
Domain Modelling: A Foundation
for Software Development

Dines Bjørner(B)

The Technical University of Denmark, Fredsvej 11, 2840 Holte, Denmark
bjorner@gmail.com

https://www.imm.dtu.dk/~db

Abstract. Domain modelling, as per the approach of this paper, offers
the possibility of describing software application domains in a precise and
comprehensive manner – well before requirements capture can take place.
We endow domain modelling with appropriate analysis and description
calculi and a systematic method for constructing domain models. The
present paper is a latest exposé of the domain science & engineering as
published in earlier papers and a book. It reports on our most recent
simplifications to the domain analysis & description approach.

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyse and describe domains.

1 Introduction

This paper introduces the possibility of a new phase of software development,
one that precedes requirements engineering, as well as a new way of looking at
the world around us!

Today’s well-managed software development projects usually start with some
form of requirements “capture”. Now the possibility arises to precede this phase
of requirements engineering with an initial phase of domain engineering.

The present paper is an improvement over previously published accounts
[13,16,17]: builds upon a simpler domain ontology (Fig. 1 on page 4); has fewer
domain concepts (Sects. 3 and 5); and presents a more rational way of “deriving”
behaviours from parts (Sect. 6). Taken together the presentation is thus made
shorter and more precise.

The approach to the modelling of domains put forward in this paper has
two major phases: modelling external qualities of the world as we see it, as it
manifests itself to us, or otherwise, and modelling the internal qualities, as we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 165–210, 2023.

https://doi.org/10.1007/978-3-031-40436-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_7


166 D. Bjørner

may not see it, but qualities that can be measured and/or spoken about. The
modelling of external qualities has a few steps. The major step of modelling
of external qualities is that of deciding upon the atomic-, Cartesian- and set-
oriented parts. A minor step, following the major step, is that of identifying a
notion of endurant state. The modelling of internal qualities has a few more steps.
The modelling of unique identifiers; the modelling of mereologies; the modelling
of attributes; and the modelling of ‘intentional pull’. It is this structuring into
manageable stages and steps that reassures us, i.e., me, that the approach is
sound.

1.1 What is a Domain ?

By a domain we shall understand a rationally describable segment of a discrete
dynamics fragment of a human assisted reality , i.e., of the world: its endurants,
i.e., solid and fluid entities: whether natural [“God-given”] or artefactual [“man-
made”], their parts and living species entities: whether atomic or compound
parts, respectively whether plant or animal living species, including humans—
as well as its perdurants: the behaviours of parts and living species.

Clearly this characterisation does not possess the rigour that should be com-
mon in software development. Terms such as rationally describable, discrete
dynamics and human assisted reality must be not just assumed, but must, below,
be made more precise. Yet precision defies us: The domains we shall study, anal-
yse and describe are not amenable to such precision. The world is not formal.

Thus the domain analysis & description methodology that we shall be con-
cerned with is not directed at continuous dynamics systems such as we find
them in for example aerospace applications. And we shall not, in this paper be
concerned with the human assistance aspects. By domain modelling we mean
the study, analysis and description of a domain.

If the domain already exists, then the modelling amounts to a faithful ren-
dering of that domain but such that the resulting model, i.e., description, covers
as wide a spectrum of domain instances as is deemed reasonable.1

We shall, in this paper, assume already existing domains. By domain engi-
neering we mean the construction of domain models.2

1.2 Non-computable and Computable Specifications

When specifying3 software we usually make use of a formal language – one whose
semantics can be expressed mathematically. And the specification had better be
logically tractable. Similarly for prescribing requirements: again a formal language
can be deployed. And the requirement had better be computable. Typically, when

1 Thus a railway domain model should desirably cover such instances as the railways
of Denmark and Norway and Sweden, each one individually.

2 The approach taken here can, however, also be used to devise new domains.
3 By specifying software we mean specifying the design of the software. That design

is derived from the software requirements.



Domain Modelling: A Foundation for Software Development 167

we derive a software specification, S, from a requirements prescription, R, the
testing, model checking and proof of some form of correctness, D,S |= R, of
the software design relies on not only on relations between the two documents:
the R and S, but also on the domain description, D. But in describing domains
we cannot assume computability. It is the task of requirements engineering to
“derive” computable requirements from domain models. [17, Chapter 9 ] shows
how. We refer to Sect. 8.2.3 on page 38 for summary comments.

1.3 Formal Method and Methodology

By a method we shall understand a set of principles for selecting and applying
a number of procedures, techniques and tools for [effectively] constructing an
artefact. By methodology we shall understand the study and knowledge of one
or more methods. By a formal method we shall understand a method which uses
one or more formal specification languages as per their intention: specification
and verification (formal tests, model checks and proofs of properties of domains
descriptions,requirement prescriptions and software designs). By a formal speci-
fication language we shall understand a language with a formal syntax, a formal
semantics and a proof system with which to describe & validate4 domains, pre-
scribe & validate requirements and specify (design) & validate software.

Our domain analysis & description method has been developed, over the
years, with this understanding of formal methods.

1.4 From Programming Languages to Domains

Domain stakeholders, those whose primary work is in and of the domain, name
the entities of the domain and use these names, nouns and verbs, in communi-
cating with other stakeholders. These utterings constitute a language, albeit an
informal one. In a domain model we give abstract syntax to (roughly speaking)
the nouns, Sects. 3 and 5, and semantics to (roughly speaking) the verbs, Sect. 6.

When, in comparison, we define the syntax and semantics of a programming
language, that syntax and semantics covers all well-formed instances of programs
in that language. Similarly, when, in consequence, we define the abstract syntax
and semantics, i.e., a model, of a domain, that syntax and semantics covers all
well-formed instances—we mean it, the model, to cover all well-formed instances
of domains.

1.5 A Review

We present a latest exposé of the domain science & engineering of [13,16,17,
2015–2021 ]. The first inklings of this applied science were first reported in [3,
1995–1997 ], Volume III, Part IV, Chaps. 8–12, Pages 193–362 of [4, 2006 ] cover
several aspects of domain engineering – but not what we now consider the most
important contribution to the field: namely that of the analysis & description
4 test, check and verify.



168 D. Bjørner

calculi. First developments of the proposed analysis and description calculi were
reported in [9,10, Kyiv 2010 ]. The recently published papers and book [13,16,17,
2015–2021 ] illustrates the fact that the details of the calculi may change. The
present paper reports on our most recent simplification to the domain analysis
& description approach and the few extensions, RSL+, to the RSL specification
language [32]. The domain modelling approach presented here has been honed
over the last 30 years in numerous experiments. Some of these are reported in
[15,18,19,22].

1.6 An Overview

1.6.1 A Domain Analysis and Description Ontology
Sections 3, 4, 5 and 6 represent the contribution of this paper. Figure 1 illustrates
basic ideas of how we shall structure our domain analysis & description.

Fig. 1. An Analysis & Description Methodology Ontology

The domain analyser cum describer, i.e., the domain modeller, is confronted
by a domain. How and where to start! Figure 1 is intended to be read top-down,
left-to-right. So it suggests that the domain modeller, starts by looking “at the
whole domain!”. That is, at the • right under the term Universes, between the r
and the s!



Domain Modelling: A Foundation for Software Development 169

1.6.2 Step-Wise Analysis and Description
Figure 1 then suggests, by the two lines emerging from that •, that the domain
modeller poses the question, of the domain, is it (more or less) rationally
describable, i.e., is entity(φ), or not. If the domain modeller decides yes, it
is so, then the analysis “moves” on to the Entity •. Now the question is, is the
entity being observed, an endurant or a perdurant, (to be explained below), and
so on. We now assume that the analysis proceeds along the left hand side dashed
line (· · · - - -· · · ) box labeled ‘Endurants’.

The so-called external quality analysis of endurants ends when reaching either
of the Atomic, Cartesian or Part Set •s.5 At this point the description proceeds
to that of the internal qualities of endurants. From Fig. 1 You observe seven
vertical [dashed] lines, emanating downwards from endurant bullets to cross
three horizontal (bottom of the figure) lines. They “call” for the domain modeller
to now analyse and describe the internal qualities of endurants: their unique
identification, their mereologies, and their attributes.

Eventually the domain modeller has “traversed” the left hand side of Fig. 1.
At this point a transcendental deduction takes place: The domain modeller now
“morphs” manifest endurant parts into behaviours. The focal point here are the
part behaviour signatures and definitions. Figure 1’s right hand side hints at the
issues to be covered and that the internal qualities are being a crucial element
of behaviour definitions.

1.6.3 The Analysis and Description Prompts
Each • of Fig. 1 thus corresponds to an analysis or description prompt. There are
two kinds of analysis prompts. Both are informal. The predicate analysis prompts
and the function analysis prompts. There is two major kinds of description
prompts. (α) external quality description prompts – with there being two such
specific prompts: one for describing so-called Cartesian endurants (Sect. 3.3.1
on page 12), another for describing so-called Part Set endurants (Sect. 3.3.2 on
page 12), and (β) internal quality description prompts with there being three
such specific prompts: the unique identifier description prompt (Sect. 5.1.1 on
page 16), the mereology description prompt (Sect. 5.2.1 on page 17), and the
attribute description prompt (Sect. 5.3.2 on page 18). The predicate analysis
prompts yield truth values. The function analysis prompts yield part endurants
and the names of their type – which we shall call sorts. And the description
prompts yield domain description texts – here in a slight extended version of the
RAISE6 [33] specification language RSL [32].7,8

5 We shall, in this paper, not exemplify living species endurants.
6 Rigorous Approach to Idustrial Software Engineering.
7 RSL: RAISE Specification Language.
8 Other formal specification languages are possible, f.ex.: VDM [23,24,30], Z [58], Alloy

[42], or CafeOBJ [31].



170 D. Bjørner

1.7 RSL, RSL-text and RSL+

RSL is described in [32]. We use a subset of that RSL. Thus we shall not avail
ourselves of the RSL module concepts of object, class and scheme. Basically, then,
a specification expressed in RSL amounts to sequences of [alternating] type, value
and axiom clauses – with, optionally, a single channel clause:

type
...

value
...

axiom
...

type
...

value
...

axiom
...

...

channel
...

type
...

value
...

axiom
...

type
...

value
...

axiom
...

RSL-text is an addition to RSL. In describing domains in RSL we shall be intro-
ducing description prompts which are informal functions which yield values of
type RSL-text, that is, proper RSL texts. Quoting an RSL text: “text”. shall
denote an RSL-text.

RSL+ designate RSL-text plus, in this paper, one extension. That extension
is that of the type and values of type names. If T denotes a type, i.e., a possibly
infinite set of values, then ηT denotes a value, the name of type T, with φT
denoting the type of type names.

The domain analysis & description method is informally explained in a mix-
ture of English and RSL+. [12, 2014 ] attempts a formalisation of an early version
of RSL+.

1.8 A Computer Science Philosophy

We shall base our domain analysis & description approach on the philosophy of
Kai Sørlander [53–57]. The issue here is: In studying, analysing & describing
domains one is confronted with the basic [metaphysical] question[s]: which are
the absolutely necessary conditions for describing any world ?, that is: what, if
anything, is of such necessity, that it could under no circumstances be other-
wise ?, or: which are the necessary characteristics of any possible world ? In his
work Sørlander rationally argues that space, time, Newton’s laws, and a number
of additional concepts are necessarily basic elements of any description of any
domain.

1.9 Previous Work

We refer to Sect. 1.5 on page 3.
Axel van Lamsweerde [48, 2009 ] and Michael A. Jackson [43,44, 1995–2010 ],

as well as other requirements engineering researchers, do touch upon the issues
of domains – such as that term is basically used here. But their requirements



Domain Modelling: A Foundation for Software Development 171

analysis and prescription do not “put it center stage”, let alone mandate that
the[ir] requirements engineer rely on an a priori established domain description.
So they and others do not establish, as is the main focus of this contribution,
calculi for the analysis & description of domains.

