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Abstract. The authors have previously proposed that, with agents
ranging from humans and other animals through cells to organisations
and software, (e.g. AIs), a theory is possible which accounts in princi-
ple for agent consciousness. That theory has been previously developed
from Booleans to numerical weights, hinting at degrees of awareness and
consciousness.

In this paper, an agent’s degree of awareness at any time is taken
to reflect its freedom of choice amongst its possible behaviours. It
is expressed as the number of actions which are enabled as a next
behavioural step at that time and over which the agent has at least par-
tial control. An agent is conscious of things which enable a fresh choice
of action there, an enumeration of which provides its degree of conscious-
ness. Those notions of degree are shown to provide a satisfactory account
of realistic examples and to provide sensible elementary laws.

Valiant has shown that, in our terms, a living agent adapting daily
to survive in its habitat as well its evolving in the very much longer
term, can in both senses be expressed ecorithmically as learning. That
approach is used here to consider the roles played by awareness and
consciousness in the adaptation of an agent and a species.

1 Introduction

We assume that agents range from animals (humans and others both domes-
ticated and wild) through cells to organisations and software (like AIs), and
promote the view that different types of agent may exhibit different degrees
of consciousness, quite possibly zero. The study of laws satisfied by agent con-
sciousness is pertinent because of current popular and professional interest in
the question of whether or not an AI, like a Large Language Model, can be
conscious. Without some criteria, how are we to decide?

Agents exist in some context which we model as a system. We continue from
our previous paper [6] to adopt the standard view that a model of any system
is constrained by the interrelated criteria of breadth (or extent) and depth (or
level of detail).

An agent’s context is called its habitat, whose details depend on the domain
and purpose of the model. Typically it includes other agents, features external
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and internal to the agent, and a ‘catch-all’ category called1 the backdrop. The
backdrop is deemed to be a default agent and the distinction between physical
and backdrop features will be determined by emphasis of the model, taking
account of the control of its dynamics. Examples of these ideas appear in the
next section.

A system’s dynamics includes the behaviour of its agents, one step at a
time. Each step we call an action. An action may lie under the control of more
than one agent including the backdrop. Indeed an agent is a system component
characterised by having control (perhaps partial) of at least one action. A system
is expressed as a data type, so that ongoing actions normally described by safety
and liveness are expressed instead by their individual steps.

Any scientific approach to agent awareness and consciousness must be
phrased in falsifiable terms. Thus we eschew an animal’s ‘state of mind’ which is
not falsifiable (at least with current neuroscience). Thus it is a matter of belief,
not science, that a dog is happy when it wags its tail. An agent’s actions we
thus take to be observable only if they are falsifiable, which requires hypothesis
testing if the actions occur probabilistically. Henceforth by ‘observable’ we mean
falsifiably so.

Since Descartes and Locke, if not before, human consciousness has been
thought of in terms of the means by which a person becomes aware of features
in its habitat. A contemporary rendering is given by Bernard Baars’s Global
Workspace Theory, GWT, [1], which has inspired a dozen architectures purport-
ing to account for consciousness of a feature at a time; see Sect. 7.

Our approach departs from those architectures in our insistence on falsifia-
bility. The alternative taken has been the standard mathematical one: of offering
laws satisfied by awareness and consciousness in the hope that eventually suf-
ficiently many will accrue to characterise it. In case of shortfall there may still
be sufficiently many laws to falsify consciousness of some agents. Also, in the
absence of a definition it is still helpful to have heuristics for awareness and
consciousness, which are strong enough to show consistency of the laws when
there is any doubt.

In this paper we concentrate on the underlying model which is inspired by
but simplifies those we have considered previously [5,6].

An agent is deemed heuristically to be aware of a feature (external or inter-
nal) at a given time which enables some action (in the sense of establishing its
precondition) which is at least partially within the agent’s control. The action
need not occur, but it is a candidate for the agent’s next behavioural step. In
terms of a scheduling protocol P for the agent’s next action, the agent is cog-
nizant of the domain of P, the actions from which it chooses, even though the
protocol itself is unknown.

An agent is deemed heuristically to be conscious of something which causes
a fresh choice of action, even though the protocol for making the choice still
remains unknown.

1 Called ‘the environment’ in our previous work [5,6].
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The paper is structured as follows. Features are introduced with a light touch
in Sect. 3 and used to express the awareness heuristically in both Boolean and
numerical terms. The models are simple because of the restricted use made
of features and of time. They are used to give corresponding new models of
consciousness in Sect. 4.

To test the formalism, the case study of a simplified cell is presented in Sect. 5
and its degrees of awareness and consciousness computed. Adaptation of living
agents, and the roles played by awareness, consciousness and the protocol P, are
considered in Sect. 6 using Valiant’s concept of ecorithm. The paper ends with
Related and further work, and a Conclusion.

But we start with an uncharacteristically anthropomorphic example which
exemplifies the ideas mentioned above and motivates the heuristics used.

2 Cameo

It is an autumn afternoon. Two parents are feeding their 3-month-old daughter
in response to her cries, whilst their 2-year-old son builds a tower with blocks in
his bedroom and their pet Golden Retriever naps in its bed in a corner of the
laundry beside its water bowl.

