
Jonathan P. Bowen
Qin Li
Qiwen Xu (Eds.)

Theories of Programming
and Formal Methods

Fe
st

sc
hr

ift
LN

CS
 1

40
80

Essays Dedicated to Jifeng He
on the Occasion of His 80th Birthday

Lecture Notes in Computer Science 14080
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jonathan P. Bowen · Qin Li · Qiwen Xu
Editors

Theories of Programming
and Formal Methods
Essays Dedicated to Jifeng He
on the Occasion of His 80th Birthday

Editors
Jonathan P. Bowen
London South Bank University
London, UK

Qiwen Xu
University of Macau
Macau, China

Qin Li
East China Normal University
Shanghai, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-40435-1 ISBN 978-3-031-40436-8 (eBook)
https://doi.org/10.1007/978-3-031-40436-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapter “Concurrent Hyperproperties” is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information
in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

The illustration appearing on the cover of this book is the work of Jean-Pierre Dalbéra. Used with permission
from Wikimedia Commons.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8748-6140
https://orcid.org/0009-0004-5062-0969
https://orcid.org/0000-0001-7476-4079
https://doi.org/10.1007/978-3-031-40436-8
http://creativecommons.org/licenses/by/4.0/

Prof. Jifeng He speaking at the World AI Conference (WAIC)
held in Shanghai, China, September 2022.

(Photograph supplied by Kelly He.)

Preface

The 80th birthday Festschrift symposium for Prof. Jifeng He (Jifeng@80) was held
during September 2023, at the Shanghai Science Hall in Shanghai, China. This historic
venue, illustrated on the front cover of these proceedings, was built in the early 20th
centurywithin the FrenchConcession area, previously as a school and for other purposes.
In the 1950s, it became the Science Hall and the facility has since been extended with
newer buildings for scientific meetings and related activities.

This Festschrift volume contains papers in the broad area of formal methods by
colleagues of Jifeng He, many of whom have been coauthors of academic papers with
him. This proceedings is a follow-on volume to that associated with Jifeng He’s 70th
birthday Festschrift symposium; see the Springer LNCS 8051 volume published in 2013.

Reviewing of papers was undertaken by a mix of authors and external international
reviewers. Each paper had five reviews, with two or more reviews by a reviewer who
was not an author in this volume. All papers received a positive overall reviewing score.
It is an indication of Jifeng’s international reputation that reviewers are based in all the
main continents of the world, with countries represented including Austria, Australia,
Brazil, China, Denmark, France, Germany, India, Ireland, New Zealand, South Africa,
the United Kingdom, and the United States.

In the initial section of the volume, three papers present aspects of Jifeng He’s con-
tributions to computer science. The first paper provides a lifetime overview of Jifeng’s
research contributions. especially in the area of formal methods. The following two
papers provide more information with respect to developments in UTP (Unifying Theo-
ries of Programming) and rCOS (refinement calculus of object systems), two approaches
inwhich Jifeng provided foundational underpinning. In the next two sections, we include
papers by colleagues and coauthors with Jifeng while he was at the University of Oxford
and also on the European ProCoS project on Provably Correct Systems during this time.
The following sections include colleagues of Jifeng from China and Europe. The final
section includes a paper related to Jifeng’s recent roadmap for UTP in the future.

June 2023 Jonathan P. Bowen
Qin Li

Qiwen Xu

Organization

Programme Chairs

Jonathan P. Bowen London South Bank University, UK
Qin Li East China Normal University, China
Qiwen Xu University of Macau, Macao SAR, China

Local Organizers

Kelly He Shanghai, China
Qin Li East China Normal University, China
Ting Su East China Normal University, China
Qiwen Xu University of Macau, Macao SAR, China

Paper Reviewers

Bernhard K. Aichernig TU Graz, Austria
Richard Banach University of Manchester, UK
Jonathan P. Bowen London South Bank University, UK
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College Dublin, Ireland
Ana Cavalcanti University of York, UK
Jim Davies University of Oxford, UK
John Derrick Unversity of Sheffield, UK
Brijesh Dongol University of Surrey, UK
Simon Foster University of York, UK
Martin Fränzle Carl von Ossietzky Universität Oldenburg,

Germany
Shilpi Goel Amazon Web Services, USA
Lindsay Groves Victoria University of Wellington, New Zealand
Kim G. Larsen Aalborg University, Denmark
Ian J. Hayes The University of Queensland, Australia
Warren Hunt The University of Texas at Austin, USA
Cliff B. Jones Newcastle University, UK
Qin Li East China Normal University, China
Zhiming Liu Southwest University, China

x Organization

Wayne Luk Imperial College London, UK
Frédéric Mallet Université Côte d’Azur, France
Annabelle McIver Macquarie University, Australia
Larissa A. Meinicke The University of Queensland, Australia
Alvaro Miyazawa University of York, UK
Carroll Morgan The University of New South Wales, Australia
Ernst-Rüdiger Olderog University of Oldenburg, Germany
Paritosh Pandya Tata Institute of Fundamental Research, India
Andrei Popescu University of Sheffield, UK
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
J. W. Sanders African Institute for Mathematical Sciences,

South Africa
Steve Schneider University of Surrey, UK
Feng Sheng Huawei, China
Joseph Sifakis VERIMAG, France
Bernard Sufrin University of Oxford, UK
Tim Todman Imperial College London, UK
Helen Treharne University of Surrey, UK
Jim Woodcock University of York, UK
Nicolas Wu Imperial College London, UK
Qiwen Xu University of Macau, Macao SAR, China
Hengjun Zhao Southwest University, China
Huibiao Zhu East China Normal University, China

Acknowledgements

Jonathan Bowen thanks Huibiao Zhu at East ChinaNormal University for inviting him to
join the editorial team. The editors would like to thank the presenters together with their
coauthors for their contributions to this volume and the Festchscrift celebration itself,
as well as the reviewers for significantly improving the final versions of the included
papers. We are grateful for the support of Springer’s Lecture Notes in Computer Science
(LNCS) team for help in the publication of this volume.

Finally, thank you to Jifeng He for many years of collaboration and friendship with
authors of papers in this Festschrift volume, as well as help in organizing the event. We
wish him a very happy 80th birthday:

You are truly inspirational, and always have so much passion and energy in what
you do. Even at the age of 80, you are still very actively involved in many different
fronts; it just shows that age is only a number!

Contents

Jifeng He’s Research Influence

Jifeng He at Oxford and Beyond: An Appreciation . 3
Jonathan P. Bowen and Huibiao Zhu

UTP, Circus, and Isabelle . 19
Jim Woodcock, Ana Cavalcanti, Simon Foster, Marcel Oliveira,
Augusto Sampaio, and Frank Zeyda

Linking Formal Methods in Software Development: A Reflection
on the Development of rCOS . 52

Zhiming Liu

Oxford Colleagues

Consciousness by Degree . 87
Yifeng Chen and J. W. Sanders

Specifying and Reasoning About Shared-Variable Concurrency 110
Ian J. Hayes, Cliff B. Jones, and Larissa A. Meinicke

The Consensus Machine: Formalising Consensus in the Presence
of Malign Agents . 136

A. W. Roscoe, Pedro Antonino, and Jonathan Lawrence

ProCoS Colleagues

Domain Modelling: A Foundation for Software Development 165
Dines Bjørner

Concurrent Hyperproperties . 211
Bernd Finkbeiner and Ernst-Rüdiger Olderog

Chinese Colleagues

Characterizations of Parallel Real-Time Workloads . 235
Xu Jiang, Jinghao Sun, and Wang Yi

xiv Contents

Towards Efficient Data-Flow Test Data Generation . 257
Ting Su, Chengyu Zhang, Yichen Yan, Lingling Fan, Yang Liu,
Zhoulai Fu, and Zhendong Su

European Colleagues

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 297
Pieter J. L. Cuijpers, Jonas Hansen, and Kim G. Larsen

Time: It is only Logical! . 323
Frédéric Mallet

Applying Formal Verification to an Open-Source Real-Time Operating
System . 348

Andrew Butterfield and Frédéric Tuong

KnowLang – A Formal Specification Model for Self-adaptive Systems 367
Mike Hinchey and Emil Vassev

The Future Roadmap

A Coq Implementation of the Program Algebra in Jifeng He’s New
Roadmap for Linking Theories of Programming . 395

Rundong Mu and Qin Li

Author Index . 413

Jifeng He’s Research Influence

Jifeng He at Oxford and Beyond:
An Appreciation

Jonathan P. Bowen1(B) and Huibiao Zhu2

1 School of Engineering, London South Bank University,
Borough Road, London SE1 0AA, UK

jonathan.bowen@lsbu.ac.uk
2 Software Engineering Institute, East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn

http://www.jpbowen.com

Abstract. This paper provides an overview of Jifeng He’s academic
achievements while at Oxford University in the UK, and later in Macau
and Shanghai, together with his legacy internationally. He was an impor-
tant researcher on the European ESPRIT ProCoS projects and Working
Group on “Provably Correct Systems”. Subsequently and most notably,
this led to collaboration with Tony Hoare on Unifying Theories of Pro-
gramming (UTP), resulting in a jointly authored book and later confer-
ence series on the subject. Jifeng returned to his native China in 1998,
first at the United Nations University in Macau and then at the East
China Normal University in Shanghai from 2005 to 2019. In recent years,
Jifeng has been the founder of an Artificial Intelligence (AI) research
institute, focusing on the application of AI technology in large-scale
industrial software systems. His scientific contributions have been rec-
ognized through his election to membership of the Chinese Academy of
Sciences. This paper is structured in broadly chronological order, starting
with a brief biography and then covering Jifeng He’s academic contribu-
tions successively in Oxford, Macau, and Shanghai. The paper concludes
with an overall appreciation of his major achievements.

Keywords: Formal methods · Provably Correct Systems · Unifying
Theories of Programming

1 Introduction

This paper aims to provide a non-technical overview of Jifeng He’s main aca-
demic achievements during his career, as well as a chronological account of
his main affiliations. Subsection 1.1 provides a brief overall biography and Sub-
sect. 1.2 describes some early practical contributions in China. Section 2 covers
his research at the University of Oxford in the United Kingdom, especially in col-
laboration with Tony Hoare. He then moved to the United Nations University in
Macau, as reported in Sect. 3. Latterly until his retirement, he was based at the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 3–18, 2023.

https://doi.org/10.1007/978-3-031-40436-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_1&domain=pdf
http://orcid.org/0000-0002-8748-6140
http://orcid.org/0000-0002-0214-8565
https://doi.org/10.1007/978-3-031-40436-8_1

4 J. P. Bowen and H. Zhu

East China Normal University in Shanghai, as described in Sect. 4. The paper
concludes with an overall appreciation of his achievements in Sect. 5. Overall,
this paper provides a personal reflection of the authors in their collaboration
with Jifeng over the years.

1.1 Brief Biography

Jifeng He was born in Shanghai China, in August 1943. He graduated in 1965
from the Department of Mathematics at Fudan University, located in Shanghai.
Since 1965, he has held a position at East China Normal University (ECNU)
in Shanghai, successively serving as a teaching assistant and then lecturer, and
was promoted to full professor in 1986. In 1988, he was awarded the title of
National Young and Middle-aged Experts with Outstanding Contributions. From
1980 to 1981, he was a visiting scholar at Stanford University and the University
of San Francisco in California, United States. From 1983 to 1998, he worked as
a senior researcher in the Programming Research Group (PRG) at the Oxford
University Computing Laboratory (OUCL) in the United Kingdom, collaborat-
ing extensively with Tony Hoare [54], based in Oxford although retaining his
position at ECNU. He was an important researcher on the European ProCoS
project from 1989.

From 1998, Jifeng worked as a senior researcher at the International Institute
of Software Technology of the United Nations University (UNU/IIST) in Macau.
During 2002 to 2019, he was the Dean of the Software Engineering Institute at
East China Normal University. In 2002, he joined the first group of lifelong
professors of East China Normal University. He was elected in 2005 as an aca-
demician of the Chinese Academy of Sciences, the highest scientific recognition
in China. He received an honorary doctorate from the University of York (UK)
in 2009. In December 2015, he was awarded the French National Palm Edu-
cation Knight Medal. From 2017, Jifeng started to consider the issues around
trustworthiness in Artificial Intelligence (AI). In 2019, Jifeng was appointed as
the Distinguished Professor at Tongji University located in Shanghai. Jifeng’s
research interests have included sound methods for the specification of computer
systems, communications, applications, and standards, as well as techniques for
designing and implementing those specifications in software and/or hardware
with high reliability.

This paper provides a non-technical overview of Jifeng’s academic achieve-
ments. More technical details related to some of his contributions are available
elsewhere in this volume [59,63,71].

1.2 Practical Contributions

This paper is mainly about the theoretical contributions of Jifeng at Oxford,
UNU/IIST, and ECNU. It should be noted that Jifeng also has made remark-
able practical contributions. In 1982, Jifeng led a team to undertake one of the
38 major scientific and technological research projects of the State Council in
China, the Office Chinese Character Information Processing System, whose core

Jifeng He at Oxford and Beyond 5

Fig. 1. Jifeng He speaking at a BCS-FACS event in London, 2018. (See also Fig. 3.)

technology was the independent self-development of China’s first Chinese Char-
acter Relational Database System (ECNIS), which provided a practical Chinese
character information processing platform for China’s “paperless” office. It was
widely used in the field of office work by various domestic institutions at that
time. The scientific research achievements won the first prize of the Shanghai
Excellent Software Award in 1985 and the Outstanding Scientific and Techno-
logical Achievements Award of the National Education Commission in 1986.

2 University of Oxford

From 1983 to 1998, Jifeng worked as a senior researcher (a “Senior Research
Officer”) in the Programming Research Group (PRG) at the Oxford University
Computing Laboratory (OUCL) in the UK. He mainly collaborated with the
leader of the PRG, Tony Hoare, who invited him to come to Oxford during a visit
to China. Although Jifeng retained his position at East China Normal University
during this time, he spent most of his time working as a researcher in Oxford,
mainly with Tony Hoare. From 1989, he was a significant contributor on the
European ProCoS project concerning “Provably Correct Systems”, instigated
by Tony Hoare and others.

6 J. P. Bowen and H. Zhu

Before the ProCoS project, Jifeng collaborated with Tony Hoare on research
concerning the “weakest prespecification”, generalizing the concept of Edsger
Dikstra’s weakest precondition. This was first published as a PRG Technical
Monograph in 1985 [44], then as two related journal papers in 1986 [45,46], and
also as a shorter summary journal paper in 1987 [52]. Later they collaborated
with Jeff Sanders on data refinement [27] and prespecification for such refinement
[48]. Jifeng was also a coauthor of the highly cited 1987 Laws of Programming
paper by Tony Hoare et al. [51], presenting a complete set of algebraic laws for
Edsger Dijkstra’s nondeterministic sequential programming language.

2.1 Provably Correct Systems (“ProCoS”)

From 1989, Tony Hoare led the ProCoS “Basic Research Action” (ESPRIT BRA
3104) project on Provably Correct Systems with European partners in Den-
mark (under Dines Bjørner) and Germany (under Hans Langmaack and also
Ernst-Rüdiger Olderog), as well as in the UK (initially with Cliff Jones and also
Ursula Martin) [1]. This ran in parallel with the UK Information Engineering
Directorate (IED) SAFEMOS project in “Totally Verified Systems” with the
University of Cambridge (under Mike Gordon), SRI Cambridge (under Roger
Hale), and INMOS (under David May and David Shepherd) [2,10]. Subsequently,
the ProCoS II project [15] and the ProCoS-WG Working Group continued the
work of ProCoS in the 1990s [16]. Jifeng He was a key researcher involved with
ProCoS, especially working on program compilation aspects of the project, and
collaborated on tutorials about the project [14]. Ultimately, this work led to
his important ideas on Unifying Theories of Programming, as described later in
Subsect. 2.2.

Verifiable Compiling Specification: The ProCoS project studied verifying
computer-based systems from requirements through to programming and compi-
lation. Initial research considered an algebraic approach to the verifiable compil-
ing specification and prototyping of the ProCoS level 0 programming language,
based on a subset of the Occam programming language [47], with prototyping
using logic programming in Prolog by Jonathan Bowen [12], based on a shallow
embedding approach [7]. Later, recursion was also considered [23]. This app-
roach was further developed to cover the specification, verification, and proto-
typing of an optimized compiler [25]. Jifeng also collaborated with Tony Hoare
and Augusto Sampaio on a normal-form approach to compiler design [50]. In
1994, Jifeng published a complete book on provably correct systems, covering
the modelling of communication languages and the design of optimized compilers
[21].

Real-time Systems: Later work on ProCoS by Jifeng He and others considered
a time interval semantics and the implementation of a real-time programming
language [24]. Further work covered hybrid parallel programming and the imple-
mentation of synchronised communication [20]. Jifeng collaborated with Roger
Hale on the SAFEMOS project concerning a real-time programming language

Jifeng He at Oxford and Beyond 7

[19]. He also undertook research with others, including Hussein Zedan, on real-
time refinement [65], a predictive semantics for the refinement of real-time sys-
tems [64], and a specification-oriented semantics for real-time system refinement
[66].

Hardware Compilation: Ian Page and Wayne Luk at Oxford introduced ideas
of compiling an Occam-like programing language including parallelism directly
into hardware for implementation as a netlist of gate-level components on a
Field-Programmable Gate Array (FPGA) chip. These ideas were adopted on
the ProCoS project, including by Jifeng. Initial ideas were published in a highly
cited conference paper on a provably correct hardware implementation of the
Occam programming language [28], led by Jifeng in collaboration with Ian Page
and Jonathan Bowen. This work was also undertaken collaboratively as part of
the SAFEMOS project by Jonathan Bowen et al. [11] and with Jianping Zheng,
using a simulation approach for provably correct hardware compilation [39].
Further papers on the specification and verification of a hardware compilation
scheme [8] and an algebraic approach to hardware compilation [9] appeared later.

2.2 Unifying Theories of Programming (UTP)

Starting during ProCoS, for example in considering the connection between alge-
braic and operational semantics [26], and continuing afterwards, Jifeng collabo-
rated with Tony Hoare on their magnum opus Unifying Theories of Programming
(UTP), published in 1998 [49]. An associated paper was presented at the 4th
International Seminar on Relational Methods in Computer Science (RelMiCS)
[32]. UTP considers the challenge of connecting different forms of semantics. For
example, it is possible to link algebraic, denotational, and operational semantics,
including demonstrating their equivalence. In parallel, Jifeng also collaborated
on highly cited work with Karen Seidel and Annabelle McIver on probabilis-
tic models for the Guarded Command Language (GCL) [36], with Qiwen Xu
and Willem-Paul de Roever on the rely-guarantee method for verifying shared
variable concurrent programs [72], and with Tony Hoare on a trace model for
pointers and objects [53].

The UTP book has spawned a community of researchers, including a regular
UTP symposium. Jifeng [22] and Tony Hoare [62] were later both keynote pre-
senters at the UTP 2016 Symposium in Reykjavik, Iceland [17]. It is interesting
to consider papers connected to UTP, using the visual representation provided by
the Connected Papers website (https://connectedpapers.com). It can be noted
that Jim Woodcock is a major contributor of UTP papers, together with his col-
laborator Ana Cavalcanti, both at the University of York. They have developed
Circus, an integration of the formal notations of Z, CSP, and Carroll Morgan’s
refinement calculus, underpinned by UTP, as described elsewhere in this volume
[71].

https://connectedpapers.com

8 J. P. Bowen and H. Zhu

3 United Nations University

In 1998, the year of publication of the Unifying Theories of Programming book
with Tony Hoare [49], Jifeng took up a position with United Nations University
International Institute of Software Technology (UNU/IIST) in Macau as a senior
researcher. UNU/IIST was initially established under the leadership of Dines
Bjørner, who headed the Danish partner on the ProCoS project, the Technical
University of Denmark. In this section, we consider some important contributions
of Jifeng during his time at UNU/IIST.

Verilog Hardware Description Language: Modern hardware design typically uses
a Hardware Description Language (HDL) to express designs at various levels of
abstraction. An HDL is a high-level programming language, with usual pro-
gramming constructs such as assignments, conditionals, and iterations, together
with appropriate extensions for real-time, concurrency and data structures suit-
able for modelling hardware. Verilog is an HDL that has been standardized and
widely used in industry. Verilog programs can exhibit a rich variety of behaviours,
including event-driven computation and shared-variable concurrency.

The semantics for Verilog is very important to help in ensuring the cor-
rectness of hardware design. With fellows and colleagues based at UNU/IIST,
London South Bank University (LSBU), and ECNU, a series of research studies
on Verilog semantics were undertaken. The operational semantics was explored
by Jifeng in collaboration with Qiwen Xu, Huibiao Zhu, Jonathan Bowen, and
others [13,37,40,57], including the animation of Verilog’s operational seman-
tics. Verilog’s denotational semantics [77] has also been explored based on the
operational semantics using Duration Calculus [73].

Later, the linking between the denotational semantics and operational seman-
tics for Verilog has been successfully investigated under a discrete-time model,
developed by Huibiao Zhu based on Jifeng’s original ideas [74–76]. More recently,
a mechanical approach using the Coq proof assistant tool has been applied in
unifying the Verilog semantics by Feng Sheng et al. [67,68], against developing
on Jifeng’s theoretical research. The soundness and completeness of the opera-
tional semantics is verified based on the algebraic semantics via the mechanical
approach in Coq. Similarly, the correctness of the algebraic laws has also been
verified using a mechanical approach supported by Coq. This semantics research
on Verilog semantics demonstrates the successful application of UTP in Verilog.

Advanced Features of Duration Calculus: Duration Calculus (DC) was originally
proposed by Zhou Chaochen with Tony Hoare and Anders Ravn [73] as part of
the ProCoS project to provide a precise formalism for requirements involving
timing constraints. Several advanced features of Durational Calculus were later
investigated by Jifeng in collaboration with Qiwen Xu [38], including initial and
final values, stability, left and right neighbourhood values, and chopping points,
aiming to integrate several variants of Duration Calculus. A link between the
untimed refinement calculus and the timed one in this framework was studied,
where the timed version preserves the laws of untimed programming.

Jifeng He at Oxford and Beyond 9

rCOS: A refinement calculus of object systems (named rCOS) was studied
[35,59,60], in collaboration with Zhiming Liu and Xiaoshan Li, defining an
observation-oriented semantics for a relational object-based language with a
rich variety of features including subtypes, visibility, inheritance, type casting,
dynamic binding, and polymorphism. The logic of rCOS is a conservative exten-
sion of standard predicate logic. rCOS relates the notions of refinement and
data refinement in imperative programming to refactorings and object-oriented
design patterns for responsibility assignments. The investigation for rCOS shows
the successful application of UTP in object orientation. Further more detailed
information on rCOS is provided in another paper in this volume [59], including
the formal use of the Unified Modeling Language (UML) [56].

4 East China Normal University

From 2002 to 2019, Jifeng He was the Dean of the Software Engineering Institute
at East China Normal University in Shanghai. During this period, despite his
additional administrative duties as Dean, he pioneered the theory and technology
of model-based trustworthy software design. The related achievements have been
widely adopted by key departments in China. Even as Dean, Jifeng continued to
lead teams undertaking active research. Some notable contributions are outlined
below.

Web Services: With the development of Internet technology, web services and
web-based applications increasingly play an important role in information sys-
tems. Business Process Execution Language (BPEL) is used for specifying the
behaviour of business processes. BPEL contains several interesting features,
including scope-based compensation and fault handling. A model for BPEL-
like languages and a transaction calculus have been proposed by Jifeng [29,41].
The denotational semantics and a set of algebraic laws were also investigated. In
addition, the lining of semantics for web services was also explored by Huibiao
Zhu, Jifeng, and others [78–80].

Unification of CSP and CCS: The Calculus of Communicating Systems (CCS)
of Robin Milner [61] and Communicating Sequential Processes (CSP) of Tony
Hoare [42] are two major examples of the process calculi family. A process may
be defined by a transition system, which is the approach taken in setting up
the framework of CCS. Meanwhile, traces are the foundation of the definition
of CSP. The unification of CCS and CSP was studied by Jifeng in collaboration
with Tony Hoare [30,31], and it has been proved that CSP is a retract of CCS.
It is claimed that the technique of retraction is a common and useful form of
unification.

HRML Language: A hybrid modelling language (HRML) [33] was proposed by
Jifeng and Qin Li, with a set of novel combinators. The complex combinations of
testing and reaction behaviours were conducted to model the physical world and

10 J. P. Bowen and H. Zhu

its interaction with the control program. With the introduction of the new hybrid
structures when and until, three types of guards were defined to model the condi-
tion under which the system controller switches to a new mode. A denotational
semantics was studied for the HRML language using the UTP approach.

A New Roadmap for UTP: A new roadmap [34] was also proposed by Jifeng and
Qin Li, for linking theories of programming, which is one of the new directions
for the UTP approach. The new methodology takes an algebra of programs as its
basis; it generates both denotational and operational representations from the
algebraic refinement relation. A testing structure has been studied, represent-
ing the execution behaviours of programs. This new roadmap was successfully
applied for the Guarded Command Language (GCL) and CSP. It is believed
that this new roadmap can be applied to other types of programs with new
modern features. A Coq proof assistant implementation of the program algebra
in Jifeng’s UTP roadmap is included in this volume [63].

5 Conclusion

The Scopus database (https://www.scopus.com) is widely recognized as an
important indicator of scientific publication record, although with a limited set
of approved journals and restricted access. This orders papers by citation count.
The Scopus list of top-ten academic papers coauthored by Jifeng (omitting a
survey paper) are listed in Table 1. Note that Scopus has two entries for [27]
separately under its main title and subtitle (which have been combined into a
single entry in Table reftopten), and does not include books. For example, the
UTP book [49] is probably Jifeng’s most influential work. So one should always
treat such automatically generated publication statistics with caution.

In September 2013, Jifeng’s 70th birthday was celebrated at East China
Normal University with an international three-day Festschrift and an associated
proceedings volume edited by Zhiming Liu, Jim Woodcock, and Huibiao Zhu [58],
held in association with the International Conference on Theoretical Aspects
of Computing (ICTAC). This included a paper on Jifeng’s connections within
the formal methods community [3]. During this event, a poster of Jifeng was on
display in a public walkway in Shanghai (see Fig. 2). The following is a translation
of the statement on the poster:

He is the first [Chinese] academician in the field of computer science in
Shanghai, has initiated an international school of software theory, and is
acknowledged as a leader in Asian software theory. At the age of 70, he
always cares about students, promotes the reform of undergraduate edu-
cation and teaching, manages to organize awards and grants for students,
teaches with a scientific attitude, and educates people with care.

It is interesting to try to imagine a similar public display for a computer scientist
in the West.

https://www.scopus.com

Jifeng He at Oxford and Beyond 11

Table 1. Jifeng He’s top ten most cited academic papers on the Scopus database in
2023.

No. Title Authors Year Ref.

1. Laws of programming Tony Hoare, Ian Hayes, Jifeng
He, Carroll Morgan, Bill
Roscoe, Jeff Sanders, Ib Holm
Sørensen, Michael Spivey, and
Bernard Sufrin

1987 [51]

2. Data refinement refined –
Resume

Jifeng He, Tony Hoare, and Jeff
Sanders

1986 [27]

3. Probabilistic models for the
Guarded Command Language

Jifeng He, Karen Seidel, and
Annabelle McIver

1997 [36]

4. The rely-guarantee method for
verifying shared variable
concurrent programs

Qiwen Xu, Willem-Paul de
Roever, and Jifeng He

1997 [72]

5. rCOS: A refinement calculus of
object systems

Jifeng He, Xiaoshan Li, and
Zhiming Liu

2006 [35]

6. Prespecification in data
refinement

Tony Hoare, Jifeng He, and Jeff
Sanders

1987 [48]

7. A formal semantics of UML
sequence diagram

Xiaoshan Li, Zhiming Liu, and
Jifeng He

2004 [56]

8. The weakest prespecification Tony Hoare and Jifeng He 1987 [52]

9. Normal form approach to
compiler design

Tony Hoare, Jifeng He, and
Augusto Sampaio

1993 [50]

10. A process algebraic framework
for specification and validation
of real-time systems

Adnan Sherif, Ana Cavalcanti,
Jifeng He, and Augusto
Sampaio

2010 [69]

In October 2018, Jifeng gave a presentation for the BCS-FACS (Formal
Aspects of Computing Science) Specialist Group in London to celebrate the
20th anniversary of the publication of the book on UTP [49] (see Fig. 3), chaired
by Jonathan Bowen (the chair of the FACS group itself). Tony Hoare, Jifeng’s
coauthor, provided introductory remarks and Jim Woodcock of the University of
York, a leading UTP researcher, provided a summary at the end of the talk. This
event also celebrated the 30th anniversary of the Formal Aspects of Computing
journal and the 40th anniversary of FACS itself [5].

Jifeng has been a major contributor to research into formal methods during
his career as a computer scientist. His collaboration with Tony Hoare, especially
on the Unifying Theories of Programming, has been particularly fruitful. Tony
Hoare is brilliant at initiating new ideas in computer science, but Jifeng’s contri-
butions to UTP are equal (if not greater) in stature, as noted by Jim Woodcock
[70] (page 291). Jifeng’s role has been very important in ensuring that the ideas
are mathematically sound [6] and he added great insights to formulations using

12 J. P. Bowen and H. Zhu

Fig. 2. Poster of Jifeng He in Shanghai, 2013.

UTP, including for simplifying the algebraic semantics of CSP. Jifeng’s collabo-
ration with Tony Hoare on UTP has been crucial to its success. Tony Hoare has
noted [43]:

Jifeng has a long record of achievement and is enjoying the highest inter-
national regard. Jifeng has an extraordinary skill as an applied logician
and was always glad to undertake the most difficult problems, and in a
day or two came back with a proof or counter-example.

Commenting on their collaboration of ten year’s UTP research and the resulting
book, Tony Hoare adds [43]:

I must emphasise that all the effective research was conducted by Jifeng,
who formalized the definitions, postulated the axioms, and proved the
theorems. I enjoyed discussing the goal of research with him, and I wrote
much of the English prose. But all of the new results were due to him.
Since leaving Oxford, Jifeng has successfully resolved all the main issues
which were unable to put into the original book, and has developed further
remarkable insights.

With this paper providing a summary of Jifeng’s lifetime of achievements, and
echoing Tony Hoare’s sentiments, we thank Jifeng for furthering the foundations
of computer science over his career.

Jifeng He at Oxford and Beyond 13

Fig. 3. Jifeng He and Tony Hoare at the BCS-FACS event celebrating 20 years since
the publication of their UTP book, held in London, 2018. (See also Fig. 1.)

Acknowledgements. Jonathan Bowen is grateful for financial support provided by
Museophile Limited. The comments from the reviewers were very helpful in improving
the final version of this paper. Influenced by [59], the number of references in this paper
is also 80 to match Jifeng’s birthday. Finally, both authors are extremely grateful for
many years of collaboration with Jifeng, more fully referenced elsewhere [4], and wish
him a very happy 80th birthday.

References

1. Bjørner, D., et al.: A ProCoS project description: ESPRIT BRA 3104. Bull. Eur.
Assoc. Theor. Comput. Sci. 39, 60–73 (1989). http://researchgate.net/publication/
256643262

2. Bowen, J.P. (ed.): Towards Verified Systems, Real-Time Safety Critical Systems,
vol. 2. Elsevier, Amsterdam (1994)

3. Bowen, J.P.: A relational approach to an algebraic community: from Paul Erdős to
He Jifeng. In: Liu et al. [58], pp. 54–66. https://doi.org/10.1007/978-3-642-39698-
4 4

4. Bowen, J.P.: A personal formal methods archive. ResearchGate (2019). https://
doi.org/10.13140/RG.2.2.31943.65447

5. Bowen, J.P.: FACS events, 2018–2020. FACS FACTS 2020(1), 7–21 (2020).
https://www.bcs.org/media/5204/facs-dec19.pdf

6. Bowen, J.P.: Review on theories of programming: the life and works of tony Hoare.
Form. Aspects Comput. 34(3–4), 1–3 (2022). https://doi.org/10.1145/3560267

7. Bowen, J.P., Gordon, M.J.C.: A shallow embedding of Z in HOL. Inf. Softw. Tech-
nol. 37(5–6), 269–276 (1995). https://doi.org/10.1016/0950-5849(95)99362-Q

http://researchgate.net/publication/256643262
http://researchgate.net/publication/256643262
https://doi.org/10.1007/978-3-642-39698-4_4
https://doi.org/10.1007/978-3-642-39698-4_4
https://doi.org/10.13140/RG.2.2.31943.65447
https://doi.org/10.13140/RG.2.2.31943.65447
https://www.bcs.org/media/5204/facs-dec19.pdf
https://doi.org/10.1145/3560267
https://doi.org/10.1016/0950-5849(95)99362-Q

14 J. P. Bowen and H. Zhu

8. Bowen, J.P., He, J.: An approach to the specification and verification of a hard-
ware compilation scheme. J. Supercomput. 19(1), 23–39 (2001). https://doi.org/
10.1023/A:1011184310224

9. Bowen, J.P., He, J.: An algebraic approach to hardware compilation. In: Gab-
bar, H.A. (ed.) Modern Formal Methods and Applications, pp. 151–176. Springer,
Dordrecht (2006). https://doi.org/10.1007/1-4020-4223-X 7

10. Bowen, J.P., He, J., Hale, R.W.S., Herbert, J.M.J.: Towards verified systems:
the SAFEMOS project. In: Mitchell, C., Stavridou, V. (eds.) Mathematics of
Dependable Systems, Institute of Mathematics and Its Applications Conference
Series, vol. 55, pp. 23–48. Oxford University Press (1995). http://researchgate.
net/publication/2525857

11. Bowen, J.P., He, J., Page, I.: Hardware compilation. In: Bowen [2], chap. 10, pp.
193–207. https://doi.org/10.1016/B978-0-444-89901-9.50019-7

12. Bowen, J.P., He, J., Pandya, P.K.: An approach to verifiable compiling specification
and prototyping. In: Deransart, P., Maluszyński, J. (eds.) PLILP 1990. LNCS, vol.
456, pp. 45–59. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0024175

13. Bowen, J.P., He, J., Xu, Q.: An animatable operational semantics of the Verilog
hardware description language. In: ICFEM 2000: Third IEEE International Con-
ference on Formal Engineering Methods, pp. 199–207. IEEE (2000). https://doi.
org/10.1109/ICFEM.2000.873820

14. Bowen, J.P., et al.: Provably correct systems – FTRTFT’94 tutorial. In: Third
International School and Symposium, Formal Techniques in Real Time and
Fault Tolerant Systems. No. [COORD JB 7/1] in ProCoS document, Christian-
Albrechts-Universität, Lübeck, Germany, September 1994. http://researchgate.
net/publication/2420842, School Material

15. Bowen, J.P., Hoare, C.A.R., Langmaack, H., Olderog, E.R., Ravn, A.P.: A Pro-
CoS II project final report: ESPRIT basic research project 7071. Bull. Eur.
Assoc. Theor. Comput. Sci. 59, 76–99 (1996). http://researchgate.net/publication/
2255515

16. Bowen, J.P., Hoare, C.A.R., Langmaack, H., Olderog, E.R., Ravn, A.P.: A
ProCoS-WG working group final report: ESPRIT working group 8694. Bull. Eur.
Assoc. Theor. Comput. Sci. 64, 63–72 (1998). http://researchgate.net/publication/
2527052

17. Bowen, J.P., Zhu, H. (eds.): UTP 2016. LNCS, vol. 10134. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52228-9

18. Bowen, J.P., Li, Q., Xu, Q. (eds.): Theories of Programming and Formal Meth-
ods: Essays Dedicated to Jifeng He on the Occasion of His 80th Birthday, LNCS,
vol. 14080. Springer, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-
031-40436-8

19. Hale, R.W.S., He, J.: A real-time programming language. In: Bowen, J.P. (ed.)
Towards Verified Systems, Real-Time Safety Critical Systems, vol. 2, chap. 6, pp.
115–130. Elsevier (1994)

20. He, J.: Hybrid parallel programming and implementation of synchronised com-
munication. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS,
vol. 711, pp. 537–546. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57182-5 45

21. He, J.: Provably Correct Systems: Modelling of Communication Languages and
Design of Optimized Compilers. International Series in Software Engineering.
McGraw-Hill, New York (1994)

22. He, J.: A new roadmap for linking theories of programming. In: Bowen and Zhu
[17], pp. 26–43. https://doi.org/10.1007/978-3-319-52228-9 2

https://doi.org/10.1023/A:1011184310224
https://doi.org/10.1023/A:1011184310224
https://doi.org/10.1007/1-4020-4223-X_7
http://researchgate.net/publication/2525857
http://researchgate.net/publication/2525857
https://doi.org/10.1016/B978-0-444-89901-9.50019-7
https://doi.org/10.1007/BFb0024175
https://doi.org/10.1109/ICFEM.2000.873820
https://doi.org/10.1109/ICFEM.2000.873820
http://researchgate.net/publication/2420842
http://researchgate.net/publication/2420842
http://researchgate.net/publication/2255515
http://researchgate.net/publication/2255515
http://researchgate.net/publication/2527052
http://researchgate.net/publication/2527052
https://doi.org/10.1007/978-3-319-52228-9
https://doi.org/10.1007/978-3-031-40436-8
https://doi.org/10.1007/978-3-031-40436-8
https://doi.org/10.1007/3-540-57182-5_45
https://doi.org/10.1007/3-540-57182-5_45
https://doi.org/10.1007/978-3-319-52228-9_2

Jifeng He at Oxford and Beyond 15

23. He, J., Bowen, J.P.: Compiling specification for ProCoS language PLR0. ProCoS
document [OU HJF 6], Oxford University Computing Laboratory (1991). http://
researchgate.net/publication/319069362

24. He, J., Bowen, J.P.: Time interval semantics and implementation of a real-time
programming language. In: Fourth Euromicro Workshop on Real-Time Systems,
pp. 110–115. IEEE (1992). https://doi.org/10.1109/EMWRT.1992.637480

25. He, J., Bowen, J.P.: Specification, verification and prototyping of an optimized
compiler. Form. Aspects Comput. 6(6), 643–658 (1994). https://doi.org/10.1007/
BF03259390

26. He, J., Hoare, C.A.R.: From algebra to operational semantics. Inf. Process. Lett.
45, 75–80 (1993). https://doi.org/10.1016/0020-0190(93)90219-Y

27. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1 14

28. He, J., Page, I., Bowen, J.P.: Towards a provably correct hardware implementation
of Occam. In: Milne, G.J., Pierre, L. (eds.) CHARME 1993. LNCS, vol. 683, pp.
214–225. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0021726

29. He, J.: Transaction calculus. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713,
pp. 2–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14521-
6 2

30. He, J., Hoare, C.A.R.: CSP is a retract of CCS. In: Dunne, S., Stoddart, B. (eds.)
UTP 2006. LNCS, vol. 4010, pp. 38–62. Springer, Heidelberg (2006). https://doi.
org/10.1007/11768173 3

31. He, J., Hoare, C.A.R.: CSP is a retract of CCS. Theor. Comput. Sci. 411(11–13),
1311–1337 (2010). https://doi.org/10.1016/j.tcs.2009.12.012

32. He, J., Hoare, C.A.R.: Unifying theories of programming. In: RelMiCS: 4th Inter-
national Seminar on Relational Methods in Computer Science, pp. 97–99. Warsaw,
Poland, September 1998

33. He, J., Li, Q.: A hybrid relational modelling language. In: Gibson-Robinson, T.,
Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol. 10160,
pp. 124–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51046-0 7

34. He, J., Li, Q.: A new roadmap for linking theories of programming and its appli-
cations on GCL and CSP. Sci. Comput. Program. 162, 3–34 (2018). https://doi.
org/10.1016/j.scico.2017.10.009

35. He, J., Li, X., Liu, Z.: rCOS: a refinement calculus of object systems. Theor.
Comput. Sci. 365(1–2), 109–142 (2006). https://doi.org/10.1016/j.tcs.2006.07.034

36. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command
language. Sci. Comput. Program. 28, 171–192 (1997)

37. He, J., Xu, Q.: An operational semantics of a simulator algorithm. In: Arabnia,
H.R. (ed.) Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA 2000, 24–29 June 2000, Las
Vegas, Nevada, USA. CSREA Press (2000)

38. He, J., Xu, Q.: Advanced features of Duration Calculus and their applications in
sequential hybrid programs. Form. Aspects Comput. 15(1), 84–99 (2003). https://
doi.org/10.1007/s001650300001

39. He, J., Zheng, J.: Simulation approach to provably correct hardware compilation.
In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT ProCoS 1994.
LNCS, vol. 863, pp. 336–350. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58468-4 172

http://researchgate.net/publication/319069362
http://researchgate.net/publication/319069362
https://doi.org/10.1109/EMWRT.1992.637480
https://doi.org/10.1007/BF03259390
https://doi.org/10.1007/BF03259390
https://doi.org/10.1016/0020-0190(93)90219-Y
https://doi.org/10.1007/3-540-16442-1_14
https://doi.org/10.1007/BFb0021726
https://doi.org/10.1007/978-3-642-14521-6_2
https://doi.org/10.1007/978-3-642-14521-6_2
https://doi.org/10.1007/11768173_3
https://doi.org/10.1007/11768173_3
https://doi.org/10.1016/j.tcs.2009.12.012
https://doi.org/10.1007/978-3-319-51046-0_7
https://doi.org/10.1016/j.scico.2017.10.009
https://doi.org/10.1016/j.scico.2017.10.009
https://doi.org/10.1016/j.tcs.2006.07.034
https://doi.org/10.1007/s001650300001
https://doi.org/10.1007/s001650300001
https://doi.org/10.1007/3-540-58468-4_172
https://doi.org/10.1007/3-540-58468-4_172

16 J. P. Bowen and H. Zhu

40. He, J., Zhu, H.: Formalising VERILOG. In: Proceedings of the 2000 7th IEEE Inter-
national Conference on Electronics, Circuits and Systems, ICECS 2000, Jounieh,
Lebanon, 17–20 December 2000, pp. 412–415. IEEE (2000). https://doi.org/10.
1109/ICECS.2000.911568

41. He, J., Zhu, H., Pu, G.: A model for BPEL-like languages. Front. Comput. Sci.
China 1(1), 9–19 (2007). https://doi.org/10.1007/s11704-007-0002-7

42. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Com-
puter Science, Prentice Hall, Hoboken (1985)

43. Hoare, C.A.R.: Recommendation letter (2002). Private communication via K. He
(May 2023)

44. Hoare, C.A.R., He, J.: The weakest prespecification. Technical Monograph PRG-
44, Oxford University Computing Laboratory, Programming Research Group,
Oxford, UK, June 1985

45. Hoare, C.A.R., He, J.: The weakest prespecification: Part I. Fund. Inform. 9(1),
51–84 (1986). https://doi.org/10.3233/FI-1986-9104

46. Hoare, C.A.R., He, J.: The weakest prespecification: Part II. Fund. Inform. 9(2),
217–251 (1986). https://doi.org/10.3233/FI-1986-9205

47. Hoare, C.A.R., He, J., Bowen, J.P., Pandya, P.: An algebraic approach to verifi-
able compiling specification and prototyping of the ProCoS level 0 programming
language. In: Directorate-General XIII of the Commission of the European Com-
munities (ed.) ESPRIT ’90 Conference, pp. 804–818. Kluwer Academic Publishers
(1990). https://doi.org/10.1007/978-94-009-0705-8 65

48. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf.
Process. Lett. 25(2), 71–76 (1987). https://doi.org/10.1016/0020-0190(87)90224-
9

49. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer
Science, Prentice Hall, Hoboken (1998)

50. Hoare, C.A.R., He, J., Sampaio, A.: Normal form approach to compiler design.
Acta Informatica 30(8), 701–739 (1993). https://doi.org/10.1007/BF01191809

51. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
52. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24, 127–132

(1987). https://doi.org/10.1016/0020-0190(87)90106-2
53. Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Guerraoui,

Rachid (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 1–18. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48743-3 1

54. Jones, C.: List of Tony Hoare’s publications. In: Jones and Misra [55], pp. 394–315.
https://doi.org/10.1145/3477355.3477375, Appendix D

55. Jones, C.B., Misra, J. (eds.): Theories of Programming: The Life and Works of
Tony Hoare, ACM Books, vol. 39. Association for Computing Machinery (2021).
https://doi.org/10.1145/3477355

56. Li, X., Liu, Z., He, J.: A formal semantics of UML sequence diagram. In: Proceed-
ings of the Australian Software Engineering Conference (ASWEC), pp. 168–177.
IEEE (2004). https://doi.org/10.1109/ASWEC.2004.1290469

57. Li, Y., He, J.: Formalising Verilog: operational semantics and bisimulation. Tech-
nical report 217, UNU/IIST, P.O. Box 3058, Macau SAR, China, November 2000

58. Liu, Z., Woodcock, J.C.P., Zhu, H. (eds.): Theories of Programming and Formal
Methods, LNCS, vol. 8051. Springer, Berlin, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39698-4

59. Liu, Z.: Linking formal methods in software development – a reflection on the
development of rCOS. In: Bowen et al. [18], this volume. https://doi.org/10.1007/
978-3-031-40436-8 3

https://doi.org/10.1109/ICECS.2000.911568
https://doi.org/10.1109/ICECS.2000.911568
https://doi.org/10.1007/s11704-007-0002-7
https://doi.org/10.3233/FI-1986-9104
https://doi.org/10.3233/FI-1986-9205
https://doi.org/10.1007/978-94-009-0705-8_65
https://doi.org/10.1016/0020-0190(87)90224-9
https://doi.org/10.1016/0020-0190(87)90224-9
https://doi.org/10.1007/BF01191809
https://doi.org/10.1016/0020-0190(87)90106-2
https://doi.org/10.1007/3-540-48743-3_1
https://doi.org/10.1145/3477355.3477375
https://doi.org/10.1145/3477355
https://doi.org/10.1109/ASWEC.2004.1290469
https://doi.org/10.1007/978-3-642-39698-4
https://doi.org/10.1007/978-3-642-39698-4
https://doi.org/10.1007/978-3-031-40436-8_3
https://doi.org/10.1007/978-3-031-40436-8_3

Jifeng He at Oxford and Beyond 17

60. Liu, Z., He, J., Li, X.: rCOS: refinement of component and object systems. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004.
LNCS, vol. 3657, pp. 183–221. Springer, Heidelberg (2005). https://doi.org/10.
1007/11561163 9

61. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10235-3 11

62. Möller, B., Hoare, C.A.R., Müller, M.E., Struth, G.: A discrete geometric model
of concurrent program execution. In: Bowen and Zhu [17], pp. 1–25. https://doi.
org/10.1007/978-3-319-52228-9 1

63. Mu, R., Li, Q.: A Coq implementation of the program algebra in Jifeng He’s new
roadmap for linking theories of programming. In: Bowen et al. [18], this volume.
https://doi.org/10.1007/978-3-031-40436-8 15

64. Scholefield, D., Zedan, H., He, J.: A predicative semantics for the refinement of
real-time systems. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt,
D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 230–249. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58027-1 11

65. Scholefield, D., Zedan, H., He, J.: Real-time refinement: semantics and application.
In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp.
693–702. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-5 60

66. Scolefield, D., Zedan, H., He, J.: A specification-oriented semantics for the refine-
ment of real-time systems. Theor. Comput. Sci. 131, 219–241 (1994)

67. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical aspects
of linking operational and algebraic semantics for MDESL. ACM Trans. Softw.
Eng. Methodol. 28(3), 14:1–14:46 (2019). https://doi.org/10.1145/3295699

68. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical
approaches to the denotational semantics for MDESL based on UTP. Form.
Aspects Comput. 32(2–3), 275–314 (2020). https://doi.org/10.1007/s00165-020-
00513-4

69. Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework
forspecification and validation of real-time systems. Form. Aspects Comput. 22,
153–191 (2010). https://doi.org/10.1007/s00165-009-0119-6

70. Woodcock, J.: Hoare and He’s unifying theories of programming. In: Jones and
Misra [55], chap. 13, pp. 287–315. https://doi.org/10.1145/3477355.3477369

71. Woodcock, J., Cavalcanti, A., Foster, S., Oliveira, M., Sampaio, A., Zeyda, F.:
UTP, Circus, and Isabelle. In: Bowen et al. [18], this volume. https://doi.org/10.
1007/978-3-031-40436-8 2

72. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Form. Aspects Comput. 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617

73. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

74. Zhu, H., Bowen, J.P., He, J.: Deriving operational semantics from denotational
semantics for Verilog. In: APSEC 2001: Eighth Asia-Pacific Software Engineer-
ing Conference, pp. 177–184. IEEE (2001). https://doi.org/10.1109/APSEC.2001.
991475

75. Zhu, H., Bowen, J.P., He, J.: From operational semantics to denotational semantics
for Verilog. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144,
pp. 449–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44798-
9 34

https://doi.org/10.1007/11561163_9
https://doi.org/10.1007/11561163_9
https://doi.org/10.1007/3-540-10235-3_11
https://doi.org/10.1007/978-3-319-52228-9_1
https://doi.org/10.1007/978-3-319-52228-9_1
https://doi.org/10.1007/978-3-031-40436-8_15
https://doi.org/10.1007/3-540-58027-1_11
https://doi.org/10.1007/3-540-57182-5_60
https://doi.org/10.1145/3295699
https://doi.org/10.1007/s00165-020-00513-4
https://doi.org/10.1007/s00165-020-00513-4
https://doi.org/10.1007/s00165-009-0119-6
https://doi.org/10.1145/3477355.3477369
https://doi.org/10.1007/978-3-031-40436-8_2
https://doi.org/10.1007/978-3-031-40436-8_2
https://doi.org/10.1007/BF01211617
https://doi.org/10.1109/APSEC.2001.991475
https://doi.org/10.1109/APSEC.2001.991475
https://doi.org/10.1007/3-540-44798-9_34
https://doi.org/10.1007/3-540-44798-9_34

18 J. P. Bowen and H. Zhu

76. Zhu, H., Bowen, J.P., He, J.: Soundness, completeness and non-redundancy of
operational semantics for Verilog based on denotational semantics. In: George, C.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 600–612. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36103-0 61

77. Zhu, H., He, J.: A semantics of Verilog using duration calculus. In: Proceedings
of the International Conference on Software: Theory and Practice, pp. 421–432
(August 2000)

78. Zhu, H., He, J., Li, J., Bowen, J.P.: Algebraic approach to linking the semantics of
web services. In: Fifth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2007), 10–14 September 2007, London, England, UK, pp.
315–328. IEEE Computer Society (2007). https://doi.org/10.1109/SEFM.2007.4

79. Zhu, H., He, J., Li, J., Bowen, J.P.: Algebraic approach to linking the semantics
of web services. Innov. Syst. Softw. Eng. 7(3), 209–224 (2011). https://doi.org/10.
1007/s11334-011-0172-1

80. Zhu, H., He, J., Li, J., Pu, G., Bowen, J.P.: Linking denotational semantics with
operational semantics for web services. Innov. Syst. Softw. Eng. 6(4), 283–298
(2010). https://doi.org/10.1007/s11334-010-0134-z

https://doi.org/10.1007/3-540-36103-0_61
https://doi.org/10.1109/SEFM.2007.4
https://doi.org/10.1007/s11334-011-0172-1
https://doi.org/10.1007/s11334-011-0172-1
https://doi.org/10.1007/s11334-010-0134-z

UTP, Circus, and Isabelle

Jim Woodcock1(B) , Ana Cavalcanti1 , Simon Foster1 , Marcel Oliveira3 ,
Augusto Sampaio2 , and Frank Zeyda4

1 The University of York, York, UK
{jim.woodcock,ana.cavalcanti,simon.foster}@york.ac.uk

2 Universidade Federal de Pernambuco, Recife, Brazil
acas@cin.ufpe.br

3 Universidade Federal do Rio Grande do Norte, Natal, Brazil
marcel@dimap.ufrn.br
4 Guadalajara, Mexico

https://www-users.york.ac.uk/~jw524/,
https://www-users.york.ac.uk/~alcc500/,

https://www-users.york.ac.uk/~sf786/, https://dimap.ufrn.br/~marcel/,
https://www.cin.ufpe.br/~acas/, https://www.linkedin.com/in/frank-zeyda/

Abstract. We dedicate this paper with great respect and friendship to
He Jifeng on the occasion of his 80th birthday. Our research group owes
much to him. The authors have over 150 publications on unifying theories
of programming (UTP), a research topic Jifeng created with Tony Hoare.
Our objective is to recount the history of Circus (a combination of Z,
CSP, Dijkstra’s guarded command language, and Morgan’s refinement
calculus) and the development of Isabelle/UTP. Our paper is in two
parts. (1) We first discuss the activities needed to model systems: we
need to formalise data models and their behaviours. We survey our work
on these two aspects in the context of Circus. (2) Secondly, we describe
our practical implementation of UTP in Isabelle/HOL. Mechanising UTP
theories is the basis of novel verification tools. We also discuss ongoing
and future work related to (1) and (2). Many colleagues have contributed
to these works, and we acknowledge their support.

Keywords: Circus · CSP · Isabelle/HOL · Isabelle/UTP · refinement
calculus · UTP · Unifying theories of programming · He Jifeng · Z

1 Dedication

Jim Woodcock met He Jifeng in Oxford in the early 1980s. Jim was working
for GEC Hirst Research Centre and regularly visited Oxford to teach courses
for industry. He collaborated with Jifeng in teaching Z, program refinement, and
CSP. This collaboration continued after Jifeng moved to the United Nations Uni-
versity in Macau, where Jim became a visiting professor. In 2013, with Zhiming

F. Zeyda—Independent Researcher.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 19–51, 2023.
https://doi.org/10.1007/978-3-031-40436-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_2&domain=pdf
http://orcid.org/0000-0001-7955-2702
http://orcid.org/0000-0002-0831-1976
http://orcid.org/0000-0002-9889-9514
http://orcid.org/0000-0002-3023-2748
http://orcid.org/0000-0001-9870-6893
http://orcid.org/0009-0009-4251-4740
https://doi.org/10.1007/978-3-031-40436-8_2

20 J. Woodcock et al.

Liu and Huibiao Zhu, Jim helped to celebrate Jifeng’s 70th birthday, organising a
collection of essays [64], an international training school on UTP [65], and a col-
loquium on theoretical computer science [63]. Jim’s research groups at the Uni-
versities of Oxford, Kent, and York took their intellectual basis from the sound
foundations of the Z notation, data refinement, CSP, functional programming,
and unifying theories of programming. Jifeng made significant contributions in
each of these areas. We were delighted when Jifeng accepted an Honorary Doc-
torate conferred by the University of York at a ceremony in Beijing on 17 April
2010. All authors are grateful for the inspiration, good taste, and mathematical
excellence he provided and continues to provide, which greatly influences our
work.

Thank you, Jifeng!

2 Introduction

We describe in this paper our work since 2000 inspired by He Jifeng and Tony
Hoare and their unifying theories of programming (UTP). We watched the ori-
gins of UTP. Jim recalls enthusiastic but puzzling meetings over lunch in the com-
mon room in Oxford with Tony and Jifeng mysteriously discussing ok ′, wait ′,
and the tradeoff between different fixed points. Tony left Oxford in 1998 and
Jifeng shortly afterwards. The UTP book [59] was launched at Tony’s retire-
ment symposium, where we gave a copy to every participant. Tony and Jim
gave a short course on UTP at the symposium. This was the origin of Jim’s
long-standing course. We describe UTP and its development in [113].

UTP is particularly well suited as a basis for writing and reasoning about het-
erogeneous models, capturing various aspects of a system: data, reaction, time,
architecture, and so on. In UTP, we found the theoretical basis for cyber-physical
systems (CPS). In a CPS, computer-based algorithms control and monitor a
physical device; potentially, humans interact with networked physical devices. A
CPS senses and changes the physical world. Modelling a CPS requires hetero-
geneous notations: discrete programming models for control; continuous models
for physical dynamics, including hydraulics, mechatronics, and others; protocols
for human interaction; and continuous and probabilistic models for assumptions
about an uncertain environment. The diversity of the heterogeneous semantics
required for CPS requires a unifying theory of semantics: UTP.

This paper describes our work, past, present, and future, on Circus, a multi-
paradigm modelling language. Circus is a concrete realisation of UTP.

In Sect. 3, we discuss our research work on Circus. It makes the choices for
designing a language suitable for UTP semantics with parsers, type-checkers,
static and dynamic analysers, model checkers, theorem provers, and code gen-
erators. In Sect. 4, we discuss our implementation of UTP and Circus in the
Isabelle/UTP theorem prover. Additional exciting projects that use Circus but
did not involve our research group are briefly described in Sect. 5. Section 6
describes ongoing and future directions for research on Circus, Isabelle/UTP
and their applications, and Sect. 7 summarises our work.

UTP, Circus, and Isabelle 21

3 Circus

Two activities needed to model a system are formalising its data model and
behaviour. Model-oriented languages like Z [62,100,107,110] describe state-based
aspects, and process algebras like CSP [58] describe behavioural patterns. We
add a third dimension for system development: a refinement calculus [75]. Com-
bining these three aspects motivates Circus, where a system process groups data
and control constructs and the behaviours of all implementations are specified.

Dijkstra, Back, Morris, and Morgan used predicate transformers [31] as the
basis of semantic models for imperative refinement calculi [7,75,76]. Hoare and
Roscoe use different models as the basis of theories of refinement for CSP, the
failures-divergences model [58,90,91]. Fischer surveyed some of the work that
combines the two approaches [38]. Fischer and Smith [39,99] both provide a
failures-divergences model for Object-Z classes to present the semantics for com-
binations of Object-Z and CSP. Although they consider data refinement for these
combinations, they do not give refinement laws.

Woodcock et al. [119] use the failures model to give behavioural semantics
to abstract data types. The semantics of Circus requires a model combining the
notions of refinement for CSP and imperative programs. UTP [59] is a framework
that makes this combination possible by unifying the programming discipline
across many different computational paradigms.

The semantic setting provided by UTP is the theory of alphabetised rela-
tions. Interesting sub-theories are built by defining mappings corresponding to
healthiness conditions capturing different aspects of the sub-theory. Hoare and
He [59] first create a sub-theory of precondition-postcondition pairs within the
relational calculus. This is the theory of designs (see [117] for a tutorial intro-
duction to designs and Harwood et al. [56] for an introduction to Galois con-
nections). Next, they build a theory of reactive processes that is disjoint from
the theory of designs. Finally, they use reactive healthiness conditions to embed
designs within the theory of reactive processes. The result is the theory of CSP
processes (see [24] for a tutorial account of this embedding and connections
between it and Roscoe’s semantics based on the failures-divergences model).

In what follows, we survey the main contributions that led to the design,
formalisation, extension, and application of Circus.

3.1 A Concurrent Language for Refinement [108,114]

We start by describing the origin of Circus. In 2000, Jim Woodcock visited Ana
Cavalcanti in Brazil while on sabbatical from Oxford. They formed a reading
group with Augusto Sampaio to study Hoare and He’s textbook on UTP [59].
Chapter 8 describes a unifying theory for communication in process algebras.
The book considers ACP, CCS, CSP, and the data-flow language SDL.

In the reading group, we were inspired particularly by Theorem 8.2.2 in
the book (Closure of CSP Processes). It states two properties: (1) The UTP
theory for CSP processes defines a complete lattice that is closed under sequential
composition. (2) The lattice also contains R(x := e), where x is any list of stored
program variables, e is a corresponding list of well-defined expressions, and R

22 J. Woodcock et al.

is the healthiness function for reactive processes (see [59, Theorem 8.0.2, p. 208]
for the definition of the reactive healthiness conditions). The proof of the first
conclusion follows from the following fact:

P is a CSP process iff
P = R(¬ P [false, false/wait , ok ′] � P [false, true/wait , ok ′]) [†]

The predicate P [false, false/wait , ok ′] describes the divergences of the CSP pro-
cess P . The process P has been properly started: wait = true explicitly and
ok = true implicitly, since we are in the precondition: before the �. We select
divergence: ok ′ = false. The complement ¬ P [false, false/wait , ok ′] describes the
situations where P does not diverge. In the postcondition, after �, the predicate
P [false, true/wait , ok ′] describes the conditions under which P reaches a stable
state: wait = true and ok ′ = true. It describes the stable failures of P .

Two things snagged our attention here. First, the property marked [†] states
that every CSP process can be expressed as a reactive design. Every CSP pro-
cess behaves as described by a reactive assumption-commitment pair. In our
subsequent work on Circus, we used this property to give uniform, specification-
oriented semantics to the operators of Circus, establishing a way of specifying
Circus processes as contracts. Second, the reactive assignment reminded us that
the UTP semantics for CSP is state-rich. The UTP semantics of CSP describes
the representation of states that react to the same input differently depending
on the current state value recorded in program variables.

So the reading group asked itself the question:

What if we used the Z notation to specify abstract data types to accompany
CSP definitions of processes?

This question is the origin of the Circus notation.
We presented Circus for the first time at a workshop at Trinity College

Dublin [114]. Our formulation of the language gave a calculational approach
to writing programs that are similar to occam [60] and Handel-C [67]. Our
paper [114] describes the language, the rationale for its design, and a case study
in its use: a reactive ring buffer with a cached head, which became a famous case
study for showing off the features of Circus. The ring acts as a bounded buffer
in the formal sense that it has the following properties:

1. The ring is a fifo queue.
2. If the ring has spare capacity, it cannot refuse an input.
3. If the ring is not empty, it cannot refuse to output.

Each cell in the buffer is modelled as an active process. To ensure no (perceived)
refusal of output (3), we cache the head of the buffer. This avoids the delay
required to fetch the head so that it is immediately available.

3.2 The Steam Boiler in Circus [115]

Another well-known case study is the steam-boiler problem, which has become
a standard benchmark in modelling and verification. It was first proposed by

UTP, Circus, and Isabelle 23

Bauer [12] and subsequently popularised by Jean-Raymond Abrial as the subject
of a Dagstuhl workshop [2]. The workshop proceedings contain the problem
description and 22 solutions. Abrial’s solution is published separately [1].

The problem is to program the control system for a steam boiler. The control
software exists within a physical environment with the following elements: (1)
the steam boiler; (2) a sensor to detect the level of the water in the boiler; (3)
a valve to evacuate the boiler; (4) a sensor to measure the quantity of steam
being produced; (5) four pumps supplying the boiler with water; (6) four pump
controllers; (7) an operator’s desk; and (8) a message transmission system. Our
solution to the problem consists of four processes operating in parallel. (1) The
Timer ensures the cycle begins every five seconds. (2) The Analyser inputs mes-
sages from the physical units and analyses their content. (3) Once the analysis
is complete, it offers an information service to the Controller , which decides on
the actions to be taken. (4) It generates outputs for the Reporter , which offers a
reporting service to the Controller by gathering its outputs and packaging them
for dispatch to the physical units. It then signals the completion of the cycle.

Our solution structure was guided by the drive to efficiently use the FDR
model checker [53]. We had to overcome two obstacles: the state explosion
problem and the use of loose constants. The latter complicates model check-
ing because loose constants must be given specific values that define a concrete
finite model. An argument is then required to extrapolate these specific values to
arbitrary ones (a small model theorem). The steam boiler depends on several of
these constants. Any practical instantiation leads to a massive number of states.

Our solution separates the Controller and its finite-state machine from the
Analyser and the rich state it constructs from input message history. The
Analyser digests the incoming messages and makes this digest available to the
Controller as abstract events. This makes the Controller amenable to fully auto-
matic model checking using FDR. Significantly, the Analyser ’s abstract events
correspond to concepts in the requirements, so they help validate the Analyser ’s
behaviour. Extrapolation from the abstract behaviour of the Controller to the
concrete realities of the requirements is provided by the Analyser . It is like a
retrieve function from the concrete details of the state to an abstract interpre-
tation of those details, in the sense of data refinement [110].

3.3 The Semantics of Circus [116]

The semantics of Circus provides a model for processes and their components.
In [116], we use a Z specification to describe the semantics of Circus processes
and of Circus actions, which have an imperative state, as relations. The process
model is a Z specification, and the action model is a Z schema. We used Z as
a concrete notation for UTP’s relational calculus because we could parse and
type-check it and prove various consistency results.

Circus includes support to define imperative assignments, conditionals, loops,
and the reactive behaviour of communication, parallelism, and internal and
external choice. All combinations of model-based formalisms and process alge-
bras that had been published before we defined the semantics of Circus describe

24 J. Woodcock et al.

concurrent programs as communicating abstract datatypes. For example, this is
the case with CSPZ [38] and CSP ‖ B [95]. Communicating abstract datatype is
a valuable but limited design pattern. We took a different approach and did not
identify events with datatype operations. The result is a programming language
suitable for developing concurrent programs in a more general style.

Our goals in designing the semantics of Circus were: (1) ease of use for
those familiar with Z and CSP; (2) encapsulation of the process model; and
(3) the possibility of reusing existing theories, techniques, and tools. We had
to decide how best to formulate the semantics. Imperative refinement calculi
like those of Back [7], Morgan [75], and Morris [76], are normally given pred-
icate transformer semantics. Theories of refinement for CSP are based on the
failures-divergences model [58,90]. A connection between weakest preconditions
and CSP exists [74], and a sound and complete refinement theory has been
developed based on it [120]. We use a fourth approach: UTP, where both state
and communication aspects of concurrent systems are integrated with a state-
based failures-divergences model described pointwise. This leads to a simple and
elegant definition of refinement and a sound foundation for refinement calculi.

3.4 Refinement in Circus [26,27,94]

Having set out the semantics of Circus, our next step was to define its refine-
ment relation [94]. Each Circus process has a state and accompanying actions
that define both internal state transitions and changes in control flow during exe-
cution. We explained the meaning of refinement for processes and their actions
and proposed a sound data refinement technique. Refinement laws for CSP and
Z are directly relevant and applicable to Circus, but our focus was on new laws
for processes that integrate state and control. We presented new results about
the distribution of data refinement through CSP operators adopted in Circus.

We illustrated our ideas with the development of a distributed system of
cooperating processes. We proposed a refinement approach whose typical starting
point is a centralised specification of an application. The development process
moves towards a distributed solution. The approach is supported by two families
of laws (for algorithmic and data refinement) that allow the incremental splitting
of Circus processes using parallelism. The overall approach is illustrated by a case
study (the reactive buffer again) that, although simple, is interesting enough to
demonstrate the proposed strategy in all its relevant details.

A Circus system describes a set of processes. Each process encapsulates a local
state and has its reactive behaviour defined by actions in that state. In [26], we
present refinement laws to support the development of these actions from more
abstract descriptions. These laws form the basis of a systematic development
strategy for Circus based on formal refinement, addressing all the language’s
constructs. It complements the work in [94] by proposing laws of actions, includ-
ing the laws of CSP [58,91] and of ZRC [28], a refinement calculus for Z.

In addition, since Circus allows us to specify actions using a mixture of Z
schemas and CSP constructs, we require new laws. For example, there are novel
laws to introduce parallelism and external choice from Z schema expressions.

UTP, Circus, and Isabelle 25

These laws are added to a comprehensive set of refinement laws of CSP to sup-
port program development in Circus. The work extends the forward simulation
laws proposed for Circus [94] to address all the action operators of Circus. It
illustrates how these laws can be proved from the semantics of Circus. Parts of
the development of the distributed cached-head ring buffer from its centralised
specification are used to illustrate the laws of actions and forward simulation.

In [27], we present a refinement strategy for Circus. The strategy unifies the
theories of refinement for processes and their constituent actions and provides
a coherent technique for stepwise refinement of concurrent and distributed pro-
grams involving rich data structures. This kind of development is carried out
using Circus’s refinement calculus. We describe some of its laws for the simul-
taneous refinement of state and control behaviour, including splitting a process
into parallel components. We illustrate the strategy and the laws using a case
study that shows the complete development of a distributed program.

3.5 Predicate Transformers in the Semantics of Circus [29]

One of the main objectives of the Circus work is the definition of refinement
methods for concurrent programs. The original semantic model for Circus is
defined using UTP, expressed in Z. In [29], we present equivalent semantics
based on predicate transformers. With this new model, we provide an adequate
basis for formalising refinement and verification-condition generation rules.

This new framework makes it possible to include logical variables and angelic
nondeterminism in Circus, neither of which are straightforward in the relational
setting. The consistency of the relational and predicate transformer models gives
us confidence in their accuracy. Only much later did we study angelic nondeter-
minism in a relational setting [25]. The work to define a UTP theory to study
Circus processes and angelic nondeterminism was led by Pedro Ribeiro [85–87].

We present in [29] a new predicate transformer: the weakest reactive precon-
dition. It characterises the weakest precondition that guarantees that a given
condition holds in all later observable, not necessarily final, states of a reactive
program. We define the weakest reactive precondition of a unifying theory rela-
tion that defines a reactive system. From this, we calculate the weakest reactive
precondition semantics for Circus. This new semantic model is a convenient step
towards the complete justification of our extension to an existing refinement
calculus for Z [28] that includes all Circus constructs.

Roscoe and Hoare [92] present laws that completely characterise occam and
that are cast in terms of the occam’s denotational semantics [89], although
no proof of equivalence was carried out. The laws presented in that work are
equality-based algebraic semantics. Unlike our work, they are not intended to
support the development of programs by refinement.

3.6 A Circus Semantics for Ravenscar Protected Objects [6]

Burns et al.’s Ravenscar profile [14] is a subset of the Ada 95 tasking model [10].
The Ravenscar profile does not allow Ada’s rendezvous construct for task com-

26 J. Woodcock et al.

munication. Instead, tasks in Ravenscar communicate through shared variables,
usually encapsulated inside protected objects. This makes protected objects fun-
damental building blocks in Ravenscar programs, providing a safe mechanism
for accessing the shared data between various tasks.

The Ravenscar profile is intended to be certifiable and deterministic, to sup-
port schedulability analysis, and to meet tight memory constraints and per-
formance requirements. With Atiya and King [6], we give semantics to pro-
tected objects using Circus and prove several of its essential properties: con-
sistency, determinism, deadlock-freedom, livelock-freedom, totality, and non-
stopping behaviour. This was the first time that these properties had been ver-
ified. Interestingly, all the proofs are conducted in Z, even those concerning
reactive behaviour. A compliance notation for concurrent systems [5] provides a
cost-effective technique for verifying Ravenscar programs based on this formal
semantics.

Lundqvist et al. [68] provide an alternative formal model of Ravenscar’s pro-
tected objects in UPPAAL [13]. Their model deals specifically with the timing of
calls to protected objects. Model checking is used to verify the protected object
model considering only a few tasks: three. No statement was made about the
model’s validity for more tasks. Our proofs are valid for any number of tasks.

3.7 Using Circus for Safety-Critical Applications [111]

In [111], we illustrate the use of Circus via the example of the steam boiler
discussed in Sect. 3.2. We focus on an interesting semantic gap between synchro-
nisation in CSP and, therefore, Circus, and in programs: a kind of abstract event.
In CSP, an abstraction is sometimes used in which atomic synchronisations can
be system-wide, between many processes, rather than being restricted to only
two participants. In [111], we deal with a simple instance of this phenomenon of
multi-synchronisation, which shows the power of Circus’s calculational approach
to reasoning about reactive systems via refinement of abstract models.

We base our model of the steam boiler controller here on O’Halloran’s descrip-
tion [78] that expresses its functional requirements as firing rules. These are in
the form if a then b, where event a enables event b, subject to environmental
constraints. The implicit inference engine defined by these firing rules is non-
monotonic, as it must forget previously inferred facts as the system evolves. The
result is a valuable design pattern for synthesising reactive controllers.

A suitable language to implement this model as a controller for an actual
steam boiler is occam [60], given its close relationship with CSP. We might likely
choose Communicating Sequential Processes for Java (JCSP), a Java class library
that implements CSP processes and process combinators [106]. We immediately,
however, face the semantic gap mentioned above. CSP allows the synchronisa-
tion of events between many processes, but occam and JCSP restrict this, for
efficiency reasons, to just two participants. In our paper [111], we apply Circus’s
refinement calculus to bridge this semantic gap.

In this work, we consider a collection of parallel processes indexed over I ,
each repeatedly executing some individual transaction, represented by the event

UTP, Circus, and Isabelle 27

t .i , with i ∈ I and synchronising the transactions by alternating them with a
globally shared event m. The Circus process models this:

(‖m i : I • (μX • m → t .i → X)) \ {m}

Every process participates in the multi-way synchronisation on m, whereas only
the i -th process participates in the independent event t .i . The event m is hidden
from the environment, so crucially for this development, we know the identities
of all of m’s participants. If the membership were dynamic, then we would need
to develop a protocol to manage its membership.

We use Circus’s refinement calculus to derive a protocol equivalent to this
system of parallel processes, but where there is no multi-way synchronisation.
Our first step is to convert the i -th process into an action system [8]. We then re-
introduce parallelism to create a simple protocol that synchronises transactions.
It is now at the code level of occam or JCSP.

A more interesting problem occurs when the multi-way synchronisation is
part of an external choice, and our solution above is not applicable in such a
situation. We have calculated efficient two-phase commit protocols to deal with
these synchronisation patterns. Although these programs are much more com-
plex than the one calculated in this paper, the same development strategy is
used. The abstract program is reduced to a normal form, which contains no
multi-way synchronisations since it is sequential. This normal form is then par-
titioned into new parallel processes that implement a protocol for synchronising
individual transactions. This approach is later adopted in [50] in the context of
an automated strategy for translation from Circus to JCSP.

3.8 Formal Development of Industrial-Scale Systems in Circus [81]

In [80], we present the use of the Circus refinement strategy to derive a concrete
distributed fire-control system from an abstract centralised Circus specification.
This real-world system is one of the most significant case studies on the Circus
refinement strategy [27] and translation rules [81].

The fire-control system considers two building areas, each divided into two
zones. Two extra zones are used for detection only. Fire detection happens in a
zone, and a gas discharge may occur in the area that contains that zone. The
system includes a display panel with lamps to indicate whether the system is on
or off, system faults, whether a fire has been detected, whether the alarm has
been silenced, and the need to replace actuators and gas discharges. The system
can be in one of three modes: manual, automatic, or disabled.

In manual mode, an alarm sounds when a fire is detected, and the corre-
sponding detection lamp is lit on the display. The alarm can be silenced, and the
system returns to normal when the reset button is pressed. In manual mode, a
gas discharge needs to be manually initiated. In automatic mode, fire detection
is followed by the alarm being sounded; however, if a fire is detected in the sec-
ond zone of the same area, the second stage alarm is sounded, and a countdown
starts. When the countdown finishes, the gas is discharged, and the circuit fault

28 J. Woodcock et al.

lamp is illuminated in the display; the system mode is switched to disabled.
In disabled mode, the system only indicates the need to replace the actuators,
identify relevant faults, and reset. The system returns to its normal mode after
the actuators are replaced, and the reset button is pressed.

The motivation for the fire-control system refinement is the distribution of the
control for efficiency. In [80], we use the refinement strategy in [23] to develop
a concrete distributed system using three refinement iterations: the first one
splits the system into an internal controller and a controller for the areas. In the
second iteration, the internal controller is subdivided into two further controllers,
separating a controller just for the display. Finally, the third iteration splits the
controller’s areas into individual controllers for each area.

The result of refining a Circus specification is a Circus program written in a
combination of CSP and guarded commands. We, therefore, need a link between
Circus and a practical programming language to implement this program.

In [81], we present rules to translate Circus programs to Java programs that
use JCSP (see [106] and the discussion in Sect. 3.7). These rules can be used as
a complement to the Circus algebraic refinement technique or as a guideline for
implementation. They link the results of refinement in the context of Circus and
a practical programming language in current use. The rules can also be used as
the basis for a tool that mechanises translation [11,50]. In [81], we demonstrate
the application of the rules using the industrial fire-control system.

The main objective of that work was to provide a translation strategy for
implementing Circus programs in a widely used language. Using the JCSP [105,
106] library and a rule-based approach ensures that the obtained programs can be
traced back to the Circus model. The rules justify and generalise our development
of the fire-control system. With this work, we provide empirical evidence of the
expressive power of Circus and that the refinement strategy in [27] and the
translation to Java apply to industrial systems.

3.9 A Denotational Semantics for Circus [82,83]

Although usable for reasoning about Circus specifications, the semantics in [116]
is not appropriate to prove properties of Circus itself. This is because it is a shal-
low embedding in which Circus constructs are defined as a Z specification. Yet
another language is used as a metalanguage to define the semantics. The main
drawback is that we can not use shallow embedding to prove the laws of Cir-
cus’s distinguishing development technique. In [82], we present an alternative: a
definitive reference for the denotational semantics using UTP.

We redefined the Circus semantics. We mechanised it using ProofPower-Z [4],
a commercial HOL-based theorem prover for Z. We implemented the UTP the-
ories needed for the semantics of state-rich CSP (relations, designs, reactive
processes, and the CSP healthiness conditions) [84]. Our semantics for Circus is
then given using reactive designs. We proved over 90% of the 146 proposed refine-
ment laws. These proofs range over the structure of the language and include all
the data simulation laws. Their proofs can be found in [79].

UTP, Circus, and Isabelle 29

We used a simple strategy to prove P = Q or P � Q . (1) Flatten P to
a single reactive design R(preP � postP). (2) Flatten Q to a single reactive
design R(preQ � postQ). (3) Use lemmas and theorems from the ProofPower
UTP library and predicate calculus to transform the first reactive design into
the second one (in case of refinement, an inverse implication is the required
result). Flattening the programs involves definitions and theorems that transform
program structures into a single reactive design. For instance, if P is the sequence
P1 ; P2, the following lemma transforms it into a single reactive design.

Lemma 1.

R(P1 � Q1) ; R(P2 � Q2) =
R(P1 ∧ ¬ ((okay ′ ∧ ¬ wait ′ ∧ Q1) ; ¬ P2)

�
((wait ′ ∧ Q1) ∨ (okay ′ ∧ ¬ wait ′ ∧ Q1 ; Q2)))

for P1 not mentioning dashed variables and P1, Q1, P2, and Q2 all R2-healthy.

The result of our mechanisation is a definitive reference for the denotational
semantics of Circus using UTP and reactive designs.

Finally, we note that Circus also has an operational semantics [51,118]. In [51],
there are considerations on a formal link to the denotational semantics. Further-
more, as we have already explained, the algebraic laws have been proved from
the denotational semantics, establishing the usual links suggested by UTP.

3.10 Time and Synchronicity in Circus [16,97]

CircusTime Action (CTA) is a timed version of Circus, explored by Sherif and
others, including He Jifeng [96,97]. It introduces discrete-time slots of event
sequences. CTA provides a two-tier view of history. The top-level records history
as a sequence of time slots. The bottom-level records history as an event sequence
within a given slot. This is reminiscent of super-dense time, an important tool
for modelling simultaneity in discrete-event simulations. The slots model events
separated in time, whilst each slot models simultaneous but ordered events.

We worked with Andrew Butterfield on a synchronous version of Circus. Our
work in [16] takes inspiration from CTA and is compatible with the general struc-
ture of the Circus language. We develop a generic framework of UTP theories
for describing systems whose behaviour is characterised by regular (top-level)
time slots. The slotted-Circus framework is parametrised by how event histories
are observable within a slot (the bottom level). We instantiate this bottom-
level history in a variety of ways: as simple traces or multisets of events or as
the more complex micro-slot structures used in our operational semantics for
Handel-C (a high-level programming language that targets low-level hardware,
most commonly used in the programming of FPGAs) [18].

One of the original motivations behind this work was to re-cast existing
semantics for Handel-C into the UTP framework so that Circus can be used

30 J. Woodcock et al.

as a specification language. Using this time-slot model, the Handel-C denota-
tional [17] and operational semantics are defined. Still, the slot structure has
varying complexity, depending on which language constructs we wish to sup-
port. The slotted-Circus framework is a foundation for formulating the common
parts of these models, making it easier to explore the key differences.

3.11 The Miracle of Reactive Programming [112]

UTP uses Tarski’s relational calculus, with theories defined by complete lattices
of predicates ordered under refinement. Roscoe’s semantics for CSP uses a com-
plete partial order (CPO) [90]. So UTP offers an exciting addition: the reactive
miracle, the top of the lattice. In [112], we present two simple properties of reac-
tive miracles: prefixing a miracle with an event and offering an external choice
between a process and a miracle. Both processes have interesting properties:
each violates an essential axiom of the standard failures-divergences model for
CSP. Of course, that is why the reactive miracle is not in Roscoe’s CPO.

All three UTP theories involved in modelling CSP processes are complete
lattices rather than the CPOs of the standard models for CSP. As complete
lattices, they each have a top element. The top of the design lattice is the familiar
miracle from the refinement calculus: w : [true, false] [75]. This design is always
guaranteed to terminate if it is started (precondition true), and when it does
terminate, it achieves the impossible (it makes false true).

Morgan demonstrates a specific application of miracles [73]. He shows that a
miracle can enable conditional data refinement even when the condition involves
concrete variables. Some reasoning is then needed at the concrete level to elim-
inate the miracle, which can never be executed. Morgan illustrates another
use for miracles: a naked guarded command can be given weakest precondi-
tion semantics. For guard G , command com, and postcondition α, the weakest
precondition for the guarded command wp(G → com, α) is G ⇒ wp(com, α).
We note that a guarded command does not satisfy the Law of the Excluded
Miracle [31]: wp(com, false) = false; for example, wp(G → com, false) is
G ⇒ wp(com, false), which is different from false. In [74], Morgan uses this
definition to give semantics to an action system [8] (see also [120]).

The tops of the reactive and the CSP lattices in UTP were unexplored when
we wrote [112]. The reactive miracle is
 = R1(true � wait ∧ II). This is
reactive-healthy but infeasible (miraculous) if properly started. We proved the
following result for an external choice between a prefixed process and a miracle:

a → Skip �
 = (true � (II � wait � ¬ wait ′ ∧ tr ′ = tr � 〈a〉 ∧ v ′ = v))

This process terminates immediately, having performed the event a. There is
no state in which the process is waiting for the environment to perform a: it
happens instantly. This makes the event a urgent.

In [112], we explore some applications of miracles. We show how to make two
events a and b simultaneous, but ordered: we prune away the state between a
and b. Next, we show how to implement deadlines. For example, if b must occur

UTP, Circus, and Isabelle 31

within 10 time units, we can model this using a new deadline operator: we write
b deadline 10 =̂ (b → Skip) �10
, where �10 is the timeout operator. In
this process, there are no states 10 time units from initiation in which b has not
happened. This captures a very strong requirement: there is no alternative to
meeting the deadline. Further applications of miracles are explored in [103,104].

Reactive miracles have proved indispensable to provide a sound semantic
basis for real-time extensions of Circus. A real-time variant of Circus has, for
instance, been used to give an architectural infrastructure model [72] of Safety-
Critical Java (JRS 302) [66]—a subset of Java tailored for the engineering of
safety-critical real-time systems. Nelson already realised that, despite their unim-
plementability, miracles are useful in refinement-based systems development,
much like complex numbers in solving differential equations. Our work rediscov-
ers and reiterates this claim in the context of reactive programming in general,
and Circus in particular, with UTP giving us the right framework and vocabulary
to make this integration as smooth as possible.

4 Isabelle/UTP

We describe Isabelle/UTP1, our practical implementation of UTP that can be
used to mechanise UTP theories and turn them into verification tools. We cover
the history of Isabelle/UTP and motivate the design decisions behind its devel-
opment: in each section, we account for a major step in the Isabelle/UTP design
as it evolved. Isabelle/UTP was born out of necessity to support UTP-based
software engineering, and this continues to be our motivation to this day.

4.1 Beginnings

Isabelle/UTP [46] is a shallow embedding of the UTP in Isabelle. Its develop-
ment began in 2012, during the COMPASS project2. Nevertheless, Isabelle/UTP
is a natural development of previous UTP mechanisations, notably by Marcel
Oliveira [84] and Abderrahmane Feliachi [32,36] (with Burkhart Wolff).

COMPASS created a sophisticated toolset for modelling and verifying “sys-
tems of systems”. We developed a modelling language, CML (COMPASS Mod-
elling Language), with formal UTP semantics, a task led by Jim Woodcock.
Thus, an applicable verification tool for UTP was needed. Simon Foster’s task
was to develop a theorem prover for UTP and CML based on Isabelle/HOL.

As envisioned, this tool needed to combine two important characteristics. On
the one hand, it needed to provide the fidelity necessary to express refinement
laws, including side conditions, which often imposed syntactic constraints. On
the other hand, it needed to be suitable for scalable verification. Whilst these had
been separately achieved in the mechanisation of Oliveira and Feliachi, they had
not been achieved in either work. Oliveira’s mechanisation [84], as a relatively
1 Isabelle/UTP Website: http://isabelle-utp.york.ac.uk.
2 Comprehensive Modelling for Advanced Systems of Systems, EU FP7 Project

287829.

http://isabelle-utp.york.ac.uk

32 J. Woodcock et al.

deep embedding, had fidelity but lacked the automation necessary to make it
scalable. Feliachi’s mechanisation [32,36] had automation and scalability as a
shallow embedding but could not express syntactic side conditions.

4.2 Laws and Side Conditions, and the Deep Model

We consider the well-known assignment commutativity law:

(x := e ; y := f) = (y := f ; x := e) provided x = y , x /∈ fv(f), y /∈ fv(e)

To express this law, as written, we need to (1) compare different program
variables and (2) check the variables mentioned in an expression. However, a
function like fv, which determines the free variables of an expression, is meta-
logical since it allows us to make arguments based on the syntactic structure of a
term. It exists in Isabelle and most other provers but as a function in Isabelle/ML
inaccessible from HOL. This is important because if fv were an Isabelle function,
then equality would cease to be useful, as we could not, for instance, prove that
x · 0 = 0 (for x ∈ R), since fv(x · 0) = {x} = {} = fv(0).

At the same time, formal methods are awash with laws that use such side
conditions. Another example is the frame rule from separation logic:

{P}C {Q}
mod(C) ∩ fv(R){P ∗ R}C {Q ∗ R}

This likewise requires that we calculate the free variables in R and the set
of variables that command C modifies. We seem to have hit a roadblock—we
cannot have fv and similar syntax functions without breaking our logic.

However, Oliveira [84] discovered a neat solution. He created a function
UnrestVar : REL PRED → PNAME, which calculates the set of names (i.e.
variables) that a predicate does not depend on, i.e. those that are “unrestricted”.
Unlike fv, UnrestVar is a semantic rather than a syntactic function. It does not
compute the syntactically present names but those that have some bearing on
the predicate’s meaning. For example, x · 0 does not depend on x since it always
evaluates to 0. Thus, UnrestVar(x · 0) = NAME, since this expression does not
depend on any variable: it is semantically equivalent to 0.

It turns out that UnrestVar is sufficient to express the side conditions of our
assignment law and similar laws. This function has a much older pedigree: an
analogue is found in Tarski’s famous Cylindric Algebra [57], an algebraic basis
for first-order logic with equality. In this setting, we can express UnrestVar as
the greatest set A of names such that (∃A.P) = P . Quantifying the names in
A does not change P because P does not depend on them.

Oliveira’s solution avoids the need for fv. However, there is still a problem
because UnrestVar requires that we formalise names and, as later realised in the
work of Zeyda [123], types. The problem is that names and types are also meta-
logical. If we formalise them, we cut ourselves off from the proof assistant’s

UTP, Circus, and Isabelle 33

representation of names and types, with a resulting loss of algorithms like α-
renaming and type checking. We have to implement these ourselves.

So, when we first developed Isabelle/UTP, we followed Oliveira [84] and
Zeyda [123] in building our representation of names, types, and a value uni-
verse [45]. We call this a “deep model”, rather than a “deep embedding” because
we do not formalise a syntax tree for predicates, just for the underlying value
universe. In this approach, a predicate is denoted as a set of functions record-
ing the possible values of the correct type that a variable can take. We must,
therefore, formalise names, types, values, and the typing relation.

In HOL, types are bounded by a given cardinal, and so the value universe is
technically limited to a strict subset of the possible types constructible in HOL.
Thus, we needed to exhibit an explicit injection into our universe whenever we
wanted to use a type in a UTP predicate or program. We did find a way of
automating it somewhat, but this did not work well. Though we retained the
fidelity of Oliveira’s model, we could not match the automation of Feliachi. This
became obvious even for small examples in CML. Our technique did not scale
to allow model verification. This was all too painfully pointed out in Wolff’s
gracious and factual review of our UTP 2014 paper [45].

Nevertheless, whilst we could not support verification, our techniques sub-
stantially benefited from Isabelle’s proof automation. Using automated theorem
provers, through the sledgehammer interface, we proved many more theorems
with much less effort than Oliveira with ProofPower-Z. However, we must credit
Oliveira’s achievement, for he went remarkably far in mechanising UTP, with
some proof scripts running hundreds of lines. We learned valuable lessons, but a
new foundation for Isabelle/UTP was needed.

4.3 Lenses

Burkhart pointed out that our value universe injections could be expressed more
generically using lenses [40]. This was vital for the next version [49]. Lenses
are simple algebraic structures: for a set S of states and V of values, a lens
x : V ⇒ S is a pair of functions get : S → V and put : V → S → S , which obey
three intuitive algebraic laws, such as get (put x s) = x . Lenses are ubiquitous in
the foundations of computer science; for example, Back and von Wright [7] use
a similar algebraic structure to characterise variables.

We have described lenses in Isabelle/UTP at length [46]. We use them to
model program variables and their mutations for a given state. Every variable
x of type A in a given state space S is allocated a lens x : V ⇒ S . Lenses
can also be used to characterise sets of variables using a combinator x ⊕ y that
produces a lens of type A × B ⇒ S with a product view. Thus, we can also
model a program’s frame (or “footprint”), part of the state space that a program
can modify. Crucially, lenses allow us to escape the need to formalise names and
types. Each variable name is in the host logic, and its type is given by its view.

Lenses can be semantically compared in various ways, providing a means to
express side conditions. We have the independence relation x �� y , which means

34 J. Woodcock et al.

that x and y refer to different parts of the state, and it is algebraically char-
acterised as the commutativity of the put functions. A preorder a � b states
that a characterises a smaller region than b; for example, x � x ⊕ y . If we con-
sider lenses a and b as “sets”, then � is the subset relation, and ⊕ is the set
union operator. Finally, we have an equivalence formed by the cycle of �, that is
x ≈ y = (x � y ∧ y � x), which allows us to characterise laws like x ⊕y ≈ y⊕x .

These relations do not compare lenses based on their (meta-logical) names
but their semantics. The use of lenses, therefore, allows us to reuse all the host
logic facilities for manipulating names. Moreover, this approach avoids the alias-
ing problem. Even if we have two variables with different names, they will not
be independent if they point to the same store region.

UnrestVar also finds an elegant characterisation with lenses. First, we note
that program expressions and assertions are modelled as functions as usual in a
shallow embedding. An expression operating over store S with type V is a total
function S → V . An expression like x + y > 5 can be modelled, using lenses,
as λ s. getx (s) + gety(s) > 5, though this translation was facilitated through a
deep expression syntax. We can then ask whether such an expression seman-
tically depends on a particular lens. If an expression’s output value does not
change when we change a variable, then clearly, there is no dependence on it.
We therefore define x � e ⇔ (∀ v s.e(putx v s) = e(s)), our version of UnrestVar,
which tells us that x is unrestricted in e. As shown below, this relation is pre-
cisely what we need to characterise the assignment commutativity law and other
related laws:

(x := e ; y := f) = (y := f ; x := e) provided x �� y , x � f , y � e

In words, the assignments commute provided that (1) the variables are indepen-
dent; (2) f does not depend on x ; and (3) e does not depend on y . This law
and other “laws of programming” are theorems of our definitions [46]. As we see
later, we can also express a variant of the frame rule.

4.4 UTP and Designs

With a scalable foundation for Isabelle/UTP, we could tackle a significant chal-
lenge: mechanisation of the reactive-design hierarchy and the Circus language
with its UTP semantics. During the development of our various versions of
Isabelle/UTP, Circus served as a baseline, and we had several iterations of the
mechanisation of the operators and healthiness conditions.

Upon our lens-based expression model, we developed UTP’s relational cal-
culus. A (potentially heterogeneous) relation in Isabelle/UTP is an expression
S1 × S2 → B. As in the Z notation, relations typically range over unprimed
(x) and primed variables (x ′). In Isabelle/UTP, this is achieved using lenses
fst : S1 ⇒ S1 ×S2 and snd : S2 ⇒ S1 ×S2 that project the pre- and post-states.
We distinguish lenses on the “flat state” (S) from those in the relational state
(S ×S), a distinction implicit in languages like Z. We then proved the relational
calculus laws found in the UTP book and related publications. This includes

UTP, Circus, and Isabelle 35

a detailed account of UTP theories, defined by a set of idempotent healthiness
functions, and accompanying theorems, including Knaster-Tarski.

We tackled the design theory from here, allowing us to model relational
programs that may exhibit divergence. Our mechanisation raised many questions
about the encoding of the design turnstile notation (P � Q). Should P and Q
be permitted to refer to the ok variable? Should P be allowed to refer to only
the pre-state or also the post-state? In Isabelle, we can use the type system to
impose restrictions like this by construction. The answer to the first question
became clear: ok is semantic machinery used only by �, so a UTP theory should
not touch it when defining concrete specifications.

The answer to the second question is a little less clear since, in the UTP
theory of reactive designs, the precondition can refer to the post-state value of
the trace tr to express constraints on permitted communications. As a result,
Isabelle/UTP has two turnstile operators: P �r Q , with P : S1 × S2 → B and
p �n Q , with p : S1 → B. The latter is sometimes called a “normal design” [55],
hence the n subscript. The benefit of using this second turnstile operator is that
side conditions in many theorems can be avoided, thanks to the type system.
This improves the efficiency of verification for normal designs.

4.5 UTP Theories

In more detail, a UTP theory consists of (1) a set of observational variables; (2) a
set of healthiness conditions; and (3) a signature for constructing elements of the
theory that satisfy the healthiness conditions. Like classes in object-oriented pro-
gramming, UTP theories are extensible by adding more observational variables
and healthiness conditions. These conditions can be seen as invariants.

Feliachi’s encoding of UTP included an elegant approach to encoding alpha-
bets using extensible records. Each UTP theory is allocated its record type, which
gives the observational variables as fields. Since alphabets are types, using vari-
ables outside the alphabet equates to a type error. Successive extensions of the
UTP theory add fields to the alphabet types. Thanks to Isabelle’s polymorphism,
functions defined and theorems proved in super-theories are then applicable in
sub-theories. For example, a theorem proved in designs is applicable in reactive
designs. Moreover, type inference can determine the hierarchy’s most general
alphabet of a relation. A downside is that multiple inheritance is unsupported
because extensible records are implemented using type variables. Nevertheless,
this limitation can be mitigated if the hierarchy is carefully constructed.

A side effect of lenses is that we could easily adapt and expand on this app-
roach. We can express constraints on how relations use observational variables
with lenses. For example, the alphabet of a design consists of ok , ok ′, and the
program variables and their dashed counterparts. We model this with a para-
metric alphabet type: a record type α des enriched with lenses, where the type
parameter α can extend the alphabet with the program variables. The health-
iness functions then have types like (α des) hrel → (α des) hrel of functions over
a homogeneous relation whose alphabet contains ok . (The actual type is more
general because we also support heterogeneous relations.)

36 J. Woodcock et al.

With this setup, we can mechanise one of the most complex UTP operators—
alphabet extension, which allows us to add (and remove) variables from a rela-
tion’s alphabet. Our encoding gives us a special lens: moreL : α ⇒ α des. It views
the part of the alphabet that does not contain ok , which is the program-variable
space or any extension of designs. With this lens, alphabet extension becomes a
kind of type coercion, such as α hrel → (α des) hrel, which lifts a relation into the
theory of designs. This is how we implement the design turnstile variants �r and
�n . Alphabet coercions can become complex. Nevertheless, these coercions are
invisible in resulting verification tools and improve user experience by making
UTP-based programs and models correct by construction.

4.6 Reactive-Design Hierarchy

With a solid theory of designs in place, we proceeded to mechanise reactive
designs. This was a significant task, and the reactive-design hierarchy is the
most extensive library in Isabelle/UTP, running to about 14,000 lines of Isabelle
code. We now give a summary of the main developments.

We mechanised the theory of reactive processes and several variants [42]
motivated by the mechanisation and Andrew Butterfield’s R3h [15] As required
by the UTP framework, we proved that the healthiness functions are idempotent,
monotonic, continuous, and critical closure results. One crucial design decision
was to collect the program variables in a single alphabet variable st , which
made separating the program space from semantic machinery (encoded via other
alphabet variables such as ok , tr , ref , and so on) more accessible.

We also identified two useful subtheories. Reactive relations express possible
behaviours using the alphabet variables tr and tr ′, recording observed traces,
and st and st ′. Reactive relations are typically used in postconditions. Reactive
conditions have the additional restriction of not referring to st ′ and having the
trace of events tr ′−tr prefix closed. Reactive conditions are used in preconditions.

We generalised reactive processes so that tr is drawn from a “trace alge-
bra” [43,88], a form of a cancellative monoid. The original account has tr as
a sequence of events, but sometimes other trace models are desirable, such as
piecewise-continuous functions for hybrid systems. It turns out that none of the
libraries of laws in [24,59] depend on tr being a sequence, and trace algebra is a
sufficient basis. Having performed the generalisation, Isabelle/UTP reproved all
the laws automatically, illustrating the practical benefits of proof automation. If
we had done this on paper, it would have taken weeks instead of minutes.

We then created reactive designs by combining designs and reactive pro-
cesses. After that, the subsequent significant development, from a verification
standpoint, was the introduction of the reactive-contract notation [P � Q | R],
which is a core constructor of the reactive-design theory [42]. It consists of a
precondition P , a postcondition R, and a “pericondition” Q , a new concept sug-
gested by Canham [19]. The precondition is a reactive condition that describes
initial states and communicating behaviour that the contract is willing to accept.
Violation of the precondition leads to divergence. The pericondition Q and post-
condition R describe quiescent (or “intermediate”) and terminating behaviours.

UTP, Circus, and Isabelle 37

In the context of Circus and CSP, P corresponds to the complement of the diver-
gences, Q to the set of failure traces, and R to the set of terminating traces.
A significant result is that any reactive design can be expressed as a reactive
contract.

There are at least two benefits to the use of reactive contracts. Firstly, it
allows us to give uniform denotational semantics to all Circus operators. Sec-
ondly, it will enable us to automate refinement proofs about Circus models [44].
We have a refinement law that weakens the precondition and strengthens the
peri- and postconditions. This is combined with a calculational proof strategy
that allows us to compile any combination of reactive contracts using Circus
operators into a single reactive contract, which can then be subjected to proof.

4.7 Optimisation and Modularisation

The development of the reactive-designs hierarchy and a Circus verification tool
served to justify the overall design decisions of Isabelle/UTP. However, sev-
eral components, notably the expression model, were suboptimal and hampered
automation and usability. As we developed Isabelle/UTP, our knowledge of
Isabelle/HOL grew, and we improved the design decisions.

Moreover, there was the question of how researchers outside of York could
adopt Isabelle/UTP. The original development model was monolithic, with an
ever-growing collection of Isabelle theories with many cross-dependencies. There
could be little reuse of the components. Isabelle/UTP was a combination of
design decisions you either accepted in full or did not.

For example, the library imposes a relational program model (P(S1 × S2)),
although this is not universally popular. An alternative is a state transformer
model, S1 → P(S2), which though mathematically equivalent, has the advantage
of forming a monad. In truth, several parts of Isabelle/UTP do not need to be
wedded to this program model, notably the lens and expression library.

As a result, we set out on a campaign of optimisation and modularisation.
The resulting components, defined as Isabelle libraries, are as follows.

Optics. This is where the theory of lenses is defined and contains several
related algebraic structures, notably symmetric lenses and prisms. These give an
abstract characterisation to channels analogously to lenses. The Optics library
also contains user commands, such as alphabet and chantype to create alpha-
bet and channel types. This library continues to be under active development.

Shallow Expressions. As explained in Sect. 4.3, the original monolithic theory
contained an expression model that mimics a deep embedding by introducing
constructors for expressions. The motivation was to allow reasoning with the
same granularity as a deep embedding. For example, we could encode laws like
(P ∧ Q)[e/x] = (P [e/x] ∧ Q [e/x]) and (∃ x .P)[e/y] = (∃ x .P [e/y]) if x �� y .
However, this was a substantial overhead since we had to use the simplifier to
execute substitutions. It also turned out to be unnecessary since we can directly
harness Isabelle’s internal λ-calculus-based substitution mechanisms.

https://github.com/isabelle-utp/Optics

38 J. Woodcock et al.

Thus, the Shallow-Expressions library, instead of having deep abstract syn-
tax, lifts expressions containing lenses (for example, assertions) to pure HOL
expressions; for instance, x+y becomes λ s. getx (s)+gety(s) using Isabelle’s syn-
tax translation mechanism to perform the conversion. Nevertheless, as explained
in Sect. 4.3, we can still execute substitutions and evaluate unrestriction condi-
tions, so we retain the benefits of Oliveira’s deep model. We also get a natural rep-
resentation of ghost variables: they are simply the logical variables provided by
HOL, as distinguished from program variables. Finally, with the shallow expres-
sions, Isabelle/HOL also gives us direct access to sledgehammer and other proof
facilities for reasoning about expressions. This gives us the proof scalability we
need and brings us on par with different shallow embeddings.

Z Toolkit. To support Circus and related languages, we need the types, operators,
and laws of Z [100]. This includes types like partial functions, finite functions,
and partial surjections. Whilst the Isabelle/HOL standard library contains some
of these, we preferred to develop our own to have greater control over the design
decisions. Our Z Toolkit library also includes support for code generation so that
we can make some specifications executable. Moreover, we have recently worked
with Makarius Wenzel (Isabelle’s primary developer) to add the complete Z
symbols into the Isabelle Unicode font and symbol library.

UTP. The modularisation leaves the main UTP library as a modest develop-
ment, formalising predicates, relations, theories, and associated laws. This devel-
opment continues, and we plan to have each UTP theory in a separate library.

A result of the modularisation is that we have been able to integrate our
technology into collaborations that do not use UTP (at least knowingly). A
recent development is an Isabelle-based verification tool for hybrid systems [48],
which implements an extended version of Platzer’s differential dynamic logic.
This tool extensively uses the Shallow-Expressions library to support techniques
like differential induction and differential ghosts. A result that we are pleased
with is the inclusion of a separation-logic-style frame rule:

{P}C {Q} C nmodsA −A �R
{P ∧ R}C {Q ∧ R}

Here, C nmodsA is a semantic operator, like unrestriction, requiring that C
does not modify any variables in A. We also need the frame invariant R to use
no variables inside A. This requires constructing a lens’s complement using an
algebraic structure called a “scene”, which is ongoing work (see Sect. 6). This
being the case, we can add R as an invariant for a command C . This shows one
of the real benefits of the UTP: to link concepts (separation logic and hybrid
systems) from apparently very different areas of computer science.

4.8 Interaction Trees

Recently, we have mechanised Interaction Trees (ITrees) in Isabelle/UTP [47,
122]. These are coinductive structures that allow symbolic encoding of deter-
ministic labelled transition systems. They can therefore support encoding and

https://github.com/isabelle-utp/Shallow-Expressions
https://github.com/isabelle-utp/Z_Toolkit

UTP, Circus, and Isabelle 39

reasoning about operational semantics using coinductive techniques. Crucially,
ITrees are executable, which allows us to take abstract models and programs,
generate code for them, and finally animate them. Though ITrees can be infinite,
languages like Haskell, which supports lazy evaluation, can evaluate them. Thus,
we can use ITrees to animate deterministic Circus processes, for example. This
is very valuable in software development since engineers can obtain prototypes.

Our ITrees library is built on the Shallow-Expressions and Z Toolkit libraries.
Integration with the rest of UTP is underway, allowing us to translate rela-
tional specifications into executable programs. Though ITrees are intrinsically
deterministic, we can model nondeterminism with special events, enabling vari-
ous strategies for resolving nondeterminism. We have applied this library in the
development of a tool called Z Machines, which supports system modelling in
the style of Z and B, with both animation and verification support [121].

5 Other Contributions

We now consider two projects using Circus that did not involve our research
group: the Xenon project and another theorem prover for Circus.

Freitas and McDermott used Circus in the Xenon project at the Naval
Research Laboratory in Washington DC, USA. Xenon is a higher-assurance
secure-separation hypervisor that allows a host computer to support multiple
separated virtual machines that share memory and processing resources. Xenon
is based on re-engineering the well-known Xen open-source hypervisor [70].
Xenon used formal specifications written in Z, CSP, and Circus [52,69] in security
assurance. Freitas and McDermott modelled the fundamental definition of secu-
rity, the hypercall interface behaviour, and the internal modular design. Security
is based on noninterference expressed as a determinism property [70,93].

The Xenon Project is an industrial-scale application of Circus. The specifi-
cation is 4,500 lines long: a substantial piece of mathematics. Some attractive
technical advantages in modelling security properties in Circus arise from the
combination of state and traces. Usually, proofs of noninterference require an
unwinding theorem relating traces and states (see Goguen and Meseguer [54]).
This is addressed in the definition of the Circus language. Xenon shows how
Circus provides a powerful and natural way to describe state-rich and trace-rich
concurrent behaviour in a single model amenable to refinement calculation.

Felliachi and colleagues developed machine-checked, formal semantics based
on a shallow embedding of Circus in the Isabelle theorem prover [36]. They derive
proof rules from the semantics and implement tactics for refinement of Circus
processes involving data and behavioural aspects. Their proof environment sup-
ports syntax and semantics very close to our presentation of Circus in [82,83].
The theories are available in Isabelle’s Archive of Formal Proofs [37].

Feliachi et al. used their mechanisation of Circus to provide a principled
testing environment for concurrent systems [35]. They describe integrating for-
mal testing in a proof environment as theorem-prover based testing, which takes
advantage of the precise semantics of a specific specification language imple-
mented in the theorem prover. They present a machine-checked formalisation of

https://github.com/isabelle-utp/Z_Machines

40 J. Woodcock et al.

a testing theory. They experiment with this theory by testing an industrial case
study: a message monitoring module. The component under test is embedded
in 5k lines of Java code. It binds together various devices, including pacemaker
controllers, using sophisticated data structures and operations, providing the
primary source of complexity when testing. More details about this case study
can be found in Feliachi’s thesis [34] and in a technical report [33].

6 Quo Vadis Circus?

Work on Circus and Isabelle/UTP is ongoing and highly active. This section
discusses current research and applications, and future directions (Sect. 6.1).
We also include a brief industrial roadmap (Sect. 6.2) of outstanding work for
transitioning Circus to a practical systems engineering and development setting.

6.1 Research Directions

Concerning extensions of Circus, we single out the hybrid state-rich process alge-
bra called CyPhyCircus [41,48,77]. In addition to processes with states (like in
Circus), a CyPhyCircus process can include continuous visible state components.
As expected, its foundation is UTP. It is used in the RoboStar framework [20],
which provides domain-specific notations for modelling robotics control-software
design and simulations, physical platforms, and scenarios. A distinctive feature of
RoboStar is that all these notations have formal semantics that is automatically
generated and integrated via their common UTP foundations.

CyPhyCircus has been used as a formal framework to give the semantics
of RoboSim [20], capturing diagrammatic behavioural models for the platform
and scenarios, and RoboWorld [21], a controlled natural language (CNL) used to
record assumptions about the environment. The semantics of RoboSim diagrams
and RoboWorld documents is a hybrid model due to the platform and environ-
ment’s continuous nature, including quantities of interest such as velocity and
temperature. From the semantics, it is possible, for instance, to generate tests
or check whether the environment assumptions are satisfied by a simulation.

As future work, the main challenges for CyPhyCircus as a hybrid process
algebra concern automated reasoning. Notably, for the mechanised reasoning to
scale, we need theorem-proving facilities. In this respect, we can benefit from
the UTP theories and all the encoding already developed in Isabelle/UTP. We
are currently developing bespoke automated proof methods to support verifica-
tion of RoboSim models based on our hybrid verification tool [48]. To further
improve automation, the plan is also to support model checking via translating
CyPhyCircus models to hybrid automata accepted by model checkers [3].

Another exciting research direction is our work on probability. One of its
applications is also in the RoboStar context. More specifically, a probabilistic
denotational semantics is defined in [109] for the RoboStar design notation,
called RoboChart [71]. We base our work on the weakest completion semantics,
which is, once more, based on UTP. The work relates standard semantics for a

UTP, Circus, and Isabelle 41

nondeterministic language with a probabilistic semantic domain via a forgetful
function (from the latter to the former) and its converse for the other way around.
The embedding using the converse of the forgetful function is proved to preserve
the program structure. Finally, the probabilistic choice operator is defined.

In future work, we need to develop techniques for managing uncertainty.
Several promising directions include partially observable Markov decision pro-
cesses [61], dynamic epistemic logic [9], and the epistemic mu-calculus [98]. We
will pursue a unifying theory that includes these and other approaches.

Many machine learning methods approximate a function between inputs and
outputs. Reasoning about these approximate functions requires probabilistic
techniques and presents many challenges. An outline of a probabilistic domain
theory for robotics that includes learning components has been proposed by
Thrun et al. [102]. We propose to formalise this theory.

A mechanised theory of quantum programming will provide a common frame-
work for classical and quantum specifications, quantum program development,
and analysis of program time and space complexity. Applications include quan-
tum cryptographic protocols, where we must use distributed quantum program-
ming with quantum channels. Hehner has established an initial basis for quantum
programming in the UTP style [101]. We propose to continue this work.

Regarding work on Isabelle/UTP, current efforts focus on optimisation and
modularisation (Sect. 4.7). More specifically, the Optics library defining the
lenses (Sect. 4.3) contains several related algebraic structures (that is, symmetric
lenses and prisms) and provides commands such as alphabet to create alphabet
types and chantype to create channel types. In future, we will create additional
commands to ease the creation of formal artifacts to support software engineer-
ing, in particular constructs from RoboChart and RoboSim.

We will also enrich this library with an axiomatic value model [124] that
provides a convenient way to directly inject HOL types into a single given uni-
verse type to model state spaces without the need to instantiate them. We are
considering a sound axiomatisation of higher-order UTP ([59, Chap. 9]) as well.

Our work with Interaction Trees has complemented the UTP relational hier-
archy with operational semantic models that can be directly verified and exe-
cuted. We are exploring using the Isabelle code generator to provide verified sim-
ulations and controller implementations in Haskell. Our Z-Machines tool [121] is
under active development as a usable method for creating and verifying formal
models, and we have a growing library of accompanying examples from [110].

Finally, our work on the Isabelle-based verification tool for hybrid systems
discussed in Sect. 4.7 is a neat example of using UTP to link concepts from dif-
ferent computer science areas, separation logic and hybrid systems. Our main
activity here is in development of case studies to validate the tool, and improve
proof automation and scalability. In future, we will extend it to include concur-
rency primitives to support verification of multi-robotic systems such as swarms.

42 J. Woodcock et al.

6.2 Industrial Roadmap

This section describes a roadmap to scale Circus adoption in industry. This
is, in particular, finding ways to integrate Circus into modern workflows for
model-driven development and model-based software engineering, including the
underlying continuous integration, development, and verification pipelines. Our
overarching aim is to make it easier for tool developers to harness the power of
Circus and Isabelle/UTP. Future efforts may include the definition of a meta-
model that can be integrated into common IDEs, such as the Eclipse framework,
and plug-ins that encapsulate various checking and verification tasks on Circus
models by outsourcing them to Isabelle/UTP.

A challenge we will have to face is to ease the learning curve for software
engineers to understand, modify, write, and maintain Circus models as part of
a model-based engineering workflow. AI-powered solutions such as CoPilot [30]
are becoming more prevalent in supporting developers in producing models and
code, from identifying issues to suggesting solutions based on natural-language
queries and requirements. At the same time, projectional editors and low-code
techniques may enable developers to produce design models before attaining
deep and expert knowledge of the low-level modelling notation per se.

Moreover, many tools and IDEs for formal development and verification are
now equipped with mechanisms for giving continuous feedback to the user to flag
possible issues in models and code as soon as changes are made, automatically
keeping verification conditions and proofs in sync with their models. Similar
technology can be developed for Circus to facilitate system-level architectural
engineering and code verification via a contract language that ties in nicely with
commonly used platforms and implementation languages and technology.

We thus envisage an ecosystem of Circus tools that allow us to:

(1) instantiate Circus models based on common modelling patterns that are
geared to particular application domains;

(2) seamlessly interface from IDEs such as Eclipse or Visual Studio Code with
Isabelle/UTP to engineer, validate and refactor Circus models;

(3) support manual, semi-automatic, and automatic refinement through a
bespoke refinement editor that makes system engineering via Circus
amenable to software architects and industrial software developers;

(4) trace Circus models and their artefacts up the refinement chain: to infor-
mal or semiformal specifications, domain engineering, and product-line engi-
neering models; and down the refinement chain to architectures written in
UML/SysML or AADL, for instance, code-level contracts, and test cases;

(5) use a repository of verified refinement patterns that can be easily instan-
tiated for particular modelling patterns and used to create a skeleton for
implementation activities, including associated code-level contracts;

(6) integrated Circus models into static and run-time testing and verification
activities and popular testing frameworks.

Regarding (1), we have already elicited many such modelling patterns as part of
research targetting the application of Circus to several complementary applica-

UTP, Circus, and Isabelle 43

tion domains, including hybrid and control systems, robotics, and safety-critical
concurrent and real-time implementations in Java and Ada.

Concerning (2), provers such as Isabelle already provide an API and protocols
to communicate with external tools asynchronously. Still, high-level interfaces
must be created on top of those low-level protocols to efficiently deal with changes
to Circus models, and analyse their impact on proofs.

The aim of (3) is to disentangle the application of Circus refinement laws
from a heavyweight proof framework. Once Circus refinement laws are proved
in Isabelle/UTP, we may use a more bespoke and efficient tool to apply them
and carry out large-scale refinements that may take advantage of a versatile
tactic language and user-friendly GUI. Code generation in Isabelle enables us to
potentially derive such a (critical) tool rigorously from proven laws.

Traceability (4) is essential when using model and proof artefacts of a Circus-
based development as certification evidence in assurance cases. We hence require
means to place Circus into the context of large-scale developments that often use
a variety of complementary notations for requirements, architecture, design and
HW/SW implementations, with clear traceability links to Circus models.

For (5), every modelling pattern should provide at least one refinement pat-
tern and a collection of proved laws. Lastly, for (6), tying in with our work with
Gaudel on a testing theory for Circus [22], we can leverage Circus to automate
test-case generation and other testing activities.

The richness of the Circus language, and its UTP foundations, inherently
opens several opportunities for combined verification solutions.

7 Conclusions

This paper reviewed two decades of our research on the stateful process alge-
bra Circus, its UTP foundations, and the Isabelle/UTP theorem prover. Many
colleagues and students have helped us to contribute to this agenda. We have
published over 150 papers on UTP. This paper reviews only a fraction, and we
will take future opportunities to complete the review of all our work.

One point to reflect on is why we have chosen Isabelle to mechanise UTP. The
answer is mainly pragmatic. We want to be able to support scalable verification,
and that means we want the best possible automation we can. This should not
be at the expense of guaranteed soundness or fidelity, which is why we chose a
foundational prover with strong support for automation.

Overall, an extensive body of research has already been carried out to (a) pro-
vide a firm semantic foundation for the Circus family of languages, (b) mechanise
it in theorem provers, and (c) show, by way of examples and case studies drawn
from both academic literature and the industrial realm, how Circus can be used
to tackle the refinement-based development of safety-critical systems. Some cur-
rent and future research directions have been discussed in the previous section,
as well as an industrial roadmap to embody the techniques and tools we have
developed for Circus into practical development environments.

44 J. Woodcock et al.

Circus continues to attract interest from academia and industry. Its design is
centred on the UTP principles. Jifeng’s joint work with Tony has been the seed
and the beautiful semantic infrastructure of our long-term research on Circus.
We are confident that we will have much more to report in years to come.

Acknowledgements. We gratefully acknowledge all our UTP-based research collab-
orators, co-authors, and students. Thanks to all of you. This work has recently been
funded by the UK EPSRC Grants EP/M025756/1, EP/R025479/1, EP/V026801/2,
EP/S001190/1, and by the Royal Academy of Engineering Grant No CiET1718/45.
Over the years, many other funding sources have been available to us, as detailed in
the cited papers. Thank you.

