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Preface

The 27th International Conference on Implementation and Application of Automata
(CIAA 2023) was organized by the Department of Mathematics of the Eastern Mediter-
ranean University (EMU). The conference took place during September 19–22, 2023,
in Salamis Bay Conti Resort Hotel, Famagusta, North Cyprus, co-located with the
13th International Workshop on Non-Classical Models of Automata and Applications
(NCMA 2023, September 18–19). This event forms part of the CIAA conference series,
a major international venue for the exchange of new ideas in the field of automata the-
ory. The previous 26 conferences were held in various locations all around the globe:
Rouen (2022), Bremen (2021), Košice (2019), Charlottetown (2018), Marne-la-Vallée
(2017), Seoul (2016), Umeå (2015), Giessen (2014), Halifax (2013), Porto (2012), Blois
(2011), Winnipeg (2010), Sydney (2009), San Francisco (2008), Prague (2007), Taipei
(2006), Nice (2005), Kingston (2004), Santa Barbara (2003), Tours (2002), Pretoria
(2001), London,Ontario (2000), Potsdam (WIA1999), Rouen (WIA1998), andLondon,
Ontario (WIA 1997 andWIA 1996). Due to the COVID-pandemic, CIAA 2020, planned
to be held in Loughborough, was canceled. The CIAA conference series brings together
researchers and allows the dissemination of results in the implementation, application,
and theory of automata.

Last year the international community, not only the scientific one, was shocked by
the Russian invasion of Ukraine, which is in violation of international laws and a crime
against the Ukrainian people and is strongly condemned by the Steering Committee
(SC) of CIAA. One year later, the war is still going on and becomes more brutal every
day leading to unthinkable human suffering. We as scientists are used to collaborating
across different beliefs, political systems, and cultural backgrounds. Scientific research
is inherently an international endeavor and is based on the principle of a free exchange
of ideas among the international scientific community. The editorial decision whether
a paper is accepted or rejected should not be affected by the origins of a manuscript,
including the nationality, ethnicity, political beliefs, race or religion of a paper’s authors.
This is in accordancewith the guidelines of the Committee on Publication Ethics (COPE;
https://publicationethics.org). According to John Steinbeck “All war is a symptom of
man’s failure as a thinking animal.” The SC hopes that the suffering in Ukraine ends
soon and peace will be restored. Peace is one of the UN’s Sustainable Development
Goals and a prerequisite for human progress.

This volume of Lecture Notes in Computer Science contains the scientific papers
presented at CIAA 2023. The volume also includes two papers from the invited talks
presented by Viliam Geffert (Binary Coded Unary Regular Languages) and Friedrich
Otto (A Survey on Automata with Translucent Letters), and the abstract of the invited
talk presented by Cem Say (Finite Automata as Verifiers), we wish to warmly thank
all of them. The 20 regular papers were selected from 30 submissions covering various
fields in the application, implementation, and theory of automata and related structures.
Each paper was reviewed by three Program Committee members with the assistance

https://publicationethics.org
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of external referees and thoroughly discussed by the Program Committee (PC). Papers
were submitted by authors from various countries: Belgium, Canada, Czech Republic,
Denmark, Estonia, France, Germany, Israel, Italy, Japan, Latvia, Poland, Portugal,
Russia, Slovakia, South Korea, Sweden, Turkey, and United Kingdom.Wewish to thank
everybody who contributed to the success of this conference: the authors for submitting
their carefully prepared manuscripts, the PC members and external referees for their
valuable evaluation of the submitted manuscripts, the invited speakers for their excellent
presentations of topics related to the theme of the conference, the session chairs, the pre-
senters, and the participants who made CIAA 2023 possible. We also thank the editorial
staff at Springer, in particular Anna Kramer and Ronan Nugent, for their guidance and
help during the publication process of this volume.

Last but not least, we would like to express our sincere thanks to the local organizers.
We all are looking forward to the next CIAA in Japan.

June 2023 Markus Holzer
SC-Chair

Benedek Nagy
PC-Chair
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Finite Automata as Verifiers (Invited Talk)

A. C. Cem Say

Department of Computer Engineering,
Boğaziçi University, İstanbul, Turkey

Abstract. An interactive proof system is characterized by the computa-
tional abilities of its two components (called the “prover” and the “veri-
fier”) and the nature of the interaction between them. The verifier is the
weaker party, who is supposed to be able to check the claims of the more
powerful prover.We focus on the weakest possible kind of computational
model, namely, the finite automaton, in the role of the verifier. We will
provide an overview of the literature and talk about recent work involving
new concepts, like constant-randomness machines and thermodynamic
complexity considerations.
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Binary Coded Unary Regular Languages

Viliam Geffert(B)

Department of Computer Science, P. J. Šafárik University,
Jesenná 5, 04154 Košice, Slovakia

viliam.geffert@upjs.sk

Abstract. L ⊆ {0, 1}∗ is a binary coded unary regular language, if there
exists a unary regular language L′ ⊆ {a}∗ such that ax is in L′ if and only
if the binary representation of x is in L. If a unary language L′ is accepted
by an optimal deterministic finite automaton (dfa) A′ with n states, then
its binary coded version L is regular and can be accepted by a dfa A using
at most n states, but at least 1+�log n� states. There are witness languages
matching these upper and lower bounds exactly, for each n.

More precisely, if A′ uses σ ≥ 0 states in the initial segment and μ·2�

states in the loop, where μ is odd and � ≥ 0, then the optimal A for L
consists of a preamble with at most σ but at least max{1, 1+�log σ�−�}
states, except for σ = 0 with no preamble, and a kernel with at most μ·2�

but at least μ + � states. Also these lower bounds are matched exactly
by witness languages, for each σ, μ, �.

The conversion in the opposite way is not always granted: there are
binary regular languages the unary versions of which are not even con-
text free.

The corresponding conversion of a unary nondeterministic finite
automaton (nfa) to a binary nfa uses O(n2) states and introduces a
binary version of Chrobak normal form.

Keywords: finite automata · unary regular languages · state
complexity

1 Introduction

One of the simplest language classes ever studied in theoretical computer sci-
ence is the class of unary regular languages, corresponding to deterministic
finite automata (dfas) with a single-letter input alphabet. The structure of such
automaton is very simple: it consists of an initial segment and a loop.

Unary (tally) languages play an important role as languages with a very
low information content, and many of their properties are quite different from
the general or binary case. One of the earliest observations is the fact that
every unary context-free language is also regular [11]. For other results on unary
languages in general, the reader is referred, among others, to [1,6,8,12].

In the case of regular languages, there are also substantial differences in
state complexity. For example, removing nondeterminism in a nondeterministic

Supported by the Slovak grant contract VEGA 1/0177/21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 3–20, 2023.
https://doi.org/10.1007/978-3-031-40247-0_1
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4 V. Geffert

finite automaton (nfa) with n states may increase the number of states up
to 2n [16,18–20], while the corresponding cost for automata with unary input
alphabet is only e(1+o(1))·√n·lnn [2,7,17].

In this paper, we focus our attention on state complexity of binary coded
unary regular languages. L ⊆ {0, 1}∗ is a binary coded unary regular language, if
there exists a unary regular language L′ ⊆ {a}∗ such that ax is in L′ if and only
if the binary representation of x is in L. Our interest is motivated by the fact
that most present-day computers store data in a binary coded form and that,
quite recently [9], we have obtained some results on state complexity of binary
coded non-unary regular languages.

We shall show that if a unary language L′ is regular and can be accepted by
a dfa A′ with n states, then its binary coded counterpart L = binL′ is regular
as well and can be accepted by a dfa A with at most n states. Moreover, if A′ is
optimal, then A must use at least 1+�log n� states. We shall also provide witness
languages matching these upper and lower bounds exactly, for each n ≥ 1.

The converse does not hold. There exist binary regular languages the unary
versions of which are not regular: consider the unary language

L′ = {a2k

: k ≥ 0} .

This language is not even context-free, which can be proved by the use of the
Pumping Lemma [13, Sect. 7.2]. Nevertheless, its binary coded version L = binL′

consists of all binary strings that contain exactly one symbol “1”, which can
be tested by a dfa with 3 states or be given by the regular expression 0∗10∗

(allowing leading zeros).
The conversion of a unary A′ to its binary counterpart A depends on the

partial factorization of λ—the length of the loop in A′—into λ = μ·2�, where
μ is odd. Namely, if A′ uses σ states in the initial segment and μ·2� states in the
loop, where μ is odd, then the optimal A for the binary coded L(A′) consists of
a preamble with at most σ but at least max{1, 1 + �log σ� − �} states (except
for σ = 0, with no preamble) and a kernel with at most μ·2� but at least μ + �
states. These lower bounds are matched by witness languages, for each σ, μ, �.

After basic definitions in Sect. 2, the upper bounds are established in Sect. 3.
Next, Sect. 4 gives a detailed analysis of a kernel that simulates the loop, ending
by a lower bound on the size of this kernel. It turns out that, for loops of
even length λ, the important role play pairs of twin states, located at opposite
positions across the loop, i.e., at positions i1 and i2 = (i1 + λ/2) mod λ. For
example, if λ is the optimal length of a loop in a unary A′ and this length is
even, there must exist a pair of twin states such that one of them is accepting
while the other one is rejecting. However, the corresponding kernel simulating
this loop in the binary A is of the same size λ if and only if all pairs of twins in A′

differ in acceptance. Next, Sect. 5 gives an analysis of a preamble simulating the
initial segment, ending by a lower bound for this preamble. The lower and upper
bounds on the total number of states are concentrated in Sect. 6. Finally, Sect. 7
presents related results for nfas, among others, a binary variant of Chrobak
normal form [2,5,7].
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2 Preliminaries

Here we briefly fix some basic definitions and notation. For more details, we refer
the reader to [13,14], or any other standard textbook.

A deterministic finite state automaton (dfa, for short) is a quintuple A =
(Q,Σ, δ, qI, F ), where Q denotes a finite set of states, Σ a finite set of input
symbols, δ : Q×Σ → Q a transition function, qI ∈ Q an initial state, and F ⊆ Q
a set of final (accepting) states. The states in the set Q\F will be called rejecting.

The transition function δ can be extended to δ∗ : Q × Σ∗ → Q in a natural
way: δ∗(q, ε) = q and δ∗(q, αa) = δ(δ∗(q, α), a), for each q ∈ Q, α ∈ Σ∗, and
a ∈ Σ. The language accepted by A is L(A) = {w ∈ Σ∗ : δ∗(qI, w) ∈ F}.

A nondeterministic finite state automaton (nfa, for short) uses the same
components as dfa above, except for δ : Q × Σ → 2Q, allowing a set of several
different transitions for the given q ∈ Q and a ∈ Σ.

Two automata are equivalent, if they accept the same language. A dfa (nfa)
A is optimal, if no dfa (nfa, respectively) with fewer states is equivalent to A.

To simplify notation, a transition δ(q, a) = q′ will sometimes be presented in
a more compact form q a−→ q′. Similarly, q a1···an−−−−→ q′ displays a path consisting
of n transitions, beginning in q, ending in q′, and reading a1· · ·an ∈ Σ∗.

We fix the unary input alphabet to Σ′ = {a} and the binary input alphabet to
Σ = {0, 1}. The correspondence between binary strings and nonnegative integers
can be established by a function num : {0, 1}∗ → N, defined as follows:1

num“ε′′ = 0 ,
num“wb′′ = (num“w′′)·2 + b , for each w ∈ {0, 1}∗ and b ∈ {0, 1}.

It is easy to show, by induction on |w|, the length of w, that num“vw′′ =
(num“v′′)·2|w| + num“w′′, for each v, w ∈ {0, 1}∗.

A mapping in the opposite direction is not so unambiguous, because of lead-
ing zeros. Moreover, we shall occasionally need to use a “proper” number of
leading zeros. This leads to the following definition: for each x and r in N, let

binx = the shortest w ∈ {0, 1}∗ such that num“w′′ = x,
binr x = the shortest w ∈ {0, 1}∗ of length at least r such that num“w′′ = x.

As an example, num“000101′′ = num“101′′ = 5, while bin 5 = “101′′. On the
other hand, we have bin2 5 = “101′′ and bin6 5 = “000101′′.

The correspondence between unary languages and their binary counterparts
is quite straightforward: let L′ ⊆ {a}∗ and L ⊆ {0, 1}∗. Then

binL′ = {w ∈ {0, 1}∗ : anumw ∈ L′} and numL = {ax ∈ {a}∗ : binx ∈ L} .

L ⊆ {0, 1}∗ is a binary coded unary regular language, if there exists a unary
regular language L′ such that L = binL′.

1 To distinguish between a multiplication of integers and a concatenation of strings in
formulas with mixed contents, strings are sometimes enclosed in quotation marks.
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Fig. 1. The optimal one-way deterministic automaton A′ accepting the unary language
L′ = {ak : k mod 12 ∈ {0, 3, 6, 9, 10}} \ {a10}. The states in the initial segment are
displayed as squares, those in the loop as circles. Accepting states are labeled by “+”.

The structure of a unary dfa is very simple: such automaton A′ = (Q′, Σ′, δ′,
q′
I, F

′), with Σ′ = {a}, consists of an initial segment Z
�
σ of length σ and a loop

Zλ of length λ, i.e., Q′ = Z
�
σ ∪ Zλ. (See example in Fig. 1.) Formally,2

Z
�
σ = {0�, 1�, . . . , (σ − 1)�} and Zλ = {0, 1, . . . , λ − 1} .

In the initial segment, A′ counts the length of the input up to σ − 1 after which,
in the loop, it counts modulo λ. Transitions are obvious:

δ′(j�, a) = (j + 1)�, for j ∈ {0, . . . , σ − 2},
δ′((σ − 1)�, a) = σ mod λ ,

δ′(i, a) = (i + 1) mod λ , for i ∈ {0, . . . , λ − 1}.
(1)

If σ > 0, the initial state is q′
I = 0�. However, if σ = 0, there is no initial segment,

Z
�
σ = Ø, and q′

I = 0. Using (1), it is easy to see that, for each x ≥ 0,

δ′∗(q′
I, a

x) =
{

x�, if x < σ,
x mod λ , if x ≥ σ.

(2)

3 General Properties

Let us we begin with a “basic” construction:

Theorem 1. If a unary language L′ is accepted by a dfa A′ = (Q′, {a}, δ′, q′
I, F

′)
using an initial segment Z

�
σ with σ states and a loop Zλ with λ states, then its

binary coded counterpart L = binL′ is regular and can be accepted by a dfa A�

consisting of a preamble with σ states and a kernel with λ states.

2 Both in Z
�
σ and in Zλ, the states are associated with integers. To distinguish states

in Z
�
σ from those in Zλ, the former are labeled by a triangle while the latter are not.
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Fig. 2. The binary counterpart A� of the dfa A′ presented in Fig. 1, constructed by
the use of Theorem 1. Transitions reading the symbol “0” are displayed as solid arrows,
those reading the symbol “1” as dotted arrows.

Proof (sketched). The new automaton A� = (Q′, {0, 1}, δ�, q′
I, F

′) works with the
same set of states Q′ = Z

�
σ ∪Zλ as does A′—see also Fig. 1—as well as with the

same initial and accepting states, but with different transitions:

δ�(j�, b) =
{

(j·2 + b)�, if j·2 + b < σ,
(j·2 + b) mod λ , if j·2 + b ≥ σ,

δ�(i, b) = (i·2 + b) mod λ .

(3)

This holds for each j ∈ {0, . . . , σ − 1}, each i ∈ {0, . . . , λ − 1}, and each b ∈
{0, 1}. The conversion is illustrated by an example shown in Fig. 2. Thus, instead
of counting the length of a unary input, but using the same set of states Z

�
σ,

A� computes the numerical value num“w′′ for the prefix w which, so far, has been
read from the given binary input. At the moment when this value exceeds σ −1,
A� starts to compute this value modulo λ, using the states in Zλ.

To prove that L(A�) = binL′, we need to show that, for each w ∈ {0, 1}∗,

δ�∗(q′
I, w) =

{
(num w)�, if numw < σ,
(num w) mod λ , if numw ≥ σ.

(4)

This can be done by an induction on the length of w. Then, by comparing (4)
with (2), for x = num w, it is easy to see that

δ�∗(q′
I, w) = δ′∗(q′

I, a
numw) , for each w ∈ {0, 1}∗. (5)

Since A� agrees with A′ in the set of accepting states, this means that w ∈ {0, 1}∗

is accepted by A� if and only if anumw ∈ {a}∗ is accepted by A′. 	

Before passing further, let us extend (3), presented in the construction in

Theorem 1, from bits to arbitrary binary strings:

δ�∗(j�, w) =
{

(j·2|w| + numw)�, if j·2|w| + num w < σ,
(j·2|w| + numw) mod λ , if j·2|w| + num w ≥ σ,

δ�∗(i, w) = (i·2|w| + numw) mod λ .

(6)
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0 1 2

510

0,**

1,10

1,00
1,*1

2,*1

2,*0

1

1

1 0

0

0
0

0
1

1 0
11 0

0
1

t(q) q ∈ Zλ ∪ Zσ

0,** 0, 3, 6, 9, 3 , 6 , 9

1,00 1,*1 1, 4, 7, 4 , 7 , 10

1,10 10

2,*0 2, 8 8 , 5

2,*1 5, 11

2 2

1 1

0 0

Fig. 3. The optimal dfa A for A� presented in Fig. 2 and a table presenting the func-
tion t that maps the states of the original unary A′ to the states in A. The states are
labeled as follows: “1,10” corresponds to the value i such that i mod 3 = 1 and the
binary representation of i ends by “10” (i.e., i mod 4 = 2); similarly, “2,*1” stands for
i mod 3 = 2 with the binary representation of i ending by “00” or “01”, and “0,**” rep-
resents i mod 3 = 0 with all four possible bit combinations. The remaining labels should
be obvious; the only exception is the path 0� 1−→ 1� 0−→ 2� 1−→ 5� 0−→ 10�.

This holds for each j ∈ {0, . . . , σ − 1}, each i ∈ {0, . . . , λ − 1}, and each w ∈
{0, 1}∗. Also the argument for (6) uses induction on the length of w.

The binary dfa A� constructed in Theorem 1 is usually far from being opti-
mal, even if the original unary dfa A′ is. As an example, compare the binary
dfa A� from Fig. 2 with its minimized version A, presented by Fig. 3.

Theorem 2. Let A′ = (Q′, {a}, δ′, q′
I, F

′) be an optimal dfa accepting a unary
language L′ and let A = (Q, {0, 1}, δ, qI, F ) be the optimal dfa accepting L =
bin L′. Then there exists a function t : Q′→Q preserving the machine’s behavior,
i.e., it preserves the initial states, up to binary coding the machine’s transitions,
and also acceptance/rejection:

(I) qI = t(q′
I),

(II) δ∗(qI, w) = t( δ′∗(q′
I, a

numw) ), for each w ∈ {0, 1}∗,
(III) t(q) ∈ F if and only if q ∈ F ′, for each q ∈ Q′.

Proof (sketched). For the given A′, we first construct A� = (Q′, {0, 1}, δ�, q′
I, F

′)
by the use of Theorem 1. This machine is not necessarily optimal, but it accepts
L = binL′, using the same set of states, the same initial state, and the same
accepting states. By (5), δ�∗(q′

I, w) = δ′∗(q′
I, a

numw), for each w ∈ {0, 1}∗.
Now, since the optimal dfa is up to isomorphism always unique for each reg-

ular language, we can reconstruct all components in the optimal A = (Q, {0, 1},
δ, qI, F ) by applying the standard procedure of minimization on A�. (See, for
example, [13, Sect. 4.4].) This procedure proceeds as follows.

First, we should eliminate states that are not be reachable from the initial
state. However, using (2), we see that each q ∈ Q′ is reached in A′ by reading ax,
for some x ∈ {0, . . . , σ+λ−1}. But then q is also reached in A�, by reading binx,
since δ�∗(q′

I,bin x) = δ′∗(q′
I, a

numbin x) = δ′∗(q′
I, a

x) = q, by (5).
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Second, partition Q′ into blocks of equivalent states, i.e., Q′ = X1∪ . . . ∪Xh,
so that these blocks are pairwise disjoint and any pair of states in Q′ belongs
to the same block if and only if these two states are equivalent in A�. This
establishes Q = {X1, . . . , Xh}, the state set for A.

Third, we define the remaining components for A. If q′
I ∈ X, for some X ∈ Q,

then qI
df.= X. Transitions in A are established as follows. For each X ∈ Q and

b ∈ {0, 1}, let us take any q ∈ X. If δ�(q, b) ∈ X ′, for some X ′ ∈ Q, then
δ(X, b) df.= X ′. Finally, X ∈ Q is included in F if and only if there is at least one
state q ∈ X such that q ∈ F ′.

We are now ready to introduce t : Q′ → Q: if q ∈ X, then t(q) df.= X. The
fundamental property of this function is that

δ∗(t(q), w) = t( δ�∗(q, w) ) , for each q ∈ Q′ and w ∈ {0, 1}∗. (7)

If w = ε, the above equation is trivial. For longer strings, the argument
proceeds by induction on the length of w, beginning with |w| = 1.

Claim: For each q ∈ Q′, the state t(q) in A is equivalent with q in A�. More
precisely, for each u ∈ {0, 1}∗, X ∈ Q, and q ∈ Q′ such that q ∈ X (i.e., for
each q satisfying t(q) = X), the state δ∗(X,u) is accepting in A if and only if
δ�∗(q, u) is accepting in A�. This can be shown by an induction on the length
of u.

It only remains to show that t satisfies (II) in the statement of the theorem;
(I) and (III) follow directly from the definition of the initial and final states in A.

First, for each w, u ∈ {0, 1}∗, the state δ∗(qI, w·u) = δ∗( δ∗(qI, w), u) is accept-
ing in A if and only if δ�∗(q′

I, w·u) = δ�∗( δ�∗(q′
I, w), u) is accepting in A�, since

A is equivalent to A�. This gives that δ∗(qI, w) is equivalent to δ�∗(q′
I, w), for

each w ∈ {0, 1}∗.
However, using q = δ�∗(q′

I, w) in Claim above, we see that δ�∗(q′
I, w) is

equivalent to t(δ�∗(q′
I, w)). Thus, δ∗(qI, w) is equivalent to t(δ�∗(q′

I, w)). But
A is optimal and hence δ∗(qI, w) = t(δ�∗(q′

I, w)). Using (5), we then get
δ∗(qI, w) = t( δ′∗(q′

I, a
numw) ). 	


The next theorem shows closure of dfas accepting binary coded regular lan-
guages under the following nonstandard language operation: by modifying the
set of accepting states (but keeping the structure of transitions), we obtain a
dfa accepting a binary coded unary regular language again. This is later used
to obtain some lower bounds.

Theorem 3. Let A = (Q, {0, 1}, δ, qI, F ) be an optimal dfa accepting a binary
coded unary regular language and let B be a binary dfa that agrees with A in all
components except for the set of accepting states. Then B accepts a binary coded
unary regular language as well—but B is not necessarily optimal and L(B) may
differ from L(A).

More precisely, if A′ = (Q′, {a}, δ′, q′
I, F

′) is the optimal unary dfa accept-
ing num L(A) and t is the function preserving the machine’s behavior, satisfying
(I)–(III) in Theorem 2, then there exists a unary dfa B′ accepting num L(B) that
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agrees with A′ in all components except for accepting states such that, for each
q ∈ Q′, q is accepting in B′ if and only if t(q) is accepting in B. Neither B′ is
necessarily optimal.

Proof (sketched). Since A accepts a binary coded unary regular language, there
must exist an optimal dfa A′ for this unary language, with binL(A′) = L(A).
But then, by Theorem 2, there must exist a function t : Q′→Q satisfying (I)–(III)
in the statement of this theorem,3 namely,

(I) qI = t(q′
I),

(II) δ∗(qI, w) = t( δ′∗(q′
I, a

numw) ), for each w ∈ {0, 1}∗,
(III) t(q) ∈ F if and only if q ∈ F ′, for each q ∈ Q′.

Now, let B = (R, {0, 1}, ϑ, rI, G) be any dfa that agrees with A in all com-
ponents except for accepting states, i.e., R = Q, ϑ = δ, and rI = qI, with G
possibly different from F . This gives the following relation between A′ and B:

– rI = t(q′
I),

– ϑ∗(rI, w) = t( δ′∗(q′
I, a

numw) ), for each w ∈ {0, 1}∗,

since (I) and (II) do not depend on accepting states.
Next, let B′ = (R′, {a}, ϑ′, r′

I, G
′) be a unary dfa that agrees with A′ in all

components except for accepting states, i.e., R′ = Q′, ϑ′ = δ′, and r′
I = q′

I; G′ to
be specified later. This B′ is related to B as follows:

(I’) rI = t(r′
I),

(II’) ϑ∗(rI, w) = t(ϑ′∗(r′
I, a

numw) ), for each w ∈ {0, 1}∗.

By fixing accepting states in B′ properly, we can satisfy (III) in Theorem 2
as well: by definition, q ∈ R′ is included in G′ if and only if t(q) ∈ G. Then

(III’) t(q) ∈ G if and only if q ∈ G′, for each q ∈ R′.

This gives that ϑ′∗(r′
I, a

numw) ∈ G′ if and only if t(ϑ′∗(r′
I, a

numw) ) ∈ G, that
is, if and only if ϑ∗(rI, w) ∈ G. Thus, anumw is accepted by B′ if and only if w is
accepted by B, and hence L(B) = binL(B′), with L(B′) ⊆ {a}∗. 	


4 A Loop

Recall that a unary dfa A′ uses an initial segment Z
�
σ and a loop Zλ, and

hence, by Theorem 2, the state set of the optimal binary A accepting bin L(A′)
is t(Z�

σ ∪ Zλ), where t is a function satisfying (I)–(III) in the statement of this
theorem. That is, the state set of A consists of a preamble t(Z�

σ) = {t(q) : q ∈ Z
�
σ}

and a kernel t(Zλ) = {t(q) : q ∈ Zλ}; these two sets are not necessarily disjoint.

3 Such mapping t does exist even if the optimal dfa accepting bin L(A′) has not been
obtained by the use of Theorem 2, since the optimal dfa A is always unique, up to
isomorphism (see, e.g., [13]).
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Let us express the length of the loop in A′ in the form

λ = μ · 2�, where μ is odd and � ≥ 0.

By the Chinese Remainder Theorem, each i ∈ Zλ = {0, . . . , λ − 1} is unam-
biguously determined by its Chinese Residual Representation, that is, it can be
expressed in the form i = 〈m, d〉, where m = i mod μ and d = i mod 2�. (See,
e.g., [3,4,10].) In addition, the value d is fully determined by the last � bits
in the binary representation of i. Namely, if i = num “bk−1· · ·b�−1· · ·b0′′, then
d = (

∑k−1
j=0 bj ·2j) mod 2� = (

∑�−1
j=0 bj ·2j) mod 2� = (num “b�−1 . . . b0

′′) mod 2� =
num “b�−1 . . . b0

′′, since 2j mod 2� = 0 for each j ≥ � and num“b�−1 . . . b0
′′ < 2�.

For this reason, i ∈ Zλ can also be identified with 〈m,num“b�−1 . . . b0
′′〉.

Thus, without actually changing the structure of transitions, we can replace
computing modulo λ, as presented in (3), by computing just modulo μ but, in
addition, we have to keep track about the latest � bits of the prefix which, so
far, has been read from the binary input. (See also Fig. 3.)

As an example, with λ = 12 = 3·22, our dfa A� in Fig. 2 gets from i1 = 2
to i2 = 5 by the sequence of transitions 2 0−→ 4 0−→ 8 1−→ 17 mod 12 = 5.
Now, computing modulo μ = 3 and keeping the latest � = 2 bits, this
path can also be displayed in the form 〈2,num“10′′〉 0−→ 〈1,num“00′′〉 0−→
〈2,num“00′′〉 1−→ 〈2,num“01′′〉. Finally, by (7), the optimal A in Fig. 3 must fol-
low the path t(〈2,num“10′′〉) 0−→ t(〈1,num“00′′〉) 0−→ t(〈2,num“00′′〉) 1−→
t(〈2,num“01′′〉), not excluding repetitions, i.e., t(j′) = t(j′′) for some j′ = j′′.

Because of such “long jumps”, it is not obvious at the first glance that the
states in the kernel t(Zλ) must always form a single strongly connected compo-
nent. This is proved by the following lemma:

Lemma 1. Let A′ be an optimal unary dfa using λ = μ·2� states in the loop,
with μ odd, and let A be the optimal dfa accepting bin L(A′). Then the states in
the kernel of A are strongly connected, that is, for each i1, i2 ∈ Zλ, there exists
wi1,i2 ∈ {0, 1}∗ such that A gets from t(i1) to t(i2) by reading wi1,i2 .

Proof (sketched). Let i1, i2 ∈ Zλ be given by their Chinese Residual Represen-
tation, as i1 = 〈m1, d1〉 and i2 = 〈m2, d2〉. Now, define:

iμ = the smallest nonnegative integer satisfying (2iμ ·2) mod μ = 1 ,
r = 1 + �log μ� + � ,

ui1,i2 = (d2 + (m2 − d2)·2iμ·�·2� − m1·2r) mod (μ·2�) ,
wi1,i2 = binr ui1,i2 .

Since the value ui1,i2 is computed modulo μ·2�, it is smaller than μ·2�, and
hence it can be written down by the use of at most r = 1 + �log μ� + � bits. We
can write it down by the use of exactly r bits, with leading zeros if necessary.
This gives the binary string wi1,i2 = binr ui1,i2 of length |wi1,i2 | = r.

Now, let A� be the binary counterpart of A′ (not necessarily optimal) from
Theorem 1. Using (6), we see that A�, by reading the string wi1,i2 from the
input, gets from i1 = 〈m1, d1〉 to the state i′ = (i1·2|wi1,i2 |+num wi1,i2) mod λ =
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(i1·2r + ui1,i2) mod λ. We are now going to show that i′ = i2 by showing that
these two values agree in the Chinese Residual Representation.

To compute i′ mod μ, we shall need: i1 mod μ = m1, (x mod (μ·2�)) mod μ =
x mod μ for each x ≥ 0, (2iμ ·2) mod μ = 1, and m2 mod μ = m2:

i′ mod μ = ((i1·2r + ui1,i2) mod (μ·2�)) mod μ = (m1·2r + ui1,i2) mod μ
= (m1·2r + d2 + (m2 − d2)·2iμ·�·2� − m1·2r) mod μ
= (d2 + (m2 − d2)·(2iμ ·2)�) mod μ
= (d2 + (m2 − d2)·1) mod μ = m2 mod μ = m2 .

Similarly, using (x mod (μ·2�)) mod 2� = x mod 2� for each x ≥ 0, 2r mod 2� = 0
(this follows from r ≥ �), and d2 mod 2� = d2, we get

i′ mod 2� = ((i1·2r + ui1,i2) mod (μ·2�)) mod 2� = ui1,i2 mod 2�

= (d2 + (m2 − d2)·2iμ·�·2� − m1·2r) mod 2� = d2 mod 2� = d2 .

Summing up, by reading the string wi1,i2 , the dfa A� gets from i1 = 〈m1, d1〉
to the state i′ = 〈m2, d2〉 = i2, and hence, by (7), the optimal dfa A has the
corresponding computation path t(i1)

wi1,i2−−−−→ t(i2). 	

Lemma 2. Let A′ be an optimal unary dfa using λ = μ·2� states in the loop,
with μ odd, and let A be the optimal dfa accepting bin L(A′). Then t(j1) = t(j2),
for each j1, j2 ∈ Zλ such that j1 mod μ = j2 mod μ. In addition, δ(t(j1), b) =
δ(t(j2), b), for some b ∈ {0, 1}.
The argument uses similar techniques as in Lemma 1; from the given pair of
states that differ in the related residues modulo μ, we can reach a pair of states
that differ in acceptance/rejection, by a carefully constructed string. The situa-
tion is different for pairs that agree in the related residues modulo μ:

Lemma 3. Let A′ be an optimal unary dfa using λ = μ·2� states in the loop, with
μ odd, and let A�,A be the dfas accepting binL(A′), constructed in Theorems 1
and 2. Then, for each i1, i2 ∈ Zλ such that i1 mod μ = i2 mod μ and each w ∈
{0, 1}∗ of length at least �, δ�∗(i1, w) = δ�∗(i2, w) and δ∗(t(i1), w) = δ∗(t(i2), w).

Proof (sketched). Let i1, i2 ∈ Zλ be given by their Chinese Residual Represen-
tation, as i1 = 〈m, d1〉 and i2 = 〈m, d2〉, and let w be an arbitrary binary string
of length at least �. Therefore, 2|w| mod 2� = 0. But then

(i1·2|w| + numw) mod μ = (m·2|w| + numw) mod μ = i2·2|w| + numw) mod μ ,
(i1·2|w| + num w) mod 2� = (num w) mod 2� = (i2·2|w| + numw) mod 2�.

Thus, δ�∗(i1, w), δ�∗(i2, w) agree in residues modulo μ and modulo 2�, and
hence δ�∗(i1, w) = δ�∗(i2, w), which gives δ∗(t(i1), w) = δ∗(t(i2), w), by (7). 	


Let us now concentrate on a unary dfa A′ with a loop of even length, i.e.,
with λ = μ·2�, where μ is odd and � ≥ 1. It turns out that here the important role
is played by pairs of states that are located at the opposite positions across the
loop, that is, i1, i2 ∈ Zλ such that i2 = (i1 + λ/2) mod λ = (i1 + μ·2�−1) mod λ.
We shall call such pairs twin states, or twins, for short.
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Lemma 4. Let λ = μ·2�, where μ is odd and � ≥ 1. Then i1, i2 ∈ Zλ are twins if
and only if they agree in their residues modulo μ and the binary representations of
their residues modulo 2� differ only in the �-th bit from the right. That is, given by
Chinese Residual Representation, i1 = 〈m,num“b1β

′′〉 and i2 = 〈m,num“b2β
′′〉,

for some m and some bits b1, b2 satisfying b1 = b2, with |β| = � − 1.

Consider now behavior of t(i1), t(i2) in A, the optimal dfa for binL(A′), if
i1, i2 are twins. First, by (3), we easily obtain that δ�(〈m,num“b1β

′′〉, b) = 〈m·2+
b,num“βb′′〉 = δ�(〈m,num“b2β

′′〉, b). That is, after reading any symbol b ∈ {0, 1}
from the input, the distinguishing bit disappears: δ�(i1, b) = δ�(i2, b). But then,
using (7), we get that δ(t(i1), b) = t(δ�(i1, b)) = t(δ�(i2, b)) = δ(t(i2), b). This
gives:

δ∗(t(i1), w) = δ∗(t(i2), w) , for each twin pair i1, i2 and each w = ε. (8)

Consequently, t(i1), t(i2) are not equivalent (and hence not equal) if and only if
one of them is accepting while the other one is rejecting.

Theorem 4. Let A′ be an optimal unary dfa using λ = μ·2� states in the loop,
with μ odd and � ≥ 1. Then the optimal dfa A accepting bin L(A′) uses exactly
λ states in its kernel if and only if, for each pair of twin states i1, i2 ∈ Zλ, one
of i1, i2 is accepting while the other one is rejecting.

Proof (sketched). Assume first that, for each pair of twin states i1, i2 ∈ Zλ, one
of i1, i2 is accepting while the other one is rejecting in A′. Suppose also, for
contradiction, that the loop Zλ contains some different states j1, j2 such that
t(j1) = t(j2). There are now two subcases:

First, if j1 mod μ = j2 mod μ, then, by Lemma 2, the states t(j1), t(j2) in the
kernel of A are different, a contradiction.

Second, if j1 mod μ = j2 mod μ, these values must differ in residues mod-
ulo 2�, and hence the binary representations of these residues must differ in
at least one bit. Thus, given by their Chinese Residual Representation, j1 =
〈m,num“β1b1β

′′〉 and j2 = 〈m,num“β2b2β
′′〉, for some m ∈ {0, . . . , μ−1}, some

β1, β2, β ∈ {0, 1}∗, and some bits b1, b2 ∈ {0, 1}, satisfying |β1b1β| = |β2b2β| = �
and b1 = b2. Here b1, b2 represent the first pair of different bits from the right.

But then, using (6) and (7), we see that, by reading the string 0�−|β|−1 from
the input, A gets from t(j1) to t(i1) = t(〈m·2�−|β|−1,num“b1β0�−|β|−1 ′′〉) and
from t(j2) to the state t(i2) = t(〈m·2�−|β|−1,num“b2β0�−|β|−1 ′′〉). Clearly, if
t(j1) = t(j2), then t(i1) = t(i2) as well.

However, i1, i2 agree in residues modulo μ and their residues modulo 2� differ
only in the �-th bit from the right, b1 = b2. Thus, by Lemma 4, i1, i2 are twins and
hence, by assumption, one of i1, i2 is accepting while the other one is rejecting
in A′. But then, by (III) in Theorem 2, one of the states t(i1), t(i2) in A is
accepting while the other one is rejecting, which contradicts t(i1) = t(i2).

Thus, if each pair of twin states i1, i2 ∈ Zλ is such that one of them is
accepting while the other one is rejecting, there are no different states j1, j2 ∈ Zλ

such that t(j1) = t(j2) in A, and hence t(Zλ) contains λ states, all different.
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Assume now that there exists a pair of twin states i1, i2 ∈ Zλ such that either
both of them are accepting or both of them are rejecting in A′.

But, by (III) in Theorem 2, either both t(i1) and t(i2) are accepting or both of
them are rejecting in A. Taking into account that δ∗(t(i1), w) = δ∗(t(i2), w) for
each w = ε, by (8), we see that t(i1), t(i2) are equivalent, that is, t(i1) = t(i2).
Therefore, the kernel t(Zλ) contains at most λ − 1 different states. 	


The corresponding condition for unary dfas is simpler: if each pair of twin
states i1, i2 in a unary dfa A′ is such that either both of them are accepting or
both of them are rejecting, then A′ can be replaced by an equivalent dfa with
λ/2 states in its loop, and hence it is not optimal.

We are now ready to present the lower bound on the size of the kernel:

Theorem 5. Let A′ be an optimal unary dfa using λ = μ·2� states in the loop,
with μ odd, and let A be the optimal dfa accepting binL(A′). Then the kernel
of A must contain at least μ + � states.

Proof (sketched). Let us begin with the special case of � = 0. In this case λ = μ,
with μ odd. By Lemma 2, for each j1, j2 ∈ Zλ such that they do not agree in
their residues modulo μ, the states t(j1), t(j2) in the kernel of A are different.
This implies that t(0), . . . , t(μ − 1) is a sequence of μ = μ + � different states.

Consider a loop of even length λ = μ·2�. Since the unary A′ is optimal, there
exists a pair of twins i1, i2 ∈ Zλ such that one of them is accepting while the
other one is rejecting, or else A′ could be replaced by an equivalent dfa with
only λ/2 states in its loop. But then, by (III) in Theorem 2, one of t(i1), t(i2) is
accepting while the other one is rejecting in A, and hence t(i1) = t(i2).

Now we proceed by induction on �. First, let � = 1. As shown above, the
sequence t(0), . . . , t(μ−1) consists of μ different states. In addition, by Lemma 4,
the twins i1, i2 agree in residues modulo μ, that is, i1 mod μ = i2 mod μ = j, for
some j ∈ {0, . . . , μ−1}. But then t(0), . . . , t(j−1), t(i1), t(i2), t(j+1), . . . , t(μ−1)
is a sequence consisting of μ + 1 = μ + � different states.

Next, let � ≥ 2 and let the statement of the theorem hold for �′ = � − 1 by
induction. For contradiction, assume that the kernel of A contains less than μ+�
states. To complete the proof, it is enough to show that this leads to existence
of an optimal unary dfa B′′′ with μ·2�−1 states in the loop, such that kernel of
the optimal binary counterpart of B′′′ contains less than μ + � − 1 states. Note
that L(B′′′) may differ from L(A′).

Fixing Special States. Using Lemma 4 and � ≥ 2, the Chinese Residual Rep-
resentation of the twins i1, i2 can be expressed as i1 = 〈m,num“b1βb′′〉 and
i2 = 〈m,num“b2βb′′〉, for some m, β, and some bits b1, b2, b, satisfying b1 = b2.

Now, there exists m′ ∈ {0, . . . , μ− 1} such that (m′·2+ b) mod μ = m. Using
(3) and (7), we see that t(i1), t(i2) can be reached by the following transitions:

t(j0,1)
df.= t(〈m′,num“0b1β

′′〉)
t(j1,1)

df.= t(〈m′,num“1b1β
′′〉)

}
b−→ t(〈m,num“b1βb′′〉) = t(i1) ,

t(j0,2)
df.= t(〈m′,num“0b2β

′′〉)
t(j1,2)

df.= t(〈m′,num“1b2β
′′〉)

}
b−→ t(〈m,num“b2βb′′〉) = t(i2) .
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By a rather long but not too difficult argument, one can show that

(I) either t(je1,1) =1 t(i1) and t(je1,1) =1 t(i2), for each e1 ∈ {0, 1},
(II) or t(je2,2) =1 t(i1) and t(je2,2) =1 t(i2), for each e2 ∈ {0, 1}, or both.

Here “q =1 r” means that δ(q, b′) = δ(r, b′) for each b′ ∈ {0, 1}. This relation is
reflexive, symmetric, and transitive, but q =1 r does not imply that q = r. Thus,
“q =1 r” means that δ(q, b′) = δ(r, b′), for some bit b′ ∈ {0, 1}.
From this point forward, our reasoning proceeds on the assumption that (I) holds
true; the case of (II) is symmetrical and hence omitted.

Fixing a Pair of Smaller Machines. By changing accepting states in the binary
A = (Q, {0, 1}, δ, qI, F ), let us construct a new binary dfa B that agrees with A
in all components, but the new set of accepting states is

G = {t(k) ∈ t(Zλ) : t(k) =1 t(j0,1)} . (9)

By (I), we have t(i1) =1 t(j0,1) and t(i2) =1 t(j0,1), and hence, in the new
dfa B, both t(i1) and t(i2) are rejecting. Recall that t(i1) = t(i2) and i1, i2 are
twins. But then δ∗(t(i1), w) = δ∗(t(i2), w) for each w = ε, by (8). Thus, in B,
the states t(i1), t(i2) are different but equivalent. Consequently, the new dfa B
is not optimal: by minimization, we can save at least one state and hence the
kernel of the optimal dfa accepting L(B) contains less than μ + � − 1 states.

Next, by Theorem 3, B accepts a binary coded unary regular language and
there exists a unary dfa B′ that agrees with A′ in all components (thus, with the
same loop Zλ), except for accepting states, with bin L(B′) = L(B). Moreover,
for each k ∈ Zλ, k is accepting in B′ if and only if t(k) is accepting in B.

It can be shown that each pair of twin states k′
1, k′

2 = k′
1+μ·2�−1 is equivalent

in B: by (8), we have δ∗(t(k′
1), w) = δ∗(t(k′

2), w) for each w = ε, and hence also
t(k′

1) =1 t(k′
2). But then, by (9), either both of them are accepting in B, or both

of them are rejecting in B.
This implies that B′ can be replaced by an equivalent B′′ with the same initial

segment, but using the loop Zλ/2 = {0, . . . , λ/2 − 1} instead of Zλ, counting
modulo λ/2 = μ·2�−1. The new set of accepting states is G ∩ Zλ/2. By a rather
lengthy argument, one can show that the size of the loop in B′′ is optimal, i.e., it
cannot be replaced by a shorter loop. But then the optimal dfa accepting L(B′′)
uses exactly μ·2�−1 states in its loop. This optimal automaton, denoted here
by B′′′, may differ from B′′ in a smaller initial segment.

Conclusion. If there exists an optimal unary dfa A′ with λ = μ·2� states in
its loop such that the optimal dfa accepting bin L(A′) uses less than μ + �
states in its kernel, then there must exist an optimal unary dfa B′′′ with μ·2�−1

states in its loop such that the optimal dfa accepting binL(B′′′) = binL(B′′) =
binL(B′) = L(B) uses less than μ+�−1 states in its kernel. But this contradicts
the induction hypothesis, and hence such dfa A′ does not exist. 	
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5 An Initial Segment

Now we shall concentrate on t(Z�
σ) \ t(Zλ), that is, on states in the preamble

but outside the kernel. As can be seen from the example in Fig. 3, the sets
t(Z�

σ), t(Zλ) are not necessarily disjoint. In general, each state in t(Z�
σ) ∩ t(Zλ)

can be expressed as q = t(j�) = t(i), for some j� ∈ t(Z�
σ) and i ∈ t(Zλ). In this

case, the value j must respect the corresponding residue modulo μ:

Lemma 5. Let A′ be an optimal unary dfa using σ states in the initial segment
and λ = μ·2� states in the loop, with μ odd, and let A be the optimal dfa
accepting binL(A′). Then j mod μ = i mod μ, for each j ∈ {0, . . . , (σ − 1)} and
each i ∈ {0, . . . , (λ − 1)} such that t(j�) = t(i).

Using the above lemma and the fact that the binary coding allow leading
zeros—i.e., w ∈ L(A) if and only if 0�w ∈ L(A)—one can show:

Lemma 6. Let A′ be an optimal unary dfa using σ states in the initial segment
and let A be the optimal dfa accepting binL(A′). Then the initial state of A is
not in the kernel, if σ > 0.

We are now ready to present the lower bound on the size of the preamble:

Theorem 6. Let A′ be an optimal unary dfa using σ states in the initial seg-
ment and λ = μ·2� states in the loop, with μ odd, and let A be the optimal dfa
accepting binL(A′). Then A must use at least max{1, 1 + �log σ� − �} states in
the preamble but outside the kernel, except for σ = 0, with no preamble at all.

Proof (sketched). Assume first that σ ≥ 2. By (4) and (7), the binary dfa A
gets from qI = t(0�) to t((σ − 1)�) by reading bin(σ − 1), with 1 + �log σ� states
along this path, including t(0�) and t((σ − 1)�). There can be at most � states
in the kernel t(Zλ) along this path:

Supposing for contradiction that at least � + 1 states are in t(Zλ), this path
can be split into two segments, namely, t(0�) β′−→ t(j�) and t(j�) β−→ t((σ−1)�),
for some t(j�) ∈ t(Zλ), with β′β = bin(σ−1) and |β| = �. But then t(j�) = t(i′),
for some i′ ∈ Zλ, and hence the computation path t(j�) β−→ t((σ − 1)�) can
also be expressed as t(i′) β−→ t(i), for some t(i) ∈ t(Zλ), with t(i) = t((σ −
1)�). Moreover, i = (σ − 1) mod λ: these values agree in residues modulo μ, by
Lemma 5, and they agree in residues modulo 2� as well, because the same string
β represents the last � bits in the binary representations of both i mod λ and
σ − 1. Now, using i = (σ − 1) mod λ, t(i) = t((σ − 1)�), and (III) in Theorem 2,
we get that (σ − 1) mod λ is accepting in A′ if and only if (σ − 1)� is accepting
in A′. But then the states (σ − 1) mod λ, (σ − 1)� are equivalent in A′, which
contradicts our assumption that A′ is optimal.

Summing up, the path from qI = t(0�) to t((σ − 1)�) consists of 1 + �log σ�
states, at most � of them are in t(Zλ), and all states outside t(Zλ) are different,
since the preamble t(Z�

σ) is loop-free, except for the trivial loop reading “0” in qI.
Therefore, the preamble in A must contain at least 1+ �log σ�− � states outside
the kernel. Moreover, by Lemma 6, qI = t(0�) is never in the kernel, if σ > 0,
which gives the lower bound max{1, 1+ �log σ�− �}. This covers also the special
case of σ = 1, when max{1, 1 + �log σ� − �} = max{1, 1 − �} = 1. 	
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6 Total Number of States

Here we begin by showing that the bounds presented in Theorems 5 and 6 are
best possible, by presenting witness languages matching these bounds.

Theorem 7. For each σ ≥ 0, each odd μ ≥ 1, and each � ≥ 0, there exists a
unary language L′

σ,μ,� such that the optimal dfa accepting L′
σ,μ,� uses exactly

σ states in the initial segment and exactly λ = μ·2� states in the loop, while be
the optimal dfa accepting binL′

σ,μ,� uses exactly max{1, 1 + �log σ� − �} states
in the preamble but outside the kernel (except for σ = 0, with no preamble) and
exactly μ + � states in the kernel.

We do not present the lengthy argument about the state complexities of L′
σ,μ,�

and binL′
σ,μ,� here—this will be done in a journal version of the paper—but

content ourselves with presenting the witness language. For the given σ ≥ 0,
odd μ ≥ 1, and � ≥ 0, let λ = μ·2�, s = max{1, �(σ − 1)/2�−1�}, and let

L′
σ,μ,� = {ak : k mod λ = (σ − 1) mod λ} \ {ak : k ≤ σ − 1 and

one of the strings bin s, bin k is a prefix of the other} .

Note also that for σ = 0 we obtain L′
σ,μ,� = {ak : k mod λ = (−1) mod λ}\Ø,

since there is no ak ∈ {a}∗ with k ≤ −1.
Now we shall consider the total number of states for the conversion. Let us

begin with the upper bound:

Theorem 8. (i) If a unary language L′ is accepted by an optimal dfa A′ using
n states, then the optimal dfa A accepting bin L′ uses at most n states. (ii) For
each n ≥ 1, there exists a unary language L′

n matching this bound, i.e., both the
optimal A′

n for L′
n and the optimal An for bin L′

n use exactly n states.

Proof (sketched). The universal upper bound in (i) follows trivially from
Theorem 1. To provide a witness language for (ii), define:

L′
n = {ak : k mod n ≥ n/2} .

The unary A′
n for L′

n counts modulo n, without any initial segment. By defini-
tion, the state j is accepting if and only if j mod n ≥ n/2. It is easy to see that
this dfa has no pair of different but equivalent states.

To see that the optimal An for binL′
n—constructed in Theorem 2—cannot

use less than n states, we consider the following cases:
If n is odd, the loop in A′

n is of length n = λ = μ·20 = μ, where μ is odd.
Clearly, all values in the sequence 0, . . . , μ − 1 differ in their residues modulo μ.
Hence, by Lemma 2, t(0), . . . , t(μ − 1) is a sequence of μ = n different states.

If n is even, then j and j + n/2 form a pair of twin states, for each j ∈
{0, . . . , n/2 − 1}. Moreover, j is rejecting and j + n/2 is accepting. But then, by
Theorem 4, An uses exactly λ = n states. 	
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Theorem 9. (i) If a unary language L′ is accepted by an optimal dfa A′ using
n states, then the optimal dfa A accepting binL′ uses at least 1+ �log n� states.
(ii) For each n ≥ 1, there exists a unary language L′′

n matching this bound, i.e.,
the optimal dfa for L′′

n uses exactly n states but the optimal dfa for bin L′′
n

exactly 1 + �log n� states.

Proof (sketched). (i) If A′ uses n states, then n = σ +μ·2�, where σ ≥ 0 denotes
the length of the initial segment and λ = μ·2� the length of the loop, with odd
μ ≥ 1 and � ≥ 0. If A′ is optimal, then, by Theorems 6 and 5, the binary A must
use at least N = max{1, 1 + �log σ� − �} + (μ + �) states, except for the case of
σ = 0, when there is no preamble and N = μ + �. There are now three cases,
depending on whether σ > 2�, 0 < σ ≤ 2�, or σ = 0. For all of them, a more
detailed evaluation of the formula reveals that N ≥ 1 + �log n�.

(ii) To provide a witness language, let us take �, the unique integer satisfying
2� ≤ n < 2�+1. Clearly, n can be expressed as n = σ + μ·2�, for some σ < n/2
and μ = 1. Now, let L′′

n = L′
σ,μ,�, where L′

σ,μ,� is the unary language presented
in Theorem 7. Note that σ < n/2 < 2�. Therefore, the optimal dfa for L′′

n

uses exactly σ + μ·2� = n states, while the optimal dfa for binL′′
n exactly

N = 1 + (μ + �) = 2 + � states, if σ > 0, but exactly N = μ + � = 1 + � states, if
σ = 0.

If σ > 0, then n ≥ 2. But then 2� = n − σ ≤ n − 1, which gives N = 2 + � ≤
2+log(n−1), and hence N ≤ 2+�log(n − 1)�, since N is an integer. Now, using
the fact that �log n� = 1 + �log(n − 1)� for each n ≥ 2, we get N ≤ 1 + �log n�.

If σ = 0, then N = 1 + � = 1 + log n ≤ 1 + �log n�. 	


7 Other Properties

Let us now return to Theorem 8. By using 2n instead of n, it states that, for each
n ≥ 0, there exists a unary language L′

2n such that both the optimal dfa for L′
2n

and the optimal dfa for binL′
2n use exactly 2n states. The witness language for

this was L′
2n = {ak : k mod 2n ≥ 2n−1}. However, since k mod 2n is determined

by the last n bits in the binary representation of k, it is easy to see that the
binary coded version of L′

2n can also be established as

binL′
2n = {w ∈ {0, 1}∗ : the n -th bit from the end ofw is “1′′} ,

which is actually the most popular witness example of an exponential blowup
for removing nondeterminism in nfas (see, e.g., [13, Sect. 2.3.6]).

It is well known that there exists a simple nondeterministic automaton for
this language: this nfa moves along the given binary input w, nondeterministi-
cally guesses the position of the n-th bit from the end, after which it verifies that
w ends by “1·v”, for some v of length n−1. Clearly, n+1 states are sufficient for
this task. This many states are also necessary, since no state along the segment
“10n−1” at the end of “0n10n−1” can be repeated. This gives:

Corollary 1. For each n ≥ 1, there exists a binary coded unary language L
such that the optimal nfa for L uses exactly n states, but both the optimal dfa
for L and the optimal dfa for the unary version of L use exactly 2n−1 states.



Binary Coded Unary Regular Languages 19

The conversion of a unary nfa to a binary dfa is less expensive: each unary
nfa with n states can be replaced by an equivalent dfa with e(1+o(1))·√n·lnn

states—which is the growth rate of Landau’s function [2,15,17], and then con-
verted to a dfa for the binary version of the original language. by Theorem 1.
The conversion of a unary nfa to a binary nfa is quadratic:

Theorem 10 (Binary version of Chrobak normal form [2,5,7]). If a unary
language L′ is accepted by an nfa with n states, then its binary coded counterpart
L = binL′ can be accepted by an nfa A consisting of:

– A deterministic preamble Z
�
σ using σ ≤ n2 − n states, without any loops,

except for the trivial loop reading the symbol “0” in the initial state.
– Deterministic strongly connected components Zλ1 , . . . ,Zλm

containing,
respectively, λ1, . . . , λm states, with λ1 + · · ·+λm ≤ n− 1. These components
are disjoint and there are no transitions from any component to another.

– This nfa makes at most one nondeterministic choice during the course of the
entire computation, by a single-step transition from Z

�
σ to some Zλi

.

In the special case of empty preamble, there is only one component Zλ1 , of size
λ1 ≤ n, and A is deterministic.

It is easy to see that bin L′
1 ∪ binL′

2 = bin(L′
1 ∪ L′

2), and hence the class
of binary coded unary regular languages is closed under union; the same holds
for intersection and complement. To illustrate different closure properties from
binary regular languages in general, we point out that this class is not closed
under concatenation. To see this, consider two finite unary languages, namely,
L′

{1} = {a1} = {a} and L′
{0} = {a0} = {ε}. Their binary coded versions can

be given by regular expressions 0∗1 and 0∗, respectively, which gives 0∗10∗ for
concatenation. But (binL′

{1})·(binL′
{0}) is binary coded {a2k

: k ≥ 0}.
We do not know whether the gap 2n−1 in Corollary 1 cannot be increased;

however, the cost of removing nondeterminism cannot exceed 2n, given by the
standard subset construction. In this context, a promising line of research is
studying nondeterministic automata; we are convinced that the quadratic cost
in Theorem 10 can be improved. The representation of binary coded unary lan-
guages by two-way automata is worth studying as well.

Sometimes, e.g., in [8], a one-to-one mapping between integers and binary
strings is obtained by making leading zeros significant, stating by convention
that the most significant bit is hidden. That is, the binary inputs ε, 0, 1, 00, 01, . . .
are interpreted as 1, 2, 3, 4, 5, . . . . This ensures that the same integer cannot be
represented by two different strings, but we exclude a binary representation for
zero. Conversion from a binary dfa working with leading zeros to a dfa working
with the hidden leftmost bit is simple: if qI is the original initial state, use δ(qI, 1)
as a new initial state. This imitates reading the hidden most significant bit.

The special role of the number 2 in formulas for the number of states follows
from the fact that integers are represented in binary here. We expect different
number of states for representations based on values different from 2.
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Abstract. In this survey we present the various types of automata with
translucent letters that have been studied in the literature. These include
the finite automata and the pushdown automata with translucent letters,
which are obtained as reinterpretations of certain cooperating distributed
systems of a restricted type of restarting automaton, the linear automa-
ton with translucent letters, and the visibly pushdown automaton with
translucent letters. For each of these types of automata with translu-
cent letters, it has been shown that they accept those trace languages
which are obtained from the class of languages that is accepted by the
corresponding type of automaton without translucent letters.

Keywords: finite automaton · pushdown automaton · translucent
letter · trace language · language class · inclusion · incomparability

1 Introduction

While a ‘classical’ finite automaton or pushdown automaton reads its input
strictly from left to right, letter by letter, many types of automata have been
studied in the literature that process their inputs in a different, non-sequential
way. Under this aspect, the jumping finite automaton of A. Meduna and
P. Zemek [21] is the most ‘extreme,’ as it processes a given input in an arbitrary
order. Other types of automata that do not process their inputs in a strictly
sequential order include the right one-way jumping finite automaton [3,10], the
restarting automaton [16,17], the right-revolving finite automaton [4], the non-
deterministic linear automaton [18], and the input-reversal pushdown automa-
ton [8]. Here, however, we concentrate on a different type of automaton that does
not read its input sequentially from left to right: the automaton with translucent
letters.

A finite automaton with translucent letters is obtained from a ‘classical’ finite
automaton by adding an end-of-tape marker and a so-called translucency map-
ping τ . This mapping assigns, to each state q, a subset τ(q) of input letters
that the automaton cannot see when it is in state q. Accordingly, in state q, the
automaton reads (and deletes) the first letter from the left that is not translu-
cent for the current state. If there is no such letter, then the automaton sees
the end-of-tape marker and it halts, either accepting or rejecting. Although this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 21–50, 2023.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40247-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-40247-0_2


22 F. Otto

extension of the model of finite automaton looks quite natural, it was only discov-
ered through a reinterpretation of cooperating distributed systems of a certain
type of restarting automaton. The restarting automaton was introduced in [16]
to model the analysis by reduction, which is a technique from linguistics that
can be applied to analyze sentences of natural languages with a free word-order.
By placing restrictions on the operations that a restarting automaton may exe-
cute, characterizations have been obtained for various classes of formal languages
(see, e.g., [42,43]).

The weakest type of restarting automaton is the stateless deterministic R-
automaton with a window of size one, abbreviated as stl-det-R(1)-automaton,
which only accepts a rather restricted class of regular languages. In [36], sev-
eral stl-det-R(1)-automata are combined into a cooperating distributed system
inspired by the cooperating distributed grammar systems as presented in [11].
As observed in [34], these systems can be interpreted as NFAs with translucent
letters. Other types of cooperating distributed systems of stl-det-R(1)-automata
give rise to the DFA with translucent letters and the (deterministic and non-
deterministic) pushdown automaton with translucent letters. In addition, linear
automata with translucent letters have been studied in [40]. Interestingly, it has
turned out that each nondeterministic type of automaton with translucent let-
ters accepts those trace languages that are obtained from the class of languages
that is accepted by the corresponding type of automaton without translucent
letters. Finally, in [23], an extension of the NFA and the DFA with translucent
letters is considered that, after reading and deleting a letter, does not return its
head to the left end of its tape but that, instead, continues from the position of
the letter just deleted.

In the current survey, we present the above development in short. Accord-
ingly, the paper is structured as follows. After establishing notation at the end
of this section, we introduce several classes of trace languages in Sect. 2. In the
following section, we present the restarting automaton, concentrating on the
stl-det-R(1)-automaton, and in Sect. 4, we recall the various types of cooperat-
ing distributed systems of stl-det-R(1)-automata. In the next two sections, we
present finite automata with translucent letters and pushdown automata with
translucent letters. Finally, in Sect. 7, we consider the non-returning NFA and
DFA with translucent letters, comparing them to various other types of automata
that do not read their inputs sequentially from left to right. In the concluding
section, we list a number of questions and open problems for future work.

Notation. We use N to denote the set of non-negative integers. For a finite
alphabet Σ, Σ∗ denotes the set of all words over Σ, including the empty word λ,
and Σ+ denotes the set of all non-empty words. For a word w ∈ Σ∗, |w| denotes
the length of w and, for a ∈ Σ, |w|a is the a-length of w, that is, the number of
occurrences of the letter a in w. The concatenation (or product) of two words
u and v is written as u · v or simply as uv. Moreover, for a set S, we use P(S)
to denote the power set of S. Finally, we shall encounter the classes REG of
regular languages, LIN of linear context-free languages, DCFL of deterministic
context-free languages, VPL of visibly pushdown languages, CFL of context-free
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languages, GCSL of growing context-sensitive languages, and CSL of context-
sensitive languages. In addition, NFA (DFA) is used to denote a nondeterministic
(deterministic) finite automaton (see, e.g., [1,12,15]).

2 Trace Languages

As we concentrate on types of automata that do not process their inputs strictly
from left to right, we need some language classes in addition to those of the
classical Chomsky hierarchy. Specifically, we consider various classes of trace
languages.

Starting with A. Mazurkiewicz’s seminal paper [20], the theory of traces
has become an important part of the theory of concurrent systems. A trace
is an equivalence class of words over a given finite alphabet with respect to
a partial commutativity relation [9]. Informally speaking, if the letters of an
alphabet Σ are interpreted as atomic actions, then a word w over Σ stands
for a finite sequence of such actions. If some of these atomic actions, say a
and b, are independent of each other, then it does not matter in which order
they are executed, that is, the sequences of actions ab and ba yield the same
result. A reflexive and symmetric binary relation D on Σ is called a dependency
relation on Σ, and ID = (Σ×Σ)�D is the corresponding independence relation.
Obviously, the relation ID is also symmetric. The equivalence relation ≡D that
is induced by the pairs

{ (xaby, xbay) | (a, b) ∈ ID, x, y ∈ Σ∗ }

is the partial commutativity relation induced by D. By collecting all words
(sequences) that are equivalent to a given word w into a class [w]D = { z ∈
Σ∗ | z ≡D w }, one abstracts from the order between independent actions. These
equivalence classes are called traces, and the set M(D) = { [w]D | w ∈ Σ∗ } of
all traces is the trace monoid M(D) that is presented by the pair (Σ,D) (see,
e.g., [13]).

Now we restate the definitions of various classes of trace languages in short.

Definition 1. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is called

(a) a rational trace language if there exist a dependency relation D on Σ and a
regular language R ⊆ Σ∗ such that L =

⋃
w∈R[w]D, that is, L = {w ∈ Σ∗ |

∃z ∈ R : w ≡D z };
(b) a linear context-free trace language if there exist a dependency relation D

on Σ and a linear context-free language R ⊆ Σ∗ such that L =
⋃

w∈R[w]D;
(c) a context-free trace language if there exist a dependency relation D on Σ

and a context-free language R ⊆ Σ∗ such that L =
⋃

w∈R[w]D;
(d) a visibly pushdown trace language if there exist a dependency relation D

on Σ and a visibly pushdown language R ⊆ Σ∗ such that L =
⋃

w∈R[w]D.

LRAT (LLIN , LCF , LVP) is used to denote the class of all rational (linear
context-free, context-free, visibly pushdown) trace languages.
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Context-free trace languages have been considered in [5,6], while visibly push-
down trace languages have been studied in [7]. However, in that paper, it is
assumed that the push and pop operations of any process are independent of all
the push and pop operations of any other process.

The relation D = { (a, b) | a, b ∈ Σ } is the trivial dependency relation on Σ,
as x ≡D y if and only if x = y. This shows that the free monoid Σ∗ is a trace
monoid, which in turn implies that REG ⊆ LRAT , LIN ⊆ LLIN , CFL ⊆ LCF ,
and VPL ⊆ LVP. In fact, all these inclusions are proper as is shown by the
following simple example.

Example 2. Let Σ = {a, b, c} and D = {(a, a), (b, b), (c, c)}. Then ≡D is the
commutation relation on Σ∗, that is, the trace monoid presented by (Σ,D) is
the free abelian monoid generated by Σ. Now R = { (abc)n | n ≥ 1 } is a
regular language and L =

⋃
w∈R[w]D is a rational trace language. However,

L = {w ∈ Σ∗ | |w|a = |w|b = |w|c ≥ 1 }, which is not even context-free. �

3 Restarting Automata

Motivated by the analysis by reduction, P. Jančar, F. Mráz, M. Plátek, and
J. Vogel presented the first type of the restarting automaton at the FCT 1995
in Dresden [16]. As defined in that paper, a restarting automaton consists of a
finite-state control, a finite tape that initially contains the input and which is
bordered on the left by the sentinel � and on the right by the sentinel �, and
a read/write window of a fixed finite size k ≥ 1. This type of automaton differs
from the Turing machine (or, rather, the linear-bounded automaton) in three
important aspects:

– A restarting automaton works in cycles, where in each cycle, it scans the
tape from left to right until it detects a position at which it can apply a
delete/restart operation. A delete/restart operation removes one or more let-
ters from the contents of the window and restarts the automaton, which
means that the window is repositioned at the left end of the tape.

– The tape of a restarting automaton is flexible, that is, it adjusts to the length
of the tape inscription. Thus, when one or more letters are removed during a
delete/restart step, then the tape is shortened accordingly.

– By a delete/restart step, the finite-state control is reset to the initial state,
that is, all the information that the restarting automaton may have collected
in its finite-state control while scanning the tape from left to right is forgotten
during a delete/restart step.

Despite these limitations, the deterministic variant of the (above type of) restart-
ing automaton, called an R-automaton, accepts a proper superset of the deter-
ministic context-free languages, while the nondeterministic variant is even more
expressive. However, the latter is not sufficient to accept all context-free lan-
guages [17]. Therefore, in subsequent papers, P. Jančar, F. Mráz, M. Plátek,
and J. Vogel extended the restarting automaton in several ways (see, e.g., the
survey papers [42] and [43]).
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Here we are interested in the weakest possible type of restarting automaton,
the stateless deterministic R-automaton of window size one, as this automaton
serves as the main building block for the various types of automata with translu-
cent letters. This particular type of restarting automaton is defined as follows.

Definition 3 ([36]). A stateless deterministic R-automaton of window size one,
or a stl-det-R(1)-automaton for short, is defined through a four-tuple M =
(Σ,�,�, δ), where Σ is a finite input alphabet, �,� �∈ Σ are special letters,
called sentinels, that are used to mark the left and right border of the tape, and
δ : (Σ ∪ {�,�}) → {λ,MVR,Accept} is a partial transition function. Here it is
required that δ(�) �= λ �= δ(�).

For a word w ∈ Σ∗, the corresponding initial configuration of M is written
as � · w · �, where the underlined letter indicates the position of the read/write
window of size one. A general configuration of M has the form � · uav · � for
any words u, v ∈ Σ∗ and a letter a ∈ Σ. The stl-det-R(1)-automaton M induces
the following single-step computation relation 
M on its set of configurations
� · Σ∗ · � ∪ {Accept,Reject}, where u, v ∈ Σ∗ and a, b ∈ Σ:

� · uabv · � 
M

⎧
⎪⎪⎨

⎪⎪⎩

� · uabv · �, if δ(a) = MVR,
� · ubv · �, if δ(a) = λ,
Accept, if δ(a) = Accept,
Reject, if δ(a) = ∅.

The language L(M) accepted by M is defined as

L(M) = {w ∈ Σ∗ | � · w · � 
∗
M Accept },

where 
∗
M denoted the reflexive transitive closure of the relation 
M .

The following simple example illustrates the way in which a stl-det-R(1)-
automaton works.

Example 4. Let M = (Σ,�,�, δ) be the stl-det-R(1)-automaton that is specified
through Σ = {a, b, c} and δ(�) = MVR, δ(a) = MVR, δ(b) = λ, δ(c) = ∅, δ(�) =
Accept. Then

� · abc · � �M � · abc · � �M � · abc · � �M � · ac · � �M � · ac · � �M � · ac · � �M Reject,

as δ(c) is undefined, while

� · ba · � 
M � · ba · � 
M � · a · � 
M � · a · � 
M � · a · � 
M Accept.

Thus, ba ∈ L(M), but abc �∈ L(M). �

As we see, a stl-det-R(1)-automaton works in cycles: starting at the left
sentinel, it performs a number of move-right steps until it either accepts, rejects,
or deletes a letter and restarts its computation on a shortened tape. Accordingly,
each configuration in which the head of the automaton is on the left sentinel is
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called a restarting configuration. The execution of a complete cycle is expressed
by the relation 
c

M . For example, in Example 4, we have � · abc ·� 
c
M � · ac ·�

and � · ba · � 
c
M � · a · �.

In order to characterize the languages that are accepted by stl-det-R(1)-auto-
mata, we introduce the following notation.

Definition 5. Let M = (Σ,�,�, δ) be a stateless deterministic R(1)-automa-
ton. Then we can partition the alphabet Σ into four disjoint subalphabets:

(1) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2) Σ2 = { a ∈ Σ | δ(a) = λ }, (4) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

Thus, Σ1 is the set of letters that M just moves across, Σ2 is the set of letters
that M deletes, Σ3 is the set of letters that cause M to accept, and Σ4 is the set
of letters on which M gets stuck, that is, which cause M to reject.

Then we obtain the following characterization.

Proposition 6 ([36]). Let M = (Σ,�,�, δ) be a stateless deterministic R(1)-
automaton, and assume that the subalphabets Σ1, Σ2, Σ3, Σ4 are defined as above.
Then the language L(M) can be characterized as follows:

L(M) =

⎧
⎪⎪⎨

⎪⎪⎩

∅, if δ(�) = ∅,
Σ∗, if δ(�) = Accept,
(Σ1 ∪ Σ2)∗ · Σ3 · Σ∗, if δ(�) = MVR and δ(�) �= Accept,
(Σ1 ∪ Σ2)∗ · ((Σ3 · Σ∗) ∪ {λ}), if δ(�) = MVR and δ(�) = Accept.

Thus, we see that the class of languages L(stl-det-R(1)) that are accepted by
stl-det-R(1)-automata is just a very special proper subclass of the regular lan-
guages. It is easily seen that a stateless finite automaton with input alphabet Σ
accepts a language of the form Σ∗

0 , where Σ0 is a subalphabet of Σ. This yields
the following consequence.

Corollary 7. A language L is accepted by a stateless deterministic R(1)-auto-
maton that only accepts on reaching the right sentinel �, if and only if L is
accepted by a stateless finite automaton.

By increasing the window size, we obtain the family of language classes
(L(stl-det-R(k)))k≥1, which form a strictly ascending hierarchy that is incompa-
rable to the regular languages with respect to inclusion [36]. On the other hand,
by admitting states, we obtain the language class L(det-R(1)), which coincides
with the class of regular languages [22]. The diagram in Fig. 1 summarizes the
corresponding inclusion relations, where each arrow denotes a proper inclusion.
In addition, if there is no sequence of oriented edges between two classes, then
these classes are incomparable with respect to inclusion.

For obtaining automata with translucent letters, the stateless deterministic
R(1)-automaton is generalized in a different way by combining finitely many of
these automata into a cooperating distributed system.



A Survey on Automata with Translucent Letters 27

GCSL

CFL (det-R)

(stl-det-R) =
⋃

k≥1

(stl-det-R(k))

DCFL
...

(det-R(1)) = REG (stl-det-R(3))

(stl-det-R(2))

(stl-det-R(1))

Fig. 1. Taxonomy of language classes accepted by stateless deterministic R-automata.

4 CD-Systems of Restarting Automata

Following [36] (see also [30]), we now combine several stateless deterministic
R(1)-automata into a cooperating distributed system.

Definition 8 ([36]). A cooperating distributed system of stl-det-R(1)-auto-
mata, or a stl-det-local-CD-R(1)-system for short, is specified by a triple M =
((Mi)i∈I , I0, δ), where I is a finite set of indices, (Mi)i∈I is a collection of stl-
det-R(1)-automata Mi = (Σ,�,�, δi) (i ∈ I) that all have the same input alpha-
bet Σ, I0 ⊆ I is the set of initial indices, and δ :

⋃
i∈I({i} × Σ

(i)
2 ) → P(I) is a

global successor function. This function assigns, to each pair (i, a) ∈ {i} × Σ
(i)
2 ,

a set of possible successor automata, where Σ
(i)
2 denotes the set of letters that

the automaton Mi can delete. Here it is required that I0 �= ∅, that δi(�) = MVR

for all i ∈ I, and that δ(i, a) �= ∅ for all i ∈ I and all a ∈ Σ
(i)
2 .