The parents are being guided by intuition with the upbringing of their son and
so are now more experienced and relaxed with their daughter. They are alert to
her needs and often anticipate them, burping her after feeding and checking her
nappy if she seems discontented. Their son is becoming autonomous, beginning
to assert himself and often able to play by himself, though at 2 still needs support
and supervision. The dog (and the parents) have been well trained at the local
Canine Academy and it is treated as one of the family. Suddenly it rouses to bark
protectively after sensing a passing pedestrian outside, unheard by the parents.

Apparently having fed enough, the baby falls asleep. One parent goes to the
kitchen to prepare dinner whilst the other takes the dog’s lead off its peg in the
hall. The dog rushes to the front door, tail wagging, in anticipation of its daily
walk to the park. The son, hearing activity and knowing the schedule, emerges
from his bedroom. As his parent puts the leash on the dog the son requests ‘Me
too’ to join the trip to the park. Wanting to walk like his parent, he refuses to
be seated in his stroller; for now anyway. The parents call farewell to each other
and the walk begins.

On the way to the local park the dog, on the extensible leash, enthusiastically
engages in its usual routine with every tree and lamp post whilst the boy, clasping
his parent’s hand, looks around curiously. The parent is idly contemplating some
thoughts about work, when they come to a crossroad. Becoming instantly alert,
the parent ensures that the dog is by their side, and begins to teach the boy the
time-honoured algorithm involving looking each way before crossing the road.
Suddenly a car approaches, much noisier and faster than usual. The dog watches
it and growls, and the parent pauses to check their safety, then resumes the
lesson, using the car to stress the danger of roads. The car fades into the distance
and they cross.
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At the park the dog, free of the leash, fruitlessly chases a bird searching for
worms and insects in the grass. The boy roams free, and decides to collect acorns
in a pile in his stroller. The parent keeps a watchful eye on both from a park
bench whilst ruminating on what wine to open with dinner.

2.1 Discussion

The agents in the model underlying that Cameo include a family of four, their pet
dog, a car driver, birds and perhaps worms and insects at the park, depending
on the breadth of the model. For example He Jifeng does not happen to be
included. The dog’s external features include its bed, lead, trees and lamp posts
along the way to the park; but the position of the planets is not included. Its
internal features include its nature and nurture, with remembered locations and
events; but biometrics are not included. Its backdrop includes the passage of the
sun across the sky; again, its details depend on the depth and breadth of the
model.

The dog’s behaviour, by its nature (and species in particular) lives up to
its epithet as man’s best friend. As a result its actions often indicate surprising
awareness of and attentiveness to the family’s needs. Considering an agent to
be aware of things which enable an action at least partially within its control,
the dog is aware of food (which enables its eating), the family and other dogs
(which alter its behaviour), its daily routine (which it anticipates), opportunities
to play and for human attention.

The dog behaves differently at different times of the day, due to its awareness
of the position of the sun overhead and ambient animal noises. The sun is an
external feature lying beyond the control of any component of the system and
so belongs to the backdrop.

A rock at the park undergoes dynamics, due to erosion by the elements. But
since those lie beyond its control, the rock is not an agent.

By comparison, the nature and nurture of the parents means they coordi-
nate closely with each other as guardians and providers. Other internal features
include their aspirations and social expectations. They are aware of idle thoughts
which enable their ability to relate them. But they are not aware, for instance, of
current popular TV series. Their backdrop includes the domestic water supply
and movement of the sun.

The baby is aware of far fewer features than the son who is aware of fewer
than the parents. The baby is just becoming aware of the appearance and noise
of the dog, which attracts her attention but enables no further action. The son
is in addition keen to play with the dog as are the parents who also act to ensure
its health and safety.

Counting the number of actions under each agent’s control which are enabled
by the dog, the baby has fewer than the son who has fewer than the parents.

The dog’s awareness of its lead being taken from the peg enables a fresh
action at that moment: its walk outside. On the walk to the park the parent is
conscious only initially of taking steps, because care is required in descending
the front doorsteps, and then in matching pace to that of the boy and the dog.



Consciousness by Degree 91

But then the footsteps becomes routine and the parent is no longer conscious of
them. But they return immediately to consciousness if a fresh action becomes
enabled; like recovering from tripping over a misaligned paving stone.

3 Features

We suppose that any system contains a set F of features (from our earlier work
[5,6]) which are time dependent and influence agent and system behaviour. Fea-
tures are compounded from a set Basic of (domain-dependent) features under
Boolean combinators corresponding to ‘non occurrence’, ‘joint occurrence’, ‘con-
ditional occurrence’, ‘eventual conditional occurrence’ and ‘awareness’, provided
the result is observable as discussed in the Introduction.

Awareness is included as a feature because it plays an important role in an
agent’s choice of next behavioural step. For instance the dog’s behaviour depends
on its awareness of its lead being taken from the peg, and the parent’s behaviour
then depends on its awareness of the dog’s awareness.

