
Towards Efficient Data-Flow Test Data
Generation

Ting Su1(B), Chengyu Zhang2, Yichen Yan1, Lingling Fan3, Yang Liu4,
Zhoulai Fu5, and Zhendong Su2

1 East China Normal University, Shanghai, China
tsu@sei.ecnu.edu.cn

2 ETH Zurich, Zürich, Switzerland
chengyu.zhang@inf.ethz.ch , zhendong.su@inf.ethz.ch

3 Nankai University, Tianjin, China
linglingfan@nankai.edu.cn

4 Nanyang Technological University, Singapore, Singapore
yangliu@ntu.edu.sg

5 State University of New York, Incheon, Korea
zhoulai.fu@sunykorea.ac.kr

Abstract. Data-flow testing (DFT) aims to detect potential data inter-
action anomalies by focusing on the points at which variables receive
values and the points at which these values are used. Such test objec-
tives are referred as def-use pairs. However, the complexity of DFT still
overwhelms the testers in practice. To tackle this problem, we intro-
duce a hybrid testing framework for data-flow based test generation: (1)
The core of our framework is symbolic execution (SE), enhanced by a
novel guided path exploration strategy to improve testing performance;
and (2) we systematically cast DFT as reachability checking in software
model checking (SMC) to complement SE, yielding practical DFT that
combines the two techniques’ strengths. We implemented our framework
for C programs on top of the state-of-the-art symbolic execution engine
KLEE and instantiated with three different software model checkers. Our
evaluation on the 28,354 def-use pairs collected from 33 open-source and
industrial program subjects shows that (1) our SE-based approach can
improve DFT performance by 15–48% in terms of testing time, compared
with existing search strategies; and (2) our combined approach can fur-
ther reduce testing time by 20.1–93.6%, and improve data-flow coverage
by 27.8–45.2% by eliminating infeasible test objectives. This combined
approach also enables the cross-checking of each component for reliable
and robust testing results.

Keywords: Data-flow Testing · Symbolic Execution · Model Checking

1 Introduction

It is widely recognized that white-box testing, usually applied at unit testing
level, is one of the most important activities to ensure software quality [4]. In

This paper was completed on Jifeng He’s 80th birthday, May 2023.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 257–293, 2023.
https://doi.org/10.1007/978-3-031-40436-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_10

258 T. Su et al.

this process, the testers design inputs to exercise program paths in the code, and
validate the outputs with specifications [50]. Code coverage criteria are popular
metrics to guide such test selection. For example, control-flow based criteria (e.g.,
statement, branch coverage) require to cover the specified program elements, e.g.,
statements, branches and conditions, at least once [100]. In contrast, data-flow
based criteria [27,46,76] focus on the flow of data, and aim to detect potential
data interaction anomalies. It validates the correctness of variable definitions by
observing the values at the corresponding uses.

However, several challenges exist in generating data-flow based test cases: (1)
Few data-flow coverage tools exist. To our knowledge, ATAC [52,53] is the only
publicly available tool, developed two decades ago, to measure data-flow coverage
for C programs. However, there are plenty of tools for control-flow criteria [96].
(2) The complexity of identifying data flow-based test data overwhelms testers.
Test objectives w.r.t. data-flow testing are much more than those of control-
flow criteria; more effort is required to satisfy a def-use pair than just covering
a statement or branch, since the test case needs to reach a variable definition
first and then the corresponding use. (3) Infeasible test objectives (i.e., the paths
from the variable definition to the use are infeasible) and variable aliases make
data-flow testing more difficult.

To aid data-flow testing, many testing techniques have been proposed in the
past few decades. For example, search-based approach [29,39,41,89] uses genetic
algorithms to guide test generation to cover the target def-use pairs. It generates
an initial population of test cases, and iteratively applies mutation and crossover
operations on them to optimize the designated fitness function. Random test-
ing [41,42] generates random test inputs or random paths to cover def-use pairs.
Some work uses the idea of collateral coverage [62,77], i.e., the relation between
data-flow criteria and the other criteria (e.g., branch coverage), to infer data-flow
based test cases. However, these approaches are either inefficient (e.g., random
testing may generate a large number of redundant test cases) or imprecise (e.g.,
genetic algorithms and collateral coverage-based approach may not be able to
identify infeasible test objectives).

The preceding situations underline the importance of an automated, effec-
tive data-flow testing technique, which can efficiently generate test cases for
target def-use pairs and detect infeasible ones therein. To this end, we intro-
duce a combined approach to automatically generate data-flow based test data,
which synergistically combines two techniques: dynamic symbolic execution and
counterexample-guided abstraction refinement-based model checking. It takes as
input the program under test, and (1) outputs test cases for feasible test objec-
tives, and (2) eliminates infeasible test objectives—without any false positives.

Dynamic symbolic execution [20] is a widely-accepted and effective app-
roach for automatic test case generation. It intertwines classic symbolic execu-
tion [26,58] and concrete execution, and explores as many program paths as pos-
sible to generate test cases by solving path constraints. As for counterexample-
guided abstraction refinement-based (CEGAR) model checking [5,22,49], given
the program source code and a temporal safety specification, it either statically

Towards Efficient Data-Flow Test Data Generation 259

proves that the program satisfies the specification, or returns a counterexample
path to demonstrate its violation. This technique has been used to automatically
verify safety properties of device drives [5,13,14], as well as test generation w.r.t.
statement or branch coverage [12] from counterexample paths.

Although symbolic execution has been applied to enforce various coverage
criteria (e.g., statement, branch, logical, boundary value and mutation test-
ing) [55,60,73,85,99], little effort exists to adapt symbolic execution to data-flow
testing. To counter the path explosion problem, we designed a cut-point guided
path exploration strategy to cover target def-use pairs as quickly as possible.
The key intuition is to find a set of critical program locations that must be tra-
versed through in order to cover the pair. By following these points during the
exploration, we can narrow the path search space. In addition, with the help of
path-based exploration, we can also more easily and precisely detect definitions
due to variable aliasing. Moreover, we introduce a simple, powerful encoding of
data flow testing using CEGAR-based model checking to complement our SE-
based approach: (1) We show how to encode any data-flow test objective in the
program under test and systematically evaluate the technique’s practicality; and
(2) we describe a combined approach that combines the relative strengths of the
SE and CEGAR-based approaches. An interesting by-product of this combina-
tion is to let the two independent approaches cross-check each other’s results for
correctness and consistency.

In all, this paper makes the following contributions:

– We design a symbolic execution-based testing framework, and enhance it with
an efficient guided path search strategy, to quickly achieve data-flow testing.

– We describe a simple, effective reduction of data-flow testing into reachability
checking in software model checking to complement our SE-based approach.

– We implement the SE-based data-flow testing approach, and conduct empir-
ical evaluation on both benchmark and industrial C programs. Our results
show that the SE-based approach is both efficient and effective.

– We also demonstrate that the CEGAR-based approach can effectively comple-
ment the SE-based approach by reducing testing time and identifying infea-
sible test objectives. In addition, these two approaches can cross-check each
other to validate the correctness and effectiveness of both techniques.

The initial idea of this hybrid data-flow testing approach was described
in [84], and in this paper we have improved this idea in several aspects: (1) We
optimized our original cut-point guided search with several exploration strate-
gies (e.g., backtrack), and made substantial efforts to implement our approach
on the state-of-the-art symbolic execution engine KLEE [18] (previously imple-
mented on our own concolic testing tool CAUT [84,85], which was capable of
evaluating only 6 subjects), and further compared our approach with various
existing testing strategies on KLEE. Due to the differences in the design and
architecture between KLEE and CAUT, the implementation is not straightfor-
ward. But this effort brings several benefits: first, it provides a uniform and fair
platform to investigate the effectiveness of our testing strategy with many exist-
ing state-of-the-art ones; second, it provides a robust platform to enable exten-

260 T. Su et al.

sive evaluation of real-world subjects and better integration with model checkers;
third, this extension of KLEE could benefit industrial practitioners and also aca-
demic researchers to apply or investigate data-flow testing. (2) We implemented
and extended the model checking-based approach on two different techniques,
i.e., Counter-Example Guided Abstraction Refinement (CEGAR) [5,21,49] and
Bounded Model Checking (BMC) [25], and comprehensively compared their
effectiveness and performance for data-flow testing; (3) We rigorously setup
a benchmark repository for data-flow testing, and extensively evaluated on 30
real-world programs with various data-flow usage scenarios, including seven non-
trivial subjects from previous DFT research work [32,35,39,48,54,66,67], seven
subjects from SIR [82], 16 subjects from SV-COMP [33] so as to gain a overall
understanding of our hybrid testing framework. (4) We cross-checked each com-
ponent to provide reliable testing results, investigated the reasons of inconsistent
cases, and gave detailed discussions.

The paper is organized as follows. Section 2 surveys the related work in data-
flow testing. Section 3 gives more background and Sect. 4 gives an overview of
our testing framework with an illustrative example. Section 5 details our app-
roach. Section 6 explains the design and implementation. Section 7 presents the
evaluation results. Section 8 concludes the paper.

2 Related Work

This section discusses the closely related work: (1) data-flow based test genera-
tion, (2) directed symbolic execution, and (3) infeasible test objective detection.

2.1 Data-Flow Based Test Generation

Data-flow testing has been investigated in the past four decades [34–36,54,93].
Existing work can be categorized into five main categories according to the
testing techniques. We only discuss typical literature work here. Readers can
refer to a recent survey [86] for details.

The most widely used approach to is search-based testing, which utilizes meta-
heuristic search techniques to identify test inputs for target def-use pairs. Gir-
gis [41] first uses Genetic Algorithms (GA) for Fortran programs, and Ghiduk
et al. [39] use GA for C++ programs. Later, Vivanti et al. [89] and Denaro
et al. [29] apply GA to Java programs by the tool EvoSuite. Some optimization-
based search algorithms [38,69,80,81] are also used, but they have only eval-
uated on small programs without available tools. Random testing is a base-
line approach for data-flow testing [3,29,39,41,42]. Some researchers use col-
lateral coverage-based testing [45], which exploits the observation that the test
case that satisfies one target test objective can also “accidentally” cover the
others. Malevris et al. [62] use branch coverage to achieve data-flow coverage.
Merlo et al. [68] exploit the coverage implication between data-flow coverage and
statement coverage to achieve intra-procedural data-flow testing. Other efforts
include [65,66,77,78]. Some researchers use traditional symbolic execution. For

Towards Efficient Data-Flow Test Data Generation 261

example, Girgis [40] develops a simple symbolic execution system for DFT, which
statically generates program paths w.r.t. a certain control-flow criterion (e.g.,
branch coverage), and then selects those executable ones that can cover the def-
use pairs of interest. Buy et al. [17] adopts three techniques, i.e., data-flow anal-
ysis, symbolic execution and automated deduction to perform data-flow testing.
However, they have provided little evidence of practice. Hong et al. [51] adopt
classic CTL-based model checking to generate data-flow test data. Specifically,
the program is modeled as a Kripke structure and the requirements of data-flow
coverage are characterized as a set of CTL property formulas. However, this
approach requires manual intervention, and its scalability is also unclear.

Despite the plenty of work on data-flow based testing, they are either ineffi-
cient or imprecise. Our work is the first one to leverage symbolic execution and
software model checking techniques to achieve DFT efficiently and precisely.

2.2 Directed Symbolic Execution

Much research [31,61,64,95,97] has been done to guide path search toward a
specified program location via symbolic execution. Do et al. [31] leverage data
dependency analysis to guide the search to reach a particular program location,
while we use dominator analysis. Ma et al. [61] suggest a call chain backward
search heuristic to find a feasible path, backward from the target program loca-
tion to the entry. However, it is difficult to adapt this approach on data-flow
testing, because it requires that a function can be decomposed into logical parts
when the target locations (e.g. the def and the use) are located in the same func-
tion. But decomposing a function itself is a nontrivial task. Zamfir et al. [97]
narrow the path search space by following a limited set of critical edges and
a statically-necessary combination of intermediate goals. On the other hand,
our approach finds a set of cut points from the program entry to the target
locations, which makes path exploration more efficient. Xie et al. [95] integrate
fitness-guided path search strategy with other heuristics to reach a program
point. The proposed strategy is only efficient for those problems amenable to
its fitness functions. Marinescu et al. [64] use a shortest distance-based guided
search method (like the adapted SDGS heuristic in our evaluation) with other
heuristics to quickly reach the line of interest in patch testing. In contrast, we
combine several search heuristics to guide the path exploration to traverse two
specified program locations (i.e., the def and use) for data flow testing.

