
Time: It is only Logical!

Frédéric Mallet(B)

Université Côte d’Azur, CNRS, Inria, I3S, Nice, France
Frederic.Mallet@univ-cotedazur.fr

Abstract. Logical Clocks play an important role for the design and
modelling of concurrent systems. The Clock Constraint Specification
Language (ccsl) was built in 2009, as part of an annex of the UML Pro-
file for MARTE, to give a proper syntax to handle logical clocks as first
class citizens. The syntax gave rise to a series of different semantic inter-
pretations along with various verification tools. Usecases are diverse and
include languages to express timing requirements, temporal or spatio-
temporal logics to capture expected safety properties, meta-languages to
give an operational semantics to domain-specific languages. The appli-
cation domains include avionics, safety-critical transportation systems,
self-driving vehicles, systems engineering models, cyber-physical systems.
This paper reviews the effort conducted since 2009 on ccsl. A large part
of this effort was made possible by Professor He Jifeng and his will to
build in Shanghai a research centre of excellence for trustworthy systems.
Researchers there found inspiration in the heritage left by the different
schools working around the world on concurrency theory, including the
school of synchronous languages from which ccsl has emerged.

Keywords: Logical Time · Cyber-Physical Systems · Polychronous
languages

1 Introduction

1.1 CCSL - Genesis

The Clock Constraint Specification Language (ccsl) was devised as an attempt
to bring order into the galaxy of so-called standard notations and semantics that
were emerging [37] following the adoption of the Unified Modelling Language
2.x [52]. Some complained that the official semantics was not precise enough [18],
others that it was too constraining and not expressive enough. Each community
working in the field of concurrency theory or formal languages was providing its
contribution to give one interpretation, connected to its analysis or verification
frameworks. The community of synchronous languages [7] was no exception and
has provided its own contributions with Argos [40] and SyncCharts [2,4], as
synchronous interpretations for the visual formalism of Harel’s StateCharts [22]
or also as a formal and sound alternative to UML State Machines.

The word unified was misleading as some people were trying to provide a
unique, one size fits all, notation to do everything as the goal should have been to
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provide a unifying framework to compare the legitimate different interpretations
that are necessary to deal with the diversity of missions faced by software or
system engineers. In his book on Unifying Theories of Programming [25] with
C.A.R. Hoare, Professor He Jifeng gets us back on another path by stating “A
unifying theory is usually complementary to the theories that it links, and does
not seek to replace them.”

ccsl was meant to give a complementary notation that would come as a
companion of languages, whether visual or not, to clarify or make precise, if
and when necessary, their interpretation and in particular, the subtle legiti-
mate behavioural variations regarding temporal, timed or concurrent aspects of
systems. Not a language to rule them all but rather a meta-language to allow
different semantic interpretations to co-exist without ambiguities.

As UML semantic variation points were meant to be addressed in dedicated
profiles, it was only natural to seek the definition of a profile for that purpose.
Then what started as an attempt to build a synchronous reactive UML pro-
file [49], soon became a participation of the Aoste I3S/Inria team to a Task
Force within the Object Management Group. Our goal at that time, was to
define something that would allow a synchronous reactive interpretation to co-
exist with plenty other interpretations, including fully asynchronous ones. The
UML Profile for Modelling and Analysis of Real-Time systems (MARTE) was
adopted three years later in 2009 [53] and ccsl was described within annex C.3
of the specification.

1.2 Logical Time and Clocks

As the name suggests, logical clocks are the central and foundational element
of ccsl. The word clock is also misleading as it has a deeply anchored popular
meaning that turns out to characterize just a particular, although very impor-
tant, kind of clock. A clock is a device for measuring and showing time. It usually
works by comparing the duration of a phenomenon by counting the number of
occurrences of ticks produced by a trustworthy source taken as a time reference.
When the source is based on a regular physical phenomenon, for instance the
resonant frequency of atoms in the case of atomics clocks, it is called a physical
clock. However, the reference can also be an arbitrary recurrent event that is
meaningful to the system for some reasons. In such cases, it is referred to as a
logical clock.

Several digital systems react according to the speed of driving clocks that
are not regular periodic physical events. A control system of a car engine reacts
according to the rotation speed of the camshaft, this rotation speed changes
continuously and can hardly refer to an absolute physical measure as 1) it would
depend on too many external parameters; 2) it is neither necessary nor efficient
to build the actual physical device.

In the origin of Communicating Sequential Processes (CSP [24]), we also find
an interesting statement to support that position “Another detail which we have
deliberately chosen to ignore is the exact timing of occurrences of events. The
advantage of this is that designs and reasoning about them are simplified, and
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furthermore can be applied to physical and computing systems of any speed and
performance.”.

Leslie Lamport [30] has made popular logical clocks in the context of dis-
tributed systems by considering that “the concept of time is derived from the
more basic concept of the order in which events occur”. Logical clocks were used,
as a pragmatic solution, to reconstruct a total order of events and therefore
provide a simple method for synchronizing spatially-separated processes or even
physical clocks. Further away from those practical considerations, event struc-
tures [43] provide a theoretical framework to study the relation happens before
at the heart of Lamport’s logical clocks.

In the field of programming languages, and mainly for reactive systems, syn-
chronous languages [7], like Esterel [8], Lustre [11] or Signal [32], have long
promoted logical clocks as native programming artefacts. Clocks are used as
activation conditions to decide when it makes sense to activate the different
parts of a program so as to make sure that they operate correctly, for instance
because all the necessary inputs are available. Synchronous (logical) clocks rely
on the concept of instant, that denotes atomic actions, and allows for decid-
ing whether some occurrences of events happen instantaneously, i.e., within the
same instant. This leads to the notion of happens together or coincidence. Even
though coincidence is a mental construct, it proved to be useful for the design
of reactive and/or safety-critical systems [13].