In the Cameo features include: ‘the passing pedestrian’; ‘the lead being taken
from the peg’ which leads to ‘the daily walk’, and so on. Features do not include
‘radio waves’ unless the system also includes an appropriate receiver, without
which the waves are not observable.

Definition 1 (Features). At any time the features of a system are either Basic,
or defined in terms of the combinators:

F := Basic | ¬F | F ∧ F | F ⇒ F | F+⇒ F | Aa F
Since a combination belongs to F only if it is observable, even if f is a feature
the inconsistent conjunction f ∧ ¬f = false is not.

A feature’s time dependence we treat modally, making the time variable
explicit only when necessary. The notation Aa for agent a’s awareness is chosen
because we regard awareness as a modal operator and that notation resembles
that used in epistemic and doxastic logic. We begin by giving the semantics
behind the syntax Aa after which we deal with the logical combinators.

3.1 Awareness

The Cameo motivates a Boolean notion and a numerical one of agent awareness
and consciousness.

An agent is deemed to be aware of something at time t which enables an
action, at least partially within its control, then. The action is therefore a can-
didate for the agent’s next action at t . The number of such actions is its degree
of awareness at t .

To express that, a little notation is helpful.

(a) The set of actions which are at least partially within agent a’s control at time
t is called a’s ambit and denoted Am(a, t) (from our earlier work [5,14]).
For instance the dog’s walk to the park lies in both its ambit and that of its
owner. But the weather at the park belongs to the ambit of neither.
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(b) For action α its precondition, pre α, holds at just those states s and inputs in
from which α is defined and terminates. Writing α as a predicate in the four
free variables s (state before), in (input), s ′ (state after) and out (output):

(pre α)(s, in) := ∃ s ′, out · α(s, in, s ′, out).

For instance the precondition for the dog to eat from its bowl is that it be
by the bowl which contains acceptable food.

Time, as used in (a), is replaced (following tradition) by state in (b). The
two are reconciled by replacing state in (b) by either time from T or in both
cases by a trace of actions which have occurred, in order of occurrence.

Awareness of a feature f at time t , that f enables some action in a’s ambit at
t , makes sense only if f (t) holds (which is why negation of features is essential).
Simplifying the formalization:

∃ α : Am(a, t) · f ∧ (f ⇒ pre α)

leads to the definition:

Aa(f , t) := f (t) ∧ ∃ α : Am(a, t) · pre α. (1)

For instance the dog is aware of the passing pedestrian which enables its bark.
Until then the humans are not aware of it, having more limited hearing. But
then the parents’ curiosity is aroused so the action of looking out the window is
enabled by the dog’s bark. An enabled action need not occur, so the parents may
choose instead to continue what they are doing, perhaps because it is common
for the dog to bark at pedestrians, or what they are doing is more important.

It is convenient to set:

S(a, f , t) := {α : Am(a, t) | f (t) ∧ pre α} (2)

so that (1) becomes:

Aa(f , t) = S(a, f , t) �= ∅.

That leads to a definition of degree of awareness:

|Aa(f , t) | := #S(a, f , t). (3)

That numerical measure is defined only for awareness Aa(f , t) and not for
features in general, as in our earlier work. The result is a simpler model requiring
less commitment to unnecessary detail in examples.

3.2 Features Resumed

We can now return to the semantics of the Boolean combinators on features.
Provided the result is observable, they are given pointwise on the time variable:
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(¬f )(t) := ¬ f (t)
(f ∧ g)(t) := f (t) ∧ g(t)
(f ⇒ g)(t) := f (t) ⇒ g(t)
(f +⇒ g)(t) := f (t) ⇒ ∃ u≥t · g(u)

Aa(f , t) := Definition (1).

Evidently a compound scenario within a system can be described by a combi-
nation of features. For instance in the Cameo the lead being taken from its peg
leads to the dog’s walk and so on.

Simple laws of awareness involving those combinators appear in Fig. 1.

Fig. 1. Simple laws for awareness of agent a in the Boolean model, subject to the
qualifications in Theorem 1. The dual modal operator is defined as usual, pointwise on
t , by ∇a(f ) := ¬Aa(¬f ).

Theorem 1 (Laws for awareness). The laws of Fig. 1 hold, Expressions (5) and
(6) provided Am(a, t) is closed under the demonic choice of actions. Furthermore
the implications are strict.

Proof. Law (4) follows immediately since f is a conjunct in Definition 1 of
Aa(f , t). The converse clearly fails; for instance in the Cameo, the parents are
not aware of the passing pedestrian when the dog is.

For Law (5) we reason that if f , g both hold at t they are consistent so f ∧ g
is also a feature and hence:(

Aa(f , t)
Aa(g , t)

)

≡ Definition (1) of awareness(∃α : Am(a, t) · f (t) ∧ pre α
∃β : Am(a, t) · g(t) ∧ pre β

)

≡ logic

∃α, β : Am(a, t) · f (t) ∧ g(t) ∧ pre α ∧ pre β
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≡ pre α ∧ pre β = pre (α � β)

∃α, β : Am(a, t) · f (t) ∧ g(t) ∧ pre (α � β)

≡ γ := α � β; � straightforward

∃ γ : Am(a, t) · f (t) ∧ g(t) ∧ pre γ

≡ Definition 1 again

Aa(f ∧ g , t).