For a given input w ∈ Σ∗, the computation of M proceeds as follows. First,
an index i0 ∈ I0 is chosen nondeterministically. Then the stl-det-R(1)-automa-
ton Mi0 starts the computation with the initial configuration � · w · �, execut-
ing one cycle. Thereafter, an index i1 ∈ δ(i0, a) is chosen nondeterministically,
where a is the letter an occurrence of which has been deleted by Mi0 in the above
cycle, and Mi1 continues the computation by executing one cycle. This contin-
ues until, for some j ≥ 0, the automaton Mij accepts. Should at some stage the
chosen automaton Mij be unable to execute a cycle, then the computation fails.

In order to describe computations of stl-det-local-CD-R(1)-systems in a more
transparent way, we encode restarting configurations through pairs of the form
(i,� · w · �), where i is the index of the currently active component automaton
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and � ·w ·� is the current tape contents. Then L(stl-det-local-CD-R(1)) denotes
the class of languages that are accepted by stl-det-local-CD-R(1)-systems. The
next example shows that stl-det-local-CD-R(1)-systems accept some important
non-regular languages.

Example 9. Let M1 = ((Mi)i∈I , I0, δ), where I = {a, b,+}, I0 = {a,+}, Ma,
Mb, and M+ are the stateless deterministic R(1)-automata on Σ = {a, b} that
are given by the following transition functions:

Ma : (1) δa(�) = MVR, (2) δa(a) = λ,

Mb : (3) δb(�) = MVR, (4) δb(a) = MVR, (5) δb(b) = λ,

M+ : (6) δ+(�) = MVR, (7) δ+(�) = Accept,

and the global successor function δ is defined through

δ(a, a) = {b} and δ(b, b) = {a,+}.

Here we assume that these transition functions are undefined for all other values.
Then w ∈ L(M1) iff |w|a = |w|b and |u|a ≥ |u|b for all prefixes u of w. Hence,
L(M1) is the semi-Dyck language D1. �

A major feature of these stl-det-local-CD-R(1)-systems is the fact that,
although all their component automata are deterministic, the computations of
these CD-systems are not, as in each computation, the initial component automa-
ton and the successor component automata are still chosen nondeterministically.
In [38] (see also [35]), a completely deterministic variant of these CD-systems
has been introduced.

Definition 10. Let ((Mi)i∈I , I0, δ) be a CD-system of stl-det-R(1)-automata
over Σ. This system is called a stl-det-global-CD-R(1)-system, if |I0| = 1 and
if |δ(i, a)| = 1 for all i ∈ I and all a ∈ Σ

(i)
2 .

If w = uav for some word u ∈ Σ
(i)
1

∗
and a letter a ∈ Σ

(i)
2 , and if δ(i, a) = j,

then (i,� ·uav ·�) 
c
M (j,� ·uv ·�). It follows that, for each input word w ∈ Σ∗,

the system M = ((Mi)i∈I , I0, δ) has a unique computation that starts from the
initial configuration corresponding to input w, that is, M is completely deter-
ministic. We use L(stl-det-global-CD-R(1)) to denote the class of all languages
that are accepted by stl-det-global-CD-R(1)-systems.

We illustrate this definition by presenting a stl-det-global-CD-R(1)-system
for the language Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }, which is not
even context-free.

Example 11. Let M2 = ((Mi)i∈I , I0, δ), where I = {0, 1, 2, 3, 4, 5, 6}, I0 = {0},
and M0,M1, . . . ,M6 are the stateless deterministic R(1)-automata on Σ =
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{a, b, c} that are given by the following transition functions:

M0 : (1) δ0(�) = MVR,
(2) δ0(a) = λ,
(3) δ0(b) = λ,
(4) δ0(c) = λ,
(5) δ0(�) = Accept,

M1 : (6) δ1(�) = MVR, M2 : (10) δ2(�) = MVR,
(7) δ1(a) = MVR, (11) δ2(a) = MVR,
(8) δ1(b) = λ, (12) δ2(b) = MVR,
(9) δ1(c) = MVR, (13) δ2(c) = λ,

M3 : (14) δ3(�) = MVR, M4 : (18) δ4(�) = MVR,
(15) δ3(a) = λ, (19) δ4(a) = MVR,
(16) δ3(b) = MVR, (20) δ4(b) = MVR,
(17) δ3(c) = MVR, (21) δ4(c) = λ,

M5 : (22) δ5(�) = MVR, M6 : (26) δ6(�) = MVR,
(23) δ5(a) = λ, (27) δ6(a) = MVR,
(24) δ5(b) = MVR, (28) δ6(b) = λ,
(25) δ5(c) = MVR, (29) δ6(c) = MVR,

and δi(�) = ∅ for all i = 1, 2, . . . , 6 .

Finally, the global transition function δ is defined as follows:

δ(0, a) = 1, δ(1, b) = 2, δ(2, c) = 0,
δ(0, b) = 3, δ(3, a) = 4, δ(4, c) = 0,
δ(0, c) = 5, δ(5, a) = 6, δ(6, b) = 0.

Then w ∈ L(M2) iff |w|a = |w|b = |w|c, that is, L(M2) = Labc. �
In [26], also CD-systems of stateless deterministic R-automata of window

size 2 are studied. These systems accept all linear context-free languages, and
they even accept some languages that are not semi-linear.

During the computation of a stl-det-local-CD-R(1)-system, the successor of
an active component automaton is chosen based on the index of that component
automaton and the letter that has been deleted in the current cycle. In [32]
(see also [31]), CD-systems of stl-det-R(1)-automata are introduced that use an
additional external pushdown store to determine the successor of the currently
active component automaton. These systems, called pushdown CD-systems of
stateless deterministic R(1)-automata, are formally defined as follows.

Definition 12 ([32]). A pushdown CD-system of stateless deterministic R(1)-
automata, a PD-CD-R(1)-system for short, consists of a CD-system of state-
less deterministic R(1)-automata and an external pushdown store. It is defined
through a tuple

M = (I,Σ, (Mi)i∈I , Γ,⊥, I0, δ),

where I is a finite set of indices, Σ is a finite input alphabet, for all i ∈ I, Mi is
a stateless deterministic R(1)-automaton on Σ, Γ is a finite pushdown alphabet,
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⊥ �∈ Γ is the bottom marker of the pushdown store, I0 ⊆ I is the set of initial
indices, and

δ : (I × Σ × (Γ ∪ {⊥})) → P(I × (Γ ∪ {⊥})≤3)

is the successor relation. For each i ∈ I, a ∈ Σ, and A ∈ Γ , δ(i, a, A) is a subset
of I × Γ≤2, and δ(i, a,⊥) is a subset of I × (⊥ · Γ≤2), where Γ≤2 denotes the
set of all words over Γ of length at most 2.

A configuration of M is a triple of the form (i, ω,⊥α), where i ∈ I, ω ∈
(�·Σ∗ ·�)∪{Accept}, and α ∈ Γ ∗. A configuration (i,�·w ·�,⊥α) describes the
situation that the component automaton Mi has just been activated, � ·w ·� is
the corresponding restarting configuration of Mi, and the word ⊥α is the current
contents of the pushdown store with the last letter of α at the top. An initial
configuration of M on input w ∈ Σ∗ has the form (i0,�·w ·�,⊥) for any i0 ∈ I0,
and an accepting configuration has the form (i,Accept,⊥) for any i ∈ I.

To exclude some trivial cases, we assume that each automaton Mi (i ∈ I)
performs a move-right step on the left sentinel �. Furthermore, for each i ∈ I, let
Σ

(i)
1 , Σ

(i)
2 , and Σ

(i)
3 denote the subsets of Σ that correspond to the automaton Mi

according to Definition 5. Then the single-step computation relation ⇒M that M
induces on its set of configurations is defined by the following three rules, where
i ∈ I, w ∈ Σ∗, α ∈ Γ ∗, and A ∈ Γ :

(1) (i,� · w · �,⊥αA) ⇒M (j,� · w′ · �,⊥αη) if ∃u ∈ Σ
(i)
1

∗
, a ∈ Σ

(i)
2 , v ∈ Σ∗ :

w = uav,w′ = uv, and (j, η) ∈ δ(i, a, A);
(2) (i,� · w · �,⊥) ⇒M (j,� · w′ · �,⊥η) if ∃u ∈ Σ

(i)
1

∗
, a ∈ Σ

(i)
2 , v ∈ Σ∗ :

w = uav,w′ = uv, and (j,⊥η) ∈ δ(i, a,⊥);
(3) (i,� · w · �,⊥) ⇒M (i,Accept,⊥) if ∃u ∈ Σ

(i)
1

∗
, a ∈ Σ

(i)
3 , v ∈ Σ∗ :

w = uav, or w ∈ Σ
(i)
1

∗
and δi(�) = Accept.

Notice that the contents of the pushdown store is always a word of the form
⊥α for some α ∈ Γ ∗, that is, the bottom marker ⊥ cannot be removed from
the pushdown store. Then ⇒∗

M denotes the computation relation of M, which
is the reflexive and transitive closure of the relation ⇒M. The language L(M)
accepted by M consists of all words for which M has an accepting computation,
that is,

L(M) = {w ∈ Σ∗ | ∃i0 ∈ I0 ∃i ∈ I : (i0,� · w · �,⊥) ⇒∗
M (i,Accept,⊥) }.

Now L(PD-CD-R(1)) denotes the class of languages that are accepted by PD-
CD-R(1)-systems.

The PD-CD-R(1)-system M accepts if and when both of the following con-
ditions are satisfied simultaneously: the currently active component automa-
ton Mi executes an accepting computation starting from the current tape con-
tents � · w · �, and the pushdown store just contains the bottom marker ⊥.
Observe that the contents of the pushdown store of M is manipulated only in
steps of the forms (1) and (2), and that during each step of either of these forms,
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a component automaton of M executes a cycle, that is, an input letter is being
erased. Thus, there is no way that M can manipulate its pushdown store without
reading (that is, deleting) input letters.

We illustrate the PD-CD-R(1)-systems through a simple example. Let

L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }.

As L ∩ ({a}∗ · {b}∗ · {c}∗) = { anbncn | n ≥ 0 } is not context-free, we see that L
itself is not context-free.

Example 13. The language L is accepted by the PD-CD-R(1)-system

M = (I,Σ, (Mi)i∈I , Γ,⊥, I0, δ)

that is specified by I = {a, b, c,+}, I0 = {a,+}, Σ = {a, b, c}, and Γ = {C}, by
defining Ma, Mb, Mc, and M+ by the following transition functions:

(1) δa(�) = MVR, (5) δb(�) = MVR, (8) δc(�) = MVR,
(2) δa(a) = λ, (6) δb(b) = λ, (9) δc(c) = λ,
(3) δ+(�) = MVR, (7) δb(c) = MVR, (10) δc(b) = MVR,
(4) δ+(�) = Accept,

where δx(y) (x ∈ I, y ∈ Σ ∪{�}) is undefined for all other cases, and by defining
the global transition function δ as follows:

(1) δ(a, a,⊥) = {(a,⊥C), (b,⊥C)}, (3) δ(b, b, C) = {(c, C)},
(2) δ(a, a, C) = {(a,CC), (b, CC)}, (4) δ(c, c, C) = {(b, λ), (+, λ)}.

The component automaton M+ just accepts the empty word, and it gets
stuck on all other words. The component automaton Ma just deletes the first
letter, if it is an a, otherwise, it gets stuck. The component automaton Mb reads
across c’s and deletes the first b it encounters, and analogously, the component
automaton Mc reads across b’s and deletes the first c it encounters. Thus, from
the global transition function, we see that M only accepts certain words of the
form amv such that v ∈ {b, c}∗. However, when Ma deletes an a, then a letter C
is pushed onto the pushdown store, and when Mc deletes a c, then a letter C is
popped from the pushdown store. In fact, it can be checked that L(M) = L. �

In [37] (see also [33]), a deterministic variant of the PD-CD-R(1)-system has
been introduced.

Definition 14. A PD-CD-R(1)-system M = (I,Σ, (Mi)i∈I , Γ,⊥, I0, δ) is call-
ed (globally) deterministic, if |I0| = 1 and if |δ(i, a, A)| ≤ 1 for all i ∈ I, a ∈ Σ,
and A ∈ Γ ∪ {⊥}. The class of all (globally) deterministic PD-CD-R(1)-systems
is denoted by det-PD-CD-R(1), and L(det-PD-CD-R(1)) denotes the class of
languages that are accepted by det-PD-CD-R(1)-systems.

A pushdown automaton A is called a one-counter automaton if its push-
down alphabet contains only one letter in addition to the bottom marker. By
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putting the corresponding restriction on PD-CD-R(1)-systems and their deter-
ministic variants, the OC-CD-R(1)-systems and the det-OC-CD-R(1)-systems
are obtained [32,37].

By combining the concept of a visibly pushdown automaton with the con-
cept of trace languages, a variant of the visibly pushdown trace languages is
used in [7] to analyze concurrent recursive programs. In that paper, the visibly
pushdown trace languages are realized by so-called concurrent visibly pushdown
automata that combine the concept of a visibly pushdown automaton with that
of W. Zielonka’s asynchronous automaton [46]. However, for the concurrent push-
down alphabets considered in [7], it is assumed that the push and pop operations
of any process are independent of all the push and pop operations of any other
process. In [44], visibly pushdown trace languages are studied that are obtained
without enforcing any such restriction, that is, the dependency relation D on
a given pushdown alphabet Σ is completely independent of the actual parti-
tioning of Σ into call, return, and internal symbols. The resulting systems are
called visibly pushdown-CD-R(1)-systems or VPD-CD-R(1)-systems for short,
and L(VPD-CD-R(1)) is the class of all languages that are accepted by these
systems.

5 Finite Automata with Translucent Letters

Let M = ((Mi)i∈I , I0, δ) be a stl-det-local-CD-R(1)-system on an alphabet Σ,
and for each i ∈ I, let (Σ(i)

1 , Σ
(i)
2 , Σ

(i)
3 , Σ

(i)
4 ) be the partitioning of Σ associated

with Mi according to Definition 5. We can actually assume that Σ
(i)
3 = ∅ for all

i ∈ I by introducing an additional component automaton. Now we can present
the system M by a diagram that contains a vertex for each component automa-
ton Mi and a special vertex ‘Accept.’ For each i ∈ I and a ∈ Σ

(i)
2 , Mi deletes

the left-most occurrence of the letter a, provided it is preceded only by a word
from Σ

(i)
1

∗
. Accordingly, the diagram contains an edge labelled (Σ(i)

1

∗
, a) from

vertex i to vertex j for all j ∈ δ(i, a) (see Fig. 2). Furthermore, if δi(�) = Accept,
then Mi accepts all words from the set Σ

(i)
1

∗
, and accordingly, there is an edge

labelled Σ
(i)
1

∗
from vertex i to the vertex ‘Accept’ (see Fig. 3). In addition, ver-

tex i is specifically marked for all initial indices i ∈ I0. We illustrate this way of
describing a stl-det-local-CD-R(1)-system by an example.

i
(Σ

(i)
1

∗
,a)

j

Fig. 2. A read/delete transition for a ∈ Σ
(i)
2 and j ∈ δ(i, a).
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i
Σ

(i)
1

∗

Accept

Fig. 3. An accept transition.

Example 15. Let M = ((Mi)i∈I , I0, δ) be the following system, where I =
{1, 2, 3, 4,+}, I0 = {1}, the various R-automata are given by the following tran-
sition functions:

M1 : δ1(�) = MVR, M+ : δ+(�) = MVR,
δ1(a) = λ, δ+(�) = Accept,

M2 : δ2(�) = MVR, M3 : δ3(�) = MVR,
δ2(a) = λ, δ3(a) = MVR,
δ2(b) = MVR, δ3(b) = λ,
δ2(c) = MVR, δ3(c) = MVR,

M4 : δ4(�) = MVR, δ4(b) = MVR,
δ4(a) = MVR, δ4(c) = λ,

where these functions are undefined for all other cases, and the global successor
function δ is defined though

δ(1, a) = {1, 2}, δ(2, a) = {3}, δ(3, b) = {4}, δ(4, c) = {2,+}.

Using the component automaton M1, M deletes a positive number of a’s, and
then using component automata M2, M3, and M4, it deletes an equal number of
a’s, b’s, and c’s, before it accepts the empty word by component automaton M+.
Thus,

L=1(M) = { anw | n ≥ 1, w ∈ {a, b, c}+ satisfying |w|a = |w|b = |w|c }.

Now this CD-system of stateless R-automata of window size 1 can be described
more compactly by the diagram given in Fig. 4. �

1
(∅,a)

(∅,a)

2

({b,c}∗,a)

3
( a,c ∗,b)

4
( a,b ∗,c)

({a,b}∗,c)

+ Accept

Fig. 4. The stl-det-local-CD-R(1)-system M from Example 15.

Motivated by this graphical representation, a stl-det-local-CD-R(1)-system
can be interpreted as a nondeterministic finite automaton with translucent let-
ters.
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Definition 16 ([34]). A finite automaton with translucent letters, or an
NFAwtl for short, is defined as a 7-tuple A = (Q,Σ,�, τ, I, F, δ), where Q is a
finite set of internal states, Σ is a finite alphabet of input letters, � �∈ Σ is a
special letter that is used as an end-of-tape marker, τ : Q → P(Σ) is a translu-
cency mapping, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states,
and δ : Q × Σ → P(Q) is a transition relation. Here we require that, for each
state q ∈ Q and each letter a ∈ Σ, if a ∈ τ(q), then δ(q, a) = ∅. For each state
q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q, the
automaton A does not see these letters.

Example 15 (cont.) The NFAwtl A = (Q,Σ,�, τ, I, F, δ) that corresponds to
the stl-det-local-CD-R(1)-system M = ((Mi)i∈I , I0, δ) is specified through Q =
{q1, q2, q3, q4, q+}, Σ = {a, b, c}, I = {q1}, F = {q+}, and the relations

τ(q1) = ∅, τ(q2) = {b, c}, τ(q3) = {a, c}, τ(q4) = {a, b}, τ(q+) = ∅,

and

δ(q1, a) = {q1, q2}, δ(q2, a) = {q3}, δ(q3, b) = {q4}, δ(q4, c) = {q2, q+}. �
An NFAwtl A = (Q,Σ,�, τ, I, F, δ) works as follows. For an input word

w ∈ Σ∗, it starts in a nondeterministically chosen initial state q0 ∈ I with
the word w · � on its tape. This configuration is denoted by q0w · �. Assume
that A is in a configuration qw · �, where q ∈ Q and w = a1a2 · · · an for some
n ≥ 1 and a1, a2, . . . , an ∈ Σ. Then A looks for the first occurrence from the
left of a letter that is not translucent for state q, that is, if w = uav such that
u ∈ (τ(q))∗, a ∈ (Σ � τ(q)), and v ∈ Σ∗, then A nondeterministically chooses
a state q1 ∈ δ(q, a), erases the letter a from the tape, thus producing the tape
contents uv · �, and sets its internal state to q1. In case δ(q, a) = ∅, A halts
without accepting. Finally, if w ∈ (τ(q))∗, then A sees the end-of-tape marker �
and the computation halts. In this case, A accepts if q is a final state; otherwise,
it does not accept. Thus, A executes the following computation relation on its
set Q · Σ∗ · � ∪ {Accept,Reject} of configurations :

qw · � 
A

⎧
⎪⎪⎨

⎪⎪⎩

q′uv · �, if w = uav, u ∈ (τ(q))∗, a �∈ τ(q), and q′ ∈ δ(q, a),
Reject, if w = uav, u ∈ (τ(q))∗, a �∈ τ(q), and δ(q, a) = ∅,
Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q �∈ F.

A word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and
a computation q0w · � 
∗

A Accept, where 
∗
A denotes the reflexive transitive

closure of the single-step computation relation 
A. Now L(A) = {w ∈ Σ∗ |
w is accepted by A } is the language accepted by A and L(NFAwtl) denotes the
class of all languages that are accepted by NFAwtls.

Definition 17 ([34]). An NFAwtl A = (Q,Σ,�, τ, I, F, δ) is a deterministic
finite automaton with translucent letters, abbreviated as DFAwtl, if |I| = 1 and
if |δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ. Then L(DFAwtl) denotes the class of
all languages that are accepted by DFAwtls.
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It is easily seen that the DFAwtl corresponds to the stl-det-global-CD-R(1)-
system. Concerning the language classes L(NFAwtl) and L(DFAwtl), the following
results have been obtained.

Theorem 18 ([36]). Each language L ∈ L(NFAwtl) contains a regular sublan-
guage E such that the Parikh images π(E) and π(L) coincide.

Essentially, an NFA for E is obtained from an NFAwtl for L by removing the
translucency mapping. As a consequence, we see that L(NFAwtl) only contains
semi-linear languages. Moreover, it follows that the language { anbn | n ≥ 0 }
is not accepted by any NFAwtl, that is, we have the following incomparability
result.

Corollary 19 ([36]). The language class L(NFAwtl) is incomparable to the
classes DLIN, LIN, DCFL, and CFL with respect to inclusion.

Let Σ be a finite alphabet. A language L ⊆ Σ∗ is a rational trace language
if there exist a dependency relation D on Σ and a regular language R ⊆ Σ∗

such that L =
⋃

w∈R[w]D (see Definition 1). Now let A be an NFA for R. We
can easily turn A into an equivalent NFA B = (Q,Σ, I, F, δB) such that, for
each state q ∈ Q, there is only a single letter a(q) ∈ Σ such that δ(q, a(q)) �= ∅.
Essentially, when executing a transition, B must already guess the next letter
that it will have to process. From B, we obtain an NFAwtl C by adding an
end-of-tape marker � and by defining a translucency mapping τ by taking, for
each state q, τ(q) = { b ∈ Σ | (a(q), b) �∈ D }. Thus, in state q, C cannot see all
those letters that are independent of the letter a(q). Then it can be shown that
C accepts the rational trace language L. Hence, we have the following result, as
by Example 9, D1 ∈ L(NFAwtl), but D1 is not a rational trace language.

Theorem 20 ([36]). LRAT � L(NFAwtl).

In fact, in [36], a subclass of NFAwtls is presented that characterizes the class
of rational trace languages. However, the DFAwtl is not sufficiently expressive
to accept all rational trace languages.

Proposition 21 ([38]). The rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }

is not accepted by any DFAwtl.

This yields the following result.

Corollary 22 ([38]).

(a) REG � L(DFAwtl) � L(NFAwtl).
(b) The language class L(DFAwtl) is incomparable to the classes LRAT and

CFL with respect to inclusion.



36 F. Otto

Concerning closure and non-closure properties the following results have been
obtained.

Theorem 23 ([36,38]).

(a) The language class L(NFAwtl) is closed under union, product, Kleene star,
inverse projections, disjoint shuffle, and the operation of taking the commu-
tative closure, but it is neither closed under intersection (with regular sets),
nor under complementation, nor under non-erasing morphisms.

(b) The language class L(DFAwtl) is closed under complementation, but it is
not closed under any of the following operations: union, intersection (with
regular sets), product, Kleene star, reversal, alphabetic morphisms, and com-
mutative closure.

However, it is still open whether L(NFAwtl) or L(DFAwtl) is closed under
inverse morphisms.

Finally, we turn to decision problems for NFAwtls and DFAwtls. Each step of
an NFAwtl can be simulated in linear time by a Turing machine. Hence, it follows
that the membership problem for an NFAwtl can be solved nondeterministically
in quadratic time using linear space. Analogously, the membership problem for
a DFAwtl can be solved deterministically in quadratic time using linear space.
However, in [29], B. Nagy and L. Kovács derived an interesting improvement on
the complexity of the membership problem for DFAwtls.

Let A = (Q,Σ,�, τ, q0, F, δ) be a DFAwtl, where Σ = {a1, a2, . . . , am}, and
let w = w1w2 · · · wn be an input word, where n ≥ 1 and w1, w2, . . . , wn ∈ Σ. For
each state q ∈ Q, let ψ(q) = Σ�τ(q) be the set of letters that are non-translucent
for this state. Assume that A is in state q. Then in order to execute the next
step of the computation of A on the tape contents w · �, the first occurrence wj

of a letter from the set ψ(q) must be found in w. Instead of writing the input
w = w1w2 · · · wn as a continuous sequence of letters, B. Nagy and L. Kovács
suggest a preprocessing stage that allows more efficiency. For each letter ai ∈ Σ,
1 ≤ i ≤ m, a linked list Li is built that contains those indices j ∈ {1, 2, . . . , n}
in increasing order for which wj = ai holds. These lists can be constructed in
time O(n · log n). Then these lists are used to simulate the computation of A on
input w, which takes another O(n · log n) steps. This yields the following result.

Theorem 24 ([29]). The membership problem for a DFAwtl is decidable in time
O(n · log n).

For an NFAwtl, the above considerations give a nondeterministic time bound
of O(n · log n). The proof of Theorem 18 yields an effective construction of an
NFA B from an NFAwtl A such that the language E = L(B) is a subset of
the language L = L(A) that is letter-equivalent to L. Hence, E is non-empty if
and only if L is non-empty, and E is infinite if and only if L is infinite. As the
emptiness problem and the finiteness problem are decidable for finite automata,
this immediately yields the following decidability results.

Proposition 25 ([36]). The emptiness problem and the finiteness problem are
effectively decidable for NFAwtls.
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As by Theorem 23, the class L(DFAwtl) is (effectively) closed under comple-
mentation, the decidability of the emptiness problem yields the following result.

Corollary 26 ([38]). The universality problem is effectively decidable for
DFAwtls, that is, it is decidable whether L(A) = Σ∗ for a given DFAwtl A
on Σ.

On the other hand, it is proved in [36] that regularity, inclusion, and equiva-
lence are undecidable for NFAwtls. For DFAwtls, the inclusion problem is unde-
cidable [38], but it is still open whether regularity and equivalence are undecid-
able for DFAwtls, too.

While the above types of automata with translucent letters are obtained
as reinterpretations of certain types of CD-systems of stl-det-R(1)-automata,
another type of automaton with translucent letters has been introduced and
studied in [40] (see also [39]): the nondeterministic linear automaton with translu-
cent letters (NLAwtl). It is obtained by extending the nondeterministic linear
automaton (NLA) of [18] with translucent letters. A nondeterministic linear
automaton has two heads that start from the two ends of a given input word,
one reading the word from left to right and the other reading it from right to
left, halting when the two heads meet. This automaton characterizes the class
of linear context-free languages. It corresponds to the 5′ → 3′ sensing Watson-
Crick automaton studied in [25,28] and to a class of 2-head finite automata for
linear context-free languages considered in [27].

By removing the translucency mapping from an NLAwtl A, one obtains an
NLA A′ such that L(A′) is a sublanguage of L(A) that is letter-equivalent to
L(A). This implies immediately that emptiness and finiteness are decidable for
NLAwtls. Furthermore, each linear context-free trace language is accepted by
an NLAwtl. In fact, a subclass of NLAwtls can be specified that characterizes
the class LLIN of linear context-free trace languages. Concerning closure and
non-closure properties, it is known that the language class L(NLAwtl) is closed
under union, but it is neither closed under intersection with regular sets nor
under complementation.

On the other hand, the corresponding deterministic class L(DLAwtl) is closed
under complementation, but not under intersection with regular sets, and hence,
it is neither closed under intersection nor under union. In addition, this class is
not closed under alphabetic morphisms. These closure and non-closure proper-
ties show that L(DLAwtl) is a proper subclass of L(NLAwtl). Moreover, both
these classes are not closed under product, but the class L(NLAwtl) is closed
under product with regular sets. However, it still remains open whether any
of the classes L(DLAwtl) and L(NLAwtl) is closed under Kleene star or inverse
morphisms, and whether the class L(NLAwtl) is closed under alphabetic mor-
phisms. Finally, for NLAwtls, regularity, linear context-freeness, inclusion, and
equivalence are undecidable, but it is still open whether any of these problems
is decidable for DLAwtls.
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In [19], a Mealey automaton M is combined with a DFAwtl A in such a way
that a given input word w is first transformed by M into a word M(w), and
this word is then processed by A. The language accepted by the pair (M,A) is
L(M,A) = {w ∈ Σ∗ | M(w) ∈ L(A) }. It is shown in [19] that the non-context-
free languages { anbncn | n ≥ 0 }, { ambncmdn | m,n ≥ 1 }, and {wcw | w ∈
{a, b}∗ } are accepted by such pairs.

6 Pushdown Automata with Translucent Letters

In the same way as stl-det-local-CD-R(1)-systems give rise to NFAwtls, PD-CD-
R(1)-systems lead to pushdown automata with translucent letters.

Definition 27. A pushdown automaton with translucent letters, or a PDAwtl
for short, is defined as a 9-tuple P = (Q,Σ,�, τ, Γ,⊥, Qin, Qfi, δ), where Q is a
finite set of states, Σ is a finite input alphabet, � �∈ Σ is a special letter that is
used as an end-of-tape marker, Γ ∪ {⊥} is the pushdown alphabet, where ⊥ is a
special letter that is used as a bottom marker, Qin ⊆ Q is the set of initial states,
Qfi ⊆ Q is the set of final states, τ : Q → P(Σ) is a translucency mapping, and

δ : (Q × Σ × (Γ ∪ {⊥})) → P(Q × (Γ ∪ {⊥})≤3)

is the transition relation. For each q ∈ Q, a ∈ Σ, and A ∈ Γ , δ(q, a,A) is a
subset of Q × Γ≤2, and δ(q, a,⊥) is a subset of Q × (⊥ · Γ≤2). In addition, we
may require that, for each q ∈ Q, a ∈ Σ, and A ∈ Γ ∪ {⊥}, if a ∈ τ(q), then
δ(q, a,A) = ∅.

A configuration of P has the form (q, w · �,⊥α). It describes the situation
that the PDAwtl P is in state q, its input tape contains the word w · �, and the
word ⊥α is the current contents of the pushdown store with the last letter of α at
the top. An initial configuration of P on input w ∈ Σ∗ has the form (q, w ·�,⊥)
for any q ∈ Qin, and an accepting configuration has the form (q, u ·�,⊥) for any
q ∈ Qfi and u ∈ (τ(q))∗.

The single-step computation relation 
P that P induces on its set of config-
urations is defined by the following two rules, where q ∈ Q, w ∈ Σ∗, α ∈ Γ ∗,
and A ∈ Γ :

(1) (q, w · �,⊥αA) 
P (q′, w′ · �,⊥αη) if ∃u ∈ (τ(q))∗, a ∈ Σ � τ(q), v ∈ Σ∗ :
w = uav,w′ = uv, and (q′, η) ∈ δ(q, a,A);

(2) (q, w · �,⊥) 
P (q′, w′ · �,⊥η) if ∃u ∈ (τ(q))∗, a ∈ Σ � τ(q), v ∈ Σ∗ :
w = uav,w′ = uv, and (q′,⊥η) ∈ δ(q, a,⊥).

The language L(P ) accepted by P consists of all words for which P has an
accepting computation, that is,

L(P ) = {w ∈ Σ∗ | ∃q ∈ Qin, q
′ ∈ Qfi, u ∈ (τ(q′))∗ : (q, w·�,⊥) 
∗

P (q′, u·�,⊥) }.

In fact, the PDAwtl corresponds to the PD-CD-R(1)-system. Let M =
(I,Σ, (Mi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system. From M, we obtain a
PDAwtl P = (Q,Σ,�, τ, Γ,⊥, Qin, Qfi, δP ) as follows:
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– Q = { qi | i ∈ I }, Qin = { qi | i ∈ I0 }, and Qfi = { qi | δi(�) = Accept },
– the translucency mapping τ : Q → P(Σ) is defined through

τ(qi) = { a ∈ Σ | δi(a) = MVR }

for all i ∈ I,
– and δP = δ is the transition relation.

It is easily seen that the PDAwtl P simulates the computations of M. Conversely,
from a PDAwtl, one can easily derive a PD-CD-R(1)-system that simulates the
computations of the PDAwtl. We illustrate the above definition through a simple
example.

Example 28. From the PD-CD-R(1)-system M from Example 13, we obtain the
PDAwtl P = (Q,Σ,�, τ, Γ,⊥, Qin, Qfi, δ) that looks as follows:

– Q = {qa, qb, qc, q+}, Qin = {qa, q+}, and Qfi = {q+},
– Σ = {a, b, c} and Γ = {C},
– the translucency mapping τ is specified through

τ(qa) = ∅, τ(qb) = {c}, τ(qc) = {b}, τ(q+) = ∅,

– and the transition function δ is defined as follows:

(1) δ(qa, a,⊥) = {(qa,⊥C), (qb,⊥C)}, (3) δ(qb, b, C) = {(qc, C)},
(2) δ(qa, a, C) = {(qa, CC), (qb, CC)}, (4) δ(qc, c, C) = {(qb, λ), (q+, λ)},

where this function is undefined for all other cases.

On input w = aaccbb, P can execute the following accepting computation:

(qa, aaccbb · �,⊥) 
P (qa, accbb · �,⊥C) 
P (qb, ccbb · �,⊥CC)

P (qc, ccb · �,⊥CC) 
P (qb, cb · �,⊥C)

P (qc, c · �,⊥C) 
P (q+,�,⊥).

In fact, L(P ) = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 } = L(M). �

Observe that the bottom marker ⊥ cannot be removed from the pushdown
of a PDAwtl and that this marker can only occur as the bottom-most letter in
the pushdown. Moreover, the push operations of a PDAwtl are restricted, and
a PDAwtl accepts simultaneously by final state and by (almost) empty push-
down. In addition, a PDAwtl does not admit any λ-transitions. Despite all these
restrictions, the PDAwtls accept all context-free languages, as each context-free
language is generated by a context-free grammar in quadratic Greibach normal
form [14,45], and as the left-most derivations of such a grammar can be simu-
lated by a (stateless) pushdown automaton that accepts with empty pushdown.
Accordingly, we have the following proper inclusion.

Theorem 29 ([32]). L(NFAwtl) ∪ CFL � L(PDAwtl).
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The results that have been obtained for PDAwtls correspond essentially to
those for NFAwtls.

Theorem 30 ([32]). Each language L ∈ L(PDAwtl) contains a context-free sub-
language E that is letter-equivalent to L. In fact, a pushdown automaton for E
can be constructed effectively from a PDAwtl for L.

It follows that L(PDAwtl) only contains semi-linear languages. In addition,
we see that the semi-linear language { anbncn | n ≥ 0 } is not accepted by any
PDAwtl.

If L is a context-free trace language on Σ, then there exist a dependency
relation D on Σ and a context-free language R ⊆ Σ∗ such that L =

⋃
w∈R[w]D

(see Definition 1). From a PDA for R, one can construct a PDAwtl B for the
language L by introducing a corresponding translucency mapping. Moreover, let
Σ = {a, b, c} and let L′ = {wam | |w|a = |w|b = |w|c ≥ 1,m ≥ 1 }. It can
be shown that this language is accepted by an NFAwtl, but as proved in [32],
this language is not a context-free trace language. Thus, we get the following
consequences.

Theorem 31 ([32]).

(a) LCF � L(PDAwtl).

(b) LCF is incomparable under inclusion to L(NFAwtl).

In analogy to the situation for rational trace languages, a subclass of PDAwtls
can be determined that characterizes the context-free trace languages. In addi-
tion, it is shown in [32] that the language class L(PDAwtl) is closed under union
and commutative closure, but it is not closed under intersection or comple-
mentation. However, it is still open whether this class is closed under product,
Kleene-star, reversal, λ-free morphisms, or inverse morphisms.

A deterministic variant of the PDAwtl is obtained from the (globally) deter-
ministic PD-CD-R(1)-systems considered in [37].

Definition 32. A PDAwtl P = (Q,Σ,�, τ, Γ,⊥, Qin, Qfi, δ) is deterministic or
a DPDAwtl for short, if |Qin| = 1 and if |δ(q, a,A)| ≤ 1 for all q ∈ Q, a ∈ Σ,
and A ∈ Γ ∪ {⊥}.

As seen easily, L(DFAwtl) � L(DPDAwtl), but due to the absence of λ-steps
and the restrictive acceptance conditions, DCFL �⊆ L(DPDAwtl). In fact, it is
shown in [37] that the deterministic context-free language { ancan, anbc | n ≥ 1 }
is not accepted by any DPDAwtl. In addition, the rational trace language L∨
(see Proposition 21) is not accepted by any DPDAwtl, either. On the other hand,
the language

Lp = {w ∈ Σ∗ | |w|a = |w|b = |w|c ≥ 0 and ∀uv = w : |u|a ≥ |u|b ≥ |u|c }

on Σ = {a, b, c} belongs to the difference set L(DFAwtl) � LCF [37]. Hence,
already the class L(DFAwtl) contains languages that are not context-free trace
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PDAwtl

DPDAwtl OCAwtl

CFL

DCFL DOCAwtl NFAwtl

OCL

DOCL DFAwtl

REG

Fig. 5. Hierarchy of language classes accepted by various types of automata with
translucent letters. Each arrow represents a proper inclusion, and classes that are not
connected by a sequence of arrows are incomparable under inclusion.

languages, and hence, this class is incomparable under inclusion to the class of
context-free trace languages.

A pushdown automaton A is called a one-counter automaton if its pushdown
alphabet contains only one letter in addition to the bottom marker. Then OCL
(DOCL) denotes the class of languages that are accepted by (deterministic) one-
counter automata. It is well-known that

REG � DOCL � OCL � CFL

holds (see, e.g., [5]). By putting the corresponding restriction on PDAwtls and
their deterministic variants, the classes of automata OCAwtl and the DOCAwtl
are obtained in [32,37]. The inclusion relations between the resulting language
classes and those studied above are summarized in the diagram in Fig. 5, where
LOC denotes the class of one-counter trace languages. Finally, it is proved in [37]
that the language classes L(DOCAwtl) and L(DPDAwtl) are anti-AFLs, that is,
they are not closed under any of the six AFL operations. In addition, these
classes are not closed under complementation, reversal, and commutative closure,
either. Concerning decision problems for PDAwtls, we see from Theorem 30
that emptiness and finiteness are decidable for PDAwtls. On the other hand, as
inclusion is undecidable for DFAwtl, it follows immediately that inclusion is also
undecidable for DOCAwtls and DPDAwtls. However, it remains open whether
equivalence, universality, or regularity are decidable for these automata.

By reinterpreting the visibly pushdown-CD-R(1)-systems of [44], we obtain
the visibly pushdown automata with translucent letters. The nondeterministic
variant of these automata accept a proper superclass of the visibly pushdown
trace languages LVP. However, the deterministic visibly pushdown automata
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with translucent letters accept a class of languages that is incomparable to the
class LVP with respect to inclusion.

To conclude this section, we remark that, in [41], pushdown automata with
translucent pushdown alphabets are studied. Such a device is a pushdown
automaton A that is equipped with a translucency mapping τ that, to each
pair (q, a) consisting of an internal state q of A and an input letter a, assigns a
subset of pushdown symbols that are translucent for state q and input letter a.
Accordingly, in a corresponding transition step, A does not read (and delete)
the topmost symbol on its pushdown store, but the topmost one that is only
covered by translucent symbols, that is, by symbols from the set τ(q, a). As it
turns out, the deterministic variant of this type of pushdown automaton already
accepts all recursively enumerable languages.

7 Non-returning NFAs with Translucent Letters

In contrast to a DFA or an NFA, which read their input strictly from left to right,
letter by letter, a DFAwtl or an NFAwtl just reads (and deletes) the first letter
from the left which it can see, that is, the first letter which is not translucent
for its current state. In [23], an extended variant of these types of automata is
presented that, after reading and deleting a letter, does not return its head to
the left end of its tape but, instead, continues from the position of the letter just
deleted. When the end-of-tape marker is reached, this type of automaton either
accepts, rejects, or continues with its computation, which means that it again
reads the remaining tape contents from the beginning. This type of automaton,
called a non-returning finite automaton with translucent letters or an nrNFAwtl,
is strictly more expressive than the NFAwtl.

In the literature, many other types of automata have been studied that do
not simply read their inputs letter by letter from left to right. Among them are
the right one-way jumping finite automaton of [3,10] and the right-revolving
finite automaton of [4]. In [24], these automata are compared to the nrNFAwtl
and its deterministic variant, the nrDFAwtl. As it turns out, the nrDFAwtl can
be interpreted as a right one-way jumping finite automaton that can detect the
end of its input. Here we restate these results in short.

Definition 33 ([23]). An nrNFAwtl A is specified through a 6-tuple A =
(Q,Σ,�, τ, I, δ), where Q is a finite set of states, Σ is a finite alphabet, � �∈ Σ
is a special letter that is used as an end-of-tape marker, τ : Q → P(Σ) is a
translucency mapping, I ⊆ Q is a set of initial states, and

δ : Q × (Σ ∪ {�}) → (P(Q) ∪ {Accept})

is a transition relation. Here it is required that, for each state q ∈ Q and each
letter a ∈ Σ, δ(q, a) ⊆ Q, and if a ∈ τ(q), then δ(q, a) = ∅. For each state
q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q, the
automaton A does not see these letters.
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An nrNFAwtl A = (Q,Σ,�, τ, I, δ) is a non-returning deterministic finite
automaton with translucent letters, abbreviated as nrDFAwtl, if |I| = 1 and if
|δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ ∪ {�}.

From the above definition, we see that δ(q,�) is either a subset of Q or
the operation Accept. Thus, on seeing the end-of-tape marker � in state q, the
nrNFAwtl A has either the option to change its state or to accept. The nrNFAwtl
A = (Q,Σ,�, τ, I, δ) works as follows. For an input word w ∈ Σ∗, A starts in a
nondeterministically chosen initial state q0 ∈ I with the word w · � on its tape.
This situation is described by the configuration q0w ·�. Now assume that A is in
a configuration of the form xq1w ·�, where q1 ∈ Q and x,w ∈ Σ∗, that is, A is in
state q1, the tape contains the word xw ·�, and the head of A is on the first letter
of the suffix w · �. Then A looks for the first occurrence from the left of a letter
in w that is not translucent for state q1, that is, if w = uav such that u ∈ (τ(q1))∗,
a ∈ (Σ � τ(q1)), and v ∈ Σ∗, then A nondeterministically chooses a state
q2 ∈ δ(q1, a), erases the letter a from the tape, thus producing the tape contents
xuv · �, sets its internal state to q2, and continues the computation from the
configuration xuq2v · �. In case δ(q1, a) = ∅, A halts without accepting. Finally,
if w ∈ (τ(q1))∗, then A reaches the end-of-tape marker �, and a transition from
the set δ(q1,�) is applied. This transition is either an accept step or a state q2
from Q. In the former case, A halts and accepts, while in the latter case, it
continues the computation in state q2 by reading its tape again from left to
right, that is, from the configuration q2xw ·�. Finally, if δ(q1,�) is undefined, A
halts and rejects. Thus, the computation relation 
A that A induces on its set of
configurations Σ∗ · Q · Σ∗ · {�} ∪ {Accept,Reject} is the reflexive and transitive
closure 
∗

A of the single-step computation relation 
A that is specified as follows,
where x, u, v, w are words from Σ∗ and a is a letter from Σ:

xqw · � 
A

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xuq′v · �, if w = uav, u ∈ (τ(q))∗, a �∈ τ(q), and q′ ∈ δ(q, a),
Reject, if w = uav, u ∈ (τ(q))∗, a �∈ τ(q), and δ(q, a) = ∅,
q′xw · � if w ∈ (τ(q))∗ and q′ ∈ δ(q,�),
Accept, if w ∈ (τ(q))∗ and δ(q,�) = Accept,
Reject, if w ∈ (τ(q))∗ and δ(q,�) = ∅.

We illustrate this definition through a simple example.

Example 34. Let A = (Q, {a, b, c},�, τ, {qa}, δ) be the nrNFAwtl that is defined
by taking Q = {qa, qb, qc, qr},

τ(qa) = ∅, τ(qb) = {a}, τ(qc) = {b}, τ(qr) = {c},

and

δ(qa, a) = {qb}, δ(qb, b) = {qc}, δ(qc, c) = {qr}, δ(qr,�) = {qa}, δ(qa,�) = Accept,

where this function is undefined for all other cases. Given the word w = aabbcc
as input, the automaton A proceeds as follows:

qaaabbcc · � 
A qbabbcc · � 
A aqcbcc · � 
A abqrc · �

A qaabc · � 
A qbbc · � 
A qcc · �

A qr · � 
A qa · � 
A Accept,
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that is, A accepts on input w = aabbcc. Actually, it is easily seen that L(A) =
{ anbncn | n ≥ 0 }. Furthermore, A is actually an nrDFAwtl. �

Recall from Theorem 30 that this language is not even accepted by any
PDAwtl.

As defined above, an nrNFAwtl may run into an infinite computation. More-
over, it may accept without having read and deleted its input completely. How-
ever, the following result shows that these situations can be avoided.

Lemma 35 ([23]). Each nrNFAwtl A can effectively be converted into an equiv-
alent nrNFAwtl C that never gets into an infinite computation and accepts only
after reading and deleting its input completely. In addition, if A is deterministic,
then so is C.

It is fairly easy to simulate an NFAwtl by an nrNFAwtl. Hence, the example
above shows that the nrNFAwtl (nrDFAwtl) is strictly more expressive than the
NFAwtl (DFAwtl).

Definition 36. [3,10] A nondeterministic right one-way jumping finite automa-
ton, or an NROWJFA, is given through a five-tuple J = (Q,Σ, I, F, δ), where Q
is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states, and δ : Q × Σ → P(Q) is a transition relation.
For each state q ∈ Q, Σq = { a ∈ Σ | δ(q, a) �= ∅ } is the set of letters that J can
read in state q.

A configuration of the NROWJFA J is a word qw from the set Q · Σ∗. The
computation relation �∗

J that J induces on its set of configurations is the reflex-
ive and transitive closure of the right one-way jumping relation �J that is defined
as follows, where x, y ∈ Σ∗, a ∈ Σ, and q, q′ ∈ Q:

qxay �J q′yx if x ∈ (Σ � Σq)∗ and q′ ∈ δ(q, a).

Thus, being in state q, J reads and deletes the first letter to the right of the
actual head position that it can actually read in that state, while the prefix that
consists of letters for which J has no transitions in the current state is cyclically
shifted to the end of the current tape contents. Then

L(J) = {w ∈ Σ∗ | ∃ q0 ∈ I ∃ qf ∈ F : q0w �∗
J qf }

is the language accepted by the NROWJFA J .
The NROWJFA J is deterministic, that is, a right one-way jumping finite

automaton or a ROWJFA, if |I| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Σ.

We illustrate the workings of an (N)ROWJFA with a simple example.

Example 37. Let J = ({p0, q0, q1}, {a, b}, {p0, q0}, {p0, q0}, δ) be the NROWJFA
that is specified by the following transition relation:

δ(p0, a) = {p0}, δ(q0, a) = {q1}, δ(q1, b) = {q0},

where this function is undefined for all other cases. Starting from state p0, J
accepts on input w ∈ {a, b}∗ iff |w|b = 0, while starting from state q0, J accepts
on input w ∈ {a, b}∗ iff |w|a = |w|b. Hence, L(J) = {a}∗ ∪ {w ∈ {a, b}∗ | |w|a =
|w|b } = L′

∨. �
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It has been shown that the language { anbn | n ≥ 0 } is not accepted by any
NROWJFA [2], while the permutation-closed language L′

∨ above is not accepted
by an ROWJFA [2]. Thus, the ROWJFA is strictly less expressive than the
NROWJFA. Moreover, right one-way jumping finite automata can be simulated
by non-returning finite automata with translucent letters.

Theorem 38 ([24]).

(a) L(ROWJFA) � L(nrDFAwtl).

(b) L(NROWJFA) � L(nrNFAwtl).

When looking at the definitions, we see that the ROWJFA differs from the
nrDFAwtl in two aspects. The first of these is the partitioning of the alphabet.
For each state q of an ROWJFA J , the alphabet of J is split into two disjoint
subsets: the set Σq of letters that J can read in state q and the remaining letters.
For a state p of an nrDFAwtl A, the alphabet of A is split into three disjoint
subsets: the set of letters that A can read in state p, the set τ(p) of letters that
are translucent for state p, and the set of letters that are neither translucent for
state p nor can be read in state p. However, the third type of letters for state p
can be avoided by defining, for each letter b of this type, δA(p, b) = {qfail},
where qfail is a new non-final state in which A cannot read any letter at all. The
second aspect is the fact that an nrDFAwtl has an end-of-tape marker and that,
whenever its head reaches that marker, A can execute an additional change of
state. It is actually this feature that allows the nrDFAwtl to accept the language
{ anbn | n ≥ 0 }. Thus, the increase in expressive capacity from the ROWJFA to
the nrDFAwtl is due to this second feature.

Definition 39. [4] A right-revolving NFA, or an rr-NFA, is given through a
six-tuple A = (Q,Σ, q0, F,Δ, δ), where Q is a finite set of states, Σ is a finite
alphabet, q0 ∈ Q is an initial state, F ⊆ Q is the set of final states, and

Δ : Q × Σ → P(Q) and δ : Q × Σ → P(Q)

are two transition relations.
A configuration of the rr-NFA A is a word qw, where q ∈ Q and w ∈ Σ∗.

The computation relation 
A that A induces on its set of configurations is the
reflexive and transitive closure 
∗

A of the single-step computation relation 
A

that is defined as follows, where a ∈ Σ and q, q′ ∈ Q:

(1) If q′ ∈ δ(q, a), then qaw 
A q′w. The transitions of this form are called
ordinary transitions.

(2) If q′ ∈ Δ(q, a), then qaw 
A q′wa. The transitions of this form are called
right-revolving transitions.

Thus, an ordinary transition consumes the first letter of the current tape con-
tents, while a right-revolving transition just shifts the first letter to the end of
the tape. Observe that it is possible that δ(q, a) �= ∅ �= Δ(q, a). In this case, A
nondeterministically chooses whether to execute an ordinary or a right-revolving
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transition. Then L(A) = {w ∈ Σ∗ | ∃qf ∈ F : q0w 
∗
A qf } is the language

accepted by the rr-NFA A.
The rr-NFA A is deterministic, or an rr-DFA, if, for all q ∈ Q and all a ∈ Σ,

|Δ(q, a)| + |δ(q, a)| ≤ 1.

Concerning the expressive capacity of right-revolving finite automata, it is
shown in [4,10] that L(ROWJFA) � L(rr-DFA), that the non-context-free lan-
guage

Leq3 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }
is accepted by an rr-DFA, and that L′

∨ ∈ L(rr-NFA) � L(rr-DFA). Concerning
the relationship between the language classes defined by the various types of
automata considered here, we have the following result.

Theorem 40 ([24]). All arrows in the diagram in Fig. 6 depict proper inclu-
sions, and classes that are not connected by a sequence of directed arrows are
incomparable under inclusion.

CSL

GCSL nrNFAwtl rr-NFA

CFL nrDFAwtl NROWJFA rr-DFA

LIN NFAwtl

DLIN DFAwtl ROWJFA

REG NFA DFA

Fig. 6. The inclusion relations between the various types of jumping automata, right-
revolving automata, and automata with translucent letters

For separating the various types of automata with translucent letters from
the right-revolving automata, the following example languages are presented
in [24]:

The language Lc = {wc | w ∈ {a, b}∗, |w|a = |w|b } is accepted by a DFAwtl
but not by any rr-NFA, while the language Lcc = { amcamc | m ≥ 0 } has the
following properties:

– There exists a rr-DFA A such that L(A) ∩ ({a}∗ · {c} · {a}∗ · {c}) = Lcc,
– but there is no nrNFAwtl C such that L(C) ∩ ({a}∗ · {c} · {a}∗ · {c}) = Lcc.

The latter shows, in addition, that the deterministic linear language Lcc is not
accepted by any nrNFAwtl.
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8 Conclusion

Although finite automata with translucent letters have originally been obtained
through a reinterpretation of certain cooperating distributed systems of restart-
ing automata, the concept itself is quite straightforward. By adjoining a translu-
cency mapping to a type of automaton, a corresponding automaton with translu-
cent letters is obtained. We have seen this not only for finite automata, but also
for linear automata, one-counter automata, and pushdown automata. From the
results obtained, it should be clear that automata with translucent letters are
an interesting variety of automata that do not read their input strictly from left
to right. They are of particular interest because of their ability to accept (and
even characterize) classes of trace languages.

Despite the fact that much work has already been done on automata with
translucent letters, many questions are still unanswered, and many problems are
still open. Here we list a few of them:

– Find further closure and non-closure properties for the various classes of lan-
guages accepted by automata with translucent letters!

– Determine the degree of complexity for those algorithmic problems that are
decidable for the various types of automata with translucent letters!

– Which of the decision problems that are decidable for a certain type of
automata remain decidable for the corresponding type of automata with
translucent letters?

– What effect would the addition of λ-steps have on the expressive capacity of
the various types of automata with translucent letters? For example, in [3],
S. Beier and M. Holzer consider nondeterministic right one-way jumping finite
automata with λ-transitions, that is, these automata can perform a change
of state without reading an input letter. Actually, they study three different
types of these automata based on the conditions that enable the execution of
λ-transitions. On the other hand, in [4], λ-transitions are defined for rr-NFAs
and rr-DFAs, but it is proved in that paper that λ-transitions do not increase
the expressive capacity of right-revolving finite automata.

– How does the expressive capacity of a PDAwtl change if we abandon the
requirement that the pushdown must only contain the bottom marker when
the automaton accepts? For example, this change has already been adapted
in the definition of the visibly pushdown-CD-R(1)-systems in [44].

Finally, the concept of non-returning finite automata with translucent let-
ters can easily be extended to pushdown automata with translucent letters.
The resulting non-returning PDAwtl will have a larger expressive capacity than
the PDAwtl, but how do these automata compare to other types of pushdown
automata that do not simply process their inputs from left to right like, e.g., the
input-reversal pushdown automaton of [8].
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Abstract. Earliest query answering (EQA) is the problem to enumerate
certain query answers on streams at the earliest events. We consider
EQA for regular monadic queries on hedges or nested words defined by
deterministic stepwise hedge automata (dShas). We present an EQA
algorithm for dShas that requires time O(c m) per event, where m is the
size of the automaton and c the concurrency of the query. We show that
our EQA algorithm runs efficiently on regular XPath queries in practice.

1 Introduction

Streaming algorithms for hedges or nested words were widely studied for com-
plex event processing [8,12] and for transforming XML documents in an online
manner [5,17]. The open end of a stream can be instantiated continuously. There-
fore, streams can be seen as incomplete databases, for which the notion of cer-
tain query answers (CQAs) was widely studied [10]. An element is a certain
query answer if it is selected by all completions of the incomplete database.
For instance, the XPath query following::a[following::b] selects all a-
elements of a nested word (modeling an XML document) that are followed even-
tually by some b-element. On the stream aabaabaaaaa . . . all a-positions before
the last b are CQAs of this query, while those after are not.

Earliest query answering (EQA) is the problem of detecting CQAs on streams
at the earliest event [7]. We study EQA for regular monadic queries which select
nodes of trees or hedges. For this, we consider streams that elongate prefixes of
nested words such as aa〈b〈a〉〈b . . . to well-nested words. EQA requires to decide
the existence of CQAs which is a computationally hard problem even for tiny
fragments of regular XPath queries [4], since Cqa is a universality problem
concerning all completions of the stream. Gauwin et al. [7] showed that EQA
can be done in polynomial time for monadic queries defined by deterministic
nested word automata (dNwas) [3,16]. Their algorithm, however, requires time
O(c n2) per event, where the concurrency c is the number of alive candidates of
the query (not of the algorithm) and n is the number of the automaton states.
In the worst case, c may be the length of the stream for monadic queries, so the
overall complexity may be quadratic in the size of the stream too.

For complex event processing [8,12], EQA has often been avoided, by restrict-
ing the class of queries such that the certainty of an answer candidate depends
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 53–65, 2023.
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only on the past of the stream and not on its future [8,12]. This rules out
XPath query with filters such as following::a[following::b] . Riveros et
al. [13] proposed instead to enumerate the query answers late at the end of the
stream, which however requires to buffer a large number of candidates. For XML
streaming, EQA was often approximated [5,17] so that all CQAs are eventually
selected but not always earliest. Or else, as done by Saxon [9], only very restricted
regular XPath queries were permitted.

A major bottleneck for automata based EQA algorithms in practice [5] was
the difficulty to compile regular path queries on nested words to reasonably small
deterministic automata. This problem was solved recently [2] based on stepwise
hedge automata (Shas) [14] and schema-based determinization [15]. Shas nat-
urally generalize finite state automata for words and trees. They can recognize
all regular languages of hedges equally to Nwas but without any explicit stack
(such as tree automata). Shas can always be determinized in a bottom-up and
left-to-right manner. Nwas can also be determinized but differently, since their
determinization has to deal with top-down processing via explicit stacks, often
leading to a huge size increase.

The availability of dShas for regular path queries gave new hope for the
feasibility of EQA in practice. For this, however, more efficient EQA algorithms
are needed. In particular, the time per event should no more be quadratic in n
and neither should the preprocessing time be cubic in n. Sakho [18] showed that
EQA for boolean dSha queries can be done in time O(m) per event, where m
is the overall size of the automaton. This improvement relies on the fact, that
the set of accessible states of a dSha can be computed in time O(m), while for
dNwas it requires time O(n2) after O(n3) preprocessing, where n is the number
of the states of the automaton.

In the present paper, we present a new EQA algorithm for monadic dSha
queries. Our approach is to adapt the general ideas of Gauwin from dNwas to
dShas. This yields an EQA algorithm in time O(c m) per event where c is the
concurrency of the query. Gauwin’s quadratic factor n2 is reduced to m while
the cubic preprocessing in time O(n3) is removed. The algorithm obtained is
more efficient than the best previous EQA algorithm, based on a reduction to
Gauwin’s EQA algorithm by compiling dShas to dNwas in linear time.

We implemented our new EQA algorithm in the AStream tool and applied it
to the regular XPath queries from the XPathMark collection [6] scaling to huge
documents, and to the regular XPath queries extracted from practical XSLT
programs by Lick and Schmitz [11] but on smaller documents. It turns out that
AStream runs efficiently on huge XML documents (>100 GB) for all queries with
low concurrency. Some queries can be answered in streaming mode where the
best existing non earliest query answering algorithm failed to be earliest [5].

Outline. We start with preliminaries in Sect. 2, while 3 and 4 recall stepwise
hedge automata and nested word automata, respectively. An earliest member-
ship tester for dShas is presented in Sect. 5 and a late streaming algorithm for
answering monadic queries in Sect. 6. We then present our new EQA algorithm
in Sect. 7 and discuss experimental results with AStream in Sect. 8. Complete
proofs and supplementary material are given in [1].
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2 Preliminaries

Let A and B be sets. A partial function f : A ↪→ B is a relation f ⊆ A × B that
is functional. The domain of a partial function is dom(f) = {a ∈ A | f(a) ∈ B}.
A total function f : A → B is a partial function f : A ↪→ B with dom(f) = A.
Let N be the set of natural numbers including 0.

Words. Let alphabet Ω be a set. The set of words over Ω is Ω∗ = ∪n∈NΩn.
A word (a1, . . . , an) ∈ Ωn is written as a1 . . . an. We denote the empty word
of length 0 by ε ∈ Ω0 and by v1 · v2 ∈ Ω∗ the concatenation of two words
v1, v2 ∈ Ω∗. For any word v ∈ Ω∗ let prefs(v) ⊆ Ω∗ be the set of its prefixes.
For any v ∈ Ω∗ and a ∈ Ω let #a(v) be the number of occurrences of a in v.

Hedges. Hedges are sequences of letters and trees 〈h〉 with some hedge h. More
formally, a hedge h ∈ HΩ has the following abstract syntax:

h, h ′ ∈ HΩ ::= ε | a | 〈h〉 | h · h ′ where a ∈ Ω

We assume ε ·h = h · ε = h and (h ·h1) ·h2 = h · (h1 ·h2). Therefore, we consider
any word in Ω∗ as a hedge in HΩ , i.e., Ω∗ � aab = a ·a ·b ∈ HΩ . For any h ∈ HΩ

and a ∈ Ω let #a(h) be the number of occurrences of a in h. The size |h| is the
number of letters and opening parenthesis of h. The nesting depth d of h is the
maximal number of nested opening parenthesis of trees in h. The set of positions
of a hedge h ∈ HΩ is pos(h) = {1, . . . , |h|}.

Nested Words. Hedges can be identified with nested words, i.e., words over
the alphabet Ω̂ = Ω ∪ {〈, 〉} in which all parentheses are well-nested. This
is done by the function nw(h) : HΩ → (Ω ∪ {〈, 〉})∗ such that: nw(ε) = ε,
nw(〈h〉) = 〈 · nw(h) · 〉, nw(a) = a, and nw(h · h ′) = nw(h) · nw(h ′). The set of
nested word prefixes is nwprefsΩ = prefs(nw(HΩ)) ⊆ Ω̂∗. Note that nested word
prefixes may lack closing parenthesis, in which case they are not well-nested.

Monadic Queries. Let Σ be a set. A monadic query Q on hedges with signature
Σ is a function mapping any hedge h ∈ HΣ to a subset of its positions Q(h) ⊆
pos(h). We next relate monadic queries on hedges to hedge languages. For this,
we fix a selection variable x �∈ Σ arbitrarily and consider hedge languages over
signature Σx = Σ ∪ {x}. For any h ∈ HΣ , let h̃ ∈ HΣ∪pos(h) be its annotation

with its positions. For instance ãa〈〉a = a1a2〈3〉a4. For any variable assignment
α : {x} ↪→ pos(h), we define the hedge h ∗ α ∈ HΣx annotated with x by
substituting in ˜h the position α(x) by x and removing all other positions. For
instance, aa〈〉a ∗ [x/2] = aax〈〉a. The monadic query on hedges with signature
Σ defined by a hedge language L ⊆ HΣx is qryL(h) = {α(x) | α : {x} →
pos(h), h ∗ α ∈ L}.

3 Stepwise Hedge Automata

We define regular hedge languages by stepwise hedge automata (dShas).
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Definition 1. A dSha is a tuple A = (Ω,Q, δ, qinit , F ) where Ω and Q are
finite sets, qinit ∈ Q, F ⊆ Q, and δ = ((aδ)a∈Ω , 〈〉δ,@δ) where: aδ : Q ↪→ Q,
〈〉δ ∈ Q, and @δ : Q × Q ↪→ Q.

There are states q ∈ Q, the initial state is qinit , and final states in F . The
transition rules in δ have three forms: If aδ(q) = q′ then we have an internal

rule q
a−→ q′, if q@δp = q′ then an apply rule q

p
q′ , and if q = 〈〉δ ∈ Q

then a tree initial rule
〈〉−→ q. We denote by n = |Q| the number of states of

A, and by m = n + |Ω| +
∑

a∈Ω |aδ| + |@δ| + |F | + 2 its overall size. Note
that m ∈ O(n2 + |Ω| n) by determinism. For any hedge h ∈ HΣ we define the
transition �h�δ = �h� : Q ↪→ Q such that for all q ∈ Q, a ∈ Ω, and h, h ′ ∈ HΣ :

�ε�(q) = q �a�(q) = aδ(q)
�h · h ′�(q) = �h ′�(�h�(q)) �〈h〉�(q) = q@δ(�h�(〈〉δ))

A hedge is accepted if its transition from the initial state yields some final
state. The language L(A) is the set of all accepted hedges: L(A) = {h ∈ HΩ |
�h�(qinit) ∈ F}. We call a hedge language L ⊆ HΩ regular if it can be defined by
some dSha. A monadic query over hedges in HΣ is called regular if it is equal
to qryL for some regular hedge language L ⊆ HΣx .

For example, let Ω = Σx where Σ = {a}. We draw in Fig. 1 the graph of a
dSha for the query on hedges in HΣ that selects the positions 1, . . . , n − 1 on
hedges of the form an · 〈h〉 · h ′ if h does not start with letter “a” and position n
otherwise. The drawing of dShas are similar to the usual finite state automata,
except that now, edges may also be labeled by states and not only by letters.

A successful run of this automaton on the hedge aaax〈a〉a is given in Fig. 2.
In state 5 the transition must suspend on the result of the evaluation of the

subhedge, which is started by the tree initial rule
〈〉−→ 1. The two edges 5 9

and 3 are justified by the apply rule 5 3 9 : the suspended computation
in state 5 is resumed in state 9 when going up from the subtree in state 3.

The set of states that are accessible from a state q ∈ Q through some hedge
is accδ(q) = {q′ | q′ = �h�(q), h ∈ HΩ}. For any Q ⊆ Q, the set accδ(Q) can be
computed in time O(m) as well as invaccδ(Q) = {q′ | q ∈ accδ(q′), q ∈ Q}. A
tree state is a state in P = accδ(〈〉δ). We call a set of transition rules δ complete
if @δ|Q×P , as well as all aδ with a ∈ Ω, are total functions. For instance, the
dSha in Fig. 1 has the tree states P = {1, 3, 7}. Note that δ is not complete since
xδ is not total. But its restriction to the letters in Σ = {a} is complete due to
the sink state 4.

4 Nested Word Automata

We define streaming algorithms for dShas by infinitary deterministic nested
word automata (dNWAs∞). These have the advantage to run naturally in
streaming mode, while being able to pass information top-down, bottom-up,
and left to right. In contrast, dShas cannot pass any information top-down.
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Fig. 1. A dSha for the monadic query on hedges with letters in Σ = {a} that selects
the positions 1, . . . , n − 1 on hedges of the form an · 〈h〉 · h ′ if h does not start with
letter “a” and position n otherwise.

0 2 2 2 5

1 3

9 9
a a a x

a〈〉

a

Fig. 2. A successful run of the dSha A in Fig. 1 on aaax〈a〉a.

Definition 2. A dNWA∞ is a tuple B = (Ω,Q, Γ, δ, qinit , F ), where Ω, Γ and
Q are sets, qinit ∈ Q, F ⊆ Q, and δ = ((aδ)a∈Ω , 〈δ

, 〉δ) contains partial functions
aδ : Q ↪→ Q, 〈δ : Q ↪→ Q × Γ, and 〉δ : Q × Γ ↪→ Q. A dNwa is a dNWA∞

whose sets Q, Ω, and Γ are finite.

The elements of Γ are called stack symbols. The transition rules in δ have

three forms: letter rules q
a−→ q′, opening rules q

〈↓γ−−→ q′ for pushing a stack

symbol if 〈δ(q) = (q′, γ) and closing rules q
〉↑γ−−→ q′ popping a stack symbol if

〉δ(q, γ) = q′. Any dNWA∞ defines a pushdown machine that runs on words
with parentheses. A configuration of this machine is a pair in K = Q × Γ ∗ of
a state and a stack. For any word v ∈ Ω̂∗, we define a streaming transition
�v�δ

str = �v�str : K ↪→ K such that for all q ∈ Q, stacks s ∈ Γ ∗ and γ ∈ Γ :

�a�str(q, s) = (aδ(q), s) �〉�str(q, s · γ) = (〉δ(q, γ), s)
�ε�str(q, s) = (q, s) �〈�str(q, s) = (q′, s · γ) where (q′, γ) = 〈δ(q)
�v · v′�str(q, s) = �v′�str(q′, s′) where (q′, s′) = �v�str(q, s)

The language of a dNWA∞ is the set of nested words that it accepts: L(B) =
{v ∈ Ω̂∗ | �v�str(qinit , ε) ∈ F ×{ε}}. Since the initial and final stack are required
to be empty it follows that any word L(B) is well-nested.

For any dSha A = (Ω,Q, δ, qinit , F ), we define the dNwa Anwa = (Ω,Q,
Γ, δnwa , qinit , F ) with Γ = Q such that δnwa contains for all a ∈ Ω and q, p ∈ Q
the rules q

a−→ aδ(q), q
〈↓q−−→ 〈〉δ, and q

〉↑p−−→ p@δq.

Lemma 3. L(Anwa) = nw(L(A)).
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5 Earliest Membership

A late streaming evaluator of a dSha A on hedges h ∈ HΩ can be obtained by
evaluating the dNwa Anwa in streaming mode on the nested word of h, i.e., by
testing �nw(h)�δnwa

str (qinit , ε) ∈ F × {ε}. In this manner, h is never fully loaded
into the memory, but rather treated event by event . Only a state and a stack
are stored at any event, i.e. at any prefix of nw(h). The memory cost thus only
depends on the depth of the hedge.

The decision of whether membership holds, however, is taken at the very end
of the stream. Instead, we want to decide language membership at the earliest
event when it becomes certain. We consider Σ-certain membership to languages
L ⊆ HΩ where Ω ⊇ Σ as needed for certain query answering later on.

Definition 4. Let Σ ⊆ Ω and L ⊆ HΩ. A nested word prefix v with letters in
Ω satisfies cert-memL

Σ(v) if ∀h ∈ HΩ. (∃w ∈ Σ̂∗. v · w = nw(h)) → h ∈ L .

In other words, a nested word prefix v is Σ-certain for membership in L ⊆ HΩ ,
if any completion of v with letters from Σ to a hedge in HΩ belongs to L. For
instance, if Σ = {a} then the prefix v = aaax〈a is Σ-certain for the language
of the dSha A with signature Ω = {a, x} in Fig. 1, since any completion of v
without further x’es will be accepted by A.

Since certain membership is a universality property, we need to consider
universal automata states. Given a state q ∈ Q let A[qinit/q] = (Ω,Q, δ, q, F ) be
obtained from A by replacing its initial state by q. We define:

q ∈ universalAΣ ⇔ HΣ ⊆ L(A[qinit/q])

In order to characterize universality by accessibility, we define for all Q ⊆ Q:

safeδ(Q) = {q ∈ Q | accδ(q) ⊆ Q}

If δ is complete then safeδ(Q) = Q \ invaccδ(Q \ Q), so it can be computed in
O(m). For any Σ ⊆ Ω, let δ|Σ be the restriction of δ to the letters of Σ, i.e.,
δ|Σ = ((aδ)a∈Σ , 〈〉δ,@δ).

Lemma 5. Let A = (Ω,Q, δ, qinit , F ) be a dSha and Σ ⊆ Ω such that δ|Σ is
complete, and q ∈ Q. Then: q ∈ universalAΣ ⇔ q ∈ safeδ|Σ (F ).

Safety can be used to detect certain language membership. For this, we define
for any Q ⊆ Q and q ∈ Q such that q@δp is well-defined for some p ∈ Q:

dδ(q,Q) = safeδ(dn@δ(q,Q)) where dn@δ(q,Q) = {p ∈ Q | q@δp ∈ Q}.

Note that if q@δp is undefined for all p then dδ(q,Q) remains undefined too. We
define the dNwa Ac

Σ for testing certain Σ-membership to L(A) as follows:

Qc
Σ = Q × 2Q = Γ c

Σ , qinit
c
Σ = (qinit , safeδ|Σ (F )).
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0{9} 2{9} 2{9} 2{9} 5{9}

1{3} 3{3}

↓ 5{9} ↑ 5{9}

9{9} 9{9}a a a x

a

a

Fig. 3. A successful run of the dNwa Ac
Σ on aaax〈a〉a.

The transition rules in δc
Σ allow for all S ⊆ Q, q, p ∈ Q, and a ∈ Ω:

(q, S)
〈↓(q,S)−−−−→ (〈〉δ, dδ|Σ (q, S)), p

〉↑(q,S)−−−−→ (q@δp, S), (q, S) a−→ (aδ(q), S).

Finally, let Ac
Σ = (Ω,Qc

Σ , Γ c
Σ , δc

Σ , qinit
c
Σ , F c

Σ) where F c
Σ = F × 2Q. In the first

component Ac
Σ behaves like Anwa , while in the second component it computes

safety information. Therefore, L(A) = L(Anwa) = L(Ac
Σ). We next show that

the streaming evaluator of Ac
Σ detects certain membership at any time.

Proposition 6. Let A = (Ω,Q, δ, qinit , ) be a dSha, v ∈ nwprefsΩ a nested
word prefix, and Σ ⊆ Ω such that δ|Σ is complete. If q ∈ Q and S ⊆ Q such
that ((q, S), ) = �v�

δc
Σ

str(qinit c
Σ , ε) then: cert-memL(A)

Σ (v) ⇔ q ∈ S.

We illustrate Proposition 6 in Fig. 3 at the dSha A from Fig. 1. Recall that
it has signature Ω = Σx where Σ = {a}. Given that δ|Σ is complete, Σ-certain
membership of aaax〈a〉a to L(A) can be detected at the earliest event aaax〈a,
by running the streaming evaluator of the earliest automaton Ac

Σ . Note that
the earliest automaton is a dNwa passing safety information top-down (while
dShas cannot pass any information top-down). We have safeδ|Σ ({9}) = {9}
and dδ|Σ (5, {9}) = {3}. Hence �aaax〈�δc

Σ
str(qinit c

Σ) = ((1, {3}), s) where the stack
is s = (5, {9}). Since 1 �∈ {3}, membership is not yet Σ-certain. Indeed, the
Σ-completion aaax〈〉 is not accepted. After reading the next letter a, we have
�aaax〈a�

δc
Σ

str = ((3, {3}), s). Since the current state 3 belongs to the current set
of safe states {3}, membership is Σ-certain, i.e., membership of all completions
without further x’es.

6 Late Monadic Query Answering

We now move to the problem of how to answer monadic queries on hedges in
streaming mode, while selecting query answers lately at the end of the stream.

