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Abstract. Specifications are a necessary reference point for correctness
arguments. Top-down descriptions of concurrent programs require a way
of recording information about the environment in which the compo-
nent will be required to function. It was shown in the 1980s that adding
rely and guarantee conditions to pre and post conditions could support
formal specification and reasoning about a class of concurrent systems.
More recent research has both widened the class of specifications to
include progress requirements and facilitated mechanisation of proofs.
This paper describes the algebraic underpinnings that have made this
possible. Particular attention is paid to notions of atomicity.
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1 Introduction

At the heart of an effective software development method is the ability to specify
a program component independently from its implementation. From the point
of view of deployment, such an independent specification should allow the use
of a component to depend solely on its specification (and not on the details of a
particular implementation of the component). Considering the task of its devel-
opers, the correctness of an implementation of a component should depend solely
on its specification (and not the context(s) in which it is used). The techniques
required to achieve this for sequential programs are both well established1 and
used in practical development environments.

When compared with sequential programs, reasoning about concurrent pro-
grams introduces the additional complexities of inherent nondeterminism and
interference between threads that gives rise to an explosion of the number of pos-
sible execution paths between the interacting threads. While pre/postcondition
pairs are sufficient to specify sequential components, concurrency introduces
additional complexities:
1 See for example the excellent review in [1].
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interference: a concurrent thread may modify variables accessed by a compo-
nent at any point in its execution,

atomicity: programs might be written in high-level programming languages
but evaluation of expressions and execution of (assignment) statements at
the machine code level cannot be assumed to be atomic with respect to pro-
gramming language concepts and

termination/progress: termination of operations may be affected by –or even
rely on– interference from other threads, and operations may be required to
wait for access to shared resources or locks.

Furthermore there are interactions between these issues: the granularity of atom-
icity affects the extent of the interference (e.g. a data structure controlled by
a lock has a coarser granularity of atomicity); and handling progress proper-
ties requires an approach to interference that handles possibly non-terminating
operations.

As for specifying sequential data structures/types, it is advantageous to make
use of an abstract model of the (encapsulated) state of the data structure and
make use of a data refinement that introduces a lower-level state for the imple-
mentation. For concurrent data structures the choice of representation can affect
the manner in which the operations on the data structure may interfere with each
other. Often the representation is chosen so that it distinguishes between data
and control variables (e.g. locks), where the latter control access to the data
structure and are usually of atomic types, whereas the former are typically not
of atomic types and rely on the control variables being used to ensure mutual
exclusion on the parts of the data being accessed by an operation.

The interference which is characteristic of shared-variable concurrency makes
it difficult to achieve a compositional development method. Early concurrency
research [3,4,51,52] provided approaches that were neither modular nor compo-
sitional – see [38] for more details on these early approaches.

This paper surveys an approach to the development of shared-variable con-
current programs. Specifically it looks back over 40 years of evolution of the
rely-guarantee approach including recent research on showing how an algebraic
reformulation of the basic idea can provide the key to effective mechanisation of
concurrent program development. Section 2 examines the interaction of interfer-
ence with program assertions, expression evaluation, and assignment commands.
Section 3 focusses on abstracting interference by rely conditions and Sect. 4
brings in guarantee conditions to allow concurrent operations to be specified.
Section 5 overviews an algebraic approach to specifying and refining concurrent
programs. Section 6 looks at specifying atomic operations, which can be used
to specify operations on shared data structures and to specify atomic machine
operations, such as test-and-set. Section 7 examines termination of loops in the
context of interference from parallel threads. Section 8 discusses the role of data
abstraction and refinement in the context of concurrency. Section 9 examines
operations that may have to wait for resources or locks; such operations may
potentially wait forever.
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Our overall goal is to provide a concurrent program refinement theory in
Isabelle/HOL that supports the derivation and verification of concurrent pro-
grams, with all refinement laws used for deriving programs being proven valid
within the theory. In particular, we avoid making assumptions about expression
evaluation and assignment commands being atomic, and instead make use of
laws that show they are effectively indivisible, given certain assumptions.

In this whole research arena, there are important conceptual distinctions and
less critical differences in concrete syntax. It is important not to let the latter
obfuscate the former and we have tried to tease apart these issues.

Connections with Prof. He Jifeng’s Research

Jifeng’s work with Tony Hoare on unifying theories of programming [31] has
heavily influenced the approach taken to the trace semantics underlying our
work, while the algebraic approach to programming derives from the earlier
laws of programming [30]. His work on rely/guarantee concurrency [72] has also
influenced our approach.

2 Atomicity

An operation executing within a thread is atomic if no parallel thread may
observe an intermediate state of the operation and the operation cannot observe
intermediate states of operations in parallel threads. Some programming lan-
guage or machine architecture types can be considered atomic, i.e. for a read or
write access of a variable of an atomic type, no concurrent thread can observe an
intermediate state part way through an access. By contrast, for example, 64-bit
integers on a 32-bit architecture do not form an atomic type. For the rest of this
paper, we assume that scalar types (such as integers and booleans) are atomic;
however, for structured types such as arrays and records, we make no atomicity
assumptions about access of the whole structure but assume that access to their
sub-components that are of atomic types is atomic. We do not assume that exe-
cution of programming language statements –nor evaluation of their conditions–
is atomic.

2.1 Program Assertions

Assertions about the state of a program are essential for Floyd/Hoare-style rea-
soning about programs [21,29] but a program assertion may not be stable under
interference from parallel components. An assertion, P , is a set of program states,
and a relation, R, is a set of pairs of states, where a program state, σ, can be
represented as a mapping from program variable names to their values, i.e. σ x ,
is the value of variable x in state σ.2

2 The program state may also include a heap but no further discussion of heap store
is included below.
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Definition 1 (stable). An assertion P on the program state space is stable
under a relation R if and only if ∀(σ, σ′) ∈ R . (σ ∈ P ⇒ σ′ ∈ P).

In the examples we use characteristic predicates for assertions, so that x > 0
characterises the set of states {σ . σ x > 0}. Similarly, the predicate x ≤ x ′,
in which x stands for the initial value of x and x ′ for the final value of x ,
characterises the relation {(σ, σ′) . σ x ≤ σ′ x}. The assertion l ≥ r is not stable
under interference that can decrease l or increase r , which is characterised by the
predicate l > l ′ ∨ r < r ′ but l ≥ r is stable under interference that can neither
decrease l nor increase r , that is, interference satisfying l ≤ l ′ ∧ r ≥ r ′. Note
that the interference under which an assertion and its negation are stable may
be different. The definition of stable does not require that the program variables
referenced within P are unmodified, for example, the assertion, even i , is stable
under interference that increases i by 2.