The proof of Law (6) is similar using angelic choice α 	β instead of demonic
choice.

Law (7) requires simple propositional reasoning:

Aa(f , t)

≡ definition

f (t) ∧ ∃α : Am(a, t) · pre α

� logic, for any X

f (t) ∨ X

≡ logic, with X := ¬ ∃ β . . .

¬(¬f (t) ∧ ∃ β : Am(a, t) · pre β)

≡ definition

¬Aa(¬f , t)

≡ definition

∇a(f , t).

Evidently the implication is strict. For example in the Cameo the dog may not
be aware of the lack of water in its bowl because it is on the walk; so it is not
aware of the presence of water. �

A probabilistic choice between two actions is a special case of their demonic
choice. By comparison the existence of the angelic combination of consistent
actions is a strong assumption, leading to actions which backtrack and so on.

4 Consciousness

We now make the assumption that time is linear and discrete. If initialization
is important to the model, the time domain T is often assumed to be an initial
segment of T := N. In other words it is N or, if finite, the interval [0,n] of integers.
But if initialisation is unimportant and time infinite, a more convenient choice
may be T := Z.

Either way we assume that each non-initial time t : T has a unique prede-
cessor t− and each non-final time has a unique successor t+.
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We regard an agent a as conscious of a feature f at time t if a is aware of f
at t via a fresh action: one which was not enabled at t−.

We define a modal operator Ca for consciousness by expanding Aa to incor-
porate freshness:

Ca(f , t) := ∃α : Am(a, t) ·
⎛
⎝ f (t)

(pre α)(t)
¬(pre α)(t−)

⎞
⎠ . (8)

As always that existence does not mean the fresh action need be taken.
As with awareness, that Boolean notion extends to degrees by enumerating

the fresh actions:

| Ca(f , t) | := #{α : Am(a, t) ·
⎛
⎝ f (t)

(pre α)(t)
¬(pre α)(t−)

⎞
⎠}. (9)

And, as with the relationship between the Boolean and numerical models of
awareness,

Ca(f , t) = | Ca(f , t) |> 0.

Fig. 2. Laws for consciousness corresponding to those of Fig. 1, subject to the quali-
fications of Theorem 2. The modal operator dual to Ca is defined by decorating the
dual of Aa : ∇·a(f , t) := ¬Ca(¬f , t).

Laws for consciousness that correspond to those of Fig. 1 are given in Fig. 2.
Their correctness follows from both the content and method of Theorem 1.

Theorem 2 (Laws for consciousness). The laws of Fig. 2 hold, (5) provided
Am(a, t) is closed under demonic choice and (6) provided it is closed under
angelic choice of consistent actions. Furthermore the implications are strict.
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5 Case Study: A Cell

In this section we give an example of a system and an agent which is simple
enough for its features to be identified more completely than in the Cameo and
for the agent’s awareness to be determined.

We choose to model an idealised typical cell and find it, not surprisingly, to be
an agent which is aware but not conscious. No specialized biological knowledge2

is assumed. We use the Z notation, mostly3 as covered by Spivey [17].
The cell is distinguished from its environmental periplasm by a semiperme-

able membrane containing the cell’s cytoplasm. For homeostasis, temperature
and various concentrations like pH within the cell must remain within certain
bounds. Temperature is determined by the environment but regulation of var-
ious concentrations in the cytoplasm is achieved by transpiration through the
membrane, sometimes requiring energy from the cell. We abstract the various
concentrations, but include as a fundamental feature alive : B, whether or not the
cell is alive. We suppose that for t0, t1 : R and temperature temp in centigrade,

alive ⇒ t0 ≤ temp ≤ t1.

Transpiration is achieved by ‘channels’ which import nutrients (like sugars
and amino acids) and which export the byproducts of metabolism (like sodium
ions, or volatile compounds). A channel may be:

(a) passive, not requiring energy but working with the gradient by osmosis or
diffusion or being ‘facilitated’; or

(b) active requiring cell energy to work against a concentration gradient using
one of several methods.

Energy is produced by the break down of ATP, Adenosine Triphosphate, with
water to give ADP, Adenosine Diphosphate, and phosphorus; see Wikipedia,
[20]: Adenosine triphosphate. ATP is produced and stored in the cell’s mito-
chondria by the TCA (Citric Acid or Krebs Cycle); see the survey by Massimo
Bonora et al., [4]. We abstract that mechanism entirely, and instead consider
just the amount of energy available in the cell; see Garrett Heinrich [9].

We begin by modelling a cell’s active importing channel as follows.

5.1 Cell Importer

An importer is an active channel which imports certain kinds of molecule, of
type Mol, to the cell. It is formed from two domains, one atop the other, as
shown in Fig. 3.

2 A helpful reference for further relevant details is Wikipedia, [20], for instance: Cell
membrane; Active transport; Facilitated diffusion; Ion channel.

3 The definition of operation Release in two steps is nonstandard but hopefully clear.
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Fig. 3. Cross section of an importer through the cell membrane. Image from Wikipedia,
[20]: ATP-binding cassette transporter (captured February 2023).

