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Abstract. KnowLang is a framework for knowledge representation and
reasoning (KR&R) that aims at efficient and comprehensive knowledge
structuring and awareness based on logical and statistical reasoning. It
tackles both explicit representation of domain concepts and relationships
and explicit representation of particular and general factual knowledge,
in terms of predicates, names, connectives, quantifiers and identity. More-
over, it handles uncertain knowledge in which additive probabilities are
used to represent degrees of belief. Other remarkable features are related
to knowledge cleaning and knowledge representation for autonomic self-
adaptive behaviour. Knowledge specified with KnowLang takes the form
of a Knowledge Base (KB) that outlines a KR context. A special KnowL-
ang Reasoner operates in this context to allow for knowledge query-
ing and update. In addition, the reasoner can infer special self-adaptive
behaviour.

At its very core, KnowLang is a formal specification language provid-
ing a comprehensive specification model aiming at addressing the knowl-
edge representation problem of self-adaptive systems. The complexity of
the problem necessitated the use of a specification model where knowl-
edge can be presented at different levels of abstraction and grouped by
following both hierarchical and functional patterns. In this paper, we
outline the formal semantics of the KnowLang multi-tier specification
model. The model is outlined in terms of layers dedicated to knowledge
corpuses, KB operators, and inference primitives.

Keywords: KnowLang · self-adaptive systems · formal specification

1 Introduction

Contemporary computerized systems like autonomous robots may boast intrinsic
intelligence that helps them reason about situations where autonomous decision
making is required. Robotic intelligence mainly excels at formal logic, which
allows it, for example, to find the right move from hundreds of previous moves
or by applying probability algorithms. The basic compound in this reasoning pro-
cess is appropriately structured knowledge used by embedded inference engines.
The knowledge is integrated in a system via knowledge representation techniques
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to build a computational model of the operational domain in which symbols serve
as knowledge surrogates for real world artefacts, such as system’s components
and functions, task details, environment objects, etc. The domain of interest
can cover any part of the real world or any hypothetical system about which
one desires to represent knowledge for computational purposes. Knowledge rep-
resentation primitives such as rules, frames, semantic networks, concept maps,
ontologies, and logic expressions might be used to represent distinct pieces of
knowledge that are worth being differently represented. Moreover, these primi-
tives might be combined into more complex knowledge elements. Whatever ele-
ments they use, engineers must structure the knowledge so that the system can
effectively process it and eventually derive its own behaviour.

KnowLang [14,15,17–20] is a framework for KR&R that aims at efficient
and comprehensive knowledge structuring and awareness based on logical and
statistical reasoning. It helps us to tackle 1) explicit representation of domain
concepts and relationships; 2) explicit representation of particular and general
factual knowledge, in terms of predicates, names, connectives, quantifiers and
identity; and 3) uncertain knowledge in which additive probabilities are used to
represent degrees of belief. Other remarkable features are related to knowledge
cleaning (allowing for efficient reasoning) and knowledge representation for auto-
nomic self-adaptive behaviour. Knowledge specified with KnowLang takes the
form of a Knowledge Base (KB) that outlines a KR context. A special KnowLang
Reasoner operates in this context to allow for knowledge querying and update.
In addition, the reasoner can infer special self-adaptive behaviour.

The rest of this paper is organized as follows. Section 2 presents the KnowL-
ang formal specification model including the constructs for specifying self-
adaptive behaviour. Section 3 provides a discussion on how KnowLang copes
with challenging problems such as encoded versus represented knowledge, the
specification of states, situations, goals and policies, and how sensory data is
converted to KR symbols. Section 4 outlines the KnowLang syntax. Section 5
provides and example of KR for Self-adaptive Behaviour with KnowLang and
Sect. 6 describes a case study where KnowLang has been used to specify and
formalize an eMobility autonomous system. Finally, Sect. 7 provides brief con-
cluding remarks and a summary of our future goals.

2 Specification Model

At its very core, KnowLang is a formal specification language providing a com-
prehensive specification model aiming at addressing the knowledge representa-
tion problem for self-adaptive systems. The complexity of the problem neces-
sitated the use of a specification model (inspired by the ASSL’s specification
model [11]) where knowledge can be presented at different levels of abstraction
and grouped by following both hierarchical and functional patterns. KnowLang
imposes a multi-tier specification model (see Fig. 1), where we specify a KB com-
posed of layers dedicated to knowledge corpuses, KB (knowledge base) operators
and inference primitives.
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Fig. 1. KnowLang Specification Model

Definitions 1 through 58 outline a BNF-like [6] formal representation of the
KnowLang Specification Model. As shown in Definition 1, a Knowledge Base is
a tuple of three main knowledge components – knowledge corpus (Kc), KB oper-
ators (Op) and inference primitives (Ip). A Kc is a tuple of three knowledge
components – ontologies (O), contexts (Cx) and logical framework (Lf) (see
Definition 2). Further, a domain ontology is composed of hierarchically orga-
nized sets of meta-concepts (Cm), concept trees (Ct), object trees (Ot), relations
(R) and predicates (V ) (see Definition 4). Note that the trees in our model
(e.g., concept trees, object trees, etc.) can be direct acyclic graphs. Moreover,
note that in the definitions below we denote a finite set of elements El with
{el1, el2, . . . , eln}, n ≥ 0 where by omitting el0 we allow an empty set, e.g., see
the definition of meta-concepts (Cm) 5.

Meta-concepts (Cm) provide a context-oriented interpretation (i) (see Defi-
nition 6) of concepts and might be optionally associated with specific contexts
(the square brackets “[]” mean “optional”). Meta-concepts help ontologies to
be viewed from different context perspectives by establishing different meanings
for some of the key concepts. This is a powerful construct providing for inter-
pretations of a concept and its derived concept tree depending on the current
context. Concept trees (Ct) consist of semantically related concepts (C) and/or
explicit concepts (Ce). Every concept tree (ct) has a root concept (tr) because
the architecture ultimately must reference a single concept that is the connec-



370 M. Hinchey and E. Vassev

tion point to concepts that are outside the concept tree. A root concept may
optionally inherit a meta-concept, which is denoted [tr � cm] (see Definition 8)
where “�” is the inherits relation. Every concept has a set of properties (P ) and
optional sets of functionalities (F ), parent concepts (Pr) and children concepts
(Ch) (see Definition 10). Explicit concepts are concepts that must be presented
in the KB of the system. Explicit concepts are mainly intended to support 1)
the autonomic behaviour of the SCs; and 2) distributed reasoning and knowledge
sharing among the SC of a SCE systems. These concepts might be goals (G),
errors (Er), metrics (M), policies (Π), events (E), actions (A), situations (Si)
and groups (Gr) (see Definition 13), i.e., they allow for quantification over such
concepts.