2.3 Detecting Infeasible Test Objectives

As for detecting infeasible test objectives, early work uses constraint-based tech-
nique [44,71]. Offutt and Pan et al. [71] extract a set of path constraints that
encode the test objectives from the program under test. Infeasible test objec-
tives can be identified if the constraints do not have solutions. Recent work by
Beckman et al. [10], Baluda et al. [6–8], Bardin et al. [9] use weakeast precondi-
tion to identify infeasible statements and branches. For example, Baluda et al.
use model refinement with weakest precondition to exclude infeasible branches;

262 T. Su et al.

Bardin et al. applies weakest precondition with abstract interpretation to elim-
inate infeasible objectives. Marcozzi et al. [63] also use weakest precondition
to identify polluting test objectives (including infeasible, duplicate and sub-
sumed) for condition, MC/DC and weak mutation coverage. In contrast, our
testing framework mainly use the CEGAR-based model checking technique to
identify infeasible def-use pairs for data-flow testing. One close work is from
Daca et al. [28], who combine concolic testing (CREST) and model checking
(CPAchecker) to find a test suite w.r.t. branch coverage. Our work has some
distinct differences with theirs. First, they target at branch coverage, while we
enforce data-flow testing. Second, they directly modify the existing generic path
search strategies of CREST, and backtrack the search if the explored direction
has been proved as infeasible by CPAchecker. As a result, the performance of
their approach (i.e., avoid unnecessary path explorations) may vary across differ-
ent search strategies due to the paths are selected in different orders. In contrast,
we implement a designated search strategy to guide symbolic execution, and real-
ize the reduction approach directly on model checkers. Although our approach is
simple, it can treat model checkers as black-box tools without any modification
and seamlessly integrate with KLEE. Model checking techniques have recently
been adapted to aid software testing [15,37].

3 Problem Definition, Preliminaries and Challenges

3.1 Problem Definition

Definition 1 (Program Paths). Two kinds of program paths, i.e., control
flow paths and execution paths are distinguished during data-flow testing. Con-
trol flow paths are the paths from the control flow graph of the program under
test, which abstract the flow of control. Execution paths are driven by concrete
program inputs, which represent dynamic program executions. Both of them can
be represented as a sequence of control points (denoted by line numbers), e.g.,
l1, . . . , li, . . . , ln.

Definition 2 (Def-use Pair). The test objective of data-flow testing is referred
as a def-use pair, denoted by du(ld, lu, v). Such a pair appears when there exists
a control flow path that starts from the variable definition statement ld (or the
def statement in short), and then reaches the variable use statement lu (or the
use statement in short), but no statements on the subpaths from ld to lu redefine
the variable v.

In particular, two kinds of def-use pairs are distinguished. For a def-use pair
(ld, lu, v), if the variable v is used in a computation statement at lu, the pair
is a computation-use (c-use for short), denoted by dcu(ld, lu, v). If v is used in
a conditional statement (e.g., an if or while statement) at lu, the pair is a
predicate use (p-use for short). At this time, two def-use pairs appear and can
be denoted by dpu(ld, (lu, lt), v) and dpu(ld, (lu, lf), v), where (lu, lt) and (lu, lf)
represents the true and the false edge of the conditional statement, respectively.

Towards Efficient Data-Flow Test Data Generation 263

Definition 3 (Data-flow Testing). Given a def-use pair du(ld, lu, v) in pro-
gram P under test, the goal of data-flow testing1 is to find an input t that induces
an execution path p that covers the variable definition statement at ld, and then
covers variable use statement at lu, but without covering any redefinition state-
ments w.r.t v, i.e., the subpath from ld to lu is a def-clear path. The requirement
to cover all def-use pairs at least once is called all def-use coverage criterion2 in
data-flow testing.

In particular, for a c-use pair, t should cover ld and lu; for a p-use pair, t
should cover ld and its true or false branch, i.e., (lu, lt) and (lu, lf), respectively.

3.2 Symbolic Execution

Our data-flow testing approach is mainly built on the symbolic execution tech-
nique. The idea of symbolic execution (SE) was initially described in [26,58].
Recent significant advances in the constraint solving techniques have made SE
possible for testing real-world program by systematically exploring program
paths [20]. Specifically, two variants of modern SE techniques exist, i.e., con-
colic testing (implemented by DART [43], CUTE [79], CREST [16], CAUT [85],
etc) and execution-generated testing (implemented by EXE [19] and KLEE [18]),
which mix concrete and symbolic execution together to improve scalability. In
essence, SE uses symbolic values in place of concrete values to represent input
variables, and represent other program variables by the symbolic expressions in
terms of symbolic inputs. Typically, SE maintains a symbolic state σ, which
maps variables to (1) the symbolic expressions over program variables, and (2)
a symbolic path constraint pc (a quantifier-free first order formula in terms of
input variables), which characterizes the set of input values that can execute a
specific program execution path p. Additionally, σ maintains a program counter
that refers to the current instruction for execution. At the beginning, σ is ini-
tialized as an empty map and pc as true. During execution, SE updates σ when
an assignment statement is executed; and forks σ when a conditional statement
(e.g., if(e) s1 else s2) is executed. Specifically, SE will create a new state σ′ from
the original state σ, and updates the path constrain of σ′ as pc ∧ ¬(e), while
updates that of σ as pc ∧ (e). σ and σ′, respectively, represent the two program
states that fork at the true and false branch of the conditional statement. By
querying the satisfiability of updated path constraints, SE decides which one
to continue the exploration. When an exit or certain runtime error is encoun-
tered, SE will terminate on that statement and the concrete input values will be
generated by solving the corresponding path constraint.
1 In this paper, we focus on the problem of classic data-flow testing [39,89], i.e.,

finding an input for a given def-use pair at one time. We do not consider the case
where some pairs can be accidentally covered when targeting one pair, since this has
already been investigated in collateral coverage-based approach [65,66].

2 We follow the all def-use coverage defined by Rapps and Weyuker [75,76], since
almost all of the literature that followed uses or extends this definition, as revealed
by a recent survey [86].

264 T. Su et al.

Fig. 1. Workflow of the combined approach for data-flow testing, which combines sym-
bolic execution and software model checking (the CEGAR-based model checking in
particular).

Challenges. Although SE is an effective test case generation technique for tra-
ditional coverage criteria, it faces two challenges in our context:

1. The SE-based approach by nature faces the notorious path-explosion problem.
Despite the existence of many generic search strategies, it is challenging, in
reasonable time, to find an execution path from the whole path space to cover
a given pair.

2. The test objectives from data-flow testing include feasible and infeasible pairs.
A pair is feasible if there exists an execution path which can pass through it.
Otherwise it is infeasible. Without prior knowledge about whether a target
pair is feasible or not, the SE-based approach may spend a large amount of
time, in vain, to cover an infeasible def-use pair.

Section 4 will give an overview of our approach, and illustrate how our com-
bined approach tackles these two challenges via an example in Fig. 2.

4 Approach Overview

Figure 1 shows the workflow of our combined approach for data-flow testing. It
takes as input the program source code, and follows the three steps below to
achieve automated, efficient DFT. (1) The static analysis module uses data-flow
analysis to identify def-use pairs, and adopts dominator analysis to analyze the
sequence of cut points for each pair (see Sect. 5.1). (2) For each pair, the sym-
bolic execution module adopts the cut point-guided search strategy to efficiently
find an execution path that could cover it within a specified time bound (see
Sect. 5.2). (3) For the remaining uncovered (possibly infeasible) pairs, the soft-
ware model checking module encodes the test obligation of each def-use pair into
the program under test, and enforces reachability checking (also within a time
bound) on each of them. The model checker can eliminate infeasible ones with
proofs and may also identify feasible ones (see Sect. 5.3). If the testing resource
permits, the framework can iterate between (2) and (3) by lifting the time bound

Towards Efficient Data-Flow Test Data Generation 265

Table 1. Running steps of the enhanced symbolic execution approach for data-flow
testing.

Steps Pending Path Priority Queue Selected Path Path Constraint (pc)

1 1: l4T , 2: l4F (l4, 2)
1, (l4, 2)2 1 y > 0

2 2: l4F , (l9, 1)
4, 4 y > 0 ∧ y == 0

3: l4T , l9T , 4: l4T , l9F (l4, 2)
2, (l9, 4)3

3 2: l4F , 3: l4T , l9T (l4, 2)
2, (l9, 4)3 3 y > 0 ∧ y �= 0

4 2: l4F , (l4, 2)
2, prune 5,6, y ≤ 0

5: l4T , l9T , l9T , 6: l4T , l9T , l9F (l9, 1)
5, (l9, 1)6 select 2

5 7: l4F , l9T , 8: l4F , l9F (l9, 4)
7, (l9, 1)8 8 y < 0 ∧ y �= 0

6 7: l4F , l9T , (l13, 1)
9, 9 y ≤ 0 ∧ y �= 0

9: l4F , l9F , l13T , 10: l4F , l9F , l13F (l9, 4)
7, (l13,∞)10

7 7: l4F , l9T , 10: l4F , l9F , l13F (l13, 1)
12, 12 y == 0 ∧ x �= 0

11: l4F , l9F , l13T , l14T , 12: l4F , l9F , l13T , l14F (l9, 4)
7, (l13,∞)10, (l14,∞)11

to continue test those remaining uncovered pairs. By this way, our framework
outputs test cases for feasible test objectives, and weeds out infeasible ones by
proofs—without any false positives.

4.1 Illustrative Example

Figure 2 shows an example program power, which accepts two integers x and y,
and outputs the result of xy. The right sub-figure shows the control flow graph
of power.

Step 1: Static Analysis. For the variable res (it stores the computation result
of xy), the static analysis procedure can find two typical def-use pairs with their
cut points:

du1 = (l8, l17, res) (1)
du2 = (l8, l18, res) (2)

Below, we illustrate how our combined approach can efficiently achieve DFT
on these two def-use pairs—SE can efficiently cover the feasible pair du1, and
CEGAR can effectively conclude the infeasibility of du2.

Step 2: SE-Based Data-Flow Testing. When SE is used to cover du1, assume
under the classic depth-first search (DFS) strategy [16,18,43,79,85,88] the true
branches of the new execution states (ESs) are always first selected, we can get
an execution path p after unfolding the while loops n times.

p = l4, l5, l8, l9, l10, l11, l9, l10, l11, . . .
︸ ︷︷ ︸

repeated n times

, l9, l13, l14, l15 (3)

Here p already covers the definition statement (at l8) w.r.t. the variable res. In
order to cover the use statement (at l17), SE will exhaustively execute program
paths by exploring the remaining unexecuted branch directions. However, the
path (state) explosion problem—hundreds of branch directions exist (including

266 T. Su et al.

Fig. 2. An example: power.

those branches from the new explored paths)—will drastically slow down data-
flow testing.

To mitigate this problem, the key idea of our approach is to reduce unneces-
sary path exploration and provide more guidance during execution. To achieve
this, we designed a novel cut-point guided search algorithm (CPGS) to enhance
SE, which leverages several key elements to prioritize the selection of ESs. First,
we introduce a guided search algorithm, which leverages two metrics: (i) cut
points, a sequence of control points that must be traversed through for any paths
that could cover the target pair. For example, the cut points of du1 are {l4, l8,
l9, l13, l14, l17}. These critical points are used as intermediate goals during the
search to narrow down the exploration space of SE. (ii) instruction distance, the
distance between an ES and a target search goal in terms of number of program
instructions on the control flow graph. Intuitively, an ES with closer (instruc-
tion) distance toward the goal can reach it more quickly. For example, when SE
reaches l9, it can fork two execution states, i.e., following the true and the false
branches. If our target goal is to reach l13, the false branch will be prioritized
since it has 1-instruction distance toward l13, while the opposite branch has 3-
instruction distance. Second, CPGS is enhanced by a backtrack strategy based
on the number of executed instructions, which reduces the likelihood of trapping
in tight loops. Third, we also introduce a redefinition path pruning technique,
which detects and removes redundant ESs.

