
Assume-Guarantee Reasoning
for Additive Hybrid Behaviour

Pieter J. L. Cuijpers1,2 , Jonas Hansen3(B) , and Kim G. Larsen3

1 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
p.j.l.cuijpers@tue.nl

2 Radboud Universiteit, Nijmegen, The Netherlands
3 Aalborg University, Aalborg, Denmark

{jonash,kgl}@cs.aau.dk

Abstract. Hybrid Automata describe dynamical systems where contin-
uous behaviour interacts with discrete events. Resource Timed Automata
(RTA), a subset of Hybrid Automata, adopt an additive composition
scheme, in which discrete behaviour of components is executed concur-
rently, time is synchronized, and the evolution of continuous variables
is arithmetically added up. Additive composition facilitates modelling
and analysis of cumulative properties of continuous variables, such as
conservation laws, typically manifested as the balancing of real-valued
variables. In this paper, we present and exemplify an assume-guarantee
framework aimed at additive compositional reasoning in the setting
of hybrid systems. Crucially, we introduce a notion of refinement on
so-called Resource Hybrid Automata (RHA), and show that it is a
pre-congruence for additive composition. Furthermore - crucial for our
assume-guarantee framework – we show that RHAs are closed under con-
junction and admit a so-called quotient constructions (a dual operator to
parallel composition). Finally, we demonstrate how the Statistical Model
Checking (SMC) engine of the tool UPPAAL may be used to efficiently
falsify refinements.

Keywords: Assume-Guarantee Reasoning · Hybrid Specification
Theory · Resource Hybrid Automata · Additive Composition

1 Introduction

Hybrid Automata (HA) [22] are an extension of Timed Automata (TA)
[2] combining timed discrete events with the continuous evolution of real-
valued variables. Resource-, Priced-, Energy- and Weighted- Timed Automata
[3,8,16,29,31] all define strict subsets of HA in which continuous dynamics can-
not affect the timed discrete semantics of a system. These formalisms differ in
their mechanics for dealing with composition. Of particular note are Resource
Timed Automata (RTA) which adopt a so-called additive composition scheme
aimed at simplifying the analysis of conservation laws e.g. resource balancing.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 297–322, 2023.

https://doi.org/10.1007/978-3-031-40436-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_11&domain=pdf
http://orcid.org/0000-0002-5487-4972
http://orcid.org/0000-0003-3612-4139
http://orcid.org/0000-0002-5953-3384
https://doi.org/10.1007/978-3-031-40436-8_11

298 P. J. L. Cuijpers et al.

In this paper we consider component-wise reasoning for additive composition
over hybrid variables, henceforth referred to as resources, and study the hybrid
extension of RTA, namely Resource Hybrid Automata (RHA).

Additive composition as studied in [16] extends the usual concurrent execu-
tion of discrete behaviour in synchronized time with a notion of resource accumu-
lation both in terms of evolution and flow. This particular composition scheme,
has, to the best of our knowledge, not received much attention in previous liter-
ature on hybrid systems. We argue that conservation laws follow naturally from
additive composition and show that accumulation of shared resources across
components directly corresponds to the problem of balancing said resources. We
consider how behavioural requirements of a composite system can be expressed
as a number of local and concise requirements on open additive parallel compo-
nents. This kind of compositional reasoning is known as specification theory.

A specification theory interprets specifications as abstract under-specified
descriptions of behaviour, which can generally be thought of as requirements to
implementations. Formally, this is captured by a satisfaction relation between
implementations and specifications, inducing for each specification S the set [S]
of the implementations satisfying it. Crucial to a specification theory is a notion
of refinement between specifications. Refining a specification should result in a
new specification which is stricter in terms of its implementation space. Now, a
specification theory should also allow for both logical and structural composition
of specifications.

In order to support step-wise refinement and compositional reasoning, it is
vital that the notion of refinement is a pre-order over specifications (we write
S � T to say that specification S refines T) and it must be a pre-congruence with
respect to a composition of interest (we write S ‖ T for a composition of two
specifications). A fully expressive specification theory should ideally contain a
quotient operator, a dual operator to the composition of specifications. If T is an
overall specification of a composite system P1 ‖ P2 and S is a component speci-
fication for P1, then the quotient specification T\\S is the weakest requirement
to the component P2 in order for the composite system to satisfy T .

Mathematically, we have S ‖ (T\\S) � T for the quotient T\\S of spec-
ifications S and T , and for every specification Q with S ‖ Q � T we have
Q � T\\S. In the setting of sequential, imperative programs Dijkstra’s cele-
brated notions of weakest precondition and strongest postcondition effectively
provide quotient constructs for sequential composition with respect to pre-and-
post-condition specification pairs. Here He Jifeng has made seminal work with
C.A.R. Hoare [24,26].

For concurrent systems, there have historically been two schools of specifica-
tion theories: Process Algebra [6,23,34] and Temporal Logic [36]. In Process Alge-
bra, specifications are process expressions with a variety of proposals for refine-
ment orderings: e.g. trace-inclusion, bisimulation equivalence, ready-simulation,
simulation, and failure-trace inclusion as reported in the linear-branching time
spectrum [15]. In the late 80-ties, He Jifeng played a central role in improv-
ing the failure semantics for CSP [17,18]. In later work He Jifeng has pro-

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 299

posed refinements for more complex settings including real-time [37], service-
and object-oriented systems [19,21]. Moreover, Process Algebra has strong sup-
port for structural composition of specification, but lack general support for
logical composition. In Temporal Logic, specifications are logical formula and
refinement is simply logical implication. Temporal Logic has by nature full sup-
port for logical composition of specifications, but lack in general support for
structural composition. What we seek is a specification oriented theory that
unifies logical and process algebra frameworks, a theme that Hoare and He have
developed in the unified theory of programming [20,25].

Also, in the late 80-ties, the notion of Modal Transition Systems [7,30,32,33]
was introduced by Larsen and Thomsen as a means to provide a specification
theory supporting both logical and structural composition. This theory of Modal
Transition Systems has later been extended to the setting of timed as well as
probabilistic systems [9,10,14]. The contributions of this paper may be seen
as an extension of Modal Transition Systems to resource-aware concurrent sys-
tems. A particularly useful type of specification theories are those based on the
notion of contract, first developed and promoted in the community of software
engineering. So-called “design-by-contract”, popularized by Bertrand Meyer, has
roots in the classical work by Owicki-Gries [35] extending Floyd-Hoare logic
(for sequential imperative programs) to the setting of concurrently executing
programs, where interference on shared variables may occur. In the concurrent
setting, contract specifications come as Assume-Guarantee (or Rely-Guarantee)
pairs, where the Assumption states conditions on the effect on the shared vari-
ables by the system’s environment, and the Guarantee are obligations of the
systems operation on the shared variables. Early contributions were made by
Jones [27], Abadi, Lamport and Wolper [28]. Later, He Jifeng together with
Qiwen Xu and Willem-Paul de Roever gave a sound and complete proof system
for rely-guarantee assertions [38] providing a compositional reformulation of the
non-compositional Owicki-Gries method. More recently the notion of interface
automata was introduced by Alfaro and Henzinger [1] and since then a number
of frameworks has been proposed that can be seen as instances of contracts the-
ories, with [5] providing a recent “meta-theory” of contracts and its application
to software and systems.

