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Abstract. The state complexity of a regular operation is a function that
assigns the maximal state complexity of the language resulting from the
operation to the sizes of deterministic finite automata recognizing the
operands of the operation. We study the state complexity of intersec-
tion, union, concatenation, star, and reversal on the classes of combina-
tional, singleton, finitely generated left ideal, symmetric definite, star,
comet, two-sided comet, ordered, star-free, and power-separating lan-
guages. We get the exact state complexities in all cases. The complex-
ity of all operations on combinational languages is given by a constant
function. The state complexity of the considered operations on singleton
languages is min{m,n}, m+n− 3, m+n− 2, n− 1, and n, respectively,
and on finitely generated left ideals, it is mn−2, mn−2, m+n−1, n+1,
and 2n−2 + 2. The state complexity of concatenation, star, and reversal
is m2n − 2n−1 −m+ 1, n, 2n and m2n−1 − 2n−2 + 1, n+ 1, 2n−1 + 1 for
star and symmetric definite languages, respectively. We also show that
the complexity of reversal on ordered and power-separating languages
is 2n−1, which proves that the lower bound for star-free languages given
by [Brzozowski, Liu, Int. J. Found. Comput. Sci. 23, 1261–1276, 2012] is
tight. In all the remaining cases, the complexity is the same as for reg-
ular languages. Except for reversal on finitely generated left ideals and
ordered languages, all our witnesses are described over a fixed alphabet.

1 Introduction

The state complexity of a regular operation is the number of states that is suffi-
cient and necessary in the worst case for a deterministic finite automaton (DFA)
to accept the language resulting from the operation, considered as a function
of the sizes of DFAs for operands. The tight upper bounds on the complex-
ity of union, intersection, concatenation, star, and reversal were presented by
Maslov [12], Yu, Zhuang and Salomaa [17], and Leiss [11], and to describe wit-
ness languages, a binary alphabet was used.
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If operands have some special properties, then the complexity of an operation
may be significantly smaller. For example, the state complexity of star on prefix-
free languages is n, while it is 3

42n in the regular case. On the other hand, the
complexity of intersection, union, concatenation, and star on star-free languages
is the same as in the regular case [5]. This led to the investigation of operational
complexity in several subclasses of regular languages. Operations on unary lan-
guages were studied by Yu et al. [17] and Pighizzini and Shallit [15], and on
finite languages by Câmpeanu et al. [6]. The classes of prefix- and suffix-free lan-
guages were examined by Han et al. [7,8], and the classes of bifix-, factor-, and
subword-free, star-free, ideal, and closed languages by Brzozowski et al. [2–5],
Except for reversal on star-free languages, the state complexity of basic regu-
lar operations in each of the above mentioned classes was determined. Bordihn,
Holzer, and Kutrib [1] considered also some other subclasses, including combi-
national, finitely generated left ideal, symmetric definite, star, comet, two-sided
comet, ordered, and power-separating languages, and investigated the complex-
ity of the conversion of nondeterministic finite automata (NFAs) to deterministic
ones. The closure properties of these classes, as well as nondeterministic opera-
tional complexity in them, were studied by Olejár et al. [9,13].

Here we continue this research and study the state complexity of basic reg-
ular operations in several classes from [1]. For each considered operation and
each considered class, we get a tight upper bound on its complexity. To get the
upper bounds, we examine minimal DFAs for languages in considered classes.
We show that every minimal DFA for a finitely generated left ideal must have
two states that can be distinguished only by the empty string. This gives upper
bounds for union, intersection, and reversal on finitely generated left ideals. We
also show that the set of all non-final states in a minimal DFA for a power-
separating language cannot be reachable in the reversed automaton. This gives
an upper bound 2n − 1 for reversal on power-separating languages, and shows
that the same lower bound for star-free languages [5, Theorem 7] is tight since
every star-free language is power-separating. To get upper bounds for concatena-
tion, we carefully inspect the reachable and distinguishable states in the subset
automaton of an NFA for the concatenation of given languages. Finally, the star
of a star language is the same language, and if a given language is symmetric
definite, then its star differs from it only in the empty string. The corresponding
upper bounds n and n + 1 for the star operation follow. To get lower bounds,
we sometimes use witnesses known from the literature, and just prove that they
belong to a considered class. However, most often, we describe appropriate wit-
nesses so that the corresponding product automata for union and intersection,
or subset automata of NFAs for concatenation, star, or reversal have a desired
number of reachable and pairwise distinguishable states.