References

1. Abrial, J.-R.: Steam-boiler control specification problem. In: Abrial, J.-R., Börger,
E., Langmaack, H. (eds.) Formal Methods for Industrial Applications. LNCS,
vol. 1165, pp. 500–509. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0027252

2. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control. LNCS, vol.
1165. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0027227

3. Althoff, M.: An introduction to CORA 2015. In: Frehse, G., Althoff, M. (eds.)
1st and 2nd International Workshop on Applied Verification for Continuous and
Hybrid Systems. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair
(2015)

4. Arthan, R.: ProofPower. Lemma 1 Ltd. (2017). https://www.lemma-one.com/
ProofPower/index/

5. Atiya, D.M., King, S.: A compliance notation for verifying concurrent systems.
In: Proceedings of the 24th International Conference on Software Engineering,
ICSE 2002, pp. 731–732. Association for Computing Machinery (2002). https://
doi.org/10.1145/581339.581475

6. Atiya, D.-A., King, S., Woodcock, J.C.P.: A Circus semantics for Ravenscar pro-
tected objects. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS,
vol. 2805, pp. 617–635. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45236-2_34

7. Back, R.J.R., Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science, Springer, New York (1998). https://doi.org/10.
1007/978-1-4612-1674-2

8. Back, R., Kurki-Suonio, R.: Decentralization of process nets with centralized con-
trol. Distrib. Comput. 3(2), 73–87 (1989). https://doi.org/10.1007/BF01558665

9. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common
knowledge and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK-1998),
Evanston, IL, USA, 22–24 July 1998, pp. 43–56. Morgan Kaufmann (1998)

10. Barnes, J.: Programming in ADA 95, 2nd edn. Addison-Wesley (1998)
11. Barrocas, S.L.M., Oliveira, M.V.M.: JCircus 2.0: an extension of an automatic

translator from Circus to Java. In: Welch, P.H., Barnes, F.R.M., Chalmers, K.,
Pedersen, J.B., Sampson, A.T. (eds.) 34th Communicating Process Architectures,
CPA 2012, Organised Under the Auspices of WoTUG, Dundee, Scotland, UK, 26
August 2012, pp. 15–36. Open Channel Publishing Ltd. (2012)

https://doi.org/10.1007/BFb0027252
https://doi.org/10.1007/BFb0027252
https://doi.org/10.1007/BFb0027227
https://www.lemma-one.com/ProofPower/index/
https://www.lemma-one.com/ProofPower/index/
https://doi.org/10.1145/581339.581475
https://doi.org/10.1145/581339.581475
https://doi.org/10.1007/978-3-540-45236-2_34
https://doi.org/10.1007/978-3-540-45236-2_34
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/BF01558665

UTP, Circus, and Isabelle 45

12. Bauer, J.C.: Specification for a software program for a boiler water content mon-
itor and control system. Technical report, Institute of Risk Research, University
of Waterloo (1993)

13. Behrmann, G., et al.: UPPAAL 4.0. In: 3rd International Conference on the Quan-
titative Evaluation of Systems, pp. 125–126. IEEE Computer Society (2006)

14. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high
integrity real-time programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS,
vol. 1411, pp. 263–275. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055011

15. Butterfield, A., Gancarski, P., Woodcock, J.C.P.: State visibility and communi-
cation in unifying theories of programming. In: Chin, W.N., Qin, S. (eds.) 3rd
IEEE International Symposium on Theoretical Aspects of Software Engineering,
pp. 47–54. IEEE Computer Society (2009)

16. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-Circus. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73210-5_5

17. Butterfield, A., Woodcock, J.: Semantic domains for Handel-C. In: Flynn, S.,
et al. (eds.) Second Irish Conference on the Mathematical Foundations of Com-
puter Science and Information Technology, MFCSIT 2002. Electronic Notes in
Theoretical Computer Science, Galway, Ireland, 18–19 July 2002, vol. 74, pp.
1–20. Elsevier (2002). https://doi.org/10.1016/S1571-0661(04)80762-X

18. Butterfield, A., Woodcock, J.: prialt in Handel-C: an operational semantics. Int.
J. Softw. Tools Technol. Transf. 7(3), 248–267 (2005). https://doi.org/10.1007/
s10009-004-0181-6

19. Canham, S., Woodcock, J.: Three approaches to timed external choice in UTP.
In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 1–20. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-14806-9_1

20. Cavalcanti, A., et al.: RoboStar technology: a roboticist’s toolbox for combined
proof, simulation, and testing. In: Cavalcanti, A., Dongol, B., Hierons, R., Timmis,
J., Woodcock, J. (eds.) Software Engineering for Robotics, pp. 249–293. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-66494-7_9

21. Cavalcanti, A., Baxter, J., Carvalho, G.: RoboWorld: where can my robot work?
In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 3–22.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92124-8_1

22. Cavalcanti, A.L.C., Gaudel, M.C.: Testing for refinement in Circus. Acta Infor-
matica 48(2), 97–147 (2011). https://doi.org/10.1007/s00236-011-0133-z

23. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy
for Circus. Formal Aspects Comput. 15(2–3), 146–181 (2003). https://doi.org/10.
1007/s00165-003-0006-5

24. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006). https://doi.org/10.
1007/11889229_6

25. Cavalcanti, A.L.C., Woodcock, J.C.P., Dunne, S.: Angelic nondeterminism in
the unifying theories of programming. Formal Aspects Comput. 18(3), 288–307
(2006). https://doi.org/10.1007/s00165-006-0001-8

26. Cavalcanti, A., Sampaio, A., Woodcock, J.: Refinement of actions in Circus. In:
Derrick, J., Boiten, E.A., Woodcock, J., von Wright, J. (eds.) BCS FACS Refine-
ment Workshop 2002, Refine 2002, Satellite Event of FLoC 2002. Electronic Notes
in Theoretical Computer Science, Copenhagen, Denmark, 20–21 July 2002, vol.

https://doi.org/10.1007/BFb0055011
https://doi.org/10.1007/BFb0055011
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1016/S1571-0661(04)80762-X
https://doi.org/10.1007/s10009-004-0181-6
https://doi.org/10.1007/s10009-004-0181-6
https://doi.org/10.1007/978-3-319-14806-9_1
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-92124-8_1
https://doi.org/10.1007/s00236-011-0133-z
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/s00165-006-0001-8

46 J. Woodcock et al.

70, pp. 132–162. Elsevier (2002). https://doi.org/10.1016/S1571-0661(05)80489-
X

27. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for Circus. For-
mal Aspects Comput. 15(2–3), 146–181 (2003). https://doi.org/10.1007/s00165-
003-0006-5

28. Cavalcanti, A., Woodcock, J.: ZRC – a refinement calculus for Z. Formal Aspects
Comput. 10(3), 267–289 (1998). https://doi.org/10.1007/s001650050016

29. Cavalcanti, A., Woodcock, J.: Predicate transformers in the semantics of Circus.
IEE Proc. Softw. 150(2), 85–94 (2003). https://doi.org/10.1049/ip-sen:20030131

30. Copilot: Your AI pair programmer. GitHub. https://copilot.github.com. Accessed
18 June 2023

31. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976). https://www.
worldcat.org/oclc/01958445l

32. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16690-7_9

33. Feliachi, A., Gaudel, M.C., Wolff, B.: Exhaustive testing in HOL-Testgen/CirTa
– a case study. Technical report 1562, LRI, July 2013

34. Feliachi, A.: Semantics-based testing for Circus. (Test basé sur la sémantique
pour Circus). Ph.D. thesis, University of Paris-Sud, Orsay, France (2012). https://
theses.hal.science/tel-00821836

35. Feliachi, A., Gaudel, M.-C., Wenzel, M., Wolff, B.: The Circus testing theory
revisited in Isabelle/HOL. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol.
8144, pp. 131–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41202-8_10

36. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: a process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-27705-4_20

37. Feliachi, A., Wolff, B., Gaudel, M.: Isabelle/Circus. Arch. Formal Proofs 2012
(2012). https://www.isa-afp.org/entries/Circus.shtml

38. Fischer, C.: How to combine Z with a process algebra. In: Bowen, J.P., Fett, A.,
Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 5–23. Springer, Heidelberg
(1998). https://doi.org/10.1007/978-3-540-49676-2_2

39. Fischer, C., Wehrheim, H.: Failure-divergence semantics as a formal basis for an
object-oriented integrated formal method. Bull. EATCS 71, 92–101 (2000)

40. Foster, J.: Bidirectional programming languages. Ph.D. thesis, University of Penn-
sylvania (2009)

41. Foster, S.: Hybrid relations in Isabelle/UTP. In: Ribeiro, P., Sampaio, A. (eds.)
UTP 2019. LNCS, vol. 11885, pp. 130–153. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31038-7_7

42. Foster, S., Cavalcanti, A.L.C., Canham, S., Woodcock, J.C.P., Zeyda, F.: Unifying
theories of reactive design contracts. Theor. Comput. Sci. 802, 105–140 (2020).
https://doi.org/10.1016/j.tcs.2019.09.017

43. Foster, S., Cavalcanti, A.L.C., Woodcock, J.C.P., Zeyda, F.: Unifying theories of
time with generalised reactive processes. Inf. Process. Lett. 135, 47–52 (2018).
https://doi.org/10.1016/j.ipl.2018.02.017

44. Foster, S., Ye, K., Cavalcanti, A.L.C., Woodcock, J.C.P.: Automated verification
of reactive and concurrent programs by calculation. J. Log. Algebraic Methods
Program. 121, 100681 (2021). https://doi.org/10.1016/j.jlamp.2021.100681

https://doi.org/10.1016/S1571-0661(05)80489-X
https://doi.org/10.1016/S1571-0661(05)80489-X
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/s001650050016
https://doi.org/10.1049/ip-sen:20030131
https://copilot.github.com
https://www.worldcat.org/oclc/01958445l
https://www.worldcat.org/oclc/01958445l
https://doi.org/10.1007/978-3-642-16690-7_9
https://theses.hal.science/tel-00821836
https://theses.hal.science/tel-00821836
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-642-27705-4_20
https://doi.org/10.1007/978-3-642-27705-4_20
https://www.isa-afp.org/entries/Circus.shtml
https://doi.org/10.1007/978-3-540-49676-2_2
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.ipl.2018.02.017
https://doi.org/10.1016/j.jlamp.2021.100681

UTP, Circus, and Isabelle 47

45. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineer-
ing framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14806-9_2

46. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying seman-
tic foundations for automated verification tools in Isabelle/UTP. Sci. Comput.
Program. 197, 102510 (2020). https://doi.org/10.1016/j.scico.2020.102510

47. Foster, S., Hur, C., Woodcock, J.: Formally verified simulations of state-rich
processes using interaction trees in Isabelle/HOL. In: Haddad, S., Varacca,
D. (eds.) 32nd International Conference on Concurrency Theory, CONCUR
2021. LIPIcs, 24–27 August 2021, Virtual Conference, vol. 203, pp. 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.CONCUR.2021.20

48. Foster, S., Huerta y Munive, J.J., Gleirscher, M., Struth, G.: Hybrid systems
verification with Isabelle/HOL: simpler syntax, better models, faster proofs. In:
Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp.
367–386. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_20

49. Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with
lenses. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 295–
314. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_17

50. Freitas, A., Cavalcanti, A.: Automatic translation from Circus to Java. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 115–130.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_9

51. Freitas, L.J.S.: Model checking Circus. Ph.D. thesis, University of York, Depart-
ment of Computer Science (2006)

52. Freitas, L., McDermott, J.P.: Formal methods for security in the Xenon hypervi-
sor. Int. J. Softw. Tools Technol. Transf. 13(5), 463–489 (2011). https://doi.org/
10.1007/s10009-011-0195-9

53. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3: a
parallel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2),
149–167 (2016). https://doi.org/10.1007/s10009-015-0377-y

54. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of
the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA,
29 April–2 May 1984, pp. 75–87. IEEE Computer Society (1984). https://doi.org/
10.1109/SP.1984.10019

55. Guttman, W., Möller, B.: Normal design algebra. J. Log. Algebraic Program.
79(2), 144–173 (2010)

56. Harwood, W., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85762-4_10

57. Henkin, L., Monk, J., Tarski, A.: Cylindric Algebras, Part I. North-Holland (1971)
58. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Com-

puter Science. Prentice Hall (1985)
59. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer

Science. Prentice Hall (1998)
60. Jones, G., Goldsmith, M.: Programming in OCCAM 2. International Series in

Computer Science. Prentice Hall (1985)
61. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially

observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998). https://doi.
org/10.1016/S0004-3702(98)00023-X

https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.1007/978-3-030-90870-6_20
https://doi.org/10.1007/978-3-319-46750-4_17
https://doi.org/10.1007/11813040_9
https://doi.org/10.1007/s10009-011-0195-9
https://doi.org/10.1007/s10009-011-0195-9
https://doi.org/10.1007/s10009-015-0377-y
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1007/978-3-540-85762-4_10
https://doi.org/10.1007/978-3-540-85762-4_10
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X

48 J. Woodcock et al.

62. King, S., Sørensen, l.H., Woodcock, J.: Z, Grammar and Concrete and Abstract
Syntaxes. Technical Monograph PRG-68. Oxford University Computing Labora-
tory, Programming Research Group (1988)

63. Liu, Z., Woodcock, J., Zhu, H. (eds.): ICTAC 2013. LNCS, vol. 8049. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39718-9

64. Liu, Z., Woodcock, J., Zhu, H. (eds.): Theories of Programming and Formal Meth-
ods: Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday. LNCS,
vol. 8051. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-
4

65. Liu, Z., Woodcock, J., Zhu, H. (eds.): Unifying Theories of Programming and For-
mal Engineering Methods. LNCS, vol. 8050. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39721-9

66. Locke, D., et al.: Safety-Critical Java Technology Specification, Public Draft. Java
Community Process (2011)

67. Celoxica Ltd.: DK3: Handel-C Language Reference Manual (2002)
68. Lundqvist, K., Asplund, L., Michell, S.: A formal model of the Ada Ravenscar

tasking profile; protected objects. In: González Harbour, M., de la Puente, J.A.
(eds.) Ada-Europe 1999. LNCS, vol. 1622, pp. 12–25. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48753-0_2

69. McDermott, J.P., Freitas, L.: Using formal methods for security in the Xenon
project. In: Sheldon, F.T., Prowell, S.J., Abercrombie, R.K., Krings, A.W. (eds.)
Proceedings of the 6th Cyber Security and Information Intelligence Research
Workshop, CSIIRW 2010, Oak Ridge, TN, USA, 21–23 April 2010, p. 67. ACM
(2010). https://doi.org/10.1145/1852666.1852742

70. McDermott, J.P., Kirby, J., Montrose, B.E., Johnson, T., Kang, M.H.: Re-
engineering Xen internals for higher-assurance security. Inf. Secur. Tech. Rep.
13(1), 17–24 (2008). https://doi.org/10.1016/j.istr.2008.01.001

71. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock,
J.C.P.: RoboChart: modelling and verification of the functional behaviour of
robotic applications. Softw. Syst. Model. 18(5), 3097–3149 (2019). https://doi.
org/10.1007/s10270-018-00710-z

72. Miyazawa, A., Cavalcanti, A., Wellings, A.J.: SCJ-Circus: specification and refine-
ment of safety-critical Java programs. Sci. Comput. Program. 181, 140–176
(2019). https://doi.org/10.1016/j.scico.2019.01.002

73. Morgan, C.: Data refinement by miracles. Inf. Process. Lett. 26(5), 243–246
(1988). https://doi.org/10.1016/0020-0190(88)90147-0

74. Morgan, C.: Of wp and CSP. In: Feijen, W.H.J., van Gasteren, A.J.M., Gries, D.,
Misra, J. (eds.) Beauty Is Our Business. MCS, pp. 319–326. Springer, New York
(1990). https://doi.org/10.1007/978-1-4612-4476-9_37

75. Morgan, C.: Programming from Specifications. International Series in Computer
Science, 2nd edn. Prentice Hall (1994)

76. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program. 9(3), 287–306 (1987). https://doi.org/10.1016/
0167-6423(87)90011-6

77. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refine-
ment calculi for hybrid systems with Isabelle/HOL. In: Fahrenberg, U., Jipsen,
P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 169–186. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-43520-2_11

78. O’Halloran, C.: Identifying critical requirements. Technical report, Systems Assur-
ance Group, QinetiQ Malvern (2002)

https://doi.org/10.1007/978-3-642-39718-9
https://doi.org/10.1007/978-3-642-39698-4
https://doi.org/10.1007/978-3-642-39698-4
https://doi.org/10.1007/978-3-642-39721-9
https://doi.org/10.1007/978-3-642-39721-9
https://doi.org/10.1007/3-540-48753-0_2
https://doi.org/10.1145/1852666.1852742
https://doi.org/10.1016/j.istr.2008.01.001
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1016/j.scico.2019.01.002
https://doi.org/10.1016/0020-0190(88)90147-0
https://doi.org/10.1007/978-1-4612-4476-9_37
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1016/0167-6423(87)90011-6
https://doi.org/10.1007/978-3-030-43520-2_11

UTP, Circus, and Isabelle 49

79. Oliveira, M.V.M.: Formal derivation of state-rich reactive programs using Circus.
Ph.D. thesis, University of York, UK (2005). https://ethos.bl.uk/OrderDetails.
do?uin=uk.bl.ethos.428459

80. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Refining industrial scale
systems in Circus. In: East, I., Martin, J., Welch, P., Duce, D., Green, M. (eds.)
Communicating Process Architectures. Concurrent Systems Engineering Series,
vol. 62, pp. 281–309. IOS Press (2004)

81. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Formal development of
industrial-scale systems in Circus. Innov. Syst. Softw. Eng. 1(2), 125–146 (2005).
https://doi.org/10.1007/s11334-005-0014-0

82. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A denotational seman-
tics for Circus. In: Aichernig, B.K., Boiten, E.A., Derrick, J., Groves, L. (eds.)
Proceedings of the 11th Refinement Workshop, Refine@ICFEM 2006. Electronic
Notes in Theoretical Computer Science, Macao, 31 October 2006, vol. 187, pp.
107–123. Elsevier (2006). https://doi.org/10.1016/j.entcs.2006.08.047

83. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP semantics for
Circus. Formal Aspects Comput. 21(1–2), 3–32 (2009). https://doi.org/10.1007/
s00165-007-0052-5

84. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Unifying theories in
ProofPower-Z. Formal Aspects Comput. 25(1), 133–158 (2013). https://doi.org/
10.1007/s00165-007-0044-5

85. Ribeiro, P., Cavalcanti, A.L.C.: Designs with angelic nondeterminism. In: 7th
International Symposium on Theoretical Aspects of Software Engineering, pp.
71–78. IEEE (2013). https://doi.org/10.1109/TASE.2013.18

86. Ribeiro, P., Cavalcanti, A.: Angelicism in the theory of reactive processes. In: Nau-
mann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 42–61. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-14806-9_3

87. Ribeiro, P., Cavalcanti, A.L.C.: Angelic processes for CSP via the UTP. Theor.
Comput. Sci. 756, 19–63 (2019). https://doi.org/10.1016/j.tcs.2018.10.008

88. Ribeiro, P.: A unary semigroup trace algebra. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 270–285. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43520-2_17

89. Roscoe, A.W.: Denotational semantics for occam. In: Brookes, S.D., Roscoe,
A.W., Winskel, G. (eds.) CONCURRENCY 1984. LNCS, vol. 197, pp. 306–329.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15670-4_15

90. Roscoe, A.W.: The Theory and Practice of Concurrency. Series in Computer
Science. Prentice Hall (1997)

91. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

92. Roscoe, A.W., Hoare, C.A.R.: The laws of OCCAM programming. Theor. Com-
put. Sci. 60, 177–229 (1988). https://doi.org/10.1016/0304-3975(88)90049-7

93. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determin-
ism. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 31–53. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58618-0_55

94. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Eriksson,
L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 451–470. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7_26

95. Schneider, S.A., Treharne, H.: CSP theorems for communicating B machines.
Formal Aspects Comput. 17(4), 390–422 (2005). https://doi.org/10.1007/s00165-
005-0076-7

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://doi.org/10.1007/s11334-005-0014-0
https://doi.org/10.1016/j.entcs.2006.08.047
https://doi.org/10.1007/s00165-007-0052-5
https://doi.org/10.1007/s00165-007-0052-5
https://doi.org/10.1007/s00165-007-0044-5
https://doi.org/10.1007/s00165-007-0044-5
https://doi.org/10.1109/TASE.2013.18
https://doi.org/10.1007/978-3-319-14806-9_3
https://doi.org/10.1016/j.tcs.2018.10.008
https://doi.org/10.1007/978-3-030-43520-2_17
https://doi.org/10.1007/3-540-15670-4_15
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1016/0304-3975(88)90049-7
https://doi.org/10.1007/3-540-58618-0_55
https://doi.org/10.1007/3-540-45614-7_26
https://doi.org/10.1007/s00165-005-0076-7
https://doi.org/10.1007/s00165-005-0076-7

50 J. Woodcock et al.

96. Sherif, A., Jifeng, H.: Towards a time model for Circus. In: George, C., Miao, H.
(eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36103-0_62

97. Sherif, A., Jifeng, H., Cavalcanti, A., Sampaio, A.: A framework for specification
and validation of real-time systems using Circus actions. In: Liu, Z., Araki, K.
(eds.) ICTAC 2004. LNCS, vol. 3407, pp. 478–493. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31862-0_34

98. Shilov, N.V., Garanina, N.O.: Combining knowledge and fixpoints. Technical
report preprint 98, A.P. Ershov Institute of Informatics Systems, Novosibirsk
(2002). https://www.iis.nsk.su/files/preprints/098.pdf

99. Smith, G.: A semantic integration of object-Z and CSP for the specification of
concurrent systems. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 62–81. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63533-5_4

100. Spivey, J.M.: Z Notation – A Reference Manual. International Series in Computer
Science, 2nd edn. Prentice Hall (1992)

101. Tafliovich, A., Hehner, E.C.R.: Quantum predicative programming. In: Uustalu,
T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 433–454. Springer, Heidelberg (2006).
https://doi.org/10.1007/11783596_25

102. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and
Autonomous Agents. MIT Press, Cambridge (2005)

103. Wei, K., Woodcock, J., Burns, A.: A timed model of Circus with the reactive
design miracle. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.) 8th
IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2010, Pisa, Italy, 13–18 September 2010, pp. 315–319. IEEE Computer
Society (2010). https://doi.org/10.1109/SEFM.2010.40

104. Wei, K., Woodcock, J., Burns, A.: Timed Circus: timed CSP with the miracle. In:
Perseil, I., Breitman, K.K., Sterritt, R. (eds.) 16th IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS 2011, Las Vegas, Nevada,
USA, 27–29 April 2011, pp. 55–64. IEEE Computer Society (2011). https://doi.
org/10.1109/ICECCS.2011.13

105. Welch, P.: Process oriented design for Java: concurrency for all. In: Sloot, P.M.A.,
Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2330,
pp. 687–687. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46080-
2_72

106. Welch, P.H., Aldous, J.R., Foster, J.: CSP networking for Java (JCSP.net). In:
Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002.
LNCS, vol. 2330, pp. 695–708. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46080-2_74

107. Woodcock, J.C.P.: Properties of Z specifications. ACM SIGSOFT Softw. Eng.
Notes 14(5), 43–54 (1989). https://doi.org/10.1145/71633.71634

108. Woodcock, J.C.P., Cavalcanti, A.L.C.: Circus: a concurrent refinement language.
Technical report, Oxford University Computing Laboratory (2001)

109. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic seman-
tics for RoboChart. In: Ribeiro, P., Sampaio, A. (eds.) UTP 2019. LNCS, vol.
11885, pp. 80–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31038-7_5

110. Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
International Series in Computer Science. Prentice Hall (1996)

https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1007/978-3-540-31862-0_34
https://www.iis.nsk.su/files/preprints/098.pdf
https://doi.org/10.1007/3-540-63533-5_4
https://doi.org/10.1007/3-540-63533-5_4
https://doi.org/10.1007/11783596_25
https://doi.org/10.1109/SEFM.2010.40
https://doi.org/10.1109/ICECCS.2011.13
https://doi.org/10.1109/ICECCS.2011.13
https://doi.org/10.1007/3-540-46080-2_72
https://doi.org/10.1007/3-540-46080-2_72
https://doi.org/10.1007/3-540-46080-2_74
https://doi.org/10.1007/3-540-46080-2_74
https://doi.org/10.1145/71633.71634
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5

UTP, Circus, and Isabelle 51

111. Woodcock, J.: Using Circus for safety-critical applications. In: Cavalcanti, A.,
Machado, P.D.L. (eds.) Proceedings of the 6th Brazilian Workshop on Formal
Methods, WMF 2003. Electronic Notes in Theoretical Computer Science, Camp-
ina Grande, Brazil, 12–14 October 2003, vol. 95, pp. 3–22. Elsevier (2003).
https://doi.org/10.1016/j.entcs.2004.04.003

112. Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.) UTP
2008. LNCS, vol. 5713, pp. 202–217. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14521-6_12

113. Woodcock, J.: Hoare and He’s unifying theories of programming. In: Jones, C.B.,
Misra, J. (eds.) Theories of Programming: The Life and Works of Tony Hoare,
pp. 285–316. ACM/Morgan & Claypool (2021). https://doi.org/10.1145/3477355.
3477369

114. Woodcock, J., Cavalcanti, A.: A concurrent language for refinement. In: Butter-
field, A., Strong, G., Pahl, C. (eds.) 5th Irish Workshop on Formal Methods,
IWFM 2001, Dublin, Ireland, 16–17 July 2001. Workshops in Computing, BCS
(2001). https://doi.org/10.14236/ewic/IWFM2001.7

115. Woodcock, J., Cavalcanti, A.: The steam boiler in a unified theory of Z and CSP.
In: 8th Asia-Pacific Software Engineering Conference (APSEC 2001), Macau,
China, 4–7 December 2001, pp. 291–298. IEEE Computer Society (2001). https://
doi.org/10.1109/APSEC.2001.991490

116. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_10

117. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in unifying the-
ories of programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24756-2_4

118. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model check-
ing Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/
11526841_17

119. Woodcock, J., Davies, J., Bolton, C.: Abstract data types and processes. In:
Roscoe, A.W., Davies, J., Woodcock, J. (eds.) Proceedings of the 1999 Oxford-
Microsoft Symposium in Honour of Sir Tony Hoare. Millennial Perspectives in
Computer Science, pp. 391–405. Palgrave (2000)

120. Woodcock, J.C.P., Morgan, C.: Refinement of state-based concurrent systems. In:
Bjørner, D., Hoare, C.A.R., Langmaack, H. (eds.) VDM 1990. LNCS, vol. 428,
pp. 340–351. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52513-
0_18

121. Yan, F., Foster, S., Habli, I.: Automated compositional verification for robotic
state machines using Isabelle/HOL. In: 27th International Conference on Engi-
neering of Complex Computer Systems (ICECCS). IEEE (2023)

122. Ye, K., Foster, S., Woodcock, J.: Formally verified animation for RoboChart using
interaction trees. In: Riesco, A., Zhang, M. (eds.) ICFEM 2022. LNCS, vol. 13478,
pp. 404–420. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-
1_24

123. Zeyda, F., Cavalcanti, A.L.C.: Circus model for the SCJ framework. Technical
report, University of York, Department of Computer Science, York, UK (2012)

124. Zeyda, F., Foster, S., Freitas, L.: An axiomatic value model for Isabelle/UTP. In:
Bowen, J.P., Zhu, H. (eds.) UTP 2016. LNCS, vol. 10134, pp. 155–175. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52228-9_8

https://doi.org/10.1016/j.entcs.2004.04.003
https://doi.org/10.1007/978-3-642-14521-6_12
https://doi.org/10.1007/978-3-642-14521-6_12
https://doi.org/10.1145/3477355.3477369
https://doi.org/10.1145/3477355.3477369
https://doi.org/10.14236/ewic/IWFM2001.7
https://doi.org/10.1109/APSEC.2001.991490
https://doi.org/10.1109/APSEC.2001.991490
https://doi.org/10.1007/3-540-45648-1_10
https://doi.org/10.1007/978-3-540-24756-2_4
https://doi.org/10.1007/978-3-540-24756-2_4
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/3-540-52513-0_18
https://doi.org/10.1007/3-540-52513-0_18
https://doi.org/10.1007/978-3-031-17244-1_24
https://doi.org/10.1007/978-3-031-17244-1_24
https://doi.org/10.1007/978-3-319-52228-9_8

Linking Formal Methods in Software
Development

A Reflection on the Development of rCOS

Zhiming Liu(B)

School of Computer and Information Science, Southwest University,
Chongqing, China

zhimingliu88@swu.edu.cn

Abstract. The method of refinement of object-oriented and component-
based systems (rCOS) has been developed based on the Unifying The-
ories of Programming (UTP) of Tony Hoare and Jifeng He. It is influ-
enced by the doctrine of institutions, espoused by Joseph Goguen and
Rod Burstall, for linking specification languages and verification tech-
niques to support model-driven development of software systems. The
research on rCOS has produced a body of knowledge and techniques,
including the formal use of the Unified Modelling Language (UML), a
theory of semantics and refinement of object-oriented programs, a the-
ory of semantics and refinement of the component-based architecture of
software systems, and prototypes of model-driven tools. These have been
published in a number of papers and embodied in several lecture notes
taught at many classes and training schools. In this Festschrift paper,
I reflect on the research in the development of rCOS by giving a sum-
mary of the results with discussions on the fundamental ideas, the way
it has been developed, its current status, and where it may take us in
the future.

Keywords: UTP · institutions · rCOS · architecture modelling ·
Human-Cyber-Physical Systems

1 Introduction

I worked with Professor Jifeng He from 2001 to 2005 at the United Nations Uni-
versity International Institute for Software Technology (UNU-IIST, Macao). Our
close collaboration started before that in 1998 and continued afterwards until
2007. Through those years and thereafter, Professor He has been a friend and
mentor of mine. My research has developed under his inspiration and influence.
The main outcome of the collaboration is the rCOS method for model-driven
development of object and component systems.

Supported by the Chinese National NSF grant (No. 62032019) and the Southwest
University Research Development grant (No. SWU116007).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 52–84, 2023.

https://doi.org/10.1007/978-3-031-40436-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_3&domain=pdf
http://orcid.org/0000-0001-9771-3071
https://doi.org/10.1007/978-3-031-40436-8_3

Linking Formal Methods in Software Development 53

In this Festschrift paper, I give a reflection on the development of the rCOS
method to pay tributes to Jifeng’s original contributions. I do this by providing a
summary of the philosophical ideas, theory, methods and techniques embodied in
rCOS. I also discuss how these can be related to practical software development.
To this end, I first give a brief introduction to the areas where the contributions
in rCOS are relevant.

Software Engineering: Software engineering has been developed from the
studies and practices of writing closed sequential programs, through producing
software products, to designing and implementing software systems (as products
too), as described in the talk of Fred Brooks at ICSE 2018 [5]. In this process of
advances, together with the advances in hardware and network technologies, the
complexity of software development has been increasing in multiple dimensions,
along with the increase in the size of applications and the complexity of require-
ments. As Brooks described in his talk, programming was mainly an activity
where someone wrote programs used by themselves, and thus only required ad
hoc testing and debugging; producing programs as products requires more work
in documentation, more thorough and systematic testing, and quality assur-
ance; designing and producing software systems requires even more work on the
understanding of interfaces, analysis, verification, debugging and maintenance.

Theories, techniques, and tools have been developed and are still being devel-
oped for software development to support the mastering of the increasing complex-
ity and requirements, and they are core constituents of software engineering as a
system engineering discipline. The ever-growing complexities of systems and appli-
cations, as well as the theories, techniques, and tools, are reflected in the develop-
ment of the software industry, as Brian Randell, who is another software engineer-
ing pioneer, described in his talk at ICSE 2018 [62], though gaps still exist.

Modelling: Modelling is essentially important and effective in all scientific and
engineering disciplines. Let us take the view from Lee [33] that “modelling is the
trinity of the model, the thing being modelled and the modelling paradigm”. Here
the modelling paradigm refers to the underlying theory, techniques and tools for
analysis, simulation and verification of properties of and relations between mod-
els. The “thing”, either logical or physical, is either an engineering product or a
system which is either pre-existing or to be constructed. In the former case, the
models of the things are built for scientific study and analysis of the things that
have expected or conjectured properties and relations through verification, simu-
lation, and experiments. In the latter case, the models, properties, and relations
serve as the requirements specification for the engineering product or system, and
the correctness of the product and models are verified through logical reasoning,
model-checking testing, and simulation.

It is important to note that a “thing” to be modelled usually has a well-
defined structure, such that the thing is a composition of some constituent
“things”, and the structure is often hierarchical. Therefore, models are also hier-
archical and, therefore, the modelling paradigm needs to support operations for
model compositions. This is especially true in modelling engineering systems. A
modelling paradigm which supports hierarchical model compositions is known

54 Z. Liu

as compositional modelling and components-based modelling. However, the latter
notional emphasis on compositions of heterogeneous models involving heteroge-
neous things requires the linking of different modelling (sub-)paradigms. The
notion of interface contracts [22,40,65] plays an important role in heterogeneous
component-based modelling.

A model is not the “thing” that the model represents. It is an abstraction
of the thing instead, from a particular viewpoint of the modeller based on their
interest in the problem that they are solving. Therefore, in general, a whole model
of a thing is an integration of models representing the different viewpoints of
different modellers and/or at different times. A paradigm supporting integration
of models of different viewpoints is known as a multi-view modelling paradigm.

In an engineering process, models of different levels of abstraction are usually
needed for, say, analysis and validation of requirements, verification of designs
in different phases, and verification and testing of implementations. The mod-
elling paradigm must support establishing the correct relation between models of
different levels of abstraction. The relation is generally defined by the notion of
refinement, meaning that all properties of a higher-level model are preserved by a
lower-level model. Rules, techniques, and algorithms are required in a modelling
paradigm to support manipulations of models for building models at one level
from models at other levels. These manipulations are called model transforma-
tions in model-driven development [35,41,59]. Paradigms with features including
multi-view, compositional, and component-based modelling, and model refine-
ment and abstraction, are important in the provision of systematic support for
the engineering principles of separation of concerns, divide and conquer, and
reuse. The rCOS method has been developed to reflect these features.

Formal Methods: The term formal methods refers to, in computer science
and engineering, mathematically rigorous techniques and tools for the specifica-
tion, design, and verification of software and hardware systems [6,73]. A formal
method is essentially a modelling paradigm as defined in the paragraph imme-
diately above. However, a formal method directly employs formal logic systems
consisting of a formal language, a proof system and a formal semantics of the
languages, together with the meta-theory of the formal logic system [72]. The
meta-theory includes expressiveness, soundness, completeness and decidability
of the logic system. The reasons why a formal method particularly needs a for-
mal language include that programming languages, which the method treats, are
formal, and syntactic guided inductive techniques are effective and computer-
aided tools are essential which only take formal languages as inputs. Modelling
paradigms in traditional scientific and engineering disciplines directly use mathe-
matical language. This avoids the need for a separate semantic theory. A formal
language in general is defined by a (usually finite) set of symbols, called the
alphabet or the signature, and a set of rules, called syntactic rules, for forming
grammatically correct sentences, also called well-formed formulas or statements.

Another important feature of formal methods is their applications in the spec-
ification, design, and verification of software systems, hardware systems, and sys-
tems with both software and hardware. In the life cycle of such a system, a number

Linking Formal Methods in Software Development 55

of formal methods are needed. There are a large number of formal methods [72]
addressing different design concerns that model various viewpoints at different
levels of abstraction. The use of multiple formal methods gives rise to the chal-
lenge of ensuring that they are used consistently. In fact, there is even not yet a
commonly agreed notion of such consistency. This challenge is tackled using two
approaches. One is through linking different formal methods in an institution and
formal methods from different institutions [18]. This approach is based on category
theory. The pioneering work on this approach is the theory of institutions [18]. The
other approach is unifying different semantic theories of the languages used in for-
mal methods. The most influential and well-studied work is Unifying Theories of
Programming (UTP) [27] by Tony Hoare and Jifeng He.

The Unified Modeling Language (UML) proposed a framework for defining
a collection of modelling languages that can be used in project development.
However, there is little work on the relations of semantic models of the UML
notations. The rCOS method is based on UTP, influenced by the theory of
institutions, and it started with addressing the problem of formal and consistent
use of UML notations.

This paper presents a reflection on the rCOS method, with discussions about
its origins, where it contributes, and its possible further development. Through
the discussion, where and how different formal methods are linked are shown
based on the problems they address and their uses in various cycles of systems
development. The organisation of the paper is as follows. Section 2 gives a uni-
fied overview of formal methods; Sect. 3 reflects on the ideas and development of
the rCOS methods, including the formal use of UML, the semantics and refine-
ment of objective-oriented (OO) systems that are effective, and the modelling of
component-based architecture; Sect. 4 outlines some ideas on extending rCOS to
modelling human-cyber-physical systems (HCPS); and Sect. 5 gives some con-
cluding remarks and acknowledgements.

2 A Unified Overview of Formal Methods

Modern theories of computation and programming are developed from the com-
putational models of λ-calculus, recursive functions, and Turing machines. Each
of them can be seen as an extension to the formal logic system of arithmetic.
These have provided the foundation for the design and implementation of pro-
gramming languages, the design of programs, and the analysis of programs
through logical reasoning about and decision algorithms for checking proper-
ties (i.e., model checking) of their executions. All programming languages so far
are defined with formal syntax, as in formal logic systems, but they are usually
implemented based on informal semantics. For rigorous reasoning and verifica-
tion of programs, their formal semantics must be defined.

2.1 Semantic Theories

There are mainly three kinds of semantics theories, operational semantics, deno-
tational semantics, and axiomatic semantics.

56 Z. Liu

Operational Semantics: An operational formal semantics of a programming
language is defined as a deduction system that the execution configurations must
follow, which is similar to the deductions in λ-calculus. Such an operational
semantics is also called a term-rewriting semantics [80]. The deduction system
of operational semantics can also be defined by abstract state machines, simi-
lar to Turing machines, called abstract machines [56]. More abstract and more
structured, thus generally used operational semantics are defined as a model of
abstract machines, called labelled transition systems [61].

Denotational Semantics: The operational semantics of a programming lan-
guage is regarded to be too close to particular implementations of the language.
In other words, operational semantics expresses too many details of the execu-
tion of a program, and thus it is difficult to be used for abstract requirements
specification and verification. Semantic theorists believe that the semantics of
a programming language should be independent of its implementation to allow
more implementations.

The denotational semantics employs the approach to defining an interpreta-
tion of the formal language of a logic system in a mathematical structure, called
the domain of the interpretation [51]. In this approach, the meanings of the syn-
tactic elements of a language are defined by mapping them to objects, called the
denotations of the syntactic elements, in the domain.

For example, the alphabet of a formal language of a logic system or a pro-
gramming language usually includes symbols representing variables, constants,
functions and relations. The atomic sentences or statements, operators on sen-
tences, etc., are defined using these symbols by syntactic rules. The denotations
of constant symbols are given as elements of the denotational domain; the deno-
tations of variables are given as assignment functions from the set of variables to
the elements (called values) in the domain; the denotation of a sentence is given
as a relation among elements in the domain, and the denotations of the oper-
ators on sentences are defined as operations on relations, inductively following
the syntactic rules. The basics of the semantics of logic systems can be found in
any book on mathematical logic, and the fundamental theory for denotational
semantics of programming languages is the Scott-Strachey domain theory [17,67].
In our recent book [51], a unified view is presented on mathematical logic and
the logic of programs.

Axiomatic Semantics: Axiomatic semantics defines the meaning of programs
as formulas of a formal logic system, which is an extension to an existing formal
logic system, such as first-order arithmetic. The semantics of an atomic sentence
is defined as an axiom (scheme), and the semantics of a language operator is
defined by an inference rule so that the semantics of a composite sentence can
be inferred from the semantics of the atomic sentences. The properties of pro-
grams can then be reasoned about in the logic system. The pioneering work on
axiomatic semantics is Floyd-Hoare logic [15,25], while Hoare Logic is the most
well-studied and used axiomatic semantics.

Linking Formal Methods in Software Development 57

Relations Between the Different Semantic Theories: Applying the app-
roach of the semantic theory of formal logic systems to the development of
denotational semantics of programming languages directly puts specification and
analysis of program properties into the framework of formal logic systems, the-
orem proving and verification (including testing and model checking).

The correctness of the denotational semantics is usually justified based on
operational semantics through an abstraction mapping from the operational
semantics of sentences to their denotation, e.g., functions and relations on pro-
gram states. A formal logic system which defines the axiomatic semantics of a
programming language can be interpreted in its denotational semantics and oper-
ational semantics. This, together with the justification of denotational seman-
tics based on operational semantics indicates the relation between the three
approaches of semantics.

It is not difficult to understand that the semantics [[P]] of a program P is the
set consisting the predicate pairs (p, q) such that {p}P{q} holds in Hoare logic,
i.e.:

[[P]] = {[p, q] | {p}P{q} is a theorem of Hoare logic}
This is then a denotational semantic view of axiomatic semantics. With this

view, a pair [p0, q0] of predicate formulas can be used as a requirements specifi-
cation for the development of a program P such that {p0}P{q0} is a theorem of
Hoare logic. According to the consequence rule of Hoare logic, any program in
the following set is correct with respect to the specification [p0, q0] (or {p0}P{q0}
in Hoare logic):

P([p0, q0]) = {P | {p}P{q} and (p0 → p) ∧ (q → q0)
are theorems of Hoare logic}

This is the foundation of programming from specifications presented in [58].
Hoare and He’s UTP presents a comprehensive theory which allows a program

of different paradigms to be defined uniformly by a pair of first-order formulas,
called the pre- and post-conditions, as its semantics. Here, the programs can be of
“any” kind, concurrent and real-time programs as well as sequential programs.
Further on, it is shown in the work of rCOS that a theory of semantics and
refinement of object-oriented programs [10,24,78] and a theory of contract-based
semantics and refinement [7,10,22,23] of component programming [70] are also
established in this way.

2.2 Linking Formal Methods for Their Consistent Use

Formal methods in the early years were used to adopt formal logic (including
Hoare logic) as the specification languages, interpreted in semantic models of pro-
grams, for formulating properties of programs. Reasoning and algorithm-based
verification are carried out in the corresponding logic systems. Along with the
increasing complexity of systems and dimensions of requirements, large numbers
of abstract specification and modelling languages have been developed, and so
are theories of their semantics. These together with the techniques and tools for

58 Z. Liu

reasoning and verification constitute a large number of formal methods. Included
in the Formal methods Wikipedia page (as of 31 March 2023), there are about 30
specification languages, together with more than a dozen model-checking tools,
which all need specification languages. These do not include the many mod-
elling languages, e.g., model-driven and component-based modelling languages,
languages for modelling embedded systems, etc.

Different specification (or modelling) languages are proposed for describing
abstractions of different concerns and from different viewpoints of software devel-
opers. We can roughly classify the different languages based on the aspects of
concerns and viewpoints.

Event-Based Methods: The representatives of this kind include automata-
based models (e.g., I/O automata) [55], CSP [26,63] and CCS [57], and those
alike [4]. Operational semantics are defined for these languages, and different the-
ories of denotational semantics also exist, such as the models of traces, failures,
or divergences [63]. Based on these theories, techniques of algebraic reasoning
through the relations of simulation [57] and refinement [63] are developed. Mod-
els described with these languages abstract the internal computation away and
describe the behaviour of interactions and concurrency among different compo-
nents.

Data State-Based Methods: One class of state-based formal methods is asso-
ciated with operational semantics. Well-known methods of this kind include
action systems [3], the B-Method [1,66], Alloy [28], and TLA+ [30,31]. Another
class of state-based specification languages have denotational semantics and
axiomatic semantics in Hoare logic. Examples of these formal methods include
VDM [29] and the Z notation [69].

Combination of Event-Based and State-Based Methods: Throughout the
cycles of software development, formal methods for sequential programming and
for concurrent and communicating programs are involved, and both event-based
and state-based methods are needed. Especially in an event-based model, before
the occurrence of an event is the internal execution of an atomic action which
is implemented by a piece of the program. The functional correctness of these
atomic actions is specified and verified at a refined level of abstraction. However,
there are formal approaches that unify event-based and state-based modelling
and verification: value-passing CCS and CSP (in which the combination is lim-
ited), the Occam programming language (developed based on CSP) [64], and
Event-B [2], for example.

General Unification of Formal Methods: In addition to the need for con-
sistent use of multiple formal methods in system development, new language
abstractions are required for systems with more functional and performance
requirements, such as spacial and timing requirements and energy constraints,
and concurrency between discrete digital systems and continuous physical sys-
tems as well as intelligent system (both artificial and human) in the emerging
human-cyber-physical system (HCPS) [52,76]. We believe that, instead of defin-
ing a new comprehensive specification language and its semantic models from

Linking Formal Methods in Software Development 59

scratch, a method is desirable for extending and linking existing languages and
their semantic models.

The theory of institutions of Goguen and Burstall and the theory and UTP of
Hoare and He provide the theoretical basis and insight for this purpose. The for-
mer provides a theory and a method for linking different specification languages,
models of sentences written in the languages, theories and proofs consistently;
and the latter is a framework for defining new semantic models from existing
ones. We present a very brief introduction to these two theories just to show
the basic idea with some formalities. The reason is that I have found that the
philosophical ideas of these two theories are not widely understood, by young
researchers in particular. The purpose is to show their differences and relations
(intuitively) and to propose a research topic on the study of the relationship
between the two approaches.

2.3 Institutions

The theory of institutions is based on category theory. A category C is formed
of two sorts of elements ob(C) and hom(C) which are respectively called objects
and morphisms, such that:

– each morphism m ∈ hom(C) has a source a ∈ ob(C) and a target b ∈ ob(C),
the morphism is denoted as m : a → b and m is called a morphism or an
arrow from a to b and hom(a, b) denotes the set of arrows from a to b;

– a binary operation · on hom(C), called composition, such that m2 · m1 is
defined for m1 ∈ hom(a, b) and m2 ∈ hom(c, d) if and only if b = c, and
m2 · m1 ∈ hom(a, d);

– the operation · has the following two properties:
• it is associative that if (m1 · m2) and (m1 · m2) · m3 are defined, so are

m1 · (m2 · m3) and it equals to (m1 · m2) · m3;
• for each object o ∈ ob(C), there is an identity morphism 1o : o → o such

that for any morphism m : a → b, 1b · m = m = m · 1a

It is easy to see that for any category C, there is an opposite category Cop

such that ob(Cop) = ob(C), and hom(Cop) = {mr : b → a | m : a → b ∈
hom(C)}. Another simple and important example of category is the category
of sets, denoted as Set such that the objects of Set are sets and the set of
morphisms hom(S1, S2) are the total functions from S1 to S2.

Another important concept in category theory is the notion of functors. A
functor F from a category C1 to category C2 consists of two mappings (Fo, Fm)
where Fo : ob(C1) → ob(C2) is a mapping from the objects of C1 to those of
C2, and Fm : hom(C1) → hom(C2) is a mapping from the morphisms of C1 to
those of C2 such that for each morphism m : a → b of C1, Fh(m) is a morphism
from Fo(a) to Fo(b).

A category is called a small category if every of its object is a set, not
a “proper class”. Taking all small categories as the objects and the functors
between the small categories as the morphisms, it forms a category, called the
category of small categories, and it is denoted by Cat.

60 Z. Liu

Now recall that a specification language is defined from a set Σ of symbols,
called the signature of the language, a number of syntactic rules for generating a
set of sentences (or well-formed formulas), and each sentence has a set of models.
Now, these are put together to form an institution.

Definition 1. Institution An institution consists of

– a category Sign of signatures;
– a functor Sen : Sign → Set which gives, for each signature Σ, the set of sen-

tences Sen(Σ), and for each signature morphism σ : Σ → Σ′, the sentence
translation morphism (or mapping) Sen(σ) : Sen(Σ) → Sen(Σ′), where
often Sen(σ)(ϕ) is written as σ(ϕ);

– a functor Mod : Sign → Catop, which gives, for each signature Σ, the
category of models Modob(Σ), and for each signature morphism σ : Σ → Σ′,
the reduct functor Modob(Σ′) → Mod(Σ);

– the satisfaction relation |=Σ⊆ Mod(Σ) × Sen(Σ), where (M,ϕ) ∈|=Σ is
written as M |=Σ ϕ

such that for each signature morphism σ : Σ → Σ′ in Sign, the following sat-
isfaction condition holds for each ϕ ∈ Sen(Σ) and each M ′ ∈ Mod(Σ′)

M ′ |=Σ′ σ(ϕ) iff Modob(σ)(M ′) |=Σ ϕ

The whole theory and rigorous use of the theory involve advanced knowledge
and techniques in mathematics, co-algebra in particular. However, the intuition
is rather clear. The truth that the satisfaction relation is invariant under a change
of notation in an institution provides insight into how different methods can be
used consistently in system development. The change in specification notation
is usually about refinement and abstraction in terms of models, or in algebraic
terms, enlargement or quotienting of context.

2.4 Unifying Theories of Programming (UTP)

A semantic model of programming in a paradigm is defined based on considering
what information needs to be observed in the execution of a program. UTP
provides a unified framework for defining different theories and semantics of
programs in different paradigms and for describing different properties. A theory
T of programs in a paradigm is about the characterisation of the behaviour
of the programs by a set of alphabetised predicates. We also denote the set of
predicates of a theory T by T. A predicate in the theory contains free variables in
a designated set of variables representing the observables, called the alphabet of
the predicate, and the set T of predicates are constrained by a set of axioms called
healthiness conditions. The theory also defines a set of operators on the set T
and these operators form the signature of the theory. The linking among different
theories is based on the theory of complete lattices and Galois connections. We
now introduce its basic ideas.

Linking Formal Methods in Software Development 61

Relational Calculus: In the book of UTP [27], a theory R of relations is first
introduced. In this theory, the observables are represented by a given set X
of variables, together with their decorated versions1 X ′ = {x′ | x ∈ X}, and
α = X ∪ X ′ is called the alphabet of the theory, representing the observables.
A program (or a specification) in this theory is defined by a first-order logic
formula P , called a relation, associated with a subset αP of α such that P only
mentions variables in αP . The set αP is called the alphabet of the relation P .
Thus, a relation is written in the form (αP, P), and αP = inαP ∪ outαP .

The sets αP , inαP and outαP are, respectively, called the alphabet, input
alphabet and output alphabet of the relation. The input alphabet is undashed
variables representing initial values and the output alphabet variables stand for
the final values of the relation, respectively. We only consider the case when
outαP = inα′P = {x′ | x ∈ inαP}, and in such a case P is called a homogeneous
relation.

The predicate P is interpreted on the domain D = {(s, s′) | s, s′ : X → V },
and (s, s′) |= P if P (X/s,X ′/s′) holds, where X/s and X/s′ denote substitutions
of every variable x ∈ X and x′ ∈ X ′ by the values s(x) and s′(x) in the states s
and s′, respectively. For example, x′ = x + 1 specifies the relation such that for
each (s, s′) in the relation, s′(x′) = s(x)+1. There is a special class of predicates
which do not mention variables in the output and they are called conditions.
Predicates appearing in programs are only conditions. We use lowercase letters
p, q, r, etc., to represent these program stated predicates, and use b for Boolean
expressions in particular.

Signature: In addition to the notation of alphabets and values, a theory is also
characterised by a collection of operations to form expressions or terms and
a collection of operators to compose relations. These operations and operators
form the signature2 of the theory, denoted by Σ. We assume the operations and
first-order logic operators in the signature and introduce some operators used in
programming languages, just to show the essential idea.

For an assumed alphabet β = inβ ∪ inβ′, an assignment x := e is defined to
be the relation

x := e =df (β, (x′ = e ∧
∧

{y′ = y |y ∈ in β and y differs from x})

where the variables α(e) of e are in inβ. Therefore, the final value of x is the
value of expression e obtained from the initial values of variables in e.

To define the sequential composition, we adopt the convention to use a single
variable v to represent the vector of undashed variables. Then:

P ;Q =df ∃v0.P [v0/v′] ∧ Q[v0/v], provided outαP = inα′Q
inα(P ;Q) =df inαP

outα(P ;Q) =df outαQ

1 More mathematically, the decoration ′ is a bijective mapping from X to X ′.
2 On terminologies, variables, values, operations and operators are included in the

alphabet of a formal logic system; and they are included in the signature in the
theory of institutions.

62 Z. Liu

In a similar way, we can define more operators used in programming lan-
guages. A conditional choice between a relation P and Q according to a Boolean
condition b is represented by P � b � Q. It behaves like P if the initial value of
b is true, or like Q if the initial value of b is false:

P � b � Q =df (b ∧ P) ∨ (¬b ∧ Q), provided α(b) ⊆ αP = αQ
α(P � b � Q) =df αP

Conditional choice is deterministic, and the non-deterministic choice between P
and Q is denoted by P 	 Q and defined by disjunction:

P 	 Q =df P ∨ Q, α(P 	 Q) =df αP

The program which has no effect is defined by the identity relation

skip =df v′ = v, where v is the vector of the input alphabet
and v′ the output alphabet

α(skip) =df v ∪ v′

We use skipβ to denote the design (β, skip). Another important program is
the one which has totally uncontrollable or chaotic behaviour. We represent this
program by ⊥ and it is defined by ⊥β =df true, where β is the alphabet of ⊥β .
Symmetrically, the miracle program on an alphabet β is defined by �β =df false.

With the above definition, we can prove algebraic equations between rela-
tions, called laws of program. In what follows, we list a few laws.

P � b � P = P, P � b � Q = Q � ¬b � P
P ; (Q;R) = (P ;Q);R, (P � b � Q) � c � R = P � b ∧ c � (Q � c � R)
P ; skipαP = P = skipαP ;P, (P � b � Q);R = (P ;R) � b � (Q;R)

We have not yet seen the definition of a loop program which is written in
the form b ∗ P and behaves like “while b holds repeat P”, where α(b) ⊆ αP .
This definition depends on the fixed point of the function (P ;X) � b � skip.
The existence of the least fixed point and greatest fixed point of this function is
ensured by the fact that the set of relations forms a complete lattice with the
partial order P Q =df [Q ⇒ P], ⊥ and � bottom and top elements, where
[Q ⇒ P] means that the universal closure of the implication Q ⇒ P is valid.
When [Q ⇒ P] holds, Q is called a refinement of P . The loop program is defined
by the least fixed point b ∗ P =df μX.((P ;X) � b � skip).

A Theory of Program Design: We use R to represent the theory of relations
discussed above. We can easily see that neither true;P = true nor P ; true =
true holds for an arbitrary relation P in R. However, they both should hold for
an arbitrary program P in all practical programming paradigms. Now we briefly
introduce a theory, denoted by D, in which the above two equations hold. To this
end, we introduce to the alphabet X and X ′ two new observables represented
by the Boolean variables ok and ok′. The variables ok and ok′ are not program

Linking Formal Methods in Software Development 63

variables held in the store, but they represent the observations that the program
has started well and the program terminated well, respectively.

Furthermore, instead of allowing any arbitrary predicates as in R, the pred-
icates in D are restricted to form P ∧ ok ⇒ Q ∧ ok′. We called such a predicate
a design and write it as P � Q, where P and Q do not contain ok and ok′. The
definitions of some operators need to be modified as follows, where D1,D2 ∈ D

skip =df true � v′ = v
⊥ =df false � true
� =df ¬ok

x := e =df Defn(e) � x′ = e ∧ unchange(others)
D1 � b � D2 =df (Defn(b) ⇒ (b ∧ D1) ∨ (¬b ∧ D2))

where v and v′ respectively denote the vectors of input and output alphabets,
predicate Defn() denotes the argument expression is defined for the initial values,
and unchange(others) in the context means that no other input variables than
x in the given alphabet are changed.

An important theorem shows that the set of designs is closed under all the
operators defined in theory D. More operators can be defined, these include the
declaration and undeclaration of local variables using existential quantification:
var x =df ∃x and end x =df ∃x′. These are used in the semantic theory of rCOS
OO programming language.

Healthiness Conditions: In predicate logic, we can prove that the left zero law
(⊥;P) = P and the left unit law (skip;D) = D. The right zero law (D;⊥) = ⊥
and right unit law (D; skip) = D do not generally hold for arbitrary D ∈ D.
However, they are general properties for sequential programs. To characterise
programs for which these laws hold, UTP adopts the approach to extending a
logic system by adding more axioms, which are called healthiness conditions. The
following four healthiness conditions are given to restrict the predicates further:

H1 R = (ok ⇒ R)
H2 [R[false/ok′] ⇒ true/ok′]
H3 R = R; skip
H4 (R; true) = true

For the intuitive meaning of these healthiness conditions, we refer the reader to
the book of UTP.

In predicate logic, it can be proven that a general relation R with or without
ok and ok′ in the alphabet, H1 and H2 hold iff R is a design. However, H3 and
H4 have to be imposed as axioms, although the right unit law H3 holds for
any design of the form p � Q, where p is a state property which does not have
dashed variables. Most properties of sequential programs can be proven from the
specifications of this special form.

It is proven that D constrained with the four healthiness conditions forms a
complete lattice with the order , ⊥ and �, and the operators are continuous.
This implies that b ∗ P =df μX.(P ;X) � b � skip is in D.

64 Z. Liu

Linking Theories: We now understand theory R and D can be used as theories
of programming. Theory D is a sub-theory of R{ok,ok′} which extends R by
adding two the two observable and the four healthiness conditions, meaning
that the set of formulas in the former is a subset of the formulas in the latter.

In either R or D, we can encode Hoare logic and Dijkstra’s calculus predicate
transformer. Given a predicate P in R or D, and two state properties p and q,
we define the Hoare triple

{p}P{q} =df [P ⇒ (p ⇒ q′)]

where p′ is the predicate that all variables in q are replaced by their dashed
version. Then, the axioms and inference rule hold in D and R.

Given a predicate P of R or D and a state property r, we define the weakest
precondition of P for the postcondition r as:

wp(P, r) =df ¬(P ;¬r)

Then, the rules in the wp calculus are valid in D and R.
The above definitions show that the theories of Hoare logic and wp calculus

can be mapped into the theory D and R and used consistently. It is noticed that
D is a theory of total correctness of imperative sequential programming in which
assignments have no side effects. R can be used for partial correctness analysis,
although the left and right zero laws, as well as the left and right unit laws, can
be imposed as healthiness conditions.

The linking between theories is in general studied by functions between them
with desirable properties. For this, it is generally assumed that the theories are
complete lattices. For any given theories S, T and U, a link function L from T
to S is a total function declared by L : T → S. The identity function 1T maps
every element of T to itself, and the composition M ◦ L : T → U of linking
functions L : T → S and H : S → U is defined as (M ◦ L)(X) = M(L(X)), for
all X ∈ T.

If a theory S is a subset of a theory T, there is always a very simple link
H from S to T such H(X) = X, for every X ∈ S, thus X ∈ T. It is more
interesting to seek a link in the opposite direction, from the super-set theory to
the subset theory L : T → S such that S = {L(Y) | Y ∈ T}.

More general links are between theories with different observables and sig-
natures. Such links are defined as Galois connections. The characterisation of
Galois connections indicates their significance for the consistent use of different
theories.

Definition 2. Galois connection Given complete lattices U and T, let L be
a function from U to T and R a function from T to U. The pair (L,R) is a
Galois connection if for all X ∈ U and Y ∈ T

Y L(X) iff R(Y) X

Thus, a Galois connection allows us to analyse the properties in one theory and
reuse the results in another. I can intuitively see that the theory of institutions

Linking Formal Methods in Software Development 65

and UTP are closely related, but I do not know any formal study on the relation.
We will see that the rCOS method reflects the key ideas of these two theories
of unification, although it is formulated formally only within UTP. However,
rCOS supports consistent but still separated uses of different formal methods,
i.e., their specification languages, semantic theories, techniques and tools, spe-
cially developed for different design concerns in system development. Writing all
specifications and analysing their properties in the uniform notation of designs
P � Q through the whole development would be unrealistic.

3 A Reflection on rCOS

The work on rCOS has been developed for the needs of teaching formal methods
to undergraduate and graduate students, as well as training UNU-IIST fellows.
It started in 1988 when object-oriented design and the Unified Modeling Lan-
guage (UML) were becoming popular. The research has been evolving along with
the advances in techniques for component-based and service-oriented program-
ming, the model-driven development methodologies in particular. This section
presents a summary of the development of the research with a discussion about
the principle ideas and pointers to the main publications. The discussion will
focus on problems, ideas for solutions and the ways to develop the solutions. We
refer the reader to the papers cited in the discussions for technical details and
examples, both illustrative examples and running examples, and those examples
in the paper [10] and the lecture notes [39] in particular.

3.1 Formal Use of UML

UML became known to the software engineering community in 1998 or so. It
was in that year when the head of my department at the University of Leicester
(UK) asked to take over the teaching of the course on software development.
The focus of the course was object-oriented (OO) developments. It was quite a
challenge to me because I, as a young researcher in formal theories, had little
knowledge of software engineering, and even less of OO design. The keyword
“Unified Modelling Language” caught my attention I decided to learn and use
it as the modelling language in the course.

Although there was a lot of hype about UML, many people in the formal
method community were quite critical of it at the beginning; some people even
called it “Undefined Modelling Language” in private. The main criticisms were
that the syntax of UML models was not well defined (possibly due to that
people were not used to the meta-modelling defining framework), and there was
no formal semantics (it still does not have a standard one).

I did feel these were real issues and the biggest challenge in my teaching
was to teach the students how to use quite a few UML models consistently and
systematically through the development phases, from requirements modelling,
through design modelling, to coding. Without imposing necessary formal aspects,
it would be hard to solve this challenge, at least for me. I then decided to start a

66 Z. Liu

small project on “Formal Use of UML in Software Development” and obtained
a small grant from EPSRC3 in 1999 to support research visits by Jifeng and
Xiaoshan Li .4 I also spent an 8-month sabbatical at UNU-IIST in 2001, then

joined UNU-IIST as a full-time member of staff in 2002. The close collaboration
of us three had started then.

The first result of the work is presented in the paper “Formal and use-case
driven requirements analysis in UML” [36]. There, the functional requirements
of the system to be developed are defined by a set of related business processes.
Each business process is presented by a use case and the relations of the business
processes are represented in a group of use case diagrams. The realisation of the
business processes involves objects of concepts in the domain. The notation of
mathematical graph theory is used to represent the concepts, the nodes, called
classes, and the relations among the objects of classes, called associations, by
edges between the classes. This is a formal representation of UML class diagrams
at the level of requirements, which we call conceptual class diagrams (CCD). More
precisely, the graph notation with only nodes and edges is not expressive enough,
and logical constraints on properties of objects of classes and associations among
classes are often required and imposed on a CCD. Consider a library system for
example, the constraint that ‘a Copy of a Publication which is Held for a
Reservation must be a Copy of the Publication which is reserved by the
Reservation’ is not able to be depicted in a CCD. Therefore, a UML comment
with such as natural English sentence is required, and it can be formally specified
by a sentence in a first-order logic language, e.g.:

∀c : Copy, r : Reservation.
isHeldFor(c, r) → ∃p : Publication.(isReservedBy(p, r) ∧ isCopyOf(c, p))

In the above formalisation, the bold words are names of class names, the italic
words association names, and variables range over instances (objects) of the
corresponding classes (types). Object constraint language (OCL), as part of UML,
can be used for specifying such constraints. A CCD with such logical constraints
is called a conceptual class model (CMM).

The classes of a CCD, are called conceptual classes and they model the rele-
vant domain concepts, instead of software classes. Therefore, a class in a CCD,
in general, only has attributes and associations with other classes, but it does
not have methods. The methods of a class will be designed to represent the
responsibilities of the objects of the class for the realisation of the functional
requirements elucidated in the use cases. This means what responsibilities are
assigned to an object, represented as methods of the object, can only be decided
in the design stage when the global functionalities of the use case are to be
decomposed and delegated to the objects.

3 Thanks to Cliff Jones for his support. He was our referee who we were allowed to
recommend in the application.

4 Xiaoshan was a mutual friend and close collaborator of Jifeng and me at the Uni-
versity of Macao and, sadly, passed away too young a few years ago.

Linking Formal Methods in Software Development 67

The semantics of a CCM is defined to be the set of allowable object-diagrams
(OD) which satisfy the constraints specified by the CCD and additional logical
constraints, to represent the state space of the system. For example, the class
diagrams SmallBank in Fig. 1(a) and BigBank in Fig. 1(b) are conceptual models
for a small bank system and a big bank system, respectively. The OD in Fig. 2(a)
is a valid state of both SmallBank and BigBank, but the OD in Fig. 2(b) is a
valid state of SmallBank, but it is not avalid state of SmallBank. It is easy to
see that all valid states of SmallBank are valid states of BigBank.

Fig. 1. Conceptual class diagrams

Functional requirements are represented as a use case, and the interactions
between the actors and a use case of the system are regarded as atomic actions
and their executions carry out transitions from valid states to valid states of
the conceptual model, and thus their semantics are defined by the notion of
designs in UTP. In this way, the notations of CCDs, ODs, use cases, and use
case diagrams representing the functional architecture of the system to develop
are unified, and their consistency is formalised. For example, suppose the current
state of BigBank is in Fig. 2(b) and Mrs Mary Smith request system to transfer
(say, represented by a use case action transfer()) 2,000 GBP from her account
a2 to account a3 of Mr Bob Smith (that they share, say). The post-state after
the execution is the state in Fig. 3.

An extension to the above work is presented in the paper [45]. There, a Java-
style specification language is defined in which classes, attributes, and sub-classes
(inheritance) in a conceptual class diagram are specified. Constraints on the state
space modelled by object diagrams are specified by first-order predicate logic or
OCL. For each use case, a use case handler class is introduced to declare use
case operations as methods and the bodies of the methods are specified in UTP
designs. Each actor of a use case is declared a class (corresponding to a process)
and its method invokes methods of use case handler classes. Consistency between
a conceptual class model and a use case model is formally defined as that the
classes, attributes and inheritance relations can fully support the specification of
the methods in the use case handler classes. A refinement relation on CCM is
defined such that a CCM CM1 is a refinement of a CCM CM if CM1 supports
any use case that CM supports. This captures the use-case driven incremental
and iterative development process, known as the Rational Unified Process (RUP)
to reflect the principle that OO program design is mainly about the design of class
structure. For example, CCM BigBank is a refinement of CCM SmallBank, but
not the other way around. The transfer() use case action is not supported by
SmallBank.

68 Z. Liu

Fig. 2. Object diagrams

To provide a higher level of abstraction and to better support the separation
of design concerns, abstract semantic models for use case sequence diagrams
are defined by labelled transition systems in the paper [48]. The semantics of
general UML sequence diagrams is formalised in the papers [37], and this is used
for the refinement from use case sequence diagrams to the sequence diagram in
the design stage. This is presented in a follow-up work [37]. Further work on
consistency among the use of UML models based on the models in the above
papers can be found in [8,38,44,46]. Through the research, we have come to the
understanding that it is reasonable for UML not to have standard semantics as
different semantics should be defined for modelling different aspects of the system
in different applications, and the meta-modelling technology has its advantage in
developing tools for model transformations.

There was a period of quite active concerns about the rigorous use of UML5

and there is a volume of work on formalising models for UML by translating them
to formal notations, such as CSP and B. However, there has been little work on

5 There was even a “Rigorous UML Group”, although its members were not necessarily
from the formal method community.

Linking Formal Methods in Software Development 69

Fig. 3. Post-state of transfer operation

formal treatment of consistency and refinement of UML models. We are aware
of the work in [14], which also noticed that UML lacks an explicit set of rules
for ensuring that diagrams at different levels of abstraction are consistent. The
authors defined such a set of rules, called diagram refinement, that is applicable
to several kinds of UML diagrams (mostly for structural diagrams but also for
use case diagrams). The work is based on the mathematical theory of graph
homomorphisms.

3.2 Theory of Object-Oriented Semantics and Refinement

The work on formal and consistent use of UML discussed in the previous subsec-
tion can be classified into the so-called lightweight formalism. They alone do not
address the complex issues of object-oriented programming languages, such as
side effects, polymorphism, and dynamic typing in method invocations. Without
well-studied semantics for object-oriented programs, it would have been difficult
to address the refinement from requirements, through design, to implementation.

We thus proposed an abstract language for OO programming and called it
the rCOS OO language, which is rather like the Java programming language.
The semantic definition follows the ideas of UTP with the following features.

– To support type casting, dynamic type binding of method invocations and
type safety analysis, variables are typed by public, protected and private and
types of values of a variable can be of primitive types or classes. An object is
defined recursively as a graph structure with nodes as objects and directed
edges labelled by the names of the attributes in the source node, standing for
the references from nodes to nodes (think of a UML object diagram). There
is a unique root node of such a graph which represents the current object.

– At any time of its execution, the state of the program is an object graph, called
a state graph, representing the object of the main program, i.e., the root is
the object of the main class. The object nodes in a state graph contain the
dynamic types of objects.

70 Z. Liu

– The execution of a command of the program changes from such a state to
another, by creating a new object and adding to the graph (e.g., to open a
new account in the small bank system or the big bank system), changing the
values of attributes of some objects in the graph (e.g., the transfer() action
discussed earlier) or changing the edges of the graphs (e.g. make a customer
to access an account in the big bank system). Therefore the semantics of the
command (including method invocations) is defined as a relation between
states in the UTP design.

– To support incremental program development, a class declaration is also
defined as a design which modifies the changes in the static class structure
of the program, which can be considered a textual formalisation of a UML
class diagram. Class declaration is a development action done before program
compilation.

Based on this semantic theory, OO refinement is defined at three levels. They
are the refinement of commands including method invocations, refinement of
classes, and refinement of programs. Class refinement also characterises sub-
typing. Refinement of programs including extension and modification of the
class declarations of the program, as well as refinement of the main method
and methods in the classes. This work is presented in the paper [24]. It was in
this publication that the term “rCOS” was first used, standing for Refinement
Calculus of Object Systems. The healthiness conditions H1–H4 in Sect. 2.4 on
the theory of program designs are inherited here, and based on them, algebraic
laws of OO programs at the command level are also proven [68].

Further work on OO refinement is presented in [78] based on the seman-
tic theory of OO programming. There, a set of refinement rules are given and
shown to be sound and relatively complete. The first completeness theorem shows
that without changing commands in the main method, any OO program can be
transformed to a program in which there are only inheritance relations between
classes without attributes which have types of classes (i.e., the edges in the cor-
responding UML class diagram are only inheritance associations). The second
completeness states that any OO program can be refined to a non-OO program
(an imperative procedural program) if equivalence transformation of the main
method is also allowed.

It is worth emphasising that, in our theory, the General Responsibility
Assignments Patterns (GRASP) for OO design [32] and refactoring rules pro-
posed in [16] are shown to be refinement rules. These design patterns are very
effective in OO design and maintenance, but to our best knowledge, there is little
work on their study in a formal semantic theory. The GRASP approach is used to
decompose a “grand functionality” of a class into “a number of functionalities”
and assign these to appropriate classes.

The most effective pattern, which is thus most often used, is called the Expert
Pattern. This assigns a responsibility to the information expert, i.e., the class
which has information necessary to fulfil the responsibility. The refinement rule
for Expert Pattern in rCOS is shown in Fig. 4. On the left of in the figure,
it specifies an operation with the functionality of operation() of class C which

Linking Formal Methods in Software Development 71

Fig. 4. Expert pattern as an OO refinement rule

information (data) x of class B. If the specified functionality can be realised (or
refined) by a method m() of B, the class model on the right is in the figure is
a refinement of the one on the right. Note that in rCOS bodies of methods are
allowed to be specifications, instead of code.

The High Cohesion Pattern of GRASP is, for the purpose of better reuse
and maintenance, aimed at avoiding having classes in a design with too many
unrelated functionalities. It is represented as a refinement rule shown in Fig. 5.
The refinement is in general for class decomposition of a complex class to a
composition of micro and logically cohesive classes. The pattern is explained as
follows:

– assume class A in Fig. 5a contains two sets of attributes x and y (including
role names of associations with class C);

– class C are given responsibilities represented by methods m and n, and m
only refers to attributes x;

– we can decompose (i.e., refinement) A into the model in Fig. 5b which consists
of three classes A, B and D such that B maintains x only and it is assigned
with the responsibility m;

– class A is responsible for coordinating the responsibilities of classes B and
D.

To decrease the overhead of object interactions and improve reuse and for
easy maintenance, the Low Coupling Pattern is to have a model with fewer
associations among classes. For example, the refined model in Fig. 5b can be
further refined to the model in Fig. 6, which has lower coupling.

The refinement rules for GRASP can be used in the context of any larger
class models that contain them. Furthermore, a class model C is a structural
refinement of a class model C1, if C by be obtained by one of the following
changes made to C1:

– adding a class,
– adding an attribute to a class,
– adding an association between two classes,
– increasing the multiplicity of a role of an association (that is equivalent to

adding attributes at the level of program code),
– promoting an attribute of a subclass to its superclass,

72 Z. Liu

Fig. 5. Refinement for class decomposition

– promoting an association of a subclass to its superclass,
– adding a method to a class, and
– promoting a method of a subclass to its superclass.

We call these refinement rules OO structural refinement rules. The systematic
and rigorous study of OO structural refinement, together with the work on the
formal use of UML, provides the theoretical confidence towards my understand-
ing and improved my teaching of software development with UML [39]. Now
we can see that the rCOS method provides a comprehensive use of UML with
a formal OO semantic basis on UTP. Furthermore, OO structural refinement,
such as the rules for the patterns of Expert, Low Coupling and High Cohesion
characterise the essential features of microservice architectures [74], which are
now popular in the software industry.

3.3 Component-Based Architecture Modelling

It was in the early 2000s when component-based development was causing the
attention of the software engineering community and component-based diagrams
were introduced into UML, although the term “component-based programming”
had come much earlier. I remember one day when Jifeng called me to his office
and said “we should extend our rCOS method to component-based program-
ming”. He showed me Szyperski’s book [70] and said that he was reading it and
would spend a week or so to finish it. I must confess that I could not read such
a book that fast.

Naturally, our initial work on component-based modelling [23,43] extends
the rCOS model for OO programs and formulates the key notions about compo-
nent software in Szyperski’s book. Interfaces are defined to be first-class model
elements. An interface I = (M,A,O) consists of a list of class declarations M , a
list of field variables A with their types declared in M , and a list of operations

Linking Formal Methods in Software Development 73

Fig. 6. A refinement of low coupling

O as methods specified in the rCOS OO language. The component specification
is described by a contract that gives each operation a design. A closed compo-
nent is an implementation of an interface in the rCOS OO language that has a
provided interface. The implementation of an operation in the provided interface
I can invoke services implemented in other components. The methods invoked
by the operations in the provided interface form the required interface R. Thus,
an (open) component P is a parameterised program which takes a component
implementing R as its input services. Therefore, the semantics of a component
with a provided interface I and a required interface R is defined as a relation
on the contracts of I and R:

[[P]] = {(CI , CR) | (CI P (CR)}
where P (CR) is the contract for the provided interface I, calculated from the
semantics of component program P with input services specified by the contract
CR. The relation [[P]] means that given any provided services which implement
the required interface R, the component with this input is a refinement of the
contract CI of the provided interface CI . The composition of interfaces, compo-
sition of components and refinements of components are defined.

In this model, the interactions between components are in general OO
method invocations from a component to the components which provide it with
the required services. To have distributed implementations of the components,
middlewares, such as CORBA, are needed. However, the semantics of middle-
ware are not formalised in this work. Further, a contract defined in the previous
subsection specifies the static functionality of a component that does not require
synchronisation when the operations are used. Such components are often used
in the functional layer of a system. Processes and business rules are, however,
accomplished by invoking particular sequences of operations. Also, synchroni-
sations are needed when resources are shared. This means a synchronisation
protocol using the functional operations must be imposed, often by composing
a component in the functional layer and a component in the system layer.

74 Z. Liu

To model synchronisation and interaction protocols, we define the notion of
reactive design by introducing two fresh observables, wait and wait′, for synchro-
nisation. A design D on an alphabet α is called a reactive design if it satisfies
the healthiness condition W(D) = D, where:

W(D) =df= (true � wait′ ∧ ((α′ = α) ∧ (ok = ok′))) � wait � D

For writing a specification of the interface contract for a reactive component, we
introduce the notation of guarded designs of the form g&D, where D is a design
and g is a Boolean expression of the alphabet, called the guard of the design. The
semantics of g&D is defined as D � g � (true � wait′ ∧ ((α′ = α) ∧ (ok = ok′)),
where α is the alphabet of the design D. We can prove that all guarded designs
are reactive designs, and W2(D) = W(D) for all designs.

For the implementation of a reactive component, we use a language of guarded
methods in which each guarded method is of the form g&m(in; out) and the body
method m(in; out) is written as a command c in the rCOS OO language. The
semantics of g&m(in; out) is defined as the guarded design g&W(Dc), where Dc

is the semantics of c, defined in the subsection immediately above.
The work in [23] also shows the unification and their separation of uses of

designs for local functionality specification, traces for reactive behaviours, failures
for deadlock and divergences for livelock.

More concretely speaking, a (reactive) contract serves as a specification of
an interface and now is defined as a tuple C = (I, Init,S,P) of an interface I,
an initial condition Init specifying the allowable starting states, a specification S
specifying each operation in I as a guarded design, and protocol P which is a set
of sequences 〈?m1(x1), . . . , ?mk(xk)〉 of invocations to the interface operations
acceptable by the interface. With the specification S of a contract, the divergence
set DC and the failure set FC of a contract C, as those defined for CSP processes
in [63], are defined and the triple (DC ,FC ,P) is called the model of dynamic
behaviour for the contract. The trace set of a contract can be defined too.

A contract C1 is refined by a contract C2 if:

– the attributes of the two contracts are the same;
– the set O1 of operations of C1 is a subset of the operations of C2, i.e. C2

provides no fewer services;
– C2 is not more likely to diverge, DC2 ⊆ DC1 ;
– C2 is not more likely to block the client, FC2 ⊆ FC1 .

The refinement of one contract by another can be proven by downward simulation
and upward simulation [19]. Another important point is that the specification S
and the protocol P might not be consistent and the consistency can be checked.
With the theory of contracts and refinements for components, the meaning of
rCOS is extended to Refinement of Component and Object Systems.

In the keynote paper [22], special kinds of components, including coordina-
tors, connectors and controllers are characterised, and the concepts in the seman-
tic theory are related to notations used in software engineering. In the paper [7],
the relation between specification S and the protocol P is further elaborated

Linking Formal Methods in Software Development 75

and introduced the notion of processes as a special kind of components. In this
way, functional (or service) components are specified in the rCOS OO language
without using guards, and interaction protocols are modelled as processes at the
system level to control synchronisation. The behaviour of a process can then
be specified by traces, failures, or divergences according to the properties to be
analysed, and by input/out automata [55], UML state diagrams or especially
by interface automata [12,13]. This provides explicit support to multi-view mod-
elling and separation of concerns to different modelling notations and underlying
theories to be used consistently in component-based software development.

3.4 rCOS Support for Model-Driven Development

To apply the rCOS method, we embed the modelling notations into software
development processes and use them consistently according to the underlying
theory of rCOS. To this end, we identify activities of the RUP process for
model-driven development and associate them with modelling notations defined
in rCOS.

In a top-down process, a requirements model of the use cases is identified
and each use case is modelled as a component in the following steps:

1. their provided interfaces are the interactions with the actors and field
attributes are modelled by conceptual class diagrams (which can be unified
into a single one);

2. interaction protocols of use cases are modelled by sequence diagrams, and
dynamic behaviour by state diagrams;

3. the functionalities of interface operations are specified by designs (pre- and
post-conditions), focusing on what new objects are created, which attributes
are modified, and the new links of objects that are formed; and

4. the requirements architecture is modelled by UML component-based diagrams
reflecting the relations among use cases in the use case diagram.

A design process consists of the following modelling steps:

1. it takes each use case and designs each of its provided operations according
to its pre- and post-conditions by using the OO refinement rules, the four
patterns of GRASP in particular;

2. this decomposes the functionality of each use case operation into internal
object interaction and computation, thus refining the use case sequence dia-
gram into a design sequence diagram of the use case [10];

3. in the process of decomposition of the functionality of use-case operations
to internal object interaction and computation, the requirements class model
is refined into a design class model by adding methods and visibilities in
classes according to responsibility assignments and directing of method invo-
cations [10];

4. identify some of the objects in a design sequence diagram as the component
controller, satisfying six semantic invariant properties (which can be checked
by model checking) and then transform the design sequence diagram to a
component-sequence diagram [34];

76 Z. Liu

Fig. 7. Features of the rCOS modelling paradigm

5. a component diagram for each use case is generated (automatically) which is
a decomposition of the use-case component in the requirements model to a
composition of sub-components, and then the whole component-based archi-
tecture model at the requirements level is decomposed into a component-based
design architecture model [34];

6. the coding from the design architecture model is not difficult and can be
largely automatic [53].

The key features of the rCOS modelling paradigm, as shown in Fig. 7, are
being refinement-driven, hierarchically component-based, and with multi-view
modelling in multiple notations with a unified semantics. The component-based
design process from a component-based requirements model is depicted in Fig. 8.
The development process is applied to the CoCoMe benchmark problem [9] and
the details are elaborated in [10]. The modelling and analysis framework of rCOS
can also be applied for component integration in bottom-up development pro-
cesses or a mixed top-down and bottom-up process, allowing the use and reuse

Linking Formal Methods in Software Development 77

Fig. 8. Transformations from requirements model to design model

of existing models and implementations of components, as long as they have
explicitly specified interfaces. Interface contracts in rCOS of component-based
architecture support the characterisation of different security threats and for
the design of protection and recovery from damages of security attacks [50].
The rCOS model of component-based architecture supports the design of fault-
tolerant mechanisms so as restrict the propagation of errors caused by faults and
failures [47] across interfaces of components [77].

The UML diagrams are translated to the rCOS notation by the rCOS Mod-
eller. The tool for transformation from design sequence diagrams to component-
sequence diagrams is presented in [34]. A tool for automatic prototyping from
the requirements model is presented in [75]. The use of low coupling with high
cohesion patterns supports the microservice architecture design [71,74].

4 Extension of rCOS to Model HCPS

The research on rCOS is not yet finished (I hope). We currently have a project on
“Theory of Human-Cyber-Physical Computing and Software Defined Methodol-
ogy”. We are extending the rCOS component-based modelling notation to model
system architectures of HCPS. We take the view of the architecture of an HCPS
as comprising of cyber systems, a communication network, physical processes,
human processes, and interfaces, where:

– the physical processes include, for example, mechanical, electrical and chem-
ical processes;

78 Z. Liu

– the cyber systems (information systems) are computing systems where:
• some cyber systems (i.e., information systems) are responsible for data

collection and processing, and
• some cyber systems (controlling systems) are responsible for taking con-

trol decisions, based on the information provided by the information sys-
tems, to control physical processes;

– the human processes make control decisions based on the information pro-
vided by the information systems to physical processes;

– the interfaces are middleware systems between the physical systems, cyber
systems and humans, including sensors and actuators, A/C and C/A convert-
ers, etc.;

– the sensors sense the physical processes, collect data about the behaviours
of the physical processes and the data are transmitted to the information
systems through the network;

– computer control decisions of the controlling systems and human control deci-
sions are transmitted in the form of control commands through the network
to corresponding actuators to carry out the control actions.

There is system software for the coordination and orchestration of the behaviours
of the component systems and for scheduling the physical, network, hardware,
human, and software resources. A particular need is components which are
responsible for the switching of control between human and computer controllers.

The initial work is to extend the rCOS model of interfaces to cyber-physical
interfaces (CP-interfaces) or hybrid interfaces. A CP-interface includes as its
field variables both signals representing information on the states of physical
processes, as well as program variables; and it includes both program operations
and signals for interactions with the environment of the component. Also, a
signal can be either discrete or continuous. A contract of a CP-interface then
consists of a provided CP interface, a required CP interface, and a specification
describing the functionality of the program operations and the behaviour (in
differential or difference equations) of the signals in the interfaces.

With the above considerations, we propose a horizontally and vertically open
and hierarchical component-based approach for a systems of systems model of
HCPS architecture. This model supports top-down and bottom-up development
and interface-based black-box system integration. It also supports continuous
maintenance through sub-system upgrades and replacements of sub-systems.
Furthermore, services and functions of an existing HCPS can be used as infras-
tructure to develop further sub-systems to be integrated into the system in a
plug-and-play manner, and thus the architecture is ever evolving. The architec-
ture style also supports component based design of security and fault-tolerance.

The dynamic behaviour of such a contract corresponds to two hybrid
input/output automata [54], one for the provided CP interface and one for the
required CP interface. It should be possible to specify them in Hybrid CSP [20]
and analyse them in Hybrid Hoare logic [79] both developed with fundamen-
tal contributions from Jifeng. The initial ideas on the extension are presented
in [40,42,52] and a proof of concept example is given in [60]. The hybrid relation

Linking Formal Methods in Software Development 79

calculus [21] proposed by Jifeng would also provide a theoretical foundation for
further development of this work. Longer-term research is to link the method to
that of the semantics of Simulink and SySML.

A significant challenge to modelling HCPS is that there is no computational
model and theory for human interactions with cyber and physical systems. We
are proposing a human-cyber-physical automata (HCPA). In this model, the
human behaviour is represented by a neural network and the controller for con-
trol switching between human and machine is modelled as an oracle with a
learning model too. It is important to note that we are not modelling general
human intelligence, but the behaviour of a human in a given application when
carrying out their tasks instead. The research on the full theory will involve
tackling the difficulties in composing traditional computation models with AI
models. An initial model of HCPA is defined with only one human process to
control a physical process in collaboration with digital controllers. This model
and a proof of concept case study are presented in the invited talk [76]. For the
research problems in this project, we refer the reader to the editorial paper [52]
and the lecture notes in [40]. The research will heavily involve the controllability
and composability of AI systems, their composability with traditional computa-
tional systems, and the trustworthiness of these hybrid systems.

5 Conclusions and Acknowledgements

This paper has presented a summary of the development of the rCOS method,
showing that Hoare and He’s UTP is the theoretical root of rCOS. The summary
focuses on a unified understanding of different formal theories with the belief
that uniformity in theory is for consistent use of formal methods to support the
separation of design concerns in software systems development.

Through the discussion, we show how the ideas, theoretical results and tech-
niques in different publications on the rCOS method are linked and how they
are related to well-studied formal methods.6 The rCOS method helps to narrow
the gap from the semantic theories to the engineering technologies and supports
their consistent use in practice. The lecture notes in [39], although never offi-
cially published, have been used since 1998 and the teaching has been improved
along with the development of the rCOS method. A plan and an architecture
for the rCOS tool development were carefully proposed in [11,49], although it
was not fully developed due to the lack of stable human resources. The current
status of the tool is available at https://rise-swu.cn/rCOS.

Acknowledgements. There is a long list of names of collaborators who have con-
tributed to the research on rCOS and I would like to thank them. In alphabetic
order, the list includes Xin Chen, Zhenbang Chen, Ruzhen Dong, Dan Van Hung,

Bin Lei, Dan Li, Xiaoshan Li , Jing Liu, Quan Long, Charles Morriset, Zongyan Qiu,

Anders Ravn , Martin Schäf, Leila Silva, Volker Stolz, Shuling Wang, Ji Wang, Jing

6 What a nice coincidence it is that there are 80 references in this paper to celebrate
Jifeng’s 80th birthday.

https://rise-swu.cn/rCOS

80 Z. Liu

Yang, Lu Yang, Yilong Yang, Naijun Zhan, Miaomiao Zhang, Liang Zhao. They all
spent time at UNU-IIST, at different periods, as fellows, PhD students, postdoctoral
research fellows, or visitors. We all owe a big thanks to Jifeng for his guidance and/or
influence over the years. We all congratulate him on his academic achievements, and
wish him a very happy 80th birthday!

I would also like to thank Jonathan Bowen and Shmuel Tyszberowicz for their
careful reading and comments on draft versions of this paper.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994). https://doi.org/10.1007/978-3-540-48654-1 28

4. Baeten, J.C.M., Bravetti, M.: A generic process algebra. In: Algebraic Process
Calculi: The First Twenty Five Years and Beyond. BRICS Notes Series NS-05-3
(2005)

5. Brooks, F.P.: Learn the hard way - a history 1845–1980 of software engineering. In:
Keynote at 40th International Conference on Software Engineering (ICSE 2018),
Gothenburg, Sweden, 27 May–3 June 2018 (2018). https://www.icse2018.org

6. Butler, R.W.: What is formal methods? (2001). https://shemesh.larc.nasa.gov/fm/
fm-what.html

7. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 13

8. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration
in requirements modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 819–831.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3 71

9. Chen, Z., Li, X., Liu, Z., Stolz, V., Yang, L.: Harnessing rCOS for tool support—the
CoCoME experience. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods
and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 83–114. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75221-9 5

10. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification
in component-based model driven design. Sci. Comput. Program. 74(4), 168–196
(2009)

11. Chen, Z., Liu, Z., Stolz, V., Yang, L., Ravn, A.P.: A refinement driven component-
based design. In: 12th International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2007), pp. 277–289. IEEE Computer Society (2007)

12. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Softw. Eng.
Notes 26(5), 109–120 (2001)

13. Dong, R., Zhan, N., Zhao, L.: An interface model of software components. In:
Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 159–176.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39718-9 10

14. Faitelson, D., Tyszberowicz, S.S.: UML diagram refinement (focusing on class- and
use case diagrams). In: Uchitel, S., Orso, A., Robillard, M.P. (eds.) Proceedings of

https://doi.org/10.1007/978-3-540-48654-1_28
https://www.icse2018.org
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1007/978-3-540-75698-9_13
https://doi.org/10.1007/978-3-540-69507-3_71
https://doi.org/10.1007/978-3-540-75221-9_5
https://doi.org/10.1007/978-3-642-39718-9_10

Linking Formal Methods in Software Development 81

the 39th International Conference on Software Engineering, ICSE, Buenos Aires,
Argentina, pp. 735–745. IEEE/ACM (2017). https://doi.org/10.1109/ICSE.2017.
73

15. Floyd, R.W.: Assigning meanings to programs. Proc. Am. Math. Soc. Symposia
Appl. Math. 19, 19–31 (1967)

16. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison-Wesley,
Menlo Park (1999)

17. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Con-
tinuous Lattices and Domains, Encyclopedia of Mathematics and its Applications,
vol. 93. Cambridge University Press (2003)

18. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. J. ACM 39(1), 95–146 (1992)

19. He, J.: Simulation and process refinement. Formal Aspect Comput. 1(3) (1989)
20. He, J.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind:

Essays in Honour of C. A. R. Hoare, chap. 11, pp. 171–189. International Series in
Computer Science, Prentice Hall, New York (1994)

21. He, J., Qin, L.: A hybrid relational modelling language. In: Gibson-Robinson, T.,
Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol. 10160,
pp. 124–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51046-0 7

22. Jifeng, H., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11560647 5

23. He, J., Li, X., Liu, Z.: A theory of reactive components. Electron. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

24. He, J., Liu, Z., Li, X.: rCOS: a refinement calculus of object systems. Theor.
Comput. Sci. 365(1–2), 109–142 (2006)

25. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

26. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

27. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer
Science, Prentice Hall, London (1998)

28. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

29. Jones, C.B.: Systematic Software Development using VDM. International Series in
Computer Science, Prentice Hall, Englewood Cliffs (1990)

30. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

31. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

32. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

33. Lee, E.A.: The past, present and future of cyber-physical systems: a focus on
models. Sensors 15(3), 4837–4869 (2015)

34. Li, D., Li, X.S., Liu, Z.M., Stolz, V.: Automated transformations from UML behav-
ior models to contracts. Sci. China Inf. Sci. 57(12), 1–17 (2014). https://doi.org/
10.1007/s11432-014-5159-8

35. Li, D., Li, X., Stolz, V.: QVT-based model transformation using XSLT. SIGSOFT
Softw. Eng. Notes 36, 1–8 (2011)

https://doi.org/10.1109/ICSE.2017.73
https://doi.org/10.1109/ICSE.2017.73
https://doi.org/10.1007/978-3-319-51046-0_7
https://doi.org/10.1007/11560647_5
https://doi.org/10.1007/s11432-014-5159-8
https://doi.org/10.1007/s11432-014-5159-8

82 Z. Liu

36. Li, X., Liu, Z., He, J.: Formal and use-case driven requirement analysis in UML. In:
25th International Computer Software and Applications Conference (COMPSAC
2001), Invigorating Software Development, Chicago, IL, USA, 8–12 October 2001,
pp. 215–224 (2001)

37. Li, X., Liu, Z., He, J.: A formal semantics of UML sequence diagram. In: 15th Aus-
tralian Software Engineering Conference (ASWEC 2004), Melbourne, Australia,
13–16 April 2004, pp. 168–177. IEEE Computer Society (2004)

38. Li, X., Liu, Z., He, J.: Consistency checking of UML requirements. In: 10th Inter-
national Conference on Engineering of Complex Computer Systems, pp. 411–420.
IEEE Computer Society (2005)

39. Liu, Z.: Software development with UML. Technical report. Technical Report 259,
UNU-IIST: International Institute for Software Technology, the United Nations
University, Macao (2002)

40. Liu, Z., Bowen, J.P., Liu, B., Tyszberowicz, S., Zhang, T.: Software abstractions
and human-cyber-physical systems architecture modelling. In: Bowen, J.P., Liu,
Z., Zhang, Z. (eds.) SETSS 2019. LNCS, vol. 12154, pp. 159–219. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-55089-9 5

41. Liu, Z., Chen, X.: Model-driven design of object and component systems. In: Liu,
Z., Zhang, Z. (eds.) SETSS 2014. LNCS, vol. 9506, pp. 152–255. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29628-9 4

42. Chen, X., Liu, Z.: Towards interface-driven design of evolving component-based
architectures. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably Cor-
rect Systems. NMSSE, pp. 121–148. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 6

43. Liu, Z., Jifeng, H., Li, X.: Contract oriented development of component software.
In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp.
349–366. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 28

44. Liu, Z., He, J., Li, X.: Towards a rigorous approach to UML-based development. In:
Mota, A., Moura, A.V. (eds.) Proceedings of the Seventh Brazilian Symposium on
Formal Methods, SBMF 2004. Electronic Notes in Theoretical Computer Science,
Recife, Pernambuco, Brazil, 29 November–1 December 2004, vol. 130, pp. 57–77.
Elsevier (2004)

45. Liu, Z., Jifeng, H., Li, X., Chen, Y.: A relational model for formal object-oriented
requirement analysis in UML. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003.
LNCS, vol. 2885, pp. 641–664. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39893-6 36

46. Liu, Z., He, J., Liu, J., Li, X.: Unifying views of UML. In: de Boer, F.S., Bonsangue,
M.M. (eds.) Proceedings of the Workshop on the Compositional Verification of
UML Models, CVUML 2003, Electronic Notes in Theoretical Computer Science,
San Francisco, CA, USA, 21 October 2003, vol. 101, pp. 95–127. Elsevier (2003)

47. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and
scheduling. ACM Trans. Program. Lang. Syst. 21(1), 46–89 (1999)

48. Liu, Z., Li, X., He, J.: Using transition systems to unify UML models. In: George,
C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 535–547. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-36103-0 54

49. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support. In:
Proceedings of the Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2006), pp. 371–382. IEEE
Computer Society (2006)

https://doi.org/10.1007/978-3-030-55089-9_5
https://doi.org/10.1007/978-3-319-29628-9_4
https://doi.org/10.1007/978-3-319-48628-4_6
https://doi.org/10.1007/978-3-319-48628-4_6
https://doi.org/10.1007/1-4020-8141-3_28
https://doi.org/10.1007/978-3-540-39893-6_36
https://doi.org/10.1007/978-3-540-39893-6_36
https://doi.org/10.1007/3-540-36103-0_54

Linking Formal Methods in Software Development 83

50. Liu, Z., Morisset, C., Stolz, V.: A component-based access control monitor. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 339–353. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8 24

51. Liu, Z., Qiu, Z.: Introduction to Mathematical Logic - The Natural Foundation for
Computer Science and System. China Science Publishing & Media Ltd. (2022). (in
Chinese)

52. Liu, Z., Wang, J.: Human-cyber-physical systems: concepts, challenges, and
research opportunities. Front. Inf. Technol. Electron. Eng. 21(11), 1535–1553
(2020). https://doi.org/10.1631/FITEE.2000537

53. Long, Q., Liu, Z., Li, X., He, J.: Consistent code generation from UML models. In:
Australian Software Engineering Conference, pp. 23–30. IEEE Computer Society
(2005)

54. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185,
105–157 (2003)

55. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989)

56. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine. Part I. Commun. ACM 3(4), 184–219 (1960)

57. Milner, R.: Communication and Concurrency. International Series in Computer
Science, Prentice Hall, New York (1989)

58. Morgan, C.: Programming from Specifications. International Series in Com-
puter Science, Prentice Hall, New York (1994/1998). https://www.cs.ox.ac.uk/
publications/books/PfS/

59. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.1 (2009)

60. Palomar, E., Chen, X., Liu, Z., Maharjan, S., Bowen, J.P.: Component-based mod-
elling for scalable smart city systems interoperability: a case study on integrating
energy demand response systems. Sensors 16(11), 1810 (2016). https://doi.org/10.
3390/s16111810

61. Plotkin, G.D.: The origins of structural operational semantics. J. Logic Algebraic
Program. 60(61), 3–15 (2004)

62. Randell, B.: Fifty years of software engineering or the view from Garmisch. In:
Keynote at 40th International Conference on Software Engineering (ICSE 2018),
Gothenburg, Sweden, 27 May–3 June 2018 (2018). https://www.icse2018.org

63. Roscoe, A.W.: Theory and Practice of Concurrency. International Series in Com-
puter Science, Prentice Hall, Engelwood Cliffs (1997)

64. Roscoe, A.W., Hoare, C.A.R.: The laws of OCCAM programming. Theor. Comput.
Sci. 60(2), 177–229 (1988). https://doi.org/10.1016/0304-3975(88)90049-7

65. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming dr. frankenstein:
contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217–238
(2012)

66. Schneider, S.: The B-Method: An Introduction. Cornerstones of Computing Series,
Palgrave Macmillan, London (2001)

67. Scott, D., Strachey, C.: Toward a Mathematical Semantics for Computer Lan-
guages. No. PRG-6 (1971)

68. Silva, L., Sampaio, A., Liu, Z.: Laws of object-orientation with reference semantics.
In: Cerone, A., Gruner, S. (eds.) Sixth IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2008, Cape Town, South Africa, 10–14
November 2008, pp. 217–226. IEEE Computer Society (2008). https://doi.org/10.
1109/SEFM.2008.29

https://doi.org/10.1007/978-3-540-88479-8_24
https://doi.org/10.1631/FITEE.2000537
https://www.cs.ox.ac.uk/publications/books/PfS/
https://www.cs.ox.ac.uk/publications/books/PfS/
https://doi.org/10.3390/s16111810
https://doi.org/10.3390/s16111810
https://www.icse2018.org
https://doi.org/10.1016/0304-3975(88)90049-7
https://doi.org/10.1109/SEFM.2008.29
https://doi.org/10.1109/SEFM.2008.29

84 Z. Liu

69. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall, New
York (1992)

70. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

71. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using
functional decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 4

72. Wang, J., Zhan, N., Feng, X., Liu, Z.: Overview of formal methods. J. Softw. 30(1),
33–61 (2019). (in Chinese)

73. Wing, J.M.: A specifier’s introduction to formal methods. Computer 23(9), 8–22
(1990)

74. Xiong, J.L., Ren, Q.R., Tyszberowicz, S.S., Liu, Z., Liu, B.: MSA-lab: an integrated
design platform for model-driven development of microservices. J. Softw. (2023).
https://doi.org/10.13328/j.cnki.jos.006813. (in Chinese)

75. Yang, Y., Li, X., Ke, W., Liu, Z.: Automated prototype generation from formal
requirements model. IEEE Trans. Reliab. 69(2), 632–656 (2020)

76. Zhang, M., Liu, W., Tang, X., Du, B., Liu, Z.: Human-cyber-physical automata and
their synthesis. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) ICTAC 2022. LNCS,
vol. 13572, pp. 36–41. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17715-6 4

77. Zhang, M., Liu, Z., Morisset, C., Ravn, A.P.: Design and verification of fault-
tolerant components. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.
(eds.) Methods, Models and Tools for Fault Tolerance. LNCS, vol. 5454, pp. 57–84.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00867-2 4

78. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refine-
ment. Formal Aspects Comput. 21(1–2), 103–131 (2009)

79. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams via
a hybrid hoare logic prover. In: Ernst, R., Sokolsky, O. (eds.) Proceedings of the
International Conference on Embedded Software, EMSOFT 2013, Montreal, QC,
Canada, 29 September–4 October 2013, pp. 9:1–9:10. IEEE (2013). https://doi.
org/10.1109/EMSOFT.2013.6658587

80. Şerbănuţă, T.F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.13328/j.cnki.jos.006813
https://doi.org/10.1007/978-3-031-17715-6_4
https://doi.org/10.1007/978-3-031-17715-6_4
https://doi.org/10.1007/978-3-642-00867-2_4
https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1109/EMSOFT.2013.6658587

Oxford Colleagues

Consciousness by Degree

Yifeng Chen1(B) and J. W. Sanders2

1 Peking University, Beijing, China
cyf@pku.edu.cn

2 AIMS South Africa, Cape Town, Republic of South Africa

jsanders@aims.ac.za

Abstract. The authors have previously proposed that, with agents
ranging from humans and other animals through cells to organisations
and software, (e.g. AIs), a theory is possible which accounts in princi-
ple for agent consciousness. That theory has been previously developed
from Booleans to numerical weights, hinting at degrees of awareness and
consciousness.

In this paper, an agent’s degree of awareness at any time is taken
to reflect its freedom of choice amongst its possible behaviours. It
is expressed as the number of actions which are enabled as a next
behavioural step at that time and over which the agent has at least par-
tial control. An agent is conscious of things which enable a fresh choice
of action there, an enumeration of which provides its degree of conscious-
ness. Those notions of degree are shown to provide a satisfactory account
of realistic examples and to provide sensible elementary laws.

Valiant has shown that, in our terms, a living agent adapting daily
to survive in its habitat as well its evolving in the very much longer
term, can in both senses be expressed ecorithmically as learning. That
approach is used here to consider the roles played by awareness and
consciousness in the adaptation of an agent and a species.

1 Introduction

We assume that agents range from animals (humans and others both domes-
ticated and wild) through cells to organisations and software (like AIs), and
promote the view that different types of agent may exhibit different degrees
of consciousness, quite possibly zero. The study of laws satisfied by agent con-
sciousness is pertinent because of current popular and professional interest in
the question of whether or not an AI, like a Large Language Model, can be
conscious. Without some criteria, how are we to decide?

Agents exist in some context which we model as a system. We continue from
our previous paper [6] to adopt the standard view that a model of any system
is constrained by the interrelated criteria of breadth (or extent) and depth (or
level of detail).

An agent’s context is called its habitat, whose details depend on the domain
and purpose of the model. Typically it includes other agents, features external

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 87–109, 2023.

https://doi.org/10.1007/978-3-031-40436-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_4

88 Y. Chen and J. W. Sanders

and internal to the agent, and a ‘catch-all’ category called1 the backdrop. The
backdrop is deemed to be a default agent and the distinction between physical
and backdrop features will be determined by emphasis of the model, taking
account of the control of its dynamics. Examples of these ideas appear in the
next section.

A system’s dynamics includes the behaviour of its agents, one step at a
time. Each step we call an action. An action may lie under the control of more
than one agent including the backdrop. Indeed an agent is a system component
characterised by having control (perhaps partial) of at least one action. A system
is expressed as a data type, so that ongoing actions normally described by safety
and liveness are expressed instead by their individual steps.

Any scientific approach to agent awareness and consciousness must be
phrased in falsifiable terms. Thus we eschew an animal’s ‘state of mind’ which is
not falsifiable (at least with current neuroscience). Thus it is a matter of belief,
not science, that a dog is happy when it wags its tail. An agent’s actions we
thus take to be observable only if they are falsifiable, which requires hypothesis
testing if the actions occur probabilistically. Henceforth by ‘observable’ we mean
falsifiably so.

Since Descartes and Locke, if not before, human consciousness has been
thought of in terms of the means by which a person becomes aware of features
in its habitat. A contemporary rendering is given by Bernard Baars’s Global
Workspace Theory, GWT, [1], which has inspired a dozen architectures purport-
ing to account for consciousness of a feature at a time; see Sect. 7.

Our approach departs from those architectures in our insistence on falsifia-
bility. The alternative taken has been the standard mathematical one: of offering
laws satisfied by awareness and consciousness in the hope that eventually suf-
ficiently many will accrue to characterise it. In case of shortfall there may still
be sufficiently many laws to falsify consciousness of some agents. Also, in the
absence of a definition it is still helpful to have heuristics for awareness and
consciousness, which are strong enough to show consistency of the laws when
there is any doubt.

In this paper we concentrate on the underlying model which is inspired by
but simplifies those we have considered previously [5,6].

An agent is deemed heuristically to be aware of a feature (external or inter-
nal) at a given time which enables some action (in the sense of establishing its
precondition) which is at least partially within the agent’s control. The action
need not occur, but it is a candidate for the agent’s next behavioural step. In
terms of a scheduling protocol P for the agent’s next action, the agent is cog-
nizant of the domain of P, the actions from which it chooses, even though the
protocol itself is unknown.

An agent is deemed heuristically to be conscious of something which causes
a fresh choice of action, even though the protocol for making the choice still
remains unknown.

1 Called ‘the environment’ in our previous work [5,6].

Consciousness by Degree 89

The paper is structured as follows. Features are introduced with a light touch
in Sect. 3 and used to express the awareness heuristically in both Boolean and
numerical terms. The models are simple because of the restricted use made
of features and of time. They are used to give corresponding new models of
consciousness in Sect. 4.

To test the formalism, the case study of a simplified cell is presented in Sect. 5
and its degrees of awareness and consciousness computed. Adaptation of living
agents, and the roles played by awareness, consciousness and the protocol P, are
considered in Sect. 6 using Valiant’s concept of ecorithm. The paper ends with
Related and further work, and a Conclusion.

But we start with an uncharacteristically anthropomorphic example which
exemplifies the ideas mentioned above and motivates the heuristics used.

2 Cameo

It is an autumn afternoon. Two parents are feeding their 3-month-old daughter
in response to her cries, whilst their 2-year-old son builds a tower with blocks in
his bedroom and their pet Golden Retriever naps in its bed in a corner of the
laundry beside its water bowl.

The parents are being guided by intuition with the upbringing of their son and
so are now more experienced and relaxed with their daughter. They are alert to
her needs and often anticipate them, burping her after feeding and checking her
nappy if she seems discontented. Their son is becoming autonomous, beginning
to assert himself and often able to play by himself, though at 2 still needs support
and supervision. The dog (and the parents) have been well trained at the local
Canine Academy and it is treated as one of the family. Suddenly it rouses to bark
protectively after sensing a passing pedestrian outside, unheard by the parents.

Apparently having fed enough, the baby falls asleep. One parent goes to the
kitchen to prepare dinner whilst the other takes the dog’s lead off its peg in the
hall. The dog rushes to the front door, tail wagging, in anticipation of its daily
walk to the park. The son, hearing activity and knowing the schedule, emerges
from his bedroom. As his parent puts the leash on the dog the son requests ‘Me
too’ to join the trip to the park. Wanting to walk like his parent, he refuses to
be seated in his stroller; for now anyway. The parents call farewell to each other
and the walk begins.

On the way to the local park the dog, on the extensible leash, enthusiastically
engages in its usual routine with every tree and lamp post whilst the boy, clasping
his parent’s hand, looks around curiously. The parent is idly contemplating some
thoughts about work, when they come to a crossroad. Becoming instantly alert,
the parent ensures that the dog is by their side, and begins to teach the boy the
time-honoured algorithm involving looking each way before crossing the road.
Suddenly a car approaches, much noisier and faster than usual. The dog watches
it and growls, and the parent pauses to check their safety, then resumes the
lesson, using the car to stress the danger of roads. The car fades into the distance
and they cross.

90 Y. Chen and J. W. Sanders

At the park the dog, free of the leash, fruitlessly chases a bird searching for
worms and insects in the grass. The boy roams free, and decides to collect acorns
in a pile in his stroller. The parent keeps a watchful eye on both from a park
bench whilst ruminating on what wine to open with dinner.

2.1 Discussion

The agents in the model underlying that Cameo include a family of four, their pet
dog, a car driver, birds and perhaps worms and insects at the park, depending
on the breadth of the model. For example He Jifeng does not happen to be
included. The dog’s external features include its bed, lead, trees and lamp posts
along the way to the park; but the position of the planets is not included. Its
internal features include its nature and nurture, with remembered locations and
events; but biometrics are not included. Its backdrop includes the passage of the
sun across the sky; again, its details depend on the depth and breadth of the
model.

The dog’s behaviour, by its nature (and species in particular) lives up to
its epithet as man’s best friend. As a result its actions often indicate surprising
awareness of and attentiveness to the family’s needs. Considering an agent to
be aware of things which enable an action at least partially within its control,
the dog is aware of food (which enables its eating), the family and other dogs
(which alter its behaviour), its daily routine (which it anticipates), opportunities
to play and for human attention.

The dog behaves differently at different times of the day, due to its awareness
of the position of the sun overhead and ambient animal noises. The sun is an
external feature lying beyond the control of any component of the system and
so belongs to the backdrop.

A rock at the park undergoes dynamics, due to erosion by the elements. But
since those lie beyond its control, the rock is not an agent.

By comparison, the nature and nurture of the parents means they coordi-
nate closely with each other as guardians and providers. Other internal features
include their aspirations and social expectations. They are aware of idle thoughts
which enable their ability to relate them. But they are not aware, for instance, of
current popular TV series. Their backdrop includes the domestic water supply
and movement of the sun.

The baby is aware of far fewer features than the son who is aware of fewer
than the parents. The baby is just becoming aware of the appearance and noise
of the dog, which attracts her attention but enables no further action. The son
is in addition keen to play with the dog as are the parents who also act to ensure
its health and safety.

Counting the number of actions under each agent’s control which are enabled
by the dog, the baby has fewer than the son who has fewer than the parents.

The dog’s awareness of its lead being taken from the peg enables a fresh
action at that moment: its walk outside. On the walk to the park the parent is
conscious only initially of taking steps, because care is required in descending
the front doorsteps, and then in matching pace to that of the boy and the dog.

Consciousness by Degree 91

But then the footsteps becomes routine and the parent is no longer conscious of
them. But they return immediately to consciousness if a fresh action becomes
enabled; like recovering from tripping over a misaligned paving stone.

3 Features

We suppose that any system contains a set F of features (from our earlier work
[5,6]) which are time dependent and influence agent and system behaviour. Fea-
tures are compounded from a set Basic of (domain-dependent) features under
Boolean combinators corresponding to ‘non occurrence’, ‘joint occurrence’, ‘con-
ditional occurrence’, ‘eventual conditional occurrence’ and ‘awareness’, provided
the result is observable as discussed in the Introduction.

Awareness is included as a feature because it plays an important role in an
agent’s choice of next behavioural step. For instance the dog’s behaviour depends
on its awareness of its lead being taken from the peg, and the parent’s behaviour
then depends on its awareness of the dog’s awareness.

In the Cameo features include: ‘the passing pedestrian’; ‘the lead being taken
from the peg’ which leads to ‘the daily walk’, and so on. Features do not include
‘radio waves’ unless the system also includes an appropriate receiver, without
which the waves are not observable.

Definition 1 (Features). At any time the features of a system are either Basic,
or defined in terms of the combinators:

F := Basic | ¬F | F ∧ F | F ⇒ F | F+⇒ F | Aa F
Since a combination belongs to F only if it is observable, even if f is a feature
the inconsistent conjunction f ∧ ¬f = false is not.

A feature’s time dependence we treat modally, making the time variable
explicit only when necessary. The notation Aa for agent a’s awareness is chosen
because we regard awareness as a modal operator and that notation resembles
that used in epistemic and doxastic logic. We begin by giving the semantics
behind the syntax Aa after which we deal with the logical combinators.

3.1 Awareness

The Cameo motivates a Boolean notion and a numerical one of agent awareness
and consciousness.

An agent is deemed to be aware of something at time t which enables an
action, at least partially within its control, then. The action is therefore a can-
didate for the agent’s next action at t . The number of such actions is its degree
of awareness at t .

To express that, a little notation is helpful.

(a) The set of actions which are at least partially within agent a’s control at time
t is called a’s ambit and denoted Am(a, t) (from our earlier work [5,14]).
For instance the dog’s walk to the park lies in both its ambit and that of its
owner. But the weather at the park belongs to the ambit of neither.

92 Y. Chen and J. W. Sanders

(b) For action α its precondition, pre α, holds at just those states s and inputs in
from which α is defined and terminates. Writing α as a predicate in the four
free variables s (state before), in (input), s ′ (state after) and out (output):

(pre α)(s, in) := ∃ s ′, out · α(s, in, s ′, out).

For instance the precondition for the dog to eat from its bowl is that it be
by the bowl which contains acceptable food.

Time, as used in (a), is replaced (following tradition) by state in (b). The
two are reconciled by replacing state in (b) by either time from T or in both
cases by a trace of actions which have occurred, in order of occurrence.

Awareness of a feature f at time t , that f enables some action in a’s ambit at
t , makes sense only if f (t) holds (which is why negation of features is essential).
Simplifying the formalization:

∃ α : Am(a, t) · f ∧ (f ⇒ pre α)

leads to the definition:

Aa(f , t) := f (t) ∧ ∃ α : Am(a, t) · pre α. (1)

For instance the dog is aware of the passing pedestrian which enables its bark.
Until then the humans are not aware of it, having more limited hearing. But
then the parents’ curiosity is aroused so the action of looking out the window is
enabled by the dog’s bark. An enabled action need not occur, so the parents may
choose instead to continue what they are doing, perhaps because it is common
for the dog to bark at pedestrians, or what they are doing is more important.

It is convenient to set:

S(a, f , t) := {α : Am(a, t) | f (t) ∧ pre α} (2)

so that (1) becomes:

Aa(f , t) = S(a, f , t) �= ∅.

That leads to a definition of degree of awareness:

|Aa(f , t) | := #S(a, f , t). (3)

That numerical measure is defined only for awareness Aa(f , t) and not for
features in general, as in our earlier work. The result is a simpler model requiring
less commitment to unnecessary detail in examples.

3.2 Features Resumed

We can now return to the semantics of the Boolean combinators on features.
Provided the result is observable, they are given pointwise on the time variable:

Consciousness by Degree 93

(¬f)(t) := ¬ f (t)
(f ∧ g)(t) := f (t) ∧ g(t)
(f ⇒ g)(t) := f (t) ⇒ g(t)
(f +⇒ g)(t) := f (t) ⇒ ∃ u≥t · g(u)

Aa(f , t) := Definition (1).

Evidently a compound scenario within a system can be described by a combi-
nation of features. For instance in the Cameo the lead being taken from its peg
leads to the dog’s walk and so on.

Simple laws of awareness involving those combinators appear in Fig. 1.

Fig. 1. Simple laws for awareness of agent a in the Boolean model, subject to the
qualifications in Theorem 1. The dual modal operator is defined as usual, pointwise on
t , by ∇a(f) := ¬Aa(¬f).

Theorem 1 (Laws for awareness). The laws of Fig. 1 hold, Expressions (5) and
(6) provided Am(a, t) is closed under the demonic choice of actions. Furthermore
the implications are strict.

Proof. Law (4) follows immediately since f is a conjunct in Definition 1 of
Aa(f , t). The converse clearly fails; for instance in the Cameo, the parents are
not aware of the passing pedestrian when the dog is.

For Law (5) we reason that if f , g both hold at t they are consistent so f ∧ g
is also a feature and hence:(

Aa(f , t)
Aa(g , t)

)

≡ Definition (1) of awareness(∃α : Am(a, t) · f (t) ∧ pre α
∃β : Am(a, t) · g(t) ∧ pre β

)

≡ logic

∃α, β : Am(a, t) · f (t) ∧ g(t) ∧ pre α ∧ pre β

94 Y. Chen and J. W. Sanders

≡ pre α ∧ pre β = pre (α � β)

∃α, β : Am(a, t) · f (t) ∧ g(t) ∧ pre (α � β)

≡ γ := α � β; � straightforward

∃ γ : Am(a, t) · f (t) ∧ g(t) ∧ pre γ

≡ Definition 1 again

Aa(f ∧ g , t).

The proof of Law (6) is similar using angelic choice α 	β instead of demonic
choice.

Law (7) requires simple propositional reasoning:

Aa(f , t)

≡ definition

f (t) ∧ ∃α : Am(a, t) · pre α

� logic, for any X

f (t) ∨ X

≡ logic, with X := ¬ ∃ β . . .

