1. Without loss of generality, we assume that

work(τi, t1, α) = work(Ji, I1, α) (12)

We enlarge the interval I1 into a larger interval I2 by letting the left boundary
of I2 be a − Δ (where Δ = t2 − t1 > 0), i.e., I2 = [a − Δ, b]. Since I1 ⊂ I2 and
the larger interval I2 may involve more work of Ji that must be done during this
interval, we know that

work(Ji, I1, α) ≤ work(Ji, I2, α) (13)

By combining (11), (12) and (13), we have

work(Ji, I2, α) > work(τi, t2, α)

and by (7) and (8), we know that work(Ji, I2, α) ≤ work(τi, t2, α). This leads to
a contradiction. 
�

From Lemma 1, it is easy to derive the following corollary.

Corollary 1. For any task set T , any speed α ≥ 1 and any time t1, t2 > 0, the
following inequality holds.

work(T , t1, α) ≤ work(T , t2, α), if t1 < t2 (14)

Proof. It is directly proved by (9) and according to Lemma 1. 
�

Corollary 1 shows that the work function work(T , t, α) is a non-decreasing
function with time t. For example, the work functions in Fig. 3 all keep the
non-decreasing properties.

Lemma 2. For any task τi, any time t ≥ 0 and any speeds α1, α2 ≥ 1, the
following inequality holds.

work(τi, t, α1) ≥ work(τi, t, α2), if α1 < α2 (15)
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Proof. For any collection Ji of the dag-jobs released by τi, and for any interval
I = [a, b] of duration equal to t, where a is the left boundary of I, we know that
the ideal algorithm A∞ on the cores of speed α2 executes more work of Ji during
the interval [0, a], and therefore it leaves less work of Ji that to be done during
I. Consequently, we have,

work(Ji, I, α1) ≥ work(Ji, I, α2), ∀Ji � τi, α1 < α2 (16)

and by (7), we have

work(Ji, t, α1) ≥ work(Ji, I, α2), ∀Ji � τi, α1 < α2

and by (8), we have

work(τi, t, α1) ≥ work(τi, t, α2)

This completes the proof. 
�

Lemma 2 shows that the work function work(τi, t, α) is a decreasing function
of speed α. In the following corollary, we extend Lemma 2 from an individual
task to the task set.

Corollary 2. For any task set T , any time t ≥ 0 and any speeds α1, α2 ≥ 1,
the following inequality holds.

work(T , t, α1) ≥ work(T , t, α2), if α1 < α2 (17)

Proof. It is directly proved by (9) and according to Lemma 2. 
�

For example, in Fig. 3, the curve of work function work(T , t, 2) is always
below the curve of work function work(T , t, 1).

4.2 Critical Points of the Work Function

In this section, we introduce some critical points of the work function
work(T , t, α). We first define two types of critical time points of the work func-
tion as follows.

Definition 4 (Left Critical Time Point). The left critical time point of
the work function work(T , t, α) is the time-instant t∗ that satisfies the following
conditions.

– ∀t < t∗, work(T , t, α) < work(T , t∗, α), and
– ∀ε > 0, work(T , t∗, α) = work(T , t∗ + ε, α).

For example, in Fig. 3, t = 22 and t = 48 are both left critical time points of
work(T , t, 1).

Definition 5 (Right Critical Time Point). The right critical time point of
the work function work(T , t, α) is the time-instant t+ that satisfies the following
conditions.
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– ∀t > t+, work(T , t, α) > work(T , t+, α), and
– ∀ε > 0, work(T , t+, α) = work(T , t+ − ε, α).

For example, in Fig. 3, t = 28 is the right critical time point of work(T , t, 1),
and t = 38 is the right critical point of work(T , t, 2).

Definition 6 (Flat Interval). For any successive critical time points t∗ and
t+, where t∗ is the left critical time point, and t+ is the right critical time point,
the interval F = [t∗, t+] is called the flat interval.

Clearly, for any flat interval I = [t∗, t+], and for any time-instant t ∈ I, we know
that

work(T , t∗, α) = work(T , t, α) = work(T , t+, α) (18)

For example, in Fig. 3, the interval I = [22, 38] is the flat interval of work(T , t, 2).