Returning to general specification theories, we note that the quotient oper-
ator defines how a component helps to achieve a target behaviour T for the
system as a whole, given an assumption S on its environment. In fact, it is
shown in [4,12] how a contract framework can be built in a generic way on top
of any specification theory which supports refinement, composition and quoti-
enting of specifications. The resulting contract framework lifts refinement to the
level of contracts and proposes a notion of contract composition on the basis
of dominating contracts. In particular, it has been shown in [12] that one can
weaken a guarantee G of an assume-guarantee contract, under assumption A:
the weakened guarantee, denoted G � A, is simply (A ‖ G)\\A and provides
a combined specification equivalent to the original (A,G) pair. In this paper,
we develop a complete specification theory aimed at the additive hybrid setting.

300 P. J. L. Cuijpers et al.

We characterize compositional reasoning within this domain and introduce a
notion of refinement. We define appropriate products for the crucial operations
logical and structural composition, together with its dual, namely the quotient
product. Using this theory we show how assume-guarantee reasoning aimed at
hybrid additivity is possible over specifications described by RHAs. In addition,
we show that simulation based methods can be used to refute the existence of
certain refinements.

Section 2 introduces our modelling language. Section 3 characterizes compo-
sitional reasoning and formally defines an additive hybrid specification theory.
Section 4 formally introduces the assume-guarantee aspect and exemplifies it.
Section 5 discusses practical computation methods for ascertaining refinement.
Section 6 concludes our findings and discuss potential future research directions.

2 Resource Hybrid Automata

We first define our modelling language, followed by the characterization of an
additive hybrid specification theory. We introduce Resource Hybrid Automata
(RHA), which fundamentally define Linear Hybrid Automata [22] subject to
additive composition as adopted by Resource Timed Automata (RTA) [16].

By V = VG � VL we denote a partitioned set of real-valued global and local
variables, which we think of as (non-)shared resources. We write σ : V → R

or alternatively σ ∈ R
V for a valuation of such variables. These are split into

σL : VL → R and σG : VG → R in the obvious way. Furthermore, we define
the following arithmetic over R

V : Let σ, σ′ ∈ R
V and v ∈ V then (σ + σ′)(v) =

σ(v) + σ′(v) and dually for its inverse −. Additionally, let v ∈ V then 0(v) = 0.
Thus valuations define the abelian group (RV ,+,0).

Resources are subject to discrete updates and can be tested in constraints.
To allow reasoning about resource additivity we require both our update- and
constraint-algebra to be closed under negation, conjunction, addition ⊕ and
quotient 	. Furthermore, we require that constraints are closed under side-effects
� which, for the sake of intuition and brevity, we characterize as updates.

Much like we can think of a conjunction of two updates/constraints as the
join of their respective influence, i.e. what they have in common, an addition
⊕ is what they can do together, i.e. their arithmetic accumulated influence. A
quotient 	 is the dual of addition. Here the question is what makes it possible to
fulfil our goal (left operand) if we add it to something that already exists (right
operand). We will see later how these operations naturally provide mechanisms
for resource additivity.

Definition 1 (Resource Update). We characterize the set of updates U(V)
over V by the following abstract syntax:

u ::== TT | ¬u | ε | R | u ∧ u | u ⊕ u | u 	 u

where R ⊆ V. Let u1, u2 ∈ U(V) be updates, then the evaluation of valuations
σ, σ′ ∈ R

V in u denoted (σ, σ′) |= u is defined inductively on the structure of u:

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 301

– (σ, σ′) |= TT:
– (σ, σ′) |= ¬u ⇔ (σ, σ′) |= u:
– (σ, σ′) |= ε ⇔ σ = σ′:

– (σ, σ′) |= R ⇔ σ′(v) =
{

0, v ∈ R,
σ(v), v /∈ R

}
:

– (σ, σ′) |= u ∧ u′ ⇔ (σ, σ′) |= u ∧ (σ, σ′) |= u′:
– (σ, σ′) |= u ⊕ u′ ⇔ ∃ς, ς ′ ∈ R

V : (σ, ς) |= u ∧ (σ, ς ′) |= u′ ∧ σ′ = ς + ς ′ − σ:
– (σ, σ′) |= u 	 u′ ⇔ ∀ς ∈ R

V : (σ, ς) |= u′ ⇒ (σ, σ′ + ς − σ) |= u.

Definition 2 (Resource Constraint). We characterize the set of constraints
C(V) over V by the following abstract syntax:

c ::== TT | ¬c |
n∑

i=1

vi · ri �� r | u � c | c ∧ c | c ⊕ c | c 	 c

where r, ri ∈ Q, vi ∈ V, u ∈ U(V) and ��∈ {≤,≥,==, <,>}. Let u be an update,
c′ be a constraint, then the evaluation of valuation σ ∈ R

V in c denoted σ |= c
is defined inductively on the structure of c:

– σ |= TT:
– σ |= ¬c ⇔ σ |= c:
– σ |= ∑n

i=1 vi · ri �� r ⇔ ∑n
i=1 σ(vi) · ri �� r:

– σ |= u � c ⇔ ∃σ′ ∈ R
V : (σ, σ′) |= u ∧ σ′ |= c:

– σ |= c ∧ c′ ⇔ σ |= c ∧ σ |= c′:
– σ |= c ⊕ c′ ⇔ ∃ς, ς ′ ∈ R

V : ς |= c ∧ ς ′ |= c′ ∧ σ = ς + ς ′:
– σ |= c 	 c′ ⇔ ∀σ′ ∈ R

V : σ′ |= c′ ⇒ σ + σ′ |= c.

As such, updates can reset sets of resources to zero and constraints define systems
of linear inequalities over resources.

Definition 3 (Resource Hybrid Automata). We define a resource hybrid
automaton (RHA) as a tuple:

H = 〈L, l0,V, E, inv, rate〉

where L is a finite set of modes, l0 ∈ L is the initial mode, V = VL � VG is a
finite partitioned set of local and global variables, E ⊆ L × C(V) × U(V) × L is a
finite set of edges, inv : L → C(V) assigns an invariant constraint on resources
to each mode and rate : L → C(V) assigns a constraint to the first derivative of
resources to each mode.

An example RHA can be seen in Fig. 2.

302 P. J. L. Cuijpers et al.

Fig. 1. (a) An RHA specification modelling a water intake valve. Depending on reser-
voir capacity (captured by global resource wi), the water flow allowed by the valve is
either in the interval [−2, 0], [−4,−2] or [−10,−6]. (b) An RHA specification modelling
a water output valve. Depending on reservoir capacity (captured by global resource wo),
the water flow allowed by the valve is either in the interval [6, 10], [2, 4] or [0, 2]. (c)
An RHA specification modelling the safe capacity of the pump’s private water tank
(captured by global resource w).