Professor He has also proposed his own view of a clock model suitable for the
construction of hybrid systems [23]. In his work, clocks are increasing sequences
of non-negative reals. Those clocks refer directly to synchronous signals and the
real values carried by clocks are the dates at which events occur. By consider-
ing sequences of reals, it implicitly assumes a global common time base. Other
frameworks, like polychrony [33], do not assume the existence of a common global
clock and rather push for solutions where clocks are not inherently related to
each other. However, the potential existence of a common clock, may still become
a good property that has to be proven or disproven by the compiler.

As an attempt to unify theories of time structures, tagged systems [34] and
then tag machines [6] have become mainstream theoretical and practical (within
the scope of Ptolemy [17] and variants like ForSyDe [47] and ModHel’X [21])
solutions to compare and combine models of computations (and communica-
tions).

While tag machines provide a nice mathematical framework, they do not
provide any concrete syntax to build tag structures and define relations among
them. ccsl intended to do that by focusing only on the underlying orderings
among events, leaving out the tags themselves. It combines the two notions of
happens before and happens together. An extension of ccsl, called TESL [55],
brings back the tags and define some operators that build clocks depending on
the tags or derives tags based on clock relations.

Finally, one must note that logical clocks of ccsl strongly differ from the
(dense) clocks of timed automata [1]. Timed automata rely on a dense time
model, meaning that clocks take values in a dense set. This is very useful and
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sometimes more natural for physical processes operating over continuous time.
All these dense clocks increase at a uniform rate counting time with respect to
a common global time frame. In certain conditions, the clocks can be stopped
or reset. Timed automata, and their numerous derivatives, have given rise to
a variety of powerful and very successful tools, like UPPAAL [31]. We show in
Sect. 3 that we can combine such models with ccsl ones to benefit from both
environments when one needs to access both logical and physical clocks.

The initial denotational semantics of ccsl [3] considered a model with dense-
time but most ccsl-based tools [15] only work for discrete time and ccsl relies
on timed automata [50] whenever it has to deal with dense-time relations.

1.3 Outline

This paper starts with a brief introduction to the syntax and semantics of ccsl
in Sect. 2. Then, Sect. 3 describes two main use cases where ccsl is used not stan-
dalone, but as companion to other formalisms and notations. Section 4 describes
some of the variants of ccsl. Then we briefly conclude.

2 Syntax and Semantics

A comprehensive theory of programming [25] treats a programming language
under three styles of presentations: denotational, operational and algebraic. Here
we do not go as far as proving consistency between the three definitions but we
give a grasp of what it means in the context of ccsl.

We follow here the same path as Professor He. We start with the denota-
tional semantics, then the operational one, and we end with a glimpse at the
co-algebraic semantics.

2.1 Clocks, Schedules and History

Definition 1 (Logical clock). A logical clock c is an infinite sequence (a
stream) of ticks, (cn)n∈N+ .

While a logical clock can represent any kind of repetitive event, the ticks stand
for their successive occurrences. All the events are assumed to be independent, so
there is no relationship between the ticks of two clocks unless explicitly defined.
Concretely, clocks can be used to observe the occurrence of events. In such cases,
ccsl describes the expected observations. They can also be used as activation
conditions to control the behaviour of a system.

ccsl constraints express some relationships between clocks, and their under-
lying ticks. One possible behaviour is captured as a synchronous schedule defined
as an infinite sequence of steps. At each step, the schedule defines which clocks
tick and which ones do not tick. A ccsl specification characterizes a set of valid
schedules. Each constraint potentially reduces the number of valid schedules by
forbidding some clocks to tick at some steps.
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Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N → 2C such that at each step n in N, δ(n) �= ∅.1

By the condition δ(n) �= ∅ in Definition 2 we exclude from schedules those
trivial/stuttering steps where there is no clock ticking. As we deal with reactive
systems, we expect the system not to stop, and therefore to have clocks that tick
in infinitely many steps. As we show later, clocks that stop very often indicate
a bad (or at least unexpected) behaviour of the system under consideration.
Having this in mind, we thrive to build good schedules that have this property.

For a given schedule it may be useful to identify the step at which the ith

tick occurred.

Definition 3 (Dates and time). Given a schedule δ for a set of clocks C,
datesδ : C → 2N is a map defined as ∀c ∈ C, datesδ(c) = {i ∈ N|c ∈ δ(i)}.

Then, timeδ is a map timeδ : C × N
+ → N defined as ∀c ∈ C,∀i ∈

N
+, timeδ(c, i) = j such that |{k ∈ datesδ(c)|k ≤ j}| = i.

datesδ gives the set of steps where a clock ticks for a given schedule δ, while
timeδ gives the step at which the ith tick of a given clock occurs, for a given
schedule δ. If clocks tick infinitely many times, as they should, datesδ is an
infinite subset of natural numbers.

Purely synchronous constraints define when some clocks should tick together
and when they cannot, i.e. synchronization conditions. Other more general con-
straints look at the past, the history (as far as they need) to decide what may
happen at a given step.

Definition 4 (History). The history of a schedule δ over a set C of clocks is
a function χδ : C × N → N such that for each clock c ∈ C and n ∈ N:

χδ(c, n) =

⎧
⎨

⎩

0 if n = 0
χδ(c, n − 1) if n > 0 ∧ c �∈ δ(n − 1)
χδ(c, n − 1) + 1 if n > 0 ∧ c ∈ δ(n − 1)

Intuitively, χδ(c, n) denotes the number of times that a clock c has ticked before
reaching step n in the schedule δ. For simplicity, we write χ for χδ when the
context is clear. The history computes the configuration for a given clock. This
ability to look into the past as far as we need raises reachability problems unusual
in traditional synchronous languages, which commonly look only at the preceding
step.