Definition 7 (Slope Interval). For any successive critical time points t+ and
t∗, where t+ is the right critical time point, and t∗ is the left critical time point,
the interval S = [t+, t∗] is called the slope interval.

For example, in Fig. 3, the interval S = [38, 48] is the slope interval of
work(T , t, 2).

Definition 8 (Non-Convex Slope Interval). A slope interval S of the work
function work(T , t, α) is non-convex if the following inequality holds for any
t1, t2 ∈ S, and any λ ∈ (0, 1),

λwork(T , t1, α)+(1−λ)work(T , t2, α)≥work(T , λt1+(1−λ)t2, α).

Moreover, a work function is non-convex if it contains no convex slope interval.

Definition 9 (Encounter Point). The encounter point of the work function
work(T , t, α) is the time point t∗ such that for any speeds α1, α2 ≥ 1,

work(T , t∗, α1) = work(T , t∗, α2) (19)

For example, t∗ = 22 and t∗ = 48 are both the encounter points of
work(T , t, α).

In the following, we show how to identify an encounter point. Before going
into details, we first give the following lemma.

Lemma 3. For any time t ≥ 0, if there is a collection Ji of dag-jobs released by
the task τi and an interval I = [a, b] of duration equal to t such that

work(τi, t, α) = work(Ji, I, α),

then the right boundary b of I must equal to ri +Di, where ri is the release time
of a dag-job of Ji.
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Proof. Suppose not. There is an interval I ′ = [a + δ, b + δ] of duration equal
to t (where δ < Ti), such that work(Ji, I

′, α) > work(Ji, I, α). As illustrated
in Fig. 4, although there may be a dag-job of τi released between the interval
[b, b+ δ], the work function work(Ji, I

′, α) does not involve the workload of such
dag-job since its deadline does not fall in the interval I ′. Therefore, work(Ji, I

′, t)
will not bring more workload than work(Ji, I, t). More precisely, let W [a, a+δ] be
the work done by A∞ within the interval [a, a+δ], and we know that W [a, a+δ] ≥
0. Moreover, since work(Ji, I

′, α) = work(Ji, I, α) − W [a, a + δ] (See in Fig. 4),
we have: work(Ji, I

′, α) ≤ work(Ji, I, α). This contradicts the assumption. 
�

Fig. 4. Illustration for the proof of Lemma 3.

Lemma 4 reveals a sufficient condition for the encounter points of the work
function work(τi, t, α).

Fig. 5. Illustration for the proof of Lemma 5.

Lemma 4. For any task τi, any speed α ≥ 1 and any time t = kTi + Di,
work(τi, t, α) = (k + 1)voli.

Proof. There must exist a collection Ji of dag-jobs released by the task τi and
an interval I = [a, b] of the duration equal to t, such that work(Ji, I, α) =
work(τi, t, α). Since the length of the interval I equals to KTi+Di and according
to Lemma 3, the left boundary a of I equals to the release time ri of a dag-job
of Ji, and the right boundary b of I equals to the deadline ri + kTi + Di of the
other dag-job of Ji. It indicates that work(Ji, I, α) = (k + 1)voli, and therefore,
work(τi, t, α) = (k + 1)voli. 
�
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From Lemma 4, we directly derive the following corollary.

Corollary 3. The time-instant t∗ is an encounter point of the work function
work(T , t, α) for any α ≥ 1, if it satisfies Ti|(t∗ − Di), ∀τi ∈ T .

Proof. This is proved by Lemma 4 and according to Definition 9.

Lemma 5. For any task τi, any speed α > 1, and any time t = kTi + Di + Δ
(where Δ < Di), the following conditions contradict with each other.

work(τi, t, α) = work(τi, t + ε, α), ∀ε > 0 (20)
work(τi, t, α) > work(τi, t − ε, α), ∀ε > 0 (21)

Proof. There must exist a collection Ji of dag-jobs released by the task τi and an
interval I = [a, b] of duration equal to t such that work(τi, t, α) = work(Ji, I, α).
According to Lemma 3, the right boundary b of I equals to ri + kTi + Di, and
the left boundary a of I equals to ri −Δ, where ri is the release time of a dag-job
of Ji, as illustrated in Fig. 5. There are two possible cases.