Let’s consider a physical system, a water pump controller, governing two flow
valves. One valve is connected to an input reservoir (characterized by resource
wi), which captures how the environment can make water available to the pump.
Another valve is connected to an output reservoir (characterized by resource wo),
which captures how the pump can make water available to the environment.
Both are connected to an internal water tank (characterised by resource w).
Our system simply keeps track of capacity by regulating water flow from/to the
environment using an internal tank for temporary storage. Figure 1 shows three
RHAs, each modelling a component of our water pump controller.

Syntactically, RHA’s are hybrid automata defined over additive oriented
update and constraint algebra. Semantically their hybrid dynamics are inter-
preted as timed semantics. Specifically, the semantics of an RHA H denoted
[[H]] is defined by a Resource Timed Transition System.

Definition 4 (Resource Timed Transition System). We define a resource
timed transition system (RTS) as a tuple S = 〈X, χL,→〉 where X = XL × XG

is a set of pairs of local and global states, χL ∈ XL is the initial local state,
and →⊆ X × ({τ} ∪ R≥0) × X is a timed transition relation, where dis-
crete transitions are denoted by τ . We write (xL, xG)

γ−→ (x′
L, x′

G) whenever
((xL, xG), γ, (x′

L, x′
G)) ∈→. Similarly, we write (xL, xG) γ−→ whenever ∀x′ ∈ X :

((xL, xG), γ, x′) ∈→. Furthermore, we require that states form an abelian group

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 303

(X,+,0). For convenience we refer to the inverse of + as −. We call a local
state xL ∈ XL reachable if there exists a sequence xi γ−→ xi+1 with 0 ≤ i ≤ n of
transitions such that x0

L = χL and xn
L = xL.

Definition 5 (RHA Semantics). Let H = 〈L, l0,V, E, inv, rate〉 be an RHA.
We define its semantics as an RTS [[H]] = 〈X, χL,→〉 in which the local states
are defined as products of a mode and the valuation of local variables XL =
L×R

VL , the global states are defined as valuations of global variables XG = R
VG ,

the initial local state is given by χL = (l0,0), and → is the smallest relation
satisfying:

– If (l, c, u, l′) ∈ E, σ ∈ R
V , σ |= inv(l), σ |= c, (σ, σ′) |= u and σ′ |= inv(l′),

then ((l, σL), σG) τ−→ ((l′, σ′
L), σ′

G):
– If l ∈ L, δ ∈ R≥0, and φ : [0, δ] → R

V is a right-differentiable function with
piece-wise constant derivative, such that for all t ∈ [0, δ] we have φ(t) |=
inv(l) and for t ∈ [0, δ) we have d

dtφ(t) |= rate(l), then ((l, φL(0)), φG(0)) δ−→
((l, φL(δ)), φG(δ)).

Discrete transitions in the automata defines τ transitions in its semantics, which
we generally think of as internal.

Note that restricting flow behaviour to right-differential piece-wise constant
solutions is a standard way to avoid problems with finite-set refutability when
considering hybrid dynamics over a timed semantics [11]. Furthermore, any RTS
generated by an RHA are time-reflexive and time-additive.

Theorem 1. Let H be an RHA. The following holds for [[H]] = 〈X, χL,→〉: For
all x, x′ ∈ X, δ, δ′ ∈ R≥0 we have: [[H]] is time reflexive x

0−→ x, and [[H]] is

time additive x
δ+δ′
−−−→ x′ ⇒ ∃x′′ ∈ X : x

δ−→ x′′ ∧ x′′ δ′
−→ x′.

3 Compositional Reasoning

With RHA and its semantic interpretation RTS we have a formal characteriza-
tion of hybrid behaviour. We now turn our attention to component-wise abstrac-
tion and realization in terms of behavioural requirements. We start by motivating
component-wise design and refinement with additivity using a simple example.

Our goal is to design a light controller, the kind that might be used to control
the alternating blinking pattern of a warning light on top of an antenna or maybe
a control console. There are a few rules we need to follow: the controller must
provide an alternating light pattern, i.e. it must facilitate blinking mechanics for
our light determined by some intervals, the light itself is limited in how much
power it can consume depending on its brightness level, and it must interact with
the electrical grid indirectly through a single battery. As such we are designing an
open component, since we are only concerned with saturation. How the battery
charges is handled by a different controller.

304 P. J. L. Cuijpers et al.

Fig. 2. An RHA, modelling a warning light controller. It has three modes; Dim, Bright
and the initial mode OFF, each describes a distinct brightness. It is defined over two
resources x (local) and b (global). The former characterizes a clock with constant rate
1 in all modes and is used to model timing behaviour. The latter describes a battery.
It is used to model the light controllers interaction with its environment. Each mode
(or rather each brightness level) define distinct battery saturation rates. Observe that
when we interpret the model as blueprint for timed discrete requirements, infinitely
many distinct blinking- and saturation-patterns are possible.

A system architect has provided us with a blueprint defined as an RHA
that formally captures the rules we just discussed, which is depicted in Fig. 2.
Of course, the light controller is only a single component of a larger system,
which we collectively think of as the environment. Now, from the environment’s
perspective, the blueprint captures exactly what is assumed about our controller.
On top of that, potential conservation rules in terms of energy for our battery
is handled by the environment as well. Looking at Fig. 2 we immediately see the
benefit of additive reasoning, since no consideration for how resource b i.e. our
battery interacts with other components is necessary, it is simply assumed that
the collective interaction over b across all components is handled in an additive
manner.

Figure 2 defines abstract requirements. We now desire to create a concrete
controller that behaves according to these requirements. Because it needs to be
concretely realizable a few precautions needs to be considered; The controller
must be specific in its battery saturations, it is not allowed to stop time, and
any discrete behaviour whenever enabled must occur. To that end we introduce
the model depicted in Fig. 3.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 305

Fig. 3. An RHA, modelling a concrete realization of the light controller depicted in
Fig. 2. It consists of two modes On and the initial mode OFF. Like Fig. 2, it is defined
over the two resources x and b. Observe that this concrete light controller simply defines
an altering pattern in which the light is turned off for 1 time unit, after which it is
turned on for 1 time unit, during which it consumes exactly 2 units of power per time
unit.

Now the question is, can we substitute our abstract model of Fig. 2 with
the concrete model of Fig. 3 whenever we consider the light controller in other
components of our system. To do so, we must ascertain whether the abstract
controller can mimic any an all timed-discrete behaviour allowed by the concrete
controller in all environments (in terms of the capacity of b and how it is charged).
If this is indeed the case, then we do not have to consider the cumbersome
abstract model whenever we desire to reason about our light controller, the
simple concrete model is sufficient. This property is called refinement.

Adopting the usual terminology from specification theory we refer to RTS’s
as specifications. In this paper, we consider specifications that model the reac-
tion of a system to changes in its environment. This means that a refinement of
one specification into another should preserve those reactions, given a particu-
lar environment. (Note that in other works, other interpretations of transition
systems lead to different notions of refinement. E.g. in [5], changes in the envi-
ronment are explicitly modeled as input transitions of the RTS’s, leading to a
two-way type of simulation refinement).