Our algorithm will generate candidates [x/π] binding the selection variable x
to positions π of the input hedge. We want to formulate the streaming algorithm
without fixing the input hedge a priori, thus we consider the infinite set of
candidates Cands = {α | α : {x} ↪→ N}. Given a dSha A with signature Σx and
a hedge h ∈ HΣ , our algorithm computes the answer set qryL(A)(h) in streaming
mode. For this, we compile A to the late dNWA∞ Al and run the streaming
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0[]∅ 2[]∅
5[x/1]∅

4 = 2@ 3
4 = 8@ 3
9 = 5@ 3

D
4[]∅

9[x/2]∅
4[x/1]∅

1[]∅
1[x/1]{x}
1[x/2]{x}

↓D ↑D
D=

⎧⎨
⎩

2[]∅
8[x/1]∅
5[x/2]∅

3[]∅
3[x/1]{x}
3[x/2]{x}

⎫⎬
⎭ = E

E

a a

a

@
@
@

Fig. 4. The run of the late dNwa Al for the dSha A in Fig. 1 on aa〈a〉.

evaluator of Al on the nested word ñw(h). The alphabet of Al is Σ∪N. It has the
state set Ql = 2Q×Cands×2{x}

= Γ l and the initial state ql
init = {(qinit , [], ∅)}.

If the evaluator goes into some state D ∈ Ql, then (q, α, V ) ∈ D means that the
candidate α is in state q while the variables in V ⊆ dom(α) were bound in the
context, i.e., before the last dangling opening parenthesis (so a preceding node
that is not a preceding sibling). The set δl contains the following transition rules
for all D,E ∈ Ql, a ∈ Σ, V ⊆ {x}, and π ∈ N:

D
a−→ {(aδ(q), α, V ) | (q, α, V ) ∈ D}

D
π−→ {(xδ(q), [x/π], ∅) | (q, [], ∅) ∈ D} ∪ D

D
〈↓D−−→ {(〈〉δ, α, dom(α)) | (q, α, V ) ∈ D}

E
〉↑D−−→ {(q@δp, α′, V ) | (q, α, V ) ∈ D, (p, α′, dom(α)) ∈ E,α ∈ {[], α′}}

When reading a position π ∈ N in a state D that contains a triple with
the empty candidate (q, [], ∅), a new candidate [x/π] is created, and the triple
(xδ(q), [x/π], ∅) is added to D. At opening events, the current state D of Al is
pushed onto the stack. It is also updated for continuation: if D contains a triple
with candidate α, then the next state of Al contains (〈〉δ, α, dom(α)). At closing
events, the state D of the parent hedge is popped from the stack. Let E be the
current state. Any (q, α, V ) ∈ D must be matched with some (p, α′, dom(α)) ∈ E,
so that Al can continue in q@δp. Matching here means that either α = α′ or,
α′ = [x/π] and α = []. This is expressed by the condition α ∈ {[], α′}. Note that
if α = [] matches α′ = [x/π] then dom(α) = ∅ so that π was not bound in the
context. This is where the knowledge of the context is needed.

An example run of Al on the hedge aa〈a〉 is given in Fig. 4, where A
is the dSha A from Fig. 1. The tuples are written there without commas
and parentheses. The run of Al first consumes aa and goes into state D =
{(2, [], ∅), (8, [x/1], ∅), (5, [x/2], ∅)}. It contains the candidates [x/1] and [x/2] for
the two leading a positions, plus the empty candidate []. After the following open
parenthesis 〈, the run goes into the set {(1, [], ∅), (1, [x/1], {x}), (1, [x/2], {x})}.
The state of each of the candidates got set to 〈〉δ = 1. Furthermore, the set
memoizes that the candidates [x/1] and [x/2] were bound in the context. It then
consumes the letter a and reaches E = {(3, [], ∅), (3, [x/1], {x}), (3, [x/2], {x})}.
When reading the closing parenthesis D is popped from the stack, its tuples in
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state q are matched with tuples in state p from E as illustrated in the figure,
so that one can apply the apply rules q@δp of A. The tuple in state 5 of D, for
instance, matches the tuple in state 3 of E, so Al continues the candidate [x/2]
in state 9 = 5@δ3. Since 9 ∈ FA, position 2 is selected, i.e. 2 ∈ qryL(A)(aa〈a〉).
Proposition 7 (Correctness of the late streaming evaluator). If (D, ε) =
�nw(h̃)�δl

str(q
l
init , ε) then qryL(A)(h) = {π | (q, [x/π], ∅) ∈ D, q ∈ F}.

7 Certain Answers and Earliest Query Answering

In order to justify early selection, we need the concept of certain answers. Let
Q be a monadic query on HΣ and v ∈ nwprefsΣ a nested word prefix.

Definition 8. A position π ∈ N is a certain answer of Q at prefix v – written
π ∈ CAQ(v) – if π ∈ pos(v) ∧ ∀h ∈ HΣ . v ∈ prefs(nw(h)) → π ∈ Q(h).

A position π is thus a certain answer of query Q at prefix v of the stream
if it answers the query for all completions h of v. Certain answers can be safely
selected however the stream continues. For instance, position 3 is a certain answer
on the prefix aaa〈a for the query defined by the dSha in Fig. 1.

In analogy, we can define that π is certainly a nonanswer of Q at v, and
denote this by π ∈ CNAQ(v). Once π becomes a certain nonanswer then it can
be safely rejected. The positions 1, ..., n−1, for instance, are certain nonanswers
on our example query on an〈a. We call a position π alive for Q at v it is neither
a certain answer nor a certain nonanswer of Q at v. The concurrency c of Q at
v is its number of alive candidates. For the shorter prefix aaa〈, for instance, all
n positions 1, . . . , n are alive, so the concurrency is n.

We next want to link certain answers to certain Σ-membership. For this,
we need to annotate nested word prefixes with positions and variables, similarly
as for hedges. Given a word v ∈ Σ̂, the set of positions of v then is pos(v) =
{1, . . . ,#Σ∪{〈}(v)}. We can define the annotation of v with its positions as a
word ṽ ∈ ( ̂Σ ∪pos(v))∗. For any variable assignment α : {x} ↪→ pos(v) we define
an annotated word v ∗ α ∈ ̂Σx

∗
in analogy as for hedges.

Lemma 9. For any prefix v ∈ prefs(nw(HΣ)), language L ⊆ HΣx and candi-
date α = [x/π] with π ∈ pos(v): cert-memL

Σ(v ∗ α) ⇔ π ∈ CAqryL(v).

Proposition 10 (Corollary of Proposition 6 and Lemma 9). Let A =
(Σx, , δ, qinit , ) be a dSha such that δ|Σ is complete. For any v ∈ nwprefsΣ,
π ∈ pos(v), and ((q, S), ) = �v∗[x/π]�δc

Σ
str(qinit c

Σ , ε): π ∈ CAqryL(A)(v) ⇔ q ∈ S .

For any dSha A over Σx, we construct the earliest dNWA∞ Ae with alphabet
Σ ∪ N, testing for all candidates [x/π] on prefixes ṽ, whether π is certain for
selection. For this Ae simulates the runs of Ac

Σ on all v ∗ [x/π]. It has the states
Qe = Q×Cands×2{x} ×2Q = Γ e and qe

init = {(qinit , [], ∅, safeδ|Σ (F ))}. Initially,
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0[]∅{9} 2[]∅{9}
5[x/1]∅{9}

2[]∅{9}
5[x/2]∅{9}
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3[]∅∅
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a

Fig. 5. A run of the earliest automaton Ae for the dSha A in Fig. 1.

all states in safeδ|Σ (F ) are safe for selection. Let δe contain the following rules
for all M,N ∈ Qe, a ∈ Σ, π ∈ N, S ⊆ Q and q ∈ Q:

M
a−→ {(aδ(q), α, V, S) | (q, α, V, S) ∈ M}

M
π−→ {(xδ(q), [x/π], ∅, S) | (q, [], ∅, S) ∈ M} ∪ M

M
〈↓M−−−→ {(〈〉δ, α, dom(α), dδ|Σ (q, S)) | (q, α, V, S) ∈ M}

N
〉↑M−−−→ {(q@δp, α′, V, S) | (q, α, V, S) ∈ M, (p, α′, dom(α), S′) ∈ N,α ∈ {[], α′}}

For the dSha A in Fig. 1, for instance, a run of Ae is given in Fig. 5. It sat-
isfies �a1a2〈3a4�δe

str(q
e
init , ε) = ({(3, [x/2], {x}, {3, 4}), (3, [x/1], {x}, {4, 9})}, ).

The certain answer [x/2] is in a safe state now, while the other candidate [x/1]
can be seen to be safe for rejection so it could be removed.

Proposition 11. Let A be a dSha with signature Σx such that δ|Σ is complete.
For any nested word prefix v ∈ nwprefsΣ with �ṽ�δe

str(q
e
init , ε) = (M, ):

CAqryL(A)(v) = {α(x) | q ∈ S ∧ (q, α, ∅, S) ∈ M ∧ dom(α) = {x}}
We can thus obtain an EQA algorithm by running the streaming evaluator

of the earliest automaton Ae. Without removing candidates that are certainly
nonanswers, however, it would maintain and update many candidates that are
no more alive, leading to quadratic time in O(m2) even for bounded concurrency.

Theorem 1. EQA for monadic dSha queries can be done in time O(c m) per
event, where c is the concurrency of the query at the event.

This complexity for dShas improves on Gauwin et al. [7] for dNwas, which
required time O(c n2) per event after O(n3) preprocessing time. Note that EQA
for monadic queries can also be used to detect certain membership for language
of dShas. In this case, we have c = 1 so the time per event is reduced to
O(m). Moreover, for monadic queries where c is bounded for all events and
input hedges, the complexity per event is also reduced to O(m). It is worth
noting that as preprocessing, we only have to load the automaton in a linear
time. On the other hand, m is equal to n2 at the worst case for a fixed signature
Σ. For Shas where O(m) = O(n) our complexity is better than that of Gauwin.
This holds for all dShas in our experiments in particular.
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8 Experimentation

We present experimental results of our EQA algorithm that we implemented in
the AStream tool, with current version 1.01. The objective is to relate the theo-
retical complexity to practical efficiency. We note that we implemented AStream
in Scala while using Java’s abc-datalog for safety computation.

First, we consider a collection of 77 regular XPath queries [2] that was
selected from the larger collection of XPath queries harvested by Lick and
Schmitz [11] from real-world XSLT programs . These queries represent the reg-
ular part of the benchmark that can be directly compiled to automata(4500
queries up to removing duplicates, renaming of XML namespace prefixes and
local names and syntactical detail). A single matching XML document per XSLT
program of size less than 2 MB was provided too. We used the dShas for these
XPath queries from [2] as inputs (so the automaton construction time is ignored
here). We could correctly answer all 77 queries, yielding the same answer set as
with Saxon. The overall time for computing the 77 answer sets was 110000 ms on
a Macbook pro Apple M1 laptop with 16 GB of RAM. With Saxon in-memory
evaluation it required 45000 ms. The low running time of AStream reflects the
low concurrency of all the queries on all these documents according to Theorem
1. There are 12 queries with concurrency 1, 47 with concurrency 2, 6 with con-
currency 3, and 12 with concurrency 4. Our efficiency results for AStream thus
show for the first time, that EQA is indeed feasible in practical scenarios with
queries of low concurrency.

Second, we compare AStream to existing streaming tools for regular XPath
queries with large coverage. We focus on the most efficient streaming evaluator
called QuiXPath [5]. A detailed comparison to the many alternative tools is
given there too. We note that QuiXPath is not always earliest, but still earliest
in most cases. As done there, we consider the queries A1-A8 of the XPathMark
collection [6] which also provides a generator for scalable XML documents. The
other queries are either not regular or contain backward axis that our compiler to
Shas does not support. We also added the queries O1 and O2 from [5], in order
to illustrate difficulties of non-earliest query answering and high concurrency.

We run AStream on XML documents of increasing size up to 1.2 GB, but
can also stream much larger documents >100 GB. Up to 1 GB, we verified the
correctness of the answer sets by comparison to Saxon’s in-memory evaluator
(which is limited to 1 GB).

The times grow linearly for all these queries given that their concurrency
is bounded to 2, except for O1 where it grows quadratically since its concur-
rency grows linearly with the size of the document. The quadratic growth can
be observed on smaller documents scaling from 27KB to 5MB. On average, for
A1-A8, AStream 1.01 is by a factor of 60 slower than QuiXPath, so requiring
minutes instead of seconds. The main reason is the lack of streaming projec-
tion algorithms for dShas. In contrast, QuiXPath uses streaming projection for
queries defined by dNwas with selection states [19]. On the one hand side, QuiX-
Path cannot stream O2 on large documents, since not being earliest. While the
concurrency of O2 is 1, linearly many candidates are buffered by QuiXPath,



64 A. Al Serhali and J. Niehren

until the buffer overflows for documents larger than 5GB. O2 poses no problem
for our tool since it has a low concurrency. On the other hand, QuiXPath can
stream queries with high concurrency(O1), whereas AStream 1.01 runs out of
time for documents of 1MB. This is due to QuiXPath’s state sharing, i.e. the
sharing of the computations of all concurrent candidates in the same state.

Conclusion and Future Work. We introduced an EQA algorithm for regular
monadic queries represented by dShas with a time complexity of O(c m) per
event. Its implementation in the AStream tool has demonstrated its efficiency
on queries in practical scenarios with low concurrency. However, in order to
compete with the current best non-earliest streaming algorithms, we need to
develop streaming projection for dShas (as done previously for NWAs [19]), and
to add factorization for candidates in the same state [5]. Additionally, we plan
to extend our streaming algorithm to hyperstreaming, which involves handling
multiple streams with references and holes [18].
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Abstract. Multi-tildes are regular operators that were introduced to
enhance the factorization power of regular expressions, allowing us to
add the empty word in several factors of a catenation product of lan-
guages. In addition to multi-bars, which dually remove the empty word,
they allow representing any acyclic automaton by a linear-sized expres-
sion, whereas the lower bound is exponential in the classic case.

In this paper, we extend multi-tildes from disjunctive combinations to
any Boolean combination, allowing us to exponentially enhance the fac-
torization power of tildes expressions. Moreover, we show how to convert
these expressions into finite automata and give a Haskell implementation
of them using advanced techniques of functional programming.

Keywords: Regular expressions · Partial derivatives · Boolean
formulae · Multi-tildes operators

1 Introduction

Regular expressions are widely used inductively defined objects that allow us to
easily represent (potentially infinite) set of words. In order to solve efficiently the
membership test, they can be turned into finite automata [1], where the number
of states is linear w.r.t. the number of symbols of the expressions. Numerous
operators where added in order to enhance their representation powers, such as
Boolean operators. However, the number of states after the conversion is not
necessarily linear anymore [5].

Another class of operators, the multi-tildes [2], was introduced in order to
allow a constrained adjunction of the empty word in some factors of the catena-
tion product of regular languages. In combination with multi-bars [3], multi-tildes
allow to improve the factorization power of regular languages: as an example, it
is shown that any acyclic automaton can be turned into a linear-sized equivalent
multi-tildes-bars expression, whereas the lower bound is exponential in the clas-
sical case [7]. However, they can be applied only across continuous positions.

In this paper, we extend the idea behind the conception of (disjunctive) multi-
tildes to any Boolean combination of them. These Boolean combinations allow
us to extend the specification power of expressions, by e.g., applying tildes across
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non-continuous intervals of positions. We show that their actions over languages
preserve regularity, that they may lead to exponentially smaller expressions and
how to solve the membership test by defining a finite automaton.

This is the first step of a more general plan: we aim to develop a characteri-
zation of the produced automaton in order to inverse the computation, i.e., the
conversion of an automaton into a short constrained tildes expression.

The paper is organized as follows. Section 2 contains general preliminaries.
Then, we recall in Sect. 3 classical definitions and constructions for Boolean for-
mulae. These latter allow us to define constrained tildes in Sect. 4. We study
their factorization power in Sect. 5, and show how to convert these expressions
into finite automata in Sect. 6. Finally, in Sect. 7, we present an Haskell imple-
mentation of these objects.

2 Preliminaries

Throughout this paper, we use the following notations:

– B is the Boolean set {0, 1},
– S → S′ is the set of functions from a set S to a set S′,
– for a Boolean b and a set S, S | b is the set S if b, ∅ otherwise,
– ⊂ is to be understood as not necessarily strict subset.

A regular expression E over an alphabet Σ is inductively defined by

E = a, E = ∅, E = ε, E = F · G, E = F + G, E = F∗,

where a is a symbol in Σ and F and G two regular expressions over Σ. Classi-
cal priority rules hold: ∗ > · > +. The language denoted by E is the set L(E)
inductively defined by

L(a) = {a}, L(∅) = ∅, L(ε) = {ε},

L(F · G) = L(F) · L(G), L(F + G) = L(F) ∪ L(G), L(F∗

) = L(F)∗,

where a is a symbol in Σ and F and G two regular expressions over Σ. A (non-
deterministic) automaton A over an alphabet Σ is a 5-tuple (Σ,Q, I, F, δ) where

– Q is a finite set of states,
– I ⊂ Q is the set of initial states,

– F ⊂ Q is the set of final states,
– δ is a function in Σ ×Q → 2Q.

The function δ is extended to Σ × 2Q → 2Q by δ(a, P) =
⋃

p∈P δ(a, p) and to
Σ∗ × 2Q → 2Q by δ(ε, P) = P and δ(aw, P) = δ(w, δ(a, P)). The language denoted
by A is the set L(A) = {w ∈ Σ∗ | δ(w, I) ∩ F � ∅}.

Any regular expression with n symbols can be turned into an equivalent
automaton with at most (n + 1) states, for example by computing the derived
term automaton [1]. The partial derivative of E w.r.t. a symbol a in Σ is the set
of expressions δa(E) inductively defined as follows:

δa(b) = ({ε} | a = b), δa(∅) = ∅,
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δa(ε) = ∅, δa(F + G) = δa(F) ∪ δa(G),

δa(F · G) = δa(F) 
 G ∪ (δa(G) | Null(F)), δa(F
∗

) = δa(F) 
 F∗,

where b is a symbol in Σ, F and G two regular expressions over Σ, Null(F) = ε ∈
L(F) and E
G =

⋃
E ∈E

{E ·G}, where 
 has priority over ∪. The partial derivative
of E w.r.t. a word w is defined by δε(E) = {E} and δaw(E) =

⋃
E′

∈δa (E)

δw(E ′

).
The derived term automaton of E is the automaton (Σ,Q, {E}, F, δ) where

Q =
⋃

w∈Σ∗

δw(E), F = {E ′

∈ Q | Null(E ′

)}, δ(a, E ′

) = δa(E
′

).

The derived term automaton of E, with n symbols, is a finite automaton with
at most (n + 1) states that recognizes L(E).

A multi-tilde is an n-ary operator which is parameterized by a set S of couples
(i, j) (called tildes) in {1, . . . , n}2 with i ≤ j. Such an expression is denoted by
MTS(E1, . . . , En) while it is applied over n expressions (E1, . . . , En). Two tildes
(i, j) and (i′, j ′) are overlapping if {i, . . . , j} ∩ {i′, . . . , j ′} � ∅. A free subset of
S is a subset where no tildes overlap each other. As far as S = (ik, jk)k≤m is
free, the action of a tilde is to add the empty word in the catenation of the
languages denoted by the expression it overlaps in the catenation of all the
denoted languages, i.e.

L(MTS (E1, . . . , En)) = L(E1) · · · · · L(Ei1−1) · (L(Ei1 ) · · · · · L(Ej1 ) ∪ {ε }) · L(Ej1+1) · · · ·

· · · L(Eim−1) · (L(Eim ) · · · · · L(Ejm ) ∪ {ε }) · L(Ejm+1) · · · L(En).

Inductively extended with multi-tildes operators, regular expressions with n
symbols can be turned into equivalent automata with at most n states, using the
position automaton [4] or the partial derivation one [6].

In the following, we show how to extend the notion of tildes from unions of
free subsets to any Boolean combinations of tildes.

3 Boolean Formulae and Satisfiability

A Boolean formula φ over an alphabet Γ is inductively defined by

φ = a, φ = o(φ1, . . . , φn),

where a is an atom in Γ, o is an operator associated with an n-ary function of
from B

n to B, and φ1, . . . , φn are n Boolean formulae over Γ.
As an example, ¬ is the operator associated with the Boolean negation, ∧

with the Boolean conjunction and ∨ with the Boolean disjunction. We denote
by ⊥ the constant (0-ary function) 0 and by � the constant 1.

Let φ be a Boolean formula over an alphabet Γ. A function i from Γ to B is
said to be an interpretation (of Γ). The evaluation of φ with respect to i is the
Boolean evali(φ) inductively defined by

evali(a) = i(a), evali(o(φ1, . . . , φn)) = of (evali(φ1), . . . , evali(φn)),
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where a an atom in Γ, o is an operator associated with an n-ary function of from
B
n to B, and φ1, . . . , φn are n Boolean formulae over Γ. Non-classical Boolean

functions can also be considered, like in the following example.

Example 1. The operator Mirrorn is associated with the (2 × n)-ary Boolean
function f defined for any (2 × n) Boolean (b1, . . . , b2n) by

f (b1, . . . , b2n) ⇔ (b1, . . . , bn) = (b2n, . . . , bn+1) ⇔ (b1 = b2n) ∧ · · · ∧ (bn = bn+1)

⇔ (b1 ∧ b2n ∨ ¬b1 ∧ ¬b2n) ∧ · · · ∧ (bn ∧ bn+1 ∨ ¬bn ∧ ¬bn+1).

A Boolean formula is said to be: satisfiable if there exists an interpretation
leading to a positive evaluation; a tautology if every interpretation leads to a
positive evaluation; a contradiction if it is not satisfiable.

Even if it is an NP-Hard problem [9], checking the satisfiability of a Boolean
formula can be performed by using incremental algorithms [10,11,15]. The fol-
lowing method can be performed: If there is no atom in the formula, it can
be reduced to either ⊥ or �, and it is either a tautology or a contradiction;
Otherwise, choose an atom a, replace it with ⊥ (denoted by a � ⊥), reduce
and recursively reapply the method; If it is not satisfiable, replace a with �

(denoted by a � �), reduce and recursively reapply the method. The reduction
step can be performed by recursively simplifying the subformulae of the form
o(φ1, . . . , φn) such that there exists k ≤ n satisfying Fk ∈ {⊥,�}. As an example,
the satisfiability of ¬(a ∧ b) ∧ (a ∧ c) can be checked as shown in Fig. 1.

Fig. 1. The formula ¬(a ∧ b) ∧ (a ∧ c) is satisfiable.

Two Boolean formulae φ and φ′ are equivalent, denoted by φ ∼ φ′, if for any
interpretations i, evali(φ) = evali(φ′).

Example 2. Let us consider the operator Mirrorn defined in Example 1. It can
be shown, following the equation in Example 1, that for any (2n − 1) Boolean
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formulae (φ1, . . . , φ2n−1),

Mirrorn(⊥, φ1, . . . , φ2n−1) ∼ Mirrorn−1(φ1, . . . , φ2n−2) ∧ ¬φ2n−1,

Mirrorn(�, φ1, . . . , φ2n−1) ∼ Mirrorn−1(φ1, . . . , φn−2) ∧ φ2n−1,
Mirrorn() ∼ �.

For any two Boolean formulae φ and φ′ and for any atom a, we denote by
φa�φ′ the formula obtained by replacing any occurrence of a in φ with φ′. For any
two sequences (φ′1, . . . , φ

′

n) of Boolean formulae and (a1, . . . , an) of distinct atoms,
we denote by φa1�φ′

1,...,an�φ′

n
the formula obtained by replacing any occurrence

of ak in φ with φ′
k

for any 1 ≤ k ≤ n.
It is well known that for any Boolean formula φ and for any atom a in φ,

φ ∼ ¬a ∧ φa�⊥

∨ a ∧ φa��

. (1)

4 Constrained Multi-Tildes

Multi-Tildes operators define languages by computing free sublists of tildes from
a set of couples. This can be viewed as a particular disjunctive combination of
these tildes, since sublists of a free list � define languages that are included in the
one � defines. This disjunctive interpretation can be extended to any Boolean
combination. One may choose to apply conjunctive sequences of not contiguous
tildes, or may choose to exclude some combinations of free tildes. In this section,
we show how to model this interpretation using Boolean formulae.

The action of a tilde is to add the empty word in the catenation of the
languages it overhangs. If the tilde is considered as an interval of contiguous
positions (p1, p2, . . . , pk), its action can be seen as the conjunction of the substi-
tution of each language at position p1, position p2, etc. with {ε}.

In fact, each position can be considered as an atom of a Boolean formula φ.
For any interpretation i leading to a positive evaluation of φ, we can use i(k) to
determine whether the language Lk can be replaced by {ε} in L1 · · · Ln. Let us
formalize these thoughts as follows.

Let i be an interpretation over {1, . . . , n}. Let L1, . . . , Ln be n languages. We

denote by i(L1, . . . , Ln) the language L ′

1 · · · · · L
′

n where L ′

k
=

{
{ε} if i(k),
Lk otherwise.

Let φ be a Boolean formula over the alphabet {1, . . . , n} and L1, . . . , Ln be n
languages. We denote by φ(L1, . . . , Ln) the language

⋃

i |evali (φ)

i(L1, . . . , Ln). (2)

Example 3. Let us consider the operator Mirrorn defined in Example 1 and the
two alphabets Γn = {1, . . . , 2n} and Σn = {a1, . . . , a2n}. Then:

Mirrorn(1, . . . , 2n)({a1}, . . . , {a2n})
= {w1 · · ·w2n | ∀k ≤ 2n,wk ∈ {ε, ak} ∧ (wk = ε ⇔ w2n−k+1 = ε)}

= {a1 · · · a2n, a1a3a4 · · · a2n−3a2n−2a2n, . . . , a1a2n, . . . , anan+1, ε}.
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First, we remark that the action of constrained tildes preserves regularity,
since it is a finite union of catenations of regular languages, following Equa-
tion (2).

Theorem 1. Let φ be a Boolean formula over the alphabet {1, . . . , n} and
L1, . . . , Ln be n regular languages. Then φ(L1, . . . , Ln) is regular.

Moreover, this definition also allows us to explicit some remarkable identities.
As an example, considering n languages (L1, . . . , Ln) and a Boolean formula φ
over the alphabet {1, . . . , n}, it can be shown that the two following identities
hold:

1. if φ is a contradiction, then φ(L1, . . . , Ln) = ∅;
2. if φ is a tautology, then φ(L1, . . . , Ln) = (L1 ∪ {ε}) · · · · · (Ln ∪ {ε}).

Some properties of Boolean formulae can also be transferred while acting over
language sequences, as direct consequences of Eq. (2).

Lemma 1. Let φ1 and φ2 be two equivalent Boolean formulae over the alphabet
{1, . . . , n} and L1, . . . , Ln be n languages. Then φ1(L1, . . . , Ln) = φ2(L1, . . . , Ln).

Lemma 2. Let φ1 and φ2 be two Boolean formulae over {1, . . . , n} and L1, . . . , Ln
be n languages. Then (φ1 ∨ φ2)(L1, . . . , Ln) = φ1(L1, . . . , Ln) ∪ φ2(L1, . . . , Ln).

Lemma 3. Let φ be a Boolean formula over the alphabet {2, . . . , n} and
L1, . . . , Ln be n languages. Then

(1 ∧ φ)(L1, . . . , Ln) = φ2�1,...,n�n−1(L2, . . . , Ln),

(¬1 ∧ φ)(L1, . . . , Ln) = L1 · φ2�1,...,n�n−1(L2, . . . , Ln).

As a consequence of Eq. (1), Lemma 1, Lemma 2 and Lemma 3, it holds:

Proposition 1. Let φ be a Boolean formula over the alphabet {1, . . . , n} and
L1, . . . , Ln be n languages. Then

φ(L1, . . . , Ln) = L1 · φ
′

(L2, . . . , Ln) ∪ φ
′′

(L2, . . . , Ln),

where φ′ = φ1�⊥,2�1,...,n�n−1 and φ′′ = φ1��,2�1,...,n�n−1.

Example 4. Let us consider the language Ln = Mirrorn(1, . . . , 2n)({a1}, . . . , {a2n})
of Example 3. Following Proposition 1 and rules in Example 2, it holds:

Ln = {a1} ·Mirrorn−1(1, . . . , 2n − 2)({a2}, . . . , {a2n−1}) · {a2n}
∪Mirrorn−1(1, . . . , 2n − 2)({a2}, . . . , {a2n−1}).

This first proposition allows us to show how to easily determine whether the
empty word belongs to the action of a Boolean formula over a language sequence
and how to compute the quotient of such a computation w.r.t. a symbol.
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Corollary 1. Let φ be a Boolean formula over {1, . . . , n} and L1, . . . , Ln be n
languages. Then:

ε ∈ φ(L1, . . . , Ln) ⇔ ε ∈ L1 ∧ ε ∈ φ
′

(L2, . . . , Ln) ∨ ε ∈ φ
′′

(L2, . . . , Ln)

where φ′ = φ1�⊥,2�1,...,n�n−1 and φ′′ = φ1��,2�1,...,n�n−1.

Corollary 2. Let φ be a Boolean formula over the alphabet {1, . . . , n}, L1, . . . , Ln
be n languages and a be a symbol. Then:

a−1(φ(L1, . . . , Ln)) = a−1(L1) · φ
′

(L2, . . . , Ln) ∪ a−1(φ′(L2, . . . , Ln)) | ε ∈ L1

∪ a−1(φ′′(L2, . . . , Ln)),

where φ′ = φ1�⊥,2�1,...,n�n−1 and φ′′ = φ1��,2�1,...,n�n−1.

Let us now extend classical regular expressions with the action of a Boolean
formula considered as a constrained Multi-Tildes.

An Extended to Constrained Multi-Tildes Expression E over an alphabet Σ
(extended expression in the following) is inductively defined by

E = a, E = ∅, E = ε, E = E1 + E2, E = E1 · E2, E = E∗

1,

E = φ(E1, . . . , En),

where a is a symbol in Σ, φ is a Boolean formula over the alphabet {1, . . . , n}
and E1, . . . , En are n extended expressions over Σ. The language denoted by an
extended expression E is the language L(E) inductively defined by

L(a) = {a}, L(∅) = ∅, L(ε) = {ε},

L(E1 + E2) = L(E1) ∪ L(E2), L(E1 · E2) = L(E1) · L(E2), L(E∗

1) = L(E1)
∗,

L(φ(E1, . . . , En)) = φ(L(E1), . . . , L(En)),

where a is a symbol in Σ, φ is a Boolean formula over the alphabet {1, . . . , n}
and E1, . . . , En are n extended expressions over Σ.

Since the Boolean satisfiability is an NP-hard problem [9], so is the emptiness
problem for extended expressions, as a direct consequence of Eq. (2) and of
denoted language definition.

Proposition 2. Let Σk = {a1, . . . , ak } be an alphabet and φ be a Boolean formula
over the alphabet {1, . . . , k}. Then L(φ(a1, . . . , ak)) � ∅ ⇐⇒ φ is satisfiable.

Corollary 3. Determining whether the language denoted by an extended expres-
sion is empty is NP-hard.

5 Factorization Power

In this section, we exhibit a parameterized family of expressions En such that the
smallest NFA recognizing L(En) admits a number of states exponentially larger
than the sum of the number of symbols, the number of atoms and the number
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of operators of En. Let us consider the alphabet Σ2n = {a1, . . . , a2n} and the
expression En = Mirrorn(1, . . . , 2n)(a1, . . . , a2n). The expression En contains 2n
atoms, 2n symbols and 1 operator. Using classical Boolean operators, like ∧, ∨
and ¬, the Boolean formula Mirrorn(1, . . . , 2n) can be turned into the equivalent
one (1 ∧ 2n ∨ ¬1 ∧ ¬2n) ∧ · · · ∧ (n ∧ (n + 1) ∨ ¬n ∧ ¬(n + 1)) following equation in
Example 1, that contains 4n atoms and (6n − 1) operators, which is a linearly
larger Boolean formula. In order to exhibit a lower bound of the number of states
of any NFA recognizing L(En), let us consider the following property [12]:

Theorem 2 ([12]). Let L ⊂ Σ∗ be a regular language, and suppose there exists
a set of pairs P = {(xi,wi) : 1 ≤ i ≤ n} such that xiwi ∈ L for 1 ≤ i ≤ n and
xiwj � L for 1 ≤ i, j ≤ n and i � j. Then any NFA accepting L has at least n
states.

For any sequences of n Booleans bs = (b1, . . . , bn), let us consider the words
vbs = w1 · · ·wn and v′

bs
= w′

1 · · ·w
′

n where

wk =

{
ak if ¬bk,
ε otherwise,

w′

k =

{
an+k if ¬bk,
ε otherwise.

(3)

Denoting by rev(b1, . . . , bn) the sequence (bn, . . . , b1), since the only words in
L(En) are the words vbs ·v′rev(bs), and since the words vbs ·v′bs′ for any bs′ � rev(bs)
are not in L(En), it holds according Theorem 2 that

Proposition 3. There is at least 2n states in any automaton recognizing L(En).

Theorem 3. There exist extended regular expressions exponentially smaller
than any automaton recognizing their denoted languages.

6 Partial Derivatives and Automaton Computation

Let us now show how to extend the Antimirov method in order to syntactically
solve the membership test and to compute a finite automaton recognizing the
language denoted by an extended expression. First, we define the partial deriva-
tive of an expression w.r.t. a symbol, where the derivation formula for the action
of a Boolean combination is obtained by considering the fact that the empty
word may appear at the first position for two reasons, if the first operand is
nullable, or because the empty word is inserted by the multi-tilde.

Definition 1. Let E be an extended expression and a be a symbol. The partial
derivative of E w.r.t. a is the set δa(E) of extended expressions inductively defined
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as follows:

δa(b) =

{
{ε} if b = a,

∅ otherwise,
δa(ε) = ∅,

δa(∅) = ∅, δa(E1 + E2) = δa(E1) ∪ δa(E2),

δa(E1 · E2) = δa(E1) 
 E2 ∪ δa(E2) | ε ∈ L(E1), δa(E
∗

1) = δa(E1) 
 E∗

1,

δa(φ(E1, . . . , En)) = δa(E1) 
 φ
′

(E2, . . . , En)

∪ δa(φ
′

(E2, . . . , En)) | ε ∈ L(E1)

∪ δa(φ
′′

(E2, . . . , En)),

where b is a symbol in Σ, φ is a Boolean formula over the alphabet {1, . . . , n},
E1, . . . , En are n extended expressions over Σ and

φ′ = φ1�⊥,2�1,...,n�n−1, φ′′ = φ1��,2�1,...,n�n−1.

In the following, to shorten the expressions in the next examples, we consider
the trivial quotients E · ε = ε · E = E and E · ∅ = ∅ · E = ∅. Furthermore, when φ
is a contradiction, we consider that φ(E1, . . . , En) = ∅.

Example 5. Let us consider the alphabet Σ = {a, b} and the expression E =

Mirror2(1, 2, 3, 4)(a+, b+, a+, b+), where x+ = x · x∗. The derived terms of E w.r.t.
the symbols in Σ are the following, where underlined computations equal ∅:

δa(E) = δa(a
+
) 
 Mirror2(⊥, 1, 2, 3)(b+, a+, b+) ∪ δa(Mirror2(�, 1, 2, 3)(b+, a+, b+))

= {a∗} 
 (Mirror1(1, 2) ∧ ¬3)(b+, a+, b+)
= {a∗ · (Mirror1(1, 2) ∧ ¬3)(b+, a+, b+)},

δb(E) = δb(a
+
) 
 Mirror2(⊥, 1, 2, 3)(b+, a+, b+) ∪ δb(Mirror2(�, 1, 2, 3)(b+, a+, b+))

= δb((Mirror1(1, 2) ∧ 3)(b+, a+, b+))
= δb(b

+
) 
 (Mirror1(⊥, 1) ∧ 2)(a+, b+) ∪ δb((Mirror1(�, 1) ∧ 2)(a+, b+))

= {b∗} 
 (¬1 ∧ 2)(a+, b+) = {b∗ · (¬1 ∧ 2)(a+, b+)}.

As usual, the partial derivative is closely related to the computation of the
quotient of the denoted language, as a direct consequence of Corollary 2, and by
induction over the structure of E.

Proposition 4. Let E be an extended expression and a be a symbol. Then
⋃

E′

∈δa (E)

L(E ′

) = a−1(L(E)).

The partial derivative can be classically extended from symbols to words by
repeated applications. Let E be an extended expression, a be a symbol and w

be a word. Then

δε(E) = {E}, δaw(E) =
⋃

E′

∈δa (E)

δw(E
′

).
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Example 6. Let us consider the expression E and its derived terms computed in
Example 5. Then:

δaa (E) = δa (a
∗

· (Mirror1(1, 2) ∧ ¬3)(b+, a+, b+
)) = {a∗ · (Mirror1(1, 2) ∧ ¬3)(b+, a+, b+

)},

δab (E) = δb (a
∗

· (Mirror1(1, 2) ∧ ¬3)(b+, a+, b+
))

= δb ((Mirror1(1, 2) ∧ ¬3)(b+, a+, b+
))

= δb (b
+
) 
 (Mirror1(⊥, 1) ∧ ¬2)(a+, b+

) ∪ δb ((Mirror1(�, 1) ∧ ¬2)(a+, b+
))

= {b∗

} 
 (¬1 ∧ ¬2)(a+, b+
) ∪ δb ((1 ∧ ¬2)(a+, b+

))

= {b∗

· (¬1 ∧ ¬2)(a+, b+
)} ∪ δb ((¬1)(b

+
))

= {b∗

· (¬1 ∧ ¬2)(a+, b+
), b∗

}.

Once again, this operation is a syntactical representation of the quotient com-
putation, as a direct consequence of Proposition 4, and by induction over the
structure of words.

Proposition 5. Let E be an extended expression and w be a word. Then
⋃

E′

∈δw (E)

L(E ′

) = w−1
(L(E)).

As a direct consequence, the membership test is solved for extended expres-
sions. Indeed, determining whether a word w belongs to the language denoted by
an extended expression E can be performed by computing the partial derivative
of E w.r.t. w and then by testing whether it contains a nullable expression, i.e.
an expression whose denoted language contains the empty word.

Let us now show that the partial derivative automaton of an extended expres-
sion E is a finite one that recognizes L(E).

In the following, we denote by DE the set of derived terms of an expression
E, i.e., the set of expressions

⋃

w∈Σ∗

δw(E).

Moreover, given an expression φ(E1, . . . , En), an integer 1 ≤ k ≤ n − 1
and an interpretation i in {1, . . . , k} → B, we denote by DE,k,i the set
DEk


 φ′(Ek+1, . . . , En), where

φ′ = φ

1�

⎧⎪⎪⎨

⎪⎪
⎩

� if i(1),
⊥ otherwise,

...,k�

⎧⎪⎪⎨

⎪⎪
⎩

� if i(k),
⊥ otherwise,

k+1�1,...,n�n−k

.

First, the union of these sets includes the partial derivatives and is stable w.r.t.
derivation by a symbol, by induction over the structures of extended expressions,
of words and over the integers.

Proposition 6. Let E be an extended expression and a be a symbol. Then the
two following conditions hold:
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1. δa (E) ⊂

⋃

1≤k≤n,
i∈{1, . . .,k}→B

DE,k, i , 2.
⋃

E′

∈DE,k, i

δa (E
′

) ⊂

⋃

k≤k′≤n,
i′∈{1, . . .,k′}→B

DE,k′, i′ .

As a direct consequence, the set of the derived terms of an extended expression
is included in the union of the DE,k,i sets.

Corollary 4. Let E be an extended expression. Then

DE ⊂

⋃

1≤k≤n,
i∈{1,...,k }→B

DE,k,i .

According to a trivial inductive reasoning, one can show that such a set is finite.

Corollary 5. Let E be an extended expression and w be a word. Then
⋃

w∈Σ∗

δw(E) is a finite set.

As a direct consequence, the derived term automaton of an extended expression,
defined as usual with derived terms as states and transitions computed from
partial derivation, fulfils finiteness and correction.

Theorem 4. Let E be an extended expression and a be a symbol. The partial
derivative automaton of E is a finite automaton recognizing L(E).

Example 7. Let us consider the expression E defined in Example 5. The derived
term automaton of E is given in Fig. 2.

Mirror

Fig. 2. The derived term automaton of E.
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7 Haskell Implementation

The computation of partial derivatives and derived term automaton has been
implemented in Haskell and is publicly available on GitHub [14]. Constrained
tildes are implemented using dependently typed programming: a Boolean for-
mula encoding a constrained tildes uses an alphabet the size of which cannot
be greater than the length of the list of expressions the formula is applied on.
Derived term automaton can be graphically represented using Dot and Graphviz,
and converted in PNG. A parser from string declaration is also included.

8 Conclusion and Perspectives

In this paper, we have extended (disjunctive) multi-tildes operators to any
Boolean combinations of these tildes, the constrained multi-tildes, and defined
their denoted languages. We have shown that the action of these operators pre-
serves regularity, that they may lead to exponentially smaller expressions and
how to solve the membership test by defining the partial derivatives and the
(finite) derived term automaton.

The next step of our plan is to study the conversion of an automaton into
an equivalent expression, by first characterizing the structure of derived term
automaton like it was previously done in the classical regular case [8,13].
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Abstract. This paper deals with properties of synchronizing terms for
finite tree automata, which is a generalization of the synchronization
principle of deterministic finite string automata (DFA) and such terms
correspond to a connected subgraph, where a state in the root is always
the same regardless of states of subtrees attached to it. We ask, what is
the maximum height of the smallest synchronizing term of a deterministic
bottom-up tree automaton (DFTA) with n states, which naturally leads
to two types of synchronizing terms, called weak and strong, that depend
on whether a variable, i.e., a placeholder for a subtree, must be present in
at least one leaf or all of them. We prove that the maximum height in the
case of weak synchronization has a theoretical upper bound sl(n)+n−1,
where sl(n) is the maximum length of the shortest synchronizing string
of an n-state DFAs. For strong synchronization, we prove exponential
bounds. We provide a theoretical upper bound of 2n − n − 1 for the
height and two constructions of automata approaching it. One achieves
the height of Θ(2n−√

n) with an alphabet of linear size, and the other
achieves 2n−1 − 1 with an alphabet of quadratic size.
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1 Introduction

Synchronization is a widely studied property of deterministic finite string
automata (DFA). A string is called synchronizing (or sometimes called a reset
word) if it reaches the same state regardless of what state we start in.
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length of the shortest synchronizing string for synchronizing DFAs with n states.
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We denote this value by sl(n). State-of-the-art bounds on this value differ based
on whether we consider complete or partial automata.

For complete automata, we know that the function is somewhere between (n−
1)2 and (n3 −n)/6. The lower bound was shown by Černý [11,12] and the upper
bound by Pin [4], where the factor 1/6 = 0.1666 . . . was then further slightly
improved couple of times, most recently by Shitov [10] down to 0.1654. Černý
conjectured his lower bound to be tight. For decades now Černý’s conjecture has
not been resolved and is one of the most longstanding open problems in automata
theory. The conjecture had been shown to hold for certain classes of automata.
For a detailed survey of results in the theory of complete synchronizing automata
refer to the Handbook of Automata Theory [5, Chapter 15].

In the case of partial automata, we can identify two types of synchronizing
strings, called careful and exact, depending on how we handle missing transi-
tions. Reading a carefully synchronizing string ends in a single state regardless of
the starting state. For exactly synchronizing strings, the automaton either ends
in a single state or fails (as the transition function is incomplete). The exact
synchronization shares many properties of complete automata synchronization,
including polynomial bounds for the length of the shortest exactly synchroniz-
ing string [9]. In the case of careful synchronization, it gets more complicated.
An exponential upper bound of O(3(n+ε)/3) has been shown [8] together with
several constructions of automata approaching this bound with alphabets of
various sizes, from 3n/(6 log2 n) for binary and up to Θ(3n/3) for linear size alpha-
bet [2,3,7].

Finite tree automaton (FTA) is a standard model of computation for the
class of regular tree languages [1] and is a very straightforward extension of string
automata. The class is concerned with ranked tree structures, i.e., the label of
each node, which is from a finite alphabet, determines the number of its children
(also called arity), therefore the maximum degree is bounded by a constant. One
can look at ranked trees as branching strings and adapt the language theory to
them. Many concepts and properties of string automata have their analogous
principle in tree automata as well, including synchronization.

A synchronizing term of a deterministic bottom-up tree automaton (DFTA)
corresponds to a connected subgraph such that the state within the root is the
same regardless of states obtained from subtrees attached to it. Places, where
a subtree can be attached are marked with a variable in such term. This con-
cept was first touched on by Janoušek and Plachý [6] when investigating tree
automata analog for string k-locality (i.e. all strings of length k are synchroniz-
ing), which allows work-optimal parallelization.

In this paper, we deal with size bounds of synchronizing terms of tree
automata. The aim is to determine the maximum height of the smallest (mini-
mum height) synchronizing term in a complete n-state DFTA. We improve upon
the definition of synchronizing terms from [6] to handle automata with unreach-
able states properly. We also identify two types of synchronizing terms – weakly
and strongly synchronizing – which depend on whether a variable must be in
at least one leaf or every leaf. These two types of synchronizing terms exhibit
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wildly different bounds. We prove, that the upper bound for weak synchroniza-
tion is polynomial and closely tied to the upper bound for string synchronization.
For strong synchronization, we prove that the bounds are super-polynomial. We
prove an exponential upper bound and provide two constructions of n-state
automata approaching this bound. One with an alphabet of linear size that
reaches the height of Θ(2n−√

n) and the other with a quadratic alphabet reach-
ing 2n−1 − 1.

2 Notation

We use notions from the theory of tree languages similarly as defined in Comon,
et al. [1].

An alphabet Σ is a finite set of symbols. A string w over an alphabet Σ is a
sequence w = a1a2 . . . an such that ai ∈ Σ for all 1 ≤ i ≤ n. The length of w is
denoted |w|, ε denotes the string of length 0, and Σ∗ denotes the set of all string
over Σ.

A ranked alphabet F is a non-empty alphabet, where each symbol has a non-
negative integer arity (or rank). The arity of a symbol f is denoted by arity(f)
and the set of symbols of arity r is denoted Fr. The symbols of F0 are called
constant.

Let terms T (F ,X) over a ranked alphabet F and a set of variables X, X ∩
F = ∅, be an infinite set that is inductively defined as follows. As a base, the
sets X and F0 belong to T (F ,X). As an inductive step, for any f ∈ Fr and
t1, . . . , tr that all already belong to T (F ,X) the term (f, t1, . . . , tr) also belongs
to T (F ,X). See Fig. 1 for an example of many notions explained in this section.

Terms where X = ∅ are called ground terms T (F) = T (F , ∅). A tree language
is a set of ground terms. Terms, where each variable occurs at most once, are
called linear terms. In this paper, we assume all terms to be linear.

Let σg : X → T (F) be ground substitution of a set of variables X over a
ranked alphabet F . Ground substitution can be extended to σ : T (F ,X) → T (F)
in such a way that the non-variable values remain unchanged, i.e.,

σ(t) =

⎧
⎪⎨

⎪⎩

t if t ∈ F0,

σg(t) if t ∈ X,

(f, σ(t1), . . . , σ(tr)) t = (f, t1, . . . , tr) , otherwise.

A height of a term t ∈ T (F ,X) denoted height(t) is a function defined as 0 for
all t ∈ F0 ∪ X and as 1 + maxr

i=1 height(ti) where t = (f, t1, . . . , tr) otherwise.
Each term contains within itself many other terms, we call them subterms of
a term. To get a specific subterm, we introduce its position through the child
terms that we have to traverse to it. A position is a sequence of numbers (i.e.
a string over N) p = (p1, . . . , pd) ∈ N

d where d ∈ N is its depth, also denoted
as depth(p). A subterm t|p of a term t ∈ T (F ,X) on a position p is defined as
t if |p| = 0 and ti|p′ where t = (f, t1, . . . , tr), p = ip′ for i ≤ r and p′ ∈ N

∗,
otherwise. The set of all subterms of t is denoted by Subterms(t) and the set
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f3

f1

x′

f3

xa0b0

a0

(a)

f3

f1

b0

f3

f3

c0c0a0

a0b0

a0

(b)

{s1, s2}

{s0, s2}

Q

{s0}

Q{s0}{s1}

{s0}

(c)

Fig. 1. An example term and the ways it can be processed. (a): A term t over
the ranked alphabet F = {a0, b0, f1, f3} with variables X = {x, x′}. The subterm
t|21 = b0 is on position (2, 1). We denote t as (f3, t1, t2, t3), however, with fully
expanded subterms we get (f3, (a0), (f3, (b0), (a0), (x)), (f1, (x

′))). (b): Application of
the ground substitution σ(t). We see that σ(x) = (f3, (a0), (c0), (c0)) and σ(x′) = (b0).

(c): Evaluation of ˜ΔQ(t) of a DFTA. Labels of all subterms t′ are substituted with
˜ΔQ(t′) in the image. We have Q = {s0, s1, s2} and ˜ΔQ(a0) = {s0}, ˜ΔQ(b0) = {s1},
˜ΔQ(f3, {s1}, {s0}, Q) = s0, ˜ΔQ(f1, Q) = {s0, s2}, and ˜ΔQ(f3, {s0}, {s0}, {s0, s2}) =

{s1, s2}. As | ˜ΔQ(t)| > 1 the term is not synchronizing for the DFTA.

of all subterm positions of t is denoted by SubtPos(t). For t we call the empty
position root and a position of a constant or a variable a leaf.

For us, a deterministic (bottom-up) finite tree automaton (DFTA) over a
ranked alphabet F is a 3-tuple A = (Q,F ,Δ), where Q is a finite set of states,
and Δ : Fr × Qr → Q is a transition function; we omit the set of final states
Qf ⊆ Q from the standard definition of A as it is irrelevant to our paper.

We will use several extensions of the transition function starting with sets of
states as arguments Δ(f, S1, . . . , Sr) = {Δ(f, q1, . . . , qr) | ∀i : qi ∈ Si} for f ∈ Fr

and S1, . . . , Sr ⊆ Q. We further extend the transition function to terms provided
a mapping assigning sets of states to variables is given. This function corresponds
to the evaluation of a term by the DFTA. For a DFTA A = (Q,F ,Δ) and a
set of variables X let Δ̃ be a mapping Δ̃ : T (F ,X) × (X → 2Q) → 2Q such that

Δ̃(t, X̃) =

⎧
⎪⎨

⎪⎩

{Δ(t)} if t ∈ F0,

{X̃(t)} if t ∈ X,

Δ
(
f, Δ̃(t1, X̃), . . . , Δ̃(tp, X̃)

)
where t = (f, t1, . . . , tr) , otherwise.

We also denote Δ̃Q(t) = Δ̃(t, X̃) when every variable evaluates to the set of all
states, i.e., X̃(x) = Q for each x ∈ X. When t is a ground term we also denote
Δ̃(t) = q where Δ̃Q(t) = {q} since ground terms don’t contain any variable and
they always evaluate to a single state because of determinism.

Definition 1 (Synchronizing term). For a DFTA A = (Q,F ,Δ) a term
t ∈ T (F ,X) is called synchronizing if |Δ̃Q(t)| = 1.
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3 Tree Automata Synchronization

In the case of finite string automata, the automaton is called synchronizing
if there exists a synchronizing string for it, i.e., a string that, when read by
the automaton, reaches the same state regardless of what state the automaton
started in. However, for tree automata defining a synchronizing DFTA by the
existence of a synchronizing term is not as simple since every ground term is
synchronizing because the DFTA is total deterministic.

From the point of view of tree automata, the synchronizing string can be
viewed as a term with symbols of arity 1 and a variable in its single leaf. In
the case of DFTA, however, a synchronizing term can also contain constants
in leaves, not just variables. Constants do not have analogy in synchronizing
strings since in the DFTA they play an analogous role to the initial state in
string automata and the initial state is not relevant for string synchronization.

For tree automata, we can therefore distinguish three types of synchronizing
terms based on the existence of constants and variables.

The first type are ground terms, i.e., terms with constants and without vari-
ables, which are always synchronizing. The second type are terms that contain
at least one variable. We will call these terms weakly synchronizing and show
polynomial worst-case bounds for the height of the smallest such terms.

The third type, are terms without constants, i.e., terms containing variables
in all leaves. We will call these terms strongly synchronizing and show that
the bounds on the worst case for this type of synchronization are exponential.
Constants and their transitions in the automaton are irrelevant for this type of
synchronization and so without loss of generality, we will be omitting them.

Definition 2 (Strong and weak synchronization). Let us have a DFTA
A = (Q,F ,Δ). A synchronizing term t ∈ T (F ,X) for A is called

– weakly synchronizing if t ∈ T (F ,X) \ T (F), i.e., it has at least one variable.
– strongly synchronizing if t ∈ T (F \ F0,X), i.e., it has no constant subterms.

A DFTA is called strongly (resp. weakly) synchronizing if there exists a
strongly (resp. weakly) synchronizing term for it. A set STweak(A) is a set of
all weakly synchronizing terms of A and STstrong(A) is a set of all strongly
synchronizing terms of A.

Observe that strong synchronization implies weak synchronization and both
synchronization types are equivalent either when the alphabet of the DFTA
does not contain constants or when the maximum arity is 1.

We shall focus on the analysis of the following functions that describe the
value we wish to bound.

Definition 3 (wsh & ssh). Let As be the set of all strongly synchronizing
DFTAs where ∀A ∈ As and A = (Q,F ,Δ) we have |Q| = n, |F \ F0| = m
and ∀f ∈ F : arity(f) ≤ r, then

ssh(n,m, r) = max
A∈As

(

min
t∈STstrong(A)

height(t)
)

.
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Similarly, let Aw be the set of all weakly synchronizing DFTAs, where addition-
ally F0 
= ∅, then wsh(n,m, r) = maxA∈Aw

(
mint∈STweak(A) height(t)

)
.

The reason why the function wsh requires DFTAs with constants is that in
automata without constants all weakly synchronizing terms are strongly syn-
chronizing and it is not hard to see that such automata would be the worst case
and therefore wsh would equal ssh. The existence of constants in the DFTAs,
however, is a crucial assumption that allows polynomial bounds of wsh.

A DFTA with symbols of arity 1 is equivalent to a string automaton (omit-
ting initial and final states), and so they share synchronization bounds.

Remark 1. ∀n ≥ 1,m ≥ 2 : wsh(n,m, 1) = ssh(n,m, 1) = sl(n)

4 Weak Synchronization

In this section, we show the upper bound for the height of the smallest weakly
synchronizing term which is similar to the string case. Although the term can
contain any number of variables, the worst case can actually be reduced to a
single variable and such terms can be encoded into a string for which we can
create a synchronizing DFA. However, we are not sure whether the lower bound
is better or worse than the string case. We leave this as an open question.

Lemma 1. If for a DFTA A = (Q,F ,Δ) exists a ground term t ∈ T (F) such
that Δ̃(t) = q for some q ∈ Q, then there exists a ground term t′ such that
Δ̃(t′) = q and height(t′) < n where n = |Q|.
Proof (sketch). In the evaluation of Δ̃Q(t), each state can occur only once on
every path from the root to a constant. Otherwise, the term can be reduced
while the state in the root will not change. �
Theorem 1 (Bounds for smallest weakly synchronizing term height).
For every n ≥ 1, m ≥ 2 and r ≥ 2 applies wsh(n,m, r) < sl(n) + n

Proof (sketch). In a synchronizing term, substituting a variable with arbitrary
constant preserves synchronization, therefore without loss of generality, we can
assume the smallest weakly synchronizing term contains just one variable.

The term is therefore a path from the root to the variable with ground terms
attached to it. Since each ground term has a well-defined state in its root, we
can encode the path into a string, such that each symbol contains information
about the ranked symbol, the index of the child on the path to the variable, and
states of ground terms in remaining children. The root is the last symbol in the
string.

From the DFTA we can then construct a string automaton for such strings,
that ends in the same states as the DFTA would in the root of the original term
and therefore it is synchronizing iff the DFTA is weakly synchronizing. From
a synchronizing word, we can then construct a weakly synchronizing term by
substituting states of ground terms with some actual ground term. The depth
of the variable is therefore at most sl(n) and based on Lemma 1 a ground term
can further increase the height by less than n. �
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5 Strong Synchronization

In this section, we study the bounds of strong synchronization. We will first show
an exponential upper bound for the height of the smallest strongly synchronizing
term, then we will show, that, unlike the weak synchronization, the lower bound
will be super-polynomial. We will show that by constructing a DFTA and prov-
ing the height of its smallest strongly synchronizing term. We provide two such
constructions, one with an alphabet of linear size with a smaller bound, and the
other with an alphabet of quadratic size, that is closer to the upper bound.

First, let us show a general upper bound for the height of the smallest syn-
chronizing term.

Theorem 2. For a strongly synchronizing DFTA A = (Q,F ,Δ) with n = |Q|
there exists a strongly synchronizing term t such that height(t) ≤ 2n − n − 1.
Therefore ssh(n,m, r) ≤ 2n − n − 1 for n ≥ 1.

Proof (sketch). The evaluation Δ̃Q of the sequence of subterms starting from a
variable and going up to t cannot repeat any set of states. Otherwise, we could
exchange the bigger subterm with the smaller one with the same evaluation and
make the whole synchronizing term smaller. �

5.1 Lower Bound with Linear Size Alphabet

In this section, we create an n-state DFTA with linear size alphabet, where the
height of the smallest strongly synchronizing term is roughly 2n−√

n. The main
idea is to simulate the behavior of a binary subtractor. We imagine a subset of
states as a binary number where a bit is set to 1 if a specific state is present in
the subset. Evaluation starts in variables, where the binary number has all bits
set to 1. In each transition, we decrease the value of the number by at most 1.
The children of the term have to contain identical terms and a correct symbol
must be used to decrease the binary number. The synchronization is achieved
when we reach the value of 0. The transition function is designed in such a way
that this sequence of transitions is forced. When an incorrect symbol is used the
binary number may not decrease which delays synchronization.

Recall that subtracting 1 from a binary number sets the least significant bit
containing 1 to 0 and all less significant bits to 1 (e.g. 10100 → 10011). Alphabet
symbols will be used to represent the position of the least significant one. To set
many zeroes to ones, the automaton will use roughly

√
n auxiliary states, which

will be kept until the very last transition. One additional special state � will
be present at all times and the automaton will synchronize to this state. The
remaining approximately n − √

n states will represent the binary number.

Definition 4 (Binary subtractor DFTA). For n ≥ 1 let us have integers
α ≥ 0 and β ≥ 0 such that n = 1 + β + α and if n > 1 then β ≥ 1 and
(β − 1)2 ≤ α ≤ β2. We define Binary subtractor DFTA as A−

n = (Q,F ,Δ)
where Q = {�} ∪ Pβ ∪ Qα, Pβ = {pβ−1, . . . , p0}, Qα = {qα−1, . . . , q0}, F =
{a0

2, . . . , a
α−1
2 , b2}, and Δ is described in Table 1.
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Table 1. Transition function Δ of A−
n . Underlined transitions are not supposed to be

used in the smallest strongly synchronizing term. Gray transitions are redundant for
the result and default to �.

Δ(ai
2, ↓, →) � pj qj , j > i qj , j = i qj , j < i

� � pj qj � qj

pk pk q(jβ+k) mod i � � qi

qk, k > i qk � � � �
qk, k = i � � � � �
qk, k < i qk qi � � �

Δ(b2, ↓, →) � pj qj

� � � qj

pk � � pk

qk qk pj �

For a set of states S ⊆ Q we denote Bα(S) a binary integer and Bαi(S) is
i-th bit of Bα(S) (starting from the least significant bit), such that Bαi(S) =
1 ⇐⇒ qi ∈ S for all 0 ≤ i < α. We also denote LSO(k) = log2(k ⊕ (k − 1))
function giving the position of least significant one in the binary representation
of integer k > 0, where ⊕ is bit-wise xor operator (e.g. LSO(1001002) = 2).

b2

a
LSO(1)
2

a
LSO(2)
2

a
LSO(3)
2a

LSO(3)
2

a
LSO(2)
2

a
LSO(3)
2a

LSO(3)
2

a
LSO(1)
2

a
LSO(2)
2

a
LSO(3)
2a

LSO(3)
2

a
LSO(2)
2

a
LSO(3)
2a

LSO(3)
2

Fig. 2. The smallest strongly synchronizing term (nodes denoted by ∗ contain some
distinct variable), for DFTA A−

5 = (Q, F , Δ), with Q = {�, p0, p1, q1, q0} and F =
{a0

2, a
1
2, b2}. For such automaton therefore α = 2 and Bα(Q) = 2α − 1 = 3. LSO

gives the position of the least significant one in a binary number, therefore LSO(3) =
0,LSO(2) = 1, and LSO(1) = 0.

Figure 2 shows an example of the smallest synchronizing term of A−
n with

n = 5.
Notice, that both Δ(ai

2,�,�) = � and Δ(b2,�,�) = � so the � state is
ever-present. States Pβ are also in all sets except after transitioning on symbol
b2 when no state from Qα is present in states of children, which produces a set
containing only � and so achieves synchronization.

Next, we prove that the transition function of A−
n either decreases the value of

Bα by 1 or otherwise leaves the value unchanged in the best case. The idea is that
all bits of Bα of children are merged, except for the i-th bit when transitioning
on symbol ai

2 when no bit after i is set in both children. In such case, i-th bit
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is removed and all less significant bits are set to 1 using auxiliary states Pβ ,
thus the value decreases exactly by 1. Therefore to decrease the value, both
children must have identical sets of states and transition must be done with an
appropriate symbol corresponding to the position of the least significant one.

Lemma 2. For all n ≥ 1 and A−
n let S = {�} ∪ Pβ ∪ Q′

α and S′ = {�} ∪ Pβ ∪
Q′′

α where Q′
α, Q′′

α ⊆ Qα. Then Bα(Δ(ai
2, S, S′)) = max(Bα(S), Bα(S′)) − 1 if

LSO(Bα(S)) = LSO(Bα(S′)) = i.
Otherwise Bα(Δ(f, S, S′)) ≥ max(Bα(S), Bα(S′)), when f ∈ F \ {ai

2}.
Proof. (sketch). In the case of transition on ai

2 the transition function creates the
binary number Bα(Δ(ai

2, S, S′)), such that, using state �, all bits set in Bα(S)
and Bα(S′) on position higher than i remain also set, and every bit after i is set
using pairs of auxiliary states Pβ (which remain active till the last transition).
Except for the position i the new number always has all bits from Bα(S) and
Bα(S′) set and maybe some more. The bit on position i is set only when Bα(S)
or Bα(S′) has a bit set on a position smaller than i and in such case, the value
can always be at least the maximum of Bα(S) and Bα(S′). The decrease in
value, therefore, happens when LSO(LSO(Bα(S)) = LSO(Bα(S′)) = i and both
children don’t have disjoint bits set. In the case of transition on b2, all states are
preserved when Bα(S) and Bα(S′) are not zero. �

The height of the smallest strongly synchronizing term will be shown to be 2α.
However, based on how α is defined, an exact formula for the height with given
n would be very complicated and not very interesting. We will show asymptotic
bounds for it instead.

Lemma 3. For n ≥ 1 and A−
n applies 2α = Θ(2n−√

n).

Proof (sketch). Using (β − 1)2 ≤ α ≤ β2 we lower and upper bound the “worst
case” and solve for 2α. In both cases substituting α with n results in a value
that falls into Θ

(
2n−√

n
)
. �

Finally, we prove the height of the smallest synchronizing term in A−
n .

Theorem 3. For n ≥ 1 the height of the smallest strongly synchronizing term
in automaton A−

n is 2α = Θ(2n−√
n) and therefore ssh(n,m, r) = Ω(2n−√

n) for
alphabet size m ≥ f(n) where f(n) ∈ Ω(n − √

n) and maximum arity r ≥ 2.

Proof. Any strongly synchronizing term of A−
n must have in its root symbol b2

and for sets of states of children S and S′ must apply that Bα(S) = Bα(S′) = 0.
This is the only way to get rid of states Pβ and since state � is always present,
every synchronizing term must synchronize to this state. Since Bα(Q) = 2α − 1
and based on Lemma 2 any transition can decrease the binary number by at most
1, every variable in the synchronizing term has to be at a position in depth at
least 2α. To achieve a decrease of the binary number at every transition (except
for the root), the smallest strongly synchronizing term t of A−

n , therefore, has
at every position p ∈ SubtPos(t) symbol a

LSO(depth(p))
2 when depth(p) > 0,

and symbol b2 when depth(p) = 0 to achieve final synchronization. Therefore
height(t) = 2α and based on Lemma 3 height(t) = Θ(2n−√

n). �
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5.2 Lower Bound with Quadratic Size Alphabet

The main idea is to represent combinations
(
n−1

k

)
on n − 1 states and force the

synchronizing term to go through every combination starting from
(
n−1
n−1

)
, then

(
n−1
n−2

)
,
(
n−1
n−3

)
, . . . ,

(
n−1
1

)
, and last

(
n−1
0

)
. The last state denoted � is always on,

hence,
(
n−1
0

)
is the only combination that together with � has only 1 state active

and it is the state in which evaluation of any strongly synchronizing term needs
to end in.

Now we recall an operation that iterates through all combinations
(
n−1

k

)
for a

fixed k. We denote it NEXT(B) and it reorders bits in a binary number B, shown
in Fig. 3, such that it takes the maximum block of least significant consecutive
ones and moves the most significant one within the block to a bit higher by one
and it moves all the remaining ones to the least significant bits. The number
representing the first combination has all ones aligned in the least significant
bits.

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

0000111111101101

1111110000011101

B =

NEXT(B) =

Fig. 3. An example application of the NEXT operation on a binary number.

The last binary number we can create with the NEXT operation has all ones
aligned in the most significant bits. For such a number then the operation is
undefined. We denote NEXT∗(B) a set of binary numbers that is a closure of
{B} on the NEXT operation, i.e., all numbers following from B onward.

Remark 2. Let B and B′ be binary numbers with the same number of bits set
to 1. If B′ ≥ B then B′ ∈ NEXT∗(B).

To lower k we shall use a FLIP operation that assumes that all 1 bits are all
in the block of most significant bits and results in a number that has one less
bits set to 1 and all of them are in a block of least significant bits.

Definition 5 (Combination DFTA). For n ≥ 1 let combination DFTA
denoted as Ac

n = (Q,F ,Δ) be such that Q = {�, sn−2, . . . , s0}, F = {f2}∪{ai,j
2 |

n − 2 > i ≥ j ≥ 0} all with arity 2, and let Δ be defined as in Table 2.

Let B(S) be a binary representation of states S = sn−2, . . . , s0 after eval-
uation of Δ̃Q(t1). We will see that transitions Δ̃Q(ai,j

2 , t1, t2) for appropriate i

and j represent operation NEXT(B(S)), Δ̃Q(f2, t1, t2) represents FLIP(B(S)),
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Table 2. Transition function Δ of Ac
n. Underlined transitions are not supposed to

be used in the smallest strongly synchronizing term and underdashed transitions are
redundant for such term. Gray transitions are redundant for the result and default to
�.

Δ(ai,j
2 , →, ↓) � sk si+1 si+1 si si sk sj−1 sk

k > i + 1 j = 0 j > 0 j = 0 j > 0 i > k ≥ j j − 1 > k

� � sk si si si+1 si+1 sk−j si−1 si−j+k

rest � � si+1 si−j � s0 sk−j+1 si+1 si−j+k+1

Δ(f2, →, ↓) � sn−2 sk, k < n − 2

� � � sn−3−k

rest � � sn−3−(k+1 mod n−2)

and that “wrong” use of these symbols does not happen in the smallest strongly
synchronizing term.

We can see that the transition function with ai,j
2 and � on the right side

maps every state on the left side as in Fig. 3, resulting in the NEXT operation
when i and j are correct. Transitions with other states than � on the right side
work with two blocks of states, one from si to sj (where we expect all states
to be present) and the other consisting of si+1 and states before sj (which we
don’t expect to be present), and each state is cyclically mapped to the next state
within the block. If each block is not full or empty, then this operation increases
the number of states in the result, and if the first block is empty and the second
is full, then the binary number representing the result will be smaller than the
left side. A similar thing happens in transitions with f2.

Now we prove the height of the smallest strongly synchronizing term in
automaton Ac

n. Note that the size of the alphabet is |F| = 1+(
(
n−2
2

)
+(n−2)) =

1
2 (n2 − 3n + 4).

Theorem 4. For n ≥ 1 the height of the smallest strongly synchronizing term
in automaton Ac

n is 2n−1 − 1 and therefore ssh(n,m, r) ≥ 2n−1 for alphabet size
m ≥ 1

2 (n2 − 3n + 4) and maximum arity r ≥ 2.

Proof (sketch). The transitions essentially depend only on the left child of every
term. The number of ones in B is decreased only if all ones occupy the most
significant bits by using FLIP. As NEXT moves to the next combination when
used correctly and goes to a state that was already visited when used incorrectly.
Hence, we iterate through all 2n−1 combinations on n − 1 states. Term height is
one less than the number of states so it is 2n−1 − 1. �

6 Conclusion

We defined weakly and strongly synchronizing terms of a DFTA and proved pos-
sible bounds of functions corresponding to the maximum height of the smallest
synchronizing term of the respective type.
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For weak synchronization, we proved the upper bound wsh(n,m, r) < sl(n)+
n for n ≥ 1,m ≥ 2 and r ≥ 2, i.e., it is slightly bigger than the length of the
shortest synchronizing string, which is polynomial. We are not sure whether the
actual lower bound will be smaller or bigger than the string case, therefore we
leave it as an open problem.

For strong synchronization, we proved the upper bound ssh(n,m, r) ≤ 2n −
n− 1 for n ≥ 1, and lower bounds with r ≥ 2 of Ω(2n−√

n) for m ≥ f(n), f(n) ∈
Ω(n − √

n), and 2n−1 − 1 for m ≥ 1
2 (n2 − 3n + 4). A lower bound for constant

size alphabet as well as closing the gap in general are topics for further research.
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Abstract. Deciding formulas that mix arithmetic and uninterpreted
predicates is of practical interest, notably for applications in verification.
Some decision procedures consist in building by structural induction an
automaton that recognizes the set of models of the formula under anal-
ysis, and then testing whether this automaton accepts a non-empty lan-
guage. A drawback is that universal quantification is usually handled by
a reduction to existential quantification and complementation. For logi-
cal formalisms in which models are encoded as infinite words, this hinders
the practical use of this method due to the difficulty of complementing
infinite-word automata. The contribution of this paper is to introduce
an algorithm for directly computing the effect of universal first-order
quantifiers on automata recognizing sets of models, for formulas involv-
ing natural numbers encoded in unary notation. This paves the way to
implementable decision procedures for various arithmetic theories.
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1 Introduction

Automated reasoning with arithmetic theories is of primary importance, notably
for verification, where Satisfiability Modulo Theories (SMT) solvers are regularly
used to discharge proof obligations. It is well known however that mixing arith-
metic with uninterpreted symbols quickly leads to undecidable languages. For
instance, extending Presburger arithmetic, i.e., the first-order additive theory of
integer numbers, with just one uninterpreted unary predicate makes it undecid-
able [7,8,15]. There exist decidable fragments mixing arithmetic and uninter-
preted symbols that are expressive enough to be interesting, for instance, the
monadic second-order theory of N under one successor (S1S).

The decidability of S1S has been established thanks to the concept of infinite-
word automaton [6]. In order to decide whether a formula ϕ is satisfiable, the

Research reported in this paper was supported in part by an Amazon Research Award,
Fall 2022 CFP. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not reflect the views of Amazon.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 91–102, 2023.
https://doi.org/10.1007/978-3-031-40247-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40247-0_6&domain=pdf
http://orcid.org/0009-0009-4721-3824
http://orcid.org/0000-0003-4700-6031
http://orcid.org/0009-0003-5545-4579
https://doi.org/10.1007/978-3-031-40247-0_6


92 B. Boigelot et al.

approach consists in building an automaton that recognizes the set of its mod-
els, encoded in a suitable way, and then checking that this automaton accepts a
non-empty language. Such an automaton has one separate input tape for each
first-order and second-order free variable of ϕ. It is constructed by starting
from elementary automata representing the atoms of ϕ, and then translating
the effect of Boolean connectives and quantifiers into corresponding operations
over automata. For instance, applying an existential quantifier simply amounts
to removing from the automaton the input tape associated to the quantified
variable. Universal quantification reduces to existential quantification thanks to
the equivalence ∀xϕ ≡ ¬∃x¬ϕ.

Even though this approach has originally been introduced as a purely the-
oretical tool, it is applied in practice to obtain usable decision procedures for
various logics. In particular, the tool MONA [9] uses this method to decide a
restricted version of S1S, and tools such as LASH [3] and Shasta [14] use a sim-
ilar technique to decide Presburger arithmetic. The LASH tool also generalizes
this result by providing an implemented decision procedure for the first-order
additive theory of mixed integer and real variables [2].

A major issue in practice is that the elimination of universal quantifiers
relies on complementation, which is an operation that is not easily implemented
for infinite-word automata [13,17]. Actual implementations of automata-based
decision procedures elude this problem by restricting the language of interest
or the class of automata that need to be manipulated. For instance, the tool
MONA only handles Weak S1S (WS1S) which is, schematically, a restriction
of S1S to finite subsets of natural numbers [5]. The tool LASH handles the
mixed integer and real additive arithmetic by working with weak deterministic
automata, which are a restricted form of infinite-word automata admitting an
easy complementation algorithm [2].

