
A Coq Implementation of the Program
Algebra in Jifeng He’s New Roadmap
for Linking Theories of Programming

Rundong Mu and Qin Li(B)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,
Shanghai, China

qli@sei.ecnu.edu.cn

Abstract. Jifeng He has proposed a roadmap for linking theories of
programming and presents an algebra of programs capable of generating
both denotational and operational representations from the refinement
relation. In this paper, we implement this algebra of programs and its
refinement relation using the interactive theorem prover Coq. Encoding
the algebra into CIC (Calculus of Inductive Constructions), the main
formalism in Coq, facilitates machine-aided interactive proving for the
properties of programs using predefined algebraic laws. The implemen-
tation of the algebra for finite programs enables us to prove that every
finite program can be reduced to the normal form and to check the refine-
ment between two finite programs. The implementation of the algebra
for infinite programs supports formalizing recursive programs with one
variable and checking the refinement between one finite and one infinite
program. Then, we present examples of proving the refinement relation-
ship between two finite programs and a finite program and an infinite
program.

Keywords: Unifying theories of programming · Coq · Program
algebra · Refinement

1 Introduction

Formal semantics for programs are usually constructed using one of two
approaches, as described in [7]. The first approach is a top-down approach that
starts with a denotational model and links the algebraic properties with it by
establishing the soundness and completeness between them. This approach is
used in works such as [2,4,14]. The second approach is a bottom-up approach
that begins with an operational representation and defines a rich variety of bisim-
ulations to identify the equivalences among programs. This approach is used in
works such as [1,15]. Algebraic laws are then generated from the study of the
equivalence relations like [16].

In Jifeng He’s paper [7], he explores a new roadmap for linking theories of
programming other than the top-down and bottom-up approaches. It begins
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 395–412, 2023.
https://doi.org/10.1007/978-3-031-40436-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_15

396 R. Mu and Q. Li

from an algebra of programs and generates both denotational and operational
representations from the algebraic refinement relation. For the initial step of this
approach, a program algebra (P,�A) consisting of a set of laws is presented to
express the algebraic properties of programs. This program algebra is the basis
of this approach, and the main criterion of the algebra is whether it is sufficient
to convert every program in the domain P to a normal form. This criterion is
stated in Theorem 2.1 in [7]. The refinement order �A is defined on normal forms
to support comparing the behaviors of two programs.

This paper aims to implement the program algebra in [7] with the interactive
theorem prover Coq and prove the corresponding theorems relating the algebra
with the aid of it. We chose Coq because of its strong type system, which can
support the binding and value model required by He’s model. Although efforts
have been made to develop more suitable value models, such as the one proposed
in [5], we opted for a deep embedding approach to gain greater control over
the proof process during refinement steps. Specifically, we restrict ourselves to a
monomorphic value type with a fixed representation, similar to what was done in
[11]. Different from shallow embedding like [3], deep embedding allows for more
accurate operations on values and enable more effective use of corresponding
libraries of certain types. However, it can be less convenient for proving. By
encoding in an algebraic way, we can separate the value and abstract algebra
parts. For the latter, we can still leverage proof facilities to simplify the proving
process. For the former, we can make assertions on values rather than providing
concrete values. Additionally, deep embedding allows us to manipulate the data
at a more granular level using Coq’s library.

– We translated the finite operators over algebra into CIC (Calculus of Inductive
Constructions) that can be accepted in Coq.

– We encoded the algebraic laws as rules that can be used for deduction between
finite algebras. In doing so, we proved Theorem 2.1 in [7], which states that
all finite algebras can be transformed into some normal form by giving the
concrete transformation program. We proved that such transformation con-
verts all programs to some normal form, and such transformation is only a
composition of the laws outlined in He’s paper.

– We provided a method to check the refinement relationship between two finite
programs in mechanical proof.

– Furthermore, our work extends He’s paper by providing a solution for com-
paring certain infinite programs and finite programs within finite steps.

The paper is organized as follows:
Section 2 briefly introduces the algebra of programs and refinement relation

intended to be implemented.
Section 3 encodes the operators of the algebra into CIC and implements the

algebraic laws for finite programs. The theorem that every finite program can
be reduced to normal form is proved based on the implementation. Additionally,
we implemented the refinement relation between finite programs and present an
example of checking refinement between two finite programs.

A Coq Implementation for Jifeng He’s Program Algebra 397

Section 4 present our in-progress work on the infinite cases of the algebra
together with an example of checking the refinement between an infinite program
and a finite program.

Section 5 discusses the limitations and alternative solutions.
Section 6 concludes this article and talks about future works.

2 Preliminary

In Jifeng He’s paper [7], he presents a program algebra (P,�A) for the follow-
ing syntax of sequential programs. This algebra is built upon the foundation
established by [8].

P,Q ::= ⊥ | var := exp | P � bexp � Q | P ;Q | P � Q | X | μ X • P (X) (1)

where

– ⊥ stands for a chaotic program that does not terminate and can yield any
behaviour unpredictably.