Definition 6 (Refinement). For i ∈ {1, 2}, let Si = 〈Xi, χi
L,→i〉 be a speci-

fication. We assume that their global states are shared X1
G = X2

G. We say that
S1 refines S2, denoted S1 � S2 iff there exists a binary relation R ⊆ X1

L × X2
L

defined over the local states such that χ1
LRχ2

L and for all x1 ∈ X1 and x2 ∈ X2

with x1
G = x2

G we find:

– If x1
LRx2

L and x1 τ−→1 y1, then there exists y2 ∈ X2 such that x2 τ−→2 y2 with
y1

LRy2
L and y1

G = y2
G.

– If x1
LRx2

L and x1 δ−→1 y1 for some δ ∈ R≥0, then there exists y2 ∈ X2 such

that x2 δ−→ y2 with y1
LRy2

L and y1
G = y2

G.

Crucially, refinements between specifications form a pre-order.

Theorem 2. The refinement relation � is a pre-order over the set of all speci-
fications.

306 P. J. L. Cuijpers et al.

In specification theory, specifications for which there is a concrete realiza-
tion in practice are called implementations. These implementations may occur
at any place in the pre-order, as it is often possible to further refine behaviour of
an already existing implementation, hence creating a refinement of that imple-
mentation. Without fixing the implementation mechanisms, we cannot deter-
mine which specifications are realizable precisely. However, we can rule out any
specifications that are self-contradictory, block the progress of time, or contain
unresolved non-deterministic choices. A specification that has these properties,
such as Fig. 3, we call an implementation in this paper.

Definition 7 (Implementation). Let S = 〈X, χL,→〉 be a specification, we
say that S is an implementation if furthermore the following holds:

– Independent progression: For every reachable state x ∈ X there exists
γ ∈ {τ} ∪ R≥0 and x′ ∈ X such that x

γ−→ x′;
– Discrete-determinism: For every reachable state x, x′, x′′ ∈ X, with x

τ−→ x′

and x
τ−→ x′′, we find x = x′′ ;

– Time-determinism: For every reachable state x, x′, x′′ ∈ X and every δ ∈
R≥0 with x

δ−→ x′ and x
δ−→ x′′ we find x′ = x′′;

– Urgency: For every reachable state x ∈ X, if there exists x′ ∈ X with x
τ−→ x′,

then there does not exists an x′′ ∈ X and δ ∈ R≥0 with δ > 0 and x
δ−→ x′′.

The syntactic notion of implementations naturally follows.

Definition 8 (Implementation RHA). Let H be an RHA. We say that H is
an implementation RHA whenever [[H]] is an implementation.

The concrete light controller of Fig. 3 defines an implementation, another exam-
ple is shown in Fig. 4.

Fig. 4. An implementation RHA implementing the intake valve specification of Fig. 1a.
Much like Fig. 3, the intake valve implementation is in a sense a restriction of behaviour.

An implementation is said to satisfy a specification if it only admits dis-
crete/continuous behaviour allowed by the specification. The general notion of
satisfaction is formally captured by refinement.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 307

Definition 9 (Specification Satisfaction). Let S be a specification and I an
implementation. If I � S we say that I satisfies S. By [S] = {I | I � S} we
denote the set of all implementations that satisfy S.

This gives us a natural way of thinking about specification equivalence.

Definition 10 (Specification Equivalence). We say that specifications S
and S′ are equivalent, denoted S ≈ S′ iff [S] = [S′].

It is not difficult to see that we could define specifications that could never
be satisfied, e.g. if they contain contradictions. In practice, only those admitting
implementations are of interest. This notion is usually referred to as consistency,
and we characterize it using implementation spaces.

Definition 11 (Consistency). We say that a specification S is consistent iff
[S] = ∅.

Compositional reasoning in terms of component-wise refinement and abstrac-
tion crucially relies on a well defined notion of refinement within which substi-
tutability is guaranteed. This means that whenever we have a composition of two
specifications, by replacing one of the constituents with a refining component,
it results in a refinement of the original composition. We now define two such
compositions that pertain substitutability over refinement, namely logical- and
structural-composition.

Fig. 5. (a) A Specification, modelling the battery capacity of the light controller, whose
timing behaviour is defined by the specification depicted in Fig. 2. It consists of a single
mode, the initial mode, and is defined over the global resource b. It invariantly requires
that the battery capacity never exceeds 1 unit of energy and is never saturated beyond
depletion. Note that any and all discrete transitions are allowed, captured by the self
loop. (b) A Specification, modelling a power supply. It consists of a single mode, the
initial mode, and is defined over the global resource b. It does not admit any discrete
behaviour, however it defines a constant charging of 1 unit of power per time unit.

Before we dive into the formal definitions, we first motivate their existence
and usefulness. Going back to our light controller specification of Fig. 2, together
with a possible implementation thereof, shown in Fig. 3. Our goal is to introduce
mechanisms for reasoning about compositions of specifications. Consider the
specification modelled in Fig. 5a, which captures battery capacity requirements.
We would like to capture the notion of joint refinement, in the sense that Fig. 3
should both refine the timing behaviour of Fig. 2 and the capacity restrictions

308 P. J. L. Cuijpers et al.

imposed by Fig. 5a. One can think of the specifications as two distinct aspects
of the same component. Their joined requirements is exactly captured by their
logical composition.

Fig. 6. Four RHA specifications whose logical composition refines the output valve
specification of Fig. 1c, each modelling distinct responsibilities. All of them define a
so-called universal mode Uni admitting an arbitrary flow of resource wo up until some
bound for which it must make a transition or define a flow that shift wo away from
said bound. In other words, each component do not care about wo until its top mode
invariant holds. Even though the output valve specification of Fig. 1c is relatively small,
these three components are even smaller and arguably more intuitive.

Logical composition defines the joined behaviour of its constituents. As such
an implementation satisfies the composition of two specifications if and only if
both of these specifications are satisfied by said implementation.

Definition 12 (Logical Product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2} be

a specification, where X1
G = X2

G. We define the logical product of S1 and S2,
denoted S1 ∧ S2 as a new specification: S1 ∧ S2 = 〈X, χL,→〉, where XL =
X1

L × X2
L, XG = X1

G, χL = (χ1
L, χ2

L) and → is the smallest relation satisfying:

(x1
L, xG)

γ−→1 (y1
L, yG) (x2

L, xG)
γ−→2 (y2

L, yG)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), yG

) γ ∈ {τ} ∪ R≥0

The logical product admits a transition if and only if its constituents both
admits it. On the syntactic level we can compute the logical composition by the
following RHA construction.

Definition 13 (Logical Composition). Let Hj = 〈Lj , lj0,V, Ej , invj , ratej〉
for j ∈ {1, 2} be an RHA, where V1

G = V2
G and V1

L ∩ V2
L = ∅. We define the

logical composition of H1 and H2, denoted H1 ∧ H2 as a new RHA: H1 ∧ H2 =
〈L, l0,V, E, inv, rate〉, where L = L1 × L2, l0 = (l10, l

2
0), VL = V1

L � V2
L, VG = V1

G,
inv

(
(l1, l2)

)
= inv1(l1) ∧ inv2(l2), rate

(
(l1, l2)

)
= rate1(l1) ∧ rate2(l2) and E is

defined by the following rule:

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 309

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then(
(l1, l2), c1 ∧ c2, u1 ∧ u2, (k1, k2)

) ∈ E

Figure 6 shows an example of the of type reasoning possible using logical com-
position.