1.10 Structure of Paper

There are basically two parts to this paper. The main part consists of Sects. 2–3
and Sects. 5–6. They present a terse, comprehensive exposé of the domain analy-
sis & description method of this paper. An appendix, the other part, Appendix 7,
brings an example. For the domain modelling approach to be believable the
example must open up for a realistic domain, one that is not “small”.

• • •

We now explain the domain description ontology as a structured set of con-
cepts for modelling domains, a set that shows their properties and the relations
between them. In simple terms, ontology seeks the classification and explanation
of entities.9

Figure 1 on page 4 is a graphical rendition of a structured set of concepts for
modelling domains.

2 Universe of Discourse

Domain descriptions start with a terse sketch of the main facets of the domain
followed by the naming of the domain.

1. Universe of Discourse: calc UoD

Narration:
Text

Formalisation:
type UoD

1 Example . Universe of Discourse: We refer to Sect. 7.1 on page 25.

3 External and Internal Qualities

Characterisation 1: External qualities: External qualities of endurants10 of a
domain are, in a simplifying sense, those properties of endurants that we can
see, touch and which have spatial extent. They, so to speak, take form.

9 Google’s English Dictionary as provided by Oxford Languages.
10 We refer to predicate prompt # 2 below for a definition of endurant.



172 D. Bjørner

Characterisation 2: Internal qualities: Internal qualities of endurants of a
domain are those which we may not be able to see or “feel” when touching
an endurant, but they can, as we now ‘mandate’ them, be reasoned about. They
have unique identifiers and mereologies,11 And they have attributes that can be
measured by some physical/chemical means, or be “spoken of” by intentional
deduction.

3.1 Predicate Analysis of External Qualities of Endurants

Characterisation 3: Phenomenon: By a phenomenon we shall understand a
fact that is observed to exist or happen Examples of phenomena are: emotions
of a human, the rivers, lakes, forests, mountains and valleys of mother nature;
the railway tracks, their units, the locomotive of a railway system.

Domain Analysis Predicates: We shall define a number of domain analysis pred-
icates. They are all referred to as prompts. Prompts are method tools. The
domain modeller applies these to “real”, i.e., actual world phenomena, that is,
not to formal values. In the next 18 paragraphs we shall “reveal” a number of
such predicates. First with a reasonable definition (in slanted font), then with
examples and some comments (in roman font).

Predicate Prompt 1: is entity:By an entity we shall understand something that
can be observed, i.e., be seen or touched by humans, or that can be conceived as
an abstraction of an entity; alternatively, a tangible or conceivable phenomenon
is an entity [49, Vol. I, pg. 665 ] Some, but not necessarily all aspects of a river
can be rationally described, hence can be still be considered entities. Similarly,
many aspects of a road net can be rationally described, hence will be considered
entities.

Predicate Prompt 2: is endurant: Endurants are those quantities of domains
that we can observe (see and touch), in space, as “complete” entities at no mat-
ter which point in time –“material” entities that persists, endures [49, Vol. I,
pg. 656 ] Street segments [links], street intersections [hubs], automobiles stand-
ing still in an automobile show room are endurants. Domain endurants, when
eventually modelled in software, typically become data. Hence the careful anal-
ysis of domain endurants is a prerequisite for subsequent careful conception and
analyses of data structures for software, including data bases.

Predicate Prompt 3: is perdurant: By a perdurant we shall understand an
entity for which only a fragment exists if we look at or touch at any given snap-
shot in time. Were we to freeze time we would only see or touch a fragment of
the perdurant [49, Vol. II, pg. 1552 ] Automobiles in action, container vessels
sailing on the 7 seas and loading and unloading containers in harbours are exam-
ples of perdurants. Domain perdurants, when eventually modelled in software,
typically become processes.

Endurants are either solid endurants, or are fluid endurants.

11 We refer to Sects. 5.1 and 5.2.



Domain Modelling: A Foundation for Software Development 173

Predicate Prompt 4: is solid: By a solid endurant we shall understand an
endurant which is separate, individual or distinct in form or concept, or, rephras-
ing: a body or magnitude of three-dimensions, having length, breadth and thick-
ness [49, Vol. II, pg. 2046 ] Wells, pipes, valves, pumps, forks, joins, regulator,
and sinks of a pipeline are solids.

Predicate Prompt 5: is fluid: By a fluid endurant we shall understand an
endurant which is prolonged, without interruption, in an unbroken series or
pattern; or, rephrasing: a substance (liquid, gas or plasma) having the property of
flowing, consisting of particles that move among themselves [49, Vol. I, pg. 774 ]

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular12, or plant
products13, et cetera. Specific examples of fluids are: water, oil, gas, compressed
air, etc. A container, which we consider a solid endurant, may be conjoined with
another, a fluid, like a gas pipeline unit may “contain” gas.

We analyse endurants into either of two kinds: parts and living species. The
distinction between parts and living species is motivated in Kai Sørlander’s Phi-
losophy [53–57].

Predicate Prompt 6: is part: By a part we shall understand a solid endurant
existing in time and space and subject to laws of physics, including the causality
principle and gravitational pull14

Natural and man-made parts are either atomicor compound.

Predicate Prompt 7: is atomic: By an atomic part we shall understand a
part which the domain analyser considers to be indivisible in the sense of not
meaningfully, for the purposes of the domain under consideration, that is, to not
meaningfully consist of sub-parts The wells, pumps, valves, pipes, forks, joins
and sinks of a pipeline can be considered atomic.

Predicate Prompt 8: is compound: Compound parts are those which are either
Cartesian-product- or are set- oriented parts

Predicate Prompt 9: is Cartesian: Cartesian parts are those (compound parts)
which consists of an “indefinite number” of two or more parts of distinctly named
sorts Some clarification may be needed. (i) In mathematics, as in RSL [32],
a value is a Cartesian (“record”) value if it can be expressed, for example as
(a, b, ..., c), where a, b, ..., c are mathematical (or, which is the same, RSL) values.
Let the sort names of these be A,B, ..., C – with these being required to be
distinct. We wrote “indefinite number”: the meaning being that the number is
fixed, finite, but not specific. (ii) The requirement: ‘distinctly named’ is prag-
matic. If the domain modeller thinks that two or more of the components of
a Cartesian part [really] are of the same sort, then that person is most likely
confused and must come up with suitably distinct sort names for these “same

12 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not
fluids, but for our modelling purposes it is convenient to “compartmentalise” them
as fluids!.

13 i.e., chopped sugar cane, threshed, or otherwise. See footnote 12.
14 This characterisation is the result of our study of relations between philosophy and

computing science, notably influenced by Kai Sørlander’s Philosphy.



174 D. Bjørner

sort” parts! (iii) Why did we not write “definite number” ? Well, at the time of
first analysing a Cartesian part, the domain modeller may not have thought of
all the consequences, i.e., analysed, the compound part. Additional sub-parts,
of the Cartesian compound, may be “discovered”, subsequently and can then,
with the approach we are taking wrt. the modelling of these, be “freely” added
subsequently! We refer to the road transport system example above. We there
viewed (hubs, links and) automobiles as atomic parts. From another point of
view we shall here understand automobiles as Cartesian parts: the engine train,
the chassis, the car body, four doors (left front, left rear, right front, right rear),
and the wheels. These may again be considered Cartesian parts.

Predicate Prompt 10: is part set: Part sets are those which, in a given context,
are deemed to meaningfully consist of an indefinite number of sub-parts of the
same sort Examples of set parts are: the set of hubs of a road net hub aggregate,
the set of links of a road net link aggregate, and the set of automobiles of an
automobile aggregate – all of the road net transport that we are exemplifying.

Predicate Prompt 11: is living species: By a living species we shall understand
a solid endurant, subject to laws of physics, and additionally subject to causality
of purpose. Living species must have some form they can develop to reach;
a form they must be causally determined to maintain. This development and
maintenancemust further engage in exchanges of matter with an environment
It must be possible that living species occur in two forms: plants, respectively
animals. Although we have not yet come across domains for which the need to
model the living species of plants were needed. Hence:

Predicate Prompt 12: is plant:Plants are living species which are characterised
by development, form and exchange of matters with an environment

Predicate Prompt 13: is animal:Animals are living species which are addition-
ally characterised by the ability of purposeful movement

Predicate Prompt 14: is human: A human (a person) is an animal, with the
additional properties of having language, being conscious of having knowledge(of
its own situation), and responsibility

Characterisation 4: Manifest Part: By a manifest part we shall understand a
part which ‘manifests’ itself either in a physical, visible manner, “occupying” an
AREA or a VOLUME and a POSITION in SPACE, or in a conceptual manner
forms an organisation in Your mind! As we have already revealed, endurant
parts can be transcendentally deduced into perdurant behaviours – with manifest
parts indeed being so.

Predicate Prompt 15: is manifest:is manifest(e) holds if e is manifest

Characterisation 5: Structure: By a structure we shall understand an endurant
concept that allows the domain modeller to rationally decompose a domain anal-
ysis and/or its description into manageable, logically relevant sections, but where
these abstract endurants are not further reflected upon in the domain analysis
and description Structures are therefore not transcendentally deduced into
perdurant behaviours.



Domain Modelling: A Foundation for Software Development 175

Predicate Prompt 16: is structure:is structure(e) holds if e is a structure

Examples of structures arise as the result of our analysis of parts. Thus a
road net could be modelled as the composite of two structures: a set of hubs and
a set of links (the stretches between two adjacent hubs, i.e., road intersections),
cf. Items 6–7 on page 25.

Predicate Prompt 17: is stationary:An endurant part is stationary if it never
changes position in space

Predicate Prompt 18: is mobile: An endurant part is mobile if it may possibly
change position in space

We may need, occasionally, the distinction as now outlined:
Endurants are either natural endurants, or are artefactual endurants.

Predicate Prompt 19: is natural: By a natural endurant we shall understand
one which has been created by nature.

Predicate Prompt 20: is artefactual: By an artefactual endurant we shall
understand one which has been created by humans.

Discrete Dynamic and Artefactual Domains: In our initial characterisation
of domains, Page 2, an emphasis was put on their discrete dynamics and human
assistedness. The analysis and description calculi and, hence, our domain mod-
elling, are therefore “geared” in that direction.

We are not offering to model time continuous domains. See Sect. 8.2.9 on
page 39.

We summarise15:
2. Analysis Predicates

value
is entity: Φ → Bool
is endurants: E → Bool
is perdurant: E → Bool
is solid: E → Bool
is fluid: E → Bool
is part: E → Bool

is living species: E → Bool
is atomic: E → Bool
is compound: E → Bool
is animal: E → Bool
is plant: E → Bool
is Cartesian: E → Bool
is part set: E → Bool

is human: E → Bool
is manifest: E → Bool
is structure: E → Bool
is stationary: E → Bool
is mobile: E → Bool
is natural: E → Bool
is artefactual: E → Bool

2 Example. Analysis Predicates: In the example of Appendix 7–on page 25–37 we
do not [explicitly] show the “application” of analysis predicates. They are tacitly
assumed.

3.2 Functional Analysis of External Qualities of Endurants

Given a compound endurant, that is, either a Cartesian or a part set, we analyse
that compound, at the two •’s of Fig. 1 on page 4, into its constituent endurants,
respectively parts, and the name of the sort:
15 Framed texts highlight domain analysis & description prompts.



176 D. Bjørner

3. determine Cartesian parts, determine part set

value
determine Cartesian parts: E → (E1×η Φ)×(E2×η Φ)×...×(Ec×η Φ)
determine Cartesian parts(e) as (e1:ηE1,e2:ηE2,...,ec:ηEc)

determine part set: E → P-set×η Φ
determine part set(e) as ({p1,p2,...,ps}:ηP,)

The above calculation function signatures and characterisations illustrate two
extensions to RSL [32]: ηP expresses the name of a sort P, and η Φ expresses the
type of sort names.

