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Abstract. This paper is on the application of formal modelling in CSP
and associated verification to decision making in decentralised systems.
In particular we look at the problem of ensuring that decentralisation
cannot allow two separate and apparently valid decisions to arise when
exactly one is required. This is motivated by an approach to blockchain
consensus where a primary choice mechanism may need to be supple-
mented by a back-up that comes into action if the primary one is seem-
ingly blocked.
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Dedication to He Jifeng on the occasion of his 80th birthday:

Jifeng and I worked together for many years at Oxford developing theories
of verification and making them usable. Indeed we have gone on to use them
successfully in many contexts, always rooted in algebra and abstraction. In this
paper we show how these same two ideas can improve understanding in a rela-
tively new domain—blockchain.
Bill Roscoe

1 Introduction

Consensus is a classical problem in the area of distributed, decentralised sys-
tems. It has regained the attention of the scientific community with the advent
of blockchains. In these, consensus is used to ensure that participants in this
distributed system agree what is the next block in this ever-extending chain
of blocks; an initial genesis block is initially agreed amongst participants. This
agreement on the next block in the chain is usually referred to as the finality
problem, namely, how to determine the next (agreed-upon) final block. Here,
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final means that it is immutable and will have that position in the blockchain
for ever; it does not mean that it is the last block in the chain. A block in such a
chain represents a sequence of transactions, each of which causes the state of the
blockchain to evolve. So, in broad terms, blockchains are transaction-processing
systems possessing an integrity-protected transaction history.

In this paper, we propose the concept of a hierarchical consensus machine as a
means to solve the finality problem efficiently. In our formulation, this machine is
composed of two consensus machines, say G and H, each of which is implemented
by a distributed collection of agents, and it decides on a value that is agreed upon
by (most of) its (well-behaved) agents. The number agreeing will have reached
some pre-agreed threshold. While G is designed to be safe but not live, H is
both safe and live. Broadly speaking, safety means that the machine decides on
a single correct value, whereas liveness means that the machine eventually comes
to a decision. Our definition of correct here is that it is the conclusion of one or
more good agents who always follow the rules.

As part of our hierarchical machine, we also propose a handover protocol that
transfers control from G to H whenever G is unable to come to a (timely) deci-
sion; this protocol ensures the liveness of the hierarchical machine as a whole. We
create this concept by first introducing a didactic account of consensus machines
using a unitary consensus machine. Furthermore, we propose a type of stochastic
reasoning that is a useful mathematical tool to establish bounds on the number
of participants in the agreement to achieve safety and liveness. In fact, the rea-
son for having a machine G that is only safe as part of our hierarchical machine
is that we can demonstrate with this type of stochastic reasoning that a much
smaller number of participants are required to achieve safety alone as compared
to machines that are both safe and live. The smaller number of participants
should allow for a more efficient consensus protocol. We count on the incentive
structures of blockchains and on the fact that ultimately H will reach a consensus
to motivate malign agents to cooperate with good agents to reach a consensus
via G. Malign agents’ misbehaviour is the reason why G is not dependably live.
Thus, persuading them to behave in a collaborative way should make G (effi-
ciently) come to a decision more often. We formalise our notion of a hierarchical
consensus machine using the CSP process algebra. The notions that we present
here could be adapted to the general problem of consensus provided they are
used in a similar context. In this paper we concentrate solely on this binary G/H
case, but evidently this is open to extension.

As blockchains are being adopted by many industry sectors, finding efficient
consensus protocols in this context has become a relevant research challenge.
Our hierarchical consensus machine is a proposal in this direction that relies on
an innovative type of stochastic reasoning and on a handover protocol. Taking
advantage of incentive structures to motivate malign agents, who may delib-
erately seek to undermine this protocol, to behave appropriately is a peculiar
aspect of consensus mechanisms in the area of blockchains. Our handover pro-
tocol is an important motivating factor for nudging malign agents in the right
direction. It is conceived so that malign agents can delay a decision by our hier-
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archical consensus machine but they cannot prevent it from eventually coming
to one.

It is also important in this regard that the protocol guarantees only a single
decision, because without this the malign agents might manipulate it to induce a
fork. A blockchain fork occurs when two contradicting histories—i.e. final blocks
on the same height—are simultaneously accepted.

Conceptually this seems relatively clear. The problems come from getting it
to work securely in the decentralised world of agents, some of whom are malign.
We identify the following issues:

A. How to create a safe but not necessarily live consensus machine? This means
identifying a set of pickets (i.e. block-producing agents) and coming up with a
model of when there is sufficient evidence among these for both them to prove
that a consensus has been achieved—and similarly agree that no consensus
exists without such evidence.

B. Understanding the requirements for a consensus machine to be safe. This
involves understanding how malign agents can overtly misbehave to try and
undermine the consensus protocol.

C. Understanding the requirements for a consensus machine to be live.
This involves understanding how malign agents can misbehave via non-
participation.

D. How to create a safe and live consensus machine? We would expect the liveness
to come from involving many more agents in the process—in comparison to
obtaining safety alone—so that it is effectively impossible for there to be
enough malign ones to block the machine’s progress. We will find that the
combinatorics of building a safe and live system are a natural—and naturally
more demanding—extension of those for building a safe one.

This paper is organised as follows. In the next section, we introduce the neces-
sary background to make the paper self-contained. We then introduce a didactic
notion of a unitary consensus machine in Sect. 3, followed by the description of a
stochastic model to reason about consensus decisions in Sect. 4. We present and
formalise a notion of hierarchical consensus machines in Sect. 5, discuss related
work in Sect. 6, and present our concluding remarks in Sect. 7.

2 Background

2.1 Blockchains

Blockchains were initially proposed as a decentralised way to implement digital
currencies and prevent double spending, i.e. the possibility that the owner of
some digital currency could spend it more than once [22]. However, they have
evolved into generic decentralised auditing systems that do much more than just
prevent double spending. For instance, with the advent of smart contracts—
programs that are executed in the context of a blockchain—a developer can
define by means of a program how transactions addressed to that smart contract
are to be processed [4].



Formalising Consensus in the Presence of Malign Agents 139

A blockchain is a decentralised stateful transaction processing system, some-
times referred to also as a distributed ledger. It receives transactions from its
stakeholders, decides on which of those are valid, and performs alterations to its
state that record the effects of these transactions. As a decentralised system, mul-
tiple agents collaborate to implement this behaviour. In this context, the term
blockchain refers not just to the state comprising the transactions and blocks,
but includes the entire system including the agents operating on the state.

A blockchain orders and stores valid transactions into blocks which are them-
selves ordered, giving rise, ultimately, to a chain of blocks representing the his-
tory of the blockchain. In practice, however, during its operation, a blockchain—
or rather its agents—manipulate a block tree.

A block tree is a directed, finite and acyclic rooted tree defined by a pair
(V,E) where V is a set of blocks and E is a set of backward links—the root
(genesis block) is the only block without an outgoing link. The backward links
are implemented by embedding the cryptographic hash of its predecessor block
in the header of each block. A backward link exists from block B2 to block B1 iff
hash pointer(B2) = hash(B1), where hash pointer() extracts the embedded
backward link from a block, and hash() is the cryptographic hash function used
by the blockchain. This results in a unique path from every block back to the
root (B0), because (by the properties of the hash function) it is infeasible to
construct a false predecessor block with the same hash.