FORMAL REPRESENTATION OF KNOWLANG

Definition 1. Kb := <Kc,Op, Ip> (Knowledge Base)

Definition 2. Kc := <O,Cx,Lf> (Knowledge Corpus)

DOMAIN ONTOLOGIES

Definition 3. O := {osc, osce, oenv, osi} (Domain Ontologies)

Definition 4. o := <Cm,Ct,Ot,R,D>, o ∈ O (Domain Ontology)

Definition 5. Cm := {cm1, cm2, . . . , cmn}, n ≥ 0 (Meta-concepts)

Definition 6. cm := <[cx], i>, i ∈ Icx (Meta-concept, cx – Context, i –
Interpretation)

Definition 7. Ct := {ct1, ct2, . . . , ctn}, n ≥ 0 (Concept Trees)

Definition 8. ct := <tr,C, [Ce]> (Concept Tree)
tr ∈ (C ∪ Ce), [tr � cm] (tr – Tree Root)

Definition 9. C := {c1, c2, . . . , cn}, n ≥ 0 (Concepts)

Definition 10. c := <P, [F ], [S], [Pr], [Ch]> (Concept)
Pr ⊂ (C ∪ Ce), c � Pr (Pr – Parents)
Ch ⊂ (C ∪ Ce), Ch � c (Ch – Children)

Definition 11. P := {p1, p2, . . . , pn}, n ≥ 0 (Properties)

Definition 12. F := {f1, f2, . . . , fn}, n ≥ 0 (Functionalities)

Definition 13. Ce := G
⋃

Er
⋃

M
⋃

Π
⋃

E
⋃

A
⋃

Si
⋃

Gr (Explicit Con-
cepts)
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Errors (Er) are explicit concepts representing the space of errors that can occur
in the system. An error (er) is specified with error information (ier) and an
optional set of erroneous actions (Aer) that could be considered as eventual
sources of error (see Definition 15). Error occurrence can cause a state transition
(see Definition 22). Metrics (M) are explicit concepts providing a prognostic
space of valuable information that can be gathered from the environment or
from the system itself. A metric (m) is specified with a metric source (srm)
and data (dm)(see Definition 17). The metric source may eventually represent a
system sensor used to monitor the environment.

Definition 14. Er := {er1, er2, . . . , ern}, n ≥ 0 (Errors)

Definition 15. er := <ier, [Aer]> (Error)
Aer ⊂ A (Aer – Erroneous Actions)

Definition 16. M := {m1,m2, . . . , mn}, n ≥ 0 (Metrics)

Definition 17. m := <srm, dm> (Metric)(srm – Metric Source, dm – Metric
Data)

The KnowLang policies (Π) drive the autonomic behaviour of the system. A
policy π has a goal (g), policy situations (Siπ), policy-situation relations (Rπ),
and policy conditions (Nπ) mapped to policy actions (Aπ) where the evaluation
of Nπ may eventually (with some degree of probability) imply the evaluation of

actions (denoted with Nπ
[Z]→ Aπ) (see Definition 19).

A condition is a Boolean expression over ontology (see Definition 21), e.g.,
the occurrence of a certain event. Policy situations Siπ are situations (see Defi-
nition 25) that may trigger (or imply) a policy π, in compliance with the policy-

situations relations Rπ(denoted with Siπ
[Rπ]→ π), thus implying the evaluation

of the policy conditions Nπ(denoted with π → Nπ)(see Definition 19). A policy
may comprise optional policy-situation relations (Rπ) justifying the relationships
between a policy and the associated situations. The presence of probabilistic
beliefs in both mappings and policy relations justifies the probability of policy
execution, which may vary with time. Note that Sect. 5 discusses in detail how
the KR of policies, situations and relations provides for self-adaptive behaviour.

A goal g is a desirable transition (⇒) to a state or a transition from a
specific state to another state (denoted with s ⇒ s′) (see Definition 22). The
system may transit (⇒) to a state (s) when the properties (P ) of an object
(ob) are updated (denoted TELL � ob.P ), the properties of a set of objects are
updated, or some errors or events have occurred or actions have been realized
in the system or in the environment (denoted with TELL � Ers, TELL �

Es and TELL � As) (see Definition 22). Note that TELL is a KB Operator
involving knowledge inference. In KnowLang, a state s is a Boolean expression
over ontology (be(O))(see Definition 23), e.g., “a specific property of an object
must hold a specific value”.

A situation is expressed with a state (s), a history of actions (A ←
si) (actions

executed to get to state s), actions Asi that can be performed from state s and
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an optional history of events E
←
si that eventually occurred to get to state s (see

Definition 25).

Definition 18. Π := {π1, π2, . . . , πn}, n ≥ 0 (Policies)

Definition 19. π := <g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z])> (Policy)

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ – Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 , . . . , siπn
}, n ≥ 0 (Siπ – Policy Situations)

Rπ ⊂ R,Rπ := {rπ1 , rπ2 , . . . , rπn
}, n ≥ 0 (Rπ-Policy-Situation Rela-

tions)
∀rπ ∈ Rπ • (rπ := <siπ, [rn], [Z], π>) , siπ ∈ Siπ

Siπ
[Rπ]→ π → Nπ (Policy situations may imply the policy they are

related to)

Definition 20. Nπ := {n1, n2, . . . , nk}, k ≥ 0 (Policy Conditions)

Definition 21. n := be(O) (Condition – Boolean Expression over Ontology)

Definition 22. g := 〈⇒ s′〉|〈s ⇒ s′〉 (Goal)
⇒ s := 〈TELL � ob.P 〉|〈TELL � {ob0.P, ob1.P, . . . , obn.P}〉|〈TELL �

Ers〉|
〈TELL � Es〉|〈TELL � As〉 (State Transition)

Ers ⊂ Er, Es ⊂ E, As ⊂ A (Ers – State Errors, Es – State Events,
As – State Actions)

Definition 23. s := be(O) (State – Boolean Expression over Ontology)

Definition 24. Si := {si1, si2, . . . , sin}, n ≥ 0 (Situations)

Definition 25. si := <s,A
←
si , [E

←
si ], Asi> (Situation)

A
←
si⊂ A (A ←

si – Executed Actions)
Asi ⊂ A (Asi – Possible Actions)
E

←
si⊂ E (E ←

si – Situation Events)

KnowLang events (E) are a means of high-priority monitoring and messaging.
In general, an event (see Definition 27) can be activated (raised) by a variety of
factors such as time (te), goals (Ge), metrics (Me), errors (Ere), actions (Ae)
and even other events (Ee). A special guard (gde), represented as a Boolean
expression over ontology (see Definition 28), may restrict the event activation.
Events may participate in Boolean expressions or be used to specify event-driven
policies, goals, situations, etc.