– If Δ ≤ Ti − leni

α − ε (See in Fig. 5(a)), we know that the work done by A∞
within the interval [a− ε, a] equals to 0. Moreover, since Δ > 0, we know that
the work done by A∞ within the interval [a, a + ε] equals to 0. Therefore,
work(Ji, I, α) = work(Ji, I

′, α) and work(Ji, I, α) = work(Ji, I
′′, α), where

I ′ = [a − ε, b] is the interval of duration equal to t + ε, and I ′′ = [a + ε, b]
is the interval of duration equal to t − ε. According to Lemma 3, we have
work(τi, t + ε, α) = work(τi, t, α) and work(τi, t − ε, α) = work(τi, t, α).

– If Δ > Ti − leni

α − ε (See in Fig. 5(b)), we know that the work done by A∞
within the interval [a − ε, a] must be larger than 0. Moreover, since Δ < Di,
we know that the work done by A∞ within the interval [a, a + ε] must be
larger than 0. Therefore, work(Ji, I, α) < work(Ji, I

′, α) and work(Ji, I, α) >
work(Ji, I

′′, α), where I ′ = [a − ε, b] is the interval of duration equal to t + ε,
and I ′′ = [a + ε, b] is the interval of duration equal to t − ε. According to
Lemma 3, we have work(τi, t + ε, α) > work(τi, t, α) and work(τi, t − ε, α) <
work(τi, t, α).

In sum, we know that the conditions of Lemma 5 contradict with each other.

The following lemma ties the encounter point and the critical time point
together, which plays a very important role to derive the main result in Sect. 5.1.

Lemma 6. Any left critical time point t∗ of the work function work(T , t, α)
must be an encounter point of work(T , t, α).

Proof. According to Corollary 3, for some time t∗, if ∀τi ∈ T , Ti|(t∗−Di), then t∗

is an encounter point. Therefore, it is sufficient to prove this lemma by showing
that the left critical time point t∗ satisfies Ti|(t∗ − Di), ∀τi ∈ T .

Suppose that there is a task τi such that t∗ = kTi + Di + Δ with a positive
integer Δ < Di, we aim to show that t∗ is not a left critical time point. According
to Lemma 5, we know that for any ε > 0, there are two possible cases.
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– If work(τi, t, α) = work(τi, t + ε, α) and work(τi, t, α) ≤ work(τi, t − ε, α),
then we know that work(T , t, α) = work(T , t + ε, α), and work(T , t, α) ≤
work(T , t − ε, α), indicating that the first condition of Definition 4 does not
hold.

– If work(τi, t, α) �= work(τi, t + ε, α) and work(τi, t, α) > work(τi, t − ε, α),
then we know that work(T , t, α) �= work(T , t + ε, α), and work(T , t, α) >
work(T , t − ε, α), indicating that the second condition of Definition 4 does
not hold.

In sum, we know that t∗ is not a left critical time point. 
�

5 A Review of the Main Result of [4]

Bonifaci et al. [4] first use the work function to derive a sufficient condition for
the schedulability test. We now describe their main result in a manner consistent
with the terminology introduced in above sections.

Theorem 2 (Lem. 3 of [4]). Consider a collection J of dag-jobs released by the
tasks in T , and let α ≥ 1. Then at least one of the following holds:

i all dag-jobs in J are completed within their deadline under global EDF on m
cores of speed α, or

ii J is not feasible under A∞ on unit-speed cores, or
iii there is an interval I such that any feasible schedule for J must finish more

than (αm − m + 1)|I| units of work within I.

Proof Sketch of Theorem 2
It is sufficient to prove this theorem by assuming that both (i) and (ii) do

not hold, and showing that (iii) satisfies. More specifically, J can be successfully
scheduled by A∞ on unit-speed cores, but fails to be scheduled by global EDF
on m cores of speed α. In the following, the key point is to construct an interval
I such that any feasible schedule of J must execute more than (αm − m + 1)|I|
units of work within I.

Among all feasible schedule of J , we focus on the schedule S∞(J, 1) (Recall
that S∞(J, 1) is obtained by scheduling J under A∞ on unit-speed cores, and
according to the assumption that A∞ successfully schedules J , S∞(J, 1) is feasi-
ble). For any feasible schedule, Bonifaci et al. [4] give the following observation.