2.2 Conditions

A program assertion, P , is used as a judgement about a single program state,
σ; either σ is in P or it is not. On the other hand, conditions in if and while
commands are evaluated in a context in which the program state may be modified
(multiple times) by interference from the environment, and hence are evaluated
over a sequence of potentially different states. Each reference to a variable within
a condition may access its value in a different state, for example, the condition,
i = i , may evaluate to false if its two accesses to i are in states with different
values of i .

A common restriction [52] is that a condition contains at most one shared
variable and at most one reference to that variable, thus ruling out a condition
such as i = i . With this restriction, evaluating a condition over a sequence of
states is equivalent to evaluating it in the single state in which the shared variable
is accessed. If a condition satisfies this restriction, it is affected by interference
in a similar manner to program assertions. For example, the condition, i > 0,
in an if command may be true in the state in which i is accessed but it is not
stable under the interference that may decrease i , and hence it may no longer be
true when the start of the then branch of the if command is reached. However,
if i > 0 evaluates to false, it will still be false when the start of the else branch
is reached if the interference cannot increase i .

2.3 Expressions

As with conditions, evaluation of expressions can lead to anomalies, for example,
for an integer variable i , the expression i + i may evaluate to an odd value if i
is modified between the two accesses to i , whereas 2 ∗ i always evaluates to an
even number because there is only a single access to i . Note that it is a valid
refinement to replace i + i by 2 ∗ i but not vice versa.

We assume the syntax of an expression, e, consists of either a constant, k ,
a variable, v , a unary operator 
 applied to an expression, 
e1, or a binary
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operator ⊕ applied to two expressions, e1 ⊕ e2.3 Evaluation of an expression in
a (single) state σ, written eσ, is defined in the usual manner. If an expression,
e, evaluates to the same value before and after interference satisfying a relation
R, we say that e is invariant under R.

Definition 2 (invariant-expression). An expression, e, is invariant under a
relation R if and only if ∀(σ, σ′) ∈ R . eσ = eσ′ .

For example, the expression, i mod N , is invariant under interference that incre-
ments i by the constant N , (i.e. under the relation {(σ, σ′) | σ′ i = σ i + N }),
similarly, i− i , is invariant under any interference because evaluating i− i in any
single state gives 0. However, evaluating i − i over a sequence of states (as for a
programming language expression) under interference that may change i , may
not give 0 because i− i has two references to i that may be evaluated in different
states to give different values. Expressions that only have a single reference can
be reasoned about more easily.

Definition 3 (single-reference). An expression, e, is single reference under
a relation R, if and only if e is,

– either a constant, k , or an atomic variable, v ,
– of the form, 
e1, and e1 is single reference under R, or
– of the form, e1 ⊕ e2, in which both e1 and e2 are single reference under R,

and either e1 or e2 is invariant under R.

For example, for integer atomic variables i and j , the expression (i mod 2) + j ,
is single reference under interference, R, that may increment i by any multiple
of 2 (including 0) and may modify j arbitrarily, because

– i mod 2, is single reference under R because
• the atomic variable i is single reference under R, and
• the constant 2 is both single reference and invariant under R,

– i mod 2 is invariant under R, and
– j is single reference under R.

That means the expression, i mod 2, evaluates to the same value, no matter in
which state during its evaluation i is accessed, and hence any variance in the
value of (i mod 2) + j , is due to the various values that j can take during the
evaluation. If an expression is both single-reference and invariant under R, its
evaluation over a sequence of states will return the same value as its evaluation
in any of the states.

Other approaches to handling expressions [11,70] assume that the expression
has only a single variable, v , that may be modified by the environment and that
v is referenced only once. This is a strictly stronger requirement than Definition
3, for example, as shown above (i mod 2)+j is single reference under interference
that may increment i by a multiple of 2 and arbitrarily update j but it does
not satisfy the stricter requirement that only one variable may be modified by
interference because both i and j may be modified by the interference.
3 Conditional “and” and “or” (&& and || in C, Java, etc.) are handled by conditional

expressions, which we do not consider here.
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2.4 Assignments

An assignment command, x := e, in a concurrent context may be subject to
interference on variables referenced within e during its evaluation (as in Sect. 2.3)
as well as interference that may modify x after it has been assigned. We assume
accesses to x and variables within e are atomic.

Owicki [52], Xu et al. [72], Prensa Nieto [56], Stølen [65], Dingel [16], Schell-
horn [58] and Sanan [57] treat a complete assignment as atomic, although they
do allow interference before and after the assignment. Their reasoning makes use
of preconditions and (single-state) postconditions that are stable under interfer-
ence.

A common observation [7,52] is that, if an assignment only accesses at most
a single shared variable (i.e. all other variables accessed are unchanged by inter-
ference) and there is only one access to that variable, the assignment can be
thought of as being atomic—it can be viewed as happening atomically at the
(single) point the shared variable is accessed. In an assignment, x := e, the
single shared variable may be either x or some variable accessed within e (but
not both). Hence these approaches commonly impose a syntactic restriction on
programs that this property holds for all assignments. Any assignment for which
the property does not hold needs to be broken down into a sequence of assign-
ments that do satisfy the property, and which may require fresh local variables.
This also introduces additional intermediate assertions and proof obligations.

The validity of the single shared variable approach cannot be proven in the
above listed theories, due to their assumption that assignments are atomic. The
approach we have taken does not assume assignments are atomic, which is in
line with the fact that the (concurrent) semantics of programming language
assignments is not atomic. That allows us to show, for example, that the above
single shared variable approach is valid, but we can also generalise it to use the
more general Definition 3 (single-reference), rather than single shared variable.