However, because it is possible to construct many different valid successor
blocks to any existing block, it is necessary for the blockchain’s agents to have
a mechanism to determine unambiguously which is the “true” successor to any
given block. The motivation for this paper is to provide some machinery to assist
the creation of accurate consensus mechanisms.

2.2 CSP and Its Semantics

Note: In this paper we use the machine-readable ascii version of CSP syntax
(CSPM ) throughout, as opposed to the typeset blackboard syntax and symbols
commonly used in books and papers.

CSP is based on instantaneous actions handshaken between a process and
its environment, whether that environment consists of processes it is interacting
with or, some notional external observer. It enables the modelling and analysis of
patterns of interaction. The books [14,27,28] all provide thorough introductions
to CSP. The main constructs that we will be using in this paper are set out
below.

– The processes STOP, SKIP and DIV respectively do nothing, terminate imme-
diately with the signal � and diverge by repeating the internal action τ .
RUN(A) and CHAOS(A) can each perform any sequence of events from A, but
while RUN(A) always offers the environment every member of A, CHAOS(A)
can nondeterministically choose to offer just those members of A it selects,
including none at all.
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– a -> P prefixes P with the single communication a which belongs to the set Σ
of normal visible communications. Similarly [] x : A @ x -> P(x) (repli-
cated external choice) offers a choice over A and then behaves accordingly.

– CSP has several choice operators. P [] Q and P |~| Q respectively offer the
environment the first visible events of P and Q, and make an internal decision
via τ actions whether to behave like P or Q.
The asymmetric choice operator P [> Q offers the initial visible choices of P
until it performs a τ action and opts to behave like Q. In the cases of P [] Q
and P [> Q, the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[ R ]] (renaming) behaves like P except that whenever P performs an
action a, the renamed process must perform some b that is related to a under
the relation R. R is specified using the CSPM mapping syntax.

– P [| A |] Q is a parallel operator under which P and Q act independently
except that they have to agree (i.e. synchronise or handshake) on all commu-
nications in A. A number of other parallel operators can be defined in terms
of this, including P ||| Q = P [||] Q in which no synchronisation happens
at all.

There are also other operators such as P ; Q (sequential composition), P /\ Q
(interrupt) and P [| A |> Q (throwing an exception) for passing control from
one process P to a second one. P /\ Q hands over control when Q performs a
visible action, so that the handover if instigated by Q. In P [| A |> Q it is
instigated by P performing an exception event a from the set A.

It is always asserted that the meaning, or semantics, of a CSP process is the
pattern of externally visible communication it exhibits. As shown in [27,28], CSP
has several styles of semantics, that can be shown to be appropriately consistent
with one another. In this paper, we are concerned with behavioural semantics:
CSP processes are identified with sets of observations that might be made from
the outside. The best known behavioural models of CSP are based on the fol-
lowing types of observation: Traces are sequences of visible communications a
process can perform. Failures are combinations (s,X) of a finite trace s and a set
of actions that the process can refuse in a stable state reachable on s. A state is
stable if it cannot perform τ . Divergences are traces after which the process can
perform an infinite uninterrupted sequence of τ actions, in other words diverge.
The models are then:

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– FD in which it is modelled by its sets of failures and divergences, both extended

by all extensions of divergences: it is divergence strict.
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2.3 FDR

FDR [10,26–28] is a refinement checker between finite-state processes defined in
CSP. First created in the early 1990’s it has been regularly updated since. The
latest version is FDR4.1

It uses CSPM , the machine-readable version of CSP, which has been extended
with a functional programming language related to Haskell. This enables the user
to define complex networks and data operations succinctly, and to create func-
tions that, given abstract representations of structures or systems, can auto-
matically generate CSP networks to implement and check them. Perhaps the
best-known example of this is the Security Protocol checker Casper [21] which,
given an abstract representation of a cryptographic protocol and some security
objectives for it, generates a CSP script which checks to see if the objectives are
met. In a similar vein, compilers have been written from other notations to CSP
such as Statecharts [13] and shared-variable programs (see Chapters 18 and 19
of [28]). A survey of the most important practical applications of FDR can be
found in [2].

FDR is most often used to check refinements of the form Spec [X= Impl,
where Spec is a process representing a specification in one of the standard CSP
models X, usually traces, stable failures or failures-divergences. Impl is a CSP
representation of the system being checked. To check whether a process Impl
satisfies a particular property, Spec is constructed to represent the most general
process (in the relevant model) exhibiting the required property.

FDR supports a number of techniques for attacking the state explosion prob-
lem, including hierarchical compression and symmetry reduction [11]. The algo-
rithms underpinning FDR are set out in [10,27–29].

3 The Unitary Consensus Machine

One of the main problems in designing a blockchain is devising how to select a
unique successor for a given block; the initial (often termed genesis) block is pre-
agreed between agents and assumed to exist, however there may be more than
one plausible candidate for any subsequent block. This problem is often solved
by a protocol that determines whether a block is final in blockchain terminology.
Typically, the finality of a block is determined by a universally known, though
potentially randomly selected, committee of agents, which we call pickets, that
engage in a protocol by which they reach a consensus on the successor of a
given block. We call such a system composed of interacting pickets that solves
the problem of determining the finality of a block a consensus machine. Since
blockchains are systems intended to cope with adversarial behaviour (coming
from untrusted parties), these machines are designed to tolerate a certain pro-
portion of malign agents. That is, the expected overall behaviour emerges from
the interaction of pickets in spite of possible misbehaviour by malign agents

1 Available at https://cocotec.io/fdr/.

https://cocotec.io/fdr/
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amongst them. The notions described here can also be applied to the problem
of reaching consensus for more general distributed systems.

We first illustrate how a unitary consensus machine works, i.e., how a single
set of pickets can interact to reach consensus. Later, we build on this illustration
to propose our hierarchical consensus machine. The informal description that
we provide here illustrates the mechanism used by the hierarchical protocol we
propose later.

Let P be a set of pickets, D be a set of possible decision values that the
pickets are trying to reach consensus on, and M ⊆ P(P ) the decision sets such
that agreement by any set m ∈ M commits the system to the agreed decision,
where M is superset closed and contains P and P(S) gives the power set of S.
Broadly speaking, the unitary consensus machine works as follows. For a given
run of this machine P , M , and D are fixed and well-known. Each picket p ∈ P
locally decides on a single value vp ∈ D and broadcasts this chosen value. We
assume that pickets have well-known public keys as part of agreed cryptographic
signature schemes so they can create unforgeable digitally signed messages. The
set mo,v denotes the set of pickets that have chosen value v according to the
messages received by observer o. If mo,v ∈ M , observer o knows that the machine
has decided on value v. In this paper, we focus on a restricted scenario involving
a single run of the machine, i.e., having pickets decide on a value a single time.
There is no issue in extending this for a series of decisions where each is properly
made before the next one starts.

We note that since the evidence for a decision will be an agreed and signed
decision by sufficient agents for some m ∈ M , no-one can dispute a properly
formed one. We require that whatever decision is made is agreed with by at
least one benign agent that follows all the rules: this will be a property of M .