In KnowLang, actions are activities (routines) that can be performed by the
system. Actions must be implemented by the system and with KR we represent
an abstraction (counterparts) of the routines and classes used to implement these
actions. Therefore, an action concept must refer to real implementation. From
KR perspective, an action a is a tuple of optional pre- (rca), and post-conditions
(pca), a set of parameters (Pma), output (rna) and errors (Era) that can be
raised by the action (see Definition 30).
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Definition 26. E := {e1, e2, . . . , en}, n ≥ 0 (Events)

Definition 27. e := <[gde], activ> (Event)
activ := te|Ge|Me|Ere|Ae|Ee (Activation Factor)
Ge ⊂ G,Me ⊂ M,Ere ⊂ Er,Ae ⊂ A,Ee ⊂ E

Definition 28. gde := be(O) (Event Guard)

Definition 29. A := {a1, a2, . . . , an}, n ≥ 0 (Actions)

Definition 30. a := <[rca], [pca], [Pma], [rna], [Era]> (Action)

A group (gr) involves objects (Obgr) related to each other through a distinct set
of relations (Rgr)(see Definition 32). Note that groups (G) are explicit concepts
intended to (but not restricted to) represent knowledge about the structure of
the system.

Object trees (Ot) are conceptualization of how objects existing in the world
of interest are related to each other. The relationships are based on the principle
that objects have properties, where sometimes the value of a property is another
object, which in turn also has properties. Such properties are termed object
properties (Pb). An object tree (ot) consists of a root object (ob) and an optional
set of object properties (Pb) – sub-trees of objects (see Definitions 34 and 36).
An object (ob) is an instance of a concept (denoted as instof(c) – see Definition
35) and inherits that concept’s properties.

Definition 31. Gr := {gr1, gr2, . . . , grn}, n ≥ 0 (Groups)

Definition 32. gr := <Obgr, Rgr> (Group)
Obgr ⊂ Ob,Rgr ⊂ R (Obgr-Group Objects, Ob – Objects, Rgr-Group

Relations)

Definition 33. Ot := {ot1, ot2, . . . , otn}, n ≥ 0 (Object Trees)

Definition 34. ot := <ob, [Pb]> (Object Tree)

Definition 35. ob := instof(c), ob ∈ Ob, c ∈ C (Object)

Definition 36. Pb := {ot1, ot2, . . . , otn}, n ≥ 0 (Object Properties – sub-trees
of objects)

Relations (R) connect two concepts (including predicates V ), two objects, or an
object with a concept and may have probability distribution Z (e.g., over time,
over situations, over concepts’ properties, etc.) (see Definition 38). A relation has
an optional name, i.e., when the name is missing we have the implication rela-
tion. Probability distribution is provided to support probabilistic reasoning. By
specifying relations with probability distributions we actually specify Bayesian
Networks [7] connecting the concepts and objects of an ontology. Note that
KnowLang considers binary relations only, but there could be multiple relations
relating the same concepts/objects.
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Definition 37. R := {r1, r2, . . . , rn}, n ≥ 0 (Relations)

Definition 38. r := <rek, [rn], [Z], ren> (Relation, re – Relation Entity, Z
– Probability Distribution)

re ∈ C
⋃

Ob
⋃

V (C – Concepts, Ob – Objects, V – Predicates)

Definition 39. V := {v1, v2, . . . , vn}, n ≥ 0 (Predicates)

Definition 40. v := <Cv, Sv, be(O)> (Predicate)
Cv ⊂ C,Sv ⊂ S (Cv – Predicate’s Concepts, Sv – Predicate’s States)

Predicates (V ) are special KR structures that specify distinct inter-state rela-
tions or schemes for evaluation of complex states. For example, we can specify a
predicate that verifies if the Motion System of a robot is operational. A predicate
might be used by the KnowLang Reasoner to check whether an object (or the
entire system) is in a specific state. Thus, a predicate (v) formally can be pre-
sented as tuple of predicate concepts (Cv), predicate states (Sv) and a Boolean
expression over ontology (be(O)) that determines what conditions must hold to
conclude that the predicate states are “active” (occupied) (see Definition 40.

KNOWLANG CONTEXTS

Definition 41. Cx := {cx1, cx2, . . . , cxn}, n ≥ 0 (Contexts)

Definition 42. cx := <At, [Icx]> (Context)

Definition 43. At := {at1, at2, . . . , atn}, n ≥ 0 (Ambient Trees)

Definition 44. at := <ct, Ca, [i]> (Ambient Tree)
ct ∈ Ct (Concept Tree hosted by an ontology)
Ca ⊂ C (Ca – Ambient Concepts)
i ⊂ Icx (i-Ambient Tree Interpretation)

Definition 45. Icx := {i1, i2, . . . , in}, n ≥ 0 (Context Interpretations)

Contexts Cx are intended to extract the relevant knowledge from an ontology.
Moreover, contexts carry interpretation for some of the meta-concepts (see Def-
inition 42), which may lead to new interpretation of the descendant concepts
(derived from a meta-concept – see Definition 8). We consider a very broad
notion of context, e.g., the environment in a fraction of time or a generic situa-
tion such as currently-ongoing system action (e.g., observing or listening). Thus,
a context must emphasize the key concepts in an ontology, which helps the infer-
ence mechanism narrow the domain knowledge (domain ontology) by exploring
the concept trees down only to the emphasized key concepts.

Depending on the context, some low-level concepts might be subsumed by
their upper-level parent concepts, just because the former are not relevant for
that very context. For example, a robot wheel can be considered as a thing
or as an important part of the robot’s motion system. As a result, the context
interpretation of knowledge will help the system deal with “clean” knowledge and
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the reasoning will be more efficient. A context (cx) consists of ambient trees (At)
and optional context interpretations (Icx) (see Definition 42). An ambient tree
(at) refers to a concept tree (ct) described by an ontology (o) and carries ambient
concepts (Ca), part of the concept tree, and optional context interpretation (i).

The ambient concepts (see Definition 44) explicitly determine new level of
deepness for their original concept tree, i.e., ambient concepts subsume all of their
child concepts (if any). As result, when the system reasons about a particular
context (expressed with ambient trees), the reasoning process does not consider
those child concepts, but their ambient parents, which are far more generic, and
thus less detailed. This technique reduces the size of the relevant knowledge, by
temporarily removing from the concept trees all the ambient concepts’ children
(descendant concepts). We may think about ambient trees as filters the system
applies at runtime to reduce the visibility of concepts of a concept tree. Note
that this technique has been further developed in [16].