3 Interference and Rely Conditions

Pre and rely conditions should inform deployment decisions in that it should
be established (preferably by proof) that the context in which an implementa-
tion will be deployed will satisfy these assumptions. However, considering the
execution of an implementation, semantics must be given to situations where
assertions (preconditions, intermediate assertions, loop invariants) of a compo-
nent are violated by interference from concurrent threads in its environment.
For example, consider the following assertion for a set of integers s and integer
constant N .

s ⊆ {0 .. N } (1)

The assertion states that all elements of the set s must be in the subrange 0
through N , inclusive. In the context of interference from the environment, the
assertion may be invalidated by the environment adding an element outside
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{0 .. N } to s. However, if the interference only removes elements from s, (1) is
stable, i.e. if it holds before the interference, it holds after. The interference can
be represented by a rely condition, in this case the relation characterised by

s ′ ⊆ s (2)

in which s is the value of the set before the interference and s ′ is its value after.
By Definition 1 (stable), (1) is stable under the rely condition (2) because

s ′ ⊆ s � (s ⊆ {0 .. N } ⇒ s ′ ⊆ {0 .. N }).
In practice, there may be zero or more steps of interference from the environ-
ment, including steps that do not modify s. Such a sequence of environment
steps satisfies the reflexive, transitive closure of R, R∗. For example, if each step
satisfies s ′ ⊂ s, any sequence of zero or more steps satisfies s ′ ⊆ s, which is a
reflexive and transitive relation. For this reason we consistently use relations that
are both reflexive and transitive when abstracting interference as rely condition.

Lemma 1 (stable-many-steps). If an assertion P is stable under a step of
inference that satisfies R, it is stable under interference that satisfies R∗, that
is, it is stable under zero or more steps of interference satisfying R.

4 Rely/Guarantee Thinking

This paper focuses on shared-variable concurrency: reasoning about threads that
experience and inflict interference on each other cannot be adequately specified
with just pre and post conditions. The idea to add explicit rely and guaran-
tee conditions should again be understood independently of concerns about a
concrete syntax for recording specifications.

Fig. 1. Execution sequence of program (π) and environment (ε) steps, with precondi-
tion p, postcondition q , rely condition r and guarantee condition g . If the initial state
satisfies p and all environment steps satisfy r , then all program steps must satisfy g
and the postcondition q must be satisfied between the initial and final states.

The concept presented by Jones [34–36] can be understood by examining
Fig. 1. His approach recovers the crucial property of compositionality by explic-
itly recording (and offering inference rules for reasoning about) interference.
A rely condition r is a binary relation on program states that represents an
assumption that any interference steps from the environment of the thread sat-
isfy r between their before and after program states. To complement that, a
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thread also has a guarantee condition g , also a relation, that all its program
steps must satisfy. A guarantee for a thread must imply the rely conditions of
all the threads in its environment.

Consider the example of calculating the prime numbers up to some limit
N using a parallel version of the sieve of Eratosthenes. It begins with a set
s containing all natural numbers between 2 and N , and uses a set of parallel
threads: the first removes all the multiples of 2, the second removes all the
multiples of 3, and so on. A basic operation used by all the threads is removing
a single element i from s under interference that cannot add elements to s but
may remove elements, including i . The standard sequential pre/post specification
of remove,

pre s ⊆ {0 .. N } ∧ i ∈ {0 .. N } (3)
post s ′ = s − {i} ∧ i ′ = i (4)

is inadequate: while the precondition is stable under interference satisfying the
rely condition s ′ ⊆ s∧i ′ = i , the postcondition can be invalidated by interference
that removes elements other than i from s. The alternative postcondition, i �∈ s ′,
is stable under this interference but it is too weak on its own because it does
not preclude the operation adding or removing elements other than i . This can
be rectified by including a guarantee condition, s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i ,
that must be satisfied by every program step made by the implementation of
the operation. The specification of the concurrent remove operation becomes the
following.

pre s ⊆ {0 .. N } ∧ i ∈ {0 .. N } (5)
rely s ′ ⊆ s ∧ i ′ = i (6)
guar s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i (7)
post i �∈ s ′ (8)

An important property of a postcondition is that it tolerates interference
satisfying the rely condition, so that the postcondition will not be invalidated
by such interference.

Definition 4 (tolerates). A postcondition relation Q tolerates a rely condition
R from precondition P , if

∀σ, σ′ . σ ∈ P ∧ (σ, σ′) ∈ (R∗
� Q � R∗) ⇒ (σ, σ′) ∈ Q (9)

where � is relational composition.

Commonly R is reflexive and transitive, i.e. R = R�. For the remove operation
the rely condition s ′ ⊆ s ∧ i ′ = i is both reflexive and transitive, so it is equal
to its reflexive transitive closure, and hence its postcondition tolerates its rely
condition from its precondition as follows.

s ⊆ {0 .. N } ∧ i ∈ {0 .. N } ∧
(∃s1, i1, s2, , i2 . (s1 ⊆ s ∧ i1 = i) ∧ i1 �∈ s2 ∧ (s ′ ⊆ s2 ∧ i ′ = i2))

� i �∈ s ′
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A postcondition whose truth can be subverted by an interference step that sat-
isfies the rely condition is problematic because the only valid refinement of a
postcondition is to strengthen it (under the assumption of the precondition and
(R ∨G)� as per the consequence rule 11 below). In the worst case there may be
no feasible strengthening.

A postcondition tolerating interference R from a precondition P means that
interference before and after the execution of its implementation preserves the
postcondition. Interference during the execution is handled during the refinement
of the specification.

4.1 Inference Rules

A Jones-style assertion represented in the form,

C sat (P ,R,G ,Q) (10)

is satisfied if every execution of the command C terminates and satisfies the
relation Q end-to-end between its initial and final states provided the initial
state satisfies P and every step of the environment of the thread satisfies R; in
addition, every atomic program step of C satisfies the relation G between its
before and after states provided all the environment steps up until that point
have satisfied R and the initial state satisfied P .

There are various presentations in the literature of inference rules for such
judgements. The earliest ones in [34] cope with inheriting the rely and guarantee
conditions from the context by offering a consequence rule:

consequence

(P2 � P1) ∧ (R2 � R1) ∧ (G1 � G2)
P2 ∧ Q1 ∧ (R2 ∨ G1)� � Q2

C sat (P1,R1,G1,Q1)
C sat (P2,R2,G2,Q2)

(11)

and an inference rule that checks that the rely and guarantee conditions are
consistent between sibling threads (shown for clarity with only two threads):

parallel

(G1 � R2) ∧ (G2 � R1)
C1 sat (P1,R1,G1,Q1)
C2 sat (P2,R2,G2,Q2)

C1 ‖ C2 sat (P1 ∧ P2,R1 ∧ R2,G1 ∨ G2,Q1 ∧ Q2)
(12)

Two points should be noted here:

– The parallel rule handles asymmetric threads; a simpler rule can be given
where the threads have specifications that differ only in a parameter.