As expected, the logical composition and product coincide.

Theorem 3. Let H and H ′ be RHA then: [[H]] ∧ [[H ′]] ≈ [[H ∧ H ′]].

Referring back to the light controller, clearly, no positive battery require-
ments can ever be fulfilled by any implementation of Fig. 2, because only satu-
ration is admitted. We are missing a power supply, something that charges our
battery. Consider the specification of a power supply depicted in Fig. 5b. The
question is whether the joined requirements of capacity and timed behaviour
put in parallel with the power supply is captured by our implementation put
in parallel with the power supply. As such the flow of resource b becomes the
sum of the saturation provided by the controller and the charge induced by the
power supply. This interaction is exactly captured by structural composition.

The structural composition defines the time synchronized and resource addi-
tive product behaviour of its constituents. As such given two implementations,
each satisfying a distinct constituent, their parallel execution results in an imple-
mentation of their composition.

Definition 14 (Structural product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2}

be a specification, where X1
G = X2

G. We define the structural product of S1 and
S2, denoted S1 ‖ S2 as a new specification: S1 ‖ S2 = 〈X, χL,→〉, where XL =
X1

L × X2
L, XG = X1

G, χL = (χ1
L, χ2

L) and → is the smallest relation satisfying:

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG)

γ−→2 (y2
L, y2

G)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), y1

G + y2
G − xG

) γ ∈ {τ} ∪ R≥0

(x1
L, xG) τ−→1 (y1

L, yG) (x2
L, xG) τ−→2(

(x1
L, x2

L), xG

) τ−→ (
(y1

L, x2
L), yG

)
(x2

L, xG) τ−→2 (y2
L, yG) (x1

L, xG) τ−→1(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, y2
L), yG

)
As noted earlier, refinement indeed defines a precongruence over specifica-

tions in terms of the structural product.

Theorem 4. If S, S′′ and T are specifications such that S � S′, then S ‖ T
exists iff S′ ‖ T exists, and given existence of these we find S ‖ T � S′ ‖ T .

310 P. J. L. Cuijpers et al.

Fig. 7. (a) An RHA modelling modelling an intake valve. It is similar to the one
depicted in Fig. 1a, however, it does not allow internal discrete behaviour in its opera-
tional modes, i.e. whenever a transition is made it must change mode. Additionally, it
defines slightly different flow rates in Low, Mid and High. (b) Another RHA modelling
an intake valve. This one is simple as all it does regardless of capacity is to continuously
consume between −1 and 0 water per time unit while allowing any discrete behaviour.
The structural composition of these two, however, do in fact refine the intake valve
specification depicted in Fig. 1a. Note how resource additivity makes it possible to
intuitively “add up” flows in a component-wise manner.

The structural product admits a transition if an only if either of its con-
stituents allow a discrete transition or if both admit the same delay. Resource
additivity is captured by our treatment of the global state-space in the target
state, i.e. changes are added up. On the syntactic level we can compute the
structural composition by the following RHA construction.

Definition 15 (Structural Composition).
Let Hj = 〈Lj , lj0,Vj , Ej , invj , ratej〉 for j ∈ {1, 2} be an RHA, where V1

G = V2
G

and V1
L ∩ V2

L = ∅. We define the structural composition of H1 and H2, denoted
H1 ‖ H2 as a new RHA: H1 ‖ H2 = 〈L, l0,VL � VG, E, inv, rate〉, where L =
L1 ×L2, l0 = (l10, l

1
0), VL = V1

L �V2
L, VG = V1

G, inv
(
(l1, l2)

)
= inv1(l1)∧ inv2(l2),

rate
(
(l1, l2)

)
= rate1(l1) ⊕ rate2(l2), and E is defined by the following rules:

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then(
(l1, l2), c1 ∧ c2, u1 ⊕ u2, (k1, k2)

) ∈ E;
– If (l1, c, u, k) ∈ E1 and ∀k2 ∈ L2 : (l2, c2, u2, k2) ∈ E2, then(

(l1, l2), c, u, (k, l2)
) ∈ E;

– If (l2, c, u, k) ∈ E2 and ∀k1 ∈ L1 : (l1, c1, u1, k1) ∈ E1, then(
(l1, l2), c, u, (l1, k)

) ∈ E.

Figure 7 shows an example of the type of reasoning possible using structural
composition.

Note that RHAs are closed under additive structural composition as defined
by Definition 15, this is generally not the case for Linear Hybrid Automata
(LHA) under synchronized composition [22]. As expected, the structural com-
position and product coincide.

Theorem 5. Let H and H ′ be RHA then: [[H]] ‖ [[H ′]] ≈ [[H ‖ H ′]].

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 311

Both logical and structural composition provide concise ways for capturing
divided responsibilities of open components. A large specification can therefore
be reasoned about in a component-wise manner using an intuitive notion of
additivity over globally available resources.

The quotient composition of two specifications T , referred to as the ‘target’
and S, referred to as the ‘existing component’ results in a new specification X
which for any implementation I where S ‖ I � T we have I � X. In other
words, the quotient defines the most permissive specification that characterizes
the missing behaviour of the existing component in order to refine the target.
In order to capture the quotient we make use of two new state types: ⊥, which
characterizes deadlock states and � which characterizes universal states. Dead-
lock states allow no behaviour, while universal states allow arbitrary behaviour.

Definition 16 (Quotient product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2}

be a specification, where X1
G = X2

G. We define the quotient product of S1 and
S2, denoted S2\\S1 as a new specification: S2\\S1 = 〈X, χL,→〉 where: XL =
(X1

L × X2
L) � {⊥,�}, XG = X1

G, χL = (χ1
L, χ2

L), and → is the smallest relation
satisfying:

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG)

γ−→2 (y2
L, y2

G)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), y2

G + xG − y1
G

) γ ∈ {τ} ∪ R≥0

(x2
L, xG) τ−→2 (y2

L, y2
G) (x1

L, xG) τ−→1(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, y2
L), y2

G

)
(x1

L, xG) γ−→1(
(x1

L, x2
L), xG

) γ−→ (�, yG)
γ ∈ R≥0

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG) γ−→2(

(x1
L, x2

L), xG

) γ−→ (⊥, yG)
γ ∈ {τ} ∪ R≥0

(x1
L, xG) τ−→1 (x2

L, xG) τ−→2(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, x2
L), xG

)

(�, xG)
γ−→ (�, yG)

γ ∈ {τ} ∪ R≥0

Crucially, The dual of the structural product corresponds exactly to the
quotient.

Theorem 6. Let S and T be specifications. If T\\S exists then for all imple-
mentations I we have S ‖ I exists and S ‖ I � T iff I � T\\S.

On the syntactic level we can compute the quotient by the following RHA
construction.