Table 1 shows the steps taken by our cut-point guided search algorithm to
cover du1. At the beginning, SE forks two ESs for the if statement at l4, which

Towards Efficient Data-Flow Test Data Generation 267

produces two pending paths3, i.e., l4T and l4F
4. In detail, we maintain a tuple

(c, d)i that records the two aforementioned metrics for each pending path i in a
priority queue, where c is the deepest covered cut point, and d is the shortest
distance between the corresponding ES and the next target cut point. In each
step, we choose the pending path i with the optimal value (c, d). For example, in
Step 1, Path 1 and Path 2 have the same values (l4, 2), and thus we randomly
select one path, e.g., Path 1.

Later, in Step 2, Path 1 produces two new pending paths, Path 3 and Path
4. We choose Path 4 since it has the best value: it has sequentially covered the
cut points {l4, l8, l9}, and it is closer to the next cut point l13 than Path 3 on the
control flow graph, so it is more likely to reach l13 more quickly. However, its pc
is unsatisfiable. As a result, we give up exploring this pending path, and choose
Path 3 (because it covers more cut points than Path 1) in the next Step 3, which
induces Path 5 and Path 6. At this time, our algorithm detects the variable res
is redefined at l10 on Path 5 and Path 6, according to the definition of DFT, it
is useless to explore these two paths. So, Path 5 and Path 6 are pruned. This
redefinition path pruning technique can rule out these invalid paths to speed up
DFT. Note despite only two pending paths are removed in this case, a number
of potential paths have actually been prevented from execution (see the example
path in (3)), which can largely improve the performance of our search algorithm.

We choose the only remaining Path 2 to continue the exploration, which
produces Path 7 and Path 8 in Step 5. Again, we choose Path 8 to explore,
which induces Path 9 and 10 in Step 6. Here, for Path 10, since it cannot reach
the next target point l14, its distance is set as ∞. As last, Path 9 is selected, and
our algorithm finds Path 12 which covers du1, and by solving its path constraint
y == 0 ∧ x �= 0, we can get one test input, e.g., t = (x �→ 1, y �→ 0), to satisfy
the pair. The above process is enforced by the cut-point guided search, which
only takes 7 steps to cover du1. As we will demonstrate in Sect. 7, the cut point-
guided search strategy is more effective for data-flow testing than the existing
state-of-the-art search algorithms.

Step 3: CEGAR-Based Data-Flow Testing. In data-flow testing, classic
data-flow analysis techniques [23,47,72] statically identify def-use pairs by ana-
lyzing data-flow relations. However, due to its conservativeness and limitations,
infeasible pairs may be included, which greatly affects the effectiveness of SE for
DFT. For example, the pair du2 is identified as a def-use pair since there exists
a def-clear control-flow path (i.e., l8, l9, l13, l18) that can start from the variable
definition (i.e., l8) and reach the use (i.e., l18). However, du2 is infeasible (i.e.,
no test inputs can satisfy it): If we want to cover its use statement at l18, we
cannot take the true branch of l13, so y > 0 should hold. However, if y > 0, the
variable exp will be assigned a positive value at l5 by taking the true branch of
l4, and the redefinition statement at l10 w.r.t. the variable res will be executed.

3 An pending path indicates a not fully-explored path (corresponding to an untermi-
nated state).

4 We use the line number followed by T or F to denote the true or false branch of the
if statement at the corresponding line.

268 T. Su et al.

Fig. 3. The transformed function power with the test requirement encoded in high-
lighted statements.

As a result, such a path that covers the pair and avoids the redefinition at the
same time does not exist, and du2 is an infeasible pair. It is rather difficult for
SE to conclude the feasibility unless it checks all program paths, which however
is almost impossible due to infinite paths in real-world programs.

To counter the problem, our key idea is to reduce the data-flow testing prob-
lem into the path reachability checking problem in software model checking. We
encode the test obligation of a target def-use pair into the program under test,
and leverage the power of model checkers to check its feasibility. For example, in
order to check the feasibility of du2, we instrument the test requirement into the
program as shown in Fig. 3. We first introduce a boolean variable cover_flag at
l2, and initialize it as false, which represents the coverage status of this pair.
After the definition statement, the variable cover_flag is set as true (at l7);
cover_flag is set as false immediately after all the redefinition statements (at
l10). We check whether the property cover_flag==true holds (at l14) just before
the use statement. If the check point is reachable, the pair is feasible and a test
case will be generated. Otherwise, the pair is infeasible, and will be excluded in
the coverage computation. As we can see, this model checking based approach
is flexible and can be fully automated.

Combined SE-CEGAR Based Data-Flow Testing . In data-flow testing,
the set of test objectives include feasible and infeasible pairs. As we can see from
the above two examples, SE, as a dynamic path-based exploration approach,
can efficiently cover feasible pairs; while CEGAR, as a static software model
checking approach, can effectively detect infeasible pairs (may also cover some
feasible pairs).

Towards Efficient Data-Flow Test Data Generation 269

The figure below shows the relation of these two approaches for data-flow
testing. The white part represents the set of feasible pairs, and the gray part
the set of infeasible ones. The SE-based approach is able to cover feasible pairs
efficiently, but in general, due to the path explosion problem, it cannot detect
infeasible pairs (this may waste a lot of testing time). The CEGAR-based app-
roach is able to identify infeasible pairs efficiently (but may take more time to
cover feasible ones). As a result, it is beneficial to combine these two techniques
to complement each other with their strengths. Section 7 will demonstrate our
observations, and validate that the combined approach can indeed achieve more
efficient data-flow testing by reducing testing time as well as improving coverage.

feasible infeasible

Symbolic
Execution Model

Checking

def-use pairs

5 Our Approach

This section explains the details of our approach. Our approach includes three
steps: (1) static analysis, (2) symbolic execution based data flow testing and (3)
software model checking based data flow testing.

5.1 Static Analysis

To improve the performance of SE-based data-flow testing, we use dominator
analysis to analyze a set of cut points to effectively guide path exploration. In
the following, we give some definitions.

Definition 4 (Dominator). In a control-flow graph, a node m dominates a
node n if all paths from the program entry to n must go through m, which is
denoted as m � n. When m �= n, we say m strictly dominates n. If m is the
unique node that strictly dominates n and does not strictly dominate other nodes
that strictly dominate n, m is an immediate dominator of n, denoted as m �I n.

Definition 5 (Cut Point). Given a def-use pair du(ld, lu, v), its cut points are
a sequence of critical control points c1, . . . , ci, . . . , cn that must be passed through
in succession by any control flow paths that cover this pair. The latter control
point is the immediate dominator of the former one, i.e., c1 �I . . . ci �I ld �I

. . . cn �I lu. Each control point in this sequence is called a cut point.

Note the def and the use statement (i.e., ld and lu) of the pair itself also
serve as the cut points. These cut points are used as the intermediate goals
during path search to narrow down the search space. For illustration, consider
the figure below: Let du(ld, lu, v) be the target def-use pair, its cut points are
{l1, l3, ld, l6, lu}. Here the control point l2 is not a cut point, since the path

270 T. Su et al.

l1, l3, ld, l4, l6, lu can be constructed to cover the pair. For the similar reason, the
control points l4 and l5 are not its cut points.

entry

l_1

l_2

l_3 l_d

l_5

l_4

l_6

l_u

In practice, we use standard iterative data-flow analysis [47,72] to identify
def-use pairs from the program under test. We give the implementation details
in Sect. 6.
Algorithm 1: SE-based Data-flow Testing

Input: du(ld, lu, x): a given def-use pair
Input: C = {c1, c2, . . . , cn}: the cut points of du
Output: input t that satisfies du or nil if none is found within the given time bound

1 let W be a worklist of execution states
2 let ES0 be the initial execution state
3 W ← W ∪ {ES0}

// the core process of symbolic execution
4 repeat
5 ExecutionState ES ← selectState(W)
6 while ES.instructionType!=FORK or EXIT do
7 ES.executeInstruction()

8 if ES.instructionType=EXIT then W ← W \ {ES}
9 if ES.instructionType = FORK then

10 Instruction Fr = ES.currentInstruction;
11 ExecutionState ES′ ← new executionState(ES)
12 ES.newNode ← Fr(T)
13 ES′.newNode ← Fr(F)
14 W ← W ∪ {ES′}

15 PendingPath p ← ES.path
16 if p covers du then return t ← getTestCase(ES)

// the redefinition path pruning heuristic
17 if variable x (in du) is redefined by p then
18 W ← W \ {ES, ES′}

19 until W .size()=0 or timeout()

// the core algorithm of execution state selection
20 Procedure selectState(reference worklist W)
21 let ES′ be the next selected execution state

// j is the index of a cut point, w is the state weight
22 j ← 0, w ← ∞
23 foreach ExecutionState ES ∈ W do
24 PendingPath pp ← ES.path

// c1, . . . , ci are sequentially-covered, while ci+1 not yet
25 i ← index of the cut point ci on pp

26 StateWeight sw ← distance(es, ci+1)−2 + instructionsSinceCovNew(es)−2

27 if i > j ∨ (i == j ∧sw > w) then
28 ES′ ← ES, j ← i, w ← sw

29 W ← W \ {ES′}
30 return ES′

Towards Efficient Data-Flow Test Data Generation 271

5.2 SE-Based Approach for Data-Flow Testing

This section explains the symbolic execution-based approach for data-flow test-
ing. Algorithm 1 gives the details. This algorithm takes as input a target def-use
pair du and its cut points C, and either outputs the test case t that satisfies du,
or nil if it fails to find a path that can cover du.

It first selects one execution state ES from the worklist W which stores all the
execution states during symbolic execution. It then executes the current program
instruction referenced by ES, and update ES according to the instruction type
(Lines 6–14, cf. Sect. 3.2). Basically, one instruction can be one of three types:
sequential instruction (e.g., assignment statements), forking instruction (e.g., if
statements, denoted as FORK), and exit instruction (e.g., program exits or run-
time errors, denoted as EXIT). When it encounters sequential instructions, ES
is updated accordingly by function executeInstruction (Lines 6–7). Specifically,
function executeInstruction will internally (1) execute the current instruction,
and (2) update ES (including the symbolic state, the reference to next instruc-
tion and the corresponding instruction type). When it encounters FORK instruc-
tions, one new execution state ES′ will be created. The two states ES and ES′

will explore both sides of the fork, respectively, and the corresponding subpaths
of ES and ES′ will be updated to ES.path+Fr(T) and ES.path+Fr(F), respec-
tively (Lines 9–14). Here, Fr denotes the forking point, and T and F represent
the true and false directions, respectively. If the target pair du is covered by the
pending path p of ES, a test input t will be generated (Line 16). If the variable
x of du is redefined on p between the def and use statement, a redefinition path
pruning heuristic will remove those invalid states (Lines 17–18, more details will
be explained later). The algorithm will continue until either the worklist W is
empty or the given testing time is exhausted (at Line 19).

The algorithm core is the state selection procedure, i.e., selectState (detailed
at Lines 20–30), which integrates several heuristics to improve the overall effec-
tiveness. Figure 4 conceptually shows the benefits of their combination (the red
path is a valid path that covers the pair), which can efficiently steer exploration
towards the target pair, and reduce as many unnecessary path explorations as
possible: (1) the cut point guided search guides the state exploration towards the
target pair more quickly; (2) the backtrack strategy counts the number of exe-
cuted instructions to prevent the search from being trapped in tight loops, and
switches to alternative search directions; and (3) the redefinition path pruning
technique effectively prunes redundant search space. In detail, we use Formula 4
to assign the weights to all states, and achieve the heuristics (1) and (2).

state_weight(es) = (cmax,
1
d2

+
1
i2
) (4)

where, ES is an execution state, cmax is the deepest covered cut point, d is the
instruction distance toward the next uncovered cut point, and i is the number of
executed instructions since the last new instruction have been covered. Below,
we explain the details of each heuristic.