¬(¬f (t) ∧ ∃ β : Am(a, t) · pre β)

≡ definition

¬Aa(¬f , t)

≡ definition

∇a(f , t).

Evidently the implication is strict. For example in the Cameo the dog may not
be aware of the lack of water in its bowl because it is on the walk; so it is not
aware of the presence of water. �

A probabilistic choice between two actions is a special case of their demonic
choice. By comparison the existence of the angelic combination of consistent
actions is a strong assumption, leading to actions which backtrack and so on.

4 Consciousness

We now make the assumption that time is linear and discrete. If initialization
is important to the model, the time domain T is often assumed to be an initial
segment of T := N. In other words it is N or, if finite, the interval [0,n] of integers.
But if initialisation is unimportant and time infinite, a more convenient choice
may be T := Z.

Either way we assume that each non-initial time t : T has a unique prede-
cessor t− and each non-final time has a unique successor t+.

Consciousness by Degree 95

We regard an agent a as conscious of a feature f at time t if a is aware of f
at t via a fresh action: one which was not enabled at t−.

We define a modal operator Ca for consciousness by expanding Aa to incor-
porate freshness:

Ca(f , t) := ∃α : Am(a, t) ·
⎛
⎝ f (t)

(pre α)(t)
¬(pre α)(t−)

⎞
⎠ . (8)

As always that existence does not mean the fresh action need be taken.
As with awareness, that Boolean notion extends to degrees by enumerating

the fresh actions:

| Ca(f , t) | := #{α : Am(a, t) ·
⎛
⎝ f (t)

(pre α)(t)
¬(pre α)(t−)

⎞
⎠}. (9)

And, as with the relationship between the Boolean and numerical models of
awareness,

Ca(f , t) = | Ca(f , t) |> 0.

Fig. 2. Laws for consciousness corresponding to those of Fig. 1, subject to the quali-
fications of Theorem 2. The modal operator dual to Ca is defined by decorating the
dual of Aa : ∇·a(f , t) := ¬Ca(¬f , t).

Laws for consciousness that correspond to those of Fig. 1 are given in Fig. 2.
Their correctness follows from both the content and method of Theorem 1.

Theorem 2 (Laws for consciousness). The laws of Fig. 2 hold, (5) provided
Am(a, t) is closed under demonic choice and (6) provided it is closed under
angelic choice of consistent actions. Furthermore the implications are strict.

96 Y. Chen and J. W. Sanders

5 Case Study: A Cell

In this section we give an example of a system and an agent which is simple
enough for its features to be identified more completely than in the Cameo and
for the agent’s awareness to be determined.

We choose to model an idealised typical cell and find it, not surprisingly, to be
an agent which is aware but not conscious. No specialized biological knowledge2

is assumed. We use the Z notation, mostly3 as covered by Spivey [17].
The cell is distinguished from its environmental periplasm by a semiperme-

able membrane containing the cell’s cytoplasm. For homeostasis, temperature
and various concentrations like pH within the cell must remain within certain
bounds. Temperature is determined by the environment but regulation of var-
ious concentrations in the cytoplasm is achieved by transpiration through the
membrane, sometimes requiring energy from the cell. We abstract the various
concentrations, but include as a fundamental feature alive : B, whether or not the
cell is alive. We suppose that for t0, t1 : R and temperature temp in centigrade,

alive ⇒ t0 ≤ temp ≤ t1.

Transpiration is achieved by ‘channels’ which import nutrients (like sugars
and amino acids) and which export the byproducts of metabolism (like sodium
ions, or volatile compounds). A channel may be:

(a) passive, not requiring energy but working with the gradient by osmosis or
diffusion or being ‘facilitated’; or

(b) active requiring cell energy to work against a concentration gradient using
one of several methods.

Energy is produced by the break down of ATP, Adenosine Triphosphate, with
water to give ADP, Adenosine Diphosphate, and phosphorus; see Wikipedia,
[20]: Adenosine triphosphate. ATP is produced and stored in the cell’s mito-
chondria by the TCA (Citric Acid or Krebs Cycle); see the survey by Massimo
Bonora et al., [4]. We abstract that mechanism entirely, and instead consider
just the amount of energy available in the cell; see Garrett Heinrich [9].

We begin by modelling a cell’s active importing channel as follows.

5.1 Cell Importer

An importer is an active channel which imports certain kinds of molecule, of
type Mol, to the cell. It is formed from two domains, one atop the other, as
shown in Fig. 3.

2 A helpful reference for further relevant details is Wikipedia, [20], for instance: Cell
membrane; Active transport; Facilitated diffusion; Ion channel.

3 The definition of operation Release in two steps is nonstandard but hopefully clear.

Consciousness by Degree 97

Fig. 3. Cross section of an importer through the cell membrane. Image from Wikipedia,
[20]: ATP-binding cassette transporter (captured February 2023).

The domain contacting the periplasm, the transmembrane domain, has an
outer gate, tout , to the periplasm and an inner gate, tin. Each is either closed
or open, tout , tin : B, with false representing closed. When the cell is live, if one
of the gates is open the other is closed: tin = ¬tout .

Beneath is the nucleotide-binding domain whose outer gate nout contacts
the cytoplasm and inner gate, tin, connects to the inner gate nin, so tin = nin.
However now both gates of the nucleotide-binding domain may be closed, both
may be open, or nout may be closed whilst nin is open. In summary ¬(nout ∧
¬nin), or nout ⇒ nin.

The two domains join in a cavity capable of holding a molecule of type Mol
(which depends on the kind of channel). Combining the four gate observables
with the state of the cavity, the temperature and whether or not the cell is alive
gives the importer’s State. (Temperature is included to record the influence of
the environment on the state of the cell).

Initially, both outer gates are closed, the inner gates are open and the cavity is
empty. We describe initialisation as an operation which starts from an arbitrary
state and terminates in an initial state, so we can use it later to reinitialise
the state. As usual ⊥ denotes the undefined state and X⊥ denotes the type X
augmented with ⊥.

98 Y. Chen and J. W. Sanders

State
alive : B

temp : R

energy : R
≥0

cavity : Mol⊥
tin, tout : B

nin,nout : B

alive ⇒

⎛
⎜⎜⎜⎜⎝

t0 ≤ temp ≤ t1
energy > 0
tin = ¬tout
tin = nin
nout ⇒ nin

⎞
⎟⎟⎟⎟⎠

Initialise
ΔState

alive ′

cavity ′ = ⊥
¬tout ′ ∧ ¬nout ′

The implication in the state invariant is not an equivalence because:

(a) the cell may die for other reasons; and
(b) if the cell dies after attaining unsafe levels, it remains dead even if they

subsequently return to normal.

Importing a molecule to the cell via the importer channel is done in three
stages: docking, Dock ; followed by release, Release; then reinitialisation, Ini-
tialise:

Import := Dock � Release � Initialise.

Dock inputs a molecule m : Mol bound to a binding protein bp() : Ptn
from the periplasm, in the form bp(m). Formally, that is defined by feature
combination: bp(m)(t) := (bp()&m)(t). Dock also inputs a quantum of energy,
en0, from the cell, as discussed above.

Dock requires both outer gates to be closed initially (from which it follows by
the state invariant that both inner gates are open) and the cavity to be empty
(its content equals ⊥). Afterwards it ensures that tout is open, nout remains
closed (so by the state invariant tin and nin are both closed), nout is closed, bp
is empty, the cavity contains molecule m, and energy has been consumed.

Dock
ΔState[cavity , tout , tin,nout ,

nin, energy , alive]
bp(m)? : Ptn × Mol

alive
energy ′ = energy − en0

¬tout ∧ tout ′

¬nout ∧ ¬nout ′

cavity = ⊥
cavity ′ = m?

pre Dock
State
bp(m)? : Ptn × Mol
energy? : R

+

alive
¬tout ∧ ¬nout
cavity = ⊥
C .energy ≥ en0

Consciousness by Degree 99

The precondition of Dock is that tout and nout are closed, the cavity is empty
and the cell has sufficient energy.

Release assumes the conditions established by Dock. It outputs the empty
binding protein, bp(), closes tout and opens tin, nin and nout so that the
molecule m in the cavity can enter the cytoplasm. We describe Release as two
steps in sequence. In the first step, from State to State ′, the upper outer gate
closes whilst the lower outer gate remains closed, and bp() is output. In the
second step, from State ′ to State ′′, the upper outer gate remains closed whilst
the other gates open and m is output to the cytoplasm.

Release
Δ2State
bp()! : Ptn
m! : Mol

alive ∧ alive ′ ∧ alive ′′

temp = temp′ = temp′′

tout ∧ ¬tout ′ ∧ ¬tout ′′

¬tin ∧ tin ′ ∧ tin ′′

¬nout ∧ ¬nout ′ ∧ nout ′′

cavity = cavity ′ = m!
cavity ′′ = ⊥

pre Release
State

alive
tout
¬nout
cavity �= ⊥

The precondition is that tout is open, nout is closed and the cavity is
nonempty.

Finally the importer is reinitialised with operation Initialise, leaving it in a
state satisfying pre Dock (except for the cell’s energy level). Of course Initialise
is total.

To be able to function against a concentration gradient, the system of gates
must function like an airlock. We use that property to ‘validate’ the breadth and
depth of our model of an importer; without some such validation we can have
little confidence in the accuracy of our model.

Theorem 3 (Airlock). The action Import at no time connects the periplasm
and cytoplasm directly.

Proof. Since Import is the sequential composition of three actions it suffices to
show the claim for each, Dock, Release and Initialise. We show that at no time
(not just at the end of each step) are all four gates open:

¬(tout ∧ tin ∧ nin ∧ nout). (14)

Initially both outer gates, tout and nout , are closed so (14) is established.
We argue operationally, but in Hoare-logic style, that (14) is preserved during
the animation of Import.

Dock keeps closed the lower gate nout whilst closing the inner gates tin, and
nin and opening the upper outer gate tout . So (14) is maintained.

100 Y. Chen and J. W. Sanders

The first step of Release keeps closed the upper outer gate tout whilst the
lower outer gate nout remains closed. The second step of Release keeps closed
the upper outer gate tout whilst the lower three gates, tin, nin and nout , are
opened. So (14) remains true.

Finally Initialise keeps closed the lower outer gate nout whilst the others,
and tout in particular, are unchanged. We conclude that (14) is maintained
throughout. �

5.2 Cell Awareness

At any time our idealised cell may engage in the production of more ATP, or the
import or export of molecules (including the ingredients or byproducts of the
TCA cycle) on its channels like that described above with the four action steps
of Import. Energy production also involves importing and exporting through the
membrane of the mitochondria. The number of mitochondria depends on the
metabolism requirements of the cell. In all, many actions are involved (charac-
terising the breadth of study), each composed of many steps (depending on the
depth of study).

We suppose for simplicity that the cell has 15 mitochondria, 20 importers, 20
exporters and 25 residual mechanisms. Each of those involves an action composed
of steps in sequence, like Import. They are interdependent when resources are
low, which for simplicity we overlook. The cell’s degree of awareness of its internal
activity f at t equals the number of actions in Am(cell , t) which are enabled at
t . Enumerating by the four kinds of mechanism, that might typically be:

Acell(f , t) = 15 + 20 + 20 + 25
= 80.

However that awareness, although observable, does not enable any fresh
action and so the cell is not conscious of f at t :

¬Ccell(f , t)
| Ccell(f , t) | = 0.

6 Adaptation

We view a species, subject to evolution, as an agent in control of its DNA. The
control is partial because of epigenetic influences; but that is sufficient for it
to satisfy our definition of agenthood. On one hand such an agent adapts to
its environment day-by-day and its species adapts by evolving generation-by-
generation.

In this section we combine those forms of adaptation following Valiant’s con-
cept of ecorithm, to understand the roles played by awareness and consciousness
in adaptation.

Consciousness by Degree 101

In interacting day-by-day with its habitat (including other agents), and buf-
feted by its backdrop, an agent adapts to survive. The result is a change in
both the habitat and the agent’s nurture. Evolving generation-by-generation the
species improves its fitness to survive, subject to epigenetics and genetic muta-
tions of its DNA. The result is a change in its nature.

Both forms of adaptation have been explained with the concept of an ecorithm
by Leslie Valiant, [19] (who has been able to clarify and formalize Darwinian
evolution in terms of machine learning). The ‘fitness function’ (or ‘performance
function’ in Valiant’s terms) evolves and maintains improvement towards a limit
given by some mathematical, ideal function.

Making the assumption already implicit in Darwin’s work-that different
choices of action have various levels of benefit for the evolving entity-we
can define the performance and the target in terms of the notion I call an
ideal function. For any species (or other evolving entity), at any instant, in
any specific environment, this ideal function will specify in every possible
situation the most beneficial course of action.

Leslie Valiant, [19] p. 111.

We begin by formalising the life of a living agent in terms of its nature (DNA)
and nurture (learning from its habitat). A machine-learning system learns how
to classify a given datum on the basis of experience. The simple example of
binary classification by means, used by Bernhard Schölkopf & Alexander Smola,
[15]: Section 1.2, is specified in Fig. 6 of the Appendix as a data type. We now
use those ideas to describe a living agent, culminating in Fig. 4.

6.1 Living Agent

The state of a living agent we take to consist of: whether or not it is alive, live : B;
its DNA, dna : DNA; its behaviour, or history of actions, data : seq Action from
its ambit; the behaviour habs : seq Action of its habitat beyond its control; the
behaviour envs : seq Action controlled by its backdrop, e; and its (unknown)
choice protocol, P, as above. We overlook the agent’s identity.

Initially: the agent is alive with some DNA, dna0; empty data, habs and envs;
and some protocol P0.

It is no more straightforward to classify a living agent’s interactions with its
habitat than it is to provide details of P.

Since the actions we take in one circumstance may influence what is the
most beneficial action in another, it is the combination of all the action
functions that is evaluated. The ideal one is that which produces most
benefit in that snapshot of an environment.

Leslie Valiant, [19]; page 112.

Informed by ML, we describe the ways in which an agent’s state can change.
We include operations Learn, Predict, FreeWill, Supervene, Vicinity, Beget and

102 Y. Chen and J. W. Sanders

Die. Each requires the agent to be live. The operations Learn and Predict are
as described by the general setting of the Appendix but using an unknown ideal
function FF to update P.

The details of FreeWill are concealed within the protocol P. It is given as a
separate operation because without it the classification of a living agent’s inter-
actions would seem incomplete. Supervene describes an action of the backdrop,
either instantaneous by normal time scales like the eruption of Vesuvius, or incre-
mental like an ice age. It may result in the agent’s death, but anyway updates
envs. Vicinity describes actions in the habitat which lie beyond the agent’s con-
trol; it extends the trace habs. Like Supervene, its actions may well impact a’s
behaviour.

Beget is the only operation to output an agent, the offspring b!. It is specified
with partner a0? and is asexual iff that equals the current agent. The function
Fme describes how the offspring’s DNA is formed from those of its parents,
taking into account mutations and epigenetics. Beget ’s precondition is that both
the agent and its partner are alive.

After Die a living agent is no longer living (to state the obvious). Its control
is difficult to specify because the operation may be internal to the agent, due to
congenital malady or old age (Queen Elizabeth II), the result of actions of other
agents (Julius Caesar) or of the environment (the population of Pompeii under
erupting Vesuvius).

The specification of the type Living agent is naturally an extension of the
type ML, which is the point of having considered it first. In spite of that we
present it in Fig. 4 from scratch and for readability ignore various Z shortcuts.

In the spectrum of agents considered here, those which evolve are particularly
important because they provide a way to understand the evolution of conscious-
ness. It may be that there is an almost-Darwinian sense in which software evolves
(did ChatGPT3.5 beget ChatGPT4?); certainly in the early years programming
languages were classified by ‘generation’. But for now we assume that evolution
applies only to living agents.

6.2 Family Tree

Viewing a species as an agent we now extend the description of a single living
agent to a species via its family tree, adapting ecologically. See Fig. 5.

The family tree consists of a sequence of finite sets of living agents, each
an offspring of an agent in the previous generation. It also contains a fitness
function (for simplicity we consider just one) which evolves by generation. In
each generation all agents are live and share the same habitats and backdrops.

Initially the sequence is a singleton, the first generation consists of some
nonempty set of agents and the fitness function is undefined, awaiting learning.

That concept of generation, represented by g in Fig. 5, requires comment. For
the case of parthogenesis, asexual reproduction, it is well defined. Most human
cultures have taboos against parent-child breeding, in which case g is also well
defined. But otherwise, including for many animal species (see the interesting
discussion of Victoria Pike et al., [13], g needs to be defined as the length of the
shortest path between the two sets of agents.

Consciousness by Degree 103

Fig. 4. The format of a living agent adapting day-to-day, in terms of machine-learning.
Unknown procedures, like how the next action is the result of nature and nurture, or of
free will, are abstracted in the next-step protocol P which is assumed to be updated in
learning by FF . The agent’s next action benefits from its nature and nurture by way
of operation Predict.

Supervention by the backdrop may affect a whole generation as well as pro-
viding changes in the fitness function. It is total.

Each interaction of an agent with its habitat now consists of one of the
operations Learn, Predict, FreeWill, Vicinity, Beget and Die from Fig. 4, the

104 Y. Chen and J. W. Sanders

Fig. 5. The format for a family tree of living agents adapting and evolving in some
habitat. Adaptation of a single agent to survive is as in Fig. 4, whilst evolution is
described by supervention to change DNA between generations.

choice being made by its choice protocol. At this level we simply combine those
actions nondeterministically.

6.3 Adaptation and Consciousness

What evolutionary advantage does consciousness confer?
Adapting day-to-day, a living agent is aware of features which enable some

action for its protocol P to choose from. It is conscious of features which enable
fresh actions and hence update the domain of P. But whilst interacting and
adapting, P changes incrementally as in machine learning.

Adapting in the long-term the species DNA is modified and as a result so
is the protocol P (a change we allocate to FF). But now the change seems
most unlikely to be incremental: arbitrary increments are likely. The only thing
comparable in one generation would be a complete change of habitat, like animal
migration or man walking on the moon.

Changes in P are thus either incremental, by generation, or possibly wild and
unprecedented, in evolution. In terms of seeking a ground state in evolutionary
phase space, presumably the goal of any species, that results in a well-known
searching strategy which combines stepwise local search with jumps to avoid
capture by local minima.

Consciousness by Degree 105

7 Related and Further Work

Russell and Whitehead and
Hegel and Kant,
Maybe I shall and maybe I shan’t.
Maybe I shan’t and maybe I shall.
Kant Russell Whitehead, Hegel et al.

Frederick Winsor, [21].

Our previous work (Chen & Sanders, [5,6]), used reflexivity to define con-
sciousness as awareness of awareness and achieved reflexivity using the notion of
‘feature’ in an agent-based system. The model of feature strength was based on
the observation that awareness and consciousness fade with time unless refreshed.
A Boolean model was accompanied by a numerical one in which the strength
of a feature was defined to be proportional to the inverse of the time since its
occurrence.

When we came to use feature strength to give an account of examples, like
those in the Cameo and the cell, we found that the assignment of weights to
features, though elegant in theory, seemed too arbitrary in practice. Moreover,
the justifying stability analysis seemed much too difficult.

In this paper we have considered an alternative, more restrictive, approach.
It is still based on the number of possible behaviours under the control of the
agent at any time and again supports agent consciousness by degree. But we have
replaced consciousness as reflexive awareness with an approach which seems to
work better on examples.

There is not much directly-related work, though of course the topic of con-
sciousness is burgeoning. The Global Workspace Theory, GWT, of Bernard Baars
[1] already mentioned has been very influential concerning human consciousness
and its appreciation in terms of a means by which features are promoted to
consciousness. Over the past two decades the idea of a global workspace has
been refined by a dozen architectures, many explicitly computational like the
Conscious Turing Machine [3] of Manuel & Lenore Blum.

Our work departs from the GWT architectural approach by insisting that
agents be general and that as far possible concepts be falsifiable.

Stanislas Dehaene [7] has proposed that a human is conscious of any feature
on which he or she can report. In our terms the form of the report may be
predetermined (by the person’s choice protocol) but its content is entirely feature
dependent and so the report itself is fresh. That indicates consciousness in our
terms, so our heuristic can be seen as generalising consciousness to arbitrary
agents Dehaene’s approach.

For further work, less related but nonetheless interesting and important, we
refer to Section 6 of our earlier paper [5] which includes: Giulio Tononi’s Infor-
mation Integration Theory, IIT, [18]; Donald Hoffman’s Computational Evolu-
tionary Perception, CEP, [10]; Mark Solms & Karl Friston’s use of the ‘free-
energy principle’ in modelling homeostasis with the prospect of consciousness,

106 Y. Chen and J. W. Sanders

[16], Chapter 7; and the enticing evolutionary aspects of consciousness, briefly
touched on here in Sect. 6.3: Simona Ginsburg & Eva Jablonska’s [8].

We have not availed ourselves of Thomas Nagel’s hugely influential view [12]
that an agent is conscious iff there is something it is like to be that agent. Owen
Holland [11] makes the point that Nagel’s view is based on living agents and
that for artificial agents it might instead be replaced by an approach founded
in engineering, and he discusses the difference between physical and virtual AIs.
Our approach, restricted to those cases, though different does not seem far away.

We have recently discovered the work of Yoshua Bengio, for instance [2],
which also takes an entirely non-architectural approach to consciousness of AI
(Large Language Models in particular) but at a lower level of abstraction.
Nonetheless his priors have much in common with our features (when inter-
preted probabilistically) and may suggest a way forward with feature strength.

There is a desperate need for realistic case studies, particularly concerning
the development of consciousness, which seems so far to lie in fiction.4 Having
identified a degree of consciousness, it would be interesting to consider the rate
of change of consciousness during a living agent’s lifetime.

This work has followed the classical view that time is linear and events,
though they may be concurrent, are viewed in a sequential manner. For much of
science that view is sufficient. It is fundamental to the global workspace metaphor
and also provides the basis for the traces of concurrent computations. It may well
be that a nonlinear time domain makes more sense in considering consciousness.

8 Conclusion

We conclude that agent awareness and consciousness may be explained by degree
(without explicitly assigning strength to features) in a way which makes much
sense in examples.

In the case study of a cell we have inferred that the cell is aware but not
conscious, with a degree of awareness | Acell(f , t) | = 80. Eighty? Eighty! He
Jifeng, we offer salutations and congratulations on your 80th Festschrift and
look forward to your 90th, and before then more of your hugely influential work
from which we have benefitted directly and as part of the community.

A tiny step has been made towards a setting in which to study the ecological
development and contribution of consciousness.

Acknowledgements. The authors acknowledge the support of Chinese grant
2021YFB0301100. They greatly appreciate the standard established by Jonathan
Bowen, Xu Qiwen and Li Qin, under the auspices of Zhu Huibiao, in the difficult
setting of a Festschrift. Jonathan in particular has gone far beyond the call of duty to
ensure the event and publication a success.

They are grateful that the paper in this unfamiliar topic has benefitted considerably
from five reviews with a range of backgrounds. We are extremely grateful to the referees
for their patience and insights.

4 The Enigma of Kaspar Hauser, Werner Herzog, originally Jeder für sich und Gott
gegen alle, 1974.

Consciousness by Degree 107

Appendix: Machine Learning

A machine-learning system for binary classification of data in R
n may be speci-

fied as an abstract data type as follows, resulting in Fig. 6.

Fig. 6. A simple machine-learning system input, as described by Bernhard Schölkopf
& Alexander Smola, [15]: Section 1.2. The system learns and assigns to an input datum
‘the’ class whose mean lies closer.

Assume a type D of data, already a subset of R
n for some n > 0, and

a Boolean partition D = C ∪ C in which each datum is assigned to either
C or its complement C (we use other notation for the mean), determined by
its membership. We write C for the partition {C ,C} and assume it remains
constant.

The state of the machine-learning system consists of a bag, or multiset, data,
of data seen so far, together with the means m,m of their assignments to C ,C
(respectively) so far. Initially the bag of data is empty, data = � �, with the
means undefined m,m =⊥.

Learning results from correctly-assigned input data. The training operator,
Learn, takes a datum and its classification and adds the datum to data and
updates the means. So Learn is total.

The assignment operator, Assign, assigns to an input datum the category to
whose mean it is closer in R

n . For a nonempty bag D of data we write its mean

108 Y. Chen and J. W. Sanders

as mean(D) := (#D)−1
∑

D , where
∑

denotes bag summation. Assign is non-
deterministic if the input datum is equidistant from both means. Its precondition
is that the means are well defined: data contains data from each class.

In general machine learning, assignment of a general class C to an unseen
input d? is done by a protocol P which has been learnt in the same way that
m,m are learnt there (facilitating output of a class with mean closer to d?). In
general the protocol is a relation:

P : bag (D × C) × D ↔ C.

In the case of Fig. 6 with binary assignment it has the simple form:

P(d?,m,m, c!) :=
(c! = C) ⇔ |d? − m | ≤ |d? − m | .

In general we assume P to be updated in learning by some function FF .
Some machine-learning systems first learn P and then use it to classifies

input. Our description in Fig. 6 allows further learning at any stage, so the
format more closely matches that of a living agent. For instance a young animal
spends its early years learning whilst interacting with its habitat; a process which
continues throughout its life.

References

1. Baars, B.J.: A Cognitive Theory of Consciousness. CUP, Cambridge (1998)
2. Bengio, Y.: The Consciousness Prior (2017). https://arxiv.org/abs/1709.08568
3. Blum, M., Blum, L.: A theoretical computer science perspective on consciousness

(2020). https://arxiv.org/ftp/arxiv/papers/2011/2011.09850.pdf
4. Bonora, M., et al.: ATP synthesis and storage. Purinergic Signal 8(3), 343–357

(2012)
5. Chen, Y., Sanders, J.W.: A modal approach to consciousness of agents. In: Mar-

garia, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13703, pp. 127–141. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-19759-8 9

6. Chen, Y., Sanders, J.W.: A modal approach to conscious social agents. In: Steffen,
B., Wirsing, M., Margaria, T. (eds.) Transactions on FoMaC. LNCS, Springer
(2023, to appear)

7. Dehaene, S.: Consciousness and the Brain. Penguin, London (2014)
8. Ginsburg, S., Jablonka, E.: The Evolution of the Sensitive Soul: Learning and the

Origins of Consciousness. MIT Press, Cambridge (2019)
9. Heinrich, G.: How to Measure the Energetic Status of Cells? Enzo Life Sciences,

TechNotes (2022)
10. Hoffman, D.D., Singh, M.: Computational evolutionary perception. Perception 41,

1073–1091 (2012)
11. Holland, O.: Forget the bat. J. Artif. Intell. Consciousness 7(1), 83–93 (2020)
12. Nagel, T.: What is it like to be a bat? Philos. Rev. 83(4), 435–450 (1974)
13. Pike, V.L., Cornwallis, C.K., Griffin, A.S.: Why don’t all animals avoid inbreeding?

Proc. R. Soc. B 288, 20211045 (2021)
14. Sanders, J.W., Turilli, M.: Dynamics of control. UNU-IIST Report 353 (2007)

https://arxiv.org/abs/1709.08568
https://arxiv.org/ftp/arxiv/papers/2011/2011.09850.pdf
https://doi.org/10.1007/978-3-031-19759-8_9

Consciousness by Degree 109

15. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

16. Solms, M.: The Hidden Spring: A Journey to the Source of Consciousness. W. W.
Norton & Co., New York (2021)

17. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science (1992)

18. Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5,
22, Article no. 42 (2004)

19. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning
and Prospering in a Complex World. Basic Books, New York (2013)

20. Wikipedia: Cell membrane; Active transport; Cotransporter; Ion transporter; ATP;
etc

21. Winsor, F.: The Space Child’s Mother Goose. Purple Press House (1956). (2001
edition)

Specifying and Reasoning About
Shared-Variable Concurrency

Ian J. Hayes1(B) , Cliff B. Jones2 , and Larissa A. Meinicke1

1 School of Electrical Engineering and Computer Science,
The University of Queensland, Brisbane 4072, QLD, Australia

Ian.Hayes@uq.edu.au
2 School of Computing, Newcastle University, 1, Science Square,

Newcastle upon Tyne NE4 5TG, UK

Abstract. Specifications are a necessary reference point for correctness
arguments. Top-down descriptions of concurrent programs require a way
of recording information about the environment in which the compo-
nent will be required to function. It was shown in the 1980s that adding
rely and guarantee conditions to pre and post conditions could support
formal specification and reasoning about a class of concurrent systems.
More recent research has both widened the class of specifications to
include progress requirements and facilitated mechanisation of proofs.
This paper describes the algebraic underpinnings that have made this
possible. Particular attention is paid to notions of atomicity.

Keywords: shared-variable concurrency · rely-guarantee approach ·
refinement calculus · program algebra · atomic specification commands

1 Introduction

At the heart of an effective software development method is the ability to specify
a program component independently from its implementation. From the point
of view of deployment, such an independent specification should allow the use
of a component to depend solely on its specification (and not on the details of a
particular implementation of the component). Considering the task of its devel-
opers, the correctness of an implementation of a component should depend solely
on its specification (and not the context(s) in which it is used). The techniques
required to achieve this for sequential programs are both well established1 and
used in practical development environments.

When compared with sequential programs, reasoning about concurrent pro-
grams introduces the additional complexities of inherent nondeterminism and
interference between threads that gives rise to an explosion of the number of pos-
sible execution paths between the interacting threads. While pre/postcondition
pairs are sufficient to specify sequential components, concurrency introduces
additional complexities:
1 See for example the excellent review in [1].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 110–135, 2023.
https://doi.org/10.1007/978-3-031-40436-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_5&domain=pdf
http://orcid.org/0000-0003-3649-392X
http://orcid.org/0000-0002-0038-6623
http://orcid.org/0000-0002-5272-820X
https://doi.org/10.1007/978-3-031-40436-8_5

Specifying and Reasoning About Shared-Variable Concurrency 111

interference: a concurrent thread may modify variables accessed by a compo-
nent at any point in its execution,

atomicity: programs might be written in high-level programming languages
but evaluation of expressions and execution of (assignment) statements at
the machine code level cannot be assumed to be atomic with respect to pro-
gramming language concepts and

termination/progress: termination of operations may be affected by –or even
rely on– interference from other threads, and operations may be required to
wait for access to shared resources or locks.

Furthermore there are interactions between these issues: the granularity of atom-
icity affects the extent of the interference (e.g. a data structure controlled by
a lock has a coarser granularity of atomicity); and handling progress proper-
ties requires an approach to interference that handles possibly non-terminating
operations.

As for specifying sequential data structures/types, it is advantageous to make
use of an abstract model of the (encapsulated) state of the data structure and
make use of a data refinement that introduces a lower-level state for the imple-
mentation. For concurrent data structures the choice of representation can affect
the manner in which the operations on the data structure may interfere with each
other. Often the representation is chosen so that it distinguishes between data
and control variables (e.g. locks), where the latter control access to the data
structure and are usually of atomic types, whereas the former are typically not
of atomic types and rely on the control variables being used to ensure mutual
exclusion on the parts of the data being accessed by an operation.

The interference which is characteristic of shared-variable concurrency makes
it difficult to achieve a compositional development method. Early concurrency
research [3,4,51,52] provided approaches that were neither modular nor compo-
sitional – see [38] for more details on these early approaches.

This paper surveys an approach to the development of shared-variable con-
current programs. Specifically it looks back over 40 years of evolution of the
rely-guarantee approach including recent research on showing how an algebraic
reformulation of the basic idea can provide the key to effective mechanisation of
concurrent program development. Section 2 examines the interaction of interfer-
ence with program assertions, expression evaluation, and assignment commands.
Section 3 focusses on abstracting interference by rely conditions and Sect. 4
brings in guarantee conditions to allow concurrent operations to be specified.
Section 5 overviews an algebraic approach to specifying and refining concurrent
programs. Section 6 looks at specifying atomic operations, which can be used
to specify operations on shared data structures and to specify atomic machine
operations, such as test-and-set. Section 7 examines termination of loops in the
context of interference from parallel threads. Section 8 discusses the role of data
abstraction and refinement in the context of concurrency. Section 9 examines
operations that may have to wait for resources or locks; such operations may
potentially wait forever.

112 I. J. Hayes et al.

Our overall goal is to provide a concurrent program refinement theory in
Isabelle/HOL that supports the derivation and verification of concurrent pro-
grams, with all refinement laws used for deriving programs being proven valid
within the theory. In particular, we avoid making assumptions about expression
evaluation and assignment commands being atomic, and instead make use of
laws that show they are effectively indivisible, given certain assumptions.

In this whole research arena, there are important conceptual distinctions and
less critical differences in concrete syntax. It is important not to let the latter
obfuscate the former and we have tried to tease apart these issues.

Connections with Prof. He Jifeng’s Research

Jifeng’s work with Tony Hoare on unifying theories of programming [31] has
heavily influenced the approach taken to the trace semantics underlying our
work, while the algebraic approach to programming derives from the earlier
laws of programming [30]. His work on rely/guarantee concurrency [72] has also
influenced our approach.

2 Atomicity

An operation executing within a thread is atomic if no parallel thread may
observe an intermediate state of the operation and the operation cannot observe
intermediate states of operations in parallel threads. Some programming lan-
guage or machine architecture types can be considered atomic, i.e. for a read or
write access of a variable of an atomic type, no concurrent thread can observe an
intermediate state part way through an access. By contrast, for example, 64-bit
integers on a 32-bit architecture do not form an atomic type. For the rest of this
paper, we assume that scalar types (such as integers and booleans) are atomic;
however, for structured types such as arrays and records, we make no atomicity
assumptions about access of the whole structure but assume that access to their
sub-components that are of atomic types is atomic. We do not assume that exe-
cution of programming language statements –nor evaluation of their conditions–
is atomic.

2.1 Program Assertions

Assertions about the state of a program are essential for Floyd/Hoare-style rea-
soning about programs [21,29] but a program assertion may not be stable under
interference from parallel components. An assertion, P , is a set of program states,
and a relation, R, is a set of pairs of states, where a program state, σ, can be
represented as a mapping from program variable names to their values, i.e. σ x ,
is the value of variable x in state σ.2

2 The program state may also include a heap but no further discussion of heap store
is included below.

Specifying and Reasoning About Shared-Variable Concurrency 113

Definition 1 (stable). An assertion P on the program state space is stable
under a relation R if and only if ∀(σ, σ′) ∈ R . (σ ∈ P ⇒ σ′ ∈ P).

In the examples we use characteristic predicates for assertions, so that x > 0
characterises the set of states {σ . σ x > 0}. Similarly, the predicate x ≤ x ′,
in which x stands for the initial value of x and x ′ for the final value of x ,
characterises the relation {(σ, σ′) . σ x ≤ σ′ x}. The assertion l ≥ r is not stable
under interference that can decrease l or increase r , which is characterised by the
predicate l > l ′ ∨ r < r ′ but l ≥ r is stable under interference that can neither
decrease l nor increase r , that is, interference satisfying l ≤ l ′ ∧ r ≥ r ′. Note
that the interference under which an assertion and its negation are stable may
be different. The definition of stable does not require that the program variables
referenced within P are unmodified, for example, the assertion, even i , is stable
under interference that increases i by 2.

2.2 Conditions

A program assertion, P , is used as a judgement about a single program state,
σ; either σ is in P or it is not. On the other hand, conditions in if and while
commands are evaluated in a context in which the program state may be modified
(multiple times) by interference from the environment, and hence are evaluated
over a sequence of potentially different states. Each reference to a variable within
a condition may access its value in a different state, for example, the condition,
i = i , may evaluate to false if its two accesses to i are in states with different
values of i .

A common restriction [52] is that a condition contains at most one shared
variable and at most one reference to that variable, thus ruling out a condition
such as i = i . With this restriction, evaluating a condition over a sequence of
states is equivalent to evaluating it in the single state in which the shared variable
is accessed. If a condition satisfies this restriction, it is affected by interference
in a similar manner to program assertions. For example, the condition, i > 0,
in an if command may be true in the state in which i is accessed but it is not
stable under the interference that may decrease i , and hence it may no longer be
true when the start of the then branch of the if command is reached. However,
if i > 0 evaluates to false, it will still be false when the start of the else branch
is reached if the interference cannot increase i .

2.3 Expressions

As with conditions, evaluation of expressions can lead to anomalies, for example,
for an integer variable i , the expression i + i may evaluate to an odd value if i
is modified between the two accesses to i , whereas 2 ∗ i always evaluates to an
even number because there is only a single access to i . Note that it is a valid
refinement to replace i + i by 2 ∗ i but not vice versa.

We assume the syntax of an expression, e, consists of either a constant, k ,
a variable, v , a unary operator
 applied to an expression,
e1, or a binary

114 I. J. Hayes et al.

operator ⊕ applied to two expressions, e1 ⊕ e2.3 Evaluation of an expression in
a (single) state σ, written eσ, is defined in the usual manner. If an expression,
e, evaluates to the same value before and after interference satisfying a relation
R, we say that e is invariant under R.

Definition 2 (invariant-expression). An expression, e, is invariant under a
relation R if and only if ∀(σ, σ′) ∈ R . eσ = eσ′ .

For example, the expression, i mod N , is invariant under interference that incre-
ments i by the constant N , (i.e. under the relation {(σ, σ′) | σ′ i = σ i + N }),
similarly, i− i , is invariant under any interference because evaluating i− i in any
single state gives 0. However, evaluating i − i over a sequence of states (as for a
programming language expression) under interference that may change i , may
not give 0 because i− i has two references to i that may be evaluated in different
states to give different values. Expressions that only have a single reference can
be reasoned about more easily.

Definition 3 (single-reference). An expression, e, is single reference under
a relation R, if and only if e is,

– either a constant, k , or an atomic variable, v ,
– of the form,
e1, and e1 is single reference under R, or
– of the form, e1 ⊕ e2, in which both e1 and e2 are single reference under R,

and either e1 or e2 is invariant under R.

For example, for integer atomic variables i and j , the expression (i mod 2) + j ,
is single reference under interference, R, that may increment i by any multiple
of 2 (including 0) and may modify j arbitrarily, because

– i mod 2, is single reference under R because
• the atomic variable i is single reference under R, and
• the constant 2 is both single reference and invariant under R,

– i mod 2 is invariant under R, and
– j is single reference under R.

That means the expression, i mod 2, evaluates to the same value, no matter in
which state during its evaluation i is accessed, and hence any variance in the
value of (i mod 2) + j , is due to the various values that j can take during the
evaluation. If an expression is both single-reference and invariant under R, its
evaluation over a sequence of states will return the same value as its evaluation
in any of the states.

Other approaches to handling expressions [11,70] assume that the expression
has only a single variable, v , that may be modified by the environment and that
v is referenced only once. This is a strictly stronger requirement than Definition
3, for example, as shown above (i mod 2)+j is single reference under interference
that may increment i by a multiple of 2 and arbitrarily update j but it does
not satisfy the stricter requirement that only one variable may be modified by
interference because both i and j may be modified by the interference.
3 Conditional “and” and “or” (&& and || in C, Java, etc.) are handled by conditional

expressions, which we do not consider here.

Specifying and Reasoning About Shared-Variable Concurrency 115

2.4 Assignments

An assignment command, x := e, in a concurrent context may be subject to
interference on variables referenced within e during its evaluation (as in Sect. 2.3)
as well as interference that may modify x after it has been assigned. We assume
accesses to x and variables within e are atomic.

Owicki [52], Xu et al. [72], Prensa Nieto [56], Stølen [65], Dingel [16], Schell-
horn [58] and Sanan [57] treat a complete assignment as atomic, although they
do allow interference before and after the assignment. Their reasoning makes use
of preconditions and (single-state) postconditions that are stable under interfer-
ence.

A common observation [7,52] is that, if an assignment only accesses at most
a single shared variable (i.e. all other variables accessed are unchanged by inter-
ference) and there is only one access to that variable, the assignment can be
thought of as being atomic—it can be viewed as happening atomically at the
(single) point the shared variable is accessed. In an assignment, x := e, the
single shared variable may be either x or some variable accessed within e (but
not both). Hence these approaches commonly impose a syntactic restriction on
programs that this property holds for all assignments. Any assignment for which
the property does not hold needs to be broken down into a sequence of assign-
ments that do satisfy the property, and which may require fresh local variables.
This also introduces additional intermediate assertions and proof obligations.

The validity of the single shared variable approach cannot be proven in the
above listed theories, due to their assumption that assignments are atomic. The
approach we have taken does not assume assignments are atomic, which is in
line with the fact that the (concurrent) semantics of programming language
assignments is not atomic. That allows us to show, for example, that the above
single shared variable approach is valid, but we can also generalise it to use the
more general Definition 3 (single-reference), rather than single shared variable.

3 Interference and Rely Conditions

Pre and rely conditions should inform deployment decisions in that it should
be established (preferably by proof) that the context in which an implementa-
tion will be deployed will satisfy these assumptions. However, considering the
execution of an implementation, semantics must be given to situations where
assertions (preconditions, intermediate assertions, loop invariants) of a compo-
nent are violated by interference from concurrent threads in its environment.
For example, consider the following assertion for a set of integers s and integer
constant N .

s ⊆ {0 .. N } (1)

The assertion states that all elements of the set s must be in the subrange 0
through N , inclusive. In the context of interference from the environment, the
assertion may be invalidated by the environment adding an element outside

116 I. J. Hayes et al.

{0 .. N } to s. However, if the interference only removes elements from s, (1) is
stable, i.e. if it holds before the interference, it holds after. The interference can
be represented by a rely condition, in this case the relation characterised by

s ′ ⊆ s (2)

in which s is the value of the set before the interference and s ′ is its value after.
By Definition 1 (stable), (1) is stable under the rely condition (2) because

s ′ ⊆ s � (s ⊆ {0 .. N } ⇒ s ′ ⊆ {0 .. N }).
In practice, there may be zero or more steps of interference from the environ-
ment, including steps that do not modify s. Such a sequence of environment
steps satisfies the reflexive, transitive closure of R, R∗. For example, if each step
satisfies s ′ ⊂ s, any sequence of zero or more steps satisfies s ′ ⊆ s, which is a
reflexive and transitive relation. For this reason we consistently use relations that
are both reflexive and transitive when abstracting interference as rely condition.

Lemma 1 (stable-many-steps). If an assertion P is stable under a step of
inference that satisfies R, it is stable under interference that satisfies R∗, that
is, it is stable under zero or more steps of interference satisfying R.

4 Rely/Guarantee Thinking

This paper focuses on shared-variable concurrency: reasoning about threads that
experience and inflict interference on each other cannot be adequately specified
with just pre and post conditions. The idea to add explicit rely and guaran-
tee conditions should again be understood independently of concerns about a
concrete syntax for recording specifications.

Fig. 1. Execution sequence of program (π) and environment (ε) steps, with precondi-
tion p, postcondition q , rely condition r and guarantee condition g . If the initial state
satisfies p and all environment steps satisfy r , then all program steps must satisfy g
and the postcondition q must be satisfied between the initial and final states.

The concept presented by Jones [34–36] can be understood by examining
Fig. 1. His approach recovers the crucial property of compositionality by explic-
itly recording (and offering inference rules for reasoning about) interference.
A rely condition r is a binary relation on program states that represents an
assumption that any interference steps from the environment of the thread sat-
isfy r between their before and after program states. To complement that, a

Specifying and Reasoning About Shared-Variable Concurrency 117

thread also has a guarantee condition g , also a relation, that all its program
steps must satisfy. A guarantee for a thread must imply the rely conditions of
all the threads in its environment.

Consider the example of calculating the prime numbers up to some limit
N using a parallel version of the sieve of Eratosthenes. It begins with a set
s containing all natural numbers between 2 and N , and uses a set of parallel
threads: the first removes all the multiples of 2, the second removes all the
multiples of 3, and so on. A basic operation used by all the threads is removing
a single element i from s under interference that cannot add elements to s but
may remove elements, including i . The standard sequential pre/post specification
of remove,

pre s ⊆ {0 .. N } ∧ i ∈ {0 .. N } (3)
post s ′ = s − {i} ∧ i ′ = i (4)

is inadequate: while the precondition is stable under interference satisfying the
rely condition s ′ ⊆ s∧i ′ = i , the postcondition can be invalidated by interference
that removes elements other than i from s. The alternative postcondition, i �∈ s ′,
is stable under this interference but it is too weak on its own because it does
not preclude the operation adding or removing elements other than i . This can
be rectified by including a guarantee condition, s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i ,
that must be satisfied by every program step made by the implementation of
the operation. The specification of the concurrent remove operation becomes the
following.

pre s ⊆ {0 .. N } ∧ i ∈ {0 .. N } (5)
rely s ′ ⊆ s ∧ i ′ = i (6)
guar s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i (7)
post i �∈ s ′ (8)

An important property of a postcondition is that it tolerates interference
satisfying the rely condition, so that the postcondition will not be invalidated
by such interference.

Definition 4 (tolerates). A postcondition relation Q tolerates a rely condition
R from precondition P , if

∀σ, σ′ . σ ∈ P ∧ (σ, σ′) ∈ (R∗
� Q � R∗) ⇒ (σ, σ′) ∈ Q (9)

where � is relational composition.

Commonly R is reflexive and transitive, i.e. R = R�. For the remove operation
the rely condition s ′ ⊆ s ∧ i ′ = i is both reflexive and transitive, so it is equal
to its reflexive transitive closure, and hence its postcondition tolerates its rely
condition from its precondition as follows.

s ⊆ {0 .. N } ∧ i ∈ {0 .. N } ∧
(∃s1, i1, s2, , i2 . (s1 ⊆ s ∧ i1 = i) ∧ i1 �∈ s2 ∧ (s ′ ⊆ s2 ∧ i ′ = i2))

� i �∈ s ′

118 I. J. Hayes et al.

A postcondition whose truth can be subverted by an interference step that sat-
isfies the rely condition is problematic because the only valid refinement of a
postcondition is to strengthen it (under the assumption of the precondition and
(R ∨G)� as per the consequence rule 11 below). In the worst case there may be
no feasible strengthening.

A postcondition tolerating interference R from a precondition P means that
interference before and after the execution of its implementation preserves the
postcondition. Interference during the execution is handled during the refinement
of the specification.

4.1 Inference Rules

A Jones-style assertion represented in the form,

C sat (P ,R,G ,Q) (10)

is satisfied if every execution of the command C terminates and satisfies the
relation Q end-to-end between its initial and final states provided the initial
state satisfies P and every step of the environment of the thread satisfies R; in
addition, every atomic program step of C satisfies the relation G between its
before and after states provided all the environment steps up until that point
have satisfied R and the initial state satisfied P .

There are various presentations in the literature of inference rules for such
judgements. The earliest ones in [34] cope with inheriting the rely and guarantee
conditions from the context by offering a consequence rule:

consequence

(P2 � P1) ∧ (R2 � R1) ∧ (G1 � G2)
P2 ∧ Q1 ∧ (R2 ∨ G1)� � Q2

C sat (P1,R1,G1,Q1)
C sat (P2,R2,G2,Q2)

(11)

and an inference rule that checks that the rely and guarantee conditions are
consistent between sibling threads (shown for clarity with only two threads):

parallel

(G1 � R2) ∧ (G2 � R1)
C1 sat (P1,R1,G1,Q1)
C2 sat (P2,R2,G2,Q2)

C1 ‖ C2 sat (P1 ∧ P2,R1 ∧ R2,G1 ∨ G2,Q1 ∧ Q2)
(12)

Two points should be noted here:

– The parallel rule handles asymmetric threads; a simpler rule can be given
where the threads have specifications that differ only in a parameter.

– The above rule shares with Hoare-like rules for sequential programming con-
structs the property that they can be read from hypotheses to conclusion to
justify a step of decomposition; reading the rule from conclusion to hypotheses
facilitates its use to justify top-down compositions.

Specifying and Reasoning About Shared-Variable Concurrency 119

The soundness of these rules for partial correctness has been shown with
respect to an operational semantics of a programming language [11] which allows
environment transitions satisfying the rely condition as well as program transi-
tions [10].

The example used in the current paper is a parallel version of the Sieve of
Eratosthenes for finding prime numbers. That example uses concurrent instances
of threads that differ only by the value of a parameter; more interesting exam-
ples of the effectiveness of rely and guarantee conditions come from applications
where the concurrent threads differ, which is the case with “Asynchronous Com-
munication Mechanisms” (see [39]) or “On-the-fly Garbage collection” (see [41]).

5 Concurrent Refinement Algebra

The insights to be gained by studying the algebraic properties of programs in
general –and concurrent constructs in particular– have been studied in [30,32];
this section provides an algebraic presentation of rely and guarantee conditions.
This view also points the way to mechanisation of developments using the rely-
guarantee approach.

For the satisfaction relation (10), the 4-tuple (p, r , g , q) can be viewed as a
specification for the command c. Dingel’s refinement calculus for rely/guarantee
concurrency [16] viewed this 4-tuple as a specification command, in a manner
similar to Morgan’s specification command, [p, q], for the sequential refinement
calculus [46,47]. In the sequential refinement calculus it has been recognised that
such a specification command can be split into an assertion command {p} and
a postcondition command [q], so that [p, q] = {p} ; [q]. As a 4-tuple specifica-
tion can become cumbersome, especially when some of the components are not
relevant, the approach we have taken is to define four commands, pre p, rely r ,
guar g , and post q for the four components. The command pre p aborts if p does
not hold initially, otherwise it allows any non-aborting behaviour. The com-
mand rely r aborts if its environment performs a step not satisfying r , otherwise
it allows any non-aborting behaviour. The command guar g ensures all program
steps satisfy the relation g between their initial and final states. The command
post q ensures its initial and final states satisfy q end-to-end; it also terminates
(see Sect. 7). The four commands can be combined to form a full specification
equivalent to the 4-tuple using the weak conjunction operator �, so that the
satisfaction relation (10) can be written using the refinement relation �, where
for commands c and d , c � d means c is refined (or implemented) by d ,4

pre p � rely r � guar g � post q � c (13)
4 In our earlier papers we followed the sequential refinement calculus more closely and

used, rely r �guar g �{p} ;post q � c, but manipulating the sequential composition of
the assertion {p} is more complicated than using the conjoined form in (13) because
� is an associative, commutative and idempotent operator. Given that {p} ;post q =
pre p�post q , one can switch between the two as necessary. Note that {p} terminates
immediately if p holds initially, whereas pre p allows any non-aborting behaviour if
p holds initially. Both abort if p does not hold initially.

120 I. J. Hayes et al.

where the weak conjunction of two commands, c1 � c2, behaves as both c1 and
c2 up to the point at which either c1 or c2 aborts at which point it aborts. For
example, weak conjunction satisfies the following.

Weak conjunction

c1 sat (p1, r1, g1, q1)
c2 sat (p2, r2, g2, q2)

(c1 � c2) sat (p1 ∩ p2, r1 ∩ r2, g1 ∩ g2, q1 ∩ q2)
(14)

Weak conjunction is monotone in its arguments, i.e. if c1 � d1 and c2 � d2, then
c1 � c2 � d1 � d2. That allows one to provide a set of simpler refinement laws
below that can be combined to give the equivalent of the consequence rule (11),
in which the notation p � r stands for the relation r with its domain restricted
to the set p.

pre p1 � pre p2 if p1 ⊆ p2 (15)
rely r1 � rely r2 if r1 ⊆ r2 (16)

guar g1 � guar g2 if g2 ⊆ g1 (17)
pre p � post q1 � pre p � post q2 if p � q2 ⊆ q1 (18)

rely r � guar g � post q1 � rely r � guar g � post q2 if (r ∪ g)∗ ∩ q2 ⊆ q1 (19)

In addition, many refinement rules focus on refining a command c1 to c2 in the
context of a rely r :

rely r � c1 � rely r � c2, (20)

where the precondition and guarantee are not relevant.

Some History. It is worth reviewing the path to our current approach. Our earlier
approach to handling guarantee commands made use of a command, (Guar g . c),
that restricted the behaviour of the command c so that all program steps satisfy
the guarantee relation g . Initially this command was defined directly in terms of
an operational semantics [24]. However, in order to define its trace semantics, [25]
introduced a weak conjunction operator5 � and defined (Guar g . c) via a weak
conjunction of c with a construct that contained all possible non-aborting traces
whose program steps satisfy g . We later realised that it was simpler to just define
guar g as a command in its own right and write guar g �c in place of (Guar g . c).
That allowed us to discuss properties of guarantees, (e.g. strengthening and
merging guarantees), in isolation, and avoided issues with nesting of guarantee
and rely commands, thus leading to a simpler theory.

Our earlier approach also made use of a command, (Rely r . c), that, if run in
parallel with interference satisfying r , implemented c [25]. The effect of this rely
command is to strengthen specification c to handle interference satisfying r . The
theory using this earlier rely command was complicated because we needed to
introduce a refinement relation, �r , parametrised by a rely condition r , further

5 Called strict conjunction there because it is abort strict, i.e. c � abort = abort.

Specifying and Reasoning About Shared-Variable Concurrency 121

parameterise the rely command with the rely condition, z , implicit within c,
written (Rely r . cz), and introduce a predicate, stops(c, r), characterising the
set of states from which c terminates under interference satisfying r . Further
complications were introduced when nesting guarantees within relies. This earlier
approach used a weak specification command that only guaranteed to satisfy its
postcondition for interference that satisfied the identity relation between states,
whereas our newer approach uses a strong specification command that achieves
its postcondition under any interference and is weakened by weakly conjoining
it with the newer, rely r , command, in a similar way to a specification being
weakened by adding a precondition. Note that in the new theory both the failure
of a precondition and the failure of a rely condition are modelled by abort, that
means the theory takes a consistent approach to handling assumptions.

In the newer approach, both guarantee and rely commands are defined in
terms of other language primitives, and combined with other constructs using
weak conjunction, an associative, commutative and idempotent operator. This
results in a theory in which it is much easier to manipulate rely/guarantee speci-
fications algebraically and completely avoids the issues with nesting of relies and
guarantees with the earlier approach.

6 Specifying Atomic Operations

For a component of a concurrent program, one can distinguish whether a post-
condition is to be met by a sequence of state transitions between the initial and
final states of the component execution (as in [34]), or whether it needs to be
met by what appears to other threads to be an atomic transition, albeit with
the possibility of finite stuttering program steps (i.e. steps that do not change
the observable program state) before and after (as used by Dingel in his refine-
ment calculus [16]). We use the specification command 〈q〉 for a command that
achieves the postcondition q atomically [28]. The command is allowed to per-
form a finite number of stuttering program steps before or after the atomic step
establishing q and, of course, environment steps may be arbitrarily interleaved
between its program steps. The stuttering steps represent program steps that
do not modify the observable state (e.g. updates to hidden registers or branch
instructions).

Low-level concurrent algorithms, such as those used to implement primitives
like locks or message queues, often make use of machine instructions, such as
compare-and-swap (CAS) and fetch-and-add (FAA), that are guaranteed to be
atomic. Morgan [46,47] defined a specification command, X :

[
p, q

]
, with X giving

the set of variables that may be modified by the command. X is referred to as
the frame of the command. Here we extend his framing notation to apply to any
command, X :c, so that execution of c may only modify variables within X .6 For
example, a compare-and-swap (CAS) instruction (21) takes s and (typically local)
old , new and done as parameters, it has a frame of s and done, and if s equals
old it succeeds and updates s to new otherwise it fails and leaves s unchanged.
6 The frame is a special form of guarantee that no variables outside X are modified.

122 I. J. Hayes et al.

The returned boolean value done indicates whether the CAS succeeded. An FAA
instruction (22) has a frame of the variables x and y , it takes a value k and a
variable x whose initial value is fetched and stored in the (local) variable y and
then x is updated to x + k , all atomically.

done ← CAS(ref s, old ,new) =̂ s, done :〈 (s = old ⇒ s ′ = new ∧ done ′) ∧
(s �= old ⇒ s ′ = s ∧ ¬done ′)〉

(21)

y ← FAA(ref x , k) =̂ x , y :〈y ′ = x ∧ x ′ = x + k〉 (22)

While the instructions take place atomically, they may be preceded and fol-
lowed by steps taken by their environment that may invalidate the relation.

The other situation in which atomic specifications are useful is for oper-
ations on concurrent data structures that are to be implemented using non-
blocking algorithms (perhaps utilising atomic instructions such as CAS or FAA).
The remove operation discussed earlier can also be specified using an atomic
specification command.

pre(s ⊆ {0 .. N } ∧ i ∈ {0 .. N }) � rely(s ′ ⊆ s ∧ i ′ = i) � s :〈s ′ = s − {i}〉 (23)

Note that the guarantee (7), s − s ′ ⊆ {i} ∧ s ′ ⊆ s ∧ i ′ = i , of the earlier
specification is implicitly satisfied by the atomic specification: the postcondition
ensures both s − s ′ ⊆ {i} and s ′ ⊆ s and the frame of s ensures i ′ = i .

As another example, a communication channel between two threads may be
specified via a queue (qu) of messages sent by one thread but not yet received by
the other. The operation to receive a message has a precondition that the queue
is non-empty and the operation to send a message requires that the length of
the queue is not at its upper bound N ,

send(x) =̂ pre(#qu < N) � rely(qu ′ suffixof qu ∧ x ′ = x) �
qu :〈qu ′ = qu � [x]〉

(24)

x ← receive =̂ pre(qu �= []) � rely(qu prefixof qu ′ ∧ x ′ = x) �
qu, x :〈qu = [x ′] � qu ′〉

(25)

where qu is a sequence of elements, #s gives the number of items in the sequence
s, the operator � is sequence concatenation, [x] is the singleton sequence con-
taining x , and [] is the empty sequence. This version of send/receive assumes a
single sender and a single receiver: multiple senders or receivers would invalidate
the rely conditions of send and receive, respectively.

7 Termination

If a thread, T , running concurrently with other threads is never scheduled to
execute, the operation running in thread T will never terminate. For example, if
the assignment b := false in the parallel composition in (26) is never scheduled,
the while loop (and hence the program) will never terminate [53].

b := true ; y := 0 ; (b := false ‖ while b do y := y + 1) (26)

Specifying and Reasoning About Shared-Variable Concurrency 123

If b := false is scheduled and hence terminates, the whole program completes
with the value of y being some (arbitrary) natural number. Hence a basic require-
ment for termination is that every thread is scheduled with minimal fairness [22].

Rather than building fairness into our primitive parallel operator, we make
use of a command, fair, that rules out preemption by its environment forever (i.e.
performing an infinite sequence of environment steps) [26]. When fair is conjoined
with a command c, their combination,c � fair, represents fair execution of c.

As fairness relates to scheduling threads, we do not build fairness into our
encoding of primitive executable code commands, such as an assignment com-
mand, that is, such commands do not preclude the environment preempting
them forever. Hence when showing “termination” of a command, we show that
it takes a finite number of steps, unless it is preempted by its environment for-
ever. We use the command, term, that performs a finite number of (program or
environment) steps but may be preempted by its environment forever. If term
is conjoined with fair, their combination, term � fair, can perform only a finite
number of steps. To show a command c terminates, we show term � c, which
implies term � fair � c � fair, that is, fair execution of c performs only a finite
number of steps. Although our primitive parallel operator (‖) does not impose
fairness, one can define a fair parallel operator in terms of the primitive parallel
and fair [26,27].

A more complex example is (27) in which we assume the decrement and
increment of i are atomic. If the two threads alternately decrement and increment
i , neither loop terminates but if i manages to get to 0 for the test in the left loop
that loop will terminate and hence the other loop will terminate with i being 10
(and similarly if i gets to 10 for the test in the right loop).

i := 5 ; (while 0 < i do i := i − 1) ‖ (while i < 10 do i := i + 1) (27)

An important observation coming from this example is that one cannot abstract
the interference imposed on the left loop by a finite number of increments of i
because for any finite number, n, of increments of i , the left loop can iterate
n + 5 times and terminate.

For partial correctness, one can use the following intuitive algebraic equiv-
alence, similar to that used in Concurrent Kleene Algebra [33] and our earlier
approach [23],

(Rely r . post q) �p d ⇐⇒ post q �p (d ‖ 〈r〉�) (28)

where �p represents partial correctness refinement, 〈r〉� represents a finite num-
ber of iterations of an atomic program step that satisfies r between its before and
after states. Hence d ‖ 〈r〉� represents executing d with a finite number of inter-
ference steps satisfying r . If that is partially correct with respect to specification
post q , d is partially correct with respect to the specification (Rely r . post q).

Unfortunately, this approach does not extend easily to handling total cor-
rectness because, as in the example program (27), the interference from the
environment is not guaranteed to be finite. Note that replacing 〈r〉� with 〈r〉ω,
which allows either finite or infinite iteration, means that d ‖ 〈r〉ω has infinite

124 I. J. Hayes et al.

behaviour (because 〈r〉ω does) and hence will not refine post q because post q
requires termination.7

Interference may affect the stability of a loop’s guard or its negation. For
example, the following code is an implementation of the remove operation spec-
ified by the weak conjunction of (5), (6), (7) and (8), assuming access to s is
atomic.

while i ∈ s do(so := s; sn := so − {i}; done ← CAS(s, so, sn)) (29)

The condition i ∈ s is not stable under interference that can remove elements
(including i) from s and hence the body of the loop cannot assume i ∈ s as
its precondition (as it would for a loop in a sequential program). However, the
negation of the condition, i �∈ s, is stable under interference that may remove
elements from s and not change i , and hence when the loop terminates it does
stably establish i �∈ s. Note that the flag done from the CAS is not used because
it may be a concurrent thread that removes i , rather than the CAS, possibly
after the CAS but before the test of i in the loop guard.

For a while loop running within a thread, the conventional approach of using
a loop variant to show termination may be invalidated if interference can increase
the loop variant. However, if the interference never increases the variant, its use
to show termination is still valid. For example, the while loop in the code of
the remove operation (29) terminates under interference that can only remove
elements from s; one can use the set s as the variant expression under the well-
founded order of strict finite set inclusion s ⊃ s ′ to show termination of the loop
because either the CAS succeeds and establishes i /∈ s stably or the CAS fails
because interference removes some element (possibly i) from s, thus decreasing
the loop variant.

8 Data Abstraction and Interference

With sequential programs, employing abstract data types proves to be extremely
effective in creating understandable specifications and design histories. Interest-
ingly, most examples of developments using rely-guarantee conditions employ
data abstraction and reification (see [37]). With concurrency, there can be the
additional bonus that avoidance of data races can be thought out on abstract
objects rather than on detailed representations.

The choice of data representation for the implementation can be crucial for
reducing the contention/interference between threads. The interference on the
abstraction can be completely different to that on its representation. For the
sieve example an obvious choice of representation for the set s is as a bitmap.
Because N is expected to be larger than the number of bits in a word (say, 64),
an array of �(N + 1)/64� words is required, each word representing 64 elements
of the set. While interference will still occur when threads are accessing the

7 To handle termination one may combine (28) with an extra condition to handle
termination [25] but that approach becomes quite complicated.

Specifying and Reasoning About Shared-Variable Concurrency 125

same word in the array, threads accessing separate words will not interfere, in
particular, it is not necessary to lock the complete data structure, and updates
to the individual words can be done via a compare-and-swap (CAS) instruction,
and hence do not require locks.

Simpson’s algorithm for achieving an Asynchronous Communication Mech-
anism [62,63] allows one thread to read the most up to date value of a buffer,
d , written by a second thread. Abstractly, the mechanism provides atomic read
and write operations, where d may contain multiple words (i.e. access to d is
not atomic (at the hardware level)).

r ← read =̂ rely(r ′ = r) � r :〈r ′ = d〉 (30)
write(v) =̂ rely(v ′ = v) � d :〈d ′ = v〉 (31)

To avoid locking, Simpson’s algorithm uses a 2×2 matrix of buffers and care-
fully arranges their access so that if both threads are active, the slot used by the
reading thread differs from that of the writing thread. The slots used are deter-
mined by a number of control bits, each of which can be atomically accessed,
unlike the buffer itself. Such representations are common for non-blocking algo-
rithms. In the development presented in [39], the number of slots and their
arrangement is not determined in the first representation. Not only does this
open up a space of alternative representations, it also pinpoints the issues of
data races on the slots that are carefully avoided by Hugo Simpson’s clever 2×2
organisation. Sorting out race freedom on the intermediate abstraction provides
a clear understanding and record of the design.

The message queue from Sect. 6 can be represented by a cyclic buffer of N +1
elements (i.e. buf ∈ {0 ..N } →Value) plus an index r of the next element to be
read and an index w of the next element to be written. If r = w the queue is
empty and the queue is full if (w + 1 = r) mod (N + 1). Note that the queue
only stores at most N elements but the size of the buffer is N + 1. The extra
element allows empty and full queues to be distinguished. The coupling invariant
between the queue and its representation can be defined as follows.

qu = extract(buf , r ,w) where

extract(buf , r ,w) =̂ if r = w then []
else (buf r) � extract(buf , (r + 1) mod (N + 1),w)

While access to the elements of buf is not assumed to be atomic, the index
variables r and w are assumed to be atomic. The implementations of send (24)
and receive (25) on the representation become the following.

send(x) =̂ buf [w] := x ; w := (w + 1) mod (N + 1)
x ← receive =̂ x := buf [r]; r := (r + 1) mod (N + 1)

In send , the assignment to buf [w] does not have to be atomic; it does not become
part of the queue until w is updated. While the assignment command updating w
is not assumed to be atomic, its store into w is atomic. Similarly, the assignment,

126 I. J. Hayes et al.

x := buf [r], in receive does not have to be atomic because both r and buf [r] are
not modified by interference from the sending thread. The update of r removes
the first element from the queue. Again the assignment command updating r
is not assumed to be atomic but its store into r is atomic. Note that only
the sending thread updates w and only the receiving thread updates r . This
separation of the control variables that are written by each thread is similar to
the way the control variables are used for Simpson’s algorithm.

9 Progress

9.1 Waiting for Resources

Termination of an operation that is accessing a shared resource (or lock) requires
cooperation from the other threads accessing the resource. Using a variant within
a single thread is not applicable to showing that the waiting thread eventu-
ally gains control of the resource (or lock). In the simple case the thread with
the resource may eventually signal it has finished using the resource and if no
other threads are contending for the resource, the waiting thread can acquire
the resource and continue, but if the resource is never released, the waiting
thread will never make progress. Hence when specifying operations like acquir-
ing a resource or lock, one needs to accommodate the possibility of the operation
never terminating if the resource is never released by the thread holding it.

Precondition Versus Termination. For sequential programs, total correctness
requires that if the precondition holds initially, the operation terminates. How-
ever, for concurrent programs, the precondition holding initially does not ensure
an operation will terminate because it may need to wait for a resource and hence
its termination is conditional on the behaviour of concurrent threads. For this
reason, the identification of the set of initial states from which an operation
is guaranteed to terminate with the precondition, as is standard for sequential
programs, does not apply to concurrent programs. In fact, it is not in general
possible to define a set of initial states that guarantee termination because ter-
mination may also be dependent on the interference from concurrent threads.

Deadlock. Waiting for a resource introduces the possibility of a set of threads
deadlocking so that all threads are simultaneously waiting, e.g. if thread T1

requests access to resource A and then resource B while thread T2 requests
access to resource B then resource A, the two threads may deadlock if thread
T1 gets A and then thread T2 gets B because both threads are then waiting for
access to the resource held by the other. As Dijkstra [15] recognised early on,
one needs to consider how threads cooperate in order to reason about a set of
parallel threads.

Starvation. In the more complex case where there is contention on a resource,
although there may be no deadlock (i.e. some thread is making progress) it is
possible for a thread to be starved if it always loses out to some other thread

Specifying and Reasoning About Shared-Variable Concurrency 127

every time it tries to acquire the resource. To avoid this issue, access to a resource
may be queued (e.g. using a ticket lock rather than a test-and-set lock) so that,
provided every thread that acquires the resource eventually releases it, all threads
will eventually get access to the resource.

9.2 Conditional Termination

The termination of operations that need to wait for resources is conditional on
the behaviour of other threads. For example, the operation to acquire a test-and-
set lock may repeatedly attempt to acquire the lock but it may repeatedly miss
out because other threads are allocated the lock in preference to it. However,
if there are no competing threads trying to acquire the lock, the acquire lock
operation is guaranteed to succeed and terminate.

To express the conditional termination of an operation we use an extension
of Pnueli’s Linear Temporal Logic (LTL) [54]. Each LTL formula f is encoded
as a command 〈〈f 〉〉, whose behaviours are exactly those that satisfy f . For the
LTL formula that states that p holds in the initial state, we define an explicit ι p
operator, but elide the “ι” within examples so that the notation better matches
that of Pnueli.8 To allow LTL formulae to distinguish program and environment
steps, we introduce two new primitives: Π r , that must start with a program
step satisfying the relation r , and E r , that must start with an environment step
satisfying the relation r .

Fig. 2. Encoding LTL formulae as commands

The encodings of the LTL operators are defined in Figure 2,9 where, τ p,
represents an instantaneous test that the current state is in the set of states p;
α allows any single step, either program or environment and hence α� allows
any finite sequence of steps and α∞ allows any infinite sequence of steps; and

8 Note that p is a predicate on a single state, whereas ι p is an LTL predicate on a
trace that holds if and only if p holds in the initial state of the trace. Formalisation
in Isabelle/HOL requires an explicit operator, rather than using the type of p as
done by Pnueli.

9 The encoding used here is similar to that used in [12] for a trace semantics but here
we encode true as α∞ (rather than abort).

128 I. J. Hayes et al.

νx . f (x) represents the greatest fixed point of the equation x = f (x). Within
temporal logic formulae ∧ and ∨ are temporal logic operators, whereas in the
encodings of commands they are lattice meet (strong conjunction) and join (non-
deterministic choice) of commands, respectively.

The eventually operator, ♦ f , can be thought of as being fair because f is
established after a finite number of steps, and hence it disallows preemption by
the environment forever. In line with our approach to handling termination, we
also define an “unfair” eventually operator � f . Similarly, the always operator,
	 f , can be thought of as being unfair because it allows preemption by the envi-
ronment forever, and hence we define a “fair” always operator
 f . The temporal
logic formula fairLTL requires that a program step is always eventually taken.10
Its negation allows preemption by the environment forever.

fairLTL =̂ 	 ♦(Π univ) (32)
¬fairLTL = ♦ 	(E univ) (33)

� f =̂ ¬fairLTL ∨ ♦ f (34)

 f =̂ fairLTL ∧ 	 f (35)

The operators � and
 are deMorgan duals, that is, ¬� f =
¬f .
An operation for a thread with unique identifier, tid , to acquire a test-and-

set lock can be specified to allow the operation to fail to terminate if the lock
is always eventually not free or the operation is preempted forever. The non-
terminating alternative behaviour is specified by 〈〈	 �(lock �= free)〉〉, where � is
used rather than ♦ to allow preemption by the environment forever to lead to
non-termination. The non-terminating behaviour does not change the program
state and hence it has an empty frame, ∅.

acquire(tid) =̂
rely(lock = tid ⇒ lock ′ = tid) ∧ (lock �= tid ⇒ lock ′ �= tid) ∧ tid ′ = tid �
{lock �= tid} ; (lock :〈lock = free ∧ lock ′ = tid〉 ∨ ∅ :〈〈	 �(lock �= free)〉〉) (36)

The condition under which it is guaranteed to terminate is that eventually the
lock is always free, which can be expressed as the linear temporal logic for-
mula ♦
(lock = free). Note that the operation may terminate even when this
condition does not hold because it may successfully acquire the lock (the first
alternative of the non-deterministic choice). The specification allows the envi-
ronment to preempt it forever (because the atomic specification command allows
that); fair execution of the operation would rule out that possibility.

A ticket lock has better termination properties than a test-and-set lock
because it orders access to the lock. Each thread attempts to acquire a lock
by initially taking a ticket (like in a bakery or delicatessen). The tickets are allo-
cated in order of request. The ticket lock tracks the ticket number, lock , of the
current holder of the lock and when that thread releases the lock, that number
10 Here, fairLTL equals command fair (from Sect. 7) conjoined with α∞ (our encoding

of true in these LTL formula).

Specifying and Reasoning About Shared-Variable Concurrency 129

is incremented so that the next thread in sequence acquires the lock. An acquire
operation on a ticket lock is guaranteed to terminate provided every thread that
acquires the lock, eventually releases it. The acquire operation consists of two
phases: one to take a ticket and the other to wait until its ticket is the one
currently being served, i.e. equal to lock . Taking a ticket can be specified as an
atomic operation that sets the local variable tk to the current (global) counter
value ct and increments ct , all atomically,

tk ← take_ticket =̂ tk , ct :〈tk ′ = ct ∧ ct ′ = ct + 1〉 (37)

which can be implemented by a fetch-and-add instruction (22), tk ← FAA(ct , 1).
The second phase of acquire operation terminates when the current value of lock
is the thread’s ticket, tk , but it may fail to terminate if the lock never corresponds
to the thread’s ticket, i.e. 	(lock �= tk).

acquire_lock(tk) =̂
rely(lock ≤ lock ′ ≤ tk ∧ ct ≤ ct ′ ∧ tk ′ = tk) �
∅ : ([lock ′ = tk

] ∨ 〈〈	(lock �= tk)〉〉) (38)

Another example is message channel send/receive operations with blocking
when the buffer is full/empty, respectively. Note that the preconditions of the
previous versions, (24) and (25), become wait conditions.

send(x) =̂ rely(qu ′ suffixof qu ∧ x ′ = x) �
(qu :〈#qu < N ∧ qu ′ = qu � [x]〉 ∨ ∅ :〈〈	(#qu = N)〉〉)

(39)

x ← receive =̂ rely(qu prefixof qu ′ ∧ x ′ = x) �
(x , qu :〈qu �= [] ∧ qu = [x] � qu ′〉 ∨ ∅ :〈〈	(qu = [])〉〉)

(40)

Related Work. To handle termination for a blocking await command of the form
await b do c, that waits until condition b holds and atomically with the condition
b succeeding executes c, Stølen [64,65] developed a rely/guarantee theory that
augments Jones’ quintuple with an additional wait condition, w , that charac-
terised the set of states in which a thread can block.11 The operation to acquire
a test-and-set lock (36) is implemented by the command,

await lock = free do lock := tid .

Stølen developed a rule for showing parallel threads do not deadlock: if thread t1
has a wait condition w1 and postcondition q1 and thread t2 has a wait condition
w2 and postcondition q2, if ¬(w ′

1 ∧ w ′
2) ∧ ¬(w ′

1 ∧ q2) ∧ ¬(w ′
2 ∧ q1), deadlock is

avoided, i.e. both t1 and t2 cannot be blocked at the same time, and if t2 has
terminated t1 cannot be blocked, and if t1 has terminated t2 cannot be blocked.
For the test-and-set lock example, one can use a wait conditions of w1 =̂ lock �= t2
and w2 =̂ lock �= t1 and noting ¬(w ′

1 ∧ w ′
2) = (lock ′ = t2 ∨ lock ′ = t1) meaning

that one of the threads has acquired the lock.
11 Xu Qiwen tackled the same issues in [71] in a similar way.

130 I. J. Hayes et al.

In the theory we have developed, we can define an await command with a
body that is a postcondition relation q to be achieved atomically when b holds;
it is guaranteed to terminate if the condition b eventually always holds, or to
put it another way, infinite behaviour is allowed if it is always the case that
eventually b is false.

await b do q =̂ 〈b � q〉 ∨ ∅ :〈〈	 �¬b〉〉 (41)

In later work, Stølen [66] gives two semantic interpretations —weak and strong
fairness— of an await command. The weak fairness version corresponds to (41)
and the strong fairness to the following.

awaitstrongb do q =̂ 〈b � q〉 ∨ ∅ :〈〈(� 	 ¬b)〉〉 (42)

Note the swap in the order of 	� to �	, meaning that the strong fairness await
can only block forever if it is permanently disabled, whereas the weak fairness
await can also block forever if b perpetually alternates between true and false.

10 Conclusions

10.1 Summary

The main role of this paper has been to evaluate approaches to specifying con-
current operations or programs in a rely/guarantee style. Because machines
include instructions that behave atomically, it makes sense to include a form
of specification that represents an atomic operation so that one can specify
these instructions within the concurrency theory. Further, atomic specifications
in conjunction with preconditions and rely conditions can be used to specify
atomic operations on concurrent data structures [16].

The algebraic approaches of Hoare et al. [33], Armstrong et al. [2] and Hayes
[18,23] make use of intuitive algebraic properties to handle rely conditions but
suffer when it comes to handling termination, nontermination and nesting of
constructs. Our initial theory that used a weak specification command forms
part of a theory similar to the Concurrent Kleene Algebra of Hoare et al. [33]
and the algebraic approaches of Armstrong et al. [2] and Hayes [23]. While
this approach works well for handling partial correctness, when the approach is
extended to handle total correctness, it becomes considerably more complex.

The combination of the strong specification command weakly conjoined with
the (newer) rely command, rely r , that weakens the specification to only need
achieve its postcondition in contexts where the environment satisfies the rely
condition r , supports the specification of always terminating, conditionally ter-
minating and non-terminating threads. That leads to a simpler, more expressive
theory than our earlier approach that combined weak specification commands
and the rely command, (Rely r . c), that strengthened the c to handle interfer-
ence that satisfies r . Because the rely r and guar g commands in the newer theory
are weakly conjoined, issues with nesting of older (Rely r . c) and (Guar g . c)
commands are avoided.

Specifying and Reasoning About Shared-Variable Concurrency 131

The concurrent refinement algebra approach reported in this paper has been
mechanised as a set of Isabelle/HOL theories. The early work on the general
algebra is available within the Archive of Formal Proofs [18]. To support data
refinement theories for handling localisation [45] and (coupling) invariants have
been developed.

10.2 Related Work

There are many developments relating to rely-guarantee ideas that are not cov-
ered in the body of this paper; they include:

– local rely/guarantee reasoning is presented in [19];
– in [17] it is argued that deny and guarantee conditions are required to handle

fork/join-like concurrency;
– explicit combinations of rely-guarantee thinking with concurrent separation

logic (e.g. [50]) are presented in [20,68,69];
– more implicit combinations are used in [8,11,40];
– Barringer, Kuiper and Pnueli [5,6] show the relevance of rely-guarantee ideas

to temporal logics;
– Moszkowski’s Interval Temporal Logic (ITL) dates from [48,49]; a combina-

tion of ITL with rely-guarantee ideas (RGITL) is covered in [58–60,67] and
progress aspects are discussed in [61];

– a notion of “Simulation” is developed in [44]; and
– progress and fairness issues are covered in [42,43].

Prenso Nieto [55,56] has developed Isabelle/HOL theories for rely/guarantee
concurrency. Her approach assumes condition evaluation and assignment com-
mands are atomic and allows a multiway parallel at the top level but no nested
parallel.

A related topic is relaxed memory models used by machine architectures and
compilers. For our work, we have assumed that the implementation can be aug-
mented with appropriate fencing to ensure it respects the specification. Coughlin
et al. [14] explicitly handle rely and guarantee conditions in the presence of weak
memory models.

Acknowledgements. Thanks are due to Joakim von Wright for introducing us to pro-
gram algebra, and Callum Bannister, Emily Bennett, Robert Colvin, Diego Machado
Dias, Chelsea Edmonds, Julian Fell, Matthys Grobbelaar, Oliver Jeaffreson, Patrick
Meiring, Tom Manderson, Joshua Morris, Dan Nathan, Katie Deakin-Sharpe, Kim
Solin, Andrius Velykis, Kirsten Winter, and our anonymous reviewers for feedback on
ideas presented in this paper and/or contributions to the supporting Isabelle/HOL
theories. This work is supported by the Australian Research Council https://www.arc.
gov.au under their Discovery Program Grant No. DP190102142 and a grant (RPG-
2019-020) from the Leverhulme Trust.

https://www.arc.gov.au
https://www.arc.gov.au

132 I. J. Hayes et al.

References

1. Apt, K.R., Olderog, E.R.: Fifty years of Hoare’s logic. Formal Aspects Comput.
31(6), 751–807 (2019)

2. Armstrong, A., Gomes, V.B.F., Struth, G.: Algebras for program correctness in
Isabelle/HOL. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS
2014. LNCS, vol. 8428, pp. 49–64. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06251-8_4

3. Ashcroft, E.A., Manna, Z.: Formalization of properties of parallel programs. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 6, pp. 17–41. Edinburgh
University Press (1971)

4. Ashcroft, E.A.: Proving assertions about parallel programs. J. Comput. Syst. Sci.
10(1), 110–135 (1975)

5. Barringer, H., Kuiper, R.: Hierarchical development of concurrent systems in a
temporal logic framework. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.)
CONCURRENCY 1984. LNCS, vol. 197, pp. 35–61. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15670-4_2

6. Barringer, H., Kuiper, R., Pnueli, A.: Now you may compose temporal logic speci-
fications. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC 1984, pp. 51–63. Association for Computing Machinery, New
York (1984). https://doi.org/10.1145/800057.808665

7. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. EC-15(5), 757–763 (1966). https://doi.org/10.1109/PGEC.1966.264565

8. Bornat, R., Amjad, H.: Explanation of two non-blocking shared-variable commu-
nication algorithms. Formal Aspects Comput. 25(6), 893–931 (2013). https://doi.
org/10.1007/s00165-011-0213-4

9. Bornat, R., Amjad, H.: Inter-process buffers in separation logic with rely-guarantee.
Formal Aspects Comput. 22(6), 735–772 (2010)

10. Aczel, P.H.G.: On an inference rule for parallel composition (1983). Private com-
munication to Cliff Jones http://homepages.cs.ncl.ac.uk/cliff.jones/publications/
MSs/PHGA-traces.pdf

11. Coleman, J.W., Jones, C.B.: A structural proof of the soundness of rely/guarantee
rules. J. Log. Comput. 17(4), 807–841 (2007). https://doi.org/10.1093/logcom/
exm030

12. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects Comput. 29(5), 853–875
(2017). https://doi.org/10.1007/s00165-017-0416-4

13. Combi, C., Leucker, M., Wolter, F. (eds.): Eighteenth International Symposium
on Temporal Representation and Reasoning, TIME 2011, Lübeck, Germany, 12–
14 September 2011. IEEE (2011)

14. Coughlin, N., Winter, K., Smith, G.: Rely/guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 292–310. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6_16

15. Dijkstra, E.: Cooperating sequential processes. In: Genuys, F. (ed.) Programming
Languages, pp. 43–112. Academic Press (1968)

16. Dingel, J.: A refinement calculus for shared-variable parallel and distributed pro-
gramming. Formal Aspects Comput. 14(2), 123–197 (2002). https://doi.org/10.
1007/s001650200032

17. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9_26

https://doi.org/10.1007/978-3-319-06251-8_4
https://doi.org/10.1007/978-3-319-06251-8_4
https://doi.org/10.1007/3-540-15670-4_2
https://doi.org/10.1145/800057.808665
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1007/s00165-011-0213-4
https://doi.org/10.1007/s00165-011-0213-4
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/publications/MSs/PHGA-traces.pdf
https://doi.org/10.1093/logcom/exm030
https://doi.org/10.1093/logcom/exm030
https://doi.org/10.1007/s00165-017-0416-4
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/s001650200032
https://doi.org/10.1007/s001650200032
https://doi.org/10.1007/978-3-642-00590-9_26

Specifying and Reasoning About Shared-Variable Concurrency 133

18. Fell, J., Hayes, I.J., Velykis, A.: Concurrent refinement algebra and rely quotients.
Archive of Formal Proofs (2016). http://isa-afp.org/entries/Concurrent_Ref_Alg.
shtml. Formal proof development

19. Feng, X.: Local rely-guarantee reasoning. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, pp. 315–327. ACM, New York (2009). https://doi.org/10.1145/1480881.
1480922

20. Feng, X., Ferreira, R., Shao, Z.: On the relationship between concurrent separation
logic and assume-guarantee reasoning. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 173–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71316-6_13

21. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics: Mathematics Aspects of Computer Science, vol. 19, pp. 19–
32 (1967). https://doi.org/10.1090/psapm/019/0235771

22. van Glabbeek, R., Höfner, P.: Progress, justness, and fairness. ACM Comput. Surv.
52(4), 1–38 (2019). https://doi.org/10.1145/3329125

23. Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. For-
mal Aspects Comput. 28(6), 1057–1078 (2016). https://doi.org/10.1007/s00165-
016-0384-0

24. Hayes, I.J., Jones, C.B., Colvin, R.J.: Refining rely-guarantee thinking. Technical
report CS-TR-1334, Newcastle University (2012)

25. Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-guarantee refine-
ment. Technical report CS-TR-1425, Newcastle University (2014)

26. Hayes, I.J., Meinicke, L.A.: Encoding fairness in a synchronous concurrent program
algebra. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018.
LNCS, vol. 10951, pp. 222–239. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95582-7_13

27. Hayes, I.J., Meinicke, L.A.: Encoding fairness in a synchronous concurrent program
algebra: extended version with proofs (2018). arXiv:1805.01681 [cs.LO]

28. Hayes, I.J., Meinicke, L.A., Meiring, P.A.: Deriving laws for developing concurrent
programs in a rely-guarantee style (2021). https://doi.org/10.48550/ARXIV.2103.
15292, https://arxiv.org/abs/2103.15292

29. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580, 583 (1969). https://doi.org/10.1145/363235.363259

30. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686
(1987). Corrigenda: CACM 30(9):770

31. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer
Science, Prentice Hall, London (1998)

32. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_27

33. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra
and its foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011). https://doi.
org/10.1016/j.jlap.2011.04.005

34. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University (1981). Available as: Oxford Univer-
sity Computing Laboratory (now Computer Science) Technical Monograph PRG-
25

35. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

http://isa-afp.org/entries/Concurrent_Ref_Alg.shtml
http://isa-afp.org/entries/Concurrent_Ref_Alg.shtml
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1007/978-3-540-71316-6_13
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1145/3329125
https://doi.org/10.1007/s00165-016-0384-0
https://doi.org/10.1007/s00165-016-0384-0
https://doi.org/10.1007/978-3-319-95582-7_13
https://doi.org/10.1007/978-3-319-95582-7_13
http://arxiv.org/abs/1805.01681
https://doi.org/10.48550/ARXIV.2103.15292
https://doi.org/10.48550/ARXIV.2103.15292
https://arxiv.org/abs/2103.15292
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005

134 I. J. Hayes et al.

36. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM ToPLaS 5(4), 596–619 (1983). https://doi.org/10.1145/69575.69577

37. Jones, C.B.: Splitting atoms safely. Theoret. Comput. Sci. 375(1–3), 109–119
(2007). https://doi.org/10.1016/j.tcs.2006.12.029

38. Jones, C.B.: Three early formal approaches to the verification of concurrent pro-
grams. Mind. Mach. (2023). https://doi.org/10.1007/s11023-023-09621-5

39. Jones, C.B., Hayes, I.J.: Possible values: exploring a concept for concurrency. J.
Log. Algebraic Methods Program. 85(5, Part 2), 972–984 (2016). https://doi.org/
10.1016/j.jlamp.2016.01.002

40. Jones, C.B., Yatapanage, N.: Reasoning about separation using abstraction and
reification. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp.
3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_1

41. Jones, C.B., Yatapanage, N.: Investigating the limits of rely/guarantee relations
based on a concurrent garbage collector example. Formal Aspects Comput. 31(3),
353–374 (2019). https://doi.org/10.1007/s00165-019-00482-3

42. Liang, H., Feng, X.: A program logic for concurrent objects under fair schedul-
ing. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, pp. 385–399. ACM, New York
(2016). https://doi.org/10.1145/2837614.2837635

43. Liang, H., Feng, X.: Progress of concurrent objects with partial methods. Proc.
ACM Program. Lang. 2(POPL), 20:1–20:31 (2018). https://doi.org/10.1145/
3158108

44. Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional
verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst. 36(1), 3:1–3:55 (2014)

45. Meinicke, L.A., Hayes, I.J.: Using cylindric algebra to support local variables in
rely/guarantee concurrency. In: 2023 IEEE/ACM 11th International Conference
on Formal Methods in Software Engineering (FormaliSE), 108–119 (2023). IEEE

46. Morgan, C.C.: The specification statement. ACM Trans. Prog. Lang. Syst. 10(3),
403–419 (1988). https://doi.org/10.1145/44501.44503

47. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall, London
(1994)

48. Moszkowski, B.C.: Executing Temporal Logic Programs. Cambridge University
Press, Cambridge (1986)

49. Moszkowski, B.: Executing temporal logic programs. In: Brookes, S.D., Roscoe,
A.W., Winskel, G. (eds.) CONCURRENCY 1984. LNCS, vol. 197, pp. 111–130.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15670-4_6

50. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007). https://doi.org/10.1016/j.tcs.2006.12.035

51. Owicki, S.: Axiomatic proof techniques for parallel programs. Ph.D. thesis, Depart-
ment of Computer Science, Cornell University (1975)

52. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inform. 6(4), 319–340 (1976). https://doi.org/10.1007/BF00268134

53. Park, D.: On the semantics of fair parallelism. In: Bjøorner, D. (ed.) Abstract
Software Specifications. LNCS, vol. 86, pp. 504–526. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10007-5_47

54. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

55. Prensa Nieto, L.: Verification of parallel programs with the Owicki-Gries and rely-
guarantee methods in Isabelle/HOL. Ph.D. thesis, Institut für Informatic der Tech-
nischen Universitaet München (2001)

https://doi.org/10.1145/69575.69577
https://doi.org/10.1016/j.tcs.2006.12.029
https://doi.org/10.1007/s11023-023-09621-5
https://doi.org/10.1016/j.jlamp.2016.01.002
https://doi.org/10.1016/j.jlamp.2016.01.002
https://doi.org/10.1007/978-3-319-22969-0_1
https://doi.org/10.1007/s00165-019-00482-3
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1145/3158108
https://doi.org/10.1145/44501.44503
https://doi.org/10.1007/3-540-15670-4_6
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/3-540-10007-5_47

Specifying and Reasoning About Shared-Variable Concurrency 135

56. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36575-3_24

57. Sanan, D., Zhao, Y., Lin, S.W., Yang, L.: CSim2: compositional top-down verifi-
cation of concurrent systems using rely-guarantee. ACM Trans. Program. Lang.
Syst. 43(1), 1–46 (2021)

58. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: a temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. 71(1–3), 131–174 (2014). https://doi.org/10.1007/s10472-013-9389-z

59. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Combi et al. [13], pp. 99–106 (2011). https://
doi.org/10.1109/TIME.2011.12

60. Schellhorn, G.: Extending ITL with interleaved programs for interactive verifica-
tion. In: Combi et al. [13] (2011). https://doi.org/10.1109/TIME.2011.31

61. Schellhorn, G., Travkin, O., Wehrheim, H.: Towards a thread-local proof technique
for starvation freedom. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 193–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0_13

62. Simpson, H.R.: Four-slot fully asynchronous communication mechanism. Comput.
Digit. Tech. IEE Proc. E 137(1), 17–30 (1990)

63. Simpson, H.R.: New algorithms for asynchronous communication. IEE Proc. Com-
put. Digit. Technol. 144(4), 227–231 (1997)

64. Stølen, K.: Development of parallel programs on shared data-structures. Ph.D.
thesis, Manchester University (1990). Available as UMCS-91-1-1 or revised version
as https://breibakk.no/kst/PhD-thesis.htm

65. Stølen, K.: A method for the development of totally correct shared-state parallel
programs. In: Baeten, J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527,
pp. 510–525. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54430-
5_110

66. Stølen, K.: Shared-state design modulo weak and strong process fairness. In: Diaz,
M., Groz, R. (eds.) Formal Description Techniques, V, Proceedings of the IFIP
TC6/WG6.1 Fifth International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, FORTE 1992, Perros-Guirec,
France, 13–16 October 1992. IFIP Transactions, vol. C-10, pp. 479–498. North-
Holland (1992)

67. Tofan, B., Schellhorn, G., Ernst, G., Pfähler, J., Reif, W.: Compositional verifica-
tion of a lock-free stack with RGITL. In: Proceedings of International Workshop on
Automated Verification of Critical Systems, Electronic Communications of EASST,
vol. 66, pp. 1–15 (2013)

68. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2007)

69. Vafeiadis, V., Parkinson, M.: A Marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_18

70. Wickerson, J., Dodds, M., Parkinson, M.: Explicit stabilisation for modular rely-
guarantee reasoning. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
610–629. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-
6_32

71. Xu, Q.: A theory of state-based parallel programming. Ph.D. thesis, Oxford Uni-
versity (1992)

72. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying concur-
rent programs. Formal Aspects Comput. 9, 149–174 (1997)

https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/s10472-013-9389-z
https://doi.org/10.1109/TIME.2011.12
https://doi.org/10.1109/TIME.2011.12
https://doi.org/10.1109/TIME.2011.31
https://doi.org/10.1007/978-3-319-33693-0_13
https://doi.org/10.1007/978-3-319-33693-0_13
https://breibakk.no/kst/PhD-thesis.htm
https://doi.org/10.1007/3-540-54430-5_110
https://doi.org/10.1007/3-540-54430-5_110
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-642-11957-6_32
https://doi.org/10.1007/978-3-642-11957-6_32

The Consensus Machine: Formalising
Consensus in the Presence of Malign

Agents

A. W. Roscoe1,2,3(B) , Pedro Antonino1 , and Jonathan Lawrence1

1 The Blockhouse Technology Ltd., Oxford, UK
{pedro,jonathan}@tbtl.com

2 Department of Computer Science, University of Oxford, Oxford, UK
awroscoe@gmail.com

3 University College Oxford Blockchain Research Centre, Oxford, UK

Abstract. This paper is on the application of formal modelling in CSP
and associated verification to decision making in decentralised systems.
In particular we look at the problem of ensuring that decentralisation
cannot allow two separate and apparently valid decisions to arise when
exactly one is required. This is motivated by an approach to blockchain
consensus where a primary choice mechanism may need to be supple-
mented by a back-up that comes into action if the primary one is seem-
ingly blocked.

Keywords: Consensus · State machine · Blockchain · Process
algebra · Formal methods

Dedication to He Jifeng on the occasion of his 80th birthday:

Jifeng and I worked together for many years at Oxford developing theories
of verification and making them usable. Indeed we have gone on to use them
successfully in many contexts, always rooted in algebra and abstraction. In this
paper we show how these same two ideas can improve understanding in a rela-
tively new domain—blockchain.
Bill Roscoe

1 Introduction

Consensus is a classical problem in the area of distributed, decentralised sys-
tems. It has regained the attention of the scientific community with the advent
of blockchains. In these, consensus is used to ensure that participants in this
distributed system agree what is the next block in this ever-extending chain
of blocks; an initial genesis block is initially agreed amongst participants. This
agreement on the next block in the chain is usually referred to as the finality
problem, namely, how to determine the next (agreed-upon) final block. Here,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 136–162, 2023.
https://doi.org/10.1007/978-3-031-40436-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_6&domain=pdf
http://orcid.org/0000-0001-7557-3901
http://orcid.org/0000-0002-5627-0910
http://orcid.org/0009-0001-4884-6684
https://doi.org/10.1007/978-3-031-40436-8_6

Formalising Consensus in the Presence of Malign Agents 137

final means that it is immutable and will have that position in the blockchain
for ever; it does not mean that it is the last block in the chain. A block in such a
chain represents a sequence of transactions, each of which causes the state of the
blockchain to evolve. So, in broad terms, blockchains are transaction-processing
systems possessing an integrity-protected transaction history.

In this paper, we propose the concept of a hierarchical consensus machine as a
means to solve the finality problem efficiently. In our formulation, this machine is
composed of two consensus machines, say G and H, each of which is implemented
by a distributed collection of agents, and it decides on a value that is agreed upon
by (most of) its (well-behaved) agents. The number agreeing will have reached
some pre-agreed threshold. While G is designed to be safe but not live, H is
both safe and live. Broadly speaking, safety means that the machine decides on
a single correct value, whereas liveness means that the machine eventually comes
to a decision. Our definition of correct here is that it is the conclusion of one or
more good agents who always follow the rules.

As part of our hierarchical machine, we also propose a handover protocol that
transfers control from G to H whenever G is unable to come to a (timely) deci-
sion; this protocol ensures the liveness of the hierarchical machine as a whole. We
create this concept by first introducing a didactic account of consensus machines
using a unitary consensus machine. Furthermore, we propose a type of stochastic
reasoning that is a useful mathematical tool to establish bounds on the number
of participants in the agreement to achieve safety and liveness. In fact, the rea-
son for having a machine G that is only safe as part of our hierarchical machine
is that we can demonstrate with this type of stochastic reasoning that a much
smaller number of participants are required to achieve safety alone as compared
to machines that are both safe and live. The smaller number of participants
should allow for a more efficient consensus protocol. We count on the incentive
structures of blockchains and on the fact that ultimately H will reach a consensus
to motivate malign agents to cooperate with good agents to reach a consensus
via G. Malign agents’ misbehaviour is the reason why G is not dependably live.
Thus, persuading them to behave in a collaborative way should make G (effi-
ciently) come to a decision more often. We formalise our notion of a hierarchical
consensus machine using the CSP process algebra. The notions that we present
here could be adapted to the general problem of consensus provided they are
used in a similar context. In this paper we concentrate solely on this binary G/H
case, but evidently this is open to extension.

As blockchains are being adopted by many industry sectors, finding efficient
consensus protocols in this context has become a relevant research challenge.
Our hierarchical consensus machine is a proposal in this direction that relies on
an innovative type of stochastic reasoning and on a handover protocol. Taking
advantage of incentive structures to motivate malign agents, who may delib-
erately seek to undermine this protocol, to behave appropriately is a peculiar
aspect of consensus mechanisms in the area of blockchains. Our handover pro-
tocol is an important motivating factor for nudging malign agents in the right
direction. It is conceived so that malign agents can delay a decision by our hier-

138 A. W. Roscoe et al.

archical consensus machine but they cannot prevent it from eventually coming
to one.

It is also important in this regard that the protocol guarantees only a single
decision, because without this the malign agents might manipulate it to induce a
fork. A blockchain fork occurs when two contradicting histories—i.e. final blocks
on the same height—are simultaneously accepted.

Conceptually this seems relatively clear. The problems come from getting it
to work securely in the decentralised world of agents, some of whom are malign.
We identify the following issues:

A. How to create a safe but not necessarily live consensus machine? This means
identifying a set of pickets (i.e. block-producing agents) and coming up with a
model of when there is sufficient evidence among these for both them to prove
that a consensus has been achieved—and similarly agree that no consensus
exists without such evidence.

B. Understanding the requirements for a consensus machine to be safe. This
involves understanding how malign agents can overtly misbehave to try and
undermine the consensus protocol.

C. Understanding the requirements for a consensus machine to be live.
This involves understanding how malign agents can misbehave via non-
participation.

D. How to create a safe and live consensus machine? We would expect the liveness
to come from involving many more agents in the process—in comparison to
obtaining safety alone—so that it is effectively impossible for there to be
enough malign ones to block the machine’s progress. We will find that the
combinatorics of building a safe and live system are a natural—and naturally
more demanding—extension of those for building a safe one.

This paper is organised as follows. In the next section, we introduce the neces-
sary background to make the paper self-contained. We then introduce a didactic
notion of a unitary consensus machine in Sect. 3, followed by the description of a
stochastic model to reason about consensus decisions in Sect. 4. We present and
formalise a notion of hierarchical consensus machines in Sect. 5, discuss related
work in Sect. 6, and present our concluding remarks in Sect. 7.

2 Background

2.1 Blockchains

Blockchains were initially proposed as a decentralised way to implement digital
currencies and prevent double spending, i.e. the possibility that the owner of
some digital currency could spend it more than once [22]. However, they have
evolved into generic decentralised auditing systems that do much more than just
prevent double spending. For instance, with the advent of smart contracts—
programs that are executed in the context of a blockchain—a developer can
define by means of a program how transactions addressed to that smart contract
are to be processed [4].

Formalising Consensus in the Presence of Malign Agents 139

A blockchain is a decentralised stateful transaction processing system, some-
times referred to also as a distributed ledger. It receives transactions from its
stakeholders, decides on which of those are valid, and performs alterations to its
state that record the effects of these transactions. As a decentralised system, mul-
tiple agents collaborate to implement this behaviour. In this context, the term
blockchain refers not just to the state comprising the transactions and blocks,
but includes the entire system including the agents operating on the state.

A blockchain orders and stores valid transactions into blocks which are them-
selves ordered, giving rise, ultimately, to a chain of blocks representing the his-
tory of the blockchain. In practice, however, during its operation, a blockchain—
or rather its agents—manipulate a block tree.

A block tree is a directed, finite and acyclic rooted tree defined by a pair
(V,E) where V is a set of blocks and E is a set of backward links—the root
(genesis block) is the only block without an outgoing link. The backward links
are implemented by embedding the cryptographic hash of its predecessor block
in the header of each block. A backward link exists from block B2 to block B1 iff
hash pointer(B2) = hash(B1), where hash pointer() extracts the embedded
backward link from a block, and hash() is the cryptographic hash function used
by the blockchain. This results in a unique path from every block back to the
root (B0), because (by the properties of the hash function) it is infeasible to
construct a false predecessor block with the same hash.

However, because it is possible to construct many different valid successor
blocks to any existing block, it is necessary for the blockchain’s agents to have
a mechanism to determine unambiguously which is the “true” successor to any
given block. The motivation for this paper is to provide some machinery to assist
the creation of accurate consensus mechanisms.

2.2 CSP and Its Semantics

Note: In this paper we use the machine-readable ascii version of CSP syntax
(CSPM) throughout, as opposed to the typeset blackboard syntax and symbols
commonly used in books and papers.

CSP is based on instantaneous actions handshaken between a process and
its environment, whether that environment consists of processes it is interacting
with or, some notional external observer. It enables the modelling and analysis of
patterns of interaction. The books [14,27,28] all provide thorough introductions
to CSP. The main constructs that we will be using in this paper are set out
below.

– The processes STOP, SKIP and DIV respectively do nothing, terminate imme-
diately with the signal � and diverge by repeating the internal action τ .
RUN(A) and CHAOS(A) can each perform any sequence of events from A, but
while RUN(A) always offers the environment every member of A, CHAOS(A)
can nondeterministically choose to offer just those members of A it selects,
including none at all.

140 A. W. Roscoe et al.

– a -> P prefixes P with the single communication a which belongs to the set Σ
of normal visible communications. Similarly [] x : A @ x -> P(x) (repli-
cated external choice) offers a choice over A and then behaves accordingly.

– CSP has several choice operators. P [] Q and P |~| Q respectively offer the
environment the first visible events of P and Q, and make an internal decision
via τ actions whether to behave like P or Q.
The asymmetric choice operator P [> Q offers the initial visible choices of P
until it performs a τ action and opts to behave like Q. In the cases of P [] Q
and P [> Q, the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[R]] (renaming) behaves like P except that whenever P performs an
action a, the renamed process must perform some b that is related to a under
the relation R. R is specified using the CSPM mapping syntax.

– P [| A |] Q is a parallel operator under which P and Q act independently
except that they have to agree (i.e. synchronise or handshake) on all commu-
nications in A. A number of other parallel operators can be defined in terms
of this, including P ||| Q = P [||] Q in which no synchronisation happens
at all.

There are also other operators such as P ; Q (sequential composition), P /\ Q
(interrupt) and P [| A |> Q (throwing an exception) for passing control from
one process P to a second one. P /\ Q hands over control when Q performs a
visible action, so that the handover if instigated by Q. In P [| A |> Q it is
instigated by P performing an exception event a from the set A.

It is always asserted that the meaning, or semantics, of a CSP process is the
pattern of externally visible communication it exhibits. As shown in [27,28], CSP
has several styles of semantics, that can be shown to be appropriately consistent
with one another. In this paper, we are concerned with behavioural semantics:
CSP processes are identified with sets of observations that might be made from
the outside. The best known behavioural models of CSP are based on the fol-
lowing types of observation: Traces are sequences of visible communications a
process can perform. Failures are combinations (s,X) of a finite trace s and a set
of actions that the process can refuse in a stable state reachable on s. A state is
stable if it cannot perform τ . Divergences are traces after which the process can
perform an infinite uninterrupted sequence of τ actions, in other words diverge.
The models are then:

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– FD in which it is modelled by its sets of failures and divergences, both extended

by all extensions of divergences: it is divergence strict.

Formalising Consensus in the Presence of Malign Agents 141

2.3 FDR

FDR [10,26–28] is a refinement checker between finite-state processes defined in
CSP. First created in the early 1990’s it has been regularly updated since. The
latest version is FDR4.1

It uses CSPM , the machine-readable version of CSP, which has been extended
with a functional programming language related to Haskell. This enables the user
to define complex networks and data operations succinctly, and to create func-
tions that, given abstract representations of structures or systems, can auto-
matically generate CSP networks to implement and check them. Perhaps the
best-known example of this is the Security Protocol checker Casper [21] which,
given an abstract representation of a cryptographic protocol and some security
objectives for it, generates a CSP script which checks to see if the objectives are
met. In a similar vein, compilers have been written from other notations to CSP
such as Statecharts [13] and shared-variable programs (see Chapters 18 and 19
of [28]). A survey of the most important practical applications of FDR can be
found in [2].

FDR is most often used to check refinements of the form Spec [X= Impl,
where Spec is a process representing a specification in one of the standard CSP
models X, usually traces, stable failures or failures-divergences. Impl is a CSP
representation of the system being checked. To check whether a process Impl
satisfies a particular property, Spec is constructed to represent the most general
process (in the relevant model) exhibiting the required property.

FDR supports a number of techniques for attacking the state explosion prob-
lem, including hierarchical compression and symmetry reduction [11]. The algo-
rithms underpinning FDR are set out in [10,27–29].

3 The Unitary Consensus Machine

One of the main problems in designing a blockchain is devising how to select a
unique successor for a given block; the initial (often termed genesis) block is pre-
agreed between agents and assumed to exist, however there may be more than
one plausible candidate for any subsequent block. This problem is often solved
by a protocol that determines whether a block is final in blockchain terminology.
Typically, the finality of a block is determined by a universally known, though
potentially randomly selected, committee of agents, which we call pickets, that
engage in a protocol by which they reach a consensus on the successor of a
given block. We call such a system composed of interacting pickets that solves
the problem of determining the finality of a block a consensus machine. Since
blockchains are systems intended to cope with adversarial behaviour (coming
from untrusted parties), these machines are designed to tolerate a certain pro-
portion of malign agents. That is, the expected overall behaviour emerges from
the interaction of pickets in spite of possible misbehaviour by malign agents

1 Available at https://cocotec.io/fdr/.

https://cocotec.io/fdr/

142 A. W. Roscoe et al.

amongst them. The notions described here can also be applied to the problem
of reaching consensus for more general distributed systems.

We first illustrate how a unitary consensus machine works, i.e., how a single
set of pickets can interact to reach consensus. Later, we build on this illustration
to propose our hierarchical consensus machine. The informal description that
we provide here illustrates the mechanism used by the hierarchical protocol we
propose later.

Let P be a set of pickets, D be a set of possible decision values that the
pickets are trying to reach consensus on, and M ⊆ P(P) the decision sets such
that agreement by any set m ∈ M commits the system to the agreed decision,
where M is superset closed and contains P and P(S) gives the power set of S.
Broadly speaking, the unitary consensus machine works as follows. For a given
run of this machine P , M , and D are fixed and well-known. Each picket p ∈ P
locally decides on a single value vp ∈ D and broadcasts this chosen value. We
assume that pickets have well-known public keys as part of agreed cryptographic
signature schemes so they can create unforgeable digitally signed messages. The
set mo,v denotes the set of pickets that have chosen value v according to the
messages received by observer o. If mo,v ∈ M , observer o knows that the machine
has decided on value v. In this paper, we focus on a restricted scenario involving
a single run of the machine, i.e., having pickets decide on a value a single time.
There is no issue in extending this for a series of decisions where each is properly
made before the next one starts.

We note that since the evidence for a decision will be an agreed and signed
decision by sufficient agents for some m ∈ M , no-one can dispute a properly
formed one. We require that whatever decision is made is agreed with by at
least one benign agent that follows all the rules: this will be a property of M .

We require well-behaved consensus machines to additionally respect two
properties:

– Safety: For observers o1, o2 and v1, v2 ∈ D, if mo1,v1 ∈ M and mo2,v2 ∈ M ,
it must be the case that v1 = v2.

– Liveness: After observing the consensus machine run for stabilisation time
t, an observer o is able to construct a set mo,v such that mo,v ∈ M .

Intuitively speaking, the safety property forbids the machine from deciding
on two distinct values (on the same run), whereas the liveness property ensures
that the machine eventually decides on a value. Note that the liveness property
implicitly accounts for enough pickets agreeing on a given value but also for their
decision being conveyed in a timely manner.

We assume that malign agents can deviate from the expected picket
behaviour arbitrarily. For instance, they could send as their chosen value v1 to
observer o1 while sending a distinct value v2 to observer o2—this double choice
is a common Byzantine behaviour expected of such malign agents.

The safety property depends on M considering the benign and malign agents
in P . For instance, if sets m1,m2 ∈ M are crafted so that there is no benign
picket that is part of both m1 and m2, these two committees could decide on two
distinct values on the same run. Thus, (i) any two sets in m1,m2 ∈ M must have

Formalising Consensus in the Presence of Malign Agents 143

an overlapping benign picket to achieve the safety property. We can show (i) by
contradiction. Let us assume that sets mo1,v1 ∈ M and mo2,v2 ∈ M with v1 �= v2
were constructed. Then, by (i), p′ ∈ mo1,v1 and p′ ∈ mo2,v2 , which implies that
the benign picket p′ choose two values v1 and v2, a contradiction.

To ensure liveness, one must assume or enforce that: (a) there is some sta-
bilisation time by which point messages from benign pickets are delivered; and
(b) a set m ∈ M of benign pickets chooses the same value (in time for sta-
bilisation); the stabilisation time is required to move away from impossibility
results [9]. While (b) ensures a decision is made, (a) ensures that an observer
can witness this decision. For our minimal unitary consensus machine presented
in this section, we assume that such a set m exists as pickets are making their
choice. In practice, however, if no set m ∈ M could be constructed—when, for
instance, pickets choose different values—the protocol would have a recovery
mechanism by which pickets would choose another value to try and build such
a m; the protocol would be constructed so that pickets converge into an agreed
value after some time.

It is crucial to understand the dichotomy between safety and liveness in the
setting we study: one can be more tolerant of malign pickets’ involvement when
crafting an M that is safe but not live as opposed to one that is safe and live; this
observation follows from properties (i) and (b). There are decision sets M that
abide by property (i) and yet cannot satisfy (b). For instance, we could have an
M that abide by (i) but all its member include a malign picket. In these cases,
the participation of benign nodes in the members of such an M ensure decisions
are safe. However, the presence of malign pickets may cause a decision to never
be reached as they can refuse to participate in the consensus protocol. This
observation is one of the main principles guiding the design of our hierarchical
consensus machine.

In the context of blockchains, a consensus machine is meant to determine
the true/canonical chain by repeatedly picking successor blocks—and pruning
the block tree in the process. These blocks, and the transactions that they con-
tain, represent transitions in the state of the blockchain. They can account, for
instance, for a transfer of digital currency or the execution of some code (i.e.
via a smart contract). Thus, assuming that these transactions are deterministic,
the consensus machine also determines the canonical sequence of states of the
blockchain.

Blockchains are frequently set up with incentive and penalty structures that
are designed to persuade the malign agents to follow the rules. We categorise
malign behaviour as follows:

1. Overt malign behaviour. Making contributions to the central discussions and
protocols of a chain or other decentralised system that will be seen and recog-
nised as malign. Unless this wins votes or similar, it will quickly be recognised
and the perpetrator punished.

2. Covert malign behaviour. Producing non-compliant structures that are kept
hidden and only perhaps revealed later. For example developing a fork along-
side the true chain.

144 A. W. Roscoe et al.

3. Non-participation. Failing to make contributions that are expected of a good
agent and thereby denying some correct action the majority it needs. The
main issues with this is that it is harder to penalise because a good agent may
encounter communication failures, a phenomenon that can also mean confu-
sion about how an apparently non-participating agent should be interpreted.
It is fairly standard to make gossiping assumptions about communications in
blockchains to resolve such confusion.

The sorts of incentive structures implemented by blockchains are another
important factor that guided the design of our hierarchical consensus machine. In
particular, non-participation failures may cause the need to transfer control from
one unitary consensus machine to another, in order to achieve overall liveness.

4 Stochastic Decisions

The security analysis of blockchains is usually predicated upon some assumed
distribution of malign agents. So, we use probability to assemble sets of pickets
and produce decision sets M . In this section, we discuss a central case of how
this can support the picketing model. We assume that pickets are drawn from an
agent population U where the probability that a randomly chosen agent is benign
is p, and that they are selected independently and randomly from U so that the
number of benign and malign pickets that make any decision set is governed by
a binomial distribution, that is,

(
n
k

)
pk(1 − p)n−k gives the probability of having

k benign agents when selecting n agents from U . Given this assumption, it is
relatively easy to compute how likely it is that at most r out of n picket selections
are benign: F (p, n, r) =

∑r
i=0

(
n
i

)
pi(1 − p)n−i.

Based on these s, we propose the idea of stochastic impossibility : an event so
unlikely that in the whole history of a system it is very unlikely that one will
happen, to the extent that it can be disregarded. This concept is parameterised
by a insignificance threshold ε and an event that happens with probability ξ ≤ ε
is termed stochastically impossible. One might regard a one-in-a-million chance
as small enough, but if many (say a million) choices are going to be made a
year (approximately one every 30 s) it is clearly is not enough if a single one can
corrupt a system. We believe that the ε = 10−18 is a reasonable starting point;
in terms of the normal distribution, this value is close to 9σ (≈ 10−19), where
σ is the standard deviation, namely, the cumulative probability from μ + 9σ to
infinity, where μ is the mean. This sort of σ-multiplier analysis is used in finance
to model risk [7], and is justified as a consequence of the probabilistic laws of
large numbers.

We can now understand how to create the decision thresholds M described
earlier. Until now, we have informally referred to the groups of pickets selected to
make our decisions as sets. However, because a given agent can validly be selected
more than once (randomly with replacement) when assembling decision “sets”,
these groups are actually multisets (bags). This also explains why the binomial
distribution is the appropriate model to use when computing the probability
that at least a certain specified number of pickets in such a group are benign. In

Formalising Consensus in the Presence of Malign Agents 145

a population U of agents each with independent probability p of being benign,
a randomly drawn sub-multiset of pickets P ⊆ U is said to have (stochastically
certainly) at least k + 1 benign agents if F (p, k, |P |) < ε; this inequality means
that having at most k benign agents is stochastically impossible. For fixed p, k,
and ε, we can calculate the smallest |P | so that at least k+1 agents are benign;
let us call this threshold value td(p, k, ε). Given that a multiset of pickets P
where |P | = td(p, k, ε) has at least k+1 benign agents, any sub-multiset m ⊆ P
such that (1) |m| ≥ |P | − (k + 1) + b includes at least b benign agents.

To achieve safety via (i), we need to have more than half of the k +1 benign
agents in any m ∈ M . So, by using b = k/2 + 1 in (1), we have that |m| ≥
|P | − k + �k/2	, where k/2 is integer division. Therefore, for M = {m ⊆ P |
|m| ≥ |P |−k+�k/2	}, we have that property (i), and safety, is satisfied, modulo
stochastic certainty.

To achieve liveness via (b), we need to have (2) |m| ≤ k+1, namely, at least
a decision set that requires (modulo stochastic certainty) only the participation
of benign agents for agreement. Thus, to have safety and liveness, one has to
satisfy (1) and (2). The inequality (I) |P | ≤
3k/2�+1 has to be satisfied in order
to ensure both (1) and (2). This inequality gives the bounds that are usually
referred to in consensus literature [8].

Table 1 illustrates some examples of calculation for the largest k such that
F (p, k, n = |P |) < ε, for some values of n (number of selected agents) and p
(benignity probability) and where is fixed ε = 10−18. This calculation is anal-
ogous to the one presented. Red entries in the top left are where even seeing
all agents agreeing does not prove this, as it is deemed possible that all the
agents are malign, namely, for these values of p, n, and ε, there is no k such that
F (p, k, n) < ε. In purple areas, we have that k and n satisfy (I). We can achieve
safety for all but the red cells in the upper left corner. However, safety and live-
ness can only be achieved for the purple cells in the right bottom corner. This
pattern illustrates that achieving both safety and liveness requires larger sets of
pickets and decision sets in comparison to achieving safety alone. For example,
with p = 0.95 and n = 50, we have that k = 25. So, we have at least 26 benign
agents amongst the 50 randomly and independently selected. Thus, to ensure
safety, we can choose decision sets m ⊆ P such that |m| ≥ 38. Since (I) does not
hold for n = 50 and k = 25, we cannot obtain safety and liveness. On the other
hand, for p = 0.95 and n = 100, we have that k = 66, in which case (I) holds. For
this case, we can have decision sets m ⊆ P such that |m| ≥ 67 to achieve liveness
and safety. Smaller pickets and decision sets should also allow for more efficient
agreement given that fewer agents need to actively take part in the protocol;
this principle was one of the main drives in designing our hierarchical consensus
machine.