KNOWLANG LOGICAL FRAMEWORK

Definition 46. Lf := <Fa,Rl, Ct> (Logical Framework)

Definition 47. Fa := {fa1, fa2, . . . , fan}, n ≥ 0 (Facts)

Definition 48. fa := be(O) → T (Fact – True statement over ontology)

Definition 49. Rl := {rl1, rl2, . . . , rln}, n ≥ 0 (Rules)

Definition 50. rl := <be(O), do(Arl)>|<be(O), do(Vrl)> (Rule)
Arl ⊂ A, Vrl ⊂ V (Arl – Rule’s Actions, Vrl – Rule’s Predicates)

Definition 51. Ct := {ct1, ct2, . . . , ctn}, n ≥ 0 (Constraints)

Definition 52. ct := be(O) (Constraint)

The KnowLang Logical Framework helps developers realize the explicit repre-
sentation of particular and general factual knowledge, in terms of additional
rule-based predicates, names, connectives, quantifiers and identity. The Logical
Framework (Lf) is composed of facts (Fa), rules (Rl) and constraints (Ct) (see
Definition 46). Note that Lf’s KR structures must be specified with ontology
terms, i.e., predefined concepts, objects, predicates and relations. Facts define
true statements in the ontologies (O) by applying Boolean expressions over ontol-
ogy (see Definition 48). Rules relate hypotheses to conclusions where the former
are expressed as Boolean expressions over ontology and the latter decide what
actions to be performed or predicates to be enforced (see Definitions 50). A
constraint is a Boolean expressions over ontology (see Definitions 52), e.g., con-
straints might negate the execution of particular actions or forbid the application
of particular predicates. Constraints might be used to enforce knowledge consis-
tency.

KNOWLEDGE BASE OPERATORS
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Definition 53. Op := <Ask, Tell, Oop> (Knowledge Base Operators)

Definition 54. Ask := retrieve(Kc) → Ip � Kc (query knowledge base)

Definition 55. Tell := update(Kc) → Ip � Kc (update knowledge base)

Definition 56. Oop := fo(Oi) → Ip�Kc, Oi ⊂ O (Inter-ontology Operators
)

INFERENCE PRIMITIVES

Definition 57. Ip := {ip1, ip2, . . . , ipn}, n ≥ 0 (Inference Primitives)

Definition 58. ip := impl(FOL)|impl(FOPL)|impl(DL) (Inference Primi-
tive)

The Knowledge Base Operators (Op) can be grouped into three groups: ASK
Operators (retrieve knowledge from KBs), TELL Operators (update KB) and
Inter-Ontology Operators (Oop) are intended to work on one or more ontologies
(specified as a function fo(Oi) over ontologies (Oi)) (see Definitions 53 through
56). The Inter-Ontology Operators are still under development, but overall they
can be related to operations like merging, mapping, alignment, etc. Note that all
the Knowledge Base Operators (Op) may imply the use of inference primitives
(Ip).

The Inference Primitives (Ip) (see Definition 58) are algorithms for reasoning
and knowledge inference needed by the KnowLang Reasoner. These primitives
are implementation (denoted with impl in Definition 58) of reasoning algorithms
based on First Order Logic (FOL) [2] (and its extensions), First Order Proba-
bilistic Logic (FOPL) [4] and Description Logics (DL) [1]. FOPL increases the
power of FOL by allowing us to assert in a natural way “likely” features of
objects and concepts via a probability distribution over the possibilities that we
envision. Having logics with semantics gives us a notion of deductive entailment.
Note that these algorithms together with the appropriate reasoning engines shall
help the KnowLang Reasoner to query and update KB.

3 Meeting the Challenges

Both the KnowLang Specification Model and KnowLang Reasoner have been
developed by taking into consideration some explicit challenges comprehensively
described in our publications [17,20,21].

3.1 Encoded Versus Represented Knowledge

Developers may encode a large part of the “a priori” knowledge (knowledge
given to the system before the latter actually runs) in the implemented classes
and routines. In such a case, the knowledge-represented pieces of knowledge
(e.g., concepts, relations, rules, etc.) may complement the knowledge codified
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into implemented program classes and routines. For example, KnowLang actions
could be based on classes and methods and a substantial concern about the
KR of such actions is how to relate the knowledge expressed with actions to
implemented methods and functions. A possible solution is to map KR concepts
and objects to program classes and objects respectively.

To properly represent the program implementation (classes, methods, etc.)
in the KB, all the concepts and objects have an IMPL Property that relates a
KnowLang structure to its program counterpart, if any. For example, a KnowL-
ang concept might be specified with an IMPL property to link the concept to
a program class or method. The following is the grammar definition supporting
that [12].

Concept-Impl := IMPL { Impl-Reference }

3.2 States, Situations, Goals and Policies

A big challenge is “how to express situations and reason about the same”. Sit-
uations trigger self-adaptive behaviour (see Sect. 5) and it is very important
to allow the reasoner to recognize them. To support this approach, KnowLang
has introduced the STATE explicit concepts (see Definition 23 in Sect. 2). This
helps each KnowLang concept to be specified with a set of important states
the concept instances can be in. Thus, we explicitly specify a variety of states
for important concepts (e.g., states “operational” and “non-operational” for the
robot’s Motion System). A KnowLang state is specified as a Boolean expres-
sion over ontology where we can use activation of events, execution of actions or
changes in properties to build a state’s Boolean expression [12]. Further, to facil-
itate the evaluation of complex states, we specify PREDICATES (see Definition
40 in Sect. 2). Complex states (e.g., system states) are the product of other states
(e.g., the states of the system’s components). States (usually system states) are
also used to specify GOALS, another class of KnowLang explicit concepts (see
Definition 22 in Sect. 2). Goals participate in the specification of KnowLang poli-
cies. A goal can be specified as a transition from a state to another. Recall that
policies and situations participate in KnowLang relations (see Definition 19 in
Sect. 2) that drive the self-adaptive behaviour (see Sect. 5). Therefore, because
every situation is explicitly related to a state (a situation is determined by a
state), it is relatively easy to check for the feasibility of a policy triggered by a
specific situation, i.e., the policy’s goal must have the same departing state as
the situation’s state.

3.3 Converting Sensory Data to KR Symbols

One of the biggest challenges is “how to map sensory raw data to KR symbols”.
Our approach to this problem is to specify special explicit concepts called MET-
RICS (see Definition 17 in Sect. 2). In general, a SCE system has sensors that
connect it to the world and eventually help it to listen to its internal components.
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These sensors generate raw data that represent the physical characteristics of the
world. The problem is that these low-level data streams must be: 1) converted
to programming variables or more complex data structures that represent collec-
tions of sensory data; 2) those programing data structures must be labeled with
KR Symbols. Hence, it is required to relate encoded data structures with KR
concepts and objects used for reasoning purposes. In our approach, we assume
that each sensor is controlled by a software driver (e.g., specified in SCEL and
implemented in Java) where appropriate methods are used to control the sensor
and read data from it. Both the sensory data and sensors should be represented
in the KB by using METRIC explicit concepts and instantiate objects of these
concepts. By specifying a METRIC concept we introduce a class of sensors to
the KB and by specifying objects, instances of that class, we give the actual
KR of a real sensor. KnowLang allows the specification of four different types of
metrics [12]:

– RESOURCE – measure SC resources like capacity;
– QUALITY – measure SC qualities like performance, response time, etc.;
– ENVIRONMENT – measure environment qualities and resources;
– ENSEMBLE – measure SCE qualities and resource; might be a function of

multiple SC metrics both of RESOURCE and QUALITY type.