– The above rule shares with Hoare-like rules for sequential programming con-
structs the property that they can be read from hypotheses to conclusion to
justify a step of decomposition; reading the rule from conclusion to hypotheses
facilitates its use to justify top-down compositions.
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The soundness of these rules for partial correctness has been shown with
respect to an operational semantics of a programming language [11] which allows
environment transitions satisfying the rely condition as well as program transi-
tions [10].

The example used in the current paper is a parallel version of the Sieve of
Eratosthenes for finding prime numbers. That example uses concurrent instances
of threads that differ only by the value of a parameter; more interesting exam-
ples of the effectiveness of rely and guarantee conditions come from applications
where the concurrent threads differ, which is the case with “Asynchronous Com-
munication Mechanisms” (see [39]) or “On-the-fly Garbage collection” (see [41]).

5 Concurrent Refinement Algebra

The insights to be gained by studying the algebraic properties of programs in
general –and concurrent constructs in particular– have been studied in [30,32];
this section provides an algebraic presentation of rely and guarantee conditions.
This view also points the way to mechanisation of developments using the rely-
guarantee approach.

For the satisfaction relation (10), the 4-tuple (p, r , g , q) can be viewed as a
specification for the command c. Dingel’s refinement calculus for rely/guarantee
concurrency [16] viewed this 4-tuple as a specification command, in a manner
similar to Morgan’s specification command, [p, q ], for the sequential refinement
calculus [46,47]. In the sequential refinement calculus it has been recognised that
such a specification command can be split into an assertion command {p} and
a postcondition command [q ], so that [p, q ] = {p} ; [q ]. As a 4-tuple specifica-
tion can become cumbersome, especially when some of the components are not
relevant, the approach we have taken is to define four commands, pre p, rely r ,
guar g , and post q for the four components. The command pre p aborts if p does
not hold initially, otherwise it allows any non-aborting behaviour. The com-
mand rely r aborts if its environment performs a step not satisfying r , otherwise
it allows any non-aborting behaviour. The command guar g ensures all program
steps satisfy the relation g between their initial and final states. The command
post q ensures its initial and final states satisfy q end-to-end; it also terminates
(see Sect. 7). The four commands can be combined to form a full specification
equivalent to the 4-tuple using the weak conjunction operator �, so that the
satisfaction relation (10) can be written using the refinement relation �, where
for commands c and d , c � d means c is refined (or implemented) by d ,4

pre p � rely r � guar g � post q � c (13)
4 In our earlier papers we followed the sequential refinement calculus more closely and

used, rely r �guar g �{p} ;post q � c, but manipulating the sequential composition of
the assertion {p} is more complicated than using the conjoined form in (13) because
� is an associative, commutative and idempotent operator. Given that {p} ;post q =
pre p�post q , one can switch between the two as necessary. Note that {p} terminates
immediately if p holds initially, whereas pre p allows any non-aborting behaviour if
p holds initially. Both abort if p does not hold initially.
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where the weak conjunction of two commands, c1 � c2, behaves as both c1 and
c2 up to the point at which either c1 or c2 aborts at which point it aborts. For
example, weak conjunction satisfies the following.

Weak conjunction

c1 sat (p1, r1, g1, q1)
c2 sat (p2, r2, g2, q2)

(c1 � c2) sat (p1 ∩ p2, r1 ∩ r2, g1 ∩ g2, q1 ∩ q2)
(14)

Weak conjunction is monotone in its arguments, i.e. if c1 � d1 and c2 � d2, then
c1 � c2 � d1 � d2. That allows one to provide a set of simpler refinement laws
below that can be combined to give the equivalent of the consequence rule (11),
in which the notation p � r stands for the relation r with its domain restricted
to the set p.

pre p1 � pre p2 if p1 ⊆ p2 (15)
rely r1 � rely r2 if r1 ⊆ r2 (16)

guar g1 � guar g2 if g2 ⊆ g1 (17)
pre p � post q1 � pre p � post q2 if p � q2 ⊆ q1 (18)

rely r � guar g � post q1 � rely r � guar g � post q2 if (r ∪ g)∗ ∩ q2 ⊆ q1 (19)

In addition, many refinement rules focus on refining a command c1 to c2 in the
context of a rely r :

rely r � c1 � rely r � c2, (20)

where the precondition and guarantee are not relevant.

Some History. It is worth reviewing the path to our current approach. Our earlier
approach to handling guarantee commands made use of a command, (Guar g . c),
that restricted the behaviour of the command c so that all program steps satisfy
the guarantee relation g . Initially this command was defined directly in terms of
an operational semantics [24]. However, in order to define its trace semantics, [25]
introduced a weak conjunction operator5 � and defined (Guar g . c) via a weak
conjunction of c with a construct that contained all possible non-aborting traces
whose program steps satisfy g . We later realised that it was simpler to just define
guar g as a command in its own right and write guar g �c in place of (Guar g . c).
That allowed us to discuss properties of guarantees, (e.g. strengthening and
merging guarantees), in isolation, and avoided issues with nesting of guarantee
and rely commands, thus leading to a simpler theory.

Our earlier approach also made use of a command, (Rely r . c), that, if run in
parallel with interference satisfying r , implemented c [25]. The effect of this rely
command is to strengthen specification c to handle interference satisfying r . The
theory using this earlier rely command was complicated because we needed to
introduce a refinement relation, �r , parametrised by a rely condition r , further

5 Called strict conjunction there because it is abort strict, i.e. c � abort = abort.
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parameterise the rely command with the rely condition, z , implicit within c,
written (Rely r . cz ), and introduce a predicate, stops(c, r), characterising the
set of states from which c terminates under interference satisfying r . Further
complications were introduced when nesting guarantees within relies. This earlier
approach used a weak specification command that only guaranteed to satisfy its
postcondition for interference that satisfied the identity relation between states,
whereas our newer approach uses a strong specification command that achieves
its postcondition under any interference and is weakened by weakly conjoining
it with the newer, rely r , command, in a similar way to a specification being
weakened by adding a precondition. Note that in the new theory both the failure
of a precondition and the failure of a rely condition are modelled by abort, that
means the theory takes a consistent approach to handling assumptions.

In the newer approach, both guarantee and rely commands are defined in
terms of other language primitives, and combined with other constructs using
weak conjunction, an associative, commutative and idempotent operator. This
results in a theory in which it is much easier to manipulate rely/guarantee speci-
fications algebraically and completely avoids the issues with nesting of relies and
guarantees with the earlier approach.