2 Preliminaries

We assume that the reader is familiar with the basic notions in formal languages
and automata theory, and for details, we refer to [16].
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Let Σ be a finite non-empty alphabet of symbols. Then Σ∗ denotes the set of
all strings over Σ including the empty string ε. For a finite set S, the notation |S|
denotes the size of S and 2S denotes the power set of S. For two non-negative
integers i, j, the set {i, i + 1, . . . , j} is denoted by [i, j].

A nondeterministic finite automaton with multiple initial states (MNFA) is
a quintuple A = (Q,Σ, ·, I, F ) where Q is a finite non-empty set of states, Σ is a
finite non-empty input alphabet, · : Q×Σ → 2Q is the transition function, I ⊆ Q
is the set of initial states, and F ⊆ Q is the set of final states. The transition
function can be extended to the domain 2Q × Σ∗ in the natural way. For states
p, q and a symbol a, we sometimes write (p, a, q) whenever q ∈ p·a. The language
accepted by A is the set of strings L(A) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.

The reverse of an MNFA A = (Q,Σ, ·, I, F ) is the MNFA AR = (Q,Σ, ·R, F, I)
where q ·R a = {p | q ∈ p · a}. We say that a subset S of Q is reachable in A if
there exists a string w such that S = I · w. A subset S is co-reachable in A if it is
reachable in AR. We usually omit · and write just juxtaposition qw instead of q ·w.
If S ⊆ Q, then Sw = {qw | q ∈ S} and wS = {q | qw ∈ S}.

An MNFA is a nondeterministic finite automaton (NFA) if |I| = 1. An NFA
is a deterministic finite automaton (DFA) if |qa| = 1 for each state q and each
symbol a. We usually write pa = q instead of pa = {q}. A non-final state q of a
DFA is called dead if qa = q for each symbol a. A DFA is minimal if all its states
are reachable and pairwise distinguishable. The state complexity of a regular lan-
guage L, sc(L), is the number of states in a minimal DFA recognizing L. The state
complexity of a k-ary regular operation f is the function from N

k to N defined
as (n1, n2, . . . , nk) �→ max{sc(f(L1, L2, . . . , Lk)) | sc(Li) ≤ ni for each i.}

Every MNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent determin-
istic automaton D(A) = (2Q, Σ, ·, I, {S ∈ 2Q | S ∩ F �= ∅}). The DFA D(A) is
called the subset automaton of A.

Finally, we recall the definitions of language classes considered in this paper.
A language L ⊆ Σ is:
• combinational (class abbreviation CB): if L = Σ∗H for H ⊆ Σ;
• singleton (SGL): if it consists of one string;
• finitely generated left ideal (FGLID): if L = Σ∗H for some finite language H;
• left ideal (LID): if L = Σ∗L;
• symmetric definite (SYDEF): if L = GΣ∗H for some regular languages G,H;
• star (STAR): if L = L∗;
• comet (COM): if L=G∗H for some regular languages G,H with G/∈{∅, {ε}};
• two-sided comet (2COM): if L=EG∗H for some regular languages E,G,H

with G/∈{∅, {ε}};
• ordered (ORD): if it is accepted by a (possibly non-minimal) DFA with

ordered states such that p 
 q implies p · σ 
 q · σ for each symbol σ;
• star-free (STFR): if L is constructible from finite languages, concatenation,

union, and complementation (equivalently, if L has an aperiodic DFA);
• power-separating (PSEP): if for every w in Σ∗ there exists an integer k such

that
⋃

i≥k{wi} ⊆ L or
⋃

i≥k{wi} ⊆ Lc.