We require well-behaved consensus machines to additionally respect two
properties:

– Safety: For observers o1, o2 and v1, v2 ∈ D, if mo1,v1 ∈ M and mo2,v2 ∈ M ,
it must be the case that v1 = v2.

– Liveness: After observing the consensus machine run for stabilisation time
t, an observer o is able to construct a set mo,v such that mo,v ∈ M .

Intuitively speaking, the safety property forbids the machine from deciding
on two distinct values (on the same run), whereas the liveness property ensures
that the machine eventually decides on a value. Note that the liveness property
implicitly accounts for enough pickets agreeing on a given value but also for their
decision being conveyed in a timely manner.

We assume that malign agents can deviate from the expected picket
behaviour arbitrarily. For instance, they could send as their chosen value v1 to
observer o1 while sending a distinct value v2 to observer o2—this double choice
is a common Byzantine behaviour expected of such malign agents.

The safety property depends on M considering the benign and malign agents
in P . For instance, if sets m1,m2 ∈ M are crafted so that there is no benign
picket that is part of both m1 and m2, these two committees could decide on two
distinct values on the same run. Thus, (i) any two sets in m1,m2 ∈ M must have
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an overlapping benign picket to achieve the safety property. We can show (i) by
contradiction. Let us assume that sets mo1,v1 ∈ M and mo2,v2 ∈ M with v1 �= v2
were constructed. Then, by (i), p′ ∈ mo1,v1 and p′ ∈ mo2,v2 , which implies that
the benign picket p′ choose two values v1 and v2, a contradiction.

To ensure liveness, one must assume or enforce that: (a) there is some sta-
bilisation time by which point messages from benign pickets are delivered; and
(b) a set m ∈ M of benign pickets chooses the same value (in time for sta-
bilisation); the stabilisation time is required to move away from impossibility
results [9]. While (b) ensures a decision is made, (a) ensures that an observer
can witness this decision. For our minimal unitary consensus machine presented
in this section, we assume that such a set m exists as pickets are making their
choice. In practice, however, if no set m ∈ M could be constructed—when, for
instance, pickets choose different values—the protocol would have a recovery
mechanism by which pickets would choose another value to try and build such
a m; the protocol would be constructed so that pickets converge into an agreed
value after some time.

It is crucial to understand the dichotomy between safety and liveness in the
setting we study: one can be more tolerant of malign pickets’ involvement when
crafting an M that is safe but not live as opposed to one that is safe and live; this
observation follows from properties (i) and (b). There are decision sets M that
abide by property (i) and yet cannot satisfy (b). For instance, we could have an
M that abide by (i) but all its member include a malign picket. In these cases,
the participation of benign nodes in the members of such an M ensure decisions
are safe. However, the presence of malign pickets may cause a decision to never
be reached as they can refuse to participate in the consensus protocol. This
observation is one of the main principles guiding the design of our hierarchical
consensus machine.

In the context of blockchains, a consensus machine is meant to determine
the true/canonical chain by repeatedly picking successor blocks—and pruning
the block tree in the process. These blocks, and the transactions that they con-
tain, represent transitions in the state of the blockchain. They can account, for
instance, for a transfer of digital currency or the execution of some code (i.e.
via a smart contract). Thus, assuming that these transactions are deterministic,
the consensus machine also determines the canonical sequence of states of the
blockchain.

Blockchains are frequently set up with incentive and penalty structures that
are designed to persuade the malign agents to follow the rules. We categorise
malign behaviour as follows:

1. Overt malign behaviour. Making contributions to the central discussions and
protocols of a chain or other decentralised system that will be seen and recog-
nised as malign. Unless this wins votes or similar, it will quickly be recognised
and the perpetrator punished.

2. Covert malign behaviour. Producing non-compliant structures that are kept
hidden and only perhaps revealed later. For example developing a fork along-
side the true chain.
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3. Non-participation. Failing to make contributions that are expected of a good
agent and thereby denying some correct action the majority it needs. The
main issues with this is that it is harder to penalise because a good agent may
encounter communication failures, a phenomenon that can also mean confu-
sion about how an apparently non-participating agent should be interpreted.
It is fairly standard to make gossiping assumptions about communications in
blockchains to resolve such confusion.

The sorts of incentive structures implemented by blockchains are another
important factor that guided the design of our hierarchical consensus machine. In
particular, non-participation failures may cause the need to transfer control from
one unitary consensus machine to another, in order to achieve overall liveness.

4 Stochastic Decisions

The security analysis of blockchains is usually predicated upon some assumed
distribution of malign agents. So, we use probability to assemble sets of pickets
and produce decision sets M . In this section, we discuss a central case of how
this can support the picketing model. We assume that pickets are drawn from an
agent population U where the probability that a randomly chosen agent is benign
is p, and that they are selected independently and randomly from U so that the
number of benign and malign pickets that make any decision set is governed by
a binomial distribution, that is,

(
n
k

)
pk(1 − p)n−k gives the probability of having

k benign agents when selecting n agents from U . Given this assumption, it is
relatively easy to compute how likely it is that at most r out of n picket selections
are benign: F (p, n, r) =

∑r
i=0

(
n
i

)
pi(1 − p)n−i.

Based on these s, we propose the idea of stochastic impossibility : an event so
unlikely that in the whole history of a system it is very unlikely that one will
happen, to the extent that it can be disregarded. This concept is parameterised
by a insignificance threshold ε and an event that happens with probability ξ ≤ ε
is termed stochastically impossible. One might regard a one-in-a-million chance
as small enough, but if many (say a million) choices are going to be made a
year (approximately one every 30 s) it is clearly is not enough if a single one can
corrupt a system. We believe that the ε = 10−18 is a reasonable starting point;
in terms of the normal distribution, this value is close to 9σ (≈ 10−19), where
σ is the standard deviation, namely, the cumulative probability from μ + 9σ to
infinity, where μ is the mean. This sort of σ-multiplier analysis is used in finance
to model risk [7], and is justified as a consequence of the probabilistic laws of
large numbers.

We can now understand how to create the decision thresholds M described
earlier. Until now, we have informally referred to the groups of pickets selected to
make our decisions as sets. However, because a given agent can validly be selected
more than once (randomly with replacement) when assembling decision “sets”,
these groups are actually multisets (bags). This also explains why the binomial
distribution is the appropriate model to use when computing the probability
that at least a certain specified number of pickets in such a group are benign. In
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a population U of agents each with independent probability p of being benign,
a randomly drawn sub-multiset of pickets P ⊆ U is said to have (stochastically
certainly) at least k + 1 benign agents if F (p, k, |P |) < ε; this inequality means
that having at most k benign agents is stochastically impossible. For fixed p, k,
and ε, we can calculate the smallest |P | so that at least k+1 agents are benign;
let us call this threshold value td(p, k, ε). Given that a multiset of pickets P
where |P | = td(p, k, ε) has at least k+1 benign agents, any sub-multiset m ⊆ P
such that (1) |m| ≥ |P | − (k + 1) + b includes at least b benign agents.

To achieve safety via (i), we need to have more than half of the k +1 benign
agents in any m ∈ M . So, by using b = k/2 + 1 in (1), we have that |m| ≥
|P | − k + �k/2	, where k/2 is integer division. Therefore, for M = {m ⊆ P |
|m| ≥ |P |−k+�k/2	}, we have that property (i), and safety, is satisfied, modulo
stochastic certainty.