6 Specifying Atomic Operations

For a component of a concurrent program, one can distinguish whether a post-
condition is to be met by a sequence of state transitions between the initial and
final states of the component execution (as in [34]), or whether it needs to be
met by what appears to other threads to be an atomic transition, albeit with
the possibility of finite stuttering program steps (i.e. steps that do not change
the observable program state) before and after (as used by Dingel in his refine-
ment calculus [16]). We use the specification command 〈q〉 for a command that
achieves the postcondition q atomically [28]. The command is allowed to per-
form a finite number of stuttering program steps before or after the atomic step
establishing q and, of course, environment steps may be arbitrarily interleaved
between its program steps. The stuttering steps represent program steps that
do not modify the observable state (e.g. updates to hidden registers or branch
instructions).

Low-level concurrent algorithms, such as those used to implement primitives
like locks or message queues, often make use of machine instructions, such as
compare-and-swap (CAS) and fetch-and-add (FAA), that are guaranteed to be
atomic. Morgan [46,47] defined a specification command, X :

[
p, q

]
, with X giving

the set of variables that may be modified by the command. X is referred to as
the frame of the command. Here we extend his framing notation to apply to any
command, X :c, so that execution of c may only modify variables within X .6 For
example, a compare-and-swap (CAS) instruction (21) takes s and (typically local)
old , new and done as parameters, it has a frame of s and done, and if s equals
old it succeeds and updates s to new otherwise it fails and leaves s unchanged.
6 The frame is a special form of guarantee that no variables outside X are modified.
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The returned boolean value done indicates whether the CAS succeeded. An FAA
instruction (22) has a frame of the variables x and y , it takes a value k and a
variable x whose initial value is fetched and stored in the (local) variable y and
then x is updated to x + k , all atomically.

done ← CAS(ref s, old ,new) =̂ s, done :〈 (s = old ⇒ s ′ = new ∧ done ′) ∧
(s �= old ⇒ s ′ = s ∧ ¬done ′)〉

(21)

y ← FAA(ref x , k) =̂ x , y :〈y ′ = x ∧ x ′ = x + k〉 (22)

While the instructions take place atomically, they may be preceded and fol-
lowed by steps taken by their environment that may invalidate the relation.

The other situation in which atomic specifications are useful is for oper-
ations on concurrent data structures that are to be implemented using non-
blocking algorithms (perhaps utilising atomic instructions such as CAS or FAA).
The remove operation discussed earlier can also be specified using an atomic
specification command.

pre(s ⊆ {0 .. N } ∧ i ∈ {0 .. N }) � rely(s ′ ⊆ s ∧ i ′ = i) � s :〈s ′ = s − {i}〉 (23)

Note that the guarantee (7), s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i , of the earlier
specification is implicitly satisfied by the atomic specification: the postcondition
ensures both s − s ′ ⊆ {i} and s ′ ⊆ s and the frame of s ensures i ′ = i .

As another example, a communication channel between two threads may be
specified via a queue (qu) of messages sent by one thread but not yet received by
the other. The operation to receive a message has a precondition that the queue
is non-empty and the operation to send a message requires that the length of
the queue is not at its upper bound N ,

send(x ) =̂ pre(#qu < N ) � rely(qu ′ suffixof qu ∧ x ′ = x ) �
qu :〈qu ′ = qu � [x ]〉

(24)

x ← receive =̂ pre(qu �= [ ]) � rely(qu prefixof qu ′ ∧ x ′ = x ) �
qu, x :〈qu = [x ′] � qu ′〉

(25)

where qu is a sequence of elements, #s gives the number of items in the sequence
s, the operator � is sequence concatenation, [x ] is the singleton sequence con-
taining x , and [ ] is the empty sequence. This version of send/receive assumes a
single sender and a single receiver: multiple senders or receivers would invalidate
the rely conditions of send and receive, respectively.

7 Termination

If a thread, T , running concurrently with other threads is never scheduled to
execute, the operation running in thread T will never terminate. For example, if
the assignment b := false in the parallel composition in (26) is never scheduled,
the while loop (and hence the program) will never terminate [53].

b := true ; y := 0 ; (b := false ‖ while b do y := y + 1) (26)
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If b := false is scheduled and hence terminates, the whole program completes
with the value of y being some (arbitrary) natural number. Hence a basic require-
ment for termination is that every thread is scheduled with minimal fairness [22].

Rather than building fairness into our primitive parallel operator, we make
use of a command, fair, that rules out preemption by its environment forever (i.e.
performing an infinite sequence of environment steps) [26]. When fair is conjoined
with a command c, their combination,c � fair, represents fair execution of c.

As fairness relates to scheduling threads, we do not build fairness into our
encoding of primitive executable code commands, such as an assignment com-
mand, that is, such commands do not preclude the environment preempting
them forever. Hence when showing “termination” of a command, we show that
it takes a finite number of steps, unless it is preempted by its environment for-
ever. We use the command, term, that performs a finite number of (program or
environment) steps but may be preempted by its environment forever. If term
is conjoined with fair, their combination, term � fair, can perform only a finite
number of steps. To show a command c terminates, we show term � c, which
implies term � fair � c � fair, that is, fair execution of c performs only a finite
number of steps. Although our primitive parallel operator (‖) does not impose
fairness, one can define a fair parallel operator in terms of the primitive parallel
and fair [26,27].

A more complex example is (27) in which we assume the decrement and
increment of i are atomic. If the two threads alternately decrement and increment
i , neither loop terminates but if i manages to get to 0 for the test in the left loop
that loop will terminate and hence the other loop will terminate with i being 10
(and similarly if i gets to 10 for the test in the right loop).

i := 5 ; (while 0 < i do i := i − 1) ‖ (while i < 10 do i := i + 1) (27)

An important observation coming from this example is that one cannot abstract
the interference imposed on the left loop by a finite number of increments of i
because for any finite number, n, of increments of i , the left loop can iterate
n + 5 times and terminate.

For partial correctness, one can use the following intuitive algebraic equiv-
alence, similar to that used in Concurrent Kleene Algebra [33] and our earlier
approach [23],

(Rely r . post q) �p d ⇐⇒ post q �p (d ‖ 〈r〉�) (28)

where �p represents partial correctness refinement, 〈r〉� represents a finite num-
ber of iterations of an atomic program step that satisfies r between its before and
after states. Hence d ‖ 〈r〉� represents executing d with a finite number of inter-
ference steps satisfying r . If that is partially correct with respect to specification
post q , d is partially correct with respect to the specification (Rely r . post q).