The contribution of this paper is to introduce a direct algorithm for comput-
ing the effect of universal first-order quantification over infinite-word automata.
This is an essential step towards practical decision procedures for more expres-
sive fragments mixing arithmetic with uninterpreted symbols. The considered
automata are those that recognize models of formulas over natural numbers
encoded in unary notation. This algorithm does not rely on complementa-
tion, and can be implemented straightforwardly on unrestricted infinite-word
automata. As an example of its potential applications, this algorithm leads to a
practically implementable decision procedure for the first-order theory of natural
numbers with the order relation and uninterpreted unary predicates. It also paves
the way to a decision procedure for SMT solvers for the UFIDL (Uninterpreted
Functions and Integer Difference Logic) logic with only unary predicates.

2 Basic Notions

2.1 Logic

We address the problem of deciding satisfiability for formulas expressed in first-
order structures of the form (N, R1, R2, . . .), where N is the domain of natural
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numbers, and R1, R2, . . . are (interpreted) relations over tuples of values in N.
More precisely, each Ri is defined as a relation Ri ⊆ N

αi for some αi > 0 called
the arity of Ri.

The formulas in such a structure involve first-order variables x1, x2, . . . , and
second-order variables X1, X2, . . . Formulas are recursively defined as

– �, ⊥, xi = xj , Xi = Xj , Xi(xj) or Ri(xj1 , . . . , xjαi
), where i, j, j1, j2, . . . ∈

N>0 (atomic formulas),
– ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 or ¬ϕ, where ϕ1, ϕ2 and ϕ are formulas, or
– ∃xi ϕ or ∀xi ϕ, where ϕ is a formula.

We write ϕ(x1, . . . , xk,X1, . . . , X�) to express that x1, . . . , xk,X1, . . . , X� are the
free variables of ϕ, i.e., that ϕ does not involve other unquantified variables.

An interpretation I for a formula ϕ(x1, . . . , xk,X1, . . . , X�) is an assignment
of values I(xi) ∈ N for all i ∈ [1, k] and I(Xj) ⊆ N for all j ∈ [1, �] to its free
variables. An interpretation I that makes ϕ true, which is denoted by I |= ϕ, is
called a model of ϕ.

The semantics is defined in the usual way. One has

– I |= � and I �|= ⊥ for every I.
– I |= xi = xj and I |= Xi = Xj iff (respectively) I(xi) = I(xj) and I(Xi) =

I(Xj).
– I |= Xi(xj) iff I(xj) ∈ I(Xi).
– I |= Ri(xj1 , . . . , xjαi

) iff (I(xj1), . . . , I(xjαi
)) ∈ Ri.

– I |= ϕ1 ∧ ϕ2, I |= ϕ1 ∨ ϕ2 and I |= ¬ϕ iff (respectively) (I |= ϕ1) ∧ (I |= ϕ2),
(I |= ϕ1) ∨ (I |= ϕ2), and I �|= ϕ.

– I |= ∃xi ϕ(x1, . . . , xk,X1, . . . , X�) iff there exists n ∈ N such that I[xi = n] |=
ϕ(x1, . . . , xk,X1, . . . , X�).

– I |= ∀xi ϕ(x1, . . . , xk,X1, . . . , X�) iff for every n ∈ N, one has I[xi = n] |=
ϕ(x1, . . . , xk, X1, . . . , X�).

In the two last rules, the notation I[xi = n], where n ∈ N, stands for the
extension of the interpretation I to one additional first-order variable xi that
takes the value n, i.e., the interpretation such that I[xi = n](xj) = I(xj) for all
j ∈ [1, k] such that j �= i, I[xi = n](xi) = n, and I[xi = n](Xj) = I(Xj) for all
j ∈ [1, �].

A formula is said to be satisfiable if it admits a model.

2.2 Automata

A finite-word or infinite-word automaton is a tuple A = (Σ,Q,Δ,Q0, F ) where
Σ is a finite alphabet, Q is a finite set of states, Δ ⊆ Q × (Σ ∪ {ε}) × Q is
a transition relation, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accepting states.

A path of A from q0 to qm, with q0, qm ∈ Q and m ≥ 0, is a finite
sequence π = (q0, a0, q1); (q1, a1, q2); . . . ; (qm−1, am−1, qm) of transitions from Δ.
The finite word w ∈ Σ∗ read by π is w = a0a1 . . . am−1; the existence of such a
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path is denoted by q0
w→ qm. A cycle is a non-empty path from a state to itself.

If A is a finite-word automaton, then a path π from q0 to qm is accepting if
qm ∈ F . A word w ∈ Σ∗ is accepted from the state q0 if there exists an accepting
path originating from q0 that reads w.

For infinite-word automata, we use a Büchi acceptance condition for the sake
of simplicity, but the results of this paper straightforwardly generalize to other
types of infinite-word automata. If A is an infinite-word automaton, then a run
of A from a state q0 ∈ Q is an infinite sequence σ = (q0, a0, q1); (q1, a1, q2); . . .
of transitions from Δ. This run reads the infinite word w = a0a1 . . . ∈ Σω. The
run σ is accepting if the set inf (σ) formed by the states qi that occur infinitely
many times in σ is such that inf (σ) ∩ F �= ∅, i.e., there exists a state in F that
is visited infinitely often by σ. A word w ∈ Σω is accepted from the state q0 ∈ Q
if there exists an accepting run from q0 that reads w.

For both finite-word and infinite-word automata, a word w is accepted by A
if it is accepted from an initial state q0 ∈ Q0. The set of all words accepted from
a state q ∈ Q (resp. by A) forms the language L(A, q) accepted from q (resp.
L(A) accepted by A). An automaton accepting L(A, q) can be derived from A
by setting Q0 equal to {q}. The language of finite-words w read by paths from
q1 to q2, with q1, q2 ∈ Q, is denoted by L(A, q1, q2); a finite-word automaton
accepting this language can be obtained from A by setting Q0 equal to {q1} and
F equal to {q2}. A language is said to be regular (resp. ω-regular) if it can be
accepted by a finite-word (resp. an infinite-word) automaton.

3 Deciding Satisfiability

3.1 Encoding Interpretations

In order to decide whether a formula ϕ(x1, . . . , xk,X1, . . . , X�) is satisfiable,
Büchi introduced the idea of building an automaton that accepts the set of all
models of ϕ, encoded in a suitable way, and then checking whether it accepts a
non-empty language [5,6].

A simple encoding scheme consists in representing the value of first-order
variables xi in unary notation: A number n ∈ N is encoded by the infinite word
0n10ω over the alphabet {0, 1}, i.e., by a word in which the symbol 1 occurs only
once, at the position given by n. This leads to a compatible encoding scheme for
the values of second-order variables Xj : a predicate P ⊆ N is encoded by the
infinite word a0a1a2 . . . such that for every n ∈ N, an ∈ {0, 1} satisfies an = 1 iff
n ∈ P , i.e., if P (n) holds.

Encodings for the values of first-order variables x1, . . . , xk and second-order
variables X1, . . . , X� can be combined into a single word over the alphabet
Σ = {0, 1}k+�: A word w ∈ Σω encodes an interpretation I for those variables
iff w = (a0,1, . . . , a0,k+�)(a1,1, . . . , a1,k+�) . . ., where for each i ∈ [1, k], a0,ia1,i . . .
encodes I(xi), and for each j ∈ [1, �], a0,k+ja1,k+j . . . encodes I(Xj). Note that
not all infinite words over Σ form valid encodings: For each first-order variable
xi, an encoding must contain exactly one occurrence of the symbol 1 for the i-th



Universal First-Order Quantification over Automata 95

q0 q1 q2

(0), (1) (0), (1) (0), (1)

(0), (1)
{x1}

(1)
{x2}

(a) x1 < x2 X1(x2)

q0 q1 q2

(0), (1) (0), (1) (0), (1)

(0), (1)
{x1}

(1)

(b) x2(x1 < x2 X1(x2))

Fig. 1. Automata recognizing sets of models.

component of its tuple symbols. Assuming that the set of variables is clear from
the context, we write e(I) for the encoding of I with respect to those variables.

3.2 Automata Recognizing Sets of Models

Let S be a set of interpretations for k first-order and � second-order variables.
The set of encodings of the elements of S forms a language L over the alphabet
{0, 1}k+�. If this language is ω-regular, then we say that an automaton A that
accepts L recognizes, or represents, the set S. Such an automaton can be viewed
as having k + � input tapes reading symbols from {0, 1}, each of these tapes
being associated to a variable. Equivalently, we can write the label of a transition

(q1, (a1, . . . , ak+�), q2) ∈ Δ as
(ak+1,...,ak+�)

V where V is the set of the variables xi,
with i ∈ [1, k], for which ai = 1. In other words, each transition label distinct
from ε specifies the set of first-order variables whose value corresponds to this
transition, and provides one symbol for each second-order variable. For each
xi ∈ V , we then say that xi is associated to the transition. Note that every
transition for which V �= ∅ can only be followed at most once in an accepting
run. Any automaton recognizing a set of valid encodings can therefore easily be
transformed into one in which such transitions do not appear in cycles, and that
accepts the same language.

An example of an automaton recognizing the set of models of the formula
ϕ(x1, x2,X1) = x1 < x2 ∧ X1(x2) is given in Fig. 1a. For the sake of clarity, labels
of transitions sharing the same origin and destination are grouped together, and
empty sets of variables are omitted.

3.3 Decision Procedure

For the automata-based approach to be applicable, it must be possible to con-
struct elementary automata recognizing the models of atomic formulas. This is
clearly the case for atoms of the form xi = xj , Xi = Xj and Xi(xj), and this
property must also hold for each relation Ri that belongs to the structure of
interest; in other words, the atomic formula Ri(x1, x2, . . . , xαi

) must admit a
set of models whose encoding is ω-regular. With the positional encoding of nat-
ural numbers, this is the case in particular for the order relation xi < xj and
the successor relation xj = xi + 1. Note that one can easily add supplementary
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variables to an automaton, by inserting a new component in the tuples of its
alphabet, and making this component read a symbol 1 at any single position of
a run for first-order variables, and any symbol at any position for second-order
ones. Reordering the variables is a similarly immediate operation.

After automata recognizing the models of atomic formulas have been
obtained, the next step consists in combining them recursively by following the
syntactic structure of the formula to be decided. Let us denote by Lϕ the lan-
guage of encodings of all the models of a formula ϕ, i.e., Lϕ = {e(I) | I |= ϕ}.

For the Boolean operator ∧, we have Lϕ1∧ϕ2 = Lϕ1 ∩ Lϕ2 , where ϕ1 and ϕ2

are formulas over the same free variables. Similarly, we have Lϕ1∨ϕ2 = Lϕ1 ∪Lϕ2 .
The case of the complement operator ¬ is slightly more complicated, since the
complement of a language of encodings systematically contains words that do not
validly encode an interpretation. The set of models of a formula ¬ϕ is encoded
by the language Lϕ ∩ Lvalid , where Lvalid is the language of all valid encodings
consistent with the free variables of ϕ. It is easily seen that this language is
ω-regular.

It remains to compute the effect of quantifiers. The language L∃xiϕ can
be derived from Lϕ by removing the i-th component from each tuple sym-
bol, i.e., by applying a mapping Π �=i : Σk+� → Σk+�−1 : (a1, . . . , ak+�) �→
(a1, . . . , ai−1, ai+1, . . . , ak+�) to each symbol of the alphabet. Indeed, the mod-
els of ∃xi ϕ correspond exactly to the models of ϕ in which the variable xi is
removed. In the rest of this paper, we will use the notation Π�=i(w), where w is
a finite or infinite word, to express the result of applying Π�=i to each symbol in
w. If L is a language, then we write Π�=i(L) for the language {Π�=i(w) | w ∈ L}.

Finally, universal quantification can be reduced to existential quantification:
For computing L∀xiϕ, we use the equivalence ∀xi ϕ ≡ ¬∃xi ¬ϕ which yields
L∀xiϕ = L∃xi¬ϕ ∩ Lvalid .

3.4 Operations over Automata

We now discuss how the operations over languages mentioned in Sect. 3.3 can be
computed over infinite-word automata. Given automata A1 and A2, automata
A1 ∩ A2 and A1 ∪ A2 accepting respectively L(A1)∩ L(A2) and L(A1)∪ L(A2)
can be obtained by the so-called product construction. The idea consists in
building an automaton A that simulates the combined behavior of A1 and A2

on identical input words. The states of A need to store additional information
about the accepting states that are visited in A1 and A2. For A1 ∩ A2, one
ensures that each accepting run of A correspond to an accepting run in both A1

and A2. For A1 ∪ A2, the condition is that the run should be accepting in A1

or A2, or both. A complete description of the product construction for Büchi
automata is given in [16].

Modifying the alphabet of an automaton in order to implement the effect
of an existential quantification is a simple operation. As an example, Fig. 1b
shows an automaton recognizing the set of models of ∃x2(x1 < x2 ∧ X1(x2)),
obtained by removing all occurrences of the variable x2 from transition labels.
Testing whether the language accepted by an automaton is not empty amounts
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to checking the existence of a reachable cycle that visits at least one accepting
state, which is simple as well.

The only problematic operation is complementation, which consists in com-
puting from an automaton A an automaton that accepts the language L(A).
Although it preserves ω-regularity, this operation is difficult to perform on
Büchi automata [13,17]. In the context of our decision procedure, it is only
useful for applying universal quantifiers. Indeed, other instances of the nega-
tion operator in formulas can be pushed inwards until they are applied to
atomic formulas, and it is easy to construct the complement of the elemen-
tary automata recognizing the models of those atomic formulas, provided that
for each relation Ri in the structure of interest, an automaton recognizing
{(x1, . . . , xαi

) ∈ N
αi | ¬Ri(x1, . . . , xαi

)} is available. In order to eliminate the
need for complementation, we develop in the next section a direct algorithm
for computing the effect of universal quantifiers on automata recognizing sets of
models.

4 Universal Quantification

4.1 Principles

Let ϕ(x1, . . . , xk,X1, . . . , X�), with k > 0 and � ≥ 0, be a formula. Our goal is
to compute an automaton A′ accepting L∀xiϕ, given an automaton A accepting
Lϕ and i ∈ [1, k].

By definition of universal quantification, we have I |= ∀xi ϕ iff I[xi = n] |= ϕ
holds for every n ∈ N. In other words, L∀xiϕ contains e(I) iff Lϕ contains
e(I[xi = n]) for every n ∈ N. Conceptually, we can then obtain L∀xiϕ by defining
for each n ∈ N the language Sn = {e(I) | e(I[xi = n]) ∈ Lϕ}, which yields
L∀xiϕ =

⋂
n∈N

Sn.
An automaton A′ accepting L∀xiϕ can be obtained as follows. Each language

Sn, with n ∈ N, is accepted by an automaton An derived from A by restricting
the transitions associated to xi to be followed only after having read exactly n
symbols. In other words, the accepting runs of An correspond to the accepting
runs of A that satisfy this condition. After imposing this restriction, the variable
xi is removed from the set of variables managed by the automaton, i.e., the
operator Π �=i is applied to the language that this automaton accepts, so as to
get Sn = L(An). The automaton A′ then corresponds to the infinite intersection
product of the automata An for all n ∈ N, i.e., an automaton that accepts the
infinite intersection

⋂
n∈N

Sn. We show in the next section how to build A′ by
means of a finite computation.

4.2 Construction

The idea of the construction is to make A′ simulate the join behavior of the
automata An, for all n ∈ N, on the same input words. This can be done by
making each state of A′ correspond to one state qn in each An, i.e., to an infinite
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tuple (q0, q1, . . .). By definition of An, there exists a mapping μ : Qn → Q, where
Qn and Q are respectively the sets of states of An and A, such that whenever a
run of An visits qn, the corresponding run of A on the same input word visits
μ(qn).

If two automata An1 and An2 , with n1, n2 ∈ N, are (respectively) in states qn1

and qn2 such that μ(qn1) = μ(qn2), then they share the same future behaviors,
except for the requirement to follow a transition associated to xi after having
read (respectively) n1 and n2 symbols. It follows that the states of A′ can be
characterized by sets of states of A: The infinite tuple (q0, q1, . . .) is described
by the set {μ(qi) | i ∈ N}. Each element of this set represents the current state
of one or several automata among the An. This means that the number of these
automata that are in this current state is not counted. We will establish that
this abstraction is precise and leads to a correct construction.

During a run of A′, each transition with a label other than ε must correspond
to a transition reading the same symbol in every automaton An, which in turn
can be mapped to a transition of A. In the automaton An for which n is equal
to the number of symbols already read during the run, this transition of A is
necessarily associated to xi, by definition of An. It follows that every transition
of A′ with a non-empty label is characterized by a set of transitions of A, among
which one of them is associated to xi.

We are now ready to describe formally the construction of A′, leaving
for the next section the problem of determining which of its runs should be
accepting or not: From the automaton A = (Σ,Q,Δ,Q0, F ), we construct
A′ = (Σ′, Q′,Δ′, Q′

0, F
′) such that

– Σ′ = Π �=i(Σ).
– Q′ = 2Q \ {∅}.
– Δ′ contains

• the transitions (q′
1, (a

′
1, . . . , a

′
k+�−1), q

′
2) for which there exists a set T ⊆ Δ

that satisfies the following conditions:
* q′

1 = {q1 | (q1, (a1, . . . , ak+�), q2) ∈ T}.
* q′

2 = {q2 | (q1, (a1, . . . , ak+�), q2) ∈ T}.
* For all (q1, (a1, . . . , ak+�), q2) ∈ T , one has a′

j = aj for all j ∈ [1, i − 1],
and a′

j = aj+1 for all j ∈ [i, k + � − 1].
* There exists exactly one (q1, (a1, . . . , ak+�), q2) ∈ T such that ai = 1.

• the transitions (q′
1, ε, q

′
2) for which there exists a transition (q1, ε, q2) ∈ Δ

such that
* q1 ∈ q′

1.
* q′

2 = q′
1 ∪ {q2} or q′

2 = (q′
1 \ {q1}) ∪ {q2}.

– Q′
0 = 2Q0 \ {∅}.

– F ′ = Q′ for now. The problem of characterizing more finely the accepting
runs will be addressed in the next section.

The rule for the transitions (q′
1, (a

′
1, . . . , a

′
k+�−1), q

′
2) ensures that for each

q1 ∈ q′
1, each automaton An that is simulated by A′ has the choice of fol-

lowing any possible transition originating from q1 that has a label consistent
with (a′

1, . . . , a
′
k+�−1). One such automaton must nevertheless follow a transition
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{q0} {q0, q1} {q0, q1, q2}

(0), (1)

(0), (1)

(0), (1) (1)

Fig. 2. First step of construction for ∀x1∃x2(x1 < x2 ∧ X1(x2)).

associated to the quantified variable xi. The rule for the transitions (q′
1, ε, q

′
2)

expresses that one automaton An, or any number of identical copies of this
automaton, must follow a transition labeled by ε, while the other automata stay
in their current state.

As an example, applying this construction to the automaton in Fig. 1b, as a
first step of the computation of a representation of ∀x1∃x2(x1 < x2 ∧ X1(x2)),
yields the automaton given in Fig. 2. For the sake of clarity, unreachable states
and states from which the accepted language is empty are not depicted.

4.3 A Criterion for Accepting Runs

The automaton A′ defined in the previous section simulates an infinite combi-
nation of automata An, for all n ∈ N. By construction, every accepting run of
this infinite combination corresponds to a run of A′.

The reciprocal property is not true, in the sense that there may exist a run of
A′ that does not match an accepting run of the infinite combination of automata
An. Consider for instance a run of the automaton in Fig. 2 that ends up cycling
in the state {q0, q1, q2}, reading 0ω from that state. Recall that for this example,
the automaton A that undergoes the universal quantification operation is the
one given in Fig. 1b. The run that we have considered can be followed in A′,
but cannot be accepting in every An. Indeed, in this example, the transition of
An reading the (n + 1)-th symbol of the run corresponds, by definition of this
automaton, to the transition of A that is associated to the quantified variable
x1. By the structure of A, this transition is necessarily followed later in any
accepting run by one that reads the symbol 1, which implies that no word of the
form u · 0ω, with u ∈ {0, 1}∗, can be accepted by a run of An such that n ≥ |u|.
This represents the fact that the words accepted by all An correspond to the
encodings of predicates that are true infinitely often.

One thus needs a criterion for characterizing the runs of A′ that correspond
to combinations of accepting runs in all automata An.

It is known [11] that two ω-regular languages over the alphabet Σ are equal
iff they share the same set of ultimately periodic words, i.e., words of the form
u · vω with u ∈ Σ∗ and v ∈ Σ+. It follows that it is sufficient to characterize
the accepting runs of A′ that read ultimately periodic words. The automaton
A′ accepts a word u · vω iff every An, with n ∈ N, admits an accepting run that
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reads this word. Note that such a run also matches a run of A, and that this
run of A always ends up following a cycle from an accepting state to itself.

Our solution takes the following form. For each state q of A, we define a
language Uq ⊆ Σ+ of non-empty words u such that A accepts uω from q, after
dismissing the input tape associated to the quantified variable xi. The alphabet
Σ is thus equal to {0, 1}k+�−1. Remember that each state q′ of A′ is defined as
a subset of states of A, corresponding to the current states in the combination
of copies of A that are jointly simulated by A′. In order for the word uω to be
accepted by A′ from q′, it should therefore be accepted by A from each state
q ∈ q′, i.e., u must belong to all the languages Uq such that q ∈ q′.

It must also be possible to read uω from the state q′ of A′. We impose a
stronger condition, by requiring that there exists a cycle from q′ to itself labeled
by u. This condition leads to a correct acceptance criterion.

In summary, the language U ′
q′ = L(A′, q′, q′) ∩ ⋂

q∈q′ Uq characterizes the
words u such that uω must be accepted from the state q′ of A′. Note that for
this property to hold, it is not necessary for the language Uq to contain all words
u such that uω ∈ Π �=i(L(A, q)), but only some number of copies up, where p > 0
is bounded, of each such u. In other words, the finite words u whose infinite
repetition is accepted from q do not have to be the shortest possible ones.

Once the language U ′
q′ has been obtained, we build a widget, in the form of

an infinite-word automaton accepting (U ′
q′)ω, along the state q′ of A′, and add

a transition labeled by ε from q′ to the initial state of this widget. This ensures
that every path that ends up in q′ can be suitably extended into an accepting
run. Such a widget does not have to be constructed for every state q′ of A′: Since
the goal is to accept from q′ words of the form uω, we can require that at least
one state q ∈ q′ is accepting in A. We then only build widgets for the states q′

that satisfy this requirement.

4.4 Computation Steps

The procedure for modifying A′ in order to make it accept the runs that match
those of the infinite combination of automata An, outlined in the previous
section, can be carried out by representing the regular languages Uq and U ′

q′

by finite-state automata. The construction proceeds as follows:

1. For each state q ∈ Q of A, build a finite-word automaton Aq that accepts all
the non-empty words u for which there exists a path q

v→ q of A that visits
at least one accepting state qF ∈ F , such that u = Π �=i(v). This automaton
can be constructed in a similar way as one accepting Π�=i(L(A, q, q)) (cf.
Sects 2.2 and 3.4), keeping one additional bit of information in its states for
determining whether an accepting state has already been visited or not.

2. For each pair of states q1, q2 ∈ Q of A, build a finite-word automaton Aq1,q2

accepting the language Π �=i(L(A, q1, q2)) (cf. Sects 2.2 and 3.4).
3. For each state q ∈ Q of A, build an automaton AUq

=
⋃

r∈Q (Aq,r ∩ Ar)
accepting the finite-word language Uq.
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{q0} {q0, q1} {q0, q1, q2} q′
repeat

(0), (1)

(0), (1)

(0), (1) (1)

(0), (1)

(0), (1)

(0), (1)

(1)

ε

ε

ε

Fig. 3. Automaton recognizing the set of models of ∀x1∃x2(x1 < x2 ∧ X1(x2)).

4. For each state q′ of A′ such that q′ ∩ F �= ∅, where F is the set of accepting
states of A, build a finite-word automaton A′

U ′
q′
= A′

q′ ∩ ⋂
q∈q′ AUq

accepting

U ′
q′ , where A′

q′ is an automaton accepting L(A′, q′, q′) (cf. Sect. 2.2).
5. Then, turn each automaton A′

U ′
q′

into an infinite-word automaton A′
(U ′

q′ )ω

accepting (U ′
q′)ω:

(a) Create a new state q′
repeat .

(b) Add a transition (q′
repeat , ε, q0) for each initial state q0, and a transition

(qF , ε, q′
repeat ) for each accepting state qF , of A′

U ′
q′

.

(c) Make q′
repeat the only initial and accepting state of A′

(U ′
q′ )ω .

6. For each state q′ of A′ considered at Step 4, add the widget A′
U ′

q′
alongside

q′, by incorporating its sets of states and transitions into those of A′, and
adding a transition (q′, ε, q′

repeat). In the resulting automaton, mark as the
only accepting states the states q′

repeat of all widgets.

This procedure constructs an automaton that accepts the language L∀xiϕ.
Applied to the automaton A′ in Fig. 2, it produces the result shown in Fig. 3. For
the sake of clarity, the states from which the accepted language is empty have
been removed. A detailed description of the computation steps for this example
and the proof of correctness of the construction are given in [1].

5 Conclusions

This paper introduces a method for directly computing the effect of a first-
order universal quantifier on an infinite-word automaton recognizing the set of
models of a formula. It is applicable when the first-order variables range over
the natural numbers and their values are encoded in unary notation. Among its
potential applications, it provides a solution for deciding the first-order theory
〈N, <〉 extended with uninterpreted unary predicates.

The operation on regular languages that corresponds to the effect of a univer-
sal first-order quantifier has already been studied at the theoretical level [12]. Our
contribution is to provide a practical algorithm for computing it, that does not
require to complement infinite-word automata. This algorithm has an exponen-
tial worst-case time complexity, which is unavoidable since there exist automata
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for which universal quantification incurs an exponential blowup in their number
of states (see [1] for details). The main advantage over the complementation-
based approach is however that this exponential cost is not systematic, since
only a fraction of the possible subsets of states typically need to be constructed.

Our solution is open to many possible improvements, one of them being to
extend the algorithm so as to quantify over several first-order variables in a single
operation. For future work, we plan to generalize this algorithm to automata over
more expressive structures, such as the automata over linear orders defined in [4].
This would make it possible to obtain an implementable decision procedure for,
e.g., the first-order theory 〈R, <〉 with uninterpreted unary predicates [10].
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Abstract. Synchronised shuffle operators allow to specify symbols on
which the operands must or can synchronise instead of interleave.
Recently, partial derivative and position based automata for regular
expressions with synchronised shuffle operators were introduced. In this
paper, using the framework of analytic combinatorics, we study the
asymptotic average state complexity of partial derivative automata for
regular expressions with strongly and arbitrarily synchronised shuffles.
The new results extend and improve the ones previously obtained for reg-
ular expressions with shuffle and intersection. For intersection, asymp-
totically the average state complexity of the partial derivative automaton
is 3, which significantly improves the known exponential upper-bound.

1 Introduction

Synchronised shuffle operators allow to specify symbols on which the operands
must or can synchronise instead of interleave. Intersection and shuffle can be seen
as two extreme cases, corresponding to strict synchronisation and pure interleav-
ing. Several variants were introduced and studied by ter Beek et al. [3], motivated
by modelling synchronisation in concurrent systems or certain gene operations in
molecular biology. Sulzmann and Thiemann [14] studied regular expressions with
a general synchronised shuffling operator and extended the notions of derivatives
and partial derivatives to these expressions. Broda et al. [7] defined a location
based position automaton for regular expressions with strongly, arbitrarily, and
weakly synchronised operators and showed that the partial derivative automa-
ton (defined in [14]) is a quotient of the position automaton. For a standard
regular expression α, the partial derivative automaton APD(α), introduced by
Antimirov [1], can also be obtained by solving a system of equations, whose
solution is a support set π(α), due to Mirkin [12]. In fact, the set of states of
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APD(α) is equal to π(α)∪{α}. In Bastos et al. [2], the rules for computing π(α)
were extended to regular expressions with intersection. However, in that case it
was shown that both constructions were not identical, as Mirkin’s construction
could have some states that were not accessible. Still, the inductive definition of
a support set is essential to obtain average complexity results using the frame-
work of analytic combinatorics [2,4–6]. In the worst-case, the number of states of
a partial derivative automaton for expressions with shuffle or intersection can be
exponential in the size of the expression. In the average-case, the known upper
bounds are smaller, but still exponential [2,5]. In this paper, we define new rules
for computing the support for a system of expression equations, where for each
alphabet symbol the solution is independently computed. In the case of standard
regular expressions, the support obtained by these rules is the same as the one
defined by Mirkin. However, the new rules allow to consider synchronising and
non-synchronising symbols separately, and thereby obtain a support for a reg-
ular expression with strongly and arbitrarily synchronised operators. Moreover,
the new rules lead to a smaller support for the intersection operator [2], which
corresponds to the strong synchronised operator when all alphabet symbols syn-
chronise. Using the framework of analytic combinatorics, we give an upper bound
for the asymptotic size of the support. We also estimate the asymptotic aver-
age number of partial derivatives by one symbol. In particular, for intersection
we show that asymptotically, as the size of the alphabet grows, the size of the
support set, thus the average state complexity of APD, is 3. This is a surprising
improvement with regard to the previous upper bound of (1.056+ o(1))n, where
n is the size of the expression [2]. However, experimental results in [2], suggested
that the size of APD as the alphabet size grows could approach the constant 3.

2 Regular Expressions with Synchronised Shuffles

Let Σ = {σ1, . . . , σm} be an alphabet and Σ� be the set of words over Σ.
A language is any subset of Σ�. The empty word is denoted by ε. The set of
alphabet symbols that occur in a word w ∈ Σ� is denoted by Σw. Given a
set Γ ⊆ Σ, the strongly synchronised shuffle of two words w.r.t. Γ imposes
synchronisation on all symbols of Γ . Formally, for u, v ∈ Σ�, u s‖Γ v is defined
inductively as follows [14]:

ε s‖Γ v = v s‖Γ ε =

{
{v}, if Σv ∩ Γ = ∅,

∅, otherwise,

σu s‖Γ τv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ σw | w ∈ u s‖Γ v }, if σ = τ ∧ σ ∈ Γ,

∅, if σ 	= τ ∧ σ, τ ∈ Γ,

{ σw | w ∈ u s‖Γ τv }, if σ 	∈ Γ ∧ τ ∈ Γ,

{ τw | w ∈ σu s‖Γ v }, if σ ∈ Γ ∧ τ 	∈ Γ,

{σw | w ∈ u s‖Γ τv }
∪ { τw | w ∈ σu s‖Γ v }, if σ, τ 	∈ Γ.
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For Γ = ∅ the operator s‖∅ coincides with the usual shuffle operator �, given
by u�ε = ε�u = {u} and σu� τv = {σw | w ∈ u� τv }∪{ τw | w ∈ σu�v },
for u, v ∈ Σ� and σ, τ ∈ Σ. On the other hand, if Γ = Σ, the operator s‖Σ

corresponds to intersection (∩). The arbitrarily synchronised shuffle of two words
w.r.t. Γ ⊆ Σ permits symbols in Γ to synchronise, but does not force their
synchronisation. Formally, for u, v ∈ Σ�, u a‖Γ v, is defined as follows [3]:

ε a‖Γ v = v a‖Γ ε = {v},

σu a‖Γ τv =

⎧⎪⎨
⎪⎩

{σw | w ∈ u a‖Γ τv } ∪ { τw | w ∈ σu a‖Γ v }, if σ 	= τ ∨ σ 	∈ Γ,

{σw | w ∈ u a‖Γ τv } ∪ { τw | w ∈ σu a‖Γ v }
∪ { σw | w ∈ u a‖Γ v }, if σ = τ ∧ σ ∈ Γ.

Example 1. We have abca s‖{a} ada = {abcda, abdca, adbca}, ab s‖{a} da =
{dab}, and ab a‖{a} da = {abda, adba, adab, dab, daab, daba}.

Given two languages L1, L2 ⊆ Σ� and ◦ ∈ { s‖Γ , a‖Γ } one has, as usual, L1 ◦
L2 =

⋃
u∈L1,v∈L2

u ◦ v. If L1 and L2 are regular, L1 ◦ L2 is regular [3]. The set
of regular expressions with synchronised shuffles over the alphabet Σ, RE(‖),
contains ∅ and is generated by the following grammar

α → ε | σ ∈ Σ | (α + α) | (αα) | (α�) | (α s‖Γ α) | (α a‖Γ α). (1)

Let RE be the subset of RE(‖) of standard regular expressions without the
operators s‖Γ and a‖Γ . The language associated with an expression α ∈ RE(‖)
is denoted by L(α), which for α ∈ RE is defined as usual, and L(α1◦α2) = L(α1)◦
L(α2) for ◦ ∈ { s‖Γ , a‖Γ }. Two regular expressions α and β are equivalent, and
we write α

.= β, iff L(α) = L(β). We define ε(α) by ε(α) = ε if ε ∈ L(α), and
ε(α) = ∅, otherwise. In the same way, given a language L one defines ε(L). Given
a set of expressions S, the language associated with S is L(S) =

⋃
α∈S L(α). If

β ∈ RE(‖) \ {ε, ∅}, we define Sβ = {αβ | α ∈ S ∧ α 	= ε} ∪ (ε ∈ S){β}.
We have εS = Sε = S and ∅S = S∅ = ∅. Moreover, for S, T ⊆ RE(‖) \ {∅}
and ◦ ∈ { s‖Γ , a‖Γ }, we define S ◦ T = {α ◦ β | α ∈ S ∧ β ∈ T }. The size
of α ∈ RE(‖) is denoted by |α| and defined as the number of occurrences of
symbols (parenthesis not counted) in α.

3 Automata and Systems of Equations

A nondeterministic finite automaton (NFA) is a quintuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the
transition function. The function δ can be naturally extended to sets of states
and to words. In what follows we will take Q = [1, n], for |Q| = n. The language
of A is L(A) = { w ∈ Σ� | δ(I, w) ∩ F 	= ∅ }. The right language of a state q,
denoted by Lq, is the language accepted by A if we take I = {q}. It is well known
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that it is possible to associate to each n-state NFA A over Σ = {σ1, . . . , σm},
with right languages L1, . . . ,Ln, a system of linear language equations

Li = σ1L1i ∪ · · · ∪ σmLmi ∪ ε(Li), for i ∈ Q,

where Lji =
⋃

h∈δ(i,σj)
Lh and L(A) =

⋃
i∈I Li. In the same way, it is possible to

associate to each regular expression a system of equations. Given an expression
α over Σ, a support for α = α0 is a set of expressions {α1, . . . , αn} that satisfies
a system of equations

αi
.= σ1αi,1 + · · · + σmαi,m + ε(αi), i ∈ [0, n] (2)

where each of αi,1, . . . , αi,m is a (possibly empty) sum of elements in
{α1, . . . , αn}. Mirkin [8,12] showed that for a standard regular expression
α ∈ RE, a support π(α) can be computed as follows:

π(∅) = π(ε) = ∅,
π(σ) = {ε} (σ ∈ Σ),

π(α�) = π(α)α�.

π(α + β) = π(α) ∪ π(β),
π(αβ) = π(α)β ∪ π(β),

(3)

In the following, we show that the support of an expression α, π(α), can be
written as the union of m sets, each set corresponding to a letter σj ∈ Σ (j ∈
[1,m]) and denoted by πσj (α), i.e., π(α) =

⋃
σj∈Σ πσj (α). Moreover, each set

πσj (α) can be obtained independently, and contains exactly the components in
the sums α0,j , . . . , αn,j in (2). For standard regular expressions this result is
established in Lemma 1.

Lemma 1. Consider a standard regular expression α over an alphabet Σ and
π(α) = {α1, . . . , αn} its support. Then, we have π(α) =

⋃
σ∈Σ πσ(α), where:

πσ(∅) = πσ(ε) = ∅,
πσ(σ) = {ε},
πσ(τ) = ∅ (τ 	= σ).

πσ(α + β) = πσ(α) ∪ πσ(β),
πσ(αβ) = πσ(α)β ∪ πσ(β),
πσ(α�) = πσ(α)α�.

Furthermore, π(α) satisfies a system of equations of the form,

αi
.= σ1αi,1 + · · · + σmαi,m + ε(αi), i ∈ [0, n] (4)

such that each αi,j is a (possibly empty) sum of elements in πσj (α), for j ∈ [1,m].

We extend the notion of support to α ∈ RE(‖), which in the case of
s‖Σ , i.e. of intersection, represents a significant improvement with regard to
the definition of a support given in [2]. For ◦ ∈ { s‖Γ , a‖Γ } we define

π(α ◦ β) =
⋃

σ∈Σ

πσ(α ◦ β), (5)



Average Complexity of Partial Derivatives for Synchronised Shuffles 107

where

πσ(α s‖Γ β) =

{
πσ(α) s‖Γ πσ(β), for σ ∈ Γ ;

πσ(α) s‖Γ (π(β) ∪ {β}) ∪ (π(α) ∪ {α}) s‖Γ πσ(β), otherwise;
(6)

πσ(α a‖Γ β) =

⎧⎪⎨
⎪⎩

πσ(α) a‖Γ (π(β) ∪ {β}) ∪ (π(α) ∪ {α}) a‖Γ πσ(β)

∪ πσ(α) a‖Γ πσ(β), for σ ∈ Γ ;

πσ(α) a‖Γ (π(β) ∪ {β}) ∪ (π(α) ∪ {α}) a‖Γ πσ(β), otherwise.

(7)

Using (5) one obtains a support for α ∈ RE(‖).

Proposition 1. Given α ∈ RE(‖), π(α) = {α1, . . . , αn} is a support for α = α0,
satisfying a system of equations of the form,

αi
.= σ1αi,1 + · · · + σmαi,m + ε(αi), i ∈ [0, n] (8)

such that each αi,s is a (possibly empty) sum of elements in πσs(α), for s ∈ [1,m].

Example 2. Let Σ = {a, b} and consider α = (b + ab + aab + abab) s‖{a,b} (ab)�.
We have πa(α) = {b s‖{a,b} b(ab)�, ab s‖{a,b} b(ab)�, bab s‖{a,b} b(ab)�}, πb(α) =
{ε s‖{a,b} (ab)�, ab s‖{a,b} (ab)�}, π(α) = πa(α) ∪ πb(α), and |π(α)| = 5. This is
an improvement w.r.t. the definition of π for expressions with the intersection
operator in [2, Example 12], for which |π(α)| = 8. ��

4 Partial Derivatives and Partial Derivative Automata

The notions of partial derivatives and partial derivative automata of stan-
dard regular expressions were introduced by Antimirov [1]. Champarnaud and
Ziadi [8] showed that the partial derivative automaton and Mirkin’s contruction
are identical. Sulzmann and Thiemann [14] extended partial derivatives and the
partial derivative automaton to regular expressions with synchronised shuffles.
In this section, we recall those notions and relate the set of partial derivatives
with the support defined in the previous section. The set of partial derivatives
of an expression α ∈ RE(‖) by a symbol σ ∈ Σ, denoted by ∂σ(α), is defined
inductively as follows.

∂σ(∅) = ∂σ(ε) = ∅, ∂σ(α�) = ∂σ(α)α�, ∂σ(σ′) =

{
{ε} if σ = σ′,
∅ otherwise,

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β), ∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β),

∂σ(α s‖Γ β) =

{
∂σ(α) s‖Γ ∂σ(β) if σ ∈ Γ,

∂σ(α) s‖Γ {β} ∪ {α} s‖Γ ∂σ(β), otherwise,

∂σ(α a‖Γ β) =

{
∂σ(α) a‖Γ ∂σ(β) ∪ ∂σ(α) a‖Γ {β} ∪ {α} a‖Γ ∂σ(β) if σ ∈ Γ,

∂σ(α) a‖Γ {β} ∪ {α} a‖Γ ∂σ(β), otherwise.
(9)
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As usual, the set of partial derivatives of α ∈ RE(‖) w.r.t. a word w ∈ Σ� is
inductively defined by ∂ε(α) = {α} and ∂wσ(α) = ∂σ(∂w(α)), where, given a set
S ⊆ RE(‖), ∂σ(S) =

⋃
α∈S ∂σ(α). Moreover, L(∂w(α)) = {w1 | ww1 ∈ L(α) }.

Let ∂(α) =
⋃

w∈Σ� ∂w(α), and ∂+(α) =
⋃

w∈Σ+ ∂w(α). The partial derivative
automaton of α ∈ RE(‖) is APD(α) = 〈∂(α), Σ, δPD, {α}, FPD〉, with FPD =
{β ∈ ∂(α) | ε(β) = ε } and δPD(β, σ) = ∂σ(β), for β ∈ ∂(α), σ ∈ Σ.

We now relate the set of partial derivatives with the support from Proposi-
tion 1. The following lemma is essential to obtain Proposition 2.

Lemma 2. For σ, τ ∈ Σ and α ∈ RE(‖), we have πσ(πτ (α)) ⊆ πσ(α).

Proposition 2. For wσ ∈ Σ+ and α ∈ RE(‖), we have ∂wσ(α) ⊆ πσ(α).

As an immediate consequence, we have the following proposition establishing
that the support of an expression is a superset of the set of states of its APD.

Proposition 3. Given α ∈ RE(‖), ∂+(α) ⊆ π(α).

Example 3. For α from Example 2, we have ∂+(α) = {bab s‖{a,b} b(ab)�, ab s‖{a,b}
b(ab)�, b s‖{a,b} b(ab)�, ab s‖{a,b} (ab)�, ε s‖{a,b} (ab)�}. Thus, in this case ∂+(α) =
πa(α) ∪ πb(α) = π(α). However, in general one has ∂+(α) � π(α). For instance,
∂+(ab s‖{a,b} b�a) = {b s‖{a,b} ε} � {b s‖{a,b} ε, ε s‖{a,b} b�a} = π(α).

5 Average Case Complexity

In this section, we will extensively use the Bachman-Landau notation, namely

f(n1, . . . , nk) ∼
n1, . . . , nk → ∞

g(n1, . . . , nk) as lim
nk→∞ · · · lim

n1→∞
f(n1, . . . , nk)
g(n1, . . . , nk)

= 1.

Given some measure over the objects of a combinatorial class, A, for each
n ∈ N, let an be the sum of the values of this measure for all objects of size n.
Here we consider A = RE(‖), and the measure (cost function) is the number
of partial derivatives for expressions of size n. Let A(z) =

∑
n anzn be the

corresponding generating function. We will use the notation [zn]A(z) for an.
Seeing this generating function A(z) as a complex analytic function, if it has a
unique dominant singularity ρ, the study of the behaviour of A(z) around ρ gives
us access to the asymptotic form of its coefficients. For more details see [10]. In
this section, we will make ample use of the notions and the techniques expounded
in [6,11]. Of particular relevance is [6, Theorem 3.2], which we here reproduce:

Theorem 1. Let G(z) be a generating function with non-negative integral coef-
ficients, and C(z, w) ∈ Q[z, w] be such that C(z,G(z)) = 0. Assume that G(z)
has a unique dominant singularity, ρ. Then, if limz→ρ G(z) = a ∈ R,

[zn]G(z) ∼
n→∞

−b

Γ(−α)
ρ−nn−α−1,



Average Complexity of Partial Derivatives for Synchronised Shuffles 109

where α is the smallest non-zero exponent of the Puiseux expansion of G(ρ−ρs)
with respect to the variable s, and in the case α = 1

2 (which is true in all the
cases considered in this paper), b is given by:

b =

√
2ρ∂C

∂z
∂2 C
∂w2

∣∣∣∣ z=ρ
w=a

.

5.1 Average Number of Partial Derivatives by One Symbol

We start by estimating the asymptotic average number of partial derivatives
by one symbol for α ∈ RE(‖), which corresponds to the expected number of
transitions from a state in APD. For standard regular expressions and for large
alphabets that value is known to be the constant 6 [4,13]. The cases of the strong
and arbitrarily synchronised shuffles are analysed individually, but the results
will be essentially identical. For the strong synchronisation, we also consider the
extreme cases of intersection and shuffle which were not considered before in the
literature.

Strong Synchronisation. Let Σ be the alphabet, and let Γ ⊆ Σ with  = |Γ |.
We set k = |Σ \ Γ |, and m = k +  = |Σ|. We consider regular expressions with
the strong synchronisation operator over the alphabet Σ generated by the gram-
mar (1) without expressions with the operator a‖Γ . Moreover we will consider
all operators using the same Γ . We denote this set of expressions by RE( s‖Γ ).
The generating function, Rm(z), whose coefficient [zn]Rm(z) is the cumulative
number of those regular expressions of size n, satisfies

Rm(z) = (m + 1)z + 3zRm(z)2 + zRm(z).

Regular expressions that have ε in their language, denoted by αε, are unambigu-
ously generated by the following grammar

αε → ε | (αε + α) | (αε + αε) | (αεαε) | (α�) | (αε
s‖Γ αε),

where αε represents regular expressions that do not have ε in their language.
Using Rε,m(z) = Rm(z) − Rε,m(z), the generating function for αε satisfies

Rε,m(z) = z + 2zR(z)Rε,m(z) + zRε,m(z)2 + zRm(z).

Given τ ∈ Σ \ Γ and γ ∈ Γ , we denote by t(α) and by g(α) the cost
functions for an upper bound of the cardinality of ∂τ (α) and the cardinality of
∂γ(α), respectively. Using (9) we have

t(ε) = t(σ) = 0, σ 	= τ t(τ) = 1,
t(α + β) = t(α) + t(β), t(αεβ) = t(αε) + t(β),
t(αεβ) = t(αε), t(α�) = t(α),

t(α s‖Γ β) = t(α) + t(β).
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Note that, for α s‖Γ β the number of partial derivatives by τ equals the sum of
the number of derivatives by τ of both α and β. Thus, t(α s‖Γ β) = t(α) + t(β).
The definition of g(α) is analogous, except that g(σ) = 0 if σ 	= γ and g(γ) =
1. Also, since ∂γ(α s‖Γ β) = ∂γ(α) s‖Γ ∂γ(β), we have g(α s‖Γ β) = g(α) g(β).
The corresponding generating functions Tm(z) =

∑
α t(α)z|α| and Gm(z) =∑

α g(α)z|α| satisfy, respectively,

Tm(z) = z + 5zTm(z)Rm(z) + zTm(z)Rε,m(z) + zTm(z),

Gm(z) = z + 3zGm(z)Rm(z) + zGm(z)Rε,m(z) + zGm(z) + zGm(z)2.

The generating function for an upper bound of the cardinality of the set of
partial derivatives by one symbol

⋃
σ∈Σ

∂σ(α) is given by

Dk,(z) = kTm(z) + Gm(z).

To compute the asymptotic behaviour of the coefficients of Dk,(z), we pro-
ceed by dealing first with Gm(z), and then with Tm(z). Eliminating the auxiliary
variables from the above equations [9], one obtains an algebraic curve given by
Cm(z, w) ∈ Q[z, w] such that Cm(z,Gm(z)) = 0. The polynomial Cm(z, w) has
degree 8 in w, and degree 6 in z. Using the techniques expounded in [6,11],
one finds that the minimal polynomial of the relevant singularity, let us call it
rm(z), is a factor of the resultant of Cm(z, w) and ∂Cm

∂w (z, w), which has 5 dis-
tinct irreducible factors. One of them is z, which of course cannot be rm(z), while
another is 16m2z4 + 192mz4 + 96mz3 + 256z4 + 8mz2 + 128z3 − 16z2 − 8z + 1,
which is always positive for z ∈ R+, since 256z4 + 128z3 − 16z2 − 8z + 1 =
x4 + 2x3 − x2 − 2x + 1 = (x2 + x − 1)2, with x = 4z. One is left with three poly-
nomials, and to find which is rm(z), one may proceed as follows. Looking at the
(real part of the) graph of the curve Cm(z, w), one realises that this curve has
only one branch on the first quadrant, and that our generating function, being an
increasing function, has a singularity that corresponds to the turning point with
the lowest ordinate. In this way we found out that rm(z) = (12m+11)z2+2z−1,
and therefore the singularity is

ρm =
1

1 + 2
√

3m + 3
, (10)

while the minimal polynomial of am = limz→ρm
Gm(z) (see again [6,11]) has

degree 8:

3w8 + 6w7 + (11 − 10m)w6 + (10 − 14m)w5 + (12 − 24m + 3m2)w4 +
+(10 − 14m)w3 + (11 − 10m)w2 + 6w + 3.(11)

With the help of a plotting program that can deal with functions given in an
implicit form, one can identify the root am of this polynomial pertaining to
ρm, and then one can use Puiseux expansions to obtain the expansion of the
appropriate am, which is, as m → ∞,

√
3 m− 1

2 +
1
12

m−1 +
307

√
3

64
m− 3

2 + o(m− 3
2 ).
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Using the techniques described in [6,11], one gets:

[zn]Gm(z) ∼
n, m→∞

√
6

2
√

π m
ρ−n

m n− 3
2 . (12)

With respect to Tm, the value of the singularity is the same as for Gm, i.e. ρm,
whereas the minimal polynomial of am is:

3m2w4 − 6mw3 − (10m + 1)w2 − 8w − 5, (13)

and its Puiseux expansion is

√
3 m− 1

2 +
3
4
m−1 +

19
√

3
64

m− 3
2 + o(m− 3

2 ),

as m → ∞. From this, one gets:

[zn]Tm(z) ∼
n, m→∞

5
√

6
2
√

π m
ρ−n

m n− 3
2 . (14)

Therefore,

[zn]Dk,(z) ∼
n, k, �→∞

(k + 5)
√

6
2
√

π(k + )
ρ−n

m n− 3
2 . (15)

Using the formulas in Sect. 5.1 of [2], with s = m + 1, u = 1, b = 3, one obtains
an estimate for the number of expressions, for large values of n and m,

[zn]Rm(z) ∼
n → ∞

√
2 − 2ρm

12ρm
√

π
ρ−n

m n− 3
2 ∼

m→∞

√
m

6π
ρ−n

m n− 3
2 . (16)

Proposition 4. The average of the upper bound (here considered) of the number
of partial derivatives of an α ∈ RE( s‖Γ ) of size n is

[zn]Dk,(z)
[zn]Rm(z) ∼

n, k, �→∞

6
√

3(k + 5)ρm√
k + 

√
1 − ρm

. (17)

In particular, when  = 0, and thus m = k, one has

lim
k→∞

[zn]Dk,0(z)
[zn]Rk(z)

= 3, (18)

whereas when k = 0, and thus m = , one has

lim
→∞

[zn]D0,(z)
[zn]R(z)

= 15, (19)

and when k =  = m
2

lim
m→∞

[zn]Dm
2 , m

2
(z)

[zn]Rm(z)
= 9. (20)

We recall that if  = 0, s‖∅ coincides with the shuffle operator, �; and if k = 0
s‖Σ coincides with intersection. The given results nicely relate with the estimated
value for standard regular expressions mentioned above.
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Arbitrary Synchronisation. Now consider the set of expressions only with the
operator a‖Γ with Γ as above, i.e., RE( a‖Γ ) and k, ,m as in the previous
section. The generating functions Rm(z), Rε,m(z), and Tm(z) coincide with ones
for RE( s‖Γ ). In the definition of g(α) we have

g(α a‖Γ β) = g(α) g(β) + g(α) + g(β),

and, thus,

Gm(z) = z + 4zGm(z)Rm(z) + zGm(z)Rε,m(z) + zGm(z) + zGm(z)2.

In this case, the minimal polynomial for the singularity, σm, is{
(64m2 + 579m + 925)z3 + (84m + 161)z2 − 4(m + 11)z − 6, when m ≤ 6,

(12m + 11)z2 + 2z − 1, otherwise,
(21)

and, for m ≤ 6,

σm =
1
4
m− 1

2 − 3
32

m−1 − 77
256

m− 3
2 + o(m− 3

2 ), as m → ∞, (22)

while σm = ρm for m ≥ 7. It turns out that am = 1, for 1 ≤ m ≤ 6, while for
m ≥ 7 one has

am =
√

3
2

m− 1
2 +

3
16

m−1 +
77

√
3

256
m− 3

2 + o(m− 3
2 ), as m → ∞. (23)

Using this, one arrives at the same result as in (12). Thus, one will obtain the
same asymptotic estimates for the average size of

⋃
σ∈Σ ∂σ(α) as for RE( s‖Γ ).

5.2 Average Size of the Support

In this section we consider α ∈ RE( s‖Γ ) with Γ used as in Sect. 5.1, and we
estimate an upper bound for the asymptotic average size of π(α), and thus of the
average state complexity of APD. Let Γ ⊆ Σ with |Γ | =  and |Σ \ Γ | = k. Let
p(α) be the cost function for an upper bound of the size π(α) =

⋃
γ∈Γ πγ(α) ∪⋃

τ∈Σ\Γ πτ (α). For computing p(α), let s(α) be the cost function for an upper
bound of the size of πγ(α), where γ ∈ Γ . Using (6), we have:

s(ε) = 0 = s(σ), for σ 	= γ,
s(γ) = 1,

s(α�) = s(α),

s(α + β) = s(α) + s(β),
s(αβ) = s(α) + s(β),

s(α s‖Γ β) = s(α) s(β).

In the same way, let u(α) be the cost function for an upper bound of the size of
πτ (α), where τ ∈ Σ \ Γ . We have:

u(ε) = 0 = u(σ), for σ �= τ,
u(τ) = 1,

u(α�) = u(α),

u(α + β) = u(α) + u(β),
u(αβ) = u(α) + u(β),

u(α s‖Γ β) = p(α) u(β) + 	 u(α)s(β) + u(α) + u(β),
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where in u(α s‖Γ β) we avoid to count twice u(α)u(β). Then, p(α) =  · s(α) +
k · u(α). The generating functions for s(α), u(α), and p(α), respectively Sm(z),
Um(z) and Pm(z), satisfy the following equalities:

Sm(z) = z + 4zSm(z)Rm(z) + zSm(z) + zSm(z)2,
Um(z) = z + 6zUm(z)Rm(z) + zUm(z)Pk,(z) + zSm(z)Um(z) + zUm(z),
Pk,(z) =  · Sm(z) + k · Um(z).

Using the same procedure as described above, one obtains a polynomial
Ck,(z, w) ∈ Q[z, w], such that Ck,(z, Pk,(z)) = 0. This polynomial Ck, has
degree 8 in w, and degree 6 in z.

For k =  = m
2 , using graphical and numerical methods, as well as Puiseux

expansions, one obtains that the behaviour of the relevant singularity, ηm, which
is a root of a polynomial of degree 8, has the following asymptotic behaviour:

ηm ∼
m→∞

√
2 β m− 1

2 , (24)

where β � 0.180866 is the biggest root of the polynomial 1100z4+8z3−68z2+1.
Using the same techniques as above, one sees that:

[zn]Pm
2 , m

2
(z) ∼

n, m→∞

γ
√

m

2
√

π
η−n

m n− 3
2 , (25)

where γ � 6.73978, and therefore

[zn]Pm
2 , m

2
(z)

[zn]Rm(z) ∼
n, m→∞

√
3
2

γ

(
ρm

ηm

)n

, (26)

lim
m→∞

ρm

ηm
=

1
2
√

6 β
� 1.12859. (27)

Proposition 5. For large values of m and n, and k = , an upper bound for
the average number of states of APD(α) for α ∈ RE( s‖Γ ) is (1.12859 + o(1))n.

When k = 0, i.e., in case of intersection, one obtains a simpler polynomial
C(z, w) for the corresponding generating function, namely:

3z2w4 +2z(z −1)w3 + 2((16+21)z2 +2z −1)w2 +23z(z −1)w+34z2. (28)

The singularity is the same ρ as above, and a = 
√

2−1−2
√

2−−2√
3

. This yields

[zn]P0,(z) ∼
n, �→∞

√
3
2



π
ρ−n

 n− 3
2 . (29)

Proposition 6. With the notations introduced above, the average size of the
number of states in the partial derivative automata for a (standard) regular
expression with intersection is asymptotically

[zn]P0,(z)
[zn]R(z) ∼

n, �→∞
3. (30)
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This result is a surprising improvement of the previous upper bound of (1.056+
o(1))n given in [2] but is compatible with experimental values. Moreover for
 = 1, n = 1000, the ratio (30) is 710; for  = 2, n = 1000, we obtain 9.5; and for
 = 10, n = 300, the value is 2.94445.

Finally, when  = 0, i.e., in the case of shuffle, a polynomial Ck(z, w) for the
corresponding generating function is:

z2w4 + ((14k + 11)z2 + 2z − 1)w2 + k2z2. (31)

The singularity is now ξk = 1
1+2

√
4k+3

, and ak =
√

k. This yields:

[zn]Pk,0(z) ∼
n, k →∞

√
2k

π
ξ−n
k n− 3

2 , (32)

and therefore, we obtain the same result as in [5], but using different techniques.

Proposition 7. With the notations introduced above, the average size of the
number of states in the partial derivative automata for a (standard) regular
expression with shuffle is asymptotically

[zn]Pk,0(z)
[zn]Rk(z) ∼

n, k →∞
2
√

3
(

ρk

ξk

)n

∼
k →∞

2
√

3
(

4
3

)n
2

. (33)
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Abstract. We study the sweep complexity of DFA in one-way jump-
ing mode answering several questions posed earlier. This measure is the
number of times in the worst case that such machines have to return to
the beginning of their input after having skipped some of the symbols.
The class of languages accepted by these machines strictly includes the
regular class and constant sweep complexity allows exactly the accep-
tance of regular languages. However, we show that there exist machines
with higher than constant complexity still only accepting regular lan-
guages and that in general the sweep complexity of an automaton does
not distinguish between accepting regular and non-regular languages. We
establish separation results for asymptotic classes defined by this com-
plexity measure and give a surprising exponential/logarithmic relation
between factors of certain inputs which can be verified by such machines.

Keywords: automata · deterministic · one-way jumping · sweep
complexity

1 Introduction

In roughly the last three decades, several non-classical models of automata have
been introduced to study the effect of processing inputs with simple machines
in a non-sequential way. Such models include restarting automata [10], jump-
ing automata [12], input revolving automata [4] and automata with translucent
letters [13]. However, these models are either strictly more powerful or accept a
class incomparable with the regular one.

One-way jumping finite automata (OWJFA) were introduced [5] to study the
power of deterministic finite automata (DFA) performing non-sequential process-
ing without completely discarding structural information about the inputs à la
jumping automata. The resulting model is, in a sense, a minimal extension of
finite automata. Machines are specified in exactly the same way as DFA allow-
ing partial transition functions. The only change is the behaviour of the machine
when encountering a letter for which the current state has no outgoing transition
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defined. In the classical case such inputs are rejected, but in one-way jumping
mode the letters are skipped temporarily to be processed later. The relative
order of the skipped symbols is maintained, and the automaton moves back to
the beginning after each pass (called sweep here), seeing only the symbols pre-
viously skipped. Therefore one can also view this model as a DFA with an input
tape which works as a restricted queue, or one that reads and erases symbols
from a circular tape always jumping clockwise to the nearest letter for which
it has a defined transition from the current state. When the transition function
is complete, no symbols are skipped, so the machine behaves as ordinary DFA,
which means that the class of languages accepted by DFA in one-way jumping
mode trivially includes all regular languages.

Various properties of the accepted language class [1] and the status of fun-
damental decidability questions have been settled [2]. More powerful machines
with this new processing mode have also been investigated, such as nondeter-
ministic finite automata [3,6], two-way finite automata [7], pushdown automata
and linear bounded automata [6]. While the language classes defined by the
models have no nontrivial closure properties under usual language operations,
the accepting power and decidability issues raised some intriguing problems.

Except for linear bounded automata, the machine models mentioned above
become more powerful when they are allowed to jump to the nearest symbol read-
able in the current state, which is not surprising. However, it has proven chal-
lenging to get a clear picture of just how powerful the new processing mode is,
even in the simplest case when one starts from DFA. Such automata can accept
all regular languages and the language class defined by them is incomparable
with the context-free class, but included in the context-sensitive class and in
DTIME(n2) [1]. The separation results make use of combinations of a handful
of regular languages together with a very simple type of non-regular languages
which contain words having letter counts in a certain ratio, e.g., the frequently
used Lab = {w ∈ {a, b}∗ | w contains as many a’s as b’s} accepted by the machine
A in Fig. 1 (with states 1, or 2 final). While this was enough to establish virtu-
ally all separations of interest, it left a significant gap in our understanding of the
model: can such machines accept any (‘interesting’) non-regular languages apart
from the ones which establish linear relationships among letter counts?

In this work we answer the question above, building on the investigation of
sweep complexity of DFA in one-way jumping mode. Sweep count can be viewed as
a measure of non-regular resources used by a machine posing the natural question
of how much of this resource is needed to be able to accept non-regular languages?
It has been shown that constant sweep complexity does not increase the accepting
power of the machines [9] and that superconstant sweep complexity requires cycles
containing ‘complementary deficient’ states [8]. In the latter paper it was conjec-
tured that, in fact, any automaton with higher than constant sweep complexity
accepts a non-regular language. In Sect. 3 we refute that conjecture by exhibiting
a small DFA accepting a regular language while processing some inputs of length
n in Ω(log n) sweeps. We also show that there is no non-trivial upper bound on
the sweep complexity of regular languages, that is, there are machines with linear
complexity accepting regular languages.
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A natural question regarding the new complexity measure is whether there
exists a meaningful hierarchy which does not collapse to the extremes of O(1)
and O(n). The aforementioned example shows that automata with logarithmic
complexity exist, which answers another question posed earlier. Furthermore,
following the line of computational complexity theory, we set out to explore
whether the language classes defined through asymptotic complexity form a
true hierarchy, that is whether there are languages which can be accepted by a
machine with O(f(n)) complexity but not by any with o(f(n)) complexity, for
various functions f(n). In Sect. 4 we demonstrate that such a hierarchy exists
by presenting languages with Θ(log n) and Θ(n) sweep complexity, respectively.

Finally we mention that sweep complexity as an idea has been studied in
other contexts, too: an interesting and thorough investigation of a similar flavor
established infinite hierarchies in terms of sweep count for iterated uniform finite
transducers [11], although that model is significantly more powerful than ours,
so the techniques used there do not translate here as far as we can tell.

2 Preliminaries

We consider words over a finite alphabet, e.g., Σ = {a, b}. The set of all words
over Σ is Σ∗, which includes the empty word ε.

A DFA is a quintuple M = (Q,Σ,R, s, F ), where Q is the finite set of states,
Σ is the finite input alphabet, Σ ∩ Q = ∅, R : Q × Σ → Q is the transition
function, s ∈ Q is the start state, and F ⊆ Q is the set of final states. Elements
of R are referred to as (transition) rules of M and we write py → q ∈ R instead
of R(p, y) = q. A configuration of M is a string in Q × Σ∗.

A DFA transitions from a configuration pw to a configuration qw′ if w = aw′

and pa → q ∈ R, with p,q ∈ Q, w,w′ ∈ Σ∗ and a ∈ Σ. By extending the
meaning of → we denote this by pw → qw′ and the reflexive and transitive
closure of → by →∗. A word w is accepted by a DFA M if there exists f ∈ F ,
such that sw →∗ f. The language accepted by M is {w ∈ Σ∗ | ∃f ∈ F : sw →∗ f}.

One-way jumping automata
The one-way jumping relation (denoted by �) between configurations from QΣ∗,
was originally defined in [5]. Here we follow the slightly different definition of [8]
which does not change the accepting power of the model, but is more convenient.

1 2

a

b

Fig. 1. The only two-state ROWJFA
satisfying Lemma 1

position : 0 1 2 3 4 5 6
input a d c b c b a

after sweep 1 ε d c b c b ε
after sweep 2 ε d c ε c ε ε
after sweep 3 ε d ε ε ε ε ε
after sweep 4 ε ε ε ε ε ε ε

Fig. 2. The computation table for
adcbcba by the machine in Example 1.
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A tuple M = (Q,Σ,R, s, F ) representing a deterministic right one-way jump-
ing automaton (ROWJFA) is defined the same way as a DFA, where the configu-
rations are also elements of the set Q×Σ∗. Let Σp = {b ∈ Σ | ∃q ∈ Q such that
pb → q ∈ R} be the set of all of the letters from Σ for which we have a transition
defined from state p. A jumping transition (or jump, for short), denoted �, is
defined between configurations pax and pxa if state p cannot read the letter a,
formally:

pax � pxa, if a ∈ Σ \ Σp.

A ROWJFA can transition from configuration pax to configuration qy, which
we denote by pax � qy, if

(i) pax → qy, where x = y and pa → q ∈ R, as defined earlier, or
(ii) pax � pxa, when a ∈ Σ \ Σp,p = q and xa = y.

A word w is accepted by M if sw �∗ f. The language accepted by M is
defined by L(M) = {x ∈ Σ∗ | ∃f ∈ F : sx �∗ f}.

While some texts define DFA having complete transition functions, our DFA
allow partially defined ones. Indeed, the pairs (p, a) ∈ Q × Σ for which no tran-
sition is defined enable the ROWJFA to perform a jump as opposed to rejecting
the input as a DFA would. Hence, a ROWJFA with a complete transition func-
tion is just a DFA.

Sweeps are contiguous sequences of transitions on a given input, consisting
of the steps from reading or jumping over the leftmost remaining input letter to
reading or jumping over the rightmost one. If a position is jumped over, then
the input symbol in that position is processed in a later sweep. The number of
sweeps needed to process the whole input is the number of times the automaton
reaches the last position of the original input word or, equivalently, one more
than the maximum number of times any position is jumped over.

For an intuitive picture of sweeps, consider the computation of a ROWJFA
M on input w as a table with rows representing the k sweeps needed to process
w and columns representing positions in the input word. Cell i, j in the table
contains either a letter or a symbol representing that the letter has been read,
e.g., ε. Once a letter has been marked read and erased it stays that way, so each
column is a word of the form a�εk−� (= a�) for some a ∈ Σ and 1 ≤ � ≤ k.

Example 1. Consider the automaton M1 in Fig. 3 and the input adcbcba, pro-
cessed in the order aabbccd. The ROWJFA jumps over the letter d three times
before processing it, hence the number of sweeps is four. Moreover, its compu-
tation table is described in Fig. 2.

1 2 3 4 5 6 7 8
a a b b c c d

d

Fig. 3. ROWJFA M1 accepting all w with |w|a = |w|b = |w|c = 2 and |w|d ≥ 1.
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In order to be able to analyze the boundary between regular and non-regular
languages accepted by the one-way jumping model, as well as to quantify the
use of resources beyond the capabilities of classical DFA, when it is the case,
the following complexity measure was proposed [8], which gives us the number
of sweeps performed by a machine in the ‘worst case’ for an input of length n.

Let M be a ROWJFA and w ∈ L(M), and let

p0w � p1w1 � p2w2 � · · · � pm, where p0 = s and pm ∈ F,

be the computation of M on the input w. Sweep 1 consists of p0w �∗ p|w|w|w|,
and we say that sweep 1 ends in configuration p|w|w|w|. Then, for all i ≥ 1,
if sweep i ends in configuration psi

wsi
, then sweep i + 1 is the sequence of

configurations psi
wsi

�∗ psi+|wsi
|wsi+|wsi

|. The last sweep ends in configuration
pm, that is, when all input symbols have been read. We define

E(M,w) = {the number of sweeps performed by M on w}.

When w /∈ L(M), then we set E(M,w) = 0. The sweep complexity of a
machine M is a function scM : N → N, with scM (n) being the maximum number
of sweeps M makes on processing inputs w ∈ L(M) of length n, formally:

scM (n) = max{E(M,w) | w ∈ Σn}.

In a sense the “most non-regular” word (using the largest amount of non-classical
resources) of each length is considered. With this in mind, we can define com-
plexity classes in the usual manner: the class SWEEP(f(n)) consists of languages
accepted by some one-way jumping machine with sweep complexity O(f(n)).

Observe that the sweep complexity of a machine can be defined to also take
into account the sweep count of rejected words. However, this allows to ‘artifi-
cially’ increase the sweep complexity of machines with complexity o(n) without
affecting regularity. Let A be a machine accepting a regular language and B a
non-regular language with sweep complexities f(n) and g(n), respectively, such
that f(n) ∈ o(g(n)). Then we can construct a ROWJFA accepting aL(A) with
sweep complexity g(n) by adding a new initial state from which reading a takes
us to the initial state of A while reading b takes us to the initial state of B. We
set all states of B non-final and this way we get that on inputs starting with b
the machine performs B’s computations but never accepts anything. Moreover,
aL(A) is regular if and only if L(A) was (see Fig. 4).

Each machine considered up to the point when the above measures were intro-
duced [8] had either constant or, the maximal possible, linear sweep complexity,
so it seemed that there is a gap between them. Moreover, the examples with
linear complexity accepted non-regular languages, while as the theorem below
states, the constant complexity languages are exactly the regular languages.

Theorem 1 ([9]). ROWJFA with O(1) sweep complexity accept regular
languages.

The sufficient condition above was conjectured to be also necessary for reg-
ularity in general, evidenced by the known examples at that point.
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1A Ba b

Fig. 4. Artificially increasing the
automaton’s complexity by adding
non-functional states (all final states
in A).

12 3a

a

b

b

Fig. 5. ROWJFA B accepts {w ∈
{a, b}∗ | |w|a and |w|b are even} with
sweep complexity Θ(log n).

Next, we investigate the apparent gap between constant and linear complex-
ities and show that the presumed condition above is not necessary for regularity.
Our search for machines with non-constant sweep complexity is directed by the
following structural lemma, which says that such machines need to have two
‘complementary deficient states’ in a cycle.

Lemma 1 ([8]). If a ROWJFA has sweep complexity ω(1) then its state diagram
has a closed walk with states p and q, such that pau →∗ qbv →∗ p for a, b ∈ Σ,
u, v ∈ Σ∗ and p has no transition defined for b, while q has no transition for a.

3 Regular Languages with Non-constant Sweep
Complexity

In this section we show that there is no sweep complexity separation between
regular and non-regular languages by exhibiting automata which accept regular
languages while requiring superconstant number of sweeps.

Consider first the automaton B with states {1,2,3} where 1 is initial and
final, and transitions are {1a → 2,2a → 1,1b → 3,3b → 1}, described in Fig. 5.

Proposition 1. L(B) is regular.

Proof. We claim that L(B) = {w ∈ {a, b}∗ | |w|a and |w|b are even}. This is
obviously a regular language (i.e., Fig. 8 where 00 is the final state).

The computation for a word w is rejecting if it finishes in either 2 or 3.
However, the only time that the machine ends up in state 2 is when it reads an
odd number of a’s, and, similarly, it ends in 3 when it reads an odd number of
b’s. Since both of these types of words are rejected, we conclude. ��
Theorem 2. The sweep complexity of B is Θ(log n).

Proof. Firstly, observe that in any sweep, while in 1 or 2, the automaton fully
reads any block of a’s, and, similarly, while in 1 or 3, the automaton fully
reads any block of b’s. Thus, the number of sweeps necessary to process a word
w consisting of 2n unary blocks is never higher than that of processing the
word (ab)n. Now, for the inputs (ab)n (and (ba)n), starting with the first b
(respectively, a) every third symbol is jumped over while the rest is read. This
means that from an arbitrary word with k unary blocks, after one sweep at
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A0

A1

A2

A3

B1

B3

B2

a a

bb

b

b

b

a

a

a

Fig. 6. ROWJFA C accepts {w ∈ {a, b}∗ | |w|a and |w|b are odd} with sweep complex-
ity Θ(n).

most k
3 � + 1 blocks remain. This immediately gives us that the machine makes

at most logarithmically many sweeps. As for the other side, consider an input
w = (ab)6

k

. Per the previous argument, after i ≤ sweeps the remaining input will

be (ab)
6k

3i or (ba)
6k

3i depending on the parity of i, so the number of sweeps is at
least log3

|w|
2 = k. Eventually, the input is accepted according to Proposition 1,

so the sweep complexity of B is also Ω(log n). ��
The above results showcase the existence of ROWJFAs that accept regular

languages while performing a logarithmic number of sweeps. Next we construct
of a ROWJFA that accepts a regular language while requiring a linear number
of sweeps in the worst case. Consider the automaton C in Fig. 6 defined as

C = {{A0,A1,A2,A3,B1,B2,B3}, {a, b}, R,A0, {B1}},

where the transitions from R are given by the edges in the figure.

Proposition 2. The sweep complexity of C is Θ(n).

Proof. To see that the complexity is Ω(n), consider the word a2n+1b2n+1, for
n > 1. In this case, from A0 we go first to A2 where we jump over all the
remaining a’s, then we move back to A0 where we jump over all the remaining
b’s, and we are left with a2n−1b2n−1 to process. After the nth sweep, we are only
left with ab to process, which takes us from A0 to B1, and we accept.

For the O(n) complexity, observe that the above computation is indeed the
longest possible. Once we reach B1 we either accept or reject a word in at most
O(log n) sweeps, same as in Theorem 2. Of course, this part also directly follows
from the fact that all ROWJFA process their inputs in O(n) sweeps. ��
Proposition 3. L(C) is regular.

Proof. We show that L(C) = {w ∈ {a, b}∗ | |w|a and |w|b are odd}. This is
obviously a regular language (i.e., Fig. 8 where 11 is the final state).