We have CB � FGLID � LID � SYDEF, STAR \ {{ε}}
� COM � 2COM,

and SGL � ORD � STFR � PSEP [1,13].
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3 Combinational and Singleton Languages

We start with two simple subregular classes: the class of combinational languages
and the class of singleton languages. The following two theorems present our
results on the state complexity of basic operations in these two classes.

Theorem 1. Let K and L be combinational languages over Σ. Then we have
sc(K), sc(L) ≤ 2 and sc(K ∩ L), sc(K ∪ L) ≤ 2, sc(KL) ≤ 3, sc(L∗) ≤ 2,
and sc(LR) ≤ 3. All these upper bounds are tight if |Σ| ≥ 2 (star, reversal) or
if |Σ| ≥ 1 (intersection, union, concatenation).

Proof. Let K = Σ∗G and L = Σ∗H with G,H ⊆ Σ. If H is empty, then L
is empty. Otherwise, L is accepted by a two-state DFA ({1, 2}, Σ, ·, 1, {2})
with 1a = 2a = 1 if a /∈ H and 1a = 2a = 2 if a ∈ H. We only prove the
result for star. Each string in Σ∗ either ends with a symbol in H, or ends with a
symbol in Σ\H, or is empty. Since L = L+ we have L∗ = {ε}∪L = (Σ∗(Σ\H))c,
so L∗ is the complement of a combinational language. The upper bound 2 is met
by (a + b)∗a. �
Theorem 2. Let K and L be singleton languages accepted by DFAs with m
and n states, respectively. Then sc(K ∩L) ≤ min{m,n}, sc(K ∪L) ≤ m+n− 3,
sc(KL) ≤ m + n − 2, sc(L∗) ≤ n − 1, and sc(LR) ≤ n. All these bounds are
tight, with witnesses described over an alphabet of size at least 1 (intersection,
concatenation, reversal) or 2 (union, star).

Proof. We only prove the result for star. The minimal DFA for a singleton lan-
guage {v} has |v| + 2 states, including the dead state. Next, the language {v}∗

is accepted by a DFA with |v|+1 states, possibly including the dead state. This
gives the upper bound n − 1, which is met by the language {an−2} over the
binary alphabet {a, b}. �

4 Intersection and Union

In this section, we examine the intersection and union operations in subregu-
lar classes. Recall that the state complexity of these two operations is mn with
binary witnesses [12,17]. Our aim is to show that the complexity of these oper-
ations is mn − 2 in the class of finitely generated left ideals and mn in the
remaining classes. Recall that if a DFA for a language L has a unique final state
which is the initial one, then L = L∗, so L is a star language. To get the upper
bound in class FGLID, we use the following property.

Lemma 3. In the minimal DFA for a finitely generated left ideal different from ∅
and Σ∗, there exist two states that are distinguishable only by the empty string.

Proof. Let A be a minimal DFA for a finitely generated left ideal L with the ini-
tial state 1. Assume, to get a contradiction, that any two distinct states of A can
be distinguished by a non-empty string. Since L /∈ {∅, Σ∗}, there is a symbol a
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M 1 2 . . . m−1 m

a, b, c

a, c a, c a, c a, c
N 1 2 . . . n−1 n

a, b, c

b, c b, c b, c b, c

Fig. 1. Finitely generated left ideal witnesses for union (mn − 2).

such that 1a �= 1. Now, the states 1 and 1a are distinguishable by a non-empty
string w1. We must have 1w1 /∈ F and 1aw1 ∈ F , because 1w1 ∈ F and 1aw1 /∈ F
would mean that w1 ∈ L and aw1 /∈ L, so L would not be a left ideal. The result-
ing states are again distinguishable by a non-empty string w2, and again, we
must have 1w1w2 /∈ F and 1aw1w2 ∈ F . Inductively, the states 1w1w2 · · · wi−1

and 1aw1w2 · · · wi−1 are distinguishable by a non-empty string wi, and we
must have 1w1w2 · · · wi−1wi /∈ F and 1aw1w2 · · · wi−1wi ∈ F . Since the num-
ber of states is finite, there exist j, k with j < k such that 1aw1w2 · · · wk =
1aw1w2 · · · wj . This means that aw1w2 · · · wj(wj+1wj+2 · · · wk)∗ ⊆ L, and on
the other hand we have w1w2 · · · wj(wj+1wj+2 · · · wk)∗ ⊆ Lc. It follows that the
minimal generator L \ ΣL of the left ideal L is infinite, a contradiction. �
Theorem 4. Let K and L be finitely generated left ideals over Σ accepted by
an m-state and n-state DFA, respectively. Then sc(K ∩ L), sc(K ∪ L) ≤ mn − 2.
This upper bound is tight for union if |Σ| ≥ 3, and for intersection if |Σ| ≥ 10.