Usually our systems do rely on decisions being made, and usually the systems
are more efficient if they can persuade malign participants to contribute mostly
as though they were good. Indeed for a consensus machine with a smaller set
of pickets to deliver results, this is necessary. To achieve this they need three
things: firstly strong incentives on agents not to misbehave and to participate

146 A. W. Roscoe et al.

Table 1. Examples of k for different combinations of p and n, and fixed ε = 10−18.
The p values were chosen with the consensus bounds of > 2/3 in mind.

0.66 � � 0 3 6 14 22 70 177 290 525
0.75 � 0 3 7 12 22 32 91 218 351 624
0.8 � 1 5 10 16 27 39 104 243 387 *682*
0.85 � 3 8 14 20 33 46 118 *269* *425* *742*
0.9 0 6 12 19 26 40 55 *134* *298* *466* *807*
0.95 3 10 17 25 33 50 *66* *153* *331* *512* *878*
p/n 20 30 40 50 60 80 100 200 400 600 1000

constructively, secondly a decision making mechanism that prevents the malign
from inducing a bad decision, and thirdly a fallback mechanism that can force
correct decisions (i.e. is both safe and live) when needed, all be it at the cost
of lower efficiency. The last of these should convince opponents that they will
not be able to permanently disrupt the system. The worst they can achieve is
complication and delay. One cannot reasonably prevent the malign from covert
mischief, but overtly saying the wrong thing or not doing what they are meant to
will attract penalties and bans. The main motivation for the hierarchical consen-
sus machine idea introduced next is providing the required fallback mechanism.
It allows us to initiate a decision on the assumption that (most of) the malign
agents participate normally in the knowledge that the carefully-picked (safe)
decision sets will prevent a bad decision from being made; the (live) fallback
allows a decision to be forced even when malign agents do not participate.

5 Formalising Hierarchical Consensus Machines in CSP

We have already described how a consensus machine proceeds when it consists
of a single set of pickets synchronising in a rather abstract sense. We have also
described how to pick decision sets so that one can achieve safety and liveness
using a type of stochastic reasoning. In this section, we present a hierarchical
consensus machine, let us call it HM, that is in itself a combination of two
(sub-)consensus machines, let us call them, G and H. The machine G is safe
and efficient, whereas H is less efficient but it is both safe and live; as explained
in the previous section, the difference in efficiency comes from the size of picket
and decision sets that are necessary to achieve these properties. In achieving
safety without liveness, G can enter a situation very similar to the well-known
phenomenon of deadlock, when malign agents refuse to take part and agree
on a value. Deadlock is not normally an acceptable behaviour of a complete
system, and certainly not in a blockchain. We propose a way to recover from
such a deadlock in G by letting H take over. Specifically, we show how control
of a decision-making procedure can be handed from one machine to the other.
Despite G not being live, HM still is so thanks to H and the handover protocol
we propose.

Formalising Consensus in the Presence of Malign Agents 147

When passing decision making from G to H, the transition might come
because the agents in G have the evidence that G will not be able to decide,
or because malign agents in G fail to participate—in the latter case, G will not
reach a decision but its agents are unable to determine that it will not. In both
cases, we need to be careful that control will not be passed to H when some
agents in G are already committed to a value, or at least that, in this case, H
decides on the same committed value. So, our protocol does not prevent H and
G both issuing decisions, but ensures that if they do, they are the same.

The more difficult of these cases is where the pickets in H take over on their
own initiative. That is because if G’s agents themselves decide to hand over, it
will be because there is agreement to do so. Handing over to H means that G
has not made the decision, and none of G’s agents can validly believe it has, as
that would be inconsistent with the agreement to hand over. When taking over
from G, the H process does not have an immediate global effect on all the agents
of G, so a decision may still be made later by G.

Our formulation is inspired by the large body of work on process algebra:
understanding bodies of agents that run concurrently and interact by forms of
synchronisation. There is an interesting analogy here with process algebra. CSP,
particularly in later versions [27,28], has a number of ways in which one process
can pass control to another. The throw operator P [| A |> Q runs like P until
it throws an exception in the set A, which causes it to run like Q. On the other
hand the interrupt operator P /\ Q has P run, but if Q performs any visible
action it takes over.

We present and formalise in CSP two models for HM. The abstract model
represents the behaviour of each machine G and H as a single CSP process. It
abstractly depicts what is the expected emergent behaviour from their respective
implementation each of which as an interactive distributed set of pickets. The
main step of this abstraction is that the component consensus machines G and
H are deemed to take an action only once there is agreement (in the sense
we have already discussed) on the action. The distributed model, on the other
hand, demonstrates precisely how the emergent behaviour of each machine can
be realised in terms of such a set of pickets.

In other words the abstract model describes how we expect the protocol to
work in every implementation, but the way in which the sequential processes it
contains are implemented by decentralised collections implemented by G and H
are not laid down. The distributed model illustrates one way of realising this.

The protocol we present here has much in common with mutual exclusion.
We want to prevent something akin to a race condition. An obvious question is
whether we could use a simple mutex between G and H and only allow one to
make the decision. The answer is no: it is part of the make-up of G that it can
deadlock at any time. If it were to seek the right to make the decision—via the
shared mutex—but then deadlock, then HM would deadlock too; contrary to
our specification.

148 A. W. Roscoe et al.

5.1 Abstract Model

In the abstract model, each of G and H is modelled as a single CSP process, and
they communicate via shared storage locations each of which is also represented
as a CSP process and each machine has two locations it can write to. Intuitively
speaking, machine G comes to a decision in a two-step process. It first commits
to (i.e. pre-decides on) a value by writing it on its first location and then it
decides on this value by writing to its second location. Before these writes it
checks whether H has started by looking for a started signal written to H’s
first location. If at any point it detects that H has started, it stops by choice.
After a timeout has elapsed, H starts. It initially checks whether G has come
to a decision already. If so, it reaffirms that decision. Otherwise, it signals it
has started its decision making process by writing a started signal value on its
first storage location. If no value has been committed to by G at that point, H
proceeds to make its own decision. Otherwise, again, it just echoes G’s decision.

Machines G and H rely on storage locations to communicate and convey
(pre-)decisions. The datatype values denotes the possible values stored in these
locations: D1 and D2 are (pre-)decisions whereas quiet, start and null denote
machine statuses. Locations are identified by elements in location. Locations 1
and 3 are controlled (i.e. written) by machine G whereas 2 and 4 are controlled
by machine H. Channels read, write1 and write2 are used to manage loca-
tions whereas stepG, stepH, and timeoutstep denote internal actions of these
machines. Finally, channel decision is used to communicate (pre-)decisions
made by them.

datatype values = quiet | started | D1 | D2 | null

locations = {1..4}

channel read, write1: locations.values
channel stepG, stepH, timeoutstep

channel decision:{1,2}.{D1,D2}

The storage locations are defined by the following two processes. Writing
to and reading from these locations are not atomic events. When a value y is
written to location i (via write1.i?y) the storage goes into a non-deterministic
state in which it allows for a read to retrieve the old value x. The event write2.i
signals to this location that the value y has been properly written at which point
reads deterministically return y. This non-determinism captures (i.e. abstracts)
the asynchrony of the distributed system: the write begins when the decision is
known somewhere and it ends when it is known at most of the network.

Store(i,x) = read.i!x -> Store(i,x)
[] write1.i?y -> StoreND(i,x,y)

StoreND(i,x,y) = (read.i.x -> StoreND(i,x,y)

Formalising Consensus in the Presence of Malign Agents 149

|~| read.i.y -> StoreND(i,x,y))
[] write2.i -> Store(i,y)

We abstract away all activities of G and H except the steps they need to
make to record the decision they make and the steps they need to record and
coordinate it. For modelling purposes we assume here that G makes decision D1
and H makes D2 unless it is forced to follow G’s decision because it cannot be
sure G will not make a decision.

The machine G’s behaviour is defined by the following CSP processes, with
initial state given by G. As G0, it reads the status of machine H via location 2. If
H has started already, it stops. Otherwise, if H is quiet, as process G1, it signals
a pre-decision on value D1 by writing it to Location 1. If H is still quiet at that
point, it consolidates this pre-decision with event write2.1. As process G2, it
reads the status of H for the last time, before issuing a final decision on D1 as
process G3. Note that the parallel combination of G0 and CHAOS in G captures
G’s incompleteness by allowing it to deadlock at any point.

G0 = (read.2.quiet -> stepG -> G1
[] read.2.started -> STOP)

G1 = write1.1.D1 ->
(read.2.quiet -> write2.1 -> stepG -> G2
[] read.2.started -> STOP)

G2 = read.2.started -> STOP
[] read.2.quiet -> stepG -> G3

G3 = decision.1.D1 -> write1.3.D1 -> write2.3 -> STOP

G = G0 [|Events|] CHAOS(Events)

The machine H’s behaviour is defined by the following CSP processes, with
initial state given by H. As H, it reads whether machine G has come to a decision
by reading Location 3. If it detect a decision, it re-asserts this decision by writing
D1 to Location 4. Otherwise, it interprets that a timeout has occurred and it
moves on to make its own decision. As H1, it signals that it has started its
decision making process by writing started to Location 2. As H2, it checks
whether machine G has started at all. If it has, H re-asserts the pre-decision
made by G—i.e., by writing D1 to Location 4. Otherwise, it proceed by making
its own decision by writing D2 instead. Both of these decisions are captured by
process H3.

H = read.3.null -> timeoutstep -> H1
[] read.3.D1 -> write1.4.D1 -> write2.4 -> STOP

H1 = write1.2.started -> write2.2 -> stepH -> H2

150 A. W. Roscoe et al.

H2 = read.1.null -> stepH -> H3(D2)
[] read.1.D1 -> H3(D1)

H3(d) = decision.2.d -> write1.4.d -> write2.4 -> STOP

The hierarchical consensus machine behaviour is given by System. Note how
machines H and G are interleaved in Machine and they rely on storage locations
in Locations to interact as we discussed.

Locations = Store(1,null) ||| Store(2,quiet)
||| Store(3,null) ||| Store(4,null)

Machines = G ||| H

System = Machines [|{|read,write1,write2|}|] Locations

We expect this abstract hierarchical consensus machine to be safe and live.
By safe, we mean that if it comes to a decision, it decides on a single value, that
is, each machine might even come to their own decision but their value must
match. By live, we mean that System must not deadlock before a decision is
made. We capture these two requirements by a refinement expression in CSP’s
stable failures model as follows.

Decisions = {write1.3.d, write1.4.d | d <- {D1,D2}}
Decision1 = {write1.3.d, write1.4.d | d <- {D1}}
Decision2 = {write1.3.d, write1.4.d | d <- {D2}}

DSystem = System \ diff(Events,Decisions)

Spec =(|~| x:Decision1 @ x -> CHAOS(Decision1))
|~|

(|~| x:Decision2 @ x -> CHAOS(Decision2))

assert Spec [F= DSystem

The refinement expression is built around decision events: all the decision
events are members of Decisions, the decision events for value D1 are members
of Decision1, and the events for value D2 are in Decision2. The specification
process Spec allows a decision to be made on D1 and D2 initially. Once such a
decision is made, only events deciding on that value are allowed be performed.
Note that this process is not allowed to deadlock initially. Thus, the proposed
refinement expression ensures that the behaviour of the system when projected
onto decision events—given by DSystem—offers some decision event initially and
stick to that decision value subsequently. We have used FDR to validate this
refinement expression.

Formalising Consensus in the Presence of Malign Agents 151

5.2 Distributed Model

The abstract model is useful from an analysis perspective: one can analyse the
handover protocol itself while not needing to examine the implementation of
each machine as a collection of interactive agents and the issues arising from
such an implementation. Instead, issues with just the handover protocol itself
can be identified and fixed. We can then argue either that a given approach to
building the individual machines G and H will meet this model by construction,
or test it by building a more detailed, distributed model in CSP for FDR.

In our model, each machine is a distributed system implementing a protocol
that attempts to reach consensus in the presence of Byzantine agents. Intuitively
speaking, our hierarchical machine works as follows. Machine G starts and tries
to come to a decision on a unified value. After some appropriate amount of
time—enough to allow G to come to a decision if agents can agree on a value—
machine H starts. It checks whether machine G has committed to a value, i.e., it
has pre-decided on it but might not have gathered enough evidence to properly
decide on it. If so, machine H decides on that value. Otherwise, the agents in H
are free to choose a value of their own. Like the abstract model, these machines
communicate local decisions via storage locations.

Our more detailed CSP model is parameterised by some global functions.
VALUES gives the universe of decision values, and NODES are the agent identifiers.
For machine m, N(m) gives its number of agents, MNODES(m) are its agent iden-
tifiers, THRESHOLD(m) gives the level of agreement (i.e. how many agents) that
is required for reaching consensus, G(m) gives the number of good agents, with
GOOD(m) and BAD(m) identifying the good and malign agents in the machines,
respectively. In the following, we describe in detail our CSP model.

datatype MACHINES = g | h

channel value : MACHINES.NODES.VALUES
channel prewrite, write : MACHINES.NODES.MACHINES.NODES.VALUES
channel setup_prewrite, setup_write : MACHINES.NODES.VALUES
channel decision : MACHINES.VALUES
channel decide : MACHINES.NODES.VALUES
channel timeout : MACHINES.NODES.MACHINES.NODES
channel end_round

We use event value.m.n.v to represent that the agent n in machine m has cho-
sen as its decision value v, event setup_prewrite.m.n.v (setup_write.m.n.v)
to signal that agent n in machine m has pre-decided (decided) on value v, and
event pre-write.m.n.mm.nn.v (write.m.n.mm.nn.v) as a way to communicate
to agent nn in machine mm that agent n in machine m has pre-decided (decided) on
value v. The event decision.m.v is used to signal that machine m has decided
on value v, whereas decide.m.n.v are convey that agent n in machine m has
(locally) decided on value v. The event timeout.m.n.mm.nn denotes that agent
nn in machine mm timed out when trying to read the decision from agent n
in machine m. The event end_round is a modelling device used to signal that

152 A. W. Roscoe et al.

machine G has had enough time to come to a decision and that machine H is
now taking over.

EmptyPreWriteLocation(n,m) =
setup_prewrite.m.n?v -> FullPreWriteLocation(n,m,v)

FullPreWriteLocation(n,m,v) =
prewrite.m.n?mm?a:MNODES(mm)!v -> FullPreWriteLocation(n,m,v)

The process EmptyPreWriteLocation(n,m) is a storage location that stores
the pre-decision of agent n in machine m; each agent has such a location that it
controls. It is a single-write multiple-reads one-place buffer.

EmptyWriteLocation(n,m) =
setup_write.m.n?v -> FullWriteLocation(n,m,v)
[]
timeout.m.n?mm?a:MNODES(mm) -> EmptyWriteLocation(n,m)

FullWriteLocation(n,m,v) =
write.m.n?mm?a:MNODES(mm)!v -> FullWriteLocation(n,m,v)
[]
decide.m.n.v -> FullWriteLocation(n,m,v)

The process EmptyWriteLocation is also a storage location that behaves
similarly to the previous one. It stores decisions instead of pre-decisions. More-
over, it offers a timeout event if the location is empty—it allows agents reading
from it to experience a timeout—and it uses the decide event to communicate
the local decision of this agent.

GNode(n) =
value.g.n?v -> setup_prewrite.g.n.v ->

if v == 0 then PreWrite(n,g,{n},1,0,0)
else if v == 1 then PreWrite(n,g,{n},0,1,0)
else PreWrite(n,g,{n},0,0,1)

The control behaviour of agent n in machine G is given by process GNode(n).
We design the agents so that they choose their local decision value independently
(captured by event value) but they will come together, or not, to certify a unified
decision. Once a value is chosen, it is written to the agent’s pre-decision storage
(via event setup_prewrite).

PreWrite(n,m,vs,c0,c1,c2) =
(prewrite.m?a:diff(MNODES(m),vs)!m.n?v ->

if v == 0 then PreWrite(n,m,union({a},vs),c0+1,c1,c2)
else if v == 1 then PreWrite(n,m,union({a},vs),c0,c1+1,c2)
else PreWrite(n,m,union({a},vs),c0,c1,c2+1))

[]

Formalising Consensus in the Presence of Malign Agents 153

(timeout.m?a:diff(BAD(m),vs)!m.n ->
PreWrite(n,m,union(vs,{a}),c0,c1,c2))

[]
(vs == MNODES(m) &

if c0 >= THRESHOLD(m) then setup_write.m.n.0 -> EndOfRound
else if c1 >= THRESHOLD(m) then setup_write.m.n.1 ->

EndOfRound
else if c2 >= THRESHOLD(m) then setup_write.m.n.2 ->

EndOfRound
else EndOfRound)

EndOfRound = end_round -> SKIP

The PreWrite process describes how an agent reads the pre-decisions of other
agents in order to come to its own local decision. Once the agent has received a
pre-decision or a timeout from all nodes, it goes on to either locally decide on a
value or to conclude the decision making process without deciding on a value. If it
has seen enough pre-decisions supporting value v—for instance, for v == 0, this
is captured by condition c0 >= THRESHOLD(m)—the agent locally decides on v,
writing this value to its decision storage location (via event setup_write). Note
how the agent only accepts timeouts from malign agents; we assume that good
agents deliver messages reliably and in a timely way. The process EndOfRound
signals that machine’s G time to come to a decision has elapsed, at which point,
the agent terminates.

GGoodNode(n) = (GNode(n) [|{|setup_prewrite, setup_write|}|]
(EmptyWriteLocation(n,g) ||| EmptyPreWriteLocation(n,g)))

A benign agent in machine G is a parallel process—given by process
GGoodNode—that combines its storage locations and its control behaviour.

GoodAlpha(n,m) =
Union({{| value.m.n, setup_prewrite.m.n, setup_write.m.n,

decide.m.n, prewrite.m.n.mm.a, prewrite.mm.a.m.n,
timeout.mm.a.m.n, timeout.m.n.mm.a, write.m.n.mm.a,
write.mm.a.m.n, end_round | mm <- MACHINES,
a <- MNODES(mm), (a != n or mm != m) |}})

GoodAlpha(n,m) gives the alphabet of the benign agent n in machine m.

HNode(n) =
end_round ->

Reader(n,{},0,0,0)

Reader(n,vs,c0,c1,c2) =
(write.g?a:diff(MNODES(g),vs)!h.n?vv ->

setup_prewrite.h.n.vv ->

154 A. W. Roscoe et al.

if vv == 0 then setup_write.h.n.0 -> EndOfRound
else if vv == 1 then setup_write.h.n.1 -> EndOfRound
else setup_write.h.n.2 -> EndOfRound)

[]
(timeout.g?a:diff(MNODES(g),vs)!h!n ->

Reader(n,union(vs,{a}),c0,c1,c2))
[]
(vs == MNODES(g) &

value.h.n?vv -> setup_prewrite.h.n.vv ->
if vv == 0 then PreWrite(n,h,{n},1,0,0)
else if vv == 1 then PreWrite(n,h,{n},0,1,0)
else PreWrite(n,h,{n},0,0,1))

The control behaviour of a benign agent in machine H is given by process
HNode(n). The initial end_round event and the requirements that we impose
on the way in which agents synchronise on this event means that the agents of
machine H only start after the agents of machine G have finished with their deci-
sion making interactions. This behaviour captures the assumption that agents
have a reasonably synchronised clock and that they can come to a decision within
a bounded time frame.

Once started, the agent’s control behaviour in machine H is given by Reader.
This process reads the local decisions made by agents in G. If one of them has
decided on a given value—which means that machine G has committed to that
value—we require that the agent in H decide on the same value. This behaviour
ensures that if both machines come to a decision, they must agree on their
decided value.

If no agent of G has decided on a value, the agents in H are free to choose
their local decision values, and they move on to behave like process PreWrite
to try and come to a unified decision as already mentioned.

HGoodNode(n) = (HNode(n) [|{|setup_prewrite, setup_write|}|]
(EmptyWriteLocation(n,h) ||| EmptyPreWriteLocation(n,h)))

Similar to benign agents in G, a benign agent in H is a parallel combination
of its control behaviour and storage locations as per process HGoodNode.

BadNode(n,m,c0,c1,c2) =
timeout.m.n?mm?a:GOOD(mm) -> BadNode(n,m,c0,c1,c2)
[]
(STOP
|~|
(prewrite.m.n.m?a:diff(MNODES(m),{n})?v ->

BadNode(n,m,c0,c1,c2)
[]
prewrite.m?a:diff(MNODES(m),c0)!m.n.0 ->

BadNode(n,m,union(c0,{a}),c1,c2)
[]

Formalising Consensus in the Presence of Malign Agents 155

prewrite.m?a:diff(MNODES(m),c1)!m.n.1 ->
BadNode(n,m,c0,union(c1,{a}),c2)

[]
prewrite.m?a:diff(MNODES(m),c2)!m.n.2 ->

BadNode(n,m,c0,c1,union(c2,{a}))
[]
card(c0) >= THRESHOLD(m) &

(write.m.n?a.b!0 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.0 -> BadNode(n,m,c0,c1,c2))

[]
card(c1) >= THRESHOLD(m) &

(write.m.n?a.b!1 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.1 -> BadNode(n,m,c0,c1,c2))

[]
card(c2) >= THRESHOLD(m) &

(write.m.n?a.b!2 -> BadNode(n,m,c0,c1,c2)
[] decide.m.n.2 -> BadNode(n,m,c0,c1,c2))))

The malign agent n in machine m is modelled by process BadNode(n,m). These
agents can exhibit Byzantine behaviour but they are not allowed to behave com-
pletely arbitrarily: there are still some actions which these adversaries cannot
perpetrate against benign agents. For instance, it can only offer event decide
if it has gathered enough support for the corresponding decision—i.e., it can-
not create a spurious local decision. This abstraction accounts for the following
behaviour: a local decision by an agent must be associated with enough support-
ing evidence—in the form of pre-decisions—which are cryptographically signed
by the agents generating that evidence. We assume malign agents cannot break
cryptographic primitives and, thus, they cannot forge signatures by other agents.
On the other hand, malign agents can pre-decide on more than one value, or even
refuse to serve a request for a (pre-)decision.

BadAlpha(n,m) = {| prewrite.m.n.mm.a, prewrite.mm.a.m.n,
write.m.n.mm.a, write.mm.a.m.n, decide.m.n, timeout.m.n.mm.a
| mm <- MACHINES, a <- MNODES(mm), (a != n or mm != m) |}

The alphabet of malign agent n in machine m is given by BadAlpha(n,m).

AlphaBadNodes(m) = Union({BadAlpha(i,m) | i <- BAD(m)})
BadNodes(m) = || i : BAD(m) @

[BadAlpha(i,m)] BadNode(i,m,{i},{i},{i})

AlphaGoodNodes(m) = Union({GoodAlpha(i,m) | i <- GOOD(m)})
GGoodNodes = || i : GOOD(g) @ [GoodAlpha(i,g)] GGoodNode(i)
GNodes = GGoodNodes [AlphaGoodNodes(g)

|| AlphaBadNodes(g)] BadNodes(g)

156 A. W. Roscoe et al.

HGoodNodes = || i : GOOD(h) @ [GoodAlpha(i,h)] HGoodNode(i)
HNodes = HGoodNodes [AlphaGoodNodes(h)

|| AlphaBadNodes(h)] BadNodes(h)

Nodes = GNodes [union(AlphaGoodNodes(g),AlphaBadNodes(g))
|| union(AlphaGoodNodes(h),AlphaBadNodes(h))] HNodes

The processes GNodes and HNodes capture the behaviour of machines G and
H, respectively, whereas Nodes captures how they interact to implement the
handover protocol. In these processes, the appropriate agents run in parallel and
they are required to synchronise on shared events.

Decider(m,c0,c1,c2) =
decide.m?a:diff(MNODES(m),c0)!0 -> Decider(m,union({a},c0),c1,c2)
[]
decide.m?a:diff(MNODES(m),c1)!1 -> Decider(m,c0,union({a},c1),c2)
[]
decide.m?a:diff(MNODES(m),c2)!2 -> Decider(m,c0,c1,union({a},c2))
[]
card(c0) >= THRESHOLD(m) & decision.m.0 -> Decider(m,c0,c1,c2)
[]
card(c1) >= THRESHOLD(m) & decision.m.1 -> Decider(m,c0,c1,c2)
[]
card(c2) >= THRESHOLD(m) & decision.m.2 -> Decider(m,c0,c1,c2)

The behaviour of agents described so far sets out how they make local deci-
sions but they do not define how machine-level decisions are made. The Decider
process is in charge of those. This centralised process collects local decisions made
by the agents of a machine, offering a machine-level decision as soon as enough
local decisions are gathered. This process is an abstraction that is useful for
conciseness in specifying the behaviour of the machines but also for the sake
of tractability. In a practical implementation of this protocol, each agent would
implement the behaviour of the Decider process. Process System runs machines
G and H with their respective Decider processes.

System = Nodes [|{|decide|}|]
(Decider(g,{},{},{}) ||| Decider(h,{},{},{}))

We want to ensure that the system is safe – i.e. it must stick with one decision
value once a decision is made—and live—i.e. it must offer a decision event before
it is allowed to deadlock. Our discussion here is related to that on Sect. 4. In that
section, we discussed how we can use a type of stochastic reasoning to choose
the size of the set of pickets that is necessary to achieve a given number of good
and malign agents, given some parameters for our stochastic model. In our CSP
model, we talk about decision sets assuming that the pickets-set size and number
of good and malign agents has been fixed, namely, the stochastic reasoning has

Formalising Consensus in the Presence of Malign Agents 157

already been used to find these numbers. So, we limit ourselves to discuss the
size of decision sets that is necessary to achieve safety and liveness.

Safety is ensured by setting a threshold that requires the participation of
more than half of the benign nodes, namely, for machine m, THRESHOLD(m) ≥
GOOD(m)/2 + BAD(m) + 1, where GOOD(m)/2 is truncated integer division—we
require the number of agents in each machine to be at least 2. If this threshold
is set, the machine cannot decide on two different values on the same run of
the protocol. Assume that agents in G supported two values, say 0 and 1, then
there must be THRESHOLD(g) many agents supporting either. That implies the
existence of a benign agent that has supported two values, a possibility that
our protocol does not allow; a contradiction. The same reasoning holds for H’s
independent decision. The requirement that H must decide on G’s committed
values, if one exists, ensures that if they both come to a decision, their value
must match. As G can only commit to one value, by the same counting argument
as before, H must decide on the same value as G.

Another assumption is required to ensure liveness. We expect H to come up
with a decision if G fails to do so, but the agents in H may disagree on a decision
value in the case they are left to independently select it. On a realistic implemen-
tation, agents will probably need to iterate if they fail to agree on a value within
G or H until they eventually converge to a sufficiently agreed choice. How they
achieve this is a separate topic but will likely involve coordinating input data
and computing deterministically. For the sake of conciseness and tractability,
we do not implement this process and we force enough benign agents in H to
choose a common value (i.e. converge immediately), ensuring H comes to a deci-
sion. This immediate convergence is implemented by the Convergence process,
which forces benign agents {0..CN} in machine H to choose the value CV—CN and
CV are variables that parameterise our model. The convergent system is given
by process CSystem. To achieve liveness, we need GOOD(m) ≥ THRESHOLD(m)—
i.e., no malign agents are required to take part in the consensus—and that at
least THRESHOLD(m)-many benign agents converge to the right value. From this
inequality and the safety inequality before, one can derive the traditional lower
bound on number of agents necessary for Byzantine agreement: N = 3f + 1
where N is the number of agents amongst whom f are malign.

AlphaConvergence = {| value.h.n | n <- {0..CN-1} |}

ConvergenceAux(0) = STOP
ConvergenceAux(i) = value.h.(i-1).CV -> ConvergenceAux(i-1)
Convergence = ConvergenceAux(CN)

CSystem = System [|AlphaConvergence|] Convergence

Similarly to what we did for the abstract model, we use the following refine-
ment expression to capture these properties. The specification process Spec
ensures that once a decision is made, only events deciding on that value are
allowed be performed and that a decision event is offered initially—it can dead-
lock after a decision event is performed. Process DSystem captures a projection

158 A. W. Roscoe et al.

of CSystem’s behaviour onto decision events. We have used FDR to validate some
instances of our model where thresholds are set in a way to ensure safety and
liveness as discussed. We have also tested instances with insufficient thresholds
to demonstrate how the model breaks down under those.

Spec = |~| m : MACHINES, v : VALUES @
decision.m.v -> CHAOS({decision.mm.v | mm <- MACHINES})

DSystem = CSystem \ diff(Events,{|decision|})

assert Spec [F= DSystem

Interestingly, the inequality required to achieve safety alone does not restrict
the proportion of benign agents that take part in the protocol. If we have, for
instance, a single benign agent in a machine, a threshold requiring unanimity
for decisions would still ensure safety. On the other hand, when both the safety
and liveness inequalities are required, > 2/3 of agents must be benign. Thus, as
machine G only needs to be safe, it can rely on there being as few as a single
benign agent, whereas machine H, which must be safe and live, is required to
have > 2/3 benign agents. Based on our stochastic calculations, for a fixed prob-
ability of an agent being malign, the number of agents that need to be selected
to get a sample including at least one benign agent should be, in general, much
smaller than the number needed for a sample including > 2/3 benign agents.
Therefore, the number of agents required to implement G should be, in general,
much smaller than the agents required to implement H. This fact supports our
claim that G should be faster at coming to a decision when compared to H,
given the smaller number of agents that are required to interact.

In many cases the “pickets” making up the back-up machine H will be entire
qualified population of block creators, rather than being randomly chosen. In
this case the hierarchical machine will precisely be the optimistic mechanism
G backed up by classic Byzantine agreement. Moreover, typically, the 4 loca-
tions used by our protocol will be implemented in a distributed way by the
agents involved. The correctness will depend on the signature mechanisms the
blockchain has in place and also forms of the gossiping assumptions described
earlier.

6 Related Work

Many classical protocols [17,18,20,25] exist to solve the Byzantine agreement
problem [24]. The emergence of blockchains renewed the research commu-
nity’s interest in this problem—and more generally on the problem of achiev-
ing consensus in distributed systems—leading to a number of new proto-
cols [1,3,4,6,12,15,22,30,32].

The first consensus protocol proposed for blockchains was Proof-of-Work
(PoW) in the context of Bitcoin [22]. Intuitively speaking, in this protocol, min-
ers (i.e. block producer candidates) attempt to solve a cryptographic puzzle, and

Formalising Consensus in the Presence of Malign Agents 159

the first one who solves it is entitled to propose the next block to be added to the
chain. Arguably, the main drawback of PoW protocols is how energy inefficient
they can be [19,31]; the larger the network the more computing power is used
to constantly solve these cryptographic puzzles. Proof-of-Stake (PoS) protocols
have been proposed [1,5,12,15] as energy efficient alternatives to PoW ones.
Hybrid PoW-PoS protocols have also been proposed [16].

In Proof-of-Stake protocols, agents signal their intention to participate in the
block production process by staking a sum of cryptocurrency, i.e. the stake, they
own. Staking means that this sum is locked (i.e. escrowed) for the duration of
this process and it may be slashed as a means to punish malign behaviour. The
frequency upon which agents are selected to participate in this process is propor-
tional to the size of the stake. Note how in PoW computing power determines
how often an agent is “selected” to produce a block as opposed to staked cryp-
tocurrency in PoS. In PoS protocols, agents can be selected as a block producer
but also as a member of a committee which is typically in charge of either elect-
ing block producers or finalising blocks, namely, determining whether a block is
immutable and the only valid block at a given height. Before a block is deemed
final, a number of candidate blocks at a given height might be “competing” to
become final. Some PoS protocols rely on probabilistic mechanisms to deter-
mine the finality of a block—e.g. Algorand [12], Ouroboros [15]—whereas some
others rely on deterministic mechanisms—e.g. Internet Consensus Computer [6],
Casper FFG [5], Tendermint [3]. Our handover protocol is meant to be used as a
part of a protocol to achieve deterministic finality, with our primary motivation
being PoS. A PoS-based selection mechanism can be used to choose committees
of agents—their sizes are based on our stochastic calculations—to implement
machines G and H and to decide on the next final block using the handover
protocol.

Despite being designed to be part of a fully-fledged blockchain consensus
protocol, the handover protocol alone is closer in nature to mutual exclusion,
though adapted for linking agreement protocols like Byzantine agreement [17,
20,23,32]. Abstractly speaking, these protocols have been designed around the
use of the votes to form decisions and of a threshold/quorum to ensure safety. In
fact, the PBFT (Practical Byzantine Fault Tolerance) protocol [20] specifically—
and this voting mechanism more generally—has been a source of inspiration for
many current blockchain protocols, including ours.

7 Conclusions

In this paper we have used formal tools to understand how consensus can arise
in decentralised systems. Essentially we have set out a programmatic approach
to laying down and analysing consensus: given a population of potential block
creators and the potentially multiple perspectives of different users we need to
establish a trust model that they are all happy with. We then have the job of
having the blockchain select sufficient groups of pickets and decision criteria that
all can be sure of any positive decisions they make.

160 A. W. Roscoe et al.

On the assumption that we can incentivise most malign participants to par-
ticipate apparently properly, this will give us all we need. But an essential part
of such motivation is that the malign know that if they do not collaborate like
this they will be defeated by a back up mechanism.

We have shown how to formalise both the primary and secondary mechanisms
as Unitary Consensus Machines. While much of our treatment was inspired by
process algebra, we were able to both design and verify the crucial protocol that
links a hierarchy of decision making in CSP and FDR.

By allowing such hierarchical consensus decisions, we believe that we have
tools for making blockchains more varied and flexible. We hope that our app-
roach to creating the component machines which compose together to provide
consensus can be automated.

It is only natural - to people steeped in such languages and tools - that CSP
coupled with FDR is a good way to model complex interactions in decentralised
consensus. We are pleased to have demonstrated the truth of this intuition.
While the full systems representing consensus may be too involved to fit within
the abstractions of such tools, it is comforting that like so many other areas of
concurrent reasoning, we can find levels where they bring real benefit. We have
modelled other aspects of blockchain using CSP and FDR.

We hope that others will be found, and that our tools for bringing clarity to
the topic of consensus will find many interesting applications.

References

1. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4_10

2. Brookes, S.D., Roscoe, A.W.: CSP: A Practical Process Algebra, 1 edn., pp. 187–
222. Association for Computing Machinery, New York (2021)

3. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR
abs/1807.04938 (2018). http://arxiv.org/abs/1807.04938

4. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation Platform (2014). https://ethereum.org/whitepaper/

5. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR abs/1710.09437
(2017). http://arxiv.org/abs/1710.09437

6. Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.A., Shoup, V., Williams, D.:
Internet computer consensus. In: Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC 2022, pp. 81–91. Association for Com-
puting Machinery, New York (2022). https://doi.org/10.1145/3519270.3538430

7. Dowd, K., Cotter, J., Humphrey, C., Woods, M.: How unlucky is 25-sigma? J.
Portfolio Manag. 34, 76–80 (2008). https://doi.org/10.3905/jpm.2008.709984

8. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288–323 (1988)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
http://arxiv.org/abs/1807.04938
https://ethereum.org/whitepaper/
http://arxiv.org/abs/1710.09437
https://doi.org/10.1145/3519270.3538430
https://doi.org/10.3905/jpm.2008.709984

Formalising Consensus in the Presence of Malign Agents 161

10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_13

11. Gibson-Robinson, T., Lowe, G.: Symmetry reduction in CSP model checking. Int.
J. Softw. Tools Technol. Transfer 21(5), 567–605 (2019). https://doi.org/10.1007/
s10009-019-00516-4

12. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP 2017, pp. 51–68. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3132747.3132757

13. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

14. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Com-
puter Science. Prentice Hall (1985)

15. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

16. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake. Self-
published paper, 19 August 2012

17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

18. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

19. Li, X., Zhu, Q., Qi, N., Huang, J., Yuan, Y., Wang, F.Y.: Blockchain consensus
algorithms: a survey. In: 2021 China Automation Congress (CAC), pp. 4053–4058
(2021). https://doi.org/10.1109/CAC53003.2021.9728000

20. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

21. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1–2), 53–84 (1998)

22. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.

In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC 2014, pp. 305–320. USENIX Association (2014)

24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

25. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on
Foundations of Computer Science (SFCS 1983), pp. 403–409 (1983). https://doi.
org/10.1109/SFCS.1983.48

26. Roscoe, A.W.: Model-checking CSP. In: International Series in Computer Science.
Prentice Hall (1994). http://www.cs.ox.ac.uk/people/bill.roscoe/publications/50.
ps

27. Roscoe, A.W.: The Theory and Practice of Concurrency. Series in Computer Sci-
ence. Prentice Hall (1998)

28. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/s10009-019-00516-4
https://doi.org/10.1007/s10009-019-00516-4
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/CAC53003.2021.9728000
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/SFCS.1983.48
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/50.ps
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/50.ps
https://doi.org/10.1007/978-1-84882-258-0

162 A. W. Roscoe et al.

29. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_7

30. Wood, G.: Ethereum yellow paper. https://ethereum.github.io/yellowpaper/paper.
pdf

31. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus pro-
tocols for blockchain networks. IEEE Commun. Surv. Tutor. 22(2), 1432–1465
(2020). https://doi.org/10.1109/COMST.2020.2969706

32. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, pp. 347–356.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3293611.3331591

https://doi.org/10.1007/3-540-60630-0_7
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591

ProCoS Colleagues

Domain Modelling: A Foundation
for Software Development

Dines Bjørner(B)

The Technical University of Denmark, Fredsvej 11, 2840 Holte, Denmark
bjorner@gmail.com

https://www.imm.dtu.dk/~db

Abstract. Domain modelling, as per the approach of this paper, offers
the possibility of describing software application domains in a precise and
comprehensive manner – well before requirements capture can take place.
We endow domain modelling with appropriate analysis and description
calculi and a systematic method for constructing domain models. The
present paper is a latest exposé of the domain science & engineering as
published in earlier papers and a book. It reports on our most recent
simplifications to the domain analysis & description approach.

The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements,
we must understand the domain.

So we must study, analyse and describe domains.

1 Introduction

This paper introduces the possibility of a new phase of software development,
one that precedes requirements engineering, as well as a new way of looking at
the world around us!

Today’s well-managed software development projects usually start with some
form of requirements “capture”. Now the possibility arises to precede this phase
of requirements engineering with an initial phase of domain engineering.

The present paper is an improvement over previously published accounts
[13,16,17]: builds upon a simpler domain ontology (Fig. 1 on page 4); has fewer
domain concepts (Sects. 3 and 5); and presents a more rational way of “deriving”
behaviours from parts (Sect. 6). Taken together the presentation is thus made
shorter and more precise.

The approach to the modelling of domains put forward in this paper has
two major phases: modelling external qualities of the world as we see it, as it
manifests itself to us, or otherwise, and modelling the internal qualities, as we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 165–210, 2023.

https://doi.org/10.1007/978-3-031-40436-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_7

166 D. Bjørner

may not see it, but qualities that can be measured and/or spoken about. The
modelling of external qualities has a few steps. The major step of modelling
of external qualities is that of deciding upon the atomic-, Cartesian- and set-
oriented parts. A minor step, following the major step, is that of identifying a
notion of endurant state. The modelling of internal qualities has a few more steps.
The modelling of unique identifiers; the modelling of mereologies; the modelling
of attributes; and the modelling of ‘intentional pull’. It is this structuring into
manageable stages and steps that reassures us, i.e., me, that the approach is
sound.

1.1 What is a Domain ?

By a domain we shall understand a rationally describable segment of a discrete
dynamics fragment of a human assisted reality , i.e., of the world: its endurants,
i.e., solid and fluid entities: whether natural [“God-given”] or artefactual [“man-
made”], their parts and living species entities: whether atomic or compound
parts, respectively whether plant or animal living species, including humans—
as well as its perdurants: the behaviours of parts and living species.

Clearly this characterisation does not possess the rigour that should be com-
mon in software development. Terms such as rationally describable, discrete
dynamics and human assisted reality must be not just assumed, but must, below,
be made more precise. Yet precision defies us: The domains we shall study, anal-
yse and describe are not amenable to such precision. The world is not formal.

Thus the domain analysis & description methodology that we shall be con-
cerned with is not directed at continuous dynamics systems such as we find
them in for example aerospace applications. And we shall not, in this paper be
concerned with the human assistance aspects. By domain modelling we mean
the study, analysis and description of a domain.

If the domain already exists, then the modelling amounts to a faithful ren-
dering of that domain but such that the resulting model, i.e., description, covers
as wide a spectrum of domain instances as is deemed reasonable.1

We shall, in this paper, assume already existing domains. By domain engi-
neering we mean the construction of domain models.2

1.2 Non-computable and Computable Specifications

When specifying3 software we usually make use of a formal language – one whose
semantics can be expressed mathematically. And the specification had better be
logically tractable. Similarly for prescribing requirements: again a formal language
can be deployed. And the requirement had better be computable. Typically, when

1 Thus a railway domain model should desirably cover such instances as the railways
of Denmark and Norway and Sweden, each one individually.

2 The approach taken here can, however, also be used to devise new domains.
3 By specifying software we mean specifying the design of the software. That design

is derived from the software requirements.

Domain Modelling: A Foundation for Software Development 167

we derive a software specification, S, from a requirements prescription, R, the
testing, model checking and proof of some form of correctness, D,S |= R, of
the software design relies on not only on relations between the two documents:
the R and S, but also on the domain description, D. But in describing domains
we cannot assume computability. It is the task of requirements engineering to
“derive” computable requirements from domain models. [17, Chapter 9] shows
how. We refer to Sect. 8.2.3 on page 38 for summary comments.

1.3 Formal Method and Methodology

By a method we shall understand a set of principles for selecting and applying
a number of procedures, techniques and tools for [effectively] constructing an
artefact. By methodology we shall understand the study and knowledge of one
or more methods. By a formal method we shall understand a method which uses
one or more formal specification languages as per their intention: specification
and verification (formal tests, model checks and proofs of properties of domains
descriptions,requirement prescriptions and software designs). By a formal speci-
fication language we shall understand a language with a formal syntax, a formal
semantics and a proof system with which to describe & validate4 domains, pre-
scribe & validate requirements and specify (design) & validate software.

Our domain analysis & description method has been developed, over the
years, with this understanding of formal methods.

1.4 From Programming Languages to Domains

Domain stakeholders, those whose primary work is in and of the domain, name
the entities of the domain and use these names, nouns and verbs, in communi-
cating with other stakeholders. These utterings constitute a language, albeit an
informal one. In a domain model we give abstract syntax to (roughly speaking)
the nouns, Sects. 3 and 5, and semantics to (roughly speaking) the verbs, Sect. 6.

When, in comparison, we define the syntax and semantics of a programming
language, that syntax and semantics covers all well-formed instances of programs
in that language. Similarly, when, in consequence, we define the abstract syntax
and semantics, i.e., a model, of a domain, that syntax and semantics covers all
well-formed instances—we mean it, the model, to cover all well-formed instances
of domains.

1.5 A Review

We present a latest exposé of the domain science & engineering of [13,16,17,
2015–2021]. The first inklings of this applied science were first reported in [3,
1995–1997], Volume III, Part IV, Chaps. 8–12, Pages 193–362 of [4, 2006] cover
several aspects of domain engineering – but not what we now consider the most
important contribution to the field: namely that of the analysis & description
4 test, check and verify.

168 D. Bjørner

calculi. First developments of the proposed analysis and description calculi were
reported in [9,10, Kyiv 2010]. The recently published papers and book [13,16,17,
2015–2021] illustrates the fact that the details of the calculi may change. The
present paper reports on our most recent simplification to the domain analysis
& description approach and the few extensions, RSL+, to the RSL specification
language [32]. The domain modelling approach presented here has been honed
over the last 30 years in numerous experiments. Some of these are reported in
[15,18,19,22].

1.6 An Overview

1.6.1 A Domain Analysis and Description Ontology
Sections 3, 4, 5 and 6 represent the contribution of this paper. Figure 1 illustrates
basic ideas of how we shall structure our domain analysis & description.

Fig. 1. An Analysis & Description Methodology Ontology

The domain analyser cum describer, i.e., the domain modeller, is confronted
by a domain. How and where to start! Figure 1 is intended to be read top-down,
left-to-right. So it suggests that the domain modeller, starts by looking “at the
whole domain!”. That is, at the • right under the term Universes, between the r
and the s!

Domain Modelling: A Foundation for Software Development 169

1.6.2 Step-Wise Analysis and Description
Figure 1 then suggests, by the two lines emerging from that •, that the domain
modeller poses the question, of the domain, is it (more or less) rationally
describable, i.e., is entity(φ), or not. If the domain modeller decides yes, it
is so, then the analysis “moves” on to the Entity •. Now the question is, is the
entity being observed, an endurant or a perdurant, (to be explained below), and
so on. We now assume that the analysis proceeds along the left hand side dashed
line (· · · - - -· · ·) box labeled ‘Endurants’.

The so-called external quality analysis of endurants ends when reaching either
of the Atomic, Cartesian or Part Set •s.5 At this point the description proceeds
to that of the internal qualities of endurants. From Fig. 1 You observe seven
vertical [dashed] lines, emanating downwards from endurant bullets to cross
three horizontal (bottom of the figure) lines. They “call” for the domain modeller
to now analyse and describe the internal qualities of endurants: their unique
identification, their mereologies, and their attributes.

Eventually the domain modeller has “traversed” the left hand side of Fig. 1.
At this point a transcendental deduction takes place: The domain modeller now
“morphs” manifest endurant parts into behaviours. The focal point here are the
part behaviour signatures and definitions. Figure 1’s right hand side hints at the
issues to be covered and that the internal qualities are being a crucial element
of behaviour definitions.

1.6.3 The Analysis and Description Prompts
Each • of Fig. 1 thus corresponds to an analysis or description prompt. There are
two kinds of analysis prompts. Both are informal. The predicate analysis prompts
and the function analysis prompts. There is two major kinds of description
prompts. (α) external quality description prompts – with there being two such
specific prompts: one for describing so-called Cartesian endurants (Sect. 3.3.1
on page 12), another for describing so-called Part Set endurants (Sect. 3.3.2 on
page 12), and (β) internal quality description prompts with there being three
such specific prompts: the unique identifier description prompt (Sect. 5.1.1 on
page 16), the mereology description prompt (Sect. 5.2.1 on page 17), and the
attribute description prompt (Sect. 5.3.2 on page 18). The predicate analysis
prompts yield truth values. The function analysis prompts yield part endurants
and the names of their type – which we shall call sorts. And the description
prompts yield domain description texts – here in a slight extended version of the
RAISE6 [33] specification language RSL [32].7,8

5 We shall, in this paper, not exemplify living species endurants.
6 Rigorous Approach to Idustrial Software Engineering.
7 RSL: RAISE Specification Language.
8 Other formal specification languages are possible, f.ex.: VDM [23,24,30], Z [58], Alloy

[42], or CafeOBJ [31].

170 D. Bjørner

1.7 RSL, RSL-text and RSL+

RSL is described in [32]. We use a subset of that RSL. Thus we shall not avail
ourselves of the RSL module concepts of object, class and scheme. Basically, then,
a specification expressed in RSL amounts to sequences of [alternating] type, value
and axiom clauses – with, optionally, a single channel clause:

type
...

value
...

axiom
...

type
...

value
...

axiom
...

...

channel
...

type
...

value
...

axiom
...

type
...

value
...

axiom
...

RSL-text is an addition to RSL. In describing domains in RSL we shall be intro-
ducing description prompts which are informal functions which yield values of
type RSL-text, that is, proper RSL texts. Quoting an RSL text: “text”. shall
denote an RSL-text.

RSL+ designate RSL-text plus, in this paper, one extension. That extension
is that of the type and values of type names. If T denotes a type, i.e., a possibly
infinite set of values, then ηT denotes a value, the name of type T, with φT
denoting the type of type names.

The domain analysis & description method is informally explained in a mix-
ture of English and RSL+. [12, 2014] attempts a formalisation of an early version
of RSL+.

1.8 A Computer Science Philosophy

We shall base our domain analysis & description approach on the philosophy of
Kai Sørlander [53–57]. The issue here is: In studying, analysing & describing
domains one is confronted with the basic [metaphysical] question[s]: which are
the absolutely necessary conditions for describing any world ?, that is: what, if
anything, is of such necessity, that it could under no circumstances be other-
wise ?, or: which are the necessary characteristics of any possible world ? In his
work Sørlander rationally argues that space, time, Newton’s laws, and a number
of additional concepts are necessarily basic elements of any description of any
domain.

1.9 Previous Work

We refer to Sect. 1.5 on page 3.
Axel van Lamsweerde [48, 2009] and Michael A. Jackson [43,44, 1995–2010],

as well as other requirements engineering researchers, do touch upon the issues
of domains – such as that term is basically used here. But their requirements

Domain Modelling: A Foundation for Software Development 171

analysis and prescription do not “put it center stage”, let alone mandate that
the[ir] requirements engineer rely on an a priori established domain description.
So they and others do not establish, as is the main focus of this contribution,
calculi for the analysis & description of domains.

1.10 Structure of Paper

There are basically two parts to this paper. The main part consists of Sects. 2–3
and Sects. 5–6. They present a terse, comprehensive exposé of the domain analy-
sis & description method of this paper. An appendix, the other part, Appendix 7,
brings an example. For the domain modelling approach to be believable the
example must open up for a realistic domain, one that is not “small”.

• • •

We now explain the domain description ontology as a structured set of con-
cepts for modelling domains, a set that shows their properties and the relations
between them. In simple terms, ontology seeks the classification and explanation
of entities.9

Figure 1 on page 4 is a graphical rendition of a structured set of concepts for
modelling domains.

2 Universe of Discourse

Domain descriptions start with a terse sketch of the main facets of the domain
followed by the naming of the domain.

1. Universe of Discourse: calc UoD

Narration:
Text

Formalisation:
type UoD

1 Example . Universe of Discourse: We refer to Sect. 7.1 on page 25.

3 External and Internal Qualities

Characterisation 1: External qualities: External qualities of endurants10 of a
domain are, in a simplifying sense, those properties of endurants that we can
see, touch and which have spatial extent. They, so to speak, take form.

9 Google’s English Dictionary as provided by Oxford Languages.
10 We refer to predicate prompt # 2 below for a definition of endurant.

172 D. Bjørner

Characterisation 2: Internal qualities: Internal qualities of endurants of a
domain are those which we may not be able to see or “feel” when touching
an endurant, but they can, as we now ‘mandate’ them, be reasoned about. They
have unique identifiers and mereologies,11 And they have attributes that can be
measured by some physical/chemical means, or be “spoken of” by intentional
deduction.

3.1 Predicate Analysis of External Qualities of Endurants

Characterisation 3: Phenomenon: By a phenomenon we shall understand a
fact that is observed to exist or happen Examples of phenomena are: emotions
of a human, the rivers, lakes, forests, mountains and valleys of mother nature;
the railway tracks, their units, the locomotive of a railway system.

Domain Analysis Predicates: We shall define a number of domain analysis pred-
icates. They are all referred to as prompts. Prompts are method tools. The
domain modeller applies these to “real”, i.e., actual world phenomena, that is,
not to formal values. In the next 18 paragraphs we shall “reveal” a number of
such predicates. First with a reasonable definition (in slanted font), then with
examples and some comments (in roman font).

Predicate Prompt 1: is entity:By an entity we shall understand something that
can be observed, i.e., be seen or touched by humans, or that can be conceived as
an abstraction of an entity; alternatively, a tangible or conceivable phenomenon
is an entity [49, Vol. I, pg. 665] Some, but not necessarily all aspects of a river
can be rationally described, hence can be still be considered entities. Similarly,
many aspects of a road net can be rationally described, hence will be considered
entities.

Predicate Prompt 2: is endurant: Endurants are those quantities of domains
that we can observe (see and touch), in space, as “complete” entities at no mat-
ter which point in time –“material” entities that persists, endures [49, Vol. I,
pg. 656] Street segments [links], street intersections [hubs], automobiles stand-
ing still in an automobile show room are endurants. Domain endurants, when
eventually modelled in software, typically become data. Hence the careful anal-
ysis of domain endurants is a prerequisite for subsequent careful conception and
analyses of data structures for software, including data bases.

Predicate Prompt 3: is perdurant: By a perdurant we shall understand an
entity for which only a fragment exists if we look at or touch at any given snap-
shot in time. Were we to freeze time we would only see or touch a fragment of
the perdurant [49, Vol. II, pg. 1552] Automobiles in action, container vessels
sailing on the 7 seas and loading and unloading containers in harbours are exam-
ples of perdurants. Domain perdurants, when eventually modelled in software,
typically become processes.

Endurants are either solid endurants, or are fluid endurants.

11 We refer to Sects. 5.1 and 5.2.

Domain Modelling: A Foundation for Software Development 173

Predicate Prompt 4: is solid: By a solid endurant we shall understand an
endurant which is separate, individual or distinct in form or concept, or, rephras-
ing: a body or magnitude of three-dimensions, having length, breadth and thick-
ness [49, Vol. II, pg. 2046] Wells, pipes, valves, pumps, forks, joins, regulator,
and sinks of a pipeline are solids.

Predicate Prompt 5: is fluid: By a fluid endurant we shall understand an
endurant which is prolonged, without interruption, in an unbroken series or
pattern; or, rephrasing: a substance (liquid, gas or plasma) having the property of
flowing, consisting of particles that move among themselves [49, Vol. I, pg. 774]

Fluids are otherwise liquid, or gaseous, or plasmatic, or granular12, or plant
products13, et cetera. Specific examples of fluids are: water, oil, gas, compressed
air, etc. A container, which we consider a solid endurant, may be conjoined with
another, a fluid, like a gas pipeline unit may “contain” gas.

We analyse endurants into either of two kinds: parts and living species. The
distinction between parts and living species is motivated in Kai Sørlander’s Phi-
losophy [53–57].

Predicate Prompt 6: is part: By a part we shall understand a solid endurant
existing in time and space and subject to laws of physics, including the causality
principle and gravitational pull14

Natural and man-made parts are either atomicor compound.

Predicate Prompt 7: is atomic: By an atomic part we shall understand a
part which the domain analyser considers to be indivisible in the sense of not
meaningfully, for the purposes of the domain under consideration, that is, to not
meaningfully consist of sub-parts The wells, pumps, valves, pipes, forks, joins
and sinks of a pipeline can be considered atomic.

Predicate Prompt 8: is compound: Compound parts are those which are either
Cartesian-product- or are set- oriented parts

Predicate Prompt 9: is Cartesian: Cartesian parts are those (compound parts)
which consists of an “indefinite number” of two or more parts of distinctly named
sorts Some clarification may be needed. (i) In mathematics, as in RSL [32],
a value is a Cartesian (“record”) value if it can be expressed, for example as
(a, b, ..., c), where a, b, ..., c are mathematical (or, which is the same, RSL) values.
Let the sort names of these be A,B, ..., C – with these being required to be
distinct. We wrote “indefinite number”: the meaning being that the number is
fixed, finite, but not specific. (ii) The requirement: ‘distinctly named’ is prag-
matic. If the domain modeller thinks that two or more of the components of
a Cartesian part [really] are of the same sort, then that person is most likely
confused and must come up with suitably distinct sort names for these “same

12 This is a purely pragmatic decision. “Of course” sand, gravel, soil, etc., are not
fluids, but for our modelling purposes it is convenient to “compartmentalise” them
as fluids!.

13 i.e., chopped sugar cane, threshed, or otherwise. See footnote 12.
14 This characterisation is the result of our study of relations between philosophy and

computing science, notably influenced by Kai Sørlander’s Philosphy.

174 D. Bjørner

sort” parts! (iii) Why did we not write “definite number” ? Well, at the time of
first analysing a Cartesian part, the domain modeller may not have thought of
all the consequences, i.e., analysed, the compound part. Additional sub-parts,
of the Cartesian compound, may be “discovered”, subsequently and can then,
with the approach we are taking wrt. the modelling of these, be “freely” added
subsequently! We refer to the road transport system example above. We there
viewed (hubs, links and) automobiles as atomic parts. From another point of
view we shall here understand automobiles as Cartesian parts: the engine train,
the chassis, the car body, four doors (left front, left rear, right front, right rear),
and the wheels. These may again be considered Cartesian parts.

Predicate Prompt 10: is part set: Part sets are those which, in a given context,
are deemed to meaningfully consist of an indefinite number of sub-parts of the
same sort Examples of set parts are: the set of hubs of a road net hub aggregate,
the set of links of a road net link aggregate, and the set of automobiles of an
automobile aggregate – all of the road net transport that we are exemplifying.

Predicate Prompt 11: is living species: By a living species we shall understand
a solid endurant, subject to laws of physics, and additionally subject to causality
of purpose. Living species must have some form they can develop to reach;
a form they must be causally determined to maintain. This development and
maintenancemust further engage in exchanges of matter with an environment
It must be possible that living species occur in two forms: plants, respectively
animals. Although we have not yet come across domains for which the need to
model the living species of plants were needed. Hence:

Predicate Prompt 12: is plant:Plants are living species which are characterised
by development, form and exchange of matters with an environment

Predicate Prompt 13: is animal:Animals are living species which are addition-
ally characterised by the ability of purposeful movement

Predicate Prompt 14: is human: A human (a person) is an animal, with the
additional properties of having language, being conscious of having knowledge(of
its own situation), and responsibility

Characterisation 4: Manifest Part: By a manifest part we shall understand a
part which ‘manifests’ itself either in a physical, visible manner, “occupying” an
AREA or a VOLUME and a POSITION in SPACE, or in a conceptual manner
forms an organisation in Your mind! As we have already revealed, endurant
parts can be transcendentally deduced into perdurant behaviours – with manifest
parts indeed being so.

Predicate Prompt 15: is manifest:is manifest(e) holds if e is manifest

Characterisation 5: Structure: By a structure we shall understand an endurant
concept that allows the domain modeller to rationally decompose a domain anal-
ysis and/or its description into manageable, logically relevant sections, but where
these abstract endurants are not further reflected upon in the domain analysis
and description Structures are therefore not transcendentally deduced into
perdurant behaviours.

Domain Modelling: A Foundation for Software Development 175

Predicate Prompt 16: is structure:is structure(e) holds if e is a structure

Examples of structures arise as the result of our analysis of parts. Thus a
road net could be modelled as the composite of two structures: a set of hubs and
a set of links (the stretches between two adjacent hubs, i.e., road intersections),
cf. Items 6–7 on page 25.

Predicate Prompt 17: is stationary:An endurant part is stationary if it never
changes position in space

Predicate Prompt 18: is mobile: An endurant part is mobile if it may possibly
change position in space

We may need, occasionally, the distinction as now outlined:
Endurants are either natural endurants, or are artefactual endurants.

Predicate Prompt 19: is natural: By a natural endurant we shall understand
one which has been created by nature.

Predicate Prompt 20: is artefactual: By an artefactual endurant we shall
understand one which has been created by humans.

Discrete Dynamic and Artefactual Domains: In our initial characterisation
of domains, Page 2, an emphasis was put on their discrete dynamics and human
assistedness. The analysis and description calculi and, hence, our domain mod-
elling, are therefore “geared” in that direction.

We are not offering to model time continuous domains. See Sect. 8.2.9 on
page 39.

We summarise15:
2. Analysis Predicates

value
is entity: Φ → Bool
is endurants: E → Bool
is perdurant: E → Bool
is solid: E → Bool
is fluid: E → Bool
is part: E → Bool

is living species: E → Bool
is atomic: E → Bool
is compound: E → Bool
is animal: E → Bool
is plant: E → Bool
is Cartesian: E → Bool
is part set: E → Bool

is human: E → Bool
is manifest: E → Bool
is structure: E → Bool
is stationary: E → Bool
is mobile: E → Bool
is natural: E → Bool
is artefactual: E → Bool

2 Example. Analysis Predicates: In the example of Appendix 7–on page 25–37 we
do not [explicitly] show the “application” of analysis predicates. They are tacitly
assumed.

3.2 Functional Analysis of External Qualities of Endurants

Given a compound endurant, that is, either a Cartesian or a part set, we analyse
that compound, at the two •’s of Fig. 1 on page 4, into its constituent endurants,
respectively parts, and the name of the sort:
15 Framed texts highlight domain analysis & description prompts.

176 D. Bjørner

3. determine Cartesian parts, determine part set

value
determine Cartesian parts: E → (E1×η Φ)×(E2×η Φ)×...×(Ec×η Φ)
determine Cartesian parts(e) as (e1:ηE1,e2:ηE2,...,ec:ηEc)

determine part set: E → P-set×η Φ
determine part set(e) as ({p1,p2,...,ps}:ηP,)

The above calculation function signatures and characterisations illustrate two
extensions to RSL [32]: ηP expresses the name of a sort P, and η Φ expresses the
type of sort names.

Again we emphasize that these calculations are performed by the domain
modeller. They are used in subsequent schemas for describing external qualities
of endurants.

3.3 Descriptions of External Qualities of Endurants

Similarly, again at the two ’s of Fig. 1 on page 4, we are now ready to describe
respectively Cartesian parts and part set parts.

3.3.1 Describing Cartesian Parts

4. descr Cartesian

value
descr Cartesian: P → RSL-Text
descr Cartesian(p) ≡

“Narrative:
[s] text on sorts
[o] text on observers
[a] text on axioms and/or proof obligations

Formalisation:
[s] type

E1, E2, ..., Ec
[o] value

obs E1: E→E1, obs E2: E→E2, ..., obs Ec: E→Ec
[a] axiom and/or proof obligation

A/P(...) ”

3 Example . Cartesians: We refer to Sect. 7.2.1 on page 25.

Domain Modelling: A Foundation for Software Development 177

3.3.2 Describing Part Sets

5. descr part set

value
descr part-set: P → RSL-Text
descr part set(p) ≡

“Narrative:
[s] text on sorts
[o] text on observers
[a] text on axioms and/or proof obligations

Formalisation:
[s] type

P, Ps = P-set
[o] value

obs Ps: E→Ps
[a] axiom and/or proof obligation

A/P(...) ”

4 Example . Part Sets: We refer to Sect. 7.2.2 on page 25.

3.4 Endurant States

Characterisation 6: Endurant State: By an endurant state we shall understand
any collection of endurant parts

6. obs Σ

value
Σ = P-set
value
obs Σ: E → Σ
obs Σ(e) ≡

if is manifest(e)
then

is atom(e) → {e},
is Cartesian(e) →
let (p1:ηE1,p2:ηE2,...,pc:ηEc)=calc cartesian parts and sorts(e) in
{p1,p2,...,pc}∪obs Σ(p1)∪obs Σ(p2)∪...∪obs Σ(pc) end

is part-set(e) →
let ({p1,p2,...,ps}:ηP)=calc part sets parts and sort(e) in
{p1,p2,...,ps}∪obs Σ(p1)∪obs Σ(p2)∪...∪obs Σ(ps) end

else {}
end

5 Example . Endurant State Examples: We refer to Sect. 7.2.3 on page 26.

178 D. Bjørner

3.5 An Explication, I

The concept of analysis predicates and part observer functions is due to
McCarthy [51, Sect. 12–13].

In [51] McCarthy introduces a notion of abstract syntax, Sect. 12, and seman-
tics, Sect. 13. So far we have dealt, in our domain analysis, with syntax. There
are three elements, according to McCarthy, to consider: the is ... predicates,
the obs ... [“destructor”] functions, and, not shown, so far, in this paper, the
mk ... constructor functions.

For compound abstract syntactic entities they are related as follows:

is Cartesian(p) ≡
let (p1:ηP1,p2:ηP2,...,pc:ηPc) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p)) end

is part set(p) ≡
let ({p1,p2,...,ps},ηP1) = calc part sets parts and sort(p) in
p = mk part set({p1,p2,...,ps}) end

The mk ... constructors were not introduced above. The reason is simple; a
pragmatic decision: As the domain modeller proceeds in their work they may,
when encountering Cartesian compounds, be free to leave some components (of
the Cartesian) out, components that they may later introduce. So really, the
first of the identities above ought be expressed as

is Cartesian(p) ≡
let (p1η:P1,p2:ηP2,...,pc:ηPc,...) = calc Cartesian parts and sorts(p) in
p = mk Cartesian(obs P1(p),obs P2(p),...,obs Pc(p),...) end

We continue this explication in Sect. 5.5 on page 20.

4 Space and Time

The concepts of space and time can be transcendentally deduced, by rational rea-
soning, as has been shown in [53–57, Kai Sørlander], from the facts of symmetry,
asymmetry, transitivity and intransitivity relations.

They are therefore facts of every possible universe.

4.1 Space

There is one given space. As a type we name it SPACE. We do not bother,
here, about textual representation of spatial locations, but here is an example
that would work in or near this globe we call our earth: Latitude 55.805600,
Longitude 12.448160, Altitude 35 m16.
16 The author’s house location!.

Domain Modelling: A Foundation for Software Development 179

Also, in this paper, we do not present models of SPACE. But we do introduce
such notions as (i) POINT: as SPACE being some dense and infinite collection
of points; (ii) LOCATION: as the location in space of some point;

value record LOCATION: E → LOCATION

(iii) CURVE: as an infinite collection of points forming a mathematical curve –
having a (finite or infinite) length; (iv) SURFACE: as an infinite collection of
points forming a mathematical surface – having a (finite or infinite) area; and
(v) VOLUME: as an infinite collection of points forming a mathematical volume
– having a (finite or infinite) volume. We suggest it, as a domain science &
engineering research topic, that somebody studies a calculus or calculi of spatial
modelling.

4.2 Time

There is one given time. As a type we name it TIME. We do not bother, here,
about textual representation of time, but here is an example: July 10, 2023:
15:1917. But we do introduce such crucial notions as time interval TI and oper-
ations on TIME and TI:

value
−: TIME×TIME→TI

+: TIME×TI→TIME

∗: Real×TI→TI

A crucial time-related operation is that of record TIME. It applies to “nothing”:
record TIME() and yields TIME.

value record TIME: Unit → TIME

5 Internal Qualities

We refer to the Internal Qualities characterisation on Page 8. We can justify
the grouping of internal endurant qualities into three kinds: unique identifiers,
cf. Sect. 5.1, mereologies, cf. Sect. 5.2, and attributes, cf. Sect. 5.3. To this we add
the concept of intentional pull, cf. Sect. 5.4.

5.1 Unique Identification

On the basis of philosophical reasoning, within metaphysics, we [can] argue that
parts are uniquely identifiable [53–57, Kai Sørlander]

17 The time this text was last compiled!

180 D. Bjørner

5.1.1 Calculate Unique Identifiers
7. descr unique identifier

value
descr unique identifier: P → RSL-Text
descr unique identifier(p) ≡

“Narrative:
[s] text on unique identifier sort
[o] text on unique identifier observer
[a] text on axioms and/or proof obligations

Formalisation:
[s] type

PI
[o] value

uid P: P → PI
[a] axiom and/or proof obligation

A/P(...) ”

6 Example . Unique Identifiers: We refer to Sect. 7.3.1 on page 26.

5.1.2 Endurant Identifier States
Given the endurant state values, for the whole domain or for respective, manifest
part sorts, one can define corresponding unique identifier values.

7 Example . Unique Identifier State: We refer to Sect. 7.3.2 on page 27.

5.1.3 Axioms
The number of manifest parts is the sames as the number of manifest part unique
identifiers.

8 Example . Unique Identifier Axiom: We refer to Sect. 7.3.3 on page 27.

5.1.4 Endurant Retrieval
Given a unique identifier, π, of a manifest part, p, of an endurant state, σ, of a
domain one can retrieve that part:

value
σ:Σ = gen Σ(uod)
retr P: Π → Σ → P
retr P(π)(σ) ≡ let p:P • p ∈ σ ∧ uid P(p)=π in p end

Domain Modelling: A Foundation for Software Development 181

5.2 Mereology

Mereology is the study and knowledge of parts and part relations. It was first
put forward, around 1916, by the Polish logician Stanis�law Leśniewski [26,50].

Which are the relations that can be relevant to being an endurant ? There are
basically two relations: (i) physical ones, and (ii) conceptual ones. (i) Physically
two or more endurants may be topologically either adjacent to one another, like
rails of a line, or within an endurant, like links and hubs of a road net, or an
atomic part is conjoined to one or more fluids, or a fluid is conjoined to one or
more parts. The latter two could also be considered conceptual “adjacencies”. (ii)
Conceptually some parts, like automobiles, “belong” to an embedding endurant,
like to an automobile club, or are registered in the local department of vehicles,
or are ‘intended’ to drive on roads.

5.2.1 Calculate Mereologies

8. descr mereology

value
descr mereology: P → RSL-Text
descr mereology(p) ≡

“Narrative:
[s] text on mereology type
[o] text on mereology observer
[a] text on axioms and/or proof obligations

Formalisation:
[s] type

MT = M(p)
[o] value

mereo P: P → MT
[a] axiom and/or proof obligation

A/P(...) ”

M(p) is usually a type expression over unique identifiers of mereology-related
parts.

9 Example . Mereology: We refer to Sect. 7.4 on page 27.

Given the definition of external qualities of a domain, and its unique identifier
and mereology internal qualities one can analyse and describe many proper-
ties of that domain. The routes subsection (Page 28) of the mereology example,
Example 9, illustrates one such property.

5.3 Attributes

Parts and fluids are typically recognised because of their spatial form and are
otherwise characterised by their intangible, but measurable attributes. That is,

182 D. Bjørner

whereas endurants, whether solid (as are parts) or fluids, are physical, tangi-
ble, in the sense of being spatial [or being abstractions, i.e., concepts, of spatial
endurants], attributes are intangible: cannot normally be touched, or seen, but
can be objectively measured. Thus, in our quest for describing domains where
humans play an active rôle, we rule out subjective “attributes”: feelings, senti-
ments, moods. Thus we shall abstain, in our domain science also from matters
of psychology and aesthetics.

5.3.1 Functional Analysis of Attributes
Given a manifest part, p, that is, either an atom, or a Cartesian, or a part set,
we calculate from that part, its constituent attributes values and types:

9. determine attributes

value
determine attributes: P → (a1×ηA1)×(a2×ηA2)×...×(aa×ηAa)

5.3.2 Describe Attributes

10. descr attributes

value
descr attributes: P → RSL-Text

let ((,ηA1),(,ηA2),...,(,ηAa))=determine attributes(p:P) in
descr attributes(p) ≡

“Narrative:
[s] text on attribute types
[o] text on attribute observers
[a] text on axioms and/or proof obligations

Formalisation:
[s] type

A1 [=...], A2 [=...], ..., Aa [=...],
[o] value

attr A1: P→A1, attr A2: P→A2, ..., attr Aa: P→Aa,
[a] axiom and/or proof obligation

A/P(...) ”
end

The domain modeller has thus determined/decided that A1, A2, ..., Aa are
the “interesting” attributes of of parts of sort P. Attributes are often given a
“concrete” form, hence the [= ...] where the ... is some type expression.

10 Example . Attributes: We refer to Sect. 7.5 on page 29.

Domain Modelling: A Foundation for Software Development 183

5.3.3 Attribute Categories
Michael A. Jackson has proposed a structure of attributes [43].

Attribute Category 1: Static: By a static attribute we shall understand an
attribute whose values are constants, i.e., cannot change.

Attribute Category 2: Dynamic: By a dynamic attribute we shall understand
an attribute whose values are variable, i.e., can change. Dynamic attributes are
either inert, reactive or active attributes.

Attribute Category 3: Inert: By an inert attribute we shall understand a
dynamic attribute whose values only change as the result of external stimuli
where these stimuli prescribe new values.

Attribute Category 4: Reactive: By a reactive attribute we shall understand
a dynamic attribute whose values, if they vary, change in response to external
stimuli, where these stimuli either come from outside the domain of interest or
from other endurants.

Attribute Category 5: Active: By an active attribute we shall understand
a dynamic attribute whose values change (also) of its own volition. Active
attributes are either autonomous, or biddable or programmable attributes.

Attribute Category 6: Autonomous: By an autonomous attribute we shall
understand a dynamic active attribute whose values change only “on their own
volition”. The values of an autonomous attributes are a “law onto themselves
and their surroundings”.

Attribute Category 7: Biddable: By a biddable attribute we shall understand a
dynamic active attribute whose values are prescribed but may fail to be observed
as such.

Attribute Category 8: Programmable: By a programmable attribute we shall
understand a dynamic active attribute whose values can be prescribed.

We modify Jackson’s categorisation. This is done in preparation for our
exposé of behaviour signatures, cf. Sect. 6.4.1 on page 23. Figure 2 shows group-
ings of some of M. A. Jackson’s basic categories.

Fig. 2. An Attribute Ontology

184 D. Bjørner

Our motivation for modifying Jackson’s attribute categories is as follows:
when transcendentally deducing behaviours from parts we find that there are
basically a need for distinguishing between only three major attribute categories
the static, the monitorable, and the programmable attributes. Static attributes
have their values passed “by value”, as constants, programmable attributes have
their values passed by “by reference”, as variables who value can be changed,
and monitorable attributes have their values passed by “by name” – as we shall
see!

5.4 Intentional Pull

5.4.1 Characterisations
Intentionality as a philosophical concept is defined by the Stanford Encyclopedia
of Philosophy18 as “the power of minds to be about, to represent, or to stand for,
things, properties and states of affairs.”

Intent is then a usually clearly formulated or planned intention. An example
of intent is that of roads made for automobiles and automobiles meant for roads.

Intentional Pull19: Two or more artefactual parts of different sorts, but with
overlapping sets of intents may excert an intentional “pull” on one another. This
intentional “pull” may take many forms. Let px: X and py:Y be two parts of
different sorts (X,Y), and with common intent, ι. Manifestations of these, their
common intent, must somehow be subject to constraints, and these must be
expressed predicatively. When a composite artefact has an intentionality then its
constituents have individual intentionalities that relate to these. The composite
road transport system has intentionality of the roads serving the automobiles,
and the automobiles have the intent of being served by the roads.

11 Example . Intentional Pull: Road Transport: We refer to Sect. 7.6 on page 30.

12 Example . Intentional Pull: Double-entry Bookkeeping: Double-entry bookkeep-
ing, also known as double-entry accounting, is a method of bookkeeping that relies
on a two-sided accounting entry to maintain financial information. Every entry
to an account requires a corresponding and opposite entry to a different account.
The double-entry system has two equal and corresponding sides known as debit
and credit. A transaction in double-entry bookkeeping always affects at least two
accounts, always includes at least one debit and one credit, and always has total
debits and total credits that are equal.20.

5.5 A Proof-Theoretic Explication, II

We remind You of Sect. 3.5 on page 14.
With the introduction of analysis functions and observers for unique iden-

tifiers, mereology and attributes we can now augment the is ..., uid ...,
mereo ..., attr A... observers introduced since Page 14.
18 Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (-

seop.illc.uva.nl/entries/intentionality/ October 15, 2014, retrieved April 3,
2018.

19 The term intentional pull is chosen so as to connote with the term gravitational pull.
20 https://en.wikipedia.org/wiki/Double-entry bookkeeping.

Domain Modelling: A Foundation for Software Development 185

is manifest(p:P) ≡
let ((,ηA1),(,ηA2),(,ηAa)) = calc attributes(p) in
p = mk P(uid P(p),mereo P(p),(attr A1(p),attr A2(p),...,attr Aa(p))) end

6 Perdurants

A key point of our domain science & engineering approach is this: to every
manifest part we transcendentally deduce a unique behaviour.

By transcendental we shall understand the philosophical notion: the a pri-
ori or intuitive basis of knowledge, independent of experience.

By a transcendental deduction we shall understand the philosophical
notion: a transcendental ‘conversion’ of one kind of knowledge into a seemingly
different kind of knowledge.

6.1 Channels

Part behaviours may interact. To express part behaviours and their interaction
we use Hoare’s CSP [38,39]. One may question this choice. In [7,11,14, 2009–
2017] we show “that to every mereology there is a CSP expression”. On that
background we maintain that CSP is a reasonable choice—but invite the reader
to suggest more appropriate mechanisms for handling behaviours and their com-
munication.21

So, in general, we declare a RSL/CSP channel :
11. channel declaration

channel { ch[{ui,uj}] | ui,uj:UI • {ui,uj}⊆uis } : M

Here ch is the name of the indexed array of channels and the indexes are, in
general, any two element sets of unique part identifiers. That is: For every pair
of part behaviours – identified but their unique part identifiers (ui,uj) – there is
a channel, say ch[{ui,uj}].

M is the type of the messages communicate between behaviours of index ui,uj.
We shall develop, in Sect. 6.2.2, the specifics of the type, M, of channel mes-

sages.

6.2 Actors

By an actor we shall understand either an action, or an event, or a behaviour.

21 Please bear in mind that the use, here, of CSP, is in the following context: the CSP

clauses are not to be “interpreted” on a computer where this “computerisation” has
to be “shared” with other computations; hence CSP synchcronisation & communica-
tion is “ideal” and reflects reality.

186 D. Bjørner

6.2.1 Actions
By an action of a behaviour we shall understand something which is local to a
behaviour, and, which, when applied, potentially changes the states. Generally
action clauses are expressed in RSL [32].

13 Example . Road Transport Actions: We refer to Sect. 7.7.2 on page 33.

6.2.2 Events
By an event of a behaviour we shall understand something that involves two
behaviours, and, which, when applied, potentially changes the states of both
behaviours. Event clauses are expressed using the CSP elements of RSL. That is,
the CSP output “!” and input events “?”:

ch[{ui,uj}] ! expr
let val = ch[{ui,uj}] ? ... end

14 Example . Road Transport Events: We refer to Sect. 7.7.2 on page 33.

6.3 State Access and Updates

We need define two functionals: one for changing the mereology of a part and
another for changing the attribute value of a part. We therefore informally define
the following functionals:

6.3.1 Update Mereologies

– part update mereology is a functional: it takes the following arguments: a part
p of type P and a mereology value and yields a part of type P.

– The yielded result, p′, has the same unique identifier, as the argument part
p,

– a new, the argument, mereology, as the argument part p,
– and the same attribute values for all attributes, as the argument part p.

value
part update mereology: P → M → P
part update(p)(m) ≡

let ((,ηA1),(,ηA2),...,(,ηAa)) = determine attributes(p) in
let p′:P • uid P(p′)=uid P(p)∧mereo P(p′)=m∧

∀ ηA:ηΦ•ηA∈{ηA1,ηA2,...,ηAa}⇒attr A(p′)=attr A(p) in
p′ end end

Domain Modelling: A Foundation for Software Development 187

6.3.2 Update Attributes

– part update attribute is a functional: it takes the following arguments: a part
p of type P and a pair of an attribute name and value, and yields a part p′

of type P.
– The argument attribute name must be that of an attribute of the part.
– The yielded result p′ has the same unique identifier and mereology as the

argument part p,
– and the same attribute values for all attributes, as the argument part p, except

for argument attribute (name) for which it now yields the argument attribute
value.

value
part update attribute: P → ΦA × A → P
part update attribute(p)(ηA,a) ≡

let ((,ηA1),(,ηA2),...,(,ηAa)) = determine attributes(p) in
assert: ηA∈{ηA1,,ηA2,...,,ηAa}

let p′:P • uid P(p)=uid P(p′)∧mereo P(p)=mereo P(p′)∧
∀ ηA:ηΦ•ηA∈{ηA1,,ηA2,...,,ηAa}\ηA⇒attr A(p′)=attr A(p) in

p′ end end

Examples of monitorable attributes are: an automobile’s velocity and engine
(cooler) temperature. Monitorable attributes usually change their values surrep-
titiously. That is, “behind the back”, so-to-speak, of the part behaviour.

6.4 Behaviours

By a behaviour we shall understand a set of sequences of actions, events and
behaviours.

6.4.1 Behaviour Signatures
We now come to a crucial point in our unrolling the domain science & engi-
neering method. It is that of explaining the signature of behaviours, that is, the
arguments ascribed to part behaviours. The general form of part p behaviour
signatures is as follows.

12. Behaviour Signatures

value
p behaviour: p:P→in,out {ch[{uid P(p),ui}]|ui:UI•ui∈uis∧Mereo(p)} Unit

Yes, that is it! The behaviour of a[ny] (manifest) part, p, is a function
whose only argument is that part! The signature informs of the channels that
p behaviour may communicate with. The literal Unit informs that the behaviour
may not yield any value, but, for example, go on “forever” having possibly
effected a state change!

188 D. Bjørner

6.4.2 Behaviour Definitions
Behaviours, besides their signatures, are defined. That is, a behaviour definition
‘body’ describes, in, for us, using RSL [32] with its embodiment of a variant
of CSP [39], basically CSP clauses how it interacts with other behaviours, and,
in basically RSL’s functional specification (read: programming) clauses, how it
otherwise “goes about its business”!

In fragment I the focus is on the possible [action] update of either biddable
or programmable attributes.

13. Behaviour Definition, I

p behaviour(p) ≡
let p′ = possible update of biddable and programmable attributes(p) in
p behaviour(p′) end

In fragment II the focus is on the possible [action] value access to any
attributes.

14. Behaviour Definition, II

p behaviour(p) ≡ ... attr A(p) ... p behaviour(p)

In fragment III the focus is on the possible interaction with other behaviours,
hence illustrates two events as seen from one behaviour.

15. Behaviour Definition, III

p behaviour(p) ≡
...
let (val,ui) = E(p) in ch[{uid P(p),ui}] ! val end ;
...
let uj = I(p) in let (val′,uj) = ch[{uid P(p),uj}] ? in
...
p behaviour(p) end end

15 Example . Road Transport Behaviour Definitions: We refer to Sect. 7.7.4 on
page 33.

6.5 Domain Initialisation

By domain initialisation we mean the “start-up” of a behaviour for all manifest
parts.

16 Example . Road Transport Domain Initialisation: We refer to Sect. 7.8 on page
36.

Domain Modelling: A Foundation for Software Development 189

6.6 End of Domain Modelling Presentation

This concludes the four sections, Sects. 2, 3, 4 and 6, on domain modelling.

7 A Road Transport Domain Example

7.1 Naming and Sketch of Domain

We refer to Sect. 2 on page 7.
Narration:

1 The domain is referred to as RTD, the road transport domain.
2 The road transport domain comprises a set of automobiles and a road net of

street intersections, called hubs, and [uninterrupted] street segments, called
links. Automobiles drive in and out of hubs and links.

Formalisation:

type
1. RTD

7.2 Endurants: External Qualities

7.2.1 Cartesian Examples
We refer to Sect. 3.3.1 on page 12.

3 There is a road transport domain.

From road transport domains we can
observe

4 a road net aggregate and
5 an automobile aggregate.

From the road net aggregate we can
observe

6 an aggregate of hubs,
i.e., street intersections, and

7 an aggregate of links,
i.e., street segments (with no hubs).

type
3. RTD
4. RNA
5. AA
6. HA
7. LA

value
4. obs RNA: RTD → RNA
5. obs AA: RTD → AA
6. obs HA: RNA → HA
7. obs LA: RNA → LA

7.2.2 Part Sets
We refer to Sect. 3.3.2 on page 12.

8 There are hubs; from aggregate of hubs one can observe sets of hubs.
9 There are links; from aggregate of links one can observe sets of links.

10 There are automobiles; from aggregate of automobiles one can observe sets
of automobiles.

190 D. Bjørner

type
8. H, Hs = H-set
9. L, Ls = L-set
10. A, As = A-set

value
8. obs Hs: HA → Hs
9. obs Ls: LA → Ls
10. obs As: AA → As

7.2.3 Endurant States
We refer to Sect. 3.4 on page 13.

11 The singleton value rtd represents a road transport [domain] state.
12 The set value hs represents a state of all hubs of that road transport domain.
13 The set value ls represents a state of all links of that road transport domain.
14 The set value as represents a state of all automobiles of that road transport

domain.

value
11. rtd:RTD,
12. hs:H-set = obs Hs(obs HA(obs RNA(rtd))),
13. ls:L-set = obs Ls(obs LA(obs RNA(rtd))),
14. as:A-set = obs As(obs AA(rtd))

7.3 Unique Identifiers

We refer to Sect. 7.3.1 on page 15.

7.3.1 Unique Identifiation
We shall only consider hubs, links and automobiles.

15 Hubs have unique identifiers.
16 Links have unique identifiers.
17 We define also a unique identifier observer for hubs and links.
18 Automobiles have unique identifiers.

type
15. HI
16. LI
18. AI
value
15. uid H: H → HI
16. uid L: L → LI
17. uid HL: (H|L) → (HI|LI), uid HL(hl) ≡ is H(hl)→uid H(hl), →uid L(hl)
18. uid A: A → AI

Domain Modelling: A Foundation for Software Development 191

7.3.2 Unique Identifier State

19 The variable his contains all unique hub identifiers of the road transport
domain 3 on page 25.

20 The variable lis contains all unique link identifiers of the road transport
domain 3 on page 25.

21 The variable ais contains all unique automobile identifiers of the road trans-
port domain 3 on page 25.

variable
14. his = { uid H(h) | h:H • h ∈ hs }.
19. lis = { uid L(l) | l:L • l ∈ ls }.
20. ais = { uid A(a) | a:A • a ∈ as }.

7.3.3 Unique Identifier Axiom

22 No two hubs, links and automobiles have the same unique identifier.
23 ps is the set of all hubs, links and automobiles.
24 uis is the set of all unique hub, link and automobile identifiers.

axiom
22. card hs = card his,
22. card ls = card lis,
22. card as = card ais,
22. card hs + card ls + card as = card his + card lis + card ais
value
23. ps = hs ∪ ls ∪ as
24. uis = his ∪ lis ∪ ais
axiom
22. card ps = card uis

7.4 Mereology

We refer to Sect. 7.4 on page 17.

25 The mereology of any hub is a
pair: the possibly empty set of the
unique identifiers of links leading
into and/or out from the hub, and
the set of the unique identifiers
of automobiles that are allowed to
drive in the hub.

26 The mereology of any link is a pair:
the two element set of the unique

identifiers of the two hubs that are
connected by the link, and the set
of the unique identifiers of automo-
biles that are allowed to drive on
the link.

27 The mereology of any automobile
is the set of the unique identifiers
of hubs in and links on which the
automobile may be driving.

192 D. Bjørner

type
25. H Mer=LI-set×AI-set
26. L Mer=HI-set×AI-set
27. A Mer=(HI|LI)-set

value
25. mereo H: H→H Mer
26. mereo L: L→L Mer
27. mereo A: A→A Mer

28 Link and automobile identifiers of hub mereologies must be of the road trans-
port domain.

29 Hub and automobile identifiers of hub mereologies must be of the road trans-
port domain and there must be exactly two hub identifiers of those mereolo-
gies.

30 Hub and links identifiers of automobile mereologies must be of the road
transport domain.

axiom
28. ∀ (lis,ais):H Mer•lis⊆lis∧ais⊆ais
29. ∀ (his,ais):L Mer•his⊆his∧ais⊆ais∧card his=2
30. ∀ ris:A Mer•ris⊆his∪lis

7.4.1 Routes

31 By a route (of a road net) we shall understand
a an alternating sequence of one or more hub and link identifiers

32 such that
a basis clause 0: the empty list is a route;
b basis clause 1: a singleton list of a hub or a link identifier of the road net

is a route;
c inductive clause: the concatenation of a route, r, and the tail of a route
r′ where the last element of r is identical to the first element of r′ is a
route; and

d extremal clause: and only such routes that can be formed using the above
clauses are routes.

type
31. R′ = (HI|LI)∗

31a. R = {| r:R′ | wf R(r)(rtd) |}
value
31a. wf R: R′ → RTD → Bool
31a. wf R(r)(rtd) ≡
31a. ∀ i,i+1:Nat • {i,i+1}⊆index(r) ⇒
31a. let (ri,ri′) = (r[i],r[i+1]) in
31a. is LI(ri)∧is HI(ri′)∧ ...
31a. is HI(ri)∧is LI(ri′)∧ ...
31a. end

Domain Modelling: A Foundation for Software Development 193

32. routes: RTD×HI-set×LI-set → R-infset
32. routes(rtd,his,lis) ≡
32. let rs = { 〈〉 }
32. ∪ { 〈hi〉 | hi:HI • hi ∈ his }
32. ∪ { 〈li〉 | li:LI • li ∈ lis }
32. ∪ { r̂tl r′ | {r,r′}⊆rs ∧ r[len r]=hd r′ } in
32c. rs end
32. pre: his={uid H(h)|h:H•h ∈ obs Hs(obs AH(obs RN(rtd)))} ∧
32. lis={uid L(l)|l:L•l ∈ obs Ls(obs AL(obs RN(rtd)))}

7.5 Attributes

We refer to Sect. 7.5 on page 17.

7.5.1 Hubs, Links and Automobiles

Hub Attributes

33 Hubs have [traffic signal] states which are set of pairs, li,lj, of identifiers of
the mereology links “signaling” that automobiles can connect from link li to
link lj.

34 Hubs have [traffic signal] state spaces – designating the set of all possible hub
states.

35 Hubs have a history; see Item 46 on page 31.

Link Attributes

36 Links have lengths.
37 Links have a history; see Item 47 on page 31.

Automobile Attributes

38 Automobiles have positions on the road net:
a either at a hub,
b or on a link, some fraction
c down from an entry hub towards the exit hub.

39 Automobiles have a history; see Item 48 on page 31.

We postpone treatment of hub, link and automobile histories till Sect. 7.6.1.

type
33. HΣ = (LI×LI)-set
34. HΩ = HΣ-set
35. H Hist = ...

194 D. Bjørner

36. LEN
37. L Hist = ...
38. A Pos = At Hub | On Link
38a. At Hub :: HI
38b. On Link :: LI × HI × F × HI
38c. F = Real axiom ∀ f:F • 0<f<1
39. A Hist = ...
value
33. attr HΣ: H → HΣ
34. attr HΩ: H → HΩ
35. attr H Hist: A → H Hist
36. attr LEN: L → LEN
37. attr L Hist: A → L Hist
38. attr APos: A → A Pos
39. attr A Hist: A → A Hist

We omit treatment of such automobile attributes as speed, acceleration, engine
temperature, energy (gas, oil, electricity) level, mileage and trip counters, GPS
(map) position, road surface temperature, gear position (reverse, neutral, for-
ward (1, 2, 3, 4, 5), hand brake position, clutch position, accelerator pressure,
brake pedal position, etc.

40 The link identifiers of a hub state must be of the mereology of that hub.
41 A hub state must be in the hub state space.
42 The automobile position must be on the road net.

axiom
40. ∀ h:H • h ∈ hs • let hσ = attr HΣ(h), (lis,) = mereo H(h) in
40. ∀ (li,lj):(LI×LI) • (li,lj) ∈ hσ ⇒ {li,lj}⊆lis

41. ∀ h:H • h ∈ hs • attr HΣ(h) ∈ attr HΩ(h)

42. ∀ a:A • a ∈ as • let apos = attr A Pos(a) in
42. cases apos of
42. At Hub(hi) → hi ∈ his,
42. On Link(li,fhi, ,thi) →
42. let (his,ais) = mereo L(retr L(li,ls)) in
42. {fhi,thi}⊆his ∧ uid A(a) ∈ ais end
42. end end

These were some well-formedness axioms. In Sect. 7.6.1 we shall treat well-
formedness of hub, link and automobile histories.

Domain Modelling: A Foundation for Software Development 195

7.5.2 Attribute Category Examples
Attribute categories are: HΣ (Item 33 on the preceding page) is a programmable
attribute; HΩ (Item 34 on the previous page) is a static attribute; LEN (Item 36
on the preceding page) is a static attribute; A Pos (Item 38 on the previous page)
is a programmable attribute; GPS Map is an inert attribute; Speed is a biddable
attribute; Road Surface Temperature is an autonomous attribute; etcetera.

7.6 Intentional Pull

We refer to Sect. 7.6 on page 20.

7.6.1 Further Attributes
We start by formulating the hub, link and automobile history attribute defini-
tions.

43 Hubs and links are entered and left by automobiles, i.e., marked by corre-
sponding events.

44 Automobile enters and leaves hubs, i.e., marked by corresponding events.
45 Automobile enters and leaves links, i.e., marked by corresponding events.
46 Hub histories are time-stamped sequences of automobile enter/leave events

– in decreasing order (most recent events are listed first),
47 Link histories are time-stamped sequences of automobile enter/leave events

– in decreasing order (most recent events are listed first),
48 Automobile histories are time-stamped sequences of hub and link enter/leave

events – in decreasing order (most recent events are listed first),
49 For convenience we “lump” hub and link histories into hub-link histories.

type
43. HL OnOff = mkEnter(ai:AI) | mkLeave(ai:AI)
44. A OnOff H = mkEnterHub(s:HI) | mkLeaveHub(s:HI)
45. A OnOff L = mkEnterLink(s:LI) | mkLeaveLink(s:LI)
46. H Hist = (s t:TIME×s oo:HL OnOff)∗

47. L Hist = (s t:TIME×s oo:HL OnOff)∗

48. A Hist = (s t:TIME×s oo:(OnOff H|OnOff L))∗

49. HL Hist = H Hist | L Hist
value
49. attr HL Hist: (H→H Hist) | (L→L Hist)

50 Automobile histories
a alternate between being on hubs and being on links.
b such that the enter hub event time is identical to the immediately “prior”

leave link event time,
c and such that these events are otherwise ordered in decreasing order of

time.

196 D. Bjørner

axiom
50. ∀ a hist:A Hist •

50. ∀ i:Nat • {i,i+1}⊆inds a hist ⇒
50. let (e1,e2)=(s oo(a hist[i]),s oo(a hist[i+1])),
50. (t1,t2)=(s t(a hist[i]),s t(a hist[i+1])) in
50. case (e1,e2)
50b. (mkLeaveHub(hi),mkEnterLink(li)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterHub(hi)) → t1=t2,
50c. (mkLeaveLink(li),mkEnterLink(li′)) → t1>t2,
50c. (mkLeaveHub(hi),mkEnterHub(hi′)) → t1>t2,
50a. → false
50. end end

We leave the (narrative and formal) expression of the well-formedness of hub
and link histories to the reader! The above indicates that one has to be very
careful concerning well-formedness.

But we have not captured all of the constraints, i.e., well-formedness of the
history attributes. Next we secure full care!

7.6.2 An Intentional Pull

51 For all automobiles,
a if their traffic history records that the automobile was entering [leaving]

a hub (link) at a certain time,
b then that hub’s (link’s) traffic history shall record that that automobile

left [entered] that hub (link) at exactly that time;
52 and vice versa, for all hubs an links:

a if the hub or link traffic history records that an automobile was leaving
[entering] that hub, respectively link at a certain time,

b then that automobile’s traffic history shall record that that automobile
entered [left] that hub, resp. link, at exactly that time.

axiom
51. ∀ a:A • a ∈ as ⇒
51a. let a hist=attr A Hist(a), ai=uid A(a) in
51a. ∀ (t,on off hl) • (t,on off hl) ∈ elems a hist ⇒
51a. let hli • s(on off hl) in
51b. let hl:(H|L)•hl ∈ hs∪ls • uid HL(hl) = hli in
51b. let hl hist = attr HL Hist(hl) in
51b. ∃ ! i:Nat•i∈ indshl hist •

51b. on off hl=mkEnter(hli) → hl hist[i]=(t,mkLeave(ai))
51b. on off hl=mkLeave(hli) → hl hist[i]=(t,mkEnter(ai))
51. end end end end
52. ≡

Domain Modelling: A Foundation for Software Development 197

52a. ∀ hl:(H|L) • hl ∈ hs∪ls ⇒
52a. let hl hist=attr HL Hist(hl), hli=uid HL(hl) in
52a. ∀ (t,on off ai) • (t,on off ai) ∈ elems hl hist ⇒
52a. let ai = ai(on off ai) in let a:A•a∈as • uis A(a)=ai in
52a. let a hist = attr A Hist(a) in
52a. ∃ ! i:Nat•i∈ inds a hist •

52a. on off ai=mkEnter(ai) → on off ai[i]=(t,mkLeave(hli)),
52a. on off ai=Leave(ai) → on off ai[i]=(t,Enter(hli))
52a. end end end end

7.7 Perdurants

7.7.1 Channels
We refer to Sect. 7.7.1 on page 21.

channel { ch[{ui,uj}] | ui,uj:(HI|LI|AI) • {ui,uj}⊆his∪lis∪ais } : M

M will be defined in Sect. 7.7.2.2 on the facing page.

7.7.2 Domain Actions and Events 7.7.2.1 Domain Actions
We refer to Sect. 6.2.1 on page 22.

Automobile actions are here simplified to be those of

53 remaining (staying) in a hub (Item 64a on the following page) and
54 remaining (staying) on a link (Item 65a on the next page).

7.7.2.2 Domain Events
We refer to Sect. 6.2.2 on page 22.

Automobile events are here simplified to be those of

55 leaving a hub [in order to enter a link] (Item 66d on page 35 and Item 70 on
page 36) and

56 entering a link [after having left a hub] (Item 66d on page 35 and Item 70 on
page 36) and

57 leaving a link in order to enter a hub (Item 67c on page 35 and Item 75 on
page 36).

58 entering a hub [after having left a link] (Item 67c on page 35 and Item 75 on
page 36).

Thus contributions to M of Sect. 7.7.1 on the preceding page are:

type
55. mkLeaveH(hi:HI,li:LI,ai:AI)
56. mkEnterL(hi:HI,li:LI,ai:AI)
57. mkLeaveL(li:LI,hi:HI,ai:AI)
58. mkEnterH(li:LI,hi:HI,ai:AI)

198 D. Bjørner

7.7.3 Behaviour Signatures
We refer to Sect. 7.7.3 on page 23.

value
hub: h:H → in,out { ch[{hi,ui}] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
link: l:L → in,out { ch[{li,ui}] | ui:(LI|AI)•ui∈lis∪ais } → Unit,
auto: a:A → in,out { ch[{ai,ui}] | ui:(LI|HI)-set•ui∈lis∪his } → Unit.

7.7.4 Behaviour Definitions
We refer to Sect. 7.7.4 on page 24.

Automobile Behaviour

We omit consideration of the monitorable GPS Map, Speed and Road Surface -
Temperature attributes.

59 One interpretation of an automobile, auto,
60 focuses on its road position.
61 Either the automobile is at a hub,
62 or it is on a link.
63 There could be other focal points.

value
59. auto(a) ≡
60. auto pos(a)(attr A Pos(p),attr A His(a))
63. �� ...

61. auto pos(a)(At Hub(hi),a hist) ≡
61. traversing hub(a)(At Hub(hi),a hist)
61. pre: attr A Pos(a)=At Hub(hi) ∧ attr A Hist(a)=a hist

62. auto pos(a)(On Link(li,fhi,f,thi),a hist) ≡
62. traversing link(a)(On Link(li,fhi,f,thi),a hist)
62. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

64 In traversing a hub an automobile
a is either, internal non-deterministically, ��, moving on inside the hub
b or, internal non-deterministically, entering a link from the hub.

value
64. traversing hub(a)(At Hub(hi),a hist) ≡
64a. staying at H(a)(At Hub(hi),a hist)
64b. �� entering L(a)(At Hub(hi),a hist)
64. pre: attr A Pos(a)=At Hub(h) ∧ attr A Hist(a)=a hist

64a. staying at H(a)(At Hub(hi),a hist) ≡ auto(a)

Domain Modelling: A Foundation for Software Development 199

65 In traversing a link an automobile
a is either, internal non-deterministically, ��, moving on inside the link
b – possibly advancing a bit, i.e., increasing its fraction position “down”

the link,
c or, internal non-deterministically, entering a hub from the link.

value
65. traversing link(a)(On Link(li,fhi,f,thi),a hist) ≡
65a. staying on L(a)(On Link(li,fhi,f,thi),a hist)
65c. �� entering H(a)(On Link(li,fhi,f,thi),a hist)
65. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

65a. staying on L(a)(On Link(li,fhi,f,thi),a hist) ≡
65b. let f′:F • f≤f′<1 in assert: ∃ f′:F • f≤f′<1
65b. let a′ = part update(a)(ηA Pos,On Link(li,fhi,f′,thi))
65a. auto(a′) end end
65a. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

66 In entering a link
a the automobile internal non-deterministically selects the link to be

entered, and thus the next hub,
b records the time,
c updates its history and automobile position accordingly,
d so informs the behaviour of the hub being left and the link being entered,

while resuming being an automobile – with the updated history.

value
66. entering L(a)(At Hub(fhi),a hist) ≡
66a. let li:LI•li∈lis∧li∈mereo H(retr H(fhi)(σ)),
66a. thi:HI•thi∈his∧thi∈mereo L(retr L(li)(σ))\{fhi},22

66b. τ = record TIME
23,

66b. ai=uid A(a) in
66a. let a pos = On Link(fhi,li,0,thi) in
66c. let a hist′ = 〈(a pos,τ)〉̂a hist in
66c. let a′ = part update(a)(ηA Hist,a hist′) in
66c. let a′′ = part update(a′)(ηA Pos,a pos) in
66d. (ch[{ai,fhi}] ! (mkLeaveH(fhi,li,ai),τ)
66d. ‖ ch[{ai,li}] !(mkEnterL(li,fhi,ai),τ) ‖ auto(a′′))
66. end end end end end
66. pre: attr A Pos(a)=At Hub(fhi) ∧ attr A Hist(a)=a hist

22 For retr · · · see Sect. 5.1.4 on page 16.
23 For record TIME see Sect. 4.2 on page 15.

200 D. Bjørner

67 In entering a hub
a the time is recorded,
b the automobile history and position is updated,
c and the behaviours of the link left link and hub entered are being so

informed while the automobile resumes being an automobile – in the
updated state.

value
67. entering H(a)(On Link(li,fhi,f,thi),a hist) ≡
67a. let τ = record TIME,
67a. ai = uid A(a),
67a. a pos = at Hub(thi) in
67a. let a hist′ = 〈(a pos,τ)〉̂a hist in
67b. let a′ = part update(a)(ηA Hist,(τ ,a hist′)) in
67b. let a′′ = part update(a′)(ηA Pos,a pos) in
67c. (ch[ai,li] ! (mkLeaveL(li,thi,ai),τ) ‖
67c. ch[ai,thi] ! (mkEnterH(thi,li,ai),τ) ‖ auto(a′′))
67. end end end end
67. pre: attr A Pos(a)=On Link(li,fhi,f,thi) ∧ attr A Hist(a)=a hist

Hub Behaviour

68 The hub behaviour
69 externally non-deterministically (����) offers
70 to accept, non-deterministically, a leave message,
71 from any automobile in its mereology;
72 it prepares for proper insertion of this event into its traffic history
73 updating to an augmented traffic history, and, hence, hub state;
74 resuming to be the hub behaviour in the updated state;
75 or to accept, non-deterministically, an enter message,
76 again from any automobile in its mereology;
77 updating to an augmented traffic history, and, hence, hub state;
78 resuming to be the hub behaviour in the updated state.
value
68. hub(h) ≡ let hi = uid HI(h) in
70. ���� { let (mkLeaveH(hi′,li,ai),τ) = ch[{hi,ai}] ? in assert: hi′=hi
73. let h hist′ = 〈(τ ,mkEnter(ai))〉̂attr H Hist(h) in
73. let h′ = part update(ηH Hist,h hist′) in
74. hub(h′)
71. | ai:AI • ai ∈ ais end end end}
69. ����
75. ���� { let (mkEnterH(hi′,li,ai),τ) = ch[{hi,ai}] ? in assert: hi′=hi
77. let h hist′ = 〈(τ ,mkLeave(ai))〉̂attr H Hist(h) in
77. let h′ = part update(ηH Hist,h hist′) in
78. hub(h′)
76. | ai:AI • ai ∈ ais end end end } end

We leave the definition of link behaviours as an exercise!

Domain Modelling: A Foundation for Software Development 201

7.8 Domain Initialisation

We refer to Sect. 7.8 on page 24.
We initialise a domain behaviour for all atomic endurants: hubs, links and

automobiles.

79 The domain behaviour is the parallel composition of
80 the distributed parallel composition of all hub behaviours, with
81 the distributed parallel composition of all link behaviours, with
82 the distributed parallel composition of all automobile behaviours.

80. ‖ { hub(b) | h:H • h ∈ hs }
79. ‖
81. ‖ { link(l) | l:L • l ∈ ls }
79. ‖
82. ‖ { auto(a) | a:A • a ∈ as }

7.9 Verification

It remains to verify that the automobile, hub and link behaviours and the road
transport domain initialisation satisfy the appropriate axioms and the intentional
pull.

End of Example

8 Closing

8.1 The Current Calculi

The treatment of behaviours of Sect. 6.4.2 differs very much from that of
Sects. 7.6 and 7.7 of [17]. The present one is very short, but results in a repeated
use of the part update functional. Our domain modelling approach allows a wide
spectrum, in-between these behaviour signature and definition styles, for express-
ing behaviours. What remains fixed in the treatment of endurants: both of their
external qualities, and of their internal qualities.

8.2 Some Issues

A number of issues need be addressed.

202 D. Bjørner

8.2.1 A New View of Software Development ?
Yes, we claim that this paper presents an additional view of software devel-
opment! Aircraft designers and manufacturers employ professionally educated
aeronautics engineers having state-of-the-art insight into aerodynamics. But, we
claim, software companies do not, today, July 28, 2023, exhibit the same pro-
fessionalism in their staffing. Software for health care (hospitals, etc.) are often
developed by programmers with no previous professional insight into that area.
Likewise for domains such as law, public administration, health care and tax
administration. With sound methods for “deriving” requirements from domain
models, cf. Sect. 8.2.7 on page 39, these software houses now have a possibility
of becoming professional.

8.2.2 From Programming Language Semantics to Domain Models
Domain models give semantics to the nouns (endurants) and verbs (perdurants)
spoken by domain workers. Just like the development of compilers for program-
ming languages were based on formal models of their semantics, so we can now
give semantics to the nouns and verbs spoken by domain workers, and, from
these, using rigorous development methods, similar to those used for compiler
development [25,28], develop trustworthy domain software.

8.2.3 Correctness: Verification, Checking, Testing
This paper has not dealt with the issue of correctness of domain models. A num-
ber of endurant and perdurant Description prompts have indicated that axioms
and assertions24 need be expressed. For domain assertions their correctness must,
of course, be shown – using whichever (testing, model checking and proof) tech-
niques are adequate. The axioms and assertions carry over into Requirements
prescriptions and, from there, into software Specifications. Now the full-blown
force of testing, model checking and proofs must be applied. As indicated in for-
mula D,S |= R, Sect. 1.2 on page 3, domain models now make proof obligations
more clear.

8.2.4 No Recursive Domains!
Surprise, surprise! Yes, there are no recursively defined endurant sorts. Domains
do not contain “recursive endurants”.25

24 i.e., proof obligations.
25 Some readers may object, but we insist! If trees are brought forward, as an example of

a recursively definable domain, then we argue: Yes, trees can be recursively defined.
Trees can, as well, be defined as a variant of graphs, and you wouldn’t claim, would
you, that graphs are recursive ? We shall consider the living species of trees (that
is, plants), as atomic. In defining attribute types You may wish to model certain
attributes as ‘trees’. Then, by all means, You may do so recursively. But natural
trees, having roots and branches cannot be recursively defined, since proper “sub-
trees” of trees would then have roots!

Domain Modelling: A Foundation for Software Development 203

8.2.5 Domain Facets
There is more to domain engineering than this paper can cover. A main element
of domain modelling is that of modelling also other than the intrinsics of domains
– as so far covered. By a domain facet we shall understand one amongst a finite
set of generic ways of analysing a domain: a view of the domain, such that the
different facets cover conceptually different views – and these views together cover
the domain.26 [17, Chapter 8] covers methods for modelling additional facets –
such as support technology, rules & regulations, scripts (or contracts), license
languages, management & organisation, and human behaviour.

8.2.6 Algorithmics
Algorithms are the hall-mark and corner-stone of computing. So where is “algo-
rithmics” [34,36, Harel] in all this ? ! The straight answer is: algorithm concerns
are not concerns of domain modelling!

Domain models focus on expressing properties. They do so using abstrac-
tion in general, and simple combinations of proof theoretic and model theoretic
means such as defining abstract types, here called sorts, comprehension over sets,
sequences and maps {f(i)|i:D•P(f,i)}, 〈f(i)|i:D•Q(f,i)〉, and [f(i)�→g(i)|i:D•R(f,g,i)].
The predicates, P,Q and R further raise the level of abstraction. It is in the
efficient realization of these abstractions that algorithms play their part.

8.2.7 Requirements
In [17, Chapter 9, 2021] we show how to “derive”, in a systematic manner,
requirements prescriptions from domain descriptions. Requirements are for a
machine27 The machine is the hardware upon which the software to be devel-
oped is to be executed – as well as the [auxiliary] software “under which” that
new software is performing (operating system, database system, data communi-
cations software, etc.). First requirements development proceeds in three stages:
(i) a domain requirements stage in which requirements that can be expressed
sôlely using terms from the domain are developed; (ii) an interface requirements
stage in which requirements that can be express using terms from both the
domain and the machine are developed; and (iii) a domain requirements stage in
which requirements that can be expressed solely using terms from the machine
are developed. [17] shows how domain requirements stage can be decomposed,
sequentially, into projection, initialisation, determination, extension and fitting
steps. For details on this and more we refer to [17].

8.2.8 Software Design
[4, 2005-2006] shows how to further develop software from their requirements
prescriptions.

26 This characterisation clearly lacks sufficient formality. We refer to Sect. 8.2.16 below.
27 – as suggested by Michael A. Jackson [43].

204 D. Bjørner

8.2.9 Continuity
As remarked in Sect. 3.1 on page 11 the calculi of this paper do not address
the issue of modelling continuous dynamic phenomena. This is clearly a weak-
ness. The Integrated Formal Methods conferences [45] initially set out to spur
research aimed at amalgamating continuous and discrete specifications. Not
much progress has been made, except: TLA+ offers some form of hybrid sys-
tems [46]; Hybrid Event-B [2] likewise; and for Back’s Action Systems there
is a hybrid version [1].28 We also refer to [59,60].

8.2.10 Modelling Concurrency
We have used Hoare’s CSP [39] to model concurrency. There are other, in this
case, graphical languages for modelling concurrency. We refer to Chaps. 12–15
of [5]. In these chapters I treat the modelling of four graphical specification
languages: Petri Nets [52], Message Sequence Charts [40,41], State Charts
[35] and Live Sequence Charts [29,37]. All of them are fascinating. Their
graphics appeal to many of us – so I recommend to use them informally, aside,
for the textual modelling shown in this paper. But they do not “merge” into
formal, textual specification languages, like VDM-SL, RSL, Z, Alloy.

8.2.11 Modelling Temporality
Although time is modelled, as part of internal attribute properties, we have not
shown the modelling of temporality of behaviours. In Chap. 15 of [5] I show
how to merge Duration Calculus, DC [61] with RSL-Text. Another fascinating
such formal specification language is Leslie Lamport ’s TLA+: Temporal Logic
of Actions [47].

8.2.12 Domain Specific Languages
A domain specific language, DSL, is a computer programming language spe-
cialised to a particular application domain. What we have shown here is not
a DSL. Examples of DSLs could be programming languages for expressing cal-
culations for railways or financial services or hospitals or other. [27, Actulus]
reports on an actuarial programming language for life insurance and pensions.
To give semantics for a specific DSL one invariably specifies a domain model. So
that, then, is a rôle for domain modelling.

8.2.13 Three Rôles for Domain Models
There are three rôles for domain models: (i) to just simply study and understand
a domain – irrespective of any ensuing software for that domain; (ii) to serve
as a basis for the development of a DSL; and (iii) to serve as a basis for the
development of [other] software for the domain.

28 I acknowledge the mentioning of these three references to one of the reviewers of the
resent paper.

Domain Modelling: A Foundation for Software Development 205

8.2.14 How Comprehensive Should a Domain Model Be?
Clearly domain models for any reasonable domain can potentially be very large
in terms of pages of description. So the question is: how much of the “domain at
large” should be included in a domain description ?. We cannot, of course, give
a general answer to that question. But we can say that the domain model must
at least encompass those domain entities that will, or might, be referred to in
a requirements prescription. That is, if it is found when developing a domain
requirements29 of a requirements prescription, that terms thought to be of the
domain was not covered by the domain description, then, obviously, that descrip-
tion must be augmented.

We do expect there to be, eventually, available for general use, a few, domain
models for selected domains.

For physics Newton and Leibniz30 has given us a calculus with which to –
more or less quickly – establish a model for some physical phenomenon. When
control engineers then wish to set up some automatic control system for a phe-
nomenon they first apply the Newton/Leibniz calculi to model the phenomenon,
then, from that, somehow derive a control model. We advocate a similar app-
roach, as already hinted at in our expressing the Triptych Dogma (Page 1).

The road transport domain modelled in Appendix 7 is one such domain.
It has here been expressed in a way, devoid of any specific orientation. Based
on the model of Appendix 7 we can envisage some such orientations as a road
pricing domain, a cadastral31 map domain, a road development domain, a road
maintenance domain, etc.

8.2.15 Domain Laws
Physics has excelled in our understanding the world we live in by its laws and by
the calculi it has spawned – calculi that enables us to explain what has happened
and to predict what will or might happen. Domain modelling has already lead
to some domain laws – such as illustrated by for example intentional pulls,
cf. Sect. 5.4 on page 20 (approx. half a page) and Appendix 7.6 on page 30 (two
pages). The study of intentional pull in domains has just started! Its counterpart
in physics, gravitational pull, is “behind” many laws of physics.

8.2.16 A Domain Modelling Science?
A science of domain modelling systematically builds and organizes knowledge
about the ways and means of modelling domains such that that knowledge can
explain what these models express. As an example of there not yet being a
sufficient scientific knowledge of domains we refer to our informal coverage of
the concept of domain facets, cf. footnote 26 on page 38. A formal understand-
ing of domains and what “facet”–distinguishes them, could help sharpen the

29 Cf. Sect. 8.2.7 on the previous page.
30 https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton calculus controversy.
31 https://eng.gst.dk/danish-cadastre-office/cadastral-map.

https://en.wikipedia.org/wiki/Leibniz%E2%80%93Newton_calculus_controversy
https://eng.gst.dk/danish-cadastre-office/cadastral-map

206 D. Bjørner

characterisation of Sect. 8.2.5 on page 38. Such a formal understanding was first
reported in [12, 2014]. Of more specific nature we suggest, next, studies of some
specific issues32.

(i) An “integrated” form of use of differential equations with the present RSL+,
i.e., the extension of our approach to domain modelling to cover more specif-
ically issues of continuity.

(ii) A “further detailed” understanding of the concept of intentional pull.
(iii) A study of a possible Calculus of Perdurants.
(iv) A study of examples of domain models with an emphasis on human inter-

action.
(v) Formal models of the analysis predicates and functions and the description

functions, cf. [12].

Acknowledgment. A referee of this paper, many thanks to all five (!), suggested the
following, slightly edited acknowledgment:

Laudatio: Prof. He Jifeng
– He Jifeng’s work on a Unifying Theory of Programming, UTP – a monumental

contribution – is seen as a domain model for programming languages covering a wide
range of programming language paradigms.

– UTP is about unifying axiomatic, denotational and operational semantics all of
which can be expressed in RSL. Hence, RSL could be used as a concrete language to
define a unifying theory of programming.

– One could combine domain modelling and UTP in order to systematically develop
and define formal domain specific languages, DSLs. It might result in a new unifying
theory of DSLs.
I fully concur.

I gratefully acknowledge the opportunity given to me, to write this paper, during my
PhD lectures, October–November 2022, at the TU Wien Informatics, Vienna, Austria,
by Prof. Laura Kovacs. I also gratefully acknowledge comments by Klaus Havelund,
Kazuhiro Ogata and Wolfgang Reisig. Finally, many thanks to Jonathan Bowen for his
indefatigable work on getting this paper in proper form and this volume finished.