To achieve liveness via (b), we need to have (2) |m| ≤ k+1, namely, at least
a decision set that requires (modulo stochastic certainty) only the participation
of benign agents for agreement. Thus, to have safety and liveness, one has to
satisfy (1) and (2). The inequality (I) |P | ≤ 
3k/2�+1 has to be satisfied in order
to ensure both (1) and (2). This inequality gives the bounds that are usually
referred to in consensus literature [8].

Table 1 illustrates some examples of calculation for the largest k such that
F (p, k, n = |P |) < ε, for some values of n (number of selected agents) and p
(benignity probability) and where is fixed ε = 10−18. This calculation is anal-
ogous to the one presented. Red entries in the top left are where even seeing
all agents agreeing does not prove this, as it is deemed possible that all the
agents are malign, namely, for these values of p, n, and ε, there is no k such that
F (p, k, n) < ε. In purple areas, we have that k and n satisfy (I). We can achieve
safety for all but the red cells in the upper left corner. However, safety and live-
ness can only be achieved for the purple cells in the right bottom corner. This
pattern illustrates that achieving both safety and liveness requires larger sets of
pickets and decision sets in comparison to achieving safety alone. For example,
with p = 0.95 and n = 50, we have that k = 25. So, we have at least 26 benign
agents amongst the 50 randomly and independently selected. Thus, to ensure
safety, we can choose decision sets m ⊆ P such that |m| ≥ 38. Since (I) does not
hold for n = 50 and k = 25, we cannot obtain safety and liveness. On the other
hand, for p = 0.95 and n = 100, we have that k = 66, in which case (I) holds. For
this case, we can have decision sets m ⊆ P such that |m| ≥ 67 to achieve liveness
and safety. Smaller pickets and decision sets should also allow for more efficient
agreement given that fewer agents need to actively take part in the protocol;
this principle was one of the main drives in designing our hierarchical consensus
machine.

Usually our systems do rely on decisions being made, and usually the systems
are more efficient if they can persuade malign participants to contribute mostly
as though they were good. Indeed for a consensus machine with a smaller set
of pickets to deliver results, this is necessary. To achieve this they need three
things: firstly strong incentives on agents not to misbehave and to participate
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Table 1. Examples of k for different combinations of p and n, and fixed ε = 10−18.
The p values were chosen with the consensus bounds of > 2/3 in mind.

0.66 � � 0 3 6 14 22 70 177 290 525
0.75 � 0 3 7 12 22 32 91 218 351 624
0.8 � 1 5 10 16 27 39 104 243 387 *682*
0.85 � 3 8 14 20 33 46 118 *269* *425* *742*
0.9 0 6 12 19 26 40 55 *134* *298* *466* *807*
0.95 3 10 17 25 33 50 *66* *153* *331* *512* *878*
p/n 20 30 40 50 60 80 100 200 400 600 1000

constructively, secondly a decision making mechanism that prevents the malign
from inducing a bad decision, and thirdly a fallback mechanism that can force
correct decisions (i.e. is both safe and live) when needed, all be it at the cost
of lower efficiency. The last of these should convince opponents that they will
not be able to permanently disrupt the system. The worst they can achieve is
complication and delay. One cannot reasonably prevent the malign from covert
mischief, but overtly saying the wrong thing or not doing what they are meant to
will attract penalties and bans. The main motivation for the hierarchical consen-
sus machine idea introduced next is providing the required fallback mechanism.
It allows us to initiate a decision on the assumption that (most of) the malign
agents participate normally in the knowledge that the carefully-picked (safe)
decision sets will prevent a bad decision from being made; the (live) fallback
allows a decision to be forced even when malign agents do not participate.

5 Formalising Hierarchical Consensus Machines in CSP

We have already described how a consensus machine proceeds when it consists
of a single set of pickets synchronising in a rather abstract sense. We have also
described how to pick decision sets so that one can achieve safety and liveness
using a type of stochastic reasoning. In this section, we present a hierarchical
consensus machine, let us call it HM, that is in itself a combination of two
(sub-)consensus machines, let us call them, G and H. The machine G is safe
and efficient, whereas H is less efficient but it is both safe and live; as explained
in the previous section, the difference in efficiency comes from the size of picket
and decision sets that are necessary to achieve these properties. In achieving
safety without liveness, G can enter a situation very similar to the well-known
phenomenon of deadlock, when malign agents refuse to take part and agree
on a value. Deadlock is not normally an acceptable behaviour of a complete
system, and certainly not in a blockchain. We propose a way to recover from
such a deadlock in G by letting H take over. Specifically, we show how control
of a decision-making procedure can be handed from one machine to the other.
Despite G not being live, HM still is so thanks to H and the handover protocol
we propose.
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When passing decision making from G to H, the transition might come
because the agents in G have the evidence that G will not be able to decide,
or because malign agents in G fail to participate—in the latter case, G will not
reach a decision but its agents are unable to determine that it will not. In both
cases, we need to be careful that control will not be passed to H when some
agents in G are already committed to a value, or at least that, in this case, H
decides on the same committed value. So, our protocol does not prevent H and
G both issuing decisions, but ensures that if they do, they are the same.

The more difficult of these cases is where the pickets in H take over on their
own initiative. That is because if G’s agents themselves decide to hand over, it
will be because there is agreement to do so. Handing over to H means that G
has not made the decision, and none of G’s agents can validly believe it has, as
that would be inconsistent with the agreement to hand over. When taking over
from G, the H process does not have an immediate global effect on all the agents
of G, so a decision may still be made later by G.

Our formulation is inspired by the large body of work on process algebra:
understanding bodies of agents that run concurrently and interact by forms of
synchronisation. There is an interesting analogy here with process algebra. CSP,
particularly in later versions [27,28], has a number of ways in which one process
can pass control to another. The throw operator P [| A |> Q runs like P until
it throws an exception in the set A, which causes it to run like Q. On the other
hand the interrupt operator P /\ Q has P run, but if Q performs any visible
action it takes over.

We present and formalise in CSP two models for HM. The abstract model
represents the behaviour of each machine G and H as a single CSP process. It
abstractly depicts what is the expected emergent behaviour from their respective
implementation each of which as an interactive distributed set of pickets. The
main step of this abstraction is that the component consensus machines G and
H are deemed to take an action only once there is agreement (in the sense
we have already discussed) on the action. The distributed model, on the other
hand, demonstrates precisely how the emergent behaviour of each machine can
be realised in terms of such a set of pickets.

In other words the abstract model describes how we expect the protocol to
work in every implementation, but the way in which the sequential processes it
contains are implemented by decentralised collections implemented by G and H
are not laid down. The distributed model illustrates one way of realising this.