272 T. Su et al.

Fig. 4. Enhanced path exploration in symbolic execution: combine cut-point guided
search, backtrack strategy and redefinition path pruning. Each subfigure denotes the
execution tree generated by symbolic execution.

Cut Point Guided Search. The cut-point guided search strategy (at Lines
23–28) aims to search for the ES whose pending path has covered the deepest
cut point, and tries to reach the next goal, i.e., the next uncovered cut point, as
quickly as possible. For an ES, its pending path is a subpath that starts from
the program entry and reaches up to the program location of it. If this path has
sequentially covered the cut point c1, c2, . . . , ci but not ci+1, ci is the deepest
covered cut point, and ci+1 is the next goal to reach. The strategy always prefers
to select the ES that has covered the deepest cut point (at Lines 26–28, indicated
by the condition i > j). The intuition is that the deeper cut point an ES can
reach, the closer the ES toward the pair is.

When more than one ES covers the deepest cut point (indicated by the
condition i==j at Line 27), the ES that has the shortest distance toward next
goal will be preferred (at Lines 26–28). The intuition is that the closer the
distance is, the more quickly the ES can reach the goal. We use dist(es, ci+1)
to present the distance between the location of es and the next uncovered cut
point ci+1. The distance is approximated as the number of instructions along
the shortest control-flow path between the program locations of es and ci+1.

Backtrack Strategy. To avoid the execution falling into the tight loops, we
assign an ES with lower priority if the ES is not likely to cover new instructions.
In particular, for each ES, the function instrsSinceCovNew, corresponding to i
in Formula (4), counts the number of executed instructions since the last new
instruction is covered (at Line 26). The ES, which has a larger value of instrsS-
inceCovNew, is assumed that it has lower possibility to cover new instructions.
Intuitively, this heuristic prefers the ES which is able to cover more new instruc-
tions, if a ES does not cover new instructions for a long time, the strategy will
backtrack to another ES via lowering the weight of the current ES.

Redefinition Path Pruning. A redefinition path pruning technique checks
whether the selected ES has redefined the variable x in du. If the ES is invalid
(i.e., its pending path has redefined x), it will be discarded and selectState
will choose another one (at Lines 17–18). The reason is that, according to the

Towards Efficient Data-Flow Test Data Generation 273

Fig. 5. Paradigm of CEGAR-based Model Checking

definition of DFT (cf. Definition 3), it is impossible to find def-clear paths by
executing those invalid ESs.

Further, by utilizing the path-sensitive information from SE, we can detect
variable redefinitions, especially caused by variable aliases, more precisely. Vari-
able aliases appear when two or more variable names refer to the same memory
location. So we designed a lightweight variable redefinition detection algorithm
in our framework. Our approach operates upon a simplified three-address form
of the original code5, so we mainly focus on the following statement forms where
variable aliases and variable redefinitions may appear:

– Alias inducing statements: (1) p:=q (∗p is an alias to ∗q), (2) p:=&x (∗p is
an alias to x)

– Variable definition statements: (3) ∗p:=y (∗p is defined by y), (4) v:=y (v is
defined by y)

Here, p and q are pointer variables, x and y non-pointer variables, and “:=” the
assignment operator.

Initially, a set A is maintained, which denotes the variable alias set w.r.t.
the variable x of du. At the beginning, it only contains x itself. During path
exploration, if the executed statement is (1) or (2), and ∗q or x ∈ A, ∗p will be
added into A since ∗p becomes an alias of x. If the executed statement is (1),
and ∗q �∈ A but x ∈ A, ∗p will be excluded from A since it becomes an alias of
another variable instead of x. If the executed statement is (3) or (4), and ∗p ∈ A
or x ∈ A, the variable is redefined by another variable y.

5.3 CEGAR-Based Approach for Data-Flow Testing

Counter-example guided abstract refinement (CEGAR) is a well-known software
model checking technique that statically proves program correctness w.r.t. prop-
erties (or specifications) of interest [56]. Figure 5 shows the basic paradigm of
CEGAR, which typically follows an abstract-check-refine paradigm. Given the
program P (i.e., the actual implementation) and a safety property φ of inter-
est, CEGAR first abstracts P into a model A (typically represented as a finite
5 We use CIL as the C parser to transform the source code into an equivalent simpli-

fied form using the –dosimplify option, where one statement contains at most one
operator.

274 T. Su et al.

automaton), and then checks the property φ against A. If the abstract model A
is error-free, then so is the original program P . If it finds a path on the model
A that violates the property φ, it will check the feasibility of this path: is it a
genuine path that can correspond to a concrete path in the original program P ,
or due to the result of the current coarse abstraction? If the path is feasible,
CEGAR returns a counter-example path C to demonstrate the violation of φ.
Otherwise, CEGAR will utilize this path C to refine A by adding new predicates,
and continue the checking until it either finds a genuine path that violates φ or
proves that φ is always satisfied in P . Or since this model checking problem itself
is undecidable, CEGAR does not terminate and cannot conclude the correctness
of φ.

To exploit the power of CEGAR, our approach reduces the problem of data
flow testing to the problem of model checking. The CEGAR-based approach can
operate in two phases [12] to generate tests, i.e., model checking and tests from
counter-examples. (1) It first uses model checking to check whether the specified
program location l is reachable such that the predicate of interest q (i.e., the
safety property) can be satisfied at that point. (2) If l is reachable, CEGAR will
return a counter-example path p that establishes q at l, and generate a test case
from the corresponding path constraint of p. Otherwise, if l is not reachable,
CEGAR will conclude no test inputs can reach l.

The key idea is to encode the test obligation of a target def-use pair into the
program under test. We instrument the original program P to P ′, and reduce
the test generation for P to path reachability checking on P ′. In particular, we
follow three steps: (1) We introduce a variable cover_flag into P , which denotes
the cover status of the target pair, and initialize it as false. (2) The variable
cover_flag is set as true immediately after the def statement, and set as false
immediately after all redefinition statements. (3) Before the use statement, we
set the target predicate as cover_flag==true. As a result, if the use statement
is reachable when the target predicate holds, we can obtain a counter-example
(i.e., a test case) and conclude the pair is feasible. Otherwise, if unreachable,
we can safely conclude that the pair is infeasible (or since the problem itself is
undecidable, the algorithm does not terminate, and gives unknown).

Generability of the SMC-Based Approach. This reduction approach is
flexible to implement on any CEGAR-based model checkers. It is also applica-
ble for other software model checking techniques, e.g., Bounded Model Checking
(BMC). Given a program, BMC unrolls the control flow graph for a fixed number
of k steps, and checks whether the property p at a specified program location
l is violated or not. Different from the modern (dynamic) symbolic execution
techniques, BMC executes on pure symbolic inputs without using any concrete
input values, and usually aims to systematically checking reachability within
given bounds. Different from CEGAR, BMC searches on all program computa-
tions without abstraction and typically backtracks the search when a given (loop
or search depth) bound is reached. Although BMC in general cannot prove infea-
sibility as certain, in Sect. 7 we will show the BMC-based approach can still serve
as a heuristic-criterion to identify hard-to-cover (probably infeasible) pairs and

Towards Efficient Data-Flow Test Data Generation 275

particularly effective for specific types of programs. In fact, the infeasible pairs
concluded by BMC can be regarded as valid modulo the given checking bounds.

6 Framework Design and Implementation

We realized our hybrid data-flow testing framework for C programs. In our orig-
inal work [84], we implemented the SE-based approach on our own concolic
testing based tool CAUT [85,91], while in this article we built the enhanced
SE-based approach on KLEE [18], a robust execution-generated testing based
symbolic execution engine, to fully exhibit its feasibility. As for the SMC-based
approach, we instantiated it with two different types of software model checking
techniques, i.e., CEGAR and BMC. In all, our framework combines the SE-based
and SMC-based approaches together to achieve efficient DFT.

In the static analysis phase, we identify def-use pairs, cut points, and related
static program information (e.g., variable definitions and aliases) by using
CIL [70] (C Intermediate Language), which is an infrastructure for C program
analysis and transformation. We first build the control-flow graph (CFG) for
each function in the program under test, and then construct the inter-procedural
CFG (ICFG) for the whole program. We perform standard iterative data-flow
analysis techniques [47,72], i.e., reaching definition analysis, to compute def-use
pairs. For each variable use, we compute which definitions on the same variable
can reach the use through a def-clear path on the control-flow graph. A def-use
pair is created as a test objective for each use with its corresponding defini-
tion. We treat each formal parameter variable as defined at the beginning of its
function and each argument parameter variable as used at its function call site
(e.g., library calls). For global variables, we treat them as initially defined at the
beginning the entry function (e.g., the main function), and defined/used at any
function where they are defined/used.

In the current implementation, we focus on the def-use pairs with local vari-
ables (intra-procedural pairs) and global variables (inter-procedural pairs). Fol-
lowing prior work on data-flow testing [89], we currently do not consider the
def-use pairs induced by pointer aliases. Thus, we may miss some def-use pairs,
but we believe that this is an independent issue (not the focus of this work)
and does not affect the effectiveness of our testing approach. More sophisticated
data-flow analysis techniques (e.g., dynamic data-flow analysis [30]) or tools
(e.g., Frama-C [59]) can be used to mitigate this problem.

Specifically, to improve the efficiency of state selection algorithm (cf. Algo-
rithm 1) in KLEE, we use the priority queue to sort execution states according
to their weights. The algorithmic complexity is O(n log n) (n is the number of
execution states), which is much faster than using a list or array. The software
model checkers are used as black-box to enforce data-flow testing. The benefit
of this design choice is that we can flexibly integrate any model checker without
any modification or adaption. CIL transforms the program under test into a
simplified code version, and encodes the test requirements of def-use pairs into
the program under test. Both SE-based and SMC-based tools takes as input

276 T. Su et al.

the same CIL-simplified code. Function stubs are used to simulate C library
functions such as string, memory and file operations to improve the ability of
symbolic reasoning. To compute the data-flow coverage during testing, we imple-
ment the classic last definition technique [52] in KLEE. We maintain a table of
def-use pairs, and insert probes at each basic block to monitor the program
execution. The runtime routine records each variable that has been defined and
the block where it was defined. When a block that uses this defined variable is
executed, the last definition of this variable is located, we check whether the pair
is covered. Our implementations are publicly available at [87].

7 Evaluation

This section aims to evaluate whether our combined testing approach can achieve
efficient data-flow testing. In particular, we intend to investigate (1) whether the
core SE-based approach can quickly cover def-use pairs; (2) whether the SMC-
based reduction approach is feasible and practical; and (3) whether the combined
approach can be more effective for data-flow testing.

7.1 Research Questions

– RQ1: In the data-flow testing w.r.t. all def-use coverage, what is the perfor-
mance difference between different existing search strategies (e.g., DFS, RSS,
RSS-MD2U, SDGS) and CPGS (our cut point guided path search strategy) in
terms of testing time and number of covered pairs for the SE-based approach?

– RQ2: How is the practicability of the CEGAR-based reduction approach
as well as the BMC-based approach in terms of testing time and number of
identified feasible and infeasible pairs?

– RQ3: How efficient is the combined approach, which complements the SE-
based approach with the SMC-based approach, in terms of testing time and
coverage level, compared with the SE-based approach or the SMC-based app-
roach alone?

7.2 Evaluation Setup

Testing Environment. All evaluations were run on a 64bit Ubuntu 14.04 phys-
ical machine with 24 processors (2.60 GHz Intel Xeon(R) E5-2670 CPU) and 94
GB RAM.