To show that indeed L(C) is the language containing every binary word that
has odd number of a’s and b’s, first note that the right hand side automaton
consisting only of the B-labelled states, accepts every language that has an even
number of a’s and b’s, as shown by Proposition 1.
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To reach B1 we have to read exactly one a and one b starting from either
A0 or A2. Since from the start state A0 we can reach A0 or A2 by processing
an even number of a’s and b’s, possibly with jumps, our conclusion follows. ��

As a consequence of Propositions 2 and 3, we know that the class of regular
languages has no upper bound in terms of sweep complexity, since the sweep
complexity of any is in O(n). The left hand cycle in the automata C described in
Fig. 6 also showcases that while the conditions from Lemma 1 are necessary for
non-regularity (as it requires superconstant complexity), they are not sufficient.

4 Separation Results for the Language Classes
SWEEP(logn) and SWEEP(n)

Consider the prolongable morphism ϕ(a) = abab, ϕ(b) = b starting from the
word ab. We get ϕ(ab) = ababb, ϕ2(ab) = ϕ(ababb) = ababbababbb, etc. The
infinite word φ = limn→∞ ϕn(ab) = ababbababbb . . . is a fixed point of φ. It is
easy to see that in φ all a’s stand alone, that is, we never have blocks of a’s
longer than 1, and the lengths of the blocks of b’s are 1, 2, 1, 3, and so on1. When
applying ϕ, each a introduces a new block of b’s of length 1 and extends a block
of b’s by one, while the number of a’s doubles. Thus every other block of b’s gets
longer by one on each application of ϕ, because of the a preceding it. A simple
inductive argument shows that the last block of b’s in ϕn(ab) has length n + 1,
and is preceded by 2n occurrences of a’s, separated by blocks of b’s.

Lemma 2. Consider the morphism ϕ : {a, b}∗ → {a, b}∗ given by ϕ(a) = abab,
ϕ(b) = b. The following statements hold for any n ≥ 1:

(i) ϕn(ab) ∈ (ababb+)+;
(ii) if ϕn(ab) = abk1 · · · abkm , then ϕn+1(ab) = ababk1+1ababk2+1 · · · ababkm+1;
(iii) ϕn(ab) = abk1 · · · abkm , where m = 2n, km = n + 1 and k2i−1 = 1 for all

i ∈ {1, . . . , 2n−1}.
Proof. When n = 1, then ϕ(ab) = ababb, so for n = 1 all three claims hold.
Suppose they hold for n. By (ii) and (iii) we have that ϕn+1(ab) has the form
ababk1+1ababk2+1 · · · ababkm+1, satisfying (i) for n + 1. Then,

ϕn+2(ab) = ϕ(ababk1+1 · · · ababkm+1) = ϕ(ab)ϕ(abk1+1) · · · ϕ(ab)ϕ(abkm+1)

= (abab1+1)(ababk1+2) · · · (abab1+1)(ababkm+2)

From this we can conclude that (ii) also holds for n + 1 ≥ 1. Further, by the
equation above we have ϕn+1(ab) = ab�1 · · · ab�m′ with m′ = 2m = 2 ·2n = 2n+1.
Finally, because of (ii) we also get that �m′ = km + 1 = n + 2 and �2i−1 = 1 for
all i ∈ {1, . . . , 2n}. ��

In what follows we analyze the language accepted by the automaton D =
({1,2,3}, {a, b}, {1a → 2,2a → 2,2b → 3,3b → 1},1, {3}), described in Fig. 7.
1 The sequence {c(n)}∞

n=1 given by the lengths of b blocks is A001511 in OEIS; its
most relevant characterization for us is that c(n) − 1 is the number of trailing zeros
in the binary expansion of n, since this means that c(n) − 1 is log n for powers of 2.
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Fig. 7. ROWJFA D accepts a non-
regular language with Θ(log n) sweeps.
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Fig. 8. DFA accepting words with even
(for 00 final state) or odd (for 11 final
state) number of a’s and b’s.

Lemma 3. For any n ≥ 0, the ROWJFA D accepts ϕn(ab) in n + 1 sweeps.

Proof. We show that the machine accepts ϕn(ab), for any n ≥ 0. From state 1
after reading/jumping through a factor of the form ababb+ the automaton gets
back to state 1. In fact, 1ababkw �∗ 1wabk−1, for any k ≥ 1, so in one sweep
the factor ababk is reduced to abk−1. From Lemma 2 we can see that we can
write ϕn+1(ab) = ababk1+1ababk2+1 · · · ababkm+1, which means that one sweep
of D acts as the inverse of ϕ on those words when starting from state 1, that is,

1ϕn+1(ab) = 1ababk1+1ababk2+1 · · · ababkm+1 �∗ 1abk1abk2 · · · abkm = 1ϕn(ab).

This means that in n sweeps the machine reduces ϕn(ab) to ϕ0(ab). Finally, for
n = 0, we have ϕ0(ab) = ab, which is accepted by D in a single sweep. ��
Lemma 4. The ROWJFA D accepts a non-regular language.

Proof. By Lemma 3 we know that for any n the machine accepts ϕn(ab), which
means that for arbitrarily long unary factors consisting of b’s, there is some word
in L(D) having such a factor as a suffix. Our strategy is to first establish a non-
linear relation between the length of those unary factors and the length of the
preceding factors in all words accepted by D. Then, by a pumping argument we
show that a classical finite automaton cannot verify such a non-linear relation,
therefore L(D) cannot be regular.

Claim 1. Words of the form wbn are only accepted if |w| ∈ Ω(2
n
2 ).

Proof of Claim 1: In any sweep, any block of a’s which the automaton starts to
read is read and erased completely through a sequence of transitions 1akbu →∗

2bu. For the automaton to jump over a block of a’s, it needs to arrive to its start
in state 3. Then it jumps over it to the next b, after which it starts and reads
completely the following block of a’s, as described earlier. This means that the
machine can never jump over two consecutive blocks of a’s. From here we get
that if at the beginning of the sweep the number of a blocks was �, then after
the sweep it is at most  �

2� + 1.
Furthermore, in each sweep, each block of b’s is reduced by at most 2. This

means that the automaton needs at least n
2 sweeps to read a block bn, in each of



Sweep Complexity Revisited 125

which it reduces the number of a blocks by half (or more). Thus we can conclude
that in order to accept a word with a suffix bn, we have to start out with at least
2

n
2 blocks of a’s preceding it. ∇

Claim 2. No finite automaton can accept L(D).
Proof of Claim 2: Suppose the opposite, i.e., that there exists some complete
DFA F having N states such that L(F) = L(D). We know that there are words
in the language with arbitrarily long suffixes of b’s, so there is a wbm ∈ L(F) for
some word w and exponent m > N . By a usual pumping argument, this means
that there exists some � with 0 < � < N such that wbm+i·� ∈ L(F) for any i ≥ 0.
However, for a large enough i this contradicts Claim 1, as the block of b’s can
outgrow any upper bound in terms of the length of |w|. ∇

Our result follows as a result of Claims 1 and 2. ��
Lemma 5. The sweep complexity of D is Θ(log n).

Proof. As |ϕn(ab)| = 2n+1 + 2n − 1, by Lemma 3 we have that the sweep com-
plexity of D is Ω(log n), so what remains to show is that it is also O(log n).

We first note that within a sweep all blocks of a’s separated by bb are fully
processed (including any prefix of a’s), while for any symbols a that were jumped
over, the entire block that they were part of it was jumped over. Following the
argument in the proof of Claim 1 of Lemma 4, in each sweep the number of
blocks of a’s is reduced by at least half, which means that after O(log n) sweeps
there are no more blocks of a on the tape. Then, the machine either accepts in
one sweep or it rejects the input. This leads to our conclusion. ��

The results of Lemmas 4 and 5 mean that we have separation between
SWEEP(1) and SWEEP(log n).

Theorem 3. SWEEP(1) � SWEEP(log n)

Proof. Lemma 5 says L(D) ∈ SWEEP(log n). By Theorem 1 we know that
SWEEP(1) is included in the class of regular languages. Finally, by Lemma 4
we have that L(D) is not regular which means that L(D) /∈ SWEEP(1). ��
Lemma 6. Any automaton which accepts Lab = {w ∈ {a, b}∗ | |w|a = |w|b} has
sweep complexity Θ(n).

Proof. We know that every machine has sweep complexity O(n), so it is enough
to show that it is not possible to accept Lab with sublinear sweep complexity.
For that we assume that such an automaton, say F = (Q,Σ,R, s, F ) exists, and
derive a contradiction.

If F had linear sweep complexity, then it could have computations on
infinitely many inputs in which all sweeps process a constant number of symbols.
However, with sublinear complexity we get that for any constant C and for all
long enough inputs w ∈ Lab, during the processing of w at least one sweep reads
more than C symbols. We also know that anbn ∈ Lab for any n ≥ 0. Let C = 2|Q|
where |Q| is the number of states of F and consider an input w = ambm with
m large enough that the machine reads more than C symbols in some sweep



126 S. Z. Fazekas and R. Mercaş

while processing w. The remaining input at the beginning of that sweep is akb�

for some k, � such that k + � > C. During the sweep the machine reads ak′
b�′

where k′ + �′ > C. This means that either k′ > |Q| or �′ > |Q|. Without loss
of generality we can assume k′ > |Q|. This gives us that while reading ak′

the
automaton must visit some state p at least twice while reading only a’s, so we
get that par →∗ p for some r > 0. But then, by a usual pumping argument the
machine also needs to accept an+rbn /∈ Lab contradicting our assumption that
L(F) = Lab and concluding the proof. ��
Theorem 4. For any f : N → N with f(n) ∈ o(n) we have SWEEP(f(n)) �

SWEEP(n).

Proof. By Lemma 6 we know that Lab /∈ SWEEP(f(n)) for any sublinear func-
tion f(n). The two-state automaton A accepts the language with sweep com-
plexity Θ(n). This is easy to see when considering the worst-case inputs of the
form anbn for n ≥ 0. ��

5 Concluding Remarks

Apart from the complexity considerations listed below we think the proof of
Lemma 4 contains a detail worth emphasizing: the automaton can verify a loga-
rithmic/exponential relation between two factors of suitably chosen inputs! We
found this very surprising since we still basically deal with DFA which cannot
store information and cannot ‘choose’ which symbols to read or jump over2.

We presented automata for all pairings of regular and non-regular languages
with logarithmic and linear worst case sweep complexity. This way we disproved
the conjecture on the constant sweep requirement for regularity [9] and answered
several questions regarding sweep complexity posed in [8]:

1. Is the language of each machine with ω(1) complexity non-regular? NO, by
Sect. 3.

2. Is there a machine with sweep complexity between constant and linear, that
is, ω(1) and o(n)? YES, by Theorem 2 (and Lemma 5).

3. Is there a language with sweep complexity between constant and linear, that
is, all machines accepting it have superconstant complexity and at least one
has sublinear? YES, by Theorem 3.

4. Is there an upper bound in terms of sweep complexity on machines accepting
regular languages? NO, by Propositions 2 and 3.

5. Are machines less complex in the case of binary alphabets, given that the
complementary deficient pairs of Lemma 1 are predetermined? NO, illustrated
by the fact that all results have been obtained over a binary alphabet.

These coarser forms of Questions 2 and 3 have been answered here, but
for a complete picture one would want to know whether there exist machines
2 Iterated uniform finite transducers can also verify such relationships, albeit their

computing power is much stronger. [11].
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with arbitrary (constructible) sublinear complexity and its equivalent for lan-
guages. The most obvious choices for such a study would probably be complex-
ities Θ(logk n) and Θ(nε), for constants k > 1 and ε < 1. Another angle related
to Question 4 is to study the lower bound of non-regularity: logarithmic com-
plexity can produce non-regular languages, but can we do it with less of this
‘non-regular’ resource? In the case of Question 5, our answer may be refined, as
there may by some sublinear f(n) such that the machines of Θ(f(n)) complexity
all accept regular or all accept non-regular languages, although we have not seen
anything that indicates such perplexing behaviour.

Another interesting direction relates to our original motivation in looking
at the complexity of these automata, deciding regularity. The question more
generally becomes, is it decidable given a machine or language and a function
f(n), whether the machine/language has Θ(f(n)) complexity (or its one-sided
variants with O and Ω)? We suspect that the answer is yes at least in the case of
constant and linear functions but have no idea about the logarithmic and more
complicated cases.
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Abstract. We investigate the computational complexity of the Pump-
ing-Problem, that is, for a given finite automaton A and a value p,
to decide whether the language L(A) satisfies a previously fixed pump-
ing lemma w.r.t. the value p. Here we concentrate on two different
pumping lemmata from the literature. It turns out that this problem is
intractable, namely, it is already coNP-complete, even for deterministic
finite automata (DFAs), and it becomes PSPACE-complete for nondeter-
ministic finite state devices (NFAs), for at least one of the considered
pumping lemmata. In addition we show that the minimal pumping con-
stant for the considered particular pumping lemmata cannot be approx-
imated within a factor of o(n1−δ) with 0 ≤ δ ≤ 1/2, for a given n-state
NFA, unless the Exponential Time Hypothesis (ETH) fails.

1 Introduction

The syllabus on courses of automata theory and formal languages certainly con-
tains the introduction of pumping lemmata for regular and context-free lan-
guages in order to prove non-regularity or non-context freeness, respectively, of
certain languages. Depending on the preferences of the course instructor and
the used monograph, different variants of pumping lemmata are taught. For
instance, consider the following pumping lemma, or iteration lemma, that can
be found in [9, page 70, Theorem 11.1], which describes a necessary condition
for languages to be regular.

Lemma 1. Let L be a regular language over Σ. Then, there is a constant p
(depending on L) such that the following holds: If w ∈ L and |w| ≥ p, then
there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and xytz ∈ L
for t ≥ 0—it is then said that y can be pumped in w.

A lesser-known pumping lemma, attributed to Jaffe [8], characterizes the reg-
ular languages, by describing a necessary and sufficient condition for languages
to be regular. For other pumping lemmata see, e.g., the annotated bibliography
on pumping [10]:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 128–140, 2023.
https://doi.org/10.1007/978-3-031-40247-0_9
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Lemma 2. A language L is regular if and only if there is a constant p (depend-
ing on L) such that the following holds: If w ∈ Σ∗ and |w| = p, then there are
words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and1

wv = xyzv ∈ L ⇐⇒ xytzv ∈ L

for all t ≥ 0 and each v ∈ Σ∗.

For a regular language L the value of p in Lemma 1 can always be chosen to be
the number of states of a finite automaton, regardless whether it is deterministic
or nondeterministic, accepting L. Consider the unary language ana∗, where all
values p with 0 ≤ p ≤ n do not satisfy the properties of Lemma 1, but p = n+1
does. A closer look on some example languages reveals that sometimes a much
smaller value suffices. For instance, consider the language

L = a∗ + a∗bb∗ + a∗bb∗aa∗ + a∗bb∗aa∗bb∗,

which is accepted by a (minimal) deterministic finite automaton with five states,
the sink state included—see Fig. 1. Already for p = 1 the statement of Lemma 1
is satisfied since regardless whether the considered word starts with a or b, this
letter can be readily pumped. Thus, the minimal pumping constant satisfying
the statement of Lemma 1 for the language L is 1, because the case p = 0 is
equivalent to L = ∅ [3]. This already shows that the minimal pumping constant
w.r.t. Lemma 1 is non-recursively related to the deterministic state complexity of
a language. For the pumping constant w.r.t. Lemma 2 the situation is even more
involved. Here the value of p can only be chosen to be the number of states of a
deterministic finite automaton accepting the language in question. In fact, the
gap between the nondeterministic state complexity and the minimal pumping
constant p satisfying Lemma 2 for a specific language can be arbitrarily large—
cf. Theorem 3. Moreover, the relation between the minimal pumping constant p
w.r.t. Lemma 2 is related to the deterministic state complexity n of a language L
over the alphabet Σ by the inequality p ≤ n ≤ ∑p−1

i=0 |Σ|i, which was recently
shown in [5]. A careful inspection of the language L mentioned above reveals
that the minimal pumping constant p when considering Jaffe’s pumping lemma
is equal to five. Any word of length at least five uses a loop-transition in its
computation—see Fig. 1—and hence the letter on this loop-transition can be
pumped in the word under consideration. Thus mpe(L) ≤ 5. On the other hand,
the word baba cannot be pumped such that the Myhill-Nerode equivalence classes
are respected, because the word xz belongs to a different equivalence class than
xyz, for every decomposition of baba into x, y, and z with |y| ≥ 1—again, see
Fig. 1. Therefore, mpe(L) > 4 and thus, mpe(L) = 5. This example shows that
the minimal pumping constant is not equivalent to the length of the shortest
accepting path in (the minimal) automaton accepting the language. The authors
experienced that this is the most common misconception of the minimal pumping
constant when discussing this for the first time.
1 Observe that the words w = xyz and xytz, for all t ≥ 0, belong to the same Myhill-

Nerode equivalence class of the language L. Thus, one can say that the pumping of
the word y in w respects equivalence classes.
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q2q1q0 q3 q4
b a b a

a b a b a, b

Fig. 1. The minimal deterministic finite automaton A accepting the language L.

This gives rise to the following definition of a minimal pumping constant : for
a regular language L let mpc(L) (mpe(L), respectively) refer to the minimal num-
ber p satisfying the conditions of Lemma 1 (Lemma 2, respectively). Recently,
in [3,5] minimal pumping constants w.r.t. the above two lemmata were investi-
gated from a descriptional complexity perspective. Here we focus more on the
computational complexity of pumping, a problem that to our knowledge was
not considered so far. This is even more surprising, since pumping lemmata are
omnipresent in theoretical courses in automata theory and formal languages. We
will consider the following problem related to the pumping lemma stated above:

Language-Pumping-Problem or for short Pumping-Problem:
Input: a finite automaton A and a natural number p, i.e., an encoding

〈A, 1p〉.
Output: Yes, if and only if the statement from Lemma 1 holds for the

language L(A) w.r.t. the value p.

A similar definition applies when considering the condition of Lemma 2 instead.
We summarize our findings on the computational complexity of the Pumping-
Problem in Table 1.

2 Preliminaries

Table 1. Complexity of the Pumping-Problem
for variants of finite state devices.

Pumping-Problem w.r.t. . . .

Lemma 1 Lemma 2

DFA coNP-complete

NFA

coNP-hard
PSPACE-compl.

contained in ΠP
2

No det. 2
o

(
sδ

)
-time approx.

within o(s1−δ), unless ETH fails.

We assume the reader to be
familiar with the basics in
computational complexity the-
ory [11]. In particular we recall
the inclusion chain: P ⊆ NP ⊆
PSPACE. Here P (NP, respec-
tively) denotes the class of
problems solvable by determin-
istic (nondeterministic, respec-
tively) Turing machines in poly-
time, and PSPACE refers to the
class of languages accepted by
deterministic or nondeterminis-
tic Turing machines in polynomial space [14]. As usual, the prefix co refers to
the complement class. For instance, coNP is the class of problems that are com-
plements of NP problems. Moreover, recall the complexity class ΠP

2 from the
polynomial hierarchy, which can be described by polynomial time bounded ora-
cle Turing machines. Here ΠP

2 = coNPNP, where coNPA is the set of decision
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problems solvable in polynomial time by a universal Turing machine with an
oracle for some complete problem in class A. The class NPA is defined analo-
gously. Completeness and hardness are always meant with respect to determin-
istic many-one logspace reducibilities (≤log

m ) unless stated otherwise.
Next we fix some definitions on finite automata—cf. [4]. A nondeterministic

finite automaton (NFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function · maps Q × Σ to 2Q.
Here 2Q refers to the powerset of Q. The language accepted by the NFA A is
defined as L(A) = {w ∈ Σ∗ | (q0 · w) ∩ F �= ∅ }, where the transition function is
recursively extended to a mapping Q×Σ∗ → 2Q in the usual way. An NFA A is
said to be partial deterministic if |q ·a| ≤ 1 and deterministic (DFA) if |q ·a| = 1
for all q ∈ Q and a ∈ Σ. In these cases we simply write q · a = p instead of
q · a = {p}. Note that every partial DFA can be made complete by introducing
a non-accepting sink state that collects all non-specified transitions. For a DFA,
obviously every letter a ∈ Σ induces a mapping from the state set Q to Q by
q �→ q · a, for every q ∈ Q. Finally, a finite automaton is unary if the input
alphabet Σ is a singleton set, that is, Σ = {a}, for some input symbol a.

The deterministic state complexity of a finite automaton A with state set Q
is referred to as sc(A) := |Q| and the deterministic state complexity of a regular
language L is defined as

sc(L) = min{ sc(A) | A is a DFA accepting L, i.e., L = L(A) }.

A similar definition applies for the nondeterministic state complexity of a regular
language by changing DFA to NFA in the definition, which we refer to as nsc(L).
It is well known that

nsc(L) ≤ sc(L) ≤ 2nsc(L),

for every regular language L.
A finite automaton is minimal if its number of states is minimal with respect

to the accepted language. It is well known that each minimal DFA is isomorphic
to the DFA induced by the Myhill-Nerode equivalence relation. The Myhill-
Nerode equivalence relation ∼L for a language L ⊆ Σ∗ is defined as follows: for
u, v ∈ Σ∗ let u ∼L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. The
equivalence class of u is referred to as [u]L or simply [u] if the language is clear
from the context and it is the set of all words that are equivalent to u w.r.t.
the relation ∼L, i.e., [u]L = { v | u ∼L v }. Therefore we refer to the automaton
induced by the Myhill-Nerode equivalence relation ∼L as the minimal DFAfor
the language L. On the other hand there may be minimal non-isomorphic NFAs
for L.

3 The Complexity of Pumping

Before we start with the investigation of the complexity of pumping problems
we list some simple facts about the minimal pumping constants known from the
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literature: (1) mpc(L) = 0 if and only if L = ∅, (2) for every non-empty finite
language L we have mpc(L) = 1 + max{ |w| | w ∈ L }, (3) mpc(L) = 1 implies for
the empty word λ that λ ∈ L, and (4) mpe(L) = 1 if and only if L = ∅ or L = Σ∗.
Also the inequalities mpc(L) ≤ sc(L) ≤ nsc(L) hold—see, e.g., [3,5]. For a finite
languages we have mpe(L) = 2+max{|w| | w ∈ L} if each w with |w| = max{|w| |
w ∈ L} is contained in L. Otherwise mpe(L) = 1 + max{|w| | w ∈ L} holds. The
relation of mpe(L) and the state complexities is more subtle, namely for a regular
language over the alphabet Σ it was shown in [5] that

mpe(L) ≤ sc(L) ≤
mpe(L)−1∑

i=0

|Σ|i.

On the other hand, mpe(L) and nsc(L) are incomparable in general as we see
next—the automaton used to prove the second statement of the following The-
orem is shown in Fig. 2:

q0

q3q2q1 . . . qn

a1

a1 a2
a3

an

a2 a3 a4 an

a1 a2 a3 an

Fig. 2. The nondeterministic finite automaton An accepting Ln = L(An) satisfying
mpe(Ln) = 3 and nsc(Ln) ≥ n.

Theorem 3. The following statements hold: (1) There is a family of unary
regular languages (Li)i≥2 such that the inequality nsc(Li) < mpe(Li) holds. (2)
There is a family of regular languages (Li)i≥4 over a growing size alphabet such
that 3 = mpe(Li) < i ≤ nsc(Li).

Observe, that the automaton depicted in Fig. 2 is a partial DFA, where only
the non-accepting sink state is missing. It is worth mentioning that this finite
state device shows that even for DFAs the mpe-measure and the longest path of
the automaton, that is, a simple2 directed path of maximum length starting in
the initial state of the automaton, are different measures in general. Nevertheless,
the following observation is immediate by Jaffe’s proof, cf. [8]:

Lemma 4. Let A be a DFA and L := L(A). Then mpe(L) ≤ �A + 1, where �A

is the length, i.e., number of transitions, of the longest path of the automaton A.
If L is a unary language, then mpe(L) = sc(L). ��

2 Here a path is called simple if it does not have repeated states/vertices.



The Pumping Lemma for Regular Languages is Hard 133

3.1 The PUMPING-PROBLEM for NFAs

We start our journey with results on the complexity of the Pumping-Problem
for NFAs. First we consider the problem w.r.t. Lemma 1 and later in the sub-
section w.r.t. Lemma 2.

Theorem 5. Given an NFA A and a natural number p, it can be decided in ΠP
2

whether for the language L(A) the statement of Lemma 1 holds for the value p.

In order to prove the theorem, we establish an auxiliary lemma.

Lemma 6. Given an NFA A = (Q,Σ, ·, q0, F ) and a word w over Σ, the lan-
guage inclusion problem for w∗ in L(A) is coNP-complete. The variant of the
problem where A is deterministic is L-complete.

Now we are ready to prove the upper bound for the Pumping-Problem:

Proof (of Theorem 5). We show that the pumping problem for NFAs belongs
to ΠP

2 . Let 〈A, p〉 be an input instance of the problem in question, where Q is
the state set of A. We construct a coNP Turing machine M with access to a
coNP oracle: first the device M deterministically verifies whether p ≥ |Q|, and if
so halts and accepts. Otherwise the computation universally guesses (∀-states)
a word w with p ≤ |w| < |Q|. On that particular branch M checks determin-
istically if w belongs to L(A). If this is not the case the computation halts
and accepts. Otherwise, M deterministically cycles through all valid decompo-
sitions w = xyz with |y| ≥ 1. Then it constructs a finite automaton B accepting
the language quotient (x−1 ·L(A)) ·z−1. Here, if A is deterministic, then so is B.
Then M decides whether y∗ ⊆ L(B) with the help of the coNP oracle—compare
Lemma 6. If y∗ ⊆ L(B), then the cycling through the valid decompositions is
stopped, and the device M halts and accepts. Notice that the latter is the case
iff xy∗z ⊆ L(A). Otherwise, i.e., if y∗ �⊆ L(B), the Turing machine M contin-
ues with the next decomposition in the enumeration cycle. Finally, if the cycle
computation finishes, the Turing machine halts and rejects, because no valid
decomposition of w was found that allows for pumping. In summary, the Turing
machine operates universally, runs in polynomial time, and uses a coNP oracle.
Thus, the containment within ΠP

2 follows. ��
Next we show that the problem in question is coNP-hard and gives us a nice

non-approximability result under the assumption of the so-called Exponential-
Time Hypothesis (ETH) [2,7]: there is no deterministic algorithm that solves
3SAT in time 2o(n+m), where n and m are the number of variables and clauses,
respectively.

Note that the unary regular language Tp = ap−1a∗ satisfies mpc(Tp) = p.
The languages Tp will be a basic building block for our reduction. We build
upon the classical coNP-completeness proof of the inequality problem for regular
expressions without star given in [6, Thm. 2.3]. We modify the reduction a bit,
since we want to deal with only one parameter in the analysis to come, and that
is the number of clauses.



134 H. Gruber et al.

Theorem 7. Let ϕ be a formula in 3DNF with n variables and m clauses. Then
a nondeterministic finite automaton Aϕ can be computed in time O(m2) such
that the language Z = L(Aϕ) is homogeneous3 and Z equals {0, 1}3m if and only
if ϕ is a tautology. Furthermore, Aϕ has O(m2) states.

The last 3m − n positions of the words in the homogeneous language used
for the above reduction do not convey any information; they simply serve the
purpose of avoiding a parameterization by n. In order to finish our reduction, we
embed Z into the language Y = Z · # · Σ∗ + {0, 1}3m · # · Tp, for some carefully
chosen p, where # is a new letter not contained in Σ. This reduction runs in
polynomial time.

Lemma 8. Let ϕ be a formula in 3DNF with n variables and m clauses and
let Aϕ be the NFA constructed in Theorem 7. Furthermore, let

Y = Z · # · Σ∗ + {0, 1}3m · # · Tp,

for p ≥ 2. Then the minimal pumping constant of Y w.r.t. Lemma 1 is equal
to 3m + 2, if Z = {0, 1}3m, and is equal to 3m + 1 + p otherwise.

As a direct corollary we obtain:

Corollary 9. Given an NFA A and a natural number p in unary, it is coNP-
hard to decide whether for the language L(A) the statement from Lemma 1 holds
for the value p. ��

Next we prove the following main result:

Theorem 10. Let A be an NFA with s states, and let δ be a constant such that
0 < δ ≤ 1/2. Then no deterministic 2o(sδ)-time algorithm can approximate the
minimal pumping constant w.r.t. Lemma 1 within a factor of o(s1−δ), unless
ETH fails.

Proof. We give a reduction from the 3DNF tautology problem as in Lemma 8.
That is, given a formula ϕ in 3DNF with n variables and m clauses, we construct
an NFA A that accepts the language Y = Z · # · Σ∗ + {0, 1}3m · # · Tp. Here,
the set Y features some carefully chosen parameter p, which will be fixed later
on. For now, we only assume p ≥ 2.

By Lemma 8, the reduction is correct in the sense that if ϕ is a tautology,
then the minimal pumping constant w.r.t. Lemma 1 is strictly smaller than in
the case where it admits a falsifying assignment.

Observe that the running time of the reduction is linear in the number of
states of the constructed NFA describing Y . It remains to estimate that number
of states. Recall from Theorem 7 that the number of states in the NFA Aϕ is of
order O(m2). The set Z · # · Σ∗ thus admits an NFA with O(m2) states; and
the language {0, 1}3m · # · Tp can be accepted by an NFA with O(m + p) states.
Altogether, the number of states is in O(m2 + p).
3 A language L ⊆ Σ∗ is homogeneous if all words in L are of same length.
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Now we need to fix the parameter p in our reduction; let us pick p = m
1
δ ,

where it is understood that we round up to the next integer. Given that δ is
constant, for large enough m, we can ensure that p ≥ 2. So this is a valid choice
for the parameter p—in the sense that the reduction remains correct.

Towards a contradiction with the ETH, assume that there is an algorithm Aδ

approximating the pumping constant within o(s1−δ) running in time 2o(sδ). Then
algorithm Aδ could be used to decide whether Z = {0, 1}3m as follows: the
putative approximation algorithm Aδ returns a cost C that is at most o(s1−δ)
times the optimal cost C∗, that is, C = o(s1−δ) · C∗.

We consider two cases: if Z = {0, 1}3m, then the pumping constant is in O(m)
by Lemma 8. In this case, the hypothetical approximation algorithm Aδ returns
a cost C with

C = o(m · s1−δ) = o

(

m · O
(
m2 + m

1
δ

)1−δ
)

= o

(

m · O
(
m

1
δ

)1−δ
)

= o(m
1
δ ) = o

(
m

1
δ + m

)
= o (m + p) ;

where in the second step of the above calculation, we used the fact that s =
O(m2 + p) = O(m2 + m

1
δ ); in the third step, we applied the inequality 1

δ ≥ 2 to
see that the term m

1
δ asymptotically dominates the term m2; the fourth step is

a simple term transformation; and the last two steps apply these facts in reverse
order.

On the other hand, in case Z is not full, then Lemma 8 states that the pump-
ing constant is in Ω(m + p). Using the constants implied by the O-notation, the
size returned by algorithm Aδ could thus be used to decide, for large enough m,
whether Z is full, and thus by Theorem 7 whether the 3DNF formula ϕ is a
tautology.

It remains to show that the running time of Aδ in terms of the number of
clauses m is in 2o(m), which contradicts the ETH. Recall that s = O(m2+p) and
p = m

1
δ with 1

δ ≥ 2; we thus can express the running time of the algorithm Aδ

in terms of the number of clauses m, namely,

2o(sδ) = 2o((m2+p)δ) = 2o
(
(m

1
δ )δ

)
= 2o(m),

which yields the desired contradiction to the ETH. ��
A careful inspection of Lemma 8 and Theorem 10 reveals that both results

remain valid if one considers the minimal pumping constant w.r.t. Lemma 2,
since mpe(Tp) = p as the interested reader may easily verify.

Although, we have to leave open the exact complexity of the Pumping-
Problem for NFAs w.r.t. Lemma 1—coNP-hard and contained in ΠP

2 , we can
give a precise answer if we consider Jaffe’s pumping lemma instead. First we
establish an auxiliary theorem.
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Theorem 11. Given a DFA A = (Q,Σ, · , q0, F ) and a deterministic or non-
deterministic finite automaton B, deciding whether every word w ∈ L(B)
describes the same equivalence class w.r.t. the Myhill-Nerode relation ∼L(A),
is NL-complete. If the automaton A is an NFA, the problem becomes PSPACE-
complete.

This allows us to prove the following PSPACE-completeness:

Theorem 12. Given an NFA A and a natural number p in unary, it is PSPACE-
complete to decide whether for the language L(A) the statement from Lemma 2
holds for the value p.

3.2 The PUMPING-PROBLEM for DFAs

Here we find for both pumping lemmata under consideration that the corre-
sponding Pumping-Problem for DFAs is coNP-complete. First let us prove the
upper bound:

Theorem 13. Given a DFA A and a natural number p in unary. To decide
whether for the language L(A) the statement from Lemma 1 holds for the value p
can be solved in coNP. The same upper bound applies if Lemma 2 is considered.

In fact, both problems are coNP-hard. To this end, we utilize the construc-
tion of [13] of a directed (planar) graph from a 3SAT instance ϕ that has a
Hamiltonian cycle if and only if ϕ is satisfiable. Assume that ϕ =

∧m
i=1 Ci is

a 3SAT formula with n variables x1, x2, . . . , xn and m clauses. Without loss of
generality we may assume that every variable occurs at most four times in ϕ
and no variable appears in only one polarity (pure literal). Let us briefly recall
the construction of [13], slightly adapted to our needs,4 which is illustrated in
Fig. 3a for the formula

ϕ = (x1 ∨ x̄2) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3).

The conversion of the given skeleton graph into a directed graph is achieved
through the utilization of couplings as demonstrated in Fig. 3b and clause gad-
gets depicted in Fig. 3c—clause gadgets for a single literal or two literals are
constructed straight-forwardly. We require that the value of xi (or xi) is true
if a given Hamiltonian s-t-path of the directed graph indicated in Fig. 3a con-
tains the left edge from every pair of edge assigned to xi (or xi, respectively).
Otherwise the value is assumed to be false.

The directed graph Gϕ that has been constructed will possess a Hamiltonian
s-t-path if and only if the Boolean formula ϕ is satisfiable. Additionally, the
Hamiltonian s-t-path must satisfy the following conditions:

4 Instead of a Hamiltonian cycle we ask for a Hamiltonian s-t-path.
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x2
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x2

x3

x2

x3

st

(a) Skeleton graph for ϕ.

(b) Coupling construction.

∨

(c) Clause gadget.

Fig. 3. Schematic drawing of the skeleton graph constructed for the 3SAT instance ϕ.
The obtained direct graph has a Hamiltonian s-t-path if and only if ϕ is satisfiable.
Here, formula ϕ is satisfiable, because ϕ|x1=1,x2=0,x3=1 = 1. A Hamiltonian s-t-path
(without traversing the coupling connections) is indicated with a boldface line.

1. The s-t-path must pass through all left edges assigned to xi (or xi), or all
right edges assigned to xi (xi, respectively).

2. It is not permitted for the s-t-path to pass through both a left (right) edge
of xi and a left (right) edge of xi at the same time.

3. There must be at least one left edge present in every clause Cj .

Now we are ready to state our next theorem:

Theorem 14. Given a DFA A and a natural number p, it is coNP-hard to
decide whether for the language L(A) the statement of Lemma 1 (Lemma 2,
respectively) holds for the value p. ��
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Proof. Let ϕ be a 3SAT formula with n variables and m clauses. Then by the
above construction we obtain a skeleton graph and in turn a directed graph Gϕ

that has a Hamiltonian s-t-path if and only if ϕ is satisfiable. It remains to
construct a partial DFA Aϕ out of the skeleton/directed graph by giving an
appropriate labeling of the edges such that the Hamiltonian s-t-path can only
be pumped trivially. The vertices of the directed graph become the states of
the automaton Aϕ and the edges become transitions with appropriate labels
described below. Moreover, the initial state of Aϕ is the state s and the sole
accepting state is set to t.

In the skeleton graph, an edge labeled a (or b, respectively) is coupled by the
construction illustrated in Fig. 4 with an edge labeled b (or a, respectively).

a b

a
a, b

a
a, b

a b

b

b a
a, b

a
a, b

a b

b

b a
a, b

a
a, b

a b

b

b

Fig. 4. Coupling of two edges labeled a and b and two possible traversals.

Observe, that in the resulting graph both connecting edges (these are the
back and forth edges) carry the labels a and b simultaneously. Then a left (right,
respectively) bended edge of a variable xi is labeled a (b, respectively). For xi

this is exactly the other way around. The determinism of the automaton together
with the coupling thus induces the a-b-labeling of all other bended edges. Finally,
every (vertical) straight edge, except for the edge connecting t and s, is labeled
by the letter #. The t-s-edge is labeled with all letters, i.e., a, b, and #. Thus,
the input alphabet is equal to Σ = {a, b} ∪ {#}. This completes the description
of the partial DFA Aϕ—see Fig. 5 for a partial drawing of the automaton.

First we show that Aϕ is minimal, if completed.

Claim 1. The partial DFA Aϕ is bideterministic5 and if completed, i.e., by intro-
ducing a non-accepting sink state that collects all non-specified transitions, it is
the minimal (ordinary) DFA.

Next we consider the minimal pumping constants induced by the language
accepted by Aϕ.

Claim 2. Let L be the language accepted by the partial DFA Aϕ. Then we have
mpe(L) = sc(Aϕ) if and only if the Boolean formula ϕ is satisfiable. The same
holds true for the measure mpc(L).
5 A finite automaton A is bideterministic [1,12] if it is both partially deterministic

and partially co-deterministic and has a sole accepting state. Here A is partially co-
deterministic if the reversed automaton obtained by reversing the transitions of A
is partially deterministic.
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Fig. 5. Part of the partial DFA constructed from the skeleton graph with the help
of coupling and clause gadgets. Here n = 3 and m = 3. A Hamiltonian s-t-path p
is indicated with boldface transitions and any word w that fits to p is depicted with
boldface letters on the transitions.

The complete automaton for Aϕ and sc(Aϕ) is a no instance of the Pumping-
Problem w.r.t. Lemma 1 (Lemma 2, respectively) if and only if the Boolean
formula ϕ is unsatisfiable. Thus the Pumping-Problem for DFAs is coNP-hard.

��
Putting the results together we get:

Corollary 15. Given a DFA A and a natural number p, it is coNP-complete
to decide whether for the language L(A) the statement of Lemma 1 (Lemma 2,
respectively) holds for the value p. ��
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Abstract. The Parikh matrix, an extension of the Parikh vector for
words, is a fundamental concept in combinatorics on words. We investi-
gate M -unambiguity that identifies words with unique Parikh matrices.
While the problem of identifying M -unambiguous words for a binary
alphabet is solved using a palindromicly amicable relation, it is open
for larger alphabets. We propose substitution rules that establish M -
equivalence and solve the problem of M -unambiguity for a ternary alpha-
bet. Our rules build on the principles of the palindromicly amicable rela-
tion and enable tracking of the differences of length-3 ordered scattered-
factors. We characterize the set of M -unambiguous words and obtain a
regular expression for the set.

Keywords: Parikh Matrix · Parikh Vector · M -unambiguity ·
M -equivalence

1 Introduction

Parikh [10] introduced a concept of mapping words to vectors. The resulting
vector is called a Parikh vector, by counting the occurrences of each letter [6,7].
Mateescu et al. [9] extended the Parikh vector to the Parikh matrix that cap-
tures more complex numeric properties, by considering occurrences of scattered-
factors.

Given an ordered alphabet Σ = {a1, a2, . . . , ak}, a Parikh matrix M over
Σ is a (k + 1) × (k + 1) upper triangular matrix, where its main diagonal fills
with all 1’s, the second diagonal counts the occurrences of length-1 scattered-
factors, the third diagonal counts length-2 ordered scattered-factors, and so on.
For instance, given a word w = 00121 over Σ = {0, 1, 2}, the Parikh vector of w
is (|w|0, |w|1, |w|2) = (2, 2, 1) and the Parikh matrix of w is

⎛
⎜⎜⎝

1 |w|0 |w|01 |w|012
0 1 |w|1 |w|12
0 0 1 |w|2
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 2 4 2
0 1 2 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Note that the second diagonal (in red) is the Parikh vector of w. Parikh matri-
ces provide a simple and intuitive approach that computes the occurrences of
scattered-factors.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 141–152, 2023.
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We say that two words u and v are M -equivalent if u and v have the same
Parikh matrix [5,9]. Atanasiu et al. [3] identified a family of binary words having
the same Parikh matrix and characterized M -equivalence over binary words by
the concept of palindromicly amicable property. This characterization on M -
equivalence allows the identification of words with unique Parikh matrices—the
injectivity problem [2,12]. Specifically, given a word u, if there is a distinct M -
equivalent word v, then u is M -ambiguous; otherwise, u is M -unambiguous [8].
The injectivity problem is to find M -unambiguous words over a given ordered
alphabet. Mateescu and Salomaa [8] constructed a regular expression for M -
unambiguous words and solved the injectivity problem over a binary alphabet.
However, it has been a challenging problem to extend this result to a larger
alphabet.

Researchers partially characterized M -equivalence and M -unambiguity over
a ternary alphabet [1,4,13]. Şerbănuţă and Şerbănuţă [4] enumerated all M -
unambiguous words and proposed patterns that identify M -unambiguous words
over a ternary alphabet. However, the pattern regular expression is incorrect;
it misses some M -unambiguous words such as bcbabcbabc. Nevertheless, their
work has laid a foundation for further research on M -unambiguity and M -
equivalence [1,13]. However, a complete and simple characterization towards M -
equivalence and M -unambiguity over a general alphabet remains elusive [11,14].
Even for a ternary alphabet, a comprehensive characterization of M -equivalence
such as palindromicly amicable property has been open for decades.

We propose substitution rules that maintain the occurrences of length-1 or -2
ordered scattered-factors and keep track of the occurrences of length-3 ordered
scattered-factors. Our three substitution rules can represent all words over a
given ternary alphabet. We introduce ∼=-relation that establishes M -equivalence
based on the substitutions and compute the language of M -unambiguous words
over a ternary alphabet.

We explain some terms and notations in Sect. 2. We introduce substitu-
tion rules and an equivalence relation that characterizes M -equivalent words
in Sect. 3. Based on the proposed rules and relations, we compute a regular
expression for M -ambiguous words and characterize M -unambiguity in Sect. 4.
We conclude our paper with a brief summary and a few questions in Sect. 5.

2 Preliminaries

Let N denote the set of all nonnegative integers and Z denote the set of all
integers. We use

(
u
k

)
to denote the binomial coefficient for u ≥ k ∈ N. An

alphabet Σk is a finite set of k letters and |Σk| = k is the number of letters in Σk.
We use Σ generally when the alphabet size k is not important. Without loss of
generality, we use nonnegative integers as alphabet letters (e.g., Σ3 = {0, 1, 2}).
A word u over Σ is a finite sequence of letters in Σ. Let |u| be the length of
u. The symbol λ denotes the empty word whose length is 0. Given a word w,
we use wR to denote its reversal; w = a1a2 · · · an and wR = anan−1 · · · a1. The
Kleene star Σ∗ of an alphabet Σ is the set of all words over Σ. An ordered
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alphabet (Σk, <) consists of an alphabet Σk = {a1, a2, . . . , ak} and a strict total
order < on Σk. We often denote the ordered alphabet by Σk = {a1 < a2 < · · · <
ak}. If a total order < is clear in the context, we simply use Σk to denote an
ordered alphabet.

Given two words u and v ∈ Σ∗, we say that v is a factor of u if u = αvβ
for some α, β ∈ Σ∗. Similarly, we say that v is a scattered-factor of u if there
exist u0, u1, . . . , un and v1, v2, . . . , vn ∈ Σ∗ such that v = v1v2 · · · vn and u =
u0v1u1 · · · un−1vnun. We denote by |u|v the number of distinct occurrences of
a nonempty word v as a scattered-factor in u. For instance, if u = 0110 and
v = 01, then v is both a factor and a scattered-factor of u and |u|v = 2.

We now present definitions that are directly related to our problem on the
Parikh matrix.

Definition 1. Let Σk = {a1 < a2 < · · · < ak} be an ordered alphabet. The
Parikh mapping is a monoid morphism Ψ : Σ∗

k → N
k defined as Ψ(w) =

(|w|a1 , |w|a2 , . . . , |w|ak
). Then, Ψ(w) for w ∈ Σ∗

k is the Parikh vector of w.

The extension of the Parikh mapping to the Parikh matrix mapping considers
a (upper) unitriangular matrices of nonnegative integers. A unitriangular matrix
is a square matrix m = (mi,j)1≤i,j≤k such that (1) mi,j ∈ N, (2) mi,j = 0 for all
1 ≤ j < i ≤ k, and (3) mi,i = 1 for all 1 ≤ i ≤ k. The set of all unitriangular
matrices of dimension k ≥ 1 is denoted by Mk.

Definition 2. Let Σk = {a1 < a2 < · · · < ak} be an ordered alphabet. The
Parikh matrix mapping is a monoid morphism ΨΣk

: Σ∗
k → Mk+1 defined as

follows. For at ∈ Σk, if ΨΣk
(at) = (mi,j)1≤i,j≤k+1, then mi,i = 1 for 1 ≤ i ≤

k + 1, mt,t+1 = 1, and all the other entries are zero. Then, ΨΣk
(w) for w ∈ Σ∗

k

is the Parikh matrix of w.

Proposition 1. [9, Theorem 3.1] Let Σk = {a1 < a2 < · · · < ak} be an
ordered alphabet. We denote by ai,j the word aiai+1 · · · aj for 1 ≤ i ≤ j ≤ k. For
w ∈ Σ∗

k , its Parikh matrix ΨΣk
(w) has the following properties:

1. mi,j = 0, for all 1 ≤ j < i ≤ k + 1,
2. mi,i = 1, for all 1 ≤ i ≤ k + 1,
3. mi,j+1 = |w|u where u = ai,j for all 1 ≤ i ≤ j ≤ k.

Note that the Parikh matrix ΨΣ(w) for w ∈ Σ∗ satisfies the associativity of
matrix multiplication and ΨΣ(w) can be constructed from the Parikh matrices
of factors of w. For instance when w = uv, we have ΨΣ(w) = ΨΣ(u) · ΨΣ(v).

Example 1. Consider w = 0110 over a binary alphabet Σ2 = {0 < 1}. As an
example for Proposition 1,

ΨΣ2(0110) = ΨΣ2(0)ΨΣ2(1)ΨΣ2(1)ΨΣ2(0) =

⎛
⎝

1 2 2
0 1 2
0 0 1

⎞
⎠ =

⎛
⎝

1 |0110|0 |0110|01
0 1 |0110|1
0 0 1

⎞
⎠ .
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3 M -equivalence

We discuss words with the equivalent Parikh matrices. For instance, the following
words u and v ∈ Σ∗ have the same Parikh matrix.

ΨΣ3(u) =

⎛
⎜⎜⎝

1 |u|0 |u|01 |u|012
0 1 |u|1 |u|12
0 0 1 |u|2
0 0 0 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 |v|0 |v|01 |v|012
0 1 |v|1 |v|12
0 0 1 |v|2
0 0 0 1

⎞
⎟⎟⎠ = ΨΣ3(v).

This equivalence relation is called M -equivalence [5,9].

Definition 3. Given two words w and w′ over an ordered alphabet Σ, we define
w and w′ to be M -equivalent if ΨΣ(w) = ΨΣ(w′), and denote it by w ≡M w′.

Researchers have studied how the changes in a word affect its Parikh matrix
and when the Parikh matrix does not change. Proposition 2 illustrates substitu-
tions of factors that do not change the Parikh matrix over arbitrary alphabets.

Proposition 2. [3, Proposition 3.1] Let Σk = {a1 < a2 < · · · < ak} be an
ordered alphabet and 1 ≤ i, j ≤ k. Then, the following equations hold:

1. If |i − j| ≥ 2, then ΨΣk
(aiaj) = ΨΣk

(ajai).
2. If |i − j| = 1, then ΨΣk

(aiajajai) = ΨΣk
(ajaiaiaj).

Proposition 2 is a necessary condition to establish M -equivalence but is not
sufficient because they are not applicable to every word such as 10101, which
is M -equivalent to 01110. Atanasiu et al. [3] proposed palindromicly amicable
property that identifies M -equivalent words over a binary alphabet.

Definition 4. [3] Let Σ2 = {0 < 1}. Two words α, β ∈ Σ∗
2 are palindromicly

amicable if the following two statements hold:

1. α and β are palindromes,
2. Ψ(α) = Ψ(β).

For x, y ∈ Σ∗
2 over Σ2 = {0 < 1}, x ≡pa y if a nonempty factor α ∈ Σ∗

2 of x
and a nonempty factor β ∈ Σ∗

2 of y are palindromicly amicable. We denote by
≡ pa∗, the reflexive and transitive closure of ≡pa.

Proposition 3. [3, Proposition 3.4] For x, y ∈ Σ∗
2 over Σ2 = {0 < 1},

1. ≡∗
pa is an equivalence relation.

2. If x ≡∗
pa y, then for all u ∈ Σ∗

2 , ux ≡∗
pa uy and xu ≡∗

pa yu.

Theorem 1. [3, Theorem 3.1] For Σ2 = {0 < 1} and x, y ∈ Σ∗
2 , x ≡M y if

and only if x ≡∗
pa y.

Theorem 1 is based on the palindromicly amicable relation between x and y.
If we can compute y by substituting factors from x based on Proposition 2, then x
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and y are M -equivalent. This is because the relation keeps the same value of |x|01
and the Parikh vector also does not change. Theorem 1, however, does not hold
for an alphabet with three or more letters. For instance, let Σ3 = {0 < 1 < 2}
and x = 10122101, y = 01122110. It is easy to see that x ≡∗

pa y but x �≡M y.1

We first consider the following conditions that are satisfied for words x and
y over a ternary alphabet to be M -equivalent:

1. Ψ(x) = Ψ(y),
2. |x|01 = |y|01, |x|12 = |y|12, and |x|012 = |y|012.

Certain substitutions preserve the value of 01-,12-, and 012-occurrences,
implying that the substitutions also do not change the Parikh matrix. We inves-
tigate what these substitutions are.

Proposition 4. [2, Theorem 13] For Σ3 = {0 < 1 < 2}, the following state-
ments hold for α, β, u ∈ Σ∗

3 .

1. If w = α02β and w′ = α20β, then w ≡M w′.
2. If w = α01u10β and w′ = α10u01β where |u|2 = 0, then w ≡M w′.
3. If w = α12u21β and w′ = α21u12β where |u|0 = 0, then w ≡M w′.

While Proposition 4 suggests useful substitution rules that preserve the
Parikh matrix, the substitution rules are not applicable to all the words. We
cannot apply the second rule to w = α01u10β such that |u|2 > 0. Likewise,
the third rule is not applicable to w = α12u21β such that |u|0 > 0. For
instance, we cannot apply any substitutions in Proposition 4 to an M -ambiguous
word u = 0101210121. On the other hand, for w that we can apply substitutions
in Proposition 4, we cannot enumerate all w′ that are M -equivalent to w. For
u = 1002101112, we cannot compute u′ = 0101210121, which is M -equivalent
to u by Proposition 4. If we design equivalence relations that maintain the same
Parikh matrix for a given word u ∈ Σ∗

3 , then any relations should preserver the
value of |u|01, |u|12, and |u|012. This leads us to design an equivalence relation
that considers the following:

1. For all M -ambiguous words, the relation should be applicable.
2. Given an M -ambiguous word u, all M -equivalent words to u should be com-

puted.

We relax the constraint that a single substitution rule should preserve the
Parikh matrix value and allow the value of 012-occurrences to change. We suggest
Proposition 4.

Proposition 5. For Σ3 = {0 < 1 < 2}, and u, α, β ∈ Σ∗
3 , the followings are

substitution rules that satisfy Ψ(w) = Ψ(w′), |w|01 = |w|01, and |w|12 = |w′|12:
1. If w = α02β and w′ = α20β, then |w|012 = |w′|012.
2. If w = α01u10β and w′ = α10u01β, then |w|012 = |w′|012 + |u|2.
3. If w = α12u21β and w′ = α21u12β, then |w|012 = |w′|012 − |u|0.
1 x ≡pa 10211201 ≡pa 11200211 ≡pa 02111120 ≡pa y.
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Proof. Three substitution rules satisfy Ψ(w) = Ψ(w′) because each rule does not
change the numbers of 0’s, 1’s, and 2’s. The first substitution rule does not change
the numbers of 01’s and 12’s. The second and the third substitution rules change
01 to 10 (respectively, 12 to 21) and also change 10 to 01 (respectively, 21 to 12),
which keeps the same numbers of 01’s and 12’s at the end. For the occurrences
of 012, Proposition 5 can be deduced by computing |w|012 and |w′|012.

In the first substitution rule,

|w|012 = |α02β|012 = |α|012 + |β|012 + |α|01 × (|02|2 + |β|2)+(|α|0 + |02|0)×|β|12,

|w′|012 = |α20β|012 = |α|012 + |β|012 + |α|01 × (|20|2 + |β|2)+(|α|0 + |20|0)×|β|12.
It is easy to verify that |02|0 and |02|2 are the same to |20|0 and |20|2,

respectively. Therefore, we know that |w|012 = |w′|012.
For the second substitution rule, the substitution only occurs in the factor

01u10 in w. We only have to keep track of 012 occurrences in 01u10 of w and
10u01 of w′. While |01u10|012 = |u|012 + |01|0 × |u|12 + |01|01 × |u|2, after the
substitution, |10u01|012 = |u|012 + |10|0 × |u|12 + |10|01 × |u|2 = |u|012 + |u|12.
Therefore, the second substitution rule reduces the occurrences of 012 by |u|2.
Similarly, we can show that the third substitution rule increases the occurrences
of 012 by |u|0. 	


We employ the second and third substitution rules of Proposition 5 to keep
track of the occurrences of 012 and furthermore, analyze when |w|012 = |w′|012.
For instance, given w,w′ ∈ Σ∗

3 , Fig. 1 demonstrates that |w|′012 = |w|012 −
|α|2 + |β|0 when applied with the substitution rules of Proposition 5. Thus,
when |α|2 = |β|0, the Parikh matrices of w and w′ are the same.

01 10 12 21

︷ ︸︸ ︷

10 01 21 12

α βu

α βu

S1 = |01α10|012
︷ ︸︸ ︷

S2 = |12β21|012

w :

w′ :

w′
012 = w 012 α 2 + β 0

ΔS1 : −|α|2
ΔS2 : +|β|0

21

Fig. 1. An illustration of substitutions maintaining M -equivalence for a word w =
01α10u12β21.

Figure 1 demonstrates one of the four scenarios where a single substitution
step involving two replacements maintains the identical |w|012 values, thereby
preserving the Parikh matrix. Additionally, there are cases where the swapping
pairs overlap. Figure 2 further illustrates cases of alternating sequences, with 01
followed by 12 and 10 followed by 21.
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01 12 10 21

︷ ︸︸ ︷

10 21 01 12

α βu

α βu

S1 = |01α12u10|012

︸ ︷︷ ︸
S2 = |12u10β21|012

w :

w′ :

⇒ |w′|012 = |w|012 − (|α|2 + |u|2) + (|u|0 + |β|0)

ΔS1 : −(|α|2 + |u|2 + 1)

ΔS2 : +(|u|0 + |β|0 + 1)

Fig. 2. An illustration of substitutions for a word w such that w = 01α12u10β21,
where 12 occurs before 10.

While Figs. 1 and 2 illustrate words with the same Parikh matrix by Propo-
sition 5, there are other M -ambiguous words w ∈ Σ∗

3 that are not identified by
Proposition 5, for instance, 012102021. Figure 3 depicts patterns of such words.

01 102 21

︷ ︸︸ ︷

10 012 21

α β

α β

S1 = |01α10|012
︷ ︸︸ ︷

S2 = |12β21|012

w :

10 021 12α βw′ :

⇒ |w′|012 = |w|012 − |α|2 + |β|0

ΔS1 : −|α|2

ΔS2 : +|β|0

Fig. 3. An illustration of substitutions for a word w such that w = 01α102β21 where
w cannot maintain M -equivalence with a single substitution.

For M -equivalent words with such patterns, we develop substitution rules
from Proposition 5 and introduce an equivalence relation of (w,Δ|w|012), the
pair of a word w and a relative occurrence of 012.

Definition 5. Given an ordered ternary alphabet Σ3 = {0 < 1 < 2}, let ∼= be
the minimal symmetric relation on Σ∗

3 × Z satisfying:

1. (α02β, k) ∼= (α20β, k),
2. (α01u10β, k) ∼= (α10u01β, k − |u|2) for all u such that |u|2 ≤ 1,
3. (α12u21β, k) ∼= (α21u12β, k + |u|0) for all u such that |u|0 ≤ 1,

where α, β, u ∈ Σ∗
3 and k ∈ Z. Then, a ∼=-sequence (u1, k1), (u2, k2), . . . , (un, kn)

is a sequence of pairs satisfying (ui, ki) ∼= (ui+1, ki+1). Note that ∼=∗ is the
reflexive and transitive closure of ∼=.

It is easy to verify that the minimal symmetric relation ∼= keeps the same values
of |u|01 and |u|12 based on Proposition 4 and Definition 5. Note that, for binary
words u and v over Σ2 = {0 < 1}, we have u ≡∗

pa v if and only if (u, k) ∼=∗ (v, k).
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Proposition 6. The followings always hold.

1. (αuβ, k) ∼=∗ (αvβ, l) if and only if (u, k) ∼=∗ (v, l) and
2. (u, k) ∼=∗ (v, l) implies (u, k + c) ∼=∗ (v, l + c) for any integer c.

We can show the first property of Proposition 6 by induction on the number of
∼= applications, and the second property is immediate.

Lemma 1. For two M -equivalent words u and v over a ternary alphabet Σ3 =
{0, 1, 2}, and two integers k and l such that k ≤ l, let S = [(u, k) ∼= · · · ∼= (v, l)]
be a ∼=-sequence from (u, k) to (v, l). Then, for any integer t between k and
l (k ≤ t ≤ l), there exists a pair (w, t) ∈ S for some w ∈ Σ∗

3 .

Proof. For the sake of contradiction, assume that there exists t such that
(u′, t) /∈ S. Then, there must be two pairs (ui, t − 1) ∼= (ui+1, t + 1). How-
ever, by Definition 5, |ki+1 − ki| ≤ 1 for (ui, ki) ∼= (ui+1, ki+1). This leads to a
contradiction that such pairs of (ui, t−1) and (ui+1, t+1) do not exist. Therefore,
the statement holds. 	

Theorem 2. Let Σ be an ordered ternary alphabet Σ3. For two words u, v ∈ Σ∗

3

and two integers k, l, we have a ∼=-sequence S = [(u, k) ∼=∗ (v, l)] such that, for
all pairs (α1, β1), (α2, β2) ∈ S, |β1 − β2| ≤ 1 if and only if

1. |u|012 − |v|012 = k − l,
2. |k − l| ≤ 1, and
3. |u|x = |v|x for x ∈ {0, 1, 2, 01, 12}.
Proof. [only-if direction] We prove the statement by induction on the length of
a ∼=-sequence. For two words u, v ∈ Σ∗

3 and two integers k, l satisfying (u, k) ∼=0

(v, l) or (u, k) ∼=1 (v, l), it is trivial to see that the two conditions hold. Note
that, in the case of ∼=0, it is immediate that u = v and k = l. Suppose that if
(ui, ki) ∼=i (vi, li) then the two conditions hold for 2 ≤ i < N . For (u, k) ∼=N (v, l),
there exist two positive integers i, j such that i + j = N and a pair (w,m) such
that (u, k) ∼=i (w,m) ∼=j (v, l). Thus, the statement holds for ∼=∗.

From the statement, we know that if (u1, k1) ∼=∗ (un, kn), there is a ∼=-
sequence whose length is bounded above by

( |u|
|u|0

) · (|u|−|u|0
|u|1

)
. In other words,

there always exists a finite ∼=-sequence.
[if direction] Since it is trivial when u = v, we assume that u �= v. We prove

by induction on the length of u and v. When |u| = |v| ≤ 3, we prove the claim
by checking every pair of words.

Our induction hypothesis (IH) is that, for N ≥ 4, if we have two words
u and v, which satisfy the two preconditions and |u| = |v| < N , then, we
establish (u, k) ∼=∗ (v, l). Consider two words u and v of length N . Due to the
aforementioned property 1 of the relation ∼=∗ from Proposition 6, we assume
that u and v do not have common nonempty prefixes and suffixes: u = upu

′us

and v = vpv
′vs such that up, us, vp, vs ∈ Σ3, up �= vp and us �= vs.
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If and only if u and v are in forms of the followings, (u, k) ∼= (v, l) holds:

1. u = 01x10, v = 10x01 (|x|2 ≤ 1), or
2. u = 21y12, v = 12y21 (|y|0 ≤ 1).

u = 02 and v = 20 never occur due to the restriction on the length.
We now show that there exists a string x such that S = [(u, k) ∼=∗ (x, c) ∼=∗

(v, l)] where x = ax′b and a, b ∈ Σ3. Then, only one of the followings holds:

1. All x’s between (u, k) and (v, l) satisfies up �= a �= vp and us �= b �= vs, or
2. at least one x between (u, k) and (v, l) satisfies a ∈ {up, vp} or b ∈ {us, vs}.

In the first case, we subdivide S = [(u, k) ∼= (x1, c1) ∼=∗ (x2, c2) ∼= (v, l)]
into three subsequences S1 = [(u, k) ∼= (x1, c1)], S2 = [(x1, c1) ∼=∗ (x2, c2)] and
S3 = [(x2, c2) ∼= (v, l)]. It must be the case that x1 = ax′

1b and x2 = ax′
2b where

up �= a �= vp and us �= b �= vs. Then, the base cases cover S1 and S3 and we can
apply the first claim of Proposition 6 IH on S2. Note that all strings in S2 have
common prefixes and suffixes.

Otherwise, we can subdivide S into two subsequences S′
1 = [(u, k) ∼=∗ (x, c)]

and S′
2 = [(x, c) ∼=∗ (v, l)]. Without loss of generality, let a = up. Then, u and

x have a common prefix. We can detach the common prefix and IH applies on
u′us and x′b thus the sequence S′

1 is covered. Note that Theorem 2 also applies
on S′

2 because |x|012−|v|012 = (|u|012−k+c)−|v|012 = (|u|012−|v|012)−k+c =
(k − l) − k + c = c − l and the occurrences of length-1 and length-2 ordered
scattered-factors are the same. |c − l| ≤ 1 is trivial when k = l. When k �= l,
c = k or c = l by Lemma 1 and thus |c − l| ≤ 1. Therefore, (u, k) ∼=∗ (v, l). 	


Theorem 2 provides a characterization for M -equivalence over a ternary
alphabet. The following result is immediate from Theorem 2.

Corollary 1. For a ternary alphabet Σ3 and two words u, v ∈ Σ∗
3 , u ≡M v if

and only if (u, 0) ∼=∗ (v, 0).

4 M -unambiguity

We investigate another property of the Parikh matrix, M -unambiguity. Recall
that a word w ∈ Σ∗ is M -unambiguous if there is no word w′ �= w such that
w ≡M w′. Otherwise, w is M -ambiguous. Atanasiu et al. [3] established the fam-
ily of M -ambiguous words over a binary alphabet. Then, Mateescu and Salo-
maa [8] first presented a regular expression of an M -unambiguous language over
a binary alphabet.

Theorem 3. [8, Theorem 3] For a binary alphabet Σ2 = {0 < 1}, a word
w ∈ Σ∗

2 is M -unambiguous if and only if

w ∈ L(0∗1∗ + 1∗0∗ + 0∗10∗ + 1∗01∗ + 0∗101∗ + 1∗010∗).
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The regular expression in Theorem 3 is sufficient to identify M -unambiguous
words over a binary alphabet. However, we cannot apply the same result to
M -unambiguous words over a ternary alphabet. Şerbănuţă and Şerbănuţă [4]
presented a collection of regular expressions of M -unambiguous words by enu-
merating all words for a ternary alphabet2. Based on Corollary 1, we establish an
intuitive approach that computes a regular expression for M -ambiguous words
and identifies M -unambiguous words.

Theorem 4. Given a ternary alphabet Σ3 = {0 < 1 < 2}, let L ⊆ Σ∗
3 be a

regular language defined by the union of the following regular expressions.

E1 = Σ∗
3 · (02 + 01(0 + 1)∗10 + 10(0 + 1)∗01 + 12(1 + 2)∗21 + 21(1 + 2)∗12) · Σ∗

3

E2 = Σ∗
3 · (01Σ∗

32Σ∗
310Σ∗

310Σ∗
32Σ∗

301) · Σ∗
3

E3 = Σ∗
3 · (01Σ∗

32Σ∗
310Σ∗

312Σ∗
30Σ∗

321) · Σ∗
3

E4 = Σ∗
3 · (21Σ∗

30Σ∗
312Σ∗

310Σ∗
32Σ∗

301) · Σ∗
3

E5 = Σ∗
3 · (21Σ∗

30Σ∗
312Σ∗

312Σ∗
30Σ∗

321) · Σ∗
3

E6 = Σ∗
3 · (01Σ∗

312Σ∗
310Σ∗

321) · Σ∗
3

E7 = Σ∗
3 · (10Σ∗

321Σ∗
301Σ∗

312) · Σ∗
3

and LR be its reversal language {wR | w ∈ L}.
Then, Lamb = L ∪ LR is the set of all M -ambiguous words over Σ3.

Proof. Let X be the set of all M -ambiguous words over Σ3 and we show that
X = Lamb. We prove that X is equivalent to Lamb.

[X ⊆ Lamb]. Suppose that there exists u ∈ X \ Lamb and let v �= u be
M -equivalent to u. Since u ≡M v, (u, 0) ∼=∗ (v, 0) and thus, (v, 0) is derived
from (u, 0) by a sequence of ∼= applications from Definition 5. For all the string
patterns in Definition 5, we can easily find them in Lamb. For instance, E2

contains α01u10β as a prefix where α, β, u ∈ Σ3. Likewise, we can find the other
string patterns of Definition 5. This contradicts that there exists u with distinct
patterns that are not in Lamb. Therefore, X ⊆ Lamb.

[Lamb ⊆ X]. Suppose that there exists u ∈ Lamb \ X. This implies that u
is M -unambiguous. Since u ∈ Lamb, we can derive v with s of Definition 5. We
investigate when u is included in one of Ei of Lamb. When u ∈ E1, we first exam-
ine when u contains 02 as a factor. By the first ∼=-relation in Definition 5, u is
M -ambiguous. There is also u ∈ E1 that contains factors that are palindromicly
amicable of a binary alphabet u is M -ambiguous by Theorem 1. Thus, u ∈ E1

is M -ambiguous. Similarly, we can prove in the same way for the reversal of E1.
For u ∈ Ei for 2 ≤ i ≤ 7, we inspect the change of 012 occurrence values by

the second and the third ∼=-relations of Definition 5. We show one of the cases
when u ∈ E6. When u ∈ E6, the following holds for some v ∈ Σ∗

3 :

12β01γ21→21β01γ12︷ ︸︸ ︷
(u, k) ∼=∗ (u′, k − |α12β|2)︸ ︷︷ ︸

01α12β10→10α12β01

∼=∗ (v, k − |α12β|2 + |β01γ|0).

2 The regular expression is incorrect since it misses some M -unambiguous words illus-
trated in Fig. 4 in Sect. 4.
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Without loss of generality, let 0 < |α12β|2 ≤ |β01γ|0. Then, k − |α12β|2 <
k ≤ k − |α12β|2 + |β01γ|0 and by Lemma 1, there exists (v′, k) such that
(u, k) ∼=∗ (v′, k) ∼=∗ (v, l) and u �= v′. This leads to a contradiction that u is
M -unambiguous because (u, k) ∼=∗ (v′, k) implies that v′ is M -equivalent to u.
We can prove similarly for E2, E3, E4, E5, E7. Thus, Lamb ⊆ X. 	

Theorem 4 establishes an identification for M -ambiguous words over a ternary
alphabet. Then, the following result is immediate.

Corollary 2. For Σ3 = {0 < 1 < 2} and u ∈ Σ∗
3 , we have that u is M -

unambiguous if and only if u /∈ Lamb.

Using the regular expression in Theorem 4, we find all M -unambiguous words
that are missing in Şerbănuţă and Şerbănuţă [4]. Figure 4 is the minimal DFA
for such missing M -unambiguous words.
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Fig. 4. An FA for M -unambiguous words missing in Şerbănuţă and Şerbănuţă [4].

5 Conclusions

We have presented a polished and complete characterization of M -equivalence
and M -unambiguity over a ternary alphabet using ∼=∗-relation. While the prob-
lem was solved for a binary alphabet, the larger-alphabet case has been open. We
have presented key characteristics of M -equivalence and M -unambiguity over a
ternary alphabet based on our substitution rules and ∼=∗-relation. This result
facilitates exploring further combinatorial properties of M -equivalent words.

Our equivalence relation is well-defined for a ternary alphabet but it can also
be developed with further substitution rules for larger alphabets. We plan to
extend ∼=-relation to arbitrary alphabets and continue working towards estab-
lishing equivalent relations to M -equivalence and M -unambiguity. We also aim
to address open problems related to other properties of Parikh matrices, such as
ME-equivalence, strong M -equivalence, and weak M -relation [11,14].

Acknowledgments. We thank all the reviewers for their valuable comments. This
research was supported by the NRF grant funded by MIST (NRF-RS-2023-00208094).
The first two authors contributed equally.



152 J. Hahn et al.

References

1. Atanasiu, A.: Parikh matrix mapping and amiability over a ternary alphabet. In:
Discrete Mathematics and Computer Science, pp. 1–12 (2014)

2. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theoret.
Comput. Sci. 390(1), 102–109 (2008)

3. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fund. Inform. 49(4), 289–299 (2002)
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Abstract. The state complexity of a regular operation is a function that
assigns the maximal state complexity of the language resulting from the
operation to the sizes of deterministic finite automata recognizing the
operands of the operation. We study the state complexity of intersec-
tion, union, concatenation, star, and reversal on the classes of combina-
tional, singleton, finitely generated left ideal, symmetric definite, star,
comet, two-sided comet, ordered, star-free, and power-separating lan-
guages. We get the exact state complexities in all cases. The complex-
ity of all operations on combinational languages is given by a constant
function. The state complexity of the considered operations on singleton
languages is min{m,n}, m+n− 3, m+n− 2, n− 1, and n, respectively,
and on finitely generated left ideals, it is mn−2, mn−2, m+n−1, n+1,
and 2n−2 + 2. The state complexity of concatenation, star, and reversal
is m2n − 2n−1 −m+ 1, n, 2n and m2n−1 − 2n−2 + 1, n+ 1, 2n−1 + 1 for
star and symmetric definite languages, respectively. We also show that
the complexity of reversal on ordered and power-separating languages
is 2n−1, which proves that the lower bound for star-free languages given
by [Brzozowski, Liu, Int. J. Found. Comput. Sci. 23, 1261–1276, 2012] is
tight. In all the remaining cases, the complexity is the same as for reg-
ular languages. Except for reversal on finitely generated left ideals and
ordered languages, all our witnesses are described over a fixed alphabet.

1 Introduction

The state complexity of a regular operation is the number of states that is suffi-
cient and necessary in the worst case for a deterministic finite automaton (DFA)
to accept the language resulting from the operation, considered as a function
of the sizes of DFAs for operands. The tight upper bounds on the complex-
ity of union, intersection, concatenation, star, and reversal were presented by
Maslov [12], Yu, Zhuang and Salomaa [17], and Leiss [11], and to describe wit-
ness languages, a binary alphabet was used.
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If operands have some special properties, then the complexity of an operation
may be significantly smaller. For example, the state complexity of star on prefix-
free languages is n, while it is 3

42n in the regular case. On the other hand, the
complexity of intersection, union, concatenation, and star on star-free languages
is the same as in the regular case [5]. This led to the investigation of operational
complexity in several subclasses of regular languages. Operations on unary lan-
guages were studied by Yu et al. [17] and Pighizzini and Shallit [15], and on
finite languages by Câmpeanu et al. [6]. The classes of prefix- and suffix-free lan-
guages were examined by Han et al. [7,8], and the classes of bifix-, factor-, and
subword-free, star-free, ideal, and closed languages by Brzozowski et al. [2–5],
Except for reversal on star-free languages, the state complexity of basic regu-
lar operations in each of the above mentioned classes was determined. Bordihn,
Holzer, and Kutrib [1] considered also some other subclasses, including combi-
national, finitely generated left ideal, symmetric definite, star, comet, two-sided
comet, ordered, and power-separating languages, and investigated the complex-
ity of the conversion of nondeterministic finite automata (NFAs) to deterministic
ones. The closure properties of these classes, as well as nondeterministic opera-
tional complexity in them, were studied by Olejár et al. [9,13].