The protocol we present here has much in common with mutual exclusion.
We want to prevent something akin to a race condition. An obvious question is
whether we could use a simple mutex between G and H and only allow one to
make the decision. The answer is no: it is part of the make-up of G that it can
deadlock at any time. If it were to seek the right to make the decision—via the
shared mutex—but then deadlock, then HM would deadlock too; contrary to
our specification.
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5.1 Abstract Model

In the abstract model, each of G and H is modelled as a single CSP process, and
they communicate via shared storage locations each of which is also represented
as a CSP process and each machine has two locations it can write to. Intuitively
speaking, machine G comes to a decision in a two-step process. It first commits
to (i.e. pre-decides on) a value by writing it on its first location and then it
decides on this value by writing to its second location. Before these writes it
checks whether H has started by looking for a started signal written to H’s
first location. If at any point it detects that H has started, it stops by choice.
After a timeout has elapsed, H starts. It initially checks whether G has come
to a decision already. If so, it reaffirms that decision. Otherwise, it signals it
has started its decision making process by writing a started signal value on its
first storage location. If no value has been committed to by G at that point, H
proceeds to make its own decision. Otherwise, again, it just echoes G’s decision.

Machines G and H rely on storage locations to communicate and convey
(pre-)decisions. The datatype values denotes the possible values stored in these
locations: D1 and D2 are (pre-)decisions whereas quiet, start and null denote
machine statuses. Locations are identified by elements in location. Locations 1
and 3 are controlled (i.e. written) by machine G whereas 2 and 4 are controlled
by machine H. Channels read, write1 and write2 are used to manage loca-
tions whereas stepG, stepH, and timeoutstep denote internal actions of these
machines. Finally, channel decision is used to communicate (pre-)decisions
made by them.

datatype values = quiet | started | D1 | D2 | null

locations = {1..4}

channel read, write1: locations.values
channel stepG, stepH, timeoutstep

channel decision:{1,2}.{D1,D2}

The storage locations are defined by the following two processes. Writing
to and reading from these locations are not atomic events. When a value y is
written to location i (via write1.i?y) the storage goes into a non-deterministic
state in which it allows for a read to retrieve the old value x. The event write2.i
signals to this location that the value y has been properly written at which point
reads deterministically return y. This non-determinism captures (i.e. abstracts)
the asynchrony of the distributed system: the write begins when the decision is
known somewhere and it ends when it is known at most of the network.

Store(i,x) = read.i!x -> Store(i,x)
[] write1.i?y -> StoreND(i,x,y)

StoreND(i,x,y) = (read.i.x -> StoreND(i,x,y)
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|~| read.i.y -> StoreND(i,x,y))
[] write2.i -> Store(i,y)

We abstract away all activities of G and H except the steps they need to
make to record the decision they make and the steps they need to record and
coordinate it. For modelling purposes we assume here that G makes decision D1
and H makes D2 unless it is forced to follow G’s decision because it cannot be
sure G will not make a decision.

The machine G’s behaviour is defined by the following CSP processes, with
initial state given by G. As G0, it reads the status of machine H via location 2. If
H has started already, it stops. Otherwise, if H is quiet, as process G1, it signals
a pre-decision on value D1 by writing it to Location 1. If H is still quiet at that
point, it consolidates this pre-decision with event write2.1. As process G2, it
reads the status of H for the last time, before issuing a final decision on D1 as
process G3. Note that the parallel combination of G0 and CHAOS in G captures
G’s incompleteness by allowing it to deadlock at any point.

G0 = (read.2.quiet -> stepG -> G1
[] read.2.started -> STOP)

G1 = write1.1.D1 ->
(read.2.quiet -> write2.1 -> stepG -> G2
[] read.2.started -> STOP)

G2 = read.2.started -> STOP
[] read.2.quiet -> stepG -> G3

G3 = decision.1.D1 -> write1.3.D1 -> write2.3 -> STOP

G = G0 [|Events|] CHAOS(Events)

The machine H’s behaviour is defined by the following CSP processes, with
initial state given by H. As H, it reads whether machine G has come to a decision
by reading Location 3. If it detect a decision, it re-asserts this decision by writing
D1 to Location 4. Otherwise, it interprets that a timeout has occurred and it
moves on to make its own decision. As H1, it signals that it has started its
decision making process by writing started to Location 2. As H2, it checks
whether machine G has started at all. If it has, H re-asserts the pre-decision
made by G—i.e., by writing D1 to Location 4. Otherwise, it proceed by making
its own decision by writing D2 instead. Both of these decisions are captured by
process H3.

H = read.3.null -> timeoutstep -> H1
[] read.3.D1 -> write1.4.D1 -> write2.4 -> STOP

H1 = write1.2.started -> write2.2 -> stepH -> H2
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H2 = read.1.null -> stepH -> H3(D2)
[] read.1.D1 -> H3(D1)

H3(d) = decision.2.d -> write1.4.d -> write2.4 -> STOP

The hierarchical consensus machine behaviour is given by System. Note how
machines H and G are interleaved in Machine and they rely on storage locations
in Locations to interact as we discussed.

Locations = Store(1,null) ||| Store(2,quiet)
||| Store(3,null) ||| Store(4,null)

Machines = G ||| H

System = Machines [|{|read,write1,write2|}|] Locations

We expect this abstract hierarchical consensus machine to be safe and live.
By safe, we mean that if it comes to a decision, it decides on a single value, that
is, each machine might even come to their own decision but their value must
match. By live, we mean that System must not deadlock before a decision is
made. We capture these two requirements by a refinement expression in CSP’s
stable failures model as follows.

Decisions = {write1.3.d, write1.4.d | d <- {D1,D2}}
Decision1 = {write1.3.d, write1.4.d | d <- {D1}}
Decision2 = {write1.3.d, write1.4.d | d <- {D2}}

DSystem = System \ diff(Events,Decisions)

Spec =(|~| x:Decision1 @ x -> CHAOS(Decision1))
|~|

(|~| x:Decision2 @ x -> CHAOS(Decision2))

assert Spec [F= DSystem

The refinement expression is built around decision events: all the decision
events are members of Decisions, the decision events for value D1 are members
of Decision1, and the events for value D2 are in Decision2. The specification
process Spec allows a decision to be made on D1 and D2 initially. Once such a
decision is made, only events deciding on that value are allowed be performed.
Note that this process is not allowed to deadlock initially. Thus, the proposed
refinement expression ensures that the behaviour of the system when projected
onto decision events—given by DSystem—offers some decision event initially and
stick to that decision value subsequently. We have used FDR to validate this
refinement expression.
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5.2 Distributed Model

The abstract model is useful from an analysis perspective: one can analyse the
handover protocol itself while not needing to examine the implementation of
each machine as a collection of interactive agents and the issues arising from
such an implementation. Instead, issues with just the handover protocol itself
can be identified and fixed. We can then argue either that a given approach to
building the individual machines G and H will meet this model by construction,
or test it by building a more detailed, distributed model in CSP for FDR.

In our model, each machine is a distributed system implementing a protocol
that attempts to reach consensus in the presence of Byzantine agents. Intuitively
speaking, our hierarchical machine works as follows. Machine G starts and tries
to come to a decision on a unified value. After some appropriate amount of
time—enough to allow G to come to a decision if agents can agree on a value—
machine H starts. It checks whether machine G has committed to a value, i.e., it
has pre-decided on it but might not have gathered enough evidence to properly
decide on it. If so, machine H decides on that value. Otherwise, the agents in H
are free to choose a value of their own. Like the abstract model, these machines
communicate local decisions via storage locations.