Framework Implementations. The SE-based approach of our hybrid testing
framework was implemented on KLEE (v1.1.0), and the SMC-based approach
was implemented on two different software model checking techniques, CEGAR
and BMC. In particular, we chose three different software model checkers6, i.e.,
BLAST [13] (CEGAR-based, v2.7.3), CPAchecker [14] (CEGAR-based, v.1.7)

6 We use the latest versions of these model checkers at the time of writing.

Towards Efficient Data-Flow Test Data Generation 277

and CBMC [24] (BMC-based, v5.7). We chose different model checkers, since we
intend to gain more overall understandings of the practicality of this reduction
approach. Note that the CEGAR-based approach can give definite answers of
the feasibility, while the BMC-based approach is used as a heuristic-criterion to
identify hard-to-cover (probably infeasible) pairs.

Program Subjects. Despite data-flow testing has been continuously investi-
gated in the past four decades, the standard benchmarks for evaluating data-
flow testing techniques are still missing. To this end, we took substantial efforts
and dedicatedly constructed a repository of benchmark subjects by follow-
ing these steps. First, we collected the subjects from prior work on data-
flow testing. We conducted a thorough investigation on all prior work (99
papers [83] in total) related to data-flow testing, and searched for the adopted
subjects. After excluding the subjects whose source codes are not available or
not written in C language, we got 26 unique subjects [32,35,39,42,54,57,66–
69,75,76,80,81,84,92,94]. We then manually inspected these programs and
excluded 19 subjects which are too simple, we finally got 7 subjects. These 7
subjects include mathematical computations and classic algorithms. Second, we
included 7 Siemens subjects from SIR [82], which are widely used in the experi-
ments of program analysis and software testing [48,54,90]. These subjects involve
numeral computations, string manipulations and complex data structures (e.g.,
pointers, structs, and lists). Third, we further enriched the repository with
the subjects from the SV-COMP benchmarks [33], which are originally used for
the competition on software verification. The SV-COMP benchmarks are cate-
gorized in different groups by their features (e.g., concurrency, bit vectors, floats)
for evaluating software model checkers. In order to reduce potential evaluation
biases in our scenario, we carefully inspected all the benchmarks and finally
decided to select subjects from the “Integers and Control Flow” category based
on these considerations: (1) the subjects in this category are real-world (medium-
sized or large-sized) OS device drivers (cf. [11], Sect. 4), while many subjects in
other categories are hand-crafted, small-sized programs; (2) the subjects in this
category have complicated function call chains or control-flow structures, which
are more appropriate for our evaluation; (3) the subjects do not contain specific
features that may not be supported by KLEE (e.g., concurrency, floating point
numbers). We finally selected 16 subjects in total from the ntdrivers and ssh
groups therein (we excluded other subjects with similar control-flow structures
by diffing the code). The selected subjects have rather complex control-flows.
For example, the average cyclomatic complexity of functions in the ssh group
exceeds 88.57 (computed by Cyclo [1]) Fourth, we also included three core pro-
gram modules from the industrial projects from our research partners. The first
one is an engine management system (osek_control) running on an automobile
operating system conforming to the OSEK/VDX standard. The second one is
a satellite gesture control program (space_control). The third one is a control
program (subway_control) from a subway signal. All these three industrial pro-
7 Cyclomatic complexity is a software metric that indicates the complexity of a pro-

gram. The standard software development guidelines recommend the cyclomatic
complexity of a module should not exceeded 10.

278 T. Su et al.

Table 2. Subjects of the constructed data-flow testing benchmark repository

Subject #ELOC #DU Description
factorization 43 47 compute factorization
power 11 11 compute the power xy

find 66 99 permute an array’s elements
triangle 32 46 classify an triangle type
strmat 67 32 string pattern matching
strmat2 88 38 string pattern matching
textfmt 142 73 text string formatting
tcas 195 86 collision avoidance system
replace 567 387 pattern matching and substitution
totinfo 374 279 compute statistics given input data
printtokens 498 240 lexical analyzer
printtokens2 417 192 lexical analyzer
schedule 322 118 process priority scheduler
schedule2 314 107 process priority scheduler
kbfiltr 557 176 ntdrivers group
kbfiltr2 954 362 ntdrivers group
diskperf 1,052 443 ntdrivers group
floppy 1,091 331 ntdrivers group
floppy2 1,511 606 ntdrivers group
cdaudio 2,101 773 ntdrivers group
s3_clnt 540 1,677 ssh group
s3_clnt_termination 555 1,595 ssh group
s3_srvr_1a 198 574 ssh group
s3_srvr_1b 127 139 ssh group
s3_srvr_2 608 2,130 ssh group
s3_srvr_7 624 2,260 ssh group
s3_srvr_8 631 2,322 ssh group
s3_srvr_10 628 2,200 ssh group
s3_srvr_12 696 3,125 ssh group
s3_srvr_13 642 2,325 ssh group
osek_control 4,589 927 one module of engine management system
space_control 5,782 1,739 one module of satellite gesture control software
subway_control 5,612 2,895 one module of subway signal control software

grams were used in our previous research work [74,85,98], and have complicated
data-flow interactions. Finally, to ensure each tool (where our framework is built
upon) can correctly reason these subjects, we carefully read the documentation
of each tool to understand their limitations, manually checked each program
and added necessary function stubs (e.g., to simulate such C library functions as
string, memory, and file operations) but without affecting their original program
logic and structures. This is important to reduce validation threats, and also
provides a more fair comparison basis. In total, we got 33 subjects with different
characteristics, including mathematical computation, classic algorithms, utility
programs, device drivers and industrial control programs. These subjects allow
us to evaluate diverse data-flow scenarios. Table 2 shows the detailed statistics of
these subjects, which includes the executable lines of code (computed by cloc [2]),
the number of def-use pairs (including intra- and inter-procedural pairs), and the
brief functional description.

Towards Efficient Data-Flow Test Data Generation 279

Search Strategies for Comparison . To our knowledge, there exists no spe-
cific guided search strategies on KLEE to compare with our strategy. Thus, we
compare our cut-point guided search strategy with several existing search strate-
gies. In particular, we chose two generic search strategies (i.e., depth-first and
random search), one popular (statement) coverage-optimized search strategy. In
addition, we implemented one search strategy for directed testing on KLEE,
which is proposed by prior work [61,64,97]. We detail them as follows.

– Depth First-Search (DFS): always select the latest execution state from all
states to explore, and has little overhead in state selection.

– Random State Search (RSS): randomly select an execution state from all
states to explore, and able to explore the program space more uniformly and
less likely to be trapped in tight loops than other strategies like DFS.

– Coverage-Optimized Search (COS): compute the weights of the states by some
heuristics, e.g., the minimal distance to uncovered instructions (md2u) and
whether the state recently covered new code (covnew), and randomly select
states w.r.t. these weights. These heuristics are usually interleaved with other
search strategies in a round-robin fashion to improve their overall effective-
ness. For example, RSS-COS:md2u (RSS-MD2U for short) is a popular strat-
egy used by KLEE, which interleaves RSS with md2u.

– Shortest Distance Guided Search (SDGS): always select the execution state
that has the shortest (instruction) distance toward a target instruction in
order to cover the target as quickly as possible. This strategy has been widely
applied in single target testing [61,64,97]. In the context of data-flow testing,
we implemented this strategy in KLEE by setting the def as the first goal
and then the use as the second goal after the def is covered.

7.3 Case Studies

We conducted three case studies to answer the research questions. Note that
in this paper we focus on the classic data-flow testing [39,89], i.e., targeting
one def-use pair at one run. In Study 1 , we answer RQ1 by comparing the
performance of different search strategies that were implemented on KLEE. In
detail, we use two metrics: (1) number of covered pairs, i.e., how many def-use
pairs can be covered; and (2) testing time, i.e., how long does it take to cover
the pair(s) of interest. The testing time is measured by the median value and
the semi-interquartile range (SIQR)8 of the times consumed on those covered
(feasible) pairs9.

In the evaluation, the maximum allowed search time on each pair is set as
5min. Under this setting, we observed all search strategies can thoroughly test
8 SIQR = (Q3-Q1)/2, which measures the variability of testing time, where Q1 is the

lower quartile, and Q3 is the upper quartile.
9 In theory, the symbolic execution-based approach cannot identify infeasible pairs

unless it enumerates all possible paths, which however is impossible in practice.
Therefore, we only consider the testing times of covered (feasible) pairs for perfor-
mance evaluation.

280 T. Su et al.

each subject (i.e., reach their highest coverage rates). To mitigate the algorithm
randomness, we repeat the testing process 30 times for each program/strategy
and aggregate their average values as the final results for all measurements.

In Study 2 , we answer RQ2 by evaluating the practicability of the SMC-
based reduction approach on two different model checking techniques, CEGAR
and BMC. Specifically, we implemented the reduction approach on three different
model checkers, BLAST, CPAchecker and CBMC. We use the following default
command options and configurations according to their user manuals and the
suggestions from the tool developers, respectively:

BLAST: ocamltune blast -enable-recursion -cref -lattice -noprofile
-nosserr -quiet

CPAchecker: cpachecker -config config/predicateAnalysis.properties
-skipRecursion

CBMC: cbmc --slice-formula --unwind nr1 --depth nr2

We have not tried to particularly tune the optimal configurations of these tools
for different subjects under test, since we aim to investigate the practicability
of our reduction approach in general. Specifically, BLAST and CPAchecker are
configured based on predicate abstraction. For BLAST, we use an internal script
ocamltune to improve memory utilization for large programs; for CPAchecker,
we use its default predicate abstraction configuration predicateAnalysis.properties.
We use the option -enable-recursion of BLAST and -skipRecursion of CPAchecker
to set recursion functions as skip. Due to CBMC is a bounded model checker,
it may answer infeasible for actual feasible pairs if the given checking bound
is too small. Thus, we set the appropriate values for the –unwind and –depth
options, respectively, for the number of times loops to be unwound and the
number of program steps to be processed. Specially, we determine the parameter
values of –unwind and –depth options by a binary search algorithm to ensure that
CBMC can identify as many pairs as possible within the given time bound.
This avoids wasting testing budget on unnecessary path explorations, and also
achieves a more fair evaluation basis. Therefore, each subject may be given
different parameter values (the concrete parameter values of all subjects are
available at [87]).

Specifically, we use two metrics: (1) number of feasible, infeasible, and
unknown pairs; and (2) testing (checking) time of feasible and infeasible pairs
(denoted in medians). The maximum testing time on each def-use pair is con-
strained as 5min (i.e., 300 s, the same setting in RQ1). For each def-use pair, we
also run 30 times to mitigate algorithm randomness.

In Study 3, we answer RQ3 by combining the SE-based and SMC-based
approaches. We interleave these two approaches as follows: the SE-based app-
roach (configured with the cut point-guided path search strategy and the same
settings in RQ1) is first used to cover as many pairs as possible; then, for the
remaining uncovered pairs, the SMC-based approach (configured with the same
settings in RQ2) is used to identify infeasible pairs (may also cover some feasi-
ble pairs). We continue the above iteration of the combined approach until the
maximum allowed time bound (5min for each pair) is used up. Specifically, we

Towards Efficient Data-Flow Test Data Generation 281

Fig. 6. Performance of each search strategy in terms of total testing time, number of
executed program instructions, and number of explored program paths (normalized in
percentage) on all 33 subjects.

increase the time bound by 3 times at each iteration, i.e., 10 s, 30 s, 90 s and
300 s.

Specifically, we use two metrics: (1) coverage rate; and (2) total testing time,
i.e., the total time required to enforce data-flow testing on all def-use pairs of
one subject. The coverage rate C is computed by Formula 5, where nTestObj
is the total number of pairs, and nFeasible and nInfeasible are the number of
identified feasible and infeasible ones, respectively.

C =
nFeasible

nTestObj − nInfeasible
× 100% (5)

In all case studies, the testing time was measured in CPU time via the time
command in Linux. In particular, the testing time did not include IO operations
for logging the testing results. We tested 31,634 ELOC with 28,354 pairs in total.
It took us nearly one and half months to run the experiments and analyze the
results.