The way history is built gives a natural carrier for the co-algebraic definition
given in Sect. 2.5.

2.2 Syntax

The initial syntax of ccsl was defined in a research report [3]. It was defined
under the form of a mathematical language. As ccsl became integrated into
1 2C is the powerset of C.
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programming environments, the syntax was modified to resemble more that of
a programming language and be more tractable by standard text-based editors.
TimeSquare [15] is the official tool to build and analyse ccsl specifications. The
syntax in TimeSquare is meant to be integrated into modelling environments
that stores artefacts as XML resources. A lighter syntax, called Light-CCSL2, has
then been defined to be more user-friendly. We use both the pure mathematical
syntax and the light ccsl one here.

ccsl provides a set of binary or ternary clock relations that constrain
the instants at which a clock can tick. When there is no constraint, all the
schedules are possible. Each constraint reduces the set of possible schedules. For
most specifications, an infinite number of schedules are valid. When only one
schedule is possible, the system is fully determined. If no schedule is possible,
the specification is inconsistent.

The two basic synchronous relations are subclocking (c1 ⊆ c2) and exclusion
(c1 # c2). subclocking is a relation that only allows c1 to tick when c2 ticks: ∀s ∈
N

+, c1 ∈ δ(s) =⇒ c2 ∈ δ(s). We get immediately that when c1 ⊆ c2 ∧ c2 ⊆ c1
then dates(c1) = dates(c2), c1 and c2 are called synchronous (c1 = c2).3

Exclusion forbids c1 and c2 to tick at the same step: ∀s ∈ N
+, c1 /∈ δ(s)∨c2 /∈

δ(s).
The Light-CCSL listing below defines two subclocking and one exclusion

constraints, c1 ⊆ c2 ∧ c2 ⊆ c3 ∧ c4 # c3.

Specification example1 {
Clock c1 c2 c3 c4 [

SubClocking c1 ← c2 ← c3
Exc lus ion c4 # c3

]
}

The two basic asynchronous relations are causality (c1 � c2) and precedence
(c1 ≺ c2). Causality is the happen before relationship of event structures. It
means that ∀d ∈ N

+, time(c1, d) ≤ time(c2, d), the dth occurrence of c1 cannot
be after the dth occurrence of c2. Precedence is a bit stricter, it means that
∀d ∈ N

+, time(c1, d) < time(c2, d).
The Light-CCSL listing below defines precedences and causalities, c1 ≺ c2∧

c2 � c3 ∧ c3 ≺ c4.

Specification example2 {
Clock c1 c2 c3 c4 [ Precedence c1 < c2 <= c3 < c4 ]

}

While ccsl relations reduce the set of valid schedules, ccsl expressions build
new clocks that preserve some relations by construction. Some expressions build
concrete subclocks, like union and intersection.

2 https://github.com/frederic-mallet/ccsl-sts/tree/main/Examples/CCSL_Primitives.
3 The boxed equality ( = ) is there not to confuse clocks that are equal from clocks

that tick synchronously.

https://github.com/frederic-mallet/ccsl-sts/tree/main/Examples/CCSL_Primitives
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u � c1 + c2 (union of c1 and c2) builds a clock u such that dates(u) = dates(c1)∪
dates(c2). We get immediately that c1 ⊆ c1 + c2 and c2 ⊆ c1 + c2.
i � c1 ∗ c2 (intersection of c1 and c2) builds a clock i such that dates(i) =
dates(c1) ∩ dates(c2). We get immediately that c1 ∗ c2 ⊆ c1 and c1 ∗ c2 ⊆ c2.

Another way to build a new clock is to use affine functions. c1 � c2 ∝ p
makes c1 tick every pth tick of c2. c3 � c1 $ d makes c3 tick synchronously with
c1 after its dth tick. In Light-CCSL, on would write the following specification:

Specification Period {
Clock c2 [

r epeat c1 every 3 c2
Let c3 be c1 $ 2

]
}

From this listing we obtain the schedule shown in Fig. 1 as the only possi-
ble valid schedule since this specification is fully determined. In this schedule,
dates(c2) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as if c2 does not tick, none of the other clocks
can tick. dates(c1) = {0, 3, 6, 9} and dates(c3) = {6, 9}. Besides, time(c2, 1) = 0,
time(c1, 2) = 3 and time(c3, 1) = 6.

Fig. 1. A schedule with delays and periodic clocks.

Other expressions build new clocks that preserve causalities. inf � c1 ∧ c2
(infimum of c1 and c2) builds a clock inf such that ∀d ∈ N

+, time(inf, d) =
min(time(c1, d), time(c2, d)). We get immediately that c1 � c1 ∧ c2 and c2 �
c1 ∧ c2.
sup � c1 ∨ c2 (supremum of c1 and c2) builds a clock sup such that ∀d ∈
N

+, time(sup, d) = max(time(c1, d), time(c2, d)). We get immediately that c1 ∨
c2 � c1 and c1 ∨ c2 � c2.

Specification Expres s ions {
Clock a b c [

Let i be i n f ( a , b , c )
Let s be sup (a , b , c )
Let union be a or b
Let i n t e r be a and b
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]
}

2.3 Denotational Semantics

ccsl may serve different purposes. One main objective is to verify that a specifi-
cation is consistent. This is for instance useful when using ccsl to build require-
ments. Informal or natural-language requirements are prone to errors. To check
the consistency of requirements, we transform them into ccsl constraints and
then we try to find at least one valid schedule for the derived specification [12].
TimeSquare [15] allows for making those transformations automatic by giving
generic transformation rules from model elements and applying those transfor-
mation rules in a systematic way on a complete model (see Sect. 3.2). Checking
the satisfaction of ccsl specifications has been done by many different meth-
ods [15,57,58] including through the use of an SMT-solver [58].