The domain contacting the periplasm, the transmembrane domain, has an
outer gate, tout , to the periplasm and an inner gate, tin. Each is either closed
or open, tout , tin : B, with false representing closed. When the cell is live, if one
of the gates is open the other is closed: tin = ¬tout .

Beneath is the nucleotide-binding domain whose outer gate nout contacts
the cytoplasm and inner gate, tin, connects to the inner gate nin, so tin = nin.
However now both gates of the nucleotide-binding domain may be closed, both
may be open, or nout may be closed whilst nin is open. In summary ¬(nout ∧
¬nin), or nout ⇒ nin.

The two domains join in a cavity capable of holding a molecule of type Mol
(which depends on the kind of channel). Combining the four gate observables
with the state of the cavity, the temperature and whether or not the cell is alive
gives the importer’s State. (Temperature is included to record the influence of
the environment on the state of the cell).

Initially, both outer gates are closed, the inner gates are open and the cavity is
empty. We describe initialisation as an operation which starts from an arbitrary
state and terminates in an initial state, so we can use it later to reinitialise
the state. As usual ⊥ denotes the undefined state and X⊥ denotes the type X
augmented with ⊥.
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State
alive : B

temp : R

energy : R
≥0

cavity : Mol⊥
tin, tout : B

nin,nout : B

alive ⇒

⎛
⎜⎜⎜⎜⎝

t0 ≤ temp ≤ t1
energy > 0
tin = ¬tout
tin = nin
nout ⇒ nin

⎞
⎟⎟⎟⎟⎠

Initialise
ΔState

alive ′

cavity ′ = ⊥
¬tout ′ ∧ ¬nout ′

The implication in the state invariant is not an equivalence because:

(a) the cell may die for other reasons; and
(b) if the cell dies after attaining unsafe levels, it remains dead even if they

subsequently return to normal.

Importing a molecule to the cell via the importer channel is done in three
stages: docking, Dock ; followed by release, Release; then reinitialisation, Ini-
tialise:

Import := Dock � Release � Initialise.

Dock inputs a molecule m : Mol bound to a binding protein bp( ) : Ptn
from the periplasm, in the form bp(m). Formally, that is defined by feature
combination: bp(m)(t) := (bp( )&m)(t). Dock also inputs a quantum of energy,
en0, from the cell, as discussed above.

Dock requires both outer gates to be closed initially (from which it follows by
the state invariant that both inner gates are open) and the cavity to be empty
(its content equals ⊥). Afterwards it ensures that tout is open, nout remains
closed (so by the state invariant tin and nin are both closed), nout is closed, bp
is empty, the cavity contains molecule m, and energy has been consumed.

Dock
ΔState[cavity , tout , tin,nout ,

nin, energy , alive]
bp(m)? : Ptn × Mol

alive
energy ′ = energy − en0

¬tout ∧ tout ′

¬nout ∧ ¬nout ′

cavity = ⊥
cavity ′ = m?

pre Dock
State
bp(m)? : Ptn × Mol
energy? : R

+

alive
¬tout ∧ ¬nout
cavity = ⊥
C .energy ≥ en0
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The precondition of Dock is that tout and nout are closed, the cavity is empty
and the cell has sufficient energy.

Release assumes the conditions established by Dock. It outputs the empty
binding protein, bp( ), closes tout and opens tin, nin and nout so that the
molecule m in the cavity can enter the cytoplasm. We describe Release as two
steps in sequence. In the first step, from State to State ′, the upper outer gate
closes whilst the lower outer gate remains closed, and bp( ) is output. In the
second step, from State ′ to State ′′, the upper outer gate remains closed whilst
the other gates open and m is output to the cytoplasm.

Release
Δ2State
bp( )! : Ptn
m! : Mol

alive ∧ alive ′ ∧ alive ′′

temp = temp′ = temp′′

tout ∧ ¬tout ′ ∧ ¬tout ′′

¬tin ∧ tin ′ ∧ tin ′′

¬nout ∧ ¬nout ′ ∧ nout ′′

cavity = cavity ′ = m!
cavity ′′ = ⊥

pre Release
State

alive
tout
¬nout
cavity �= ⊥

The precondition is that tout is open, nout is closed and the cavity is
nonempty.

Finally the importer is reinitialised with operation Initialise, leaving it in a
state satisfying pre Dock (except for the cell’s energy level). Of course Initialise
is total.

To be able to function against a concentration gradient, the system of gates
must function like an airlock. We use that property to ‘validate’ the breadth and
depth of our model of an importer; without some such validation we can have
little confidence in the accuracy of our model.

Theorem 3 (Airlock). The action Import at no time connects the periplasm
and cytoplasm directly.

Proof. Since Import is the sequential composition of three actions it suffices to
show the claim for each, Dock, Release and Initialise. We show that at no time
(not just at the end of each step) are all four gates open:

¬(tout ∧ tin ∧ nin ∧ nout). (14)

Initially both outer gates, tout and nout , are closed so (14) is established.
We argue operationally, but in Hoare-logic style, that (14) is preserved during
the animation of Import.