Proof. Let A and B be minimal DFAs for K and L, respectively. By Lemma 3,
there exist states p, p′ of A and q, q′ of B that are distinguished only by the
empty string. It follows that pa = p′a and qa = q′a for each input symbol a.
Then, in the product automaton A×B, the pairs (p, q), (p, q′), (p′, q), (p′, q′) are
sent to the same state by each input symbol, so, they may be distinguished only
by ε. This gives the upper bound mn − 2 for union and intersection.

We can prove that this upper bound for union and intersection is met by lan-
guages accepted by NFAs from Figs. 1 and 3, respectively; notice that equivalent
DFAs shown in Figs. 2 and 4 have m and n states as well. �

Theorem 5. The state complexity of intersection and union on the classes of
symmetric definite, ordered, power-separating, and star languages is mn.

Proof. The upper bound mn is met by the intersection of binary left ideal lan-
guages K = {w ∈ {a, b}∗ | |w|a ≥ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≥ n − 1}

p1 p2 . . . pm−1 pm

b a, c

b
a, c a, c

b

a, c

a, b, c

q1 q2 . . . qn−1 qn

a
b, c

a
b, c b, c

a

b, c

a, b, c

Fig. 2. The reachable parts of the subset automata D(M) and D(N) of NFAs M and N
from Fig. 1; we have pi = [1, i] and qj = [1, j].
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M 1 2 3 . . . m−1 m

Σ
a, e, g b, b′, f, h b, b′, f, h b, b′, f, h b, b′, f, h

d′

N 1 2 3 . . . n−1 n

Σ
c, e, f d, d′g, h d, d′g, h d, d′g, h d, d′g, h

b′

Fig. 3. Finitely generated left ideal witnesses for intersection (mn − 2).

[3, Theorem 7], and by the union of quaternary left ideals from [3, Theorem 8].
Every left ideal is symmetric definite. Next, the languages K and L are ordered
(so also power-separating), and these classes are closed under complementation.
This gives the complexity mn with binary witnesses on ORD and PSEP. Finally,
to get star witnesses, we consider the minimal DFAs, the first of which counts
the number of a’s modulo m, and the second the number of b’s modulo n. �
Remark 6. Since STAR ⊆ COM ⊆ 2COM, the previous theorem gives complex-
ity mn for intersection and union on comet and two-sided comet languages. �

5 Concatenation

Now we examine the concatenation operation, the state complexity of which
is m2n − 2n−1 with binary witnesses [12]. We first consider the concatenation
operation on finitely generated left ideal, symmetric definite, and star languages,
and show that the resulting complexities are always smaller than the regular

p1 p2 . . . pm−1 pm

b, b′, c, d, f, h
a, e, g

d′

a, c, d, d′, e, g
a, c, d, d′, e, g a, c, d, d′, e, g

b, b′, f, h b, b′, f, h b, b′, f, h

q1 q2 . . . qn−1 qn

a, b, d, d′, g, h
c, e, f

b′

a, b, b′, c, e, f
a, b, b′, c, e, f a, b, b′, c, e, f

d, d′, g, h d, d′, g, h d, d′, g, h

Fig. 4. The reachable parts of the subset automata D(M) and D(N) of NFAs M and N
from Fig. 3; we have pi = {1, i} and qj = {1, j}.
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one. On the other hand, in the remaining classes, the complexity is the same
as in the regular case. To get an upper bound for SYDEF, we use the following
observation, cf. [14, Theorem 9.2].