Observation 1 For any feasible schedule Sf (J, 1) under scheduling algorithm
Af on m unit-speed cores, and for any interval I, the work of Sf (J, 1) that must
be done (by Af ) within I is larger than the work of S∞(J, 1) that must be done
(by A∞) within I.

Proof For any interval I = [a, b], we denote by I ′ the interval before I, i.e.,
I ′ = [0, a). We know that the following statement holds.

(∗) The work done by Af (on m unit-speed cores) within I ′ is no more than the
work done by A∞ (on infinite number of unit-speed cores) within I ′.
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Fig. 6. Illustration for the proof of Observation 1.

By (*), we know that Af leaves more work that must be done within I
than the one that must be done by A∞ within I, as illustrated in Fig. 6. This
completes the proof.

Here we should note that the above observation cannot be extended to the
feasible schedule Sf (J, α) such that J is scheduled by Af on α-speed cores. This
is because the key statement (*) cannot be satisfied on α-speed cores as shown
in Example 1.

Example 1. Figure 7(a) gives a task τ1, and we schedule it by A∞ on unit-speed
cores as shown in Fig. 7(b), and schedule it by the global EDF on 2 cores of
speed 4 as shown in Fig. 7(c). Clearly, during the interval [0, 2], all workload of
a dag-job released by τ1 is finished by Af on 2 cores of speed 4, but only half
of them is done by A∞ on unit-speed cores, i.e., the workload done by A∞ (on
unit-speed cores) is less than the workload done by the global EDF (on 2 cores
of speed 4).

Fig. 7. The task τ1 and its schedules discussed in Example 1.

Recall that work(J, I, 1) denotes the work of J that must be done by A∞
(on infinite number of unit-speed cores) within I, and denote by workf (J, I, 1)
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the work of J that must be done by Af (on m unit-speed cores) within I, and
according to Observation 1, we know that for any interval I,

work(J, I, 1) ≤ workf (J, I, 1) (22)

Bonifaci et al. [4] construct an interval I∗, and prove that the work (denoted
as Wedf (J, I∗, α)) done by EDF on m α-speed cores within I∗ is smaller than
the work of J that must be done by A∞ (on infinite number of unit-speed cores)
within I∗, i.e.,

Wedf (J, I∗, α) ≤ work(J, I∗, 1)

and by (22), we know that

Wedf (J, I∗, α) ≤ workf (J, I∗, 1)

and moreover, Bonifaci et al. [4] also show that

Wedf (J, I∗, α) ≥ (αm − m + 1)|I∗|

and thus, we have

workf (J, I∗, 1) ≥ (αm − m + 1)|I∗|

This completes the proof of Theorem 2.
It should be emphasized that Observation 1 is very important in the proof,

which indicates that the feasible schedule mentioned in (iii) of Theorem 2 must
be restricted on the unit-speed cores by default, even though it is not explicitly
stated in the original theorem.

5.1 Existing Reformulations of Theorem 2

Baruah [1] and Li et al. [10] respectively reformulate Theorem 2 as follows.

Theorem 3 (Thm. 1 of [1]). Sporadic DAG task set T is global EDF schedu-
lable on m α-speed cores if the following conditions both hold.

i For any task τi ∈ T , leni ≤ Di, and
ii For any time t ≥ 0,

work(T , t, 1) ≤ (αm − m + 1) × t (23)

Theorem 4 (Lem. 8 of [10]). Sporadic DAG task set T is global EDF schedu-
lable on m α-speed cores if

work(T , t, α) ≤ (αm − m + 1) × t, ∀t ≥ 0 (24)

Clearly, Theorem 3 and Theorem 4 are totally different, and only one of
them is equivalent to Theorem 2. The following lemmas reveal which one is the
equivalent reformulation.
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Lemma 7. Theorem 3 is equivalent to Theorem 2.

Proof. On the one hand, (i) of Theorem 3 equivalently indicates that any col-
lection J released by the tasks in T is feasible under A∞ on unit-speed cores,
i.e., S∞(J, 1) is feasible. Therefore, (ii) of Theorem 2 does not hold.

On the other hand, (ii) of Theorem 3 equivalently indicates that there is a
feasible schedule of J , e.g. S∞(J, 1) under A∞, such that the work of J that
must be done by A∞ within any interval I is no more than (αm−m+1)|I|, i.e.,
(iii) of Theorem 2 does not hold.