Dock keeps closed the lower gate nout whilst closing the inner gates tin, and
nin and opening the upper outer gate tout . So (14) is maintained.
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The first step of Release keeps closed the upper outer gate tout whilst the
lower outer gate nout remains closed. The second step of Release keeps closed
the upper outer gate tout whilst the lower three gates, tin, nin and nout , are
opened. So (14) remains true.

Finally Initialise keeps closed the lower outer gate nout whilst the others,
and tout in particular, are unchanged. We conclude that (14) is maintained
throughout. �

5.2 Cell Awareness

At any time our idealised cell may engage in the production of more ATP, or the
import or export of molecules (including the ingredients or byproducts of the
TCA cycle) on its channels like that described above with the four action steps
of Import. Energy production also involves importing and exporting through the
membrane of the mitochondria. The number of mitochondria depends on the
metabolism requirements of the cell. In all, many actions are involved (charac-
terising the breadth of study), each composed of many steps (depending on the
depth of study).

We suppose for simplicity that the cell has 15 mitochondria, 20 importers, 20
exporters and 25 residual mechanisms. Each of those involves an action composed
of steps in sequence, like Import. They are interdependent when resources are
low, which for simplicity we overlook. The cell’s degree of awareness of its internal
activity f at t equals the number of actions in Am(cell , t) which are enabled at
t . Enumerating by the four kinds of mechanism, that might typically be:

Acell(f , t) = 15 + 20 + 20 + 25
= 80.

However that awareness, although observable, does not enable any fresh
action and so the cell is not conscious of f at t :

¬Ccell(f , t)
| Ccell(f , t) | = 0.

6 Adaptation

We view a species, subject to evolution, as an agent in control of its DNA. The
control is partial because of epigenetic influences; but that is sufficient for it
to satisfy our definition of agenthood. On one hand such an agent adapts to
its environment day-by-day and its species adapts by evolving generation-by-
generation.

In this section we combine those forms of adaptation following Valiant’s con-
cept of ecorithm, to understand the roles played by awareness and consciousness
in adaptation.
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In interacting day-by-day with its habitat (including other agents), and buf-
feted by its backdrop, an agent adapts to survive. The result is a change in
both the habitat and the agent’s nurture. Evolving generation-by-generation the
species improves its fitness to survive, subject to epigenetics and genetic muta-
tions of its DNA. The result is a change in its nature.

Both forms of adaptation have been explained with the concept of an ecorithm
by Leslie Valiant, [19] (who has been able to clarify and formalize Darwinian
evolution in terms of machine learning). The ‘fitness function’ (or ‘performance
function’ in Valiant’s terms) evolves and maintains improvement towards a limit
given by some mathematical, ideal function.

Making the assumption already implicit in Darwin’s work-that different
choices of action have various levels of benefit for the evolving entity-we
can define the performance and the target in terms of the notion I call an
ideal function. For any species (or other evolving entity), at any instant, in
any specific environment, this ideal function will specify in every possible
situation the most beneficial course of action.

Leslie Valiant, [19] p. 111.

We begin by formalising the life of a living agent in terms of its nature (DNA)
and nurture (learning from its habitat). A machine-learning system learns how
to classify a given datum on the basis of experience. The simple example of
binary classification by means, used by Bernhard Schölkopf & Alexander Smola,
[15]: Section 1.2, is specified in Fig. 6 of the Appendix as a data type. We now
use those ideas to describe a living agent, culminating in Fig. 4.

6.1 Living Agent

The state of a living agent we take to consist of: whether or not it is alive, live : B;
its DNA, dna : DNA; its behaviour, or history of actions, data : seq Action from
its ambit; the behaviour habs : seq Action of its habitat beyond its control; the
behaviour envs : seq Action controlled by its backdrop, e; and its (unknown)
choice protocol, P, as above. We overlook the agent’s identity.

Initially: the agent is alive with some DNA, dna0; empty data, habs and envs;
and some protocol P0.

It is no more straightforward to classify a living agent’s interactions with its
habitat than it is to provide details of P.

Since the actions we take in one circumstance may influence what is the
most beneficial action in another, it is the combination of all the action
functions that is evaluated. The ideal one is that which produces most
benefit in that snapshot of an environment.

Leslie Valiant, [19]; page 112.

Informed by ML, we describe the ways in which an agent’s state can change.
We include operations Learn, Predict, FreeWill, Supervene, Vicinity, Beget and
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Die. Each requires the agent to be live. The operations Learn and Predict are
as described by the general setting of the Appendix but using an unknown ideal
function FF to update P.

The details of FreeWill are concealed within the protocol P. It is given as a
separate operation because without it the classification of a living agent’s inter-
actions would seem incomplete. Supervene describes an action of the backdrop,
either instantaneous by normal time scales like the eruption of Vesuvius, or incre-
mental like an ice age. It may result in the agent’s death, but anyway updates
envs. Vicinity describes actions in the habitat which lie beyond the agent’s con-
trol; it extends the trace habs. Like Supervene, its actions may well impact a’s
behaviour.