– var := exp stands for the assignment statement assigning the values of a list
of expressions to a list of variables.

– P � bexp � Q stands for the conditional choice where bexp is the boolean
condition. It executes P when bexp holds and executes Q otherwise.

– P ;Q stands for sequential composition.
– P � Q stands for non-deterministic choice. In the following, we extend this

operator to compose more than two operands. For example, �{P1, P2, ..., Pn}
means P1 � P2 � ... � Pn.

– X stands for a syntactic program that can be only used in the scope of a
recursive program that binds it.

– μX •P (X) stands for the recursive program with X as the bounded recursive
identifier.

Jifeng He developed an approach to construct algebraic equivalence classes
between algebras based on some predefined algebraic laws, as detailed in
Appendix A of [7]. These laws employ the =A notation to represent algebraic
equivalence, which is distinct from the syntactical equality (=) used in Coq.
Algebraic equivalence (=A) satisfies transitivity, reflexivity, and commutativity.
Additionally, it adheres to a composition law that allows any subterm within an
algebra to be replaced with its corresponding subterm within the same algebraic
equivalence class. We ensure that the resulting term remains within the same
algebraic equivalence class as the original term.

With the algebraic equivalence defined above, we can define the normal form
of programs. The normal form is defined in two ways: the finite normal form
(FNF) and the infinite normal form (INF).

Definition 1 (Finite Normal Form). Let bexp be a boolean condition, v := ei
be a total assignment. The finite normal form is defined as follows.

⊥ � bexp � �i(v := ei) (2)

398 R. Mu and Q. Li

The algebraic refinement relation on the finite normal forms is defined with
the following two rules.

Definition 2 (Algebraic Refinement for Finite Program). Let P and Q
be programs. The refinement order �A for finite programs is defined as follows.

1. If P =A �{v := ei | i ∈ I}, Q =A �{v := fj | j ∈ J}, then
P �A Q iff for any f ∈ {fj | j ∈ J}, we have ∀x • f(x) ∈ {ei(x) | i ∈ I}.

2. If P =A ⊥ � b � R, Q =A ⊥ � c � S, then
P �A Q iff [c ⇒ b] and [b] ∨ (R �A S)

The notation [bexp] means ∀v • bexp(v) where v is the list of all free variables
in bexp.

The infinite normal form is defined as the infinite sequence of finite normal
forms.

Definition 3 (Infinite Normal Form). Let Si be programs of finite normal
form ⊥ � bi � Qi, Si, Si+1 form an ascending chain Si �A Si+1, and for any i, j
with bi = bj, ⊥ � bi � Qi =A ⊥ � bj � Qj. The infinite normal form is defined as
follows.

	 {Si | i ∈ N} (3)

where 	S stands for the least upper bound of the set S.

The algebraic refinement relation on the infinite normal forms is defined as
following two rules.

Definition 4 (Algebraic Refinement for Infinite Program). Let P and
Q be programs. The refinement order �A is defined as follows.

1. If S =A ⊥ � b � R, T =A {⊥ � ci � Ui | i ∈ N}, then
S �A (T) iff [(

∧
ci) ⇒ b] and ∀i ∈ N • R �A Ui.

2. If P =A 	{Si | i ∈ N}, Q =A 	{Ti | i ∈ N}, then
P �A Q iff ∀i ∈ N • Si �A Q.

As mentioned above, the infinite program relies on finite programs and their
refinement relation. Therefore, it is advisable to prioritize encoding the finite
programs first.

3 Encoding Algebra for Finite Programs

Jifeng He uses algebraic laws to represent the deduction of program algebra
and refinement relations. In this section, we will discuss how to encode the laws
related to finite algebra into Coq code. Coq employs the formalism called Cal-
culus of Inductive Constructions [12]. This formalism replaces property verifica-
tion with the check of type signatures of expression captured by Coq’s special
sort, Prop. Moreover, inductive definitions will automatically generate induction
hypotheses, which assist us in our proofs.

A Coq Implementation for Jifeng He’s Program Algebra 399

3.1 Translating Syntax of Finite Algebra

In this section, an inductive type Alg is constructed to represent all finite pro-
grams that do not include recursion. The Alg type is composed of two types,
Atomic and Comp, which correspond to different kinds of valid program syntax.

Section alg.
Inductive Atomic : Type :=
| Chaos : Atomic
| Assn : Assign → Atomic
| Empty : Atomic.
Inductive Comp : Type :=
| Seq : Comp
| NDC : Comp
| CDC : Boolexp → Comp.
Inductive Alg : Type :=
| Lift : Atomic → Alg
| Comb : Comp → Alg → Alg → Alg.
Definition NDCList (l : list Alg) : Alg :=

match l with
| [] ⇒ Lift Empty
| h :: tl ⇒ fold_left (fun a b ⇒ (Comb NDC a b)) tl h
end.

End alg.

The finite operators in program algebra correspond to the Comp type. These
operators include sequential composition (Seq), non-deterministic choice (NDC),
and conditional choice (CDC). On the other hand, the chaotic program (Chaos)
and assignment statement (Assn) correspond to Atomic type.