The semantics of ccsl given in Table 1 is interesting for that task as the
encoding into an SMT solver is almost immediate. A schedule is defined as an
undefined function4, or rather as a set of undefined functions, one for each clock.
Those undefined functions must satisfy all of the constraints in a specification.
The SMT solver will then find a valid definition of those functions that satisfy
all the constraints. If it manages to do so, that gives us immediately one valid
schedule.

Table 1. Semantics of CCSL

1. δ �ccsl a ⊆ b iff ∀i ∈ N.a ∈ δ(i) → b ∈ δ(i) (Subclock)
2. δ �ccsl a # b iff ∀i ∈ N.a /∈ δ(i) ∨ b /∈ δ(i) (Exclusion)
3. δ �ccsl a ≺ b iff ∀i ∈ N.(χ

δ(a, i) > χ
δ(b, i) ∨ (χ

δ(a, i) = χ
δ(b, i) → b /∈ δ(i)) (Precedence)

4. σ �ccsl a � b iff ∀i ∈ N.χ
δ(a, i) ≥ χ

δ(b, i) (Causality)

5. δ �ccsl c � a + b iff ∀i ∈ N.c ∈ δ(i) ↔ (a ∈ δ(i) ∨ b ∈ δ(i)) (Union)
6. δ �ccsl c � a ∗ b iff ∀i ∈ N.c ∈ δ(i) ↔ (a ∈ δ(i) ∧ b ∈ δ(i)) (Intersection)
7. δ �ccsl c � c′ ∝ n iff ∀i ∈ N.c ∈ δ(i) ↔ (c

′ ∈ δ(i) ∧ ∃m ∈ N
+

.χ
δ(c

′
, i) = m · (n + 1)) (Periodicity)

8. δ �ccsl c � c′ $ n iff ∀i ∈ N.χ
δ(c, i) = max(χ

δ(c
′
, i) − n, 0) (Delay)

9. δ �ccsl c � a ∧ b iff ∀i ∈ N.χ
δ(c, i) = max(χ

δ(a, i), χ
δ(b, i)) (Infimum)

10. δ �ccsl c � a ∨ b iff ∀i ∈ N.χ
δ(c, i) = min(χ

δ(a, i), χ
δ(b, i)) (Supremum)

Pure synchronous constraints (Table 1, rules 1, 2, 5, 6) do not involve the
history. They are called stateless constraints and result in solving a pure Boolean
satisfaction problem. Other constraints rely on the history (see Definition 4) that
relies on integer arithmetic. Table 1-7 is the most difficult of them all at it uses
an existential quantifier. Actually, we can remove this quantifier by unfolding the
formula based on the length of p. This is easy, or at least systematic. However,
when p is big, this results in a highly inefficient system. Overall, when you

4 In SMT, we would rely on the theory called UF_LIA, Undefined functions, an exten-
sion with free sorts and function symbols, combined with Linear Integer Arithmetic.
The signature of those functions matches the one given in Definition 2.
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combine Boolean logics, with integer arithmetic and undefined functions, there
is no guarantee of having a result as the theories that are used are undecidable.
However, in most practical cases we have encountered so far, SMT solvers do
reach a verdict. Nevertheless, there have been many attempts over the last decade
to improve the performances of ccsl solvers but there is no definitive answer to
this problem at the moment.

On a pure denotational way, we can consider that a Clock is a pair 〈I,≺〉
where I is a set of instants, ≺ is a quasi-order relation on I, named strict
precedence, it is a total, irreflexive, and transitive binary relation on I.

A discrete-time clock is a clock with a discrete set of instants I. Since I is
discrete, it can be indexed by natural numbers in a fashion that respects the
ordering on I: idx : I → N

+, ∀i ∈ I, idx(i) = k if and only if i is the kth instant
in I.

For any discrete time clock c = 〈Ic,≺c〉, c[k] denotes the kth instant in Ic

(i.e., k = idxc (c[k])). For any instant i ∈ Ic of a discrete time clock, °i is the
unique immediate predecessor of i in Ic. For simplicity, we assume the existence
of a virtual instant, which is the (virtual) immediate predecessor of the first
instant.

A Time Structure is a pair 〈C,�〉 where C is a set of clocks, � is a binary
relation on

⋃
c∈C Ic, named causality. � is reflexive and transitive. From � we

derive two new relations: Coincidence (≡ � � ∩ �), Precedence (≺� �\≡).
Then, given two clocks a and b, we can define the basic clock relations as

follows.

Definition 5 (Subclocking). a is said to be a sub-clock of b, and b a super-
clock of a, denoted as a ⊆ b.

〈C,�〉 |= a ⊆ b ⇔ ∀ia ∈ Ia, ∃ib ∈ Ib, ia � ib

Figure 2 gives an example of valid schedule for a ⊆ b, but there are infinitely
many valid schedules.

Fig. 2. Example of subclocking.

Note that this definition does not require the clocks to be discrete. Other
ccsl relational operators are similar, see [3] for a comprehensive definition.

In a recent work [41], the semantics of ccsl has been mechanized in Agda.
This dramatically improves the confidence we may have in reasoning with ccsl
specifications. However, even though Agda gives some assistance to make proofs,
it still needs some human interventions. One very interesting feature that was
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introduced with the help of Agda was the notion of refinement of ccsl ticks [42].
This refinement is akin to the notion of instantaneous causality that is well-
known in synchronous languages [7].

2.4 Operational Semantics

In TimeSquare [15] the operational semantics gives a way to compute one pos-
sible valid schedule for a given ccsl specification. This works by iterating over
two phases. The first phase consists in deciding what subset of clocks (called a
configuration) is fireable instantaneously. In ccsl, this can be done by solving a
pure SAT problem. The second phase consists in picking one fireable configura-
tion, firing it and rewriting the system to update the history of each clock that
has ticked.