References

1. Back, R.J., Petre, L., Porres, I.: Generalizing action systems to hybrid sys-
tems. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, pp.
202–213 (2000). https://doi.org/10.1007/3-540-45352-0 17, www.researchgate.
net/publication/221654900 Generalizing Action Systems to Hybrid Systems

2. Banach, R., Butler, M.: Modelling hybrid systems in event-B and hybrid event-B:
a comparison of water tanks. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM
2016. LNCS, vol. 10009, pp. 90–105. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47846-3 7

3. Bjørner, D.: UNU/IIST reports on domain modelling. Research Report, UNU/IIST
(1995–1997), UNUIIST:46: New Software Technology Development, UNUIIST:47:

32 https://informatics.tuwien.ac.at/.

https://doi.org/10.1007/3-540-45352-0_17
www.researchgate.net/publication/221654900_Generalizing_Action_Systems_to_Hybrid_Systems
www.researchgate.net/publication/221654900_Generalizing_Action_Systems_to_Hybrid_Systems
https://doi.org/10.1007/978-3-319-47846-3_7
https://doi.org/10.1007/978-3-319-47846-3_7
https://informatics.tuwien.ac.at/

Domain Modelling: A Foundation for Software Development 207

Software Support for Infrastructure Systems, UNUIIST:48: Software Systems Engi-
neering - From Domain Analysis to Requirements Capture [- an Air Traffic Con-
trol Example], UNUIIST:58: Infrastructure Software Systems, UNUIIST:59: New
Software Development, UNUIIST:60: Models of Enterprise Management: Strat-
egy, Tactics & Operations - Case Study Applied to Airlines and Manufacturing,
UNUIIST:61: Federated GIS+DIS-based Decision Support Systems for Sustain-
able Development - a Conceptual Architecture, UNUIIST:96: Models of Financial
Services & Industries

4. Bjørner, D.: Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Spec-
ification of Systems and Languages; Vol. 3: Domains, Requirements and Software
Design. Texts in Theoretical Computer Science, the EATCS Series. Springer, Hei-
delberg (2006)

5. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, Heidelberg
(2006). Chapters 12–14 are primarily authored by Christian Krog Madsen. See [6,
8]

6. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
Qinghua University Press (2008)

7. Bjørner, D.: On mereologies in computing science. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 47–70. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1 3, www.imm.dtu.dk/
∼dibj/bjorner-hoare75-p.pdf

8. Bjørner, D.: Chinese: Software Engineering, Vol. 2: Specification of Systems and
Languages. Qinghua University Press (2010). Translated by Dr Liu Bo Chao et al

9. Bjørner, D.: Domain science & engineering - from computer science to the sciences
of informatics, part I of II: the engineering part. Kibernetika sistemny analiz 2(4),
100–116 (2010)

10. Bjørner, D.: Domain science & engineering - from computer science to the sciences
of informatics part II of II: the science part. Kibernetika sistemny analiz 2(3),
100–120 (2011)

11. Bjørner, D.: A rôle for mereology in domain science and engineering: to every
mereology there corresponds a λ–expression. In: Calosi, C., Graziani, P. (eds.)
Mereology and the Sciences. SL, vol. 371, pp. 323–357. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05356-1 12

12. Bjørner, D.: Domain analysis: endurants - an analysis & description process model.
In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software.
LNCS, vol. 8373, pp. 1–34. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54624-2 1, www.imm.dtu.dk/ dibj/2014/kanazawa/kanazawa-p.pdf

13. Bjørner, D.: Manifest domains: analysis & description. Formal Aspects Com-
put. 29(2), 175–225 (2017). www.imm.dtu.dk/ dibj/2015/faoc/faoc-bjorner.pdf.
Accessed 26 July 2016

14. Bjørner, D.: To every manifest domain a CSP expression.
J. Log. Algebraic Methods Program. 1(94), 91–108 (2018).
www.imm.dtu.dk/ dibj/2016/mereo/mereo.pdf

15. Bjørner, D.: slAn assembly plant domain - analysis & description. Technical report,
Technical University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark (2019).
www.imm.dtu.dk/ dibj/2021/assembly/assemblyline.pdf

16. Bjørner, D.: Domain analysis & description - principles, techniques and mod-
elling languages. ACM Trans. Software Eng. Methodol. 28(2), 68p (2019).
www.imm.dtu.dk/ dibj/2018/tosem/Bjorner-TOSEM.pdf

https://doi.org/10.1007/978-1-84882-912-1_3
www.imm.dtu.dk/~dibj/bjorner-hoare75-p.pdf
www.imm.dtu.dk/~dibj/bjorner-hoare75-p.pdf
https://doi.org/10.1007/978-3-319-05356-1_12
https://doi.org/10.1007/978-3-642-54624-2_1
https://doi.org/10.1007/978-3-642-54624-2_1
https://www.imm.dtu.dk/~dibj/2014/kanazawa/kanazawa-p.pdf
https://www.imm.dtu.dk/~dibj/2015/faoc/faoc-bjorner.pdf
https://www.imm.dtu.dk/~dibj/2016/mereo/mereo.pdf
https://www.imm.dtu.dk/~dibj/2021/assembly/assemblyline.pdf
https://www.imm.dtu.dk/~dibj/2018/tosem/Bjorner-TOSEM.pdf

208 D. Bjørner

17. Bjørner, D.: Domain Science & Engineering - A Foundation for Software Devel-
opment. EATCS Monographs in Theoretical Computer Science. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-73484-8. A revised version of this book
is [21]

18. Bjørner, D.: Rigorous Domain Descriptions. A compendium of draft
domain description sketches carried out over the years 1995–2021 (2021).
www.imm.dtu.dk/ dibj/2021/dd/dd.pdf

19. Bjørner, D.: Documents: a basis for government. In: United Natonans Inst.,
Festschrift for Tomas Janowski and Elsa Estevez, Guimaraes, Portugal (2022).
www.imm.dtu.dk/ dibj/2022/janowski/docs.pdf

20. Bjørner, D.: Domain modelling - a primer (2023). A short version of [21]. xii+227
pages

21. Bjørner, D.: Domain science & engineering - a foundation for software development
(2023). Revised edition of [17]. xii+346 pages

22. Bjørner, D.: Pipelines: a domain science & engineering description. In: FSEN 2023:
Fundamentals of Software Engineering, 3–5 May 2023, Teheran, Iran (2023). www.
imm.dtu.dk/∼dibj/2023/tehran/tehran.pdf

23. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978). https://doi.org/10.1007/3-
540-08766-4

24. Bjørner, D., Jones, C.B. (eds.): Formal Specification and Software Development.
Prentice-Hall, Hoboken (1982)

25. Bjørner, D., Nest, O.N. (eds.): Towards a Formal Description of Ada. LNCS, vol.
98. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10283-3

26. Casati, R., Varzi, A.C.: Parts and Places: The Structures of Spatial Representation.
MIT Press, Cambridge (1999)

27. Christiansen, D.R., Grue, K., Niss, H., Sestoft, P., Sigtryggsson, K.S.: Actulus
modeling language - an actuarial programming language for life insurance and pen-
sions. Technical report, edlund.dk/sites/default/files/Downloads/paper actulus-
modeling-language.pdf, Edlund A/S, Denmark, Bjerreg̊ards Sidevej 4, DK-2500
Valby. (+45) 36 15 06 30. edlund@edlund.dk (2015). http://www.edlund.dk/en/
insights/scientific-papers. This paper illustrates how the design of pension and
life insurance products, and their administration, reserve calculations, and audit,
can be based on a common formal notation. The notation is human-readable
and machine-processable, and specialised to the actuarial domain, achieving great
expressive power combined with ease of use and safety

28. Clemmensen, G.B., Oest, O.N.: Formal specification and development of an Ada
compiler - a VDM case study. In: Proceedings of the 7th International Conference
on Software Engineering, 26–29 March 1984, Orlando, Florida, pp. 430–440. IEEE
(1984)

29. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. For-
mal Methods Syst. Design 19, 45–80 (2001). Early version appeared as Weizmann
Institute Technical report CS98-09, April 1998. An abridged version appeared in
Proceedings of the 3rd IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS 1999), pp. pp. 293–312. Kluwer
(1999)

30. Fitzgerald, J., Larsen, P.G.: Modelling Systems - Practical Tools and Techniques
in Software Development. Cambridge University Press, Cambridge (1998). iSBN
0-521-62348-0

https://doi.org/10.1007/978-3-030-73484-8
https://www.imm.dtu.dk/~dibj/2021/dd/dd.pdf
https://www.imm.dtu.dk/~dibj/2022/janowski/docs.pdf
www.imm.dtu.dk/~dibj/2023/tehran/tehran.pdf
www.imm.dtu.dk/~dibj/2023/tehran/tehran.pdf
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/3-540-08766-4
https://doi.org/10.1007/3-540-10283-3
http://www.edlund.dk/en/insights/scientific-papers
http://www.edlund.dk/en/insights/scientific-papers

Domain Modelling: A Foundation for Software Development 209

31. Futatsugi, K., Nakagawa, A., Tamai, T. (eds.): CAFE: An Industrial-Strength
Algebraic Formal Method. Elsevier, Amsterdam (2000). Proceedings from an April
1998 Symposium, Numazu, Japan

32. George, C.W., et al.: The RAISE Specification Language. The BCS Practitioner
Series, Prentice-Hall, Hemel Hampstead (1992)

33. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series, Prentice-Hall,
Hemel Hampstead (1995)

34. Harel, D.: Algorithmics –The Spirit of Computing. Addison-Wesley (1987)
35. Harel, D.: StateCharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
36. Harel, D.: The Science of Computing – Exploring the Nature and Power of Algo-

rithms. Addison-Wesley (1989)
37. Harel, D., Marelly, R.: Come, Let’s Play - Scenario-Based Programming Using

LSCs and the Play-Engine. Springer, Cham (2003). https://doi.org/10.1007/978-
3-642-19029-2

38. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

39. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, Hoboken (1985). Published electroni-
cally: usingcsp.com/cspbook.pdf (2004)

40. ITU-T: CCITT Recommendation Z.120: Message Sequence Chart (MSC) (1992)
41. ITU-T: ITU-T Recommendation Z.120: Message Sequence Chart (MSC) (1999)
42. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT

Press, Cambridge (2006). iSBN 0-262-10114-9
43. Jackson, M.A.: Software Requirements & Specifications: A Lexicon of Practice,

Principles and Prejudices. ACM Press, Addison-Wesley, Reading (1995)
44. Jackson, M.A.: Program verification and system dependability. In: Boca, P., Bowen,

J. (eds.) Formal Methods: State of the Art and New Directions, pp. 43–78. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-736-3 2

45. Araki, K., et al. (eds.): IFM 1999–2013: Integrated Formal Methods. LNCS, vols.
1945, 2335, 2999, 3771, 4591, 5423, 6496, 7321, 7940, etc. Springer, Cham (1999–
2019)

46. Lamport, L.: Hybrid Systems. In: Rischel, H., Ravn, A.P. (eds.) Workshop on
Theory of Hybrid Systems. Lecture Notes in Computer Science, Springer (1992),
https://lamport.azurewebsites.net/pubs/lamport-hybrid.pdf

47. Lamport, L.: Specifying Systems. Addison-Wesley, Boston (2002)
48. Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models

to Software Specifications. Wiley, Hoboken (2009)
49. Little, W., Fowler, H., Coulson, J., Onions, C.: The Shorter Oxford English Dictio-

nary on Historical Principles. Clarendon Press, Oxford (1973, 1987). Two volumes
50. Luschei, E.: The Logical Systems of Leśniewksi. North Holland, Amsterdam, The

Netherlands (1962)
51. McCarthy, J.: Towards a mathematical science of computation. In: Popplewell, C.

(ed.) IFIP World Congress Proceedings, pp. 21–28 (1962)
52. Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien, 1st

edn. Leitfäden der Informatik, Vieweg+Teubner (2010). 248 p.; ISBN 978-3-8348-
1290-2

53. Sørlander, K.: Det Uomgængelige - Filosofiske Deduktioner [The Inevitable - Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright], 168 p. Munks-
gaard · Rosinante, Copenhagen (1994)

https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2
http://usingcsp.com/cspbook.pdf
https://doi.org/10.1007/978-1-84882-736-3_2
https://lamport.azurewebsites.net/pubs/lamport-hybrid.pdf

210 D. Bjørner

54. Sørlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity], 200
p. Munksgaard · Rosinante, Copenhagen (1997)

55. Sørlander, K.: Den Endegyldige Sandhed [The Final Truth], 187 p. Rosinante,
Copenhagen (2002)

56. Sørlander, K.: Indføring i Filosofien [Introduction to The Philosophy], 233 p. Infor-
mations Forlag, Copenhagen (2016)

57. Sørlander, K.: Den rene fornufts struktur [The Structure of Pure Reason]. Ellekær,
Slagelse (2022)

58. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996). http://www.comlab.ox.
ac.uk/usingz.html

59. Xie, W., Xiang, S., Zhu, H.: A UTP approach for rTiMo. Formal Aspects Comput.
30(6), 713–738 (2018). https://doi.org/10.1007/s00165-018-0467-1

60. Xie, W., Zhu, H., QiWen, X.: A process calculus BigrTiMo of mobile systems and
its formal semantics. Formal Aspects Comput. 33(2), 207–249 (2021)

61. Zhou, C.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-
time Systems. Monographs in Theoretical Computer Science. An EATCS Series,
Springer, Cham (2004). https://doi.org/10.1007/978-3-662-06784-0

http://www.comlab.ox.ac.uk/usingz.html
http://www.comlab.ox.ac.uk/usingz.html
https://doi.org/10.1007/s00165-018-0467-1
https://doi.org/10.1007/978-3-662-06784-0

Concurrent Hyperproperties

Bernd Finkbeiner1(B) and Ernst-Rüdiger Olderog2(B)

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
finkbeiner@cispa.de

2 Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

olderog@informatik.uni-oldenburg.de

Abstract. Trace properties, which are sets of execution traces, are often
used to analyze systems, but their expressiveness is limited. Clarkson and
Schneider defined hyperproperties as a generalization of trace properties
to sets of sets of traces. Typical applications of hyperproperties are found
in information flow security. We introduce an analogous definition of
concurrent hyperproperties, by generalizing traces to concurrent traces,
which we define as partially ordered multisets. We take Petri nets as the
basic semantic model. Concurrent traces are formalized via causal nets.
To check concurrent hyperproperties, we define may and must testing of
sets of concurrent traces in the style of DeNicola and Hennessy, using the
parallel composition of Petri nets. In our approach, we thus distinguish
nondeterministic and concurrent behavior. We discuss examples where
concurrent hyperproperties are needed.

Keywords: Hyperproperties · concurrent traces · Petri nets · may and
must testing

1 Introduction

Among the most fundamental debates in the theory of concurrency is the distinc-
tion between interleaving semantics in the style of Milner [17] and Hoare [13], and
partial-order (or true concurrency) semantics following the work of Petri [21],
Mazurkiewicz [15], and Winskel [27]. In interleaving semantics, concurrency is
reduced to its sequential nondeterministic simulation; in partial-order semantics,
concurrency is modeled as causal independence.

In this paper, we revisit this classic debate in the modern setting of hyper-
properties. Clarkson and Schneider defined hyperproperties as a generalization of
trace properties, which are sets of traces, to sets of sets of traces [4]. Hyperprop-
erties are a powerful class of linear-time properties that can express many notions
related to information flow, symmetry, robustness, and causality. A typical exam-
ple is noninterference [8], which is one of the most well-studied information-flow
security policies. Noninterference requires that for all computations and for all
sequences of actions of a high-security agent A, the resulting observations made
by a low-security observer B are identical to B’s observations that would result

c© The Author(s) 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 211–231, 2023.

https://doi.org/10.1007/978-3-031-40436-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_8&domain=pdf
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-3600-2046
https://doi.org/10.1007/978-3-031-40436-8_8

212 B. Finkbeiner and E.-R. Olderog

Fig. 1. Three example systems given as Petri nets.

without A’s actions. While trace properties express properties of individual exe-
cutions, hyperproperties express properties of sets of traces. This makes it pos-
sible to relate different executions, for example by requiring that certain obser-
vations are the same, without necessarily restricting the events on individual
executions.

Since hyperproperties refer to traces, they are, at least in principle, immedi-
ately applicable to concurrent systems with interleaving semantics. However, the
interleaving semantics leads to a fundamental problem, which we will illustrate
with a sequence of example systems given as the Petri nets shown in Fig. 1. We
employ the usual graphical representation of Petri nets: circles represent places
and boxes represent transitions that are connected to places via directed arcs.
In our setting, transitions are labeled by action symbols like h1 and h2. Black
dots represent tokens, which represent the current points of activity. The simul-
taneous presence of several tokens models concurrent activities. The dynamic
behavior of a Petri net is modeled by its token game that defines how tokens
can move inside the net. A transition is enabled if all places connected to it with
an ingoing arc carry a token. Firing the transition moves these tokens to the
places connected to it with an outgoing arc. Branching from a place models non-
deterministic choice, whereas branching from a transition models the start of a
concurrent execution. As an example, consider the net NC shown on the right in
Fig. 1. From the initial place p0, there is a nondeterministic choice between the
transitions labeled with h1 and h2. Firing transition h1 concurrently enables the
transitions labeled with l1 and l2, whereas firing transition h2 enables in place p13
the nondeterministic choice between the transitions l1 and l2. For more details
on Petri nets we refer to Sect. 3.

For a start, consider the system NA shown on the left in Fig. 1. We are
interested in the secrecy property that the system’s low-security behavior, as
observable in the low-security events l1 and l2, is not affected by the high-security

Concurrent Hyperproperties 213

Fig. 2. Left : The three maximal runs ρ1, ρ2 and ρ3 of NC from Fig. 1, resulting by
resolving every nondeterministic choice in NC , and their corresponding concurrent
traces π1, π2 and π3. Right : A sequential test Tseq for the concurrent hyperproperty
that every pair of concurrent traces π and π′ must agree on the occurrence and sequen-
tial ordering of the low-security events l1 and l2. In the test, the events l1 and l2 refer
to π and l′1 and l′2 to π′. The place marked with the symbol � notifies a successful test.
Below is a concurrent test Tcon for the weaker concurrent hyperproperty that every
pair of concurrent traces π and π′ must agree on the occurrence of the low-security
events l1 and l2, but not on their sequential ordering. For instance, each each l1 must
be matched by l′1 before the next l1 can occur, but l2 may occur in between l1 and l′1.

events h1 and h2. Our system is secure. This is captured by the hyperproperty
that all traces must agree on the occurrences and the ordering of l1 and l2, and
indeed, the system has only two traces, h1 · l1 · l2 and h2 · l1 · l2, which, when
projected to {l1, l2}, both result in the same sequence l1 ·l2 of low-security events.

Next, consider system NB shown in the middle in Fig. 1. Informally, the
system is still secure in the sense that an observer who sees only l1 and l2
cannot distinguish the situation where h1 has occurred from the situation where
h2 has occurred. However, our previous hyperproperty is violated. The system
has four traces: h1 · l1, h1 · l2, h2 · l1, and h2 · l2, which, when projected to {l1, l2},
result in two different traces, l1 and l2. This issue is due to the nondeterministic
choice between l1 and l2, and can be addressed with possibilistic information-flow
properties like generalized noninterference [16]. Generalized noninterference is
weaker than normal noninterference: it requires that for every pair of traces π, π′

there exists another trace π′′, such that (1) π′′ agrees with π on the low-security
events {l1, l2} and (2) π′′ agrees with π′ on the high-security events {h1, h2}.

214 B. Finkbeiner and E.-R. Olderog

Generalized noninterference is satisfied in NB . For example, for π = h1 · l1 and
π′ = h2 · l2, there exists π′′ = h2 · l1, which agrees with π on {l1, l2} and with π′

on {h1, h2}.
Finally, consider the concurrent system NC shown on the right in Fig. 1. With

the interpretation of concurrency as nondeterministic interleaving, the system
has the four traces h1 · l1 · l2, h1 · l2 · l1, h2 · l1 · l2, and h2 · l2 · l1. Generalized
noninterference is satisfied. However, the system is clearly not secure, because
h1 causes concurrent behavior, while h2 causes sequential behavior. In a concur-
rent setting, this difference could be recognized by an attacker, who might, for
example, synchronize with the system on a particular ordering, such as l1 · l2.
In a trace that begins with h1, this will always work, while in traces that begin
with h2, the attacker might observe a deadlock when the system performs the
order l2 · l1.

In the security literature, this phenomenon has lead to the study of branching-
time information-flow properties based on various notions of (bi-)simulation
(cf. [3]). Often, however, such equivalences are too fine-grained, because they
expose the point in time when an internal decision is made. Linear-time prop-
erties, and, hence, hyperproperties abstract from such implementation details.
Can hyperproperties nevertheless recognize the difference between concurrent
and sequential behavior?

In this paper, we propose concurrent hyperproperties as a positive answer to
this question. Hyperproperties are based on the partial-order interpretation of
concurrency. We stick to Clarkson and Schneider’s definition of hyperproperties
as sets of sets of traces, but generalize traces to concurrent traces, which we
define as partially ordered multisets (pomsets). Figure 2 shows the three maxi-
mal runs ρ1, ρ2 and ρ3 of system NC and their corresponding concurrent traces.
In a run, every nondeterministic choice has been resolved, but concurrent exe-
cutions remain visible, like the concurrency of the transitions labeled with l1
and l2 in ρ1. The concurrency of run ρ1 is reflected in the partial order of the
concurrent trace π1. Note that NC has four traces under the interleaving seman-
tics (corresponding to the two nondeterministic choices and the two possible
interleavings) but only three concurrent traces, because the concurrent execu-
tion is not resolved by nondeterminism. Since the concurrency is still present in
the concurrent traces, a concurrent hyperproperty can distinguish nondetermin-
ism from concurrency. Continuing our example, we can now specify secrecy in
concurrent systems like NC as the concurrent hyperproperty where every pair
of concurrent traces agrees on the occurrence and ordering of the low-security
events. Our example system clearly violates this requirement.

In the paper, we give a formal definition of concurrent hyperproperties and
then provide an explicit mechanism for describing concurrent hyperproperties.
We base this mechanism the concept of testing processes due to DeNicola and
Hennessy [5,11]. There the interaction of a (nondeterministic) process and a
user is explicitly formalized using a synchronous parallel composition. The user
is formalized by a test, which is a process with some states marked as a success.
It is defined when a process may pass a test and when it must pass a test. We

Concurrent Hyperproperties 215

transfer the concept of testing to concurrent traces. A concurrent hyperproperty
is given as a test that has interactions with multiple concurrent runs. The test is
successful for a given set of concurrent traces if it succeeds for all combinations
of concurrent traces from the set.

For our example, such a test Tseq is shown on the right in Fig. 2. It can
interact with any two of the runs ρ1, ρ2, ρ3 corresponding to any two of the traces
π1, π2, π3 of NC . The interaction is via parallel composition that synchronizes
on all transitions with the same label. To this end, the first run under test keeps
the original labels l1 and l2, whereas the second run uses primed copies l′1 and l′2
of these labels. Thus Tseq allows for both possible orderings (l1 then l2, and l2
then l1) in the first trace and enforces that the second trace exhibits the same
order. When Tseq is applied to the runs of the concurrent system NC shown on
the left of Fig. 2, it turns out that they may not pass this test, for instance, when
ρ1 and ρ′

3, i.e., ρ3 with primed labels, are tested for the sequence l1 · l′1 · l2 · l′2,
this leads to a deadlock after l1. This shows that the concurrent system NC does
not satisfy the concurrent hyperproperty. We will examine this in more detail in
Sect. 5.

The test Tcon checks a weaker concurrent hyperproperty, namely that each
occurrence of l1 is matched by an occurrence of l′1 before the next occurrence
of l1, and similarly for l2 and l′2, but l2 may occur in between l1 and l′1. When
Tcon is applied to any two of the runs ρ1, ρ2, ρ3 shown on the left of Fig. 2, it
turns out that they must pass this test. This shows that the concurrent system
NC satisfies this weaker concurrent hyperproperty. For more details see Sect. 5.

Our paper is organized as follows. In Sect. 2 we define the notion of concur-
rent hyperproperties and give examples of ascending sophistication. In Sect. 3
we recall the basic concepts from Petri nets that we take as our semantic model
of concurrent systems. In particular, we define concurrent runs and the paral-
lel composition of nets. In Sect. 4 we adapt the concept of testing developed by
DeNicola and Hennessy to the setting of Petri nets. In Sect. 5 we discuss how var-
ious examples of concurrent hyperproperties can be tested. In Sect. 6 we briefly
discuss the decidability of universal must testing and establish an undecidability
result for universal may testing. In Sect. 7 we conclude the paper.

Dedication. We dedicate our paper to Jifeng He on the occasion of his 80th birth-
day. Jifeng has made many contributions to formalizing and relating different
semantic models of computing, as exemplified in his book ‘Unifying Theories
of Programming’ with Tony Hoare [12]. Out of this work grew also Jifeng’s
interest in testing [1,25,26], the concept that we employ for hyperproperties in
this paper, although in an abstract setting of testing processes as introduced
by DeNicola and Hennessy. The second author has very pleasant memories of
the close cooperation with Jifeng within the EU Basic Research Action ProCoS
(Provably Correct Systems) during the period 1989–1995 [10], and of various
scientific meetings, in particular in Oxford, Oldenburg, and Shanghai.

216 B. Finkbeiner and E.-R. Olderog

2 Concurrent Hyperproperties

Clarkson and Schneider defined hyperproperties as a generalization of trace prop-
erties, which are sets of traces, to sets of sets of traces [4]. To give an analo-
gous definition of concurrent hyperproperties, we generalize traces to concurrent
traces, which we define as partially ordered multisets (pomsets).

Let Σ be a set of labels. A Σ-labeled partially ordered set is a triple (X,<
, �) where < is an irreflexive partial order on a set X and � : X → Σ is a
labeling function. Two such sets (X,<, �) and (X ′, <′, �′) are isomorphic if there
exists a bijective mapping f : X → X ′ such that f(x) < f(y) ⇔ x < y and
�′(f(x)) = �(x). A partially ordered multiset (pomset) over Σ is an isomorphy
class of Σ-labeled partial ordered sets, denoted as [(X,<, �)]. A totally ordered
multiset (tomset) is a pomset where < is a total order [23].

We then refer to tomsets over Σ as traces and pomsets over Σ as concurrent
traces. A trace property is a set of traces; a hyperproperty is a set of sets of traces.
Analogously, a concurrent trace property is a set of concurrent traces, and a set
of sets of concurrent traces is a concurrent hyperproperty. We denote with T(Σ)
the set of all concurrent traces over Σ.

Example 1. A simple information flow policy for a concurrent system is to forbid
any dependency of a low-security event labeled l (for low) on a high-security
event labeled h (for high). Let Σ = {l, h}. The policy can be expressed as the
concurrent trace property

T1 = { [(X,<, �)] ∈ T(Σ) | ∀x, y ∈ X.x < y ⇒ �(x) �= h ∨ �(y) �= l}.

Example 2. Consider the hyperproperty that every pair of concurrent traces
agrees on the occurrence of the low-security events, independent on any other
event. Let Σlow be the set of low-security events. The requirement can then be
formalized as the following concurrent hyperproperty H1:

H1 = { T ⊆ T(Σ) | ∀ [(X,<, �)], [(X ′, <′, �′)] ∈ T.
∃ bijection f : Xlow → X ′

low .∀x ∈ Xlow . �′(f(x)) = �(x) }

where Xlow = {x ∈ X | �(x) ∈ Σlow} and X ′
low = {x ∈ X ′ | �′(x) ∈ Σlow}.

In the introduction, we discussed the concurrent hyperproperty that every
pair of concurrent traces agrees both on the occurrence and the ordering of
the low-security events. This requirement can be formalized as the following
concurrent hyperproperty H2:

H2 = { T ⊆ T(Σ) | ∀ [(X,<, �)], [(X ′, <′, �′)] ∈ T.
∃ bijection f : Xlow → X ′

low .
(∀x ∈ Xlow . �′(f(x)) = �(x)
∧ ∀x, y ∈ Xlow . f(x) <′ f(y) ⇔ x < y) }

Example 3. As a final example, we adapt the notion of generalized noninterfer-
ence (GNI) [16] to concurrent traces. We identify the events as low-security and

Concurrent Hyperproperties 217

high-security: Σ = Σlow ∪ Σhigh . The policy then requires that for every pair of
concurrent traces there exists a third concurrent trace that agrees with the first
trace on the low-security events and with the second trace on the high-security
events. Unlike the trace-based version discussed in the introduction, this version
of GNI distinguishes nondeterminism from concurrency; in the example system
NC shown on the right in Fig. 1, GNI on traces is satisfied, but GNI on concur-
rent traces is violated. GNI on concurrent traces is expressed by the following
concurrent hyperproperty H3:

H3 = { T ⊆ T(Σ) | ∀ [(X,<, �)], [(X ′, <′, �′)] ∈ T.
∃[(X ′′, <′′, �′′)] ∈ T. Flow ∧ Ghigh}

where
Flow ≡ ∃bijection f : Xlow → X ′′

low .
(∀x ∈ Xlow . �′′(f(x)) = �(x)
∧ ∀x, y ∈ Xlow . f(x) <′′ f(y) ⇔ x < y),

Ghigh ≡ ∃bijection g : X ′
high → X ′′

high .

(∀x ∈ X ′
high . �′′(g(x)) = �′(x)

∧ ∀x, y ∈ X ′
high . g(x) <′′ g(y) ⇔ x <′ y),

Xlow = {x ∈ X | �(x) ∈ Σlow},
X ′′

low = {x ∈ X ′′ | �′′(x) ∈ Σlow},
X ′

high = {x ∈ X ′ | �′(x) ∈ Σhigh},

X ′′
high = {x ∈ X ′′ | �′′(x) ∈ Σhigh}.

3 Petri Nets

As a model for concurrent systems we take Petri nets because they distinguish
the fundamental concepts of causal dependency, nondeterministic choice, and
concurrency explicitly. We consider here safe Petri nets [24], with the transitions
labeled by actions which serve as synchronization points in a parallel composition
of such nets. We use the notation from [19], which is inspired by [9]. A Petri net
or simply net is a structure N = (A,P l,—→,M0), where

1. A is a finite communication alphabet with τ �∈ A,
2. Pl is a possibly infinite set of places,
3. —→ ⊆ Pnf (Pl) × (A ∪ { τ }) × Pnf (Pl) is the transition relation,
4. M0 ∈ Pnf (Pl) is the initial marking.

We let p, q, r range over Pl. The notation Pnf (Pl) stands for the set of all non-
empty, finite subsets of Pl. An element (I, u, O) ∈ —→ with I,O ∈ Pnf (Pl)
and u ∈ A ∪{τ} is called a transition (labeled with the action u) and written as

I
u

——→ O.

For a transition t = I
u

——→ O its preset or input is given by pre(t) = I, its
postset or output by post(t) = O, and its action by act(t) = u. The letter τ is
intended to model an internal action.

218 B. Finkbeiner and E.-R. Olderog

In the graphical representation of a net N = (A, Pl, —→, M0) we mention
the alphabet A separately and display the components Pl, —→ and M0 as
usual. Places p ∈ Pl are represented as circles © with the name p outside and
transitions

t = {p1, . . . , pm} u
——→ {q1, . . . , qn}

as boxes u carrying the label u inside and connected via directed arcs to the
places in pre(t) and post(t):

p1 · · · pm

u

q1 · · · qn

Since pre(t) and post(t) need not be disjoint, some of the outgoing arcs of u may
actually point back to places in pre(t) and thus introduce cycles. Graphically, we
employ then double-headed arrows between u and the places in pre(t)∩post(t).
The initial marking M0 is represented by putting a token • into the circle of each
p ∈ M0.

Starting from the initial marking, the firing of transitions creates new mark-
ings M ∈ Pnf (Pl), which represent the global states of a Petri net. Formally, a
transition t is enabled at a marking M if pre(t) ⊆ M . Firing such a transition t
at M yields the successor marking M ′ = (M − pre(t)) ∪ post(t). We write then
M [t〉M ′. We assume here that ∪ is a disjoint union, which is satisfied if the net
is contact-free, i.e., if for all t ∈ T and all reachable markings M

pre(t) ⊆ M ⇒ post(t) ⊆ (Pl − M) ∪ pre(t).

The set of reachable markings of a net N is defined by

reach(N) = {M | ∃n ∈ N.∃ t1, . . . , tn ∈ T. M0[t1〉M1[t2〉 . . . [tn〉Mn = M}.

For n = 0 inside this set, it is understood that M0 = M holds, so M0 ∈ reach(N).
In the present setting, all reachable markings are non-empty, finite sets of places.
Such Petri nets are called safe or 1-bounded because every reachable marking
contains at most one token per place. In general place/transition nets, the reach-
able markings can be multisets representing multiple tokens per place.

3.1 Causal Nets and Runs

Concurrent computations of a net can be described by causal nets [21,24]. Infor-
mally, a causal net is an acyclic net where all choices have been resolved. It can
be seen as a net-theoretic way of defining a partial order among the occurrences
of transitions in a net to represent their causal dependency.

Concurrent Hyperproperties 219

We need more notation for a net N = (A, Pl, —→, M0). For a place p ∈
Pl its preset is defined by pre(p) = {t ∈ —→ | p ∈ post(t) } and its postset by
post(p) = {t ∈ —→ | p ∈ pre(t) }. The flow relation FN ⊆ Pl × Pl on the
places of N is given by

p FN q if ∃ t ∈ —→ . p ∈ pre(t) and q ∈ post(t).

FN is well-founded if there are no infinite backward chains

· · · p3 FN p2 FN p1.

A causal net is a net N= (A, Pl, —→, M0) such that

(1) all places are unbranched, i.e., ∀p ∈ Pl . |pre(p)| ≤ 1 and |post(p)| ≤ 1,
(2) the flow relation FN is well-founded, and
(3) the initial marking consists of all places without an ingoing arc, i.e.,

M0 = {p ∈ Pl | pre(p) = ∅}.
By condition (1), there are no choices in N. Condition (2) implies that the
transitive closure of FN is irreflexive. Thus a causal net N is acyclic, so each
transition occurs only once. Conditions (1)–(3) ensure that there are no super-
fluous places and transitions in causal nets: every transition can fire and every
place is contained in some reachable marking. Also, every causal net is safe.

Following Petri’s intuition, causal nets should describe the concurrent com-
putations of a net. Thus we explain how causal nets relate to ordinary (safe)
nets. To this end, we use the following notion of embedding.

Let N1 = (A1, Pl1, —→1, M01) be a causal net and N2 = (A2, Pl2, —→2,
M02) be a safe net, where M01 and M02 denote the initial markings of N1 and
N2 , respectively. N1 is a causal net of N2 if A1 = A2 and there exists a mapping
f : Pl1 —→ Pl2, which is extended elementwise to subsets X ⊆ Pl1 by putting
f(X) = {f(p) ∈ Pl2 | p ∈ X}, such that the following holds:

1. f(M01) = M02,
2. ∀ M ∈ reach(N1). f ↓ M, the restriction of f to M ⊆ Pl1, is injective,
3. ∀ t ∈ —→1 . (f(pre(t)), act(t), f(post(t))) ∈ —→2 ,

The mapping f is called an embedding of N1 into N2 . Note that f distributes
over the flow relation:

∀ p, q ∈ Pl1 . (p FN1
q ⇒ f(p) FN2

f(q).

In net theory, the pair (N1 , f) is called a process of N2 [2,21]. We call it a
(concurrent) run of N2 and use the (possibly decorated) letter ρ for runs. A run
ρ = (N1 , f) of N2 is called maximal if

∀ p ∈ Pl1 . (∃ q ∈ Pl2 . f(p) FN2
q ⇒ ∃ p′ ∈ Pl1 . p FN1

p′),

so the run ρ cannot stop at a place p if there is an extension possible at the
corresponding place f(p) in N2 .

220 B. Finkbeiner and E.-R. Olderog

3.2 Causal Nets Corresponding to Concurrent Traces

A causal net N corresponds to the concurrent trace (pomset) [(X,<, �)], where

– X = —→, the set of transitions of N,
– < is the transitive closure of the immediate causal successor relation <m

between transitions: t1 <m t2 holds for t1, t2 ∈ —→ if post(t1)∩ pre(t2) �= ∅,
– �(t) = act(t) for every t ∈ —→.

The irreflexive partial order t1 < t2 expresses that transition t2 can occur only
after transition t1 has happened, so t2 causally depends on t1. If for transitions
t1 �= t2 neither t1 < t2 nor t2 < t1 holds, t1 and t2 are causally independent
and can occur concurrently. Graphically, we represent these pomsets by showing
each transition t labeled with �(t) = u as a box u and connecting these boxes
with arcs representing the immediate causal successor relation <m (see Fig. 2).

Also, vice versa, if a concurrent trace [(X,<, �)] is given, it is easy to construct
a causal net N corresponding to the trace in the above sense. One just has to
add the missing places to turn the trace into a causal net.

3.3 Parallel Composition

Petri nets with disjoint sets of places, but possibly overlapping communication
alphabets can be composed in parallel. Thereby transitions with different actions
are performed asynchronously, whereas transitions with the same action synchro-
nize. For Ni = (Ai, Pli, —→i, M0i), i = 1,2, with Pl1 ∩ Pl2 = ∅ their parallel
composition is defined as follows:

N1 ‖N2 = (A1 ∪ A2, P l1 ∪ Pl2,—→,M01 ∪ M02),

where

—→ = { (I, u,O) ∈ —→1 ∪ —→2 | u /∈ A1 ∩ A2 } (asynchrony)
∪ { (I1 ∪ I2, a, O1 ∪ O2) | a ∈ A1 ∩ A2 and (synchrony)

(I1, a, O1) ∈ —→1 and (I2, a, O2) ∈ —→2 }.

Note that actions labeled with the internal action τ never synchronize because
τ does not appear in any communication alphabet Ai.

Up to bijective renaming of places, the parallel composition of nets is com-
mutative and associative, i.e., for all nets N1,N2,N3:

N1 || N2 = N2 || N1,

N1 || (N2 || N3) = (N1 || N2) || N3.

4 Testing

The idea of testing processes is due to De Nicola and Hennessy [5,11]. There the
interaction of a (nondeterministic) process and a user is explicitly formalized
using a synchronous parallel composition. The user is formalized by a test,

Concurrent Hyperproperties 221

which is a process with some states marked as a success. The authors distin-
guish between two options: a process may or must pass a test. A process P may
pass a test T if in some maximal parallel computation with P , synchronizing on
transitions with the same label, the test T reaches a success state. A process P
must pass a test T if in all such computations the test T reaches a success state.

We transfer this notion of testing to Petri nets. A test is a Petri net, extended
by a distinguished set � ⊆ Pl of successful places: T= (A,P l,�,—→,M0). In
the graphical notation, we mark each place of this subset by the symbol �.

To perform a test T on a given Petri net N, we consider the parallel com-
position N‖T. A run ρ = (NR , f) of N‖T is deadlock free if it is infinite, and
it terminates successfully if it is finite and all places of T inside the parallel
composition without causal successor are marked with �. A net N may pass a
test T if there exists a maximal run of N‖T which is deadlock free or termi-
nates successfully. A net N must pass a test T if all maximal runs of N‖T are
deadlock free or terminate successfully.

To check a hyperproperty relating k concurrent traces on a system represented
by a net N0 , we investigate maximal runs ρi = (Ni , fi) with i = 1, · · · , k of N0 ,
where the causal nets Ni correspond to the concurrent traces of the hyperprop-
erty, except that in Ni we relabel every action u of N0 into ui. We will test
the parallel composition N1 ‖ · · · ‖Nk . The purpose of this relabeling is to have
nets N1 , . . . ,Nk that do not synchronize in this composition. To represent the
hyperproperty, we suitably quantify existentially or universally over these k runs
of N0 and thus arrive at the following possibilities of testing:

Q1 ρ1, · · · ,Qk ρk. N1 ‖ · · · ‖Nk m pass T,

where Qi ∈ {∃,∀} and m ∈ {may, must}. T uses the subscripted labels of the
form u1, . . . , uk to synchronize with the actions in N1 , . . . ,Nk .

We also use primed copies like u′ and u′′ instead of subscripts. For example,
for k = 2, we use one causal net N having the original actions of N0 and one
causal N′ with every action u of N0 relabled into a primed copy u′. Then the
above pattern specializes to

Q ρ.Q′ ρ′. N‖N′ m pass T,

whereQ,Q′ ∈ {∃,∀} and m ∈ {may, must}. Whereas N and N′ have no common
actions to synchronize on, the test Twill synchronize with N and N′ via common
(unprimed and primed) actions, thereby checking the hyperproperty. Note that
the explicit quantifiers refer to runs of the system N0 under test. Once these runs
are fixed, may and must corresponds to existential and universal quantification
over runs originating from the test.

5 Examples

We examine concurrent trace properties and concurrent hyperproperties for
examples of concurrent systems. First consider the two Petri nets shown in

222 B. Finkbeiner and E.-R. Olderog

Fig. 3. Left : Petri net N1 consists of two concurrent subnets, one performs only the
low-security action l and the other has a choice starting with different high-security
actions h1 and h2, but then performing the same low-security action l1, no matter
whether h1 or h2 was chosen. Right : Petri net N2 looks identical to N1 , but there is a
subtle difference: the subnet on the right-hand side performs either l1 or l2 depending
on the previous choice of h1 or h2, respectively.

Fig. 3. The net N1 consists of two concurrent subnets, one performs the low-
security action l and the other has a choice starting with different high-security
actions h1 and h2, but then both branches perform the same low-security action
l1. The net N2 has the same structure, except that the choice in the subnet on
the right-hand side is now between performing action l1 or action l2 depending
on the previous choice of the high-security actions h1 or h2, respectively. Note
that due to the choices, each of the nets N1 and N2 have two maximal runs, one
with actions h1 and one with action h2.

Let us check the trace property whether the low-security action l1 can occur
after l, independent of the high-security actions h1 and h2, To this end, we use
the following test T:

T:
s0

l

s1

l1 �
s2 .

This test is applied to each run of N1 and N2 , respectively. We have

∀ρ. N1, ρ must pass T,

because T terminates successfully for each of the two maximal runs, independent
of the choice of h1 or h2. Here N1, ρ denotes the net of the run ρ of N1 .

For N2 the test T is less successful. Let N2, h1 and N2, h2 be the nets for
the two maximal runs of N2 , depending on whether h1 or h2 is initially chosen.
Then the parallel composition with T yields the results shown in Fig. 4. Note
that synchronization is enforced on the common actions l and l1, whereas h1

and h2 can occur asynchronously. In N2, h1 ‖ T, the test terminates successfully,
whereas N2, h2 ‖ T ends in a deadlock. Thus

∀ρ. N2, ρ may pass T,

but it is not the case that ∀ρ. N2, ρ must pass T. Here N2, ρ denotes the net of
the run ρ of N2 .

Concurrent Hyperproperties 223

Fig. 4. Testing the two maximal runs of N2 . In the middle, the places s0, s1, s2 of test
T in the parallel composition with these two runs are shown. Left : In N2, h1 ‖T, the
test terminates successfully in s2. Right : However, N2, h2 ‖T ends in a deadlock, i.e.,
in places without �.

5.1 Testing the Concurrent Hyperproperties H1 and H2

Next we turn to Sect. 1 and consider the three runs shown in Fig. 2 stemming
from system NC in Fig. 1. First we check with the sequential test Tseq of Fig. 2
the concurrent hyperproperty whether every pair of concurrent traces π and π′

agrees on the occurrence and ordering of the low-security events l1 and l2. This
is property H2 in Example 2. Figure 5 shows the outcomes of testing ρ1 and ρ′

3.
We conclude that ρ1 ‖ ρ′

3 may pass Tseq . More general, let N and N′ be the
nets of two runs ρ and ρ′ corresponding to two traces π and π′, respectively.
If at least one of ρ and ρ′ is instantiated with the concurrent run ρ1, we have
N‖N′ may pass Tseq , otherwise N‖N′ may not pass Tseq . Summarizing, we
have

∃ ρ, ρ′.N‖N′ may pass Tseq

and even
∀ ρ.∃ ρ′.N‖N′ may pass Tseq

because we can instantiate ρ′ with ρ1, but not ∀ ρ, ρ′ .N‖N′ may pass Tseq .
However, no must property holds for two concurrent traces and the test Tseq .
This shows that the system NC in Fig. 1 does not satisfy the concurrent hyper-
property H2.

Now we check with concurrent test Tcon of Fig. 2 the weaker concurrent
hyperproperty whether every pair of concurrent traces π and π′ agrees on the
occurrence of the low-security events l1 and l2, i.e., each each l1 must be matched
by l′1, but l2 may occur in between, and vice versa for l2 and l′2 and a possibly
intervening l1. This is property H1 in Example 2. Figure 6 shows the outcomes
of testing ρ1 and ρ3. We conclude that ρ1 ‖ ρ3 must pass Tseq . Indeed, we have

224 B. Finkbeiner and E.-R. Olderog

Fig. 5. Testing a concurrent hyperproperty with Tseq . We consider the two maximal
runs of the parallel composition ρ1 ‖Tseq ‖ ρ′

3. Left : Here at first the alternative starting
with l2 of the test Tseq is chosen. This runs terminates successful. Right : Here at first
the alternative starting with l1 of Tseq is chosen. This runs ends in a deadlock because
ρ3 engages first in l2.

∀ ρ, ρ′ .N‖N′ must pass Tcon .

This shows that the system NC in Fig. 1 satisfies the concurrent hyperprop-
erty H1.

5.2 Testing the Concurrent Properties T1 and H3

Consider the concurrent trace property T1 of Example 1 for a net N, where a
low-security event l must not depend on a high-security event h. We check this
by requiring that

N must pass Thl

for the following test Thl :

l

�

h � h

This test can terminate successfully after any (possibly empty) sequence of low-
security events l. However, once a high-security event h occurs, the test termi-
nates successfully only after any (possibly empty) sequence of further h events.
Any low-security event l occurring after the first h will lead to a deadlock since
the test does not offer any further synchronization on l.

Finally, we consider the concurrent hyperproperty H3 of generalized nonin-
terference of Example 3. As low-security events we take l1, l2 ∈ Σlow and as
high-security events h1, h2 ∈ Σhigh . The property is checked by requiring that

∀ ρ, ρ′. ∃ρ′′. N‖N′‖N′′ must pass Tgni

for the test Tgni shown in Fig. 7.

Concurrent Hyperproperties 225

Fig. 6. Testing a concurrent hyperproperty with Tcon . We consider the unique maximal
run of the parallel composition ρ1 ‖Tcon ‖ ρ′

3. This run terminates successfully because
both concurrent components of the test end in a place marked with �.

Fig. 7. Test Tgni

In the two universally quantified runs ρ and ρ′, this test uses labels l1, l2, h1, h2

in the net N of run ρ and copies l′1, l
′
2, h

′
1, h

′
2 in the net N′ of ρ′. Likewise, in the

existentially quantified run ρ′′, the test uses labels l′′1 , l′′2 , h′′
1 , h′′

2 in the net N′′

of ρ′′.
Note that the test Tgni has an initial choice between the two internal τ

actions, but the conjunction in H3 is modeled by must testing, which requires
that for each run ρ and ρ′ both branches terminate with a success. In the
left branch, the test is successful if it terminates when the low-security events
l1, l2 are matched by corresponding events l′′1 , l′′2 , so that Flow holds. The
three transitions labeled h are shorthands for the occurrence of any event
h1, h2, l

′
1, l

′
2, h

′
1, h

′
2, h

′′
1 , h′′

2 that may intervene in this branch without any effect.
In the right branch, the test is successful if it terminates when the high-security
events h′

1, h
′
2 are matched by corresponding events h′′

1 , h′′
2 , so that Ghigh holds.

The three transitions labeled l are shorthands for the occurrence of any event
l1, l2, h1, h2, l

′
1, l

′
2, l

′′
1 , l′′2 that may intervene in this branch without any effect.

226 B. Finkbeiner and E.-R. Olderog

Fig. 8. Petri net NI simulating the input I of the PCP

6 Decidability

Universal must testing of a net N0 of the form

(∗) ∀ ρ1, · · · ,∀ ρk. N1 ‖ · · · ‖Nk must pass T,

can be decided because their falsification is a reachability problem. Indeed, the
negation of (∗) means that there exist k runs of N0 that composed in parallel with
Tyield a finite net in which there exist places of Twithout causal successor that
are not marked with �. Instead of referring to k runs of N0 we can equivalently
refer to k copies N0, 1 , . . . ,N0, k of N0 , with suitably renamed action labels, and
check the net N = N0, 1 ‖ · · · ‖N0, k ‖ T, with —→ as its transition relation and
PlT as the set of places inside T, for the following property:

∃M ∈ reach(N). ∃ p ∈ M ∩ PlT. p �∈ � ∧ ¬∃ t ∈ —→. t is enabled at M.

This is a reachability problem for Petri nets, which is decidable [14]. Since we
consider safe Petri nets, this reachablity is PSPACE-complete [6].

By contrast, universal may testing quickly gets undecidable.

Theorem 1. Universal may testing is undecidable for tests with two maximal
runs.

Proof. We reduce the falsification of the Post Correspondence Problem
(PCP) [22] to universal may testing using a test with two maximal runs. ��

We present the proof idea for the PCP over the alphabet {a, b}. As an input,
consider the set

I = ((u1, v1), (u2, v2), (u3, v3)),

of pairs of subwords, where

u1 = ab, v1 = bb, u2 = a, v2 = aba, u3 = baa, v3 = aa.

Concurrent Hyperproperties 227

The PCP with this input is solvable by the correspondence (2, 3, 1, 3) because

u2u3u1u3 = a b a a a b b a a = v2v3v1v3.

The PCP input I is simulated by the Petri net NI shown in Fig. 8. It consists of
two branches that are selected by an initial choice between two internal actions.
For distinguishing them in a test, the left branch starts with a transition labeled
with u and the right branch with a transition labeled with v. Afterwards, their
tokens reside in their center places from where they can nondeterministically
choose which of the words ui or vi for i ∈ {1, 2, 3} to perform next. For example,
the left branch simulates the subword u1 = ab by the sequence of actions 1, a,
and b, after which the token is again on the center place so that the next choice
can be performed. After any finite number of choices each branch may stop its
activity by performing the transition labeled with fu or fv , respectively.

Fig. 9. Test TPCP for checking whether two runs of N do not simulate a correspon-
dence of the PCP. The left branch ends in the place without � if the runs produce
letter by letter the same word, the right branch ends in the place without � if the runs
have chosen the same sequence of indices.

In general, the PCP with input I simulated by a net NI of the form above
has no correspondence if and only if

∀ ρ, ρ′ . ρ ‖ ρ′ may pass TPCP

for the test TPCP shown in Fig. 9.

228 B. Finkbeiner and E.-R. Olderog

Fig. 10. Maximal runs of
N simulating the corre-
spondence (2, 3, 1, 3).

By contraposition, if the PCP has a correspon-
dence, there exist maximal runs ρ and ρ′ of NI with
nets N and N′ such that the two maximal runs in
N‖N′ ‖TPCP stemming from the two branches in
TPCP are not sucessful, i.e., each branch ends in the
unique place that is not marked by �.

The left branch of TPCP ends in the place without
� if ρ and ρ′ produce letter by letter the same word.
Here the transitions labeled with unprimed symbols
refer to ρ and transitions labeled with primed symbols
refer to ρ′. The initial transitions labeled with u and v′

ensure that the unprimed symbols refer to the left part
of NI simulating the u-part and that the primed sym-
bols refer to (the primed version of) right part of NI

simulating the v-part of the proposed correspondence.
Since the correspondence is finite, this branch of the
test ends in the place without � after performing fu
and fv ′.

The right branch of TPCP ends in the place without
� if ρ and ρ′ have chosen the same sequence of indices
1, 2, 3 in producing the common word. Note that this
branch checks the same runs ρ and ρ′ than the left
branch because ρ and ρ′ are fixed initially.

There is one technical detail. Whereas the runs ρ
and ρ′ have no symbols in common because ρ uses
only unprimed symbols and ρ′ only primed versions
of the symbols, the test TPCP synchronizes in the
parallel composition with N ‖N′ on all its symbols
except τ , i.e., on a, b, a′, b′, u, v′, fu, fv ′, 1, 2, 3, 1′, 2′, 3′.
To avoid unintended deadlocks we have to enable the
left branch of TPCP to be able to synchronize at every
place marked with 1 with any transition lableled with
1, 2, 3, 1′, 2′ or 3′, and vice versa, the right branch of
TPCP to be able to synchronize at every place marked
with a with any transition lableled with a, b, a′, b′, u or
v′. To enhance visibility, we dropped the loop transi-
tions attached to these places allowing for these syn-
chronizations.

For the example input I, Fig. 10 shows two max-
imal runs of NI , one with the original symbols and
one with primed symbols, that simulate the correspon-
dence (2,3,1,3) and cause the test TPCP to end for each
branch in the place that is not marked �.

Concurrent Hyperproperties 229

7 Conclusion

We introduced the notion of concurrent hyperproperties as sets of sets of con-
current traces. This extends classical hyperproperties, which are sets of sets
of traces. For analyzing concurrent hyperproperties, we used Petri nets as the
underlying semantic model of concurrency. The analysis was performed by adapt-
ing may and must testing originally developed by DeNicola and Hennessy to our
setting. Several examples illuminated the details of our approach.

As future work we envisage the introduction of suitable logics for specifying
concurrent hyperproperties, extending HyperLTL for hyperproperties on traces
(see [7] for an overview). A starting point could be event structure logic [18,20].

Acknowledgement. This work was supported by the European Research Council
(ERC) Grant HYPER (No. 101055412).

References

1. Aichernig, B.K., He, J.: Refinement and test case generation in UTP. In: Aich-
ernig, B.K., Boiten, E.A., Derrick, J., Groves, L. (eds.) Proceedings of the 11th
Refinement Workshop, Refine@ICFEM 2006, Macao. Electronic Notes in Theoret-
ical Computer Science, vol. 187, pp. 125–143. Elsevier (2006). https://doi.org/10.
1016/j.entcs.2006.08.048

2. Best, E., Fernández, C.: Nonsequential Processes. Springer, Berlin (1988). https://
doi.org/10.1007/978-3-642-73483-0

3. Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets.
Math. Struct. Comput. Sci. 19(6), 1065–1090 (2009). https://doi.org/10.1017/
S0960129509990120

4. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

5. DeNicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34, 83–134
(1984). https://doi.org/10.1016/0304-3975(84)90113-0

6. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bull. EATCS
52, 244–262 (1994)

7. Finkbeiner, B.: Temporal hyperproperties. Bull. EATCS 123 (2017). http://eatcs.
org/beatcs/index.php/beatcs/article/view/514

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of the IEEE Symposium on Security and Privacy, pp. 11–20. IEEE Computer
Society (1982). https://doi.org/10.1109/SP.1982.10014

9. Goltz, U.: On representing CCS programs by finite petri nets. In: Chytil, M.P.,
Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 339–350. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0017157

10. He, J., et al.: Provably correct systems. In: Langmaack, H., de Roever, W.-P.,
Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 288–335. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58468-4 171

11. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
12. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Hoboken

(1998)

https://doi.org/10.1016/j.entcs.2006.08.048
https://doi.org/10.1016/j.entcs.2006.08.048
https://doi.org/10.1007/978-3-642-73483-0
https://doi.org/10.1007/978-3-642-73483-0
https://doi.org/10.1017/S0960129509990120
https://doi.org/10.1017/S0960129509990120
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1016/0304-3975(84)90113-0
http://eatcs.org/beatcs/index.php/beatcs/article/view/514
http://eatcs.org/beatcs/index.php/beatcs/article/view/514
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/BFb0017157
https://doi.org/10.1007/3-540-58468-4_171

230 B. Finkbeiner and E.-R. Olderog

13. Hoare, C.: A model for communicating sequential processes. In: McKeag, R., Mac-
Naughten, A. (eds.) On the Construction of Programs, pp. 229–254. Cambridge
University Press (1980)

14. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

15. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. Ser. 6(78) (1977). https://doi.org/10.7146/dpb.v6i78.7691

16. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of the IEEE Symposium on Security and Privacy, pp. 177–186. IEEE
Computer Society (1988). https://doi.org/10.1109/SECPRI.1988.8110

17. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer, Berlin
(1980). https://doi.org/10.1007/3-540-10235-3, http://link.springer.com/10.1007/
3-540-10235-3

18. Mukund, M., Thiagarajan, P.S.: A logical characterization of well branching event
structures. Theor. Comput. Sci. 96(1), 35–72 (1992). https://doi.org/10.1016/
0304-3975(92)90181-E

19. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge University Press, Cambridge (1991). https://
doi.org/10.1017/CBO9780511526589

20. Penczek, W.: Branching time and partial order in temporal logics. In: Bolc, L.,
Szalas, A. (eds.) Time and Logics: A Computational Approach, pp. 203–257. UCL
Press Ltd. (1995)

21. Petri, C.: Non-sequential processes. Technical Report. Internal Report GMD-ISF-
77-5, Gesellschaft Math. Datenverarb., St. Augustin (1977)

22. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
54(4), 264–268 (1946). https://doi.org/10.1007/978-3-642-19835-9

23. Pratt, V.R.: The pomset model of parallel processes: unifying the temporal and
the spatial. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY
1984. LNCS, vol. 197, pp. 180–196. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-15670-4

24. Reisig, W.: Petri Nets - An Introduction. Springer, Heidelberg (1985). https://doi.
org/10.1007/978-3-642-69968-9

25. Su, T., Fu, Z., Pu, G., He, J., Su, Z.: Combining symbolic execution and model
checking for data flow testing. In: Bertolino, A., Canfora, G., Elbaum, S.G. (eds.)
37th IEEE/ACM International Conference on Software Engineering, ICSE 2015,
vol. 1, pp. 654–665. IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.
2015.81

26. Su, T., et al.: A survey on data-flow testing. ACM Comput. Surv. 50(1), 5:1–5:35
(2017). https://doi.org/10.1145/3020266

27. Winskel, G.: Event structures: Lecture notes for the Advanced Course on Petri
Nets. Technical Report UCAM-CL-TR-95, University of Cambridge, Computer
Laboratory (1986). https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-95.pdf

https://doi.org/10.1137/0213029
https://doi.org/10.7146/dpb.v6i78.7691
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/3-540-10235-3
http://springerlink.bibliotecabuap.elogim.com/10.1007/3-540-10235-3
http://springerlink.bibliotecabuap.elogim.com/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(92)90181-E
https://doi.org/10.1016/0304-3975(92)90181-E
https://doi.org/10.1017/CBO9780511526589
https://doi.org/10.1017/CBO9780511526589
https://doi.org/10.1007/978-3-642-19835-9
https://doi.org/10.1007/3-540-15670-4
https://doi.org/10.1007/3-540-15670-4
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1109/ICSE.2015.81
https://doi.org/10.1109/ICSE.2015.81
https://doi.org/10.1145/3020266
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-95.pdf

Concurrent Hyperproperties 231

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chinese Colleagues

Characterizations of Parallel Real-Time
Workloads

Xu Jiang1(B), Jinghao Sun2, and Wang Yi1,3

1 Northeastern University, Shenyang, China
jiangxu@cse.neu.edu.cn

2 Dalian University of Technology, Dalian, China
3 Uppsala University, Uppsala, Sweden

Abstract. The work function, originally proposed by Bonifaci et al. [4],
plays an important role in timing analysis of sporadic DAG parallel tasks.
Later, Baruah [1] and Li et al. [10] provide different characterizations for
Bonifaci’s notion of work function. The consistency and correctness of
these characterizations and Bonifaci’s original result is so far a pending
question. In this paper, we revisit the notion of work function based
analysis techniques to answer the above pending question. We show that
Baruah’s characterization is equivalent to Bonifaci’s original formulation,
while Li’s characterization is strictly stronger.

1 Introduction

Multi-cores are becoming mainstream platforms for real-time embedded sys-
tems to meet the rapidly increasing performance requirements and low power
consumption [12,20,23]. To fully utilize the capacity of multi-cores, not only
inter-task parallelism, but also intra-task parallelism need to be explored in the
design and analysis of modern real-time systems, where individual tasks are par-
allel programs and can potentially utilize more than one core at the same time
during their executions. This enables tasks with higher execution demands and
tighter deadlines, such as those used in autonomous vehicles [8], video surveil-
lance, computer vision, radar tracking and real-time hybrid testing [6]. Nowadays
parallel programming languages (and software), such as Cilk family [3], OpenMP
[14] and Intel’s Thread Building Blocks [17], commonly support parallel task sets
with intra-task parallelism (in addition to inter-task parallelism).

The origins of this work can be traced back to 1986 when Wang, one of the authors,
first met Jifeng at the Marktoberdorf Summer School on Theoretical Computer Science.
The encounter marked the beginning of their professional collaboration and personal
friendship, which has lasted for nearly four decades. During the school, Wang, a Ph.D.
student at the time, got to know Jifeng’s work with Antony Hoare of algebraic theory
on programming, which has deeply influenced on Wang’s subsequent research in process
algebras, formal verification, and real-time computing. As one of the leading teams in
the country in the field of embedded and real-time systems, the authors wish to take
this opportunity to thank Jifeng for his unwavering support, inspiration, and friendship.
Happy Birthday, Jifeng!.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 235–256, 2023.

https://doi.org/10.1007/978-3-031-40436-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_9

236 X. Jiang et al.

A common way to model parallel real-time software systems is using recurrent
directed acyclic graph (DAG) models. This motivates many recent work in the
area of real-time scheduling for recurrent DAG task models [1,2,4,5,7,9–11,13,
15,16,18,19,21]. Real-time scheduling algorithms for DAG tasks can be classified
into three paradigms: 1) decomposition-based scheduling [7,15,16,18]; 2) global
scheduling (without decomposition) [1,4,9,13,21]; and 3) federated scheduling
[2,10], which is the trade-off between decomposition-based scheduling and global
scheduling. In this paper, we focus on the global EDF scheduling algorithm,
which gives the maximum flexibility, e.g., it does not decompose DAG tasks, nor
restrict a DAG task to dedicated cores. It schedules vertices in the DAG until
either all cores are busy or no more vertices are ready.

Although the global EDF algorithm keeps the best flexibility, its schedula-
bility analysis is a challenging problem. In the literature, a large part of the
theoretical work on schedulability analysis of recurrent DAG tasks under global
EDF uses a kernel notation, called the work function. Intuitively, for any given
recurrent DAG task set T , the positive integer t and α, and assuming that T
is executed on infinite number of α-speed cores, the work function work(T , t, α)
defines the maximum workload released from T that must be executed during
an interval of duration equal to t. (See in Sect. 4 for more details).

By applying the work-function-based methodology, researchers mainly derive
the following three classical theoretical results.

– Bonifaci et al. [4] first propose the notation of the work function, which is
originally used to derive the speedup bound of the DAG tasks. The speedup
bound is a comparative metric with respect to some other (optimal) scheduler.
A scheduling algorithm A provides a speedup bound of α if it can successfully
schedule any task set T on m cores of speed α as long as the compared
scheduler can schedule T on m cores of speed 1. The speedup bound shows
how close the performance of a scheduler is to the compared one, but it cannot
be directly used as a schedulability test.

– Li et al. [10] reformulate Bonifaci’s main result, and derive a capacity aug-
mentation bound of the DAG tasks. The capacity augmentation bound is an
absolute metric that can be directly used for schedulability test. A scheduling
algorithm A has a capacity augmentation bound of α if it can schedule any
task set T (on m cores of speed 1) satisfying the following two conditions:

• the total utilization of T is at most m/α, and
• the worst-case critical path length of each task is at most 1/α of its

deadline.
Capacity augmentation bounds are stronger than speedup bounds in the sense
that if a scheduler has a capacity augmentation bound of α, it is also guar-
anteed to have a resource augmentation bound of α. Based on the capacity
augmentation bound, Li et al. [10] propose a simple linear-time schedulability
test for scheduling recurrent DAG tasks under global EDF. Most importantly,
Li et al. [10] prove that their capacity augmentation bound is the tightest one
for the DAG task under global EDF algorithm.

Characterizations of Parallel Real-Time Workloads 237

– Baruah [1] also reformulates Bonifaci’s main result, and proposes a pseudo-
polynomial time schedulability analysis method for the DAG tasks under
global EDF algorithm.

Our key observation is that although Li et al. [10] and Baruah [1] both state
that they reformulate the same theorem of [4], their reformulations are totally
different. Only one of them should be equivalent to the original theorem of [4].
In this paper, we devote to clarify which reformulation is the equivalent theorem
to the original one of [4]. Through a deep insight into Bonifaci’s main theorem,
we find that Baruah’s theorem is an equivalent state of Bonifaci’s theorem in [4],
and Li’s theorem overwhelms Bonifaci’s theorem, indicating that Li’s theorem
cannot be directly derived from Bonifaci’s theorem. The correctness of Li’s work
needs a careful analysis. To this end, we reveal interesting properties of the
work function, and try to provide a rigorous proof for Li’s theorem. We extend
Bonifaci’s techniques to discuss the correctness of Li’s theorem, but we only
prove that Li’s theorem is conditionally correct.

The rest of this paper is organized as follows. Section 2 discusses related work.
In Sect. 3 we formally define the sporadic DAG task model and the global EDF
algorithm. In Sect. 4 we revisit the notation of work function. In Sect. 5 we give a
brief overview of the main theorem in [4], and revisit the existing reformulations
of Bonifaci’s theorem, and moreover, we discuss whether they are equivalent to
the main theorem in [4]. The last section gives the conclusion.

2 Related Work

Bonifaci et al. [4] first introduce the notation of work function, and by using
the work function based methodology, they propose the speedup bounds 2 − 1

m
and 3 − 1

m for the DAG tasks under global EDF and global DM algorithms
respectively. Baruah [1] reformulates the main theorem of [4], and improves the
global schedulability analysis of [4]. Li et al. [9] analyze the global schedula-
bility of DAG tasks via a methodology that is different from Bonifaci’s work
function method, and they propose the capacity augmentation bound of 4 − 1

m
for the implicit deadline DAG tasks under global EDF. Moreover, Li et al. [9]
also prove that the capacity augmentation bound for the implicit deadline DAG
tasks under global EDF is at least 3+

√
5

2 ≈ 2.618. Sun et al. [21] propose the
first constant capacity augmentation bound for the constraint deadline DAG
tasks under global EDF, and for the implicit deadline DAG tasks, they exhibit
the capacity augmentation bound of 3.82 − 1

m , which is better than the one
proposed in [9]. The work function based methodology significantly promotes
the theoretical work on capacity augmentation bound. Li et al. [10] reformulate
the main theorem of [4], and propose the tightest capacity augmentation bound
of DAG tasks under global EDF, i.e., they prove that the upper bound of the
capacity augmentation bound achieves 2+

√
5

2 .
We observe that Li et al. [10] and Baruach [1] reformulate the same theorem

of [4], and however, their reformulations are totally different. There must be one

238 X. Jiang et al.

of them is not equivalent to the original theorem of [4]. If Li’s theorem is not
equivalent to Bonifaci’s theorem, and, even worse, their theorem is not correct,
then the capacity augmentation bound of 3.82 − 1

m proposed by Sun et al. [21]
should be the best known capacity augmentation bound for DAG tasks under
global EDF.

3 System Model

This section presents a sporadic DAG task model for recurrent parallel tasks, and
formally defines the runtime model by considering the global EDF scheduling
algorithm.

3.1 Task Model

This section presents a model for recurrent DAG tasks. We consider a set of n
independent sporadic DAG tasks: T = {τ1, τ2, · · · , τn}. Each task τi is specified
as a 3-tuple (Gi,Di, Ti), where Gi is a directed acyclic graph (DAG), and Di

and Ti are positive integers, called the deadline and the period respectively.
The task τi repeatedly releases dag-jobs, and each dag-job of τi has a DAG-

structure specified as Gi = (Vi, Ei), where Vi is a set of vertices, and Ei is a set of
directed edges between these vertices. Each vertex vx

i ∈ Vi denotes a sequential
operation, and is characterized by a worst-case execution time (WCET) c(vx

i).
The edges represent dependencies between the vertices: if (vx

i , vy
i) ∈ Ei then

vertex vx
i must complete execution before vertex vy

i can begin execution. A
vertex vx

i is the predecessor of the vertex vy
i if there is an edge from vx

i to (a
predecessor of) vy

i , and in this case, the vertex vy
i is called the successor of vx

i .
A vertex vx

i is called the source vertex of Gi if it has no predecessor. A vertex
vx

i is called the sink vertex of Gi if it has no successor. Multiple source vertices
and sink vertices are allowed in the DAG Gi, and the DAG Gi are not required
to be fully connected. Figure 1 shows two example tasks τ1 and τ2, each of which
consists of 7 vertices in the DAG structure.

Fig. 1. An example task set consisting of two DAG tasks. Vertices are labeled with
WECTs.

A release of a dag-job of τi at time-instant t means that all |Vi| vertices
vx

i ∈ Vi are released at time-instant t. The period Ti denotes the minimum
duration of time that must elapse between the release of successive dag-jobs of

Characterizations of Parallel Real-Time Workloads 239

τi. Once a dag-job of τi is released at time-instant t, then all |Vi| vertices that
were released at time-instant t must complete execution by time-instant t + Di.
Recall that Di is the deadline of τi.

We now introduce some useful notations related to a DAG task.

– Volume. The sum of the worst-case execution time of all vertices in Gi (the
graph structure of τi’s dag-job) is the volume voli of τi, i.e.,

voli =
∑

vx
i ∈Vi

c(vx
i) (1)

For example, the volume of τ1 in Fig. 1 is vol1 = 34.
– Length. The length of the longest path in Gi (the graph structure of τi’s

dag-job) is the length leni of τi, i.e.,

leni = max
π∈Gi

∑

vx
i ∈π

c(vx
i) (2)

where π is the path of Gi. For example, the length of τ1 is len1 = 6+2+4+8 =
20.

– Utilization. For any task τi, we define its utilization ui as follows.

ui =
voli
Ti

(3)

For example, the task τ1 in Fig. 1 has an utilization as u1 = 17
13 . Moreover,

the total utilization of the task system T is denoted as follows.

U∑ =
∑

τi∈T
ui (4)

In the literatures, these parameters above are used in schedulability analysis,
e.g., capacity augmentation bounds, see in Sect. 3.3 for more details.

3.2 Global EDF Algorithm

We consider a platform P that consists of m identical processing cores p1, p2, · · · ,
pm, and each of them has a speed α ≥ 1. We schedule the task set T on m cores
of P. More specifically, at any time instant t, if a core is executing a vertex of
some task, then it is called the busy core, and otherwise, it is called the idle core.
A vertex is ready for execution if all its predecessors are finished. A schedule is
to assign ready vertices to idle cores until all the released vertices are finished.

In this paper, we schedule tasks by using global EDF (GEDF) algorithm.
Under GEDF, at each time instant the scheduler selects the highest-priority
ready vertices (at most m) for execution. Vertices of the same task share the
same priority (ties are broken arbitrarily) and a vertex of a task with an earlier
absolute deadline has a higher priority than a vertex of a task with a later
absolute deadline. In particular, vertex-level preemption and migration are both
permitted in GEDF. Without loss of generality, we assume the scheduling of the
task set T starts at time 0 (i.e., the first dag-job of the task set is released at
time 0).

240 X. Jiang et al.

3.3 Schedulability

A task set T is schedulable on m α-speed cores if a valid schedule exits on
m α-speed cores such that all dag-jobs released by T meet their deadlines. In
particular, when scheduled on m unit-speed cores, a schedulable task set must
satisfy the following conditions.

Theorem 1 (Necessary Conditions for schedulability [9]). A task set T
is not schedulable (by any scheduler on m unit-speed cores) unless the following
conditions hold.

– The length of each task τi is less than its deadline Di, i.e.,

leni ≤ Di, ∀τi ∈ T (5)

– The total utilization U∑ is smaller than the number of cores, i.e.,
∑

τi∈T
ui ≤ m (6)

Clearly, if (5) is violated for some task, then its deadline is doomed to be
violated in the worst case, even if it is executed exclusively on sufficiently many
cores. If (6) is violated, then in the long term the worst-case workload of the
system exceeds the processing capacity provided by the platform, and thus the
backlog will increase infinitely which leads to deadline misses. We assume that
all task sets discussed in the reminder of this paper satisfy (5) and (6).

Given a scheduling algorithm A, a task set T is A-schedulable on m α-speed
cores if A meets all deadlines when scheduling any collection of dag-jobs that
may be generated by the task set T on m α-speed cores. To verify whether a
task set is A-schedulable is highly intractable (e.g., NP-hard in the strong sense
[22]) even when there is a single DAG task. In the following we introduce two
approximation metrics for A-schedulability analysis.

Definition 1 (Speedup Bound). A scheduling algorithm A has a speedup
bound α if any task set T that is schedulable on m unit-speed cores is A-
schedulable on m α-speed cores.

From Definition 1, we know that for any scheduling algorithm A with a
speedup bound α, if a task set T is not A-schedulable on m α-speed cores, then
all scheduling algorithms fail to schedule T on m unit-speed cores. Moreover,
there are some task sets T such that they are not schedulable on m unit-speed
cores, but they are A-schedulable on m α-speed cores. In this sense, the speedup
bound α is a metric for approximately quantifying the quality of scheduling
algorithms.

Definition 2 (Capacity Augmentation Bound). A scheduling algorithm A
has a capacity augmentation bound α if it can always schedule DAG task set T
on m α-speed cores as long as T satisfies the above necessary conditions in (5)
and (6).

Characterizations of Parallel Real-Time Workloads 241

From Definition 2, for any scheduling algorithm A that has a capacity aug-
mentation bound α, we can derive the sufficient conditions for A-schedulability
analysis, i.e., a task set T is A-schedulable on m unit-speed cores if the following
conditions both hold.

leni ≤ Di

α
, ∀τi ∈ T

∑

τi∈T
ui ≤ m

α

A scheduling algorithm with a smaller speedup bound (as well as a smaller
capacity augmentation bound) α is preferable. In particular, when the capacity
augmentation bound α = 1, the scheduling algorithm is optimal.

In the literature, researchers use the notation of the work function to derive
the speedup bound and the capacity augmentation bound. In the next section,
we introduce such an important notation.

4 Work Function

Bonifaci et al. [4] first introduce the notation of the work function and use it
to originally characterize the amount of workload that could be generated by a
sporadic DAG task when scheduled on unit-speed cores. Li et al. [10] and Baruah
[1] further extend the notation of the work function to the scenarios with cores
of speed α (larger than 1). In this section, we describe the work function defined
in [1,10], which is in a manner consisting with the terminology introduced in
Sect. 3.

We first define an ideal scheduling algorithm A∞ as follows.

Definition 3 (Ideal Scheduling Algorithm A∞). The algorithm A∞ sched-
ules a task set T on infinite number of cores, and it allocates a core to each
vertex vx

i released by the tasks in T at the time-instant the vertex vx
i is ready to

execute, and executes the vertex vx
i upon the allocated core until vx

i completes its
execution.

We denote by J the collection of dag-jobs that may be released by the tasks
in T , written as J � T , and we say J is feasible if there is a valid schedule of J
such that all dag-jobs of J meet their deadlines. We let S∞(J, α) be the schedule
of J under the ideal algorithm A∞ on the cores of speed α. We observe that the
schedule S∞(J, α) executes each vertex as soon as it becomes ready to execute,
thereby leaving as little work to be done later as possible.

Figure 2 shows the schedule of task set in Fig. 1 under A∞ on unit-speed
cores, where tasks τ1 and τ2 both successively release their dag-jobs with the
period T1 = T2 = 26.

For any task τi of T , we denote by Ji the collection of the dag-jobs that may
be released by τi, written as Ji � τi, and which is also contained in the schedule
S∞(J, α), i.e., Ji ⊆ J . For any interval I, we denote by work(Ji, I, α) the amount

242 X. Jiang et al.

Fig. 2. An example schedule of task set in Fig. 1 under A∞.

of execution occurring within the interval I in the schedule S∞(J, α) of dag-jobs
in Ji with deadlines that fall within I. For example, in Fig. 2, work(J1, I, 1) = 4
for the interval I = [16, 22].

For any positive integer t, let work(Ji, t, α) be the maximum value that
work(Ji, I, α) can take, over any interval I of duration equal to t, i.e.,

work(Ji, t, α) = max
|I|=t

work(Ji, I, α), ∀τi ∈ T (7)

Finally, we define the work function work(τi, t, α) of the task τi as the maxi-
mum value of work(Ji, t, α), over all collection Ji of dag-jobs that may be released
by the sporadic DAG task τi, i.e.,

work(τi, t, α) = max
Ji�τi

work(Ji, t, α), ∀τi ∈ T (8)

We further extend the notation of the work function from individual tasks
to task sets as follows. For any task set T , the work function work(T , t, α) of T
is defined as the summation of the work functions of all tasks τi of T , i.e.,

work(T , t, α) =
∑

τi∈T
work(τi, t, α) (9)

Figure 3 exhibits the work functions of schedule in Fig. 2.

Fig. 3. The work functions of the schedule in Fig. 2.

In the following, we reveal some insights into the work function, which play
the important role to support our observations in Sect. 5.1.

Characterizations of Parallel Real-Time Workloads 243

4.1 Monotonicity of the Work Function

We discuss whether the work function is a monotonic function with the time t
and the speed α.

Lemma 1. For any task τi, any speed α ≥ 1 and any time t1, t2 ≥ 0, the
following inequality holds.

work(τi, t1, α) ≤ work(τi, t2, α), if t1 < t2 (10)

Proof. Suppose not, and we have

work(τi, t1, α) > work(τi, t2, α) (11)

We let Ji be a collection of dag-jobs released by τi, and let I1 = [a, b] be an
interval of duration equal to t1, where a is the left boundary of I1 and b is the
right boundary of I1. Without loss of generality, we assume that

work(τi, t1, α) = work(Ji, I1, α) (12)

We enlarge the interval I1 into a larger interval I2 by letting the left boundary
of I2 be a − Δ (where Δ = t2 − t1 > 0), i.e., I2 = [a − Δ, b]. Since I1 ⊂ I2 and
the larger interval I2 may involve more work of Ji that must be done during this
interval, we know that

work(Ji, I1, α) ≤ work(Ji, I2, α) (13)

By combining (11), (12) and (13), we have

work(Ji, I2, α) > work(τi, t2, α)

and by (7) and (8), we know that work(Ji, I2, α) ≤ work(τi, t2, α). This leads to
a contradiction.
�

From Lemma 1, it is easy to derive the following corollary.

Corollary 1. For any task set T , any speed α ≥ 1 and any time t1, t2 > 0, the
following inequality holds.

work(T , t1, α) ≤ work(T , t2, α), if t1 < t2 (14)

Proof. It is directly proved by (9) and according to Lemma 1.
�

Corollary 1 shows that the work function work(T , t, α) is a non-decreasing
function with time t. For example, the work functions in Fig. 3 all keep the
non-decreasing properties.

Lemma 2. For any task τi, any time t ≥ 0 and any speeds α1, α2 ≥ 1, the
following inequality holds.

work(τi, t, α1) ≥ work(τi, t, α2), if α1 < α2 (15)

244 X. Jiang et al.

Proof. For any collection Ji of the dag-jobs released by τi, and for any interval
I = [a, b] of duration equal to t, where a is the left boundary of I, we know that
the ideal algorithm A∞ on the cores of speed α2 executes more work of Ji during
the interval [0, a], and therefore it leaves less work of Ji that to be done during
I. Consequently, we have,

work(Ji, I, α1) ≥ work(Ji, I, α2), ∀Ji � τi, α1 < α2 (16)

and by (7), we have

work(Ji, t, α1) ≥ work(Ji, I, α2), ∀Ji � τi, α1 < α2

and by (8), we have

work(τi, t, α1) ≥ work(τi, t, α2)

This completes the proof.
�

Lemma 2 shows that the work function work(τi, t, α) is a decreasing function
of speed α. In the following corollary, we extend Lemma 2 from an individual
task to the task set.

Corollary 2. For any task set T , any time t ≥ 0 and any speeds α1, α2 ≥ 1,
the following inequality holds.

work(T , t, α1) ≥ work(T , t, α2), if α1 < α2 (17)

Proof. It is directly proved by (9) and according to Lemma 2.
�

For example, in Fig. 3, the curve of work function work(T , t, 2) is always
below the curve of work function work(T , t, 1).

4.2 Critical Points of the Work Function

In this section, we introduce some critical points of the work function
work(T , t, α). We first define two types of critical time points of the work func-
tion as follows.

Definition 4 (Left Critical Time Point). The left critical time point of
the work function work(T , t, α) is the time-instant t∗ that satisfies the following
conditions.

– ∀t < t∗, work(T , t, α) < work(T , t∗, α), and
– ∀ε > 0, work(T , t∗, α) = work(T , t∗ + ε, α).

For example, in Fig. 3, t = 22 and t = 48 are both left critical time points of
work(T , t, 1).

Definition 5 (Right Critical Time Point). The right critical time point of
the work function work(T , t, α) is the time-instant t+ that satisfies the following
conditions.

Characterizations of Parallel Real-Time Workloads 245

– ∀t > t+, work(T , t, α) > work(T , t+, α), and
– ∀ε > 0, work(T , t+, α) = work(T , t+ − ε, α).

For example, in Fig. 3, t = 28 is the right critical time point of work(T , t, 1),
and t = 38 is the right critical point of work(T , t, 2).

Definition 6 (Flat Interval). For any successive critical time points t∗ and
t+, where t∗ is the left critical time point, and t+ is the right critical time point,
the interval F = [t∗, t+] is called the flat interval.

Clearly, for any flat interval I = [t∗, t+], and for any time-instant t ∈ I, we know
that

work(T , t∗, α) = work(T , t, α) = work(T , t+, α) (18)

For example, in Fig. 3, the interval I = [22, 38] is the flat interval of work(T , t, 2).

Definition 7 (Slope Interval). For any successive critical time points t+ and
t∗, where t+ is the right critical time point, and t∗ is the left critical time point,
the interval S = [t+, t∗] is called the slope interval.

For example, in Fig. 3, the interval S = [38, 48] is the slope interval of
work(T , t, 2).

Definition 8 (Non-Convex Slope Interval). A slope interval S of the work
function work(T , t, α) is non-convex if the following inequality holds for any
t1, t2 ∈ S, and any λ ∈ (0, 1),

λwork(T , t1, α)+(1−λ)work(T , t2, α)≥work(T , λt1+(1−λ)t2, α).

Moreover, a work function is non-convex if it contains no convex slope interval.

Definition 9 (Encounter Point). The encounter point of the work function
work(T , t, α) is the time point t∗ such that for any speeds α1, α2 ≥ 1,

work(T , t∗, α1) = work(T , t∗, α2) (19)

For example, t∗ = 22 and t∗ = 48 are both the encounter points of
work(T , t, α).

In the following, we show how to identify an encounter point. Before going
into details, we first give the following lemma.

Lemma 3. For any time t ≥ 0, if there is a collection Ji of dag-jobs released by
the task τi and an interval I = [a, b] of duration equal to t such that

work(τi, t, α) = work(Ji, I, α),

then the right boundary b of I must equal to ri +Di, where ri is the release time
of a dag-job of Ji.

246 X. Jiang et al.

Proof. Suppose not. There is an interval I ′ = [a + δ, b + δ] of duration equal
to t (where δ < Ti), such that work(Ji, I

′, α) > work(Ji, I, α). As illustrated
in Fig. 4, although there may be a dag-job of τi released between the interval
[b, b+ δ], the work function work(Ji, I

′, α) does not involve the workload of such
dag-job since its deadline does not fall in the interval I ′. Therefore, work(Ji, I

′, t)
will not bring more workload than work(Ji, I, t). More precisely, let W [a, a+δ] be
the work done by A∞ within the interval [a, a+δ], and we know that W [a, a+δ] ≥
0. Moreover, since work(Ji, I

′, α) = work(Ji, I, α) − W [a, a + δ] (See in Fig. 4),
we have: work(Ji, I

′, α) ≤ work(Ji, I, α). This contradicts the assumption.
�

Fig. 4. Illustration for the proof of Lemma 3.

Lemma 4 reveals a sufficient condition for the encounter points of the work
function work(τi, t, α).

Fig. 5. Illustration for the proof of Lemma 5.

Lemma 4. For any task τi, any speed α ≥ 1 and any time t = kTi + Di,
work(τi, t, α) = (k + 1)voli.

Proof. There must exist a collection Ji of dag-jobs released by the task τi and
an interval I = [a, b] of the duration equal to t, such that work(Ji, I, α) =
work(τi, t, α). Since the length of the interval I equals to KTi+Di and according
to Lemma 3, the left boundary a of I equals to the release time ri of a dag-job
of Ji, and the right boundary b of I equals to the deadline ri + kTi + Di of the
other dag-job of Ji. It indicates that work(Ji, I, α) = (k + 1)voli, and therefore,
work(τi, t, α) = (k + 1)voli.
�

Characterizations of Parallel Real-Time Workloads 247

From Lemma 4, we directly derive the following corollary.

Corollary 3. The time-instant t∗ is an encounter point of the work function
work(T , t, α) for any α ≥ 1, if it satisfies Ti|(t∗ − Di), ∀τi ∈ T .

Proof. This is proved by Lemma 4 and according to Definition 9.

Lemma 5. For any task τi, any speed α > 1, and any time t = kTi + Di + Δ
(where Δ < Di), the following conditions contradict with each other.

work(τi, t, α) = work(τi, t + ε, α), ∀ε > 0 (20)
work(τi, t, α) > work(τi, t − ε, α), ∀ε > 0 (21)

Proof. There must exist a collection Ji of dag-jobs released by the task τi and an
interval I = [a, b] of duration equal to t such that work(τi, t, α) = work(Ji, I, α).
According to Lemma 3, the right boundary b of I equals to ri + kTi + Di, and
the left boundary a of I equals to ri −Δ, where ri is the release time of a dag-job
of Ji, as illustrated in Fig. 5. There are two possible cases.

– If Δ ≤ Ti − leni

α − ε (See in Fig. 5(a)), we know that the work done by A∞
within the interval [a− ε, a] equals to 0. Moreover, since Δ > 0, we know that
the work done by A∞ within the interval [a, a + ε] equals to 0. Therefore,
work(Ji, I, α) = work(Ji, I

′, α) and work(Ji, I, α) = work(Ji, I
′′, α), where

I ′ = [a − ε, b] is the interval of duration equal to t + ε, and I ′′ = [a + ε, b]
is the interval of duration equal to t − ε. According to Lemma 3, we have
work(τi, t + ε, α) = work(τi, t, α) and work(τi, t − ε, α) = work(τi, t, α).

– If Δ > Ti − leni

α − ε (See in Fig. 5(b)), we know that the work done by A∞
within the interval [a − ε, a] must be larger than 0. Moreover, since Δ < Di,
we know that the work done by A∞ within the interval [a, a + ε] must be
larger than 0. Therefore, work(Ji, I, α) < work(Ji, I

′, α) and work(Ji, I, α) >
work(Ji, I

′′, α), where I ′ = [a − ε, b] is the interval of duration equal to t + ε,
and I ′′ = [a + ε, b] is the interval of duration equal to t − ε. According to
Lemma 3, we have work(τi, t + ε, α) > work(τi, t, α) and work(τi, t − ε, α) <
work(τi, t, α).

In sum, we know that the conditions of Lemma 5 contradict with each other.

The following lemma ties the encounter point and the critical time point
together, which plays a very important role to derive the main result in Sect. 5.1.

Lemma 6. Any left critical time point t∗ of the work function work(T , t, α)
must be an encounter point of work(T , t, α).

Proof. According to Corollary 3, for some time t∗, if ∀τi ∈ T , Ti|(t∗−Di), then t∗

is an encounter point. Therefore, it is sufficient to prove this lemma by showing
that the left critical time point t∗ satisfies Ti|(t∗ − Di), ∀τi ∈ T .

Suppose that there is a task τi such that t∗ = kTi + Di + Δ with a positive
integer Δ < Di, we aim to show that t∗ is not a left critical time point. According
to Lemma 5, we know that for any ε > 0, there are two possible cases.

248 X. Jiang et al.

– If work(τi, t, α) = work(τi, t + ε, α) and work(τi, t, α) ≤ work(τi, t − ε, α),
then we know that work(T , t, α) = work(T , t + ε, α), and work(T , t, α) ≤
work(T , t − ε, α), indicating that the first condition of Definition 4 does not
hold.

– If work(τi, t, α) �= work(τi, t + ε, α) and work(τi, t, α) > work(τi, t − ε, α),
then we know that work(T , t, α) �= work(T , t + ε, α), and work(T , t, α) >
work(T , t − ε, α), indicating that the second condition of Definition 4 does
not hold.

In sum, we know that t∗ is not a left critical time point.
�

5 A Review of the Main Result of [4]

Bonifaci et al. [4] first use the work function to derive a sufficient condition for
the schedulability test. We now describe their main result in a manner consistent
with the terminology introduced in above sections.

Theorem 2 (Lem. 3 of [4]). Consider a collection J of dag-jobs released by the
tasks in T , and let α ≥ 1. Then at least one of the following holds:

i all dag-jobs in J are completed within their deadline under global EDF on m
cores of speed α, or

ii J is not feasible under A∞ on unit-speed cores, or
iii there is an interval I such that any feasible schedule for J must finish more

than (αm − m + 1)|I| units of work within I.

Proof Sketch of Theorem 2
It is sufficient to prove this theorem by assuming that both (i) and (ii) do

not hold, and showing that (iii) satisfies. More specifically, J can be successfully
scheduled by A∞ on unit-speed cores, but fails to be scheduled by global EDF
on m cores of speed α. In the following, the key point is to construct an interval
I such that any feasible schedule of J must execute more than (αm − m + 1)|I|
units of work within I.

Among all feasible schedule of J , we focus on the schedule S∞(J, 1) (Recall
that S∞(J, 1) is obtained by scheduling J under A∞ on unit-speed cores, and
according to the assumption that A∞ successfully schedules J , S∞(J, 1) is feasi-
ble). For any feasible schedule, Bonifaci et al. [4] give the following observation.

Observation 1 For any feasible schedule Sf (J, 1) under scheduling algorithm
Af on m unit-speed cores, and for any interval I, the work of Sf (J, 1) that must
be done (by Af) within I is larger than the work of S∞(J, 1) that must be done
(by A∞) within I.

Proof For any interval I = [a, b], we denote by I ′ the interval before I, i.e.,
I ′ = [0, a). We know that the following statement holds.

(∗) The work done by Af (on m unit-speed cores) within I ′ is no more than the
work done by A∞ (on infinite number of unit-speed cores) within I ′.

Characterizations of Parallel Real-Time Workloads 249

Fig. 6. Illustration for the proof of Observation 1.

By (*), we know that Af leaves more work that must be done within I
than the one that must be done by A∞ within I, as illustrated in Fig. 6. This
completes the proof.

Here we should note that the above observation cannot be extended to the
feasible schedule Sf (J, α) such that J is scheduled by Af on α-speed cores. This
is because the key statement (*) cannot be satisfied on α-speed cores as shown
in Example 1.

Example 1. Figure 7(a) gives a task τ1, and we schedule it by A∞ on unit-speed
cores as shown in Fig. 7(b), and schedule it by the global EDF on 2 cores of
speed 4 as shown in Fig. 7(c). Clearly, during the interval [0, 2], all workload of
a dag-job released by τ1 is finished by Af on 2 cores of speed 4, but only half
of them is done by A∞ on unit-speed cores, i.e., the workload done by A∞ (on
unit-speed cores) is less than the workload done by the global EDF (on 2 cores
of speed 4).

Fig. 7. The task τ1 and its schedules discussed in Example 1.

Recall that work(J, I, 1) denotes the work of J that must be done by A∞
(on infinite number of unit-speed cores) within I, and denote by workf (J, I, 1)

250 X. Jiang et al.

the work of J that must be done by Af (on m unit-speed cores) within I, and
according to Observation 1, we know that for any interval I,

work(J, I, 1) ≤ workf (J, I, 1) (22)

Bonifaci et al. [4] construct an interval I∗, and prove that the work (denoted
as Wedf (J, I∗, α)) done by EDF on m α-speed cores within I∗ is smaller than
the work of J that must be done by A∞ (on infinite number of unit-speed cores)
within I∗, i.e.,

Wedf (J, I∗, α) ≤ work(J, I∗, 1)

and by (22), we know that

Wedf (J, I∗, α) ≤ workf (J, I∗, 1)

and moreover, Bonifaci et al. [4] also show that

Wedf (J, I∗, α) ≥ (αm − m + 1)|I∗|

and thus, we have

workf (J, I∗, 1) ≥ (αm − m + 1)|I∗|

This completes the proof of Theorem 2.
It should be emphasized that Observation 1 is very important in the proof,

which indicates that the feasible schedule mentioned in (iii) of Theorem 2 must
be restricted on the unit-speed cores by default, even though it is not explicitly
stated in the original theorem.

5.1 Existing Reformulations of Theorem 2

Baruah [1] and Li et al. [10] respectively reformulate Theorem 2 as follows.

Theorem 3 (Thm. 1 of [1]). Sporadic DAG task set T is global EDF schedu-
lable on m α-speed cores if the following conditions both hold.

i For any task τi ∈ T , leni ≤ Di, and
ii For any time t ≥ 0,

work(T , t, 1) ≤ (αm − m + 1) × t (23)

Theorem 4 (Lem. 8 of [10]). Sporadic DAG task set T is global EDF schedu-
lable on m α-speed cores if

work(T , t, α) ≤ (αm − m + 1) × t, ∀t ≥ 0 (24)

Clearly, Theorem 3 and Theorem 4 are totally different, and only one of
them is equivalent to Theorem 2. The following lemmas reveal which one is the
equivalent reformulation.

Characterizations of Parallel Real-Time Workloads 251

Lemma 7. Theorem 3 is equivalent to Theorem 2.

Proof. On the one hand, (i) of Theorem 3 equivalently indicates that any col-
lection J released by the tasks in T is feasible under A∞ on unit-speed cores,
i.e., S∞(J, 1) is feasible. Therefore, (ii) of Theorem 2 does not hold.

On the other hand, (ii) of Theorem 3 equivalently indicates that there is a
feasible schedule of J , e.g. S∞(J, 1) under A∞, such that the work of J that
must be done by A∞ within any interval I is no more than (αm−m+1)|I|, i.e.,
(iii) of Theorem 2 does not hold.

According to Theorem 2, (i) of Theorem 2 must hold, i.e., T is global EDF
schedulable on m α-speed cores.

From Lemma 7, we know that Theorem 3 is correct. Moreover, Theorem 4
seems correct due to the following reasons.

– The task set T is assumed to be schedulable under A∞ on unit-speed cores
by default in [10], i.e., (ii) of Theorem 2 does not hold. Moreover, it obviously
indicates that T is A∞-schedulable on α-speed cores.

– (24) ensures that for any collection J released by the tasks of T the feasible
schedule S∞(J, α) under A∞ on α-speed cores satisfies the following condi-
tion: the work of J that must be done by A∞ on α-speed cores within any
interval I is no more than (αm−m+1)|I|, i.e., (iii) of Theorem 2 “does not”
hold.

According to Theorem 2, T is global EDF schedulable on m α-speed cores. This
seems complete the proof of Theorem 4.

However, the proof above may be incorrect. The reason is as follows. From
Observation 1 and Example 1, we know that the feasible schedule mentioned in
(iii) of Theorem 2 is assumed to be on unit-speed cores by default. Although
the schedule S∞(J, α) used in Theorem 4 is feasible, it is not applied on unit-
speed cores. Therefore, it is not sufficient to use Theorem 2 (nor Theorem 3) to
prove Theorem 4. Actually, Theorem 4 overwhelms Theorem 3 as shown in the
following lemma.

Lemma 8. Theorem 4 overwhelms Theorem 3.

Proof. From Corollary 2, we know that ∀t ≥ 0 and α > 1, work(T , t, α) ≤
work(T , t, 1). Therefore, if (23) holds, then (24) must hold. It indicates that The-
orem 4 overwhelms Theorem 3, and according to Lemma 7, we complete the proof.

The following example reveals that Theorem 4 strictly overwhelms Theo-
rem 3, i.e., there is a work function that satisfies (24), but does not satisfy (23).

Example 2. We consider the task τ1 in Fig. 8(a), and schedule it by A∞ as shown
in Fig. 8(b) and (c).

252 X. Jiang et al.

Fig. 8. An example task set and its schedule under A∞.

The work function of τ1 is given as follows.

work(τ1, t, α)=

⎧
⎪⎪⎨

⎪⎪⎩

0 0<t≤2− 2
α

5αt−10α+10 2− 2
α <t≤2− 1

α
αt−2α+6 2− 1

α <t≤2
6� t

2�+work(τ1, t−2� t
2�, α) t>2

By letting m = 3 and α ≥ 2, we first show the violation of (23), i.e., there is
a time point t such that work(τ1, t, 1) > (αm − m + 1)t = (3α − 2)t. Such a
time point must exist, because work(τ1, 0, 1) = 0 and for any t ∈ [0, 2 − 1

α], the
gradient of work(τ1, t, 1) equals 5α, which is larger than 3α − 2. As illustrated
by Fig. 9, the blue curve represents the work function work(τ1, t, 1), and during
the interval t ∈ (0, 1], we know that work(τ1, t, 1) ≥ (αm − m + 1)t.

Fig. 9. The work function curves with m = 3 and α = 2.

In the following, we show that (24) holds, i.e., ∀t, work(τ1, t, α) ≤ (αm −
m + 1)t when m = 3 and α ≥ 2. As we know that the period of work function
work(τ1, t, α) equals 2, we discuss the value of Δ = (αm−m+1)t−work(τ1, t, α)

Characterizations of Parallel Real-Time Workloads 253

(with m = 3 and α ≥ 2) in each period t ∈ [2k, 2k+2] (k = 0, 1, · · ·). We further
divide each period into three disjoint intervals as follows.

– When t ∈ [2k, 2k + 2 − 2
α), and since α ≥ 2, we have

Δ ≥ 6αk − 10k ≥ 0

– When t ∈ [2k + 2 − 2
α , 2k + 2 − 1

α), and since α ≥ 2, we have

Δ ≥ (6α−10)(k+1) +
4
α

≥ 0

– When t ∈ [2k + 2 − 1
α , 2k + 2], and since α ≥ 2, we have

Δ ≥ (6α − 10)k + (6α − 12) +
2
α

≥ 0

In sum, we know that (24) holds for any time point t, as illustrated in Fig. 9,
where the green curve representing the work function work(τ1, t, α) is always
below the red curve representing (αm−m+1)t.

The following lemma shows a sufficient condition which ensures that if (24)
holds, then (23) holds.

Lemma 9. For any non-convex work function work(T , t, α), (24) implies (23).

Proof. Suppose not. There is a non-convex work function work(T , t, α) that
satisfies (24) holds, but violates (23), i.e., there is a time t such that

work(T , t, 1) > (αm − m + 1)t (25)

According to Lemma 1, the work function work(T , t, 1) is an increasing function,
and thus, there must be a time t < t∗ such that

work(T , t∗, 1) = (αm − m + 1)t∗ (26)

We consider two cases.
Case 1: t∗ is in a flat interval I = (a, b]. From Definition 6, we know that

work(T , a, 1) = work(T , t∗, 1)

and by (27), we have

work(T , a, 1) = (αm − m + 1)t∗

and since (αm − m + 1)a < (αm − m + 1)t∗ (with a < t∗), we know that

work(T , a, 1) > (αm − m + 1)a (27)

From Definition 4, we know that a is a left critical time point, and according to
Lemma 6, a must be an encounter point. From Definition 9, we know that

work(T , a, 1) = work(T , a, α)

254 X. Jiang et al.

Fig. 10. Illustration for the proof of Lemma 9.

and by (27), we have

work(T , a, α) > (αm − m + 1)a

It indicates that (24) does not hold for Case 1.
Case 2: t∗ is in a slope interval I, and without loss of generality, we assume

that the gradient of the work function work(T , t, 1) at t∗ is no less than αm −
m + 1. Suppose not. The gradient of the work function work(T , t, 1) at t∗ is
no more than αm − m + 1. According to the assumption (25) and since the
slope interval I is non-convex, we know that there must be a time t′ such that
work(T , t′, 1) = (αm − m + 1)t′, and where the gradient of the work function
work(T , t, 1) at t′ is larger than αm − m + 1 as illustrated in Fig. 10(a).

In the following, we consider two cases.

– If there is no flat interval follows the slope interval I. Since the gradient of
the work function work(T , t, 1) at t∗ is no less than αm − m + 1, and the
slope interval I is non-convex, we know that for any t > t∗,

work(T , t, 1) > (αm − m + 1)t (28)

Let a be the nearest encounter point after t∗, and according to Lemma 6 and
Definition 9, work(T , a, 1) = work(T , a, α). By (28), we have the following
inequality as shown in Fig. 10(b).

work(T , a, α) > (αm − m + 1)a

– Otherwise, denote by I ′ = [a, b] be the flat interval that follows the slope
interval I. There are three cases.

• work(T , a, 1) < (αm − m + 1)a. In this case, since the slope interval
I is non-convex, and the gradient of the work function work(T , t, 1) at
t∗ is larger than αm − m + 1, for any time t ∈ (t∗, a], work(T , t, 1) >
(αm − m + 1)t. This leads to a contradiction.

Characterizations of Parallel Real-Time Workloads 255

• work(T , a, 1) > (αm − m + 1)a and work(T , b, 1) < (αm − m + 1)b as
illustrated in Fig. 10(c). In this cases, we know that there must be a time
t ∈ I such that work(T , t, 1) = (αm − m + 1)t, and we have discussed
this in Case 1.

• work(T , b, 1) > (αm − m + 1)b as illustrated in Fig. 10(d). In this case,
according to Definition 6, we know that work(T , a, 1) = work(T , b, 1),
and thus, work(T , a, 1) > (αm−m+1)a. According to Lemma 6, we have
work(T , a, 1) = work(T , a, α). Therefore, we know that work(T , a, α) >
(αm − m + 1)a.

In sum, (24) does not hold for Case 2. This completes the proof.

6 Conclusion

Since Bonifaci first proposed the work function in [4], the work function plays a
very important role in schedulability analysis of the sporadic DAG tasks. Espe-
cially, Li et al. [10] derive the best capacity augmentation bound for global EDF
algorithm by using the work function methodology. This paper revisits the work
function methodology, and shows that Lem. 8 of [10] which is said to be a refor-
mulation of Lem. 3 of [4] is not equivalently reformulated from Lem. 3 of [4], and
we prove that Lem.8 of [10] strictly overwhelms Lem. 3 of [4]. Thus, the main
result of [10] should be carefully discussed.

References

1. Baruah, S.: Improved multiprocessor global schedulability analysis of sporadic
DAG task systems. In: 26th Euromicro Conference on Real-Time Systems, pp.
97–105. IEEE (2014)

2. Baruah, S.: The federated scheduling of systems of conditional sporadic DAG tasks.
In: International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE
(2015)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. ACM SigPlan Notices 30(8),
207–216 (1995)

4. Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., Wiese, A.: Feasibility analysis in
the sporadic DAG task model. In: 2013 25th Euromicro Conference on Real-Time
Systems, pp. 225–233. IEEE (2013)

5. Ferry, D., Li, J., Mahadevan, M., Agrawal, K., Gill, C., Lu, C.: A real-time schedul-
ing service for parallel tasks. In: 2013 IEEE 19th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 261–272. IEEE (2013)

6. Huang, H.M., Tidwell, T., Gill, C., Lu, C., Gao, X., Dyke, S.: Cyber-physical
systems for real-time hybrid structural testing: a case study. In: Proceedings of the
1st ACM/IEEE International Conference on Cyber-Physical Systems, pp. 69–78
(2010)

7. Jiang, X., Long, X., Guan, N., Wan, H.: On the decomposition-based global EDF
scheduling of parallel real-time tasks. In: 2016 IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 237–246. IEEE (2016)

256 X. Jiang et al.

8. Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.: Parallel scheduling for cyber-
physical systems: analysis and case study on a self-driving car. In: Proceedings
of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, pp.
31–40 (2013)

9. Li, J., Agrawal, K., Lu, C., Gill, C.: Analysis of global EDF for parallel tasks. In:
25th Euromicro Conference on Real-Time Systems, pp. 3–13. IEEE (2013)

10. Li, J., Chen, J.J., Agrawal, K., Lu, C., Gill, C., Saifullah, A.: Analysis of federated
and global scheduling for parallel real-time tasks. In: 26th Euromicro Conference
on Real-Time Systems, pp. 85–96. IEEE (2014)

11. Li, J., Luo, Z., Ferry, D., Agrawal, K., Gill, C., Lu, C.: Global EDF scheduling for
parallel real-time tasks. Real-Time Syst. 51, 395–439 (2015)

12. Marongiu, A., Capotondi, A., Tagliavini, G., Benini, L.: Improving the programma-
bility of STHORM-based heterogeneous systems with offload-enabled OpenMP. In:
Proceedings of the First International Workshop on Many-core Embedded Systems,
pp. 1–8 (2013)

13. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.:
Response-time analysis of conditional DAG tasks in multiprocessor systems. In:
27th Euromicro Conference on Real-Time Systems, pp. 211–221. IEEE (2015)

14. OpenMP Forum: OpenMP Application Program Interface, Version 3.0. OpenMP
Architecture Review Board, May 2008. https://www.openmp.org/wp-content/
uploads/spec30.pdf

15. Qamhieh, M., Fauberteau, F., George, L., Midonnet, S.: Global EDF scheduling
of directed acyclic graphs on multiprocessor systems. In: Proceedings of the 21st
International conference on Real-Time Networks and Systems, pp. 287–296 (2013)

16. Qamhieh, M., George, L., Midonnet, S.: A stretching algorithm for parallel real-
time DAG tasks on multiprocessor systems. In: Proceedings of the 22nd Interna-
tional Conference on Real-Time Networks and Systems, pp. 13–22 (2014)

17. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media, Sebastopol (2007)

18. Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.D.: Parallel real-time
scheduling of DAGs. IEEE Trans. Parallel Distrib. Syst. 25(12), 3242–3252 (2014)

19. Saifullah, A., Li, J., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling
for generalized parallel task models. Real-Time Syst. 49, 404–435 (2013)

20. Stotzer, E., et al.: OpenMP on the low-power TI keystone II ARM/DSP system-on-
chip. In: Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS,
vol. 8122, pp. 114–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40698-0 9

21. Sun, J., et al.: A capacity augmentation bound for real-time constrained-deadline
parallel tasks under GEDF. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(11), 2200–2211 (2018)

22. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

23. Wang, C., Chandrasekaran, S., Chapman, B., Holt, J.: libEOMP: a portable
OpenMP runtime library based on MCA APIs for embedded systems. In: Proceed-
ings of the 2013 International Workshop on Programming Models and Applications
for Multicores and Manycores, pp. 83–92 (2013)

https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://doi.org/10.1007/978-3-642-40698-0_9
https://doi.org/10.1007/978-3-642-40698-0_9

Towards Efficient Data-Flow Test Data
Generation

Ting Su1(B), Chengyu Zhang2, Yichen Yan1, Lingling Fan3, Yang Liu4,
Zhoulai Fu5, and Zhendong Su2

1 East China Normal University, Shanghai, China
tsu@sei.ecnu.edu.cn

2 ETH Zurich, Zürich, Switzerland
chengyu.zhang@inf.ethz.ch , zhendong.su@inf.ethz.ch

3 Nankai University, Tianjin, China
linglingfan@nankai.edu.cn

4 Nanyang Technological University, Singapore, Singapore
yangliu@ntu.edu.sg

5 State University of New York, Incheon, Korea
zhoulai.fu@sunykorea.ac.kr

Abstract. Data-flow testing (DFT) aims to detect potential data inter-
action anomalies by focusing on the points at which variables receive
values and the points at which these values are used. Such test objec-
tives are referred as def-use pairs. However, the complexity of DFT still
overwhelms the testers in practice. To tackle this problem, we intro-
duce a hybrid testing framework for data-flow based test generation: (1)
The core of our framework is symbolic execution (SE), enhanced by a
novel guided path exploration strategy to improve testing performance;
and (2) we systematically cast DFT as reachability checking in software
model checking (SMC) to complement SE, yielding practical DFT that
combines the two techniques’ strengths. We implemented our framework
for C programs on top of the state-of-the-art symbolic execution engine
KLEE and instantiated with three different software model checkers. Our
evaluation on the 28,354 def-use pairs collected from 33 open-source and
industrial program subjects shows that (1) our SE-based approach can
improve DFT performance by 15–48% in terms of testing time, compared
with existing search strategies; and (2) our combined approach can fur-
ther reduce testing time by 20.1–93.6%, and improve data-flow coverage
by 27.8–45.2% by eliminating infeasible test objectives. This combined
approach also enables the cross-checking of each component for reliable
and robust testing results.

Keywords: Data-flow Testing · Symbolic Execution · Model Checking

1 Introduction

It is widely recognized that white-box testing, usually applied at unit testing
level, is one of the most important activities to ensure software quality [4]. In

This paper was completed on Jifeng He’s 80th birthday, May 2023.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 257–293, 2023.
https://doi.org/10.1007/978-3-031-40436-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_10

258 T. Su et al.

this process, the testers design inputs to exercise program paths in the code, and
validate the outputs with specifications [50]. Code coverage criteria are popular
metrics to guide such test selection. For example, control-flow based criteria (e.g.,
statement, branch coverage) require to cover the specified program elements, e.g.,
statements, branches and conditions, at least once [100]. In contrast, data-flow
based criteria [27,46,76] focus on the flow of data, and aim to detect potential
data interaction anomalies. It validates the correctness of variable definitions by
observing the values at the corresponding uses.

However, several challenges exist in generating data-flow based test cases: (1)
Few data-flow coverage tools exist. To our knowledge, ATAC [52,53] is the only
publicly available tool, developed two decades ago, to measure data-flow coverage
for C programs. However, there are plenty of tools for control-flow criteria [96].
(2) The complexity of identifying data flow-based test data overwhelms testers.
Test objectives w.r.t. data-flow testing are much more than those of control-
flow criteria; more effort is required to satisfy a def-use pair than just covering
a statement or branch, since the test case needs to reach a variable definition
first and then the corresponding use. (3) Infeasible test objectives (i.e., the paths
from the variable definition to the use are infeasible) and variable aliases make
data-flow testing more difficult.

To aid data-flow testing, many testing techniques have been proposed in the
past few decades. For example, search-based approach [29,39,41,89] uses genetic
algorithms to guide test generation to cover the target def-use pairs. It generates
an initial population of test cases, and iteratively applies mutation and crossover
operations on them to optimize the designated fitness function. Random test-
ing [41,42] generates random test inputs or random paths to cover def-use pairs.
Some work uses the idea of collateral coverage [62,77], i.e., the relation between
data-flow criteria and the other criteria (e.g., branch coverage), to infer data-flow
based test cases. However, these approaches are either inefficient (e.g., random
testing may generate a large number of redundant test cases) or imprecise (e.g.,
genetic algorithms and collateral coverage-based approach may not be able to
identify infeasible test objectives).

The preceding situations underline the importance of an automated, effec-
tive data-flow testing technique, which can efficiently generate test cases for
target def-use pairs and detect infeasible ones therein. To this end, we intro-
duce a combined approach to automatically generate data-flow based test data,
which synergistically combines two techniques: dynamic symbolic execution and
counterexample-guided abstraction refinement-based model checking. It takes as
input the program under test, and (1) outputs test cases for feasible test objec-
tives, and (2) eliminates infeasible test objectives—without any false positives.

Dynamic symbolic execution [20] is a widely-accepted and effective app-
roach for automatic test case generation. It intertwines classic symbolic execu-
tion [26,58] and concrete execution, and explores as many program paths as pos-
sible to generate test cases by solving path constraints. As for counterexample-
guided abstraction refinement-based (CEGAR) model checking [5,22,49], given
the program source code and a temporal safety specification, it either statically

Towards Efficient Data-Flow Test Data Generation 259

proves that the program satisfies the specification, or returns a counterexample
path to demonstrate its violation. This technique has been used to automatically
verify safety properties of device drives [5,13,14], as well as test generation w.r.t.
statement or branch coverage [12] from counterexample paths.

Although symbolic execution has been applied to enforce various coverage
criteria (e.g., statement, branch, logical, boundary value and mutation test-
ing) [55,60,73,85,99], little effort exists to adapt symbolic execution to data-flow
testing. To counter the path explosion problem, we designed a cut-point guided
path exploration strategy to cover target def-use pairs as quickly as possible.
The key intuition is to find a set of critical program locations that must be tra-
versed through in order to cover the pair. By following these points during the
exploration, we can narrow the path search space. In addition, with the help of
path-based exploration, we can also more easily and precisely detect definitions
due to variable aliasing. Moreover, we introduce a simple, powerful encoding of
data flow testing using CEGAR-based model checking to complement our SE-
based approach: (1) We show how to encode any data-flow test objective in the
program under test and systematically evaluate the technique’s practicality; and
(2) we describe a combined approach that combines the relative strengths of the
SE and CEGAR-based approaches. An interesting by-product of this combina-
tion is to let the two independent approaches cross-check each other’s results for
correctness and consistency.

In all, this paper makes the following contributions:

– We design a symbolic execution-based testing framework, and enhance it with
an efficient guided path search strategy, to quickly achieve data-flow testing.

– We describe a simple, effective reduction of data-flow testing into reachability
checking in software model checking to complement our SE-based approach.

– We implement the SE-based data-flow testing approach, and conduct empir-
ical evaluation on both benchmark and industrial C programs. Our results
show that the SE-based approach is both efficient and effective.

– We also demonstrate that the CEGAR-based approach can effectively comple-
ment the SE-based approach by reducing testing time and identifying infea-
sible test objectives. In addition, these two approaches can cross-check each
other to validate the correctness and effectiveness of both techniques.

The initial idea of this hybrid data-flow testing approach was described
in [84], and in this paper we have improved this idea in several aspects: (1) We
optimized our original cut-point guided search with several exploration strate-
gies (e.g., backtrack), and made substantial efforts to implement our approach
on the state-of-the-art symbolic execution engine KLEE [18] (previously imple-
mented on our own concolic testing tool CAUT [84,85], which was capable of
evaluating only 6 subjects), and further compared our approach with various
existing testing strategies on KLEE. Due to the differences in the design and
architecture between KLEE and CAUT, the implementation is not straightfor-
ward. But this effort brings several benefits: first, it provides a uniform and fair
platform to investigate the effectiveness of our testing strategy with many exist-
ing state-of-the-art ones; second, it provides a robust platform to enable exten-

260 T. Su et al.

sive evaluation of real-world subjects and better integration with model checkers;
third, this extension of KLEE could benefit industrial practitioners and also aca-
demic researchers to apply or investigate data-flow testing. (2) We implemented
and extended the model checking-based approach on two different techniques,
i.e., Counter-Example Guided Abstraction Refinement (CEGAR) [5,21,49] and
Bounded Model Checking (BMC) [25], and comprehensively compared their
effectiveness and performance for data-flow testing; (3) We rigorously setup
a benchmark repository for data-flow testing, and extensively evaluated on 30
real-world programs with various data-flow usage scenarios, including seven non-
trivial subjects from previous DFT research work [32,35,39,48,54,66,67], seven
subjects from SIR [82], 16 subjects from SV-COMP [33] so as to gain a overall
understanding of our hybrid testing framework. (4) We cross-checked each com-
ponent to provide reliable testing results, investigated the reasons of inconsistent
cases, and gave detailed discussions.

The paper is organized as follows. Section 2 surveys the related work in data-
flow testing. Section 3 gives more background and Sect. 4 gives an overview of
our testing framework with an illustrative example. Section 5 details our app-
roach. Section 6 explains the design and implementation. Section 7 presents the
evaluation results. Section 8 concludes the paper.

2 Related Work

This section discusses the closely related work: (1) data-flow based test genera-
tion, (2) directed symbolic execution, and (3) infeasible test objective detection.

2.1 Data-Flow Based Test Generation

Data-flow testing has been investigated in the past four decades [34–36,54,93].
Existing work can be categorized into five main categories according to the
testing techniques. We only discuss typical literature work here. Readers can
refer to a recent survey [86] for details.

The most widely used approach to is search-based testing, which utilizes meta-
heuristic search techniques to identify test inputs for target def-use pairs. Gir-
gis [41] first uses Genetic Algorithms (GA) for Fortran programs, and Ghiduk
et al. [39] use GA for C++ programs. Later, Vivanti et al. [89] and Denaro
et al. [29] apply GA to Java programs by the tool EvoSuite. Some optimization-
based search algorithms [38,69,80,81] are also used, but they have only eval-
uated on small programs without available tools. Random testing is a base-
line approach for data-flow testing [3,29,39,41,42]. Some researchers use col-
lateral coverage-based testing [45], which exploits the observation that the test
case that satisfies one target test objective can also “accidentally” cover the
others. Malevris et al. [62] use branch coverage to achieve data-flow coverage.
Merlo et al. [68] exploit the coverage implication between data-flow coverage and
statement coverage to achieve intra-procedural data-flow testing. Other efforts
include [65,66,77,78]. Some researchers use traditional symbolic execution. For

Towards Efficient Data-Flow Test Data Generation 261

example, Girgis [40] develops a simple symbolic execution system for DFT, which
statically generates program paths w.r.t. a certain control-flow criterion (e.g.,
branch coverage), and then selects those executable ones that can cover the def-
use pairs of interest. Buy et al. [17] adopts three techniques, i.e., data-flow anal-
ysis, symbolic execution and automated deduction to perform data-flow testing.
However, they have provided little evidence of practice. Hong et al. [51] adopt
classic CTL-based model checking to generate data-flow test data. Specifically,
the program is modeled as a Kripke structure and the requirements of data-flow
coverage are characterized as a set of CTL property formulas. However, this
approach requires manual intervention, and its scalability is also unclear.