Unfortunately, this approach does not extend easily to handling total cor-
rectness because, as in the example program (27), the interference from the
environment is not guaranteed to be finite. Note that replacing 〈r〉� with 〈r〉ω,
which allows either finite or infinite iteration, means that d ‖ 〈r〉ω has infinite
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behaviour (because 〈r〉ω does) and hence will not refine post q because post q
requires termination.7

Interference may affect the stability of a loop’s guard or its negation. For
example, the following code is an implementation of the remove operation spec-
ified by the weak conjunction of (5), (6), (7) and (8), assuming access to s is
atomic.

while i ∈ s do(so := s; sn := so − {i}; done ← CAS(s, so, sn)) (29)

The condition i ∈ s is not stable under interference that can remove elements
(including i) from s and hence the body of the loop cannot assume i ∈ s as
its precondition (as it would for a loop in a sequential program). However, the
negation of the condition, i �∈ s, is stable under interference that may remove
elements from s and not change i , and hence when the loop terminates it does
stably establish i �∈ s. Note that the flag done from the CAS is not used because
it may be a concurrent thread that removes i , rather than the CAS, possibly
after the CAS but before the test of i in the loop guard.

For a while loop running within a thread, the conventional approach of using
a loop variant to show termination may be invalidated if interference can increase
the loop variant. However, if the interference never increases the variant, its use
to show termination is still valid. For example, the while loop in the code of
the remove operation (29) terminates under interference that can only remove
elements from s; one can use the set s as the variant expression under the well-
founded order of strict finite set inclusion s ⊃ s ′ to show termination of the loop
because either the CAS succeeds and establishes i /∈ s stably or the CAS fails
because interference removes some element (possibly i) from s, thus decreasing
the loop variant.

8 Data Abstraction and Interference

With sequential programs, employing abstract data types proves to be extremely
effective in creating understandable specifications and design histories. Interest-
ingly, most examples of developments using rely-guarantee conditions employ
data abstraction and reification (see [37]). With concurrency, there can be the
additional bonus that avoidance of data races can be thought out on abstract
objects rather than on detailed representations.

The choice of data representation for the implementation can be crucial for
reducing the contention/interference between threads. The interference on the
abstraction can be completely different to that on its representation. For the
sieve example an obvious choice of representation for the set s is as a bitmap.
Because N is expected to be larger than the number of bits in a word (say, 64),
an array of �(N + 1)/64� words is required, each word representing 64 elements
of the set. While interference will still occur when threads are accessing the

7 To handle termination one may combine (28) with an extra condition to handle
termination [25] but that approach becomes quite complicated.
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same word in the array, threads accessing separate words will not interfere, in
particular, it is not necessary to lock the complete data structure, and updates
to the individual words can be done via a compare-and-swap (CAS) instruction,
and hence do not require locks.

Simpson’s algorithm for achieving an Asynchronous Communication Mech-
anism [62,63] allows one thread to read the most up to date value of a buffer,
d , written by a second thread. Abstractly, the mechanism provides atomic read
and write operations, where d may contain multiple words (i.e. access to d is
not atomic (at the hardware level)).

r ← read =̂ rely(r ′ = r) � r :〈r ′ = d〉 (30)
write(v) =̂ rely(v ′ = v) � d :〈d ′ = v〉 (31)

To avoid locking, Simpson’s algorithm uses a 2×2 matrix of buffers and care-
fully arranges their access so that if both threads are active, the slot used by the
reading thread differs from that of the writing thread. The slots used are deter-
mined by a number of control bits, each of which can be atomically accessed,
unlike the buffer itself. Such representations are common for non-blocking algo-
rithms. In the development presented in [39], the number of slots and their
arrangement is not determined in the first representation. Not only does this
open up a space of alternative representations, it also pinpoints the issues of
data races on the slots that are carefully avoided by Hugo Simpson’s clever 2×2
organisation. Sorting out race freedom on the intermediate abstraction provides
a clear understanding and record of the design.

The message queue from Sect. 6 can be represented by a cyclic buffer of N +1
elements (i.e. buf ∈ {0 ..N } →Value) plus an index r of the next element to be
read and an index w of the next element to be written. If r = w the queue is
empty and the queue is full if (w + 1 = r) mod (N + 1). Note that the queue
only stores at most N elements but the size of the buffer is N + 1. The extra
element allows empty and full queues to be distinguished. The coupling invariant
between the queue and its representation can be defined as follows.

qu = extract(buf , r ,w) where

extract(buf , r ,w) =̂ if r = w then [ ]
else (buf r) � extract(buf , (r + 1) mod (N + 1),w)

While access to the elements of buf is not assumed to be atomic, the index
variables r and w are assumed to be atomic. The implementations of send (24)
and receive (25) on the representation become the following.

send(x ) =̂ buf [w ] := x ; w := (w + 1) mod (N + 1)
x ← receive =̂ x := buf [r ]; r := (r + 1) mod (N + 1)

In send , the assignment to buf [w ] does not have to be atomic; it does not become
part of the queue until w is updated. While the assignment command updating w
is not assumed to be atomic, its store into w is atomic. Similarly, the assignment,
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x := buf [r ], in receive does not have to be atomic because both r and buf [r ] are
not modified by interference from the sending thread. The update of r removes
the first element from the queue. Again the assignment command updating r
is not assumed to be atomic but its store into r is atomic. Note that only
the sending thread updates w and only the receiving thread updates r . This
separation of the control variables that are written by each thread is similar to
the way the control variables are used for Simpson’s algorithm.

9 Progress

9.1 Waiting for Resources

Termination of an operation that is accessing a shared resource (or lock) requires
cooperation from the other threads accessing the resource. Using a variant within
a single thread is not applicable to showing that the waiting thread eventu-
ally gains control of the resource (or lock). In the simple case the thread with
the resource may eventually signal it has finished using the resource and if no
other threads are contending for the resource, the waiting thread can acquire
the resource and continue, but if the resource is never released, the waiting
thread will never make progress. Hence when specifying operations like acquir-
ing a resource or lock, one needs to accommodate the possibility of the operation
never terminating if the resource is never released by the thread holding it.