312 P. J. L. Cuijpers et al.

Fig. 8. The resulting RHA generated by the quotient construction by using the intake
valve specification of Fig. 1a as its target and the simple consumer valve of Fig. 7b as
its existing component. As expected, the intake valve specification of Fig. 7a indeed
refines the quotient, the formal proof of which is omitted for the sake of brevity.

Definition 17 (Quotient composition).
Let Hj = 〈Lj , lj0,Vj , Ej , Invj , ratej〉 for j ∈ {1, 2} be an RHA, where V1

G = V2
G,

such that V1
L ∩ V2

L = ∅. We define the quotient composition of H1 and H2 as
a new RHA H2\\H1 = 〈L, l0,V, Ej , Inv, rate〉 where: L = (L1 × L2) ∪ {lu, ld},
l0 = (l10, l

2
0), VL = V1

L � V2
L, VG = V1

G, Inv
(
(l1, l2)

)
= Inv(lu) = Inv(ld) = TT,

rate
(
(l1, l2)

)
= rate2(l2) 	 rate1(l1), rate(lu) = TT, rate(ld) = ¬TT, and E is

defined by the following rules:

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then
(
(l1, l2), c, u, (k1, k2)

) ∈
E where u = u2 	 u1 and c = c1 ∧ Inv1(l1) ∧ u � Inv1(k1) ∧ c2 ∧ Inv2(l2) ∧ u �
Inv2(k2);

– If (l2, c2, u2, k2) ∈ E2 and ∀k1 ∈ L1 : (l1, c1, u1, k1) ∈ E1, then(
(l1, l2), c, α, u2, (l1, k2)

) ∈ E where l1 ∈ L1 and c = Inv1(l1) ∧ c2 ∧ Inv2(l2) ∧
u2 � Inv2(k2);

– If l1 ∈ L1 and l2 ∈ L2, then
(
(l1, l2), c, TT, lu

) ∈ E where
c =

(¬Inv1(l1) ∨ Inv2(l2)
) ∧ ∧

(l1,c1,u1,k1)∈E1(¬c1 ∨ ¬u1 � Inv1(k1));

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 313

– If l1 ∈ L1, l2 ∈ L2, then
(
(l1, l2), c, ε, (l1, l2)

) ∈ E where
c = c1∧ = Inv1(l1) ∧ ∧

(l1,c1,u1,k1)∈E1(¬c1 ∨ ¬u1 � Inv1(k1))∧
Inv2(l2) ∧ ∧

(l2,c2,u2,k2)∈E2(¬c2 ∨ ¬u2 � Inv2(k2));
– If (l1, c1, u1, k1) ∈ E1 and l2 ∈ L2, then

(
(l1, l2), c, TT, ld

) ∈ E where
c = c1 ∧ Inv1(l1) ∧ u1 � Inv1(k1)

∧
(l2,c2,u2,k2)∈E2(¬c2 ∨ ¬u2 � Inv2(k2));

– (lu, TT, TT, lu) ∈ E.

An example quotient can be seen in Fig. 8.
The quotient product refines the underlying semantics defined by the quotient

composition, and whenever the product is consistent then so is the composition.

Theorem 7. Let H and H ′ be RHA then [[H]]\\[[H ′]] � [[H\\H ′]].

Theorem 8. Let H and H ′ be RHA then [[H\\H ′]] is consistent iff [[H]]\\[[H ′]]
is consistent.

Unfortunately, the syntactic construction and the semantic product do not
fully coincide. In fact the syntactic construction is an abstraction of the semantic
product. This is because the product insists that a state after some delay can act
as a deadlock- or universal- state, which cannot be mimicked in the syntactic con-
struction without introducing complex rate rules and appropriate mechanisms
for handling universal and deadlock behaviour directly in the semantics of RHAs.
For the sake of brevity and because it has no impact on practical applications
(however still vital to a full characterization of the theory), this aspect is left as
a topic for future research. Note also, that all three compositions always exists.
This is because RHAs are defined over essentially internal discrete actions, as
such, the signature of all RHA is the same. Indeed any RHA is defined over the
set of all global resources. The notion of environment and component is solely
dictated by the model. Intuitively, one can think of environments as components
that provides a positive resource flow and vice versa for components. A more
powerful extension of the theory with discrete inputs and outputs would com-
plicate this aspect however. In such an extension, the notion of compatibility in
terms of signature becomes relevant. We leave this aspect of compatibility as a
topic for future research in the full discrete I/O characterization of the theory.

314 P. J. L. Cuijpers et al.

4 Assume-Guarantee Reasoning

With our specification theory of RHA, we have a robust and complete framework,
suitable for component-wise design and refinement in the additive hybrid set-
ting. We now show that our theory facilitates component-wise assume-guarantee
reasoning. The main idea is to use the notion of pre- and post-conditions in
order to characterize intended behaviour. Usually pre- and post-conditions define
properties of sequential processes that must hold before respectively after some
behaviour is encountered. Since we are dealing with systems that consists of
real-time concurrent components the notion of ‘before’ and ‘after’ is better cap-
tured by structural compositional reasoning. As such a pre-condition defines an
environment that affects our system, and a post-condition defines how a sys-
tem should act whenever such an environment is within our sphere of influence.
Mathematically, we are simply dealing with implications, i.e. for the pair (P,Q)
consisting of a pre-condition and post-condition (as mentioned earlier, this is
called a contract), a system upholds the pair if and only if whenever P holds
then so does Q. We adopt the usual terminology used in the real-time setting,
that is, pre- and post- conditions are referred to as assumptions and guarantees.

Let’s first formally capture our notion of an assume-guarantee pair and satis-
faction thereof. In our theory, assumptions and guarantees are defined by RHAs.
We need to characterize an RHA that exactly describes the assume-guarantee
implication. In the concurrent real-time setting this is known as a weakening
and captured by a so-called weaken operation as defined in [12].

Definition 18 (Weaken). Let A and G be RHAs. We define the weakening of
G in A, as: G � A � (A ‖ G)\\A

Let’s design a water pump based on a specification defined by a weakening.
Our water pump’s environment consists of two reservoirs; an input reservoir, for
which the pump itself can only draw from, and an output reservoir, for which
the pump can only provide to. We characterize the capacity of the input and
output reservoirs by the global resources wi and wo. Our assumption on the
environment and our guarantee on the water pump whenever that assumption
holds is shown in Fig. 9.

We define our proposed water pump system S as the structural composi-
tion of the three RHAs shown in Fig. 1. We hypothesize that S refines G � A
thereby making it possible to use an implementation of S whenever we need an
implementation of G � A. As such we retain the simple and intuitive model
defined by the weakening when considering the water pump in a larger context
while providing certainty that an actual system can be implemented using the
more specialised but less intuitive model. We should note here that the reserve
question is just as useful from a system design perspective. Looking at Fig. 1,
clearly the composition results in a large RHA, in fact even the component-wise
representation is large and cumbersome. If one finds that G � A refines S then,
from a design perspective, we can reason about the water pump specification
simply by using the weakening instead.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 315

Fig. 9. (a) An RHA modelling our assumption on the environment. We assume that the
input reservoir gets filled by a rate in the interval [2, 4] and that the output reservoir gets
saturated by rate in the interval [−5,−2]. Additionally, we assume that the environment
never saturates the usage reservoir, thereby completely delegating that responsibility
to the system from a modelling perspective. (b) Another RHA modelling our guarantee
on the system if the assumption is fulfilled. We guarantee that the capacity of both the
input and output reservoir stays in the interval [1, 8]. Additionally, we guarantee that
at any time, a discrete event can occur, as long as it performs no resets.