The symbol �ln∈N represents the non-deterministic choice of a set l, where N
is the set of natural numbers. In our implementation, we represent sets using lists
and encode the non-deterministic choice of the list as NDCList This encoding
is straightforward, except for the empty set, which we represent using a special
algebraic structure called Empty.

For the sake of readability, we will use the following notations to denote the
syntax, the notations are similar to the original symbol in Jifeng He’s paper.

The algebra of a single assignment statement can be represented using the
following notation:

Notation "·{ e }" := (Lift (Assn e)) (at level 10).

The assignment statement e can be divided into two parts: the variable part
and the expression part. The variable part is a user-defined type, which is injected
through a type class. The expression part is simply a function, where the domain
and range are both a list of variables.

Definition Exp := (list Var) → (list Var).
Record Assign := makeAssign {

ids: (list Var); values : Exp;
}.

400 R. Mu and Q. Li

It can be represented using the following notation:

Notation "var :== exp" := (makeAssign var exp)(at level 51).

The chaotic program is represented using a notation similar to ⊥.

Notation "_|_" := (Lift Chaos)(at level 10).

The conditional choice of program p and q is represented using the notation
below.

Notation "p <| b |> q" := (Comb (CDC b) p q) (at level 15).

The boolean condition b in the branching expression is defined as a function
that takes a list of variables as its input and outputs a boolean value.

Definition Boolexp : Type := (list Var) → bool.

The notation below is used to represent the sequential composition of pro-
gram p and q.

Notation "p ;; q" := (Comb Seq p q)(at level 14, left associativity).

To represent the non-deterministic choice of program p and q, we use the
notation below.

Notation "p /-\ q" := (Comb NDC p q)(at level 13, left associativity).

The non-deterministic choice of a set can use the following notation.

Notation "|-| l" := (NDCList l)(at level 10).

Specifically, the representation of non-deterministic choice for the empty set
is denoted using the following notation.

Notation "-o-" := (Lift Empty)(at level 10).

3.2 Representing Algebraic Equivalence Relationship

The algebraic equivalence relation (=A) is a property defined on two algebras.
It is denoted as rwtrel in the following Coq code.

Section rwtrel.
Parameter rwtrel : Alg → Alg → Prop.
Axiom rwt_refl : forall (a: Alg), rwtrel a a.
Axiom rwt_trans : forall (a b c : Alg), rwtrel a b →

rwtrel b c → rwtrel a c.
Axiom rwt_comm : forall (a b : Alg), rwtrel a b → rwtrel b a.
Axiom rwt_comb : forall (a b c d : Alg) (e : Comp), rwtrel a b →

rwtrel c d → rwtrel (Comb e a c) (Comb e b d).
End rwtrel.
Notation "a ← → b" := (rwtrel a b) (at level 20, left associativity).

A Coq Implementation for Jifeng He’s Program Algebra 401

The relation satisfies the properties of reflexivity, transitivity, commutativity,
and the composition law. These properties correspond to the following axioms:
rwt_refl, rwt_trans, rwt_comm, and rwt_comb.

The notation (←→) is used to represent algebraic equivalence (=A). In the
code that follows, all algebraic laws for the program algebras described in [7] are
expressed using rwtrel.

3.3 Encoding the Algebraic Laws

All algebraic laws can be categorized into three layers. The first layer concerns
operations on assignments, while the second layer involves the combination of
non-deterministic choices over different assignments. The third layer deals with
operations on the finite normal form (without recursion). With the help of these
predefined algebraic laws, we intend to establish a theorem saying that all finite
programs can be reduced to their normal forms.

Due to space limitations, we refer the readers to the Appendix A of Jifeng
He’s paper [7] to see all the corresponding algebraic laws.

Assignment. Regarding the first layer, most laws simply require a straight-
forward translation into code. For example, Law A.2.(2) can be translated into
code as follows:

Axiom Assign_Seq : forall (v : list Var) (g h : Exp),
· {v :== g} ;; · {v :== h} ← → ·{v :== (fun x ⇒ h (g x))}.

Law A.2.(1) states that any assignment can be extended into its correspond-
ing total assignment.

Axiom Assign_extends : forall (v : Assign), ·{v} ← → ·{extends_assign v}.

we interpret extending an assignment to its corresponding total assignment as
an extension of the variable part to include all possible variables in the GLOBVARS.
We then proceed to extend the expression function accordingly.

Definition extends_assign (v : Assign) :=
makeAssign GLOBVARS (extends_mapping v.(ids) v.(values)).

The function extends_mapping maps the variable in the domain of the orig-
inal assignment to its original range while leaving all other variables unchanged.
This can be achieved with the help of extends_mapping_help function.

Definition extends_mapping (us : list Var) (m : (list Var) → (list Var)) :=
fun k ⇒ (extends_mapping_help us (m us) k).

The function extends_mapping_help allows for the extension of a target
expression mapping’s domain. Specifically, it maps elements in the range of us
to their corresponding values in m(us). Any element that is not in the range
of us but is within the range of k remains unchanged. The function utilizes the
lookup_help function to determine whether a target variable exists within an
assignment’s domain.