4 KnowLang Syntax

We used the Backus-Naur Form (BNF) notation [6] to describe the syntax of
the language and formally specify the KnowLang Grammar [12]. This helps the
KnowLang framework to process sentences written in the KnowLang language.
BNF [6] is a powerful meta-language that allows a context-free grammar specifi-
cation. A partial presentation of the KnowLang Grammar in BNF is the following
[12]:

KL-Spec := bof Knowledge-Spec eof
Knowledge-Spec := Spec-References KL-Spec-Units
Knowledge-Spec := KL-Spec-Units
KL-Spec-Units := KL-Corpuses KL-Operators Inference-Primitives
...
KL-Spec-Units := KL-Corpuses
KL-Spec-Units := KL-Operators
KL-Spec-Units := Inference-Primitives

As shown, the full KnowLang context-free grammar specification is obtained by
the reduction of the (KL-Spec -> bof Knowledge-Spec eof ) rule, which determines
that a KB specified with KnowLang consists of specification units, each formed by
a combination of knowledge corpuses, KB operators and inference primitives. Due
to the complex structure of the KnowLang specification model (see Sect. 2) where
each tier has its own structure, the complete KnowLang Grammar’s specification
cannot be presented here (please refer to [12] for the full KnowLang Grammar
in BNF). Instead, we present an abstraction of the KnowLang Grammar, i.e., a
meta-grammar. The following is a generic meta-grammar in Extended BNF [6]
presenting the syntax rules for specifying KnowLang tiers.



KnowLang - A Formal Specification Model for Self-adaptive Systems 379

GroupTier := FINAL? GroupTierId { Tier+ }
Tier := FINAL? TierId TierName? { TierClause+ }
TierClause := FINAL? ClauseId ClauseName? { Data* }
Data := PredefType | ConceptNames | BlnExpr | Reference | Number
ConceptNames := ConceptName [,ConceptName]*

As shown, in general a KnowLang tier is syntactically specified with a tier iden-
tifier (predefined KnowLang name), an optional name and a content block bor-
dered by curly braces. Moreover, we distinguish two syntactical tier types: single
tiers (Tier) and group tiers (GroupT ier) where the latter comprise a set of
single tiers. Each single tier has an optional name (TierName) and comprises
a set of tier clauses (TierClause), which are composed of a clause identifier,
an optional clause name and optional data (Data). The latter presents a prede-
fined KnowLang type (e.g., METRIC type), a collection of names (e.g., concept
names or objects names), a Boolean expression over ontology, an implementation
reference (e.g., IMPL{Sensors.LightSensor.getSourceAngle()}) or a number.
Note that identifiers participating in KnowLang expressions are either simple,
consisting of a single identifier, or qualified, consisting of a sequence of identi-
fiers separated by “.” tokens. Identifiers could be concept names, object names,
relation names, predicate names, property names or function names, and it is
important to specify them with their qualified name, e.g., pointing where a con-
cept resides in a concept tree. When we use “..” token, we let the KnowLang
Reasoner find the specified identifier presuming it is unique in the current tree.

5 KR for Self-adaptive Behaviour with KnowLang

KnowLang has intrinsic features supporting KR for autonomic systems. An auto-
nomic system [5,13] is considered to be a self-adaptive system that changes its
behaviour in response to stimuli from its execution and operational environment.
Such behaviour is considered autonomic and self-adaptive [13] and is intended
to drive a system in situations requiring adaptation. Any long-running system is
subject to uncertainty in its execution environment due to potential changes in
requirements, business conditions, available technology, etc. Thus, it is impor-
tant to capture and cater for uncertainty as part of the development process.
Failure to do so may result in systems that are too rigid to be fit for purpose,
which is of particular concern for the domains that typically make use of self-
adaptive technology. We hypothesize that modeling uncertainty and developing
mechanisms for managing it as part of KR&R will lead to systems that are:

– more expressive of the real world;
– fault tolerant due to fluctuations in requirements and conditions being antic-

ipated;
– flexible and able to manage dynamic changes.

The ability to represent knowledge providing for self-adaptive behaviour is an
important factor in dealing with uncertainty. In our approach, the autonomic
self-adaptive behaviour is provided by policies, events, actions, situations, and
relations between policies and situations (see Definitions 18 through 25 in
Sect. 2).
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Ideally, policies are specified to handle specific situations, which may trigger
the application of policies. A policy exhibits a behaviour via actions generated
in the environment or in the system itself. Specific conditions determine, which
specific actions (among the actions associated with that policy – see Defini-
tion 19 in Sect. 2) shall be executed. These conditions are often generic and
may differ from the situations triggering the policy. Thus, the behaviour not
only depends on the specific situations a policy is specified to handle, but also
depends on additional conditions. Such conditions might be organized in a way
allowing for synchronization of different situations on the same policy. When a
policy is applied, it checks what particular conditions are met and performs the
associated actions via special mappings (see map(Nπ, Aπ, [Z]) in Definition 19
in Sect. 2). An optional probability distribution (Z) may additionally restrict
the action execution. Although initially specified, the probability distribution at
the mappings is recomputed after the execution of any involved action. The re-
computation is based on the consequences of the action execution, which allows
for reinforcement leaning.

The cardinality of the policy-situation relationship is many-to-many, i.e., a
situation might be associated with many policies and vice versa. The set of
policy situations (situations triggering a policy) is open-ended, i.e., new situa-
tions might be added or old might be removed from there by the system itself.
Moreover, with a set of policy-situation relations we may grant the system with
an initial probabilistic belief (see Definition 19) that certain situations require
specific policies to be applied. Runtime factors may change this probabilistic
belief with time, so the most likely situations a policy is associated with can be
changed. For example, the successful rate of actions execution associated with a
specific situation and a policy may change such a probabilistic belief and place
a specific policy higher in the “list” of associated policies, which will change the
behaviour of the system when a specific situation is to be handled. Note that
situations are associated with a state (see Definition 25) and a policy has a goal
(see Definition 19), which is considered as a transition from one state to another
(see Definition 2). Hence, the policy-situation relations and the employed prob-
abilistic beliefs may help a cognitive system what desired state to choose, based
on past experience.

As a proof of concept, we applied the approach to a case study on Ensemble
of Robots. To illustrate autonomic behaviour based on this approach, let us
suppose that we have a marXbot robot that carries items from point A to point
B by using two possible routes – route one and route two (see Fig. 2).