Now we have a system, a weakening and well defined set of operations on our
language, all we need now is to ascertain whether the refinement holds.

5 Refinement

Unfortunately, checking refinement for general RHAs is undecidable. Indeed if
it were, then that would imply that reachability for general LHA is decidable,
which it is not [22]. Instead we explore how statistical model checking can be
used to refute the existence of refinement. To that end, we utilize the verification
engine of UPPAAL SMC [13] to conduct simulation based validation by translat-
ing the RHA models into Stochastic Hybrid Automata (SHA) [13]. Essentially,
these are hybrid automata defined over a stochastic timed semantics, refining
the non-deterministic mechanics of edge transitions and time delays into prob-
abilistic occurrences based on some probability distribution. Much like RHAs,
SHAs allows us to define linear differential equations on variable rates and also
to consider such variables in guards and invariants. Hence can use resources of

Fig. 10. The SHA agent responsible for computing the continuous rates of all resources
in the composition. Here resources wi, wo and w are first initialized to their respective
initial values; {1, 1, 10} signified by the firing of action begin after which the mode
Running in each time step sets the appropriate rate of each resource according to the
real-valued variables iri, oro, irw and orw. Annotation �� signifies that time cannot
pass in a mode.

316 P. J. L. Cuijpers et al.

Fig. 11. The SHA interpretations of the intake valve (a) and the output valve (b)
specifications of Fig. 1a and 1c. The discrete action switch is used to communicate that
a transition has been fired. This aspect is crucial because we need to know when a
possible refinement target must be able to do a transition. The red scalars next to each
mode is a probability parameter and just an implementation detail, suffice it to say
that larger numbers results in higher preference for taking a transition whenever one
is enabled.

RHAs as is in SHAs. We can specify a convex interval of real numbers by using
the function random(max) = [0,max). SHAs are defined over a discrete action
set of inputs (characterized by a question mark ?) and outputs (characterized
by an exclamation point !). Sadly, SHAs are not natively additive, so this needs
to be simulated. To do so is a simple matter of introducing a real-valued vari-
able for each automata specific occurrence of a resource and define an additivity
agent responsible for adding up the different rates into the actual rates. Our
implementation of the agent model is shown in Fig. 10.

All that remains is to translate the capacity monitor, and the intake/output
valve of Fig. 1 into SHAs. For convenience we have dedicated the responsibility
of the capacity monitor to the additivity agent. Additionally, the rates defined
by the assumption shown in Fig. 9 have been put directly on the intake and
output valve. Their SHA interpretations are shown in Fig. 11

With that we have a stochastic realization of our water pump controller. To
answer the question of whether the water pump refines the weakening G � A, we
investigate whether the water pump controller in parallel with the assumption
refines the composition of the assumption and the guarantee. One could also

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 317

Fig. 12. The unfolded SHA interpretation of A ‖ G. Resources cwi and cwo are defined
as clones of resources wi and wo. The mode Recording directly models the behaviour
of A ‖ G. Whenever a transition is made, it is checked whether the invariants of A ‖ G
holds. Otherwise the invariant of Recording is unbounded, capturing values of wi and
wo not admitted by the original composition. This is because we aim to explicitly
capture illegal behaviour in order to direct it into the Error mode. The eight transitions
leading to it simply captures the negation of the invariant defined by A ‖ G. Note that
we need one for each case because stochastic semantics requires input-determinism.

Fig. 13. An RHA modelling a slightly more strict guarantee.

just show the refinement to the quotient defined by G � A directly, however the
composition of A and G is arguable more intuitive.

The last step in our translation effort is to obtain a stochastic interpretation
of our refinement target, namely the structural composition of A and G. This is
shown in Fig. 12.

Using the SHA interpretation of the composition of our water pump controller
and the assumption, we intend to drive the SHA model of A ‖ G. Our target
property is supported by the following reasoning. If the error mode is ever entered
and the clones of wi and wo get assigned the rate 0, then we know with absolute
certainty that the original water pump controller cannot refine the weakening
G � A. Since both SHAs are abstractions, this holds. We validate our property
using the simulation capabilities of UPPAAL SMC.

We are now ready to conduct testing on our setup through simulations. Sim-
ulations shown in this paper all depict a number of sample runs as solid coloured
lines. The metrics of interest are the evolution of the actual resources wi and
wo together with the evolution of their clones cwi and cwo (y-axis) over time
(x-axis).

318 P. J. L. Cuijpers et al.

Fig. 14. Two sample simulation results obtained by queries simulate[⇐ 100]{wi, cwi}
and simulate[⇐ 100]{wo, cwo} capturing the values of resource wi and its clone respec-
tively wo and its clone. As may be expected, even with 100 simulations, the water pump
controller seems to not be able to break the behaviour of A ‖ G. This is why we see
only one variable in all traces, the clone perfectly matches the actual resource.

Let’s start by simulating our water pump controller driving A ‖ G. The
results of which are shown in Fig. 14. As can be seen, the controller seems to
have difficulties breaking the invariant of A ‖ G. Of course we cannot con-
clude whether it is impossible, there might exist some execution that renders
the invariant false, it just so happens that we have not found it.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 319

Fig. 15. Two sample simulation results obtained by queries simulate[⇐ 100]{wi, cwi}
and simulate[⇐ 100]{wo, cwo} capturing the values of resource wi and its clone respec-
tively wo and its clone. These results show that the water pump controller can force
A ‖ G into the Error mode, hence refuting the existence of a refinement into G � A.

Next we try to modify G slightly, maybe we can identify an interesting frontier
for the upper limit of wi and wo. For that purpose, we use the slightly modified
guarantee shown in Fig. 13. The simulation results are shown in Fig. 15. Now we
clearly see that a capacity strictly below 8 cannot be guaranteed by our water
pump controller under assumption A. Using the same reasoning as above, we
can say with certainty that the composite of Fig. 1 under assumption A does not
refine G � A.

320 P. J. L. Cuijpers et al.

6 Concluding Remarks

In this paper, we have proposed the complete specification theory of RHA, suit-
able for reasoning about step-wise refinement in the domain of additive resource-
aware concurrent systems. As far as we know, this is the first such theory consid-
ering additive composition. We have shown how assume-guarantee reasoning is
possible within the theory and exemplified a relevant sample case thereof. Fur-
thermore, by translating RHAs into SHAs we have shown how one can refute
the existence of refinement using a simulation based validation method.