Lemma 7. Every minimal DFA for a symmetric definite language contains a
state q such that each accepting computation goes through q and a loop on every
input symbol can be added in q without changing the language. �
Remark 8. As shown in [3, Theorem 9], the upper bound on the complexity of
concatenation on left ideals is m + n − 1. This upper bound is shown to be met
by unary languages a∗am−1 and a∗an−1 in the proof of [3, Theorem 9]. These
unary languages are finitely generated left ideals. This gives the same complexity
of concatenation on FGLID. �
Theorem 9. Let K,L ⊆ Σ∗ be accepted by an m-state and n-state DFA, respec-
tively. If K and L are symmetric definite, then sc(KL) ≤ m2n−1 − 2n−2 + 1.
If K and L are star languages, then sc(KL) ≤ m2n − 2n−1 − m + 1. Both upper
bounds are tight if |Σ| ≥ 3.

Proof. Let A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB) be the minimal
DFAs for K and L, respectively.

(a) By Lemma 7, there is a state q of B such that every accepting com-
putation of B goes through the state q and, moreover, we can add a loop on
every input symbol in q without changing the language; denote the resulting
NFA by B′. Construct the MNFA N for KL from automata A and B′ by adding
the transition (q, a, sB) whenever qa ∈ FA, the initial set is {sA} if sA /∈ FA

and {sA, sB} otherwise, and the set of final states is FB. Each reachable subset
of the subset automaton of N is of the form {p} ∪ S with p ∈ QA and S ⊆ QB ;
let us represent it by the pair (p, S). Recall that p ∈ FA implies sB ∈ S for each
reachable state (p, S).

If q is the initial state of B, then L is a left ideal, and the complexity of KL
is at most m + n − 1; cf. [3, Theorem 9]. If q is final, then in the corresponding
subset automaton, each state (p, S ∪{q}) is equivalent to the state (p, {q}). This
gives the upper bound m2n−1 − 2n−2 + 1. Finally, let q be neither initial nor
final. Let Q1 be the set of states in QB reachable without going through q and
let Q2 = QB\(Q1∪{q}). Let S1 ⊆ Q1 and S2 ⊆ Q2. Every accepting computation
of B goes through q, and q has a loop on every input symbol in B′. Let us show
that each state (p, S1 ∪ {q} ∪ S2) is equivalent to (p, {q} ∪ S2). It is enough to
shown that each string accepted in B′ from a state in S1 is also accepted from a
state in {q}∪S2. Let a string w be accepted from S1. Then the computation on w
must go through q, so w = uv where u leads a state in S1 to the state q and v is
accepted from q. Since q has a loop on each symbol in B′, the string uv is also
accepted from q. Hence w is accepted from (p, {q} ∪ S2). This gives an upper
bound (m − 1)(2|Q1| + 2|Q2|) + 2|Q1|−1 + 2|Q2| + 1 ≤ (m − 1)(2n−1) + 2n−2 + 1.

For tightness, consider the DFAs A and B from Fig. 5. The automaton A
recognizes a left ideal since, after adding a loop on each input symbol in its initial
state and performing determinization and minimization, we get the isomorphic
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A q1 q2 . . . qm−1 qma a a a
c c

c

b, c b b a, b

B 1 . . . n−2 n−1 n
b, c b, c b, c b

c

a a a a, b, c

Fig. 5. Symmetric definite witnesses for concatenation (m2n−1 − 2n−2 + 1).

automaton. The automaton B recognizes a right ideal since it has a loop on each
input symbol in its unique final state. Thus both automata recognize symmetric
definite languages, and we can show that they meet the desired upper bound.

(b) If K and L are star languages, then ε ∈ K, so the initial state of the DFA
for K is final. It follows that the MNFA for KL has two initial states, and so the
initial state of the corresponding subset automaton is (sA, {sB}). This means
that the states (p, ∅) are unreachable. This gives the desired upper bound.

For tightness, consider the DFAs A and B from Fig. 6. Since the initial state
is the unique final state, both automata recognize star languages.