According to Theorem 2, (i) of Theorem 2 must hold, i.e., T is global EDF
schedulable on m α-speed cores.

From Lemma 7, we know that Theorem 3 is correct. Moreover, Theorem 4
seems correct due to the following reasons.

– The task set T is assumed to be schedulable under A∞ on unit-speed cores
by default in [10], i.e., (ii) of Theorem 2 does not hold. Moreover, it obviously
indicates that T is A∞-schedulable on α-speed cores.

– (24) ensures that for any collection J released by the tasks of T the feasible
schedule S∞(J, α) under A∞ on α-speed cores satisfies the following condi-
tion: the work of J that must be done by A∞ on α-speed cores within any
interval I is no more than (αm−m+1)|I|, i.e., (iii) of Theorem 2 “does not”
hold.

According to Theorem 2, T is global EDF schedulable on m α-speed cores. This
seems complete the proof of Theorem 4.

However, the proof above may be incorrect. The reason is as follows. From
Observation 1 and Example 1, we know that the feasible schedule mentioned in
(iii) of Theorem 2 is assumed to be on unit-speed cores by default. Although
the schedule S∞(J, α) used in Theorem 4 is feasible, it is not applied on unit-
speed cores. Therefore, it is not sufficient to use Theorem 2 (nor Theorem 3) to
prove Theorem 4. Actually, Theorem 4 overwhelms Theorem 3 as shown in the
following lemma.

Lemma 8. Theorem 4 overwhelms Theorem 3.

Proof. From Corollary 2, we know that ∀t ≥ 0 and α > 1, work(T , t, α) ≤
work(T , t, 1). Therefore, if (23) holds, then (24) must hold. It indicates that The-
orem 4 overwhelms Theorem 3, and according to Lemma 7, we complete the proof.

The following example reveals that Theorem 4 strictly overwhelms Theo-
rem 3, i.e., there is a work function that satisfies (24), but does not satisfy (23).

Example 2. We consider the task τ1 in Fig. 8(a), and schedule it by A∞ as shown
in Fig. 8(b) and (c).
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Fig. 8. An example task set and its schedule under A∞.

The work function of τ1 is given as follows.

work(τ1, t, α)=

⎧
⎪⎪⎨

⎪⎪⎩

0 0<t≤2− 2
α

5αt−10α+10 2− 2
α <t≤2− 1

α
αt−2α+6 2− 1

α <t≤2
6� t

2�+work(τ1, t−2� t
2�, α) t>2

By letting m = 3 and α ≥ 2, we first show the violation of (23), i.e., there is
a time point t such that work(τ1, t, 1) > (αm − m + 1)t = (3α − 2)t. Such a
time point must exist, because work(τ1, 0, 1) = 0 and for any t ∈ [0, 2 − 1

α ], the
gradient of work(τ1, t, 1) equals 5α, which is larger than 3α − 2. As illustrated
by Fig. 9, the blue curve represents the work function work(τ1, t, 1), and during
the interval t ∈ (0, 1], we know that work(τ1, t, 1) ≥ (αm − m + 1)t.

Fig. 9. The work function curves with m = 3 and α = 2.

In the following, we show that (24) holds, i.e., ∀t, work(τ1, t, α) ≤ (αm −
m + 1)t when m = 3 and α ≥ 2. As we know that the period of work function
work(τ1, t, α) equals 2, we discuss the value of Δ = (αm−m+1)t−work(τ1, t, α)
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(with m = 3 and α ≥ 2) in each period t ∈ [2k, 2k+2] (k = 0, 1, · · · ). We further
divide each period into three disjoint intervals as follows.

– When t ∈ [2k, 2k + 2 − 2
α ), and since α ≥ 2, we have

Δ ≥ 6αk − 10k ≥ 0

– When t ∈ [2k + 2 − 2
α , 2k + 2 − 1

α ), and since α ≥ 2, we have

Δ ≥ (6α−10)(k+1) +
4
α

≥ 0

– When t ∈ [2k + 2 − 1
α , 2k + 2], and since α ≥ 2, we have

Δ ≥ (6α − 10)k + (6α − 12) +
2
α

≥ 0

In sum, we know that (24) holds for any time point t, as illustrated in Fig. 9,
where the green curve representing the work function work(τ1, t, α) is always
below the red curve representing (αm−m+1)t.