Precondition Versus Termination. For sequential programs, total correctness
requires that if the precondition holds initially, the operation terminates. How-
ever, for concurrent programs, the precondition holding initially does not ensure
an operation will terminate because it may need to wait for a resource and hence
its termination is conditional on the behaviour of concurrent threads. For this
reason, the identification of the set of initial states from which an operation
is guaranteed to terminate with the precondition, as is standard for sequential
programs, does not apply to concurrent programs. In fact, it is not in general
possible to define a set of initial states that guarantee termination because ter-
mination may also be dependent on the interference from concurrent threads.

Deadlock. Waiting for a resource introduces the possibility of a set of threads
deadlocking so that all threads are simultaneously waiting, e.g. if thread T1

requests access to resource A and then resource B while thread T2 requests
access to resource B then resource A, the two threads may deadlock if thread
T1 gets A and then thread T2 gets B because both threads are then waiting for
access to the resource held by the other. As Dijkstra [15] recognised early on,
one needs to consider how threads cooperate in order to reason about a set of
parallel threads.

Starvation. In the more complex case where there is contention on a resource,
although there may be no deadlock (i.e. some thread is making progress) it is
possible for a thread to be starved if it always loses out to some other thread
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every time it tries to acquire the resource. To avoid this issue, access to a resource
may be queued (e.g. using a ticket lock rather than a test-and-set lock) so that,
provided every thread that acquires the resource eventually releases it, all threads
will eventually get access to the resource.

9.2 Conditional Termination

The termination of operations that need to wait for resources is conditional on
the behaviour of other threads. For example, the operation to acquire a test-and-
set lock may repeatedly attempt to acquire the lock but it may repeatedly miss
out because other threads are allocated the lock in preference to it. However,
if there are no competing threads trying to acquire the lock, the acquire lock
operation is guaranteed to succeed and terminate.

To express the conditional termination of an operation we use an extension
of Pnueli’s Linear Temporal Logic (LTL) [54]. Each LTL formula f is encoded
as a command 〈〈f 〉〉, whose behaviours are exactly those that satisfy f . For the
LTL formula that states that p holds in the initial state, we define an explicit ι p
operator, but elide the “ι” within examples so that the notation better matches
that of Pnueli.8 To allow LTL formulae to distinguish program and environment
steps, we introduce two new primitives: Π r , that must start with a program
step satisfying the relation r , and E r , that must start with an environment step
satisfying the relation r .

Fig. 2. Encoding LTL formulae as commands

The encodings of the LTL operators are defined in Figure 2,9 where, τ p,
represents an instantaneous test that the current state is in the set of states p;
α allows any single step, either program or environment and hence α� allows
any finite sequence of steps and α∞ allows any infinite sequence of steps; and

8 Note that p is a predicate on a single state, whereas ι p is an LTL predicate on a
trace that holds if and only if p holds in the initial state of the trace. Formalisation
in Isabelle/HOL requires an explicit operator, rather than using the type of p as
done by Pnueli.

9 The encoding used here is similar to that used in [12] for a trace semantics but here
we encode true as α∞ (rather than abort).
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νx . f (x ) represents the greatest fixed point of the equation x = f (x ). Within
temporal logic formulae ∧ and ∨ are temporal logic operators, whereas in the
encodings of commands they are lattice meet (strong conjunction) and join (non-
deterministic choice) of commands, respectively.

The eventually operator, ♦ f , can be thought of as being fair because f is
established after a finite number of steps, and hence it disallows preemption by
the environment forever. In line with our approach to handling termination, we
also define an “unfair” eventually operator � f . Similarly, the always operator,
	 f , can be thought of as being unfair because it allows preemption by the envi-
ronment forever, and hence we define a “fair” always operator 
 f . The temporal
logic formula fairLTL requires that a program step is always eventually taken.10
Its negation allows preemption by the environment forever.

fairLTL =̂ 	 ♦(Π univ) (32)
¬fairLTL = ♦ 	(E univ) (33)

� f =̂ ¬fairLTL ∨ ♦ f (34)

 f =̂ fairLTL ∧ 	 f (35)

The operators � and 
 are deMorgan duals, that is, ¬� f = 
¬f .
An operation for a thread with unique identifier, tid , to acquire a test-and-

set lock can be specified to allow the operation to fail to terminate if the lock
is always eventually not free or the operation is preempted forever. The non-
terminating alternative behaviour is specified by 〈〈	 �(lock �= free)〉〉, where � is
used rather than ♦ to allow preemption by the environment forever to lead to
non-termination. The non-terminating behaviour does not change the program
state and hence it has an empty frame, ∅.

acquire(tid) =̂
rely(lock = tid ⇒ lock ′ = tid) ∧ (lock �= tid ⇒ lock ′ �= tid) ∧ tid ′ = tid �
{lock �= tid} ; (lock :〈lock = free ∧ lock ′ = tid〉 ∨ ∅ :〈〈	 �(lock �= free)〉〉) (36)

The condition under which it is guaranteed to terminate is that eventually the
lock is always free, which can be expressed as the linear temporal logic for-
mula ♦
(lock = free). Note that the operation may terminate even when this
condition does not hold because it may successfully acquire the lock (the first
alternative of the non-deterministic choice). The specification allows the envi-
ronment to preempt it forever (because the atomic specification command allows
that); fair execution of the operation would rule out that possibility.

A ticket lock has better termination properties than a test-and-set lock
because it orders access to the lock. Each thread attempts to acquire a lock
by initially taking a ticket (like in a bakery or delicatessen). The tickets are allo-
cated in order of request. The ticket lock tracks the ticket number, lock , of the
current holder of the lock and when that thread releases the lock, that number
10 Here, fairLTL equals command fair (from Sect. 7) conjoined with α∞ (our encoding

of true in these LTL formula).
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is incremented so that the next thread in sequence acquires the lock. An acquire
operation on a ticket lock is guaranteed to terminate provided every thread that
acquires the lock, eventually releases it. The acquire operation consists of two
phases: one to take a ticket and the other to wait until its ticket is the one
currently being served, i.e. equal to lock . Taking a ticket can be specified as an
atomic operation that sets the local variable tk to the current (global) counter
value ct and increments ct , all atomically,

tk ← take_ticket =̂ tk , ct :〈tk ′ = ct ∧ ct ′ = ct + 1〉 (37)

which can be implemented by a fetch-and-add instruction (22), tk ← FAA(ct , 1).
The second phase of acquire operation terminates when the current value of lock
is the thread’s ticket, tk , but it may fail to terminate if the lock never corresponds
to the thread’s ticket, i.e. 	(lock �= tk).