If rather than a unique valid schedule, one wants to build a symbolic repre-
sentation of all the valid schedules, this can be done by synchronous transition
system where the (infinitely many) states represent the history of clocks and the
transitions are labelled by a set of clocks, the ones that can fired depending on
the history. This transition system captures all the fireable clocks, selecting one
transition follows only one of the (possibly infinite number of) paths. In practice,
we use one transition system for each constraint and we build the synchronous
composition of all the transition systems needed for each constraint in a given
specification. As we may have an infinite number of states, we sometimes try to
fold the transition system to retain only so-called periodic schedules [57]. The
folding consists in keeping a finite number of states, equivalent, up to a particular
equivalence relation, to (infinitely many) other states.

Definition 6 (cLTS). A Clock-Labelled Transition System (cLTS) is defined
as a tuple A = 〈S, T, s0, C〉 where

– S is a set of states,
– s0 ∈ S is the initial state,
– C is a finite set of clocks,
– T ⊆ S × 2C × S is a set of transitions, with (s, Y, s′) ∈ T means that all the

clocks in Y ⊆ C tick when the transition from s to s′ is fired.

Pure synchronous constraints are represented by cLTS with only one state as
the set of fireable clocks does not depend on the history. Figure 3(a) shows the
cLTS for encoding a = b. Either a and b tick together, or neither of them can
tick. Subclocking (see Fig. 3(b)) is weaker as b can also tick alone, but not a.

Other (stateful) constraints are represented with infinite-state transition sys-
tems. For instance, Fig. 4 gives the cLTS for the precedence (a ≺ b). The state
records the difference in the number of ticks between a and b (see Table 1,
rule 3.) In the state, as both a and b have ticked as many times, we have
χδ(a, i) = χδ(b, i), and therefore b cannot tick. In other states, a and b can
tick alone, can tick jointly or neither of them can tick. The state is updated
accordingly.
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Fig. 3. CCSL synchronous relations as clock-Labelled Transition Systems

Fig. 4. CCSL precedence (infinite-state cLTS): a ≺ b.

As there are an infinite number of states for some relations (like precedence),
the set of potential execution is only intentional. Safe ccsl specifications [38]
are the ones where only a finite number of states are actually reachable. We
have established a sufficient condition for deciding whether or not a given ccsl
specification is safe.

In a pure operational way, once the synchronous product of all the transition
systems of all the ccsl constraints inside a specification has been computed (in
intention or in extension), one can pick one path in this transition system to
have a valid schedule. To get all the valid schedules, one must compute all the
paths up to a given depth, depending on the length of the expected solution.

2.5 Coalgebraic Semantics

The theory of universal coalgebra [46] proposes a mathematical model, that
differs from the approach of G. Plotkin for defining the operational semantics
of software systems [45]. Indeed, considering transition systems as coalgebras
gives useful insights for reactive systems and infinite data structures in general.
Coalgebras appeared to be well fitted to capture the infinite-state transition
systems underlying the semantics of some ccsl operators. We have used this
style to define a notion of incompleteness for ccsl and then a possible generalized
constraint model [39,60].
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Definition 7 (Transition system). A transition system is a structure 〈Γ,−→〉
where Γ is a set (of elements, γ, called configurations) and −→⊂ Γ × Γ is a
binary relation (called the transition relation). Read γ −→ γ′ as saying that there
is a transition from configuration γ to configuration γ′.

Using the notion of coalgebra we obtain an alternative way to describe transition
systems.

Definition 8 (Coalgebra). A (powerset) coalgebra [46] is a structure 〈Γ, α〉
where α is a map from Γ into the set of all subsets of Γ , 2Γ . In this context Γ
is called the carrier of the coalgebra.

It is evident that any transition system 〈Γ,−→〉 determines the coalgebra 〈Γ, α〉,
where γ′ ∈ α(γ) if and only if γ −→ γ′, and conversely, any coalgebra 〈Γ, α〉
determines the transition system 〈Γ,−→〉, where γ −→ γ′ if and only if γ′ ∈ α(γ).

Definition 9 (Subcoalgebra). Let 〈Γ, α〉 be a coalgebra, B be a subset of Γ
then the structure 〈B,α〉 is called a subcoalgebra of 〈Γ, α〉 if the embedding α(γ) ⊂
B is true for each γ ∈ B.

One can check that any coalgebra 〈Γ, α〉 is a subcoalgebra of itself and the
intersection of a family of subcoalgebras is a subcoalgebra too. Hence, for each
subset X ⊂ Γ there exists a least one subcoalgebra whose carrier contains X.
In this case, the carrier of this subcoalgebra is denoted by 〈X〉.

To calculate 〈X〉 one can use Tarski’s fixed point theorem [51] for the mono-
tonic operator ΨX on the lattice PX(Γ ), where PX(Γ ) is the set of all Γ subsets
that cover X. This operator is defined by the following formula

ΨX(V ) = V ∪ {γ′ ∈ Γ | (∃γ ∈ V ) γ′ ∈ α(γ)}.

This ensures that an element γ ∈ Γ belongs to 〈X〉 if and only if there exists
a finite sequence γ0, . . . , γn−1, γn formed by elements of Γ such that

γ0 ∈ X and γn = γ ; (1)
γk ∈ α(γk−1) for k = 1, . . . , n. (2)

Finite or infinite Γ -valued sequences satisfying (2) are used below, we give them
the name “tracks”.

Hence, conditions (1) and (2) mean that an element γ ∈ Γ belongs to 〈X〉 if
and only if there exists a track that links some element of X and γ.