Construct the MNFA M for L(A)L(B) from A and B by adding the tran-
sitions (q1, b, 1) and (qm, a, 1) and making the state q1 non-final; the set of
initial states is {q1, 1}. Notice that in the reversed automaton MR, each sin-
gleton {j} is reached from {1} by a string in cb∗, and each singleton {qi} is
reached by a string in ba∗. It follows that for each state p of M , there is a
string wp such that {p} is reached from {1} by wp in MR. It follows that the
string wR

p is accepted by M from and only from the state p. This means that
all states of the subset automaton D(M) are pairwise distinguishable. Let us
denote the (reachable) state {qi} ∪ S with S ⊆ [1, n] by (i, S), and let us show
that the set of reachable states is {(1, S) | S ⊆ [1, n] with 1 ∈ S} ∪ {(i, S) | i =
2, 3, . . . ,m and S ⊆ [1, n] with |S| ≥ 1}. The initial state is (1, {1}) and it is sent
to (i, {j}) by ai−1bj−1. Next, each (i, S) with 1 ∈ S is reached from (m,S \ {1})
by ai and each (i, S) with i �= 1, S �= ∅, and min S = j ≥ 2 is reached from a
state (i, bj−1S) with 1 ∈ bj−1S by bj−1. �
Remark 10. If A and B are the binary DFAs shown in Fig. 7, cf. [12], then we
have sc(L(A)L(B)) = m2n − 2n−1 since in the NFA for concatenation, each sin-
gleton set is co-reachable, and the reachability of the desired number of states is
shown similarly as in Theorem 9(b). Since L(A) = b∗L(A) and L(B) = a∗L(B),
automata A and B recognize comet languages. Moreover we have COM ⊆ 2COM,
so the state complexity of concatenation on comets and two-sided comets is the
same as in the class of regular languages. �

A q1 q2 . . . qm−1 qm B 1 2 . . . n−1 n
a, c a a a

a

b b, c b, c b, c

b, c b b b

a a, c a, c a, b

c

Fig. 6. Star witnesses for concatenation (m2n − 2n−1 − m + 1).
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A q1 q2 . . . qm−1 qma a a a

a

b b b b

B 1 . . . n−2 n−1 nb b b a, b
a

a a b

Fig. 7. Comet witnesses for concatenation (m2n − 2n−1).

Remark 11. The star-free witness languages that meet the regular upper bound
for concatenation are described in [5, Theorem 2], and they are recognized by
the DFAs shown in Fig. 8. Notice that both these DFAs are ordered. Since we
have ORD ⊆ STFR ⊆ PSEP, the state complexity of concatenation on ordered
and power-separating languages is m2n − 2n−1. �

6 Star and Reversal

In this section, we consider the star and reversal operations. The state complexity
of star is 3

42n with binary witnesses [17]. Our aim is to show that the complexity
of star in our classes is always the same as in the regular case, except for classes
of finitely generated left ideal, symmetric definite, and star languages, where it
is n + 1, n + 1, and n, respectively. Recall that FGLID ⊆ SYDEF.

Theorem 12. Let n ≥ 3. Let L be a symmetric definite language accepted by
an n-state DFA. Then L∗ is accepted by a DFA with n + 1 states. This upper
bound is met by the finitely generated left ideal L = (a + b)∗an−1.

Proof. If L ∈ SYDEF then L = GΣ∗H. Hence L+ = LL∗ = GΣ∗H(GΣ∗H)∗ =
GΣ∗(HGΣ∗)∗H = GΣ∗H = L. It follows that L∗ = {ε} ∪ L. This gives the
upper bound n + 1. The reader may verify that L = (a + b)∗an−1 is accepted by
an n-state DFA and sc({ε} ∪ L) = n + 1. �
Remark 13. If L is a star language, then L = L∗, so sc(L∗) = sc(L). �
Remark 14. The regular witness for star [17, Theorem 3.3] is recognized by the
DFA A from Fig. 9. Since L(A) = b∗L(A), the language L(A) is a comet, so also
a two-sided comet. Thus the complexity of star on COM and 2COM is 3

42n. �

A q1 q2 . . . qm−1 qm B 1 2 . . . n−1 na a a a

a, c, db, c
b b b b

c c

d d
d

c a, c a, c a, c

a, b, ca, b, d

d d d d

b b

Fig. 8. Ordered witnesses for concatenation (m2n − 2n−1).
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A 1 2 3 . . . n−1 n
a a, b a, b a, b a, b

a, b

b

Fig. 9. A comet witness for star ( 3
4
2n).