Here we continue this research and study the state complexity of basic reg-
ular operations in several classes from [1]. For each considered operation and
each considered class, we get a tight upper bound on its complexity. To get the
upper bounds, we examine minimal DFAs for languages in considered classes.
We show that every minimal DFA for a finitely generated left ideal must have
two states that can be distinguished only by the empty string. This gives upper
bounds for union, intersection, and reversal on finitely generated left ideals. We
also show that the set of all non-final states in a minimal DFA for a power-
separating language cannot be reachable in the reversed automaton. This gives
an upper bound 2n − 1 for reversal on power-separating languages, and shows
that the same lower bound for star-free languages [5, Theorem 7] is tight since
every star-free language is power-separating. To get upper bounds for concatena-
tion, we carefully inspect the reachable and distinguishable states in the subset
automaton of an NFA for the concatenation of given languages. Finally, the star
of a star language is the same language, and if a given language is symmetric
definite, then its star differs from it only in the empty string. The corresponding
upper bounds n and n + 1 for the star operation follow. To get lower bounds,
we sometimes use witnesses known from the literature, and just prove that they
belong to a considered class. However, most often, we describe appropriate wit-
nesses so that the corresponding product automata for union and intersection,
or subset automata of NFAs for concatenation, star, or reversal have a desired
number of reachable and pairwise distinguishable states.

2 Preliminaries

We assume that the reader is familiar with the basic notions in formal languages
and automata theory, and for details, we refer to [16].
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Let Σ be a finite non-empty alphabet of symbols. Then Σ∗ denotes the set of
all strings over Σ including the empty string ε. For a finite set S, the notation |S|
denotes the size of S and 2S denotes the power set of S. For two non-negative
integers i, j, the set {i, i + 1, . . . , j} is denoted by [i, j].

A nondeterministic finite automaton with multiple initial states (MNFA) is
a quintuple A = (Q,Σ, ·, I, F ) where Q is a finite non-empty set of states, Σ is a
finite non-empty input alphabet, · : Q×Σ → 2Q is the transition function, I ⊆ Q
is the set of initial states, and F ⊆ Q is the set of final states. The transition
function can be extended to the domain 2Q × Σ∗ in the natural way. For states
p, q and a symbol a, we sometimes write (p, a, q) whenever q ∈ p·a. The language
accepted by A is the set of strings L(A) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.

The reverse of an MNFA A = (Q,Σ, ·, I, F ) is the MNFA AR = (Q,Σ, ·R, F, I)
where q ·R a = {p | q ∈ p · a}. We say that a subset S of Q is reachable in A if
there exists a string w such that S = I · w. A subset S is co-reachable in A if it is
reachable in AR. We usually omit · and write just juxtaposition qw instead of q ·w.
If S ⊆ Q, then Sw = {qw | q ∈ S} and wS = {q | qw ∈ S}.

An MNFA is a nondeterministic finite automaton (NFA) if |I| = 1. An NFA
is a deterministic finite automaton (DFA) if |qa| = 1 for each state q and each
symbol a. We usually write pa = q instead of pa = {q}. A non-final state q of a
DFA is called dead if qa = q for each symbol a. A DFA is minimal if all its states
are reachable and pairwise distinguishable. The state complexity of a regular lan-
guage L, sc(L), is the number of states in a minimal DFA recognizing L. The state
complexity of a k-ary regular operation f is the function from Nk to N defined
as (n1, n2, . . . , nk) �→ max{sc(f(L1, L2, . . . , Lk)) | sc(Li) ≤ ni for each i.}

Every MNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent determin-
istic automaton D(A) = (2Q, Σ, ·, I, {S ∈ 2Q | S ∩ F �= ∅}). The DFA D(A) is
called the subset automaton of A.

Finally, we recall the definitions of language classes considered in this paper.
A language L ⊆ Σ is:
• combinational (class abbreviation CB): if L = Σ∗H for H ⊆ Σ;
• singleton (SGL): if it consists of one string;
• finitely generated left ideal (FGLID): if L = Σ∗H for some finite language H;
• left ideal (LID): if L = Σ∗L;
• symmetric definite (SYDEF): if L = GΣ∗H for some regular languages G,H;
• star (STAR): if L = L∗;
• comet (COM): if L=G∗H for some regular languages G,H with G/∈{∅, {ε}};
• two-sided comet (2COM): if L=EG∗H for some regular languages E,G,H

with G/∈{∅, {ε}};
• ordered (ORD): if it is accepted by a (possibly non-minimal) DFA with

ordered states such that p 
 q implies p · σ 
 q · σ for each symbol σ;
• star-free (STFR): if L is constructible from finite languages, concatenation,

union, and complementation (equivalently, if L has an aperiodic DFA);
• power-separating (PSEP): if for every w in Σ∗ there exists an integer k such

that
⋃

i≥k{wi} ⊆ L or
⋃

i≥k{wi} ⊆ Lc.

We have CB � FGLID � LID � SYDEF, STAR \ {{ε}}
� COM � 2COM,

and SGL � ORD � STFR � PSEP [1,13].
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3 Combinational and Singleton Languages

We start with two simple subregular classes: the class of combinational languages
and the class of singleton languages. The following two theorems present our
results on the state complexity of basic operations in these two classes.

Theorem 1. Let K and L be combinational languages over Σ. Then we have
sc(K), sc(L) ≤ 2 and sc(K ∩ L), sc(K ∪ L) ≤ 2, sc(KL) ≤ 3, sc(L∗) ≤ 2,
and sc(LR) ≤ 3. All these upper bounds are tight if |Σ| ≥ 2 (star, reversal) or
if |Σ| ≥ 1 (intersection, union, concatenation).

Proof. Let K = Σ∗G and L = Σ∗H with G,H ⊆ Σ. If H is empty, then L
is empty. Otherwise, L is accepted by a two-state DFA ({1, 2}, Σ, ·, 1, {2})
with 1a = 2a = 1 if a /∈ H and 1a = 2a = 2 if a ∈ H. We only prove the
result for star. Each string in Σ∗ either ends with a symbol in H, or ends with a
symbol in Σ\H, or is empty. Since L = L+ we have L∗ = {ε}∪L = (Σ∗(Σ\H))c,
so L∗ is the complement of a combinational language. The upper bound 2 is met
by (a + b)∗a. �
Theorem 2. Let K and L be singleton languages accepted by DFAs with m
and n states, respectively. Then sc(K ∩L) ≤ min{m,n}, sc(K ∪L) ≤ m+n− 3,
sc(KL) ≤ m + n − 2, sc(L∗) ≤ n − 1, and sc(LR) ≤ n. All these bounds are
tight, with witnesses described over an alphabet of size at least 1 (intersection,
concatenation, reversal) or 2 (union, star).

Proof. We only prove the result for star. The minimal DFA for a singleton lan-
guage {v} has |v| + 2 states, including the dead state. Next, the language {v}∗

is accepted by a DFA with |v|+1 states, possibly including the dead state. This
gives the upper bound n − 1, which is met by the language {an−2} over the
binary alphabet {a, b}. �

4 Intersection and Union

In this section, we examine the intersection and union operations in subregu-
lar classes. Recall that the state complexity of these two operations is mn with
binary witnesses [12,17]. Our aim is to show that the complexity of these oper-
ations is mn − 2 in the class of finitely generated left ideals and mn in the
remaining classes. Recall that if a DFA for a language L has a unique final state
which is the initial one, then L = L∗, so L is a star language. To get the upper
bound in class FGLID, we use the following property.

Lemma 3. In the minimal DFA for a finitely generated left ideal different from ∅
and Σ∗, there exist two states that are distinguishable only by the empty string.

Proof. Let A be a minimal DFA for a finitely generated left ideal L with the ini-
tial state 1. Assume, to get a contradiction, that any two distinct states of A can
be distinguished by a non-empty string. Since L /∈ {∅, Σ∗}, there is a symbol a
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M 1 2 . . . m−1 m

a, b, c

a, c a, c a, c a, c
N 1 2 . . . n−1 n

a, b, c

b, c b, c b, c b, c

Fig. 1. Finitely generated left ideal witnesses for union (mn − 2).

such that 1a �= 1. Now, the states 1 and 1a are distinguishable by a non-empty
string w1. We must have 1w1 /∈ F and 1aw1 ∈ F , because 1w1 ∈ F and 1aw1 /∈ F
would mean that w1 ∈ L and aw1 /∈ L, so L would not be a left ideal. The result-
ing states are again distinguishable by a non-empty string w2, and again, we
must have 1w1w2 /∈ F and 1aw1w2 ∈ F . Inductively, the states 1w1w2 · · · wi−1

and 1aw1w2 · · · wi−1 are distinguishable by a non-empty string wi, and we
must have 1w1w2 · · · wi−1wi /∈ F and 1aw1w2 · · · wi−1wi ∈ F . Since the num-
ber of states is finite, there exist j, k with j < k such that 1aw1w2 · · · wk =
1aw1w2 · · · wj . This means that aw1w2 · · · wj(wj+1wj+2 · · · wk)∗ ⊆ L, and on
the other hand we have w1w2 · · · wj(wj+1wj+2 · · · wk)∗ ⊆ Lc. It follows that the
minimal generator L \ ΣL of the left ideal L is infinite, a contradiction. �
Theorem 4. Let K and L be finitely generated left ideals over Σ accepted by
an m-state and n-state DFA, respectively. Then sc(K ∩ L), sc(K ∪ L) ≤ mn − 2.
This upper bound is tight for union if |Σ| ≥ 3, and for intersection if |Σ| ≥ 10.

Proof. Let A and B be minimal DFAs for K and L, respectively. By Lemma 3,
there exist states p, p′ of A and q, q′ of B that are distinguished only by the
empty string. It follows that pa = p′a and qa = q′a for each input symbol a.
Then, in the product automaton A×B, the pairs (p, q), (p, q′), (p′, q), (p′, q′) are
sent to the same state by each input symbol, so, they may be distinguished only
by ε. This gives the upper bound mn − 2 for union and intersection.

We can prove that this upper bound for union and intersection is met by lan-
guages accepted by NFAs from Figs. 1 and 3, respectively; notice that equivalent
DFAs shown in Figs. 2 and 4 have m and n states as well. �

Theorem 5. The state complexity of intersection and union on the classes of
symmetric definite, ordered, power-separating, and star languages is mn.

Proof. The upper bound mn is met by the intersection of binary left ideal lan-
guages K = {w ∈ {a, b}∗ | |w|a ≥ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≥ n − 1}

p1 p2 . . . pm−1 pm

b a, c

b
a, c a, c

b

a, c

a, b, c

q1 q2 . . . qn−1 qn

a
b, c

a
b, c b, c

a

b, c

a, b, c

Fig. 2. The reachable parts of the subset automata D(M) and D(N) of NFAs M and N
from Fig. 1; we have pi = [1, i] and qj = [1, j].
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M 1 2 3 . . . m−1 m

Σ
a, e, g b, b′, f, h b, b′, f, h b, b′, f, h b, b′, f, h

d′

N 1 2 3 . . . n−1 n

Σ
c, e, f d, d′g, h d, d′g, h d, d′g, h d, d′g, h

b′

Fig. 3. Finitely generated left ideal witnesses for intersection (mn − 2).

[3, Theorem 7], and by the union of quaternary left ideals from [3, Theorem 8].
Every left ideal is symmetric definite. Next, the languages K and L are ordered
(so also power-separating), and these classes are closed under complementation.
This gives the complexity mn with binary witnesses on ORD and PSEP. Finally,
to get star witnesses, we consider the minimal DFAs, the first of which counts
the number of a’s modulo m, and the second the number of b’s modulo n. �
Remark 6. Since STAR ⊆ COM ⊆ 2COM, the previous theorem gives complex-
ity mn for intersection and union on comet and two-sided comet languages. �

5 Concatenation

Now we examine the concatenation operation, the state complexity of which
is m2n − 2n−1 with binary witnesses [12]. We first consider the concatenation
operation on finitely generated left ideal, symmetric definite, and star languages,
and show that the resulting complexities are always smaller than the regular

p1 p2 . . . pm−1 pm

b, b′, c, d, f, h
a, e, g

d′

a, c, d, d′, e, g
a, c, d, d′, e, g a, c, d, d′, e, g

b, b′, f, h b, b′, f, h b, b′, f, h

q1 q2 . . . qn−1 qn

a, b, d, d′, g, h
c, e, f

b′

a, b, b′, c, e, f
a, b, b′, c, e, f a, b, b′, c, e, f

d, d′, g, h d, d′, g, h d, d′, g, h

Fig. 4. The reachable parts of the subset automata D(M) and D(N) of NFAs M and N
from Fig. 3; we have pi = {1, i} and qj = {1, j}.
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one. On the other hand, in the remaining classes, the complexity is the same
as in the regular case. To get an upper bound for SYDEF, we use the following
observation, cf. [14, Theorem 9.2].

Lemma 7. Every minimal DFA for a symmetric definite language contains a
state q such that each accepting computation goes through q and a loop on every
input symbol can be added in q without changing the language. �
Remark 8. As shown in [3, Theorem 9], the upper bound on the complexity of
concatenation on left ideals is m + n − 1. This upper bound is shown to be met
by unary languages a∗am−1 and a∗an−1 in the proof of [3, Theorem 9]. These
unary languages are finitely generated left ideals. This gives the same complexity
of concatenation on FGLID. �
Theorem 9. Let K,L ⊆ Σ∗ be accepted by an m-state and n-state DFA, respec-
tively. If K and L are symmetric definite, then sc(KL) ≤ m2n−1 − 2n−2 + 1.
If K and L are star languages, then sc(KL) ≤ m2n − 2n−1 − m + 1. Both upper
bounds are tight if |Σ| ≥ 3.

Proof. Let A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB) be the minimal
DFAs for K and L, respectively.

(a) By Lemma 7, there is a state q of B such that every accepting com-
putation of B goes through the state q and, moreover, we can add a loop on
every input symbol in q without changing the language; denote the resulting
NFA by B′. Construct the MNFA N for KL from automata A and B′ by adding
the transition (q, a, sB) whenever qa ∈ FA, the initial set is {sA} if sA /∈ FA

and {sA, sB} otherwise, and the set of final states is FB. Each reachable subset
of the subset automaton of N is of the form {p} ∪ S with p ∈ QA and S ⊆ QB ;
let us represent it by the pair (p, S). Recall that p ∈ FA implies sB ∈ S for each
reachable state (p, S).

If q is the initial state of B, then L is a left ideal, and the complexity of KL
is at most m + n − 1; cf. [3, Theorem 9]. If q is final, then in the corresponding
subset automaton, each state (p, S ∪{q}) is equivalent to the state (p, {q}). This
gives the upper bound m2n−1 − 2n−2 + 1. Finally, let q be neither initial nor
final. Let Q1 be the set of states in QB reachable without going through q and
let Q2 = QB\(Q1∪{q}). Let S1 ⊆ Q1 and S2 ⊆ Q2. Every accepting computation
of B goes through q, and q has a loop on every input symbol in B′. Let us show
that each state (p, S1 ∪ {q} ∪ S2) is equivalent to (p, {q} ∪ S2). It is enough to
shown that each string accepted in B′ from a state in S1 is also accepted from a
state in {q}∪S2. Let a string w be accepted from S1. Then the computation on w
must go through q, so w = uv where u leads a state in S1 to the state q and v is
accepted from q. Since q has a loop on each symbol in B′, the string uv is also
accepted from q. Hence w is accepted from (p, {q} ∪ S2). This gives an upper
bound (m − 1)(2|Q1| + 2|Q2|) + 2|Q1|−1 + 2|Q2| + 1 ≤ (m − 1)(2n−1) + 2n−2 + 1.

For tightness, consider the DFAs A and B from Fig. 5. The automaton A
recognizes a left ideal since, after adding a loop on each input symbol in its initial
state and performing determinization and minimization, we get the isomorphic
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A q1 q2 . . . qm−1 qma a a a
c c

c

b, c b b a, b

B 1 . . . n−2 n−1 n
b, c b, c b, c b

c

a a a a, b, c

Fig. 5. Symmetric definite witnesses for concatenation (m2n−1 − 2n−2 + 1).

automaton. The automaton B recognizes a right ideal since it has a loop on each
input symbol in its unique final state. Thus both automata recognize symmetric
definite languages, and we can show that they meet the desired upper bound.

(b) If K and L are star languages, then ε ∈ K, so the initial state of the DFA
for K is final. It follows that the MNFA for KL has two initial states, and so the
initial state of the corresponding subset automaton is (sA, {sB}). This means
that the states (p, ∅) are unreachable. This gives the desired upper bound.

For tightness, consider the DFAs A and B from Fig. 6. Since the initial state
is the unique final state, both automata recognize star languages.

Construct the MNFA M for L(A)L(B) from A and B by adding the tran-
sitions (q1, b, 1) and (qm, a, 1) and making the state q1 non-final; the set of
initial states is {q1, 1}. Notice that in the reversed automaton MR, each sin-
gleton {j} is reached from {1} by a string in cb∗, and each singleton {qi} is
reached by a string in ba∗. It follows that for each state p of M , there is a
string wp such that {p} is reached from {1} by wp in MR. It follows that the
string wR

p is accepted by M from and only from the state p. This means that
all states of the subset automaton D(M) are pairwise distinguishable. Let us
denote the (reachable) state {qi} ∪ S with S ⊆ [1, n] by (i, S), and let us show
that the set of reachable states is {(1, S) | S ⊆ [1, n] with 1 ∈ S} ∪ {(i, S) | i =
2, 3, . . . ,m and S ⊆ [1, n] with |S| ≥ 1}. The initial state is (1, {1}) and it is sent
to (i, {j}) by ai−1bj−1. Next, each (i, S) with 1 ∈ S is reached from (m,S \ {1})
by ai and each (i, S) with i �= 1, S �= ∅, and min S = j ≥ 2 is reached from a
state (i, bj−1S) with 1 ∈ bj−1S by bj−1. �
Remark 10. If A and B are the binary DFAs shown in Fig. 7, cf. [12], then we
have sc(L(A)L(B)) = m2n − 2n−1 since in the NFA for concatenation, each sin-
gleton set is co-reachable, and the reachability of the desired number of states is
shown similarly as in Theorem 9(b). Since L(A) = b∗L(A) and L(B) = a∗L(B),
automata A and B recognize comet languages. Moreover we have COM ⊆ 2COM,
so the state complexity of concatenation on comets and two-sided comets is the
same as in the class of regular languages. �

A q1 q2 . . . qm−1 qm B 1 2 . . . n−1 n
a, c a a a

a

b b, c b, c b, c

b, c b b b

a a, c a, c a, b

c

Fig. 6. Star witnesses for concatenation (m2n − 2n−1 − m + 1).
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A q1 q2 . . . qm−1 qma a a a

a

b b b b

B 1 . . . n−2 n−1 nb b b a, b
a

a a b

Fig. 7. Comet witnesses for concatenation (m2n − 2n−1).

Remark 11. The star-free witness languages that meet the regular upper bound
for concatenation are described in [5, Theorem 2], and they are recognized by
the DFAs shown in Fig. 8. Notice that both these DFAs are ordered. Since we
have ORD ⊆ STFR ⊆ PSEP, the state complexity of concatenation on ordered
and power-separating languages is m2n − 2n−1. �

6 Star and Reversal

In this section, we consider the star and reversal operations. The state complexity
of star is 3

42n with binary witnesses [17]. Our aim is to show that the complexity
of star in our classes is always the same as in the regular case, except for classes
of finitely generated left ideal, symmetric definite, and star languages, where it
is n + 1, n + 1, and n, respectively. Recall that FGLID ⊆ SYDEF.

Theorem 12. Let n ≥ 3. Let L be a symmetric definite language accepted by
an n-state DFA. Then L∗ is accepted by a DFA with n + 1 states. This upper
bound is met by the finitely generated left ideal L = (a + b)∗an−1.

Proof. If L ∈ SYDEF then L = GΣ∗H. Hence L+ = LL∗ = GΣ∗H(GΣ∗H)∗ =
GΣ∗(HGΣ∗)∗H = GΣ∗H = L. It follows that L∗ = {ε} ∪ L. This gives the
upper bound n + 1. The reader may verify that L = (a + b)∗an−1 is accepted by
an n-state DFA and sc({ε} ∪ L) = n + 1. �
Remark 13. If L is a star language, then L = L∗, so sc(L∗) = sc(L). �
Remark 14. The regular witness for star [17, Theorem 3.3] is recognized by the
DFA A from Fig. 9. Since L(A) = b∗L(A), the language L(A) is a comet, so also
a two-sided comet. Thus the complexity of star on COM and 2COM is 3

42n. �

A q1 q2 . . . qm−1 qm B 1 2 . . . n−1 na a a a

a, c, db, c
b b b b

c c

d d
d

c a, c a, c a, c

a, b, ca, b, d

d d d d

b b

Fig. 8. Ordered witnesses for concatenation (m2n − 2n−1).
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A 1 2 3 . . . n−1 n
a a, b a, b a, b a, b

a, b

b

Fig. 9. A comet witness for star ( 3
4
2n).

Remark 15. The regular upper bound 3
42n is met by the quaternary star-free

language [5, Theorem 6] which is accepted by the DFA shown in Fig. 10. Since
this DFA is ordered, and every ordered language is power-separating, the state
complexity of star on ORD and PSEP is the same as in the regular case. �

We conclude our investigation with the reversal operation, the state complex-
ity of which is 2n with binary witnesses [11]. First, using Lemmas 3 and 7, we
get tight upper bounds for finitely generated left ideals and symmetric definite
languages. Then, by proving that the set of all non-final states of a DFA accept-
ing a power-separating language cannot be co-reachable, we get the tight upper
bound 2n − 1 for reversal on ordered, star-free, and power-separating languages,
which shows that a lower bound for star-free languages [5, Theorem 7] is tight.
Finally, we show that the complexity of reversal on star, comet, and two-sided
comet languages is the same as in the regular case.

Theorem 16. Let L be a finitely generated left ideal over Σ accepted by an n-
state DFA. Then sc(LR) ≤ 2n−2 + 2, and this bound is tight if |Σ| ≥ 2n−2 + 2.

Proof. Let A be the minimal DFA for L. By Lemma 3, A has two states q, q′

with qa = q′a for each input a, and such that exactly one of them, say q, is final.
Since L is a left ideal, adding a loop on each symbol in the initial state of A does
not change the language; denote the resulting NFA by N . Thus all final sets of
the subset automaton of NR are equivalent. Moreover, except for possible initial
set {q}, each reachable set contains either both q, q′, or none of them.

For tightness, let Σ = {a, b} ∪ {cS | S ⊆ [2, n − 1]}. Consider an n-state
NFA N = ([1, n], Σ, ·, 1, {n}) where 1 · a = {1, 2}, 1 · b = {1} and i · b = {i + 1}
if 2 ≤ i ≤ n − 1, 1 · cS = {1} and i · cS = {n} if i ∈ S, and all the remaining
transitions go to the empty set. The NFA N recognizes a finitely generated left
ideal since state 1 has a loop on each symbol and for any other transition (i, σ, j)
we have i < j. Since the subset automaton of N has n reachable states, the
language L(N) is accepted by an n-state DFA. In the reverse NR, the initial set

A 1 2 . . . n−2 n−1 n
a a a a a

a, c

bb, cb, cb, cb, c

b, c

Fig. 10. An ordered witness for star; transitions (i, d, n) for each i are not shown ( 3
4
2n).
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is {n}, and it is sent to a subset S of [2, n − 1] by cS . The set {1} is reached
from {2} by a. For distinguishability, notice that {1} is the unique final state.
If S, T ⊆ [2, n] and s ∈ S \ T , then bs−2a sends S to the final set {1} and it
sends T to the empty set. �
Theorem 17. Let L ⊆ Σ∗ be a symmetric definite language accepted by an n-
state DFA. Then sc(LR) ≤ 2n−1 + 1, and this upper bound is tight if |Σ| ≥ 3.

Proof. We get an upper bound in a similar way as in the proof of Theorem 9(a).
The ternary left ideal from [3, Theorem 11(2), Fig. 17] meets this bound. �
Theorem 18. Let L be a power-separating language accepted by an n-state
DFA. Then sc(LR) ≤ 2n − 1, and this bound is met by an ordered language
over an alphabet of size n − 1.

Proof. Let A = (Q,Σ, ·, s, F ) be a minimal DFA for a power-separating lan-
guage L. Our aim is to show that the set Q \ F of all non-final states of A
cannot be co-reachable in A. Assume that Q \ F is co-reachable by a string w.
Since w sends F to Q \ F in AR, the string w must be rejected by A from
each final state, and accepted from each non-final state, so there is no k ≥ 0
such that

⋃
i≥k{wi} ⊆ L or

⋃
i≥k{wi} ⊆ Lc. This means that L is not power-

separating, a contradiction.
To get tightness, let Σ = {a, b} ∪ {ci | i = 3, 4, . . . , n − 1}. Consider the n-

state DFA A = ([1, n], Σ, ·, 1, F ) where F = {i ∈ [1, n] | i mod 2 = 0}, and for
each i in [1, n] and each j = 3, 4, . . . , n − 1, let i · a = i + 1 if i ≤ n − 1 and
n · a = n, i · b = i − 1 if i ≥ 2 and 1 · b = 1, i · cj = i if i �= j and j · cj = j − 1.
Then A is ordered. It is shown in [5, Theorem 7] that every DFA for the reverse
of L(A) has at least 2n − 1 states. �
Remark 19. The DFA A from Fig. 11 differs from Šebej’s witness for reversal
meeting the upper bound 2n [10, Theorem 5] only in the set of final states, and
Šebej’s proof works for this DFA as well. Since the initial state of A is a unique
final state, A recognizes a star, so also comet and two-sided comet, language. �

A 1 2 3 4 5 . . . n−1 n
a a

a

a a a a

a

b b b

b

b b b

Fig. 11. A star witness for reversal (2n).
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7 Conclusion

We investigated the state complexity of basic regular operations in the classes of
combinational, singleton, finitely generated left ideal, symmetric definite, star,
comet, two-sided comet, ordered, and power-separating languages. Our results
are summarized in Table 1 where the sizes of alphabets used to describe witnesses
are given by numbers in parentheses. Except for the ordered and finitely gener-
ated left ideal witnesses for reversal, all the remaining witnesses are described
over a fixed alphabet, and whenever a binary alphabet is used, it is always
optimal. By showing that the upper bound for reversal on power-separating lan-
guages is 2n − 1, we proved that the same lower bound for reversal on star-free
languages from [5, Theorem 7] is tight.

In [1], the classes of definite, generalized definite, locally testable, and strictly
locally testable languages were also considered. We leave the operational com-
plexity in these classes for future research. The optimality of alphabet sizes
greater than two remains open as well.

Table 1. Operational complexity in subregular classes; we have • = m2n−1 − 2n−2 +1
and ◦ = m2n − 2n−1 − m + 1.

class K ∩ L K ∪ L KL L∗ LR

CB Th. 1 2 (1) 2 (1) 3 (1) 2 (2) 3 (2)

SGL Th. 2 min{m,n} (1) m + n − 3 (2) m + n − 2 (1) n − 1 (2) n (1)

FGLID mn − 2 (10) mn − 2 (3) m + n − 1 (1) n + 1 (2) 2n−2 + 2

source Th. 4 Re. 8 Th. 12 Th. 16

LID mn (2) mn (4) m + n − 1 (1) n + 1 (2) 2n−1 + 1 (2)

source [3, Th. 8] [3, Th. 9] [3, Th. 10] [3, Th. 11]

SYDEF mn (2) mn (4) • (3) n + 1 (2) 2n−1 + 1 (3)

source Th. 5 Th. 9 Th. 12 Th. 17

STAR mn (2) mn (2) ◦ (3) n (1) 2n (2)

source Th. 5 Th. 9 Re. 13 Re. 19

COM, 2COM mn (2) mn (2) m2n − 2n−1 (2) 3
4
2n (2) 2n (2)

source Re. 6 Re. 10 Re. 14 Re. 19

ORD, PSEP mn (2) mn (2) m2n − 2n−1 (4) 3
4
2n (4) 2n − 1 (n−1)

source Th. 5 Re. 11 Re. 15 Th. 18

STFR mn (2) mn (2) m2n − 2n−1 (4) 3
4
2n (4) 2n − 1 (n−1)

source [5, Th. 1] [5, Th. 2] [5, Th. 6] Th. 18

regular mn (2) mn (2) m2n − 2n−1 (2) 3
4
2n (2) 2n (2)

source [17, Th. 4.3] [12] [17, Th. 3.3] [11, Prop. 2]
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Abstract. Parikh’s theorem states that for every CFL X, there exists
a regular language X ′ such that X is Parikh equivalent to X ′. As a
corollary of Parikh’s theorem, it is known that every unary CFL is reg-
ular. This is because if words w and w′ are Parikh equivalent, then
their lengths are also equal. In general, if an equivalence relation ≡ is
coarser than Parikh equivalence, it has Parikh property; for every CFL
X, there exists a regular language X ′ which is equivalent to X in the
sense of ≡. Otherwise, ≡ does not always have Parikh property. In this
paper, focusing on the fact that Parikh equivalence is compatible with
swapping adjacent letters, we propose an equivalence relation compat-
ible with swapping adjacent subwords in a regular language given as a
parameter. We also identify conditions on the parameter language that
guarantee Parikh property for the resulting equivalence relation.

Keywords: Parikh’s theorem · finite monoid

1 Introduction

For an alphabet Σ = {a1, . . . , an}, Parikh vector of a word w is (v1, . . . , vn) ∈ NΣ

where vi is the number of occurrences of ai in w for each 1 ≤ i ≤ n. Parikh
equivalence ≡Pk is the equivalence relation over the words defined as w ≡Pk w′

iff Parikh vectors of w,w′ are equal. For example, abb ≡Pk bba because both have
the same Parikh vector (1, 2) for Σ = {a, b}. We also say that two languages
are Parikh equivalent if their quotients by Parikh equivalence are equal. It is
known as Parikh’s theorem that for every context-free language (CFL) X, there
exists a regular language X ′ which is Parikh equivalent to X [9]. For example,
CFL {akbak | k ≥ 0} is Parikh equivalent to regular language b(aa)∗. Parikh’s
theorem is an important and interesting result in automata theory, and many
related studies have been conducted. In [10], Parikh’s theorem is proved by using
simultaneous equations on a commutative alphabet. In [5], the classes of regular
languages and CFL are extended to superAFL, and Parikh’s theorem is proved as
a corollary of a property of superAFL. There are many other proofs of Parikh’s
theorem [3,4]. An extension to weighted models has also been studied [2]. In

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 166–178, 2023.
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[1,6,8], Parikh vectors are extended to Parikh matrices and its properties are
studied.

.
It is well known that every unary CFL is regular, and this fact follows also

from Parikh’s theorem. This is because if w and w′ are Parikh equivalent, then
their lengths are also equal. In general, if Parikh equivalence is a refinement of
an equivalence relation ≡, then ≡ has Parikh property, that is, for every CFL
X, there exists a regular language X ′ which is equivalent to X in the sense of
≡. These cases correspond to “trivial cases” in Fig. 1 (≡len is the equivalence
relation defined by the length of words). On the other hand, ≡ does not always
have Parikh property if ≡⊆≡Pk. For example, the equivalence relation defined
based on Parikh matrices does not always have Parikh property. As illustrated by
examples of ≡μ1 and ≡μ2 defined later, the characterization for an equivalence
relation to have Parikh property is not yet clear (see Fig. 1).

 : inclusion

≡0
≡

1

≡
2

≡Pk

≡len

≡??

Σ* × Σ*
≡??

≡??

equivalence relations with Parikh property

trivial cases

Fig. 1. Equivalence relations and Parikh property.

In this paper, we extend Parikh equivalence using algebraic structures, and
study conditions for having Parikh property. In Sect. 2, we define basic con-
cepts such as languages, monoids and transition graphs. In Sect. 3, we define
Parikh property, which is the key concept in this paper, and describe our goals.
In Sects. 4 and 5, we discuss necessary conditions and sufficient conditions for
equivalence relations to have Parikh property, respectively. In Sect. 6, we focus
on equivalence relations defined by using finite groups, and mention future work.

2 Preliminaries

Let N be the set of all non-negative integers. The cardinality of a set S is denoted
by |S|. Let Σ be a finite alphabet. For a word w ∈ Σ∗, the length of w is denoted
by |w|. For w and a letter a ∈ Σ, the number of occurrences of a in w is denoted
by |w|a. The empty word is denoted by ε, i.e., |ε| = 0. A language X ⊆ Σ∗

is regular if X is recognized by some finite automaton. We say that X is a
context-free language (CFL) if X is generated by some context-free grammar.
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We say that (S,�) is a semigroup where S is a set and � is an associative
binary operator on S. A monoid is a semigroup having the identity element
e ∈ S. An element s ∈ S of a monoid (S,�) is invertible if there is an element
s−1 ∈ S such that s � s−1 = e. This element s−1 is called an inverse element
of s. An element ι ∈ S such that ι � ι = ι is called an idempotent element of
(S,�). A group is a monoid such that all elements are invertible. Let |(S,�)| be
the order of a semigroup (S,�), i.e., |(S,�)| = |S|. A monoid (S,�) is cyclic if
(S,�) is generated by a single element s ∈ S. With each element s in a finite
semigroup, we can associate the finite table

(
s1 s2 ··· s|S|
t1 t2 ··· t|S|

)
where si�s = ti for each

1 ≤ i ≤ |S|. We sometimes write the table
(
s1 s2 ··· s|S|
t1 t2 ··· t|S|

)
to represent an element

s ∈ S.
For a monoid (S,�), a subset T ⊆ S and a surjective homomorphism φ :

Σ∗ → S, we say that L = φ−1(T ) is recognized by (φ, T ) with the monoid.

Proposition 1 ([7]). A language L ⊆ Σ∗ is regular iff L is recognized by some
(φ, T ) with a finite monoid (S,�), a surjective homomorphism φ : Σ∗ → S and
T ⊆ S. �

In particular, a language L recognized by some (φ, T ) with a group is called a
group language.

For a surjective homomorphism φ : Σ∗ → S, the transition graph of φ is the
directed graph (S,E) where E ⊆ S ×Σ ×S is the set of edges labeled by Σ such
that (s1, a, s2) ∈ E iff s1 � φ(a) = s2. An edge (s1, a, s2) ∈ E is also denoted as
s1

a−→ s2. A cycle in a transition graph (S,E) is a path s1
a1−→ s2

a2−→ · · · an−1−−−→ sn

such that n ≥ 2 and s1 = sn. A simple path is a path s1
a1−→ · · · an−1−−−→ sn such that

s1, . . . , sn are pairwise different, and a simple cycle is a cycle s1
a1−→ · · · an−1−−−→ sn

such that s1
a1−→ · · · an−2−−−→ sn−1 is a simple path. A cycle graph is a subgraph of

(S,E) induced by some subset V = {s1, . . . , sn} ⊆ S such that there is a simple
cycle s1

a1−→ · · · an−−→ s1.
The followings are examples of transition graphs (see Fig. 2). For instance, the

second from the left is the transition graph of the homomorphism φ2 : {a, b}∗ →
{0 =

(
0 1
0 1

)
, 1 =

(
0 1
1 0

)} such that φ2(a) = 0, φ2(b) = 1. Note that we denote the
elements of the monoid as

(
0 1
0 1

)
and

(
0 1
1 0

)
by using the notation defined above.

Each example will be discussed in detail later.

ϕ1

0

a, b

ϕ2 ϕ3

1

0
a, b a, b

ϕ4 ϕ5

(0,0)

(0,1)

(1,0)

(1,1)

a
a

b b b b
a
a 2

0
b

1a

b ba a

1

0
b b

a

a

b b a

a

a, b

ϕ7

0 1

2

Fig. 2. Examples of transition graphs.
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We briefly explain the relationship between transition graphs and finite
automata. Let (S,�) be a finite monoid, h : Σ∗ → S be a monoid homo-
morphism and T be a subset of S. Let A be the finite automaton defined by the
transition graph (S,E) of φ where the initial state and the set of accept states are
the identity element e and T , respectively. It is clear that the language L recog-
nized by (φ, T ) coincides with the language recognized by A. The monoid (S,�)
is called the transition monoid of A. If A is the minimal automaton recognizing
L, (S,�) is called the syntactic monoid of L.

3 Parikh Property

Let ≡⊆ Σ∗ × Σ∗ be an equivalence relation. The equivalence class of ≡ that
contains w is denoted by [w]≡. For languages X,X ′ ⊆ Σ∗, we write X ≡ X ′ to
mean that {[w]≡ | w ∈ X} = {[w]≡ | w ∈ X ′}.

Parikh equivalence ≡Pk⊆ Σ∗×Σ∗ is the equivalence relation such that w ≡Pk

w′ iff |w|a = |w′|a for each a ∈ Σ. The following fact is well known.

Theorem 1 (Parikh’s Theorem [9]). For every CFL X ⊆ Σ∗, there exists a
regular language X ′ ⊆ Σ∗ such that X ≡Pk X ′. �
In this paper, we generalize and study Parikh equivalence and Parikh’s Theorem.
For this purpose, we generalize the property of ≡Pk stated in Parikh’s Theorem
to an arbitrary equivalence relation.

Definition 1 (Parikh property). An equivalence relation ≡ has Parikh prop-
erty if for every CFL X ⊆ Σ∗, there exists a regular language X ′ ⊆ Σ∗ such
that X ≡ X ′. �
By Parikh’s theorem, ≡Pk has Parikh property. As a corollary of Parikh’s theo-
rem, an equivalence relation ≡ has Parikh property if ≡Pk⊆≡. For example, it
is well known that the relation ≡len= {(w,w′) ∈ Σ∗ × Σ∗ | |w| = |w′|} also has
Parikh property1 because ≡Pk⊆≡len. On the other hand, an equivalence relation
≡ does not always have Parikh property if ≡⊆≡Pk.

Example 1. Let Σ = {a, b}. The smallest equivalence relation ≡0= {(w,w) |
w ∈ Σ∗} does not have Parikh property. In fact, there is no regular language X ′

such that X ≡0 X ′ for CFL X = {akbak | k ≥ 0}. �

Example 2. Let Σ = {a, b}, and let μ1(a) =
[2 0
0 1

]
, μ1(b) =

[0 3
1 0

]
be 2×2 matrices.

We define μ1 : Σ∗ → N2×2 by μ1(a1a2 · · · an) = μ1(a1)μ1(a2) · · · μ1(an) for
a1, . . . , an ∈ Σ. Let ≡μ1 be the equivalence relation such that w ≡μ1 w′ iff
μ1(w) = μ1(w′). Then,

– ≡μ1⊆≡Pk by the following reasons: let det(A) be the determinant of a matrix
A. Note that det(μ1(a)) = 2 and det(μ1(b)) = −3 are coprime. As det(AB) =
det(A)det(B) for any square matrices A and B, we obtain that u ≡μ1 v implies
u ≡Pk v. Furthermore,

1 This corollary is sometimes stated as: every CFL X ⊆ Σ∗ is regular if |Σ| = 1.
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– ≡μ1 	=≡Pk because
[0 6
1 0

]
= μ1(ab) 	= μ1(ba) =

[0 3
2 0

]
.

– Besides, ≡μ1�≡0 because μ1(abb) = μ1(bba) =
[6 0
0 3

]
.

To be precise, w ≡μ1 w′ iff w can be obtained by repeatedly swapping adjacent
subwords of w′ that contain even number of b. This is because the multiplication
of diagonal matrices is commutative and the product of two 2 × 2 anti-diagonal
matrices is a diagonal matrix. For example, baaba ≡μ1 abaab 	≡μ1 babaa ≡μ1

ababa. In fact, it is not obvious whether ≡μ1 has Parikh property or not. We will
show that ≡μ1 does not have Parikh property later (Example 5). �

Example 3. Let Σ = {a, b}, and we define ≡μ2 by μ2(a) =
[0 2
1 0

]
, μ2(b) =

[0 3
1 0

]

in the same way as in Example 2. Then, w ≡μ2 w′ iff w can be obtained by
swapping even-length subwords of w′. For example, baaa ≡μ2 aaba 	≡μ2 abaa. In
contrast to ≡μ1 , we can show that ≡μ2 has Parikh property (Example 10). �

In this paper, we study conditions for an equivalence relation ≡ (⊆≡Pk) to have
Parikh property. For this purpose, we extend Parikh equivalence. Note that
Parikh equivalence is characterized by the condition u1u2 ≡Pk u2u1 for each
u1, u2 ∈ Σ∗. Thus, by using a regular language L ⊆ Σ∗, we can get a refinement
of Parikh equivalence by changing the condition u1, u2 ∈ Σ∗ to u1, u2 ∈ L.

Definition 2. The equivalence relation defined by a regular language L, denoted
by ≡L, is defined as the smallest equivalence relation satisfying the following
conditions: for all u1, u2, v1, v2 ∈ Σ∗,

– if u1, u2 ∈ L, then u1u2 ≡L u2u1, and
– if u1 ≡L v1 and u2 ≡L v2, then u1u2 ≡L v1v2. �

As illustrated in the following example, ≡Σ∗=≡Pk. Therefore, ≡L⊆≡Pk for
every language L, and Definition 2 is a natural generalization of Parikh equiva-
lence.

Example 4. Let Σ = {a, b}. See Fig. 2 for φ1, φ2 and φ3.

– Let C1 = {0} be the trivial group, and φ1(a) = φ1(b) = 0. Then, the language
recognized by (φ1, {0}) is L1 = Σ∗. The equivalence ≡L1 is equal to Parikh
equivalence ≡Pk.

– Let C2 = {0 =
(
0 1
0 1

)
, 1 =

(
0 1
1 0

)} be the cyclic group with set {0, 1}, and φ2(a) =
0, φ2(b) = 1. Then, the language recognized by (φ2, {0}) is L2 = {w | |w|b is
an even number}. The equivalence ≡L2 is equal to ≡μ1 in Example 2.

– Let C2 be the cyclic group with set {0, 1}, and φ3(a) = φ3(b) = 1. Then,
the language recognized by (φ3, {0}) is L3 = {w | w is even-length}. The
equivalence ≡L3 is equal to ≡μ2 in Example 3. �

As in Example 4, we often use a finite monoid and a homomorphism to
represent a regular language L (see Proposition 1). In particular, we focus on
the inverse images of the identity or idempotent elements because such elements
are closely related to the expressive power of regular languages. For example,
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the usual pumping lemma for regular languages is based on the fact that there
is a subword that mapped to an idempotent element by the homomorphism.

The following lemma can be easily shown.

Lemma 1. Let Σ,Δ be finite alphabets, L ⊆ Δ∗ be a language and h : Δ∗ → Σ∗

be a homomorphism. For each w,w′ ∈ Δ∗, h(w) ≡h(L) h(w′) if w ≡L w′. �

4 Necessary Conditions for Having Parikh Property

In this section, we study necessary conditions for an equivalence relation ≡L

to have Parikh property. As mentioned after Example 4, we focus on the cases
where L is the inverse image of a singleton of the identity element or a set of
idempotents. In particular, we give a necessary condition for ≡L to have Parikh
property where L is the inverse image of {e} (Corollary 1). For this, we will
conduct the case analysis based on whether the monoid is a group or not.

4.1 The Case of Groups

When a monoid is a group, we can derive a useful necessary condition for Parikh
property relatively easily because the cancellation property holds: (s � t1 =
s � t2) ⇒ t1 = t2 and (t1 � s = t2 � s) ⇒ t1 = t2. (A finite monoid is a group iff
the cancellation property holds.)

Theorem 2. Let L be a regular language recognized by (φ, {e}) with a finite
group (S,�). Let (S,E) be the transition graph of φ. If there are cycle graphs
(V1, E

′
1) and (V2, E

′
2) of (S,E) such that V1 ∩ V2 = ∅, then ≡L does not have

Parikh property.

Proof. Let (V1, E
′
1), (V2, E

′
2) be the cycle graphs with V1 ∩ V2 = ∅ generated by

simple cycles s1
a1−→ · · · an−−→ s1 and t1

b1−→ · · · bm−−→ t1, respectively. As (S,�)
is a group, any two elements in S are reachable from each other. Thus, there
is a simple path r1

c1−→ · · · c�−→ r�+1 such that � ≥ 1, r1 ∈ V1, r�+1 ∈ V2 and
V1, V2, V3 = {r2, . . . , r�} are pairwise disjoint. Without loss of generality, we can
assume that s1 = r1 and t1 = r�+1. Note that s1 � φ(c1 · · · c�) = t1 (see Fig. 3).

s1

s2s3

sn

r2 rℓ t1

t2 t3

tm
a1

a2

an

c1 cℓ

b1

b2

bm

G1 G2G3

Fig. 3. The transition graph with disjoint cycles.
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Let x = a1 · · · an, y = c1 · · · c�, z = b1 · · · bm ∈ Σ∗ and let w(k) = xkyzk ∈ Σ∗

with k ∈ N. It is obvious that x 	= y, because otherwise s1 = s1 � φ(x) = s1 �
φ(y) = t1. We prove the theorem by showing that for CFL X = {w(k) | k ∈ N},
there is no regular language X ′ such that X ≡L X ′.

First, we show that X = X ′ if X ≡L X ′ by showing that there is no word
w′(	= w(k)) such that w′ ≡L w(k) for each k ∈ N. By Definition 2, it suffices to
show that for w(k), swapping any adjacent subwords u1, u2 ∈ L does not change
the whole word w(k). Note that φ(u) = e iff u ∈ L. Because s � t = s iff t = e
for each element s in a group, a path labeled with a word u ∈ Σ∗ is a cycle iff
φ(u) = e. Remember that V1, V2, V3 are pairwise disjoint and r1

c1−→ · · · c�−→ r�+1

is simple. Therefore, u is a subword of either xk or zk if u ∈ L. Hence, we
show that every adjacent subwords u1, u2 ∈ L of xk or zk are represented as
u1 = up1 , u2 = up2 for some u ∈ Σ∗, p1, p2 ∈ N. We suppose that u1, u2 are
subwords of xk. Let q ≤ k be the smallest number such that u1 is a subword
of xq, and we can get prefixes x1, x2 of x such that x1u1 = xq−1x2. Because
φ(x1) = φ(x1) � e = φ(x1u1) = φ(xq−1x2) = e � φ(x2) = φ(x2), we obtain that
x1 = x2 by the following reasons. Both of x1 and x2 are prefixes of x, and hence
either x1 is a prefix of x2 or x2 is a prefix of x1. Assume that x1 is a proper prefix
of x2. Then, for x2 such that x2x2 = x, it follows from φ(x2) ◦ φ(x2) = φ(x) = e
and φ(x1) = φ(x2) that φ(x2x1) = φ(x2)�φ(x1) = φ(x2)−1 �φ(x2) = e. Hence,
there are i1 < i2 such that si2

ai2−−→ · · · an−−→ s1
a1−→ · · · ai1−−→ si1+1 is a cycle with

x2x1 = ai2 · · · ana1 · · · ai1 , and it contradicts the fact that s1
a1−→ · · · an−1−−−→ s1

is a simple cycle. The same holds in the case that x2 is a proper prefix of
x1. Therefore, we can conclude that x1 = x2 and u1 = (x2x2)p1 for some p1.
Because u1u2 is a subword of xk and u1 ends with the prefix x2 of x, it follows
that x2u2 = xq′

x3 for some q′ ∈ N and some prefix x3 of x. For the same reasons
as u1, it holds that u2 = (x2x2)p2 for some p2. Similar reasoning works in the
case that u1, u2 are subwords of zk, and we obtain that u1 = up1 , u2 = up2 for
some u ∈ Σ∗, p1, p2 ∈ N. Therefore, no word w′(	= w(k)) satisfies w′ ≡L w(k) for
each k ∈ N, and X = X ′ if X ≡L X ′. By using a pumping lemma, we can show
that the language X = {xkyzk | k ∈ N} is not regular. �

Example 5. Let C2 be the cyclic group with set {0, 1}, and φ2(a) = 0, φ2(b) = 1
(see Example 4). Then, ≡L2 where L2 is the language recognized by (φ2, {0})
does not have Parikh property. This is because there are cycles 0 a−→ 0 and 1 a−→ 1
in the transition graph, and {0}∩{1} = ∅ (see Fig. 2). In fact, there is no regular
language X ′ such that X ≡L2 X ′ for CFL X = {akbak | k ∈ N}. �

Lemma 2. Let (S,�) be a finite group, φ : Σ∗ → S be a surjective homomor-
phism, and (S,E) be the transition graph of φ. If there exists a ∈ Σ such that φ(a)
generates proper subgroup S′ � S, then there are cycle graphs (V1, E

′
1), (V2, E

′
2)

of (S,E) such that V1 ∩ V2 = ∅.
Proof. Let s1 ∈ S′ and s2 ∈ S \S′. Because (S,�) is a group, there is an element
t ∈ S such that t � s1 = s2. There are two cycle graphs generated by cosets S′

and tS′ = {t � s | s ∈ S′}, and S′, tS′ are disjoint. �
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Theorem 3. Let L be the language recognized by (φ, {e}) with a group (S,�).
If ≡L has Parikh property, then (S,�) is isomorphic to a cyclic group.

Proof. By Theorem 2 and Lemma 2, if ≡L has Parikh property, then φ(a) gen-
erates (S,�) for each a ∈ Σ. Because (S,�) is generated by a single element,
(S,�) is cyclic. �

Example 6. Let φ4 : Σ∗ → C2 × C2 be the homomorphism defined as φ4(a) =
(1, 0) and φ4(b) = (0, 1). Because the direct product C2 ×C2 is not isomorphic to
any cyclic group, ≡L4 does not have Parikh property where L4 is the language
recognized by (φ4, {(0, 0)}). In fact, there are disjoint cycles (0, 0) a−→ (1, 0) a−→
(0, 0) and (0, 1) a−→ (1, 1) a−→ (0, 1) (see Fig. 2). �

4.2 The Case of General Monoids

When a monoid is not a group, it is more difficult for ≡L to have Parikh property
than the case of groups where L is an inverse image of {e}. This is because any
two different words whose prefixes are mapped to non-invertible elements cannot
be exchanged when the monoid is not a group.

Theorem 4. Let L be the regular language recognized by (φ, {e}) with a finite
monoid (S,�) which is not a group. If |Σ| ≥ 2, then ≡L does not have Parikh
property.

Proof. If φ(a) is invertible for each a ∈ Σ, then each element φ(w) =
φ(a1 · · · an) ∈ S has the inverse element φ(an)−1 � · · · � φ(a1)−1, and φ(w)
is also invertible. Therefore, there is an element a ∈ Σ such that φ(a) is not
invertible because (S,�) is not a group. Hence, it holds that φ(u) 	= e for each
word u ∈ aΣ∗. Let b ∈ Σ be a letter such that b 	= a. Then, X = X ′ if X ≡L X ′

holds for CFL X = {akbak | k ∈ N}. This is because for each k, there is at most
one subword v ∈ bΣ∗ of akbak that can satisfy φ(v) = e. Hence, there is no
regular language X ′ such that X ≡L X ′. �

By Theorems 2 and 4, we obtain a necessary condition for having Parikh property
for general monoids.

Corollary 1. Let L be the regular language recognized by (φ, {e}) with a finite
monoid (S,�). Let (S,E) be the transition graph of φ. If there are cycle graphs
(V1, E

′
1) and (V2, E

′
2) of (S,E) such that V1 ∩ V2 = ∅, then ≡L does not have

Parikh property.

Proof. As a monoid generated by a single element is cyclic, there are at least
two letters if there are disjoint cycle graphs (V1, E

′
1) and (V2, E

′
2). Therefore, we

can conclude the proof by Theorem 2 for the case that (S,�) is a group, and by
Theorem 4 for the case that (S,�) is not a group. �
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4.3 Languages as Inverse Images of Sets of Idempotent Elements

As mentioned in the proof of Theorem 2, path s1
a1−→ · · · an−1−−−→ sn is a cycle iff

φ(a1 · · · an−1) = e in the transition graph of a homomorphism φ into a group.
This does not always hold for general finite monoids because s � t = s does not
necessarily imply that t is the identity element. Furthermore, even if we take
any long word w, we cannot guarantee that there exists a subword u of w such
that φ(u) = e. Nevertheless, it is known that for each enough long word w, there
exists a subword u of w such that φ(u) is idempotent (instead of identity).

Proposition 2 ([11]). Let (S,�) be a finite monoid and φ : Σ∗ → S be a
surjective homomorphism. There exists N ∈ N such that for every word w =
a1 · · · an ∈ Σ∗ with n > N , there exists 1 ≤ i1 < i2 ≤ N such that φ(ai1 · · · ai2)
is an idempotent element. �
Therefore, when discussing the iteration property of monoids, it is sometimes
better to use idempotent elements rather than the identity element. However,
the straightforward extension of Corollary 1 does not hold.

Example 7. Let M = {s0 =
(
0 1 2
0 1 2

)
, s1 =

(
0 1 2
2 2 2

)
, s2 =

(
0 1 2
1 0 2

)} be the monoid, and
let φ5(a) = s1, φ5(b) = s2. Note that s0 is the identity element and s0, s1 are
idempotent elements. There are disjoint cycles s0

b−→ s2
b−→ s0, s1

a−→ s1 and
the language L5 recognized by (φ5, {s0, s1}) is the inverse image of the set of
idempotent elements (see Fig. 2). However, ≡L5 has Parikh property for the
reasons that will be discussed later (see Example 9). �

5 Sufficient Conditions for Having Parikh Property

Theorem 5. Let L = D∗ ⊆ Σ∗ be a language where D is a finite language. If
there exist finite languages F1, F2 ⊆ Σ∗ such that F1LF2 = Σ∗, then ≡L has
Parikh property.

Proof. We first outline the idea of the proof. Let Δ = {δd | d ∈ D} be the
alphabet and h : Δ∗ → Σ∗ be the homomorphism defined as h(δd) = d. Note
that ≡Δ∗=≡Pk (⊆ Δ∗ × Δ∗). It follows from Lemma 1 that Z ≡Pk Z ′ ⇒
h(Z) ≡D∗ h(Z ′) for any two languages Z,Z ′ ⊆ Δ∗. We encode each word d ∈ D
into a letter δd by using the inverse of h, and prove the theorem by reducing to
Parikh’s theorem for languages over Δ.

Assume that there are finite languages F1, F2 ⊆ Σ∗ such that F1LF2 = Σ∗.
For a given CFL X, we construct a regular language X ′ such that X ′ ≡L X
as follows. First, let X(u,v) = X ∩ uD∗v for each (u, v) ∈ F1 × F2. Note that
X(u,v) is also a CFL because the class of CFL is closed under intersection with a
regular language. Furthermore, X =

⋃
(u,v)∈F1×F2

X(u,v) holds because F1LF2 =
Σ∗. Let Y(u,v) = {y | uyv ∈ X(u,v)} and Z(u,v) = h−1(Y(u,v)). Because the
class of CFL is closed under quotient by a word and inverse homomorphism,
Z(u,v) ⊆ Δ∗ is also a CFL. Now, let Z ′

(u,v) be a regular language such that
Z ′
(u,v) ≡Pk Z(u,v). Then, let X ′

(u,v) = uY ′
(u,v)v = uh(Z ′

(u,v))v. Because the class
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of regular languages is closed under homomorphism and concatenation, X ′
(u,v)

is also a regular language. With Lemma 1, we have Y(u,v) ≡L Y ′
(u,v), and thus

X(u,v) ≡L X ′
(u,v). Finally, let X ′ =

⋃
(u,v)∈F1×F2

X ′
(u,v). Then, we can conclude

that X ′ ≡L X (see Fig. 4). �

Example 8. Let Σ = {a, b} and L6 = {a, ba, bb}∗. Because F1L6F2 = Σ∗ with
F1 = {ε} and F2 = {ε, b}, the equivalence ≡L6 has Parikh property. �

Example 9. Let Σ = {a, b} and L5 = Σ∗ \ b(bb)∗. Because F1L5F2 = Σ∗ with
F1 = {ε} and F2 = {ε, b}, the equivalence ≡L5 has Parikh property, which is
also clear from the fact that ≡L6⊆≡L5 . �

We obtained a sufficient condition for Parikh property by Theorem 5. Next,
we focus on the properties of monoids and homomorphisms and construct D,F1

and F2 that satisfy the assumption of Theorem 5.

Theorem 6. Let (S,�) be a finite monoid, φ : Σ∗ → S be a surjective homo-
morphism, and (S,E) be the transition graph of φ. If there exists a common
element s ∈ S such that s ∈ V for each cycle graph (V,E′), then ≡L has Parikh
property where L is the language recognized by (φ, {t ∈ S | s � t = s}).

context-free regular

equivalent in ≡L

Parikh equivalent

Fig. 4. Constructing regular language X ′.

Proof. For each path s1
a1−→ · · · a|S|−−→ s|S|+1 in (S,E), there are si1 , si2 ∈ S such

that si1 = si2 with 1 ≤ i1 < i2 ≤ |S| + 1. Because si1

ai1−−→ · · · ai2−1−−−→ si2 is a
cycle, sj = s for some i1 ≤ j < i2. Therefore, each w ∈ Σ∗ can be represented as
w = u1u2 · · · uk where k ∈ N, u� ∈ Σ∗, |u�| ≤ |S| with 1 ≤ � ≤ k, and satisfying
the followings: φ(u1) = s and s � φ(u2) = s � φ(u3) = · · · = s � φ(uk−1) = s.
That is, Σ∗ = FDs

∗F where F =
⋃|S|−1

k=0 Σk and Ds = {d ∈ Σ∗ | |d| ≤
|S|, s � φ(d) = s}. By Theorem 5, ≡Ds

∗ has Parikh property. Note that D∗
s ⊆ L

because s�φ(ε) = s and s�(φ(d1)�φ(d2)) = (s�φ(d1))�φ(d2) = s�φ(d2) = s
for each d1, d2 ∈ Ds

∗. Therefore, ≡D∗
s
⊆≡L and ≡L also has Parikh property. �

Note that {t ∈ S | s � t = s} = {e} for each s ∈ S if (S,�) is a group.
Therefore, the following holds.
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Corollary 2. Let (S,�) be a finite group, φ : Σ∗ → S be a surjective homomor-
phism, and (S,E) be the transition graph of φ. If there exists a common element
s ∈ S such that s ∈ V for each cycle graph (V,E′), then ≡L has Parikh property
where L is the language recognized by (φ, {e}). �

Example 10. Let L3 = {w | w is even-length} be the language recognized
by (φ3, {e}) with C2 (see Example 4). The transition graph has four simple
cycles {0 a1−→ 1 a2−→ 0 | a1, a2 ∈ {a, b}} sharing the element 0 (see Fig. 2).
Therefore, ≡L3 has Parikh property. In fact, L3 can be represented as D∗ with
D = {aa, ab, ba, bb}, and F1L3F2 = Σ∗ with F1 = {ε}, F2 = {ε, a, b}. �

The condition assumed in Corollary 2 is rather a strong constraint for groups.
We can characterize this condition in another way. We say that a surjective
homomorphism φ : Σ∗ → S with a monoid (S,�) is letter-symmetric if φ(a) =
φ(b) for each a, b ∈ Σ.

Lemma 3. Let (S,E) be the transition graph of φ with a surjective homomor-
phism φ into a finite group (S,�). If there exists a common element s ∈ S such
that s ∈ V for each cycle graph (V,E′), then φ is letter-symmetric.

Proof. We give a proof by contradiction. We assume that all cycles share a com-
mon element s1, and there exists a, b such that φ(a) 	= φ(b). Let s1

a1−→ · · · an−1−−−→
sn = s1 be a simple cycle in the transition graph and V1 = {s1, . . . , sn−1}.
Because (S,�) is a group, s′

n = sn−1 � φ(b) 	= sn for any b ∈ Σ such
that φ(b) 	= φ(an−1). If there exists si with 1 < i < n such that s′

n = si,
then there is a cycle si

ai−→ · · · an−2−−−→ sn−1
b−→ si and it contradicts that

all cycles share the element s1 = sn. Therefore, there exists a simple cycle

s1
a1−→ · · · an−2−−−→ sn−1

an−1−−−→ s′
n

b1−→ · · · bm−1−−−→ s1 such that the set V2 of ver-
tices of which is larger than V1. By repeating this procedure, there is an infinite
sequence V1, V2, V3, · · · ⊆ S such that |V1| < |V2| < |V3| < · · · . However, it
contradicts that (S,�) is a finite group. �

Remark 1. By Lemma 3, the followings are equivalent for a regular group lan-
guage recognized by (φ, T ) with a finite group (S,�) and the transition graph
(S,E) of φ:

– There exists a common element s ∈ S such that s ∈ V for each cycle graph
(V,E′) of (S,E).

– For each cycle graphs (V1, E
′
1) and (V2, E

′
2), V1 = V2 = S.

– φ is letter-symmetric.
– The group (S,�) is generated by a single element φ(a) for each a.

6 Subclasses of Regular Group Languages

We obtained some conditions for having Parikh property by the discussion in
Sects. 4 and 5. In particular, the detailed analysis was conducted for the case of
groups. In this section, we summarize the results and present open problems for
group languages. We define predicates P0(L), . . . , P4(L) as follows:
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P0(L) : L is a language recognized by (φ, {e}) with a surjective homomorphism
φ into a finite group (S,�).

P1(L) : P0(L) and (S,�) is cyclic.
P2(L) : P0(L) and there are no cycle graphs (V1, E

′
1), (V2, E

′
2) such that V1∩V2 =

∅ in the transition graph of φ.
P3(L) : P0(L) and ≡L has Parikh property.
P4(L) : P0(L) and φ is letter-symmetric.

For each 0 ≤ i ≤ 4, we define the class of regular group languages Gri as the
class of all languages L that satisfy Pi(L).

Proposition 3. Gr0 � Gr1 � Gr2 ⊇ Gr3 ⊇ Gr4.

Proof. First, Gr0 ⊇ Gr1 is trivial, and L4 ∈ Gr0 \ Gr1 (see Example 6). Next,
Gr1 ⊇ Gr2 ⊇ Gr3 by Theorems 2, 3 and Lemma 2, and L2 ∈ Gr1 \ Gr2 (see
Example 5). Finally, Gr3 ⊇ Gr4 by Corollary 2 and Remark 1. �

We are interested in necessary and sufficient conditions for having Parikh prop-
erty. If Gr2 \ Gr3 = ∅ (resp. Gr3 \ Gr4 = ∅), then P2(L) (resp. P4(L)) is the
necessary and sufficient condition for the case of group language. However, it
is possible that both Gr2 \ Gr3 and Gr3 \ Gr4 are not empty. The following
example shows that at least one of Gr2 \ Gr3 and Gr3 \ Gr4 is not empty.

Example 11. Let C3 = {0 =
(
0 1 2
0 1 2

)
, 1 =

(
0 1 2
1 2 0

)
, 2 =

(
0 1 2
2 0 1

)} be the cyclic group
with set {0, 1, 2}, and φ7(a) = 1, φ7(b) = 2. Then, there are no disjoint cycles in
the transition graph (C3, E). However, there is no element s ∈ C3 such that s ∈ V
for each cycle graph (V,E′) in (C3, E) (see Fig. 2). Therefore, L7 ∈ Gr2 \ Gr4
where L7 is the language recognized by (φ7, {e}). It is yet open whether L7 ∈
Gr2 \ Gr3 or L7 ∈ Gr3 \ Gr4, i.e., whether ≡L7 has Parikh property. �
We believe that detailed analysis of ≡L7 should give us a hint for finding a good
necessary and sufficient condition for having Parikh property.

7 Conclusion

We extended Parikh equivalence and Parikh’s Theorem, and we showed some
conditions for equivalence relations to have Parikh property by focusing on
monoids and homomorphisms.

Studying the conditions for ≡L such that L is the inverse image of a set
of idempotent elements is left as future work (see Sect. 4.3). In addition, the
problem mentioned in Example 11 will be studied in the future.
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notes LIAFA (2010)



Enhanced Ternary Fibonacci Codes

Shmuel T. Klein1 and Dana Shapira2(B)

1 Computer Science Department, Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

2 Computer Science Department, Ariel University, Ariel, Israel
shapird@g.ariel.ac.il

Abstract. Extending previous work on non-binary Fibonacci codes, a
new ternary variant is proposed sharing the main features like robustness
against errors and ease of encoding and decoding, while improving the
compression efficiency relative to other ternary codes. The improvement
is based on an increased density of the codes and also shown empirically
on large textual examples. A motivation for d-ary codes, with d > 2, may
be the emergence of future technologies that enable the representation
of more than just two values in an atomic storage unit.

Keywords: Data compression · Fibonacci codes · Huffman Coding

1 Introduction

Textual data contains usually much redundancy, and the aim of lossless data
compression is to eliminate as much as possible of it without losing a single bit,
that is, applying a compression algorithm, which is reversible. Many static coders
define first an alphabet Σ, into the elements of which a given input file T can be
parsed, and then collect statistics about the distribution of the elements of Σ,
which enable the derivation of an appropriate code. The best known such codes
are due to Huffman [7] and arithmetic codes [14], both of which are optimal, the
first under the assumption that every codeword consists of an integral number
of bits, the second without that constraint.

It should also be noted that we use the term alphabet in a rather broad
sense, without restricting it to just individual letters as {a, b, c, . . . , y, z} or even
to ascii: Σ may include substrings of any type, letter pairs, entire words and
fragments, or, ultimately, any set of strings, as long as an exact procedure is
used to parse the text T into a well-defined sequence of alphabet elements. For
example, for textual files, using words yields much better compression than just
single characters [11], so the alphabets used by modern compressors may be
large, with hundreds of thousands elements.

Both Huffman and arithmetic coding, as well as many other compression
schemes like the popular ones based on the works of Ziv and Lempel, construct
a specific code for each given probability distribution, and this can not always
be justified. This lead to the development of universal codes [2], which are fixed
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sets of codewords that need not to be generated afresh. Such universal codes
are especially useful when encoding integers, for example by means of the Elias’
codes known as Cγ and Cδ. Another application may be for the encoding of a
large alphabet, when optimal compression is less important and may be traded
for increased processing speed and other advantages. The elements of Σ can be
ordered by non-increasing probabilities, and the ith element is then assigned
the Elias’ or other universal codeword for the integer i, with i ≥ 1. For many
distributions, the loss of compression relative to the optimum is small enough to
be tolerable.

Some universal codes with the additional advantage of providing robustness
against transmission errors have been introduced in [6] and are based on a numer-
ation system using Fibonacci numbers, rather than powers of 2, as their basis
elements. The Fibonacci sequence can be defined by

F0 = 0, F1 = 1,

and Fi = Fi−1 + Fi−2, for i ≥ 2.

An interesting feature of this sequence, as well as of many other increasing integer
sequences, is that every integer x can be expressed as a sum of Fibonacci numbers,
so that each element participates in this summation at most once, that is,

x =
∑

i≥2

bi Fi, with bi ∈ {0, 1}.

This representation will be unique if, at each step, the largest Fibonacci number
Fi that is less than or equal to x is chosen, and one continues with the remaining
x − Fi value, until x = 0. The Fibonacci sequence can therefore be used to yield
an alternative binary representation of the integers. While the standard binary
encoding refers to powers of 2 as its basis elements, the so-called Zeckendorf [15]
representation uses Fibonacci numbers instead. As example, consider 20 = 16+4,
which yields the binary encoding 10100, as the bit positions refer, from right to
left, to the basis elements 20 = 1, . . . , 24 = 16; using Fibonacci numbers instead,
one gets 20 = 13 + 5 + 2 yielding the bit-string 101010, in which the positions
refer, again right to left, to 1, 2, 3, 5, 8, 13. The main property of the Zeckendorf
representation is that there is never a need to use consecutive Fibonacci numbers,
in other words, there are no adjacent 1-bits in this binary representation.

This property has been exploited to design the Fibonacci code: by reversing the
codewords and letting the bit positions refer to the sequence 1, 2, 3, 5, . . . from
left to right, one gets binary strings with a rightmost 1-bit, for example 010101 for
the integer 20, so it suffices to append an additional 1-bit at the right end of each
codeword to obtain a prefix code. Indeed, all the codewords then end in 11, and
this string is not found in any internal position, so no codeword can be the prefix
of another one. It follows that this code, denoted henceforth by B, is uniquely deci-
pherable and instantaneous [12]. The first few elements of the code can be seen in
Table 1. The usefulness of Fibonacci codes has been studied in [9].

There are several possibilities to generalize these codes. One may use other
delimiters for the codewords and even multiple ones, as in [1], or pass to higher
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order. A standard way is to consider recurrences in which each element is the
sum of the d ≥ 2 preceding ones,

F
(d)
i = F

(d)
i−1 + F

(d)
i−2 + · · · + F

(d)
i−d for i ≥ 2,

from which a binary code can be derived in which no more than d consecutive
1s can appear in any codeword, except as suffix. The special case d = 2 yields
the Fibonacci code above.

Higher order codes of a different kind may be concerned with non-binary
extensions. There is an obvious theoretical interest in extending a well estab-
lished result, in particular when the extension in not straightforward as in the
present case. On the practical side, such codes can be motivated by expected
technological advances that will enable the storage of more than just two values
in an atomic unit. For instance, 3-valued logic has been used in the Soviet Union
as early as 1958 to build a ternary computer [13], and even Huffman’s original
paper [7] dealt with r-ary trees, for general r ≥ 2.

Consider the following recurrences, depending on a parameter m ≥ 1:

R
(m)
−1 = 1, R

(m)
0 = 1,

and R
(m)
i = mR

(m)
i−1 + R

(m)
i−2 , for i ≥ 1.

For m = 1, one again gets the standard Fibonacci sequence, but for larger m,
the representation of integers is (m + 1)-ary and not binary, that is, an integer
x can be uniquely represented as

x =
∑

i≥1

bi R
(m)
i , with bi ∈ {0, 1, . . . ,m}.

The generalization to larger m of the non-adjacency of 1-bits in the corresponding
encodings of the integers for m = 1, is that every occurrence of the digit m has
to be followed by an occurrence of the digit 0.

On the basis of this property, an (m + 1)-ary code has been proposed in
[10]. For example, for m = 2, one gets the sequence {R

(2)
i }i≥0 = {1, 3, 7, 17,

41, . . .}, and the corresponding representation is ternary, i.e., using only the
digits 0, 1 and 2. As binary digits are called bits, their ternary equivalent
are often referred to as trits. The ternary strings representing the first inte-
gers are {1, 2, 10, 11, 12, 20, 100, 101, 102, 110, 111, 112, 120, 200, 201,
202, . . .}. Note, in particular, the missing strings 21, 22, 121, 122, which are
legal ternary strings, yet do not appear in the sequence, because they violate the
constraint of having every 2-trit followed by a 0. As there are no leading 0-trits,
the code itself is constructed by reversing the strings and adding a trailing 2-
trit. In all the codewords of the resulting set, every 2-trit is preceded by a 0-trit,
unless it is in the first position, and then it has no preceding trit, or in the last,
and then it serves as delimiter. The first codewords of this ternary Fibonacci
code, which we shall denote by R, are listed in Table 1.

We here propose an enhanced ternary code in terms of compression efficiency,
based on a different generalization of the Fibonacci sequence. We show how
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Table 1. First codewords of the standard binary Fibonacci code, B, the ternary
Fibonacci Code R of [10] and the proposed ternary Fibonacci codes G and H.

B R G H B R G H
0 22 22 16 0010011 2022 00212 11022

1 11 12 122 022 17 1010011 00012 10212 21022

2 011 22 212 122 18 0001011 10012 20212 02022

3 0011 012 0122 212 19 1001011 20012 01212 12022

4 1011 112 1122 0022 20 0101011 01012 11212 00122

5 00011 212 2112 1022 21 00000011 11012 000122 10122

6 10011 022 0212 2022 22 10000011 21012 100122 20122

7 01011 0012 1212 0122 23 01000011 02012 200122 01122

8 000011 1012 00122 1122 24 00100011 00112 010122 11122

9 100011 2012 10122 2112 25 10100011 10112 110122 21112

10 010011 0112 20122 0212 26 00010011 20112 210122 02112

11 001011 1112 01122 1212 27 10010011 01112 020212 12112

12 101011 2112 11122 00022 28 01010011 11112 120122 00212

13 0000011 0212 21112 10022 29 00001011 21112 001122 10212

14 1000011 0022 02112 20022 30 10001011 02112 101122 20212

15 0100011 1022 12112 01022 31 01001011 12112 201122 01212

to employ the property implied by the numeration system to turn the integer
representations into a set of ternary codewords and then study the properties of
this new code.

The paper is constructed as follows. Section 2 presents the proposed ternary
Fibonacci code and provides proofs for its features. Section 3 provides experi-
mental results about its compression performance as compared to ternary state-
of-the-art encoding techniques and concludes.

2 A New Ternary Fibonacci Code

Consider the sub-sequence of every other Fibonacci number, those with the even
indices: 1, 3, 8, 21, 55, 144, 377, 987, . . .. It turns out that the same sequence can
be obtained by the following simple recurrence:

G0 = 0, G1 = 1,

and Gi = 3Gi−1 − Gi−2, for i ≥ 2,

a fact already noticed in [8]. Indeed,

F2i = F2i−1 + F2i−2 = 2F2i−2 + F2i−3 = 3F2i−2 − F2i−4,

and since, for every i > 0, Gi is strictly smaller than three times the preceding
element, the resulting numeration system is ternary.
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This recurrence can be the basis of a ternary numeration system, and the first
integers expressed according to this system are {1, 2, 10, 11, 12, 20, 21, 100, 101,
102, 110, 111, 112, 120, 121, 200, 201, . . .}. The string 1201 for instance, would
represent the integer 21 + 2 × 8 + 1 = 38. As for the previously mentioned codes
B, R and their variants, the recurrence relation implies an inherent property of the
corresponding ternary integer representations, that can be used to define a code.
For the current sequence G, the property is that there must be a zero between any
two 2s. Though this property is a special case of a more general theorem shown in
[5], we provide a proof for our special case in the following lemma.