In terms of further validation, a proper case study still remains to be con-
ducted. Energy-aware systems, such as load-balancing and smart-grid analysis
are prime candidates. Additionally, an intuitive and robust tool implementa-
tion through automated translation into SHA would significantly decrease the
entry-level knowledge required to use the method presented. For that purpose,
the discrete input/output extension of RHA would be required, including the
complete characterization of the quotient construction in this setting. This full
characterization of the theory could serve as a general meta theory in the additive
hybrid domain, which would significantly push state-of-the-art in the real-time
analysis setting if a useful and decidable instance of the theory is identified. Fur-
thermore, showing how the weaken operation can be used to handle scalability
issues is also desirable, i.e. lifting this result on Timed Input/Output Automata
as shown in e.g. [12] to the additive hybrid setting.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings of the 8th European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, 10–14 September 2001, pp. 109–120. ACM
(2001). https://doi.org/10.1145/503209.503226

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 203–221. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95582-7 12

4. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

5. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018). https://doi.org/10.1561/1000000053

6. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37, 77–121 (1985). https://doi.org/10.1016/0304-
3975(85)90088-X

7. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: Arnold, A.
(ed.) CAAP 1990. LNCS, vol. 431, pp. 57–71. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52590-4 40

https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-95582-7_12
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1561/1000000053
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-52590-4_40
https://doi.org/10.1007/3-540-52590-4_40

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 321

8. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4 28

9. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Constraint Markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011).
https://doi.org/10.1016/j.tcs.2011.05.010

10. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification—theory and
tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 253–267. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 21

11. Cuijpers, P.J.L., Reniers, M.A.: Lost in translation: hybrid-time flows vs. real-time
transitions. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
116–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-
1 9

12. David, A., et al.: Compositional verification of real-time systems using Ecdar. Int.
J. Softw. Tools Technol. Transf. 14(6), 703–720 (2012). https://doi.org/10.1007/
s10009-012-0237-y

13. David, A., Larsen, K.G., Legay, A., Mikuăionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

14. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson,
K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12–
15 April 2010, pp. 91–100. ACM (2010). https://doi.org/10.1145/1755952.1755967

15. van Glabbeek, R.J.: The linear time - branching time spectrum I: the semantics
of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, chap. 1, pp. 3–99. Elsevier Science, Amsterdam
(2001). https://doi.org/10.1016/B978-044482830-9/50019-9

16. Hansen, J., Larsen, K.G., Cuijpers, P.J.L.: Balancing flexible production and con-
sumption of energy using resource timed automata. In: 2022 11th Mediterranean
Conference on Embedded Computing (MECO), pp. 1–6 (2022). https://doi.org/
10.1109/MECO55406.2022.9797191

17. He, J.: Process simulation and refinement. Formal Aspects Comput. 1(3), 229–241
(1989). https://doi.org/10.1007/BF01887207

18. Jifeng, H.: Various simulations and refinements. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 340–360. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52559-9 70

19. He, J.: Service refinement. In: 15th Asia-Pacific Software Engineering Conference
(APSEC 2008), 3–5 December 2008, Beijing, China, p. 5. IEEE Computer Society
(2008). https://doi.org/10.1109/APSEC.2008.78

20. He, J., Hoare, C.A.R.: Unifying theories of programming. In: Orlowska, E., Sza-
las, A. (eds.) Participants Copies for Relational Methods in Logic, Algebra and
Computer Science, 4th International Seminar RelMiCS, Warsaw, Poland, 14–20
September 1998, pp. 97–99 (1998)

21. He, J., Liu, Z., Li, X.: Towards a refinement calculus for object systems. In: Pro-
ceedings of the 1st IEEE International Conference on Cognitive Informatics (ICCI
2002), 19–20 August 2002, Calgary, Canada, pp. 69–76. IEEE Computer Society
(2002). https://doi.org/10.1109/COGINF.2002.1039284

https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1016/j.tcs.2011.05.010
https://doi.org/10.1007/3-540-56922-7_21
https://doi.org/10.1007/978-3-540-78929-1_9
https://doi.org/10.1007/978-3-540-78929-1_9
https://doi.org/10.1007/s10009-012-0237-y
https://doi.org/10.1007/s10009-012-0237-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.1109/MECO55406.2022.9797191
https://doi.org/10.1109/MECO55406.2022.9797191
https://doi.org/10.1007/BF01887207
https://doi.org/10.1007/3-540-52559-9_70
https://doi.org/10.1109/APSEC.2008.78
https://doi.org/10.1109/COGINF.2002.1039284

322 P. J. L. Cuijpers et al.

22. Henzinger, T.A., Kurshan, R.P.: The theory of hybrid automata. In: Inan, M.K.,
Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series,
vol. 170, pp. 265–292. Springer, Heidelberg (2000)

23. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Com-
puter Science. Prentice Hall (1985)

24. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24(2), 127–
132 (1987). https://doi.org/10.1016/0020-0190(87)90106-2

25. Hoare, T., He, J.: Unifying theories for parallel programming. In: Lengauer, C.,
Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 15–30. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0002714

26. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf.
Process. Lett. 25(2), 71–76 (1987). https://doi.org/10.1016/0020-0190(87)90224-
9

27. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981). https://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.259064

28. Lamport, L.: Hybrid systems in TLA+. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 77–102. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57318-6 25

29. Larsen, K., et al.: As cheap as possible: efficient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 47

30. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

31. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed
automata. Theor. Comput. Sci. 390(2), 197–213 (2008). https://doi.org/10.1016/
j.tcs.2007.09.021. Foundations Software Science and Computational Structures

32. Larsen, K.G., Steffen, B., Weise, C.: The methodology of modal constraints. In:
Broy, M., Merz, S., Spies, K. (eds.) Formal Systems Specification. LNCS, vol. 1169,
pp. 405–435. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0024437

33. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS 1988), Edinburgh, Scot-
land, UK, 5–8 July 1988, pp. 203–210. IEEE Computer Society (1988). https://
doi.org/10.1109/LICS.1988.5119

34. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, vol. 92. Springer, Cham (1980). https://doi.org/10.1007/3-540-10235-3

35. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inform. 6, 319–340 (1976). https://doi.org/10.1007/BF00268134

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977). https://doi.org/10.1109/SFCS.
1977.32

37. Scholefield, D., Zedan, H., Jifeng, H.: Real-time refinement: semantics and applica-
tion. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711,
pp. 693–702. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-
5 60

38. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617

https://doi.org/10.1016/0020-0190(87)90106-2
https://doi.org/10.1007/BFb0002714
https://doi.org/10.1016/0020-0190(87)90224-9
https://doi.org/10.1016/0020-0190(87)90224-9
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
https://doi.org/10.1007/3-540-57318-6_25
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1016/j.tcs.2007.09.021
https://doi.org/10.1016/j.tcs.2007.09.021
https://doi.org/10.1007/BFb0024437
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-57182-5_60
https://doi.org/10.1007/3-540-57182-5_60
https://doi.org/10.1007/BF01211617

	Assume-Guarantee Reasoning for Additive Hybrid Behaviour
	1 Introduction
	2 Resource Hybrid Automata
	3 Compositional Reasoning
	4 Assume-Guarantee Reasoning
	5 Refinement
	6 Concluding Remarks
	References