Beget is the only operation to output an agent, the offspring b!. It is specified
with partner a0? and is asexual iff that equals the current agent. The function
Fme describes how the offspring’s DNA is formed from those of its parents,
taking into account mutations and epigenetics. Beget ’s precondition is that both
the agent and its partner are alive.

After Die a living agent is no longer living (to state the obvious). Its control
is difficult to specify because the operation may be internal to the agent, due to
congenital malady or old age (Queen Elizabeth II), the result of actions of other
agents (Julius Caesar) or of the environment (the population of Pompeii under
erupting Vesuvius).

The specification of the type Living agent is naturally an extension of the
type ML, which is the point of having considered it first. In spite of that we
present it in Fig. 4 from scratch and for readability ignore various Z shortcuts.

In the spectrum of agents considered here, those which evolve are particularly
important because they provide a way to understand the evolution of conscious-
ness. It may be that there is an almost-Darwinian sense in which software evolves
(did ChatGPT3.5 beget ChatGPT4?); certainly in the early years programming
languages were classified by ‘generation’. But for now we assume that evolution
applies only to living agents.

6.2 Family Tree

Viewing a species as an agent we now extend the description of a single living
agent to a species via its family tree, adapting ecologically. See Fig. 5.

The family tree consists of a sequence of finite sets of living agents, each
an offspring of an agent in the previous generation. It also contains a fitness
function (for simplicity we consider just one) which evolves by generation. In
each generation all agents are live and share the same habitats and backdrops.

Initially the sequence is a singleton, the first generation consists of some
nonempty set of agents and the fitness function is undefined, awaiting learning.

That concept of generation, represented by g in Fig. 5, requires comment. For
the case of parthogenesis, asexual reproduction, it is well defined. Most human
cultures have taboos against parent-child breeding, in which case g is also well
defined. But otherwise, including for many animal species (see the interesting
discussion of Victoria Pike et al., [13], g needs to be defined as the length of the
shortest path between the two sets of agents.
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Fig. 4. The format of a living agent adapting day-to-day, in terms of machine-learning.
Unknown procedures, like how the next action is the result of nature and nurture, or of
free will, are abstracted in the next-step protocol P which is assumed to be updated in
learning by FF . The agent’s next action benefits from its nature and nurture by way
of operation Predict.

Supervention by the backdrop may affect a whole generation as well as pro-
viding changes in the fitness function. It is total.

Each interaction of an agent with its habitat now consists of one of the
operations Learn, Predict, FreeWill, Vicinity, Beget and Die from Fig. 4, the
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Fig. 5. The format for a family tree of living agents adapting and evolving in some
habitat. Adaptation of a single agent to survive is as in Fig. 4, whilst evolution is
described by supervention to change DNA between generations.

choice being made by its choice protocol. At this level we simply combine those
actions nondeterministically.

6.3 Adaptation and Consciousness

What evolutionary advantage does consciousness confer?
Adapting day-to-day, a living agent is aware of features which enable some

action for its protocol P to choose from. It is conscious of features which enable
fresh actions and hence update the domain of P. But whilst interacting and
adapting, P changes incrementally as in machine learning.

Adapting in the long-term the species DNA is modified and as a result so
is the protocol P (a change we allocate to FF ). But now the change seems
most unlikely to be incremental: arbitrary increments are likely. The only thing
comparable in one generation would be a complete change of habitat, like animal
migration or man walking on the moon.

Changes in P are thus either incremental, by generation, or possibly wild and
unprecedented, in evolution. In terms of seeking a ground state in evolutionary
phase space, presumably the goal of any species, that results in a well-known
searching strategy which combines stepwise local search with jumps to avoid
capture by local minima.
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7 Related and Further Work

Russell and Whitehead and
Hegel and Kant,
Maybe I shall and maybe I shan’t.
Maybe I shan’t and maybe I shall.
Kant Russell Whitehead, Hegel et al.

Frederick Winsor, [21].

Our previous work (Chen & Sanders, [5,6]), used reflexivity to define con-
sciousness as awareness of awareness and achieved reflexivity using the notion of
‘feature’ in an agent-based system. The model of feature strength was based on
the observation that awareness and consciousness fade with time unless refreshed.
A Boolean model was accompanied by a numerical one in which the strength
of a feature was defined to be proportional to the inverse of the time since its
occurrence.

When we came to use feature strength to give an account of examples, like
those in the Cameo and the cell, we found that the assignment of weights to
features, though elegant in theory, seemed too arbitrary in practice. Moreover,
the justifying stability analysis seemed much too difficult.

In this paper we have considered an alternative, more restrictive, approach.
It is still based on the number of possible behaviours under the control of the
agent at any time and again supports agent consciousness by degree. But we have
replaced consciousness as reflexive awareness with an approach which seems to
work better on examples.

There is not much directly-related work, though of course the topic of con-
sciousness is burgeoning. The Global Workspace Theory, GWT, of Bernard Baars
[1] already mentioned has been very influential concerning human consciousness
and its appreciation in terms of a means by which features are promoted to
consciousness. Over the past two decades the idea of a global workspace has
been refined by a dozen architectures, many explicitly computational like the
Conscious Turing Machine [3] of Manuel & Lenore Blum.