402 R. Mu and Q. Li

Fixpoint extends_mapping_help (us rs k : (list Var)) : (list Var) :=
match k with
| [] ⇒ []
| v:: vl ⇒

lookup_help v us rs :: extends_mapping_help us rs vl
end.

If the variable a is within the domain vs, lookup_help will return its
corresponding value within the range us. Otherwise, the variable a remains
unchanged.

Fixpoint lookup_help (a: Var) (vs rs: (list Var)) : Var :=
match vs, rs with
| _, [] ⇒ a
| [], _ ⇒ a
| v:: vl, r:: rl ⇒

if (eqb a v) then r else lookup_help a vl rl
end.

Non-deterministic Choice. Law A.3 in [7] states the absorption properties
of non-deterministic choice of total assignments. It relies on syntax checking
whether a program is in the form of non-deterministic choices over total assign-
ments, which we denote as CH. We define the following function CH to achieve
that.

Definition CH (p : list Alg) : Prop :=
forall (x : Alg), In x p → exists y, x = ·{y} ∧ Total_Assign y.

where the function Total_Assign checks whether a target assigning is total.

Definition Total_Assign (a : Assign) :=
forall v:Var, In v GLOBVARS → In v a.(ids).

Therefore, the law of the conditional operation over CHs (Law A.3.(2)) is defined
as follows.

Axiom Cond_over_Choice : forall (a b : list Alg) (bexp : Boolexp),
CH a → CH b → (|−| a) <| bexp |> (|−| b) ← →

|−| (map (fun g ⇒ (fst g) <| bexp |> (snd g)) (list_prod a b)).

Finite Normal Form. The laws on the absorption properties of finite nor-
mal forms (Law A.4) can be similarly defined. For instance, the law of the
non-deterministic operation over finite normal forms (Law A.4.(1)) is defined
as follows.

Axiom NF_over_Choice : forall (a b : list Alg) (c d : Boolexp),
CH a → CH b → (((_|_) <| c |> (|−| a)) /−\ ((_|_) <| d |> (|−| b))) ← →

((_|_) <| (fun g ⇒ orb (c g) (d g)) |> ((|−|a) /−\ (|−| b))).

The proof of the following theorem relies on the laws defined above.

A Coq Implementation for Jifeng He’s Program Algebra 403

3.4 Proof of Finite Normal Form Reduction

In this part, we would use the implications given above to prove the key Theorem
2.1 in [7], which states that every finite program can be reduced to FNF. The
corresponding theorem is presented in Coq as follows.

Theorem FNF_closure : forall (P : Alg),
exists Q, P ← → Q ∧ FNF Q.

where the function FNF (Definition 1) is defined to check whether a program is
in the finite normal form.

Definition FNF (P : Alg): Prop :=
exists bexp R, P = (_|_) <| bexp |> (|−| R) ∧ CH R.

We proved this theorem through the implementation of a program that con-
verts any input program to its normal form, referred to as Normal. In order to
prove the above, we imposed two crucial rules.

The first law states that the resulting program must conform to the normal
form condition, which can be expressed as follows:

Theorem NormalisNF : forall x, FNF (Normal x).

Listing 1.1. Normal is in normal form

The second law, which states that all finite programs subjected to the trans-
formation should still yield algebraic equivalent outcomes, can be formalized as
the following theorem:

Theorem NormalRWT : forall x, x ← → Normal x.

Listing 1.2. Normal is algebraic equivalent

The transformation function Normal that satisfies the above conditions is
implemented as follows:

Fixpoint Normal (a : Alg) : Alg :=
match a with
| Lift e ⇒

match e with
| Assn a ⇒ (_|_) <| false_stat |> |−|[·{extends_assign a}]
| Empty ⇒ (_|_) <| false_stat |> |−|[]
| Chaos ⇒ (_|_) <| true_stat |> |−|[·{empty_assn}]
end

| Comb s p q ⇒
match s with
| Seq ⇒ Normal_comb_Seq (Normal p) (Normal q)
| CDC b ⇒ Normal_comb_CDC (Normal p) (Normal q) b
| NDC ⇒ Normal_comb_NDC (Normal p) (Normal q)
end

end.

When a program belongs to Atomic, it can be translated into its correspond-
ing normal form directly. However, if it contains any operators belonging to the

404 R. Mu and Q. Li

Comp, it must then be divided into two sub-programs for translation. The sub-
programs are subsequently translated individually and then combined to form a
new program that is also in its normal form.

In the above definition, the function Normal_comb_Seq transforms two sub-
programs combined in normal form with ’Seq’ into a new program in its normal
form. Firstly, it combines the subprograms as Law A.4.(5) dictates. However,
the right part of the resulting program is not assignment sequences, so we need
to transform it accordingly.