7.4 Study 1

Table 3 shows the detailed performance statistics of different search strategies.
The column Subject represents the subject under test, DFS, RSS, RSS-MD2U,
SDGS, CPGS, respectively, represent the search strategies. For each subject/s-
trategy, it shows the number of covered def-use pairs (denoted by N), the median
value of testing times (denoted by M) and the semi-interquartile range of testing
times (denoted by SIQR) on all covered pairs. In particular, for each subject,
we underscore the strategy with lowest median value. The last row gives the
total number of covered pairs. From Table 3, we can observe (1) Given enough
testing time for all strategies (i.e., 5min for each pair), CPGS covers 4215, 2152,
1320 and 1563 more pairs, respectively, than DFS, RSS, RSS-MD2U and SDGS.
It means CPGS achieves 40%, 21.3%, 12.1%, 14.6% higher data-flow coverage
than these strategies, respectively. (2) By comparing the median values of CPGS
with those of other strategies, CPGS achieves more efficient data-flow testing in
14/33, 23/33, 32/33, 26/33 subjects than DFS, RSS, RSS-MD2U and SDGS,

282 T. Su et al.

Table 3. Performance statistics of different search strategies for data-flow testing (the
testing time is measured in seconds).

Subject DFS RSS RSS-MD2U SDGS CPGS
N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR)

factorization 22 0.07 (0.01) 22 0.07 (0.01) 22 0.08 (0.02) 22 0.05 (0.01) 22 0.06 (0.01)
power 6 0.14 (0.00) 9 0.12 (0.01) 9 0.05 (0.01) 5 0.04 (0.00) 9 0.04 (0.00)
find 77 0.89(0.64) 49 0.19 (0.54) 52 0.26 (0.31) 51 0.63 (3.35) 56 0.22 (0.12)
triangle 22 0.24 (0.06) 22 0.24 (0.03) 22 0.26 (0.05) 22 0.25 (0.09) 22 0.13 (0.01)
strmat 26 2.84 (1.41) 30 0.10 (0.02) 30 0.13 (0.03) 30 0.12 (0.16) 30 0.10 (0.02)
strmat2 28 2.85 (1.40) 32 0.09 (0.01) 32 0.11 (0.02) 32 0.11 (0.03) 32 0.09 (0.02)
textfmt 37 0.16 (0.08) 33 0.05 (0.01) 33 0.11 (0.04) 34 0.06 (0.01) 34 0.06 (0.01)
tcas 55 0.13 (0.03) 55 0.21 (0.07) 55 0.67 (0.43) 55 0.16 (0.06) 55 0.14 (0.06)
replace 69 0.77 (0.14) 308 1.96 (15.23) 312 30.31 (21.97) 295 4.67 (5.46) 309 1.15 (3.58)
totinfo 13 0.52 (0.07) 24 0.42 (0.13) 24 0.64 (0.08) 24 0.42 (0.06) 26 0.52 (0.05)
printtokens 48 0.96 (0.62) 115 34.69 (24.16) 106 33.68 (22.59) 107 16.40 (25.53) 115 12.23 (20.21)
printtokens2 124 0.47 (0.32) 148 0.80 (3.72) 149 20.67 (18.42) 149 0.83 (3.48) 154 0.51 (1.43)
schedule 15 0.16 (0.03) 83 0.23 (3.98) 86 0.76 (5.05) 77 0.22 (1.67) 86 0.22 (1.84)
schedule2 14 0.15 (0.02) 78 0.20 (0.12) 78 0.48 (1.11) 77 0.21 (0.10) 77 0.21 (0.08)
cdaudio 562 3.13 (0.41) 562 3.27 (0.48) 562 15.54 (7.11) 562 3.77 (2.52) 562 3.08 (0.51)
diskperf 285 0.89 (0.19) 302 0.97 (0.21) 302 1.97 (4.80) 299 0.95 (0.23) 302 0.92 (0.18)
floppy 249 0.62 (0.11) 249 0.67 (0.11) 249 2.11 (1.76) 249 0.72 (0.14) 249 0.66 (0.13)
floppy2 510 2.22 (0.37) 510 2.14 (0.42) 510 6.44 (3.44) 510 3.62 (1.66) 510 2.03 (0.39)
kbfiltr 116 0.26 (0.05) 116 0.28 (0.05) 116 0.49 (0.41) 116 0.31 (0.04) 116 0.27 (0.05)
kbfiltr2 266 0.97 (0.15) 266 0.94 (0.18) 266 4.18 (3.51) 266 2.11 (1.08) 266 0.90 (0.20)
s3_srvr_1a 113 0.72 (0.17) 171 0.75 (0.19) 171 0.76 (0.19) 165 0.65 (0.17) 171 0.58 (0.18)
s3_srvr_1b 30 0.08 (0.02) 43 0.08 (0.02) 43 0.07 (0.02) 43 0.07 (0.02) 45 0.08 (0.02)
s3_clnt 647 9.64 (2.01) 648 11.93 (2.64) 647 22.91 (8.19) 633 12.45 (2.45) 648 10.32 (1.88)
s3_clnt_termination 333 9.20 (1.64) 332 8.81 (1.87) 332 12.14 (1.29) 332 9.56 (1.74) 414 6.54 (1.03)
s3_srvr_2 414 14.35 (2.67) 695 24.23 (17.42) 695 31.86 (15.44) 681 19.93 (8.00) 695 16.45 (3.76)
s3_srvr_7 420 16.29 (3.44) 710 27.82 (20.06) 710 34.99 (17.11) 686 26.93 (12.46) 815 19.47 (5.41)
s3_srvr_8 416 16.77 (3.10) 704 23.61 (14.03) 698 36.15 (16.39) 690 23.45 (7.21) 798 17.04 (4.23)
s3_srvr_10 431 15.26 (2.40) 683 21.34 (5.19) 683 30.21 (7.03) 664 20.73 (5.85) 683 18.37 (3.90)
s3_srvr_12 433 25.76 (3.84) 395 39.51 (21.68) 539 64.25 (38.99) 486 39.50 (18.04) 724 25.88 (10.08)
s3_srvr_13 437 15.69 (2.07) 489 25.25 (18.07) 558 33.78 (21.20) 572 23.98 (11.49) 744 15.77 (6.12)
osek_control 398 7.69 (2.47) 426 15.77 (14.68) 549 23.32 (17.39) 538 14.17 (6.17) 639 6.15 (3.23)
space_control 582 15.90 (7.76) 812 33.49 (20.61) 990 48.77 (23.08) 961 28.86 (15.78) 1,178 6.32 (7.09)
subway_control 827 13.44 (7.69) 967 42.76 (28.65) 1,290 68.61 (31.73) 1,244 38.11 (21.46) 1,654 10.72 (6.72)
Total 8,025 – 10,088 – 10,920 – 10,677 – 12,240 –

respectively. Note that the median value of DFS is low because it only covers
many easily reachable pairs, which also explains why it achieves lowest coverage.

Figure 6 shows the performance of these search strategies on all 33 subjects
in terms of total testing time, the number of executed program instructions, and
the number of explored program paths (due to the data difference, we normalized
them in percentage). Note these three metrics are all computed on the covered
pairs. Apart from DFS (since it achieves rather low data-flow coverage), we can
see CPGS outperforms all the other testing strategies. In detail, CPGS reduces
testing time by 15–48%, the number of executed instructions by 16–63%, and the
number of explored paths by 28–74%. The reason is that CPGS narrows down
the search space by following the cut points and prunes unnecessary paths.

Towards Efficient Data-Flow Test Data Generation 283

Answer to RQ1: In summary, our cut-point guided search (CPGS) strat-
egy performs the best for data-flow testing. It improves 12–40% data-flow
coverage, and at the same time reduces the total testing time by 15–48% and
the number of explored paths by 28–74%. Therefore, the SE-based approach,
enhanced with the cut point guided search strategy, is efficient for data-flow
testing.

Table 4. Performance statistics of the SMC-based reduction approach CEGARBLAST ,
CEGARCPAchecker and BMCCBMC for data-flow testing (the testing time is measured
in seconds), where * denotes the numbers in the corresponding columns are only valid
modulo the given checking bound for BMCCBMC .

Subject CEGARBLAST CEGARCPAchecker BMCCBMC

F I U MF MI F I U MF MI F I* U* MF MI*

factorization 35 4 8 0.04 0.20 26 4 17 3.26 3.04 41 6 0 0.34 0.28
power 9 2 0 0.03 0.49 9 2 0 3.10 2.97 9 2 0 0.13 0.12
find 85 12 2 6.44 3.22 74 14 11 4.37 3.60 77 22 0 0.29 0.29
triangle 22 24 0 0.04 0.69 22 24 0 3.09 2.83 22 24 0 0.11 0.11
strmat 30 2 0 1.81 1.39 30 2 0 4.67 2.98 30 2 0 0.15 0.15
strmat2 32 6 0 5.08 1.46 32 6 0 4.91 3.79 32 6 0 0.15 0.15
textfmt 47 18 8 10.08 13.90 53 20 0 12.69 5.50 53 20 0 3.84 3.95
tcas 55 31 0 1.35 1.31 55 31 0 4.08 3.43 55 31 0 0.13 0.13
replace 275 73 39 6.17 13.60 211 48 128 11.21 10.84 339 48 0 101.47 93.20
totinfo – – 279 – – 76 24 179 14.80 11.50 69 209 1 54.36 7.68
printtokens 165 57 18 6.15 13.67 178 58 4 8.94 6.22 169 71 0 15.94 9.26
printtokens2 188 4 0 13.35 7.25 188 4 0 13.21 6.48 187 5 0 28.29 28.89
schedule 37 0 81 0.05 – 92 22 4 7.82 11.13 85 33 0 33.04 31.15
schedule2 33 0 74 0.04 – 42 0 65 7.32 – 35 55 17 189.03 205.14
cdaudio 544 179 50 0.41 0.81 – 190 583 – 6.36 566 207 0 1.50 1.58
diskperf 270 117 56 0.16 0.41 265 119 59 5.08 5.18 304 139 0 0.89 0.85
floppy 240 69 22 0.18 0.43 244 65 22 4.75 5.23 250 81 0 0.72 0.71
floppy2 497 82 27 0.33 0.59 501 79 26 5.28 5.68 511 95 0 1.51 1.35
kbfiltr 107 49 20 0.09 0.10 107 51 18 3.85 3.61 116 60 0 0.32 0.32
kbfiltr2 249 74 39 0.15 0.20 249 76 37 4.14 4.28 264 98 0 0.56 0.54
s3_srvr_1a 123 295 156 2.69 1.37 123 295 156 4.94 4.13 170 404 0 0.69 0.69
s3_srvr_1b 43 96 0 0.36 0.80 43 96 0 3.31 3.26 43 96 0 0.16 0.16
s3_clnt 625 969 83 14.62 4.86 661 1012 4 9.72 5.12 665 1012 0 39.62 41.52
s3_clnt_termination 540 964 91 15.16 4.35 582 1012 1 10.11 5.42 583 1012 0 22.57 24.02
s3_srvr_2 418 1034 678 3.50 5.21 698 1344 88 11.00 5.25 704 1420 6 102.85 128.09
s3_srvr_7 393 1073 794 3.34 4.78 712 1458 90 11.09 5.43 721 1538 1 100.42 124.45
s3_srvr_8 425 1183 714 3.98 5.07 701 1529 92 10.70 5.58 706 1604 12 107.31 137.57
s3_srvr_10 414 1060 726 5.00 32.16 678 1432 90 8.40 4.45 683 1517 0 125.92 111.44
s3_srvr_12 388 1611 1126 4.13 7.00 759 2231 135 9.86 6.19 758 2345 22 125.43 144.04
s3_srvr_13 431 1111 783 4.43 5.61 745 1500 80 10.04 4.55 737 1569 19 111.75 137.98
osek_control 607 150 170 9.43 8.09 645 199 87 7.72 6.54 623 277 27 52.76 65.12
space_control 1012 457 270 13.34 14.72 1156 495 88 9.85 10.57 1137 579 23 67.23 75.94
subway_control 1543 842 510 21.52 25.73 1793 1013 89 21.18 14.12 1787 1069 27 93.91 121.67
Total 9882 11648 6824 – – 11750 14455 2153 – – 12531 15656 155 – –

284 T. Su et al.

7.5 Study 2

Table 4 gives the detailed performance statistics of the SMC-based reduction
approach for data-flow testing, where “–” means the corresponding data does not
apply or not available10. For each implementation instance, it shows the number
of feasible (denoted by F), infeasible (denoted by I) and unknown (denoted by
U) pairs, and the median of testing times on feasible and infeasible pairs (denoted
by MF and MI , respectively). The last row gives the total number of feasible,
infeasible, and unknown pairs. Note that BLAST and CPAchecker implement
CEGAR-based model checking approach, thereby they can give the feasible or
infeasible conclusion (or unknown due to undecidability of the problem) without
any false positives. As for CBMC, it implements the bounded model checking
technique, and in general cannot eliminate infeasible pairs as certain. Thus, the
numbers of infeasible pairs identified by CBMC are only valid modulo the given
checking bound. From the results, we can see CPAchecker and CBMC are more
effective than BLAST in terms of feasible pairs as well as infeasible pairs. In
detail, BLAST, CPAchecker and CBMC, respectively, cover 9882, 11750, 12531
feasible pairs, and identify 11648, 14455 and 15656 infeasible ones.