Our more detailed CSP model is parameterised by some global functions.
VALUES gives the universe of decision values, and NODES are the agent identifiers.
For machine m, N(m) gives its number of agents, MNODES(m) are its agent iden-
tifiers, THRESHOLD(m) gives the level of agreement (i.e. how many agents) that
is required for reaching consensus, G(m) gives the number of good agents, with
GOOD(m) and BAD(m) identifying the good and malign agents in the machines,
respectively. In the following, we describe in detail our CSP model.

datatype MACHINES = g | h

channel value : MACHINES.NODES.VALUES
channel prewrite, write : MACHINES.NODES.MACHINES.NODES.VALUES
channel setup_prewrite, setup_write : MACHINES.NODES.VALUES
channel decision : MACHINES.VALUES
channel decide : MACHINES.NODES.VALUES
channel timeout : MACHINES.NODES.MACHINES.NODES
channel end_round

We use event value.m.n.v to represent that the agent n in machine m has cho-
sen as its decision value v, event setup_prewrite.m.n.v (setup_write.m.n.v)
to signal that agent n in machine m has pre-decided (decided) on value v, and
event pre-write.m.n.mm.nn.v (write.m.n.mm.nn.v) as a way to communicate
to agent nn in machine mm that agent n in machine m has pre-decided (decided) on
value v. The event decision.m.v is used to signal that machine m has decided
on value v, whereas decide.m.n.v are convey that agent n in machine m has
(locally) decided on value v. The event timeout.m.n.mm.nn denotes that agent
nn in machine mm timed out when trying to read the decision from agent n
in machine m. The event end_round is a modelling device used to signal that
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machine G has had enough time to come to a decision and that machine H is
now taking over.

EmptyPreWriteLocation(n,m) =
setup_prewrite.m.n?v -> FullPreWriteLocation(n,m,v)

FullPreWriteLocation(n,m,v) =
prewrite.m.n?mm?a:MNODES(mm)!v -> FullPreWriteLocation(n,m,v)

The process EmptyPreWriteLocation(n,m) is a storage location that stores
the pre-decision of agent n in machine m; each agent has such a location that it
controls. It is a single-write multiple-reads one-place buffer.

EmptyWriteLocation(n,m) =
setup_write.m.n?v -> FullWriteLocation(n,m,v)
[]
timeout.m.n?mm?a:MNODES(mm) -> EmptyWriteLocation(n,m)

FullWriteLocation(n,m,v) =
write.m.n?mm?a:MNODES(mm)!v -> FullWriteLocation(n,m,v)
[]
decide.m.n.v -> FullWriteLocation(n,m,v)

The process EmptyWriteLocation is also a storage location that behaves
similarly to the previous one. It stores decisions instead of pre-decisions. More-
over, it offers a timeout event if the location is empty—it allows agents reading
from it to experience a timeout—and it uses the decide event to communicate
the local decision of this agent.

GNode(n) =
value.g.n?v -> setup_prewrite.g.n.v ->

if v == 0 then PreWrite(n,g,{n},1,0,0)
else if v == 1 then PreWrite(n,g,{n},0,1,0)
else PreWrite(n,g,{n},0,0,1)

The control behaviour of agent n in machine G is given by process GNode(n).
We design the agents so that they choose their local decision value independently
(captured by event value) but they will come together, or not, to certify a unified
decision. Once a value is chosen, it is written to the agent’s pre-decision storage
(via event setup_prewrite).

PreWrite(n,m,vs,c0,c1,c2) =
(prewrite.m?a:diff(MNODES(m),vs)!m.n?v ->

if v == 0 then PreWrite(n,m,union({a},vs),c0+1,c1,c2)
else if v == 1 then PreWrite(n,m,union({a},vs),c0,c1+1,c2)
else PreWrite(n,m,union({a},vs),c0,c1,c2+1))

[]
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(timeout.m?a:diff(BAD(m),vs)!m.n ->
PreWrite(n,m,union(vs,{a}),c0,c1,c2))

[]
(vs == MNODES(m) &

if c0 >= THRESHOLD(m) then setup_write.m.n.0 -> EndOfRound
else if c1 >= THRESHOLD(m) then setup_write.m.n.1 ->

EndOfRound
else if c2 >= THRESHOLD(m) then setup_write.m.n.2 ->

EndOfRound
else EndOfRound)

EndOfRound = end_round -> SKIP

The PreWrite process describes how an agent reads the pre-decisions of other
agents in order to come to its own local decision. Once the agent has received a
pre-decision or a timeout from all nodes, it goes on to either locally decide on a
value or to conclude the decision making process without deciding on a value. If it
has seen enough pre-decisions supporting value v—for instance, for v == 0, this
is captured by condition c0 >= THRESHOLD(m)—the agent locally decides on v,
writing this value to its decision storage location (via event setup_write). Note
how the agent only accepts timeouts from malign agents; we assume that good
agents deliver messages reliably and in a timely way. The process EndOfRound
signals that machine’s G time to come to a decision has elapsed, at which point,
the agent terminates.

GGoodNode(n) = (GNode(n) [|{|setup_prewrite, setup_write|}|]
(EmptyWriteLocation(n,g) ||| EmptyPreWriteLocation(n,g)))

A benign agent in machine G is a parallel process—given by process
GGoodNode—that combines its storage locations and its control behaviour.

GoodAlpha(n,m) =
Union({{| value.m.n, setup_prewrite.m.n, setup_write.m.n,

decide.m.n, prewrite.m.n.mm.a, prewrite.mm.a.m.n,
timeout.mm.a.m.n, timeout.m.n.mm.a, write.m.n.mm.a,
write.mm.a.m.n, end_round | mm <- MACHINES,
a <- MNODES(mm), (a != n or mm != m) |}})

GoodAlpha(n,m) gives the alphabet of the benign agent n in machine m.

HNode(n) =
end_round ->

Reader(n,{},0,0,0)

Reader(n,vs,c0,c1,c2) =
(write.g?a:diff(MNODES(g),vs)!h.n?vv ->

setup_prewrite.h.n.vv ->
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if vv == 0 then setup_write.h.n.0 -> EndOfRound
else if vv == 1 then setup_write.h.n.1 -> EndOfRound
else setup_write.h.n.2 -> EndOfRound)

[]
(timeout.g?a:diff(MNODES(g),vs)!h!n ->

Reader(n,union(vs,{a}),c0,c1,c2))
[]
(vs == MNODES(g) &

value.h.n?vv -> setup_prewrite.h.n.vv ->
if vv == 0 then PreWrite(n,h,{n},1,0,0)
else if vv == 1 then PreWrite(n,h,{n},0,1,0)
else PreWrite(n,h,{n},0,0,1))

The control behaviour of a benign agent in machine H is given by process
HNode(n). The initial end_round event and the requirements that we impose
on the way in which agents synchronise on this event means that the agents of
machine H only start after the agents of machine G have finished with their deci-
sion making interactions. This behaviour captures the assumption that agents
have a reasonably synchronised clock and that they can come to a decision within
a bounded time frame.

Once started, the agent’s control behaviour in machine H is given by Reader.
This process reads the local decisions made by agents in G. If one of them has
decided on a given value—which means that machine G has committed to that
value—we require that the agent in H decide on the same value. This behaviour
ensures that if both machines come to a decision, they must agree on their
decided value.

If no agent of G has decided on a value, the agents in H are free to choose
their local decision values, and they move on to behave like process PreWrite
to try and come to a unified decision as already mentioned.