Definition Normal_comb_Seq (p q : Alg) :=
match p, q with
| Comb x _ a, Comb y _ b ⇒

match x, y with
| CDC c, CDC d ⇒ (_|_) <| (fun g ⇒ orb (c g)

(CH_over_Boolexp (Alg_to_CH a) d)) |>
|−| (CH_comb_Seq (Alg_to_CH a) (Alg_to_CH b))
| _, _ ⇒ −o−
end

| _, _ ⇒ −o−
end.

The function Alg_to_CH converts the algebra that consists of assignments
linked by non-deterministic choices into a list format.

Fixpoint Alg_to_CH (a : Alg) : list Alg :=
match a with
| Lift e ⇒ match e with

| Assn a ⇒ [·{a}]
| _ ⇒ []
end

| Comb s p q ⇒ match s with
| NDC ⇒ (Alg_to_CH p) ++ (Alg_to_CH q) % list
| _ ⇒ []
end

end.

The function Alg_to_CH must meet the following condition to ensure its
correctness.

Lemma Alg_to_CH_id : forall l, CH l → Alg_to_CH (|−| l) = l.

The function CH_comb_Seq combines two lists of assignments together in the
manner described by Law A.3.(3).

Definition CH_comb_Seq (a b : list Alg) :=
(map (fun g ⇒ Assign_comb_Seq (fst g) (snd g)) (list_prod a b)).

The function Assign_comb_Seq applies Law A.2.(2) to transform a program
consisting of two assignments combined with Seq into a single assignment state-
ment.

Definition Assign_comb_Seq_help (a b : Assign) :=
a.(ids) :== fun x ⇒ b.(values) (a.(values) x).

A Coq Implementation for Jifeng He’s Program Algebra 405

Definition Assign_comb_Seq (a b : Alg) :=
match a, b with
| Lift x, Lift y ⇒

match x, y with
| Assn s, Assn t ⇒ ·{(Assign_comb_Seq_help

(extends_assign s) (extends_assign t))}
| _, _ ⇒ −o−
end

| _, _ ⇒ −o−
end.

The function Normal_comb_CDC and the function Normal_comb_UDC is defined
similarly. Upon completion of the definition of the function Normal, we need to
ensure that it satisfies the conditions outlined in Listing 1.1 and Listing 1.2.

Listing 1.1 states that the program after transformation should be in normal
form. The process of proving can be divided into two types of sub-goals. The first
type involves only operators in the Atomic group, which we can prove directly.

The proof of Listing 1.2 requires the use of induction hypotheses. The process
of proving is similar to that of the previous theorem. For subgoals involving
only operators in the Atomic group, we prove them directly by applying laws.
For subgoals involving induction hypotheses, we first ensure that the condition
part is correctly constructed before moving on to the assignment part. Since
list operations are involved, we cannot apply the reducing law directly. Instead,
we must define a new lemma that connects the reducing equivalence relation
between individual elements with the reducing equivalence relation across the
entire list.

Lemma rwt_ext_Forall : forall A (f g : A → Alg) (l : list A),
Forall (fun x ⇒ f x ← → g x) l → |−|(map f l) ← → |−|(map g l).

The complete proof can be found at the following link on GitHub1. In addi-
tion, the techniques for proving the above theorem can help us to convert any
program to its normal form.

3.5 Definition of Refinement on Finite Programs

The refinement relation defined in Definition 2 can be implemented in Coq for
finite programs by comparing two assignment expressions for equality, and check-
ing if one non-deterministic choice of total assignments is a subset of another.

Definition Refine (P Q : Alg) :=
exists bexp cexp U V,

(P = (_|_) <| bexp |> (|−| U) ∧ CH U)
∧ (Q = (_|_) <| cexp |> (|−| V) ∧ CH V)
∧ (Constraints → ((cexp GLOBVARS = false ∧ (RefineCH U V))
∨ (bexp GLOBVARS = true))).

1 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/
ProgramAlgebra.v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v

406 R. Mu and Q. Li

The function Refine corresponds to the second case of Definition 2 where
two programs are in FNF. With the introduction of Constraints, we can spec-
ify certain limitations on the variables in GLOBVARS, which determines the
possible range of variables.

Definition RefineCH (A : list Alg) (B : list Alg) :=
forall x, In x B → exists y , In y A ∧ subAssn x y.

The function RefineCH encodes the first case of Definition 2 where two pro-
grams are both non-deterministic choices of total assignments.

Definition subAssn (x : Alg) (y : Alg) :=
match x, y with
| Lift e, Lift f ⇒

match e, f with
| Assn m, Assn n ⇒ subEval (extends_assign m) (extends_assign n)
| _,_ ⇒ False
end

| _, _ ⇒ False
end.

The function subAssn is defined to find whether two assignments form a
subset relation, i.e., x ⊆ y.

Definition subEval (x y : Assign) :=
forall a, In a (x.(values) x.(ids)) → In a (y.(values) y.(ids)).

The subEval function is designed to determine whether a given set of vari-
ables x, represented as a list, is a subset of another set y.

3.6 Example of Refinement on Finite Programs

In this part, we will use Coq to prove the refinement on two finite programs T1

and T2 presented as follows.