Again we emphasize that these calculations are performed by the domain
modeller. They are used in subsequent schemas for describing external qualities
of endurants.

3.3 Descriptions of External Qualities of Endurants

Similarly, again at the two ’s of Fig. 1 on page 4, we are now ready to describe
respectively Cartesian parts and part set parts.

3.3.1 Describing Cartesian Parts

4. descr Cartesian

value
descr Cartesian: P → RSL-Text
descr Cartesian(p) ≡

“Narrative:
[ s ] text on sorts
[ o ] text on observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

E1, E2, ..., Ec
[ o ] value

obs E1: E→E1, obs E2: E→E2, ..., obs Ec: E→Ec
[ a ] axiom and/or proof obligation

A/P(...) ”

3 Example . Cartesians: We refer to Sect. 7.2.1 on page 25.



Domain Modelling: A Foundation for Software Development 177

3.3.2 Describing Part Sets

5. descr part set

value
descr part-set: P → RSL-Text
descr part set(p) ≡

“Narrative:
[ s ] text on sorts
[ o ] text on observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

P, Ps = P-set
[ o ] value

obs Ps: E→Ps
[ a ] axiom and/or proof obligation

A/P(...) ”

4 Example . Part Sets: We refer to Sect. 7.2.2 on page 25.

3.4 Endurant States

Characterisation 6: Endurant State: By an endurant state we shall understand
any collection of endurant parts

6. obs Σ

value
Σ = P-set
value
obs Σ: E → Σ
obs Σ(e) ≡

if is manifest(e)
then

is atom(e) → {e},
is Cartesian(e) →
let (p1:ηE1,p2:ηE2,...,pc:ηEc)=calc cartesian parts and sorts(e) in
{p1,p2,...,pc}∪obs Σ(p1)∪obs Σ(p2)∪...∪obs Σ(pc) end

is part-set(e) →
let ({p1,p2,...,ps}:ηP)=calc part sets parts and sort(e) in
{p1,p2,...,ps}∪obs Σ(p1)∪obs Σ(p2)∪...∪obs Σ(ps) end

else {}
end

5 Example . Endurant State Examples: We refer to Sect. 7.2.3 on page 26.



178 D. Bjørner

3.5 An Explication, I

The concept of analysis predicates and part observer functions is due to
McCarthy [51, Sect. 12–13 ].

In [51] McCarthy introduces a notion of abstract syntax, Sect. 12, and seman-
tics, Sect. 13. So far we have dealt, in our domain analysis, with syntax. There
are three elements, according to McCarthy, to consider: the is ... predicates,
the obs ... [“destructor”] functions, and, not shown, so far, in this paper, the
mk ... constructor functions.

For compound abstract syntactic entities they are related as follows:

is Cartesian(p) ≡
let (p1:ηP1,p2:ηP2,...,pc:ηPc) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p)) end

is part set(p) ≡
let ({p1,p2,...,ps},ηP1) = calc part sets parts and sort(p) in
p = mk part set({p1,p2,...,ps}) end

The mk ... constructors were not introduced above. The reason is simple; a
pragmatic decision: As the domain modeller proceeds in their work they may,
when encountering Cartesian compounds, be free to leave some components (of
the Cartesian) out, components that they may later introduce. So really, the
first of the identities above ought be expressed as

is Cartesian(p) ≡
let (p1η:P1,p2:ηP2,...,pc:ηPc,...) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p),...) end

We continue this explication in Sect. 5.5 on page 20.

4 Space and Time

The concepts of space and time can be transcendentally deduced, by rational rea-
soning, as has been shown in [53–57, Kai Sørlander ], from the facts of symmetry,
asymmetry, transitivity and intransitivity relations.

They are therefore facts of every possible universe.

4.1 Space

There is one given space. As a type we name it SPACE. We do not bother,
here, about textual representation of spatial locations, but here is an example
that would work in or near this globe we call our earth: Latitude 55.805600,
Longitude 12.448160, Altitude 35 m16.
16 The author’s house location!.



Domain Modelling: A Foundation for Software Development 179

Also, in this paper, we do not present models of SPACE. But we do introduce
such notions as (i) POINT: as SPACE being some dense and infinite collection
of points; (ii) LOCATION: as the location in space of some point;

value record LOCATION: E → LOCATION

(iii) CURVE: as an infinite collection of points forming a mathematical curve –
having a (finite or infinite) length; (iv) SURFACE: as an infinite collection of
points forming a mathematical surface – having a (finite or infinite) area; and
(v) VOLUME: as an infinite collection of points forming a mathematical volume
– having a (finite or infinite) volume. We suggest it, as a domain science &
engineering research topic, that somebody studies a calculus or calculi of spatial
modelling.

4.2 Time

There is one given time. As a type we name it TIME. We do not bother, here,
about textual representation of time, but here is an example: July 10, 2023:
15:1917. But we do introduce such crucial notions as time interval TI and oper-
ations on TIME and TI:

value
−: TIME×TIME→TI

+: TIME×TI→TIME

∗: Real×TI→TI

A crucial time-related operation is that of record TIME. It applies to “nothing”:
record TIME() and yields TIME.

value record TIME: Unit → TIME

5 Internal Qualities

We refer to the Internal Qualities characterisation on Page 8. We can justify
the grouping of internal endurant qualities into three kinds: unique identifiers,
cf. Sect. 5.1, mereologies, cf. Sect. 5.2, and attributes, cf. Sect. 5.3. To this we add
the concept of intentional pull, cf. Sect. 5.4.

5.1 Unique Identification

On the basis of philosophical reasoning, within metaphysics, we [can] argue that
parts are uniquely identifiable [53–57, Kai Sørlander ]

17 The time this text was last compiled!



180 D. Bjørner

5.1.1 Calculate Unique Identifiers
7. descr unique identifier

value
descr unique identifier: P → RSL-Text
descr unique identifier(p) ≡

“Narrative:
[ s ] text on unique identifier sort
[ o ] text on unique identifier observer
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

PI
[ o ] value

uid P: P → PI
[ a ] axiom and/or proof obligation

A/P(...) ”

6 Example . Unique Identifiers: We refer to Sect. 7.3.1 on page 26.

5.1.2 Endurant Identifier States
Given the endurant state values, for the whole domain or for respective, manifest
part sorts, one can define corresponding unique identifier values.

7 Example . Unique Identifier State: We refer to Sect. 7.3.2 on page 27.

5.1.3 Axioms
The number of manifest parts is the sames as the number of manifest part unique
identifiers.

8 Example . Unique Identifier Axiom: We refer to Sect. 7.3.3 on page 27.

5.1.4 Endurant Retrieval
Given a unique identifier, π, of a manifest part, p, of an endurant state, σ, of a
domain one can retrieve that part:

value
σ:Σ = gen Σ(uod)
retr P: Π → Σ → P
retr P(π)(σ) ≡ let p:P • p ∈ σ ∧ uid P(p)=π in p end



Domain Modelling: A Foundation for Software Development 181

5.2 Mereology

Mereology is the study and knowledge of parts and part relations. It was first
put forward, around 1916, by the Polish logician Stanis�law Leśniewski [26,50].

Which are the relations that can be relevant to being an endurant ? There are
basically two relations: (i) physical ones, and (ii) conceptual ones. (i) Physically
two or more endurants may be topologically either adjacent to one another, like
rails of a line, or within an endurant, like links and hubs of a road net, or an
atomic part is conjoined to one or more fluids, or a fluid is conjoined to one or
more parts. The latter two could also be considered conceptual “adjacencies”. (ii)
Conceptually some parts, like automobiles, “belong” to an embedding endurant,
like to an automobile club, or are registered in the local department of vehicles,
or are ‘intended’ to drive on roads.

5.2.1 Calculate Mereologies

8. descr mereology

value
descr mereology: P → RSL-Text
descr mereology(p) ≡

“Narrative:
[ s ] text on mereology type
[ o ] text on mereology observer
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

MT = M(p)
[ o ] value

mereo P: P → MT
[ a ] axiom and/or proof obligation

A/P(...) ”

M(p) is usually a type expression over unique identifiers of mereology-related
parts.

9 Example . Mereology: We refer to Sect. 7.4 on page 27.

Given the definition of external qualities of a domain, and its unique identifier
and mereology internal qualities one can analyse and describe many proper-
ties of that domain. The routes subsection (Page 28) of the mereology example,
Example 9, illustrates one such property.

5.3 Attributes

Parts and fluids are typically recognised because of their spatial form and are
otherwise characterised by their intangible, but measurable attributes. That is,



182 D. Bjørner

whereas endurants, whether solid (as are parts) or fluids, are physical, tangi-
ble, in the sense of being spatial [or being abstractions, i.e., concepts, of spatial
endurants], attributes are intangible: cannot normally be touched, or seen, but
can be objectively measured. Thus, in our quest for describing domains where
humans play an active rôle, we rule out subjective “attributes”: feelings, senti-
ments, moods. Thus we shall abstain, in our domain science also from matters
of psychology and aesthetics.

5.3.1 Functional Analysis of Attributes
Given a manifest part, p, that is, either an atom, or a Cartesian, or a part set,
we calculate from that part, its constituent attributes values and types:

9. determine attributes

value
determine attributes: P → (a1×ηA1)×(a2×ηA2)×...×(aa×ηAa)

5.3.2 Describe Attributes

10. descr attributes

value
descr attributes: P → RSL-Text

let (( ,ηA1),( ,ηA2),...,( ,ηAa))=determine attributes(p:P) in
descr attributes(p) ≡

“Narrative:
[ s ] text on attribute types
[ o ] text on attribute observers
[ a ] text on axioms and/or proof obligations

Formalisation:
[ s ] type

A1 [=...], A2 [=...], ..., Aa [=...],
[ o ] value

attr A1: P→A1, attr A2: P→A2, ..., attr Aa: P→Aa,
[ a ] axiom and/or proof obligation

A/P(...) ”
end

The domain modeller has thus determined/decided that A1, A2, ..., Aa are
the “interesting” attributes of of parts of sort P. Attributes are often given a
“concrete” form, hence the [ = ... ] where the ... is some type expression.

10 Example . Attributes: We refer to Sect. 7.5 on page 29.



Domain Modelling: A Foundation for Software Development 183

5.3.3 Attribute Categories
Michael A. Jackson has proposed a structure of attributes [43].

Attribute Category 1: Static: By a static attribute we shall understand an
attribute whose values are constants, i.e., cannot change.

Attribute Category 2: Dynamic: By a dynamic attribute we shall understand
an attribute whose values are variable, i.e., can change. Dynamic attributes are
either inert, reactive or active attributes.

Attribute Category 3: Inert: By an inert attribute we shall understand a
dynamic attribute whose values only change as the result of external stimuli
where these stimuli prescribe new values.

Attribute Category 4: Reactive: By a reactive attribute we shall understand
a dynamic attribute whose values, if they vary, change in response to external
stimuli, where these stimuli either come from outside the domain of interest or
from other endurants.

Attribute Category 5: Active: By an active attribute we shall understand
a dynamic attribute whose values change (also) of its own volition. Active
attributes are either autonomous, or biddable or programmable attributes.

Attribute Category 6: Autonomous: By an autonomous attribute we shall
understand a dynamic active attribute whose values change only “on their own
volition”. The values of an autonomous attributes are a “law onto themselves
and their surroundings”.

Attribute Category 7: Biddable: By a biddable attribute we shall understand a
dynamic active attribute whose values are prescribed but may fail to be observed
as such.