HGoodNode(n) = (HNode(n) [|{|setup_prewrite, setup_write|}|]
(EmptyWriteLocation(n,h) ||| EmptyPreWriteLocation(n,h)))

Similar to benign agents in G, a benign agent in H is a parallel combination
of its control behaviour and storage locations as per process HGoodNode.

BadNode(n,m,c0,c1,c2) =
timeout.m.n?mm?a:GOOD(mm) -> BadNode(n,m,c0,c1,c2)
[]
(STOP
|~|
(prewrite.m.n.m?a:diff(MNODES(m),{n})?v ->

BadNode(n,m,c0,c1,c2)
[]
prewrite.m?a:diff(MNODES(m),c0)!m.n.0 ->

BadNode(n,m,union(c0,{a}),c1,c2)
[]
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prewrite.m?a:diff(MNODES(m),c1)!m.n.1 ->
BadNode(n,m,c0,union(c1,{a}),c2)

[]
prewrite.m?a:diff(MNODES(m),c2)!m.n.2 ->

BadNode(n,m,c0,c1,union(c2,{a}))
[]
card(c0) >= THRESHOLD(m) &

(write.m.n?a.b!0 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.0 -> BadNode(n,m,c0,c1,c2))

[]
card(c1) >= THRESHOLD(m) &

(write.m.n?a.b!1 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.1 -> BadNode(n,m,c0,c1,c2))

[]
card(c2) >= THRESHOLD(m) &

(write.m.n?a.b!2 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.2 -> BadNode(n,m,c0,c1,c2))))

The malign agent n in machine m is modelled by process BadNode(n,m). These
agents can exhibit Byzantine behaviour but they are not allowed to behave com-
pletely arbitrarily: there are still some actions which these adversaries cannot
perpetrate against benign agents. For instance, it can only offer event decide
if it has gathered enough support for the corresponding decision—i.e., it can-
not create a spurious local decision. This abstraction accounts for the following
behaviour: a local decision by an agent must be associated with enough support-
ing evidence—in the form of pre-decisions—which are cryptographically signed
by the agents generating that evidence. We assume malign agents cannot break
cryptographic primitives and, thus, they cannot forge signatures by other agents.
On the other hand, malign agents can pre-decide on more than one value, or even
refuse to serve a request for a (pre-)decision.

BadAlpha(n,m) = {| prewrite.m.n.mm.a, prewrite.mm.a.m.n,
write.m.n.mm.a, write.mm.a.m.n, decide.m.n, timeout.m.n.mm.a
| mm <- MACHINES, a <- MNODES(mm), (a != n or mm != m) |}

The alphabet of malign agent n in machine m is given by BadAlpha(n,m).

AlphaBadNodes(m) = Union({BadAlpha(i,m) | i <- BAD(m)})
BadNodes(m) = || i : BAD(m) @

[BadAlpha(i,m)] BadNode(i,m,{i},{i},{i})

AlphaGoodNodes(m) = Union({GoodAlpha(i,m) | i <- GOOD(m)})
GGoodNodes = || i : GOOD(g) @ [GoodAlpha(i,g)] GGoodNode(i)
GNodes = GGoodNodes [ AlphaGoodNodes(g)

|| AlphaBadNodes(g) ] BadNodes(g)
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HGoodNodes = || i : GOOD(h) @ [GoodAlpha(i,h)] HGoodNode(i)
HNodes = HGoodNodes [ AlphaGoodNodes(h)

|| AlphaBadNodes(h) ] BadNodes(h)

Nodes = GNodes [union(AlphaGoodNodes(g),AlphaBadNodes(g))
|| union(AlphaGoodNodes(h),AlphaBadNodes(h))] HNodes

The processes GNodes and HNodes capture the behaviour of machines G and
H, respectively, whereas Nodes captures how they interact to implement the
handover protocol. In these processes, the appropriate agents run in parallel and
they are required to synchronise on shared events.

Decider(m,c0,c1,c2) =
decide.m?a:diff(MNODES(m),c0)!0 -> Decider(m,union({a},c0),c1,c2)
[]
decide.m?a:diff(MNODES(m),c1)!1 -> Decider(m,c0,union({a},c1),c2)
[]
decide.m?a:diff(MNODES(m),c2)!2 -> Decider(m,c0,c1,union({a},c2))
[]
card(c0) >= THRESHOLD(m) & decision.m.0 -> Decider(m,c0,c1,c2)
[]
card(c1) >= THRESHOLD(m) & decision.m.1 -> Decider(m,c0,c1,c2)
[]
card(c2) >= THRESHOLD(m) & decision.m.2 -> Decider(m,c0,c1,c2)

The behaviour of agents described so far sets out how they make local deci-
sions but they do not define how machine-level decisions are made. The Decider
process is in charge of those. This centralised process collects local decisions made
by the agents of a machine, offering a machine-level decision as soon as enough
local decisions are gathered. This process is an abstraction that is useful for
conciseness in specifying the behaviour of the machines but also for the sake
of tractability. In a practical implementation of this protocol, each agent would
implement the behaviour of the Decider process. Process System runs machines
G and H with their respective Decider processes.

System = Nodes [|{|decide|}|]
(Decider(g,{},{},{}) ||| Decider(h,{},{},{}))

We want to ensure that the system is safe – i.e. it must stick with one decision
value once a decision is made—and live—i.e. it must offer a decision event before
it is allowed to deadlock. Our discussion here is related to that on Sect. 4. In that
section, we discussed how we can use a type of stochastic reasoning to choose
the size of the set of pickets that is necessary to achieve a given number of good
and malign agents, given some parameters for our stochastic model. In our CSP
model, we talk about decision sets assuming that the pickets-set size and number
of good and malign agents has been fixed, namely, the stochastic reasoning has
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already been used to find these numbers. So, we limit ourselves to discuss the
size of decision sets that is necessary to achieve safety and liveness.

Safety is ensured by setting a threshold that requires the participation of
more than half of the benign nodes, namely, for machine m, THRESHOLD(m) ≥
GOOD(m)/2 + BAD(m) + 1, where GOOD(m)/2 is truncated integer division—we
require the number of agents in each machine to be at least 2. If this threshold
is set, the machine cannot decide on two different values on the same run of
the protocol. Assume that agents in G supported two values, say 0 and 1, then
there must be THRESHOLD(g) many agents supporting either. That implies the
existence of a benign agent that has supported two values, a possibility that
our protocol does not allow; a contradiction. The same reasoning holds for H’s
independent decision. The requirement that H must decide on G’s committed
values, if one exists, ensures that if they both come to a decision, their value
must match. As G can only commit to one value, by the same counting argument
as before, H must decide on the same value as G.

Another assumption is required to ensure liveness. We expect H to come up
with a decision if G fails to do so, but the agents in H may disagree on a decision
value in the case they are left to independently select it. On a realistic implemen-
tation, agents will probably need to iterate if they fail to agree on a value within
G or H until they eventually converge to a sufficiently agreed choice. How they
achieve this is a separate topic but will likely involve coordinating input data
and computing deterministically. For the sake of conciseness and tractability,
we do not implement this process and we force enough benign agents in H to
choose a common value (i.e. converge immediately), ensuring H comes to a deci-
sion. This immediate convergence is implemented by the Convergence process,
which forces benign agents {0..CN} in machine H to choose the value CV—CN and
CV are variables that parameterise our model. The convergent system is given
by process CSystem. To achieve liveness, we need GOOD(m) ≥ THRESHOLD(m)—
i.e., no malign agents are required to take part in the consensus—and that at
least THRESHOLD(m)-many benign agents converge to the right value. From this
inequality and the safety inequality before, one can derive the traditional lower
bound on number of agents necessary for Byzantine agreement: N = 3f + 1
where N is the number of agents amongst whom f are malign.