T1 =def ({a, b, c := a + 1, b + 1, c + 1};
({a, b, c := a, b, c} � (a ≥ 20) � {a, b, c := a − 1, b − 1, c − 1}))
� (a ≤ 10) � ⊥

(4)

T2 =def ⊥ � (a > 10) � {a, b, c := a + 1, b + 1, c + 1};
(({a, b, c := a + 1, b + 1, c + 1} � {a, b, c := a − 1, b − 1, c − 1})) (5)

Since the refinement relation is defined on normal forms. The proof is con-
ducted by first reducing the two programs T1, T2 to their corresponding normal
forms N1, N2 and then show that N2 �A N1.

In order to encode the two programs with our Coq implementation, we need
to first instantiate the parameters of our formalism.

Instance myParams : UserParams :=
Build_UserParams MyVar GLOBVARS eqbVar Constraints.

A Coq Implementation for Jifeng He’s Program Algebra 407

The instantiation involves providing the concrete type of each variable, and
a function that decides whether two variables are equal.

We set the type of variables to be a tuple consisting of a string and a natural
number with MyVar.

Record MyVar := mkVar {
id: string;
val : nat;

}.

The function eqbVar determines whether two variables have the same name
and value of natural numbers.

GLOBVARS is a user-defined parameter that keeps track of all variables used
in the relevant programs. It functions as a dictionary that enables us to convert
arbitrary assignments into total assignments. Initializing GLOBVARS with con-
crete values is not strictly necessary. Instead, we use Constraints to specify
the properties that GLOBVARS must satisfy. Typically, this means including all
possible variables that could appear. In our case, we instantiate GLOBVARS as
{a, b, c} where a, b, and c are different variables.

The programs T1 and T2 are encoded as Coq instances testAlg and testAlg2
respectively.

Definition testAlg := ((·{ascassn}) ;;
((· {empty_assn}) <| hdge2 |> (·{dscassn}))) <| hdle1 |> (_|_).

Definition testAlg2 := (_|_) <| (fun x ⇒ negb (hdle1 x)) |>
(· {ascassn}) ;; ((|−|[· {ascassn};·{dscassn}])).

In the code above, hdge2 represents the condition a ≥ 20, while hdle1 repre-
sents a ≤ 10. The program empty_assn is the assignment statement that keeps
all variables’ values unchanged. On the other hand, ascassn is the assignment
statement that increases all variables’ values by 1, while dscassn decreases all
variables’ values by 1.

After completing the pre-work, the only work that remains to be done is to
prove the following property.

Example testrefine : Refine (Normal testnf2) (Normal testnf).

The proof consists of three steps. Firstly, we pattern match Normal testnf
and Normal testnf2. Let us denote the boolean expression of Normal testnf
as b1, and its assignment list as l1. Similarly, let the boolean expression and
assignment list of Normal testnf2 be denoted by b2 and l2, respectively.

In the second step, we categorize the possible values of variables. We ensure
that there is no condition where b2 is false and b1 is true; in other words, either
b2 is true or b1 is false.

For the third step, we simplify l1 and l2 based on the condition that b1 is
false. lia, a tactic for linear integer arithmetic, is used to simplify conditional
functions in expressions. Then, by substituting the variables in expressions, we
check if all possible values in l1 exist in l2. This process involves rewriting by
substituting the variables in the hypothesis into the goals.

408 R. Mu and Q. Li

The full process of this proof can be found in GitHub2.

4 Encoding Algebra for Infinite Programs

In this section, we will delve into the intricacies of handling infinite programs
and draw comparisons with their finite counterparts. Specifically, our focus will
be on analyzing the infinite program generated by recursive functions with a
single variable. This particular structure allows for comparisons between finite
and infinite programs, without the added complexity of navigating through the
expanding order of the recursive function.

4.1 Representing Infinite Programs

Throughout our discussion, we will focus specifically on recursive functions that
take only a single variable. To generate infinite series for analysis, we will use a
function that maps from one finite algebra to another. Specifically, we will be
working with a datatype called Stream, which is an infinitely long list composed
of two parts: the current element which is its head, and the rest of the infinite
list.

Using the CoFixpoint, we can define an infinite list called Recur in such a
way that every element in the list is the result of applying the function f to the
previous element and the first element of the list is a.

Variable f : Alg → Alg.
Definition AlgStr := Stream Alg.
CoFixpoint Recur (a : Alg) : AlgStr := Cons a (Recur (f a)).

We can define the normal form for a given algebra stream {Si} by verifying
that ∀i ∈ N • Si � Si+1 as defined in Definition 3, A stream satisfying this
property is said to be in its normal form using the following Coq code, where
h and m are the first two elements of the stream s. The use of Forall ensures
that the property holds for all suffixes of the given stream.

Definition FNFPres(P Q : Alg) :=
exists R S, (P ← → R ∧ FNF R) ∧ (Q ← → S ∧ FNF S) ∧ Refine R S.