Lemma 1. There must be a 0-trit between any two 2-trits in the representation
of every integer expressed according to the ternary numeration system based on
the sequence G.

Proof. Let T = trtr−1 · · · t2t1 the representation of some integer m in the given
numeration system, that is m =

∑r
i=1 tiGi and ti ∈ {0, 1, 2}. An equivalent

formulation of the lemma is that T does not contain a substring of the form
21n2 for any n ≥ 0, that is, all substrings of the form 22, 212, 2112, etc. are
prohibited.

Let j be the leftmost (highest) index such that tj = 2. We first show that
the j rightmost trits of T cannot be of the form P = 2111 · · · 12. This follows
from the fact, based on the well-known formula for the sum of the first Fibonacci
numbers, that a string 1j of j 1-trits at the suffix of T would represent the integer

Nj =
j∑

i=1

Gi =
j∑

i=1

(
F2i−1 + F2i−2

)
=

2j−1∑

i=0

Fi = F2j+1 − 1.

For the numeric value V of the string P , we have to add Gj and G1 to get

V = Nj + Gj + G1 = (F2j+1 − 1) + F2j + 1 = F2j+2 = Gj+1.

But this is a contradiction to the choice of j. If j = r, it contradicts the fact
that P is the representation of m, since the algorithm, trying to fit in always the
largest basis element in what remains to be represented, would prefer the form
10r to P . If j < r, then tj+1 < 2, so its value could be increased, and the suffix
of T would be (tj+1 + 1)0j rather than tj+121j−22.

For the general case, in which the substring P is not a suffix of T , note that
since the string Q = 211 · · · 1200 · · · 00 is lexicographically larger than the string
P = 211 · · · 111 · · · 12 of the same length, the numerical value of the former is
larger than that of the latter. For example, 211200 represents the number 380,
whereas 211112 is 377. Therefore, if the occurrence of P is impossible, then a
fortiori so is that of Q: the representations of both values of P and Q would
involve the trit tj+1.

The existence of forbidden substrings 11 and mx, with x < m, lead to the defi-
nition of the prefix codes B and R, respectively, which were obtained by reversing
the strings representing the integers, and appending a single digit, 1 or m, respec-
tively. The forbidden strings thus appear as suffixes of every codeword and thereby
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serve as delimiters, and do not appear anywhere else. Extending this idea to our
sequence G is not immediate, because no single trit can turn every ternary string
representing an integer according to G into one violating the rules. For instance,
since the property refers to the existence of a zero between two 2-trits, a string
without any 2-trits cannot be disqualified by the addition of a single trit.

A possible solution is to prefix every string by 22, which would yield the strings

{221, 222, 2210, 2211, 2212, 2220, 2221, 22100, 22101, . . .},

but the code obtained by reversing these strings does not have the prefix prop-
erty. for example, 122 (= 1) is then a prefix of 1222 (= 7). What is even worse,
the code would not even be uniquely decipherable (UD): the string 1222122 could
be interpreted as both 122-2122 (= 1-5) and 1222-122 (= 7-1).

An alternative is to prefix every string with either 22 or just 2, if this is enough
to create an illegal substring. The resulting sequence would then start by

{221, 22, 2210, 2211, 212, 220, 221,22100, 22101, . . .},

since all strings with a prefix of the form 1s2, with s ≥ 0 need only a single
2-trit as delimiter. The corresponding code, however, is not well-defined, e.g.,
221 would represent both the integers 1 and 7. Moreover, by prefixing delimiters
of different lengths, the corresponding codewords are not ordered anymore by
their lengths, and reordering them will destroy the connection between an index
and its representation in the ternary Fibonacci numeration system.

Our suggestion is therefore to use two different delimiters, yet of the same
length two trits: 22 or 21. Strings starting with 1s2, for s ≥ 0, will be prefixed
by 21, all the others, which are those starting with 1s0, for s ≥ 1, or strings
consisting only of 1s, will be prefixed by 22. This yields

{221, 212, 2210, 2211, 2112, 2120, 2121, 22100, 22101, . . .},

where the violating substrings in a right to left scan have been underlined.
Reversing the strings, we get a prefix code, denoted by G, the first elements
of which appear in Table 1. Each codeword of G terminates in an illegal string
of variable length, the detection of which allows instantaneous decoding.

2.1 Properties of G
The compression capabilities of a fixed universal code depend obviously on the
number of different codewords n� that can be defined for every length �. To
evaluate these numbers for our code G, note that for � ≥ 1 the first codeword of
length �+2 is 0�−1122 and represents the integer G�. It follows that the number
of codewords of length � + 2 is

n�+2 = G�+1 − G� = 3G� − G�−1 − 3G�−1 + G�−2 = 3n�+1 − n�.

The sequence n� thus starts with 2, 5, 13, 34, 89, and follows the same recurrence
relation as G, just with different initial values.
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The McMillan sum of a d-ary infinite code C = {c1, c2, . . .} is defined as
M =

∑∞
i=1 d−|ci|, and a necessary condition for a code to be UD is that M ≤ 1.

If M = 1, the code is complete, which means that no additional codeword can be
adjoined without violating the UD property of the code. For i ≥ 1, there are ni

codewords of length i+2 in the ternary code G, so we can evaluate its McMillan
sum M =

∑∞
i=1 ni3−(i+2).

M =
∞∑

i=1

ni3−(i+2) = 2 · 3−3 + 5 · 3−4 +
∞∑

i=3

(
3ni−1 − ni−2

)
3−(i+2)

=
11
81

+
∞∑

i=2

ni3−(i+2) − 1
9

∞∑

i=1

ni3−(i+2) =
11
81

+
(
M − 2 · 3−3

) − 1
9
M,

(1)

from which one can derive that M = 5
9 . The code is thus not complete, which

might indicate compression inefficiency. A first remedy could be to adjoin the
codeword 22, that is, one consisting of an empty prefix and only of the termi-
nating string 22 itself. The extended code G∗ = G ∪ {22} would still be UD, and
its McMillan sum would be improved to 2

3 .
The fact that even G∗ is incomplete can be explained by the missing code-

words having suffixes of the form 0r22 with r ≥ 1, that is, an integer is repre-
sented in the numeration system based on Gi without leading zeros. Indeed, while
the values of the strings 1201, 12010 and 120100 could not be distinguished, all
of them representing the integer 1+2×3+21 = 28, the addition of a delimiting
suffix may turn them into different codewords 120122, 1201022 and 12010022,
of which only the first appears in G∗. This leads to the idea of extending the
definition of this code to include also these missing codewords.

Note that a similar amendment is not feasible for the codes B or R: though
the illegal substrings to be avoided, 11 for B and 12 or 22 for R are of length 2
bits or trits, the leftmost bit or trit of the separator is a part of the representation
of the index, actually, its leading bit or trit. Therefore, only a single 1-bit or 2-
trit is appended, which does not allow it to be preceded by one or more zeros.
In the code G, on the other hand, the separators consist of two trits, and they
will be recognized even after a sequence of zeros.

2.2 Extended Definition

The suggested extended code is most easily understood by the following recursive
construction. We shall omit the two terminating trits 12 or 22 of every codeword
and calculate the number m� of legal ternary strings of all possible lengths
� ≥ 1. Denote by B� the block of the m� ternary strings of length �, arranged in
backward lexicographic order, that is, scanning the trits of each codeword right
to left. It will be convenient to refer to Table 2, showing the blocks B� for � ≤ 5.



186 S. T. Klein and D. Shapira

The first block B1 consists just of the single trits {0, 1, 2}. The block B� is
obtained by taking three copies of the preceding block B�−1, and extending each
string to the right, respectively for the three copies, by 0, 1 or 2. The appended
2-trit in the third block of this extension may, however, produce illegal strings,
and these appear boldfaced at the end of the blocks, and are assumed not be a
part of them.

The following lemma evaluates the number d� of these illegal strings.

Table 2. New ternary code construction.

1 2 3 4 5

0 00 000 0000 0001 0002 00000 00010 00020 00001 00011 00021 00002 00012 00022
1 10 100 1000 1001 1002 10000 10010 10020 10001 10011 10021 10002 10012 10022
2 20 200 2000 2001 2002 20000 20010 20020 20001 20011 20021 20002 20012 20022

01 010 0100 0101 0102 01000 01010 01020 01001 01011 01021 01002 01012 01022
11 110 1100 1101 1102 11000 11010 11020 11001 11011 11021 11002 11012 11022
21 210 2100 2101 2102 21000 21010 21020 21001 21011 21021 21002 21012 21022
02 020 0200 0201 0202 02000 02010 02020 02001 02011 02021 02002 02012 02022
12 120 1200 1201 1202 12000 12010 12020 12001 12011 12021 12002 12012 12022
22 001 0010 0011 0012 00100 00110 00120 00101 00111 00121 00102 00112 00122

101 1010 1011 1012 10100 10110 10120 10101 10111 10121 10102 10112 10122
201 2010 2011 2012 20100 20110 20120 20101 20111 20121 20102 20112 20122
011 0110 0111 0112 01100 01110 01120 01101 01111 01121 01102 01112 01122
111 1110 1111 1112 11100 11110 11120 11101 11111 11121 11102 11112 11122
211 2110 2111 2112 21100 21110 21101 21111 21102 21112
021 0210 0211 0212 02100 02110 02101 02111 02102 02112
121 1210 1211 1212 12100 12110 12101 12111 12102 12112
002 0020 0021 0022 00200 00210 00201 00211 00202 00212
102 1020 1021 1022 10200 10210 10201 10211 10202 10212
202 2020 2021 2022 20200 20210 20201 20211 20202 20212
012 0120 0121 0122 01200 01210 01201 01211 01202 01212
112 1120 1121 1122 11200 11210 11201 11211 11202 11212
212
022
122

Lemma 2. The number d� of illegal strings following the block B� is equal to
m�−2, the size of block B�−2 of legal strings preceding the previous one.

This fact is highlighted by matching colors for � = 3, 4, 5 in Table 2.

Proof. Recall that the d� illegal strings are extensions of different legal strings of
length �−1 that have been extended to their right by adding a 2-trit. Therefore,
these legal strings of length � − 1 cannot end with a 0-trit, and if we remove the
ending pair 12 or 22 from each of these strings, we are left with legal strings of
length � − 2. All these string must be different, because there is no legal string
that can be extended by both 12 and 22 to its right and thereby create an illegal
string. It follows that m�−2 ≥ d�.

On the other hand, each string in B�−2 can be extended, by adding either 12
or 22 as suffix, into an illegal string of length �, thus m�−2 ≤ d�.

The conclusion is that m� = 3m�−1 −m�−2 for � ≥ 3. The resulting code, H,
obtained by adding the suffixes 12 or 22 to each codeword, appears in Table 1.
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Here too, the codeword 22 can be added, so that the number m� of codewords
of length � + 2 satisfies

m0 = 1, m1 = 3, mi = 3mi−1 − mi−2 for i ≥ 2,

in other words, mi = Gi+1. The corresponding McMillan sum can be evaluated as
in Eq. (1) to get

∑∞
i=0 mi3−(i+2) = 1, which shows that the code H is complete.

Note that the completeness of H proves that the addition of two additional
trits, to transform the ternary representation of an integer into a codeword, is
optimal in the sense that none of the infinitely many codewords may be shortened
by even a single trit. Indeed, the corresponding McMillan sum would then be
strictly larger than 1, contradicting unique decipherability.

There is a priori a drawback to the extended code H versus G, as the obvious
connection between the represented integer and the index of the corresponding
codeword seems to be broken. The problem is that leading zeros do not affect
the integer, but influence the length of the codeword, and to get reasonable com-
pression efficiency, the codewords have to be assigned in order of non-decreasing
length. A new connection can, however, be established, in the following way.

Every codeword will be considered as consisting of three parts when scanned
from left to right: the first is the prefix P, consisting of any legal sequence of p
trits and ending with 1 or 2; the second, Z, is a sequence of z ≥ 0 zeros; the
third is a delimiter 22 or 12. As example,

1 2 1 1 0 2 1 0 2︸ ︷︷ ︸
P

0 0 0 0 0︸ ︷︷ ︸
Z

2 2︸︷︷︸
D

.

Once the delimiter 22 is detected, we know that the codeword is of length � =
p + z + 2 trits, 9 + 5 + 2 = 16 in our example. The number of codewords U�−1

of lengths up to and including � − 1 is

U�−1 =
�−3∑

i=0

mi =
�−2∑

i=1

Gi =
�−2∑

i=1

F2i = F2�−3 − 1, (2)

and correspond to the numbers 0 to U�−1 −1. The m� codewords of length � can
thus be indexed by the integers U�−1 to U�−1 + m� − 1, and the relative index
within this set of a given codeword is encoded by P. For our example, � = 16,
U15 = F29 − 1 = 514, 228, and P represents the relative index 5869, so the given
codeword represents the number 520,097. The formal encoding and decoding
procedures are deferred to the Appendix.
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1

2

I/A

P

0

0,1

0,1

D

2

Fig. 1. Decoding automaton.

The decoding process for the extended code H, just parsing the encoded string
into a sequence of codewords, without evaluation of the corresponding indices, can
be represented by the automaton of Fig. 1. The initial state is also the accepting
state I/A, in which the process finds itself at the beginning and end of every code-
word. If a 0 or 1-trit is scanned, we pass into a Prefix state P and stay there while
seeing more 0- or 1-trits. When encountering a 2-trit in either I/A or P, the process
enters state D, having detected the potential start of a Delimiter, and stays in D
while scanning 1-trits. If such a sequence S = 21s, with s ≥ 0, is followed by a
0-trit, we return to the P state, as the single 2-trit is not a part of the delimiter;
if S is followed by a 2-trit, the end of a codeword is detected and we accept it in
I/A. Note that since the code H is complete, any binary string can be parsed into a
sequence of codewords or fragments thereof, and the automaton correctly distin-
guishes between a legal sequence of codewords, which terminates in the accepting
state, and the other strings.

2.3 Densities

The main motivation of devising a new ternary code was to improve the com-
pression efficiency of the ternary code R. Let us first compare the densities of
the codes, i.e., the number of codewords of a given length. The characteristic
polynomial of the recurrence defining the sequence R(2) is x2−2x−1, with roots
1 ± √

2 of which only the first, ρ = 2.414, is larger than 1. For the sequence G,
the polynomial is x2 − 3x + 1, with roots (3 ± √

5)/2, again with only one of
them, ψ = 2.618, greater than 1. It follows that the general elements R

(2)
n and

Gn of the sequences grow proportionally to 1
2ρn and 1√

5
ψn, where the constants

1
2 and 1√

5
have been determined by the initial values. It follows that the num-

ber of necessary trits to represent n is about logρ 2n = 1.246 log3 n + 0.786 and
logψ

√
5n = 1.142 log3 n + 0.836, respectively.

In other words, while the penalty paid for using R is an increase of about
25% in the number of necessary trits, relative to using the standard ternary
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system, this is reduced to a waste of only about 14% for G. This does, however,
not take the fact into account, that the codewords of R need only a single trit as
delimiters, while those of G need two. As comparison, recall that in the binary
case, the use of the Fibonacci code incurred a loss of 44% over the length of the
standard binary encoding [9].

We could thus ask from what values of n onwards does the length of the
encoding by R already exceed that of G by at least 1 trit, and get the equation

1.2465 log3 n + 1.7864 = 1.1415 log3 n + 2.8361,

from which one gets n � 310.5 = 102, 000. As example, consider the integer
120,000: in R, its representation would be 110021111100012, using 15 trits, in G
it would be 21001100111212, using only 14 trits.

On the other hand, one has to remember that while the density of G exceeds
that of R because ψ > ρ, the compression efficiency depends on the given proba-
bility distribution at hand, and the shorter codewords are assigned to the higher
probabilities, yet for the shorter codewords, R uses less trits than G. This lead
to the definition of the code H.

To evaluate the density of H, recall that the first index needing � trits (with-
out the 2 suffix trits 12 or 22) is F2�+1 � φ√

5
(φ2)�, so that the number of trits

needed for n is 1.1415 log3 n + 2.3361, exactly half a trit less than for G.

3 Experimental Results

Comparing the densities of the codes relates only to the number of codewords of
the different lengths and does not take any probability distribution into account.
This is equivalent to encoding a large alphabet with a uniform distribution of
its elements. To compare the codes on some distributions that are more realistic
than the uniform one, consider Zipf’s law [16], defined by the weights pi =
1/(iHn) for 1 ≤ i ≤ n. Here Hn =

∑n
j=1

1
j is the n-th harmonic number, which

is about lnn. The frequency of the different words in a large natural language
corpus, and many other natural phenomena, are believed to be governed by this
law [4]. We used one million elements, for which the first few probabilities are
0.069, 0.034, 0.023, 0.017, . . ..

To check the performance also on real-life data, we considered the files eng,
sources and dblp, all of size 50MB, downloaded from the Pizza & Chili Corpus1:
Since the new codes G and H have shorter codewords than R only for larger
indices, their performance is expected to improve over that of R only for quite
large alphabets. In particular, for many of the first codewords, those of R are
shorter by 1 trit than those of G or H, and since precisely these codewords corre-
spond to the highest probabilities, there are certain distributions, and certainly
those for smaller alphabets, for which R will compress better.

To show that this is not always the case, the alphabet elements on our tests
were chosen as the set of words, separated by one or more blanks, within a given
1 http://pizzachili.dcc.uchile.cl/.

http://pizzachili.dcc.uchile.cl/
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text. Table 3 presents the alphabet size and the average codeword lengths, in
trits, for each of the discussed methods, including a ternary Huffman coding
variant Huf3. As can be seen, H slightly outperforms R on all the examples,
except for the eng alphabet. The optimal ternary Huffman coding is of course
even better, if the compression efficiency is the sole criterion. As all the code-
words of G are at least as long as the corresponding ones of H, its compression
is necessarily inferior; the only advantage of using then G rather than H may be
the simplified encoding and decoding procedures.

One should, however, remember that the encoding of entire texts, using all
the elements of an alphabet, is only one of the possible applications of universal
codes. Another one could be the transmission of a long list of integers whose
sizes are not bounded. One of the advantages of universal codes is precisely the
ability of encoding systematically any integer, even so large ones that they may
not represent any physical size such as the size of an alphabet. Encoding such
large numbers can be done by Cδ or even better by recursively prefixing a string
representing a number by its length, until getting to some constant length, as
suggested in [3].

Examples for such lists of integers could be astronomical data of very high
precision, where each of the many data elements is a large number defined by
hundreds of digits. Another application domain could be a list of large prime
numbers as those used in cryptography. For instance, the RSA scheme uses as
part of its public key the product n = p × q of two primes p and q, which are
kept secret. The security of RSA relies on the fact that factoring n is (still) a
difficult task, and therefore the current recommendation is to choose very large
primes, of about 1000 bits each.

There are clearly no alphabets of size 21000, but it may be needed to encode
the prime p itself. A 1000-bit number can be written in 631 trits when a standard
ternary encoding is used, and 643 trits would be required using C3

δ . The more
robust variants R and H would need 790 and 723 trits, respectively.

We conclude that beside the theoretical interest in the derivation of the new
ternary codes, they can also be of significant practical value.

Table 3. Compression performance on the used datasets.

File |Σ| words R G H Huf3

ZipfM 1,000,000 8.87 9.18 8.76 8.51

eng 303,385 7.30 7.74 7.32 7.11

sources 867,121 6.93 7.19 6.88 6.62

dblp 559,695 8.95 9.29 8.84 8.51
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Appendix: Encoding and decoding

Algorithm 1. Encoding

Ternary-Fib-Encode (integer sequence)

while not EOF do

x ← read next integer from input
k, j ←� 1

2
logφ

(√
5(x+1)

)
+3� � k and j are both length of x, including 2 terminating trits

x ← x − F2j−3 + 1
B[1..j−2] ← (0, ..., 0) � j−2 is length of relative index, after removing 2 terminating trits

for i ← j − 2 to 1 by − 1 do
repeat twice if x ≥ Gi then

B[i] ← B[i] + 1
x ← x − Gi

� now adjoin the terminating 22 or 12 trits

while B[j] = 1 do
j ← j − 1 � check whether the relative index has a string of 1-trits as suffix

if j = 0 or B[j] = 0 then
B[k − 1] ← 2 � if suffix of 1’s is the whole string or preceded by 0

else
B[k − 1] ← 1

B[k] ← 2
output B[1..k]

For the encoding, Algorithm 1 assumes that a sequence of integers is given,
and an array B is used to temporarily store the trits representing the current
integer. The first step is to calculate the length of the representation, including
the terminating delimiter 12 or 22, of a given integer x. According to Eq. (2),
this will be the smallest � for which x ≥ F2�−3 − 1, so that

� =
⌊
1
2 logφ

(√
5(x + 1)

)
+ 3

⌋
,

where φ = 1+
√
5

2 = 1.618 is the golden ratio, and we have used the fact that
Fibonacci numbers are given by Fn = 1√

5
φn, rounded to the nearest integer.

Once the length j is known, the relative index within the block of legal strings
of length j − 2 is iteratively evaluated. Finally, the last two trits are set to 22 or
12 accordingly. Specifically, if B[r..j −2] = 21j−2−r with r ≥ 1 and j −2−r ≥ 0,
then the suffix is 12, otherwise, it is 22.

The decoding procedure of Algorithm 2 works on an array A of trits assumed
to contain the concatenated ternary representations of a sequence of integers. It
accumulates the value of the current integer in a variable val. A variable status
maintains the number of 2-trits, encountered while scanning the current ternary
string, that could possibly belong to the suffix of the form 21s2, with s ≥ 0,
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serving as delimiter. Once the end of the current string has been detected, we
know the length of the encoding and val can be updated to account for the
shorter strings, according to Eq. (2). Finally, val has to be adjusted because the
last two trits, 12 or 22, do not belong to the representation.

Algorithm 2. Decoding

Ternary-Fib-Decode (A)

i ← 1
while not EOF do

j ← 0 status ← 0 val ← 0

while status < 2 do
val ← val + A[i] × Gj � build relative index

if A[i] = 2 then
status ← status + 1

else if status = 1 and A[i] = 0 then
status ← 0

i ← i + 1
j ← j + 1 � length of current codeword, including terminating 12 or 22

val ← val + F2j−3 − 1 � add sum of sizes of shorter codewords

output val − 2 × Gj − A[i − 2] × Gj−1
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Abstract. Input-driven pushdown automata (IDPDA) are pushdown
automata where the next action on the pushdown store (push, pop, noth-
ing) is solely governed by the input symbol. Here, we introduce sweep-
ing input-driven pushdown automata that process the input in multiple
passes (also sweeps). That is, a sweeping input-driven pushdown automa-
ton is a two-way device that may change the input head direction only
at the endmarkers. First we show that, given an arbitrary SIDPDA,
an equivalent SIDPDA that halts on any input can effectively be con-
structed. From this result further properties follow. Then we address the
determinization of SIDPDAs and its descriptional complexity. Further-
more, the computational capacity of SIDPDAs is studied. To this end, we
compare the family L (SIDPDA) with other well-known language fami-
lies. In particular, we are interested in families that have strong relations
to some kind of pushdown machines.

1 Introduction

Input-driven pushdown automata (IDPDAs) have been introduced in [25] and
their motivation stems from the search for an upper bound for the space needed
for the recognition of deterministic context-free languages. IDPDAs are a sub-
class of pushdown automata where the actions on the pushdown store are dic-
tated by the input symbols. To this end, the input alphabet is partitioned
into three subsets, where one subset contains symbols on which the automa-
ton pushes a symbol onto the pushdown store, one subset contains symbols on
which the automaton pops a symbol, and one subset contains symbols on which
the automaton leaves the pushdown unchanged and makes a state change only.
The results in [25] and the follow-up papers [7,15] comprise the equivalence of
nondeterministic and deterministic models and the proof that the membership
problem is solvable in logarithmic space.

The investigation of input-driven pushdown automata has been revisited
in [2,3], where such devices are called visibly pushdown automata or nested word
automata. Some of the results are descriptional complexity aspects for the deter-
minization as well as closure properties and decidability questions which turned
out to be similar to those of finite automata. Further aspects such as the min-
imization of IDPDAs and a comparison with other subfamilies of deterministic
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https://doi.org/10.1007/978-3-031-40247-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40247-0_14&domain=pdf
http://orcid.org/0000-0002-9564-2625
https://doi.org/10.1007/978-3-031-40247-0_14


Sweeping Input-Driven Pushdown Automata 195

context-free languages have been studied in [11,12]. A recent survey with many
valuable references on complexity aspects of input-driven pushdown automata
may be found in [26]. An extension of input-driven pushdown automata towards
pushdown automata synchronized by a finite transducer has been discussed
in [10]. The properties and features of IDPDAs revived the research on input-
driven pushdown languages and triggered the study of further input-driven
automata types, such as input-driven variants of, for example, (ordered) multi-
pushdown automata [9], scope-bounded multi-pushdown automata [22], stack
automata [4], queue automata [20], etc. While in the early papers IDPDAs are
defined as ordinary pushdown automata whose behavior on the pushdown is
solely driven by the input symbols, the definition in [2] requires certain nor-
mal forms. These normal forms do not change the computational capacity of
pushdown automata but have an impact on the power of IDPDAs [19,21].

Here, we consider input-driven pushdown automata that may read their input
in a restricted two-way fashion. We introduce sweeping input-driven pushdown
automata that process the input in multiple passes (also sweeps). To this end, it
receives the input between two endmarkers, and reads it in alternating sweeps
starting by a sweep from left to right. So, a sweeping input-driven pushdown
automaton is a two-way device that may change the input head direction only
at the endmarkers.

General two-way pushdown automata have been studied in detail in [17] for
the first time. They accept non-context-free languages as {ww | w ∈ {a, b}∗ }.
It is not known whether deterministic two-way pushdown automata capture all
context-free languages. The induced language family is a subset of the family
of context-sensitive languages. This is an open problem for the nondetermin-
istic variants (cf. [1]). Descriptional complexity aspects of two-way pushdown
automata with restricted head reversals are studied in [24]. Before we turn to
our main results and the organization of the paper, we briefly mention a differ-
ent approach to introduce two-way head motion to input-driven automata and
transducers. They are introduced in [14] with general two-way head motion, but
with the following change in the way of how input symbols dictate the pushdown
behavior: in a step that moves the input head to the left, the role played by push
and pop symbols is interchanged. This immediately implies that at any position
in the input the height of the pushdown is always the same.

The paper is organized as follows. In the next section, we compile the nec-
essary definitions and give an example of how a non-context-free language is
accepted by a sweeping input-driven pushdown automaton (SIDPDA). In Sect. 3,
we turn to a crucial lemma for the further considerations. It deals with halting
computations. Clearly, a SIDPDA can run into an infinite loop. We are going
to show that, given an arbitrary SIDPDA, an equivalent SIDPDA that halts on
any input can effectively be constructed. Moreover, the proof reveals that only a
constant number of sweeps had to be performed, where the constant depends on
the given automaton. So, for example, the closure of the family of induced lan-
guages under complementation can be derived. To our knowledge this closure is
still an open problem for general deterministic two-way pushdown automata [17].
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Section 4 considers the determinization of SIDPDAs and its descriptional com-
plexity, where the upper bound follows from the determinization process and
an exponential lower bound is shown. In Sect. 5, the computational capacity
of SIDPDAs is studied. To this end, we compare the family L (SIDPDA) with
other well-known language families. In particular, we are interested in families
that have strong relations to some kind of pushdown machines. It turns out that
SIDPDAs are quite weak on the one hand, but are quite powerful on the other.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \{λ}. The set of words of length at most n ≥ 0 is
denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length of w
we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions. We write |S|
for the cardinality of a set S. We say that two language families L1 and L2 are
incomparable if L1 is not a subset of L2 and vice versa.

A classical pushdown automaton is called input-driven if the next input sym-
bol defines the next action on the pushdown store, that is, pushing a symbol onto
the pushdown store, popping a symbol from the pushdown store, or changing
the state without modifying the pushdown store. To this end, the input alpha-
bet Σ is partitioned into the sets ΣD, ΣR, and ΣN , that control the actions
push (D), pop (R), and state change only (N). A sweeping input-driven push-
down automaton processes the input in multiple passes (also sweeps). To this
end, it receives the input between two endmarkers, and reads it in alternating
sweeps starting by a sweep from left to right. So, a sweeping input-driven push-
down automaton is a two-way device that may change the input head direction
only at the endmarkers.

Formally, a deterministic sweeping input-driven pushdown automaton
(SIDPDA) is a system M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉, where Q is
the finite set of internal states partitioned into the sets Ql and Qr, Σ is the
finite set of input symbols partitioned into the sets ΣD, ΣR, and ΣN , Γ is the
finite set of pushdown symbols, q0 ∈ Ql is the initial state, F ⊆ Q is the set of
accepting states, � /∈ Σ and � /∈ Σ are the left and right endmarkers, ⊥ /∈ Γ
is the empty-pushdown symbol, δD is the partial transition function mapping
Qx × ΣD × (Γ ∪ {⊥}) to Qx × Γ for x ∈ {l, r}, δR is the partial transition
function mapping Qx × ΣR × (Γ ∪ {⊥}) to Qx for x ∈ {l, r}, δN is the par-
tial transition function mapping Qx × ΣN × (Γ ∪ {⊥}) to Qx for x ∈ {l, r},
Q × {�} × (Γ ∪ {⊥}) to Qr, and Q × {�} × (Γ ∪ {⊥}) to Ql.

A configuration of a SIDPDA M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉 is
a quadruple (q,�w�, i, s), where q ∈ Q is the current state, w ∈ Σ∗ is the
input, 0 ≤ i ≤ |w| + 1 is the current position of the input head, and s ∈ Γ ∗

denotes the current pushdown content, where the leftmost symbol is at the top
of the pushdown store. The initial configuration for an input string w is set to
(q0,�w�, 0, λ). During the course of its computation, M runs through a sequence
of configurations. One step from a configuration to its successor configuration is
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denoted by �. Let q, q′ ∈ Q, n ≥ 0, w = a1a2 · · · an ∈ Σ∗, z, z′ ∈ Γ , s ∈ Γ ∗, and
1 ≤ i ≤ n. We set

1. (q,�w�, i, zs) � (q′,�w�, j, z′zs), if ai ∈ ΣD and (q′, z′) = δD(q, ai, z),
2. (q,�w�, i, λ) � (q′,�w�, j, z′), if ai ∈ ΣD and (q′, z′) = δD(q, ai,⊥),
3. (q,�w�, i, zs) � (q′,�w�, j, s), if ai ∈ ΣR and q′ = δR(q, ai, z),
4. (q,�w�, i, λ) � (q′,�w�, j, λ), if ai ∈ ΣR and q′ = δR(q, ai,⊥),
5. (q,�w�, i, zs) � (q′,�w�, j, zs), if ai ∈ ΣN and q′ = δN (q, ai, z),
6. (q,�w�, i, λ) � (q′,�w�, j, λ), if ai ∈ ΣN and q′ = δN (q, ai,⊥),
7. (q,�w�, 0, zs) � (q′,�w�, 1, zs), if q′ = δN (q,�, z),
8. (q,�w�, 0, λ) � (q′,�w�, 1, λ), if q′ = δN (q,�,⊥),
9. (q,�w�, n + 1, zs) � (q′,�w�, n, zs), if q′ = δN (q,�, z),

10. (q,�w�, n + 1, λ) � (q′,�w�, n, λ), if q′ = δN (q,�,⊥),

where j = i + 1 if q′ ∈ Qr, and j = i − 1 if q′ ∈ Ql.
So, on the endmarkers only δN is defined, and these are the only symbols on

which a state from Ql can be followed by a state from Qr and vice versa. This
implements the sweeping of the automaton. Whenever the pushdown store is
empty, the successor configuration is computed by the transition functions with
the special empty-pushdown symbol ⊥. As usual, we define the reflexive and
transitive closure of � by �∗.

A SIDPDA M starts in state q0 with its head on the left endmarker. It
halts when the transition functions are not defined for the current situation.
A computation can also enter an infinite loop. However, an input w ∈ Σ∗ is
accepted if and only if M halts in an accepting state on �w�. The language
accepted by M is L(M) = {w ∈ Σ∗ | w is accepted by M }.

In general, the family of all languages accepted by automata of some type X
will be denoted by L (X).

Some properties of language families implied by classes of input-driven push-
down automata may depend on whether all automata involved share the same
partition of the input alphabet. For easier writing, we call the partition of an
input alphabet a signature.

In order to clarify these notions, we continue with an example.

Example 1. The language L = { anbnan | n ≥ 1 } is accepted by the SIDPDA
M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉 with Q = Qr ∪Ql, Qr = {q0, q1, q2, q+},
Ql = {r0, r1, r2}, ΣD = {b}, ΣR = {a}, ΣN = ∅, Γ = {•}, F = {q+}, and the
transition functions specified as:

(1) δN (q0,�,⊥) = {q0}
(2) δN (q2,�,⊥) = {r0}
(3) δN (r2,�,⊥) = {q+}
(4) δD(q0, b,⊥) = {(q1, •)}
(5) δD(q1, b, •) = {(q1, •)}

(6) δD(r0, b,⊥) = {(r1, •)}
(7) δD(r1, b, •) = {(r1, •)}
(8) δR(q0, a,⊥) = q0
(9) δR(q1, a, •) = q2

(10) δR(q2, a, •) = q2
(11) δR(r0, a,⊥) = r0
(12) δR(r1, a, •) = r2
(13) δR(r2, a, •) = r2

The basic idea of the construction is as follows. Essentially, M performs two
sweeps, except for a possible last accepting step on the left endmarker, where
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the head moves to the right. Automaton M pops on a’s and pushes a symbol •
on b’s. So, in the first left-to-right sweep, the number of b’s could be compared
with the number of a’s in the suffix. If both are identical, the pushdown is empty
at the end of the sweep. Then, in the second right-to-left sweep, symmetrically,
the number of b’s is compared with the number of a’s in the prefix. �

3 Halting, Time Complexity, Basic Closure Properties

Here, we first turn to a crucial lemma for the further considerations. It deals with
halting computations. Clearly, a SIDPDA can run into an infinite loop. This is
a big difference compared with one-way input-driven pushdown automata. For
classical deterministic one-way pushdown automata, it is well known that any
deterministic one-way pushdown automaton can effectively be converted into an
equivalent one that halts on any input. The situation for classical deterministic
two-way pushdown automata is again different. To our knowledge it is unknown
whether the class of induced languages is closed under complementation [17].
We are going to show that the problem can be solved for SIDPDAs. A problem
we have to cope with is as follows. Assume, for example, that the number of
input symbols that cause a push operation equals the number of input symbols
that cause a pop operation. Then one can neither conclude that the pushdown
is empty at the end of a sweep nor that the same number of symbols is pushed
or popped in a left-to-right sweep and in a right-to-left sweep. Let the input
be anbn for some n ≥ 1. If a ∈ ΣR and b ∈ ΣD then the pushdown contains n
symbols after the first (left-to-right) sweep. After the second (right-to-left) sweep
it contains again n symbols. Now let a ∈ ΣD and b ∈ ΣR. Then the pushdown
is empty after the first sweep and contains n symbols after the second sweep. In
preparation we use the following functions. For a signature Σ = ΣD ∪ ΣR ∪ ΣN

and a word w = a1a2 · · · an ∈ Σ∗, we define drΣ
w , dlΣw : {0, 1, . . . , n + 1} → N by

drΣ
w (i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i ∈ {0, 1}
drΣ

w (i − 1) + 1 if i ∈ {2, 3, . . . , n + 1} and ai−1 ∈ ΣD

drΣ
w (i − 1) if i ∈ {2, 3, . . . , n + 1} and ai−1 ∈ ΣN

drΣ
w (i − 1) − 1 if i ∈ {2, 3, . . . , n + 1} and ai−1 ∈ ΣR

and

dlΣw (i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

drΣ
w (n + 1) if i ∈ {n + 1, n}

dlΣw (i + 1) + 1 if i ∈ {0, 1, . . . , n − 1} and ai+1 ∈ ΣD

dlΣw (i + 1) if i ∈ {0, 1, . . . , n − 1} and ai+1 ∈ ΣN

dlΣw (i + 1) − 1 if i ∈ {0, 1, . . . , n − 1} and ai+1 ∈ ΣR

.

Essentially, these functions give the difference of the numbers of symbols
from ΣD and from ΣR that have been seen when the input head is on the ith
position. Function drΣ

w yields the difference for the first (right-to-left) sweep and
function dlΣw continues the calculation for the subsequent second (left-to-right)
sweep.
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Theorem 2. Given an arbitrary SIDPDA, an equivalent SIDPDA that halts on
any input can effectively be constructed.

Proof. Let M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉 be an arbitrary SIDPDA
with signature Σ = ΣD ∪ ΣR ∪ ΣN . For any input w = a1a2 · · · an ∈ Σ∗, we
consider the number shw = |{ i | ai ∈ ΣD }|−|{ i | ai ∈ ΣR }| = drΣ

w (n+1). Note,
this number does not depend on the ordering of the symbols in w. However, the
functions drΣ

w and dlΣw do not give the heights of the pushdown as they appear
in the first two sweeps of a computation. The reason is that popping from the
empty pushdown does not compensate for some push. So, a pop may or may not
compensate for a push. We denote each pop from the empty pushdown as lost
decrease.

How many lost decreases appear during the first two sweeps? This number
is the absolute value of the minimum min0≤i≤n+1{min{drΣ

w (i), dlΣw (i)}}. Since
drΣ

w (0) = 0, the minimum cannot be greater than 0.
Next, we can calculate the height of the pushdown after the second sweep

when the input head is back on the left endmarker by considering the number 2 ·
shw and adding the number of lost decreases to it, that is, the height is 2 ·shw −
min0≤i≤n+1{min{drΣ

w (i), dlΣw (i)}}. For the heights of the pushdown after further
double sweeps from left to right and back, we distinguish two cases. In the first
case we have shw ≥ 0. Due to the pushdown height after the first two sweeps,
now no further lost decreases occur. Therefore, the pushdown height increases
by 2 · shw after each double sweep. In the second case we have shw < 0. Due
to the pushdown height after the first two sweeps, now |2 · shw| further lost
decreases occur. On the other hand, the pushdown height changes by 2 · shw,
that is, should decrease by |2 · shw|. Together, the pushdown height does not
change after another double sweep.

Next we are interested at which positions during a double sweep the push-
down height becomes minimal. These are exactly the positions i at which the
values min{drΣ

w (i), dlΣw (i)} are minimal. Let us fix one of these positions if there
are more than one, say position i0 with dlΣw (i0) ≤ drΣ

w (i0). From above we know
that either the pushdown height increases by 2 · shw after each further double
sweep or the pushdown height remains as it is after each further double sweep.
But this implies that in each further double sweep the pushdown height becomes
minimal when the input head enters position i0 from right. That is, the contents
of the pushdown below that minimum will never be seen again during the com-
putation on w. There are at most |Q| · (|Γ | + 1) possibilities to continue the
computation. So, we conclude that M is in an infinite loop if one of these possi-
bilities appears twice. In other words, M will not halt if and only if it performs
more than |Q| · (|Γ | + 1) double sweeps.

Finally, from M an equivalent SIDPDA M ′ is constructed as follows. First,
automaton M ′ simulates M in such a way that M ′ halts only after a number of
double sweeps on the left endmarker. This is always possible by adding states
that are used to remember the decision of M and to complete a double sweep
should M halt anywhere else. Since |Q| · (|Γ | + 1) is a constant that does not
depend on the input, M ′ can maintain a finite counter in its state set that counts
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the double sweeps performed. Now, M ′ can always halt rejecting if M tries to
perform more than |Q| · (|Γ | + 1) many double sweeps. ��

Since the proof of Theorem 2 revealed that any SIDPDA can be simulated
by a halting SIDPDA that makes at most a constant number of sweeps, we have
the following corollary. Recall that the upper bound for the family of languages
accepted by deterministic two-way pushdown automata is DTIME(n2 log(n)) [1].

Corollary 3. The family L (SIDPDA) is contained in the time complexity class
DTIME(n).

For input-driven pushdown automata, strong closure properties are shown
in [2] provided that all automata involved share the same partition of the input
alphabet. Now, we derive the closure under the Boolean operations from Theo-
rem 2 as follows.

Proposition 4. Let M and M ′ be two SIDPDAs with compatible signatures.
Then SIDPDAs accepting the complement L(M), the intersection L(M)∩L(M ′),
and the union L(M) ∪ L(M ′) can effectively be constructed.

4 Determinization

It is well known that nondeterministic one-way IDPDAs can be determinized.
Okhotin and Salomaa [26] traced this result back to [7]. They give a clear proof
that shows that 2n2

states are sufficient to simulate an n-state nondeterministic
one-way IDPDA by a deterministic one. However, in [26] and [2] IDPDAs are con-
sidered in a certain normal form. That is, neither the push nor the state change
only operations depend on the topmost pushdown symbol. Since any determin-
istic one-way pushdown automaton and any deterministic one-way input-driven
pushdown automaton can be converted to this normal form, the general compu-
tational capacity does not change. But by this conversion the number of states
changes since the topmost pushdown symbol has to be remembered in the states.
Thus, when we compare such automata with the original definition of one-way
IDPDAs in [7], that is based on the usual definition of pushdown automata and
does not require a normal form, we obtain that the state complexity bound
of 2n2

achieved for the determinization of one-way IDPDAs in normal form is
lower than in general. Since here we are closer to the original definition, the
size of a two-way input-driven pushdown automaton is measured not only by its
states but as the product of the number of states and the number of pushdown
symbols plus one. Accordingly, we define the function size(M) = |Q|(|Γ | + 1)
that maps a two-way input-driven pushdown automaton to its size.

A nondeterministic sweeping input-driven pushdown automaton (SNIDPDA)
is a system M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉, where all components but
the transition functions are defined as for SIDPDAs. The transition functions are
now nondeterministic, that is, their codomains are now subsets of the codomains
of the deterministic functions. As usual, an input is accepted if there is an
accepting computation on it.
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The next theorem shows the determinization of nondeterministic sweeping
input-driven pushdown automata. Basically, the idea of the proof is along the
lines of [26] and [19].

Theorem 5. Let n ≥ 1 and M be an n-state nondeterministic sweeping input-
driven pushdown automaton with input alphabet Σ = ΣD ∪ ΣR ∪ ΣN and m
pushdown symbols. Then, an equivalent SIDPDA with at most 2(n+2)2m+n+2

states and 2(n+2)2m+n+2 · |ΣD| pushdown symbols can effectively be constructed.

One may ask why the determinization of nondeterministic sweeping input-
driven pushdown automata is possible at all, when the head movement is limited
two way. Intuitively, a big point is that the devices are sweeping, that is, the
head movement of all nondeterministic choices is the same, respectively.

So far, Theorem 5 provides an upper bound on the size for determinization.
Next, we turn to a lower bound. To this end, we first relate the size trade-
off between nondeterministic finite automata (NFA) and sweeping deterministic
finite automata (2DFA) to our problem. Here, the size of finite automata without
further storage is measured by their number of states. So, let N be a minimal
n-state NFA accepting a language over an alphabet with at least two letters, say
{a, b} ⊆ Σ. We take a new letter d and define

LN = { dxw | x ≥ 0, w ∈ {a, b}∗, x = |w| or w ∈ L(N) }.

Lemma 6. For n ≥ 1, let N be a minimal n-state NFA accepting a language
over an alphabet Σ ⊇ {a, b}. Then, any SIDPDA M accepting language LN has
size(M) ≥ size(N ′), where N ′ is the smallest 2DFA accepting L(N).

Proof. Let M = 〈Q,Σ, Γ, q0, F,�,�,⊥, δD, δR, δN 〉 be a SIDPDA accepting LN .
We consider the signature of M .
If {a, b} ⊆ ΣD ∪ΣN or {a, b} ⊆ ΣR ∪ΣN , we consider inputs of the form w ∈

{a, b}∗. For any such input only the topmost pushdown symbol is accessible by
M . Therefore, from M , we can construct a 2DFA accepting the language L(N),
essentially by storing the topmost pushdown symbol into the states and removing
all transitions on d, where the size of the 2DFA is at most |Q|·(|Γ |+1) ≤ size(M).
Therefore, size(M) ≥ size(N ′).

Next, we consider the remaining cases that either a ∈ ΣD and b ∈ ΣR

or vice versa. Assume a ∈ ΣD and b ∈ ΣR, the alternative case is treated
symmetrically. Then we consider inputs of the form d∗a∗ if d ∈ ΣD ∪ ΣN , or of
the form d∗b∗ if d ∈ ΣR. Again, by storing the topmost pushdown symbol into
the states and removing all transitions on the symbol not appearing in the word,
we can construct a 2DFA from M accepting either the language { dxax | x ≥ 0 }
or { dxbx | x ≥ 0 }. However, both languages are non-regular but any 2DFA
accepts a regular language. From the contradiction, we conclude that these cases
are impossible for the signature. Therefore, the only possible signatures imply
size(M) ≥ size(N ′). ��

In order to apply Lemma 6 to obtain a lower bound on the size for deter-
minization, we have to plug in appropriate NFAs. The tight bound 2n −1 for the
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conversion of an NFA to a 2DFA has been shown in [23] where, for every n ≥ 1,
an n-state NFA was exhibited whose smallest equivalent 2DFA cannot do better
in the amount of size than the smallest equivalent incomplete DFA. We use these
NFAs N̂ depicted in Fig. 1 as witness automata.

Lemma 7. For all n ≥ 1, let N̂ be the minimal n-state NFA depicted in Fig. 1.
Then language LN̂ is accepted by some SNIDPDA with n + 3 states and one
pushdown symbol.

Applying the determinization of Theorem 5 to the SNIDPDA M of Lemma 7
gives an equivalent SIDPDA with at most 2(n+5)2+n+5 states and 2(n+5)2+n+5

pushdown symbols. So, the size of M is 2(n+5)2+n+5 · (2(n+5)2+n+5 +1) ∈ 2O(n2).
The next lemma shows that the lower bound for the determinization is at

least exponential.

Theorem 8. For all n ≥ 1, let N̂ be the minimal n-state NFA depicted in Fig. 1.
Then any SIDPDA M accepting language LN̂ has size(M) ≥ 2n − 1.

Proof. We apply Lemma 6 with the minimal NFAs depicted in Fig. 1 and obtain
size(M) ≥ size(N̂ ′) = 2n − 1. ��

5 Computational Capacity

Here we are going to compare the family L (SIDPDA) with other well-known
language families. In particular, we are interested in families that have strong
relations to some kind of pushdown machines. It turns out that SIDPDAs are
quite weak on the one hand, but are quite powerful on the other.

From Corollary 3, we know already that the family L (SIDPDA) shares the
attractive time complexity DTIME(n) with the family of one-way input-driven
pushdown automata. Clearly, all regular languages belong to L (SIDPDA). How-
ever, this somehow seems to be a tight lower bound, since there are simple
deterministic context-free languages not belonging to L (SIDPDA).

Proposition 9. The linear deterministic context-free language { an#an | n ≥
0 } is not accepted by any SIDPDA.

0 1 2 · · · n−1
a a a a

a b b b

a

start

Fig. 1. The n-state NFA N̂ where each equivalent 2DFA has at least 2n − 1 states.
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Let us now turn to a hierarchy of larger families. As is very well known, the
family DCFL of deterministic context-free languages is characterized by deter-
ministic one-way pushdown automata, and the family CFL of context-free lan-
guages is characterized by nondeterministic one-way pushdown automata. Grow-
ing context-sensitive grammars, that is, context-sensitive grammars for which
each production rule is strictly length-increasing, have been introduced in [13].
The induced language family GCSL is a strict superset of CFL. It is interest-
ing in our context, since each growing context-sensitive language is accepted in
polynomial time by some one-way auxiliary pushdown automaton with a loga-
rithmic space bound [8]. In general, an auxiliary pushdown automaton (auxPDA)
with space bound s is a nondeterministic Turing machine M with a read-only
input tape, a pushdown store, and an auxiliary work tape which is initialized to
have exactly s(n) squares, limited by endmarkers, if M is started on an input
of length n. Extending the hierarchy of language families we consider context-
sensitive grammars with an additional bound on the length of derivations [5,16].
With a linear bound these grammars generate the languages in the family CSLlin,
which, by definition, is a superset of GCSL. The inclusion is strict. Moreover, the
family CSLlin is strictly included in the family of deterministic context-sensitive
languages (DCSL) but still contains NP-complete languages [6]. So, we obtain
the hierarchy REG ⊂ DCFL ⊂ CFL ⊂ GCSL ⊂ CSLlin ⊂ DCSL. Since any
SIDPDA works in linear time, the family L (SIDPDA) is strictly included in
DCSL. The relation to the remaining families in the hierarchy are given by the
next proposition.

Theorem 10. L (SIDPDA) is incomparable with each of the families DCFL,
CFL, GCSL, and CSLlin.

Proof. Due to the hierarchy and Proposition 9 it is sufficient to show that there
is a language in L (SIDPDA) that does not belong to CSLlin. It follows from a
more general result in [16] that the language L′ = {w#wR#w | w ∈ {a, b}∗ } is
not generated by any context-sensitive grammar with o(n2) derivation steps. In
particular, L′ does not belong to CSLlin. Since the family CSLlin is closed under
non-erasing homomorphisms [5], the language L = {w#w̄R#w | w ∈ {a, b}∗ }
does not belong to CSLlin either, where w̄R is essentially wR but with all letters
barred.

It remains to be shown that L is accepted by some SIDPDA. ��
So, we have, in particular, an upper bound for the computational capacity

of SIDPDA by CSL. Can we do better? As mentioned, each growing context-
sensitive language is accepted in polynomial time by some one-way auxiliary
pushdown automaton with a logarithmic space bound (OW-auxPDA(log,poly)).
If we allow such machines to operate on the input tape in two-way fash-
ion, but restrict the mode of computation to be deterministic, then we obtain
auxDPDA(log,poly). The language family L (auxDPDA(log,poly)) is identical
to the family LOGDCFL of languages reducible in logarithmic space to a deter-
ministic context-free language [27]. From results in [18] it can be derived that
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LOGDCFL ⊆ DSPACE(log2(n)) and, thus, L (auxDPDA(log,poly)) ⊆ DCSL.
On the other hand, any SIDPDA is a special case of an auxDPDA(log,poly).

Corollary 11. The family L (SIDPDA) is strictly included in LOGDCFL.
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Abstract. The prevalence of string solvers in formal program analysis
has led to an increasing demand for more effective and dependable solv-
ing techniques. However, solving the satisfiability problem of string con-
straints, which is a generally undecidable problem, requires a deep under-
standing of the structure of the constraints. To address this challenge, the
community has relied on SMT solvers to tackle the quantifier-free first-
order logic fragment of string constraints, usually stated in SMT-LIB
format. In 2020, the SMT-LIB Initiative issued the first official standard
for string constraints. However, SMT-LIB states the semantics in a semi-
formal manner, lacking a level of formality that is desirable for validating
SMT solvers. In response, we formalize the SMT-LIB theory of strings
using Isabelle, an interactive theorem prover known for its ability to for-
malize and verify mathematical and logical theorems. We demonstrate
the usefulness of having a formally defined theory by deriving, to the
best of our knowledge, the first automated verified model verification
method for SMT-LIB string constraints and highlight potential future
applications.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers [6] have been instrumental in deter-
mining the satisfiability of first-order logic formulae within a given theory, driving
much of the development of software verification [18,24] and formal verification
applications. They have also seen widespread use in areas such as security [41,48]
and program analysis [9,39].

A particular area where SMT solving is frequently applied is the verification
of string-heavy programs. This can be partly attributed to the fact that strings
are the most commonly used data type for processing user data and, conse-
quently, mishandling of strings can pose significant security risks. Indeed, third-
ranked security risk on the Open Web Application Security Project’s (OWASP)
top ten security risks in 2023 are injection attacks, which are fundamentally
caused by inadequate string handling. While string reasoning is most commonly
associated with web security applications [41,47], it is also applied in other areas
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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such as model checking [25] and cloud security [2,40]. Verification and automated
reasoning tools typically discharge the heavy lifting of string constraint solving
to dedicated SMT solvers. Over the past years, this led to the development of
numerous solvers specialized in string reasoning (e.g., [1,15,16,30,36]) and to
widely adapted SMT solvers, such as cvc5 [3] and Z3 [17], adding support for
strings. In 2020, efforts converged and were incorporated into the SMT-LIB 2.6
standard [44]. With the addition of the theory of strings, the SMT-LIB 2.6 stan-
dard strives to establish a common language and consistent semantics for solving
problems related to strings.

Given their extensive usage, it is crucial to ensure that SMT solvers behave
correctly and that implementation errors are detected as early as possible. A
central question in that regard: Can we trust an SMT solver’s result? If a solver
determines that an input formula is satisfiable, it usually provides evidence of its
decisions in the form of a model, i.e., an assignment of constants to the variables
which satisfies the formula. A common practice to assess the soundness of a solver
is to use another solver as an oracle to check whether the produced assignment
indeed satisfies the formula at hand. However, that shifts the trust problem from
one solver to another and poses a high risk of implementation errors carrying
over to new solvers.

To address this problem, we present a novel approach for validating models
produced by SMT solvers using Isabelle/HOL, an interactive theorem prover
that provides a high-level specification language for expressing logical problems
and powerful automation capabilities for proving properties [45]. In particular,
our contributions are the following. We formalise the semantics of the SMT-
LIB 2.6 theory of strings in Isabelle/HOL and provide an implementation of the
standard model that is provably correct. The formalisation proved itself useful
as we found inconsistencies in the standard, e.g., in the str. indexof operator, as
we highlight in Sect. 3. The formalisation enables us to assess the soundness of
SMT solvers by proving that an assignment produced by a solver is indeed a
model of the input formula. Unlike using existing SMT solvers as test oracles,
this provides a very strong guarantee that a model is indeed correct. We outline
our efforts in building a model verification framework in Sect. 4 and show its
usefulness on soundness issues reported in the literature.
Related Work. If we look at the Boolean satisfiability problem (SAT) rather than
SMT then there are a number of works that use interactive theorem provers to
construct verified SAT solvers. These were developed in Isabelle by Maric et al.
[33–35], also in Isabelle by Fleury et al. [10–12,19–23], in Coq by Lescuyer [32]
and in PVC by Shankar and Vaucher [43]. Additionally, there is the verified SAT
solver in GURU by Oe et al. [38] which ensures model soundness at run time
but is not proven to terminate.

SMT has also been combined with interactive theorem proving. In Isabelle,
the smt tactic will run an SMT solver on a proof goal given in Isabelle, and then
the tactic will try to reconstruct the proof in Isabelle’s logic. The tactic supports
Z3 with the theories of equality, uninterpreted functions, arrays, linear integer
arithmetics and real arithmetics [13]. In order to be able to reconstruct the
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proofs generated by the SMT solver, the SMT solver needs to be able to return
a representation of the proof it generated. A recent work in this direction is by
Schurr et al. who are building a common format, Alethe, to be used to reconstruct
proofs made by SMT solvers [42]. Another recent work is by Barbosa et al. [4] who
generate proofs for cvc5 and are also working on exporting them to the Alethe
format. The above work concerns proof production from SMT solvers where the
interest is in proving that a formula is satisfied by all models. The focus of our
work goes in a different direction, namely that of checking in the String theory
whether the model given by an SMT solver actually satisfies the input formula.

In the context of string solving, Kan et al. [27] developed a solver for a frag-
ment of string constraints that is completely verified in Isabelle/HOL. On the
theoretical side, implementations of regular expressions [29] and general theo-
rems on combinatorics on words [26] were made in Isabelle/HOL.

2 Preliminaries

SMT. SMT extends SAT solving to many-sorted first-order logic within a given
logical background theory T that fixes the domain and the interpretation of the
non-logical symbols. Solving an SMT formula ϕ in the theory T involves deter-
mining whether a model M exists in T that satisfies ϕ. The increasing interest in
SMT led to the development of the SMT-LIB standard [5], which provides a mod-
eling language for many-sorted first-order logic and specifies various background
theories. SMT solvers ingest formulae expressed in the language of SMT-LIB
and check their satisfiability according to a theory or a combination of theories
specified in the SMT-LIB standard. Theories in SMT-LIB are described in terms
of syntactical elements, i.e., the non-logical symbols. The intended semantics of
theories are defined informally in natural language [5]. Examples of available
theories include fixed-size bitvectors, integers, reals, and strings.
Theory of Strings. We briefly summarise the theory of strings, TS . An outline
of the syntax is depicted in Fig. 1. The theory deals with Boolean combinations
of atomic formula including string equalities and inequalities, regular expres-
sion membership, and extended string predicates like containment and prefix
relations.

A string term is a finite, ordered sequence of characters drawn from a finite
alphabet, like ASCII or Unicode. String concatenation is denoted by tstr · tstr.
The length of a string term w, denoted by str .len(w), is the number of charac-
ters. We also use |w| to refer to the length of w for readability. An empty string
is represented by ε and has a length of 0. Operations referring to the index of a
character or a sub-string within a string utilise zero-based indexing, that is, the
first character has an index of zero. The term str.to_int treats a string as a
non-negative base-10 integer, possibly with leading zeros. If the string is nega-
tive or contains non-digit characters, the value is −1. The term str.from_int
converts a non-negative integer to the shortest possible string representing it in
base 10. If the integer is negative, the value is an empty string. The atoms in
Are correspond to regular membership constraints of a string term in a regular
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::=
::=
::=
::=
::=
::=

where
::=

where and

Fig. 1. The syntax of the theory of strings TS .

expression RE, constructed using accustomed regular operators. The satisfia-
bility problem for the quantifier-free theory TS involves determining whether
there exists an assignment of some constant in Constr to every string variable
in V arstr and some constant in Conint to every integer variable in V arint, such
that the formula evaluates to true under the semantics given in the SMT-LIB
standard. If such an assignment exists, the formula is satisfiable, and if not, it is
unsatisfiable.

For more information on the syntax and semantics of the theory of strings,
we recommend referring to the SMT-LIB standard for the theory of strings [44].
Isabelle. Isabelle [37,45,46] is a generic proof assistant. Proof assistants are com-
puter programs in which users can define objects from mathematics, logic and
computer science, and prove lemmas and theorems about them. The proof assis-
tant checks that the proofs are correct, and it can also perform parts of (or whole)
proofs automatically. The value of this is that users get a very strong guarantee
that their proofs are correct. Isabelle achieves this by having a small kernel that
implements a relatively simple logical derivation system. That Isabelle is generic
means that it supports several logics, the most prominent being Isabelle/HOL
which is Isabelle’s implementation of higher-order logic (HOL). This is also the
logic that we are using in the present paper. Popularly speaking, Isabelle/HOL
combines typed functional programming and logic.

3 Formalising the SMT Theory of Strings

The SMT-LIB theory of strings allows reasoning over finite sequences of char-
acters and regular languages. The signature of the theory contains three sorts
String, RegLan, and Int and consists of the various function symbols shown
in Fig. 1, such as str. substr, str. at. The SMT-LIB standard not only specifies
syntax but also provides corresponding semantics. That is, the symbols are not
intended to be interpreted arbitrarily but rather in a standard model in which
the domains of the sorts are fixed and the interpretation of the function sym-
bols is predefined. In particular, the domain of String is fixed to the set of all
finite words in UC∗, where UC is the alphabet of 196607 Unicode characters,
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the domain of RegLan is the set of all regular languages over String, i.e., the set
2UC∗

, and Int refers to the standard set of integers. The intended semantics of
the function symbols within the respective domains are expressed semi-formally,
in natural language. For example, the standard defines the semantics of the
function as follows.

If 0 ≤ m < |w| and 0 < n then str. substr(w,m, n) is the unique word w2

such that w = w1w2w3, |w3| = m, and |w2| = min(n, |w| − m) for some
words w1 and w3. Otherwise str. substr(w,m, n) = ε.

We formalise the standard model in Isabelle/HOL. This formalisation comprises
an interpretation of all symbols as functions in Isabelle, a translation of the
semantics of the standard model into higher-order logic sentences, and proofs
that our interpretation satisfies them.

For example, we implement a function substr::"uc_string ⇒ int ⇒int ⇒
uc_string", where uc_string denotes the type of Unicode strings, and int is

the type of integers, and prove the following two lemmas:

assumes "0≤m ∧ m<|w| ∧ 0<n" shows "∃!v. substr w m n = v
∧ ∃x y. w=x·v·y ∧ |x|=m ∧ |v|=min n (|w|-m)"

assumes "0>m ∨ m≥|w| ∨ 0≥n" shows "substr w m n = ε"

These lemmas formalise the meaning of str. substr as detailed above. Our formal-
isation1 currently encompasses all function symbols except for str.replace_all,
str.replace_re, and str.replace_re_all.
Formalisation. We implement SMT-LIB functions based on a formalisation of
the notions of words and regular expressions in Isabelle/HOL. To represent words
over an arbitrary alphabet, we introduce the type ’a word which is a synonym for
lists of arbitrary type, i.e., ’a word ≡ ’a list. The type ’a word allows instan-
tiation with arbitrary types as the underlying alphabet. The SMT-LIB standard
specifies the alphabet to be Unicode characters. Therefore, we introduce a new
type UC defined as the subset {0, . . . , 196, 607} of integers, such that each term
of type UC corresponds to a unique code point in the Unicode alphabet. By using
UC as the type of the alphabet, the resulting type UC word is inhabited by all
words over the Unicode alphabet and is thus a formalisation of the String sort
defined by the SMT-LIB standard.

We implement the SMT-LIB string functions in terms of UC word and show
that the implementation satisfies the properties of the standard model, as exem-
plified above. In doing so, we rely on functions on lists, as well as associated
lemmas, that are already present in the Isabelle core libraries. For instance, the
str.++ function directly corresponds to the Isabelle list append function. More
complex SMT-LIB functions additionally require reasoning about the factors of
a word, which we handle by implementing a function that projects a word w onto
the factor w[i; j] between two indices i, j ∈ N with 0 ≤ i ≤ j. We implement
SMT-LIB str. substr and str. at in terms of this function. Moreover, the projec-
tion to factors allows searching and replacing occurrences and factors with other
1 Available at https://github.com/formalsmt/isabelle_smt.

https://github.com/formalsmt/isabelle_smt
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words, as required by the SMT-LIB functions str. indexof, str. replace, respec-
tively. However, while Isabelle uses natural numbers to represent the lengths of
lists, the SMT-LIB standard defines the length of a string, including the indices
of substrings, as integers. Therefore, we require additional conversions between
integers and natural numbers and must handle edge cases. For example, in the
str. substr implementation, we first check whether the given indices are valid,
i.e., whether they are within the bounds of the string, then convert them to
natural numbers, and finally project the string onto the corresponding factor:

str_substr w m n = if n ≥ 0 ∧ 0 ≤ m ∧ ((nat m) ≤ |w|-1)
then w[(nat m);(nat (m+n))] else ε

To formalise the regular membership predicate, i.e., str.in_re, which evalu-
ates to true whenever a given string term is a member of a given regular language,
we first introduce an algebraic data type ’a regex characterizing regular expres-
sions. The type contains a constructor for each regular operation defined by the
SMT-LIB standard, including ’a word as one of the base cases. Likewise to the
type ’a word, we instantiate ’a regex with the type UC to obtain the type UC
regex, which is inhabited by all regular expressions over the Unicode alphabet.
To establish a connection between regular expressions and regular languages as
defined by the standard, we additionally define the function lang::"’a regex ⇒
’a word set that maps a regular expression to its language using accustomed

semantics. Hence, for any UC regex term r, the set lang r is a (regular) sub-
set of the set of all UC word terms, which means that UC regex formalises the
sort RegLan. We prove that the regular expression type, equipped with the lang
function, satisfies all properties that the SMT-LIB theory of strings requires.

For example, we show that regular concatenation, re_concat, expresses the exact
language specified by the standard, by proving the following lemma:

lang (re_concat r e) = { x·y | x y. x ∈ lang r ∧ y ∈ lang e }

Finally, we implement the str.in_re predicate in terms of Brzozowski deriva-
tives [14]. We follow the approach outlined in [28], but adapt it to account for
the full set of regular operations defined by the SMT-LIB theory of strings. That
is, we define a function deriv::"’a regex ⇒ ’a ⇒ ’a regex that computes the
derivative of a regular expression w.r.t. a single character, and its extensions
to words derivw::"’a regex ⇒ ’a word ⇒ ’a regex. We then prove that for a
term w of type ’a word and a term r of type ’a regex, w is contained in the set
lang r if and only if the derivative derivw r w contains the empty word.

Using Brzozowski derivatives, testing regular membership amounts to exe-
cuting a finite number of deterministic derivations steps. This approach is prefer-
able to testing whether a words is contained in a (possibly infinite) set using the
lang function, as Isabelle can perform the finitely many derivation steps auto-
matically. This is especially important for the automated model verification as
described in Sect. 4.
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SMT-LIB
formula SMT solver Model

Conversion Isabelle/HOL

Theory

valid model

unknown

invald model

Fig. 2. SMT model verification process overview.

Inconsistencies. During our formalisation, we discovered several inconsistencies
in the standard. Foremost, we found that the function str. indexof is not well-
defined for all inputs. The standard requires that

if str. contains(w,w2) = true and i ≥ 0 then str. indexof(w,w2, i) is the
smallest n such that w = w1w2w3 for some words w1, w3 with i ≤ n = |w1|.
Otherwise, str. indexof(w,w2, i) is −1.

However, if either i ≥ |w| or str. contains(substr(w, i, |w|), w2) = false, then such
an n cannot exist. For instance, str. indexof(“ab” , ε, 3) is a counterexample con-
cerning the first case. We have 3 ≥ 1 and str. contains(“ab” , ε) by the definition
of str. contains, but there are no words w1, w3 with “ab” = w1 · ε · w3 = w1 ·w2

and 3 ≤ |w1|. For the second case, consider str. indexof(“ab” , “a” , 1). Again
str. contains(“ab” , “a”) and 1 ≥ 0, but no words w1 w2 with “ab” = w1 · “a” · w2

and 1 ≤ |w1| exist. In order to establish well-defined semantics for str. contains,
we suggest modifying the premises such that str. contains(substr(w, i, |w|), w2) =
true instead of str. contains(w,w2) = true and additionally ensuring that i ≤ |w|
is satisfied.

Besides that, we found a minor inconsistency in the signatures of
str.replace_re and str.replace_re_all. The standard defines them first as func-
tions of type String → RegLan → String → String but later as functions of type
String → String → String → String . The former was clearly intended.

4 Model Verification Using Isabelle

We present SMTmv
2, an automated tool for SMT model verification that lever-

ages our formalisation to check the accuracy of models generated by SMT solvers.
The verification process involves a sequence of steps, which are summarized in
Fig. 2. For a satisfiable formula ϕ, an SMT solver is able to produce a model
M , i.e., a variable assignment that satisfies the formula. SMTmv takes this
potential model and converts it into Isabelle/HOL by mapping SMT-LIB func-
tions to corresponding counterparts in the presented formalisation, and logical
connectives to equivalent Isabelle primitives. The result is a shallow embedding
ϕI in Isabelle that is equivalent to ϕ within the standard model of the theory
2 Available at https://github.com/formalsmt/SMTmv.

https://github.com/formalsmt/SMTmv
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Table 1. Results using SMTmv to replicate and verify soundness issues highlighted
in [8]. Here, “t.o.” stands for “timeout” (60 s) and “�-time” measures the average time
it took SMTmv to verify a model, not including timeouts.

Solver Tested Solver Result SMTmv

sat unsat t.o. invalid valid unknown error t.o. �-time

Z3Trau 5325 2940 2126 259 1846 0 1 0 1093 33.36 s
Ostrich 28 21 7 0 20 0 0 1 0 4.88 s
Z3Str3 13 0 13 0 0 0 0 0 0 –

of strings. Afterwards, SMTmv represents the assignment M equivalently as a
conjunction of equalities MI . Thus, within the SMT-LIB theory of strings, M is
a model to ϕ if and only if MI |= ϕI . SMTmv expresses MI |= ϕI as a lemma
in Isabelle/HOL and queries the system to search for a proof. If Isabelle finds a
proof, the assignment produced by the SMT solver is provably a model to the
formula, and consequently, SMTmv returns valid. If Isabelle/HOL instead finds
that the model doesn’t satisfy the formula, it returns invalid. In cases where
Isabelle/HOL can neither find a proof nor a counterexample, SMTmv returns
unknown.
Analysis. To showcase the effectiveness of SMTmv, we utilise it to verify
the soundness problems highlighted in [8]. The accompanying artifact offers a
database of SMT-LIB instances and their reported outcomes. We re-ran the –
at the time – unsound solvers Z3Trau [1], OSTRICH [15], and Z3str3 [7] to
replicate the soundness issues and used SMTmv to verify the produced models.
Note that we intentionally used outdated solver versions on which the errors
were reported to demonstrate the effectiveness of SMTmv and that all solvers
might have since been fixed. All experiments were run with a timeout of 60 s
per instance for each, the solver and SMTmv. Our findings are summarised in
Table 1. According to Berzish et al., Z3Trau had 5,325 soundness issues, out
of which SMTmv was able to identify 1846 provably invalid models. On 1,093
instances SMTmv timed out. However, Z3Trau persistently produced models
with a total length of well over 40,000 characters, which Isabelle was unable
to handle within the set time limit. OSTRICH supposedly had 28 soundness
issues. SMTmv found that 20 of them are due to invalid models. In one case
OSTRICH returned sat on a formula that contains a unary disjunction, which
is not valid syntax according to the SMT-LIB standard. Isabelle rejected this
formula and SMTmv reported error. For Z3str3 [7], the authors reported 13
soundness issues, none of which were due to an invalid model.

5 Conclusion and Further Work

We presented a formalisation of the SMT-LIB theory of strings in Isabelle/HOL.
Through this formalisation, we have identified inconsistencies in the SMT-LIB
theory of strings and proposed rectifications for them. Additionally, we have



214 K. Lotz et al.

introduced a tool, named SMTmv, that automates the validation of SMT mod-
els and successfully identified invalid model production as the cause of known
soundness issues in several solvers. We believe SMTmv will be valuable for both
SMT solver developers and practitioners in identifying and rectifying sound-
ness errors, e.g. integrated into the benchmarking tool ZaligVinder [31]. Our
formalisation in Isabelle/HOL lays the groundwork for future research, such as
extending the expressiveness to support other SMT-LIB theories beyond strings
or providing a deep embedding of the SMT-LIB logic into Isabelle.
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Abstract. Weighted bottom-up and top-down tree transformations over
commutative semirings are investigated. It is demonstrated that if the
range of a weighted bottom-up tree transformation is well-defined (i.e.,
for every output tree there are only finitely many input trees that can
transform to the output tree with nonzero weight, so that all involved
sums remain finite), then the range is hom-regular, which means that
it is the image of a regular weighted tree language under a tree homo-
morphism. Additionally, the strictness of the first level of the weighted
bottom-up and top-down tree transformation hierarchy is proved, which
was open for any ring.

1 Introduction

Tree transducers [1,3] are a formal model for relations on trees. They extend the
classical tree automata [2,16] with the ability to generate output trees. In several
application areas like natural language processing [12] a purely qualitative evalu-
ation is insufficient, and weighted versions of tree automata and tree transducers
have been proposed and investigated (see [8] for an excellent survey).

In this contribution we consider weighted bottom-up and top-down tree
transducers [5,13]. The weights of the transducers are taken from a commu-
tative semiring [10,11]. It is an open question whether the composition hierar-
chy [6,14] of their computed weighted tree transformations is strict in all com-
mutative semirings; the unweighted version of this result was proved in [4] and
later extended to all non-rings [14] (see Fig. 1). The existing extension simply
faithfully lifts the unweighted result to the weighted setting. However, this app-
roach does not work in a ring because it does not permit a homomorphism into
the Boolean semiring (i.e., the unweighted case).

We prove the necessary strictness and incomparability results for the first
level of the hierarchy in any commutative semiring. Essentially this requires to
prove that there exists a weighted tree transformation that can be computed by a
weighted top-down tree transducer (TOP), but not by any weighted bottom-up
tree transducer (BOT), and a weighted tree transformation that can be com-
puted by a BOT, but not by any TOP. While the utilized transformations that
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BOT(A) TOP(A)

BOT2(A) TOP2(A)

BOT3(A) TOP3(A)

Fig. 1. First levels of the BOT and TOP hierarchy for a commutative semiring A.

separate these classes are strongly inspired by the classical unweighted exam-
ples, we do not directly lift the existing unweighted results, but rather provide
explicit proofs that work in every commutative semiring.

Since explicit examples for the strictness of the hierarchy are generally
unknown even in the unweighted case, the authors doubt that this approach
will successfully establish the strictness of the full hierarchy. Instead the semi-
nal paper [4] investigates ranges of the transformations computed by BOTs and
TOPs and separates the levels of the hierarchy purely based on the achievable
range tree languages. In the same spirit we provide another interesting result.
Whenever the range of a weighted tree transformation computed by a (single)
BOT is well-defined (i.e., for every output tree there are only finitely many
input trees that can transform to the output tree with nonzero weight, so that
all involved sums remain finite), it is actually hom-regular (i.e., the homomor-
phic image of a regular weighted tree language), which is a recently studied
class [15]. As a side effect this property of the range can be utilized to apply
several recently obtained results (like a pumping lemma [15, Lemma 4] and
decidability results [15, Theorem 6] for support emptiness and finiteness) to the
range of a weighted tree transformation computed by a BOT.