We now assume that some finite set of clocks C has been given. Let us define
the constraint-free coalgebra over a clock set C as the coalgebra with the carrier
N

C and the map α : N C → 2N
C

defined by the formula:

χ′ ∈ α(χ) if and only if 0 ≤ χ′
a − χa ≤ 1 for all a ∈ C.

It is evident that for any χ ∈ N
C the map α is represented in the form

α(χ) = χ + {0, 1} C .
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This statement makes it obvious that a clock can only tick once at each instant
and that all the evolutions are possible when no constraint is specified.

Proposition 1. Let 〈χ(t) | t ∈ N 〉 be a sequence of configurations then there
exists a schedule σ such that χa(t) = χσ

a(t) for all t ∈ N and a ∈ C if and only
if this sequence is a track in the coalgebra 〈N C , α 〉 such that χ(0) = 0.

A track 〈χ(t) | t ∈ N 〉 is called initial if the condition χ(0) = 0 holds.
One way to capture the notion of schedule, which are a sequence of steps

where clocks tick simultaneously is to specify a map � : N C → 2{0,1} C
such that

0 ∈ �(χ) for any χ ∈ N
C and to define

α�(χ) = χ + �(χ).

The map denotes at each step the set of clocks that tick.
A map � : N

C → 2{0,1} C
that satisfies the condition 0 ∈ �(χ) for any

χ ∈ N
C is called an actuation distribution on C. The actuation distribution

captures the set of sets of clocks that are allowed to tick simultaneously at one
instant given a configuration.

Definition 10 (Actuation distribution). Let � : N C → 2{0,1} C
be an actu-

ation distribution and 〈N C , α� 〉 be a coalgebra, where α�(χ) = χ+�(χ), then
an element of N C is called �-reachable configuration if it belongs to the carrier
of the minimal subcoalgebra containing 0.
Such a set of reachable configurations is denoted below by R(�).

Definition 11 (Clock coalgebra). Let � : N C → 2{0,1} C
be an actuation dis-

tribution then the coalgebra 〈R(�), α�〉 is called the clock coalgebra associated
with �.

Actuation distributions of some clock constraints do not depend on the cur-
rent configuration, so we define stationary distribution to denote particular inter-
esting kinds of constraints.
Definition 12 (Stationary distribution). An actuation distribution � :
N

C → 2{0,1} C
is called stationary if the map � is a constant map.

Some primitive clock constraints, such as subclocking, exclusion, union and
intersection, represent stationary actuation distributions. Therefore the ques-
tion whether any stationary actuation distribution is represented by a set of
stationary primitive clock constraints is interesting.

We have proven that this is true for 2-clock systems, but that this is not
true in general [39]. Therefore, ccsl is incomplete as it should allow to build
any actuation distribution. A very interesting construct that cannot be built is
the n-m exclusion pattern, where n tasks share m resources. The 2–1 exclusion
pattern is native (c1 # c2), and the n-1 can be built by parallel composition
of multiple 2–1 exclusions. The n-m would be useful to represent a concurrent
access to m cores by n computing tasks.

For this observation, one can build a generalization of ccsl that is complete.
This languages is called GenCCSL [60]. While the language is complete, there is
no operational way at the moment to build a solution for GenCCSL.
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3 CCSL - A Companion Language

ccsl was never meant to be a programming language but rather it was meant to
be a specification language. So it is not meant to be used standalone but rather
to allow for complementing other specification with expected (temporal and
timed) properties of a system. Additionally, ccsl is a companion language so it
is expected that the main (functional) part of the system under consideration is
given by another language or notation (e.g., UML for instance, or a programming
language).

3.1 A Companion to UML MARTE

As it was defined in an annex of UML MARTE, users are inclined to use UML
first, as much as possible, to describe, for instance, components or behavioural
models. Then, they should use MARTE stereotypes when the semantics of UML
is ambiguous.5 Finally, use ccsl as a last resort when necessary. The two main
useful MARTE stereotypes for that purpose are « clock » and « NFPConstraint ».
« clock » identifies a model artefact that must be interpreted as a clock. « NFP-
Constraint » marks a constraint to be considered as a ccsl specification and
potentially interpreted by adequate tools.

To give a simple example of what a companion language is, let us con-
sider the BIP (Behaviour, Interaction, Priority) framework [5]. BIP is a frame-
work for modelling heterogeneous real-time components with a correct-by-
construction methodology. In BIP components, there are three layers. The lower
layer describes the behaviour as transition systems. BIP uses a particular form of
timed automaton. The intermediate layer includes a set of connectors describing
the interactions between the transitions of the behaviour. The upper layer is a
set of priority rules describing scheduling policies for interactions.

Figure 5 shows a small BIP example. Components have ports. Triangles
denote so-called incomplete interactions while bullets identify complete ones.
The upper connector with tick1, tick2 and tick3 implements a rendez-vous, i.e.,
the three ports are synchronized. The lower connector is a broadcast. ccsl pro-
vides no mechanism to build components or transition systems. It relies on other
languages for that. One could use UML components and UML state machines for
that purpose. However, UML state machines provide no built-in mechanism for
describing rendez-vous. Using « clock » one would transform a UML event into
a clock. Then using ccsl, one could enforce the semantics of BIP interactions
(see the right-hand part of Fig. 5).

There are a bunch of papers [9,20,28,44,50,56] that show examples on how to
use UML, MARTE and ccsl together, among those some prefer to use SysML
instead of UML. There is a large contribution from the Software Engineering
Institute in Shanghai. More importantly, each of these works provides a specific

5 In UML wording, stereotypes are annotations of model elements that change the
semantics of this element.
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Fig. 5. Describing BIP interactions with CCSL

analysis tool to verify the temporal properties captured as a ccsl specifica-
tion. These are either ad-hoc verification tools or transformations toward other
mainstream verification languages (NuSMV, Timed Automata, VerilogHDL).