Remark 15. The regular upper bound 3
42n is met by the quaternary star-free

language [5, Theorem 6] which is accepted by the DFA shown in Fig. 10. Since
this DFA is ordered, and every ordered language is power-separating, the state
complexity of star on ORD and PSEP is the same as in the regular case. �

We conclude our investigation with the reversal operation, the state complex-
ity of which is 2n with binary witnesses [11]. First, using Lemmas 3 and 7, we
get tight upper bounds for finitely generated left ideals and symmetric definite
languages. Then, by proving that the set of all non-final states of a DFA accept-
ing a power-separating language cannot be co-reachable, we get the tight upper
bound 2n − 1 for reversal on ordered, star-free, and power-separating languages,
which shows that a lower bound for star-free languages [5, Theorem 7] is tight.
Finally, we show that the complexity of reversal on star, comet, and two-sided
comet languages is the same as in the regular case.

Theorem 16. Let L be a finitely generated left ideal over Σ accepted by an n-
state DFA. Then sc(LR) ≤ 2n−2 + 2, and this bound is tight if |Σ| ≥ 2n−2 + 2.

Proof. Let A be the minimal DFA for L. By Lemma 3, A has two states q, q′

with qa = q′a for each input a, and such that exactly one of them, say q, is final.
Since L is a left ideal, adding a loop on each symbol in the initial state of A does
not change the language; denote the resulting NFA by N . Thus all final sets of
the subset automaton of NR are equivalent. Moreover, except for possible initial
set {q}, each reachable set contains either both q, q′, or none of them.

For tightness, let Σ = {a, b} ∪ {cS | S ⊆ [2, n − 1]}. Consider an n-state
NFA N = ([1, n], Σ, ·, 1, {n}) where 1 · a = {1, 2}, 1 · b = {1} and i · b = {i + 1}
if 2 ≤ i ≤ n − 1, 1 · cS = {1} and i · cS = {n} if i ∈ S, and all the remaining
transitions go to the empty set. The NFA N recognizes a finitely generated left
ideal since state 1 has a loop on each symbol and for any other transition (i, σ, j)
we have i < j. Since the subset automaton of N has n reachable states, the
language L(N) is accepted by an n-state DFA. In the reverse NR, the initial set

A 1 2 . . . n−2 n−1 n
a a a a a

a, c

bb, cb, cb, cb, c

b, c

Fig. 10. An ordered witness for star; transitions (i, d, n) for each i are not shown ( 3
4
2n).
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is {n}, and it is sent to a subset S of [2, n − 1] by cS . The set {1} is reached
from {2} by a. For distinguishability, notice that {1} is the unique final state.
If S, T ⊆ [2, n] and s ∈ S \ T , then bs−2a sends S to the final set {1} and it
sends T to the empty set. �
Theorem 17. Let L ⊆ Σ∗ be a symmetric definite language accepted by an n-
state DFA. Then sc(LR) ≤ 2n−1 + 1, and this upper bound is tight if |Σ| ≥ 3.

Proof. We get an upper bound in a similar way as in the proof of Theorem 9(a).
The ternary left ideal from [3, Theorem 11(2), Fig. 17] meets this bound. �
Theorem 18. Let L be a power-separating language accepted by an n-state
DFA. Then sc(LR) ≤ 2n − 1, and this bound is met by an ordered language
over an alphabet of size n − 1.