AlphaConvergence = {| value.h.n | n <- {0..CN-1} |}

ConvergenceAux(0) = STOP
ConvergenceAux(i) = value.h.(i-1).CV -> ConvergenceAux(i-1)
Convergence = ConvergenceAux(CN)

CSystem = System [|AlphaConvergence|] Convergence

Similarly to what we did for the abstract model, we use the following refine-
ment expression to capture these properties. The specification process Spec
ensures that once a decision is made, only events deciding on that value are
allowed be performed and that a decision event is offered initially—it can dead-
lock after a decision event is performed. Process DSystem captures a projection
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of CSystem’s behaviour onto decision events. We have used FDR to validate some
instances of our model where thresholds are set in a way to ensure safety and
liveness as discussed. We have also tested instances with insufficient thresholds
to demonstrate how the model breaks down under those.

Spec = |~| m : MACHINES, v : VALUES @
decision.m.v -> CHAOS({decision.mm.v | mm <- MACHINES})

DSystem = CSystem \ diff(Events,{|decision|})

assert Spec [F= DSystem

Interestingly, the inequality required to achieve safety alone does not restrict
the proportion of benign agents that take part in the protocol. If we have, for
instance, a single benign agent in a machine, a threshold requiring unanimity
for decisions would still ensure safety. On the other hand, when both the safety
and liveness inequalities are required, > 2/3 of agents must be benign. Thus, as
machine G only needs to be safe, it can rely on there being as few as a single
benign agent, whereas machine H, which must be safe and live, is required to
have > 2/3 benign agents. Based on our stochastic calculations, for a fixed prob-
ability of an agent being malign, the number of agents that need to be selected
to get a sample including at least one benign agent should be, in general, much
smaller than the number needed for a sample including > 2/3 benign agents.
Therefore, the number of agents required to implement G should be, in general,
much smaller than the agents required to implement H. This fact supports our
claim that G should be faster at coming to a decision when compared to H,
given the smaller number of agents that are required to interact.

In many cases the “pickets” making up the back-up machine H will be entire
qualified population of block creators, rather than being randomly chosen. In
this case the hierarchical machine will precisely be the optimistic mechanism
G backed up by classic Byzantine agreement. Moreover, typically, the 4 loca-
tions used by our protocol will be implemented in a distributed way by the
agents involved. The correctness will depend on the signature mechanisms the
blockchain has in place and also forms of the gossiping assumptions described
earlier.

6 Related Work

Many classical protocols [17,18,20,25] exist to solve the Byzantine agreement
problem [24]. The emergence of blockchains renewed the research commu-
nity’s interest in this problem—and more generally on the problem of achiev-
ing consensus in distributed systems—leading to a number of new proto-
cols [1,3,4,6,12,15,22,30,32].

The first consensus protocol proposed for blockchains was Proof-of-Work
(PoW) in the context of Bitcoin [22]. Intuitively speaking, in this protocol, min-
ers (i.e. block producer candidates) attempt to solve a cryptographic puzzle, and
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the first one who solves it is entitled to propose the next block to be added to the
chain. Arguably, the main drawback of PoW protocols is how energy inefficient
they can be [19,31]; the larger the network the more computing power is used
to constantly solve these cryptographic puzzles. Proof-of-Stake (PoS) protocols
have been proposed [1,5,12,15] as energy efficient alternatives to PoW ones.
Hybrid PoW-PoS protocols have also been proposed [16].

In Proof-of-Stake protocols, agents signal their intention to participate in the
block production process by staking a sum of cryptocurrency, i.e. the stake, they
own. Staking means that this sum is locked (i.e. escrowed) for the duration of
this process and it may be slashed as a means to punish malign behaviour. The
frequency upon which agents are selected to participate in this process is propor-
tional to the size of the stake. Note how in PoW computing power determines
how often an agent is “selected” to produce a block as opposed to staked cryp-
tocurrency in PoS. In PoS protocols, agents can be selected as a block producer
but also as a member of a committee which is typically in charge of either elect-
ing block producers or finalising blocks, namely, determining whether a block is
immutable and the only valid block at a given height. Before a block is deemed
final, a number of candidate blocks at a given height might be “competing” to
become final. Some PoS protocols rely on probabilistic mechanisms to deter-
mine the finality of a block—e.g. Algorand [12], Ouroboros [15]—whereas some
others rely on deterministic mechanisms—e.g. Internet Consensus Computer [6],
Casper FFG [5], Tendermint [3]. Our handover protocol is meant to be used as a
part of a protocol to achieve deterministic finality, with our primary motivation
being PoS. A PoS-based selection mechanism can be used to choose committees
of agents—their sizes are based on our stochastic calculations—to implement
machines G and H and to decide on the next final block using the handover
protocol.

Despite being designed to be part of a fully-fledged blockchain consensus
protocol, the handover protocol alone is closer in nature to mutual exclusion,
though adapted for linking agreement protocols like Byzantine agreement [17,
20,23,32]. Abstractly speaking, these protocols have been designed around the
use of the votes to form decisions and of a threshold/quorum to ensure safety. In
fact, the PBFT (Practical Byzantine Fault Tolerance) protocol [20] specifically—
and this voting mechanism more generally—has been a source of inspiration for
many current blockchain protocols, including ours.

7 Conclusions

In this paper we have used formal tools to understand how consensus can arise
in decentralised systems. Essentially we have set out a programmatic approach
to laying down and analysing consensus: given a population of potential block
creators and the potentially multiple perspectives of different users we need to
establish a trust model that they are all happy with. We then have the job of
having the blockchain select sufficient groups of pickets and decision criteria that
all can be sure of any positive decisions they make.
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On the assumption that we can incentivise most malign participants to par-
ticipate apparently properly, this will give us all we need. But an essential part
of such motivation is that the malign know that if they do not collaborate like
this they will be defeated by a back up mechanism.

We have shown how to formalise both the primary and secondary mechanisms
as Unitary Consensus Machines. While much of our treatment was inspired by
process algebra, we were able to both design and verify the crucial protocol that
links a hierarchy of decision making in CSP and FDR.

By allowing such hierarchical consensus decisions, we believe that we have
tools for making blockchains more varied and flexible. We hope that our app-
roach to creating the component machines which compose together to provide
consensus can be automated.

It is only natural - to people steeped in such languages and tools - that CSP
coupled with FDR is a good way to model complex interactions in decentralised
consensus. We are pleased to have demonstrated the truth of this intuition.
While the full systems representing consensus may be too involved to fit within
the abstractions of such tools, it is comforting that like so many other areas of
concurrent reasoning, we can find levels where they bring real benefit. We have
modelled other aspects of blockchain using CSP and FDR.

We hope that others will be found, and that our tools for bringing clarity to
the topic of consensus will find many interesting applications.
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