Figure 6 borrows an example of a temperature control system from [50] as
an illustration. The temperature control system has two modes (Diagnostic,
Control) depicted as a UML state machine. Moving from Diagnostic to Control
is based on a time constraint. As UML does not have time units, we use MARTE
to introduce them. In each mode, different constraints must hold to ensure the
safety of the nuclear power plant. In Diagnostic, each diagnostic action (clock d)
alternates with a reconfiguration action (clock c): d ∼ c. A status update (clock
s) is a particular kind of possible reconfiguration: s ⊆ c. Those constraints are
captured in ccsl. To verify that the global model is consistent, a structural
transformation based on the operational semantics (see Sect. 2.4) is performed
to produce a timed automata (see right-hand side part of Fig. 6) that is fed into
UPPAAL model-checker [31].

3.2 Semantic Adaptation of Domain-Specific Languages

While UML was the first language used as a support for CCSL specifications, it
is not the only one. While UML has attempted a global union of lots of model ele-
ments, other approaches follow the small is beautiful mantra and advocate for the
definition of small Domain-Specification Languages [19] just expressive enough
for a given objective. Lots of dedicated modelling framework have emerged over
the last two decades, the GeMoC studio [10] is one of them that was inspired
by the international GeMoC initiative. Each language, or part of a language,
is defined with its own abstract syntax and operational semantics. Then, to
address large systems, several languages are composed to cover the different
concerns (structure, states, data-flows, scenarios, properties). The languages are
composed using a meta-language that derives from ccsl [29]. The approach is
presented as a unifying framework that reduces all structural composition oper-
ators to structural merging, and all composition operators acting on discrete
behaviours to event scheduling. This approach goes beyond what was discussed
on UML as the connectors are defined between the two languages themselves
and not on particular instances of those languages. Figure 7 shows an example
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Fig. 6. A Temperature control system (TCS) with UML/MARTE/CCSL.

from that paper. We start with two languages (A and B). Language A involves
some events a, b, c, while language B involves events 1, 2, 3, 4. The operational
semantics of those two languages give execution rules. At the language level, we
can build a constraint, say a � 1 ∧ b � 4 ∧ 3 � c. Now, given two instances,
one of A and one of B, we derive a set of possible traces for both models, a
partial order, captured as event structures. Applying the composition rules (in
black), we can reconstruct a global partial order that combines the traces from
both languages (event structure esc on the figure). Recently, this approach was
applied to build a full-fledged simulator for Lingua Franca [14].

A similar exercise with a different tool/technology was done by another
team [9] but still using ccsl to build a language for semantic adaptation.

4 CCSL Extensions and Derivatives

ccsl has led to several extensions or derivative languages that are briefly dis-
cussed in this section.

4.1 Valued Extensions

As ccsl was inspired by the Tagged Signal Model while removing the values
of the tags and keeping only their orders, it was only natural to want to add
the valued tags back into a language. In the Tagged-Event Specification Lan-
guage (TESL) [54,55], clocks assign a time-stamp (aka a tag) to ticks with
its own time scale. Tags represent the occurrence of the event at a specific
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Fig. 7. DSL composition with clock relations.

time. Tag domains used for time must be totally ordered; typically, they are
reals, rational numbers, integers, as well as the singleton Unit, which is used
for purely logical clocks where (chronometric) time does not progress. TESL
captures event-triggered implications, that are essentially ccsl-like clock con-
straints, time-triggered implications and tag relations. The time-triggered impli-
cation uses a chronometric delay (a reference to a physical time expression) to
trigger an event. This delay is a duration (a difference between two tags) while
in ccsl it would refer to a number of ticks or a difference between the number of
ticks of two clocks. Tag relations link the different time scales. TESL allows for
fairly general tag relations permitting acceleration and slow-down. Using affine
tag relations makes the solving simpler as it amounts to handling linear equation
systems. However, as the tags must be computed, TESL does not use any of the
purely asynchronous constraints of ccsl (all the causality-based relations) as
they do not allow for a constructive projection into the future and might lead
to an infinity of possible futures.

Instead of schedules, TESL introduces so-called runs.

Definition 13 (Runs). Given a set C of clocks, B the set of Booleans, T the
ordered domain of timestamps. The set of runs is denoted Σα and defined by

Σα = N → C → (B × T)

A (synchronous) run associates a pair to a step (a natural number) and a
clock. The pair has a Boolean tag to identify whether the clock ticks or not and
a timestamp that gives the current reading of the clock at this step. Compare
to Definition 2.
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Fig. 8. Example of runs in TESL (Color figure online)

Figure 8 shows examples of runs taken from [55]. The black horizontal lines
are temporal lines for clocks. The red rectangles denote ticks of clocks. The green
annotations are timestamps, tags.

4.2 Other Extensions

There have been a variety of extensions, lots of them were proposed by teams
at the Software Engineering Institute, following some work of Professor He.

In 2012, there was a first work [35] based on MARTE and ccsl to “unify
the logical time and the chronometric time variables, and extend the traditional
events to CPS events”. This work relied on Hybrid automata to introduce con-
tinuous evolutions of time and spatial constraints, as both constructs become
necessary to model complex Cyber-Physical Systems (CPS).

This work was followed in two directions. On one side [48,59], trying to pro-
vide a spatio-temporal logics where both clocks and space are first-class citizens.
On another side providing probabilistic extensions of ccsl.

For this second family of extensions, three alternative ways were studied. The
first one used UML and profiling mechanisms as a support for extensions. This
led to an hybrid form of MARTE state machines [36]. In that form, the systems
was captured by combining UML, as much as possible, MARTE or stochastic
stereotypes when needed and ccsl in the last resort. Verification was conducted
by transforming the whole model into hybrid automata.