Fig. 7. Venn diagrams of (a) feasible, (b) infeasible and (c) unknown pairs concluded
by the three model checkers BLAST, CPAchecker and CBMC for all subjects.

Figure 7 shows the venn diagrams of feasible, infeasible and unknown pairs
concluded by the three model checkers BLAST, CPAchecker and CBMC. We
can get several important observations: (1) The number of feasible and infea-
sible pairs identified by all the three model checkers accounts for the majority,
occupying 69.2% and 71.9% pairs, respectively. It indicates both the CEGAR-
based and BMC-based approaches are practical and can give consistent answers
in most cases. (2) Although the infeasible pairs identified by the BMC-based
approach are only valid modulo the given checking bound, we can see CBMC
in fact correctly concludes a large portion of infeasible pairs. Compared with
the infeasiblity results of CPAchecker, 91.8% (14,380/15,656) infeasible pairs
identified by CBMC are indeed infeasible given appropriate checking bounds.
Thus, the BMC-based approach can still serve as a heuristic-criterion to identify
hard-to-cover (probably infeasible) pairs, and better prioritize testing efforts.
10 BLAST hangs on totinfo, and CPAchecker crashes on parts of pairs from cdaudio.

Towards Efficient Data-Flow Test Data Generation 285

(3) CPAchecker and CBMC have the largest number of overlapped pairs than
the other combinations. They identify 94.7% feasible and 90.3% infeasible pairs,
respectively. It indicates these two tools are more effective.

Answer to RQ2: In summary, the SMC-based reduction approach is practi-
cal for data-flow testing. Both the CEGAR-based and BMC-based approaches
can give consistent conclusions on the majority of def-use pairs. Specifically,
the CEGAR-based approach can give answers for feasibility as certain, while
the BMC-based approach can serve as a heuristic-criterion to identify hard-
to-cover (probably infeasible) pairs when given appropriate checking bounds.

7.6 Study 3

To investigate the effectiveness of our combined approach, we complement
the SE-based approach with the SMC-based approach to do data-flow test-
ing. Specifically, we realize this combined approach by interleaving these two
approaches (the setting is specified in Sect. 7.3). Figure 8 shows the data-flow
coverage achieved by KLEE, BLAST, CPAchecker, CBMC alone and their
combinations (e.g., the combination of KLEE and CPAchecker, denoted as
KLEE+CPAchecker for short) on the 33 subjects within the same testing bud-
get. We can see the combined approach can greatly improve data-flow cover-
age. In detail, KLEE only achieves 54.3% data-flow coverage on average for the
33 subjects, while KLEE+BLAST, KLEE+CPAchecker, and KLEE+CBMC,
respectively, achieve 82.1%, 90.8%, and 99.5% coverage. Compared with KLEE,
the combined approach instances, KLEE+BLAST, KLEE+CPAchecker, and
KLEE+CBMC, respectively, improve the coverage by 27.8%, 36.5% and 45.2%
on average. On the other hand, KLEE+BLAST improves coverage by 10%
against BLAST alone, and KLEE+CPAchecker improves coverage by 7% against
CPAchecker alone, respectively.

Figure 9 further shows the total testing time consumed by KLEE, BLAST,
CPAchecker, CBMC and their combinations when achieving their peak cover-
age in Fig. 8. We can see that the combined approach can almost consistently
reduce the total testing time on each subject. Specifically, compared with KLEE,
the combined approach instances, KLEE+BLAST, KLEE+CPAchecker, and
KLEE+CBMC, respectively, achieve faster data-flow testing in 30/33, 29/33,
and 28/33 subjects, and reduce the total testing time by 78.8%, 93.6% and
20.1% on average in those subjects. Among the three instances of combined app-
roach, KLEE+CPAchecker achieves the best performance, which reduces testing
time by 93.6% for all the 33 subjects, and at the same time improves data-
flow coverage by 36.5%. On the other hand, the combined approach instances,
KLEE+BLAST and KLEE+CPAchecker, also reduce the total testing time of
BLAST and CPAchecker by 23.8% and 19.9%, respectively.

286 T. Su et al.

Fig. 8. Data-flow coverage achieved by KLEE, BLAST, CPAchecker, CBMC and their
combinations (i.e., KLEE+BLAST, KLEE+CPAchecker, KLEE+CBMC) within the
same time budget. Each number on the X axis denotes the set of 33 subjects in our
study. Note that the results of CBMC and KLEE+CBMC are only valid modulo the
given checking bounds.

Fig. 9. Consumed time for data-flow testing by KLEE, BLAST, CPAchecker, CBMC
and their combinations (i.e., KLEE+BLAST, KLEE+CPAchecker, KLEE+CBMC)
for reaching their respective highest coverage. Each point on the X axis denotes the
set of 33 subjects in our study. Note that the Y axis uses a logarithmic scale.

Towards Efficient Data-Flow Test Data Generation 287

Answer to RQ3: In summary, the combined approach, which combines
symbolic execution and software model checking, achieves more efficient
data-flow testing. The model checking approach can weed out infeasible
pairs that the symbolic execution approach cannot infer by 71.9%–97.2%.
Compared with the SE-based approach alone, the combined approach can
improve data-flow coverage by 27.8–45.2%. In particular, the instance
KLEE+CPAchecker performs best, which reduces total testing time by 93.6%
for all 33 subjects, and at the same time improves data-flow coverage by
36.5%. Compared with the CEGAR-based or BMC-based approach alone, the
combined approach can also reduce testing time by 19.9–23.8%, and improve
data-flow coverage by 7–10%.

8 Conclusion

This paper introduces an efficient, combined data-flow testing approach. We
designed a cut point guided search strategy to make symbolic execution practical;
and devised a simple encoding of data-flow testing via software model checking.
The two approaches offer complementary strengths: symbolic execution is more
effective at covering feasible def-use pairs, while software model checking is more
effective at rejecting infeasible pairs. Specifically, the CEGAR-based approach is
used to eliminate infeasible pairs as certain, while the BMC-based approach can
be used as a heuristic-criterion to identify hard-to-cover (probably infeasible)
pairs when given appropriate checking bounds.

Acknowledgements. This work is in honor of Jifeng He’s contribution to computer
science, especially establishing the Unifying Theories of Programming (UTP). This
work applies formal methods to support software testing, which was influenced by the
work of Jifeng He. Ting Su, the lead author of this work, sincerely appreciate the
academic guidance from his PhD supervisor Jifeng He.

References

1. Cyclo. http://www.gentoogeek.org/cyclo.html
2. ALDanial: cloc. GitHub (2018)
3. Alexander, R.T., Offutt, J., Stefik, A.: Testing coupling relationships in object-

oriented programs. Softw. Test. Verif. Reliab. 20(4), 291–327 (2010)
4. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge

University Press, New York (2008)
5. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, OR, USA, 16–
18 January 2002, pp. 1–3 (2002)

6. Baluda, M., Braione, P., Denaro, G., Pezzè, M.: Structural coverage of feasible
code. In: The 5th Workshop on Automation of Software Test, AST 2010, 3–4 May
2010, Cape Town, South Africa, pp. 59–66 (2010)

http://www.gentoogeek.org/cyclo.html

288 T. Su et al.

7. Baluda, M., Braione, P., Denaro, G., Pezzè, M.: Enhancing structural software
coverage by incrementally computing branch executability. Software Qual. J.
19(4), 725–751 (2011)

8. Baluda, M., Denaro, G., Pezzè, M.: Bidirectional symbolic analysis for effective
branch testing. IEEE Trans. Software Eng. 42(5), 403–426 (2016)

9. Bardin, S., et al.: Sound and quasi-complete detection of infeasible test require-
ments. In: 8th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015, Graz, Austria, 13–17 April 2015, pp. 1–10 (2015)

10. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,
A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)

11. Beyer, D.: Competition on software verification – (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28756-5_38

12. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proceedings of the 26th International Confer-
ence on Software Engineering, ICSE 2004, pp. 326–335. IEEE Computer Society,
Washington, DC (2004)

13. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST: applications to software engineering. Int. J. Softw. Tools Technol. Transf.
9(5), 505–525 (2007)

14. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software veri-
fication. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

15. Beyer, D., Lemberger, T.: Software verification: testing vs. model checking - a
comparative evaluation of the state of the art. In: Strichman, O., Tzoref-Brill, R.
(eds.) HVC 2017. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70389-3_7

16. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2008), 15–19 September 2008, L’Aquila, Italy, pp. 443–446 (2008)

17. Buy, U.A., Orso, A., Pezzè, M.: Automated testing of classes. In: ISSTA, pp.
39–48 (2000)

18. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation, pp. 209–224 (2008)

19. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA, USA,
30 October–3 November 2006, pp. 322–335 (2006)

20. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

21. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: Proceedings of the 25th International Conference
on Software Engineering, 3–10 May 2003, Portland, Oregon, USA, pp. 385–395
(2003)

22. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Software Eng. 30(6), 388–402 (2004)

23. Chatterjee, B., Ryder, B.G.: Data-flow-based testing of object-oriented libraries.
Technical report DCS-TR-382, Rutgers University (1999)

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7

Towards Efficient Data-Flow Test Data Generation 289

24. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

25. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: Proceedings of the Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, 29 March–2 April 2004, pp. 168–176 (2004)

26. Clarke, L.A.: A program testing system. In: Proceedings of the 1976 Annual
Conference, Houston, Texas, USA, 20–22 October 1976, pp. 488–491 (1976)

27. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

28. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven Concolic testing. In:
Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 328–
347. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_16

29. Denaro, G., Margara, A., Pezzè, M., Vivanti, M.: Dynamic data flow testing of
object oriented systems. In: 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 1, pp. 947–958
(2015)

30. Denaro, G., Pezzè, M., Vivanti, M.: On the right objectives of data flow testing.
In: IEEE Seventh International Conference on Software Testing, Verification and
Validation, ICST 2014, 31 March–4 April 2014, Cleveland, Ohio, USA, pp. 71–80
(2014)

31. Do, T., Fong, A.C.M., Pears, R.: Precise guidance to dynamic test generation.
In: Proceedings of the 7th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 5–12 (2012)

32. Eler, M.M., Endo, A.T., Durelli, V., Procópio-PR, C.: Covering user-defined data-
flow test requirements using symbolic execution. In: Proceedings of the Thirteenth
Brazilian Symposium On Software Quality (SBQS), pp. 16–30 (2014)

33. ETAPS: Competition on software verification (SV-COMP). ETAPS European
Joint Conference on Theory & Practice of Software - TACAS 2017 (2017). https://
sv-comp.sosy-lab.org/2017/