Attribute Category 8: Programmable: By a programmable attribute we shall
understand a dynamic active attribute whose values can be prescribed.

We modify Jackson’s categorisation. This is done in preparation for our
exposé of behaviour signatures, cf. Sect. 6.4.1 on page 23. Figure 2 shows group-
ings of some of M. A. Jackson’s basic categories.

Fig. 2. An Attribute Ontology



184 D. Bjørner

Our motivation for modifying Jackson’s attribute categories is as follows:
when transcendentally deducing behaviours from parts we find that there are
basically a need for distinguishing between only three major attribute categories
the static, the monitorable, and the programmable attributes. Static attributes
have their values passed “by value”, as constants, programmable attributes have
their values passed by “by reference”, as variables who value can be changed,
and monitorable attributes have their values passed by “by name” – as we shall
see!

5.4 Intentional Pull

5.4.1 Characterisations
Intentionality as a philosophical concept is defined by the Stanford Encyclopedia
of Philosophy18 as “the power of minds to be about, to represent, or to stand for,
things, properties and states of affairs.”

Intent is then a usually clearly formulated or planned intention. An example
of intent is that of roads made for automobiles and automobiles meant for roads.

Intentional Pull19: Two or more artefactual parts of different sorts, but with
overlapping sets of intents may excert an intentional “pull” on one another. This
intentional “pull” may take many forms. Let px: X and py:Y be two parts of
different sorts (X,Y ), and with common intent, ι. Manifestations of these, their
common intent, must somehow be subject to constraints, and these must be
expressed predicatively. When a composite artefact has an intentionality then its
constituents have individual intentionalities that relate to these. The composite
road transport system has intentionality of the roads serving the automobiles,
and the automobiles have the intent of being served by the roads.

11 Example . Intentional Pull: Road Transport: We refer to Sect. 7.6 on page 30.

12 Example . Intentional Pull: Double-entry Bookkeeping: Double-entry bookkeep-
ing, also known as double-entry accounting, is a method of bookkeeping that relies
on a two-sided accounting entry to maintain financial information. Every entry
to an account requires a corresponding and opposite entry to a different account.
The double-entry system has two equal and corresponding sides known as debit
and credit. A transaction in double-entry bookkeeping always affects at least two
accounts, always includes at least one debit and one credit, and always has total
debits and total credits that are equal.20.

5.5 A Proof-Theoretic Explication, II

We remind You of Sect. 3.5 on page 14.
With the introduction of analysis functions and observers for unique iden-

tifiers, mereology and attributes we can now augment the is ..., uid ...,
mereo ..., attr A... observers introduced since Page 14.
18 Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (-

seop.illc.uva.nl/entries/intentionality/ October 15, 2014, retrieved April 3,
2018.

19 The term intentional pull is chosen so as to connote with the term gravitational pull.
20 https://en.wikipedia.org/wiki/Double-entry bookkeeping.



Domain Modelling: A Foundation for Software Development 185

is manifest(p:P) ≡
let (( ,ηA1),( ,ηA2),( ,ηAa)) = calc attributes(p) in
p = mk P(uid P(p),mereo P(p),(attr A1(p),attr A2(p),...,attr Aa(p))) end

6 Perdurants

A key point of our domain science & engineering approach is this: to every
manifest part we transcendentally deduce a unique behaviour.

By transcendental we shall understand the philosophical notion: the a pri-
ori or intuitive basis of knowledge, independent of experience.

By a transcendental deduction we shall understand the philosophical
notion: a transcendental ‘conversion’ of one kind of knowledge into a seemingly
different kind of knowledge.

6.1 Channels

Part behaviours may interact. To express part behaviours and their interaction
we use Hoare’s CSP [38,39]. One may question this choice. In [7,11,14, 2009–
2017 ] we show “that to every mereology there is a CSP expression”. On that
background we maintain that CSP is a reasonable choice—but invite the reader
to suggest more appropriate mechanisms for handling behaviours and their com-
munication.21

So, in general, we declare a RSL/CSP channel :
11. channel declaration

channel { ch[ {ui,uj} ] | ui,uj:UI • {ui,uj}⊆uis } : M

Here ch is the name of the indexed array of channels and the indexes are, in
general, any two element sets of unique part identifiers. That is: For every pair
of part behaviours – identified but their unique part identifiers (ui,uj) – there is
a channel, say ch[{ui,uj}].

M is the type of the messages communicate between behaviours of index ui,uj.
We shall develop, in Sect. 6.2.2, the specifics of the type, M, of channel mes-

sages.

6.2 Actors

By an actor we shall understand either an action, or an event, or a behaviour.

21 Please bear in mind that the use, here, of CSP, is in the following context: the CSP

clauses are not to be “interpreted” on a computer where this “computerisation” has
to be “shared” with other computations; hence CSP synchcronisation & communica-
tion is “ideal” and reflects reality.



186 D. Bjørner

6.2.1 Actions
By an action of a behaviour we shall understand something which is local to a
behaviour, and, which, when applied, potentially changes the states. Generally
action clauses are expressed in RSL [32].

13 Example . Road Transport Actions: We refer to Sect. 7.7.2 on page 33.

6.2.2 Events
By an event of a behaviour we shall understand something that involves two
behaviours, and, which, when applied, potentially changes the states of both
behaviours. Event clauses are expressed using the CSP elements of RSL. That is,
the CSP output “!” and input events “?”:

ch[ {ui,uj} ] ! expr
let val = ch[ {ui,uj} ] ? ... end

14 Example . Road Transport Events: We refer to Sect. 7.7.2 on page 33.

6.3 State Access and Updates

We need define two functionals: one for changing the mereology of a part and
another for changing the attribute value of a part. We therefore informally define
the following functionals:

6.3.1 Update Mereologies

– part update mereology is a functional: it takes the following arguments: a part
p of type P and a mereology value and yields a part of type P.

– The yielded result, p′, has the same unique identifier, as the argument part
p,

– a new, the argument, mereology, as the argument part p,
– and the same attribute values for all attributes, as the argument part p.

value
part update mereology: P → M → P
part update(p)(m) ≡

let (( ,ηA1),( ,ηA2),...,( ,ηAa)) = determine attributes(p) in
let p′:P • uid P(p′)=uid P(p)∧mereo P(p′)=m∧

∀ ηA:ηΦ•ηA∈{ηA1,ηA2,...,ηAa}⇒attr A(p′)=attr A(p) in
p′ end end



Domain Modelling: A Foundation for Software Development 187

6.3.2 Update Attributes

– part update attribute is a functional: it takes the following arguments: a part
p of type P and a pair of an attribute name and value, and yields a part p′

of type P.
– The argument attribute name must be that of an attribute of the part.
– The yielded result p′ has the same unique identifier and mereology as the

argument part p,
– and the same attribute values for all attributes, as the argument part p, except

for argument attribute (name) for which it now yields the argument attribute
value.

value
part update attribute: P → ΦA × A → P
part update attribute(p)(ηA,a) ≡

let (( ,ηA1),( ,ηA2),...,( ,ηAa)) = determine attributes(p) in
assert: ηA∈{ηA1,,ηA2,...,,ηAa}

let p′:P • uid P(p)=uid P(p′)∧mereo P(p)=mereo P(p′)∧
∀ ηA:ηΦ•ηA∈{ηA1,,ηA2,...,,ηAa}\ηA⇒attr A(p′)=attr A(p) in

p′ end end

Examples of monitorable attributes are: an automobile’s velocity and engine
(cooler) temperature. Monitorable attributes usually change their values surrep-
titiously. That is, “behind the back”, so-to-speak, of the part behaviour.

6.4 Behaviours

By a behaviour we shall understand a set of sequences of actions, events and
behaviours.

6.4.1 Behaviour Signatures
We now come to a crucial point in our unrolling the domain science & engi-
neering method. It is that of explaining the signature of behaviours, that is, the
arguments ascribed to part behaviours. The general form of part p behaviour
signatures is as follows.

12. Behaviour Signatures

value
p behaviour: p:P→in,out {ch[ {uid P(p),ui} ]|ui:UI•ui∈uis∧Mereo(p)} Unit

Yes, that is it! The behaviour of a[ny] (manifest) part, p, is a function
whose only argument is that part! The signature informs of the channels that
p behaviour may communicate with. The literal Unit informs that the behaviour
may not yield any value, but, for example, go on “forever” having possibly
effected a state change!



188 D. Bjørner

6.4.2 Behaviour Definitions
Behaviours, besides their signatures, are defined. That is, a behaviour definition
‘body’ describes, in, for us, using RSL [32] with its embodiment of a variant
of CSP [39], basically CSP clauses how it interacts with other behaviours, and,
in basically RSL’s functional specification (read: programming) clauses, how it
otherwise “goes about its business”!

In fragment I the focus is on the possible [action] update of either biddable
or programmable attributes.

13. Behaviour Definition, I

p behaviour(p) ≡
let p′ = possible update of biddable and programmable attributes(p) in
p behaviour(p′) end

In fragment II the focus is on the possible [action] value access to any
attributes.

14. Behaviour Definition, II

p behaviour(p) ≡ ... attr A(p) ... p behaviour(p)

In fragment III the focus is on the possible interaction with other behaviours,
hence illustrates two events as seen from one behaviour.

15. Behaviour Definition, III

p behaviour(p) ≡
...
let (val,ui) = E(p) in ch[ {uid P(p),ui} ] ! val end ;
...
let uj = I(p) in let (val′,uj) = ch[ {uid P(p),uj} ] ? in
...
p behaviour(p) end end

15 Example . Road Transport Behaviour Definitions: We refer to Sect. 7.7.4 on
page 33.

6.5 Domain Initialisation

By domain initialisation we mean the “start-up” of a behaviour for all manifest
parts.

16 Example . Road Transport Domain Initialisation: We refer to Sect. 7.8 on page
36.



Domain Modelling: A Foundation for Software Development 189

6.6 End of Domain Modelling Presentation

This concludes the four sections, Sects. 2, 3, 4 and 6, on domain modelling.

7 A Road Transport Domain Example

7.1 Naming and Sketch of Domain

We refer to Sect. 2 on page 7.
Narration:

1 The domain is referred to as RTD, the road transport domain.
2 The road transport domain comprises a set of automobiles and a road net of

street intersections, called hubs, and [uninterrupted] street segments, called
links. Automobiles drive in and out of hubs and links.

Formalisation:

type
1. RTD

7.2 Endurants: External Qualities

7.2.1 Cartesian Examples
We refer to Sect. 3.3.1 on page 12.

3 There is a road transport domain.

From road transport domains we can
observe

4 a road net aggregate and
5 an automobile aggregate.

From the road net aggregate we can
observe

6 an aggregate of hubs,
i.e., street intersections, and

7 an aggregate of links,
i.e., street segments (with no hubs).

type
3. RTD
4. RNA
5. AA
6. HA
7. LA

value
4. obs RNA: RTD → RNA
5. obs AA: RTD → AA
6. obs HA: RNA → HA
7. obs LA: RNA → LA

7.2.2 Part Sets
We refer to Sect. 3.3.2 on page 12.

8 There are hubs; from aggregate of hubs one can observe sets of hubs.
9 There are links; from aggregate of links one can observe sets of links.

10 There are automobiles; from aggregate of automobiles one can observe sets
of automobiles.



190 D. Bjørner

type
8. H, Hs = H-set
9. L, Ls = L-set
10. A, As = A-set

value
8. obs Hs: HA → Hs
9. obs Ls: LA → Ls
10. obs As: AA → As

7.2.3 Endurant States
We refer to Sect. 3.4 on page 13.

11 The singleton value rtd represents a road transport [domain] state.
12 The set value hs represents a state of all hubs of that road transport domain.
13 The set value ls represents a state of all links of that road transport domain.
14 The set value as represents a state of all automobiles of that road transport

domain.

value
11. rtd:RTD,
12. hs:H-set = obs Hs(obs HA(obs RNA(rtd))),
13. ls:L-set = obs Ls(obs LA(obs RNA(rtd))),
14. as:A-set = obs As(obs AA(rtd))

7.3 Unique Identifiers

We refer to Sect. 7.3.1 on page 15.