acquire_lock(tk) =̂
rely(lock ≤ lock ′ ≤ tk ∧ ct ≤ ct ′ ∧ tk ′ = tk) �
∅ : ([lock ′ = tk

] ∨ 〈〈	(lock �= tk)〉〉) (38)

Another example is message channel send/receive operations with blocking
when the buffer is full/empty, respectively. Note that the preconditions of the
previous versions, (24) and (25), become wait conditions.

send(x ) =̂ rely(qu ′ suffixof qu ∧ x ′ = x ) �
(qu :〈#qu < N ∧ qu ′ = qu � [x ]〉 ∨ ∅ :〈〈	(#qu = N )〉〉)

(39)

x ← receive =̂ rely(qu prefixof qu ′ ∧ x ′ = x ) �
(x , qu :〈qu �= [ ] ∧ qu = [x ] � qu ′〉 ∨ ∅ :〈〈	(qu = [ ])〉〉)

(40)

Related Work. To handle termination for a blocking await command of the form
await b do c, that waits until condition b holds and atomically with the condition
b succeeding executes c, Stølen [64,65] developed a rely/guarantee theory that
augments Jones’ quintuple with an additional wait condition, w , that charac-
terised the set of states in which a thread can block.11 The operation to acquire
a test-and-set lock (36) is implemented by the command,

await lock = free do lock := tid .

Stølen developed a rule for showing parallel threads do not deadlock: if thread t1
has a wait condition w1 and postcondition q1 and thread t2 has a wait condition
w2 and postcondition q2, if ¬(w ′

1 ∧ w ′
2) ∧ ¬(w ′

1 ∧ q2) ∧ ¬(w ′
2 ∧ q1), deadlock is

avoided, i.e. both t1 and t2 cannot be blocked at the same time, and if t2 has
terminated t1 cannot be blocked, and if t1 has terminated t2 cannot be blocked.
For the test-and-set lock example, one can use a wait conditions of w1 =̂ lock �= t2
and w2 =̂ lock �= t1 and noting ¬(w ′

1 ∧ w ′
2) = (lock ′ = t2 ∨ lock ′ = t1) meaning

that one of the threads has acquired the lock.
11 Xu Qiwen tackled the same issues in [71] in a similar way.
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In the theory we have developed, we can define an await command with a
body that is a postcondition relation q to be achieved atomically when b holds;
it is guaranteed to terminate if the condition b eventually always holds, or to
put it another way, infinite behaviour is allowed if it is always the case that
eventually b is false.

await b do q =̂ 〈b � q〉 ∨ ∅ :〈〈	 �¬b〉〉 (41)

In later work, Stølen [66] gives two semantic interpretations —weak and strong
fairness— of an await command. The weak fairness version corresponds to (41)
and the strong fairness to the following.

awaitstrongb do q =̂ 〈b � q〉 ∨ ∅ :〈〈(� 	 ¬b)〉〉 (42)

Note the swap in the order of 	� to �	, meaning that the strong fairness await
can only block forever if it is permanently disabled, whereas the weak fairness
await can also block forever if b perpetually alternates between true and false.

10 Conclusions

10.1 Summary

The main role of this paper has been to evaluate approaches to specifying con-
current operations or programs in a rely/guarantee style. Because machines
include instructions that behave atomically, it makes sense to include a form
of specification that represents an atomic operation so that one can specify
these instructions within the concurrency theory. Further, atomic specifications
in conjunction with preconditions and rely conditions can be used to specify
atomic operations on concurrent data structures [16].

The algebraic approaches of Hoare et al. [33], Armstrong et al. [2] and Hayes
[18,23] make use of intuitive algebraic properties to handle rely conditions but
suffer when it comes to handling termination, nontermination and nesting of
constructs. Our initial theory that used a weak specification command forms
part of a theory similar to the Concurrent Kleene Algebra of Hoare et al. [33]
and the algebraic approaches of Armstrong et al. [2] and Hayes [23]. While
this approach works well for handling partial correctness, when the approach is
extended to handle total correctness, it becomes considerably more complex.

The combination of the strong specification command weakly conjoined with
the (newer) rely command, rely r , that weakens the specification to only need
achieve its postcondition in contexts where the environment satisfies the rely
condition r , supports the specification of always terminating, conditionally ter-
minating and non-terminating threads. That leads to a simpler, more expressive
theory than our earlier approach that combined weak specification commands
and the rely command, (Rely r . c), that strengthened the c to handle interfer-
ence that satisfies r . Because the rely r and guar g commands in the newer theory
are weakly conjoined, issues with nesting of older (Rely r . c) and (Guar g . c)
commands are avoided.
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The concurrent refinement algebra approach reported in this paper has been
mechanised as a set of Isabelle/HOL theories. The early work on the general
algebra is available within the Archive of Formal Proofs [18]. To support data
refinement theories for handling localisation [45] and (coupling) invariants have
been developed.

10.2 Related Work

There are many developments relating to rely-guarantee ideas that are not cov-
ered in the body of this paper; they include:

– local rely/guarantee reasoning is presented in [19];
– in [17] it is argued that deny and guarantee conditions are required to handle

fork/join-like concurrency;
– explicit combinations of rely-guarantee thinking with concurrent separation

logic (e.g. [50]) are presented in [20,68,69];
– more implicit combinations are used in [8,11,40];
– Barringer, Kuiper and Pnueli [5,6] show the relevance of rely-guarantee ideas

to temporal logics;
– Moszkowski’s Interval Temporal Logic (ITL) dates from [48,49]; a combina-

tion of ITL with rely-guarantee ideas (RGITL) is covered in [58–60,67] and
progress aspects are discussed in [61];

– a notion of “Simulation” is developed in [44]; and
– progress and fairness issues are covered in [42,43].

Prenso Nieto [55,56] has developed Isabelle/HOL theories for rely/guarantee
concurrency. Her approach assumes condition evaluation and assignment com-
mands are atomic and allows a multiway parallel at the top level but no nested
parallel.

A related topic is relaxed memory models used by machine architectures and
compilers. For our work, we have assumed that the implementation can be aug-
mented with appropriate fencing to ensure it respects the specification. Coughlin
et al. [14] explicitly handle rely and guarantee conditions in the presence of weak
memory models.
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