Our work departs from the GWT architectural approach by insisting that
agents be general and that as far possible concepts be falsifiable.

Stanislas Dehaene [7] has proposed that a human is conscious of any feature
on which he or she can report. In our terms the form of the report may be
predetermined (by the person’s choice protocol) but its content is entirely feature
dependent and so the report itself is fresh. That indicates consciousness in our
terms, so our heuristic can be seen as generalising consciousness to arbitrary
agents Dehaene’s approach.

For further work, less related but nonetheless interesting and important, we
refer to Section 6 of our earlier paper [5] which includes: Giulio Tononi’s Infor-
mation Integration Theory, IIT, [18]; Donald Hoffman’s Computational Evolu-
tionary Perception, CEP, [10]; Mark Solms & Karl Friston’s use of the ‘free-
energy principle’ in modelling homeostasis with the prospect of consciousness,
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[16], Chapter 7; and the enticing evolutionary aspects of consciousness, briefly
touched on here in Sect. 6.3: Simona Ginsburg & Eva Jablonska’s [8].

We have not availed ourselves of Thomas Nagel’s hugely influential view [12]
that an agent is conscious iff there is something it is like to be that agent. Owen
Holland [11] makes the point that Nagel’s view is based on living agents and
that for artificial agents it might instead be replaced by an approach founded
in engineering, and he discusses the difference between physical and virtual AIs.
Our approach, restricted to those cases, though different does not seem far away.

We have recently discovered the work of Yoshua Bengio, for instance [2],
which also takes an entirely non-architectural approach to consciousness of AI
(Large Language Models in particular) but at a lower level of abstraction.
Nonetheless his priors have much in common with our features (when inter-
preted probabilistically) and may suggest a way forward with feature strength.

There is a desperate need for realistic case studies, particularly concerning
the development of consciousness, which seems so far to lie in fiction.4 Having
identified a degree of consciousness, it would be interesting to consider the rate
of change of consciousness during a living agent’s lifetime.

This work has followed the classical view that time is linear and events,
though they may be concurrent, are viewed in a sequential manner. For much of
science that view is sufficient. It is fundamental to the global workspace metaphor
and also provides the basis for the traces of concurrent computations. It may well
be that a nonlinear time domain makes more sense in considering consciousness.

8 Conclusion

We conclude that agent awareness and consciousness may be explained by degree
(without explicitly assigning strength to features) in a way which makes much
sense in examples.

In the case study of a cell we have inferred that the cell is aware but not
conscious, with a degree of awareness | Acell(f , t) | = 80. Eighty? Eighty! He
Jifeng, we offer salutations and congratulations on your 80th Festschrift and
look forward to your 90th, and before then more of your hugely influential work
from which we have benefitted directly and as part of the community.

A tiny step has been made towards a setting in which to study the ecological
development and contribution of consciousness.
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4 The Enigma of Kaspar Hauser, Werner Herzog, originally Jeder für sich und Gott
gegen alle, 1974.
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Appendix: Machine Learning

A machine-learning system for binary classification of data in R
n may be speci-

fied as an abstract data type as follows, resulting in Fig. 6.

Fig. 6. A simple machine-learning system input, as described by Bernhard Schölkopf
& Alexander Smola, [15]: Section 1.2. The system learns and assigns to an input datum
‘the’ class whose mean lies closer.

Assume a type D of data, already a subset of R
n for some n > 0, and

a Boolean partition D = C ∪ C in which each datum is assigned to either
C or its complement C (we use other notation for the mean), determined by
its membership. We write C for the partition {C ,C} and assume it remains
constant.

The state of the machine-learning system consists of a bag, or multiset, data,
of data seen so far, together with the means m,m of their assignments to C ,C
(respectively) so far. Initially the bag of data is empty, data = � �, with the
means undefined m,m =⊥.

Learning results from correctly-assigned input data. The training operator,
Learn, takes a datum and its classification and adds the datum to data and
updates the means. So Learn is total.

The assignment operator, Assign, assigns to an input datum the category to
whose mean it is closer in R

n . For a nonempty bag D of data we write its mean
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as mean(D) := (#D)−1
∑

D , where
∑

denotes bag summation. Assign is non-
deterministic if the input datum is equidistant from both means. Its precondition
is that the means are well defined: data contains data from each class.

In general machine learning, assignment of a general class C to an unseen
input d? is done by a protocol P which has been learnt in the same way that
m,m are learnt there (facilitating output of a class with mean closer to d?). In
general the protocol is a relation:

P : bag (D × C) × D ↔ C.

In the case of Fig. 6 with binary assignment it has the simple form:

P(d?,m,m, c!) :=
(c! = C ) ⇔ |d? − m | ≤ |d? − m | .

In general we assume P to be updated in learning by some function FF .
Some machine-learning systems first learn P and then use it to classifies

input. Our description in Fig. 6 allows further learning at any stage, so the
format more closely matches that of a living agent. For instance a young animal
spends its early years learning whilst interacting with its habitat; a process which
continues throughout its life.
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