Definition AlgPresStep (s : AlgStr) :=
let h := Streams.hd s in
let m := Streams.hd (Streams.tl s) in
FNFPres h m.

Definition AlgPres := Streams.ForAll AlgPresStep.

Coq’s automatic tactic for infinite structures has a limitation in generating
proper induction laws automatically. Therefore, we need to define the induction
law ourselves.

2 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.
v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v

A Coq Implementation for Jifeng He’s Program Algebra 409

Lemma AlgPresInd : forall y, FNFPres y (f y) →
(forall x, FNFPres (f x) (f (f x))) → AlgPres (Recur y).

Proof.
intros. unfold AlgPres. intros. apply HereAndFurther.
unfold AlgPresStep. auto. simpl. generalize y. cofix Pres.
intros. apply HereAndFurther.
− unfold AlgPresStep. simpl. apply H0.
− simpl. apply Pres.

Qed.

4.2 Refinement Between Finite and Infinite Program

According to the first case of Definition 4, to find out whether an infinite program
refines a finite program is to find if there exists some item in the infinite program
normal form series that is strong enough to refine the given finite algebra. To
find such an item, we can either use the Str_nth function defined in Stream
library to trace the nth item, or we can define a SthExists function to find
whether the given algebra exists (or in the same deducing-closed class with the
item) in the series.

Definition SthStep (a : Alg) (s : AlgStr) :=
let h := Streams.hd s in a ← → h.

Definition SthExists (a : Alg) := Streams.Exists (SthStep a).

With the definition given above, we can prove F � G.

F =def ({a, b := a, b} � {a, b := b mod a, a} � (a = 0) � ⊥ (6)

G =def λX • ({a, b := a, b} � (a = 0) � ({a, b := b mod a, a};X)) (7)

F is a finite program that can be encoded as follows:

Definition falg := |−| [skip;GCDAssn] <| hdeqz |>(_|_).

G is a program that uses the Euclidean algorithm to solve for the greatest
common divisor. The Coq encoding of G (GCDStr) is shown below:

Definition GCDStep (a : Alg) : Alg :=
skip <| hdeqz |> (GCDAssn ;; a).

Definition GCDStr := Recur GCDStep (_|_).

In the above definition, hdeqz is used to determine whether a is equal to zero.
The program skip denotes an assignment that does not change anything. Finally,
GCDAssn updates the value of a and b according to the Euclidean algorithm:
a, b := b mod a, a.

Definition empty_assn := makeAssign GLOBVARS refl_exp.
Definition skip := ·{ empty_assn }.
Definition GCDAssn := ·{ makeAssign GLOBVARS GCDFunc}.

410 R. Mu and Q. Li

In this case we will initialize GLOBVARS as {a;b}. First of all, we would like
to know if such a sequence is in its normal form.

Lemma GcdStrPres : AlgPres GCDStr.

After that, we want to find some item in the series that can be deduced to
GCDRes.

Definition GCDRes := (_|_) <| (fun x ⇒ negb (orb (hdeqz x)
(Assign_over_Boolexp hdeqz GCDAssn))) |>

· { GLOBVARS :== exp_Cond refl_exp GCDFunc hdeqz}.
Lemma GcdReachRes : SthExists GCDRes GCDStr.

GCDRes is picked up to represent GCDStr. Our goal now is to demonstrate
that GCDRes refines finite program falg.

Lemma refinegcd : exists r s, (r ← → falg ∧ FNF r) ∧
(s ← → GCDRes ∧ FNF s) ∧ Refine r s.

Since both GCDStr and falg are finite programs, we can perform a finite
comparison between them. We can use the proving techniques introduced in
Sect. 3.6.

The full process of this proof can be found in GitHub3.

5 Discussion

In this paper, we implemented Jifeng He’s approach to establishing program
equivalence and refinement relations using axioms, and encoded it in Coq. Our
approach is based on axiomatic semantics, which distinguishes it from the [6]
project that utilizes the denotational model and builds alphabetized predicates.
To facilitate program comparison, we transform each program into a normal
form, separating the abstract program part from the concrete evaluation part.
This approach accommodates diverse computational models. In this paper, we
utilize a simple model that applies abstract variables to functions directly, mak-
ing comparisons between functions challenging.

We have also made progress in automating the proving process by utilizing
Coq’s mechanics. We have successfully automated the transformation of the
abstract algebra part to its normal form. However, there remain challenges in the
refinement process. The proof can be verbose, as issues may arise with unifying
the type of variables in our library and the type of user-defined variables when
importing our library.

This paper focuses on a special case of recursive programs with one variable,
which serves as the foundation for more general recursive programs that can
eventually be transformed to some recursive program with a composite variable.
We are currently working on extending our work to this area.

When dealing with infinite cases, we encountered limitations due to the diffi-
culty of representing any proposition that is a finite and terminating structure of
3 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/

testGCD.v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v

A Coq Implementation for Jifeng He’s Program Algebra 411

an infinitely recursive program series because it is impossible to compute infinite
loops. We found two approaches to address this issue. The first involves simpli-
fying the problem into some finite cases, where we found that comparing infinite
programs to finite ones can be simplified by unrolling the infinite series a finite
number of times. This results in a computable process. The second approach
involves translating the problem of infinite computing to a continuity problem
that we can symbolically reason about. We are still working on finding a general
method for this.