Despite the plenty of work on data-flow based testing, they are either ineffi-
cient or imprecise. Our work is the first one to leverage symbolic execution and
software model checking techniques to achieve DFT efficiently and precisely.

2.2 Directed Symbolic Execution

Much research [31,61,64,95,97] has been done to guide path search toward a
specified program location via symbolic execution. Do et al. [31] leverage data
dependency analysis to guide the search to reach a particular program location,
while we use dominator analysis. Ma et al. [61] suggest a call chain backward
search heuristic to find a feasible path, backward from the target program loca-
tion to the entry. However, it is difficult to adapt this approach on data-flow
testing, because it requires that a function can be decomposed into logical parts
when the target locations (e.g. the def and the use) are located in the same func-
tion. But decomposing a function itself is a nontrivial task. Zamfir et al. [97]
narrow the path search space by following a limited set of critical edges and
a statically-necessary combination of intermediate goals. On the other hand,
our approach finds a set of cut points from the program entry to the target
locations, which makes path exploration more efficient. Xie et al. [95] integrate
fitness-guided path search strategy with other heuristics to reach a program
point. The proposed strategy is only efficient for those problems amenable to
its fitness functions. Marinescu et al. [64] use a shortest distance-based guided
search method (like the adapted SDGS heuristic in our evaluation) with other
heuristics to quickly reach the line of interest in patch testing. In contrast, we
combine several search heuristics to guide the path exploration to traverse two
specified program locations (i.e., the def and use) for data flow testing.

2.3 Detecting Infeasible Test Objectives

As for detecting infeasible test objectives, early work uses constraint-based tech-
nique [44,71]. Offutt and Pan et al. [71] extract a set of path constraints that
encode the test objectives from the program under test. Infeasible test objec-
tives can be identified if the constraints do not have solutions. Recent work by
Beckman et al. [10], Baluda et al. [6–8], Bardin et al. [9] use weakeast precondi-
tion to identify infeasible statements and branches. For example, Baluda et al.
use model refinement with weakest precondition to exclude infeasible branches;

262 T. Su et al.

Bardin et al. applies weakest precondition with abstract interpretation to elim-
inate infeasible objectives. Marcozzi et al. [63] also use weakest precondition
to identify polluting test objectives (including infeasible, duplicate and sub-
sumed) for condition, MC/DC and weak mutation coverage. In contrast, our
testing framework mainly use the CEGAR-based model checking technique to
identify infeasible def-use pairs for data-flow testing. One close work is from
Daca et al. [28], who combine concolic testing (CREST) and model checking
(CPAchecker) to find a test suite w.r.t. branch coverage. Our work has some
distinct differences with theirs. First, they target at branch coverage, while we
enforce data-flow testing. Second, they directly modify the existing generic path
search strategies of CREST, and backtrack the search if the explored direction
has been proved as infeasible by CPAchecker. As a result, the performance of
their approach (i.e., avoid unnecessary path explorations) may vary across differ-
ent search strategies due to the paths are selected in different orders. In contrast,
we implement a designated search strategy to guide symbolic execution, and real-
ize the reduction approach directly on model checkers. Although our approach is
simple, it can treat model checkers as black-box tools without any modification
and seamlessly integrate with KLEE. Model checking techniques have recently
been adapted to aid software testing [15,37].

3 Problem Definition, Preliminaries and Challenges

3.1 Problem Definition

Definition 1 (Program Paths). Two kinds of program paths, i.e., control
flow paths and execution paths are distinguished during data-flow testing. Con-
trol flow paths are the paths from the control flow graph of the program under
test, which abstract the flow of control. Execution paths are driven by concrete
program inputs, which represent dynamic program executions. Both of them can
be represented as a sequence of control points (denoted by line numbers), e.g.,
l1, . . . , li, . . . , ln.

Definition 2 (Def-use Pair). The test objective of data-flow testing is referred
as a def-use pair, denoted by du(ld, lu, v). Such a pair appears when there exists
a control flow path that starts from the variable definition statement ld (or the
def statement in short), and then reaches the variable use statement lu (or the
use statement in short), but no statements on the subpaths from ld to lu redefine
the variable v.

In particular, two kinds of def-use pairs are distinguished. For a def-use pair
(ld, lu, v), if the variable v is used in a computation statement at lu, the pair
is a computation-use (c-use for short), denoted by dcu(ld, lu, v). If v is used in
a conditional statement (e.g., an if or while statement) at lu, the pair is a
predicate use (p-use for short). At this time, two def-use pairs appear and can
be denoted by dpu(ld, (lu, lt), v) and dpu(ld, (lu, lf), v), where (lu, lt) and (lu, lf)
represents the true and the false edge of the conditional statement, respectively.

Towards Efficient Data-Flow Test Data Generation 263

Definition 3 (Data-flow Testing). Given a def-use pair du(ld, lu, v) in pro-
gram P under test, the goal of data-flow testing1 is to find an input t that induces
an execution path p that covers the variable definition statement at ld, and then
covers variable use statement at lu, but without covering any redefinition state-
ments w.r.t v, i.e., the subpath from ld to lu is a def-clear path. The requirement
to cover all def-use pairs at least once is called all def-use coverage criterion2 in
data-flow testing.

In particular, for a c-use pair, t should cover ld and lu; for a p-use pair, t
should cover ld and its true or false branch, i.e., (lu, lt) and (lu, lf), respectively.

3.2 Symbolic Execution

Our data-flow testing approach is mainly built on the symbolic execution tech-
nique. The idea of symbolic execution (SE) was initially described in [26,58].
Recent significant advances in the constraint solving techniques have made SE
possible for testing real-world program by systematically exploring program
paths [20]. Specifically, two variants of modern SE techniques exist, i.e., con-
colic testing (implemented by DART [43], CUTE [79], CREST [16], CAUT [85],
etc) and execution-generated testing (implemented by EXE [19] and KLEE [18]),
which mix concrete and symbolic execution together to improve scalability. In
essence, SE uses symbolic values in place of concrete values to represent input
variables, and represent other program variables by the symbolic expressions in
terms of symbolic inputs. Typically, SE maintains a symbolic state σ, which
maps variables to (1) the symbolic expressions over program variables, and (2)
a symbolic path constraint pc (a quantifier-free first order formula in terms of
input variables), which characterizes the set of input values that can execute a
specific program execution path p. Additionally, σ maintains a program counter
that refers to the current instruction for execution. At the beginning, σ is ini-
tialized as an empty map and pc as true. During execution, SE updates σ when
an assignment statement is executed; and forks σ when a conditional statement
(e.g., if(e) s1 else s2) is executed. Specifically, SE will create a new state σ′ from
the original state σ, and updates the path constrain of σ′ as pc ∧ ¬(e), while
updates that of σ as pc ∧ (e). σ and σ′, respectively, represent the two program
states that fork at the true and false branch of the conditional statement. By
querying the satisfiability of updated path constraints, SE decides which one
to continue the exploration. When an exit or certain runtime error is encoun-
tered, SE will terminate on that statement and the concrete input values will be
generated by solving the corresponding path constraint.
1 In this paper, we focus on the problem of classic data-flow testing [39,89], i.e.,

finding an input for a given def-use pair at one time. We do not consider the case
where some pairs can be accidentally covered when targeting one pair, since this has
already been investigated in collateral coverage-based approach [65,66].

2 We follow the all def-use coverage defined by Rapps and Weyuker [75,76], since
almost all of the literature that followed uses or extends this definition, as revealed
by a recent survey [86].

264 T. Su et al.

Fig. 1. Workflow of the combined approach for data-flow testing, which combines sym-
bolic execution and software model checking (the CEGAR-based model checking in
particular).

Challenges. Although SE is an effective test case generation technique for tra-
ditional coverage criteria, it faces two challenges in our context:

1. The SE-based approach by nature faces the notorious path-explosion problem.
Despite the existence of many generic search strategies, it is challenging, in
reasonable time, to find an execution path from the whole path space to cover
a given pair.

2. The test objectives from data-flow testing include feasible and infeasible pairs.
A pair is feasible if there exists an execution path which can pass through it.
Otherwise it is infeasible. Without prior knowledge about whether a target
pair is feasible or not, the SE-based approach may spend a large amount of
time, in vain, to cover an infeasible def-use pair.

Section 4 will give an overview of our approach, and illustrate how our com-
bined approach tackles these two challenges via an example in Fig. 2.

4 Approach Overview

Figure 1 shows the workflow of our combined approach for data-flow testing. It
takes as input the program source code, and follows the three steps below to
achieve automated, efficient DFT. (1) The static analysis module uses data-flow
analysis to identify def-use pairs, and adopts dominator analysis to analyze the
sequence of cut points for each pair (see Sect. 5.1). (2) For each pair, the sym-
bolic execution module adopts the cut point-guided search strategy to efficiently
find an execution path that could cover it within a specified time bound (see
Sect. 5.2). (3) For the remaining uncovered (possibly infeasible) pairs, the soft-
ware model checking module encodes the test obligation of each def-use pair into
the program under test, and enforces reachability checking (also within a time
bound) on each of them. The model checker can eliminate infeasible ones with
proofs and may also identify feasible ones (see Sect. 5.3). If the testing resource
permits, the framework can iterate between (2) and (3) by lifting the time bound

Towards Efficient Data-Flow Test Data Generation 265

Table 1. Running steps of the enhanced symbolic execution approach for data-flow
testing.

Steps Pending Path Priority Queue Selected Path Path Constraint (pc)

1 1: l4T , 2: l4F (l4, 2)
1, (l4, 2)2 1 y > 0

2 2: l4F , (l9, 1)
4, 4 y > 0 ∧ y == 0

3: l4T , l9T , 4: l4T , l9F (l4, 2)
2, (l9, 4)3

3 2: l4F , 3: l4T , l9T (l4, 2)
2, (l9, 4)3 3 y > 0 ∧ y �= 0

4 2: l4F , (l4, 2)
2, prune 5,6, y ≤ 0

5: l4T , l9T , l9T , 6: l4T , l9T , l9F (l9, 1)
5, (l9, 1)6 select 2

5 7: l4F , l9T , 8: l4F , l9F (l9, 4)
7, (l9, 1)8 8 y < 0 ∧ y �= 0

6 7: l4F , l9T , (l13, 1)
9, 9 y ≤ 0 ∧ y �= 0

9: l4F , l9F , l13T , 10: l4F , l9F , l13F (l9, 4)
7, (l13,∞)10

7 7: l4F , l9T , 10: l4F , l9F , l13F (l13, 1)
12, 12 y == 0 ∧ x �= 0

11: l4F , l9F , l13T , l14T , 12: l4F , l9F , l13T , l14F (l9, 4)
7, (l13,∞)10, (l14,∞)11

to continue test those remaining uncovered pairs. By this way, our framework
outputs test cases for feasible test objectives, and weeds out infeasible ones by
proofs—without any false positives.

4.1 Illustrative Example

Figure 2 shows an example program power, which accepts two integers x and y,
and outputs the result of xy. The right sub-figure shows the control flow graph
of power.

Step 1: Static Analysis. For the variable res (it stores the computation result
of xy), the static analysis procedure can find two typical def-use pairs with their
cut points:

du1 = (l8, l17, res) (1)
du2 = (l8, l18, res) (2)

Below, we illustrate how our combined approach can efficiently achieve DFT
on these two def-use pairs—SE can efficiently cover the feasible pair du1, and
CEGAR can effectively conclude the infeasibility of du2.

Step 2: SE-Based Data-Flow Testing. When SE is used to cover du1, assume
under the classic depth-first search (DFS) strategy [16,18,43,79,85,88] the true
branches of the new execution states (ESs) are always first selected, we can get
an execution path p after unfolding the while loops n times.

p = l4, l5, l8, l9, l10, l11, l9, l10, l11, . . .
︸ ︷︷ ︸

repeated n times

, l9, l13, l14, l15 (3)

Here p already covers the definition statement (at l8) w.r.t. the variable res. In
order to cover the use statement (at l17), SE will exhaustively execute program
paths by exploring the remaining unexecuted branch directions. However, the
path (state) explosion problem—hundreds of branch directions exist (including

266 T. Su et al.

Fig. 2. An example: power.

those branches from the new explored paths)—will drastically slow down data-
flow testing.

To mitigate this problem, the key idea of our approach is to reduce unneces-
sary path exploration and provide more guidance during execution. To achieve
this, we designed a novel cut-point guided search algorithm (CPGS) to enhance
SE, which leverages several key elements to prioritize the selection of ESs. First,
we introduce a guided search algorithm, which leverages two metrics: (i) cut
points, a sequence of control points that must be traversed through for any paths
that could cover the target pair. For example, the cut points of du1 are {l4, l8,
l9, l13, l14, l17}. These critical points are used as intermediate goals during the
search to narrow down the exploration space of SE. (ii) instruction distance, the
distance between an ES and a target search goal in terms of number of program
instructions on the control flow graph. Intuitively, an ES with closer (instruc-
tion) distance toward the goal can reach it more quickly. For example, when SE
reaches l9, it can fork two execution states, i.e., following the true and the false
branches. If our target goal is to reach l13, the false branch will be prioritized
since it has 1-instruction distance toward l13, while the opposite branch has 3-
instruction distance. Second, CPGS is enhanced by a backtrack strategy based
on the number of executed instructions, which reduces the likelihood of trapping
in tight loops. Third, we also introduce a redefinition path pruning technique,
which detects and removes redundant ESs.

Table 1 shows the steps taken by our cut-point guided search algorithm to
cover du1. At the beginning, SE forks two ESs for the if statement at l4, which

Towards Efficient Data-Flow Test Data Generation 267

produces two pending paths3, i.e., l4T and l4F
4. In detail, we maintain a tuple

(c, d)i that records the two aforementioned metrics for each pending path i in a
priority queue, where c is the deepest covered cut point, and d is the shortest
distance between the corresponding ES and the next target cut point. In each
step, we choose the pending path i with the optimal value (c, d). For example, in
Step 1, Path 1 and Path 2 have the same values (l4, 2), and thus we randomly
select one path, e.g., Path 1.

Later, in Step 2, Path 1 produces two new pending paths, Path 3 and Path
4. We choose Path 4 since it has the best value: it has sequentially covered the
cut points {l4, l8, l9}, and it is closer to the next cut point l13 than Path 3 on the
control flow graph, so it is more likely to reach l13 more quickly. However, its pc
is unsatisfiable. As a result, we give up exploring this pending path, and choose
Path 3 (because it covers more cut points than Path 1) in the next Step 3, which
induces Path 5 and Path 6. At this time, our algorithm detects the variable res
is redefined at l10 on Path 5 and Path 6, according to the definition of DFT, it
is useless to explore these two paths. So, Path 5 and Path 6 are pruned. This
redefinition path pruning technique can rule out these invalid paths to speed up
DFT. Note despite only two pending paths are removed in this case, a number
of potential paths have actually been prevented from execution (see the example
path in (3)), which can largely improve the performance of our search algorithm.

We choose the only remaining Path 2 to continue the exploration, which
produces Path 7 and Path 8 in Step 5. Again, we choose Path 8 to explore,
which induces Path 9 and 10 in Step 6. Here, for Path 10, since it cannot reach
the next target point l14, its distance is set as ∞. As last, Path 9 is selected, and
our algorithm finds Path 12 which covers du1, and by solving its path constraint
y == 0 ∧ x �= 0, we can get one test input, e.g., t = (x �→ 1, y �→ 0), to satisfy
the pair. The above process is enforced by the cut-point guided search, which
only takes 7 steps to cover du1. As we will demonstrate in Sect. 7, the cut point-
guided search strategy is more effective for data-flow testing than the existing
state-of-the-art search algorithms.

Step 3: CEGAR-Based Data-Flow Testing. In data-flow testing, classic
data-flow analysis techniques [23,47,72] statically identify def-use pairs by ana-
lyzing data-flow relations. However, due to its conservativeness and limitations,
infeasible pairs may be included, which greatly affects the effectiveness of SE for
DFT. For example, the pair du2 is identified as a def-use pair since there exists
a def-clear control-flow path (i.e., l8, l9, l13, l18) that can start from the variable
definition (i.e., l8) and reach the use (i.e., l18). However, du2 is infeasible (i.e.,
no test inputs can satisfy it): If we want to cover its use statement at l18, we
cannot take the true branch of l13, so y > 0 should hold. However, if y > 0, the
variable exp will be assigned a positive value at l5 by taking the true branch of
l4, and the redefinition statement at l10 w.r.t. the variable res will be executed.

3 An pending path indicates a not fully-explored path (corresponding to an untermi-
nated state).

4 We use the line number followed by T or F to denote the true or false branch of the
if statement at the corresponding line.

268 T. Su et al.

Fig. 3. The transformed function power with the test requirement encoded in high-
lighted statements.

As a result, such a path that covers the pair and avoids the redefinition at the
same time does not exist, and du2 is an infeasible pair. It is rather difficult for
SE to conclude the feasibility unless it checks all program paths, which however
is almost impossible due to infinite paths in real-world programs.

To counter the problem, our key idea is to reduce the data-flow testing prob-
lem into the path reachability checking problem in software model checking. We
encode the test obligation of a target def-use pair into the program under test,
and leverage the power of model checkers to check its feasibility. For example, in
order to check the feasibility of du2, we instrument the test requirement into the
program as shown in Fig. 3. We first introduce a boolean variable cover_flag at
l2, and initialize it as false, which represents the coverage status of this pair.
After the definition statement, the variable cover_flag is set as true (at l7);
cover_flag is set as false immediately after all the redefinition statements (at
l10). We check whether the property cover_flag==true holds (at l14) just before
the use statement. If the check point is reachable, the pair is feasible and a test
case will be generated. Otherwise, the pair is infeasible, and will be excluded in
the coverage computation. As we can see, this model checking based approach
is flexible and can be fully automated.

Combined SE-CEGAR Based Data-Flow Testing . In data-flow testing,
the set of test objectives include feasible and infeasible pairs. As we can see from
the above two examples, SE, as a dynamic path-based exploration approach,
can efficiently cover feasible pairs; while CEGAR, as a static software model
checking approach, can effectively detect infeasible pairs (may also cover some
feasible pairs).

Towards Efficient Data-Flow Test Data Generation 269

The figure below shows the relation of these two approaches for data-flow
testing. The white part represents the set of feasible pairs, and the gray part
the set of infeasible ones. The SE-based approach is able to cover feasible pairs
efficiently, but in general, due to the path explosion problem, it cannot detect
infeasible pairs (this may waste a lot of testing time). The CEGAR-based app-
roach is able to identify infeasible pairs efficiently (but may take more time to
cover feasible ones). As a result, it is beneficial to combine these two techniques
to complement each other with their strengths. Section 7 will demonstrate our
observations, and validate that the combined approach can indeed achieve more
efficient data-flow testing by reducing testing time as well as improving coverage.

feasible infeasible

Symbolic
Execution Model

Checking

def-use pairs

5 Our Approach

This section explains the details of our approach. Our approach includes three
steps: (1) static analysis, (2) symbolic execution based data flow testing and (3)
software model checking based data flow testing.

5.1 Static Analysis

To improve the performance of SE-based data-flow testing, we use dominator
analysis to analyze a set of cut points to effectively guide path exploration. In
the following, we give some definitions.

Definition 4 (Dominator). In a control-flow graph, a node m dominates a
node n if all paths from the program entry to n must go through m, which is
denoted as m � n. When m �= n, we say m strictly dominates n. If m is the
unique node that strictly dominates n and does not strictly dominate other nodes
that strictly dominate n, m is an immediate dominator of n, denoted as m �I n.

Definition 5 (Cut Point). Given a def-use pair du(ld, lu, v), its cut points are
a sequence of critical control points c1, . . . , ci, . . . , cn that must be passed through
in succession by any control flow paths that cover this pair. The latter control
point is the immediate dominator of the former one, i.e., c1 �I . . . ci �I ld �I

. . . cn �I lu. Each control point in this sequence is called a cut point.

Note the def and the use statement (i.e., ld and lu) of the pair itself also
serve as the cut points. These cut points are used as the intermediate goals
during path search to narrow down the search space. For illustration, consider
the figure below: Let du(ld, lu, v) be the target def-use pair, its cut points are
{l1, l3, ld, l6, lu}. Here the control point l2 is not a cut point, since the path

270 T. Su et al.

l1, l3, ld, l4, l6, lu can be constructed to cover the pair. For the similar reason, the
control points l4 and l5 are not its cut points.

entry

l_1

l_2

l_3 l_d

l_5

l_4

l_6

l_u

In practice, we use standard iterative data-flow analysis [47,72] to identify
def-use pairs from the program under test. We give the implementation details
in Sect. 6.
Algorithm 1: SE-based Data-flow Testing

Input: du(ld, lu, x): a given def-use pair
Input: C = {c1, c2, . . . , cn}: the cut points of du
Output: input t that satisfies du or nil if none is found within the given time bound

1 let W be a worklist of execution states
2 let ES0 be the initial execution state
3 W ← W ∪ {ES0}

// the core process of symbolic execution
4 repeat
5 ExecutionState ES ← selectState(W)
6 while ES.instructionType!=FORK or EXIT do
7 ES.executeInstruction()

8 if ES.instructionType=EXIT then W ← W \ {ES}
9 if ES.instructionType = FORK then

10 Instruction Fr = ES.currentInstruction;
11 ExecutionState ES′ ← new executionState(ES)
12 ES.newNode ← Fr(T)
13 ES′.newNode ← Fr(F)
14 W ← W ∪ {ES′}

15 PendingPath p ← ES.path
16 if p covers du then return t ← getTestCase(ES)

// the redefinition path pruning heuristic
17 if variable x (in du) is redefined by p then
18 W ← W \ {ES, ES′}

19 until W .size()=0 or timeout()

// the core algorithm of execution state selection
20 Procedure selectState(reference worklist W)
21 let ES′ be the next selected execution state

// j is the index of a cut point, w is the state weight
22 j ← 0, w ← ∞
23 foreach ExecutionState ES ∈ W do
24 PendingPath pp ← ES.path

// c1, . . . , ci are sequentially-covered, while ci+1 not yet
25 i ← index of the cut point ci on pp

26 StateWeight sw ← distance(es, ci+1)−2 + instructionsSinceCovNew(es)−2

27 if i > j ∨ (i == j ∧sw > w) then
28 ES′ ← ES, j ← i, w ← sw

29 W ← W \ {ES′}
30 return ES′

Towards Efficient Data-Flow Test Data Generation 271

5.2 SE-Based Approach for Data-Flow Testing

This section explains the symbolic execution-based approach for data-flow test-
ing. Algorithm 1 gives the details. This algorithm takes as input a target def-use
pair du and its cut points C, and either outputs the test case t that satisfies du,
or nil if it fails to find a path that can cover du.

It first selects one execution state ES from the worklist W which stores all the
execution states during symbolic execution. It then executes the current program
instruction referenced by ES, and update ES according to the instruction type
(Lines 6–14, cf. Sect. 3.2). Basically, one instruction can be one of three types:
sequential instruction (e.g., assignment statements), forking instruction (e.g., if
statements, denoted as FORK), and exit instruction (e.g., program exits or run-
time errors, denoted as EXIT). When it encounters sequential instructions, ES
is updated accordingly by function executeInstruction (Lines 6–7). Specifically,
function executeInstruction will internally (1) execute the current instruction,
and (2) update ES (including the symbolic state, the reference to next instruc-
tion and the corresponding instruction type). When it encounters FORK instruc-
tions, one new execution state ES′ will be created. The two states ES and ES′

will explore both sides of the fork, respectively, and the corresponding subpaths
of ES and ES′ will be updated to ES.path+Fr(T) and ES.path+Fr(F), respec-
tively (Lines 9–14). Here, Fr denotes the forking point, and T and F represent
the true and false directions, respectively. If the target pair du is covered by the
pending path p of ES, a test input t will be generated (Line 16). If the variable
x of du is redefined on p between the def and use statement, a redefinition path
pruning heuristic will remove those invalid states (Lines 17–18, more details will
be explained later). The algorithm will continue until either the worklist W is
empty or the given testing time is exhausted (at Line 19).

The algorithm core is the state selection procedure, i.e., selectState (detailed
at Lines 20–30), which integrates several heuristics to improve the overall effec-
tiveness. Figure 4 conceptually shows the benefits of their combination (the red
path is a valid path that covers the pair), which can efficiently steer exploration
towards the target pair, and reduce as many unnecessary path explorations as
possible: (1) the cut point guided search guides the state exploration towards the
target pair more quickly; (2) the backtrack strategy counts the number of exe-
cuted instructions to prevent the search from being trapped in tight loops, and
switches to alternative search directions; and (3) the redefinition path pruning
technique effectively prunes redundant search space. In detail, we use Formula 4
to assign the weights to all states, and achieve the heuristics (1) and (2).

state_weight(es) = (cmax,
1
d2

+
1
i2
) (4)

where, ES is an execution state, cmax is the deepest covered cut point, d is the
instruction distance toward the next uncovered cut point, and i is the number of
executed instructions since the last new instruction have been covered. Below,
we explain the details of each heuristic.

272 T. Su et al.

Fig. 4. Enhanced path exploration in symbolic execution: combine cut-point guided
search, backtrack strategy and redefinition path pruning. Each subfigure denotes the
execution tree generated by symbolic execution.

Cut Point Guided Search. The cut-point guided search strategy (at Lines
23–28) aims to search for the ES whose pending path has covered the deepest
cut point, and tries to reach the next goal, i.e., the next uncovered cut point, as
quickly as possible. For an ES, its pending path is a subpath that starts from
the program entry and reaches up to the program location of it. If this path has
sequentially covered the cut point c1, c2, . . . , ci but not ci+1, ci is the deepest
covered cut point, and ci+1 is the next goal to reach. The strategy always prefers
to select the ES that has covered the deepest cut point (at Lines 26–28, indicated
by the condition i > j). The intuition is that the deeper cut point an ES can
reach, the closer the ES toward the pair is.

When more than one ES covers the deepest cut point (indicated by the
condition i==j at Line 27), the ES that has the shortest distance toward next
goal will be preferred (at Lines 26–28). The intuition is that the closer the
distance is, the more quickly the ES can reach the goal. We use dist(es, ci+1)
to present the distance between the location of es and the next uncovered cut
point ci+1. The distance is approximated as the number of instructions along
the shortest control-flow path between the program locations of es and ci+1.

Backtrack Strategy. To avoid the execution falling into the tight loops, we
assign an ES with lower priority if the ES is not likely to cover new instructions.
In particular, for each ES, the function instrsSinceCovNew, corresponding to i
in Formula (4), counts the number of executed instructions since the last new
instruction is covered (at Line 26). The ES, which has a larger value of instrsS-
inceCovNew, is assumed that it has lower possibility to cover new instructions.
Intuitively, this heuristic prefers the ES which is able to cover more new instruc-
tions, if a ES does not cover new instructions for a long time, the strategy will
backtrack to another ES via lowering the weight of the current ES.

Redefinition Path Pruning. A redefinition path pruning technique checks
whether the selected ES has redefined the variable x in du. If the ES is invalid
(i.e., its pending path has redefined x), it will be discarded and selectState
will choose another one (at Lines 17–18). The reason is that, according to the

Towards Efficient Data-Flow Test Data Generation 273

Fig. 5. Paradigm of CEGAR-based Model Checking

definition of DFT (cf. Definition 3), it is impossible to find def-clear paths by
executing those invalid ESs.

Further, by utilizing the path-sensitive information from SE, we can detect
variable redefinitions, especially caused by variable aliases, more precisely. Vari-
able aliases appear when two or more variable names refer to the same memory
location. So we designed a lightweight variable redefinition detection algorithm
in our framework. Our approach operates upon a simplified three-address form
of the original code5, so we mainly focus on the following statement forms where
variable aliases and variable redefinitions may appear:

– Alias inducing statements: (1) p:=q (∗p is an alias to ∗q), (2) p:=&x (∗p is
an alias to x)

– Variable definition statements: (3) ∗p:=y (∗p is defined by y), (4) v:=y (v is
defined by y)

Here, p and q are pointer variables, x and y non-pointer variables, and “:=” the
assignment operator.

Initially, a set A is maintained, which denotes the variable alias set w.r.t.
the variable x of du. At the beginning, it only contains x itself. During path
exploration, if the executed statement is (1) or (2), and ∗q or x ∈ A, ∗p will be
added into A since ∗p becomes an alias of x. If the executed statement is (1),
and ∗q �∈ A but x ∈ A, ∗p will be excluded from A since it becomes an alias of
another variable instead of x. If the executed statement is (3) or (4), and ∗p ∈ A
or x ∈ A, the variable is redefined by another variable y.

5.3 CEGAR-Based Approach for Data-Flow Testing

Counter-example guided abstract refinement (CEGAR) is a well-known software
model checking technique that statically proves program correctness w.r.t. prop-
erties (or specifications) of interest [56]. Figure 5 shows the basic paradigm of
CEGAR, which typically follows an abstract-check-refine paradigm. Given the
program P (i.e., the actual implementation) and a safety property φ of inter-
est, CEGAR first abstracts P into a model A (typically represented as a finite
5 We use CIL as the C parser to transform the source code into an equivalent simpli-

fied form using the –dosimplify option, where one statement contains at most one
operator.

274 T. Su et al.

automaton), and then checks the property φ against A. If the abstract model A
is error-free, then so is the original program P . If it finds a path on the model
A that violates the property φ, it will check the feasibility of this path: is it a
genuine path that can correspond to a concrete path in the original program P ,
or due to the result of the current coarse abstraction? If the path is feasible,
CEGAR returns a counter-example path C to demonstrate the violation of φ.
Otherwise, CEGAR will utilize this path C to refine A by adding new predicates,
and continue the checking until it either finds a genuine path that violates φ or
proves that φ is always satisfied in P . Or since this model checking problem itself
is undecidable, CEGAR does not terminate and cannot conclude the correctness
of φ.

To exploit the power of CEGAR, our approach reduces the problem of data
flow testing to the problem of model checking. The CEGAR-based approach can
operate in two phases [12] to generate tests, i.e., model checking and tests from
counter-examples. (1) It first uses model checking to check whether the specified
program location l is reachable such that the predicate of interest q (i.e., the
safety property) can be satisfied at that point. (2) If l is reachable, CEGAR will
return a counter-example path p that establishes q at l, and generate a test case
from the corresponding path constraint of p. Otherwise, if l is not reachable,
CEGAR will conclude no test inputs can reach l.

The key idea is to encode the test obligation of a target def-use pair into the
program under test. We instrument the original program P to P ′, and reduce
the test generation for P to path reachability checking on P ′. In particular, we
follow three steps: (1) We introduce a variable cover_flag into P , which denotes
the cover status of the target pair, and initialize it as false. (2) The variable
cover_flag is set as true immediately after the def statement, and set as false
immediately after all redefinition statements. (3) Before the use statement, we
set the target predicate as cover_flag==true. As a result, if the use statement
is reachable when the target predicate holds, we can obtain a counter-example
(i.e., a test case) and conclude the pair is feasible. Otherwise, if unreachable,
we can safely conclude that the pair is infeasible (or since the problem itself is
undecidable, the algorithm does not terminate, and gives unknown).

Generability of the SMC-Based Approach. This reduction approach is
flexible to implement on any CEGAR-based model checkers. It is also applica-
ble for other software model checking techniques, e.g., Bounded Model Checking
(BMC). Given a program, BMC unrolls the control flow graph for a fixed number
of k steps, and checks whether the property p at a specified program location
l is violated or not. Different from the modern (dynamic) symbolic execution
techniques, BMC executes on pure symbolic inputs without using any concrete
input values, and usually aims to systematically checking reachability within
given bounds. Different from CEGAR, BMC searches on all program computa-
tions without abstraction and typically backtracks the search when a given (loop
or search depth) bound is reached. Although BMC in general cannot prove infea-
sibility as certain, in Sect. 7 we will show the BMC-based approach can still serve
as a heuristic-criterion to identify hard-to-cover (probably infeasible) pairs and

Towards Efficient Data-Flow Test Data Generation 275

particularly effective for specific types of programs. In fact, the infeasible pairs
concluded by BMC can be regarded as valid modulo the given checking bounds.

6 Framework Design and Implementation

We realized our hybrid data-flow testing framework for C programs. In our orig-
inal work [84], we implemented the SE-based approach on our own concolic
testing based tool CAUT [85,91], while in this article we built the enhanced
SE-based approach on KLEE [18], a robust execution-generated testing based
symbolic execution engine, to fully exhibit its feasibility. As for the SMC-based
approach, we instantiated it with two different types of software model checking
techniques, i.e., CEGAR and BMC. In all, our framework combines the SE-based
and SMC-based approaches together to achieve efficient DFT.

In the static analysis phase, we identify def-use pairs, cut points, and related
static program information (e.g., variable definitions and aliases) by using
CIL [70] (C Intermediate Language), which is an infrastructure for C program
analysis and transformation. We first build the control-flow graph (CFG) for
each function in the program under test, and then construct the inter-procedural
CFG (ICFG) for the whole program. We perform standard iterative data-flow
analysis techniques [47,72], i.e., reaching definition analysis, to compute def-use
pairs. For each variable use, we compute which definitions on the same variable
can reach the use through a def-clear path on the control-flow graph. A def-use
pair is created as a test objective for each use with its corresponding defini-
tion. We treat each formal parameter variable as defined at the beginning of its
function and each argument parameter variable as used at its function call site
(e.g., library calls). For global variables, we treat them as initially defined at the
beginning the entry function (e.g., the main function), and defined/used at any
function where they are defined/used.

In the current implementation, we focus on the def-use pairs with local vari-
ables (intra-procedural pairs) and global variables (inter-procedural pairs). Fol-
lowing prior work on data-flow testing [89], we currently do not consider the
def-use pairs induced by pointer aliases. Thus, we may miss some def-use pairs,
but we believe that this is an independent issue (not the focus of this work)
and does not affect the effectiveness of our testing approach. More sophisticated
data-flow analysis techniques (e.g., dynamic data-flow analysis [30]) or tools
(e.g., Frama-C [59]) can be used to mitigate this problem.

Specifically, to improve the efficiency of state selection algorithm (cf. Algo-
rithm 1) in KLEE, we use the priority queue to sort execution states according
to their weights. The algorithmic complexity is O(n log n) (n is the number of
execution states), which is much faster than using a list or array. The software
model checkers are used as black-box to enforce data-flow testing. The benefit
of this design choice is that we can flexibly integrate any model checker without
any modification or adaption. CIL transforms the program under test into a
simplified code version, and encodes the test requirements of def-use pairs into
the program under test. Both SE-based and SMC-based tools takes as input

276 T. Su et al.

the same CIL-simplified code. Function stubs are used to simulate C library
functions such as string, memory and file operations to improve the ability of
symbolic reasoning. To compute the data-flow coverage during testing, we imple-
ment the classic last definition technique [52] in KLEE. We maintain a table of
def-use pairs, and insert probes at each basic block to monitor the program
execution. The runtime routine records each variable that has been defined and
the block where it was defined. When a block that uses this defined variable is
executed, the last definition of this variable is located, we check whether the pair
is covered. Our implementations are publicly available at [87].

7 Evaluation

This section aims to evaluate whether our combined testing approach can achieve
efficient data-flow testing. In particular, we intend to investigate (1) whether the
core SE-based approach can quickly cover def-use pairs; (2) whether the SMC-
based reduction approach is feasible and practical; and (3) whether the combined
approach can be more effective for data-flow testing.

7.1 Research Questions

– RQ1: In the data-flow testing w.r.t. all def-use coverage, what is the perfor-
mance difference between different existing search strategies (e.g., DFS, RSS,
RSS-MD2U, SDGS) and CPGS (our cut point guided path search strategy) in
terms of testing time and number of covered pairs for the SE-based approach?

– RQ2: How is the practicability of the CEGAR-based reduction approach
as well as the BMC-based approach in terms of testing time and number of
identified feasible and infeasible pairs?

– RQ3: How efficient is the combined approach, which complements the SE-
based approach with the SMC-based approach, in terms of testing time and
coverage level, compared with the SE-based approach or the SMC-based app-
roach alone?

7.2 Evaluation Setup

Testing Environment. All evaluations were run on a 64bit Ubuntu 14.04 phys-
ical machine with 24 processors (2.60 GHz Intel Xeon(R) E5-2670 CPU) and 94
GB RAM.

Framework Implementations. The SE-based approach of our hybrid testing
framework was implemented on KLEE (v1.1.0), and the SMC-based approach
was implemented on two different software model checking techniques, CEGAR
and BMC. In particular, we chose three different software model checkers6, i.e.,
BLAST [13] (CEGAR-based, v2.7.3), CPAchecker [14] (CEGAR-based, v.1.7)

6 We use the latest versions of these model checkers at the time of writing.

Towards Efficient Data-Flow Test Data Generation 277

and CBMC [24] (BMC-based, v5.7). We chose different model checkers, since we
intend to gain more overall understandings of the practicality of this reduction
approach. Note that the CEGAR-based approach can give definite answers of
the feasibility, while the BMC-based approach is used as a heuristic-criterion to
identify hard-to-cover (probably infeasible) pairs.

Program Subjects. Despite data-flow testing has been continuously investi-
gated in the past four decades, the standard benchmarks for evaluating data-
flow testing techniques are still missing. To this end, we took substantial efforts
and dedicatedly constructed a repository of benchmark subjects by follow-
ing these steps. First, we collected the subjects from prior work on data-
flow testing. We conducted a thorough investigation on all prior work (99
papers [83] in total) related to data-flow testing, and searched for the adopted
subjects. After excluding the subjects whose source codes are not available or
not written in C language, we got 26 unique subjects [32,35,39,42,54,57,66–
69,75,76,80,81,84,92,94]. We then manually inspected these programs and
excluded 19 subjects which are too simple, we finally got 7 subjects. These 7
subjects include mathematical computations and classic algorithms. Second, we
included 7 Siemens subjects from SIR [82], which are widely used in the experi-
ments of program analysis and software testing [48,54,90]. These subjects involve
numeral computations, string manipulations and complex data structures (e.g.,
pointers, structs, and lists). Third, we further enriched the repository with
the subjects from the SV-COMP benchmarks [33], which are originally used for
the competition on software verification. The SV-COMP benchmarks are cate-
gorized in different groups by their features (e.g., concurrency, bit vectors, floats)
for evaluating software model checkers. In order to reduce potential evaluation
biases in our scenario, we carefully inspected all the benchmarks and finally
decided to select subjects from the “Integers and Control Flow” category based
on these considerations: (1) the subjects in this category are real-world (medium-
sized or large-sized) OS device drivers (cf. [11], Sect. 4), while many subjects in
other categories are hand-crafted, small-sized programs; (2) the subjects in this
category have complicated function call chains or control-flow structures, which
are more appropriate for our evaluation; (3) the subjects do not contain specific
features that may not be supported by KLEE (e.g., concurrency, floating point
numbers). We finally selected 16 subjects in total from the ntdrivers and ssh
groups therein (we excluded other subjects with similar control-flow structures
by diffing the code). The selected subjects have rather complex control-flows.
For example, the average cyclomatic complexity of functions in the ssh group
exceeds 88.57 (computed by Cyclo [1]) Fourth, we also included three core pro-
gram modules from the industrial projects from our research partners. The first
one is an engine management system (osek_control) running on an automobile
operating system conforming to the OSEK/VDX standard. The second one is
a satellite gesture control program (space_control). The third one is a control
program (subway_control) from a subway signal. All these three industrial pro-
7 Cyclomatic complexity is a software metric that indicates the complexity of a pro-

gram. The standard software development guidelines recommend the cyclomatic
complexity of a module should not exceeded 10.

278 T. Su et al.

Table 2. Subjects of the constructed data-flow testing benchmark repository

Subject #ELOC #DU Description
factorization 43 47 compute factorization
power 11 11 compute the power xy

find 66 99 permute an array’s elements
triangle 32 46 classify an triangle type
strmat 67 32 string pattern matching
strmat2 88 38 string pattern matching
textfmt 142 73 text string formatting
tcas 195 86 collision avoidance system
replace 567 387 pattern matching and substitution
totinfo 374 279 compute statistics given input data
printtokens 498 240 lexical analyzer
printtokens2 417 192 lexical analyzer
schedule 322 118 process priority scheduler
schedule2 314 107 process priority scheduler
kbfiltr 557 176 ntdrivers group
kbfiltr2 954 362 ntdrivers group
diskperf 1,052 443 ntdrivers group
floppy 1,091 331 ntdrivers group
floppy2 1,511 606 ntdrivers group
cdaudio 2,101 773 ntdrivers group
s3_clnt 540 1,677 ssh group
s3_clnt_termination 555 1,595 ssh group
s3_srvr_1a 198 574 ssh group
s3_srvr_1b 127 139 ssh group
s3_srvr_2 608 2,130 ssh group
s3_srvr_7 624 2,260 ssh group
s3_srvr_8 631 2,322 ssh group
s3_srvr_10 628 2,200 ssh group
s3_srvr_12 696 3,125 ssh group
s3_srvr_13 642 2,325 ssh group
osek_control 4,589 927 one module of engine management system
space_control 5,782 1,739 one module of satellite gesture control software
subway_control 5,612 2,895 one module of subway signal control software

grams were used in our previous research work [74,85,98], and have complicated
data-flow interactions. Finally, to ensure each tool (where our framework is built
upon) can correctly reason these subjects, we carefully read the documentation
of each tool to understand their limitations, manually checked each program
and added necessary function stubs (e.g., to simulate such C library functions as
string, memory, and file operations) but without affecting their original program
logic and structures. This is important to reduce validation threats, and also
provides a more fair comparison basis. In total, we got 33 subjects with different
characteristics, including mathematical computation, classic algorithms, utility
programs, device drivers and industrial control programs. These subjects allow
us to evaluate diverse data-flow scenarios. Table 2 shows the detailed statistics of
these subjects, which includes the executable lines of code (computed by cloc [2]),
the number of def-use pairs (including intra- and inter-procedural pairs), and the
brief functional description.

Towards Efficient Data-Flow Test Data Generation 279

Search Strategies for Comparison . To our knowledge, there exists no spe-
cific guided search strategies on KLEE to compare with our strategy. Thus, we
compare our cut-point guided search strategy with several existing search strate-
gies. In particular, we chose two generic search strategies (i.e., depth-first and
random search), one popular (statement) coverage-optimized search strategy. In
addition, we implemented one search strategy for directed testing on KLEE,
which is proposed by prior work [61,64,97]. We detail them as follows.

– Depth First-Search (DFS): always select the latest execution state from all
states to explore, and has little overhead in state selection.

– Random State Search (RSS): randomly select an execution state from all
states to explore, and able to explore the program space more uniformly and
less likely to be trapped in tight loops than other strategies like DFS.

– Coverage-Optimized Search (COS): compute the weights of the states by some
heuristics, e.g., the minimal distance to uncovered instructions (md2u) and
whether the state recently covered new code (covnew), and randomly select
states w.r.t. these weights. These heuristics are usually interleaved with other
search strategies in a round-robin fashion to improve their overall effective-
ness. For example, RSS-COS:md2u (RSS-MD2U for short) is a popular strat-
egy used by KLEE, which interleaves RSS with md2u.

– Shortest Distance Guided Search (SDGS): always select the execution state
that has the shortest (instruction) distance toward a target instruction in
order to cover the target as quickly as possible. This strategy has been widely
applied in single target testing [61,64,97]. In the context of data-flow testing,
we implemented this strategy in KLEE by setting the def as the first goal
and then the use as the second goal after the def is covered.

7.3 Case Studies

We conducted three case studies to answer the research questions. Note that
in this paper we focus on the classic data-flow testing [39,89], i.e., targeting
one def-use pair at one run. In Study 1 , we answer RQ1 by comparing the
performance of different search strategies that were implemented on KLEE. In
detail, we use two metrics: (1) number of covered pairs, i.e., how many def-use
pairs can be covered; and (2) testing time, i.e., how long does it take to cover
the pair(s) of interest. The testing time is measured by the median value and
the semi-interquartile range (SIQR)8 of the times consumed on those covered
(feasible) pairs9.

In the evaluation, the maximum allowed search time on each pair is set as
5min. Under this setting, we observed all search strategies can thoroughly test
8 SIQR = (Q3-Q1)/2, which measures the variability of testing time, where Q1 is the

lower quartile, and Q3 is the upper quartile.
9 In theory, the symbolic execution-based approach cannot identify infeasible pairs

unless it enumerates all possible paths, which however is impossible in practice.
Therefore, we only consider the testing times of covered (feasible) pairs for perfor-
mance evaluation.

280 T. Su et al.

each subject (i.e., reach their highest coverage rates). To mitigate the algorithm
randomness, we repeat the testing process 30 times for each program/strategy
and aggregate their average values as the final results for all measurements.

In Study 2 , we answer RQ2 by evaluating the practicability of the SMC-
based reduction approach on two different model checking techniques, CEGAR
and BMC. Specifically, we implemented the reduction approach on three different
model checkers, BLAST, CPAchecker and CBMC. We use the following default
command options and configurations according to their user manuals and the
suggestions from the tool developers, respectively:

BLAST: ocamltune blast -enable-recursion -cref -lattice -noprofile
-nosserr -quiet

CPAchecker: cpachecker -config config/predicateAnalysis.properties
-skipRecursion

CBMC: cbmc --slice-formula --unwind nr1 --depth nr2

We have not tried to particularly tune the optimal configurations of these tools
for different subjects under test, since we aim to investigate the practicability
of our reduction approach in general. Specifically, BLAST and CPAchecker are
configured based on predicate abstraction. For BLAST, we use an internal script
ocamltune to improve memory utilization for large programs; for CPAchecker,
we use its default predicate abstraction configuration predicateAnalysis.properties.
We use the option -enable-recursion of BLAST and -skipRecursion of CPAchecker
to set recursion functions as skip. Due to CBMC is a bounded model checker,
it may answer infeasible for actual feasible pairs if the given checking bound
is too small. Thus, we set the appropriate values for the –unwind and –depth
options, respectively, for the number of times loops to be unwound and the
number of program steps to be processed. Specially, we determine the parameter
values of –unwind and –depth options by a binary search algorithm to ensure that
CBMC can identify as many pairs as possible within the given time bound.
This avoids wasting testing budget on unnecessary path explorations, and also
achieves a more fair evaluation basis. Therefore, each subject may be given
different parameter values (the concrete parameter values of all subjects are
available at [87]).

Specifically, we use two metrics: (1) number of feasible, infeasible, and
unknown pairs; and (2) testing (checking) time of feasible and infeasible pairs
(denoted in medians). The maximum testing time on each def-use pair is con-
strained as 5min (i.e., 300 s, the same setting in RQ1). For each def-use pair, we
also run 30 times to mitigate algorithm randomness.

In Study 3, we answer RQ3 by combining the SE-based and SMC-based
approaches. We interleave these two approaches as follows: the SE-based app-
roach (configured with the cut point-guided path search strategy and the same
settings in RQ1) is first used to cover as many pairs as possible; then, for the
remaining uncovered pairs, the SMC-based approach (configured with the same
settings in RQ2) is used to identify infeasible pairs (may also cover some feasi-
ble pairs). We continue the above iteration of the combined approach until the
maximum allowed time bound (5min for each pair) is used up. Specifically, we

Towards Efficient Data-Flow Test Data Generation 281

Fig. 6. Performance of each search strategy in terms of total testing time, number of
executed program instructions, and number of explored program paths (normalized in
percentage) on all 33 subjects.

increase the time bound by 3 times at each iteration, i.e., 10 s, 30 s, 90 s and
300 s.

Specifically, we use two metrics: (1) coverage rate; and (2) total testing time,
i.e., the total time required to enforce data-flow testing on all def-use pairs of
one subject. The coverage rate C is computed by Formula 5, where nTestObj
is the total number of pairs, and nFeasible and nInfeasible are the number of
identified feasible and infeasible ones, respectively.

C =
nFeasible

nTestObj − nInfeasible
× 100% (5)

In all case studies, the testing time was measured in CPU time via the time
command in Linux. In particular, the testing time did not include IO operations
for logging the testing results. We tested 31,634 ELOC with 28,354 pairs in total.
It took us nearly one and half months to run the experiments and analyze the
results.

7.4 Study 1

Table 3 shows the detailed performance statistics of different search strategies.
The column Subject represents the subject under test, DFS, RSS, RSS-MD2U,
SDGS, CPGS, respectively, represent the search strategies. For each subject/s-
trategy, it shows the number of covered def-use pairs (denoted by N), the median
value of testing times (denoted by M) and the semi-interquartile range of testing
times (denoted by SIQR) on all covered pairs. In particular, for each subject,
we underscore the strategy with lowest median value. The last row gives the
total number of covered pairs. From Table 3, we can observe (1) Given enough
testing time for all strategies (i.e., 5min for each pair), CPGS covers 4215, 2152,
1320 and 1563 more pairs, respectively, than DFS, RSS, RSS-MD2U and SDGS.
It means CPGS achieves 40%, 21.3%, 12.1%, 14.6% higher data-flow coverage
than these strategies, respectively. (2) By comparing the median values of CPGS
with those of other strategies, CPGS achieves more efficient data-flow testing in
14/33, 23/33, 32/33, 26/33 subjects than DFS, RSS, RSS-MD2U and SDGS,

282 T. Su et al.

Table 3. Performance statistics of different search strategies for data-flow testing (the
testing time is measured in seconds).

Subject DFS RSS RSS-MD2U SDGS CPGS
N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR)

factorization 22 0.07 (0.01) 22 0.07 (0.01) 22 0.08 (0.02) 22 0.05 (0.01) 22 0.06 (0.01)
power 6 0.14 (0.00) 9 0.12 (0.01) 9 0.05 (0.01) 5 0.04 (0.00) 9 0.04 (0.00)
find 77 0.89(0.64) 49 0.19 (0.54) 52 0.26 (0.31) 51 0.63 (3.35) 56 0.22 (0.12)
triangle 22 0.24 (0.06) 22 0.24 (0.03) 22 0.26 (0.05) 22 0.25 (0.09) 22 0.13 (0.01)
strmat 26 2.84 (1.41) 30 0.10 (0.02) 30 0.13 (0.03) 30 0.12 (0.16) 30 0.10 (0.02)
strmat2 28 2.85 (1.40) 32 0.09 (0.01) 32 0.11 (0.02) 32 0.11 (0.03) 32 0.09 (0.02)
textfmt 37 0.16 (0.08) 33 0.05 (0.01) 33 0.11 (0.04) 34 0.06 (0.01) 34 0.06 (0.01)
tcas 55 0.13 (0.03) 55 0.21 (0.07) 55 0.67 (0.43) 55 0.16 (0.06) 55 0.14 (0.06)
replace 69 0.77 (0.14) 308 1.96 (15.23) 312 30.31 (21.97) 295 4.67 (5.46) 309 1.15 (3.58)
totinfo 13 0.52 (0.07) 24 0.42 (0.13) 24 0.64 (0.08) 24 0.42 (0.06) 26 0.52 (0.05)
printtokens 48 0.96 (0.62) 115 34.69 (24.16) 106 33.68 (22.59) 107 16.40 (25.53) 115 12.23 (20.21)
printtokens2 124 0.47 (0.32) 148 0.80 (3.72) 149 20.67 (18.42) 149 0.83 (3.48) 154 0.51 (1.43)
schedule 15 0.16 (0.03) 83 0.23 (3.98) 86 0.76 (5.05) 77 0.22 (1.67) 86 0.22 (1.84)
schedule2 14 0.15 (0.02) 78 0.20 (0.12) 78 0.48 (1.11) 77 0.21 (0.10) 77 0.21 (0.08)
cdaudio 562 3.13 (0.41) 562 3.27 (0.48) 562 15.54 (7.11) 562 3.77 (2.52) 562 3.08 (0.51)
diskperf 285 0.89 (0.19) 302 0.97 (0.21) 302 1.97 (4.80) 299 0.95 (0.23) 302 0.92 (0.18)
floppy 249 0.62 (0.11) 249 0.67 (0.11) 249 2.11 (1.76) 249 0.72 (0.14) 249 0.66 (0.13)
floppy2 510 2.22 (0.37) 510 2.14 (0.42) 510 6.44 (3.44) 510 3.62 (1.66) 510 2.03 (0.39)
kbfiltr 116 0.26 (0.05) 116 0.28 (0.05) 116 0.49 (0.41) 116 0.31 (0.04) 116 0.27 (0.05)
kbfiltr2 266 0.97 (0.15) 266 0.94 (0.18) 266 4.18 (3.51) 266 2.11 (1.08) 266 0.90 (0.20)
s3_srvr_1a 113 0.72 (0.17) 171 0.75 (0.19) 171 0.76 (0.19) 165 0.65 (0.17) 171 0.58 (0.18)
s3_srvr_1b 30 0.08 (0.02) 43 0.08 (0.02) 43 0.07 (0.02) 43 0.07 (0.02) 45 0.08 (0.02)
s3_clnt 647 9.64 (2.01) 648 11.93 (2.64) 647 22.91 (8.19) 633 12.45 (2.45) 648 10.32 (1.88)
s3_clnt_termination 333 9.20 (1.64) 332 8.81 (1.87) 332 12.14 (1.29) 332 9.56 (1.74) 414 6.54 (1.03)
s3_srvr_2 414 14.35 (2.67) 695 24.23 (17.42) 695 31.86 (15.44) 681 19.93 (8.00) 695 16.45 (3.76)
s3_srvr_7 420 16.29 (3.44) 710 27.82 (20.06) 710 34.99 (17.11) 686 26.93 (12.46) 815 19.47 (5.41)
s3_srvr_8 416 16.77 (3.10) 704 23.61 (14.03) 698 36.15 (16.39) 690 23.45 (7.21) 798 17.04 (4.23)
s3_srvr_10 431 15.26 (2.40) 683 21.34 (5.19) 683 30.21 (7.03) 664 20.73 (5.85) 683 18.37 (3.90)
s3_srvr_12 433 25.76 (3.84) 395 39.51 (21.68) 539 64.25 (38.99) 486 39.50 (18.04) 724 25.88 (10.08)
s3_srvr_13 437 15.69 (2.07) 489 25.25 (18.07) 558 33.78 (21.20) 572 23.98 (11.49) 744 15.77 (6.12)
osek_control 398 7.69 (2.47) 426 15.77 (14.68) 549 23.32 (17.39) 538 14.17 (6.17) 639 6.15 (3.23)
space_control 582 15.90 (7.76) 812 33.49 (20.61) 990 48.77 (23.08) 961 28.86 (15.78) 1,178 6.32 (7.09)
subway_control 827 13.44 (7.69) 967 42.76 (28.65) 1,290 68.61 (31.73) 1,244 38.11 (21.46) 1,654 10.72 (6.72)
Total 8,025 – 10,088 – 10,920 – 10,677 – 12,240 –

respectively. Note that the median value of DFS is low because it only covers
many easily reachable pairs, which also explains why it achieves lowest coverage.

Figure 6 shows the performance of these search strategies on all 33 subjects
in terms of total testing time, the number of executed program instructions, and
the number of explored program paths (due to the data difference, we normalized
them in percentage). Note these three metrics are all computed on the covered
pairs. Apart from DFS (since it achieves rather low data-flow coverage), we can
see CPGS outperforms all the other testing strategies. In detail, CPGS reduces
testing time by 15–48%, the number of executed instructions by 16–63%, and the
number of explored paths by 28–74%. The reason is that CPGS narrows down
the search space by following the cut points and prunes unnecessary paths.

Towards Efficient Data-Flow Test Data Generation 283

Answer to RQ1: In summary, our cut-point guided search (CPGS) strat-
egy performs the best for data-flow testing. It improves 12–40% data-flow
coverage, and at the same time reduces the total testing time by 15–48% and
the number of explored paths by 28–74%. Therefore, the SE-based approach,
enhanced with the cut point guided search strategy, is efficient for data-flow
testing.

Table 4. Performance statistics of the SMC-based reduction approach CEGARBLAST ,
CEGARCPAchecker and BMCCBMC for data-flow testing (the testing time is measured
in seconds), where * denotes the numbers in the corresponding columns are only valid
modulo the given checking bound for BMCCBMC .

Subject CEGARBLAST CEGARCPAchecker BMCCBMC

F I U MF MI F I U MF MI F I* U* MF MI*

factorization 35 4 8 0.04 0.20 26 4 17 3.26 3.04 41 6 0 0.34 0.28
power 9 2 0 0.03 0.49 9 2 0 3.10 2.97 9 2 0 0.13 0.12
find 85 12 2 6.44 3.22 74 14 11 4.37 3.60 77 22 0 0.29 0.29
triangle 22 24 0 0.04 0.69 22 24 0 3.09 2.83 22 24 0 0.11 0.11
strmat 30 2 0 1.81 1.39 30 2 0 4.67 2.98 30 2 0 0.15 0.15
strmat2 32 6 0 5.08 1.46 32 6 0 4.91 3.79 32 6 0 0.15 0.15
textfmt 47 18 8 10.08 13.90 53 20 0 12.69 5.50 53 20 0 3.84 3.95
tcas 55 31 0 1.35 1.31 55 31 0 4.08 3.43 55 31 0 0.13 0.13
replace 275 73 39 6.17 13.60 211 48 128 11.21 10.84 339 48 0 101.47 93.20
totinfo – – 279 – – 76 24 179 14.80 11.50 69 209 1 54.36 7.68
printtokens 165 57 18 6.15 13.67 178 58 4 8.94 6.22 169 71 0 15.94 9.26
printtokens2 188 4 0 13.35 7.25 188 4 0 13.21 6.48 187 5 0 28.29 28.89
schedule 37 0 81 0.05 – 92 22 4 7.82 11.13 85 33 0 33.04 31.15
schedule2 33 0 74 0.04 – 42 0 65 7.32 – 35 55 17 189.03 205.14
cdaudio 544 179 50 0.41 0.81 – 190 583 – 6.36 566 207 0 1.50 1.58
diskperf 270 117 56 0.16 0.41 265 119 59 5.08 5.18 304 139 0 0.89 0.85
floppy 240 69 22 0.18 0.43 244 65 22 4.75 5.23 250 81 0 0.72 0.71
floppy2 497 82 27 0.33 0.59 501 79 26 5.28 5.68 511 95 0 1.51 1.35
kbfiltr 107 49 20 0.09 0.10 107 51 18 3.85 3.61 116 60 0 0.32 0.32
kbfiltr2 249 74 39 0.15 0.20 249 76 37 4.14 4.28 264 98 0 0.56 0.54
s3_srvr_1a 123 295 156 2.69 1.37 123 295 156 4.94 4.13 170 404 0 0.69 0.69
s3_srvr_1b 43 96 0 0.36 0.80 43 96 0 3.31 3.26 43 96 0 0.16 0.16
s3_clnt 625 969 83 14.62 4.86 661 1012 4 9.72 5.12 665 1012 0 39.62 41.52
s3_clnt_termination 540 964 91 15.16 4.35 582 1012 1 10.11 5.42 583 1012 0 22.57 24.02
s3_srvr_2 418 1034 678 3.50 5.21 698 1344 88 11.00 5.25 704 1420 6 102.85 128.09
s3_srvr_7 393 1073 794 3.34 4.78 712 1458 90 11.09 5.43 721 1538 1 100.42 124.45
s3_srvr_8 425 1183 714 3.98 5.07 701 1529 92 10.70 5.58 706 1604 12 107.31 137.57
s3_srvr_10 414 1060 726 5.00 32.16 678 1432 90 8.40 4.45 683 1517 0 125.92 111.44
s3_srvr_12 388 1611 1126 4.13 7.00 759 2231 135 9.86 6.19 758 2345 22 125.43 144.04
s3_srvr_13 431 1111 783 4.43 5.61 745 1500 80 10.04 4.55 737 1569 19 111.75 137.98
osek_control 607 150 170 9.43 8.09 645 199 87 7.72 6.54 623 277 27 52.76 65.12
space_control 1012 457 270 13.34 14.72 1156 495 88 9.85 10.57 1137 579 23 67.23 75.94
subway_control 1543 842 510 21.52 25.73 1793 1013 89 21.18 14.12 1787 1069 27 93.91 121.67
Total 9882 11648 6824 – – 11750 14455 2153 – – 12531 15656 155 – –

284 T. Su et al.

7.5 Study 2

Table 4 gives the detailed performance statistics of the SMC-based reduction
approach for data-flow testing, where “–” means the corresponding data does not
apply or not available10. For each implementation instance, it shows the number
of feasible (denoted by F), infeasible (denoted by I) and unknown (denoted by
U) pairs, and the median of testing times on feasible and infeasible pairs (denoted
by MF and MI , respectively). The last row gives the total number of feasible,
infeasible, and unknown pairs. Note that BLAST and CPAchecker implement
CEGAR-based model checking approach, thereby they can give the feasible or
infeasible conclusion (or unknown due to undecidability of the problem) without
any false positives. As for CBMC, it implements the bounded model checking
technique, and in general cannot eliminate infeasible pairs as certain. Thus, the
numbers of infeasible pairs identified by CBMC are only valid modulo the given
checking bound. From the results, we can see CPAchecker and CBMC are more
effective than BLAST in terms of feasible pairs as well as infeasible pairs. In
detail, BLAST, CPAchecker and CBMC, respectively, cover 9882, 11750, 12531
feasible pairs, and identify 11648, 14455 and 15656 infeasible ones.

Fig. 7. Venn diagrams of (a) feasible, (b) infeasible and (c) unknown pairs concluded
by the three model checkers BLAST, CPAchecker and CBMC for all subjects.

Figure 7 shows the venn diagrams of feasible, infeasible and unknown pairs
concluded by the three model checkers BLAST, CPAchecker and CBMC. We
can get several important observations: (1) The number of feasible and infea-
sible pairs identified by all the three model checkers accounts for the majority,
occupying 69.2% and 71.9% pairs, respectively. It indicates both the CEGAR-
based and BMC-based approaches are practical and can give consistent answers
in most cases. (2) Although the infeasible pairs identified by the BMC-based
approach are only valid modulo the given checking bound, we can see CBMC
in fact correctly concludes a large portion of infeasible pairs. Compared with
the infeasiblity results of CPAchecker, 91.8% (14,380/15,656) infeasible pairs
identified by CBMC are indeed infeasible given appropriate checking bounds.
Thus, the BMC-based approach can still serve as a heuristic-criterion to identify
hard-to-cover (probably infeasible) pairs, and better prioritize testing efforts.
10 BLAST hangs on totinfo, and CPAchecker crashes on parts of pairs from cdaudio.

Towards Efficient Data-Flow Test Data Generation 285

(3) CPAchecker and CBMC have the largest number of overlapped pairs than
the other combinations. They identify 94.7% feasible and 90.3% infeasible pairs,
respectively. It indicates these two tools are more effective.

Answer to RQ2: In summary, the SMC-based reduction approach is practi-
cal for data-flow testing. Both the CEGAR-based and BMC-based approaches
can give consistent conclusions on the majority of def-use pairs. Specifically,
the CEGAR-based approach can give answers for feasibility as certain, while
the BMC-based approach can serve as a heuristic-criterion to identify hard-
to-cover (probably infeasible) pairs when given appropriate checking bounds.

7.6 Study 3

To investigate the effectiveness of our combined approach, we complement
the SE-based approach with the SMC-based approach to do data-flow test-
ing. Specifically, we realize this combined approach by interleaving these two
approaches (the setting is specified in Sect. 7.3). Figure 8 shows the data-flow
coverage achieved by KLEE, BLAST, CPAchecker, CBMC alone and their
combinations (e.g., the combination of KLEE and CPAchecker, denoted as
KLEE+CPAchecker for short) on the 33 subjects within the same testing bud-
get. We can see the combined approach can greatly improve data-flow cover-
age. In detail, KLEE only achieves 54.3% data-flow coverage on average for the
33 subjects, while KLEE+BLAST, KLEE+CPAchecker, and KLEE+CBMC,
respectively, achieve 82.1%, 90.8%, and 99.5% coverage. Compared with KLEE,
the combined approach instances, KLEE+BLAST, KLEE+CPAchecker, and
KLEE+CBMC, respectively, improve the coverage by 27.8%, 36.5% and 45.2%
on average. On the other hand, KLEE+BLAST improves coverage by 10%
against BLAST alone, and KLEE+CPAchecker improves coverage by 7% against
CPAchecker alone, respectively.

Figure 9 further shows the total testing time consumed by KLEE, BLAST,
CPAchecker, CBMC and their combinations when achieving their peak cover-
age in Fig. 8. We can see that the combined approach can almost consistently
reduce the total testing time on each subject. Specifically, compared with KLEE,
the combined approach instances, KLEE+BLAST, KLEE+CPAchecker, and
KLEE+CBMC, respectively, achieve faster data-flow testing in 30/33, 29/33,
and 28/33 subjects, and reduce the total testing time by 78.8%, 93.6% and
20.1% on average in those subjects. Among the three instances of combined app-
roach, KLEE+CPAchecker achieves the best performance, which reduces testing
time by 93.6% for all the 33 subjects, and at the same time improves data-
flow coverage by 36.5%. On the other hand, the combined approach instances,
KLEE+BLAST and KLEE+CPAchecker, also reduce the total testing time of
BLAST and CPAchecker by 23.8% and 19.9%, respectively.

286 T. Su et al.

Fig. 8. Data-flow coverage achieved by KLEE, BLAST, CPAchecker, CBMC and their
combinations (i.e., KLEE+BLAST, KLEE+CPAchecker, KLEE+CBMC) within the
same time budget. Each number on the X axis denotes the set of 33 subjects in our
study. Note that the results of CBMC and KLEE+CBMC are only valid modulo the
given checking bounds.

Fig. 9. Consumed time for data-flow testing by KLEE, BLAST, CPAchecker, CBMC
and their combinations (i.e., KLEE+BLAST, KLEE+CPAchecker, KLEE+CBMC)
for reaching their respective highest coverage. Each point on the X axis denotes the
set of 33 subjects in our study. Note that the Y axis uses a logarithmic scale.

Towards Efficient Data-Flow Test Data Generation 287

Answer to RQ3: In summary, the combined approach, which combines
symbolic execution and software model checking, achieves more efficient
data-flow testing. The model checking approach can weed out infeasible
pairs that the symbolic execution approach cannot infer by 71.9%–97.2%.
Compared with the SE-based approach alone, the combined approach can
improve data-flow coverage by 27.8–45.2%. In particular, the instance
KLEE+CPAchecker performs best, which reduces total testing time by 93.6%
for all 33 subjects, and at the same time improves data-flow coverage by
36.5%. Compared with the CEGAR-based or BMC-based approach alone, the
combined approach can also reduce testing time by 19.9–23.8%, and improve
data-flow coverage by 7–10%.

8 Conclusion

This paper introduces an efficient, combined data-flow testing approach. We
designed a cut point guided search strategy to make symbolic execution practical;
and devised a simple encoding of data-flow testing via software model checking.
The two approaches offer complementary strengths: symbolic execution is more
effective at covering feasible def-use pairs, while software model checking is more
effective at rejecting infeasible pairs. Specifically, the CEGAR-based approach is
used to eliminate infeasible pairs as certain, while the BMC-based approach can
be used as a heuristic-criterion to identify hard-to-cover (probably infeasible)
pairs when given appropriate checking bounds.

Acknowledgements. This work is in honor of Jifeng He’s contribution to computer
science, especially establishing the Unifying Theories of Programming (UTP). This
work applies formal methods to support software testing, which was influenced by the
work of Jifeng He. Ting Su, the lead author of this work, sincerely appreciate the
academic guidance from his PhD supervisor Jifeng He.

References

1. Cyclo. http://www.gentoogeek.org/cyclo.html
2. ALDanial: cloc. GitHub (2018)
3. Alexander, R.T., Offutt, J., Stefik, A.: Testing coupling relationships in object-

oriented programs. Softw. Test. Verif. Reliab. 20(4), 291–327 (2010)
4. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge

University Press, New York (2008)
5. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, OR, USA, 16–
18 January 2002, pp. 1–3 (2002)

6. Baluda, M., Braione, P., Denaro, G., Pezzè, M.: Structural coverage of feasible
code. In: The 5th Workshop on Automation of Software Test, AST 2010, 3–4 May
2010, Cape Town, South Africa, pp. 59–66 (2010)

http://www.gentoogeek.org/cyclo.html

288 T. Su et al.

7. Baluda, M., Braione, P., Denaro, G., Pezzè, M.: Enhancing structural software
coverage by incrementally computing branch executability. Software Qual. J.
19(4), 725–751 (2011)

8. Baluda, M., Denaro, G., Pezzè, M.: Bidirectional symbolic analysis for effective
branch testing. IEEE Trans. Software Eng. 42(5), 403–426 (2016)

9. Bardin, S., et al.: Sound and quasi-complete detection of infeasible test require-
ments. In: 8th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2015, Graz, Austria, 13–17 April 2015, pp. 1–10 (2015)

10. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,
A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)

11. Beyer, D.: Competition on software verification – (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28756-5_38

12. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proceedings of the 26th International Confer-
ence on Software Engineering, ICSE 2004, pp. 326–335. IEEE Computer Society,
Washington, DC (2004)

13. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST: applications to software engineering. Int. J. Softw. Tools Technol. Transf.
9(5), 505–525 (2007)

14. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software veri-
fication. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

15. Beyer, D., Lemberger, T.: Software verification: testing vs. model checking - a
comparative evaluation of the state of the art. In: Strichman, O., Tzoref-Brill, R.
(eds.) HVC 2017. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70389-3_7

16. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2008), 15–19 September 2008, L’Aquila, Italy, pp. 443–446 (2008)

17. Buy, U.A., Orso, A., Pezzè, M.: Automated testing of classes. In: ISSTA, pp.
39–48 (2000)

18. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation, pp. 209–224 (2008)

19. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA, USA,
30 October–3 November 2006, pp. 322–335 (2006)

20. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

21. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: Proceedings of the 25th International Conference
on Software Engineering, 3–10 May 2003, Portland, Oregon, USA, pp. 385–395
(2003)

22. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Software Eng. 30(6), 388–402 (2004)

23. Chatterjee, B., Ryder, B.G.: Data-flow-based testing of object-oriented libraries.
Technical report DCS-TR-382, Rutgers University (1999)

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7

Towards Efficient Data-Flow Test Data Generation 289

24. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

25. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: Proceedings of the Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, 29 March–2 April 2004, pp. 168–176 (2004)

26. Clarke, L.A.: A program testing system. In: Proceedings of the 1976 Annual
Conference, Houston, Texas, USA, 20–22 October 1976, pp. 488–491 (1976)

27. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

28. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven Concolic testing. In:
Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 328–
347. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_16

29. Denaro, G., Margara, A., Pezzè, M., Vivanti, M.: Dynamic data flow testing of
object oriented systems. In: 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 1, pp. 947–958
(2015)

30. Denaro, G., Pezzè, M., Vivanti, M.: On the right objectives of data flow testing.
In: IEEE Seventh International Conference on Software Testing, Verification and
Validation, ICST 2014, 31 March–4 April 2014, Cleveland, Ohio, USA, pp. 71–80
(2014)

31. Do, T., Fong, A.C.M., Pears, R.: Precise guidance to dynamic test generation.
In: Proceedings of the 7th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 5–12 (2012)

32. Eler, M.M., Endo, A.T., Durelli, V., Procópio-PR, C.: Covering user-defined data-
flow test requirements using symbolic execution. In: Proceedings of the Thirteenth
Brazilian Symposium On Software Quality (SBQS), pp. 16–30 (2014)

33. ETAPS: Competition on software verification (SV-COMP). ETAPS European
Joint Conference on Theory & Practice of Software - TACAS 2017 (2017). https://
sv-comp.sosy-lab.org/2017/

34. Foreman, L.M., Zweben, S.H.: A study of the effectiveness of control and data
flow testing strategies. J. Syst. Softw. 21(3), 215–228 (1993)

35. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of
branch testing and data flow testing. IEEE Trans. Softw. Eng. 19(8), 774–787
(1993)

36. Frankl, P.G., Iakounenko, O.: Further empirical studies of test effectiveness. In:
SIGSOFT 1998, Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Lake Buena Vista, Florida, USA, 3–5
November 1998, pp. 153–162 (1998)

37. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009)

38. Ghiduk, A.S.: A new software data-flow testing approach via ant colony algo-
rithms. Univ. J. Comput. Sci. Eng. Technol. 1(1), 64–72 (2010)

39. Ghiduk, A.S., Harrold, M.J., Girgis, M.R.: Using genetic algorithms to aid test-
data generation for data-flow coverage. In: APSEC, pp. 41–48 (2007)

40. Girgis, M.R.: Using symbolic execution and data flow criteria to aid test data
selection. Softw. Test. Verif. Reliab. 3(2), 101–112 (1993)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-662-49122-5_16
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/

290 T. Su et al.

41. Girgis, M.R.: Automatic test data generation for data flow testing using a genetic
algorithm. J. UCS 11(6), 898–915 (2005)

42. Girgis, M.R., Ghiduk, A.S., Abd-elkawy, E.H.: Automatic generation of data flow
test paths using a genetic algorithm. Int. J. Comput. Appl. 89(12), 29–36 (2014)

43. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random test-
ing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213–223. ACM, New York (2005)

44. Goldberg, A., Wang, T., Zimmerman, D.: Applications of feasible path analysis
to program testing. In: Proceedings of the 1994 International Symposium on Soft-
ware Testing and Analysis, ISSTA 1994, Seattle, WA, USA, 17–19 August 1994,
pp. 80–94 (1994)

45. Harman, M., Kim, S.G., Lakhotia, K., McMinn, P., Yoo, S.: Optimizing for the
number of tests generated in search based test data generation with an applica-
tion to the oracle cost problem. In: Third International Conference on Software
Testing, Verification and Validation, ICST 2010, Paris, France, 7–9 April 2010,
Workshops Proceedings, pp. 182–191 (2010)

46. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: SIG-
SOFT FSE, pp. 154–163 (1994)

47. Harrold, M.J., Soffa, M.L.: Efficient computation of interprocedural definition-use
chains. ACM Trans. Program. Lang. Syst. 16(2), 175–204 (1994)

48. Hassan, M.M., Andrews, J.H.: Comparing multi-point stride coverage and
dataflow coverage. In: 35th International Conference on Software Engineering,
ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 172–181 (2013)

49. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Portland, OR, USA, 16–18 January 2002, pp.
58–70 (2002)

50. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Com-
put. Surv. 41(2), 1–76 (2009)

51. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model
checking. In: Proceedings of the 25th International Conference on Software Engi-
neering, 3–10 May 2003, Portland, Oregon, USA, pp. 232–243 (2003)

52. Horgan, J.R., London, S.: ATAC: a data flow coverage testing tool for C. In: Pro-
ceedings of Symposium on Assessment of Quality Software Development Tools,
pp. 2–10 (1992)

53. Horgan, J.R., London, S.: Data flow coverage and the C language. In: Proceedings
of the Symposium on Testing, Analysis, and Verification, pp. 87–97. TAV4, ACM,
New York (1991)

54. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.J.: Experiments of the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria. In: ICSE, pp.
191–200 (1994)

55. Jamrozik, K., Fraser, G., Tillmann, N., de Halleux, J.: Augmented dynamic sym-
bolic execution. In: IEEE/ACM International Conference on Automated Software
Engineering, pp. 254–257 (2012)

56. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. (CSUR)
41(4), 21 (2009)

57. Khamis, A., Bahgat, R., Abdelaziz, R.: Automatic test data generation using data
flow information. Dogus Univ. J. 2, 140–153 (2011)

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

Towards Efficient Data-Flow Test Data Generation 291

59. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

60. Lakhotia, K., McMinn, P., Harman, M.: Automated test data generation for cov-
erage: haven’t we solved this problem yet? In: Proceedings of the 2009 Testing:
Academic and Industrial Conference - Practice and Research Techniques, pp. 95–
104. IEEE Computer Society, Washington (2009)

61. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7_11

62. Malevris, N., Yates, D.: The collateral coverage of data flow criteria when branch
testing. Inf. Softw. Technol. 48(8), 676–686 (2006)

63. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Corren-
son, L.: Time to clean your test objectives. In: 40th International Conference on
Software Engineering, 27 May–3 June 2018, Gothenburg, Sweden (2018)

64. Marinescu, P.D., Cadar, C.: KATCH: high-coverage testing of software patches.
In: Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE
2013, Saint Petersburg, Russian Federation, 18–26 August 2013, pp. 235–245
(2013)

65. Marré, M., Bertolino, A.: Unconstrained duas and their use in achieving all-uses
coverage. In: Proceedings of the 1996 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 147–157. ISSTA 199. ACM, New York
(1996)

66. Marré, M., Bertolino, A.: Using spanning sets for coverage testing. IEEE Trans.
Softw. Eng. 29(11), 974–984 (2003)

67. Mathur, A.P., Wong, W.E.: An empirical comparison of data flow and mutation-
based test adequacy criteria. Softw. Test. Verif. Reliab. 4(1), 9–31 (1994)

68. Merlo, E., Antoniol, G.: A static measure of a subset of intra-procedural data flow
testing coverage based on node coverage. In: CASCON, p. 7 (1999)

69. Nayak, N., Mohapatra, D.P.: Automatic test data generation for data flow testing
using particle swarm optimization. In: IC3 (2), pp. 1–12 (2010)

70. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5_16

71. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verif. Reliab. 7(3), 165–192 (1997)

72. Pande, H.D., Landi, W.A., Ryder, B.G.: Interprocedural def-use associations for
C systems with single level pointers. IEEE Trans. Softw. Eng. 20(5), 385–403
(1994)

73. Pandita, R., Xie, T., Tillmann, N., de Halleux, J.: Guided test generation for
coverage criteria. In: Proceedings of the 2010 IEEE International Conference on
Software Maintenance, pp. 1–10. IEEE Computer Society, Washington (2010)

74. Peng, Y., Huang, Y., Su, T., Guo, J.: Modeling and verification of AUTOSAR
OS and EMS application. In: Seventh International Symposium on Theoretical
Aspects of Software Engineering, TASE 2013, 1–3 July 2013, Birmingham, UK,
pp. 37–44 (2013)

75. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
Proceedings of the 6th International Conference on Software Engineering, ICSE
1982, pp. 272–278. IEEE Computer Society Press, Los Alamitos (1982)

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

292 T. Su et al.

76. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Software Eng. 11(4), 367–375 (1985)

77. Santelices, R., Harrold, M.J.: Efficiently monitoring data-flow test coverage. In:
Proceedings of the twenty-second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2007, pp. 343–352. ACM, New York (2007)

78. Santelices, R.A., Sinha, S., Harrold, M.J.: Subsumption of program entities for
efficient coverage and monitoring. In: Third International Workshop on Software
Quality Assurance, SOQUA 2006, Portland, Oregon, USA, 6 November 2006, pp.
2–5 (2006)

79. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of software
engineering, pp. 263–272. ACM, New York (2005)

80. Singla, S., Kumar, D., Rai, H.M., Singla, P.: A hybrid PSO approach to automate
test data generation for data flow coverage with dominance concepts. J. Adv. Sci.
Technol. 37, 15–26 (2011)

81. Singla, S., Singla, P., Rai, H.M.: An automatic test data generation for data flow
coverage using soft computing approach. IJRRCS 2(2), 265–270 (2011)

82. SIR Project: Software-artifact infrastructure repository. NC State University.
http://sir.unl.edu/php/previewfiles.php. Accessed July 2016

83. Su, T.: A bibliography of papers and tools on data flow testing. GitHub (2017).
https://tingsu.github.io/files/dftbib.html

84. Su, T., Fu, Z., Pu, G., He, J., Su, Z.: Combining symbolic execution and model
checking for data flow testing. In: 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 1, pp.
654–665 (2015)

85. Su, T., et al.: Automated coverage-driven test data generation using dynamic
symbolic execution. In: Eighth International Conference on Software Security and
Reliability, SERE 2014, San Francisco, California, USA, 30 June–2 July 2014, pp.
98–107 (2014)

86. Su, T., et al.: A survey on data-flow testing. ACM Comput. Surv. 50(1), 5:1–5:35
(2017)

87. Su, T., Zhang, C., Yan, Y., Su, Z.: Towards efficient data-flow test data generation.
GitHub (2019). https://tingsu.github.io/files/hybrid_dft.html

88. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9_10

89. Vivanti, M., Mis, A., Gorla, A., Fraser, G.: Search-based data-flow test genera-
tion. In: IEEE 24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, 4–7 November 2013, pp. 370–379 (2013)

90. Wang, H., Liu, T., Guan, X., Shen, C., Zheng, Q., Yang, Z.: Dependence guided
symbolic execution. IEEE Trans. Software Eng. 43(3), 252–271 (2017)

91. Wang, Z., Yu, X., Sun, T., Pu, G., Ding, Z., Hu, J.: Test data generation for
derived types in C program. In: TASE 2009, Third IEEE International Symposium
on Theoretical Aspects of Software Engineering, 29–31 July 2009, Tianjin, China,
pp. 155–162 (2009)

92. Weyuker, E.J.: The complexity of data flow criteria for test data selection. Inf.
Process. Lett. 19(2), 103–109 (1984)

93. Weyuker, E.J.: More experience with data flow testing. IEEE Trans. Software
Eng. 19(9), 912–919 (1993)

http://sir.unl.edu/php/previewfiles.php
https://tingsu.github.io/files/dftbib.html
https://tingsu.github.io/files/hybrid_dft.html
https://doi.org/10.1007/978-3-540-79124-9_10

Towards Efficient Data-Flow Test Data Generation 293

94. Wong, W.E., Mathur, A.P.: Fault detection effectiveness of mutation and data
flow testing. Software Qual. J. 4(1), 69–83 (1995)

95. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Fitness-guided path explo-
ration in dynamic symbolic execution. In: Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 359–
368 (2009)

96. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput.
J. 52(5), 589–597 (2009)

97. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software
debugging. In: European Conference on Computer Systems, Proceedings of the
5th European Conference on Computer Systems, EuroSys 2010, Paris, France,
13–16 April 2010, pp. 321–334 (2010)

98. Zhang, C., et al.: SmartUnit: empirical evaluations for automated unit testing
of embedded software in industry. In: 40th IEEE/ACM International Conference
on Software Engineering, Software Engineering in Practice Track, ICSE 2018, 27
May–3 June 2018, Gothenburg, Sweden (2018)

99. Zhang, L., Xie, T., Zhang, L., Tillmann, N., de Halleux, J., Mei, H.: Test genera-
tion via dynamic symbolic execution for mutation testing. In: 26th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2010), 12–18 September 2010,
Timisoara, Romania, pp. 1–10 (2010)

100. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

European Colleagues

Assume-Guarantee Reasoning
for Additive Hybrid Behaviour

Pieter J. L. Cuijpers1,2 , Jonas Hansen3(B) , and Kim G. Larsen3

1 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
p.j.l.cuijpers@tue.nl

2 Radboud Universiteit, Nijmegen, The Netherlands
3 Aalborg University, Aalborg, Denmark

{jonash,kgl}@cs.aau.dk

Abstract. Hybrid Automata describe dynamical systems where contin-
uous behaviour interacts with discrete events. Resource Timed Automata
(RTA), a subset of Hybrid Automata, adopt an additive composition
scheme, in which discrete behaviour of components is executed concur-
rently, time is synchronized, and the evolution of continuous variables
is arithmetically added up. Additive composition facilitates modelling
and analysis of cumulative properties of continuous variables, such as
conservation laws, typically manifested as the balancing of real-valued
variables. In this paper, we present and exemplify an assume-guarantee
framework aimed at additive compositional reasoning in the setting
of hybrid systems. Crucially, we introduce a notion of refinement on
so-called Resource Hybrid Automata (RHA), and show that it is a
pre-congruence for additive composition. Furthermore - crucial for our
assume-guarantee framework – we show that RHAs are closed under con-
junction and admit a so-called quotient constructions (a dual operator to
parallel composition). Finally, we demonstrate how the Statistical Model
Checking (SMC) engine of the tool UPPAAL may be used to efficiently
falsify refinements.

Keywords: Assume-Guarantee Reasoning · Hybrid Specification
Theory · Resource Hybrid Automata · Additive Composition

1 Introduction

Hybrid Automata (HA) [22] are an extension of Timed Automata (TA)
[2] combining timed discrete events with the continuous evolution of real-
valued variables. Resource-, Priced-, Energy- and Weighted- Timed Automata
[3,8,16,29,31] all define strict subsets of HA in which continuous dynamics can-
not affect the timed discrete semantics of a system. These formalisms differ in
their mechanics for dealing with composition. Of particular note are Resource
Timed Automata (RTA) which adopt a so-called additive composition scheme
aimed at simplifying the analysis of conservation laws e.g. resource balancing.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 297–322, 2023.

https://doi.org/10.1007/978-3-031-40436-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_11&domain=pdf
http://orcid.org/0000-0002-5487-4972
http://orcid.org/0000-0003-3612-4139
http://orcid.org/0000-0002-5953-3384
https://doi.org/10.1007/978-3-031-40436-8_11

298 P. J. L. Cuijpers et al.

In this paper we consider component-wise reasoning for additive composition
over hybrid variables, henceforth referred to as resources, and study the hybrid
extension of RTA, namely Resource Hybrid Automata (RHA).

Additive composition as studied in [16] extends the usual concurrent execu-
tion of discrete behaviour in synchronized time with a notion of resource accumu-
lation both in terms of evolution and flow. This particular composition scheme,
has, to the best of our knowledge, not received much attention in previous liter-
ature on hybrid systems. We argue that conservation laws follow naturally from
additive composition and show that accumulation of shared resources across
components directly corresponds to the problem of balancing said resources. We
consider how behavioural requirements of a composite system can be expressed
as a number of local and concise requirements on open additive parallel compo-
nents. This kind of compositional reasoning is known as specification theory.

A specification theory interprets specifications as abstract under-specified
descriptions of behaviour, which can generally be thought of as requirements to
implementations. Formally, this is captured by a satisfaction relation between
implementations and specifications, inducing for each specification S the set [S]
of the implementations satisfying it. Crucial to a specification theory is a notion
of refinement between specifications. Refining a specification should result in a
new specification which is stricter in terms of its implementation space. Now, a
specification theory should also allow for both logical and structural composition
of specifications.

In order to support step-wise refinement and compositional reasoning, it is
vital that the notion of refinement is a pre-order over specifications (we write
S � T to say that specification S refines T) and it must be a pre-congruence with
respect to a composition of interest (we write S ‖ T for a composition of two
specifications). A fully expressive specification theory should ideally contain a
quotient operator, a dual operator to the composition of specifications. If T is an
overall specification of a composite system P1 ‖ P2 and S is a component speci-
fication for P1, then the quotient specification T\\S is the weakest requirement
to the component P2 in order for the composite system to satisfy T .

Mathematically, we have S ‖ (T\\S) � T for the quotient T\\S of spec-
ifications S and T , and for every specification Q with S ‖ Q � T we have
Q � T\\S. In the setting of sequential, imperative programs Dijkstra’s cele-
brated notions of weakest precondition and strongest postcondition effectively
provide quotient constructs for sequential composition with respect to pre-and-
post-condition specification pairs. Here He Jifeng has made seminal work with
C.A.R. Hoare [24,26].

For concurrent systems, there have historically been two schools of specifica-
tion theories: Process Algebra [6,23,34] and Temporal Logic [36]. In Process Alge-
bra, specifications are process expressions with a variety of proposals for refine-
ment orderings: e.g. trace-inclusion, bisimulation equivalence, ready-simulation,
simulation, and failure-trace inclusion as reported in the linear-branching time
spectrum [15]. In the late 80-ties, He Jifeng played a central role in improv-
ing the failure semantics for CSP [17,18]. In later work He Jifeng has pro-

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 299

posed refinements for more complex settings including real-time [37], service-
and object-oriented systems [19,21]. Moreover, Process Algebra has strong sup-
port for structural composition of specification, but lack general support for
logical composition. In Temporal Logic, specifications are logical formula and
refinement is simply logical implication. Temporal Logic has by nature full sup-
port for logical composition of specifications, but lack in general support for
structural composition. What we seek is a specification oriented theory that
unifies logical and process algebra frameworks, a theme that Hoare and He have
developed in the unified theory of programming [20,25].

Also, in the late 80-ties, the notion of Modal Transition Systems [7,30,32,33]
was introduced by Larsen and Thomsen as a means to provide a specification
theory supporting both logical and structural composition. This theory of Modal
Transition Systems has later been extended to the setting of timed as well as
probabilistic systems [9,10,14]. The contributions of this paper may be seen
as an extension of Modal Transition Systems to resource-aware concurrent sys-
tems. A particularly useful type of specification theories are those based on the
notion of contract, first developed and promoted in the community of software
engineering. So-called “design-by-contract”, popularized by Bertrand Meyer, has
roots in the classical work by Owicki-Gries [35] extending Floyd-Hoare logic
(for sequential imperative programs) to the setting of concurrently executing
programs, where interference on shared variables may occur. In the concurrent
setting, contract specifications come as Assume-Guarantee (or Rely-Guarantee)
pairs, where the Assumption states conditions on the effect on the shared vari-
ables by the system’s environment, and the Guarantee are obligations of the
systems operation on the shared variables. Early contributions were made by
Jones [27], Abadi, Lamport and Wolper [28]. Later, He Jifeng together with
Qiwen Xu and Willem-Paul de Roever gave a sound and complete proof system
for rely-guarantee assertions [38] providing a compositional reformulation of the
non-compositional Owicki-Gries method. More recently the notion of interface
automata was introduced by Alfaro and Henzinger [1] and since then a number
of frameworks has been proposed that can be seen as instances of contracts the-
ories, with [5] providing a recent “meta-theory” of contracts and its application
to software and systems.

Returning to general specification theories, we note that the quotient oper-
ator defines how a component helps to achieve a target behaviour T for the
system as a whole, given an assumption S on its environment. In fact, it is
shown in [4,12] how a contract framework can be built in a generic way on top
of any specification theory which supports refinement, composition and quoti-
enting of specifications. The resulting contract framework lifts refinement to the
level of contracts and proposes a notion of contract composition on the basis
of dominating contracts. In particular, it has been shown in [12] that one can
weaken a guarantee G of an assume-guarantee contract, under assumption A:
the weakened guarantee, denoted G � A, is simply (A ‖ G)\\A and provides
a combined specification equivalent to the original (A,G) pair. In this paper,
we develop a complete specification theory aimed at the additive hybrid setting.

300 P. J. L. Cuijpers et al.

We characterize compositional reasoning within this domain and introduce a
notion of refinement. We define appropriate products for the crucial operations
logical and structural composition, together with its dual, namely the quotient
product. Using this theory we show how assume-guarantee reasoning aimed at
hybrid additivity is possible over specifications described by RHAs. In addition,
we show that simulation based methods can be used to refute the existence of
certain refinements.

Section 2 introduces our modelling language. Section 3 characterizes compo-
sitional reasoning and formally defines an additive hybrid specification theory.
Section 4 formally introduces the assume-guarantee aspect and exemplifies it.
Section 5 discusses practical computation methods for ascertaining refinement.
Section 6 concludes our findings and discuss potential future research directions.

2 Resource Hybrid Automata

We first define our modelling language, followed by the characterization of an
additive hybrid specification theory. We introduce Resource Hybrid Automata
(RHA), which fundamentally define Linear Hybrid Automata [22] subject to
additive composition as adopted by Resource Timed Automata (RTA) [16].

By V = VG � VL we denote a partitioned set of real-valued global and local
variables, which we think of as (non-)shared resources. We write σ : V → R

or alternatively σ ∈ R
V for a valuation of such variables. These are split into

σL : VL → R and σG : VG → R in the obvious way. Furthermore, we define
the following arithmetic over R

V : Let σ, σ′ ∈ R
V and v ∈ V then (σ + σ′)(v) =

σ(v) + σ′(v) and dually for its inverse −. Additionally, let v ∈ V then 0(v) = 0.
Thus valuations define the abelian group (RV ,+,0).

Resources are subject to discrete updates and can be tested in constraints.
To allow reasoning about resource additivity we require both our update- and
constraint-algebra to be closed under negation, conjunction, addition ⊕ and
quotient 	. Furthermore, we require that constraints are closed under side-effects
� which, for the sake of intuition and brevity, we characterize as updates.

Much like we can think of a conjunction of two updates/constraints as the
join of their respective influence, i.e. what they have in common, an addition
⊕ is what they can do together, i.e. their arithmetic accumulated influence. A
quotient 	 is the dual of addition. Here the question is what makes it possible to
fulfil our goal (left operand) if we add it to something that already exists (right
operand). We will see later how these operations naturally provide mechanisms
for resource additivity.

Definition 1 (Resource Update). We characterize the set of updates U(V)
over V by the following abstract syntax:

u ::== TT | ¬u | ε | R | u ∧ u | u ⊕ u | u 	 u

where R ⊆ V. Let u1, u2 ∈ U(V) be updates, then the evaluation of valuations
σ, σ′ ∈ R

V in u denoted (σ, σ′) |= u is defined inductively on the structure of u:

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 301

– (σ, σ′) |= TT:
– (σ, σ′) |= ¬u ⇔ (σ, σ′) |= u:
– (σ, σ′) |= ε ⇔ σ = σ′:

– (σ, σ′) |= R ⇔ σ′(v) =
{

0, v ∈ R,
σ(v), v /∈ R

}
:

– (σ, σ′) |= u ∧ u′ ⇔ (σ, σ′) |= u ∧ (σ, σ′) |= u′:
– (σ, σ′) |= u ⊕ u′ ⇔ ∃ς, ς ′ ∈ R

V : (σ, ς) |= u ∧ (σ, ς ′) |= u′ ∧ σ′ = ς + ς ′ − σ:
– (σ, σ′) |= u 	 u′ ⇔ ∀ς ∈ R

V : (σ, ς) |= u′ ⇒ (σ, σ′ + ς − σ) |= u.

Definition 2 (Resource Constraint). We characterize the set of constraints
C(V) over V by the following abstract syntax:

c ::== TT | ¬c |
n∑

i=1

vi · ri �� r | u � c | c ∧ c | c ⊕ c | c 	 c

where r, ri ∈ Q, vi ∈ V, u ∈ U(V) and ��∈ {≤,≥,==, <,>}. Let u be an update,
c′ be a constraint, then the evaluation of valuation σ ∈ R

V in c denoted σ |= c
is defined inductively on the structure of c:

– σ |= TT:
– σ |= ¬c ⇔ σ |= c:
– σ |= ∑n

i=1 vi · ri �� r ⇔ ∑n
i=1 σ(vi) · ri �� r:

– σ |= u � c ⇔ ∃σ′ ∈ R
V : (σ, σ′) |= u ∧ σ′ |= c:

– σ |= c ∧ c′ ⇔ σ |= c ∧ σ |= c′:
– σ |= c ⊕ c′ ⇔ ∃ς, ς ′ ∈ R

V : ς |= c ∧ ς ′ |= c′ ∧ σ = ς + ς ′:
– σ |= c 	 c′ ⇔ ∀σ′ ∈ R

V : σ′ |= c′ ⇒ σ + σ′ |= c.

As such, updates can reset sets of resources to zero and constraints define systems
of linear inequalities over resources.

Definition 3 (Resource Hybrid Automata). We define a resource hybrid
automaton (RHA) as a tuple:

H = 〈L, l0,V, E, inv, rate〉

where L is a finite set of modes, l0 ∈ L is the initial mode, V = VL � VG is a
finite partitioned set of local and global variables, E ⊆ L × C(V) × U(V) × L is a
finite set of edges, inv : L → C(V) assigns an invariant constraint on resources
to each mode and rate : L → C(V) assigns a constraint to the first derivative of
resources to each mode.

An example RHA can be seen in Fig. 2.

302 P. J. L. Cuijpers et al.

Fig. 1. (a) An RHA specification modelling a water intake valve. Depending on reser-
voir capacity (captured by global resource wi), the water flow allowed by the valve is
either in the interval [−2, 0], [−4,−2] or [−10,−6]. (b) An RHA specification modelling
a water output valve. Depending on reservoir capacity (captured by global resource wo),
the water flow allowed by the valve is either in the interval [6, 10], [2, 4] or [0, 2]. (c)
An RHA specification modelling the safe capacity of the pump’s private water tank
(captured by global resource w).

Let’s consider a physical system, a water pump controller, governing two flow
valves. One valve is connected to an input reservoir (characterized by resource
wi), which captures how the environment can make water available to the pump.
Another valve is connected to an output reservoir (characterized by resource wo),
which captures how the pump can make water available to the environment.
Both are connected to an internal water tank (characterised by resource w).
Our system simply keeps track of capacity by regulating water flow from/to the
environment using an internal tank for temporary storage. Figure 1 shows three
RHAs, each modelling a component of our water pump controller.

Syntactically, RHA’s are hybrid automata defined over additive oriented
update and constraint algebra. Semantically their hybrid dynamics are inter-
preted as timed semantics. Specifically, the semantics of an RHA H denoted
[[H]] is defined by a Resource Timed Transition System.

Definition 4 (Resource Timed Transition System). We define a resource
timed transition system (RTS) as a tuple S = 〈X, χL,→〉 where X = XL × XG

is a set of pairs of local and global states, χL ∈ XL is the initial local state,
and →⊆ X × ({τ} ∪ R≥0) × X is a timed transition relation, where dis-
crete transitions are denoted by τ . We write (xL, xG)

γ−→ (x′
L, x′

G) whenever
((xL, xG), γ, (x′

L, x′
G)) ∈→. Similarly, we write (xL, xG) γ−→ whenever ∀x′ ∈ X :

((xL, xG), γ, x′) ∈→. Furthermore, we require that states form an abelian group

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 303

(X,+,0). For convenience we refer to the inverse of + as −. We call a local
state xL ∈ XL reachable if there exists a sequence xi γ−→ xi+1 with 0 ≤ i ≤ n of
transitions such that x0

L = χL and xn
L = xL.

Definition 5 (RHA Semantics). Let H = 〈L, l0,V, E, inv, rate〉 be an RHA.
We define its semantics as an RTS [[H]] = 〈X, χL,→〉 in which the local states
are defined as products of a mode and the valuation of local variables XL =
L×R

VL , the global states are defined as valuations of global variables XG = R
VG ,

the initial local state is given by χL = (l0,0), and → is the smallest relation
satisfying:

– If (l, c, u, l′) ∈ E, σ ∈ R
V , σ |= inv(l), σ |= c, (σ, σ′) |= u and σ′ |= inv(l′),

then ((l, σL), σG) τ−→ ((l′, σ′
L), σ′

G):
– If l ∈ L, δ ∈ R≥0, and φ : [0, δ] → R

V is a right-differentiable function with
piece-wise constant derivative, such that for all t ∈ [0, δ] we have φ(t) |=
inv(l) and for t ∈ [0, δ) we have d

dtφ(t) |= rate(l), then ((l, φL(0)), φG(0)) δ−→
((l, φL(δ)), φG(δ)).

Discrete transitions in the automata defines τ transitions in its semantics, which
we generally think of as internal.

Note that restricting flow behaviour to right-differential piece-wise constant
solutions is a standard way to avoid problems with finite-set refutability when
considering hybrid dynamics over a timed semantics [11]. Furthermore, any RTS
generated by an RHA are time-reflexive and time-additive.

Theorem 1. Let H be an RHA. The following holds for [[H]] = 〈X, χL,→〉: For
all x, x′ ∈ X, δ, δ′ ∈ R≥0 we have: [[H]] is time reflexive x

0−→ x, and [[H]] is

time additive x
δ+δ′
−−−→ x′ ⇒ ∃x′′ ∈ X : x

δ−→ x′′ ∧ x′′ δ′
−→ x′.

3 Compositional Reasoning

With RHA and its semantic interpretation RTS we have a formal characteriza-
tion of hybrid behaviour. We now turn our attention to component-wise abstrac-
tion and realization in terms of behavioural requirements. We start by motivating
component-wise design and refinement with additivity using a simple example.

Our goal is to design a light controller, the kind that might be used to control
the alternating blinking pattern of a warning light on top of an antenna or maybe
a control console. There are a few rules we need to follow: the controller must
provide an alternating light pattern, i.e. it must facilitate blinking mechanics for
our light determined by some intervals, the light itself is limited in how much
power it can consume depending on its brightness level, and it must interact with
the electrical grid indirectly through a single battery. As such we are designing an
open component, since we are only concerned with saturation. How the battery
charges is handled by a different controller.

304 P. J. L. Cuijpers et al.

Fig. 2. An RHA, modelling a warning light controller. It has three modes; Dim, Bright
and the initial mode OFF, each describes a distinct brightness. It is defined over two
resources x (local) and b (global). The former characterizes a clock with constant rate
1 in all modes and is used to model timing behaviour. The latter describes a battery.
It is used to model the light controllers interaction with its environment. Each mode
(or rather each brightness level) define distinct battery saturation rates. Observe that
when we interpret the model as blueprint for timed discrete requirements, infinitely
many distinct blinking- and saturation-patterns are possible.

A system architect has provided us with a blueprint defined as an RHA
that formally captures the rules we just discussed, which is depicted in Fig. 2.
Of course, the light controller is only a single component of a larger system,
which we collectively think of as the environment. Now, from the environment’s
perspective, the blueprint captures exactly what is assumed about our controller.
On top of that, potential conservation rules in terms of energy for our battery
is handled by the environment as well. Looking at Fig. 2 we immediately see the
benefit of additive reasoning, since no consideration for how resource b i.e. our
battery interacts with other components is necessary, it is simply assumed that
the collective interaction over b across all components is handled in an additive
manner.

Figure 2 defines abstract requirements. We now desire to create a concrete
controller that behaves according to these requirements. Because it needs to be
concretely realizable a few precautions needs to be considered; The controller
must be specific in its battery saturations, it is not allowed to stop time, and
any discrete behaviour whenever enabled must occur. To that end we introduce
the model depicted in Fig. 3.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 305

Fig. 3. An RHA, modelling a concrete realization of the light controller depicted in
Fig. 2. It consists of two modes On and the initial mode OFF. Like Fig. 2, it is defined
over the two resources x and b. Observe that this concrete light controller simply defines
an altering pattern in which the light is turned off for 1 time unit, after which it is
turned on for 1 time unit, during which it consumes exactly 2 units of power per time
unit.

Now the question is, can we substitute our abstract model of Fig. 2 with
the concrete model of Fig. 3 whenever we consider the light controller in other
components of our system. To do so, we must ascertain whether the abstract
controller can mimic any an all timed-discrete behaviour allowed by the concrete
controller in all environments (in terms of the capacity of b and how it is charged).
If this is indeed the case, then we do not have to consider the cumbersome
abstract model whenever we desire to reason about our light controller, the
simple concrete model is sufficient. This property is called refinement.

Adopting the usual terminology from specification theory we refer to RTS’s
as specifications. In this paper, we consider specifications that model the reac-
tion of a system to changes in its environment. This means that a refinement of
one specification into another should preserve those reactions, given a particu-
lar environment. (Note that in other works, other interpretations of transition
systems lead to different notions of refinement. E.g. in [5], changes in the envi-
ronment are explicitly modeled as input transitions of the RTS’s, leading to a
two-way type of simulation refinement).

Definition 6 (Refinement). For i ∈ {1, 2}, let Si = 〈Xi, χi
L,→i〉 be a speci-

fication. We assume that their global states are shared X1
G = X2

G. We say that
S1 refines S2, denoted S1 � S2 iff there exists a binary relation R ⊆ X1

L × X2
L

defined over the local states such that χ1
LRχ2

L and for all x1 ∈ X1 and x2 ∈ X2

with x1
G = x2

G we find:

– If x1
LRx2

L and x1 τ−→1 y1, then there exists y2 ∈ X2 such that x2 τ−→2 y2 with
y1

LRy2
L and y1

G = y2
G.

– If x1
LRx2

L and x1 δ−→1 y1 for some δ ∈ R≥0, then there exists y2 ∈ X2 such

that x2 δ−→ y2 with y1
LRy2

L and y1
G = y2

G.

Crucially, refinements between specifications form a pre-order.

Theorem 2. The refinement relation � is a pre-order over the set of all speci-
fications.

306 P. J. L. Cuijpers et al.

In specification theory, specifications for which there is a concrete realiza-
tion in practice are called implementations. These implementations may occur
at any place in the pre-order, as it is often possible to further refine behaviour of
an already existing implementation, hence creating a refinement of that imple-
mentation. Without fixing the implementation mechanisms, we cannot deter-
mine which specifications are realizable precisely. However, we can rule out any
specifications that are self-contradictory, block the progress of time, or contain
unresolved non-deterministic choices. A specification that has these properties,
such as Fig. 3, we call an implementation in this paper.

Definition 7 (Implementation). Let S = 〈X, χL,→〉 be a specification, we
say that S is an implementation if furthermore the following holds:

– Independent progression: For every reachable state x ∈ X there exists
γ ∈ {τ} ∪ R≥0 and x′ ∈ X such that x

γ−→ x′;
– Discrete-determinism: For every reachable state x, x′, x′′ ∈ X, with x

τ−→ x′

and x
τ−→ x′′, we find x = x′′ ;

– Time-determinism: For every reachable state x, x′, x′′ ∈ X and every δ ∈
R≥0 with x

δ−→ x′ and x
δ−→ x′′ we find x′ = x′′;

– Urgency: For every reachable state x ∈ X, if there exists x′ ∈ X with x
τ−→ x′,

then there does not exists an x′′ ∈ X and δ ∈ R≥0 with δ > 0 and x
δ−→ x′′.

The syntactic notion of implementations naturally follows.

Definition 8 (Implementation RHA). Let H be an RHA. We say that H is
an implementation RHA whenever [[H]] is an implementation.

The concrete light controller of Fig. 3 defines an implementation, another exam-
ple is shown in Fig. 4.

Fig. 4. An implementation RHA implementing the intake valve specification of Fig. 1a.
Much like Fig. 3, the intake valve implementation is in a sense a restriction of behaviour.

An implementation is said to satisfy a specification if it only admits dis-
crete/continuous behaviour allowed by the specification. The general notion of
satisfaction is formally captured by refinement.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 307

Definition 9 (Specification Satisfaction). Let S be a specification and I an
implementation. If I � S we say that I satisfies S. By [S] = {I | I � S} we
denote the set of all implementations that satisfy S.

This gives us a natural way of thinking about specification equivalence.

Definition 10 (Specification Equivalence). We say that specifications S
and S′ are equivalent, denoted S ≈ S′ iff [S] = [S′].

It is not difficult to see that we could define specifications that could never
be satisfied, e.g. if they contain contradictions. In practice, only those admitting
implementations are of interest. This notion is usually referred to as consistency,
and we characterize it using implementation spaces.

Definition 11 (Consistency). We say that a specification S is consistent iff
[S] = ∅.

Compositional reasoning in terms of component-wise refinement and abstrac-
tion crucially relies on a well defined notion of refinement within which substi-
tutability is guaranteed. This means that whenever we have a composition of two
specifications, by replacing one of the constituents with a refining component,
it results in a refinement of the original composition. We now define two such
compositions that pertain substitutability over refinement, namely logical- and
structural-composition.

Fig. 5. (a) A Specification, modelling the battery capacity of the light controller, whose
timing behaviour is defined by the specification depicted in Fig. 2. It consists of a single
mode, the initial mode, and is defined over the global resource b. It invariantly requires
that the battery capacity never exceeds 1 unit of energy and is never saturated beyond
depletion. Note that any and all discrete transitions are allowed, captured by the self
loop. (b) A Specification, modelling a power supply. It consists of a single mode, the
initial mode, and is defined over the global resource b. It does not admit any discrete
behaviour, however it defines a constant charging of 1 unit of power per time unit.

Before we dive into the formal definitions, we first motivate their existence
and usefulness. Going back to our light controller specification of Fig. 2, together
with a possible implementation thereof, shown in Fig. 3. Our goal is to introduce
mechanisms for reasoning about compositions of specifications. Consider the
specification modelled in Fig. 5a, which captures battery capacity requirements.
We would like to capture the notion of joint refinement, in the sense that Fig. 3
should both refine the timing behaviour of Fig. 2 and the capacity restrictions

308 P. J. L. Cuijpers et al.

imposed by Fig. 5a. One can think of the specifications as two distinct aspects
of the same component. Their joined requirements is exactly captured by their
logical composition.

Fig. 6. Four RHA specifications whose logical composition refines the output valve
specification of Fig. 1c, each modelling distinct responsibilities. All of them define a
so-called universal mode Uni admitting an arbitrary flow of resource wo up until some
bound for which it must make a transition or define a flow that shift wo away from
said bound. In other words, each component do not care about wo until its top mode
invariant holds. Even though the output valve specification of Fig. 1c is relatively small,
these three components are even smaller and arguably more intuitive.

Logical composition defines the joined behaviour of its constituents. As such
an implementation satisfies the composition of two specifications if and only if
both of these specifications are satisfied by said implementation.

Definition 12 (Logical Product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2} be

a specification, where X1
G = X2

G. We define the logical product of S1 and S2,
denoted S1 ∧ S2 as a new specification: S1 ∧ S2 = 〈X, χL,→〉, where XL =
X1

L × X2
L, XG = X1

G, χL = (χ1
L, χ2

L) and → is the smallest relation satisfying:

(x1
L, xG)

γ−→1 (y1
L, yG) (x2

L, xG)
γ−→2 (y2

L, yG)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), yG

) γ ∈ {τ} ∪ R≥0

The logical product admits a transition if and only if its constituents both
admits it. On the syntactic level we can compute the logical composition by the
following RHA construction.

Definition 13 (Logical Composition). Let Hj = 〈Lj , lj0,V, Ej , invj , ratej〉
for j ∈ {1, 2} be an RHA, where V1

G = V2
G and V1

L ∩ V2
L = ∅. We define the

logical composition of H1 and H2, denoted H1 ∧ H2 as a new RHA: H1 ∧ H2 =
〈L, l0,V, E, inv, rate〉, where L = L1 × L2, l0 = (l10, l

2
0), VL = V1

L � V2
L, VG = V1

G,
inv

(
(l1, l2)

)
= inv1(l1) ∧ inv2(l2), rate

(
(l1, l2)

)
= rate1(l1) ∧ rate2(l2) and E is

defined by the following rule:

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 309

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then(
(l1, l2), c1 ∧ c2, u1 ∧ u2, (k1, k2)

) ∈ E

Figure 6 shows an example of the of type reasoning possible using logical com-
position.

As expected, the logical composition and product coincide.

Theorem 3. Let H and H ′ be RHA then: [[H]] ∧ [[H ′]] ≈ [[H ∧ H ′]].

Referring back to the light controller, clearly, no positive battery require-
ments can ever be fulfilled by any implementation of Fig. 2, because only satu-
ration is admitted. We are missing a power supply, something that charges our
battery. Consider the specification of a power supply depicted in Fig. 5b. The
question is whether the joined requirements of capacity and timed behaviour
put in parallel with the power supply is captured by our implementation put
in parallel with the power supply. As such the flow of resource b becomes the
sum of the saturation provided by the controller and the charge induced by the
power supply. This interaction is exactly captured by structural composition.

The structural composition defines the time synchronized and resource addi-
tive product behaviour of its constituents. As such given two implementations,
each satisfying a distinct constituent, their parallel execution results in an imple-
mentation of their composition.

Definition 14 (Structural product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2}

be a specification, where X1
G = X2

G. We define the structural product of S1 and
S2, denoted S1 ‖ S2 as a new specification: S1 ‖ S2 = 〈X, χL,→〉, where XL =
X1

L × X2
L, XG = X1

G, χL = (χ1
L, χ2

L) and → is the smallest relation satisfying:

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG)

γ−→2 (y2
L, y2

G)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), y1

G + y2
G − xG

) γ ∈ {τ} ∪ R≥0

(x1
L, xG) τ−→1 (y1

L, yG) (x2
L, xG) τ−→2(

(x1
L, x2

L), xG

) τ−→ (
(y1

L, x2
L), yG

)
(x2

L, xG) τ−→2 (y2
L, yG) (x1

L, xG) τ−→1(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, y2
L), yG

)
As noted earlier, refinement indeed defines a precongruence over specifica-

tions in terms of the structural product.

Theorem 4. If S, S′′ and T are specifications such that S � S′, then S ‖ T
exists iff S′ ‖ T exists, and given existence of these we find S ‖ T � S′ ‖ T .

310 P. J. L. Cuijpers et al.

Fig. 7. (a) An RHA modelling modelling an intake valve. It is similar to the one
depicted in Fig. 1a, however, it does not allow internal discrete behaviour in its opera-
tional modes, i.e. whenever a transition is made it must change mode. Additionally, it
defines slightly different flow rates in Low, Mid and High. (b) Another RHA modelling
an intake valve. This one is simple as all it does regardless of capacity is to continuously
consume between −1 and 0 water per time unit while allowing any discrete behaviour.
The structural composition of these two, however, do in fact refine the intake valve
specification depicted in Fig. 1a. Note how resource additivity makes it possible to
intuitively “add up” flows in a component-wise manner.

The structural product admits a transition if an only if either of its con-
stituents allow a discrete transition or if both admit the same delay. Resource
additivity is captured by our treatment of the global state-space in the target
state, i.e. changes are added up. On the syntactic level we can compute the
structural composition by the following RHA construction.

Definition 15 (Structural Composition).
Let Hj = 〈Lj , lj0,Vj , Ej , invj , ratej〉 for j ∈ {1, 2} be an RHA, where V1

G = V2
G

and V1
L ∩ V2

L = ∅. We define the structural composition of H1 and H2, denoted
H1 ‖ H2 as a new RHA: H1 ‖ H2 = 〈L, l0,VL � VG, E, inv, rate〉, where L =
L1 ×L2, l0 = (l10, l

1
0), VL = V1

L �V2
L, VG = V1

G, inv
(
(l1, l2)

)
= inv1(l1)∧ inv2(l2),

rate
(
(l1, l2)

)
= rate1(l1) ⊕ rate2(l2), and E is defined by the following rules:

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then(
(l1, l2), c1 ∧ c2, u1 ⊕ u2, (k1, k2)

) ∈ E;
– If (l1, c, u, k) ∈ E1 and ∀k2 ∈ L2 : (l2, c2, u2, k2) ∈ E2, then(

(l1, l2), c, u, (k, l2)
) ∈ E;

– If (l2, c, u, k) ∈ E2 and ∀k1 ∈ L1 : (l1, c1, u1, k1) ∈ E1, then(
(l1, l2), c, u, (l1, k)

) ∈ E.

Figure 7 shows an example of the type of reasoning possible using structural
composition.

Note that RHAs are closed under additive structural composition as defined
by Definition 15, this is generally not the case for Linear Hybrid Automata
(LHA) under synchronized composition [22]. As expected, the structural com-
position and product coincide.

Theorem 5. Let H and H ′ be RHA then: [[H]] ‖ [[H ′]] ≈ [[H ‖ H ′]].

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 311

Both logical and structural composition provide concise ways for capturing
divided responsibilities of open components. A large specification can therefore
be reasoned about in a component-wise manner using an intuitive notion of
additivity over globally available resources.

The quotient composition of two specifications T , referred to as the ‘target’
and S, referred to as the ‘existing component’ results in a new specification X
which for any implementation I where S ‖ I � T we have I � X. In other
words, the quotient defines the most permissive specification that characterizes
the missing behaviour of the existing component in order to refine the target.
In order to capture the quotient we make use of two new state types: ⊥, which
characterizes deadlock states and � which characterizes universal states. Dead-
lock states allow no behaviour, while universal states allow arbitrary behaviour.

Definition 16 (Quotient product). Let Sj = 〈Xj , χj
L,→j〉 for j ∈ {1, 2}

be a specification, where X1
G = X2

G. We define the quotient product of S1 and
S2, denoted S2\\S1 as a new specification: S2\\S1 = 〈X, χL,→〉 where: XL =
(X1

L × X2
L) � {⊥,�}, XG = X1

G, χL = (χ1
L, χ2

L), and → is the smallest relation
satisfying:

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG)

γ−→2 (y2
L, y2

G)(
(x1

L, x2
L), xG

) γ−→ (
(y1

L, y2
L), y2

G + xG − y1
G

) γ ∈ {τ} ∪ R≥0

(x2
L, xG) τ−→2 (y2

L, y2
G) (x1

L, xG) τ−→1(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, y2
L), y2

G

)
(x1

L, xG) γ−→1(
(x1

L, x2
L), xG

) γ−→ (�, yG)
γ ∈ R≥0

(x1
L, xG)

γ−→1 (y1
L, y1

G) (x2
L, xG) γ−→2(

(x1
L, x2

L), xG

) γ−→ (⊥, yG)
γ ∈ {τ} ∪ R≥0

(x1
L, xG) τ−→1 (x2

L, xG) τ−→2(
(x1

L, x2
L), xG

) τ−→ (
(x1

L, x2
L), xG

)

(�, xG)
γ−→ (�, yG)

γ ∈ {τ} ∪ R≥0

Crucially, The dual of the structural product corresponds exactly to the
quotient.