7.3.1 Unique Identifiation
We shall only consider hubs, links and automobiles.

15 Hubs have unique identifiers.
16 Links have unique identifiers.
17 We define also a unique identifier observer for hubs and links.
18 Automobiles have unique identifiers.

type
15. HI
16. LI
18. AI
value
15. uid H: H → HI
16. uid L: L → LI
17. uid HL: (H|L) → (HI|LI), uid HL(hl) ≡ is H(hl)→uid H(hl), →uid L(hl)
18. uid A: A → AI



Domain Modelling: A Foundation for Software Development 191

7.3.2 Unique Identifier State

19 The variable his contains all unique hub identifiers of the road transport
domain 3 on page 25.

20 The variable lis contains all unique link identifiers of the road transport
domain 3 on page 25.

21 The variable ais contains all unique automobile identifiers of the road trans-
port domain 3 on page 25.

variable
14. his = { uid H(h) | h:H • h ∈ hs }.
19. lis = { uid L(l) | l:L • l ∈ ls }.
20. ais = { uid A(a) | a:A • a ∈ as }.

7.3.3 Unique Identifier Axiom

22 No two hubs, links and automobiles have the same unique identifier.
23 ps is the set of all hubs, links and automobiles.
24 uis is the set of all unique hub, link and automobile identifiers.

axiom
22. card hs = card his,
22. card ls = card lis,
22. card as = card ais,
22. card hs + card ls + card as = card his + card lis + card ais
value
23. ps = hs ∪ ls ∪ as
24. uis = his ∪ lis ∪ ais
axiom
22. card ps = card uis

7.4 Mereology

We refer to Sect. 7.4 on page 17.

25 The mereology of any hub is a
pair: the possibly empty set of the
unique identifiers of links leading
into and/or out from the hub, and
the set of the unique identifiers
of automobiles that are allowed to
drive in the hub.

26 The mereology of any link is a pair:
the two element set of the unique

identifiers of the two hubs that are
connected by the link, and the set
of the unique identifiers of automo-
biles that are allowed to drive on
the link.

27 The mereology of any automobile
is the set of the unique identifiers
of hubs in and links on which the
automobile may be driving.



192 D. Bjørner

type
25. H Mer=LI-set×AI-set
26. L Mer=HI-set×AI-set
27. A Mer=(HI|LI)-set

value
25. mereo H: H→H Mer
26. mereo L: L→L Mer
27. mereo A: A→A Mer

28 Link and automobile identifiers of hub mereologies must be of the road trans-
port domain.

29 Hub and automobile identifiers of hub mereologies must be of the road trans-
port domain and there must be exactly two hub identifiers of those mereolo-
gies.

30 Hub and links identifiers of automobile mereologies must be of the road
transport domain.

axiom
28. ∀ (lis,ais):H Mer•lis⊆lis∧ais⊆ais
29. ∀ (his,ais):L Mer•his⊆his∧ais⊆ais∧card his=2
30. ∀ ris:A Mer•ris⊆his∪lis

7.4.1 Routes

31 By a route (of a road net) we shall understand
a an alternating sequence of one or more hub and link identifiers

32 such that
a basis clause 0: the empty list is a route;
b basis clause 1: a singleton list of a hub or a link identifier of the road net

is a route;
c inductive clause: the concatenation of a route, r, and the tail of a route
r′ where the last element of r is identical to the first element of r′ is a
route; and

d extremal clause: and only such routes that can be formed using the above
clauses are routes.

type
31. R′ = (HI|LI)∗

31a. R = {| r:R′ | wf R(r)(rtd) |}
value
31a. wf R: R′ → RTD → Bool
31a. wf R(r)(rtd) ≡
31a. ∀ i,i+1:Nat • {i,i+1}⊆index(r) ⇒
31a. let (ri,ri′) = (r[ i ],r[ i+1 ]) in
31a. is LI(ri)∧is HI(ri′)∧ ...
31a. is HI(ri)∧is LI(ri′)∧ ...
31a. end



Domain Modelling: A Foundation for Software Development 193

32. routes: RTD×HI-set×LI-set → R-infset
32. routes(rtd,his,lis) ≡
32. let rs = { 〈〉 }
32. ∪ { 〈hi〉 | hi:HI • hi ∈ his }
32. ∪ { 〈li〉 | li:LI • li ∈ lis }
32. ∪ { r̂tl r′ | {r,r′}⊆rs ∧ r[ len r ]=hd r′ } in
32c. rs end
32. pre: his={uid H(h)|h:H•h ∈ obs Hs(obs AH(obs RN(rtd)))} ∧
32. lis={uid L(l)|l:L•l ∈ obs Ls(obs AL(obs RN(rtd)))}

7.5 Attributes

We refer to Sect. 7.5 on page 17.

7.5.1 Hubs, Links and Automobiles

Hub Attributes

33 Hubs have [traffic signal] states which are set of pairs, li,lj, of identifiers of
the mereology links “signaling” that automobiles can connect from link li to
link lj.

34 Hubs have [traffic signal] state spaces – designating the set of all possible hub
states.

35 Hubs have a history; see Item 46 on page 31.

Link Attributes

36 Links have lengths.
37 Links have a history; see Item 47 on page 31.

Automobile Attributes

38 Automobiles have positions on the road net:
a either at a hub,
b or on a link, some fraction
c down from an entry hub towards the exit hub.

39 Automobiles have a history; see Item 48 on page 31.

We postpone treatment of hub, link and automobile histories till Sect. 7.6.1.

type
33. HΣ = (LI×LI)-set
34. HΩ = HΣ-set
35. H Hist = ...



194 D. Bjørner

36. LEN
37. L Hist = ...
38. A Pos = At Hub | On Link
38a. At Hub :: HI
38b. On Link :: LI × HI × F × HI
38c. F = Real axiom ∀ f:F • 0<f<1
39. A Hist = ...
value
33. attr HΣ: H → HΣ
34. attr HΩ: H → HΩ
35. attr H Hist: A → H Hist
36. attr LEN: L → LEN
37. attr L Hist: A → L Hist
38. attr APos: A → A Pos
39. attr A Hist: A → A Hist

We omit treatment of such automobile attributes as speed, acceleration, engine
temperature, energy (gas, oil, electricity) level, mileage and trip counters, GPS
(map) position, road surface temperature, gear position (reverse, neutral, for-
ward (1, 2, 3, 4, 5), hand brake position, clutch position, accelerator pressure,
brake pedal position, etc.

40 The link identifiers of a hub state must be of the mereology of that hub.
41 A hub state must be in the hub state space.
42 The automobile position must be on the road net.

axiom
40. ∀ h:H • h ∈ hs • let hσ = attr HΣ(h), (lis, ) = mereo H(h) in
40. ∀ (li,lj):(LI×LI) • (li,lj) ∈ hσ ⇒ {li,lj}⊆lis

41. ∀ h:H • h ∈ hs • attr HΣ(h) ∈ attr HΩ(h)

42. ∀ a:A • a ∈ as • let apos = attr A Pos(a) in
42. cases apos of
42. At Hub(hi) → hi ∈ his,
42. On Link(li,fhi, ,thi) →
42. let (his,ais) = mereo L(retr L(li,ls)) in
42. {fhi,thi}⊆his ∧ uid A(a) ∈ ais end
42. end end

These were some well-formedness axioms. In Sect. 7.6.1 we shall treat well-
formedness of hub, link and automobile histories.



Domain Modelling: A Foundation for Software Development 195

7.5.2 Attribute Category Examples
Attribute categories are: HΣ (Item 33 on the preceding page) is a programmable
attribute; HΩ (Item 34 on the previous page) is a static attribute; LEN (Item 36
on the preceding page) is a static attribute; A Pos (Item 38 on the previous page)
is a programmable attribute; GPS Map is an inert attribute; Speed is a biddable
attribute; Road Surface Temperature is an autonomous attribute; etcetera.

7.6 Intentional Pull

We refer to Sect. 7.6 on page 20.

7.6.1 Further Attributes
We start by formulating the hub, link and automobile history attribute defini-
tions.

43 Hubs and links are entered and left by automobiles, i.e., marked by corre-
sponding events.

44 Automobile enters and leaves hubs, i.e., marked by corresponding events.
45 Automobile enters and leaves links, i.e., marked by corresponding events.
46 Hub histories are time-stamped sequences of automobile enter/leave events

– in decreasing order (most recent events are listed first),
47 Link histories are time-stamped sequences of automobile enter/leave events

– in decreasing order (most recent events are listed first),
48 Automobile histories are time-stamped sequences of hub and link enter/leave

events – in decreasing order (most recent events are listed first),
49 For convenience we “lump” hub and link histories into hub-link histories.

type
43. HL OnOff = mkEnter(ai:AI) | mkLeave(ai:AI)
44. A OnOff H = mkEnterHub(s:HI) | mkLeaveHub(s:HI)
45. A OnOff L = mkEnterLink(s:LI) | mkLeaveLink(s:LI)
46. H Hist = (s t:TIME×s oo:HL OnOff)∗

47. L Hist = (s t:TIME×s oo:HL OnOff)∗

48. A Hist = (s t:TIME×s oo:(OnOff H|OnOff L))∗

49. HL Hist = H Hist | L Hist
value
49. attr HL Hist: (H→H Hist) | (L→L Hist)

50 Automobile histories
a alternate between being on hubs and being on links.
b such that the enter hub event time is identical to the immediately “prior”

leave link event time,
c and such that these events are otherwise ordered in decreasing order of

time.



196 D. Bjørner

axiom
50. ∀ a hist:A Hist •

50. ∀ i:Nat • {i,i+1}⊆inds a hist ⇒
50. let (e1,e2)=(s oo(a hist[ i ]),s oo(a hist[ i+1 ])),
50. (t1,t2)=(s t(a hist[ i ]),s t(a hist[ i+1 ])) in
50. case (e1,e2)
50b. (mkLeaveHub(hi),mkEnterLink(li)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterHub(hi)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterLink(li′)) → t1>t2,
50c. (mkLeaveHub(hi),mkEnterHub(hi′)) → t1>t2,
50a. → false
50. end end

We leave the (narrative and formal) expression of the well-formedness of hub
and link histories to the reader! The above indicates that one has to be very
careful concerning well-formedness.

But we have not captured all of the constraints, i.e., well-formedness of the
history attributes. Next we secure full care!