6 Conclusion and Future Work

In this paper, we present our implementation of the program algebra introduced
by Jifeng He in Coq. We have translated the formalism of the algebra into Coq
syntax and implemented the algebraic laws and refinement relation defined by
He. Using our framework, we provide machine-aided proofs for key theorems
that demonstrate every finite program can be reduced to its normal form, and
we give a concrete transformation program. Additionally, we provide examples to
illustrate how our implementation can be used to check refinement relationships
between two finite programs or a finite program and an infinite program in a
theorem-proving manner.

In the future, we intend to improve our work in the following aspects.

– Determining the most appropriate way to express infinite programs still
require further exploration. We will try to develop a suitable model to repre-
sent the algebra between infinite structures.

– The value model in this paper needs further improvement to meet the need
of actual use.

– The refinement proof process can be verbose, but there may be techniques
available to simplify it such as developing automatic tactics to extract vari-
ables hypotheses and substitute them into goals, rewrapping the expression
type to simplify the comparisons between functions, changing the lazy eval-
uation of the expression to eager one and so on.

Furthermore, our framework can serve as a foundation for several works based
on process algebra, such as probability programs [10], parallel programs [13],
quantum programs [9], and more. These works can potentially be extended using
our framework.

Acknowledgment. We would like to express our sincere gratitude to Simon Foster for
his exceptional contribution to this paper. His valuable insights and expert guidance
have greatly enhanced the quality of our work, and we are truly appreciative of his
dedication and commitment to this project. Without his suggestions and feedback, the
paper would not have been as comprehensive and insightful as it is now.

References

1. Ngondi, G.E., Koutavas, V., Butterfield, A.: Translation of CCS into CSP, correct
up to strong bisimulation. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021.

412 R. Mu and Q. Li

LNCS, vol. 13085, pp. 243–261. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92124-8_14

2. Ekembe Ngondi, G.: Denotational semantics of channel mobility in UTP-CSP.
Formal Aspects Comput. 33(4), 803–826 (2021)

3. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16690-7_9

4. Foster, S.: Hybrid relations in Isabelle/UTP. In: Ribeiro, P., Sampaio, A. (eds.)
UTP 2019. LNCS, vol. 11885, pp. 130–153. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31038-7_7

5. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Sci. Comput. Pro-
gram. 197, 102510 (2020)

6. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9_2

7. He, J., Li, Q.: A new roadmap for linking theories of programming and its appli-
cations on GCL and CSP. Sci. Comput. Program. 162, 3–34 (2018)

8. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
9. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the

1st Conference on Computing Frontiers, pp. 111–119 (2004)
10. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability

for CSP. Formal Aspects Comput. 8(6), 617–647 (1996). https://doi.org/10.1007/
BF01213492

11. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 123–140. Springer,
Heidelberg (2006). https://doi.org/10.1007/11768173_8

12. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions (2014)
13. Woodcock, J., Hughes, A.: Unifying theories of parallel programming. In: George,

C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 24–37. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36103-0_5

14. Xu, X., Zhan, B., Wang, S., Talpin, J.P., Zhan, N.: A denotational semantics
of simulink with higher-order UTP. J. Logical Algebraic Methods Program. 130,
100809 (2023)

15. Yan, G., Jiao, L., Li, Y., Wang, S., Zhan, N.: Approximate bisimulation and dis-
cretization of hybrid CSP. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 702–720. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6_43

16. Zhu, H., He, J., Qin, S., Brooke, P.J.: Denotational semantics and its algebraic
derivation for an event-driven system-level language. Formal Aspects Comput. 27,
133–166 (2015)

https://doi.org/10.1007/978-3-030-92124-8_14
https://doi.org/10.1007/978-3-030-92124-8_14
https://doi.org/10.1007/978-3-642-16690-7_9
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/BF01213492
https://doi.org/10.1007/BF01213492
https://doi.org/10.1007/11768173_8
https://doi.org/10.1007/3-540-36103-0_5
https://doi.org/10.1007/978-3-319-48989-6_43
https://doi.org/10.1007/978-3-319-48989-6_43

	A Coq Implementation of the Program Algebra in Jifeng He's New Roadmap for Linking Theories of Programming
	1 Introduction
	2 Preliminary
	3 Encoding Algebra for Finite Programs
	3.1 Translating Syntax of Finite Algebra
	3.2 Representing Algebraic Equivalence Relationship
	3.3 Encoding the Algebraic Laws
	3.4 Proof of Finite Normal Form Reduction
	3.5 Definition of Refinement on Finite Programs
	3.6 Example of Refinement on Finite Programs

	4 Encoding Algebra for Infinite Programs
	4.1 Representing Infinite Programs
	4.2 Refinement Between Finite and Infinite Program

	5 Discussion
	6 Conclusion and Future Work
	References