A situation si1:“robot is in point A and loaded with items” will trigger a
policy π1:“go to point B via route one” if the relation r(si1, π1) has the higher
probabilistic belief rate (let’s assume that such a rate has been initially given
to this relation because route one is shorter – see Fig. 2a). Any time when the
robot gets into situation si1 it will continue applying the π1 policy until it
gets into a situation si2:“route one is blocked” while applying that policy. The
si2 situation will trigger a policy π2:“go back to si1 and then apply policy π3”
(see Fig. 2.b). Policy π3 is defined as π3:“go to point B via route two”. The
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Fig. 2. A marXbot Self-adaptation Case Study

unsuccessful application of policy π1 will decrease the probabilistic belief rate
of relation r(si1, π1) and the eventual successful application of policy π3 will
increase the probabilistic belief rate of relation r(si1, π3) (see Fig. 2b). Thus, if
route one continues to be blocked in the future, the relation r(si1, π3) will get
to have a higher probabilistic belief rate than the relation r(si1, π1) and the
robot will change its behaviour by choosing route two as a primary route (see
Fig. 2c). Similarly, this situation can change in response to external stimuli, e.g.,
route two got blocked or a “route one is obstacle-free” message is received by
the robot.

6 Formalizing eMobility with KnowLang

In eMobility, vehicles move according to a schedule defined by a driver [9,10].
Every e-vehicle component is responsible for driving along the optimal route,
meeting time constraints imposed by the driver’s schedule and reserving spaces
at a particular Point of Interest (POI). Vehicles are competing for infrastructure
resources of the traffic environment and a set of locally optimal solutions should
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be computed for each individual driver. Each e-vehicle is equipped with a Vehicle
Planning Utility (Route Planner) that plans travels including a set of alternative
routes. Traffic routes are composed of multiple driving locations, e.g., POIs. A
set of locally optimal solutions is computed for each individual user. This set is
negotiated on a global level in order to satisfy the global perspective. The set
of locally optimal solutions guarantees a minimum quality for each individual
driver. The global optimization scheme guarantees optimal resource distribution
within the local constraints. The size of the set of locally optimal solutions
determines the cooperative nature of the individual driver. The smaller the set,
the more competitive the driver is. The larger the set the more cooperative the
driver is. The process of Route Selection (RouteSAM) advises on a route choice,
which is made from a set of alternative routes generated by the route planner.
The RouteSAM considers road capacity and traffic levels. It optimizes overall
throughput of the roads by balancing the route assignments of the vehicles.
From a local vehicle perspective the journey time is minimized, from a global
perspective, the congestion levels are minimized. The route selection process
strives to satisfy global optimality criteria of road capacity. Once a vehicle is in
the close vicinity of a destination, it computes a set of locally optimal parking
lots. Again, the selection process of parking lots satisfies global optimality criteria
of parking capacity.

Fig. 3. eMobility Example [10]

Figure 3 shows a formal petri net representation of a real example scenario
that considers four destinations (Wolfsburg, Gifhorn, Braunschweig, and Han-
nover), the road network between the destinations and the processes which are
taking place at the destination locations [10]. The road network is described by
several transition framed sub nets (e.g. RNet15). It is assumed that the journeys
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between destinations contain a limited set of variants. Typically three alterna-
tive routes and three alternative driving styles are considered, generating a set
of maximally 9 variants. Each destination is represented by a transition framed
subnet (e.g. Hannover), which models both the vehicle charging process (e.g.
CarPark H) and user specific processes (e.g. User H) such as appointments. The
charging stations that are connected to the car parks support three different
charging modes (normal, fast and ultra-fast charging).

In this constraint environment, self-adaption is required by situations that
occur when the availability of infrastructure resources does not match the
demand – not enough capacity, or environment constraints (e.g., speed limit,
or delay due to high traffic) hinder the e-vehicle goals. eMobility considers five
different levels of self-adaptation [8]:

– Level-1 : A vehicle computes a set of alternative routes for its current destina-
tion. This operation is performed locally by the use of the vehicle’s planning
utility.

– Level-2 : A vehicle chooses the best option from those alternatives that are
computed in the previous level. The vehicle observes the situation and adapts
by triggering a new adaptation cycle, starting at Level-1 to the changes in
the environment. This operation may require central planning and reasoning
at group (ensemble) level.

– Level-3 : A vehicle computes a set of parking lots nearby the current desti-
nation. This operation is local and is performed by the vehicle’s planning
utility.

– Level-4 : A central parking lot planner (PLCSSAM) chooses the best option
from those alternatives that are provided by the vehicle in the previous level.
As a result vehicles are assigned an optimal or near-optimal parking lot reser-
vation. At the same time, a “near-optimal parking lot” load balancing is
established.

– Level-5 : A vehicle issues a reservation request to the selected parking lot. As
a result the parking space at that parking lot is booked. Both the vehicle and
the parking lot monitor the situation. If required, a new adaptation cycle is
triggered.

Based on the rationale above, we derived the eMobility goals along with the
self-* objectives assisting these goals when self-adaptation is required. Note that
the required analysis and process of building the goals model for eMobility along
with the process of deriving the adaptation-supporting self-* objectives is beyond
the scope of this paper. Figure 4 depicts a goals model for eMobility where goals
are organized hierarchically at four different levels. As shown, the goals from
the first two levels (e.g., “Take Journey”, “Arive on Time”, “Provide Route”,
“Provide Parking Lot”, and “Sufficient Battery”) are main system goals captured
at different levels of abstraction. The 3rd level is resided by self-* objectives (e.g.,
“Optimize Speed”, “Avoid Low Speed Zones”, “Reduce Parking Time”, and
“Ensure Sufficient Battery”) and supportive goals (e.g., “Low Route Traffic”)
associated with and assisting the 2nd-level goals. Finally, the goals from the 4th
level are self-* objectives (e.g., “Reduce Route Traffic”) assisting the supportive
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Fig. 4. eMobility Goals Model with Self-* Objectives for System Goals from Level 3

goals from the 3rd level. Basically, all the self-* objectives inherit the system
goals they assist by providing behaviour alternatives with respect to these system
goals. The eMobility system switches to one of the assisting self-* objectives when
alternative autonomous behaviour is required (e.g., a vehicle needs to avoid low-
speed zones). In addition, Fig. 4 depicts some of the environment constraints
(e.g., “Traffic Lights” and “Low-speed Zones”), which may cause self-adaptation.

6.1 Specifying eMobility Ontology

In order to specify eMobility, the first step is to specify a knowledge base
(KB) representing the eMobility system in question, i.e., e-vehicles, parking lots,
routes, traffic lights, etc. To do so, we need to specify ontology structuring the
knowledge domains of eMobility. Note that these domains are described via
domain-relevant concepts and objects (concept instances) related through rela-
tions. To handle explicit concepts like situations, goals, and policies, we grant
some of the domain concepts with explicit state expressions where a state expres-
sion is a Boolean expression over the ontology.