The following lemma shows a sufficient condition which ensures that if (24)
holds, then (23) holds.

Lemma 9. For any non-convex work function work(T , t, α), (24) implies (23).

Proof. Suppose not. There is a non-convex work function work(T , t, α) that
satisfies (24) holds, but violates (23), i.e., there is a time t such that

work(T , t, 1) > (αm − m + 1)t (25)

According to Lemma 1, the work function work(T , t, 1) is an increasing function,
and thus, there must be a time t < t∗ such that

work(T , t∗, 1) = (αm − m + 1)t∗ (26)

We consider two cases.
Case 1: t∗ is in a flat interval I = (a, b]. From Definition 6, we know that

work(T , a, 1) = work(T , t∗, 1)

and by (27), we have

work(T , a, 1) = (αm − m + 1)t∗

and since (αm − m + 1)a < (αm − m + 1)t∗ (with a < t∗), we know that

work(T , a, 1) > (αm − m + 1)a (27)

From Definition 4, we know that a is a left critical time point, and according to
Lemma 6, a must be an encounter point. From Definition 9, we know that

work(T , a, 1) = work(T , a, α)
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Fig. 10. Illustration for the proof of Lemma 9.

and by (27), we have

work(T , a, α) > (αm − m + 1)a

It indicates that (24) does not hold for Case 1.
Case 2: t∗ is in a slope interval I, and without loss of generality, we assume

that the gradient of the work function work(T , t, 1) at t∗ is no less than αm −
m + 1. Suppose not. The gradient of the work function work(T , t, 1) at t∗ is
no more than αm − m + 1. According to the assumption (25) and since the
slope interval I is non-convex, we know that there must be a time t′ such that
work(T , t′, 1) = (αm − m + 1)t′, and where the gradient of the work function
work(T , t, 1) at t′ is larger than αm − m + 1 as illustrated in Fig. 10(a).

In the following, we consider two cases.

– If there is no flat interval follows the slope interval I. Since the gradient of
the work function work(T , t, 1) at t∗ is no less than αm − m + 1, and the
slope interval I is non-convex, we know that for any t > t∗,

work(T , t, 1) > (αm − m + 1)t (28)

Let a be the nearest encounter point after t∗, and according to Lemma 6 and
Definition 9, work(T , a, 1) = work(T , a, α). By (28), we have the following
inequality as shown in Fig. 10(b).

work(T , a, α) > (αm − m + 1)a

– Otherwise, denote by I ′ = [a, b] be the flat interval that follows the slope
interval I. There are three cases.

• work(T , a, 1) < (αm − m + 1)a. In this case, since the slope interval
I is non-convex, and the gradient of the work function work(T , t, 1) at
t∗ is larger than αm − m + 1, for any time t ∈ (t∗, a], work(T , t, 1) >
(αm − m + 1)t. This leads to a contradiction.
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• work(T , a, 1) > (αm − m + 1)a and work(T , b, 1) < (αm − m + 1)b as
illustrated in Fig. 10(c). In this cases, we know that there must be a time
t ∈ I such that work(T , t, 1) = (αm − m + 1)t, and we have discussed
this in Case 1.

• work(T , b, 1) > (αm − m + 1)b as illustrated in Fig. 10(d). In this case,
according to Definition 6, we know that work(T , a, 1) = work(T , b, 1),
and thus, work(T , a, 1) > (αm−m+1)a. According to Lemma 6, we have
work(T , a, 1) = work(T , a, α). Therefore, we know that work(T , a, α) >
(αm − m + 1)a.

In sum, (24) does not hold for Case 2. This completes the proof.

6 Conclusion

Since Bonifaci first proposed the work function in [4], the work function plays a
very important role in schedulability analysis of the sporadic DAG tasks. Espe-
cially, Li et al. [10] derive the best capacity augmentation bound for global EDF
algorithm by using the work function methodology. This paper revisits the work
function methodology, and shows that Lem. 8 of [10] which is said to be a refor-
mulation of Lem. 3 of [4] is not equivalently reformulated from Lem. 3 of [4], and
we prove that Lem.8 of [10] strictly overwhelms Lem. 3 of [4]. Thus, the main
result of [10] should be carefully discussed.
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