7.6.2 An Intentional Pull

51 For all automobiles,
a if their traffic history records that the automobile was entering [leaving]

a hub (link) at a certain time,
b then that hub’s (link’s) traffic history shall record that that automobile

left [entered] that hub (link) at exactly that time;
52 and vice versa, for all hubs an links:

a if the hub or link traffic history records that an automobile was leaving
[entering] that hub, respectively link at a certain time,

b then that automobile’s traffic history shall record that that automobile
entered [left] that hub, resp. link, at exactly that time.

axiom
51. ∀ a:A • a ∈ as ⇒
51a. let a hist=attr A Hist(a), ai=uid A(a) in
51a. ∀ (t,on off hl) • (t,on off hl) ∈ elems a hist ⇒
51a. let hli • s(on off hl) in
51b. let hl:(H|L)•hl ∈ hs∪ls • uid HL(hl) = hli in
51b. let hl hist = attr HL Hist(hl) in
51b. ∃ ! i:Nat•i∈ indshl hist •

51b. on off hl=mkEnter(hli) → hl hist[ i ]=(t,mkLeave(ai))
51b. on off hl=mkLeave(hli) → hl hist[ i ]=(t,mkEnter(ai))
51. end end end end
52. ≡



Domain Modelling: A Foundation for Software Development 197

52a. ∀ hl:(H|L) • hl ∈ hs∪ls ⇒
52a. let hl hist=attr HL Hist(hl), hli=uid HL(hl) in
52a. ∀ (t,on off ai) • (t,on off ai) ∈ elems hl hist ⇒
52a. let ai = ai(on off ai) in let a:A•a∈as • uis A(a)=ai in
52a. let a hist = attr A Hist(a) in
52a. ∃ ! i:Nat•i∈ inds a hist •

52a. on off ai=mkEnter(ai) → on off ai[ i ]=(t,mkLeave(hli)),
52a. on off ai=Leave(ai) → on off ai[ i ]=(t,Enter(hli))
52a. end end end end

7.7 Perdurants

7.7.1 Channels
We refer to Sect. 7.7.1 on page 21.

channel { ch[ {ui,uj} ] | ui,uj:(HI|LI|AI) • {ui,uj}⊆his∪lis∪ais } : M

M will be defined in Sect. 7.7.2.2 on the facing page.

7.7.2 Domain Actions and Events 7.7.2.1 Domain Actions
We refer to Sect. 6.2.1 on page 22.

Automobile actions are here simplified to be those of

53 remaining (staying) in a hub (Item 64a on the following page) and
54 remaining (staying) on a link (Item 65a on the next page).

7.7.2.2 Domain Events
We refer to Sect. 6.2.2 on page 22.

Automobile events are here simplified to be those of

55 leaving a hub [in order to enter a link] (Item 66d on page 35 and Item 70 on
page 36) and

56 entering a link [after having left a hub] (Item 66d on page 35 and Item 70 on
page 36) and

57 leaving a link in order to enter a hub (Item 67c on page 35 and Item 75 on
page 36).

58 entering a hub [after having left a link] (Item 67c on page 35 and Item 75 on
page 36).

Thus contributions to M of Sect. 7.7.1 on the preceding page are:

type
55. mkLeaveH(hi:HI,li:LI,ai:AI)
56. mkEnterL(hi:HI,li:LI,ai:AI)
57. mkLeaveL(li:LI,hi:HI,ai:AI)
58. mkEnterH(li:LI,hi:HI,ai:AI)



198 D. Bjørner

7.7.3 Behaviour Signatures
We refer to Sect. 7.7.3 on page 23.

value
hub: h:H → in,out { ch[ {hi,ui} ] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
link: l:L → in,out { ch[ {li,ui} ] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
auto: a:A → in,out { ch[ {ai,ui} ] | ui:(LI|HI)-set•ui∈lis∪his } → Unit.

7.7.4 Behaviour Definitions
We refer to Sect. 7.7.4 on page 24.

Automobile Behaviour

We omit consideration of the monitorable GPS Map, Speed and Road Surface -
Temperature attributes.

59 One interpretation of an automobile, auto,
60 focuses on its road position.
61 Either the automobile is at a hub,
62 or it is on a link.
63 There could be other focal points.

value
59. auto(a) ≡
60. auto pos(a)(attr A Pos(p),attr A His(a))
63. �� ...

61. auto pos(a)(At Hub(hi),a hist) ≡
61. traversing hub(a)(At Hub(hi),a hist)
61. pre: attr A Pos(a)=At Hub(hi) ∧ attr A Hist(a)=a hist

62. auto pos(a)(On Link(li,fhi,f,thi),a hist) ≡
62. traversing link(a)(On Link(li,fhi,f,thi),a hist)
62. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

64 In traversing a hub an automobile
a is either, internal non-deterministically, ��, moving on inside the hub
b or, internal non-deterministically, entering a link from the hub.

value
64. traversing hub(a)(At Hub(hi),a hist) ≡
64a. staying at H(a)(At Hub(hi),a hist)
64b. �� entering L(a)(At Hub(hi),a hist)
64. pre: attr A Pos(a)=At Hub(h) ∧ attr A Hist(a)=a hist

64a. staying at H(a)(At Hub(hi),a hist) ≡ auto(a)



Domain Modelling: A Foundation for Software Development 199

65 In traversing a link an automobile
a is either, internal non-deterministically, ��, moving on inside the link
b – possibly advancing a bit, i.e., increasing its fraction position “down”

the link,
c or, internal non-deterministically, entering a hub from the link.

value
65. traversing link(a)(On Link(li,fhi,f,thi),a hist) ≡
65a. staying on L(a)(On Link(li,fhi,f,thi),a hist)
65c. �� entering H(a)(On Link(li,fhi,f,thi),a hist)
65. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

65a. staying on L(a)(On Link(li,fhi,f,thi),a hist) ≡
65b. let f′:F • f≤f′<1 in assert: ∃ f′:F • f≤f′<1
65b. let a′ = part update(a)(ηA Pos,On Link(li,fhi,f′,thi))
65a. auto(a′) end end
65a. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

66 In entering a link
a the automobile internal non-deterministically selects the link to be

entered, and thus the next hub,
b records the time,
c updates its history and automobile position accordingly,
d so informs the behaviour of the hub being left and the link being entered,

while resuming being an automobile – with the updated history.

value
66. entering L(a)(At Hub(fhi),a hist) ≡
66a. let li:LI•li∈lis∧li∈mereo H(retr H(fhi)(σ)),
66a. thi:HI•thi∈his∧thi∈mereo L(retr L(li)(σ))\{fhi},22

66b. τ = record TIME
23,

66b. ai=uid A(a) in
66a. let a pos = On Link(fhi,li,0,thi) in
66c. let a hist′ = 〈(a pos,τ)〉̂a hist in
66c. let a′ = part update(a)(ηA Hist,a hist′) in
66c. let a′′ = part update(a′)(ηA Pos,a pos) in
66d. (ch[ {ai,fhi} ] ! (mkLeaveH(fhi,li,ai),τ)
66d. ‖ ch[ {ai,li} ] !( mkEnterL(li,fhi,ai),τ) ‖ auto(a′′))
66. end end end end end
66. pre: attr A Pos(a)=At Hub(fhi) ∧ attr A Hist(a)=a hist

22 For retr · · · see Sect. 5.1.4 on page 16.
23 For record TIME see Sect. 4.2 on page 15.



200 D. Bjørner

67 In entering a hub
a the time is recorded,
b the automobile history and position is updated,
c and the behaviours of the link left link and hub entered are being so

informed while the automobile resumes being an automobile – in the
updated state.

value
67. entering H(a)(On Link(li,fhi,f,thi),a hist) ≡
67a. let τ = record TIME,
67a. ai = uid A(a),
67a. a pos = at Hub(thi) in
67a. let a hist′ = 〈(a pos,τ)〉̂a hist in
67b. let a′ = part update(a)(ηA Hist,(τ ,a hist′)) in
67b. let a′′ = part update(a′)(ηA Pos,a pos) in
67c. (ch[ ai,li ] ! (mkLeaveL(li,thi,ai),τ) ‖
67c. ch[ ai,thi ] ! (mkEnterH(thi,li,ai),τ) ‖ auto(a′′))
67. end end end end
67. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

Hub Behaviour

68 The hub behaviour
69 externally non-deterministically (����) offers
70 to accept, non-deterministically, a leave message,
71 from any automobile in its mereology;
72 it prepares for proper insertion of this event into its traffic history
73 updating to an augmented traffic history, and, hence, hub state;
74 resuming to be the hub behaviour in the updated state;
75 or to accept, non-deterministically, an enter message,
76 again from any automobile in its mereology;
77 updating to an augmented traffic history, and, hence, hub state;
78 resuming to be the hub behaviour in the updated state.
value
68. hub(h) ≡ let hi = uid HI(h) in
70. ���� { let (mkLeaveH(hi′,li,ai),τ) = ch[ {hi,ai} ] ? in assert: hi′=hi
73. let h hist′ = 〈(τ ,mkEnter(ai))〉̂attr H Hist(h) in
73. let h′ = part update(ηH Hist,h hist′) in
74. hub(h′)
71. | ai:AI • ai ∈ ais end end end}
69. ����
75. ���� { let (mkEnterH(hi′,li,ai),τ) = ch[ {hi,ai} ] ? in assert: hi′=hi
77. let h hist′ = 〈(τ ,mkLeave(ai))〉̂attr H Hist(h) in
77. let h′ = part update(ηH Hist,h hist′) in
78. hub(h′)
76. | ai:AI • ai ∈ ais end end end } end

We leave the definition of link behaviours as an exercise!



Domain Modelling: A Foundation for Software Development 201

7.8 Domain Initialisation

We refer to Sect. 7.8 on page 24.
We initialise a domain behaviour for all atomic endurants: hubs, links and

automobiles.

79 The domain behaviour is the parallel composition of
80 the distributed parallel composition of all hub behaviours, with
81 the distributed parallel composition of all link behaviours, with
82 the distributed parallel composition of all automobile behaviours.

80. ‖ { hub(b) | h:H • h ∈ hs }
79. ‖
81. ‖ { link(l) | l:L • l ∈ ls }
79. ‖
82. ‖ { auto(a) | a:A • a ∈ as }

7.9 Verification

It remains to verify that the automobile, hub and link behaviours and the road
transport domain initialisation satisfy the appropriate axioms and the intentional
pull.

End of Example

8 Closing

8.1 The Current Calculi

The treatment of behaviours of Sect. 6.4.2 differs very much from that of
Sects. 7.6 and 7.7 of [17]. The present one is very short, but results in a repeated
use of the part update functional. Our domain modelling approach allows a wide
spectrum, in-between these behaviour signature and definition styles, for express-
ing behaviours. What remains fixed in the treatment of endurants: both of their
external qualities, and of their internal qualities.

8.2 Some Issues

A number of issues need be addressed.



202 D. Bjørner

8.2.1 A New View of Software Development ?
Yes, we claim that this paper presents an additional view of software devel-
opment! Aircraft designers and manufacturers employ professionally educated
aeronautics engineers having state-of-the-art insight into aerodynamics. But, we
claim, software companies do not, today, July 28, 2023, exhibit the same pro-
fessionalism in their staffing. Software for health care (hospitals, etc.) are often
developed by programmers with no previous professional insight into that area.
Likewise for domains such as law, public administration, health care and tax
administration. With sound methods for “deriving” requirements from domain
models, cf. Sect. 8.2.7 on page 39, these software houses now have a possibility
of becoming professional.

8.2.2 From Programming Language Semantics to Domain Models
Domain models give semantics to the nouns (endurants) and verbs (perdurants)
spoken by domain workers. Just like the development of compilers for program-
ming languages were based on formal models of their semantics, so we can now
give semantics to the nouns and verbs spoken by domain workers, and, from
these, using rigorous development methods, similar to those used for compiler
development [25,28], develop trustworthy domain software.

8.2.3 Correctness: Verification, Checking, Testing
This paper has not dealt with the issue of correctness of domain models. A num-
ber of endurant and perdurant Description prompts have indicated that axioms
and assertions24 need be expressed. For domain assertions their correctness must,
of course, be shown – using whichever (testing, model checking and proof) tech-
niques are adequate. The axioms and assertions carry over into Requirements
prescriptions and, from there, into software Specifications. Now the full-blown
force of testing, model checking and proofs must be applied. As indicated in for-
mula D,S |= R, Sect. 1.2 on page 3, domain models now make proof obligations
more clear.

8.2.4 No Recursive Domains!
Surprise, surprise! Yes, there are no recursively defined endurant sorts. Domains
do not contain “recursive endurants”.25

24 i.e., proof obligations.
25 Some readers may object, but we insist! If trees are brought forward, as an example of

a recursively definable domain, then we argue: Yes, trees can be recursively defined.
Trees can, as well, be defined as a variant of graphs, and you wouldn’t claim, would
you, that graphs are recursive ? We shall consider the living species of trees (that
is, plants), as atomic. In defining attribute types You may wish to model certain
attributes as ‘trees’. Then, by all means, You may do so recursively. But natural
trees, having roots and branches cannot be recursively defined, since proper “sub-
trees” of trees would then have roots!