Figure 5, depicts a graphical representation of the eMobility ontology relating
most of the domain concepts within an eMobility system. Note that the rela-
tionships within a concept tree are “is-a” (inheritance), e.g., the RoadElement
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Fig. 5. eMobility Ontology Specified with KnowLang

concept is a TraficEntity and the Action concept is a Knowledge and consecu-
tively Phenomenon, etc. Most of the concepts presented in Fig. 5 were derived
from the eMobility Goals Model (see Fig. 4). Other concepts are considered as
explicit and were derived from the KnowLang’s specification model [22].

The following is a sample of the KnowLang specification representing three
important concepts: V ehicle, Journey, and Route. As specified, the concepts in
a concept tree might have properties of other concepts, functionalities (actions
associated with that concept), states (Boolean expressions validating a specific
state), etc. For example, the Vehicle’s IsMoving state holds when the vehicle
speed (the VehicleSpeed property) is greater than 0.

// e-Vehicle

CONCEPT Vehicle {

PARENTS {eMobility.eCars.CONCEPT_TREES.Entity}

CHILDREN { }

PROPS {

PROP carDriver {

TYPE {eMobility.eCars.CONCEPT_TREES.Driver} CARDINALITY {1} }

PROP carPassengers {

TYPE {eMobility.eCars.CONCEPT_TREES.Passenger} CARDINALITY {*} }

PROP carBattery {

TYPE {eMobility.eCars.CONCEPT_TREES.Battery} CARDINALITY {1} }

}

FUNCS {

FUNC startEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StartEngine}}

FUNC stopEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StopEngine}}

FUNC accelerate {TYPE {eMobility.eCars.CONCEPT_TREES.Accelerate}}

FUNC slowDown {TYPE {eMobility.eCars.CONCEPT_TREES.SlowDown}}

FUNC startDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StartDriving}}

FUNC stopDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StopDriving}}

}

STATES {

STATE IsOperational{

NOT eMobility.eCars.CONCEPT_TREES.Vehicle.PROPS.carBattery.STATES.batteryLow }

STATE IsMoving{ eMobility.eCars.CONCEPT_TREES.VehicleSpeed > 0 }

}

}

CONCEPT Journey {

PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}

CHILDREN {}

PROPS {

PROP journeyRoute {TYPE {eMobility.eCars.CONCEPT_TREES.Route} CARDINALITY {1}}

PROP journeyTime {TYPE {DATETIME} CARDINALITY {1}}

PROP journeyCars {TYPE {eMobility.eCars.CONCEPT_TREES.Vehicle} CARDINALITY {*}}

}

STATES

{
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STATE InSufficientBattery {/* to specify */}

STATE InNotSufficientBattery {

NOT eMobility.eCars.CONCEPT_TREES.Journey.STATES.InSufficientBattery}

STATE Arrived {eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd}

STATE ArrivedOnTime { eMobility.eCars.CONCEPT_TREES.Journey.STATES.Arrived AND

(eMobility.eCars.CONCEPT_TREES.JourneyTime <=

eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyTime)

}

}

}

CONCEPT Route {

PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}

CHILDREN {}

PROPS {

PROP locationA {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}

PROP locationB {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}

PROP intermediateStops {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {*}}

PROP currentRoad {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {1}}

PROP alternativeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {*}}

}

FUNCS {

FUNC getCurrentLocation {TYPE {eMobility.eCars.CONCEPT_TREES.GetCurrentLocation}}

FUNC takeAlternativeRoad {TYPE {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}}

FUNC recomputeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.RecomputeRoads}}

}

STATES {

STATE AtBeginning {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationA}

STATE AtEnd {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationB}

STATE OnRoute { NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning AND

NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtEnd}

STATE InHighTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InHighTraffic}

STATE InLowTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InFluentTraffic}

}

}

As mentioned above, the states are specified as Boolean expressions. For exam-
ple, the state Route’s OnRoute holds (is true) while the Route is neither
AtBeginning nor at AtEnd states. A concept realization is an object instan-
tiated from that concept. As shown, a complex state might be expressed as a
Boolean function over other states. For example, the Journey’s state Arrived
OnTime is expressed as a Bollean expression involving the Journey’s Arrived
state and Journey’s properties.

Note that states are extremely important to the specification of goals (objec-
tives), situations, and policies. For example, states help the KnowLang Reasoner
determine at runtime whether the system is in a particular situation or a par-
ticular goal (objective) has been achieved.

6.2 Specifying Self-Adaptive Behaviour

To specify self-* objectives with KnowLang, we use goals, policies, and situa-
tions. These are defined as explicit concepts in KnowLang, and for the eMobility
Ontology we specified them under the concepts Virtual entity→Phenomenon→
Knowledge (see Fig. 5). Figure 6, depicts a concept tree representing the spec-
ified eMobility goals. Note that most of these goals were directly interpolated
from the goals model (see Fig. 4).

Recall that KnowLang specifies goals as functions of states where any combi-
nation of states can be involved. A goal has an arriving state (Boolean function
of states) and an optional departing state (another Boolean function of states).
A goal with departing state is more restrictive, i.e., it can be achieved only if
the system departs from the specific goal’s departing state.
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Fig. 6. eMobility Ontology: eMobility Goal Concept Tree

The following code samples present the specification of two simple goals. Usu-
ally, goals’ arriving and departing states can be either single states or sequences
of states. Note that the states used to specify the goals below are specified as
part of both Journey and Route concepts.

//

//==== eMobility Goals ===========================================

//

CONCEPT_GOAL ArriveOnTime {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}

PARENTS {}

SPEC {

DEPART { eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd }

ARRIVE { eMobility.eCars.CONCEPT_TREES.Journey.STATES.ArrivedOnTime }

}

}

CONCEPT_GOAL LowRouteTraffic {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}

PARENTS {}

SPEC {

DEPART { eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic }

ARRIVE { eMobility.eCars.CONCEPT_TREES.Route.STATES.InLowTraffic }

}

}

The following is a specification sample showing an eMobility policy called Reduce
RouteTraffic – as the name says, this policy is intended to reduce the route traf-
fic. As shown, the policy is specified to handle the goal LowRouteTraffic and
is triggered by the situation RouteTrafficIncreased. Further, the policy trig-
gers via its MAPPING sections conditionally (e.g., there is a CONDITONS
directive that requires the Route’s state OnRoute to be hold) the execution of a
sequence of actions. When the conditions are the same, we specify a probability
distribution among the MAPPING sections involving same conditions (e.g.,
PROBABILITY 0.7), which represents our initial belief in action choice.