Theorem 6. Let S and T be specifications. If T\\S exists then for all imple-
mentations I we have S ‖ I exists and S ‖ I � T iff I � T\\S.

On the syntactic level we can compute the quotient by the following RHA
construction.

312 P. J. L. Cuijpers et al.

Fig. 8. The resulting RHA generated by the quotient construction by using the intake
valve specification of Fig. 1a as its target and the simple consumer valve of Fig. 7b as
its existing component. As expected, the intake valve specification of Fig. 7a indeed
refines the quotient, the formal proof of which is omitted for the sake of brevity.

Definition 17 (Quotient composition).
Let Hj = 〈Lj , lj0,Vj , Ej , Invj , ratej〉 for j ∈ {1, 2} be an RHA, where V1

G = V2
G,

such that V1
L ∩ V2

L = ∅. We define the quotient composition of H1 and H2 as
a new RHA H2\\H1 = 〈L, l0,V, Ej , Inv, rate〉 where: L = (L1 × L2) ∪ {lu, ld},
l0 = (l10, l

2
0), VL = V1

L � V2
L, VG = V1

G, Inv
(
(l1, l2)

)
= Inv(lu) = Inv(ld) = TT,

rate
(
(l1, l2)

)
= rate2(l2) 	 rate1(l1), rate(lu) = TT, rate(ld) = ¬TT, and E is

defined by the following rules:

– If (l1, c1, u1, k1) ∈ E1 and (l2, c2, u2, k2) ∈ E2, then
(
(l1, l2), c, u, (k1, k2)

) ∈
E where u = u2 	 u1 and c = c1 ∧ Inv1(l1) ∧ u � Inv1(k1) ∧ c2 ∧ Inv2(l2) ∧ u �
Inv2(k2);

– If (l2, c2, u2, k2) ∈ E2 and ∀k1 ∈ L1 : (l1, c1, u1, k1) ∈ E1, then(
(l1, l2), c, α, u2, (l1, k2)

) ∈ E where l1 ∈ L1 and c = Inv1(l1) ∧ c2 ∧ Inv2(l2) ∧
u2 � Inv2(k2);

– If l1 ∈ L1 and l2 ∈ L2, then
(
(l1, l2), c, TT, lu

) ∈ E where
c =

(¬Inv1(l1) ∨ Inv2(l2)
) ∧ ∧

(l1,c1,u1,k1)∈E1(¬c1 ∨ ¬u1 � Inv1(k1));

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 313

– If l1 ∈ L1, l2 ∈ L2, then
(
(l1, l2), c, ε, (l1, l2)

) ∈ E where
c = c1∧ = Inv1(l1) ∧ ∧

(l1,c1,u1,k1)∈E1(¬c1 ∨ ¬u1 � Inv1(k1))∧
Inv2(l2) ∧ ∧

(l2,c2,u2,k2)∈E2(¬c2 ∨ ¬u2 � Inv2(k2));
– If (l1, c1, u1, k1) ∈ E1 and l2 ∈ L2, then

(
(l1, l2), c, TT, ld

) ∈ E where
c = c1 ∧ Inv1(l1) ∧ u1 � Inv1(k1)

∧
(l2,c2,u2,k2)∈E2(¬c2 ∨ ¬u2 � Inv2(k2));

– (lu, TT, TT, lu) ∈ E.

An example quotient can be seen in Fig. 8.
The quotient product refines the underlying semantics defined by the quotient

composition, and whenever the product is consistent then so is the composition.

Theorem 7. Let H and H ′ be RHA then [[H]]\\[[H ′]] � [[H\\H ′]].

Theorem 8. Let H and H ′ be RHA then [[H\\H ′]] is consistent iff [[H]]\\[[H ′]]
is consistent.

Unfortunately, the syntactic construction and the semantic product do not
fully coincide. In fact the syntactic construction is an abstraction of the semantic
product. This is because the product insists that a state after some delay can act
as a deadlock- or universal- state, which cannot be mimicked in the syntactic con-
struction without introducing complex rate rules and appropriate mechanisms
for handling universal and deadlock behaviour directly in the semantics of RHAs.
For the sake of brevity and because it has no impact on practical applications
(however still vital to a full characterization of the theory), this aspect is left as
a topic for future research. Note also, that all three compositions always exists.
This is because RHAs are defined over essentially internal discrete actions, as
such, the signature of all RHA is the same. Indeed any RHA is defined over the
set of all global resources. The notion of environment and component is solely
dictated by the model. Intuitively, one can think of environments as components
that provides a positive resource flow and vice versa for components. A more
powerful extension of the theory with discrete inputs and outputs would com-
plicate this aspect however. In such an extension, the notion of compatibility in
terms of signature becomes relevant. We leave this aspect of compatibility as a
topic for future research in the full discrete I/O characterization of the theory.

314 P. J. L. Cuijpers et al.

4 Assume-Guarantee Reasoning

With our specification theory of RHA, we have a robust and complete framework,
suitable for component-wise design and refinement in the additive hybrid set-
ting. We now show that our theory facilitates component-wise assume-guarantee
reasoning. The main idea is to use the notion of pre- and post-conditions in
order to characterize intended behaviour. Usually pre- and post-conditions define
properties of sequential processes that must hold before respectively after some
behaviour is encountered. Since we are dealing with systems that consists of
real-time concurrent components the notion of ‘before’ and ‘after’ is better cap-
tured by structural compositional reasoning. As such a pre-condition defines an
environment that affects our system, and a post-condition defines how a sys-
tem should act whenever such an environment is within our sphere of influence.
Mathematically, we are simply dealing with implications, i.e. for the pair (P,Q)
consisting of a pre-condition and post-condition (as mentioned earlier, this is
called a contract), a system upholds the pair if and only if whenever P holds
then so does Q. We adopt the usual terminology used in the real-time setting,
that is, pre- and post- conditions are referred to as assumptions and guarantees.

Let’s first formally capture our notion of an assume-guarantee pair and satis-
faction thereof. In our theory, assumptions and guarantees are defined by RHAs.
We need to characterize an RHA that exactly describes the assume-guarantee
implication. In the concurrent real-time setting this is known as a weakening
and captured by a so-called weaken operation as defined in [12].

Definition 18 (Weaken). Let A and G be RHAs. We define the weakening of
G in A, as: G � A � (A ‖ G)\\A

Let’s design a water pump based on a specification defined by a weakening.
Our water pump’s environment consists of two reservoirs; an input reservoir, for
which the pump itself can only draw from, and an output reservoir, for which
the pump can only provide to. We characterize the capacity of the input and
output reservoirs by the global resources wi and wo. Our assumption on the
environment and our guarantee on the water pump whenever that assumption
holds is shown in Fig. 9.

We define our proposed water pump system S as the structural composi-
tion of the three RHAs shown in Fig. 1. We hypothesize that S refines G � A
thereby making it possible to use an implementation of S whenever we need an
implementation of G � A. As such we retain the simple and intuitive model
defined by the weakening when considering the water pump in a larger context
while providing certainty that an actual system can be implemented using the
more specialised but less intuitive model. We should note here that the reserve
question is just as useful from a system design perspective. Looking at Fig. 1,
clearly the composition results in a large RHA, in fact even the component-wise
representation is large and cumbersome. If one finds that G � A refines S then,
from a design perspective, we can reason about the water pump specification
simply by using the weakening instead.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 315

Fig. 9. (a) An RHA modelling our assumption on the environment. We assume that the
input reservoir gets filled by a rate in the interval [2, 4] and that the output reservoir gets
saturated by rate in the interval [−5,−2]. Additionally, we assume that the environment
never saturates the usage reservoir, thereby completely delegating that responsibility
to the system from a modelling perspective. (b) Another RHA modelling our guarantee
on the system if the assumption is fulfilled. We guarantee that the capacity of both the
input and output reservoir stays in the interval [1, 8]. Additionally, we guarantee that
at any time, a discrete event can occur, as long as it performs no resets.

Now we have a system, a weakening and well defined set of operations on our
language, all we need now is to ascertain whether the refinement holds.

5 Refinement

Unfortunately, checking refinement for general RHAs is undecidable. Indeed if
it were, then that would imply that reachability for general LHA is decidable,
which it is not [22]. Instead we explore how statistical model checking can be
used to refute the existence of refinement. To that end, we utilize the verification
engine of UPPAAL SMC [13] to conduct simulation based validation by translat-
ing the RHA models into Stochastic Hybrid Automata (SHA) [13]. Essentially,
these are hybrid automata defined over a stochastic timed semantics, refining
the non-deterministic mechanics of edge transitions and time delays into prob-
abilistic occurrences based on some probability distribution. Much like RHAs,
SHAs allows us to define linear differential equations on variable rates and also
to consider such variables in guards and invariants. Hence can use resources of

Fig. 10. The SHA agent responsible for computing the continuous rates of all resources
in the composition. Here resources wi, wo and w are first initialized to their respective
initial values; {1, 1, 10} signified by the firing of action begin after which the mode
Running in each time step sets the appropriate rate of each resource according to the
real-valued variables iri, oro, irw and orw. Annotation �� signifies that time cannot
pass in a mode.

316 P. J. L. Cuijpers et al.

Fig. 11. The SHA interpretations of the intake valve (a) and the output valve (b)
specifications of Fig. 1a and 1c. The discrete action switch is used to communicate that
a transition has been fired. This aspect is crucial because we need to know when a
possible refinement target must be able to do a transition. The red scalars next to each
mode is a probability parameter and just an implementation detail, suffice it to say
that larger numbers results in higher preference for taking a transition whenever one
is enabled.

RHAs as is in SHAs. We can specify a convex interval of real numbers by using
the function random(max) = [0,max). SHAs are defined over a discrete action
set of inputs (characterized by a question mark ?) and outputs (characterized
by an exclamation point !). Sadly, SHAs are not natively additive, so this needs
to be simulated. To do so is a simple matter of introducing a real-valued vari-
able for each automata specific occurrence of a resource and define an additivity
agent responsible for adding up the different rates into the actual rates. Our
implementation of the agent model is shown in Fig. 10.

All that remains is to translate the capacity monitor, and the intake/output
valve of Fig. 1 into SHAs. For convenience we have dedicated the responsibility
of the capacity monitor to the additivity agent. Additionally, the rates defined
by the assumption shown in Fig. 9 have been put directly on the intake and
output valve. Their SHA interpretations are shown in Fig. 11

With that we have a stochastic realization of our water pump controller. To
answer the question of whether the water pump refines the weakening G � A, we
investigate whether the water pump controller in parallel with the assumption
refines the composition of the assumption and the guarantee. One could also

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 317

Fig. 12. The unfolded SHA interpretation of A ‖ G. Resources cwi and cwo are defined
as clones of resources wi and wo. The mode Recording directly models the behaviour
of A ‖ G. Whenever a transition is made, it is checked whether the invariants of A ‖ G
holds. Otherwise the invariant of Recording is unbounded, capturing values of wi and
wo not admitted by the original composition. This is because we aim to explicitly
capture illegal behaviour in order to direct it into the Error mode. The eight transitions
leading to it simply captures the negation of the invariant defined by A ‖ G. Note that
we need one for each case because stochastic semantics requires input-determinism.

Fig. 13. An RHA modelling a slightly more strict guarantee.

just show the refinement to the quotient defined by G � A directly, however the
composition of A and G is arguable more intuitive.

The last step in our translation effort is to obtain a stochastic interpretation
of our refinement target, namely the structural composition of A and G. This is
shown in Fig. 12.

Using the SHA interpretation of the composition of our water pump controller
and the assumption, we intend to drive the SHA model of A ‖ G. Our target
property is supported by the following reasoning. If the error mode is ever entered
and the clones of wi and wo get assigned the rate 0, then we know with absolute
certainty that the original water pump controller cannot refine the weakening
G � A. Since both SHAs are abstractions, this holds. We validate our property
using the simulation capabilities of UPPAAL SMC.

We are now ready to conduct testing on our setup through simulations. Sim-
ulations shown in this paper all depict a number of sample runs as solid coloured
lines. The metrics of interest are the evolution of the actual resources wi and
wo together with the evolution of their clones cwi and cwo (y-axis) over time
(x-axis).

318 P. J. L. Cuijpers et al.

Fig. 14. Two sample simulation results obtained by queries simulate[⇐ 100]{wi, cwi}
and simulate[⇐ 100]{wo, cwo} capturing the values of resource wi and its clone respec-
tively wo and its clone. As may be expected, even with 100 simulations, the water pump
controller seems to not be able to break the behaviour of A ‖ G. This is why we see
only one variable in all traces, the clone perfectly matches the actual resource.

Let’s start by simulating our water pump controller driving A ‖ G. The
results of which are shown in Fig. 14. As can be seen, the controller seems to
have difficulties breaking the invariant of A ‖ G. Of course we cannot con-
clude whether it is impossible, there might exist some execution that renders
the invariant false, it just so happens that we have not found it.

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 319

Fig. 15. Two sample simulation results obtained by queries simulate[⇐ 100]{wi, cwi}
and simulate[⇐ 100]{wo, cwo} capturing the values of resource wi and its clone respec-
tively wo and its clone. These results show that the water pump controller can force
A ‖ G into the Error mode, hence refuting the existence of a refinement into G � A.

Next we try to modify G slightly, maybe we can identify an interesting frontier
for the upper limit of wi and wo. For that purpose, we use the slightly modified
guarantee shown in Fig. 13. The simulation results are shown in Fig. 15. Now we
clearly see that a capacity strictly below 8 cannot be guaranteed by our water
pump controller under assumption A. Using the same reasoning as above, we
can say with certainty that the composite of Fig. 1 under assumption A does not
refine G � A.

320 P. J. L. Cuijpers et al.

6 Concluding Remarks

In this paper, we have proposed the complete specification theory of RHA, suit-
able for reasoning about step-wise refinement in the domain of additive resource-
aware concurrent systems. As far as we know, this is the first such theory consid-
ering additive composition. We have shown how assume-guarantee reasoning is
possible within the theory and exemplified a relevant sample case thereof. Fur-
thermore, by translating RHAs into SHAs we have shown how one can refute
the existence of refinement using a simulation based validation method.

In terms of further validation, a proper case study still remains to be con-
ducted. Energy-aware systems, such as load-balancing and smart-grid analysis
are prime candidates. Additionally, an intuitive and robust tool implementa-
tion through automated translation into SHA would significantly decrease the
entry-level knowledge required to use the method presented. For that purpose,
the discrete input/output extension of RHA would be required, including the
complete characterization of the quotient construction in this setting. This full
characterization of the theory could serve as a general meta theory in the additive
hybrid domain, which would significantly push state-of-the-art in the real-time
analysis setting if a useful and decidable instance of the theory is identified. Fur-
thermore, showing how the weaken operation can be used to handle scalability
issues is also desirable, i.e. lifting this result on Timed Input/Output Automata
as shown in e.g. [12] to the additive hybrid setting.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings of the 8th European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering 2001, Vienna, Austria, 10–14 September 2001, pp. 109–120. ACM
(2001). https://doi.org/10.1145/503209.503226

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 203–221. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95582-7 12

4. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

5. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018). https://doi.org/10.1561/1000000053

6. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37, 77–121 (1985). https://doi.org/10.1016/0304-
3975(85)90088-X

7. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: Arnold, A.
(ed.) CAAP 1990. LNCS, vol. 431, pp. 57–71. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52590-4 40

https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-95582-7_12
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1561/1000000053
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-52590-4_40
https://doi.org/10.1007/3-540-52590-4_40

Assume-Guarantee Reasoning for Additive Hybrid Behaviour 321

8. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4 28

9. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Constraint Markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011).
https://doi.org/10.1016/j.tcs.2011.05.010

10. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification—theory and
tools. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 253–267. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 21

11. Cuijpers, P.J.L., Reniers, M.A.: Lost in translation: hybrid-time flows vs. real-time
transitions. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
116–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-
1 9

12. David, A., et al.: Compositional verification of real-time systems using Ecdar. Int.
J. Softw. Tools Technol. Transf. 14(6), 703–720 (2012). https://doi.org/10.1007/
s10009-012-0237-y

13. David, A., Larsen, K.G., Legay, A., Mikuăionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

14. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson,
K.H., Yi, W. (eds.) Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12–
15 April 2010, pp. 91–100. ACM (2010). https://doi.org/10.1145/1755952.1755967

15. van Glabbeek, R.J.: The linear time - branching time spectrum I: the semantics
of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, chap. 1, pp. 3–99. Elsevier Science, Amsterdam
(2001). https://doi.org/10.1016/B978-044482830-9/50019-9

16. Hansen, J., Larsen, K.G., Cuijpers, P.J.L.: Balancing flexible production and con-
sumption of energy using resource timed automata. In: 2022 11th Mediterranean
Conference on Embedded Computing (MECO), pp. 1–6 (2022). https://doi.org/
10.1109/MECO55406.2022.9797191

17. He, J.: Process simulation and refinement. Formal Aspects Comput. 1(3), 229–241
(1989). https://doi.org/10.1007/BF01887207

18. Jifeng, H.: Various simulations and refinements. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 340–360. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52559-9 70

19. He, J.: Service refinement. In: 15th Asia-Pacific Software Engineering Conference
(APSEC 2008), 3–5 December 2008, Beijing, China, p. 5. IEEE Computer Society
(2008). https://doi.org/10.1109/APSEC.2008.78

20. He, J., Hoare, C.A.R.: Unifying theories of programming. In: Orlowska, E., Sza-
las, A. (eds.) Participants Copies for Relational Methods in Logic, Algebra and
Computer Science, 4th International Seminar RelMiCS, Warsaw, Poland, 14–20
September 1998, pp. 97–99 (1998)

21. He, J., Liu, Z., Li, X.: Towards a refinement calculus for object systems. In: Pro-
ceedings of the 1st IEEE International Conference on Cognitive Informatics (ICCI
2002), 19–20 August 2002, Calgary, Canada, pp. 69–76. IEEE Computer Society
(2002). https://doi.org/10.1109/COGINF.2002.1039284

https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1016/j.tcs.2011.05.010
https://doi.org/10.1007/3-540-56922-7_21
https://doi.org/10.1007/978-3-540-78929-1_9
https://doi.org/10.1007/978-3-540-78929-1_9
https://doi.org/10.1007/s10009-012-0237-y
https://doi.org/10.1007/s10009-012-0237-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1016/B978-044482830-9/50019-9
https://doi.org/10.1109/MECO55406.2022.9797191
https://doi.org/10.1109/MECO55406.2022.9797191
https://doi.org/10.1007/BF01887207
https://doi.org/10.1007/3-540-52559-9_70
https://doi.org/10.1109/APSEC.2008.78
https://doi.org/10.1109/COGINF.2002.1039284

322 P. J. L. Cuijpers et al.

22. Henzinger, T.A., Kurshan, R.P.: The theory of hybrid automata. In: Inan, M.K.,
Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series,
vol. 170, pp. 265–292. Springer, Heidelberg (2000)

23. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Com-
puter Science. Prentice Hall (1985)

24. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24(2), 127–
132 (1987). https://doi.org/10.1016/0020-0190(87)90106-2

25. Hoare, T., He, J.: Unifying theories for parallel programming. In: Lengauer, C.,
Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 15–30. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0002714

26. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf.
Process. Lett. 25(2), 71–76 (1987). https://doi.org/10.1016/0020-0190(87)90224-
9

27. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981). https://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.259064

28. Lamport, L.: Hybrid systems in TLA+. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 77–102. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57318-6 25

29. Larsen, K., et al.: As cheap as possible: efficient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 47

30. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

31. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed
automata. Theor. Comput. Sci. 390(2), 197–213 (2008). https://doi.org/10.1016/
j.tcs.2007.09.021. Foundations Software Science and Computational Structures

32. Larsen, K.G., Steffen, B., Weise, C.: The methodology of modal constraints. In:
Broy, M., Merz, S., Spies, K. (eds.) Formal Systems Specification. LNCS, vol. 1169,
pp. 405–435. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0024437

33. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS 1988), Edinburgh, Scot-
land, UK, 5–8 July 1988, pp. 203–210. IEEE Computer Society (1988). https://
doi.org/10.1109/LICS.1988.5119

34. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, vol. 92. Springer, Cham (1980). https://doi.org/10.1007/3-540-10235-3

35. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inform. 6, 319–340 (1976). https://doi.org/10.1007/BF00268134

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977). https://doi.org/10.1109/SFCS.
1977.32

37. Scholefield, D., Zedan, H., Jifeng, H.: Real-time refinement: semantics and applica-
tion. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711,
pp. 693–702. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-
5 60

38. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617

https://doi.org/10.1016/0020-0190(87)90106-2
https://doi.org/10.1007/BFb0002714
https://doi.org/10.1016/0020-0190(87)90224-9
https://doi.org/10.1016/0020-0190(87)90224-9
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
https://doi.org/10.1007/3-540-57318-6_25
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1016/j.tcs.2007.09.021
https://doi.org/10.1016/j.tcs.2007.09.021
https://doi.org/10.1007/BFb0024437
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF00268134
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-57182-5_60
https://doi.org/10.1007/3-540-57182-5_60
https://doi.org/10.1007/BF01211617

Time: It is only Logical!

Frédéric Mallet(B)

Université Côte d’Azur, CNRS, Inria, I3S, Nice, France
Frederic.Mallet@univ-cotedazur.fr

Abstract. Logical Clocks play an important role for the design and
modelling of concurrent systems. The Clock Constraint Specification
Language (ccsl) was built in 2009, as part of an annex of the UML Pro-
file for MARTE, to give a proper syntax to handle logical clocks as first
class citizens. The syntax gave rise to a series of different semantic inter-
pretations along with various verification tools. Usecases are diverse and
include languages to express timing requirements, temporal or spatio-
temporal logics to capture expected safety properties, meta-languages to
give an operational semantics to domain-specific languages. The appli-
cation domains include avionics, safety-critical transportation systems,
self-driving vehicles, systems engineering models, cyber-physical systems.
This paper reviews the effort conducted since 2009 on ccsl. A large part
of this effort was made possible by Professor He Jifeng and his will to
build in Shanghai a research centre of excellence for trustworthy systems.
Researchers there found inspiration in the heritage left by the different
schools working around the world on concurrency theory, including the
school of synchronous languages from which ccsl has emerged.

Keywords: Logical Time · Cyber-Physical Systems · Polychronous
languages

1 Introduction

1.1 CCSL - Genesis

The Clock Constraint Specification Language (ccsl) was devised as an attempt
to bring order into the galaxy of so-called standard notations and semantics that
were emerging [37] following the adoption of the Unified Modelling Language
2.x [52]. Some complained that the official semantics was not precise enough [18],
others that it was too constraining and not expressive enough. Each community
working in the field of concurrency theory or formal languages was providing its
contribution to give one interpretation, connected to its analysis or verification
frameworks. The community of synchronous languages [7] was no exception and
has provided its own contributions with Argos [40] and SyncCharts [2,4], as
synchronous interpretations for the visual formalism of Harel’s StateCharts [22]
or also as a formal and sound alternative to UML State Machines.

The word unified was misleading as some people were trying to provide a
unique, one size fits all, notation to do everything as the goal should have been to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 323–347, 2023.
https://doi.org/10.1007/978-3-031-40436-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_12&domain=pdf
http://orcid.org/0000-0002-9088-9821
https://doi.org/10.1007/978-3-031-40436-8_12

324 F. Mallet

provide a unifying framework to compare the legitimate different interpretations
that are necessary to deal with the diversity of missions faced by software or
system engineers. In his book on Unifying Theories of Programming [25] with
C.A.R. Hoare, Professor He Jifeng gets us back on another path by stating “A
unifying theory is usually complementary to the theories that it links, and does
not seek to replace them.”

ccsl was meant to give a complementary notation that would come as a
companion of languages, whether visual or not, to clarify or make precise, if
and when necessary, their interpretation and in particular, the subtle legiti-
mate behavioural variations regarding temporal, timed or concurrent aspects of
systems. Not a language to rule them all but rather a meta-language to allow
different semantic interpretations to co-exist without ambiguities.

As UML semantic variation points were meant to be addressed in dedicated
profiles, it was only natural to seek the definition of a profile for that purpose.
Then what started as an attempt to build a synchronous reactive UML pro-
file [49], soon became a participation of the Aoste I3S/Inria team to a Task
Force within the Object Management Group. Our goal at that time, was to
define something that would allow a synchronous reactive interpretation to co-
exist with plenty other interpretations, including fully asynchronous ones. The
UML Profile for Modelling and Analysis of Real-Time systems (MARTE) was
adopted three years later in 2009 [53] and ccsl was described within annex C.3
of the specification.

1.2 Logical Time and Clocks

As the name suggests, logical clocks are the central and foundational element
of ccsl. The word clock is also misleading as it has a deeply anchored popular
meaning that turns out to characterize just a particular, although very impor-
tant, kind of clock. A clock is a device for measuring and showing time. It usually
works by comparing the duration of a phenomenon by counting the number of
occurrences of ticks produced by a trustworthy source taken as a time reference.
When the source is based on a regular physical phenomenon, for instance the
resonant frequency of atoms in the case of atomics clocks, it is called a physical
clock. However, the reference can also be an arbitrary recurrent event that is
meaningful to the system for some reasons. In such cases, it is referred to as a
logical clock.

Several digital systems react according to the speed of driving clocks that
are not regular periodic physical events. A control system of a car engine reacts
according to the rotation speed of the camshaft, this rotation speed changes
continuously and can hardly refer to an absolute physical measure as 1) it would
depend on too many external parameters; 2) it is neither necessary nor efficient
to build the actual physical device.

In the origin of Communicating Sequential Processes (CSP [24]), we also find
an interesting statement to support that position “Another detail which we have
deliberately chosen to ignore is the exact timing of occurrences of events. The
advantage of this is that designs and reasoning about them are simplified, and

Time: It is only Logical! 325

furthermore can be applied to physical and computing systems of any speed and
performance.”.

Leslie Lamport [30] has made popular logical clocks in the context of dis-
tributed systems by considering that “the concept of time is derived from the
more basic concept of the order in which events occur”. Logical clocks were used,
as a pragmatic solution, to reconstruct a total order of events and therefore
provide a simple method for synchronizing spatially-separated processes or even
physical clocks. Further away from those practical considerations, event struc-
tures [43] provide a theoretical framework to study the relation happens before
at the heart of Lamport’s logical clocks.

In the field of programming languages, and mainly for reactive systems, syn-
chronous languages [7], like Esterel [8], Lustre [11] or Signal [32], have long
promoted logical clocks as native programming artefacts. Clocks are used as
activation conditions to decide when it makes sense to activate the different
parts of a program so as to make sure that they operate correctly, for instance
because all the necessary inputs are available. Synchronous (logical) clocks rely
on the concept of instant, that denotes atomic actions, and allows for decid-
ing whether some occurrences of events happen instantaneously, i.e., within the
same instant. This leads to the notion of happens together or coincidence. Even
though coincidence is a mental construct, it proved to be useful for the design
of reactive and/or safety-critical systems [13].

Professor He has also proposed his own view of a clock model suitable for the
construction of hybrid systems [23]. In his work, clocks are increasing sequences
of non-negative reals. Those clocks refer directly to synchronous signals and the
real values carried by clocks are the dates at which events occur. By consider-
ing sequences of reals, it implicitly assumes a global common time base. Other
frameworks, like polychrony [33], do not assume the existence of a common global
clock and rather push for solutions where clocks are not inherently related to
each other. However, the potential existence of a common clock, may still become
a good property that has to be proven or disproven by the compiler.

As an attempt to unify theories of time structures, tagged systems [34] and
then tag machines [6] have become mainstream theoretical and practical (within
the scope of Ptolemy [17] and variants like ForSyDe [47] and ModHel’X [21])
solutions to compare and combine models of computations (and communica-
tions).

While tag machines provide a nice mathematical framework, they do not
provide any concrete syntax to build tag structures and define relations among
them. ccsl intended to do that by focusing only on the underlying orderings
among events, leaving out the tags themselves. It combines the two notions of
happens before and happens together. An extension of ccsl, called TESL [55],
brings back the tags and define some operators that build clocks depending on
the tags or derives tags based on clock relations.

Finally, one must note that logical clocks of ccsl strongly differ from the
(dense) clocks of timed automata [1]. Timed automata rely on a dense time
model, meaning that clocks take values in a dense set. This is very useful and

326 F. Mallet

sometimes more natural for physical processes operating over continuous time.
All these dense clocks increase at a uniform rate counting time with respect to
a common global time frame. In certain conditions, the clocks can be stopped
or reset. Timed automata, and their numerous derivatives, have given rise to
a variety of powerful and very successful tools, like UPPAAL [31]. We show in
Sect. 3 that we can combine such models with ccsl ones to benefit from both
environments when one needs to access both logical and physical clocks.

The initial denotational semantics of ccsl [3] considered a model with dense-
time but most ccsl-based tools [15] only work for discrete time and ccsl relies
on timed automata [50] whenever it has to deal with dense-time relations.

1.3 Outline

This paper starts with a brief introduction to the syntax and semantics of ccsl
in Sect. 2. Then, Sect. 3 describes two main use cases where ccsl is used not stan-
dalone, but as companion to other formalisms and notations. Section 4 describes
some of the variants of ccsl. Then we briefly conclude.

2 Syntax and Semantics

A comprehensive theory of programming [25] treats a programming language
under three styles of presentations: denotational, operational and algebraic. Here
we do not go as far as proving consistency between the three definitions but we
give a grasp of what it means in the context of ccsl.

We follow here the same path as Professor He. We start with the denota-
tional semantics, then the operational one, and we end with a glimpse at the
co-algebraic semantics.

2.1 Clocks, Schedules and History

Definition 1 (Logical clock). A logical clock c is an infinite sequence (a
stream) of ticks, (cn)n∈N+ .

While a logical clock can represent any kind of repetitive event, the ticks stand
for their successive occurrences. All the events are assumed to be independent, so
there is no relationship between the ticks of two clocks unless explicitly defined.
Concretely, clocks can be used to observe the occurrence of events. In such cases,
ccsl describes the expected observations. They can also be used as activation
conditions to control the behaviour of a system.

ccsl constraints express some relationships between clocks, and their under-
lying ticks. One possible behaviour is captured as a synchronous schedule defined
as an infinite sequence of steps. At each step, the schedule defines which clocks
tick and which ones do not tick. A ccsl specification characterizes a set of valid
schedules. Each constraint potentially reduces the number of valid schedules by
forbidding some clocks to tick at some steps.

Time: It is only Logical! 327

Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N → 2C such that at each step n in N, δ(n) �= ∅.1

By the condition δ(n) �= ∅ in Definition 2 we exclude from schedules those
trivial/stuttering steps where there is no clock ticking. As we deal with reactive
systems, we expect the system not to stop, and therefore to have clocks that tick
in infinitely many steps. As we show later, clocks that stop very often indicate
a bad (or at least unexpected) behaviour of the system under consideration.
Having this in mind, we thrive to build good schedules that have this property.

For a given schedule it may be useful to identify the step at which the ith

tick occurred.

Definition 3 (Dates and time). Given a schedule δ for a set of clocks C,
datesδ : C → 2N is a map defined as ∀c ∈ C, datesδ(c) = {i ∈ N|c ∈ δ(i)}.

Then, timeδ is a map timeδ : C × N
+ → N defined as ∀c ∈ C,∀i ∈

N
+, timeδ(c, i) = j such that |{k ∈ datesδ(c)|k ≤ j}| = i.

datesδ gives the set of steps where a clock ticks for a given schedule δ, while
timeδ gives the step at which the ith tick of a given clock occurs, for a given
schedule δ. If clocks tick infinitely many times, as they should, datesδ is an
infinite subset of natural numbers.

Purely synchronous constraints define when some clocks should tick together
and when they cannot, i.e. synchronization conditions. Other more general con-
straints look at the past, the history (as far as they need) to decide what may
happen at a given step.

Definition 4 (History). The history of a schedule δ over a set C of clocks is
a function χδ : C × N → N such that for each clock c ∈ C and n ∈ N:

χδ(c, n) =

⎧
⎨

⎩

0 if n = 0
χδ(c, n − 1) if n > 0 ∧ c �∈ δ(n − 1)
χδ(c, n − 1) + 1 if n > 0 ∧ c ∈ δ(n − 1)

Intuitively, χδ(c, n) denotes the number of times that a clock c has ticked before
reaching step n in the schedule δ. For simplicity, we write χ for χδ when the
context is clear. The history computes the configuration for a given clock. This
ability to look into the past as far as we need raises reachability problems unusual
in traditional synchronous languages, which commonly look only at the preceding
step.

The way history is built gives a natural carrier for the co-algebraic definition
given in Sect. 2.5.

2.2 Syntax

The initial syntax of ccsl was defined in a research report [3]. It was defined
under the form of a mathematical language. As ccsl became integrated into
1 2C is the powerset of C.

328 F. Mallet

programming environments, the syntax was modified to resemble more that of
a programming language and be more tractable by standard text-based editors.
TimeSquare [15] is the official tool to build and analyse ccsl specifications. The
syntax in TimeSquare is meant to be integrated into modelling environments
that stores artefacts as XML resources. A lighter syntax, called Light-CCSL2, has
then been defined to be more user-friendly. We use both the pure mathematical
syntax and the light ccsl one here.

ccsl provides a set of binary or ternary clock relations that constrain
the instants at which a clock can tick. When there is no constraint, all the
schedules are possible. Each constraint reduces the set of possible schedules. For
most specifications, an infinite number of schedules are valid. When only one
schedule is possible, the system is fully determined. If no schedule is possible,
the specification is inconsistent.

The two basic synchronous relations are subclocking (c1 ⊆ c2) and exclusion
(c1 # c2). subclocking is a relation that only allows c1 to tick when c2 ticks: ∀s ∈
N

+, c1 ∈ δ(s) =⇒ c2 ∈ δ(s). We get immediately that when c1 ⊆ c2 ∧ c2 ⊆ c1
then dates(c1) = dates(c2), c1 and c2 are called synchronous (c1 = c2).3

Exclusion forbids c1 and c2 to tick at the same step: ∀s ∈ N
+, c1 /∈ δ(s)∨c2 /∈

δ(s).
The Light-CCSL listing below defines two subclocking and one exclusion

constraints, c1 ⊆ c2 ∧ c2 ⊆ c3 ∧ c4 # c3.

Specification example1 {
Clock c1 c2 c3 c4 [

SubClocking c1 ← c2 ← c3
Exc lus ion c4 # c3

]
}

The two basic asynchronous relations are causality (c1 � c2) and precedence
(c1 ≺ c2). Causality is the happen before relationship of event structures. It
means that ∀d ∈ N

+, time(c1, d) ≤ time(c2, d), the dth occurrence of c1 cannot
be after the dth occurrence of c2. Precedence is a bit stricter, it means that
∀d ∈ N

+, time(c1, d) < time(c2, d).
The Light-CCSL listing below defines precedences and causalities, c1 ≺ c2∧

c2 � c3 ∧ c3 ≺ c4.

Specification example2 {
Clock c1 c2 c3 c4 [Precedence c1 < c2 <= c3 < c4]

}

While ccsl relations reduce the set of valid schedules, ccsl expressions build
new clocks that preserve some relations by construction. Some expressions build
concrete subclocks, like union and intersection.

2 https://github.com/frederic-mallet/ccsl-sts/tree/main/Examples/CCSL_Primitives.
3 The boxed equality (=) is there not to confuse clocks that are equal from clocks

that tick synchronously.

https://github.com/frederic-mallet/ccsl-sts/tree/main/Examples/CCSL_Primitives

Time: It is only Logical! 329

u � c1 + c2 (union of c1 and c2) builds a clock u such that dates(u) = dates(c1)∪
dates(c2). We get immediately that c1 ⊆ c1 + c2 and c2 ⊆ c1 + c2.
i � c1 ∗ c2 (intersection of c1 and c2) builds a clock i such that dates(i) =
dates(c1) ∩ dates(c2). We get immediately that c1 ∗ c2 ⊆ c1 and c1 ∗ c2 ⊆ c2.

Another way to build a new clock is to use affine functions. c1 � c2 ∝ p
makes c1 tick every pth tick of c2. c3 � c1 $ d makes c3 tick synchronously with
c1 after its dth tick. In Light-CCSL, on would write the following specification:

Specification Period {
Clock c2 [

r epeat c1 every 3 c2
Let c3 be c1 $ 2

]
}

From this listing we obtain the schedule shown in Fig. 1 as the only possi-
ble valid schedule since this specification is fully determined. In this schedule,
dates(c2) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as if c2 does not tick, none of the other clocks
can tick. dates(c1) = {0, 3, 6, 9} and dates(c3) = {6, 9}. Besides, time(c2, 1) = 0,
time(c1, 2) = 3 and time(c3, 1) = 6.

Fig. 1. A schedule with delays and periodic clocks.

Other expressions build new clocks that preserve causalities. inf � c1 ∧ c2
(infimum of c1 and c2) builds a clock inf such that ∀d ∈ N

+, time(inf, d) =
min(time(c1, d), time(c2, d)). We get immediately that c1 � c1 ∧ c2 and c2 �
c1 ∧ c2.
sup � c1 ∨ c2 (supremum of c1 and c2) builds a clock sup such that ∀d ∈
N

+, time(sup, d) = max(time(c1, d), time(c2, d)). We get immediately that c1 ∨
c2 � c1 and c1 ∨ c2 � c2.

Specification Expres s ions {
Clock a b c [

Let i be i n f (a , b , c)
Let s be sup (a , b , c)
Let union be a or b
Let i n t e r be a and b

330 F. Mallet

]
}

2.3 Denotational Semantics

ccsl may serve different purposes. One main objective is to verify that a specifi-
cation is consistent. This is for instance useful when using ccsl to build require-
ments. Informal or natural-language requirements are prone to errors. To check
the consistency of requirements, we transform them into ccsl constraints and
then we try to find at least one valid schedule for the derived specification [12].
TimeSquare [15] allows for making those transformations automatic by giving
generic transformation rules from model elements and applying those transfor-
mation rules in a systematic way on a complete model (see Sect. 3.2). Checking
the satisfaction of ccsl specifications has been done by many different meth-
ods [15,57,58] including through the use of an SMT-solver [58].

The semantics of ccsl given in Table 1 is interesting for that task as the
encoding into an SMT solver is almost immediate. A schedule is defined as an
undefined function4, or rather as a set of undefined functions, one for each clock.
Those undefined functions must satisfy all of the constraints in a specification.
The SMT solver will then find a valid definition of those functions that satisfy
all the constraints. If it manages to do so, that gives us immediately one valid
schedule.

Table 1. Semantics of CCSL

1. δ �ccsl a ⊆ b iff ∀i ∈ N.a ∈ δ(i) → b ∈ δ(i) (Subclock)
2. δ �ccsl a # b iff ∀i ∈ N.a /∈ δ(i) ∨ b /∈ δ(i) (Exclusion)
3. δ �ccsl a ≺ b iff ∀i ∈ N.(χ

δ(a, i) > χ
δ(b, i) ∨ (χ

δ(a, i) = χ
δ(b, i) → b /∈ δ(i)) (Precedence)

4. σ �ccsl a � b iff ∀i ∈ N.χ
δ(a, i) ≥ χ

δ(b, i) (Causality)

5. δ �ccsl c � a + b iff ∀i ∈ N.c ∈ δ(i) ↔ (a ∈ δ(i) ∨ b ∈ δ(i)) (Union)
6. δ �ccsl c � a ∗ b iff ∀i ∈ N.c ∈ δ(i) ↔ (a ∈ δ(i) ∧ b ∈ δ(i)) (Intersection)
7. δ �ccsl c � c′ ∝ n iff ∀i ∈ N.c ∈ δ(i) ↔ (c

′ ∈ δ(i) ∧ ∃m ∈ N
+

.χ
δ(c

′
, i) = m · (n + 1)) (Periodicity)

8. δ �ccsl c � c′ $ n iff ∀i ∈ N.χ
δ(c, i) = max(χ

δ(c
′
, i) − n, 0) (Delay)

9. δ �ccsl c � a ∧ b iff ∀i ∈ N.χ
δ(c, i) = max(χ

δ(a, i), χ
δ(b, i)) (Infimum)

10. δ �ccsl c � a ∨ b iff ∀i ∈ N.χ
δ(c, i) = min(χ

δ(a, i), χ
δ(b, i)) (Supremum)

Pure synchronous constraints (Table 1, rules 1, 2, 5, 6) do not involve the
history. They are called stateless constraints and result in solving a pure Boolean
satisfaction problem. Other constraints rely on the history (see Definition 4) that
relies on integer arithmetic. Table 1-7 is the most difficult of them all at it uses
an existential quantifier. Actually, we can remove this quantifier by unfolding the
formula based on the length of p. This is easy, or at least systematic. However,
when p is big, this results in a highly inefficient system. Overall, when you

4 In SMT, we would rely on the theory called UF_LIA, Undefined functions, an exten-
sion with free sorts and function symbols, combined with Linear Integer Arithmetic.
The signature of those functions matches the one given in Definition 2.

Time: It is only Logical! 331

combine Boolean logics, with integer arithmetic and undefined functions, there
is no guarantee of having a result as the theories that are used are undecidable.
However, in most practical cases we have encountered so far, SMT solvers do
reach a verdict. Nevertheless, there have been many attempts over the last decade
to improve the performances of ccsl solvers but there is no definitive answer to
this problem at the moment.

On a pure denotational way, we can consider that a Clock is a pair 〈I,≺〉
where I is a set of instants, ≺ is a quasi-order relation on I, named strict
precedence, it is a total, irreflexive, and transitive binary relation on I.

A discrete-time clock is a clock with a discrete set of instants I. Since I is
discrete, it can be indexed by natural numbers in a fashion that respects the
ordering on I: idx : I → N

+, ∀i ∈ I, idx(i) = k if and only if i is the kth instant
in I.

For any discrete time clock c = 〈Ic,≺c〉, c[k] denotes the kth instant in Ic

(i.e., k = idxc (c[k])). For any instant i ∈ Ic of a discrete time clock, °i is the
unique immediate predecessor of i in Ic. For simplicity, we assume the existence
of a virtual instant, which is the (virtual) immediate predecessor of the first
instant.

A Time Structure is a pair 〈C,�〉 where C is a set of clocks, � is a binary
relation on

⋃
c∈C Ic, named causality. � is reflexive and transitive. From � we

derive two new relations: Coincidence (≡ � � ∩ �), Precedence (≺� �\≡).
Then, given two clocks a and b, we can define the basic clock relations as

follows.

Definition 5 (Subclocking). a is said to be a sub-clock of b, and b a super-
clock of a, denoted as a ⊆ b.

〈C,�〉 |= a ⊆ b ⇔ ∀ia ∈ Ia, ∃ib ∈ Ib, ia � ib

Figure 2 gives an example of valid schedule for a ⊆ b, but there are infinitely
many valid schedules.

Fig. 2. Example of subclocking.

Note that this definition does not require the clocks to be discrete. Other
ccsl relational operators are similar, see [3] for a comprehensive definition.

In a recent work [41], the semantics of ccsl has been mechanized in Agda.
This dramatically improves the confidence we may have in reasoning with ccsl
specifications. However, even though Agda gives some assistance to make proofs,
it still needs some human interventions. One very interesting feature that was

332 F. Mallet

introduced with the help of Agda was the notion of refinement of ccsl ticks [42].
This refinement is akin to the notion of instantaneous causality that is well-
known in synchronous languages [7].

2.4 Operational Semantics

In TimeSquare [15] the operational semantics gives a way to compute one pos-
sible valid schedule for a given ccsl specification. This works by iterating over
two phases. The first phase consists in deciding what subset of clocks (called a
configuration) is fireable instantaneously. In ccsl, this can be done by solving a
pure SAT problem. The second phase consists in picking one fireable configura-
tion, firing it and rewriting the system to update the history of each clock that
has ticked.

If rather than a unique valid schedule, one wants to build a symbolic repre-
sentation of all the valid schedules, this can be done by synchronous transition
system where the (infinitely many) states represent the history of clocks and the
transitions are labelled by a set of clocks, the ones that can fired depending on
the history. This transition system captures all the fireable clocks, selecting one
transition follows only one of the (possibly infinite number of) paths. In practice,
we use one transition system for each constraint and we build the synchronous
composition of all the transition systems needed for each constraint in a given
specification. As we may have an infinite number of states, we sometimes try to
fold the transition system to retain only so-called periodic schedules [57]. The
folding consists in keeping a finite number of states, equivalent, up to a particular
equivalence relation, to (infinitely many) other states.

Definition 6 (cLTS). A Clock-Labelled Transition System (cLTS) is defined
as a tuple A = 〈S, T, s0, C〉 where

– S is a set of states,
– s0 ∈ S is the initial state,
– C is a finite set of clocks,
– T ⊆ S × 2C × S is a set of transitions, with (s, Y, s′) ∈ T means that all the

clocks in Y ⊆ C tick when the transition from s to s′ is fired.

Pure synchronous constraints are represented by cLTS with only one state as
the set of fireable clocks does not depend on the history. Figure 3(a) shows the
cLTS for encoding a = b. Either a and b tick together, or neither of them can
tick. Subclocking (see Fig. 3(b)) is weaker as b can also tick alone, but not a.

Other (stateful) constraints are represented with infinite-state transition sys-
tems. For instance, Fig. 4 gives the cLTS for the precedence (a ≺ b). The state
records the difference in the number of ticks between a and b (see Table 1,
rule 3.) In the state, as both a and b have ticked as many times, we have
χδ(a, i) = χδ(b, i), and therefore b cannot tick. In other states, a and b can
tick alone, can tick jointly or neither of them can tick. The state is updated
accordingly.

Time: It is only Logical! 333

Fig. 3. CCSL synchronous relations as clock-Labelled Transition Systems

Fig. 4. CCSL precedence (infinite-state cLTS): a ≺ b.

As there are an infinite number of states for some relations (like precedence),
the set of potential execution is only intentional. Safe ccsl specifications [38]
are the ones where only a finite number of states are actually reachable. We
have established a sufficient condition for deciding whether or not a given ccsl
specification is safe.

In a pure operational way, once the synchronous product of all the transition
systems of all the ccsl constraints inside a specification has been computed (in
intention or in extension), one can pick one path in this transition system to
have a valid schedule. To get all the valid schedules, one must compute all the
paths up to a given depth, depending on the length of the expected solution.

2.5 Coalgebraic Semantics

The theory of universal coalgebra [46] proposes a mathematical model, that
differs from the approach of G. Plotkin for defining the operational semantics
of software systems [45]. Indeed, considering transition systems as coalgebras
gives useful insights for reactive systems and infinite data structures in general.
Coalgebras appeared to be well fitted to capture the infinite-state transition
systems underlying the semantics of some ccsl operators. We have used this
style to define a notion of incompleteness for ccsl and then a possible generalized
constraint model [39,60].

334 F. Mallet

Definition 7 (Transition system). A transition system is a structure 〈Γ,−→〉
where Γ is a set (of elements, γ, called configurations) and −→⊂ Γ × Γ is a
binary relation (called the transition relation). Read γ −→ γ′ as saying that there
is a transition from configuration γ to configuration γ′.

Using the notion of coalgebra we obtain an alternative way to describe transition
systems.

Definition 8 (Coalgebra). A (powerset) coalgebra [46] is a structure 〈Γ, α〉
where α is a map from Γ into the set of all subsets of Γ , 2Γ . In this context Γ
is called the carrier of the coalgebra.

It is evident that any transition system 〈Γ,−→〉 determines the coalgebra 〈Γ, α〉,
where γ′ ∈ α(γ) if and only if γ −→ γ′, and conversely, any coalgebra 〈Γ, α〉
determines the transition system 〈Γ,−→〉, where γ −→ γ′ if and only if γ′ ∈ α(γ).

Definition 9 (Subcoalgebra). Let 〈Γ, α〉 be a coalgebra, B be a subset of Γ
then the structure 〈B,α〉 is called a subcoalgebra of 〈Γ, α〉 if the embedding α(γ) ⊂
B is true for each γ ∈ B.

One can check that any coalgebra 〈Γ, α〉 is a subcoalgebra of itself and the
intersection of a family of subcoalgebras is a subcoalgebra too. Hence, for each
subset X ⊂ Γ there exists a least one subcoalgebra whose carrier contains X.
In this case, the carrier of this subcoalgebra is denoted by 〈X〉.

To calculate 〈X〉 one can use Tarski’s fixed point theorem [51] for the mono-
tonic operator ΨX on the lattice PX(Γ), where PX(Γ) is the set of all Γ subsets
that cover X. This operator is defined by the following formula

ΨX(V) = V ∪ {γ′ ∈ Γ | (∃γ ∈ V) γ′ ∈ α(γ)}.

This ensures that an element γ ∈ Γ belongs to 〈X〉 if and only if there exists
a finite sequence γ0, . . . , γn−1, γn formed by elements of Γ such that

γ0 ∈ X and γn = γ ; (1)
γk ∈ α(γk−1) for k = 1, . . . , n. (2)

Finite or infinite Γ -valued sequences satisfying (2) are used below, we give them
the name “tracks”.

Hence, conditions (1) and (2) mean that an element γ ∈ Γ belongs to 〈X〉 if
and only if there exists a track that links some element of X and γ.

We now assume that some finite set of clocks C has been given. Let us define
the constraint-free coalgebra over a clock set C as the coalgebra with the carrier
N

C and the map α : N C → 2N
C

defined by the formula:

χ′ ∈ α(χ) if and only if 0 ≤ χ′
a − χa ≤ 1 for all a ∈ C.

It is evident that for any χ ∈ N
C the map α is represented in the form

α(χ) = χ + {0, 1} C .

Time: It is only Logical! 335

This statement makes it obvious that a clock can only tick once at each instant
and that all the evolutions are possible when no constraint is specified.

Proposition 1. Let 〈χ(t) | t ∈ N 〉 be a sequence of configurations then there
exists a schedule σ such that χa(t) = χσ

a(t) for all t ∈ N and a ∈ C if and only
if this sequence is a track in the coalgebra 〈N C , α 〉 such that χ(0) = 0.

A track 〈χ(t) | t ∈ N 〉 is called initial if the condition χ(0) = 0 holds.
One way to capture the notion of schedule, which are a sequence of steps

where clocks tick simultaneously is to specify a map � : N C → 2{0,1} C
such that

0 ∈ �(χ) for any χ ∈ N
C and to define

α�(χ) = χ + �(χ).

The map denotes at each step the set of clocks that tick.
A map � : N

C → 2{0,1} C
that satisfies the condition 0 ∈ �(χ) for any

χ ∈ N
C is called an actuation distribution on C. The actuation distribution

captures the set of sets of clocks that are allowed to tick simultaneously at one
instant given a configuration.

Definition 10 (Actuation distribution). Let � : N C → 2{0,1} C
be an actu-

ation distribution and 〈N C , α� 〉 be a coalgebra, where α�(χ) = χ+�(χ), then
an element of N C is called �-reachable configuration if it belongs to the carrier
of the minimal subcoalgebra containing 0.
Such a set of reachable configurations is denoted below by R(�).

Definition 11 (Clock coalgebra). Let � : N C → 2{0,1} C
be an actuation dis-

tribution then the coalgebra 〈R(�), α�〉 is called the clock coalgebra associated
with �.

Actuation distributions of some clock constraints do not depend on the cur-
rent configuration, so we define stationary distribution to denote particular inter-
esting kinds of constraints.
Definition 12 (Stationary distribution). An actuation distribution � :
N

C → 2{0,1} C
is called stationary if the map � is a constant map.

Some primitive clock constraints, such as subclocking, exclusion, union and
intersection, represent stationary actuation distributions. Therefore the ques-
tion whether any stationary actuation distribution is represented by a set of
stationary primitive clock constraints is interesting.

We have proven that this is true for 2-clock systems, but that this is not
true in general [39]. Therefore, ccsl is incomplete as it should allow to build
any actuation distribution. A very interesting construct that cannot be built is
the n-m exclusion pattern, where n tasks share m resources. The 2–1 exclusion
pattern is native (c1 # c2), and the n-1 can be built by parallel composition
of multiple 2–1 exclusions. The n-m would be useful to represent a concurrent
access to m cores by n computing tasks.

For this observation, one can build a generalization of ccsl that is complete.
This languages is called GenCCSL [60]. While the language is complete, there is
no operational way at the moment to build a solution for GenCCSL.

336 F. Mallet

3 CCSL - A Companion Language

ccsl was never meant to be a programming language but rather it was meant to
be a specification language. So it is not meant to be used standalone but rather
to allow for complementing other specification with expected (temporal and
timed) properties of a system. Additionally, ccsl is a companion language so it
is expected that the main (functional) part of the system under consideration is
given by another language or notation (e.g., UML for instance, or a programming
language).

3.1 A Companion to UML MARTE

As it was defined in an annex of UML MARTE, users are inclined to use UML
first, as much as possible, to describe, for instance, components or behavioural
models. Then, they should use MARTE stereotypes when the semantics of UML
is ambiguous.5 Finally, use ccsl as a last resort when necessary. The two main
useful MARTE stereotypes for that purpose are « clock » and « NFPConstraint ».
« clock » identifies a model artefact that must be interpreted as a clock. « NFP-
Constraint » marks a constraint to be considered as a ccsl specification and
potentially interpreted by adequate tools.

To give a simple example of what a companion language is, let us con-
sider the BIP (Behaviour, Interaction, Priority) framework [5]. BIP is a frame-
work for modelling heterogeneous real-time components with a correct-by-
construction methodology. In BIP components, there are three layers. The lower
layer describes the behaviour as transition systems. BIP uses a particular form of
timed automaton. The intermediate layer includes a set of connectors describing
the interactions between the transitions of the behaviour. The upper layer is a
set of priority rules describing scheduling policies for interactions.

Figure 5 shows a small BIP example. Components have ports. Triangles
denote so-called incomplete interactions while bullets identify complete ones.
The upper connector with tick1, tick2 and tick3 implements a rendez-vous, i.e.,
the three ports are synchronized. The lower connector is a broadcast. ccsl pro-
vides no mechanism to build components or transition systems. It relies on other
languages for that. One could use UML components and UML state machines for
that purpose. However, UML state machines provide no built-in mechanism for
describing rendez-vous. Using « clock » one would transform a UML event into
a clock. Then using ccsl, one could enforce the semantics of BIP interactions
(see the right-hand part of Fig. 5).

There are a bunch of papers [9,20,28,44,50,56] that show examples on how to
use UML, MARTE and ccsl together, among those some prefer to use SysML
instead of UML. There is a large contribution from the Software Engineering
Institute in Shanghai. More importantly, each of these works provides a specific

5 In UML wording, stereotypes are annotations of model elements that change the
semantics of this element.

Time: It is only Logical! 337

Fig. 5. Describing BIP interactions with CCSL

analysis tool to verify the temporal properties captured as a ccsl specifica-
tion. These are either ad-hoc verification tools or transformations toward other
mainstream verification languages (NuSMV, Timed Automata, VerilogHDL).

Figure 6 borrows an example of a temperature control system from [50] as
an illustration. The temperature control system has two modes (Diagnostic,
Control) depicted as a UML state machine. Moving from Diagnostic to Control
is based on a time constraint. As UML does not have time units, we use MARTE
to introduce them. In each mode, different constraints must hold to ensure the
safety of the nuclear power plant. In Diagnostic, each diagnostic action (clock d)
alternates with a reconfiguration action (clock c): d ∼ c. A status update (clock
s) is a particular kind of possible reconfiguration: s ⊆ c. Those constraints are
captured in ccsl. To verify that the global model is consistent, a structural
transformation based on the operational semantics (see Sect. 2.4) is performed
to produce a timed automata (see right-hand side part of Fig. 6) that is fed into
UPPAAL model-checker [31].

3.2 Semantic Adaptation of Domain-Specific Languages

While UML was the first language used as a support for CCSL specifications, it
is not the only one. While UML has attempted a global union of lots of model ele-
ments, other approaches follow the small is beautiful mantra and advocate for the
definition of small Domain-Specification Languages [19] just expressive enough
for a given objective. Lots of dedicated modelling framework have emerged over
the last two decades, the GeMoC studio [10] is one of them that was inspired
by the international GeMoC initiative. Each language, or part of a language,
is defined with its own abstract syntax and operational semantics. Then, to
address large systems, several languages are composed to cover the different
concerns (structure, states, data-flows, scenarios, properties). The languages are
composed using a meta-language that derives from ccsl [29]. The approach is
presented as a unifying framework that reduces all structural composition oper-
ators to structural merging, and all composition operators acting on discrete
behaviours to event scheduling. This approach goes beyond what was discussed
on UML as the connectors are defined between the two languages themselves
and not on particular instances of those languages. Figure 7 shows an example

338 F. Mallet

Fig. 6. A Temperature control system (TCS) with UML/MARTE/CCSL.

from that paper. We start with two languages (A and B). Language A involves
some events a, b, c, while language B involves events 1, 2, 3, 4. The operational
semantics of those two languages give execution rules. At the language level, we
can build a constraint, say a � 1 ∧ b � 4 ∧ 3 � c. Now, given two instances,
one of A and one of B, we derive a set of possible traces for both models, a
partial order, captured as event structures. Applying the composition rules (in
black), we can reconstruct a global partial order that combines the traces from
both languages (event structure esc on the figure). Recently, this approach was
applied to build a full-fledged simulator for Lingua Franca [14].

A similar exercise with a different tool/technology was done by another
team [9] but still using ccsl to build a language for semantic adaptation.

4 CCSL Extensions and Derivatives

ccsl has led to several extensions or derivative languages that are briefly dis-
cussed in this section.

4.1 Valued Extensions

As ccsl was inspired by the Tagged Signal Model while removing the values
of the tags and keeping only their orders, it was only natural to want to add
the valued tags back into a language. In the Tagged-Event Specification Lan-
guage (TESL) [54,55], clocks assign a time-stamp (aka a tag) to ticks with
its own time scale. Tags represent the occurrence of the event at a specific

Time: It is only Logical! 339

Fig. 7. DSL composition with clock relations.

time. Tag domains used for time must be totally ordered; typically, they are
reals, rational numbers, integers, as well as the singleton Unit, which is used
for purely logical clocks where (chronometric) time does not progress. TESL
captures event-triggered implications, that are essentially ccsl-like clock con-
straints, time-triggered implications and tag relations. The time-triggered impli-
cation uses a chronometric delay (a reference to a physical time expression) to
trigger an event. This delay is a duration (a difference between two tags) while
in ccsl it would refer to a number of ticks or a difference between the number of
ticks of two clocks. Tag relations link the different time scales. TESL allows for
fairly general tag relations permitting acceleration and slow-down. Using affine
tag relations makes the solving simpler as it amounts to handling linear equation
systems. However, as the tags must be computed, TESL does not use any of the
purely asynchronous constraints of ccsl (all the causality-based relations) as
they do not allow for a constructive projection into the future and might lead
to an infinity of possible futures.

Instead of schedules, TESL introduces so-called runs.

Definition 13 (Runs). Given a set C of clocks, B the set of Booleans, T the
ordered domain of timestamps. The set of runs is denoted Σα and defined by

Σα = N → C → (B × T)

A (synchronous) run associates a pair to a step (a natural number) and a
clock. The pair has a Boolean tag to identify whether the clock ticks or not and
a timestamp that gives the current reading of the clock at this step. Compare
to Definition 2.

340 F. Mallet

Fig. 8. Example of runs in TESL (Color figure online)

Figure 8 shows examples of runs taken from [55]. The black horizontal lines
are temporal lines for clocks. The red rectangles denote ticks of clocks. The green
annotations are timestamps, tags.

4.2 Other Extensions

There have been a variety of extensions, lots of them were proposed by teams
at the Software Engineering Institute, following some work of Professor He.

In 2012, there was a first work [35] based on MARTE and ccsl to “unify
the logical time and the chronometric time variables, and extend the traditional
events to CPS events”. This work relied on Hybrid automata to introduce con-
tinuous evolutions of time and spatial constraints, as both constructs become
necessary to model complex Cyber-Physical Systems (CPS).

This work was followed in two directions. On one side [48,59], trying to pro-
vide a spatio-temporal logics where both clocks and space are first-class citizens.
On another side providing probabilistic extensions of ccsl.

For this second family of extensions, three alternative ways were studied. The
first one used UML and profiling mechanisms as a support for extensions. This
led to an hybrid form of MARTE state machines [36]. In that form, the systems
was captured by combining UML, as much as possible, MARTE or stochastic
stereotypes when needed and ccsl in the last resort. Verification was conducted
by transforming the whole model into hybrid automata.

The two alternative solutions both considered extending ccsl with prob-
abilistic parameters. This is necessary to capture the intrinsic uncertainty of
complex environments for cyber-physical systems as for instance the temper-
ature variation in a smart building, the likelihood of failure in an intelligent
transport system.

Two such kinds of solutions were explored. The first solution called
pCCSL [16], adds the notion of rate for the subclocking relation. When a ⊆ b,
a may never tick, or always tick simultaneously with b. Both solutions, and all

Time: It is only Logical! 341

the intermediate solutions are valid. The rate guarantees a probabilistic ratio
between the number of ticks of a and the number of ticks of b. The second solu-
tion, called PrCCSL [27], adds instead a probability that a given clock relation
is not satisfied. We present here pCCSL.

cLTS from Definition 6 are extended with a probability parameter as follows:

Definition 14 (Probabilistic CLTS). A Probabilistic Clock-Labelled Tran-
sition System (PCLTS) is a CLTS with an extended transition relation −→⊆
S × 2C × P × S, where P ⊆ Q is the set of rational numbers between 0 and 1
(i.e., a probability).

For a given transition t = (s, Γ, p, s′) ∈−→, π(t) = p denotes the probability
p that the transition t is fired. It is akin of a discrete-time Markov chain, where
the probability to reach the next state depends on the current state.

For a PCLTS 〈S,C,−→〉, we call s• the set of all transitions whose source
is s:

s• = {(s, Γ, p, s′) ∈−→}
Note that s• can never be empty since it is always possible to do nothing in

CCSL, i.e., (s, ∅, p, s) is always in −→ for all s ∈ S and for some value p.
Given a clock c ∈ C, let us call s•

c the set of all transitions whose source is s
and such that the clock c ticks:

s•
c = {(s, Γ, p, s′) ∈−→| c ∈ Γ}

For a PCLTS to be well-formed, it must satisfy the two following conditions:

∀s ∈ S,
∑

t∈ s•
π(t) = 1 (3)

∀s ∈ S,∀c ∈ C,
∑

t∈ s•
c

π(t) = pc (4)

In Eq. 4, for each clock c ∈ C, the probability pc is either manually assigned
by the user with a declaration ‘Clock c probability p’, or derived using the rate
in a subclocking relation or assigned to the default value 1/|s•| otherwise.

A ‘normal’ CLTS can be seen as a probabilistic CLTS where all the proba-
bilities are assigned with default values 1/|s•| for all the states s ∈ S.

Let a, b ∈ C be two clocks and r ∈ Q a rational number such that
0 ≤ r ≤ 1. The subclocking relation (see Fig. 9(a)), b ⊆ a rate r is defined as a
PCLTS 〈{s0}, {a, b},−→⊆〉, such that −→⊆= {(s0, {}, 1−pa, s0), (s0, {a, b}, pa ∗
r, s0), (s0, {a}, pa ∗ (1−r), s0)}, where pa ∈ Q is the probability assigned to clock
a. Let us note that Eq. 3 is satisfied since

∑
t∈ s•

0
π(t) = (1 − pa) + (pa ∗ r) +

(pa ∗ (1− r)) = 1. Equation 4 is also satisfied since
∑

t∈ s•
0b

π(t) = pa ∗ r = pb and
∑

t∈ s•
0a

π(t) = (pa ∗ r) + (pa ∗ (1 − r)) = pa.
If no probability is assigned then the default is 2/3. If no rate is assigned,

then r defaults to 1/2. With default values, each one of the three transitions has
a probability of 1/3, i.e., each transition has the same probability to be fired.

342 F. Mallet

Transition {b} however has a probability of 0 since it would otherwise contradict
the subclocking relation.

Note that if both the probability of a is given and the rate of b relative to a
are given, then pb = pa ∗ r. In any other cases, the specification is ill-formed.

The synchrony constraint is a special case of subclock defined as follows
a = b ≡ b ⊆ a rate 1, which implies pa = pb.

Fig. 9. PCLTS for subclocking and exclusion

Compare Fig. 9(a) to Fig. 3(a).

4.3 (Machine) Learning CCSL

A very recent work observes that using ccsl may be difficult for capturing
requirements. This is especially true early in the design process when require-
ments are unclear. Indeed, using a formal language forces semantic choices. Early
requirements must be flexible. While logical clocks allow some form of flexibility
deciding which ccsl operator must be used may be a tough choice. What is
usually easier for the designer is to give examples of expected or unexpected
scenarios. The recent work [26] was trying to deduce a full ccsl specification
from a set of scenarios/traces and from a partial specification.

The goal, and difficulty, is to find a specification that is as precise as possible
while still satisfying all the constraints. To explore alternative specifications, we
use reinforcement learning. We have a reward function that rewards tight speci-
fications. Making one constraint too tight may result in a suboptimal solution as
relaxing this constraint might allow to make another tighter. Figure 10 gives an
overview of the proposed framework. Each layer explores alternative solutions
for each hole. In the example, we have four holes, hence four layers.

Time: It is only Logical! 343

Fig. 10. Architecture and Workflow of a CCSL synthesizer accelerated by curiosity-
driven exploration

5 Conclusion

The paper attempts to retrace part of the history of ccsl. A part of its evolution
took place at the Software Engineering Institute in Shanghai. We also tried to
retrieve the papers from Professor He Jifeng that impacted the most paths that
were taken or ignored. Section 2 explores three semantics of ccsl. This is usually
considered a good practice and this is recommended by the Unifying Theory of
Programming. Hopefully, this section gives a good sense of why this could be
useful to study languages under different perspectives. However, we did not go
(yet) as far as showing the equivalence of the three semantics. This leaves some
exciting perspectives for the future.

Acknowledgements. I would like to sincerely thank the reviewers for their very
helpful and constructive comments. I would like to thank the Aoste team, in particular
Charles André and Robert de Simone who were at the initiative of ccsl, and also
Julien DeAntoni who joined soon after.

344 F. Mallet

In SEI, under the leadership of He Jifeng, there also were academics from
the beginning: . Then, a second generation:

and their students
This work was also made possible by Inria associated team Plot4IoT and by UCA

DS4H (ANR-17-IDEX-0004).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. André, C.: SyncCharts: a visual representation of reactive behaviors. Research
report RR 95–52, rev. RR (96–56), I3S, Sophia-Antipolis, France (1996)

3. André, C.: Syntax and semantics of the clock constraint specification lan-
guage (CCSL). Research report RR-6925, INRIA (2009). https://hal.inria.fr/inria-
00384077

4. André, C., Peraldi-Frati, M.: Behavioral specification of a circuit using SyncCha-
rts: a case study. In: EUROMICRO Conference, p. 1091. IEEE Computer Society
(2000). https://doi.org/10.1109/EURMIC.2000.874620

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3–12. IEEE
Computer Society (2006). https://doi.org/10.1109/SEFM.2006.27

6. Benveniste, A., Caillaud, B., Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Tag
machines. In: Wolf, W.H. (ed.) Embedded Software (EMSOFT), pp. 255–263. ACM
(2005). https://doi.org/10.1145/1086228.1086276

7. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003).
https://doi.org/10.1109/JPROC.2002.805826

8. Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., de Simone, R.:
ESTEREL: a formal method applied to avionic software development. Sci. Com-
put. Program. 36(1), 5–25 (2000). https://doi.org/10.1016/S0167-6423(99)00015-
5

9. Boulanger, F., Dogui, A., Hardebolle, C., Jacquet, C., Marcadet, D., Prodan,
I.: Semantic adaptation using CCSL clock constraints. Electron. Commun. Eur.
Assoc. Softw. Sci. Technol. 50 (2011). https://doi.org/10.14279/tuj.eceasst.50.731

10. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the GEMOC studio (tool demo). In: van der Storm,
T., Balland, E., Varró, D. (eds.) Software Language Engineering (SLE), pp. 84–89.
ACM (2016)

11. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Annual Symposium on Principles of
Programming Languages, pp. 178–188. ACM Press (1987). https://doi.org/10.
1145/41625.41641

12. Chen, X., Liu, Q., Mallet, F., Li, Q., Cai, S., Jin, Z.: Formally verifying consis-
tency of sequence diagrams for safety critical systems. Sci. Comput. Program. 216,
102777 (2022). https://doi.org/10.1016/j.scico.2022.102777

13. Colaço, J., Pagano, B., Pouzet, M.: SCADE 6: a formal language for embedded
critical software development. In: Theoretical Aspects of Software Engineering
(TASE), pp. 1–11. IEEE Computer Society (2017). https://doi.org/10.1109/TASE.
2017.8285623

https://doi.org/10.1016/0304-3975(94)90010-8
https://hal.inria.fr/inria-00384077
https://hal.inria.fr/inria-00384077
https://doi.org/10.1109/EURMIC.2000.874620
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1145/1086228.1086276
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1016/S0167-6423(99)00015-5
https://doi.org/10.1016/S0167-6423(99)00015-5
https://doi.org/10.14279/tuj.eceasst.50.731
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1016/j.scico.2022.102777
https://doi.org/10.1109/TASE.2017.8285623
https://doi.org/10.1109/TASE.2017.8285623

Time: It is only Logical! 345

14. Deantoni, J., Cambeiro, J., Bateni, S., Lin, S., Lohstroh, M.: Debugging and
verification tools for lingua franca in GEMOC studio. In: Forum on Specifica-
tion & Design Languages (FDL), pp. 1–8. IEEE (2021). https://doi.org/10.1109/
FDL53530.2021.9568383

15. DeAntoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30561-0_4

16. Du, D., Huang, P., Jiang, K., Mallet, F.: pCSSL: a stochastic extension to
MARTE/CCSL for modeling uncertainty in cyber physical systems. Sci. Comput.
Program. 166, 71–88 (2018). https://doi.org/10.1016/j.scico.2018.05.005

17. Eker, J., et al.: Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91(1),
127–144 (2003). https://doi.org/10.1109/JPROC.2002.805829

18. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.-P.: 29 new unclarities in the
semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005). https://doi.org/10.
1007/11576280_5

19. Fowler, M.: Domain-Specific Languages. Addison Wesley (2010)
20. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE

safety critical real-time systems. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Stör-
rle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 352–367. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9_27

21. Hardebolle, C., Boulanger, F.: ModHel’X: a component-oriented approach to multi-
formalism modeling. In: Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 247–
258. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69073-3_26

22. Harel, D.: StateCharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

23. Jifeng, H.: A clock-based framework for construction of hybrid systems. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 22–41. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39718-9_2

24. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
25. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
26. Hu, M., Ding, J., Zhang, M., Mallet, F., Chen, M.: Enumeration and deduction

driven co-synthesis of CCSL specifications using reinforcement learning. In: Real-
Time Systems Symposium (RTSS), pp. 227–239. IEEE (2021). https://doi.org/10.
1109/RTSS52674.2021.00030

27. Kang, E.-Y., Mu, D., Huang, L.: Probabilistic verification of timing constraints in
automotive systems using UPPAAL-SMC. In: Furia, C.A., Winter, K. (eds.) IFM
2018. LNCS, vol. 11023, pp. 236–254. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98938-9_14

28. Khan, A.M., Rashid, M.: Generation of SystemVerilog observers from SysML and
MARTE/CCSL. In: Real-Time Distributed Computing (ISORC), pp. 61–68. IEEE
Computer Society (2016). https://doi.org/10.1109/ISORC.2016.18

29. Kienzle, J., Mussbacher, G., Combemale, B., Deantoni, J.: A unifying framework
for homogeneous model composition. Softw. Syst. Model. 18(5), 3005–3023 (2019).
https://doi.org/10.1007/s10270-018-00707-8

30. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

31. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1016/j.scico.2018.05.005
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1007/11576280_5
https://doi.org/10.1007/11576280_5
https://doi.org/10.1007/978-3-642-31491-9_27
https://doi.org/10.1007/978-3-540-69073-3_26
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-642-39718-9_2
https://doi.org/10.1109/RTSS52674.2021.00030
https://doi.org/10.1109/RTSS52674.2021.00030
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1109/ISORC.2016.18
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/s100090050010

346 F. Mallet

32. Le Guernic, P., Benveniste, A., Bournai, P., Gautier, T.: Signal - a data flow-
oriented language for signal processing. IEEE Trans. Acoust. Speech Sig. Process.
34(2), 362–374 (1986). https://doi.org/10.1109/TASSP.1986.1164809

33. Le Guernic, P., Talpin, J., Lann, J.L.: POLYCHRONY for system design.
J. Circ. Syst. Comput. 12(3), 261–304 (2003). https://doi.org/10.1142/
S0218126603000763

34. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of
computation. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 17(12), 1217–
1229 (1998). https://doi.org/10.1109/43.736561

35. Li, T., et al.: Runtime verification of spatio-temporal specification language. Mob.
Netw. Appl. 26(6), 2392–2406 (2021). https://doi.org/10.1007/s11036-021-01779-
5

36. Liu, J., Liu, Z., He, J., Mallet, F., Ding, Z.: Hybrid MARTE statecharts. Front.
Comput. Sci. 7(1), 95–108 (2013). https://doi.org/10.1007/s11704-012-1301-1

37. Lund, M.S., Refsdal, A., Stølen, K.: 4 semantics of UML models for dynamic
behavior. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS
2007. LNCS, vol. 6100, pp. 77–103. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16277-0_4

38. Mallet, F., Millo, J., de Simone, R.: Safe CCSL specifications and marked graphs.
In: Formal Methods and Models for Codesign (MEMOCODE), pp. 157–166. IEEE
(2013). https://ieeexplore.ieee.org/document/6670955/

39. Mallet, F., Zholtkevych, G.: Coalgebraic semantic model for the clock constraint
specification language. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS,
vol. 476, pp. 174–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17581-2_12

40. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous lan-
guage. Comput. Lang. 27(1/3), 61–92 (2001). https://doi.org/10.1016/S0096-
0551(01)00016-9

41. Montin, M., Pantel, M.: Mechanizing the denotational semantics of the clock con-
straint specification language. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M.,
Méry, D., Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 385–400. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00856-7_26

42. Montin, M., Pantel, M.: Towards multi-layered temporal models: a proposal to inte-
grate instant refinement in CCSL. In: Peters, K., Willemse, T.A.C. (eds.) FORTE
2021. LNCS, vol. 12719, pp. 120–137. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-78089-0_7

43. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

44. Peters, J., Przigoda, N., Wille, R., Drechsler, R.: Clocks vs. instants relations:
verifying CCSL time constraints in UML/MARTE models. In: Formal Methods
and Models for System Design (MEMOCODE), pp. 78–84. IEEE (2016). https://
doi.org/10.1109/MEMCOD.2016.7797750

45. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic
Program. 60–61, 17–139 (2004)

46. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

47. Sander, I., Jantsch, A.: System modeling and transformational design refinement
in ForSyDe [formal system design]. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 23(1), 17–32 (2004). https://doi.org/10.1109/TCAD.2003.819898

https://doi.org/10.1109/TASSP.1986.1164809
https://doi.org/10.1142/S0218126603000763
https://doi.org/10.1142/S0218126603000763
https://doi.org/10.1109/43.736561
https://doi.org/10.1007/s11036-021-01779-5
https://doi.org/10.1007/s11036-021-01779-5
https://doi.org/10.1007/s11704-012-1301-1
https://doi.org/10.1007/978-3-642-16277-0_4
https://doi.org/10.1007/978-3-642-16277-0_4
https://ieeexplore.ieee.org/document/6670955/
https://doi.org/10.1007/978-3-319-17581-2_12
https://doi.org/10.1007/978-3-319-17581-2_12
https://doi.org/10.1016/S0096-0551(01)00016-9
https://doi.org/10.1016/S0096-0551(01)00016-9
https://doi.org/10.1007/978-3-030-00856-7_26
https://doi.org/10.1007/978-3-030-78089-0_7
https://doi.org/10.1007/978-3-030-78089-0_7
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1109/MEMCOD.2016.7797750
https://doi.org/10.1109/MEMCOD.2016.7797750
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1109/TCAD.2003.819898

Time: It is only Logical! 347

48. Shao, Z., Liu, J., Ding, Z., Chen, M., Jiang, N.: Spatio-temporal properties analysis
for cyber-physical systems, pp. 101–110 (2013)

49. de Simone, R., André, C.: Towards a “synchronous reactive” UML profile? Int.
J. Softw. Tools Technol. Transf. 8(2), 146–155 (2006). https://doi.org/10.1007/
s10009-005-0206-9

50. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40561-7_1

51. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

52. The Object Management Group: Unified Modeling Language, Version 2.0 (2005).
https://www.omg.org/spec/UML/2.0

53. The Object Management Group: A UML Profile for MARTE, v. 1.0 (2009).
https://www.omg.org/spec/MARTE/

54. Nguyen Van, H., Balabonski, T., Boulanger, F., Keller, C., Valiron, B., Wolff, B.:
A symbolic operational semantics for TESL. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 318–334. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3_18

55. Van, H.N., Boulanger, F., Wolff, B.: TESL: a model with metric time for modeling
and simulation. In: Muñoz-Velasco, E., Ozaki, A., Theobald, M. (eds.) Temporal
Representation and Reasoning (TIME). LIPIcs, vol. 178, pp. 15:1–15:15. Schloss
Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.TIME.2020.15

56. Yang, J., Chen, X., Yin, L.: Eliciting timing requirements for cyber-physical sys-
tems: a multiform time based approach. In: Theoretical Aspects of Software Engi-
neering (TASE), pp. 199–206 (2021). https://doi.org/10.1109/TASE52547.2021.
00024

57. Zhang, M., Dai, F., Mallet, F.: Periodic scheduling for MARTE/CCSL: theory
and practice. Sci. Comput. Program. 154, 42–60 (2018). https://doi.org/10.1016/
j.scico.2017.08.015

58. Zhang, M., Song, F., Mallet, F., Chen, X.: SMT-based bounded schedulability
analysis of the clock constraint specification language. In: Hähnle, R., van der
Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 61–78. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-16722-6_4

59. Zhang, Y., Mallet, F., Chen, Y.: A verification framework for spatio-temporal con-
sistency language with CCSL as a specification language. Front. Comp. Sci. 14(1),
105–129 (2018). https://doi.org/10.1007/s11704-018-7054-8

60. Zholtkevych, G., Labzhaniia, M.: Understanding safety constraints coalgebraically.
In: Computational Linguistics and Intelligent Systems (COLINS), vol. 2604, pp.
1–19 (2020). http://ceur-ws.org/Vol-2604/paper1.pdf

https://doi.org/10.1007/s10009-005-0206-9
https://doi.org/10.1007/s10009-005-0206-9
https://doi.org/10.1007/978-3-642-40561-7_1
https://doi.org/10.1007/978-3-642-40561-7_1
https://www.omg.org/spec/UML/2.0
https://www.omg.org/spec/MARTE/
https://doi.org/10.1007/978-3-319-65765-3_18
https://doi.org/10.1007/978-3-319-65765-3_18
https://doi.org/10.4230/LIPIcs.TIME.2020.15
https://doi.org/10.1109/TASE52547.2021.00024
https://doi.org/10.1109/TASE52547.2021.00024
https://doi.org/10.1016/j.scico.2017.08.015
https://doi.org/10.1016/j.scico.2017.08.015
https://doi.org/10.1007/978-3-030-16722-6_4
https://doi.org/10.1007/s11704-018-7054-8
http://ceur-ws.org/Vol-2604/paper1.pdf

Applying Formal Verification to an
Open-Source Real-Time Operating System

Andrew Butterfield1(B) and Frédéric Tuong2

1 Trinity College Dublin, Dublin, Ireland
butrfeld@tcd.ie

2 Simon Fraser University, Burnaby, BC, Canada
ftuong@sfu.ca

Abstract. This paper describes work done using formal methods to ver-
ify parts of the RTEMS real-time operating system, as part of an activity
sponsored by the European Space Agency to qualify multi-core proces-
sors for spaceflight. A variety of formalisms were investigated, keeping
in mind the need to be a good fit with the RTEMS community in gen-
eral. The technique that was deployed used Promela to model aspects of
the operating system behavior, and the SPIN model-checker to do test
generation. This involved developing Promela models, which are formal
artifacts, and then developing a simple machine-readable observation
language that made it easy to connect model behavior to the genera-
tion of C test code. The observation language was then refined to code
using a dictionary mapping observable elements to test code snippets.
Neither the observable language of the dictionary mapping are formal,
so this paper also explores how these might be given UTP semantics,
and linked together, in which the research of He Jifeng plays a key role.
It finishes defining a future research agenda that uses this work with a
real-world application to drive the research.

Keywords: Unifying theories of programming · Model checking ·
Promela/SPIN · Test Generation · Real-Time Operating Systems ·
RTEMS

1 Introduction

The first author’s first academic interaction with He Jifeng was his 2002 paper
with Adnan Sherif on Circus Time [42]. This was a key starting point for early
work on Slotted Circus [16]. One earliest memory of meeting He Jifeng in person
was at UTP2008 which was hosted in Trinity College Dublin, at which he gave
the keynote talk [29] (among others!). This paper explores how Unifying Theories
of Programming (UTP [33]) might be used to give an overarching description of
work we did using formal methods to verify parts of RTEMS [11]. In particular,
we look at how the work of He Jifeng provided, and continues to provide, key
material towards fulfilling this aim.

Supported by ESA Contract No. 4000125572/18NL/GLC/as, and assistance from Lero
and the RTEMS community.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 348–366, 2023.
https://doi.org/10.1007/978-3-031-40436-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_13&domain=pdf
http://orcid.org/0000-0002-2337-2101
http://orcid.org/0009-0009-2462-6669
https://doi.org/10.1007/978-3-031-40436-8_13

Verifying an Open-Source RTOS 349

This paper describes work we did to introduce formal methods into an activ-
ity sponsored by the European Space Agency (ESA) to qualify a new version
of the RTEMS1 open-source real-time operating system [5], tailored for multi-
core processors. It also looks at how Unifying Theories of Programming (UTP)
[33] could be used to fill the formal semantic gaps that arose as a result of our
approach.

The ESA activity, Qualification of RTEMS Symmetric Multiprocessing
(SMP), was led by Thales Edisoft, involving also Embedded Brains, the CISTER
Research Centre at U. Porto, Jena Optronik, and ourselves. A single-core ver-
sion of RTEMS had previously been qualified by Edisoft, and this new activity
looked at upgrading that to cover multi-core, and to also provide tooling to ease
the cost of the testing, reporting, and document generation involved. Edisoft,
Embedded Brains and CISTER worked on these aspects, and they had to meet
the standards expected, as defined by the relevant standards for software assur-
ance [24]. All the artifacts that they would produce were to be made available,
open-source, in the RTEMS git repositories [2], in a manner that adhered to
the RTEMS community guidelines [46, §1.3]. Jena Optronik used a proprietary
real-world application of theirs to assess the methodology developed by the other
partners.

Our role was to explore how best to use formal methods to support qualifi-
cation, in a way that would also fit with RTEMS community guidelines. After
an initial survey and review of suitable formalisms, we elected to use the model-
checker Promela/SPIN[35] to do test generation. This focussed on parts of the
RTEMS API that dealt with task synchronization facilities, including signalling
events, synchronization barrier, message-passing, and semaphores. The empha-
sis was on the functional correctness of the relevant API calls, when invoked by
concurrent tasks. Also, the success criteria for the qualification effort as a whole
was not tied to our efforts, in that the other partners had to meet the relevant
standards, including those regarding test coverage, independently of what we
achieved.

In the Background section (Sect. 2) we give an overview of the RTEMS qual-
ification project, and introduce the Promela language and SPIN model-checker.
In the Formal Models section (Sect. 3) we give more details of the formal app-
roach and give an overview of one the models we constructed. In the Refinement
section (Sect. 4) we explain how we map the counter-examples generated from
SPIN into RTEMS C test code. In all of the above we explore how UTP might
be applied to formally connect all the pieces. We then discuss Related Work
(Sect. 5) and finish with Conclusions and future work (Sect. 6).

2 Background

2.1 RTEMS

RTEMS[5,11] is a real-time operating system aimed mainly at embedded sys-
tems. It is open-source and freely available [2], mainly under a BSD-2 license.
1 Real-Time Executive for Multiprocessor Systems.

350 A. Butterfield and F. Tuong

It is an operating system of choice for ESA, who have funded a number of past
initiatives [3,4] to bring RTEMS up to the quality standards they require These
are European-based standards for critical space software [23,24], involving a lot
of testing, traceability and documentation, but no formal methods. The qualifi-
cation so obtained covered versions of RTEMS aimed at single-core processors.

However, the widespread availability of multi-core processors, including those
that are space-hardened, has led to increased demand for their approval for space
missions. In addition, two recent new multi-core adaptations of existing scheduler
algorithms were implemented for RTEMS. These were the O(m) Independence-
Preserving Protocol (OMIP) [12], and the Multiprocessor Resource Sharing Pro-
tocol (MrsP) [13]. Both were merged and added to RTEMS [18] and have been
updated and enhanced several times since [28]. The move to multi-core sup-
port caused a large increase in the complexity of the code, especially as far
as scheduling was concerned. This ranges from the implementation of synchro-
nisation primitives such as semaphores, barriers, events, messaging, and a key
component underlying these: thread queues.

This led to the establishment in 2018 of an activity called “Qualification of
RTEMS Symmetric Multiprocessing (SMP)” to perform a pre-qualification2 of
two- and four-core processors for spaceflight. This activity had a number of key
goals beyond just producing a pre-qualified version of multi-core RTEMS. These
included:

– Developing tools to automate the generation and reporting of the evidence
needed to demonstrate that the qualification standards had been achieved.

– Providing all the tooling, and code improvements in a form that could be fed
back into the RTEMS open-source repositories.

The second goal is key. The purpose of this work went beyond just the needs
ESA had for qualifying software, but also included the desire by the RTEMS
community to gain expertise themselves in the ability to perform safety critical
certification and qualification. The idea is that the techniques could be reused
by RTEMS users in other safety critical application areas.

This second goal meant that all qualification materials should fit in with
RTEMS community guidelines [46, §1.3],[45, §2]. One key consequence of this is
to consider the needs of all users, from hobbyist to safety-critical system devel-
opers. This means that large complex software entities with many dependencies
should be avoided where possible. Another principle is that licensing must have
a BSD-2 flavour, rather than something like GPL—this is because it is expected
that companies will link RTEMS with proprietary applications.

Formal Methods for ESA for RTEMS. The investigation into the use
of formal methods had three phases: an initial exploration of available and
suitable formal techniques; apply the chosen techniques to selected parts of

2 ESA uses qualification to refer to an entire mission. RTEMS is a sub-component of
a mission, so such partial treatments are called pre-qualifications.

Verifying an Open-Source RTOS 351

Fig. 1. Simplified syntax for atomic Promela statements.

Fig. 2. Simplified syntax for composite Promela statements. Here stmts denotes one
or more sequenced stmts.

RTEMS; and producing a final report. The initial investigation explored a range
of techniques, including, among others, Isabelle/HOL [39], Frama-C [36], and
Promela/SPIN[35]. The outcome was a decision to focus on using Promela/SPIN
to perform test generation, as this technology is a good fit with the RTEMS
guidelines, and the 2009 survey paper by Hierons et al. [32] makes a very good
case for using model-checkers like SPIN in this way.

2.2 Promela/SPIN

Promela/SPIN is easy to install (spinroot.com), requiring little more than a
C compiler along with the lex and yacc utilities. This made it a good fit for
RTEMS users in terms of its size and installation. Promela is the modelling lan-
guage, while SPIN is the model-checker. The Promela language, based loosely
on C, is imperative in character, with a notion of state defined by variables,
and notation that allows concurrent process behavior to be defined. Behavior is
defined by statements which can be atomic (Fig. 1), such as assignment, or com-
posite (Fig. 2), like conditionals or iteration. Communication between processes
can be via shared global variables, or using CSP-like channel-based message pass-
ing. The semantics is based on arbitrary interleaving of the sequence of atomic
actions performed by each process. Each process has a “program counter” that
identifies the next statement to be executed. The state of a Promela model is

352 A. Butterfield and F. Tuong

defined by the values of all the variables and the program counters of the live
processes.

The above description could be of a concurrent programming language, but
Promela is for modelling, and so its semantics differs in crucial ways. The first key
difference is the notion of “executability”. Some language constructs are always
ready to run, while others may only run in certain model states. The skip,
assignment and assertions are always executable. While assert(e) is always
executable, if e evaluates to false, then the model run/analysis aborts, reporting
a violation. A “bare” expression can occur where a statement is expected. It is
blocked in any state in which it evaluates to zero. If not blocked, it can proceed,
and behaves like skip. In effect it waits for itself to become true, which means
there is no need in many cases to model waiting with some kind of busy-waiting
loop. The run statement is blocked if the current number of processes equals the
maximum allowed. If this is not the case, then it is an atomic action that starts
an instance of the named process.

For composite statements, executability depends on that of the atomic state-
ments that are first in line to execute. For sequential composition, the whole
is executable if the first statement is. The conditional and iteration notation is
very similar to that in Dijkstra’s Guarded Command Language[22]. The only
difference here is that the first (guard) component can be a general statement,
and need not be an expression. Both the if and do statement are executable
if at least one of their statement sequences is executable. If more than once
choice is executable, then a non-deterministic choice is made between them.
The if-statement terminates when its chosen branch does, while the do will
repeat the whole choice process. There is a special atomic statement break, only
valid in loops, that terminates the loop. The atomic keyword makes its enclosed
statements execute atomically (no other process can run). The exception is if
a sub-statement is not executable, in which case the atomicity breaks to allow
other processes run. When that statement once more becomes executable, then
it resumes running atomically.

Promela has datatypes similar to those found in C, with some variants where
it is possible to specify the number of bits. It also allows one-dimensional arrays,
and a record notation very similar to defining C “structs”.

The scope for procedural abstraction is quite limited. Process types are
defined using the proctype keyword, take named parameters, and can define
local variables. However these define complete processes, and can’t be used to
abstract a part of the process behaviour. The Promela language uses the C
preprocessor, and also the inline construct, which has named parameters, but
performs syntactic substitution.

The SPIN model-checker takes a Promela file and compiles it into a C model-
checking program tailored to the model defined in that file. It then can perform a
wide range of exhaustive analyses of that model, looking for deadlock, livelock,
starvation, unfairness, and failing assert statements. In addition, it can take
temporal properties described using Linear Temporal Logic (LTL) and check
those for possible violations. The models used by SPIN are extended Büchi

Verifying an Open-Source RTOS 353

automata [35, Chp. 6,7]. These are finite-state machines to which a criterion
for accepting infinite sequences has been added, namely that every cycle in the
model involves visiting a designated accepting state. It is interesting to note that
He Jifeng has been involved in explorations of the relationship between LTL and
Büchi automata [37].

3 Formal Models Of RTEMS

We being with an overview of the formal approach adopted, followed by using
one of our models as an example of what is actually involved. We present a
high level overview, and then use one model/test scenario to discuss some of the
complexity that arises, and finish describing other processes used to model OS
behavior.

3.1 Formal Approach

Our overall approach was to start with the RTEMS documentation, most notably
that contained in the Classic API Guide[44]. This has sections that cover key
concepts, as well as specific sections describing services in terms of Managers.
These sections typically define an Application Interface (API) by specifying the
relevant C prototypes, describing how to call these, what their effects are, and
what kinds of error or success indicators get returned.

The Chains API [44, §34] was used initially to figure out the end-to-end
methodology, from a Promela model to running passing tests on both simulators
and real hardware. The Promela model would describe correct behavior, and
also specify desirable properties using assertions and LTL. We would use SPIN
to check it in the usual way to ensure correctness of our model (deadlock freedom,
assertion checks, etc.) We then used the fairly obvious idea[17] of taking each
property, negating it, and re-running the model-checker. It would then report
a violation and issue a counterexample. However, this counterexample is an
example of a correct run of the system, and hence can be used as a scenario for
test generation.

Normally SPIN stops once any error is found and returns the relevant coun-
terexample, but, it can also be asked to continue checking the entire model to
find all errors. This can be exploited to get a collection of scenarios that give a
range of correct behaviours. If we have models that are guaranteed to terminate,
then they can be used to generate all possible correct behaviours by adding
assert(false) at the end.

All of the models completed to date are ones that terminate. This is
because, in addition to the Chains API, we have focussed on modelling Man-
agers associated with task synchronisation of some form: events, barriers, mes-
sages, semaphores. None of these require models that run forever, because the
requirements focus on the outcomes of making the various API calls, in terms of
side-effects and return codes. What is important is the interaction between such

354 A. Butterfield and F. Tuong

calls performed by concurrent tasks. The key metric being used to gauge test
quality is code coverage. This does not require models to be non-terminating.

In addition, we need to ensure that the scenarios we produce from our models
do terminate, because a test is not helpful if it fails to terminate (in practice
test frameworks put timeouts in place to abort looping tests).

We now describe how we modelled parts of RTEMS using Promela, in a
manner that would support test generation, using the Events Manager [44, §15]
as a running example. The Chains API got the basics going, but only involved
one RTEMS task, while this Manager involves at least two tasks in general, and
also has requirements regarding priority and preemption for these tasks.

3.2 The RTEMS Event Manager

The Events Manager [44, §15] allows RTEMS tasks to send and receive event-
sets, where an event is a number between 0 and 31 inclusive. The meanings of
these numbers are application-specific, so the Events Manager is only concerned
with their transmission, and does not care what they might mean. There are two
API calls in this Manager (Send,Receive):

– (Send) rc = rtems_event_send(id,events) sends the event-set events to
the task with identifier id.

– (Receive) rc = rtems_event_receive(wanted,options,ticks,rcvptr) is
called by a task looking to receive events in event-set wanted, and if suc-
cessful, will find the obtained events at the location pointed to by rcvptr.
The parameters options and ticks are used to specify waiting criteria and
a timeout interval.

Both calls return an RTEMS status code, shown above as rc.
We modelled all behavior of these API calls, including the situations that

resulted in error status codes. These include invalid values for parameters such
as task identifiers id or the receive pointer rcvptr. The Receive operation has
various waiting options (none,timeout,forever) so can report being unsatisfied
or having timed out. These can all be checked with a test that just calls one or
other API appropriately.

The gist of correct behavior is as follows: every RTEMS task has an associated
pending event-set variable, initially empty. The effect of sending an event-set is
to add those events into the pending set. When, or if, the receiver is satisfied, the
satisfying events only are removed from the pending set and are written to the
location pointed to by rcvptr. The tests need to verify that these pending event-
sets are modified correctly. This can be done using the Receive call, specifying
an empty set for wanted which simply returns the current value of the pending
set without modifying it.

In our Promela model, we only needed at most four events, to get all relevant
test combinations, that exercise all paths through the code. For a given call of
Receive, one model event models all unwanted events, then we have two model
events to capture that it may take more than one send to satisfy the receive.

Verifying an Open-Source RTOS 355

Any combination of 32-bit wanted and sent event sets can be refined down to
4-bit sets that capture the same pattern of behavior.

3.3 High Level Model Overview

It is clear that our Promela model needs to capture the correct behavior of the
two API calls, based on a careful reading of the documentation. We determined
how these could then be orchestrated to produce useful tests by looking at exist-
ing RTEMS test code for the Events Manager. The basic structure of a test
was that an initial runner task would be started which would initialise the test
state and also start a number of worker tasks, as needed to participate in the
test. The runner task would then call parts of the API, while the worker tasks
would typically do something complementary. For the Events Manager, the run-
ner played the role of a task doing Receive, while one worker did one or two
Sends. When the test was done, the runner task would perform the appropriate
teardown procedure.

We use Promela processes to model RTEMS runner and worker tasks. So we
chose to model a situation that had two RTEMS tasks, one that would perform
between zero and two event sends (Send), while the other performed at most one
receive operation (Receiver). We wanted to support a range of scenarios, from
those that checked error-reporting for individual API calls, to those that mixed
a receive call with up to two send calls. We defined general scenario types using
Promela’s only enumeration type:

mtype = {Send ,Receive ,SndRcv ,SndRcvSnd ,...};
mtype scenario;

The idea is to specify that the scenario choice is nondeterministic. We do this
using a conditional statement where each guard is an always executable assign-
ment:

if
:: scenario = Send;
:: scenario = Receive;
:: scenario = SndRcv;
:: scenario = SndRcvSnd;
::
fi

The value of scenario would then be used by deterministic conditionals to
initialize variables that determined detailed flow of control.

3.4 Modelling Send;Receive;Send

We will now look at a single scenario where the worker performs a Send first,
and then the runner does a Receive, where it opts to wait either for a timeout
or indefinitely, and finally the worker does a second Send. We assume that the

356 A. Butterfield and F. Tuong

first Send does not satisfy the Receive, but that the second Send adds in what
was missing. The description of Send and Receive given earlier focussed on the
receiver’s wanted and pending event sets, but this is not the full picture. We have
two tasks synchronizing over these event sets, when the receiver, when called, is
not satisfied. So it blocks, either indefinitely or for a specified timeout interval.
These are different blocking circumstances that can lead to different return code
outcomes, so we need to model this distinction in our Receive API model.

While the behavior of the Send seems simple, just being an update of the
pending set, we do in fact also need to model that this may unblock a wait-
ing receiver. In effect, we need to have a variable state associated with each
Promela process that models the corresponding tasks RTEMS scheduler state
(executing, ready, blocked, dormant, and non-existent [44, §5.2.5]). In practice we
need to model Ready, and three variants of being blocked (EventWait,TimeWait,
OtherWait). The first two model Receive waiting indefinitely or for a timeout.
The third models a case where the Send can be forced to wait, due the following
requirement for rtems_event_send:

“The calling task will be preempted if it has preemption enabled and a
higher priority task is unblocked as the result of this directive. ”[44, §15.4.1,
Notes]

Clearly we needed to model priorities as well but we don’t discuss this here.

Fig. 3. Promela specification of rtems_event_send

The resulting behavior for Send is modelled by the Promela inline definition
in Fig. 3. There are three other inlines called by event_send:

Verifying an Open-Source RTOS 357

– satisfied encodes when a receiver is satisfied.
– preemptIfRequired checks if the sender is required to be preempted, and if

so sets its state to OtherWait.
– waitUntilReady blocks internally on the expression statement state ==
Ready, waiting for something else to make it so.

In the Receiver, we use satisfied, can set state to TimeWait or EventWait,
and call waitUntilReady.

Given that both Send and Receive can block, we need some other mecha-
nism to unblock them. A satisfying Send can unblock a waiting Receiver, but
so can a timeout. We also need to model a preempted Send being eventually
free to run again, once the higher priority Receive is done. This achieved by
adding two Promela processes called Clock and System. The Clock process
emits regular clock ticks and decrements timeout data associated with processes
in state TimeWait, setting their state to Ready when the timeout reaches zero.
The System process models relevant parts of the RTEMS scheduler, mainly the
fact that processes in state OtherWait eventually become Ready. The Send and
Receive processes terminate and set their state to Zombie, and the system pro-
cess watches for this and then ends the model run when all processes are done.
The last line in the model used for test generation is:

assert(false);

3.5 Towards a UTP Semantics for Promela

We can summarise the subset of Promela that we use with the following abstract
syntax. We assume appropriate types t, expression syntax e, and process names
p. We then start with statements:

s ::= II | e | x := e | assert e | s1; s2
| if s1, . . . , sn fi | do s1, . . . , sn od

| atm s | run p(e1, . . . , en)

The language here is very reminiscent of stateful-failure reactive designs in
Foster et al. [25], with some laws like the following:

if i ∈ I • b(i) � P (i)fi = (
�

i

b(i) � P (i)) � ((¬
∨

i

b(i)) � chaos)

However, guards b above can be general statements s here, with the Promela
notion of executability. In particular, an if with all branches blocked is simply
blocked itself, and does not behave like chaos, and their b � P becomes b;P in
our language.

He Jifeng and his colleagues have been exploring semantics for Verilog for two
decades [31,41,50] A common feature of this work is using UTP to help link the
different semantic forms: algebraic, denotational, and operational. In recent work

358 A. Butterfield and F. Tuong

on MDESL, a Verilog-like language, they address shared variable concurrency
using pre-emption points [40, Defn. 2.1]. These occur at specific points related
to timing and parallel constructs, and are the only places where the scheduler
can allow the environment to run. A discrete time model is presented as time-
stamped sequences of sequences of snapshots. A chop operator (P � Q) defines
sequential composition on this model, and then auxiliary design variables (e.g.
ok) are added, and MDESL sequential composition is defined using chop. The
final result is a healthy process

H(¬div(P) � wait(P) � wait′ � ter(P))

which also has the form of Foster et al.’s reactive contract [26].
In Promela, every basic action is a pre-emption point, with the exception of

inside an atomic, which corresponds closely to the notion of atomic action in
the MDESL semantics. In a sense Promela is very close to maximally interfering
shared-variable concurrency, as modelled in our work on UTCP[15]. However
this is very low-level, and needs to have abstractions built on top in order to be
useable. Perhaps MDESL could be such an abstraction?

Finally, we note that the concept of model-checking and associated temporal
logics has been given a UTP formulation by Anderson et al. [8].

4 Refining Promela to C

4.1 Observing SPIN Counterexamples

Once satisfied that the Promela model is correct by using SPIN to verify prop-
erties, we then negated those properties in order to obtain test scenarios. The
counter-example output produced by SPIN is designed to be read by the model
authors, and reports state values using Promela syntax, as well as line-numbers
in the model text. However, we wanted to automate the process of converting
a counterexample into a test, so we needed to have a more generic way to see
what was happening in the model, using a notation that was easy to parse.

Promela has a printf statement that supports a simple subset of the one
available in C. It has no effect when SPIN performs a verification run, but does
produce output when SPIN is run in simulation mode, or when counterexamples
are being displayed. We defined a simple observation language that we used to
generate an appropriate textual abstraction of Promela state.

As an example, consider invoking event_send in the model. We want to
know that we have called it, what its inputs were, and what its return code was
when it returned. So we bracket its invocation with two printf statements:

printf("@@@ %d CALL event_send %d %d %d sendrc\n",
_pid ,taskid ,sendTarget ,sendEvents);

event_send(taskid ,sendTarget ,sendEvents ,sendrc);
printf("@@@ %d SCALAR sendrc %d\n",_pid ,sendrc);

Verifying an Open-Source RTOS 359

Note here that the parameter taskid is the index into a task array, and is
not the corresponding Promela process id. We start every such output with a
marker string @@@, which is used to filter these statements out of SPIN’s own
reporting material. We then output the Promela process number, denoted by
special Promela variable _pid. This is very important as we need to know when
the running process changes if we are to generate test code that reproduces this
scenario.

The next component is a keyword indicating what kind of observation is
being presented. We use CALL to denote a function call, and SCALAR to denote
a simple value. The function call then displays the arguments for the inline
call (including the name of the sendrc placeholder). The scalar value will be
the value of the return code. There is a wide range of other keywords that cover
declarations, initialisation, atomic and structured values, task management, and
logging.

An example output might be:

@@@ 3 CALL event_send 1 2 10 sendrc
@@@ 3 SCALAR sendrc 0

Here we see that Promela process 3 performed a call to event_send in which it
identifies itself as being RTEMS task 1, with RTEMS task 2 as target, passing
the event set {3, 1}, and storing its return code in variable sendrc. We then see
that sendrc is a scalar variables whose current value is zero.

4.2 Refining printf Observations

In order to get test code we need to define a refinement relation we use to get
from model output to C test code. We use a Python dictionary that maps names
with arguments to a text item into which those arguments can be substituted.
The keywords like CALL, SCALAR, and others, determine precisely how both the
dictionary lookup and the resulting substitution is done. The dictionary is itself
stored as a YAML file.

The process for refining both these observations is to lookup the name that
immediately follows the keyword, substitute the arguments into the retrieved
text, and add it to the code being generated. The refinement entries for
event_send (simplified) and sendrc are:

event_send: |
{3} = rtems_event_send({1}, {2});

sendrc:
T_rsc(sendrc , {0});

The CALL observation is refined by substituting in 2, 10, and sendrc into the
event_send entry, while the SCALAR observation involves looking up sendrc and
substituting in 0. This results in the following C test code snippet:

sendrc = rtems_event_send(2, 10);
T_rsc(sendrc , 0);

360 A. Butterfield and F. Tuong

Here, T_rsc is a test function that checks that a return code has the specified
value.

The YAML refinement dictionary is not the whole story. In addition to includ-
ing the test framework, where T_rsc is defined, we also have to define some C
functions that support the refinement. The actual test program will consist of
a preamble in which such functions are defined, followed by the test code gen-
erated by the YAML refinement, and finishing off with a postamble that does
proper test teardown.

4.3 Refining Task Switches

So far we have not discussed the use of the _pid number that follows the @@@
marker. Consider the following (very) simplified extract from one of the Event
scenarios, with added line numbers. This is the SndRcvSnd scenario, where the
sender process sends some events to the receiver, then the receiver asks to receive
some of those events plus others not just sent, and finally the sender sends more
events that satisfy the receiver.

1. @@@ 3 CALL event_send 1 2 2 sendrc
2. @@@ 4 CALL event_receive 10 1 1 0 2 recrc
3. @@@ 4 STATE 2 EventWait
4. @@@ 3 CALL event_send 1 2 8 sendrc
5. @@@ 4 SCALAR recrc 0

Line 1 shows the sender sending event set {1} to the receiver. Lines 2–3 shows
the receiver request to receive all events in {3}, but then blocks because it is not
satisfied and hence enters the state EventWait. Line 4 shows the sender running
again and sending event-set {3}. This satisfies the receiver. Line 5 shows the
receiver with a success return code.

The first use of _pid is to partition the refined C code into distinct segments,
one for each value of _pid that occurs. In the above example, the refinement of
lines 1 and 4 will be added to segment 3 (Worker), while those in lines 2, 3, and
5 will be added to segment 4 (Runner).

The temporal sequencing of the three Event API calls here is important.
These means that the corresponding C test code needs to suspend and waken
the two RTEMS Tasks at appropriate points. In particular, the RTEMS test code
needs to be reproducible in that it always interleaves concurrent code execution
the same way every time. Effectively all the non-determinism has to be refined
away.

The standard way of doing this is to used a so-called simple binary semaphore,
that has two API calls, one to obtain such a semaphore, another to release
it. Only one task can obtain it at a time, but any task can release it. Simple
binary semaphores are suitable for task synchronisation, and the Promela model
includes models of binary semaphores which are used appropriately, reported
using CALL, and refined to calls to the RTEMS equivalent.

Verifying an Open-Source RTOS 361

4.4 Towards a UTP Semantics of Promela-to-C Refinement

There are two stages to the refinement from the Promela model to C test code.
The first stage links the semantics of the model that of the observation language
used in the printf statements (e.g. CALL, SCALAR, etc.). The second stage links
the observation semantics to that of the C code itself. In each case we need UTP
semantics for the two parts along with a linking Galois connection [33, Chp. 4].

UTP Semantics of Model Observables. The observation semantics is fairly
straightforward as it is really just a simple way of reporting basic Promela events,
such as calling an inline definition, or reporting the observed value of a model
variable. The definition of the linking predicates will need to make use of the
contents of the refinement YAML file, and this observation semantics.

UTP Semantics of C. The first step in this stage is to have a UTP semantics
for C. We don’t need to work with the whole C language, but can restrict our-
selves to the subset that is actually used in safety critical systems, for example,
the widely used MISRA-C Standard [9]. These forbid the use of C constructions
that are semantically problematic, such as an expression in an assignment that
calls functions that update global variables. ESA mandates the use of coding
standards [24], while RTEMS has its own [45, §6.3], which also result in safe C
code.

This means we can treat the sequential parts of C as being essentially UTP
Designs [33, Chp. 3], with the addition of separation logic, to deal with C point-
ers. We already have UTP material on separation logic in Woodcock et al. [49],
which treated it as a sub-theory in a setting of heterogenous theories.

Concurrency semantics is also needed to cover both concurrent RTEMS
Tasks, and hardware-level concurrency with a software impact, most notably
interrupts. Again, it looks like our work on UTCP [15], and the work by He
Jifeng and colleagues on MDESL [41] may help here also. Another key area
to explore is the linkages between denotational and operational semantics, that
have been explored by extensively by He Jifeng and colleagues down the years
[30,33,40, Chp. 10].

5 Related Work

Promela Semantics. Most of the formal semantics material for Promela/SPIN
is operational in nature. An early example was the notion of a symbolic labeled
transition system [38]. This then inspired work using ACL2 for abstract syntax
which defined the semantics as a functional program [10]. Another approach used
SOS notation to build a three-layered operational semantics [48]. In the SPIN
book [35], there are sections on its semantics, based on extended Büchi automata,
with states defined with representations of variables, messages, processes and
other system attributes. It then defines a semantic engine, which is basically a
program in pseudo-code over this state space.

362 A. Butterfield and F. Tuong

Formal Methods and Testing. In 1995 Gaudel wrote a seminal paper relating
formal methods and testing [27]. This established a formal framework for talking
about the relationship between formal specifications and test code. Here we shall
discuss the key concepts in the context of our work with RTEMS. Key points
made in that paper include the fact that a specification generally can not serve
as a test oracle, and some form of refinement needs to be established between
it and test code. For our work we need to construct a refinement from Promela
via observations to C code. This provides what Gaudel terms the conformance
relation. It is possible to formally define an exhaustive test set, which has all valid
behaviours and is usually infinite in nature. but techniques need to be found to
shrink this to a finite test set that is adequate. In our case, model-checking
requires us to produce a finite model, and test generation requires limiting it to
finite behaviours, so we address this during Promela model design. Papers about
formal methods and testing in UTP include works by Cavalcanti and Gaudel
[19,20] and Aichernig et al. [6,47]. These all explore the conformance relation
concept. Also related is work by Aichernig and Jifeng on mutation testing [7].

Formalising Pointers. There have been a number of treatments of pointers
in UTP, most looking at them in an object oriented context. Hoare and He
did [34] early work on a trace model. Cavalcanti et al. [21] looked at pointers
where storage is an equivalence class of variables that share the same memory
location. Smith and Gibbons [43] present a similar notion based on sharable and
containable locations.

6 Conclusions

We have described some of the work we did applying formal methods to an ESA-
sponsored qualification activity for multi-core RTEMS. We focused on our use
of Promela to model synchronisation facilities in RTEMS, and on using SPIN to
generate tests. This involved defining a simple but novel observation language to
output information about key model events that could be interpreted as a test
specification. We then mapped these observations to actual C test code snippets.

During the above, we also explored how we could extend the formality of the
work beyond just that of the operational semantics of Promela. This involved
identifying what pre-existing UTP theories could be used to model both Promela
itself, and the refinement chain that involves the observation language and a
suitable subset of the C programming language.

The current state of play is that models and test generation software for the
Chains API, and the Event, Barrier and Message Managers, are now available
from the RTEMS Central git repository [1], in the formal sub-directory. A new
draft section on Formal Verification for the RTEMS Software Engineering man-
ual [45] is under review by the community. More work has since be done mainly
involving student projects, that has yet to be submitted to RTEMS for review
and inclusion. This ongoing work in this area is hosted on Github [14].

Verifying an Open-Source RTOS 363

6.1 Future Work

There is much work still to be done, with RTEMS. We plan to model far more
of RTEMS than done so far, as well as revisiting and re-factoring the existing
models. In particular, there is a need to formalise the new SMP-aware scheduler
thread queue algorithms, that are considerably more complex than the single
core versions, involving, for instance, task migration between cores.

In addition, the work done by Edisoft, Embedded Brains and CISTER has
resulted in a new concept for requirements capture called specification items
[45, §5], that encode enough information about RTEMS code artifacts to allow
tools to build test code, run tests, collect data, and generate reports. None of
this material is formal in any sense, but it does included descriptions that map
abstract pre/post-conditions to test code snippets. This opens the possibility,
given an appropriate UTP semantics, of being able to extract material to con-
tribute to a formal specification in UTP.

The real plan for future work here is to use RTEMS, with the Promela
models, the observation language, and the explicit use of C code, as a case study
for using UTP to develop a unified semantic model of all these components,
and their linkages. As has been pointed out, the work of He Jifeng has a great
amount to contribute to this endeavour.