Domain Modelling: A Foundation for Software Development 203

8.2.5 Domain Facets
There is more to domain engineering than this paper can cover. A main element
of domain modelling is that of modelling also other than the intrinsics of domains
– as so far covered. By a domain facet we shall understand one amongst a finite
set of generic ways of analysing a domain: a view of the domain, such that the
different facets cover conceptually different views – and these views together cover
the domain.26 [17, Chapter 8 ] covers methods for modelling additional facets –
such as support technology, rules & regulations, scripts (or contracts), license
languages, management & organisation, and human behaviour.

8.2.6 Algorithmics
Algorithms are the hall-mark and corner-stone of computing. So where is “algo-
rithmics” [34,36, Harel ] in all this ? ! The straight answer is: algorithm concerns
are not concerns of domain modelling!

Domain models focus on expressing properties. They do so using abstrac-
tion in general, and simple combinations of proof theoretic and model theoretic
means such as defining abstract types, here called sorts, comprehension over sets,
sequences and maps {f(i)|i:D•P(f,i)}, 〈f(i)|i:D•Q(f,i)〉, and [ f(i)�→g(i)|i:D•R(f,g,i) ].
The predicates, P,Q and R further raise the level of abstraction. It is in the
efficient realization of these abstractions that algorithms play their part.

8.2.7 Requirements
In [17, Chapter 9, 2021 ] we show how to “derive”, in a systematic manner,
requirements prescriptions from domain descriptions. Requirements are for a
machine27 The machine is the hardware upon which the software to be devel-
oped is to be executed – as well as the [auxiliary ] software “under which” that
new software is performing (operating system, database system, data communi-
cations software, etc.). First requirements development proceeds in three stages:
(i) a domain requirements stage in which requirements that can be expressed
sôlely using terms from the domain are developed; (ii) an interface requirements
stage in which requirements that can be express using terms from both the
domain and the machine are developed; and (iii) a domain requirements stage in
which requirements that can be expressed solely using terms from the machine
are developed. [17] shows how domain requirements stage can be decomposed,
sequentially, into projection, initialisation, determination, extension and fitting
steps. For details on this and more we refer to [17].

8.2.8 Software Design
[4, 2005-2006 ] shows how to further develop software from their requirements
prescriptions.

26 This characterisation clearly lacks sufficient formality. We refer to Sect. 8.2.16 below.
27 – as suggested by Michael A. Jackson [43].



204 D. Bjørner

8.2.9 Continuity
As remarked in Sect. 3.1 on page 11 the calculi of this paper do not address
the issue of modelling continuous dynamic phenomena. This is clearly a weak-
ness. The Integrated Formal Methods conferences [45] initially set out to spur
research aimed at amalgamating continuous and discrete specifications. Not
much progress has been made, except: TLA+ offers some form of hybrid sys-
tems [46]; Hybrid Event-B [2] likewise; and for Back’s Action Systems there
is a hybrid version [1].28 We also refer to [59,60].

8.2.10 Modelling Concurrency
We have used Hoare’s CSP [39] to model concurrency. There are other, in this
case, graphical languages for modelling concurrency. We refer to Chaps. 12–15
of [5]. In these chapters I treat the modelling of four graphical specification
languages: Petri Nets [52], Message Sequence Charts [40,41], State Charts
[35] and Live Sequence Charts [29,37]. All of them are fascinating. Their
graphics appeal to many of us – so I recommend to use them informally, aside,
for the textual modelling shown in this paper. But they do not “merge” into
formal, textual specification languages, like VDM-SL, RSL, Z, Alloy.

8.2.11 Modelling Temporality
Although time is modelled, as part of internal attribute properties, we have not
shown the modelling of temporality of behaviours. In Chap. 15 of [5] I show
how to merge Duration Calculus, DC [61] with RSL-Text. Another fascinating
such formal specification language is Leslie Lamport ’s TLA+: Temporal Logic
of Actions [47].

8.2.12 Domain Specific Languages
A domain specific language, DSL, is a computer programming language spe-
cialised to a particular application domain. What we have shown here is not
a DSL. Examples of DSLs could be programming languages for expressing cal-
culations for railways or financial services or hospitals or other. [27, Actulus]
reports on an actuarial programming language for life insurance and pensions.
To give semantics for a specific DSL one invariably specifies a domain model. So
that, then, is a rôle for domain modelling.

8.2.13 Three Rôles for Domain Models
There are three rôles for domain models: (i) to just simply study and understand
a domain – irrespective of any ensuing software for that domain; (ii) to serve
as a basis for the development of a DSL; and (iii) to serve as a basis for the
development of [other] software for the domain.

28 I acknowledge the mentioning of these three references to one of the reviewers of the
resent paper.



Domain Modelling: A Foundation for Software Development 205

8.2.14 How Comprehensive Should a Domain Model Be?
Clearly domain models for any reasonable domain can potentially be very large
in terms of pages of description. So the question is: how much of the “domain at
large” should be included in a domain description ?. We cannot, of course, give
a general answer to that question. But we can say that the domain model must
at least encompass those domain entities that will, or might, be referred to in
a requirements prescription. That is, if it is found when developing a domain
requirements29 of a requirements prescription, that terms thought to be of the
domain was not covered by the domain description, then, obviously, that descrip-
tion must be augmented.

We do expect there to be, eventually, available for general use, a few, domain
models for selected domains.

For physics Newton and Leibniz30 has given us a calculus with which to –
more or less quickly – establish a model for some physical phenomenon. When
control engineers then wish to set up some automatic control system for a phe-
nomenon they first apply the Newton/Leibniz calculi to model the phenomenon,
then, from that, somehow derive a control model. We advocate a similar app-
roach, as already hinted at in our expressing the Triptych Dogma (Page 1).

The road transport domain modelled in Appendix 7 is one such domain.
It has here been expressed in a way, devoid of any specific orientation. Based
on the model of Appendix 7 we can envisage some such orientations as a road
pricing domain, a cadastral31 map domain, a road development domain, a road
maintenance domain, etc.

8.2.15 Domain Laws
Physics has excelled in our understanding the world we live in by its laws and by
the calculi it has spawned – calculi that enables us to explain what has happened
and to predict what will or might happen. Domain modelling has already lead
to some domain laws – such as illustrated by for example intentional pulls,
cf. Sect. 5.4 on page 20 (approx. half a page) and Appendix 7.6 on page 30 (two
pages). The study of intentional pull in domains has just started! Its counterpart
in physics, gravitational pull, is “behind” many laws of physics.

8.2.16 A Domain Modelling Science?
A science of domain modelling systematically builds and organizes knowledge
about the ways and means of modelling domains such that that knowledge can
explain what these models express. As an example of there not yet being a
sufficient scientific knowledge of domains we refer to our informal coverage of
the concept of domain facets, cf. footnote 26 on page 38. A formal understand-
ing of domains and what “facet”–distinguishes them, could help sharpen the

29 Cf. Sect. 8.2.7 on the previous page.
30 https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton calculus controversy.
31 https://eng.gst.dk/danish-cadastre-office/cadastral-map.

https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton_calculus_controversy
https://eng.gst.dk/danish-cadastre-office/cadastral-map


206 D. Bjørner

characterisation of Sect. 8.2.5 on page 38. Such a formal understanding was first
reported in [12, 2014 ]. Of more specific nature we suggest, next, studies of some
specific issues32.

(i) An “integrated” form of use of differential equations with the present RSL+,
i.e., the extension of our approach to domain modelling to cover more specif-
ically issues of continuity.

(ii) A “further detailed” understanding of the concept of intentional pull.
(iii) A study of a possible Calculus of Perdurants.
(iv) A study of examples of domain models with an emphasis on human inter-

action.
(v) Formal models of the analysis predicates and functions and the description

functions, cf. [12].

Acknowledgment. A referee of this paper, many thanks to all five (!), suggested the
following, slightly edited acknowledgment:

Laudatio: Prof. He Jifeng
– He Jifeng’s work on a Unifying Theory of Programming, UTP – a monumental

contribution – is seen as a domain model for programming languages covering a wide
range of programming language paradigms.

– UTP is about unifying axiomatic, denotational and operational semantics all of
which can be expressed in RSL. Hence, RSL could be used as a concrete language to
define a unifying theory of programming.

– One could combine domain modelling and UTP in order to systematically develop
and define formal domain specific languages, DSLs. It might result in a new unifying
theory of DSLs.
I fully concur.

I gratefully acknowledge the opportunity given to me, to write this paper, during my
PhD lectures, October–November 2022, at the TU Wien Informatics, Vienna, Austria,
by Prof. Laura Kovacs. I also gratefully acknowledge comments by Klaus Havelund,
Kazuhiro Ogata and Wolfgang Reisig. Finally, many thanks to Jonathan Bowen for his
indefatigable work on getting this paper in proper form and this volume finished.

References

1. Back, R.J., Petre, L., Porres, I.: Generalizing action systems to hybrid sys-
tems. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, pp.
202–213 (2000). https://doi.org/10.1007/3-540-45352-0 17, www.researchgate.
net/publication/221654900 Generalizing Action Systems to Hybrid Systems

2. Banach, R., Butler, M.: Modelling hybrid systems in event-B and hybrid event-B:
a comparison of water tanks. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM
2016. LNCS, vol. 10009, pp. 90–105. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47846-3 7

3. Bjørner, D.: UNU/IIST reports on domain modelling. Research Report, UNU/IIST
(1995–1997), UNUIIST:46: New Software Technology Development, UNUIIST:47:

32 https://informatics.tuwien.ac.at/.

https://doi.org/10.1007/3-540-45352-0_17
www.researchgate.net/publication/221654900_Generalizing_Action_Systems_to_Hybrid_Systems
www.researchgate.net/publication/221654900_Generalizing_Action_Systems_to_Hybrid_Systems
https://doi.org/10.1007/978-3-319-47846-3_7
https://doi.org/10.1007/978-3-319-47846-3_7
https://informatics.tuwien.ac.at/


Domain Modelling: A Foundation for Software Development 207

Software Support for Infrastructure Systems, UNUIIST:48: Software Systems Engi-
neering - From Domain Analysis to Requirements Capture [- an Air Traffic Con-
trol Example], UNUIIST:58: Infrastructure Software Systems, UNUIIST:59: New
Software Development, UNUIIST:60: Models of Enterprise Management: Strat-
egy, Tactics & Operations - Case Study Applied to Airlines and Manufacturing,
UNUIIST:61: Federated GIS+DIS-based Decision Support Systems for Sustain-
able Development - a Conceptual Architecture, UNUIIST:96: Models of Financial
Services & Industries

4. Bjørner, D.: Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Spec-
ification of Systems and Languages; Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, Hei-
delberg (2006)

5. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, Heidelberg
(2006). Chapters 12–14 are primarily authored by Christian Krog Madsen. See [6,
8]

6. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
Qinghua University Press (2008)

7. Bjørner, D.: On mereologies in computing science. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 47–70. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1 3, www.imm.dtu.dk/
∼dibj/bjorner-hoare75-p.pdf

8. Bjørner, D.: Chinese: Software Engineering, Vol. 2: Specification of Systems and
Languages. Qinghua University Press (2010). Translated by Dr Liu Bo Chao et al

9. Bjørner, D.: Domain science & engineering - from computer science to the sciences
of informatics, part I of II: the engineering part. Kibernetika sistemny analiz 2(4),
100–116 (2010)