CONCEPT_POLICY ReduceRouteTraffic {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Policy}

SPEC {

POLICY_GOAL {eMobility.eCars.CONCEPT_TREES.LowRouteTraffic}

POLICY_SITUATIONS {eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased}

POLICY_RELATIONS {eMobility.eCars.RELATIONS.Situation_Policy_1}

POLICY_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad,

eMobility.eCars.CONCEPT_TREES.RecomputeRoads}

POLICY_MAPPINGS {

MAPPING {

CONDITIONS {eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}
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DO_ACTIONS {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

PROBABILITY {0.7}

}

MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}

DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

PROBABILITY {0.3}

}

MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning}

DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

}

}

}

}

As specified, the probability distribution gives initial designer’s preference
about what actions should be executed if the system ends up in running the
ReduceRouteTraffic policy. Note that at runtime, the KnowLang Reasoner
maintains a record of all the action executions and re-computes the probabil-
ity rates every time when a policy has been applied and consecutively, actions
have been executed. Thus, although initially the system will execute the function
takeAlternativeRoad (it has the higher probability rate of 0.7), if that policy
cannot achieve its goal with this action, then the probability distribution will be
shifted in favor of the function sequence recomputeRoads, takeAlternativeRoad,
which might be executed the next time when the system will try to apply the
same policy. Therefore, probabilities are recomputed after every action execu-
tion, and thus the behaviour change accordingly.

Moreover, to increase the goal-oriented autonomicity, in policy specification,
we may use a special operator implemented in KnowLang called GENERATE
NEXT ACTIONS. This operator will automatically generate the most appro-

priate actions to be undertaken by eMobility. The action generation is based on
the computations performed by a special reward function implemented by the
KnowLang Reasoner. The KnowLang Reward Function (KLRF) observes the
outcome of the actions to compute the possible successor states of every possible
action execution and grants the actions with special reward number considering
the current system state (or states, if the current state is a composite state) and
goals. KLRF is based on past experience and uses Discrete Time Markov Chains
[3] for probability assessment after action executions [22].

Note that when generating actions, the GENERATE NEXT ACTIONS
operator follows a sequential decision-making algorithm where actions are
selected to maximize the total reward. This means that the immediate reward of
the execution of the first action, of the generated list of actions, might not be the
highest one, but the overall reward of executing all the generated actions will be
the highest possible one. Moreover, note that, the generated actions are selected
from the predefined set of actions (e.g., the implemented eMobility actions). The
principle of the decision-making algorithm used to select actions is as follows:

1. The average cumulative reward of the reinforcement learning system is cal-
culated.

2. For each policy-action mapping, the KnowLang Reasoner learns the value
function, which is relative to the sum of average reward.
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3. According to the value function and Bellman optimality principle1, is gener-
ated the optimal sequence of actions.

As mentioned above, policies are triggered by situations. Therefore, while spec-
ifying policies handling eMobility objectives, we need to think of important sit-
uations that may trigger those policies. These situations shall be eventually
outlined by scenarios. A single policy requires to be associated with (related
to) at least one situation, but for polices handling self-* objectives we even-
tually need more situations. Actually, because the policy-situation relation is
bidirectional, it is maybe more accurate to say that a single situation may need
more policies, those providing alternative behaviours or execution paths out of
that situation. The following code represents the specification of the situation
RouteTrafficIncreased, used for the specification of the ReduceRouteTraffic
policy.

CONCEPT_SITUATION RouteTrafficIncreased {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Situation}

SPEC {

SITUATION_STATES {eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic}

SITUATION_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}

}

}

}

As shown, the situation is specified with SITATION STATES (e.g., InHigh
Traffic) and SITUATION ACTIONS (e.g., TakeAlterna-tiveRoad). To
consider a situation effective (i.e., the system is currently in that situation), the
situation states must be respectively effective (evaluated as true). For exam-
ple, the situation RouteTraf -ficIncreased is effective if the Route’s state
InHighTraffic is effective (is hold). The possible actions define what actions
can be undertaken once the system falls in a particular situation. For example,
the RouteTrafficIncreased situation has one possible action: TakeAlternative
Road.

Recall that situations are related to policies via relations. The following code
demonstrates how we related the situation RouteTrafficIncreased to the policy
Reduce-RouteTraffic.

RELATION Situation_Policy_1{

RELATION_PAIR {

eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased,

eMobility.eCars.CONCEPT_TREES.ReduceRouteTraffic}

}

}

In general, a self-adaptive system has sensors that connect it to the world and
eventually help it listen to its internal components. These sensors generate raw
data that represent the physical characteristics of the world. The representa-
tion of monitoring sensors in KnowLang is handled via the explicit Metric con-
cept [22]. In our approach, we assume that eMobility sensors are controlled by
software drivers (e.g., implemented in C++) where appropriate methods are

1 The Bellman optimality principle: If a given state-action sequence is optimal, and
we were to remove the first state and action, the remaining sequence is also optimal
(with the second state of the original sequence now acting as initial state).
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used to control a sensor and read data from it. By specifying a Metric concept
we introduce a class of sensors to the KB and by specifying objects, instances
of that class, we represent the real sensor. KnowLang allows the specification of
four different types of metrics [22]:

– RESOURCE – measure resources like capacity;
– QUALITY – measure qualities like performance, response ti-me, etc.;
– ENVIRONMENT – measure environment qualities and resources;
– ENSEMBLE – measure complex qualities and resources where the metric

might be a function of multiple metrics both of RESOURCE and QUALITY
type.

The following is a specification of metrics mainly used to assist the specification
of states in the specification of the eMobility concept (see Sect. 6.1).

// metrics

CONCEPT_METRIC RoadTrafficLevel {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { ENVIRONMENT }

METRIC_SOURCE { "ECarClass.GetRoadTrafficLevel" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC BatteryEnergyLevel {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetBatteryEnergyLevel" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC VehicleSpeed {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetVehicleSpeed" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC JourneyTime {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetJourneyTime" }

DATA_TYPE { DATETIME }

}

}

7 Conclusion and Future Work

In the course of this R&D process, we shaped our research activities towards
focusing on the KnowLang Framework where our ultimate goal is to structure
computerized knowledge so that a computerized system can effectively process it
and gain awareness capabilities and eventually derive its own behaviour. To pro-
vide comprehensive and powerful specification formalism, we developed a pow-
erful multi-tier specification model where ontologies are integrated with rules
and Bayesian networks. The approach allows for efficient and comprehensive
knowledge structuring and awareness based on logical and statistical reasoning.
We used the KnowLang notation to specify some knowledge models for different
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case studies. This exercise demonstrated the ability of KnowLang to handle KR
for systems from different application domains. A very important feature is the
KnowLang mechanism for self-adaptive behaviour where knowledge representa-
tion and reasoning help to establish the vital connection between knowledge,
perception, and actions realizing self-adaptive behaviour. The knowledge is used
against the perception of the world to generate appropriate actions in compliance
to some goals and beliefs.

Future work is mainly concerned with further development of the KnowL-
ang Reasoner as part of the full implementation of the KnowLang Framework,
involving tools and a test bed for verification and validation of KnowLang mod-
els.
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