Proof. Let A = (Q,Σ, ·, s, F ) be a minimal DFA for a power-separating lan-
guage L. Our aim is to show that the set Q \ F of all non-final states of A
cannot be co-reachable in A. Assume that Q \ F is co-reachable by a string w.
Since w sends F to Q \ F in AR, the string w must be rejected by A from
each final state, and accepted from each non-final state, so there is no k ≥ 0
such that

⋃
i≥k{wi} ⊆ L or

⋃
i≥k{wi} ⊆ Lc. This means that L is not power-

separating, a contradiction.
To get tightness, let Σ = {a, b} ∪ {ci | i = 3, 4, . . . , n − 1}. Consider the n-

state DFA A = ([1, n], Σ, ·, 1, F ) where F = {i ∈ [1, n] | i mod 2 = 0}, and for
each i in [1, n] and each j = 3, 4, . . . , n − 1, let i · a = i + 1 if i ≤ n − 1 and
n · a = n, i · b = i − 1 if i ≥ 2 and 1 · b = 1, i · cj = i if i �= j and j · cj = j − 1.
Then A is ordered. It is shown in [5, Theorem 7] that every DFA for the reverse
of L(A) has at least 2n − 1 states. �
Remark 19. The DFA A from Fig. 11 differs from Šebej’s witness for reversal
meeting the upper bound 2n [10, Theorem 5] only in the set of final states, and
Šebej’s proof works for this DFA as well. Since the initial state of A is a unique
final state, A recognizes a star, so also comet and two-sided comet, language. �

A 1 2 3 4 5 . . . n−1 n
a a

a

a a a a

a

b b b

b

b b b

Fig. 11. A star witness for reversal (2n).
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7 Conclusion

We investigated the state complexity of basic regular operations in the classes of
combinational, singleton, finitely generated left ideal, symmetric definite, star,
comet, two-sided comet, ordered, and power-separating languages. Our results
are summarized in Table 1 where the sizes of alphabets used to describe witnesses
are given by numbers in parentheses. Except for the ordered and finitely gener-
ated left ideal witnesses for reversal, all the remaining witnesses are described
over a fixed alphabet, and whenever a binary alphabet is used, it is always
optimal. By showing that the upper bound for reversal on power-separating lan-
guages is 2n − 1, we proved that the same lower bound for reversal on star-free
languages from [5, Theorem 7] is tight.

In [1], the classes of definite, generalized definite, locally testable, and strictly
locally testable languages were also considered. We leave the operational com-
plexity in these classes for future research. The optimality of alphabet sizes
greater than two remains open as well.

Table 1. Operational complexity in subregular classes; we have • = m2n−1 − 2n−2 +1
and ◦ = m2n − 2n−1 − m + 1.

class K ∩ L K ∪ L KL L∗ LR

CB Th. 1 2 (1) 2 (1) 3 (1) 2 (2) 3 (2)

SGL Th. 2 min{m,n} (1) m + n − 3 (2) m + n − 2 (1) n − 1 (2) n (1)

FGLID mn − 2 (10) mn − 2 (3) m + n − 1 (1) n + 1 (2) 2n−2 + 2

source Th. 4 Re. 8 Th. 12 Th. 16

LID mn (2) mn (4) m + n − 1 (1) n + 1 (2) 2n−1 + 1 (2)

source [3, Th. 8] [3, Th. 9] [3, Th. 10] [3, Th. 11]

SYDEF mn (2) mn (4) • (3) n + 1 (2) 2n−1 + 1 (3)

source Th. 5 Th. 9 Th. 12 Th. 17

STAR mn (2) mn (2) ◦ (3) n (1) 2n (2)

source Th. 5 Th. 9 Re. 13 Re. 19

COM, 2COM mn (2) mn (2) m2n − 2n−1 (2) 3
4
2n (2) 2n (2)

source Re. 6 Re. 10 Re. 14 Re. 19

ORD, PSEP mn (2) mn (2) m2n − 2n−1 (4) 3
4
2n (4) 2n − 1 (n−1)

source Th. 5 Re. 11 Re. 15 Th. 18

STFR mn (2) mn (2) m2n − 2n−1 (4) 3
4
2n (4) 2n − 1 (n−1)

source [5, Th. 1] [5, Th. 2] [5, Th. 6] Th. 18

regular mn (2) mn (2) m2n − 2n−1 (2) 3
4
2n (2) 2n (2)

source [17, Th. 4.3] [12] [17, Th. 3.3] [11, Prop. 2]
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