10. Bjørner, D.: Domain science & engineering - from computer science to the sciences
of informatics part II of II: the science part. Kibernetika sistemny analiz 2(3),
100–120 (2011)

11. Bjørner, D.: A rôle for mereology in domain science and engineering: to every
mereology there corresponds a λ–expression. In: Calosi, C., Graziani, P. (eds.)
Mereology and the Sciences. SL, vol. 371, pp. 323–357. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05356-1 12

12. Bjørner, D.: Domain analysis: endurants - an analysis & description process model.
In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software.
LNCS, vol. 8373, pp. 1–34. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54624-2 1, www.imm.dtu.dk/ dibj/2014/kanazawa/kanazawa-p.pdf

13. Bjørner, D.: Manifest domains: analysis & description. Formal Aspects Com-
put. 29(2), 175–225 (2017). www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf.
Accessed 26 July 2016

14. Bjørner, D.: To every manifest domain a CSP expression.
J. Log. Algebraic Methods Program. 1(94), 91–108 (2018).
www.imm.dtu.dk/ dibj/2016/mereo/mereo.pdf

15. Bjørner, D.: slAn assembly plant domain - analysis & description. Technical report,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark (2019).
www.imm.dtu.dk/ dibj/2021/assembly/assemblyline.pdf

16. Bjørner, D.: Domain analysis & description - principles, techniques and mod-
elling languages. ACM Trans. Software Eng. Methodol. 28(2), 68p (2019).
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf

https://doi.org/10.1007/978-1-84882-912-1_3
www.imm.dtu.dk/~dibj/bjorner-hoare75-p.pdf
www.imm.dtu.dk/~dibj/bjorner-hoare75-p.pdf
https://doi.org/10.1007/978-3-319-05356-1_12
https://doi.org/10.1007/978-3-642-54624-2_1
https://doi.org/10.1007/978-3-642-54624-2_1
https://www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf
https://www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
https://www.imm.dtu.dk/~dibj/2016/mereo/mereo.pdf
https://www.imm.dtu.dk/~dibj/2021/assembly/assemblyline.pdf
https://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf


208 D. Bjørner

17. Bjørner, D.: Domain Science & Engineering - A Foundation for Software Devel-
opment. EATCS Monographs in Theoretical Computer Science. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-73484-8. A revised version of this book
is [21]

18. Bjørner, D.: Rigorous Domain Descriptions. A compendium of draft
domain description sketches carried out over the years 1995–2021 (2021).
www.imm.dtu.dk/ dibj/2021/dd/dd.pdf

19. Bjørner, D.: Documents: a basis for government. In: United Natonans Inst.,
Festschrift for Tomas Janowski and Elsa Estevez, Guimaraes, Portugal (2022).
www.imm.dtu.dk/ dibj/2022/janowski/docs.pdf

20. Bjørner, D.: Domain modelling - a primer (2023). A short version of [21]. xii+227
pages

21. Bjørner, D.: Domain science & engineering - a foundation for software development
(2023). Revised edition of [17]. xii+346 pages

22. Bjørner, D.: Pipelines: a domain science & engineering description. In: FSEN 2023:
Fundamentals of Software Engineering, 3–5 May 2023, Teheran, Iran (2023). www.
imm.dtu.dk/∼dibj/2023/tehran/tehran.pdf

23. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978). https://doi.org/10.1007/3-
540-08766-4

24. Bjørner, D., Jones, C.B. (eds.): Formal Specification and Software Development.
Prentice-Hall, Hoboken (1982)

25. Bjørner, D., Nest, O.N. (eds.): Towards a Formal Description of Ada. LNCS, vol.
98. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10283-3

26. Casati, R., Varzi, A.C.: Parts and Places: The Structures of Spatial Representation.
MIT Press, Cambridge (1999)

27. Christiansen, D.R., Grue, K., Niss, H., Sestoft, P., Sigtryggsson, K.S.: Actulus
modeling language - an actuarial programming language for life insurance and pen-
sions. Technical report, edlund.dk/sites/default/files/Downloads/paper actulus-
modeling-language.pdf, Edlund A/S, Denmark, Bjerreg̊ards Sidevej 4, DK-2500
Valby. (+45) 36 15 06 30. edlund@edlund.dk (2015). http://www.edlund.dk/en/
insights/scientific-papers. This paper illustrates how the design of pension and
life insurance products, and their administration, reserve calculations, and audit,
can be based on a common formal notation. The notation is human-readable
and machine-processable, and specialised to the actuarial domain, achieving great
expressive power combined with ease of use and safety

28. Clemmensen, G.B., Oest, O.N.: Formal specification and development of an Ada
compiler - a VDM case study. In: Proceedings of the 7th International Conference
on Software Engineering, 26–29 March 1984, Orlando, Florida, pp. 430–440. IEEE
(1984)

29. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. For-
mal Methods Syst. Design 19, 45–80 (2001). Early version appeared as Weizmann
Institute Technical report CS98-09, April 1998. An abridged version appeared in
Proceedings of the 3rd IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS 1999), pp. pp. 293–312. Kluwer
(1999)

30. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques
in Software Development. Cambridge University Press, Cambridge (1998). iSBN
0-521-62348-0

https://doi.org/10.1007/978-3-030-73484-8
https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf
https://www.imm.dtu.dk/~dibj/2022/janowski/docs.pdf
www.imm.dtu.dk/~dibj/2023/tehran/tehran.pdf
www.imm.dtu.dk/~dibj/2023/tehran/tehran.pdf
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/3-540-10283-3
http://www.edlund.dk/en/insights/scientific-papers
http://www.edlund.dk/en/insights/scientific-papers


Domain Modelling: A Foundation for Software Development 209

31. Futatsugi, K., Nakagawa, A., Tamai, T. (eds.): CAFE: An Industrial-Strength
Algebraic Formal Method. Elsevier, Amsterdam (2000). Proceedings from an April
1998 Symposium, Numazu, Japan

32. George, C.W., et al.: The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead (1992)

33. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series, Prentice-Hall,
Hemel Hampstead (1995)

34. Harel, D.: Algorithmics –The Spirit of Computing. Addison-Wesley (1987)
35. Harel, D.: StateCharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
36. Harel, D.: The Science of Computing – Exploring the Nature and Power of Algo-

rithms. Addison-Wesley (1989)
37. Harel, D., Marelly, R.: Come, Let’s Play - Scenario-Based Programming Using

LSCs and the Play-Engine. Springer, Cham (2003). https://doi.org/10.1007/978-
3-642-19029-2

38. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

39. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, Hoboken (1985). Published electroni-
cally: usingcsp.com/cspbook.pdf (2004)

40. ITU-T: CCITT Recommendation Z.120: Message Sequence Chart (MSC) (1992)
41. ITU-T: ITU-T Recommendation Z.120: Message Sequence Chart (MSC) (1999)
42. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT

Press, Cambridge (2006). iSBN 0-262-10114-9
43. Jackson, M.A.: Software Requirements & Specifications: A Lexicon of Practice,

Principles and Prejudices. ACM Press, Addison-Wesley, Reading (1995)
44. Jackson, M.A.: Program verification and system dependability. In: Boca, P., Bowen,

J. (eds.) Formal Methods: State of the Art and New Directions, pp. 43–78. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-736-3 2

45. Araki, K., et al. (eds.): IFM 1999–2013: Integrated Formal Methods. LNCS, vols.
1945, 2335, 2999, 3771, 4591, 5423, 6496, 7321, 7940, etc. Springer, Cham (1999–
2019)

46. Lamport, L.: Hybrid Systems. In: Rischel, H., Ravn, A.P. (eds.) Workshop on
Theory of Hybrid Systems. Lecture Notes in Computer Science, Springer (1992),
https://lamport.azurewebsites.net/pubs/lamport-hybrid.pdf

47. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2002)
48. Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models

to Software Specifications. Wiley, Hoboken (2009)
49. Little, W., Fowler, H., Coulson, J., Onions, C.: The Shorter Oxford English Dictio-

nary on Historical Principles. Clarendon Press, Oxford (1973, 1987). Two volumes
50. Luschei, E.: The Logical Systems of Leśniewksi. North Holland, Amsterdam, The

Netherlands (1962)
51. McCarthy, J.: Towards a mathematical science of computation. In: Popplewell, C.

(ed.) IFIP World Congress Proceedings, pp. 21–28 (1962)
52. Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien, 1st

edn. Leitfäden der Informatik, Vieweg+Teubner (2010). 248 p.; ISBN 978-3-8348-
1290-2

53. Sørlander, K.: Det Uomgængelige - Filosofiske Deduktioner [The Inevitable - Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright], 168 p. Munks-
gaard · Rosinante, Copenhagen (1994)

https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2
http://usingcsp.com/cspbook.pdf
https://doi.org/10.1007/978-1-84882-736-3_2
https://lamport.azurewebsites.net/pubs/lamport-hybrid.pdf


210 D. Bjørner

54. Sørlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity], 200
p. Munksgaard · Rosinante, Copenhagen (1997)

55. Sørlander, K.: Den Endegyldige Sandhed [The Final Truth], 187 p. Rosinante,
Copenhagen (2002)

56. Sørlander, K.: Indføring i Filosofien [Introduction to The Philosophy], 233 p. Infor-
mations Forlag, Copenhagen (2016)

57. Sørlander, K.: Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær,
Slagelse (2022)

58. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996). http://www.comlab.ox.
ac.uk/usingz.html

59. Xie, W., Xiang, S., Zhu, H.: A UTP approach for rTiMo. Formal Aspects Comput.
30(6), 713–738 (2018). https://doi.org/10.1007/s00165-018-0467-1

60. Xie, W., Zhu, H., QiWen, X.: A process calculus BigrTiMo of mobile systems and
its formal semantics. Formal Aspects Comput. 33(2), 207–249 (2021)

61. Zhou, C.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-
time Systems. Monographs in Theoretical Computer Science. An EATCS Series,
Springer, Cham (2004). https://doi.org/10.1007/978-3-662-06784-0

http://www.comlab.ox.ac.uk/usingz.html
http://www.comlab.ox.ac.uk/usingz.html
https://doi.org/10.1007/s00165-018-0467-1
https://doi.org/10.1007/978-3-662-06784-0

	Domain Modelling: A Foundation for Software Development
	The Triptych Dogma
	1 Introduction
	1.1 What is a Domain?
	1.2 Non-computable and Computable Specifications
	1.3 Formal Method and Methodology
	1.4 From Programming Languages to Domains
	1.5 A Review
	1.6 An Overview
	1.7 RSL, RSL-text and RSL+
	1.8 A Computer Science Philosophy
	1.9 Previous Work
	1.10 Structure of Paper

	2 Universe of Discourse
	3 External and Internal Qualities
	3.1 Predicate Analysis of External Qualities of Endurants
	3.2 Functional Analysis of External Qualities of Endurants
	3.3 Descriptions of External Qualities of Endurants
	3.4 Endurant States
	3.5 An Explication, I

	4 Space and Time
	4.1 Space
	4.2 Time

	5 Internal Qualities
	5.1 Unique Identification
	5.2 Mereology
	5.3 Attributes
	5.4 Intentional Pull
	5.5 A Proof-Theoretic Explication, II

	6 Perdurants
	6.1 Channels
	6.2 Actors
	6.3 State Access and Updates
	6.4 Behaviours
	6.5 Domain Initialisation
	6.6 End of Domain Modelling Presentation

	7 A Road Transport Domain Example
	7.1 Naming and Sketch of Domain
	7.2 Endurants: External Qualities
	7.3 Unique Identifiers
	7.4 Mereology
	7.5 Attributes
	7.6 Intentional Pull
	7.7 Perdurants
	7.8 Domain Initialisation
	7.9 Verification

	8 Closing
	8.1 The Current Calculi
	8.2 Some Issues

	References