The two alternative solutions both considered extending ccsl with prob-
abilistic parameters. This is necessary to capture the intrinsic uncertainty of
complex environments for cyber-physical systems as for instance the temper-
ature variation in a smart building, the likelihood of failure in an intelligent
transport system.

Two such kinds of solutions were explored. The first solution called
pCCSL [16], adds the notion of rate for the subclocking relation. When a ⊆ b,
a may never tick, or always tick simultaneously with b. Both solutions, and all
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the intermediate solutions are valid. The rate guarantees a probabilistic ratio
between the number of ticks of a and the number of ticks of b. The second solu-
tion, called PrCCSL [27], adds instead a probability that a given clock relation
is not satisfied. We present here pCCSL.

cLTS from Definition 6 are extended with a probability parameter as follows:

Definition 14 (Probabilistic CLTS). A Probabilistic Clock-Labelled Tran-
sition System (PCLTS) is a CLTS with an extended transition relation −→⊆
S × 2C × P × S, where P ⊆ Q is the set of rational numbers between 0 and 1
(i.e., a probability).

For a given transition t = (s, Γ, p, s′) ∈−→, π(t) = p denotes the probability
p that the transition t is fired. It is akin of a discrete-time Markov chain, where
the probability to reach the next state depends on the current state.

For a PCLTS 〈S,C,−→〉, we call s• the set of all transitions whose source
is s:

s• = {(s, Γ, p, s′) ∈−→}
Note that s• can never be empty since it is always possible to do nothing in

CCSL, i.e., (s, ∅, p, s) is always in −→ for all s ∈ S and for some value p.
Given a clock c ∈ C, let us call s•

c the set of all transitions whose source is s
and such that the clock c ticks:

s•
c = {(s, Γ, p, s′) ∈−→| c ∈ Γ}

For a PCLTS to be well-formed, it must satisfy the two following conditions:

∀s ∈ S,
∑

t∈ s•
π(t) = 1 (3)

∀s ∈ S,∀c ∈ C,
∑

t∈ s•
c

π(t) = pc (4)

In Eq. 4, for each clock c ∈ C, the probability pc is either manually assigned
by the user with a declaration ‘Clock c probability p’, or derived using the rate
in a subclocking relation or assigned to the default value 1/|s•| otherwise.

A ‘normal’ CLTS can be seen as a probabilistic CLTS where all the proba-
bilities are assigned with default values 1/|s•| for all the states s ∈ S.

Let a, b ∈ C be two clocks and r ∈ Q a rational number such that
0 ≤ r ≤ 1. The subclocking relation (see Fig. 9(a)), b ⊆ a rate r is defined as a
PCLTS 〈{s0}, {a, b},−→⊆〉, such that −→⊆= {(s0, {}, 1−pa, s0), (s0, {a, b}, pa ∗
r, s0), (s0, {a}, pa ∗ (1−r), s0)}, where pa ∈ Q is the probability assigned to clock
a. Let us note that Eq. 3 is satisfied since

∑
t∈ s•

0
π(t) = (1 − pa) + (pa ∗ r) +

(pa ∗ (1− r)) = 1. Equation 4 is also satisfied since
∑

t∈ s•
0b

π(t) = pa ∗ r = pb and
∑

t∈ s•
0a

π(t) = (pa ∗ r) + (pa ∗ (1 − r)) = pa.
If no probability is assigned then the default is 2/3. If no rate is assigned,

then r defaults to 1/2. With default values, each one of the three transitions has
a probability of 1/3, i.e., each transition has the same probability to be fired.
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Transition {b} however has a probability of 0 since it would otherwise contradict
the subclocking relation.

Note that if both the probability of a is given and the rate of b relative to a
are given, then pb = pa ∗ r. In any other cases, the specification is ill-formed.

The synchrony constraint is a special case of subclock defined as follows
a = b ≡ b ⊆ a rate 1, which implies pa = pb.

Fig. 9. PCLTS for subclocking and exclusion

Compare Fig. 9(a) to Fig. 3(a).

4.3 (Machine) Learning CCSL

A very recent work observes that using ccsl may be difficult for capturing
requirements. This is especially true early in the design process when require-
ments are unclear. Indeed, using a formal language forces semantic choices. Early
requirements must be flexible. While logical clocks allow some form of flexibility
deciding which ccsl operator must be used may be a tough choice. What is
usually easier for the designer is to give examples of expected or unexpected
scenarios. The recent work [26] was trying to deduce a full ccsl specification
from a set of scenarios/traces and from a partial specification.

The goal, and difficulty, is to find a specification that is as precise as possible
while still satisfying all the constraints. To explore alternative specifications, we
use reinforcement learning. We have a reward function that rewards tight speci-
fications. Making one constraint too tight may result in a suboptimal solution as
relaxing this constraint might allow to make another tighter. Figure 10 gives an
overview of the proposed framework. Each layer explores alternative solutions
for each hole. In the example, we have four holes, hence four layers.
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Fig. 10. Architecture and Workflow of a CCSL synthesizer accelerated by curiosity-
driven exploration

5 Conclusion

The paper attempts to retrace part of the history of ccsl. A part of its evolution
took place at the Software Engineering Institute in Shanghai. We also tried to
retrieve the papers from Professor He Jifeng that impacted the most paths that
were taken or ignored. Section 2 explores three semantics of ccsl. This is usually
considered a good practice and this is recommended by the Unifying Theory of
Programming. Hopefully, this section gives a good sense of why this could be
useful to study languages under different perspectives. However, we did not go
(yet) as far as showing the equivalence of the three semantics. This leaves some
exciting perspectives for the future.
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