References

1. RTEMS Central GIT repository. https://git.rtems.org/rtems-central
2. RTEMS GIT repositories. https://git.rtems.org/
3. RTEMS Improvement by Edisoft. https://www.esa.int/Enabling_Support/

Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_
EDISOFT

4. RTEMS Improvement by Embedded Brains. https://www.esa.int/Enabling_
Support/Space_Engineering_Technology/Software_Systems_Engineering/
RTEMS-SMP_Improvement_for_LEON_multi-core

5. RTEMS website. https://www.rtems.org/
6. Aichernig, B.K.: A testing perspective on algebraic, denotational, and operational

semantics. In: Ribeiro, P., Sampaio, A. (eds.) UTP 2019. LNCS, vol. 11885, pp.
22–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31038-7_2

7. Aichernig, B.K., He, J.: Mutation testing in UTP. Form. Asp. Comput. 21(1–2),
33–64 (2009). https://doi.org/10.1007/s00165-008-0083-6

8. Anderson, H., Ciobanu, G., Freitas, L.: UTP and temporal logic model checking. In:
Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 22–41. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14521-6_3

9. Banham, D., et al.: MISRA C:2012 Guidelines for the Use of the C Language in
Critical Systems. MISRA Limited, March 2013

10. Bevier, W.R.: Toward an operational semantics of PROMELA in ACL2. In:
SPIN’97. Twente University, Enshede, Netherlands, pp. 1–20 (1997). https://
spinroot.com/spin/symposia/ws97/bevier.pdf

11. Bloom, G., Sherrill, J., Hu, T., Bertolotti, I.C.: Real-Time Systems Development
with RTEMS and Multicore Processors, 1st edn. CRC Press, Boca Raton, Novem-
ber 2020

https://git.rtems.org/rtems-central
https://git.rtems.org/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_EDISOFT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_EDISOFT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_EDISOFT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://www.rtems.org/
https://doi.org/10.1007/978-3-030-31038-7_2
https://doi.org/10.1007/s00165-008-0083-6
https://doi.org/10.1007/978-3-642-14521-6_3
https://spinroot.com/spin/symposia/ws97/bevier.pdf
https://spinroot.com/spin/symposia/ws97/bevier.pdf

364 A. Butterfield and F. Tuong

12. Brandenburg, B.B.: A fully preemptive multiprocessor semaphore protocol for
latency-sensitive real-time applications. In: Proceedings of the 25th Euromicro
Conference on Real-Time Systems (ECRTS 2013), pp. 292–302 (2013). http://
www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf

13. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol - MrsP. In: Proceedings of the 25th Euromicro Conference on Real-
Time Systems (ECRTS 2013) (2013). http://www-users.cs.york.ac.uk/~burns/
MRSPpaper.pdf

14. Butterfield, A.: Formal RTEMS-SMP repository. https://github.com/
andrewbutterfield/RTEMS-SMP-Formal

15. Butterfield, A.: UTCP: compositional semantics for shared-variable concurrency.
In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 253–270.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70848-5_16

16. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons, J.
(eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73210-5_5

17. Callahan, J., Schneider, F., Easterbrook, S.: Automated software testing using
model-checking, pp. 118–127 (1996)

18. Catellani, S., Bonato, L., Huber, S., Mezzetti, E.: Challenges in the implementation
of MrsP. In: Reliable Software Technologies - Ada-Europe 2015, pp. 179–195 (2015)

19. Cavalcanti, A., Gaudel, M.-C.: A note on traces refinement and the conf relation in
the unifying theories of programming. In: Butterfield, A. (ed.) UTP 2008. LNCS,
vol. 5713, pp. 42–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14521-6_4

20. Cavalcanti, A., Gaudel, M.-C.: Specification coverage for testing in circus. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 1–45. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16690-7_1

21. Cavalcanti, A., Harwood, W., Woodcock, J.: Pointers and records in the uni-
fying theories of programming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006.
LNCS, vol. 4010, pp. 200–216. Springer, Heidelberg (2006). https://doi.org/10.
1007/11768173_12

22. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

23. ECSS: ECSS-E-ST-40C - Software general requirements. European Cooperation
for Space Standardization (2009). https://ecss.nl/standard/ecss-e-st-40c-software-
general-requirements/

24. ECSS: ECSS-Q-ST-80C Rev. 1 - Software product assurance. European Coopera-
tion for Space Standardization (2017). https://ecss.nl/standard/ecss-q-st-80c-rev-
1-software-product-assurance-15-february-2017/

25. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 137–155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7_7

26. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Theor. Comput. Sci. 802, 105–140 (2020). https://
doi.org/10.1016/j.tcs.2019.09.017

27. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-59293-8_188

http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
https://github.com/andrewbutterfield/RTEMS-SMP-Formal
https://github.com/andrewbutterfield/RTEMS-SMP-Formal
https://doi.org/10.1007/978-3-319-70848-5_16
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/978-3-540-73210-5_5
https://doi.org/10.1007/978-3-642-14521-6_4
https://doi.org/10.1007/978-3-642-14521-6_4
https://doi.org/10.1007/978-3-642-16690-7_1
https://doi.org/10.1007/978-3-642-16690-7_1
https://doi.org/10.1007/11768173_12
https://doi.org/10.1007/11768173_12
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://doi.org/10.1007/978-3-030-02146-7_7
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1007/3-540-59293-8_188

Verifying an Open-Source RTOS 365

28. Gomes, R.: Analysis of MrsP Protocol in RTEMS Operating System. Master’s
thesis, CISTER, Departmento de Engenharia Informática, Instituto Superior de
Engenharia do Porto (ISEP), Portugal (2019)

29. Jifeng, H.: Transaction calculus. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol.
5713, pp. 2–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14521-6_2

30. He, J., Li, Q.: A new roadmap for linking theories of programming and its appli-
cations on GCL and CSP. Sci. Comput. Program. 162, 3–34 (2018). https://doi.
org/10.1016/j.scico.2017.10.009

31. He, J., Xu, Q.: An operational semantics of a simulator algorithm. In: Arabnia,
H.R. (ed.) Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA 2000, 24–29 June 2000, Las
Vegas, Nevada, USA. CSREA Press (2000)

32. Hierons, R.M., et al.: Using formal specifications to support testing. ACM Comput.
Surv. 41(2), 9:1–9:76 (2009). https://doi.org/10.1145/1459352.1459354

33. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Hoboken
(1998). http://unifyingtheories.org

34. Hoare, C.A.R., Jifeng, H.: A trace model for pointers and objects. In: Guerraoui,
R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 1–18. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48743-3_1

35. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

36. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c: a
software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015). https://
doi.org/10.1007/s00165-014-0326-7

37. Li, J., Pu, G., Zhang, L., Wang, Z., He, J., Guldstrand Larsen, K.: On the relation-
ship between LTL normal forms and Büchi automata. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp.
256–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-
4_16

38. Natajaran, V., Holzmann, G.J.: Outline for an operational semantics of
PROMELA. In: SPIN’96. Rutgers University, NJ, USA, pp. 1–17 (1996). https://
spinroot.com/spin/symposia/ws96/Na.pdf

39. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Form. Asp.
Comput. 31(6), 675–698 (2019). https://doi.org/10.1007/s00165-019-00492-1

40. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical aspects
of linking operational and algebraic semantics for MDESL. ACM Trans. Softw.
Eng. Methodol. 28(3), 14:1–14:46 (2019). https://doi.org/10.1145/3295699

41. Sheng, F., Zhu, H., He, J., Yang, Z., Bowen, J.P.: Theoretical and practical
approaches to the denotational semantics for MDESL based on UTP. Form. Asp.
Comput. 32(2–3), 275–314 (2020). https://doi.org/10.1007/s00165-020-00513-4

42. Sherif, A., Jifeng, H.: Towards a time model for circus. In: George, C., Miao, H.
(eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36103-0_62

43. Smith, M.A., Gibbons, J.: Unifying theories of locations. In: Butterfield, A. (ed.)
UTP 2008. LNCS, vol. 5713, pp. 161–180. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14521-6_10

44. The RTEMS Project contributors: RTEMS Classic API Guide (2021). https://
docs.rtems.org/branches/master/c-user/index.html

45. The RTEMS Project contributors: RTEMS Software Engineering (2021). https://
docs.rtems.org/branches/master/eng/

https://doi.org/10.1007/978-3-642-14521-6_2
https://doi.org/10.1007/978-3-642-14521-6_2
https://doi.org/10.1016/j.scico.2017.10.009
https://doi.org/10.1016/j.scico.2017.10.009
https://doi.org/10.1145/1459352.1459354
http://unifyingtheories.org
https://doi.org/10.1007/3-540-48743-3_1
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-39698-4_16
https://doi.org/10.1007/978-3-642-39698-4_16
https://spinroot.com/spin/symposia/ws96/Na.pdf
https://spinroot.com/spin/symposia/ws96/Na.pdf
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1145/3295699
https://doi.org/10.1007/s00165-020-00513-4
https://doi.org/10.1007/3-540-36103-0_62
https://doi.org/10.1007/978-3-642-14521-6_10
https://doi.org/10.1007/978-3-642-14521-6_10
https://docs.rtems.org/branches/master/c-user/index.html
https://docs.rtems.org/branches/master/c-user/index.html
https://docs.rtems.org/branches/master/eng/
https://docs.rtems.org/branches/master/eng/

366 A. Butterfield and F. Tuong

46. The RTEMS Project contributors: RTEMS User Manual (2021). https://docs.
rtems.org/branches/master/user/

47. Weiglhofer, M., Aichernig, B.K.: Unifying input output conformance. In: Butter-
field, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 181–201. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14521-6_11

48. Weise, C.: An incremental formal semantics for PROMELA. In: SPIN’97. Twente
University, Enshede, Netherlands, pp. 1–20 (1997). https://spinroot.com/spin/
symposia/ws97/weise.pdf

49. Woodcock, J., Foster, S., Butterfield, A.: Heterogeneous semantics and unifying
theories. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
374–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_26

50. Huibiao, Z., Bowen, J.P., Jifeng, H.: From operational semantics to denotational
semantics for Verilog. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 449–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44798-9_34

https://docs.rtems.org/branches/master/user/
https://docs.rtems.org/branches/master/user/
https://doi.org/10.1007/978-3-642-14521-6_11
https://spinroot.com/spin/symposia/ws97/weise.pdf
https://spinroot.com/spin/symposia/ws97/weise.pdf
https://doi.org/10.1007/978-3-319-47166-2_26
https://doi.org/10.1007/3-540-44798-9_34
https://doi.org/10.1007/3-540-44798-9_34

KnowLang – A Formal Specification
Model for Self-adaptive Systems

Mike Hinchey and Emil Vassev(B)

Lero–The Science Foundation Ireland Research Centre for Software,
University of Limerick, Limerick, Ireland

mike.hinchey@lero.ie, emil.i.vassev@ul.ie

Abstract. KnowLang is a framework for knowledge representation and
reasoning (KR&R) that aims at efficient and comprehensive knowledge
structuring and awareness based on logical and statistical reasoning. It
tackles both explicit representation of domain concepts and relationships
and explicit representation of particular and general factual knowledge,
in terms of predicates, names, connectives, quantifiers and identity. More-
over, it handles uncertain knowledge in which additive probabilities are
used to represent degrees of belief. Other remarkable features are related
to knowledge cleaning and knowledge representation for autonomic self-
adaptive behaviour. Knowledge specified with KnowLang takes the form
of a Knowledge Base (KB) that outlines a KR context. A special KnowL-
ang Reasoner operates in this context to allow for knowledge query-
ing and update. In addition, the reasoner can infer special self-adaptive
behaviour.

At its very core, KnowLang is a formal specification language provid-
ing a comprehensive specification model aiming at addressing the knowl-
edge representation problem of self-adaptive systems. The complexity of
the problem necessitated the use of a specification model where knowl-
edge can be presented at different levels of abstraction and grouped by
following both hierarchical and functional patterns. In this paper, we
outline the formal semantics of the KnowLang multi-tier specification
model. The model is outlined in terms of layers dedicated to knowledge
corpuses, KB operators, and inference primitives.

Keywords: KnowLang · self-adaptive systems · formal specification

1 Introduction

Contemporary computerized systems like autonomous robots may boast intrinsic
intelligence that helps them reason about situations where autonomous decision
making is required. Robotic intelligence mainly excels at formal logic, which
allows it, for example, to find the right move from hundreds of previous moves
or by applying probability algorithms. The basic compound in this reasoning pro-
cess is appropriately structured knowledge used by embedded inference engines.
The knowledge is integrated in a system via knowledge representation techniques
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 367–392, 2023.

https://doi.org/10.1007/978-3-031-40436-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_14

368 M. Hinchey and E. Vassev

to build a computational model of the operational domain in which symbols serve
as knowledge surrogates for real world artefacts, such as system’s components
and functions, task details, environment objects, etc. The domain of interest
can cover any part of the real world or any hypothetical system about which
one desires to represent knowledge for computational purposes. Knowledge rep-
resentation primitives such as rules, frames, semantic networks, concept maps,
ontologies, and logic expressions might be used to represent distinct pieces of
knowledge that are worth being differently represented. Moreover, these primi-
tives might be combined into more complex knowledge elements. Whatever ele-
ments they use, engineers must structure the knowledge so that the system can
effectively process it and eventually derive its own behaviour.

KnowLang [14,15,17–20] is a framework for KR&R that aims at efficient
and comprehensive knowledge structuring and awareness based on logical and
statistical reasoning. It helps us to tackle 1) explicit representation of domain
concepts and relationships; 2) explicit representation of particular and general
factual knowledge, in terms of predicates, names, connectives, quantifiers and
identity; and 3) uncertain knowledge in which additive probabilities are used to
represent degrees of belief. Other remarkable features are related to knowledge
cleaning (allowing for efficient reasoning) and knowledge representation for auto-
nomic self-adaptive behaviour. Knowledge specified with KnowLang takes the
form of a Knowledge Base (KB) that outlines a KR context. A special KnowLang
Reasoner operates in this context to allow for knowledge querying and update.
In addition, the reasoner can infer special self-adaptive behaviour.

The rest of this paper is organized as follows. Section 2 presents the KnowL-
ang formal specification model including the constructs for specifying self-
adaptive behaviour. Section 3 provides a discussion on how KnowLang copes
with challenging problems such as encoded versus represented knowledge, the
specification of states, situations, goals and policies, and how sensory data is
converted to KR symbols. Section 4 outlines the KnowLang syntax. Section 5
provides and example of KR for Self-adaptive Behaviour with KnowLang and
Sect. 6 describes a case study where KnowLang has been used to specify and
formalize an eMobility autonomous system. Finally, Sect. 7 provides brief con-
cluding remarks and a summary of our future goals.

2 Specification Model

At its very core, KnowLang is a formal specification language providing a com-
prehensive specification model aiming at addressing the knowledge representa-
tion problem for self-adaptive systems. The complexity of the problem neces-
sitated the use of a specification model (inspired by the ASSL’s specification
model [11]) where knowledge can be presented at different levels of abstraction
and grouped by following both hierarchical and functional patterns. KnowLang
imposes a multi-tier specification model (see Fig. 1), where we specify a KB com-
posed of layers dedicated to knowledge corpuses, KB (knowledge base) operators
and inference primitives.

KnowLang - A Formal Specification Model for Self-adaptive Systems 369

Fig. 1. KnowLang Specification Model

Definitions 1 through 58 outline a BNF-like [6] formal representation of the
KnowLang Specification Model. As shown in Definition 1, a Knowledge Base is
a tuple of three main knowledge components – knowledge corpus (Kc), KB oper-
ators (Op) and inference primitives (Ip). A Kc is a tuple of three knowledge
components – ontologies (O), contexts (Cx) and logical framework (Lf) (see
Definition 2). Further, a domain ontology is composed of hierarchically orga-
nized sets of meta-concepts (Cm), concept trees (Ct), object trees (Ot), relations
(R) and predicates (V) (see Definition 4). Note that the trees in our model
(e.g., concept trees, object trees, etc.) can be direct acyclic graphs. Moreover,
note that in the definitions below we denote a finite set of elements El with
{el1, el2, . . . , eln}, n ≥ 0 where by omitting el0 we allow an empty set, e.g., see
the definition of meta-concepts (Cm) 5.

Meta-concepts (Cm) provide a context-oriented interpretation (i) (see Defi-
nition 6) of concepts and might be optionally associated with specific contexts
(the square brackets “[]” mean “optional”). Meta-concepts help ontologies to
be viewed from different context perspectives by establishing different meanings
for some of the key concepts. This is a powerful construct providing for inter-
pretations of a concept and its derived concept tree depending on the current
context. Concept trees (Ct) consist of semantically related concepts (C) and/or
explicit concepts (Ce). Every concept tree (ct) has a root concept (tr) because
the architecture ultimately must reference a single concept that is the connec-

370 M. Hinchey and E. Vassev

tion point to concepts that are outside the concept tree. A root concept may
optionally inherit a meta-concept, which is denoted [tr � cm] (see Definition 8)
where “�” is the inherits relation. Every concept has a set of properties (P) and
optional sets of functionalities (F), parent concepts (Pr) and children concepts
(Ch) (see Definition 10). Explicit concepts are concepts that must be presented
in the KB of the system. Explicit concepts are mainly intended to support 1)
the autonomic behaviour of the SCs; and 2) distributed reasoning and knowledge
sharing among the SC of a SCE systems. These concepts might be goals (G),
errors (Er), metrics (M), policies (Π), events (E), actions (A), situations (Si)
and groups (Gr) (see Definition 13), i.e., they allow for quantification over such
concepts.

FORMAL REPRESENTATION OF KNOWLANG

Definition 1. Kb := <Kc,Op, Ip> (Knowledge Base)

Definition 2. Kc := <O,Cx,Lf> (Knowledge Corpus)

DOMAIN ONTOLOGIES

Definition 3. O := {osc, osce, oenv, osi} (Domain Ontologies)

Definition 4. o := <Cm,Ct,Ot,R,D>, o ∈ O (Domain Ontology)

Definition 5. Cm := {cm1, cm2, . . . , cmn}, n ≥ 0 (Meta-concepts)

Definition 6. cm := <[cx], i>, i ∈ Icx (Meta-concept, cx – Context, i –
Interpretation)

Definition 7. Ct := {ct1, ct2, . . . , ctn}, n ≥ 0 (Concept Trees)

Definition 8. ct := <tr,C, [Ce]> (Concept Tree)
tr ∈ (C ∪ Ce), [tr � cm] (tr – Tree Root)

Definition 9. C := {c1, c2, . . . , cn}, n ≥ 0 (Concepts)

Definition 10. c := <P, [F], [S], [Pr], [Ch]> (Concept)
Pr ⊂ (C ∪ Ce), c � Pr (Pr – Parents)
Ch ⊂ (C ∪ Ce), Ch � c (Ch – Children)

Definition 11. P := {p1, p2, . . . , pn}, n ≥ 0 (Properties)

Definition 12. F := {f1, f2, . . . , fn}, n ≥ 0 (Functionalities)

Definition 13. Ce := G
⋃

Er
⋃

M
⋃

Π
⋃

E
⋃

A
⋃

Si
⋃

Gr (Explicit Con-
cepts)

KnowLang - A Formal Specification Model for Self-adaptive Systems 371

Errors (Er) are explicit concepts representing the space of errors that can occur
in the system. An error (er) is specified with error information (ier) and an
optional set of erroneous actions (Aer) that could be considered as eventual
sources of error (see Definition 15). Error occurrence can cause a state transition
(see Definition 22). Metrics (M) are explicit concepts providing a prognostic
space of valuable information that can be gathered from the environment or
from the system itself. A metric (m) is specified with a metric source (srm)
and data (dm)(see Definition 17). The metric source may eventually represent a
system sensor used to monitor the environment.

Definition 14. Er := {er1, er2, . . . , ern}, n ≥ 0 (Errors)

Definition 15. er := <ier, [Aer]> (Error)
Aer ⊂ A (Aer – Erroneous Actions)

Definition 16. M := {m1,m2, . . . , mn}, n ≥ 0 (Metrics)

Definition 17. m := <srm, dm> (Metric)(srm – Metric Source, dm – Metric
Data)

The KnowLang policies (Π) drive the autonomic behaviour of the system. A
policy π has a goal (g), policy situations (Siπ), policy-situation relations (Rπ),
and policy conditions (Nπ) mapped to policy actions (Aπ) where the evaluation
of Nπ may eventually (with some degree of probability) imply the evaluation of

actions (denoted with Nπ
[Z]→ Aπ) (see Definition 19).

A condition is a Boolean expression over ontology (see Definition 21), e.g.,
the occurrence of a certain event. Policy situations Siπ are situations (see Defi-
nition 25) that may trigger (or imply) a policy π, in compliance with the policy-

situations relations Rπ(denoted with Siπ
[Rπ]→ π), thus implying the evaluation

of the policy conditions Nπ(denoted with π → Nπ)(see Definition 19). A policy
may comprise optional policy-situation relations (Rπ) justifying the relationships
between a policy and the associated situations. The presence of probabilistic
beliefs in both mappings and policy relations justifies the probability of policy
execution, which may vary with time. Note that Sect. 5 discusses in detail how
the KR of policies, situations and relations provides for self-adaptive behaviour.

A goal g is a desirable transition (⇒) to a state or a transition from a
specific state to another state (denoted with s ⇒ s′) (see Definition 22). The
system may transit (⇒) to a state (s) when the properties (P) of an object
(ob) are updated (denoted TELL � ob.P), the properties of a set of objects are
updated, or some errors or events have occurred or actions have been realized
in the system or in the environment (denoted with TELL � Ers, TELL �

Es and TELL � As) (see Definition 22). Note that TELL is a KB Operator
involving knowledge inference. In KnowLang, a state s is a Boolean expression
over ontology (be(O))(see Definition 23), e.g., “a specific property of an object
must hold a specific value”.

A situation is expressed with a state (s), a history of actions (A ←
si) (actions

executed to get to state s), actions Asi that can be performed from state s and

372 M. Hinchey and E. Vassev

an optional history of events E
←
si that eventually occurred to get to state s (see

Definition 25).

Definition 18. Π := {π1, π2, . . . , πn}, n ≥ 0 (Policies)

Definition 19. π := <g, Siπ, [Rπ], Nπ, Aπ,map(Nπ, Aπ, [Z])> (Policy)

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ – Policy Actions)

Siπ ⊂ Si, Siπ := {siπ1 , siπ2 , . . . , siπn
}, n ≥ 0 (Siπ – Policy Situations)

Rπ ⊂ R,Rπ := {rπ1 , rπ2 , . . . , rπn
}, n ≥ 0 (Rπ-Policy-Situation Rela-

tions)
∀rπ ∈ Rπ • (rπ := <siπ, [rn], [Z], π>) , siπ ∈ Siπ

Siπ
[Rπ]→ π → Nπ (Policy situations may imply the policy they are

related to)

Definition 20. Nπ := {n1, n2, . . . , nk}, k ≥ 0 (Policy Conditions)

Definition 21. n := be(O) (Condition – Boolean Expression over Ontology)

Definition 22. g := 〈⇒ s′〉|〈s ⇒ s′〉 (Goal)
⇒ s := 〈TELL � ob.P 〉|〈TELL � {ob0.P, ob1.P, . . . , obn.P}〉|〈TELL �

Ers〉|
〈TELL � Es〉|〈TELL � As〉 (State Transition)

Ers ⊂ Er, Es ⊂ E, As ⊂ A (Ers – State Errors, Es – State Events,
As – State Actions)

Definition 23. s := be(O) (State – Boolean Expression over Ontology)

Definition 24. Si := {si1, si2, . . . , sin}, n ≥ 0 (Situations)

Definition 25. si := <s,A
←
si , [E

←
si], Asi> (Situation)

A
←
si⊂ A (A ←

si – Executed Actions)
Asi ⊂ A (Asi – Possible Actions)
E

←
si⊂ E (E ←

si – Situation Events)

KnowLang events (E) are a means of high-priority monitoring and messaging.
In general, an event (see Definition 27) can be activated (raised) by a variety of
factors such as time (te), goals (Ge), metrics (Me), errors (Ere), actions (Ae)
and even other events (Ee). A special guard (gde), represented as a Boolean
expression over ontology (see Definition 28), may restrict the event activation.
Events may participate in Boolean expressions or be used to specify event-driven
policies, goals, situations, etc.

In KnowLang, actions are activities (routines) that can be performed by the
system. Actions must be implemented by the system and with KR we represent
an abstraction (counterparts) of the routines and classes used to implement these
actions. Therefore, an action concept must refer to real implementation. From
KR perspective, an action a is a tuple of optional pre- (rca), and post-conditions
(pca), a set of parameters (Pma), output (rna) and errors (Era) that can be
raised by the action (see Definition 30).

KnowLang - A Formal Specification Model for Self-adaptive Systems 373

Definition 26. E := {e1, e2, . . . , en}, n ≥ 0 (Events)

Definition 27. e := <[gde], activ> (Event)
activ := te|Ge|Me|Ere|Ae|Ee (Activation Factor)
Ge ⊂ G,Me ⊂ M,Ere ⊂ Er,Ae ⊂ A,Ee ⊂ E

Definition 28. gde := be(O) (Event Guard)

Definition 29. A := {a1, a2, . . . , an}, n ≥ 0 (Actions)

Definition 30. a := <[rca], [pca], [Pma], [rna], [Era]> (Action)

A group (gr) involves objects (Obgr) related to each other through a distinct set
of relations (Rgr)(see Definition 32). Note that groups (G) are explicit concepts
intended to (but not restricted to) represent knowledge about the structure of
the system.

Object trees (Ot) are conceptualization of how objects existing in the world
of interest are related to each other. The relationships are based on the principle
that objects have properties, where sometimes the value of a property is another
object, which in turn also has properties. Such properties are termed object
properties (Pb). An object tree (ot) consists of a root object (ob) and an optional
set of object properties (Pb) – sub-trees of objects (see Definitions 34 and 36).
An object (ob) is an instance of a concept (denoted as instof(c) – see Definition
35) and inherits that concept’s properties.

Definition 31. Gr := {gr1, gr2, . . . , grn}, n ≥ 0 (Groups)

Definition 32. gr := <Obgr, Rgr> (Group)
Obgr ⊂ Ob,Rgr ⊂ R (Obgr-Group Objects, Ob – Objects, Rgr-Group

Relations)

Definition 33. Ot := {ot1, ot2, . . . , otn}, n ≥ 0 (Object Trees)

Definition 34. ot := <ob, [Pb]> (Object Tree)

Definition 35. ob := instof(c), ob ∈ Ob, c ∈ C (Object)

Definition 36. Pb := {ot1, ot2, . . . , otn}, n ≥ 0 (Object Properties – sub-trees
of objects)

Relations (R) connect two concepts (including predicates V), two objects, or an
object with a concept and may have probability distribution Z (e.g., over time,
over situations, over concepts’ properties, etc.) (see Definition 38). A relation has
an optional name, i.e., when the name is missing we have the implication rela-
tion. Probability distribution is provided to support probabilistic reasoning. By
specifying relations with probability distributions we actually specify Bayesian
Networks [7] connecting the concepts and objects of an ontology. Note that
KnowLang considers binary relations only, but there could be multiple relations
relating the same concepts/objects.

374 M. Hinchey and E. Vassev

Definition 37. R := {r1, r2, . . . , rn}, n ≥ 0 (Relations)

Definition 38. r := <rek, [rn], [Z], ren> (Relation, re – Relation Entity, Z
– Probability Distribution)

re ∈ C
⋃

Ob
⋃

V (C – Concepts, Ob – Objects, V – Predicates)

Definition 39. V := {v1, v2, . . . , vn}, n ≥ 0 (Predicates)

Definition 40. v := <Cv, Sv, be(O)> (Predicate)
Cv ⊂ C,Sv ⊂ S (Cv – Predicate’s Concepts, Sv – Predicate’s States)

Predicates (V) are special KR structures that specify distinct inter-state rela-
tions or schemes for evaluation of complex states. For example, we can specify a
predicate that verifies if the Motion System of a robot is operational. A predicate
might be used by the KnowLang Reasoner to check whether an object (or the
entire system) is in a specific state. Thus, a predicate (v) formally can be pre-
sented as tuple of predicate concepts (Cv), predicate states (Sv) and a Boolean
expression over ontology (be(O)) that determines what conditions must hold to
conclude that the predicate states are “active” (occupied) (see Definition 40.

KNOWLANG CONTEXTS

Definition 41. Cx := {cx1, cx2, . . . , cxn}, n ≥ 0 (Contexts)

Definition 42. cx := <At, [Icx]> (Context)

Definition 43. At := {at1, at2, . . . , atn}, n ≥ 0 (Ambient Trees)

Definition 44. at := <ct, Ca, [i]> (Ambient Tree)
ct ∈ Ct (Concept Tree hosted by an ontology)
Ca ⊂ C (Ca – Ambient Concepts)
i ⊂ Icx (i-Ambient Tree Interpretation)

Definition 45. Icx := {i1, i2, . . . , in}, n ≥ 0 (Context Interpretations)

Contexts Cx are intended to extract the relevant knowledge from an ontology.
Moreover, contexts carry interpretation for some of the meta-concepts (see Def-
inition 42), which may lead to new interpretation of the descendant concepts
(derived from a meta-concept – see Definition 8). We consider a very broad
notion of context, e.g., the environment in a fraction of time or a generic situa-
tion such as currently-ongoing system action (e.g., observing or listening). Thus,
a context must emphasize the key concepts in an ontology, which helps the infer-
ence mechanism narrow the domain knowledge (domain ontology) by exploring
the concept trees down only to the emphasized key concepts.

Depending on the context, some low-level concepts might be subsumed by
their upper-level parent concepts, just because the former are not relevant for
that very context. For example, a robot wheel can be considered as a thing
or as an important part of the robot’s motion system. As a result, the context
interpretation of knowledge will help the system deal with “clean” knowledge and

KnowLang - A Formal Specification Model for Self-adaptive Systems 375

the reasoning will be more efficient. A context (cx) consists of ambient trees (At)
and optional context interpretations (Icx) (see Definition 42). An ambient tree
(at) refers to a concept tree (ct) described by an ontology (o) and carries ambient
concepts (Ca), part of the concept tree, and optional context interpretation (i).

The ambient concepts (see Definition 44) explicitly determine new level of
deepness for their original concept tree, i.e., ambient concepts subsume all of their
child concepts (if any). As result, when the system reasons about a particular
context (expressed with ambient trees), the reasoning process does not consider
those child concepts, but their ambient parents, which are far more generic, and
thus less detailed. This technique reduces the size of the relevant knowledge, by
temporarily removing from the concept trees all the ambient concepts’ children
(descendant concepts). We may think about ambient trees as filters the system
applies at runtime to reduce the visibility of concepts of a concept tree. Note
that this technique has been further developed in [16].

KNOWLANG LOGICAL FRAMEWORK

Definition 46. Lf := <Fa,Rl, Ct> (Logical Framework)

Definition 47. Fa := {fa1, fa2, . . . , fan}, n ≥ 0 (Facts)

Definition 48. fa := be(O) → T (Fact – True statement over ontology)

Definition 49. Rl := {rl1, rl2, . . . , rln}, n ≥ 0 (Rules)

Definition 50. rl := <be(O), do(Arl)>|<be(O), do(Vrl)> (Rule)
Arl ⊂ A, Vrl ⊂ V (Arl – Rule’s Actions, Vrl – Rule’s Predicates)

Definition 51. Ct := {ct1, ct2, . . . , ctn}, n ≥ 0 (Constraints)

Definition 52. ct := be(O) (Constraint)

The KnowLang Logical Framework helps developers realize the explicit repre-
sentation of particular and general factual knowledge, in terms of additional
rule-based predicates, names, connectives, quantifiers and identity. The Logical
Framework (Lf) is composed of facts (Fa), rules (Rl) and constraints (Ct) (see
Definition 46). Note that Lf’s KR structures must be specified with ontology
terms, i.e., predefined concepts, objects, predicates and relations. Facts define
true statements in the ontologies (O) by applying Boolean expressions over ontol-
ogy (see Definition 48). Rules relate hypotheses to conclusions where the former
are expressed as Boolean expressions over ontology and the latter decide what
actions to be performed or predicates to be enforced (see Definitions 50). A
constraint is a Boolean expressions over ontology (see Definitions 52), e.g., con-
straints might negate the execution of particular actions or forbid the application
of particular predicates. Constraints might be used to enforce knowledge consis-
tency.

KNOWLEDGE BASE OPERATORS

376 M. Hinchey and E. Vassev

Definition 53. Op := <Ask, Tell, Oop> (Knowledge Base Operators)

Definition 54. Ask := retrieve(Kc) → Ip � Kc (query knowledge base)

Definition 55. Tell := update(Kc) → Ip � Kc (update knowledge base)

Definition 56. Oop := fo(Oi) → Ip�Kc, Oi ⊂ O (Inter-ontology Operators
)

INFERENCE PRIMITIVES

Definition 57. Ip := {ip1, ip2, . . . , ipn}, n ≥ 0 (Inference Primitives)

Definition 58. ip := impl(FOL)|impl(FOPL)|impl(DL) (Inference Primi-
tive)

The Knowledge Base Operators (Op) can be grouped into three groups: ASK
Operators (retrieve knowledge from KBs), TELL Operators (update KB) and
Inter-Ontology Operators (Oop) are intended to work on one or more ontologies
(specified as a function fo(Oi) over ontologies (Oi)) (see Definitions 53 through
56). The Inter-Ontology Operators are still under development, but overall they
can be related to operations like merging, mapping, alignment, etc. Note that all
the Knowledge Base Operators (Op) may imply the use of inference primitives
(Ip).

The Inference Primitives (Ip) (see Definition 58) are algorithms for reasoning
and knowledge inference needed by the KnowLang Reasoner. These primitives
are implementation (denoted with impl in Definition 58) of reasoning algorithms
based on First Order Logic (FOL) [2] (and its extensions), First Order Proba-
bilistic Logic (FOPL) [4] and Description Logics (DL) [1]. FOPL increases the
power of FOL by allowing us to assert in a natural way “likely” features of
objects and concepts via a probability distribution over the possibilities that we
envision. Having logics with semantics gives us a notion of deductive entailment.
Note that these algorithms together with the appropriate reasoning engines shall
help the KnowLang Reasoner to query and update KB.

3 Meeting the Challenges

Both the KnowLang Specification Model and KnowLang Reasoner have been
developed by taking into consideration some explicit challenges comprehensively
described in our publications [17,20,21].

3.1 Encoded Versus Represented Knowledge

Developers may encode a large part of the “a priori” knowledge (knowledge
given to the system before the latter actually runs) in the implemented classes
and routines. In such a case, the knowledge-represented pieces of knowledge
(e.g., concepts, relations, rules, etc.) may complement the knowledge codified

KnowLang - A Formal Specification Model for Self-adaptive Systems 377

into implemented program classes and routines. For example, KnowLang actions
could be based on classes and methods and a substantial concern about the
KR of such actions is how to relate the knowledge expressed with actions to
implemented methods and functions. A possible solution is to map KR concepts
and objects to program classes and objects respectively.

To properly represent the program implementation (classes, methods, etc.)
in the KB, all the concepts and objects have an IMPL Property that relates a
KnowLang structure to its program counterpart, if any. For example, a KnowL-
ang concept might be specified with an IMPL property to link the concept to
a program class or method. The following is the grammar definition supporting
that [12].

Concept-Impl := IMPL { Impl-Reference }

3.2 States, Situations, Goals and Policies

A big challenge is “how to express situations and reason about the same”. Sit-
uations trigger self-adaptive behaviour (see Sect. 5) and it is very important
to allow the reasoner to recognize them. To support this approach, KnowLang
has introduced the STATE explicit concepts (see Definition 23 in Sect. 2). This
helps each KnowLang concept to be specified with a set of important states
the concept instances can be in. Thus, we explicitly specify a variety of states
for important concepts (e.g., states “operational” and “non-operational” for the
robot’s Motion System). A KnowLang state is specified as a Boolean expres-
sion over ontology where we can use activation of events, execution of actions or
changes in properties to build a state’s Boolean expression [12]. Further, to facil-
itate the evaluation of complex states, we specify PREDICATES (see Definition
40 in Sect. 2). Complex states (e.g., system states) are the product of other states
(e.g., the states of the system’s components). States (usually system states) are
also used to specify GOALS, another class of KnowLang explicit concepts (see
Definition 22 in Sect. 2). Goals participate in the specification of KnowLang poli-
cies. A goal can be specified as a transition from a state to another. Recall that
policies and situations participate in KnowLang relations (see Definition 19 in
Sect. 2) that drive the self-adaptive behaviour (see Sect. 5). Therefore, because
every situation is explicitly related to a state (a situation is determined by a
state), it is relatively easy to check for the feasibility of a policy triggered by a
specific situation, i.e., the policy’s goal must have the same departing state as
the situation’s state.

3.3 Converting Sensory Data to KR Symbols

One of the biggest challenges is “how to map sensory raw data to KR symbols”.
Our approach to this problem is to specify special explicit concepts called MET-
RICS (see Definition 17 in Sect. 2). In general, a SCE system has sensors that
connect it to the world and eventually help it to listen to its internal components.

378 M. Hinchey and E. Vassev

These sensors generate raw data that represent the physical characteristics of the
world. The problem is that these low-level data streams must be: 1) converted
to programming variables or more complex data structures that represent collec-
tions of sensory data; 2) those programing data structures must be labeled with
KR Symbols. Hence, it is required to relate encoded data structures with KR
concepts and objects used for reasoning purposes. In our approach, we assume
that each sensor is controlled by a software driver (e.g., specified in SCEL and
implemented in Java) where appropriate methods are used to control the sensor
and read data from it. Both the sensory data and sensors should be represented
in the KB by using METRIC explicit concepts and instantiate objects of these
concepts. By specifying a METRIC concept we introduce a class of sensors to
the KB and by specifying objects, instances of that class, we give the actual
KR of a real sensor. KnowLang allows the specification of four different types of
metrics [12]:

– RESOURCE – measure SC resources like capacity;
– QUALITY – measure SC qualities like performance, response time, etc.;
– ENVIRONMENT – measure environment qualities and resources;
– ENSEMBLE – measure SCE qualities and resource; might be a function of

multiple SC metrics both of RESOURCE and QUALITY type.

4 KnowLang Syntax

We used the Backus-Naur Form (BNF) notation [6] to describe the syntax of
the language and formally specify the KnowLang Grammar [12]. This helps the
KnowLang framework to process sentences written in the KnowLang language.
BNF [6] is a powerful meta-language that allows a context-free grammar specifi-
cation. A partial presentation of the KnowLang Grammar in BNF is the following
[12]:

KL-Spec := bof Knowledge-Spec eof
Knowledge-Spec := Spec-References KL-Spec-Units
Knowledge-Spec := KL-Spec-Units
KL-Spec-Units := KL-Corpuses KL-Operators Inference-Primitives
...
KL-Spec-Units := KL-Corpuses
KL-Spec-Units := KL-Operators
KL-Spec-Units := Inference-Primitives

As shown, the full KnowLang context-free grammar specification is obtained by
the reduction of the (KL-Spec -> bof Knowledge-Spec eof) rule, which determines
that a KB specified with KnowLang consists of specification units, each formed by
a combination of knowledge corpuses, KB operators and inference primitives. Due
to the complex structure of the KnowLang specification model (see Sect. 2) where
each tier has its own structure, the complete KnowLang Grammar’s specification
cannot be presented here (please refer to [12] for the full KnowLang Grammar
in BNF). Instead, we present an abstraction of the KnowLang Grammar, i.e., a
meta-grammar. The following is a generic meta-grammar in Extended BNF [6]
presenting the syntax rules for specifying KnowLang tiers.

KnowLang - A Formal Specification Model for Self-adaptive Systems 379

GroupTier := FINAL? GroupTierId { Tier+ }
Tier := FINAL? TierId TierName? { TierClause+ }
TierClause := FINAL? ClauseId ClauseName? { Data* }
Data := PredefType | ConceptNames | BlnExpr | Reference | Number
ConceptNames := ConceptName [,ConceptName]*

As shown, in general a KnowLang tier is syntactically specified with a tier iden-
tifier (predefined KnowLang name), an optional name and a content block bor-
dered by curly braces. Moreover, we distinguish two syntactical tier types: single
tiers (Tier) and group tiers (GroupT ier) where the latter comprise a set of
single tiers. Each single tier has an optional name (TierName) and comprises
a set of tier clauses (TierClause), which are composed of a clause identifier,
an optional clause name and optional data (Data). The latter presents a prede-
fined KnowLang type (e.g., METRIC type), a collection of names (e.g., concept
names or objects names), a Boolean expression over ontology, an implementation
reference (e.g., IMPL{Sensors.LightSensor.getSourceAngle()}) or a number.
Note that identifiers participating in KnowLang expressions are either simple,
consisting of a single identifier, or qualified, consisting of a sequence of identi-
fiers separated by “.” tokens. Identifiers could be concept names, object names,
relation names, predicate names, property names or function names, and it is
important to specify them with their qualified name, e.g., pointing where a con-
cept resides in a concept tree. When we use “..” token, we let the KnowLang
Reasoner find the specified identifier presuming it is unique in the current tree.

5 KR for Self-adaptive Behaviour with KnowLang

KnowLang has intrinsic features supporting KR for autonomic systems. An auto-
nomic system [5,13] is considered to be a self-adaptive system that changes its
behaviour in response to stimuli from its execution and operational environment.
Such behaviour is considered autonomic and self-adaptive [13] and is intended
to drive a system in situations requiring adaptation. Any long-running system is
subject to uncertainty in its execution environment due to potential changes in
requirements, business conditions, available technology, etc. Thus, it is impor-
tant to capture and cater for uncertainty as part of the development process.
Failure to do so may result in systems that are too rigid to be fit for purpose,
which is of particular concern for the domains that typically make use of self-
adaptive technology. We hypothesize that modeling uncertainty and developing
mechanisms for managing it as part of KR&R will lead to systems that are:

– more expressive of the real world;
– fault tolerant due to fluctuations in requirements and conditions being antic-

ipated;
– flexible and able to manage dynamic changes.

The ability to represent knowledge providing for self-adaptive behaviour is an
important factor in dealing with uncertainty. In our approach, the autonomic
self-adaptive behaviour is provided by policies, events, actions, situations, and
relations between policies and situations (see Definitions 18 through 25 in
Sect. 2).

380 M. Hinchey and E. Vassev

Ideally, policies are specified to handle specific situations, which may trigger
the application of policies. A policy exhibits a behaviour via actions generated
in the environment or in the system itself. Specific conditions determine, which
specific actions (among the actions associated with that policy – see Defini-
tion 19 in Sect. 2) shall be executed. These conditions are often generic and
may differ from the situations triggering the policy. Thus, the behaviour not
only depends on the specific situations a policy is specified to handle, but also
depends on additional conditions. Such conditions might be organized in a way
allowing for synchronization of different situations on the same policy. When a
policy is applied, it checks what particular conditions are met and performs the
associated actions via special mappings (see map(Nπ, Aπ, [Z]) in Definition 19
in Sect. 2). An optional probability distribution (Z) may additionally restrict
the action execution. Although initially specified, the probability distribution at
the mappings is recomputed after the execution of any involved action. The re-
computation is based on the consequences of the action execution, which allows
for reinforcement leaning.

The cardinality of the policy-situation relationship is many-to-many, i.e., a
situation might be associated with many policies and vice versa. The set of
policy situations (situations triggering a policy) is open-ended, i.e., new situa-
tions might be added or old might be removed from there by the system itself.
Moreover, with a set of policy-situation relations we may grant the system with
an initial probabilistic belief (see Definition 19) that certain situations require
specific policies to be applied. Runtime factors may change this probabilistic
belief with time, so the most likely situations a policy is associated with can be
changed. For example, the successful rate of actions execution associated with a
specific situation and a policy may change such a probabilistic belief and place
a specific policy higher in the “list” of associated policies, which will change the
behaviour of the system when a specific situation is to be handled. Note that
situations are associated with a state (see Definition 25) and a policy has a goal
(see Definition 19), which is considered as a transition from one state to another
(see Definition 2). Hence, the policy-situation relations and the employed prob-
abilistic beliefs may help a cognitive system what desired state to choose, based
on past experience.

As a proof of concept, we applied the approach to a case study on Ensemble
of Robots. To illustrate autonomic behaviour based on this approach, let us
suppose that we have a marXbot robot that carries items from point A to point
B by using two possible routes – route one and route two (see Fig. 2).

A situation si1:“robot is in point A and loaded with items” will trigger a
policy π1:“go to point B via route one” if the relation r(si1, π1) has the higher
probabilistic belief rate (let’s assume that such a rate has been initially given
to this relation because route one is shorter – see Fig. 2a). Any time when the
robot gets into situation si1 it will continue applying the π1 policy until it
gets into a situation si2:“route one is blocked” while applying that policy. The
si2 situation will trigger a policy π2:“go back to si1 and then apply policy π3”
(see Fig. 2.b). Policy π3 is defined as π3:“go to point B via route two”. The

KnowLang - A Formal Specification Model for Self-adaptive Systems 381

Fig. 2. A marXbot Self-adaptation Case Study

unsuccessful application of policy π1 will decrease the probabilistic belief rate
of relation r(si1, π1) and the eventual successful application of policy π3 will
increase the probabilistic belief rate of relation r(si1, π3) (see Fig. 2b). Thus, if
route one continues to be blocked in the future, the relation r(si1, π3) will get
to have a higher probabilistic belief rate than the relation r(si1, π1) and the
robot will change its behaviour by choosing route two as a primary route (see
Fig. 2c). Similarly, this situation can change in response to external stimuli, e.g.,
route two got blocked or a “route one is obstacle-free” message is received by
the robot.

6 Formalizing eMobility with KnowLang

In eMobility, vehicles move according to a schedule defined by a driver [9,10].
Every e-vehicle component is responsible for driving along the optimal route,
meeting time constraints imposed by the driver’s schedule and reserving spaces
at a particular Point of Interest (POI). Vehicles are competing for infrastructure
resources of the traffic environment and a set of locally optimal solutions should

382 M. Hinchey and E. Vassev

be computed for each individual driver. Each e-vehicle is equipped with a Vehicle
Planning Utility (Route Planner) that plans travels including a set of alternative
routes. Traffic routes are composed of multiple driving locations, e.g., POIs. A
set of locally optimal solutions is computed for each individual user. This set is
negotiated on a global level in order to satisfy the global perspective. The set
of locally optimal solutions guarantees a minimum quality for each individual
driver. The global optimization scheme guarantees optimal resource distribution
within the local constraints. The size of the set of locally optimal solutions
determines the cooperative nature of the individual driver. The smaller the set,
the more competitive the driver is. The larger the set the more cooperative the
driver is. The process of Route Selection (RouteSAM) advises on a route choice,
which is made from a set of alternative routes generated by the route planner.
The RouteSAM considers road capacity and traffic levels. It optimizes overall
throughput of the roads by balancing the route assignments of the vehicles.
From a local vehicle perspective the journey time is minimized, from a global
perspective, the congestion levels are minimized. The route selection process
strives to satisfy global optimality criteria of road capacity. Once a vehicle is in
the close vicinity of a destination, it computes a set of locally optimal parking
lots. Again, the selection process of parking lots satisfies global optimality criteria
of parking capacity.

Fig. 3. eMobility Example [10]

Figure 3 shows a formal petri net representation of a real example scenario
that considers four destinations (Wolfsburg, Gifhorn, Braunschweig, and Han-
nover), the road network between the destinations and the processes which are
taking place at the destination locations [10]. The road network is described by
several transition framed sub nets (e.g. RNet15). It is assumed that the journeys

KnowLang - A Formal Specification Model for Self-adaptive Systems 383

between destinations contain a limited set of variants. Typically three alterna-
tive routes and three alternative driving styles are considered, generating a set
of maximally 9 variants. Each destination is represented by a transition framed
subnet (e.g. Hannover), which models both the vehicle charging process (e.g.
CarPark H) and user specific processes (e.g. User H) such as appointments. The
charging stations that are connected to the car parks support three different
charging modes (normal, fast and ultra-fast charging).

In this constraint environment, self-adaption is required by situations that
occur when the availability of infrastructure resources does not match the
demand – not enough capacity, or environment constraints (e.g., speed limit,
or delay due to high traffic) hinder the e-vehicle goals. eMobility considers five
different levels of self-adaptation [8]:

– Level-1 : A vehicle computes a set of alternative routes for its current destina-
tion. This operation is performed locally by the use of the vehicle’s planning
utility.

– Level-2 : A vehicle chooses the best option from those alternatives that are
computed in the previous level. The vehicle observes the situation and adapts
by triggering a new adaptation cycle, starting at Level-1 to the changes in
the environment. This operation may require central planning and reasoning
at group (ensemble) level.

– Level-3 : A vehicle computes a set of parking lots nearby the current desti-
nation. This operation is local and is performed by the vehicle’s planning
utility.

– Level-4 : A central parking lot planner (PLCSSAM) chooses the best option
from those alternatives that are provided by the vehicle in the previous level.
As a result vehicles are assigned an optimal or near-optimal parking lot reser-
vation. At the same time, a “near-optimal parking lot” load balancing is
established.

– Level-5 : A vehicle issues a reservation request to the selected parking lot. As
a result the parking space at that parking lot is booked. Both the vehicle and
the parking lot monitor the situation. If required, a new adaptation cycle is
triggered.

Based on the rationale above, we derived the eMobility goals along with the
self-* objectives assisting these goals when self-adaptation is required. Note that
the required analysis and process of building the goals model for eMobility along
with the process of deriving the adaptation-supporting self-* objectives is beyond
the scope of this paper. Figure 4 depicts a goals model for eMobility where goals
are organized hierarchically at four different levels. As shown, the goals from
the first two levels (e.g., “Take Journey”, “Arive on Time”, “Provide Route”,
“Provide Parking Lot”, and “Sufficient Battery”) are main system goals captured
at different levels of abstraction. The 3rd level is resided by self-* objectives (e.g.,
“Optimize Speed”, “Avoid Low Speed Zones”, “Reduce Parking Time”, and
“Ensure Sufficient Battery”) and supportive goals (e.g., “Low Route Traffic”)
associated with and assisting the 2nd-level goals. Finally, the goals from the 4th
level are self-* objectives (e.g., “Reduce Route Traffic”) assisting the supportive

384 M. Hinchey and E. Vassev

Fig. 4. eMobility Goals Model with Self-* Objectives for System Goals from Level 3

goals from the 3rd level. Basically, all the self-* objectives inherit the system
goals they assist by providing behaviour alternatives with respect to these system
goals. The eMobility system switches to one of the assisting self-* objectives when
alternative autonomous behaviour is required (e.g., a vehicle needs to avoid low-
speed zones). In addition, Fig. 4 depicts some of the environment constraints
(e.g., “Traffic Lights” and “Low-speed Zones”), which may cause self-adaptation.

6.1 Specifying eMobility Ontology

In order to specify eMobility, the first step is to specify a knowledge base
(KB) representing the eMobility system in question, i.e., e-vehicles, parking lots,
routes, traffic lights, etc. To do so, we need to specify ontology structuring the
knowledge domains of eMobility. Note that these domains are described via
domain-relevant concepts and objects (concept instances) related through rela-
tions. To handle explicit concepts like situations, goals, and policies, we grant
some of the domain concepts with explicit state expressions where a state expres-
sion is a Boolean expression over the ontology.

Figure 5, depicts a graphical representation of the eMobility ontology relating
most of the domain concepts within an eMobility system. Note that the rela-
tionships within a concept tree are “is-a” (inheritance), e.g., the RoadElement

KnowLang - A Formal Specification Model for Self-adaptive Systems 385

Fig. 5. eMobility Ontology Specified with KnowLang

concept is a TraficEntity and the Action concept is a Knowledge and consecu-
tively Phenomenon, etc. Most of the concepts presented in Fig. 5 were derived
from the eMobility Goals Model (see Fig. 4). Other concepts are considered as
explicit and were derived from the KnowLang’s specification model [22].

The following is a sample of the KnowLang specification representing three
important concepts: V ehicle, Journey, and Route. As specified, the concepts in
a concept tree might have properties of other concepts, functionalities (actions
associated with that concept), states (Boolean expressions validating a specific
state), etc. For example, the Vehicle’s IsMoving state holds when the vehicle
speed (the VehicleSpeed property) is greater than 0.

// e-Vehicle

CONCEPT Vehicle {

PARENTS {eMobility.eCars.CONCEPT_TREES.Entity}

CHILDREN { }

PROPS {

PROP carDriver {

TYPE {eMobility.eCars.CONCEPT_TREES.Driver} CARDINALITY {1} }

PROP carPassengers {

TYPE {eMobility.eCars.CONCEPT_TREES.Passenger} CARDINALITY {*} }

PROP carBattery {

TYPE {eMobility.eCars.CONCEPT_TREES.Battery} CARDINALITY {1} }

}

FUNCS {

FUNC startEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StartEngine}}

FUNC stopEngine {TYPE {eMobility.eCars.CONCEPT_TREES.StopEngine}}

FUNC accelerate {TYPE {eMobility.eCars.CONCEPT_TREES.Accelerate}}

FUNC slowDown {TYPE {eMobility.eCars.CONCEPT_TREES.SlowDown}}

FUNC startDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StartDriving}}

FUNC stopDriving {TYPE {eMobility.eCars.CONCEPT_TREES.StopDriving}}

}

STATES {

STATE IsOperational{

NOT eMobility.eCars.CONCEPT_TREES.Vehicle.PROPS.carBattery.STATES.batteryLow }

STATE IsMoving{ eMobility.eCars.CONCEPT_TREES.VehicleSpeed > 0 }

}

}

CONCEPT Journey {

PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}

CHILDREN {}

PROPS {

PROP journeyRoute {TYPE {eMobility.eCars.CONCEPT_TREES.Route} CARDINALITY {1}}

PROP journeyTime {TYPE {DATETIME} CARDINALITY {1}}

PROP journeyCars {TYPE {eMobility.eCars.CONCEPT_TREES.Vehicle} CARDINALITY {*}}

}

STATES

{

386 M. Hinchey and E. Vassev

STATE InSufficientBattery {/* to specify */}

STATE InNotSufficientBattery {

NOT eMobility.eCars.CONCEPT_TREES.Journey.STATES.InSufficientBattery}

STATE Arrived {eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd}

STATE ArrivedOnTime { eMobility.eCars.CONCEPT_TREES.Journey.STATES.Arrived AND

(eMobility.eCars.CONCEPT_TREES.JourneyTime <=

eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyTime)

}

}

}

CONCEPT Route {

PARENTS {eMobility.eCars.CONCEPT_TREES.Phenomenon}

CHILDREN {}

PROPS {

PROP locationA {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}

PROP locationB {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {1}}

PROP intermediateStops {TYPE {eMobility.eCars.CONCEPT_TREES.Location} CARDINALITY {*}}

PROP currentRoad {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {1}}

PROP alternativeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.Road} CARDINALITY {*}}

}

FUNCS {

FUNC getCurrentLocation {TYPE {eMobility.eCars.CONCEPT_TREES.GetCurrentLocation}}

FUNC takeAlternativeRoad {TYPE {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}}

FUNC recomputeRoads {TYPE {eMobility.eCars.CONCEPT_TREES.RecomputeRoads}}

}

STATES {

STATE AtBeginning {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationA}

STATE AtEnd {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.getCurrentLocation =

eMobility.eCars.CONCEPT_TREES.Route.PROPS.locationB}

STATE OnRoute { NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning AND

NOT eMobility.eCars.CONCEPT_TREES.Route.STATES.AtEnd}

STATE InHighTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InHighTraffic}

STATE InLowTraffic {

eMobility.eCars.CONCEPT_TREES.Route.PROPS.currentRoad.STATES.InFluentTraffic}

}

}

As mentioned above, the states are specified as Boolean expressions. For exam-
ple, the state Route’s OnRoute holds (is true) while the Route is neither
AtBeginning nor at AtEnd states. A concept realization is an object instan-
tiated from that concept. As shown, a complex state might be expressed as a
Boolean function over other states. For example, the Journey’s state Arrived
OnTime is expressed as a Bollean expression involving the Journey’s Arrived
state and Journey’s properties.

Note that states are extremely important to the specification of goals (objec-
tives), situations, and policies. For example, states help the KnowLang Reasoner
determine at runtime whether the system is in a particular situation or a par-
ticular goal (objective) has been achieved.

6.2 Specifying Self-Adaptive Behaviour

To specify self-* objectives with KnowLang, we use goals, policies, and situa-
tions. These are defined as explicit concepts in KnowLang, and for the eMobility
Ontology we specified them under the concepts Virtual entity→Phenomenon→
Knowledge (see Fig. 5). Figure 6, depicts a concept tree representing the spec-
ified eMobility goals. Note that most of these goals were directly interpolated
from the goals model (see Fig. 4).

Recall that KnowLang specifies goals as functions of states where any combi-
nation of states can be involved. A goal has an arriving state (Boolean function
of states) and an optional departing state (another Boolean function of states).
A goal with departing state is more restrictive, i.e., it can be achieved only if
the system departs from the specific goal’s departing state.

KnowLang - A Formal Specification Model for Self-adaptive Systems 387

Fig. 6. eMobility Ontology: eMobility Goal Concept Tree

The following code samples present the specification of two simple goals. Usu-
ally, goals’ arriving and departing states can be either single states or sequences
of states. Note that the states used to specify the goals below are specified as
part of both Journey and Route concepts.

//

//==== eMobility Goals ===

//

CONCEPT_GOAL ArriveOnTime {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}

PARENTS {}

SPEC {

DEPART { eMobility.eCars.CONCEPT_TREES.Journey.PROPS.journeyRoute.STATES.AtEnd }

ARRIVE { eMobility.eCars.CONCEPT_TREES.Journey.STATES.ArrivedOnTime }

}

}

CONCEPT_GOAL LowRouteTraffic {

CHILDREN {eMobility.eCars.CONCEPT_TREES.Goal}

PARENTS {}

SPEC {

DEPART { eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic }

ARRIVE { eMobility.eCars.CONCEPT_TREES.Route.STATES.InLowTraffic }

}

}

The following is a specification sample showing an eMobility policy called Reduce
RouteTraffic – as the name says, this policy is intended to reduce the route traf-
fic. As shown, the policy is specified to handle the goal LowRouteTraffic and
is triggered by the situation RouteTrafficIncreased. Further, the policy trig-
gers via its MAPPING sections conditionally (e.g., there is a CONDITONS
directive that requires the Route’s state OnRoute to be hold) the execution of a
sequence of actions. When the conditions are the same, we specify a probability
distribution among the MAPPING sections involving same conditions (e.g.,
PROBABILITY 0.7), which represents our initial belief in action choice.

CONCEPT_POLICY ReduceRouteTraffic {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Policy}

SPEC {

POLICY_GOAL {eMobility.eCars.CONCEPT_TREES.LowRouteTraffic}

POLICY_SITUATIONS {eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased}

POLICY_RELATIONS {eMobility.eCars.RELATIONS.Situation_Policy_1}

POLICY_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad,

eMobility.eCars.CONCEPT_TREES.RecomputeRoads}

POLICY_MAPPINGS {

MAPPING {

CONDITIONS {eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}

388 M. Hinchey and E. Vassev

DO_ACTIONS {eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

PROBABILITY {0.7}

}

MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.OnRoute}

DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

PROBABILITY {0.3}

}

MAPPING {

CONDITIONS { eMobility.eCars.CONCEPT_TREES.Route.STATES.AtBeginning}

DO_ACTIONS { eMobility.eCars.CONCEPT_TREES.Route.FUNCS.recomputeRoads,

eMobility.eCars.CONCEPT_TREES.Route.FUNCS.takeAlternativeRoad}

}

}

}

}

As specified, the probability distribution gives initial designer’s preference
about what actions should be executed if the system ends up in running the
ReduceRouteTraffic policy. Note that at runtime, the KnowLang Reasoner
maintains a record of all the action executions and re-computes the probabil-
ity rates every time when a policy has been applied and consecutively, actions
have been executed. Thus, although initially the system will execute the function
takeAlternativeRoad (it has the higher probability rate of 0.7), if that policy
cannot achieve its goal with this action, then the probability distribution will be
shifted in favor of the function sequence recomputeRoads, takeAlternativeRoad,
which might be executed the next time when the system will try to apply the
same policy. Therefore, probabilities are recomputed after every action execu-
tion, and thus the behaviour change accordingly.

Moreover, to increase the goal-oriented autonomicity, in policy specification,
we may use a special operator implemented in KnowLang called GENERATE
NEXT ACTIONS. This operator will automatically generate the most appro-

priate actions to be undertaken by eMobility. The action generation is based on
the computations performed by a special reward function implemented by the
KnowLang Reasoner. The KnowLang Reward Function (KLRF) observes the
outcome of the actions to compute the possible successor states of every possible
action execution and grants the actions with special reward number considering
the current system state (or states, if the current state is a composite state) and
goals. KLRF is based on past experience and uses Discrete Time Markov Chains
[3] for probability assessment after action executions [22].

Note that when generating actions, the GENERATE NEXT ACTIONS
operator follows a sequential decision-making algorithm where actions are
selected to maximize the total reward. This means that the immediate reward of
the execution of the first action, of the generated list of actions, might not be the
highest one, but the overall reward of executing all the generated actions will be
the highest possible one. Moreover, note that, the generated actions are selected
from the predefined set of actions (e.g., the implemented eMobility actions). The
principle of the decision-making algorithm used to select actions is as follows:

1. The average cumulative reward of the reinforcement learning system is cal-
culated.

2. For each policy-action mapping, the KnowLang Reasoner learns the value
function, which is relative to the sum of average reward.

KnowLang - A Formal Specification Model for Self-adaptive Systems 389

3. According to the value function and Bellman optimality principle1, is gener-
ated the optimal sequence of actions.

As mentioned above, policies are triggered by situations. Therefore, while spec-
ifying policies handling eMobility objectives, we need to think of important sit-
uations that may trigger those policies. These situations shall be eventually
outlined by scenarios. A single policy requires to be associated with (related
to) at least one situation, but for polices handling self-* objectives we even-
tually need more situations. Actually, because the policy-situation relation is
bidirectional, it is maybe more accurate to say that a single situation may need
more policies, those providing alternative behaviours or execution paths out of
that situation. The following code represents the specification of the situation
RouteTrafficIncreased, used for the specification of the ReduceRouteTraffic
policy.

CONCEPT_SITUATION RouteTrafficIncreased {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Situation}

SPEC {

SITUATION_STATES {eMobility.eCars.CONCEPT_TREES.Route.STATES.InHighTraffic}

SITUATION_ACTIONS {eMobility.eCars.CONCEPT_TREES.TakeAlternativeRoad}

}

}

}

As shown, the situation is specified with SITATION STATES (e.g., InHigh
Traffic) and SITUATION ACTIONS (e.g., TakeAlterna-tiveRoad). To
consider a situation effective (i.e., the system is currently in that situation), the
situation states must be respectively effective (evaluated as true). For exam-
ple, the situation RouteTraf -ficIncreased is effective if the Route’s state
InHighTraffic is effective (is hold). The possible actions define what actions
can be undertaken once the system falls in a particular situation. For example,
the RouteTrafficIncreased situation has one possible action: TakeAlternative
Road.

Recall that situations are related to policies via relations. The following code
demonstrates how we related the situation RouteTrafficIncreased to the policy
Reduce-RouteTraffic.

RELATION Situation_Policy_1{

RELATION_PAIR {

eMobility.eCars.CONCEPT_TREES.RouteTrafficIncreased,

eMobility.eCars.CONCEPT_TREES.ReduceRouteTraffic}

}

}

In general, a self-adaptive system has sensors that connect it to the world and
eventually help it listen to its internal components. These sensors generate raw
data that represent the physical characteristics of the world. The representa-
tion of monitoring sensors in KnowLang is handled via the explicit Metric con-
cept [22]. In our approach, we assume that eMobility sensors are controlled by
software drivers (e.g., implemented in C++) where appropriate methods are

1 The Bellman optimality principle: If a given state-action sequence is optimal, and
we were to remove the first state and action, the remaining sequence is also optimal
(with the second state of the original sequence now acting as initial state).

390 M. Hinchey and E. Vassev

used to control a sensor and read data from it. By specifying a Metric concept
we introduce a class of sensors to the KB and by specifying objects, instances
of that class, we represent the real sensor. KnowLang allows the specification of
four different types of metrics [22]:

– RESOURCE – measure resources like capacity;
– QUALITY – measure qualities like performance, response ti-me, etc.;
– ENVIRONMENT – measure environment qualities and resources;
– ENSEMBLE – measure complex qualities and resources where the metric

might be a function of multiple metrics both of RESOURCE and QUALITY
type.

The following is a specification of metrics mainly used to assist the specification
of states in the specification of the eMobility concept (see Sect. 6.1).

// metrics

CONCEPT_METRIC RoadTrafficLevel {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { ENVIRONMENT }

METRIC_SOURCE { "ECarClass.GetRoadTrafficLevel" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC BatteryEnergyLevel {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetBatteryEnergyLevel" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC VehicleSpeed {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetVehicleSpeed" }

DATA_TYPE { NUMBER }

}

}

CONCEPT_METRIC JourneyTime {

CHILDREN {}

PARENTS {eMobility.eCars.CONCEPT_TREES.Metric}

SPEC {

METRIC_TYPE { RESOURCE }

METRIC_SOURCE { "ECarClass.GetJourneyTime" }

DATA_TYPE { DATETIME }

}

}

7 Conclusion and Future Work

In the course of this R&D process, we shaped our research activities towards
focusing on the KnowLang Framework where our ultimate goal is to structure
computerized knowledge so that a computerized system can effectively process it
and gain awareness capabilities and eventually derive its own behaviour. To pro-
vide comprehensive and powerful specification formalism, we developed a pow-
erful multi-tier specification model where ontologies are integrated with rules
and Bayesian networks. The approach allows for efficient and comprehensive
knowledge structuring and awareness based on logical and statistical reasoning.
We used the KnowLang notation to specify some knowledge models for different

KnowLang - A Formal Specification Model for Self-adaptive Systems 391

case studies. This exercise demonstrated the ability of KnowLang to handle KR
for systems from different application domains. A very important feature is the
KnowLang mechanism for self-adaptive behaviour where knowledge representa-
tion and reasoning help to establish the vital connection between knowledge,
perception, and actions realizing self-adaptive behaviour. The knowledge is used
against the perception of the world to generate appropriate actions in compliance
to some goals and beliefs.

Future work is mainly concerned with further development of the KnowL-
ang Reasoner as part of the full implementation of the KnowLang Framework,
involving tools and a test bed for verification and validation of KnowLang mod-
els.

Acknowledgements. This work was supported, in part, by Science Foundation Ire-
land grant 13/RC/ 2094 P2 and co-funded under the European Regional Development
Fund through the Southern & Eastern Regional Operational Programme to Lero–the
Science Foundation Ireland Research Centre for Software (www.lero.ie) and by Univer-
sity of Limerick, Limerick, Ireland.

References

1. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D.,
McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic
Handbook, pp. 43–95. Cambridge University Press, Cambridge (2003)

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Elsevier,
New York (2004)

3. Ewens, W., Grant, G.: Stochastic Processes (i): Poison Processes and Markov
Chains. Statistical Methods in Bioinformatics, 2nd edn. (2005)

4. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–
350 (1990)

5. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

6. Knuth, D.E.: Backus normal form vs. backus naur form. Commun. ACM 7(12),
735–736 (1964)

7. Neapolitan, R.: Learning Bayesian Networks. Prentice Hall, Hoboken (2003)
8. Serbedzija, N., et al.: D7.3: Third Report on WP7 Integration and Simulation

Report for the ASCENS Case Studies (2013). ASCENS Deliverable
9. Serbedzija, N., et al.: D7.2: Second Report on WP7 Ensemble Model Syntheses

with Robot, Cloud Computing and e-Mobility (2012). ASCENS Deliverable
10. Serbedzija, N., et al.: D7.1: First Report on WP7 Requirement Specification and

Scenario Description of the ASCENS Case Studies (2011). ASCENS Deliverable
11. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for

Specification and Code Generation of Autonomic Systems. LAP Lambert Academic
Publishing (2009)

12. Vassev, E.: KnowLang grammar in BNF. Technical report. Lero-TR-2012-04, Lero,
University of Limerick, Ireland (2012)

13. Vassev, E., Hinchey, M.: The challenge of developing autonomic systems. IEEE
Comput. 43(12), 93–96 (2010)

www.lero.ie

392 M. Hinchey and E. Vassev

14. Vassev, E., Hinchey, M.: Towards a formal language for knowledge representation in
autonomic service-component ensembles. In: Proceedings of the 3rd International
Conference on Data Mining and Intelligent Information Technology Applications
(ICMIA 2011), pp. 228–235. AICIT, IEEE Xplore (2011)

15. Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Comput.
45(12), 84–87 (2012)

16. Vassev, E., Hinchey, M.: Efficient reasoning with ambient trees for space explo-
ration. In: Vinh, P.C., Hung, N.M., Tung, N.T., Suzuki, J. (eds.) ICCASA 2012.
LNICST, vol. 109, pp. 176–182. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36642-0 18

17. Vassev, E., Hinchey, M.: Knowledge representation for cognitive robotic
systems. In: Proceedings of the 15th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing Work-
shops (ISCORCW 2012), pp. 156–163. IEEE Computer Society (2012)

18. Vassev, E., Hinchey, M.: Knowledge representation with KnowLang - the marXbot
case study. In: Proceedings of the 11th IEEE International Conference on Cyber-
netic Intelligent Systems (CIS 2012). IEEE Computer Society (2012)

19. Vassev, E., Hinchey, M.: Knowledge representation and reasoning for self-adaptive
behavior and awareness. TCCI - Special Issue on ICECCS 2012 (2013, pending)

20. Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive
behavior. In: Proceedings of C* Conference on Computer Science & Software Engi-
neering (C3S2E 2012), pp. 113–117. ACM (2012)

21. Vassev, E., Hinchey, M., Gaudin, B., Nixon, P., Bicocchi, N., Zambonelli, F.: D3.1:
First Report on WP3. Software requirements, knowledge modeling and knowledge
representation for self-awareness - report and survey with experimental results for
intelligent multi-agent systems (2011). ASCENS Deliverable

22. Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.:
D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling
for SCE Systems (2012). ASCENS Deliverable

https://doi.org/10.1007/978-3-642-36642-0_18
https://doi.org/10.1007/978-3-642-36642-0_18

The Future Roadmap

A Coq Implementation of the Program
Algebra in Jifeng He’s New Roadmap
for Linking Theories of Programming

Rundong Mu and Qin Li(B)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,
Shanghai, China

qli@sei.ecnu.edu.cn

Abstract. Jifeng He has proposed a roadmap for linking theories of
programming and presents an algebra of programs capable of generating
both denotational and operational representations from the refinement
relation. In this paper, we implement this algebra of programs and its
refinement relation using the interactive theorem prover Coq. Encoding
the algebra into CIC (Calculus of Inductive Constructions), the main
formalism in Coq, facilitates machine-aided interactive proving for the
properties of programs using predefined algebraic laws. The implemen-
tation of the algebra for finite programs enables us to prove that every
finite program can be reduced to the normal form and to check the refine-
ment between two finite programs. The implementation of the algebra
for infinite programs supports formalizing recursive programs with one
variable and checking the refinement between one finite and one infinite
program. Then, we present examples of proving the refinement relation-
ship between two finite programs and a finite program and an infinite
program.

Keywords: Unifying theories of programming · Coq · Program
algebra · Refinement

1 Introduction

Formal semantics for programs are usually constructed using one of two
approaches, as described in [7]. The first approach is a top-down approach that
starts with a denotational model and links the algebraic properties with it by
establishing the soundness and completeness between them. This approach is
used in works such as [2,4,14]. The second approach is a bottom-up approach
that begins with an operational representation and defines a rich variety of bisim-
ulations to identify the equivalences among programs. This approach is used in
works such as [1,15]. Algebraic laws are then generated from the study of the
equivalence relations like [16].

In Jifeng He’s paper [7], he explores a new roadmap for linking theories of
programming other than the top-down and bottom-up approaches. It begins
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, pp. 395–412, 2023.
https://doi.org/10.1007/978-3-031-40436-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40436-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-40436-8_15

396 R. Mu and Q. Li

from an algebra of programs and generates both denotational and operational
representations from the algebraic refinement relation. For the initial step of this
approach, a program algebra (P,�A) consisting of a set of laws is presented to
express the algebraic properties of programs. This program algebra is the basis
of this approach, and the main criterion of the algebra is whether it is sufficient
to convert every program in the domain P to a normal form. This criterion is
stated in Theorem 2.1 in [7]. The refinement order �A is defined on normal forms
to support comparing the behaviors of two programs.

This paper aims to implement the program algebra in [7] with the interactive
theorem prover Coq and prove the corresponding theorems relating the algebra
with the aid of it. We chose Coq because of its strong type system, which can
support the binding and value model required by He’s model. Although efforts
have been made to develop more suitable value models, such as the one proposed
in [5], we opted for a deep embedding approach to gain greater control over
the proof process during refinement steps. Specifically, we restrict ourselves to a
monomorphic value type with a fixed representation, similar to what was done in
[11]. Different from shallow embedding like [3], deep embedding allows for more
accurate operations on values and enable more effective use of corresponding
libraries of certain types. However, it can be less convenient for proving. By
encoding in an algebraic way, we can separate the value and abstract algebra
parts. For the latter, we can still leverage proof facilities to simplify the proving
process. For the former, we can make assertions on values rather than providing
concrete values. Additionally, deep embedding allows us to manipulate the data
at a more granular level using Coq’s library.

– We translated the finite operators over algebra into CIC (Calculus of Inductive
Constructions) that can be accepted in Coq.

– We encoded the algebraic laws as rules that can be used for deduction between
finite algebras. In doing so, we proved Theorem 2.1 in [7], which states that
all finite algebras can be transformed into some normal form by giving the
concrete transformation program. We proved that such transformation con-
verts all programs to some normal form, and such transformation is only a
composition of the laws outlined in He’s paper.

– We provided a method to check the refinement relationship between two finite
programs in mechanical proof.

– Furthermore, our work extends He’s paper by providing a solution for com-
paring certain infinite programs and finite programs within finite steps.

The paper is organized as follows:
Section 2 briefly introduces the algebra of programs and refinement relation

intended to be implemented.
Section 3 encodes the operators of the algebra into CIC and implements the

algebraic laws for finite programs. The theorem that every finite program can
be reduced to normal form is proved based on the implementation. Additionally,
we implemented the refinement relation between finite programs and present an
example of checking refinement between two finite programs.

A Coq Implementation for Jifeng He’s Program Algebra 397

Section 4 present our in-progress work on the infinite cases of the algebra
together with an example of checking the refinement between an infinite program
and a finite program.

Section 5 discusses the limitations and alternative solutions.
Section 6 concludes this article and talks about future works.

2 Preliminary

In Jifeng He’s paper [7], he presents a program algebra (P,�A) for the follow-
ing syntax of sequential programs. This algebra is built upon the foundation
established by [8].

P,Q ::= ⊥ | var := exp | P � bexp � Q | P ;Q | P � Q | X | μ X • P (X) (1)

where

– ⊥ stands for a chaotic program that does not terminate and can yield any
behaviour unpredictably.

– var := exp stands for the assignment statement assigning the values of a list
of expressions to a list of variables.

– P � bexp � Q stands for the conditional choice where bexp is the boolean
condition. It executes P when bexp holds and executes Q otherwise.

– P ;Q stands for sequential composition.
– P � Q stands for non-deterministic choice. In the following, we extend this

operator to compose more than two operands. For example, �{P1, P2, ..., Pn}
means P1 � P2 � ... � Pn.

– X stands for a syntactic program that can be only used in the scope of a
recursive program that binds it.

– μX •P (X) stands for the recursive program with X as the bounded recursive
identifier.

Jifeng He developed an approach to construct algebraic equivalence classes
between algebras based on some predefined algebraic laws, as detailed in
Appendix A of [7]. These laws employ the =A notation to represent algebraic
equivalence, which is distinct from the syntactical equality (=) used in Coq.
Algebraic equivalence (=A) satisfies transitivity, reflexivity, and commutativity.
Additionally, it adheres to a composition law that allows any subterm within an
algebra to be replaced with its corresponding subterm within the same algebraic
equivalence class. We ensure that the resulting term remains within the same
algebraic equivalence class as the original term.

With the algebraic equivalence defined above, we can define the normal form
of programs. The normal form is defined in two ways: the finite normal form
(FNF) and the infinite normal form (INF).

Definition 1 (Finite Normal Form). Let bexp be a boolean condition, v := ei
be a total assignment. The finite normal form is defined as follows.

⊥ � bexp � �i(v := ei) (2)

398 R. Mu and Q. Li

The algebraic refinement relation on the finite normal forms is defined with
the following two rules.

Definition 2 (Algebraic Refinement for Finite Program). Let P and Q
be programs. The refinement order �A for finite programs is defined as follows.

1. If P =A �{v := ei | i ∈ I}, Q =A �{v := fj | j ∈ J}, then
P �A Q iff for any f ∈ {fj | j ∈ J}, we have ∀x • f(x) ∈ {ei(x) | i ∈ I}.

2. If P =A ⊥ � b � R, Q =A ⊥ � c � S, then
P �A Q iff [c ⇒ b] and [b] ∨ (R �A S)

The notation [bexp] means ∀v • bexp(v) where v is the list of all free variables
in bexp.

The infinite normal form is defined as the infinite sequence of finite normal
forms.

Definition 3 (Infinite Normal Form). Let Si be programs of finite normal
form ⊥ � bi � Qi, Si, Si+1 form an ascending chain Si �A Si+1, and for any i, j
with bi = bj, ⊥ � bi � Qi =A ⊥ � bj � Qj. The infinite normal form is defined as
follows.

	 {Si | i ∈ N} (3)

where 	S stands for the least upper bound of the set S.

The algebraic refinement relation on the infinite normal forms is defined as
following two rules.

Definition 4 (Algebraic Refinement for Infinite Program). Let P and
Q be programs. The refinement order �A is defined as follows.

1. If S =A ⊥ � b � R, T =A {⊥ � ci � Ui | i ∈ N}, then
S �A (T) iff [(

∧
ci) ⇒ b] and ∀i ∈ N • R �A Ui.

2. If P =A 	{Si | i ∈ N}, Q =A 	{Ti | i ∈ N}, then
P �A Q iff ∀i ∈ N • Si �A Q.

As mentioned above, the infinite program relies on finite programs and their
refinement relation. Therefore, it is advisable to prioritize encoding the finite
programs first.

3 Encoding Algebra for Finite Programs

Jifeng He uses algebraic laws to represent the deduction of program algebra
and refinement relations. In this section, we will discuss how to encode the laws
related to finite algebra into Coq code. Coq employs the formalism called Cal-
culus of Inductive Constructions [12]. This formalism replaces property verifica-
tion with the check of type signatures of expression captured by Coq’s special
sort, Prop. Moreover, inductive definitions will automatically generate induction
hypotheses, which assist us in our proofs.

A Coq Implementation for Jifeng He’s Program Algebra 399

3.1 Translating Syntax of Finite Algebra

In this section, an inductive type Alg is constructed to represent all finite pro-
grams that do not include recursion. The Alg type is composed of two types,
Atomic and Comp, which correspond to different kinds of valid program syntax.

Section alg.
Inductive Atomic : Type :=
| Chaos : Atomic
| Assn : Assign → Atomic
| Empty : Atomic.
Inductive Comp : Type :=
| Seq : Comp
| NDC : Comp
| CDC : Boolexp → Comp.
Inductive Alg : Type :=
| Lift : Atomic → Alg
| Comb : Comp → Alg → Alg → Alg.
Definition NDCList (l : list Alg) : Alg :=

match l with
| [] ⇒ Lift Empty
| h :: tl ⇒ fold_left (fun a b ⇒ (Comb NDC a b)) tl h
end.

End alg.

The finite operators in program algebra correspond to the Comp type. These
operators include sequential composition (Seq), non-deterministic choice (NDC),
and conditional choice (CDC). On the other hand, the chaotic program (Chaos)
and assignment statement (Assn) correspond to Atomic type.

The symbol �ln∈N represents the non-deterministic choice of a set l, where N
is the set of natural numbers. In our implementation, we represent sets using lists
and encode the non-deterministic choice of the list as NDCList This encoding
is straightforward, except for the empty set, which we represent using a special
algebraic structure called Empty.

For the sake of readability, we will use the following notations to denote the
syntax, the notations are similar to the original symbol in Jifeng He’s paper.

The algebra of a single assignment statement can be represented using the
following notation:

Notation "·{ e }" := (Lift (Assn e)) (at level 10).

The assignment statement e can be divided into two parts: the variable part
and the expression part. The variable part is a user-defined type, which is injected
through a type class. The expression part is simply a function, where the domain
and range are both a list of variables.

Definition Exp := (list Var) → (list Var).
Record Assign := makeAssign {

ids: (list Var); values : Exp;
}.

400 R. Mu and Q. Li

It can be represented using the following notation:

Notation "var :== exp" := (makeAssign var exp)(at level 51).

The chaotic program is represented using a notation similar to ⊥.

Notation "_|_" := (Lift Chaos)(at level 10).

The conditional choice of program p and q is represented using the notation
below.

Notation "p <| b |> q" := (Comb (CDC b) p q) (at level 15).

The boolean condition b in the branching expression is defined as a function
that takes a list of variables as its input and outputs a boolean value.

Definition Boolexp : Type := (list Var) → bool.

The notation below is used to represent the sequential composition of pro-
gram p and q.

Notation "p ;; q" := (Comb Seq p q)(at level 14, left associativity).

To represent the non-deterministic choice of program p and q, we use the
notation below.

Notation "p /-\ q" := (Comb NDC p q)(at level 13, left associativity).

The non-deterministic choice of a set can use the following notation.

Notation "|-| l" := (NDCList l)(at level 10).

Specifically, the representation of non-deterministic choice for the empty set
is denoted using the following notation.

Notation "-o-" := (Lift Empty)(at level 10).

3.2 Representing Algebraic Equivalence Relationship

The algebraic equivalence relation (=A) is a property defined on two algebras.
It is denoted as rwtrel in the following Coq code.

Section rwtrel.
Parameter rwtrel : Alg → Alg → Prop.
Axiom rwt_refl : forall (a: Alg), rwtrel a a.
Axiom rwt_trans : forall (a b c : Alg), rwtrel a b →

rwtrel b c → rwtrel a c.
Axiom rwt_comm : forall (a b : Alg), rwtrel a b → rwtrel b a.
Axiom rwt_comb : forall (a b c d : Alg) (e : Comp), rwtrel a b →

rwtrel c d → rwtrel (Comb e a c) (Comb e b d).
End rwtrel.
Notation "a ← → b" := (rwtrel a b) (at level 20, left associativity).

A Coq Implementation for Jifeng He’s Program Algebra 401

The relation satisfies the properties of reflexivity, transitivity, commutativity,
and the composition law. These properties correspond to the following axioms:
rwt_refl, rwt_trans, rwt_comm, and rwt_comb.

The notation (←→) is used to represent algebraic equivalence (=A). In the
code that follows, all algebraic laws for the program algebras described in [7] are
expressed using rwtrel.

3.3 Encoding the Algebraic Laws

All algebraic laws can be categorized into three layers. The first layer concerns
operations on assignments, while the second layer involves the combination of
non-deterministic choices over different assignments. The third layer deals with
operations on the finite normal form (without recursion). With the help of these
predefined algebraic laws, we intend to establish a theorem saying that all finite
programs can be reduced to their normal forms.

Due to space limitations, we refer the readers to the Appendix A of Jifeng
He’s paper [7] to see all the corresponding algebraic laws.

Assignment. Regarding the first layer, most laws simply require a straight-
forward translation into code. For example, Law A.2.(2) can be translated into
code as follows:

Axiom Assign_Seq : forall (v : list Var) (g h : Exp),
· {v :== g} ;; · {v :== h} ← → ·{v :== (fun x ⇒ h (g x))}.

Law A.2.(1) states that any assignment can be extended into its correspond-
ing total assignment.

Axiom Assign_extends : forall (v : Assign), ·{v} ← → ·{extends_assign v}.

we interpret extending an assignment to its corresponding total assignment as
an extension of the variable part to include all possible variables in the GLOBVARS.
We then proceed to extend the expression function accordingly.

Definition extends_assign (v : Assign) :=
makeAssign GLOBVARS (extends_mapping v.(ids) v.(values)).

The function extends_mapping maps the variable in the domain of the orig-
inal assignment to its original range while leaving all other variables unchanged.
This can be achieved with the help of extends_mapping_help function.

Definition extends_mapping (us : list Var) (m : (list Var) → (list Var)) :=
fun k ⇒ (extends_mapping_help us (m us) k).

The function extends_mapping_help allows for the extension of a target
expression mapping’s domain. Specifically, it maps elements in the range of us
to their corresponding values in m(us). Any element that is not in the range
of us but is within the range of k remains unchanged. The function utilizes the
lookup_help function to determine whether a target variable exists within an
assignment’s domain.

402 R. Mu and Q. Li

Fixpoint extends_mapping_help (us rs k : (list Var)) : (list Var) :=
match k with
| [] ⇒ []
| v:: vl ⇒

lookup_help v us rs :: extends_mapping_help us rs vl
end.

If the variable a is within the domain vs, lookup_help will return its
corresponding value within the range us. Otherwise, the variable a remains
unchanged.

Fixpoint lookup_help (a: Var) (vs rs: (list Var)) : Var :=
match vs, rs with
| _, [] ⇒ a
| [], _ ⇒ a
| v:: vl, r:: rl ⇒

if (eqb a v) then r else lookup_help a vl rl
end.

Non-deterministic Choice. Law A.3 in [7] states the absorption properties
of non-deterministic choice of total assignments. It relies on syntax checking
whether a program is in the form of non-deterministic choices over total assign-
ments, which we denote as CH. We define the following function CH to achieve
that.

Definition CH (p : list Alg) : Prop :=
forall (x : Alg), In x p → exists y, x = ·{y} ∧ Total_Assign y.

where the function Total_Assign checks whether a target assigning is total.

Definition Total_Assign (a : Assign) :=
forall v:Var, In v GLOBVARS → In v a.(ids).

Therefore, the law of the conditional operation over CHs (Law A.3.(2)) is defined
as follows.

Axiom Cond_over_Choice : forall (a b : list Alg) (bexp : Boolexp),
CH a → CH b → (|−| a) <| bexp |> (|−| b) ← →

|−| (map (fun g ⇒ (fst g) <| bexp |> (snd g)) (list_prod a b)).

Finite Normal Form. The laws on the absorption properties of finite nor-
mal forms (Law A.4) can be similarly defined. For instance, the law of the
non-deterministic operation over finite normal forms (Law A.4.(1)) is defined
as follows.

Axiom NF_over_Choice : forall (a b : list Alg) (c d : Boolexp),
CH a → CH b → (((_|_) <| c |> (|−| a)) /−\ ((_|_) <| d |> (|−| b))) ← →

((_|_) <| (fun g ⇒ orb (c g) (d g)) |> ((|−|a) /−\ (|−| b))).

The proof of the following theorem relies on the laws defined above.

A Coq Implementation for Jifeng He’s Program Algebra 403

3.4 Proof of Finite Normal Form Reduction

In this part, we would use the implications given above to prove the key Theorem
2.1 in [7], which states that every finite program can be reduced to FNF. The
corresponding theorem is presented in Coq as follows.

Theorem FNF_closure : forall (P : Alg),
exists Q, P ← → Q ∧ FNF Q.

where the function FNF (Definition 1) is defined to check whether a program is
in the finite normal form.

Definition FNF (P : Alg): Prop :=
exists bexp R, P = (_|_) <| bexp |> (|−| R) ∧ CH R.

We proved this theorem through the implementation of a program that con-
verts any input program to its normal form, referred to as Normal. In order to
prove the above, we imposed two crucial rules.

The first law states that the resulting program must conform to the normal
form condition, which can be expressed as follows:

Theorem NormalisNF : forall x, FNF (Normal x).

Listing 1.1. Normal is in normal form

The second law, which states that all finite programs subjected to the trans-
formation should still yield algebraic equivalent outcomes, can be formalized as
the following theorem:

Theorem NormalRWT : forall x, x ← → Normal x.

Listing 1.2. Normal is algebraic equivalent

The transformation function Normal that satisfies the above conditions is
implemented as follows:

Fixpoint Normal (a : Alg) : Alg :=
match a with
| Lift e ⇒

match e with
| Assn a ⇒ (_|_) <| false_stat |> |−|[·{extends_assign a}]
| Empty ⇒ (_|_) <| false_stat |> |−|[]
| Chaos ⇒ (_|_) <| true_stat |> |−|[·{empty_assn}]
end

| Comb s p q ⇒
match s with
| Seq ⇒ Normal_comb_Seq (Normal p) (Normal q)
| CDC b ⇒ Normal_comb_CDC (Normal p) (Normal q) b
| NDC ⇒ Normal_comb_NDC (Normal p) (Normal q)
end

end.

When a program belongs to Atomic, it can be translated into its correspond-
ing normal form directly. However, if it contains any operators belonging to the

404 R. Mu and Q. Li

Comp, it must then be divided into two sub-programs for translation. The sub-
programs are subsequently translated individually and then combined to form a
new program that is also in its normal form.

In the above definition, the function Normal_comb_Seq transforms two sub-
programs combined in normal form with ’Seq’ into a new program in its normal
form. Firstly, it combines the subprograms as Law A.4.(5) dictates. However,
the right part of the resulting program is not assignment sequences, so we need
to transform it accordingly.

Definition Normal_comb_Seq (p q : Alg) :=
match p, q with
| Comb x _ a, Comb y _ b ⇒

match x, y with
| CDC c, CDC d ⇒ (_|_) <| (fun g ⇒ orb (c g)

(CH_over_Boolexp (Alg_to_CH a) d)) |>
|−| (CH_comb_Seq (Alg_to_CH a) (Alg_to_CH b))
| _, _ ⇒ −o−
end

| _, _ ⇒ −o−
end.

The function Alg_to_CH converts the algebra that consists of assignments
linked by non-deterministic choices into a list format.

Fixpoint Alg_to_CH (a : Alg) : list Alg :=
match a with
| Lift e ⇒ match e with

| Assn a ⇒ [·{a}]
| _ ⇒ []
end

| Comb s p q ⇒ match s with
| NDC ⇒ (Alg_to_CH p) ++ (Alg_to_CH q) % list
| _ ⇒ []
end

end.

The function Alg_to_CH must meet the following condition to ensure its
correctness.

Lemma Alg_to_CH_id : forall l, CH l → Alg_to_CH (|−| l) = l.

The function CH_comb_Seq combines two lists of assignments together in the
manner described by Law A.3.(3).

Definition CH_comb_Seq (a b : list Alg) :=
(map (fun g ⇒ Assign_comb_Seq (fst g) (snd g)) (list_prod a b)).

The function Assign_comb_Seq applies Law A.2.(2) to transform a program
consisting of two assignments combined with Seq into a single assignment state-
ment.

Definition Assign_comb_Seq_help (a b : Assign) :=
a.(ids) :== fun x ⇒ b.(values) (a.(values) x).

A Coq Implementation for Jifeng He’s Program Algebra 405

Definition Assign_comb_Seq (a b : Alg) :=
match a, b with
| Lift x, Lift y ⇒

match x, y with
| Assn s, Assn t ⇒ ·{(Assign_comb_Seq_help

(extends_assign s) (extends_assign t))}
| _, _ ⇒ −o−
end

| _, _ ⇒ −o−
end.

The function Normal_comb_CDC and the function Normal_comb_UDC is defined
similarly. Upon completion of the definition of the function Normal, we need to
ensure that it satisfies the conditions outlined in Listing 1.1 and Listing 1.2.

Listing 1.1 states that the program after transformation should be in normal
form. The process of proving can be divided into two types of sub-goals. The first
type involves only operators in the Atomic group, which we can prove directly.

The proof of Listing 1.2 requires the use of induction hypotheses. The process
of proving is similar to that of the previous theorem. For subgoals involving
only operators in the Atomic group, we prove them directly by applying laws.
For subgoals involving induction hypotheses, we first ensure that the condition
part is correctly constructed before moving on to the assignment part. Since
list operations are involved, we cannot apply the reducing law directly. Instead,
we must define a new lemma that connects the reducing equivalence relation
between individual elements with the reducing equivalence relation across the
entire list.

Lemma rwt_ext_Forall : forall A (f g : A → Alg) (l : list A),
Forall (fun x ⇒ f x ← → g x) l → |−|(map f l) ← → |−|(map g l).

The complete proof can be found at the following link on GitHub1. In addi-
tion, the techniques for proving the above theorem can help us to convert any
program to its normal form.

3.5 Definition of Refinement on Finite Programs

The refinement relation defined in Definition 2 can be implemented in Coq for
finite programs by comparing two assignment expressions for equality, and check-
ing if one non-deterministic choice of total assignments is a subset of another.

Definition Refine (P Q : Alg) :=
exists bexp cexp U V,

(P = (_|_) <| bexp |> (|−| U) ∧ CH U)
∧ (Q = (_|_) <| cexp |> (|−| V) ∧ CH V)
∧ (Constraints → ((cexp GLOBVARS = false ∧ (RefineCH U V))
∨ (bexp GLOBVARS = true))).

1 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/
ProgramAlgebra.v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/ProgramAlgebra.v

406 R. Mu and Q. Li

The function Refine corresponds to the second case of Definition 2 where
two programs are in FNF. With the introduction of Constraints, we can spec-
ify certain limitations on the variables in GLOBVARS, which determines the
possible range of variables.

Definition RefineCH (A : list Alg) (B : list Alg) :=
forall x, In x B → exists y , In y A ∧ subAssn x y.

The function RefineCH encodes the first case of Definition 2 where two pro-
grams are both non-deterministic choices of total assignments.

Definition subAssn (x : Alg) (y : Alg) :=
match x, y with
| Lift e, Lift f ⇒

match e, f with
| Assn m, Assn n ⇒ subEval (extends_assign m) (extends_assign n)
| _,_ ⇒ False
end

| _, _ ⇒ False
end.

The function subAssn is defined to find whether two assignments form a
subset relation, i.e., x ⊆ y.

Definition subEval (x y : Assign) :=
forall a, In a (x.(values) x.(ids)) → In a (y.(values) y.(ids)).

The subEval function is designed to determine whether a given set of vari-
ables x, represented as a list, is a subset of another set y.

3.6 Example of Refinement on Finite Programs

In this part, we will use Coq to prove the refinement on two finite programs T1

and T2 presented as follows.

T1 =def ({a, b, c := a + 1, b + 1, c + 1};
({a, b, c := a, b, c} � (a ≥ 20) � {a, b, c := a − 1, b − 1, c − 1}))
� (a ≤ 10) � ⊥

(4)

T2 =def ⊥ � (a > 10) � {a, b, c := a + 1, b + 1, c + 1};
(({a, b, c := a + 1, b + 1, c + 1} � {a, b, c := a − 1, b − 1, c − 1})) (5)

Since the refinement relation is defined on normal forms. The proof is con-
ducted by first reducing the two programs T1, T2 to their corresponding normal
forms N1, N2 and then show that N2 �A N1.

In order to encode the two programs with our Coq implementation, we need
to first instantiate the parameters of our formalism.

Instance myParams : UserParams :=
Build_UserParams MyVar GLOBVARS eqbVar Constraints.

A Coq Implementation for Jifeng He’s Program Algebra 407

The instantiation involves providing the concrete type of each variable, and
a function that decides whether two variables are equal.

We set the type of variables to be a tuple consisting of a string and a natural
number with MyVar.

Record MyVar := mkVar {
id: string;
val : nat;

}.

The function eqbVar determines whether two variables have the same name
and value of natural numbers.

GLOBVARS is a user-defined parameter that keeps track of all variables used
in the relevant programs. It functions as a dictionary that enables us to convert
arbitrary assignments into total assignments. Initializing GLOBVARS with con-
crete values is not strictly necessary. Instead, we use Constraints to specify
the properties that GLOBVARS must satisfy. Typically, this means including all
possible variables that could appear. In our case, we instantiate GLOBVARS as
{a, b, c} where a, b, and c are different variables.

The programs T1 and T2 are encoded as Coq instances testAlg and testAlg2
respectively.

Definition testAlg := ((·{ascassn}) ;;
((· {empty_assn}) <| hdge2 |> (·{dscassn}))) <| hdle1 |> (_|_).

Definition testAlg2 := (_|_) <| (fun x ⇒ negb (hdle1 x)) |>
(· {ascassn}) ;; ((|−|[· {ascassn};·{dscassn}])).

In the code above, hdge2 represents the condition a ≥ 20, while hdle1 repre-
sents a ≤ 10. The program empty_assn is the assignment statement that keeps
all variables’ values unchanged. On the other hand, ascassn is the assignment
statement that increases all variables’ values by 1, while dscassn decreases all
variables’ values by 1.

After completing the pre-work, the only work that remains to be done is to
prove the following property.

Example testrefine : Refine (Normal testnf2) (Normal testnf).

The proof consists of three steps. Firstly, we pattern match Normal testnf
and Normal testnf2. Let us denote the boolean expression of Normal testnf
as b1, and its assignment list as l1. Similarly, let the boolean expression and
assignment list of Normal testnf2 be denoted by b2 and l2, respectively.

In the second step, we categorize the possible values of variables. We ensure
that there is no condition where b2 is false and b1 is true; in other words, either
b2 is true or b1 is false.

For the third step, we simplify l1 and l2 based on the condition that b1 is
false. lia, a tactic for linear integer arithmetic, is used to simplify conditional
functions in expressions. Then, by substituting the variables in expressions, we
check if all possible values in l1 exist in l2. This process involves rewriting by
substituting the variables in the hypothesis into the goals.

408 R. Mu and Q. Li

The full process of this proof can be found in GitHub2.

4 Encoding Algebra for Infinite Programs

In this section, we will delve into the intricacies of handling infinite programs
and draw comparisons with their finite counterparts. Specifically, our focus will
be on analyzing the infinite program generated by recursive functions with a
single variable. This particular structure allows for comparisons between finite
and infinite programs, without the added complexity of navigating through the
expanding order of the recursive function.

4.1 Representing Infinite Programs

Throughout our discussion, we will focus specifically on recursive functions that
take only a single variable. To generate infinite series for analysis, we will use a
function that maps from one finite algebra to another. Specifically, we will be
working with a datatype called Stream, which is an infinitely long list composed
of two parts: the current element which is its head, and the rest of the infinite
list.

Using the CoFixpoint, we can define an infinite list called Recur in such a
way that every element in the list is the result of applying the function f to the
previous element and the first element of the list is a.

Variable f : Alg → Alg.
Definition AlgStr := Stream Alg.
CoFixpoint Recur (a : Alg) : AlgStr := Cons a (Recur (f a)).

We can define the normal form for a given algebra stream {Si} by verifying
that ∀i ∈ N • Si � Si+1 as defined in Definition 3, A stream satisfying this
property is said to be in its normal form using the following Coq code, where
h and m are the first two elements of the stream s. The use of Forall ensures
that the property holds for all suffixes of the given stream.

Definition FNFPres(P Q : Alg) :=
exists R S, (P ← → R ∧ FNF R) ∧ (Q ← → S ∧ FNF S) ∧ Refine R S.

Definition AlgPresStep (s : AlgStr) :=
let h := Streams.hd s in
let m := Streams.hd (Streams.tl s) in
FNFPres h m.

Definition AlgPres := Streams.ForAll AlgPresStep.

Coq’s automatic tactic for infinite structures has a limitation in generating
proper induction laws automatically. Therefore, we need to define the induction
law ourselves.

2 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.
v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testAlt.v

A Coq Implementation for Jifeng He’s Program Algebra 409

Lemma AlgPresInd : forall y, FNFPres y (f y) →
(forall x, FNFPres (f x) (f (f x))) → AlgPres (Recur y).

Proof.
intros. unfold AlgPres. intros. apply HereAndFurther.
unfold AlgPresStep. auto. simpl. generalize y. cofix Pres.
intros. apply HereAndFurther.
− unfold AlgPresStep. simpl. apply H0.
− simpl. apply Pres.

Qed.

4.2 Refinement Between Finite and Infinite Program

According to the first case of Definition 4, to find out whether an infinite program
refines a finite program is to find if there exists some item in the infinite program
normal form series that is strong enough to refine the given finite algebra. To
find such an item, we can either use the Str_nth function defined in Stream
library to trace the nth item, or we can define a SthExists function to find
whether the given algebra exists (or in the same deducing-closed class with the
item) in the series.

Definition SthStep (a : Alg) (s : AlgStr) :=
let h := Streams.hd s in a ← → h.

Definition SthExists (a : Alg) := Streams.Exists (SthStep a).

With the definition given above, we can prove F � G.

F =def ({a, b := a, b} � {a, b := b mod a, a} � (a = 0) � ⊥ (6)

G =def λX • ({a, b := a, b} � (a = 0) � ({a, b := b mod a, a};X)) (7)

F is a finite program that can be encoded as follows:

Definition falg := |−| [skip;GCDAssn] <| hdeqz |>(_|_).

G is a program that uses the Euclidean algorithm to solve for the greatest
common divisor. The Coq encoding of G (GCDStr) is shown below:

Definition GCDStep (a : Alg) : Alg :=
skip <| hdeqz |> (GCDAssn ;; a).

Definition GCDStr := Recur GCDStep (_|_).

In the above definition, hdeqz is used to determine whether a is equal to zero.
The program skip denotes an assignment that does not change anything. Finally,
GCDAssn updates the value of a and b according to the Euclidean algorithm:
a, b := b mod a, a.

Definition empty_assn := makeAssign GLOBVARS refl_exp.
Definition skip := ·{ empty_assn }.
Definition GCDAssn := ·{ makeAssign GLOBVARS GCDFunc}.

410 R. Mu and Q. Li

In this case we will initialize GLOBVARS as {a;b}. First of all, we would like
to know if such a sequence is in its normal form.

Lemma GcdStrPres : AlgPres GCDStr.

After that, we want to find some item in the series that can be deduced to
GCDRes.

Definition GCDRes := (_|_) <| (fun x ⇒ negb (orb (hdeqz x)
(Assign_over_Boolexp hdeqz GCDAssn))) |>

· { GLOBVARS :== exp_Cond refl_exp GCDFunc hdeqz}.
Lemma GcdReachRes : SthExists GCDRes GCDStr.

GCDRes is picked up to represent GCDStr. Our goal now is to demonstrate
that GCDRes refines finite program falg.

Lemma refinegcd : exists r s, (r ← → falg ∧ FNF r) ∧
(s ← → GCDRes ∧ FNF s) ∧ Refine r s.

Since both GCDStr and falg are finite programs, we can perform a finite
comparison between them. We can use the proving techniques introduced in
Sect. 3.6.

The full process of this proof can be found in GitHub3.

5 Discussion

In this paper, we implemented Jifeng He’s approach to establishing program
equivalence and refinement relations using axioms, and encoded it in Coq. Our
approach is based on axiomatic semantics, which distinguishes it from the [6]
project that utilizes the denotational model and builds alphabetized predicates.
To facilitate program comparison, we transform each program into a normal
form, separating the abstract program part from the concrete evaluation part.
This approach accommodates diverse computational models. In this paper, we
utilize a simple model that applies abstract variables to functions directly, mak-
ing comparisons between functions challenging.

We have also made progress in automating the proving process by utilizing
Coq’s mechanics. We have successfully automated the transformation of the
abstract algebra part to its normal form. However, there remain challenges in the
refinement process. The proof can be verbose, as issues may arise with unifying
the type of variables in our library and the type of user-defined variables when
importing our library.

This paper focuses on a special case of recursive programs with one variable,
which serves as the foundation for more general recursive programs that can
eventually be transformed to some recursive program with a composite variable.
We are currently working on extending our work to this area.

When dealing with infinite cases, we encountered limitations due to the diffi-
culty of representing any proposition that is a finite and terminating structure of
3 https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/

testGCD.v.

https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v
https://github.com/DonnotPanic/Program-Algebra-in-Jifeng/blob/main/testGCD.v

A Coq Implementation for Jifeng He’s Program Algebra 411

an infinitely recursive program series because it is impossible to compute infinite
loops. We found two approaches to address this issue. The first involves simpli-
fying the problem into some finite cases, where we found that comparing infinite
programs to finite ones can be simplified by unrolling the infinite series a finite
number of times. This results in a computable process. The second approach
involves translating the problem of infinite computing to a continuity problem
that we can symbolically reason about. We are still working on finding a general
method for this.

6 Conclusion and Future Work

In this paper, we present our implementation of the program algebra introduced
by Jifeng He in Coq. We have translated the formalism of the algebra into Coq
syntax and implemented the algebraic laws and refinement relation defined by
He. Using our framework, we provide machine-aided proofs for key theorems
that demonstrate every finite program can be reduced to its normal form, and
we give a concrete transformation program. Additionally, we provide examples to
illustrate how our implementation can be used to check refinement relationships
between two finite programs or a finite program and an infinite program in a
theorem-proving manner.

In the future, we intend to improve our work in the following aspects.

– Determining the most appropriate way to express infinite programs still
require further exploration. We will try to develop a suitable model to repre-
sent the algebra between infinite structures.

– The value model in this paper needs further improvement to meet the need
of actual use.

– The refinement proof process can be verbose, but there may be techniques
available to simplify it such as developing automatic tactics to extract vari-
ables hypotheses and substitute them into goals, rewrapping the expression
type to simplify the comparisons between functions, changing the lazy eval-
uation of the expression to eager one and so on.

Furthermore, our framework can serve as a foundation for several works based
on process algebra, such as probability programs [10], parallel programs [13],
quantum programs [9], and more. These works can potentially be extended using
our framework.

Acknowledgment. We would like to express our sincere gratitude to Simon Foster for
his exceptional contribution to this paper. His valuable insights and expert guidance
have greatly enhanced the quality of our work, and we are truly appreciative of his
dedication and commitment to this project. Without his suggestions and feedback, the
paper would not have been as comprehensive and insightful as it is now.

References

1. Ngondi, G.E., Koutavas, V., Butterfield, A.: Translation of CCS into CSP, correct
up to strong bisimulation. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021.

412 R. Mu and Q. Li

LNCS, vol. 13085, pp. 243–261. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92124-8_14

2. Ekembe Ngondi, G.: Denotational semantics of channel mobility in UTP-CSP.
Formal Aspects Comput. 33(4), 803–826 (2021)

3. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16690-7_9

4. Foster, S.: Hybrid relations in Isabelle/UTP. In: Ribeiro, P., Sampaio, A. (eds.)
UTP 2019. LNCS, vol. 11885, pp. 130–153. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31038-7_7

5. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Sci. Comput. Pro-
gram. 197, 102510 (2020)

6. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9_2

7. He, J., Li, Q.: A new roadmap for linking theories of programming and its appli-
cations on GCL and CSP. Sci. Comput. Program. 162, 3–34 (2018)

8. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686 (1987)
9. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the

1st Conference on Computing Frontiers, pp. 111–119 (2004)
10. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability

for CSP. Formal Aspects Comput. 8(6), 617–647 (1996). https://doi.org/10.1007/
BF01213492

11. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 123–140. Springer,
Heidelberg (2006). https://doi.org/10.1007/11768173_8

12. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions (2014)
13. Woodcock, J., Hughes, A.: Unifying theories of parallel programming. In: George,

C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 24–37. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36103-0_5

14. Xu, X., Zhan, B., Wang, S., Talpin, J.P., Zhan, N.: A denotational semantics
of simulink with higher-order UTP. J. Logical Algebraic Methods Program. 130,
100809 (2023)

15. Yan, G., Jiao, L., Li, Y., Wang, S., Zhan, N.: Approximate bisimulation and dis-
cretization of hybrid CSP. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 702–720. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6_43

16. Zhu, H., He, J., Qin, S., Brooke, P.J.: Denotational semantics and its algebraic
derivation for an event-driven system-level language. Formal Aspects Comput. 27,
133–166 (2015)

https://doi.org/10.1007/978-3-030-92124-8_14
https://doi.org/10.1007/978-3-030-92124-8_14
https://doi.org/10.1007/978-3-642-16690-7_9
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1007/978-3-030-31038-7_7
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/BF01213492
https://doi.org/10.1007/BF01213492
https://doi.org/10.1007/11768173_8
https://doi.org/10.1007/3-540-36103-0_5
https://doi.org/10.1007/978-3-319-48989-6_43
https://doi.org/10.1007/978-3-319-48989-6_43

Author Index

A
Antonino, Pedro 136

B
Bjørner, Dines 165
Bowen, Jonathan P. 3
Butterfield, Andrew 348

C
Cavalcanti, Ana 19
Chen, Yifeng 87
Cuijpers, Pieter J. L. 297

F
Fan, Lingling 257
Finkbeiner, Bernd 211
Foster, Simon 19
Fu, Zhoulai 257

H
Hansen, Jonas 297
Hayes, Ian J. 110
Hinchey, Mike 367

J
Jiang, Xu 235
Jones, Cliff B. 110

L
Larsen, Kim G. 297
Lawrence, Jonathan 136
Li, Qin 395
Liu, Yang 257
Liu, Zhiming 52

M
Mallet, Frédéric 323
Meinicke, Larissa A. 110
Mu, Rundong 395

O
Olderog, Ernst-Rüdiger 211
Oliveira, Marcel 19

R
Roscoe, A. W. 136

S
Sampaio, Augusto 19
Sanders, J. W. 87
Su, Ting 257
Su, Zhendong 257
Sun, Jinghao 235

T
Tuong, Frédéric 348

V
Vassev, Emil 367

W
Woodcock, Jim 19

Y
Yan, Yichen 257
Yi, Wang 235

Z
Zeyda, Frank 19
Zhang, Chengyu 257
Zhu, Huibiao 3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
J. P. Bowen et al. (Eds.): Theories of Programming and Formal Methods, LNCS 14080, p. 413, 2023.
https://doi.org/10.1007/978-3-031-40436-8

https://doi.org/10.1007/978-3-031-40436-8

	 Preface
	 Organization
	 Acknowledgements
	 Contents
	Jifeng He’s Research Influence
	Jifeng He at Oxford and Beyond: An Appreciation
	1 Introduction
	1.1 Brief Biography
	1.2 Practical Contributions

	2 University of Oxford
	2.1 Provably Correct Systems (``ProCoS'')
	2.2 Unifying Theories of Programming (UTP)

	3 United Nations University
	4 East China Normal University
	5 Conclusion
	References

	UTP, Circus, and Isabelle
	1 Dedication
	2 Introduction
	3 Circus
	3.1 A Concurrent Language for Refinement ch2WoodcockC2001,ch2DBLP:confspsiwfmspsWoodcockC01
	3.2 The Steam Boiler in Circus ch2DBLP:confspsapsecspsWoodcockC01
	3.3 The Semantics of Circus ch2DBLP:confspszumspsWoodcockC02
	3.4 Refinement in Circus ch2DBLP:confspsfmspsSampaioWC02,ch2DBLP:journalsspsentcsspsCavalcantiSW02,ch2DBLP:journalsspsfacspsCavalcantiSW03
	3.5 Predicate Transformers in the Semantics of Circus ch2DBLP:journalsspsieespsCavalcantiW03
	3.6 A Circus Semantics for Ravenscar Protected Objects ch2DBLP:confspsfmspsAtiyaKW03
	3.7 Using Circus for Safety-Critical Applications ch2DBLP:journalsspsentcsspsWoodcock04
	3.8 Formal Development of Industrial-Scale Systems in Circus ch2DBLP:journalsspsissespsOliveiraCW05
	3.9 A Denotational Semantics for Circus ch2DBLP:journalsspsentcsspsOliveiraCW07,ch2DBLP:journalsspsfacspsOliveiraCW09
	3.10 Time and Synchronicity in Circus ch2DBLP:confspsictacspsSherifHCS04,ch2DBLP:confspsifmspsButterfieldSW07
	3.11 The Miracle of Reactive Programming ch2DBLP:confspsutpspsWoodcock08

	4 Isabelle/UTP
	4.1 Beginnings
	4.2 Laws and Side Conditions, and the Deep Model
	4.3 Lenses
	4.4 UTP and Designs
	4.5 UTP Theories
	4.6 Reactive-Design Hierarchy
	4.7 Optimisation and Modularisation
	4.8 Interaction Trees

	5 Other Contributions
	6 Quo Vadis Circus?
	6.1 Research Directions
	6.2 Industrial Roadmap

	7 Conclusions
	References

	Linking Formal Methods in Software Development
	1 Introduction
	2 A Unified Overview of Formal Methods
	2.1 Semantic Theories
	2.2 Linking Formal Methods for Their Consistent Use
	2.3 Institutions
	2.4 Unifying Theories of Programming (UTP)

	3 A Reflection on rCOS
	3.1 Formal Use of UML
	3.2 Theory of Object-Oriented Semantics and Refinement
	3.3 Component-Based Architecture Modelling
	3.4 rCOS Support for Model-Driven Development

	4 Extension of rCOS to Model HCPS
	5 Conclusions and Acknowledgements
	References

	Oxford Colleagues
	Consciousness by Degree
	1 Introduction
	2 Cameo
	2.1 Discussion

	3 Features
	3.1 Awareness
	3.2 Features Resumed

	4 Consciousness
	5 Case Study: A Cell
	5.1 Cell Importer
	5.2 Cell Awareness

	6 Adaptation
	6.1 Living Agent
	6.2 Family Tree
	6.3 Adaptation and Consciousness

	7 Related and Further Work
	8 Conclusion
	References

	Specifying and Reasoning About Shared-Variable Concurrency
	1 Introduction
	2 Atomicity
	2.1 Program Assertions
	2.2 Conditions
	2.3 Expressions
	2.4 Assignments

	3 Interference and Rely Conditions
	4 Rely/Guarantee Thinking
	4.1 Inference Rules

	5 Concurrent Refinement Algebra
	6 Specifying Atomic Operations
	7 Termination
	8 Data Abstraction and Interference
	9 Progress
	9.1 Waiting for Resources
	9.2 Conditional Termination

	10 Conclusions
	10.1 Summary
	10.2 Related Work

	References

	The Consensus Machine: Formalising Consensus in the Presence of Malign Agents
	1 Introduction
	2 Background
	2.1 Blockchains
	2.2 CSP and Its Semantics
	2.3 FDR

	3 The Unitary Consensus Machine
	4 Stochastic Decisions
	5 Formalising Hierarchical Consensus Machines in CSP
	5.1 Abstract Model
	5.2 Distributed Model

	6 Related Work
	7 Conclusions
	References

	ProCoS Colleagues
	Domain Modelling: A Foundation for Software Development
	The Triptych Dogma
	1 Introduction
	1.1 What is a Domain?
	1.2 Non-computable and Computable Specifications
	1.3 Formal Method and Methodology
	1.4 From Programming Languages to Domains
	1.5 A Review
	1.6 An Overview
	1.7 RSL, RSL-text and RSL+
	1.8 A Computer Science Philosophy
	1.9 Previous Work
	1.10 Structure of Paper

	2 Universe of Discourse
	3 External and Internal Qualities
	3.1 Predicate Analysis of External Qualities of Endurants
	3.2 Functional Analysis of External Qualities of Endurants
	3.3 Descriptions of External Qualities of Endurants
	3.4 Endurant States
	3.5 An Explication, I

	4 Space and Time
	4.1 Space
	4.2 Time

	5 Internal Qualities
	5.1 Unique Identification
	5.2 Mereology
	5.3 Attributes
	5.4 Intentional Pull
	5.5 A Proof-Theoretic Explication, II

	6 Perdurants
	6.1 Channels
	6.2 Actors
	6.3 State Access and Updates
	6.4 Behaviours
	6.5 Domain Initialisation
	6.6 End of Domain Modelling Presentation

	7 A Road Transport Domain Example
	7.1 Naming and Sketch of Domain
	7.2 Endurants: External Qualities
	7.3 Unique Identifiers
	7.4 Mereology
	7.5 Attributes
	7.6 Intentional Pull
	7.7 Perdurants
	7.8 Domain Initialisation
	7.9 Verification

	8 Closing
	8.1 The Current Calculi
	8.2 Some Issues

	References

	Concurrent Hyperproperties
	1 Introduction
	2 Concurrent Hyperproperties
	3 Petri Nets
	3.1 Causal Nets and Runs
	3.2 Causal Nets Corresponding to Concurrent Traces
	3.3 Parallel Composition

	4 Testing
	5 Examples
	5.1 Testing the Concurrent Hyperproperties H1 and H2
	5.2 Testing the Concurrent Properties T1 and H3

	6 Decidability
	7 Conclusion
	References

	Chinese Colleagues
	Characterizations of Parallel Real-Time Workloads
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Task Model
	3.2 Global EDF Algorithm
	3.3 Schedulability

	4 Work Function
	4.1 Monotonicity of the Work Function
	4.2 Critical Points of the Work Function

	5 A Review of the Main Result of ch9bonifaci2013feasibility
	5.1 Existing Reformulations of Theorem 2

	6 Conclusion
	References

	Towards Efficient Data-Flow Test Data Generation
	1 Introduction
	2 Related Work
	2.1 Data-Flow Based Test Generation
	2.2 Directed Symbolic Execution
	2.3 Detecting Infeasible Test Objectives

	3 Problem Definition, Preliminaries and Challenges
	3.1 Problem Definition
	3.2 Symbolic Execution

	4 Approach Overview
	4.1 Illustrative Example

	5 Our Approach
	5.1 Static Analysis
	5.2 SE-Based Approach for Data-Flow Testing
	5.3 CEGAR-Based Approach for Data-Flow Testing

	6 Framework Design and Implementation
	7 Evaluation
	7.1 Research Questions
	7.2 Evaluation Setup
	7.3 Case Studies
	7.4 Study 1
	7.5 Study 2
	7.6 Study 3

	8 Conclusion
	References

	European Colleagues
	Assume-Guarantee Reasoning for Additive Hybrid Behaviour
	1 Introduction
	2 Resource Hybrid Automata
	3 Compositional Reasoning
	4 Assume-Guarantee Reasoning
	5 Refinement
	6 Concluding Remarks
	References

	Time: It is only Logical!
	1 Introduction
	1.1 CCSL - Genesis
	1.2 Logical Time and Clocks
	1.3 Outline

	2 Syntax and Semantics
	2.1 Clocks, Schedules and History
	2.2 Syntax
	2.3 Denotational Semantics
	2.4 Operational Semantics
	2.5 Coalgebraic Semantics

	3 CCSL - A Companion Language
	3.1 A Companion to UML MARTE
	3.2 Semantic Adaptation of Domain-Specific Languages

	4 CCSL Extensions and Derivatives
	4.1 Valued Extensions
	4.2 Other Extensions
	4.3 (Machine) Learning CCSL

	5 Conclusion
	References

	Applying Formal Verification to an Open-Source Real-Time Operating System
	1 Introduction
	2 Background
	2.1 RTEMS
	2.2 Promela/SPIN

	3 Formal Models Of RTEMS
	3.1 Formal Approach
	3.2 The RTEMS Event Manager
	3.3 High Level Model Overview
	3.4 Modelling Send;Receive;Send
	3.5 Towards a UTP Semantics for Promela

	4 Refining Promela to C
	4.1 Observing SPIN Counterexamples
	4.2 Refining [language=promela,basicstyle=blue]!printf! Observations
	4.3 Refining Task Switches
	4.4 Towards a UTP Semantics of Promela-to-C Refinement

	5 Related Work
	6 Conclusions
	6.1 Future Work

	References

	KnowLang – A Formal Specification Model for Self-adaptive Systems
	1 Introduction
	2 Specification Model
	3 Meeting the Challenges
	3.1 Encoded Versus Represented Knowledge
	3.2 States, Situations, Goals and Policies
	3.3 Converting Sensory Data to KR Symbols

	4 KnowLang Syntax
	5 KR for Self-adaptive Behaviour with KnowLang
	6 Formalizing eMobility with KnowLang
	6.1 Specifying eMobility Ontology
	6.2 Specifying Self-Adaptive Behaviour

	7 Conclusion and Future Work
	References

	The Future Roadmap
	A Coq Implementation of the Program Algebra in Jifeng He's New Roadmap for Linking Theories of Programming
	1 Introduction
	2 Preliminary
	3 Encoding Algebra for Finite Programs
	3.1 Translating Syntax of Finite Algebra
	3.2 Representing Algebraic Equivalence Relationship
	3.3 Encoding the Algebraic Laws
	3.4 Proof of Finite Normal Form Reduction
	3.5 Definition of Refinement on Finite Programs
	3.6 Example of Refinement on Finite Programs

	4 Encoding Algebra for Infinite Programs
	4.1 Representing Infinite Programs
	4.2 Refinement Between Finite and Infinite Program

	5 Discussion
	6 Conclusion and Future Work
	References

	Author Index