34. Foreman, L.M., Zweben, S.H.: A study of the effectiveness of control and data
flow testing strategies. J. Syst. Softw. 21(3), 215–228 (1993)

35. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Trans. Softw. Eng. 19(8), 774–787
(1993)

36. Frankl, P.G., Iakounenko, O.: Further empirical studies of test effectiveness. In:
SIGSOFT 1998, Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Lake Buena Vista, Florida, USA, 3–5
November 1998, pp. 153–162 (1998)

37. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009)

38. Ghiduk, A.S.: A new software data-flow testing approach via ant colony algo-
rithms. Univ. J. Comput. Sci. Eng. Technol. 1(1), 64–72 (2010)

39. Ghiduk, A.S., Harrold, M.J., Girgis, M.R.: Using genetic algorithms to aid test-
data generation for data-flow coverage. In: APSEC, pp. 41–48 (2007)

40. Girgis, M.R.: Using symbolic execution and data flow criteria to aid test data
selection. Softw. Test. Verif. Reliab. 3(2), 101–112 (1993)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-662-49122-5_16
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/

290 T. Su et al.

41. Girgis, M.R.: Automatic test data generation for data flow testing using a genetic
algorithm. J. UCS 11(6), 898–915 (2005)

42. Girgis, M.R., Ghiduk, A.S., Abd-elkawy, E.H.: Automatic generation of data flow
test paths using a genetic algorithm. Int. J. Comput. Appl. 89(12), 29–36 (2014)

43. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random test-
ing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213–223. ACM, New York (2005)

44. Goldberg, A., Wang, T., Zimmerman, D.: Applications of feasible path analysis
to program testing. In: Proceedings of the 1994 International Symposium on Soft-
ware Testing and Analysis, ISSTA 1994, Seattle, WA, USA, 17–19 August 1994,
pp. 80–94 (1994)

45. Harman, M., Kim, S.G., Lakhotia, K., McMinn, P., Yoo, S.: Optimizing for the
number of tests generated in search based test data generation with an applica-
tion to the oracle cost problem. In: Third International Conference on Software
Testing, Verification and Validation, ICST 2010, Paris, France, 7–9 April 2010,
Workshops Proceedings, pp. 182–191 (2010)

46. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: SIG-
SOFT FSE, pp. 154–163 (1994)

47. Harrold, M.J., Soffa, M.L.: Efficient computation of interprocedural definition-use
chains. ACM Trans. Program. Lang. Syst. 16(2), 175–204 (1994)

48. Hassan, M.M., Andrews, J.H.: Comparing multi-point stride coverage and
dataflow coverage. In: 35th International Conference on Software Engineering,
ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 172–181 (2013)

49. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Portland, OR, USA, 16–18 January 2002, pp.
58–70 (2002)

50. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Com-
put. Surv. 41(2), 1–76 (2009)

51. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model
checking. In: Proceedings of the 25th International Conference on Software Engi-
neering, 3–10 May 2003, Portland, Oregon, USA, pp. 232–243 (2003)

52. Horgan, J.R., London, S.: ATAC: a data flow coverage testing tool for C. In: Pro-
ceedings of Symposium on Assessment of Quality Software Development Tools,
pp. 2–10 (1992)

53. Horgan, J.R., London, S.: Data flow coverage and the C language. In: Proceedings
of the Symposium on Testing, Analysis, and Verification, pp. 87–97. TAV4, ACM,
New York (1991)

54. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.J.: Experiments of the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria. In: ICSE, pp.
191–200 (1994)

55. Jamrozik, K., Fraser, G., Tillmann, N., de Halleux, J.: Augmented dynamic sym-
bolic execution. In: IEEE/ACM International Conference on Automated Software
Engineering, pp. 254–257 (2012)

56. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. (CSUR)
41(4), 21 (2009)

57. Khamis, A., Bahgat, R., Abdelaziz, R.: Automatic test data generation using data
flow information. Dogus Univ. J. 2, 140–153 (2011)

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

Towards Efficient Data-Flow Test Data Generation 291

59. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

60. Lakhotia, K., McMinn, P., Harman, M.: Automated test data generation for cov-
erage: haven’t we solved this problem yet? In: Proceedings of the 2009 Testing:
Academic and Industrial Conference - Practice and Research Techniques, pp. 95–
104. IEEE Computer Society, Washington (2009)

61. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7_11

62. Malevris, N., Yates, D.: The collateral coverage of data flow criteria when branch
testing. Inf. Softw. Technol. 48(8), 676–686 (2006)

63. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Corren-
son, L.: Time to clean your test objectives. In: 40th International Conference on
Software Engineering, 27 May–3 June 2018, Gothenburg, Sweden (2018)

64. Marinescu, P.D., Cadar, C.: KATCH: high-coverage testing of software patches.
In: Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE
2013, Saint Petersburg, Russian Federation, 18–26 August 2013, pp. 235–245
(2013)

65. Marré, M., Bertolino, A.: Unconstrained duas and their use in achieving all-uses
coverage. In: Proceedings of the 1996 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 147–157. ISSTA 199. ACM, New York
(1996)

66. Marré, M., Bertolino, A.: Using spanning sets for coverage testing. IEEE Trans.
Softw. Eng. 29(11), 974–984 (2003)

67. Mathur, A.P., Wong, W.E.: An empirical comparison of data flow and mutation-
based test adequacy criteria. Softw. Test. Verif. Reliab. 4(1), 9–31 (1994)

68. Merlo, E., Antoniol, G.: A static measure of a subset of intra-procedural data flow
testing coverage based on node coverage. In: CASCON, p. 7 (1999)

69. Nayak, N., Mohapatra, D.P.: Automatic test data generation for data flow testing
using particle swarm optimization. In: IC3 (2), pp. 1–12 (2010)

70. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5_16

71. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verif. Reliab. 7(3), 165–192 (1997)

72. Pande, H.D., Landi, W.A., Ryder, B.G.: Interprocedural def-use associations for
C systems with single level pointers. IEEE Trans. Softw. Eng. 20(5), 385–403
(1994)

73. Pandita, R., Xie, T., Tillmann, N., de Halleux, J.: Guided test generation for
coverage criteria. In: Proceedings of the 2010 IEEE International Conference on
Software Maintenance, pp. 1–10. IEEE Computer Society, Washington (2010)

74. Peng, Y., Huang, Y., Su, T., Guo, J.: Modeling and verification of AUTOSAR
OS and EMS application. In: Seventh International Symposium on Theoretical
Aspects of Software Engineering, TASE 2013, 1–3 July 2013, Birmingham, UK,
pp. 37–44 (2013)

75. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
Proceedings of the 6th International Conference on Software Engineering, ICSE
1982, pp. 272–278. IEEE Computer Society Press, Los Alamitos (1982)

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

292 T. Su et al.

76. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Software Eng. 11(4), 367–375 (1985)

77. Santelices, R., Harrold, M.J.: Efficiently monitoring data-flow test coverage. In:
Proceedings of the twenty-second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2007, pp. 343–352. ACM, New York (2007)

78. Santelices, R.A., Sinha, S., Harrold, M.J.: Subsumption of program entities for
efficient coverage and monitoring. In: Third International Workshop on Software
Quality Assurance, SOQUA 2006, Portland, Oregon, USA, 6 November 2006, pp.
2–5 (2006)

79. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of software
engineering, pp. 263–272. ACM, New York (2005)

80. Singla, S., Kumar, D., Rai, H.M., Singla, P.: A hybrid PSO approach to automate
test data generation for data flow coverage with dominance concepts. J. Adv. Sci.
Technol. 37, 15–26 (2011)

81. Singla, S., Singla, P., Rai, H.M.: An automatic test data generation for data flow
coverage using soft computing approach. IJRRCS 2(2), 265–270 (2011)

82. SIR Project: Software-artifact infrastructure repository. NC State University.
http://sir.unl.edu/php/previewfiles.php. Accessed July 2016

83. Su, T.: A bibliography of papers and tools on data flow testing. GitHub (2017).
https://tingsu.github.io/files/dftbib.html

84. Su, T., Fu, Z., Pu, G., He, J., Su, Z.: Combining symbolic execution and model
checking for data flow testing. In: 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 1, pp.
654–665 (2015)

85. Su, T., et al.: Automated coverage-driven test data generation using dynamic
symbolic execution. In: Eighth International Conference on Software Security and
Reliability, SERE 2014, San Francisco, California, USA, 30 June–2 July 2014, pp.
98–107 (2014)

86. Su, T., et al.: A survey on data-flow testing. ACM Comput. Surv. 50(1), 5:1–5:35
(2017)

87. Su, T., Zhang, C., Yan, Y., Su, Z.: Towards efficient data-flow test data generation.
GitHub (2019). https://tingsu.github.io/files/hybrid_dft.html

88. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9_10

89. Vivanti, M., Mis, A., Gorla, A., Fraser, G.: Search-based data-flow test genera-
tion. In: IEEE 24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, 4–7 November 2013, pp. 370–379 (2013)

90. Wang, H., Liu, T., Guan, X., Shen, C., Zheng, Q., Yang, Z.: Dependence guided
symbolic execution. IEEE Trans. Software Eng. 43(3), 252–271 (2017)

91. Wang, Z., Yu, X., Sun, T., Pu, G., Ding, Z., Hu, J.: Test data generation for
derived types in C program. In: TASE 2009, Third IEEE International Symposium
on Theoretical Aspects of Software Engineering, 29–31 July 2009, Tianjin, China,
pp. 155–162 (2009)

92. Weyuker, E.J.: The complexity of data flow criteria for test data selection. Inf.
Process. Lett. 19(2), 103–109 (1984)

93. Weyuker, E.J.: More experience with data flow testing. IEEE Trans. Software
Eng. 19(9), 912–919 (1993)

http://sir.unl.edu/php/previewfiles.php
https://tingsu.github.io/files/dftbib.html
https://tingsu.github.io/files/hybrid_dft.html
https://doi.org/10.1007/978-3-540-79124-9_10

Towards Efficient Data-Flow Test Data Generation 293

94. Wong, W.E., Mathur, A.P.: Fault detection effectiveness of mutation and data
flow testing. Software Qual. J. 4(1), 69–83 (1995)

95. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Fitness-guided path explo-
ration in dynamic symbolic execution. In: Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 359–
368 (2009)

96. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput.
J. 52(5), 589–597 (2009)

97. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software
debugging. In: European Conference on Computer Systems, Proceedings of the
5th European Conference on Computer Systems, EuroSys 2010, Paris, France,
13–16 April 2010, pp. 321–334 (2010)

98. Zhang, C., et al.: SmartUnit: empirical evaluations for automated unit testing
of embedded software in industry. In: 40th IEEE/ACM International Conference
on Software Engineering, Software Engineering in Practice Track, ICSE 2018, 27
May–3 June 2018, Gothenburg, Sweden (2018)

99. Zhang, L., Xie, T., Zhang, L., Tillmann, N., de Halleux, J., Mei, H.: Test genera-
tion via dynamic symbolic execution for mutation testing. In: 26th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2010), 12–18 September 2010,
Timisoara, Romania, pp. 1–10 (2010)

100. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

	Towards Efficient Data-Flow Test Data Generation
	1 Introduction
	2 Related Work
	2.1 Data-Flow Based Test Generation
	2.2 Directed Symbolic Execution
	2.3 Detecting Infeasible Test Objectives

	3 Problem Definition, Preliminaries and Challenges
	3.1 Problem Definition
	3.2 Symbolic Execution

	4 Approach Overview
	4.1 Illustrative Example

	5 Our Approach
	5.1 Static Analysis
	5.2 SE-Based Approach for Data-Flow Testing
	5.3 CEGAR-Based Approach for Data-Flow Testing

	6 Framework Design and Implementation
	7 Evaluation
	7.1 Research Questions
	7.2 Evaluation Setup
	7.3 Case Studies
	7.4 Study 1
	7.5 Study 2
	7.6 Study 3

	8 Conclusion
	References