2 Preliminaries

Let N denote the set {0, 1, 2, . . . } of all nonnegative integers, and for every k ∈ N

let [k] = {i ∈ N | 1 ≤ i ≤ k}. For every set A we denote its cardinality by |A|
and the set of all strings over A (i.e., finite sequences over A) by A∗. We write ε
for the empty string and |w| for the length of a string w ∈ A∗.

Let A, B, and C be sets. A relation is any subset R ⊆ A × B. Given rela-
tions R ⊆ A × B and S ⊆ B × C, their composition R ; S is given by

R ; S =
{
(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S

}
.

We let idA = {(a, a) | a ∈ A} be the identity relation on A, which we also
denote by simply ‘id’ if A is clear from the context. The inverse of R is the
relation R−1 = {(b, a) | (a, b) ∈ R}. Let E ⊆ A × A be a relation. Its transitive
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closure E∗ is E∗ =
⋃

n∈N
En, where E0 = idA and En+1 = En ; E for every n ∈

N. The relation E is an equivalence relation if E is reflexive (i.e., idA ⊆ E),
symmetric (i.e., E−1 = E), and transitive (i.e., E∗ ⊆ E). The equivalence class
of an element a ∈ A under the equivalence relation E is [a]E = {a′ ∈ A |
(a, a′) ∈ E}. The domain and range of R are the sets domR = {a ∈ A | ∃b ∈
B : (a, b) ∈ R} and ranR = domR−1 , respectively. A relation R is a (partial)
mapping if b = b′ for all (a, b), (a, b′) ∈ R. Similarly, R is injective if a = a′ for
all (a, b), (a′, b) ∈ R. For a mapping f : A → B and S ⊆ B we denote the inverse
image of S under f by f−1(S), which equates to domf∩(A×S). Additionally, we
write f−1(b) instead of f−1({b}) for every b ∈ B.

A ranked alphabet is a pair (Σ, rk) that consists of a finite set Σ and a rank
mapping rk: Σ → N. For every k ∈ N, we let Σk = rk−1(k), and we sometimes
write σ(k) to express that σ ∈ Σk. We often abbreviate (Σ, rk) to Σ leaving ‘rk’
implicit. For every set S we let

Σ(S) =
⋃

k∈N

{σ(s1, . . . , sk) | σ ∈ Σk, s1, . . . , sk ∈ S} .

Let Z be a set disjoint with Σ. The set of Σ” trees over Z, denoted by TΣ(Z), is
the smallest set T such that Z ⊆ T and Σ(T ) ⊆ T . We abbreviate TΣ(∅) simply
to TΣ , and the tree α() to α for every α ∈ Σ0. Any subset L ⊆ TΣ is called a
tree language.

Let Σ be a ranked alphabet, Z a set and t ∈ TΣ(Z). The set pos(t) ⊆ N
∗

of positions of t is defined inductively by pos(t) = {ε} for every t ∈ Σ0 ∪ Z,
and by pos

(
σ(t1, . . . , tk)

)
= {ε} ∪

⋃
i∈[k]

{
iw | w ∈ pos(ti)

}
for all k ∈ N,

σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). The size size(t) and height ht(t) of t are defined
by size(t) = |pos(t)| and ht(t) = maxw∈pos(t)|w|, respectively. For w ∈ pos(t),
the label t(w) of t at w, the subtree t|w of t at w and the substitution t[t′]w
of t′ into t at w are defined by t(ε) = t|ε = t and t[t′]ε = t′ for t ∈ Σ0 ∪ Z,
and for t = σ(t1, . . . , tk) by t(ε) = σ, t(iw′) = ti(w′), t|ε = t, t|iw′ = ti|w′ ,
t[t′]ε = t′, and t[t′]iw′ = σ(t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk) for all k ∈ N, σ ∈ Σk,
t1, . . . , tk ∈ TΣ(Z), i ∈ [k], and w′ ∈ pos(ti). For every subset S ⊆ Σ ∪ Z, we
let posS(t) = {w ∈ pos(t) | t(w) ∈ S}, and we abbreviate pos{s}(t) to poss(t)
for every s ∈ Σ ∪ Z. Let X = {x1, x2, . . . } be a fixed, countable set of formal
variables. For each k ∈ N we let Xk = {xi | i ∈ [k]}. For any t ∈ TΣ(X) we
let var(t) = {x ∈ X | posx(t) 	= ∅}. Finally, for t ∈ TΣ(Z), a subset V ⊆ Z, and a
mapping θ : V → TΣ(Z), the substitution tθ applied to t is defined by vθ = θ(v)
for v ∈ V , zθ = z for z ∈ Z \ V , and

σ(t1, . . . , tk)θ = σ
(
t1θ, . . . , tkθ

)

for all k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). If V = {v1, . . . , vn} is finite,
then we write the mapping θ also as

[
v1 ← θ(v1), . . . , vn ← θ(vn)

]
, or simply

as
[
θ(x1), . . . , θ(xn)

]
if V = Xn. Let Σ be a ranked alphabet, γ ∈ Σ1, and n ∈ N.

For every tree s ∈ TΣ we let γ0(s) = s and γn+1(s) = γn
(
γ(s)

)
.

A (commutative) semiring [10,11] is an algebraic structure (A,+, ·, 0, 1) such
that (A,+, 0) and (A, ·, 1) are commutative monoids, · distributes over +, and
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0 · a = 0 for all a ∈ A. Typical examples include the Boolean semiring B =(
{0, 1},max,min, 0, 1

)
, the semiring N =

(
N,+, ·, 0, 1) of nonnegative integers,

and the tropical semiring T =
(
N ∪ {∞},min,+,∞, 0

)
. When there is no risk

of confusion, we refer to a semiring (A,+, ·, 0, 1) simply by its carrier set A, and
for the rest of the contribution, let A be an arbitrary commutative semiring
with 0 	= 1.

Let S be a set. Any mapping ϕ : S → A is called a weighted set (over A),
and its support is supp(ϕ) = {s ∈ S | ϕ(s) 	= 0}. For every subset T ⊆ S we
let 1T : S → A be the weighted set given by 1T (s) = 1 if s ∈ T and 1T (s) = 0
otherwise. If S = TΣ(Z) for some ranked alphabet Σ and set Z, then we also
call ϕ a weighted tree language. Similarly, if S = TΣ × TΔ for ranked alphabets
Σ and Δ, then we call ϕ a weighted tree transformation. Let τ : TΣ×TΔ → A be a
weighted tree transformation. Its inverse τ−1 : TΔ×TΣ → A is the weighted tree
transformation given by τ−1(t, s) = τ(s, t) for every s ∈ TΣ and t ∈ TΔ. For a
set S ⊆ TΔ, the transformation τ is output-finitary on S if the set {t ∈ S | (s, t) ∈
supp(τ)} of output trees in S is finite for every input tree s ∈ TΣ , and it is input-
finitary on S′ ⊆ TΣ if τ−1 is output-finitary on S′. For S = TΔ (respectively,
S′ = TΣ) we simply say that τ is output-finitary (respectively, input-finitary)
if τ is output-finitary on S (respectively, input-finitary on S′). If τ is output-
finitary, then the domain of τ is the weighted tree language domτ : TΣ → A given
by domτ (s) =

∑
t∈TΔ

τ(s, t) for every s ∈ TΣ . As before, if τ is input-finitary,
then we let ranτ = domτ−1 and call it the range of τ . Let τ be output-finitary,
and let ϑ : TΔ × TΓ → A be another weighted tree transformation. We define
their composition (τ ; ϑ) : TΣ × TΓ → A to be the weighted tree transformation
such that

(τ ; ϑ)(s, u) =
∑

t∈TΔ

τ(s, t) · ϑ(t, u)

for every s ∈ TΣ and u ∈ TΓ . If both transformations are output-finitary, then
their composition is also output-finitary. Moreover, since composition ; is a form
of matrix multiplication, it is associative.

Let Σ and Δ be ranked alphabets. A (tree) homomorphism is a mapping
h′ : Σ → TΔ(X) such that h′(σ) ∈ TΔ(Xk) for every k ∈ N and symbol σ ∈ Σk.
This mapping h′ then extends to a mapping h : TΣ → TΔ given for every k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ by h

(
σ(t1, . . . , tk)

)
= h′(σ)

[
h(t1), . . . , h(tk)

]
. In the

following, we will not distinguish between h′ and h and call both homomorphism.
Every homomorphism h : TΣ → TΔ induces an output-finitary weighted tree

transformation 1h : TΣ × TΔ → A. Additionally, let ϕ : TΣ → A be a weighted
tree language. It induces the weighted tree transformation idϕ : TΣ × TΣ → A

given for every s ∈ TΣ and t ∈ TΣ by idϕ(s, t) = ϕ(s) if s = t and idϕ(s, t) = 0
otherwise. Clearly, idϕ is input- and output-finitary, so the composition τ =
idϕ ;1h is well-defined, and τ is input-finitary if and only if 1h is input-finitary
on supp(ϕ). For ease of notation, if 1h is input-finitary on supp(ϕ), we let hϕ =
ranτ (also denoted h(ϕ) occasionally) and call it the image of ϕ under h. Finally,
we say that h is input-finitary (on S) if 1h is input-finitary (on S).
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Next we recall the weighted tree automata with homomorphism-constraints
of [15, Section 3], where they are called positive classic WTGc. Tree automata
with homomorphism-constraints were first introduced in the unweighted case [9].

Definition 1. A weighted tree automaton with homomorphism-constraints (for
short: WTAh) is a tuple A = (Q,Σ,F,R,wt) such that Q is a finite set of states,
Σ is a ranked alphabet, F ⊆ Q is a set of final states, wt: R → A is a weight
assignment, andR is a finite set of rules of the form �

E−→ q with � ∈ TΣ(Q)\Q, q ∈
Q, and E ⊆ posQ(�) × posQ(�). The automaton A is a weighted tree automaton

(for short: WTA) if � ∈ Σ(Q) and E = ∅ for every rule �
E−→ q ∈ R. �

We also depict a rule �
E−→ q ∈ R as �

E−→a q, where a = wt(� E−→ q).
The components of this rule are its left-hand side �, its target state q, its set E
of equality constraints, and its weight a. An equality constraint (w,w′) ∈ E is
listed as w = w′, of which w and w′ are called the constrained positions. If E = ∅,
then we simply omit it and just write � →a q. The equivalence relation induced
by E is ≡E = (E ∪ E−1)∗, and the equivalence class [w]≡E

of a position w ∈
posQ(�) is also denoted by [w]E .

In this contribution we are particularly interested in a specific subclass of
WTAh, namely the eq-restricted WTAh of [15, Definition 5].

Definition 2. The WTAh A = (Q,Σ,F,R,wt) is eq-restricted if it has a sink
state ⊥ ∈ Q \ F such that

1. ρσ = σ(⊥, . . . ,⊥) →1 ⊥ ∈ R for every σ ∈ Σ,
2. � ∈ Σ({⊥}) and E = ∅ for every �

E−→ ⊥ ∈ R (i.e., the rules of Item 1 are
the only rules with target state ⊥), and

3. |{w′ ∈ [w]E | �(w′) 	= ⊥}| ≤ 1 for every �
E−→ q ∈ R and w ∈ posQ(�) (i.e.,

at most one position of every ≡E-equivalence class is labeled by a state other
than ⊥). �

In other words, in a rule of an eq-restricted WTAh the constrained positions
of the same equivalence class (via ≡E) are all labeled by ⊥ except for potentially
one position w. In addition, the sink state ⊥ is able to process each input tree
at unit cost 1. Thus all restrictions on this subtree that is shared across the
constrained positions need to be implemented by the state labeling w. Similarly,
the weight for processing this subtree is only charged in the processing via the
state labeling w as all copies are processed via ⊥ at unit cost. For an eq-restricted
WTAh we denote its state set by Q ∪̇ {⊥} to point out the sink-state, which we
universally denote by ⊥.

Let us finally recall the semantics of WTAh from [15, Section 3] in a slightly
adjusted, albeit equivalent manner. Let A = (Q,Σ,F,R,wt) be a WTAh. A run
of A is a tree over the ranked alphabet Σ ∪ R with rk(� E−→a q) = |posQ(�)|
and it is defined inductively. Let t1, . . . , tn ∈ TΣ , q1, . . . , qn ∈ Q, and suppose
that �i is a run of A for ti to qi with weight wt(�i) for each i ∈ [n]. Suppose
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that there is a rule of the form �
E−→a q ∈ R such that � = σ(�1, . . . , �m),

posQ(�) = {w1, . . . , wn} with �(wi) = qi and ti = tj for all wi = wj ∈ E. Then

� =
(
�

E−→a q
)
(�1, . . . , �m)[�1]w1 · · · [�n]wn

is a run of A for t = σ(�1, . . . , �m)[t1]w1 · · · [tn]wn
to q. If q ∈ F , then � is accept-

ing. Its weight wt(�) is computed simply as wt(�) = a ·
∏

i∈[n] wt(�i). The
weight wtq(t) is the sum of all weights wt(�) of runs of A for t to q. Finally, the
weighted tree language recognized by A is the mapping ‖A‖ : TΣ → A that is
given by ‖A‖(t) =

∑
q∈F wtq(t) for every t ∈ TΣ .

If a weighted tree language ϕ is recognized by some WTA, then it is called reg-
ular, if it is recognized by some eq-restricted WTAh, then it is called hom-regular,
and if it is recognized by some arbitrary WTAh, then it is called constraint-
regular. This choice of naming already hints at the fact that eq-restricted WTAh
are tailored to represent homomorphic images of regular weighted tree languages.
For an illustration of this feature, we consider the following example.

Example 3. Let Σ = {ν(1), γ(1), α(0)} be a ranked alphabet and ϕ : TΣ → N be
the regular weighted tree language with

ϕ(s) =

{
2n if s = ν

(
γn(α)

)

0 otherwise

for every s ∈ TΣ . A simple WTA that recognizes this weighted tree language ϕ is
given by A =

(
{q, qf}, Σ, {qf}, R,wt

)
with the following set of rules and weights.

R =
{
α →1 q, γ(q) →2 q, ν(q) →1 qf

}

Consider the ranked alphabet Δ = {σ(2), γ(1), α(0)} and the tree homomor-
phism h defined by h(α) = α, h(γ) = γ(x1), and h(ν) = σ(x1, x1). The image hϕ

of ϕ via h is the weighted tree language hϕ : TΔ → N given for every t ∈ TΔ by

hϕ(t) =

{
2n if t = σ

(
γn(α), γn(α)

)

0 otherwise.

The natural eq-restricted WTAh that represents the weighted tree language hϕ

is A′ =
(
{q, qf ,⊥},Δ, {qf}, R′,wt′) with the following rules and weights.

R′ =
{

α →1 q, γ(q) →2 q, σ(q,⊥) 1=2−→1 qf
}

∪
{

α →1 ⊥, γ(⊥) →1 ⊥, σ(⊥,⊥) →1 ⊥
}

.

The new rules of A′ are obtained from the old rules of A by applying the homo-
morphism to the left-hand sides. The duplicated subtree below σ targets the sink
state ⊥ instead of q to avoid distorting the weight by an additional factor 2n. �

The following result was shown in [15] for nondeleting and nonerasing tree
homomorphisms, but the presented generalization to input-finitary tree homo-
morphisms presented here is straightforward.
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Lemma 4 ([15, Theorem 5]). Let ϕ : TΣ → A be a regular weighted tree lan-
guage and h : TΣ → TΔ a tree homomorphism that is input-finitary on supp(ϕ).
Then hϕ is hom-regular. �

3 Weighted Bottom-up Tree Transducers

Let us start by recalling weighted bottom-up tree transducers from [5, Definitions
3.4 and 3.6] in a notation closer to [3, Section 1].

Definition 5. A weighted bottom-up tree transducer (for short: BOT) is a
tupleB = (Q,Σ,Δ,F,R,wt)with a finite setQ of states, ranked alphabetsΣ andΔ
of input and output symbols, respectively, a set F ⊆ Q of final states, a finite set
R ⊆

⋃
k∈N

Σk(Q) × Q × TΔ(Xk) of rules, and a weight map wt: R → A. �
We often depict a rule ρ =

(
σ(q1, . . . , qk), q, t

)
∈ R as σ(q1, . . . , qk) →a q(t),

where a = wt(ρ). The BOT B is a finite-state relabeling [5, Definition 3.9] if for
every rule σ(q1, . . . , qk) →a q(t) ∈ R there is δ ∈ Δk such that t = δ(x1, . . . , xk).
We abbreviate finite-state relabeling by QREL.

Next, we present the semantics of BOTs following the derivation seman-
tics of [7, Section 5], which coincides with the original semantics of [5, Defini-
tions 3.2 and 3.5]. In the following, let B = (Q,Σ,Δ,F,R,wt) be a BOT. We
let SF = TΣ(Q×TΔ) be its sentential forms. Given two sentential forms ξ, ζ ∈ SF
and a rule ρ = σ(q1, . . . , qk) → q(t) ∈ R, we write ξ ⇒ρ

B ζ if and only
if ξ|w = σ

(
〈q1, t1〉, . . . , 〈qk, tk〉

)
and ζ = ξ

[
〈q, t[t1, . . . , tk]〉

]
w

for some output
trees t1, . . . , tk ∈ TΔ and the lexicographically least position w ∈ pos(ξ) such
that ξ|w ∈ Σ(Q × TΔ). A derivation d from ξ to ζ is a (finite) sequence of
rules d = ρ1 · · · ρn ∈ R∗ such that ξ(⇒ρ1

B ; · · · ; ⇒ρn

B )ζ. The set of all derivations
from ξ to ζ is denoted by DerB(ξ, ζ) and is always finite. The weight wt(d) of
the derivation d is wt(d) =

∏n
i=1 wt(ρi). Now we are ready to define the seman-

tics ‖B‖ : TΣ × TΔ → A of the BOT B. It is defined for every input tree s ∈ TΣ

and output tree t ∈ TΔ by

‖B‖(s, t) =
∑

q∈F
d∈DerB(s,〈q,t〉)

wt(d) .

Thus for any (s, t) ∈ supp(‖B‖) there exists q ∈ F and d ∈ DerB(s, 〈q, t〉) such
that wt(d) 	= 0.

Let us illustrate weighted bottom-up tree transducers on an example inspired
by [3, Property B2], which states that BOTs can check subtrees before delet-
ing them. In our example, this will apply to the second direct subtree s2 of
the input σ(s1, s2), which causes a different behavior if s2 = α. We first intro-
duce the weighted tree transformation τ1 followed by a weighted bottom-up tree
transducer that computes it. Let Σ = {σ(2)} ∪ Σ′ with Σ′ = {γ(1), α(0), β(0)}.
Let τ1 : TΣ × TΣ → A be the weighted tree transformation such that

τ1(s, t) =

{
1 if s = σ(t, α) and t ∈ TΣ′

0 otherwise
(1)
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σ

αγ

γ

α

⇒ρ1
B1

σ

αγ

γ

〈qα, α〉

⇒ρ3
B1

σ

αγ

〈q, γ

α

〉
⇒ρ4

B1

σ

α〈q, γ

γ

α

〉
⇒ρ1

B1

σ

〈qα, α〉〈q, γ

γ

α

〉
⇒ρ5

B1

〈qf, γ

γ

α

〉

Fig. 2. Sample derivation of the BOT B1 with weight 1.

for every s ∈ TΣ and t ∈ TΣ . This transformation can easily be computed by a
BOT, as the following example shows.

Example 6. The transformation τ1 of (1) is computed by the BOT

B1 =
(
{q, qα, qf}, Σ,Σ, {qf}, R, 1R

)

with the following set of rules R = {ρ1, . . . , ρ6}.

(ρ1) α →1 qα

(
α
)

(ρ2) β →1 q
(
β
)

(ρ3) γ(qα) →1 q
(
γ(x1)

)
(ρ4) γ(q) →1 q

(
γ(x1)

)

(ρ5) σ(q, qα) →1 qf
(
x1

)
(ρ6) σ(qα, qα) →1 qf

(
x1

)

Clearly, |DerB1(s, 〈qf, t〉)| ≤ 1 for every s ∈ TΣ and t ∈ TΣ . It is straightforward
to verify that ‖B1‖ = τ1, and we present a sample derivation in Fig. 2. �

Next, let us present another weighted tree transformation τ2, which is sim-
ilarly inspired by [3, Property T], for which we will then show that it cannot
be computed by any BOT. Property T roughly states that copies of the input
tree can be independently processed using nondeterminism. In the next example,
the output will be essentially two copies of the input, but the copies need not
be exactly equal, but rather may be terminated by different nullary symbols.
Let Σ = {σ(2)} ∪ Σ′ with Σ′ = {γ(1), α(0), β(0)}. Let τ2 : TΣ × TΣ → A be the
weighted tree transformation such that

τ2(s, t) =

{
1 if t(ε) = σ, size(t|1) = size(t|2) = size(s) and s, t|1, t|2 ∈ TΣ′

0 otherwise.
(2)

Lemma 7. The weighted tree transformation τ2 of (2) cannot be computed by
any BOT.

Proof. Suppose that there exists a BOT B = (Q,Σ,Σ, F,R,wt) that com-
putes ‖B‖ = τ2. Select an integer n ∈ N such that

n > max
{
size(t) | σ(q1, . . . , qk) →a q(t) ∈ R

}
;
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i.e., n is larger than the size of any output tree in any rule of B. Let s = γn(α) and
t = γn(β). Clearly, τ2

(
s, σ(s, t)

)
= 1. Thus there exists d ∈ DerB

(
s, 〈qf , σ(s, t)〉

)

for some final state qf ∈ F . Let us consider the rule � →a q
(
σ(t1, t2)

)
∈ R

of the derivation d that generates the unique occurrence of σ in the output
tree σ(s, t). By the definition of s, only the variable x1 may occur in σ(t1, t2); i.e.,
var

(
σ(t1, t2)

)
⊆ {x1}. Since s and t have no subtrees in common, the variable x1

can only occur once in σ(t1, t2); i.e., |posx1
(σ(t1, t2))| ≤ 1. Suppose that t2 ∈ TΣ

does not contain x1; the other case is analogous. In this case it is clearly t2 =
t = γn(β). Meanwhile we chose n to be larger than the size of any output tree
in any rule of B. This includes the output tree σ(t1, t2), which in turn is larger
than its subtree t2. Overall we obtain a contradiction via

size(t2) = size(t) = n + 1 > size
(
σ(t1, t2)

)
> size(t2) . �

Finally we show that the range of an input-finitary weighted tree transforma-
tion computed by a BOT is hom-regular. This enables the application of several
results like, for example, the pumping lemma [15, Lemma 4] or the decidability
of support emptiness and finiteness of [15, Theorem 6] for zero-sum free semi-
rings A. To prove that the range is hom-regular we use a well-known decom-
position of weighted bottom-up tree transducers, which we recall first. It was
lifted from the unweighted case [3, Theorem 3.15] to (essentially) commutative
semirings in [5, Theorem 5.7].

Proposition 8 ([5, Lemma 5.6]). For every BOT B there exists a finite-state
relabeling R and a tree homomorphism h such that ‖B‖ = ‖R‖ ; 1h. �
Theorem 9. The range ran‖B‖ is hom-regular for every BOT B such that ‖B‖
is input-finitary.

Proof. We first apply the decomposition of Proposition 8 to B and obtain a finite-
state relabeling R and a tree homomorphism h such that ‖B‖ = ‖R‖;1h. Since R
is a finite-state relabeling (where input and output trees always have the same
set of positions), the transformation ‖R‖ is input- and output-finitary, the trans-
formation ‖B‖ is input-finitary if and only if h is input-finitary on supp(ran‖R‖).
Clearly, ran‖B‖ = h(ran‖R‖) (i.e., the image of the weighted tree language ran‖R‖
under h) and ran‖R‖ is regular by [13, Corollary 14]. Hence ran‖B‖ is the image
of a regular weighted tree language under an input-finitary tree homomorphism,
which is hom-regular by Lemma 4. �

4 Weighted Top-Down Tree Transducers

Following the structure of the previous section, we start by recalling weighted
top-down tree transducers from [5, Definitions 3.4 and 3.7] in a notation closer
to [3, Section 1].

Definition 10. A weighted top-down tree transducer (for short: TOP) is a
tuple T = (Q,Σ,Δ, I,R,wt)with a finite setQ of states, ranked alphabetsΣ andΔ
of input and output symbols, respectively, a set I ⊆ Q of initial states, a finite set
of rules R ⊆

⋃
k∈N

Q × Σk × TΔ(Q × Xk), and a weight map wt: R → A. �
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To simplify the presentation, we depict a rule ρ = (q, σ, t) ∈ R as 〈q, σ〉 →a t,
where a = wt(ρ). Using essentially the same approach as for BOTs, we
next present the semantics of TOPs following the derivation semantics of [7,
Section 6], which coincides with the semantics of [5, Definitions 3.2 and 3.5]. Let
T = (Q,Σ,Δ, I,R,wt) be a TOP, and let SF = TΔ(Q × TΣ) be its sentential
forms. Given two sentential forms ξ, ζ ∈ SF and a rule ρ = 〈q, σ〉 → t ∈ R,
we write ξ ⇒ρ

T ζ if ξ|w = 〈q, σ(s1, . . . , sk)〉 and ζ = ξ
[
tθ

]
w

for some input
trees s1, . . . , sk ∈ TΣ and the lexicographically least position w ∈ pos(ξ) such
that ξ|w ∈ Q × TΣ , where θ : Q × Xk → Q × TΣ is given by θ(〈q, xi〉) = 〈q, si〉
for every q ∈ Q and i ∈ [k]. A derivation d from ξ to ζ is a (finite) sequence of
rules d = ρ1 · · · ρn ∈ R∗ such that ξ(⇒ρ1

T ; · · · ; ⇒ρn

T )ζ. The set of all derivations
from ξ to ζ is denoted by DerT (ξ, ζ) and is always finite. The weight wt(d)
of the derivation d is wt(d) =

∏n
i=1 wt(ρi). Finally, we define the seman-

tics ‖T ‖ : TΣ × TΔ → A of the TOP T for every input tree s ∈ TΣ and output
tree t ∈ TΔ by

‖T ‖(s, t) =
∑

q∈I
d∈DerT (〈q,s〉,t)

wt(d) .

Thus for any (s, t) ∈ supp(‖T ‖) there exists q ∈ I and d ∈ DerT (〈q, s〉, t) such
that wt(d) 	= 0.

Let us return to the weighted tree transformation τ2 of (2) and show that it
can be computed by a TOP. Recall from Lemma 7 that it cannot be computed
by any BOT.

Example 11. The weighted tree transformation τ2 of (2) is computed by the TOP
T2 =

(
{q0, q}, Σ,Σ, {q0}, R, 1R

)
with the following rules R = {ρ1, . . . , ρ14}.

(ρ1) 〈q0, γ〉 →1 σ
(
γ(〈q, x1〉), γ(〈q, x1)〉

)
(ρ2) 〈q, γ〉 →1 γ

(
〈q, x1〉

)

(ρ3) 〈q, α〉 →1 α (ρ4) 〈q, α〉 →1 β

(ρ5) 〈q, β〉 →1 α (ρ6) 〈q, β〉 →1 β

(ρ7) 〈q0, α〉 →1 σ(α, α) (ρ8) 〈q0, α〉 →1 σ(α, β)
(ρ9) 〈q0, α〉 →1 σ(β, α) (ρ10) 〈q0, α〉 →1 σ(β, β)

(ρ11) 〈q0, β〉 →1 σ(α, α) (ρ12) 〈q0, β〉 →1 σ(α, β)
(ρ13) 〈q0, β〉 →1 σ(β, α) (ρ14) 〈q0, β〉 →1 σ(β, β)

It is again straightforward to verify that ‖T2‖ = τ2. We present a sample deriva-
tion in Fig. 3. �

Theorem 12. There exists a weighted tree transformation that can be computed
by a TOP, but not by any BOT.

Proof. The transformation τ2 can be computed by a TOP as demonstrated in
Example 11, but cannot be computed by any BOT by Lemma 7. �
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Fig. 3. Sample derivation of the TOP T2 with weight 1.

Let us now turn to the missing separation with an example from above.

Lemma 13. The weighted tree transformation τ1 of (1) cannot be computed by
any TOP.

Proof. Suppose that there exists a TOP T = (Q,Σ,Σ, I,R,wt) that com-
putes ‖T ‖ = τ1. We select n ∈ N such that n > max

{
size(t) | 〈q, σ〉 →a t ∈ R

}
,

i.e., n is larger than the size of any output tree in any rule of T . Let s = σ(s1, α)
and s′ = σ(s1, β) with s1 = γ2n(α). Clearly,

‖T ‖(s, s1) = τ1(s, s1) = 1 	= 0 = τ1(s′, s1) = ‖T ‖(s′, s1) .

However, we will prove that ‖T ‖(s, s1) = ‖T ‖(s′, s1), which yields the desired
contradiction. To this end, we will prove that DerT

(
〈q, s〉, s1

)
= DerT

(
〈q, s′〉, s1

)

for every state q ∈ Q. To this end, let d ∈ DerT
(
〈q, s〉, s1

)
for input s. Our goal

is to show that d ∈ DerT
(
〈q, s′〉, s1

)
for input s′. The converse inclusion can be

proved in an analogous manner. Let 〈q, σ〉 →a t ∈ R be the rule that is utilized
first in d. Obviously, t ∈ TΣ′′(Q × X2) with Σ′′ = {γ(1), α(0)} because t needs
to match s1. Thus t contains exactly one leaf w ∈ pos{a}∪(Q×X2)(t). Now we
distinguish several cases.

– If t(w) = α, then t ∈ TΣ and we must thus have s1 = t, which is contradictory
since size(s1) = 2n + 1 > size(t). Hence this case is impossible.

– If t(w) = 〈q′, x2〉, then the next derivation step necessarily uses a rule of the
form 〈q′, α〉 →a′ t′ ∈ R with t′ ∈ TΣ . Thus we must have s1 = t[〈q′, x2〉 ← t′],
which is again contradictory since

size(s1) = 2n + 1 > size(t) + size(t′) > size
(
t[〈q′, x2〉 ← t′]

)
.

This renders this case impossible as well.
– Finally, let t(w) = 〈q′, x1〉. Thus the derivation does not visit the second direct

subtree s|2 = α. Since s(ε) = s′(ε) and s|1 = s1 = s′|1 the derivation d is also
a valid derivation for input s′ (with the same output and weight naturally).
Thus, d ∈ DerT

(
〈q, s′〉, s1

)
as required.

Since DerT
(
〈q, s〉, s1

)
= DerT

(
〈q, s′〉, s1

)
for every state q ∈ Q, we must also

have 1 = ‖T ‖(s, s1) = ‖T ‖(s′, s1) = 0, which is the desired contradiction. �
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Theorem 14. There exists a weighted tree transformation that can be computed
by a BOT, but not by any TOP.

Proof. The transformation τ1 can be computed by a BOT as demonstrated in
Example 6, but cannot be computed by any TOP by Lemma 13. �

Corollary 15 (of Theorems 12 and 14). The first level of the BOT and TOP
hierarchy (see Fig. 1) is strict for every commutative semiring A.
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Abstract. We prove that for a given partial functional attributed tree
transducer with monadic output, it is decidable whether or not an equiva-
lent top-down transducer (with or without look-ahead) exists. We present
a procedure that constructs an equivalent top-down transducer (with or
without look-ahead) if it exists.

1 Introduction

It is well known that two-way (string) transducers are strictly more expressive
than one-way (string) transducers. For instance, a two-way transducer can com-
pute the reverse of an input string, which cannot be achieved by any one-way
transducer. For a given (functional) two-way transducer, it is a natural question
to ask: Can its translation be realized by a one-way transducer? This question
was recently shown to be decidable [8], see also [1]. Decision procedures of this
kind have several advantages; for instance, the smaller class of transducers may
be more efficient to evaluate (i.e., may use less resources), or the smaller class
may enjoy better closure properties than the larger class.

One possible pair of respective counterparts of two-way (string) transduc-
ers and one-way (string) transducers in the context of trees are attributed tree
transducers and top-down tree transducers. As the name suggests, states of the
latter process an input tree strictly in a top-down fashion while the former can,
analogously to two-way transducers, change direction as well. As for their string
counterparts, attributed tree transducers are strictly more expressive than top-
down tree transducers [10]. Hence, for a (functional) attributed tree transducer,
it is a natural question to ask: Can its translation be realized by a deterministic
top-down transducer?

In this paper, we address this problem for a subclass of attributed tree trans-
ducers. In particular, we consider attributed tree transducer with monadic out-
put meaning that all output trees that the transducer produces are monadic, i.e.,
“strings”. We show that the question whether or not for a given attributed tree
transducer A with monadic output an equivalent top-down transducer (with or
without look-ahead) T exists can be reduced to the question whether or not a
given two-way transducer can be defined by a one-way transducer.
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First, we test whether A can be equipped with look-ahead so that A has
the single-path property, which means that attributes of A only process a single
input path. Intuitively, this means that given an input tree, attributes of A only
process nodes occurring in a node sequence v1, . . . , vn where vi is the parent
of vi+1 while equipping A with look-ahead means that input trees of A are
preprocessed by a deterministic bottom-up relabeling. The single-path property
is not surprising given that if A is equivalent to some top-down tree transducer T
(with look-ahead) then states of T process the input tree in exactly that fashion.
Assume that A extended with look-ahead satisfies this condition. We then show
that A can essentially be converted into a two-way (string) transducer. We now
apply the procedure of [1]. It can be shown that the procedure of [1] yields a
one-way (string) transducer if and only if a (nondeterministic) top-down tree
transducer T exists which uses the same look-ahead as A. We show that once we
have obtained a one-way transducer TO equivalent to the two-way transducer
converted from A, we can compute T from TO, thus obtaining our result. It
is well-known that for a functional top-down tree transducer (with look-ahead)
an equivalent deterministic top-down tree transducer with look-ahead can be
constructed [5]. Note that for the latter kind of transducer, it can be decided
whether or not an equivalent transducer without look-ahead exists [12] (this is
because transducers with monadic output are linear by default).

We show that the above results are also obtainable for attributed tree trans-
ducers with look-around. This model was introduced by Bloem and Engelfriet [2]
due to its better closure properties. For this we generalize the result from [5], and
show that every functional partial attributed tree transducer (with look-around)
is equivalent to a deterministic attributed tree transducer with look-around.

Note that in the presence of origin, it is well known that even for (non-
deterministic) macro tree transducers (which are strictly more expressive than
attributed tree transducers) it is decidable whether or not an origin-equivalent
deterministic top-down tree transducer with look-ahead exists [9]. In the absence
of origin, the only definability result for attributed transducers that we are aware
of is, that it is decidable for such transducers (and even for macro tree transduc-
ers) whether or not they are of linear size increase [7]; and if so an equivalent
single-use restricted attributed tree transducer can be constructed (see [6]).

2 Attributed Tree Transducers

For k ∈ N, we denote by [k] the set {1, . . . , k}. Let Σ = {ek1
1 , . . . , ekn

n } be a
ranked alphabet, where e

kj

j means that the symbol ej has rank kj . By Σk we
denote the set of all symbols of Σ which have rank k. The set TΣ of trees over
Σ consists of all strings of the form a(t1, . . . , tk), where a ∈ Σk, k ≥ 0, and
t1, . . . , tk ∈ TΣ . Instead of a() we simply write a. For a tree t ∈ TΣ , its nodes
are referred to as follows: We denote by ε the root of t while u.i denotes the
i-th child of the node u. Denote by V (t) the set of nodes of t, e.g. for the tree
t = f(a, f(a, b)) we have V (t) = {ε, 1, 2, 2.1, 2.2}. For v ∈ V (t), t[v] is the label
of v, t/v is the subtree of t rooted at v, and t[v ← t′] is obtained from t by
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replacing t/v by t′. For a set Λ disjoint with Σ, we define TΣ [Λ] as TΣ′ where
Σ′

0 = Σ0 ∪ Λ and Σ′
k = Σk for k > 0.

A (partial deterministic) attributed tree transducer (or att for short) is a tuple
A = (S, I,Σ,Δ, a0, R) where S and I are disjoint sets of synthesized attributes
and inherited attributes, respectively. The sets Σ and Δ are ranked alphabets of
input and output symbols, respectively. We denote by a0 ∈ S the initial attribute
and define that R = (Rσ | σ ∈ Σ ∪ {#}) is a collection of finite sets of rules.
We implicitly assume att’s to include a unique symbol # /∈ Σ of rank 1, the
so-called root marker, that only occurs at the root of a tree. Let σ ∈ Σ ∪ {#}
be of rank k ≥ 0. Let π be a variable for nodes for which we define π0 = π. For
every a ∈ S the set Rσ contains at most one rule of the form a(π) → t and for
every b ∈ I and i ∈ [k], Rσ contains at most one rule of the from b(πi) → t′

where t, t′ ∈ TΔ[{a′(πi) | a′ ∈ S, i ∈ [k]} ∪ {b(π) | b ∈ I}]. The right-hand sides
t, t′ are denoted by rhsA(σ, a(π)) and rhsA(σ, b(πi)), respectively, if they exist.
If I = ∅ then we call A a deterministic top-down tree transducer (or simply a
dt). In this case, we call S a set of states instead of attributes.

To define the semantics of the att A, we first define the dependency graph of A
for the tree s ∈ TΣ as DA(s) = (V,E) where V = {(a0, ε)}∪((S∪I)×(V (#(s))\
{ε})) and E = {((γ′, uj), (γ, ui)) | u ∈ V (s), γ′(πj) occurs in rhsA(s[u], γ(πi)),
with 0 ≤ i, j and γ, γ′ ∈ S∪I}. If DA(s) contains a cycle for some s ∈ TΣ then A
is called circular. We define v0 = v for a node v. For a given tree s ∈ TΣ∪{#(s′) |
s′ ∈ TΣ}, let N = {a0(ε)} ∪ {α(v) | α ∈ S ∪ I, v ∈ V (s) \ {ε}}. For trees
t, t′ ∈ TΔ[N ], t ⇒A,s t′ holds if t′ is obtained from t by replacing a node labeled
by γ(vi), where i = 0 if γ ∈ S and i > 0 if γ ∈ I, by rhsA(s[v], γ(πi))[γ′(πj) ←
γ′(vj) | γ′ ∈ S ∪ I, 0 ≤ j]. If A is non-circular, then every t ∈ TΔ[N ] has a
unique normal form with respect to ⇒A,s denoted by nf(⇒A,s, t). The translation
realized by A, denoted by τA, is the set {(s,nf(⇒A,#(s), a0(ε))) ∈ TΣ × TΔ}. As
A is deterministic, τA is a partial function. Thus we also write τA(s) = t if
(s, t) ∈ τA and say that on input s, A produces the tree t. Denote by dom(A)
the domain of A, i.e., the set of all s ∈ TΣ such that (s, t) ∈ τA for some t ∈ TΔ.
Similarly, range(A) denotes the range of A, i.e., the set of all t ∈ TΔ such that
for some s ∈ TΣ , (s, t) ∈ τA.

Example 1. Consider the att A1 = (S, I,Σ,Δ, a,R) where Σ = {f2, e0} and
Δ = {g1, e0}. Let the set of attributes of A be given by S = {a} and I = {b}.
We define Rf = {a(π) → a(π1), b(π1) → a(π2), b(π2) → b(π)}. Furthermore
we define Re = {a(π) → g(b(π))} and R# = {a(π) → a(π1), b(π1) → e}. The
tree transformation realized by A1 contains all pairs (s, t) such that if s has n
leaves, then t is the tree over Δ that contains n occurrences of the symbol g. The
domain of A is TΣ and its range is TΔ \ {e}. The dependency graph of A1 for
the tree f(f(e, e), f(e, e)) is depicted in Fig. 1. As usual, occurrences of inherited
and synthesized attributes are placed to the left and right of nodes, respectively.
If clear from context, names of attribute occurrences are omitted. 
�

We emphasize that we always consider input trees to be trees over Σ. The
root marker is a technical necessity. For instance, the translation of A1 in Exam-
ple 1 is not possible without it. It is well known that whether or not a given att
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Fig. 1. Dependency Graph of the att in Example 1 for f(f(e, e), f(e, e)).

A is circular can be tested by computing the is-dependencies of A [11]. Infor-
mally, the is-dependency of a tree s depicts the dependencies between inherited
and synthesized attributes at the root of s. Formally, the is-dependency of s is
the set ISA(s) = {(b, a) ∈ I × S | a(1) is reachable from b(1) in DA(s)}. As a
dependency graph is a directed graph, we say for v, v1, v2 ∈ V , that v1 is reach-
able from v2 if (a) v1 = v2 or (b) v is reachable from v2 and (v, v1) ∈ E as
usual. If s = σ(s1, . . . , sk) and the is-dependency of s1, . . . , sk is known, then
the is-dependency of s can be easily computed in a bottom-up fashion using the
rules of Rσ. In the the rest of the paper, we only consider non-circular att’s.

We define an attributed tree transducer with look-ahead (or attR) as a pair
Â = (B,A) where B is a deterministic bottom-up relabeling which preprocesses
input trees for the att A. A(deterministic) bottom-up relabeling B is a tuple
(P,Σ,Σ′, F,R) where P is the set of states, Σ, Σ′ are ranked alphabets and
F ⊆ P is the set of final states. For σ ∈ Σ and p1, . . . , pk ∈ P , the set R contains
at most one rule of the form σ(p1(x1), . . . , pk(xk)) → p(σ′(x1, . . . , xk)) where
p ∈ P and σ′ ∈ Σ′. These rules induce a derivation relation ⇒B in the obvious
way. The translation realized by B is given by τB = {(s, t) ∈ TΣ × TΔ | s ⇒∗

B

p(t), p ∈ F}. As τB is a partial function, we also write τB(s) = t if (s, t) ∈ τB . The
translation realized by Â is given by τÂ = {(s, t) ∈ TΣ ×TΔ | t = τA(τB(s))}. We
write τÂ(s) = t if (s, t) ∈ τÂ as usual. If A is a dt then Â is called a deterministic
top-down transducer with look-ahead (or dtR).

3 The Single Path Property

In the this section, we show that given an att with monadic output, it is decidable
whether or not an equivalent dtR exists. Monadic output means that output
symbols are at most of rank 1. First consider the following definition. For an att
A with initial attribute a0, an input tree s and v ∈ V (s), we say that on input
s, an attribute α of A processes the node v if (a0, ε) is reachable from (α, 1.v) in
DA(s). Recall that the dependency graph for s is defined on the tree #(s). Now,
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consider an arbitrary dtR T̆ = (B′, T ′) with monadic output. Then the behavior
of T ′ is limited in a particular way: Let s be an input tree and s′ be obtained
from s via the relabeling B′. On input s′, the states of T ′ only process the nodes
on a single path of s′. A path is a sequence of nodes v1, . . . , vn such that vi is
the parent node of vi+1. This property holds obviously as the output is monadic
and hence at most one state occurs on the right-hand side of any rule of T ′.

Using this property, we prove our claim. In the following, we fix an att
A = (S, I,Σ,Δ, a0, R) with monadic output and show that if a dtR T = (B′, T ′)
equivalent to A exists then we can equip A with look-ahead such that attributes
of A become limited in the same way as states of T ′: They only process nodes
of a single path of the input tree. Our proof makes use of the result of [1]. This
result states that for a functional two-way transducer it is decidable whether
or not an equivalent one way transducer exists. Such transducers are essentially
attributed transducers and top-down transducers with monadic input and out-
put, respectively. Functional means that the realized translation is a function.
We show that A equipped with look-ahead so that attributes of A are limited
as described earlier can be converted into a two-way transducer TW . It can be
shown that the procedure of [1] yields a one-way transducer TO equivalent to
TW if and only if T exists. We then show that we can construct T from TO.

Subsequently, we define the look-ahead with which we equip A. W.l.o.g. we
assume that only right-hand sides of rules in R# are ground (i.e., in TΔ). Clearly
any att can be converted so that it conforms to this requirement. Let α(π) →
τ ∈ Rσ such that τ is ground. First, we remove this rule from Rσ. Then we
introduce a new inherited attribute 〈τ〉 and the rules α(π) → 〈τ〉(π) ∈ Rσ, and
〈τ〉(π1) → τ ∈ R#. For all σ′ ∈ Σk and j ∈ [k] we define 〈τ〉(πj) → 〈τ〉(π) ∈ Rσ′ .

Let s ∈ dom(A) and let v ∈ V (s). We call ψ ⊆ I × S the visiting pair set at
v on input s if (b, a) ∈ ψ if and only if
– on input s, the attribute a processes v and
– (b, a) ∈ ISA(s/v)

Let ψ be the visiting pair set at v on input s. In the following, we denote by
Ωψ the set consisting of all trees s′ ∈ TΣ such that ψ ⊆ ISA(s′). Thus the set
Ωψ contains all trees s′ such that the visiting pair set at v on input s[v ← s′] is
also ψ. If an arbitrary a ∈ S exists such that (b, a) ∈ ψ for some b ∈ I and the
range of a when translating trees in Ωψ is unbounded, i.e., if the cardinality of
{nf(⇒A,s′ , a(ε)) | s′ ∈ Ωψ} is unbounded, then we say that the variation of Ωψ

is unbounded. If ψ is the visiting pair set at v on input s and the variation of Ωψ

is unbounded then we also say that the variation at v on input s is unbounded.
The variation plays a key role for proving our claim. In particular, the following
property is derived from it: We say that A has the single path property if for all
trees s ∈ dom(A) a path ρ exists such that the variation at v ∈ V (s) is bounded
whenever v does not occur in ρ. The following lemma states that the single path
property is a necessary condition for the att A to have an equivalent dtR.

Lemma 1. Let s ∈ dom(A) and v1, v2 ∈ V (s) such that v1 and v2 have the
same parent node. If a dtR T equivalent to A exists then the variation at either
v1 or v2 on input s is bounded.
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Proof. For simplicity assume that T is a dt. The proof for dtR is obtained simi-
larly. Assume that the variations at both v1 and v2 on input s is unbounded. As
T produces monadic output trees, on input s, only one of the nodes v1 and v2 is
processed by a state of T . W.l.o.g. let ψ be the visiting pair set at v1 on input
s and assume that only v2 is processed by a state of T . Then for all s′ ∈ Ωψ,
T produces the same output on input s[v1 ← s′]. However, A does not produce
the same output as the visiting pair set at v1 on input s[v1 ← s′] is ψ and the
variation of Ωψ is unbounded contradicting the equivalence of T and A. 
�
Example 2. Consider the att A2 = (S, I,Σ,Δ, a,R) where Σ = {f2, e0, d0} and
Δ = {f1, g1, e0, d0}. The set of attributes are given by S = {a, ae, ad} and
I = {be, bd, 〈e〉, 〈d〉}. In addition to 〈e〉(π1) → 〈e〉(π) and 〈d〉(π1) → 〈d〉(π), the
set Rf contains the rules

ad(π) → f(a(π1)) bd(π1) → ad(π1) bd(π2) → bd(π) a(π) → a(π2)
ae(π) → g(a(π1)) be(π1) → ae(π1) be(π2) → be(π)

while R# contains in addition to 〈e〉(π1) → e and 〈d〉(π1) → d the rules

a(π) → a(π1) be(π1) → ae(π1) bd(π1) → ad(π1).

Furthermore, we define Re = {a(π) → be(π), ae(π) → 〈e〉(π)} and Rd = {a(π) →
bd(π), ad(π) → 〈d〉(π)}. Let s ∈ TΣ and denote by n the length of the leftmost
path of s. On input s, A outputs the tree t of height n such that if v ∈ V (t) is
not a leaf and the rightmost leaf of the subtree s/v is labeled by e then t[v] = g,
otherwise t[v] = f . If v is a leaf then t[v] = s[v]. 
�

Clearly, the att A2 in Example 2 is equivalent to a dtR and A2 has the single
path property. In particular, it can be verified that the variations of all nodes
that do not occur on the left-most path of the input tree are bounded. More
precisely, if v does not occur on the leftmost path of the input tree then its
visiting pair set is either ψe = {(be, a)} or ψd = {(bd, a)}. Thus, Ωψe

consists
of all trees in TΣ whose rightmost leaf is labeled by e. For all such trees the
attribute a yields the output be(ε). The case ψd is analogous.

In contrast, consider the att A1 in Example 1. Recall that it translates an
input tree s into a monadic tree t of height n + 1 if s has n leaves. This trans-
lation is not realizable by any dtR. This is reflected in the fact that the att
of Example 1 does not have the single path property. In particular, consider
s = f(f(e, e), f(e, e)). The visiting pair set at all nodes of s is ψ = {(a, b)} (cf.
Fig. 1) and Ωψ is TΣ . It can be verified that the variation of Ωψ is unbounded.

Recall that we aim to equip A with look-ahead for obtaining the attR Â
that has the following property: On input s ∈ dom(A), attributes of A only
process nodes of a single path of s. Before we show how to test whether or not
A has the single path property, we describe how to construct Â. Denote by B
the bottom-up relabeling of Â and let A′ be A modified to process output trees
produced by B. Let s ∈ dom(A) and let s′ be obtained from s via the relabeling
B. The idea is that on input s′, if attributes of A′ process v ∈ V (s′) then the
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variation of v on input s with respect to A is unbounded. Note that obviously
V (s) = V (s′). Clearly, if A has the single path property then attributes of A′

only process nodes of a single path of s′.
Now the question is how precisely do we construct Â? It can be shown that

all ψ ⊆ I ×S that are visiting pair sets of A can be computed. Let ψ be a visiting
pair set. If the variation of Ωψ is bounded, then a minimal integer κψ can be
computed such that for all a ∈ S such that (b, a) ∈ ψ for some b ∈ I and for
all s′ ∈ Ωψ, height(nf(⇒A,s′ , a(ε))) ≤ κψ. Whether or not the variation of Ωψ is
bounded can be decided as finiteness of ranges of att’s is decidable [3]. Thus,
κ = max{κψ | ψ is a visiting pair set of A and the variation of Ωψ is bounded}
is computable.

Denote by Tκ
Δ[I({ε})] the set of all trees in TΔ[I({ε})] of height at most κ.

Informally, the idea is that the bottom-up relabeling of the attR Â precomputes
output subtrees of height at most κ that contain the inherited attributes of
the root of the current input subtree. Hence, the att of Â does not need to
compute those output subtrees itself; the translation is continued immediately
with those output subtrees. Formally, the bottom-up relabeling B is constructed
as follows. The states of B are sets � ⊆ {(a, ξ) | a ∈ S and ξ ∈ Tκ

Δ[I({ε})]}.
The idea is that if s ∈ domB(�) and (a, ξ) ∈ � then ξ = nf(⇒A,s, a(ε)). Given
σ(s1, . . . , sk), B relabels σ by σ�1,...,�k

if for i ∈ [k], si ∈ domB(�i). Note that
knowing �1, . . . , �k and the rules in the set Rσ of A, we can easily compute � such
that σ(s1, . . . , sk) ∈ domB(�) and hence the rules of B. In particular, � contains
all pairs (a, ξ) such that ξ = nf(⇒A,σ(s1,...,sk), a(ε)) ∈ Tκ

Δ[I({ε})]. Therefore, B
contains the rule σ(�1(x1), . . . , �k(xk)) → �(σ�1,...,�k

(x1, . . . , xk)).

Example 3. Consider the att A2 in Example 2. Recall that all nodes that do not
occur on the leftmost path of the input tree s of A2 have bounded variation.
Let v be such a node. Then the visiting pair set at v is either ψe = {(a, be)} or
ψd = {(a, bd)}. Assume the former. Then nf(⇒A2,s/v, a(ε)) = be(ε). If we know
beforehand that a produces be(ε) when translating s/v, then there is no need to
process s/v with a anymore. This can be achieved via a bottom-up relabeling B2

that precomputes all output trees of height at most κ = κψe
= κψd

= 1. In par-
ticular the idea is that if for instance v ∈ V (s) is relabeled by f{(a,bd(ε))},{a,be(ε)}
then this means when translating s/v.1 and s/v.2, a produces bd(ε) and be(ε),
respectively. The full definition of B2 is as follows: The states of B2 are
�1 = {(ae, 〈e〉(ε)), (a, be(ε))}, �2 = {(ad, 〈d〉(ε)), (a, bd(ε))}, �3 = {(a, bd(ε))},
and �4 = {(a, be(ε))}. All states are final states. In addition to e → �1(e) and
d → �2(d), B2 also contains the rules

f(�(x1), �1(x2)) → �4(f�,�1(x1, x2)) f(�(x1), �2(x2)) → �3(f�,�2(x1, x2))
f(�(x1), �3(x2)) → �3(f�,�3(x1, x2)) f(�(x1), �4(x2)) → �4(f�,�4(x1, x2)),

where � ∈ {�1, . . . , �4}. It is easy to see that using B2, attributes of A′
2, that is,

A2 modified to make use of B2, only process nodes of the leftmost path of s2.
�
With B, we obtain Â = (B,A′) equivalent to A. Note that A is modified

into A′ such that its input alphabet is the output alphabet of B and its rules
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make use of B. In particular, the rules of A′ for a symbol σ�1,...,�k
are defined as

follows. First, we introduce for each state � of B an auxiliary symbol 〈�〉 of rank
0 to A. We define that a(π) → t ∈ R〈�〉 if (a, t[π ← ε]) ∈ �. Denote by [π ← v]
the substitution that substitutes all occurrences of π by the node v, e.g. for
t1 = f(b(π)) and t2 = f(a(π2)) where f is a symbol of rank 1, a ∈ S and b ∈ I, we
have t1[π ← v] = f(b(v)) and t2[π ← v] = f(a(v2)). Let t = nf(⇒A,σ(〈�1〉,...,〈�k〉)
, a(ε)) ∈ TΔ[I({ε}) ∪ S([k])]. Then we define the rule a(π) → t′ ∈ Rσ�1,...,�k

for
A′ where t′ is the tree such that t′[π ← ε] = t. It should be clear that since
all output subtrees of height at most κ are precomputed, attributes of A′ only
process nodes whose variation with respect to A are unbounded (cf. Example 3).

In parallel with the above construction of Â, we can decide whether or not
a given att A has the single path property as follows. Let s ∈ dom(A) and let
s′ be the tree obtained from s via the relabeling B. If nodes v1, v2 ∈ V (s′) with
the same parent node exist such that on input s′, attributes of A′ process both
v1 and v2 then A does not have the single path property. Thus, to test whether
A has the single path property, we construct the following attR Ă = (B̆, Ă′)
from Â = (B,A′). Input trees of Ă are trees s ∈ dom(Â) where two nodes v1, v2
with the same parent node are annotated by flags f1 and f2 respectively. The
relabeling B̆ essentially behaves like B ignoring the flags. Likewise, the att Ă′

behaves like A′ with the restriction that output symbols are only produced if an
annotated symbol is processed by a synthesized attribute or if a rule in R# is
applied. For i = 1, 2 we introduce a special symbol gi which is only outputted if
the node with the flag fi is processed. Hence, we simply need to check whether
there is a tree with occurrences of both g1 and g2 in the range of Ă. Obviously,
the range of Ă is finite. Thus it can be computed.

Lemma 2. It is decidable whether or not A has the single path property.

4 From Tree to String Transducers and Back

Assume that A has the single path property. We now convert Â = (B,A′)
into a two-way transducer TW . Recall that two-way transducers are essentially
attributed tree transducers with monadic input and output1. Informally the idea
is as follows: Consider a tree s ∈ dom(A) and let s′ be obtained from s via B. As
on input s′, attributes of A′ only process nodes occurring on a single path ρ of
s, the basic idea is to ‘cut off’ all nodes from s′ not occurring in ρ. This way, we
effectively make input trees of A′ monadic. More formally, TW is constructed by
converting the input alphabet of A′ to symbols of rank 1. Denote by Σ′ the set of

1 Note that the two-way transducers in [1] are defined with a left end marker � and a
right end marker �. While � corresponds to the root marker of our tree transducers,
� has no counterpart. Monadic trees can be considered as strings with specific end
symbols, i.e. symbols in Σ0, that only occur at the end of strings. Thus, � is not
required. Two-way transducers can test if exactly one end symbol occurs in the input
string and if it is the rightmost symbol. Thus they can simulate tree transducers with
monadic input and output.
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all output symbols of B. Accordingly, let Σ′
k with k ≥ 0 be the set of all symbols

in Σ′ of rank k. Let σ′ ∈ Σ′
k with k > 0. Then the input alphabet ΣW of TW

contains the symbols 〈σ′, 1〉, . . . , 〈σ′, k〉 of rank 1. Furthermore, ΣW contains all
symbols in Σ′

0. Informally, a symbol 〈σ′, i〉 indicates that the next node is to
be interpreted as the i-th child. Thus trees over ΣW can be considered prefixes
of trees over Σ′, e.g., let f ∈ Σ′

2, g ∈ Σ′
1 and e ∈ Σ′

0 then 〈f, 2〉〈f, 1〉〈f, 1〉e
encodes the prefix f(x1, f(f(e, x1), x1)) while 〈f, 1〉〈g, 1〉e encodes f(g(e), x1).
Note that for monadic trees we omit parentheses for better readability. We call
t1 ∈ TΣ′ [{x1}] a prefix of t2 ∈ TΣ′ if t2 can be obtained from t1 by substituting
nodes labeled by x1 by ground trees. The idea is that as attributes of A′ only
process nodes occurring on a single path of the input tree, such prefixes are
sufficient to simulate A′.

The attributes of TW are the same ones as those of A′. The rules of TW are
defined as follows: Firstly the rules for # are taken over from A′. As before,
assume that only rules for # have ground right-hand sides. Let A′ contains the
rule a(π) → t ∈ Rσ′ where σ′ ∈ Σ′

k and a, α ∈ S and α(πi) occurs in t. Then
TW contains the rule a(π) → t[πi ← π1] ∈ R〈σ′,i〉, where [πi ← π1] denotes the
substitution that substitutes occurrences of πi by π1. Analogously, if A′ contains
the rule b(πi) → t′ ∈ Rσ′ where b ∈ I and for α ∈ S, α(πi) occurs in t′, then
TW contains the rule b(π1) → t′[πi ← π1] ∈ R〈σ′,i〉. We remark that as A has
the single path property, A′ will never apply a rule b(πi) → t′ where α(πj) with
j �= i occurs in t′. Thus, we do not need to consider such rules.

For the correctness of subsequent arguments, we require a technical detail:
Let s̃ be an input tree of TW . Then we require that an output tree s of B exists
such that s̃ encodes a prefix of s. If such a tree s exists we say s̃ corresponds to s.
To check whether for a given input tree s̃ of TW an output tree s of B exists such
that s̃ corresponds to s, we proceed as follows. As B is a relabeling, its range
is effectively recognizable. Denote by B̄ the bottom-up automaton recognizing
it. Given B̄, we can construct a bottom-up automaton B̄′ that accepts exactly
those trees s̃ for which an output tree s of B exists such that s̃ corresponds
to s. W.l.o.g. assume that for all states l of B̄, domB(l) �= ∅. If for σ′ ∈ Σ′

k,
σ′(l1(x1), . . . , lk(xk)) → l(σ′(x1, . . . , xk)) is a rule of B̄ then 〈σ′, i〉(li(x1)) →
l(〈σ′, i〉(x1)) is a rule of B̄′. We define that B̄′ has the same accepting states as
B̄. Using B̄′, we check whether for a given input tree s̃ of TW an output tree s
of B exists such that s̃ corresponds to s as follows. Before producing any output
symbols, on input s̃, TW goes to the leaf of s̃ and simulates B̄′ in a bottom-up
fashion while going back to the root. If s̃ is accepted by B̄′ then TW begins
to simulate A′, otherwise no output is produced. Thus the domain of TW only
consists of trees s̃ for which an output tree s of B exists such that s̃ corresponds
to s. We remark that B̄′ may be nondeterministic which in turn means that TW

may be nondeterministic as well, however the translation it realizes is a function.
In fact the following holds.

Lemma 3. Consider the attR Â = (B,A′) and the two-way transducer TW

constructed from Â. Let s̃ be a tree over ΣW . If on input s̃, TW outputs t then
for all s ∈ range(B) such that s̃ corresponds to s, A′ also produces t on input s.
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In the following, consider the two-way transducer TW . Assume that the proce-
dure of [1] yields a one-way transducer TO that is equivalent to TW . Given TO, we
construct a top-down transducer T ′ that produces output trees on the range of B.
In particular, T ′ has the same states as TO. Furthermore, a rule q(〈σ′, i〉(x1)) → t
of TO where σ′ ∈ Σ′

k and i ∈ [k] induces the rule q(σ′(x1, . . . , xk)) → t̂ for
T ′ where t̂ is obtained from t by substituting occurrences of x1 by xi, e.g., if
t = f(g(q′(x1))) then t̂ = f(g(q′(xi))). Recall that the domain of TW only con-
sists of trees s̃ for which an output tree s of B exists such that s̃ corresponds to
s. As TW and TO are equivalent, the domain of TO also consists of such trees.
Hence, by construction, the following holds.

Lemma 4. Consider the top-down transducer T ′ constructed from the one-way
transducer TO. Let s̃ be a tree over ΣW . If on input s̃, TO outputs t then for all
s ∈ range(B) such that s̃ corresponds to s, T ′ also produces t on input s.

With Lemmas 3 and 4, it can be shown that the following holds.

Lemma 5. The top-down transducer T ′ and the att A′ are equivalent on the
range of B.

Therefore it follows that Â = (B,A′) and N = (B, T ′) are equivalent. Conse-
quently, A and N are equivalent. We remark that there is still a technical detail
left. Recall that our aim is to construct a dtR T equivalent to A. However, the
procedure of [1] may yield a nondeterministic TO. Thus T ′ and hence N may
be nondeterministic (but functional). However, as shown in [5], we can easily
compute a dtR equivalent to N .

The arguments above are based on the assumption that the procedure of [1]
yields a one-way transducer equivalent to TW . Now the question is, does such a
one-way transducer always exists if a dtR equivalent to A exists? The answer to
this question is indeed affirmative. In particular the following holds.

Lemma 6. Consider the attR Â = (B,A′) equivalent to A. If a dtR T equivalent
to A exists, then a (nondeterministic) top-down transducer with look-ahead N =
(B,N ′) exists such that Â and N are equivalent.

Proof. (sketch) Recall that given σ(s1, . . . , sk), B relabels σ by σ�1,...,�k
if for

i ∈ [k], si ∈ domB(�i). In the following, denote by s� a fixed tree in domB(�).
Let T = (B′, T ′). We sketch the main idea of the proof, i.e., how to so simulate

B′ using B. First consider the following property which we call the substitute-
property. Let s ∈ TΣ and ŝ be obtained from s via the relabeling B. Let v1 and v2
be nodes of s with the same parent. As T exists, the single path property holds for
A. Thus on input ŝ, v1 or v2 is not processed by attributes of A′. Assume that v1
is not processed and that s/v1 ∈ domB(�). Then τÂ(s) = τÂ(s[v1 ← s�]) follows.
Informally, this means that s/v1 can be substituted by s� without affecting the
output of the translation. By definition, Â and A are equivalent while T and A
are equivalent by our premise. Thus, τT (s) = τT (s[v1 ← s�]).

Now we show how B′ is simulated using B. Let q̂ be a state of N ′. Each
such state q̂ is associated with a state q of T ′ and a state l of B′. Consider the
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tree ŝ obtained from s via B. Assume that the node v labeled by σ�1,...,�k
is

processed by q̂ in the translation of N ′ on input ŝ, i.e., v has k child nodes.
It can be shown that q̂ can compute which of v’s child nodes is processed by
attributes in the translation of A′ on input ŝ. W.l.o.g. let v.1 be that node and
let s/v.i ∈ domB(�i) for i ∈ [k]. Due to the substitute-property, N can basically
assume that s/v.i = s�i

for i �= 1. For i �= 1, let s�i
∈ domB′(li). Now N ′ guesses

a state l1 for s/v.1 such that σ(l1(x1), . . . , lk(xk)) → l(σ̂(x1, . . . , xk)) is a rule of
B′. The state q̂ then ‘behaves’ as q would when processing a node labeled by σ̂.
It can be guaranteed that N ′ verifies its guess. 
�

The dtR N = (B,N ′) can be constructed such that on input s ∈ range(B)
an attribute of A′ processes the node v if and only if a state of N ′ processes v.
The existence of such a transducer with look-ahead N implies the existence
of a one-way transducer TO equivalent to TW . In fact, TO is obtainable from N
similarly to how TW is obtainable from Ap. Therefore, the procedure of [1] yields
a top-down transducer TO equivalent to TW if and only if T exists.

5 Final Results

The considerations in Sects. 3 and 4 yield the following theorem.

Theorem 1. For an att with monadic output, it is decidable whether or not an
equivalent dtR exists and if so then it can be constructed.

We show that the result of Theorem 1 is also obtainable for nondeterministic
functional attributed tree transducers with look-around. Look-around is a for-
malism similar to look-ahead. An attributed tree transducers with look-around
(or attU ) consists of a top-down relabeling with look-ahead R and an att A where
output trees are computed as τA(τR(s)) for input trees s. Before we prove our
claim, we prove the following result. Denote by nATTU and dATTU the classes
of translations realizable by nondeterministic and deterministic attU ’s, respec-
tively. Denote by func the class all functions.

Lemma 7. nATTU ∩ func = dATTU .

Proof. (sketch) Informally, the basic idea is the same as for functional top-down
transducers in [5]. For simplicity, let A be a functional att without look-around.
Consider a rule set Rσ of A where σ ∈ Σ. Let all rules in Rσ with the same left-
hand side be ordered. Whenever several such rules are applicable, i.e., utilizing
these particular rule leads to the production of a ground tree, the first applicable
rule in the given order will be executed. Using look-around, we can test whether
or not a rule is applicable. 
�

We remark that look-around is required; just look-ahead for instance is not
sufficient as ATT ∩ func �⊆ dATTR can be shown.

Due to Lemma 7, it is sufficient to show that for a deterministic attU it is
decidable whether or not an equivalent dtR exists. Roughly speaking, this result
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is obtained as follows. Let a deterministic attU Â = (R,A′), where R is a top-
down relabeling with look-ahead and A′ is an att, be given. To show that a dtR

equivalent to Â exists it is sufficient to show that a dtR T exists such that A′

and T are equivalent on the range of R. This is because R is also a dtR and
dtR’s are closed under composition [4]. The dtR T can be obtained by slightly
modifying the procedure in Sect. 3.

Theorem 2. For a functional attU with monadic output, it is decidable whether
or not an equivalent dtR exists and if so then it can be constructed.

Note that by definition dtR’s with monadic output are by default linear. For
a linear dtR it is decidable whether or not an equivalent linear dt exists [12]. If
such a dt exists it can be constructed. Hence, we obtain the following corollary.

Corollary 1. For a functional attU with monadic output, it is decidable whether
or not an equivalent dt exists and if so then it can be constructed.

6 Conclusion

We have shown how to decide for a given attributed transducer with look-around
but restricted to monadic output, whether or not an equivalent deterministic top-
down tree transducers (with or without look-ahead) exists. Clearly we would
like to extend this result to non-monadic output trees. The latter seems quite
challenging, as it is not clear whether or not the result [1] can be applied in this
case. Other questions that remain are the exact complexities of our constructions.
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Abstract. Deterministic graph-walking automata equipped with
finitely many “drop-once” pebbles are investigated: these automata
explore a graph by following its edges using finitely many states, and they
can also leave pebbles at some nodes, but cannot lift these pebbles any-
more. It is proved that for every such automaton there is a graph-walking
automaton without pebbles that recognizes the same set of graphs. To be
precise, for an automaton with m drop-once pebbles and n states, oper-
ating on graphs with k labels of edge end-points, an automaton without

pebbles with (2k + 1)mm!3
m(m+1)

2 nm+1 states accepting the same set
of graphs is constructed. The results apply to two-way finite automata
(with k = 2) and to tree-walking automata as special cases.

1 Introduction

Various families of automata that walk on input objects, such as a string, a
tree or a graph, are well-known: these are two-way finite automata (2DFA),
tree-walking automata (TWA), graph-walking automata (GWA), etc. Also their
variants equipped with pebbles have been studied for a long time. An automaton
may drop a pebble at some square or a node, and when it later returns there, it
will see the pebble and may lift it to move it to another place.

Automata with pebbles were first investigated by Blum and Hewitt [1], who
introduced two-way finite automata with pebbles, as well as automata with peb-
bles on rectangular grids. In particular, Blum and Hewitt [1] proved that 2DFA
with a single pebble recognize only regular languages. At the same time, two
pebbles allow the automata to recognize some non-regular languages, such as
{ anbn | n � 0 }. Later, Goralč́ık et al. [10] proved regularity of languages recog-
nized by one-pebble alternating two-way automata. Geffert and Ištoňová [8] stud-
ied the state complexity of deterministic and nondeterministic two-way automata
with one pebble.

Later, Globerman and Harel [9] investigated pebble 2DFA with m nested
pebbles. At every moment, such an automaton has pebbles 1, . . . , i placed, and
pebbles i + 1, . . . , m in its hands. Then, the automaton may either lift the i-th
pebble, or drop the (i + 1)-th pebble, but cannot do any other operations on
pebbles. Globerman and Harel [9] proved that such automata, with a certain
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extra assumption, also can recognize only regular languages (regularity without
the extra assumption was later proved by Engelfriet and Hoogeboom [6]). Also,
Globerman and Harel [9] established a lower bound: that simulating an automa-
ton with m nested pebbles and n states by an ordinary 2DFA may require a
number of states given by a tower of m + 1 exponents.

Tree-walking automata with pebbles were first considered by Engelfriet and
Hoogeboom [6]; they proved that every nondeterministic tree-walking automa-
ton with m nested pebbles recognizes a regular tree language. Bojańczyk et
al. [3] established a strict hierarchy of such automata by the number of pebbles,
both in the deterministic and in the nondeterministic cases. Muscholl et al. [12]
proved the closure of deterministic automata with nested pebbles under comple-
mentation, using extra pebbles; later, Kunc and Okhotin [11] have shown that
the same can be achieved without extra pebbles.

Pebbles are also being considered in the more general case of (determinis-
tic) graph-walking automata, that is, automata that walk on graphs of the gen-
eral form, like tree-walking automata walk on trees and 2DFA walk on strings.
The model of graph-walking automata with pebbles was reportedly first pro-
posed by Michael Rabin in his 1967 public lecture [7], who conjectured that
for every graph-walking automaton with finitely many pebbles there is a graph
that it cannot fully explore. A decade later, Budach [4] proved Rabin’s conjec-
ture for graph-walking automata without pebbles. Rollik [13] established an even
stronger result than Rabin’s conjecture: namely, that if a finite team of automata
simultaneously explore the same graph, being able to see each other when they
meet and knowing all that the others know, then even in this case there is a
graph that they shall not fully explore. Rollik’s model is at least as powerful
as automata with pebbles, because some of the automata from the team may
assume the role of pebbles: that is, stand still when they have been “dropped”,
and follow their teammate who “lifted” them.

On the other hand, there are some positive results on traversing graphs using
pebbles. Blum and Kozen [2] proved that an automaton with 2 pebbles can tra-
verse every plane graph embedded in a rectangular grid with directions of motion
marked according to the grid. Disser et al. [5] have shown that every graph with
n nodes can be traversed by a single automaton equipped with log log n pebbles
and log log n bits of memory.

What is the class of graph languages recognized by graph-walking automata
with pebbles? It follows from the results of Bojańczyk et al. [3] that already deter-
ministic tree-walking automata become stronger with 1 pebble, which can be
lifted and moved. Hence, neither for tree-walking nor for graph-walking automata
there could be a result similar to the result of Globerman and Harel [9] for 2DFA.

This paper investigates a weaker kind of pebbles, drop-once pebbles, which
can only be dropped once, and cannot be lifted anymore. This is a special case of
nested pebbles. An automaton proverbially casts away stones, and never gath-
ers stones. It turns out that no finite number of drop-once pebbles can increase
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the expressive power of graph-walking automata. To show this, for every graph-
walking automaton with m drop-once pebbles, a graph-walking automaton with-
out pebbles recognizing the same set of graphs is constructed.

At first, in Sect. 3, the case of only one pebble is investigated. For any given
automaton with 1 drop-once pebble, a new automaton without pebbles simulates
its moves step by step, and also remembers whether the original automaton has
already dropped its pebble. If the pebble has been dropped already, then at
every step the simulating automaton needs to inquire whether this pebble has
been dropped precisely at the current node. For this purpose, a separate pebble-
checking automaton is executed at every step: it checks whether the pebble was
dropped at the current node by traversing the tree of the original automaton’s
computations that end by dropping the pebble at the current node. The general
idea of traversing the tree of computations is due to Sipser [14], and it is often
used in the literature to simulate various kinds of automata; this paper employs
a variant of Sipser’s method for graph-walking automata described by Kunc and
Okhotin [11]. Using this method, the pebble-checking automaton is constructed.

More or less the same is done in the general case of m pebbles, considered in
Sect. 4. The set of pebbles in hands is remembered in the state of the simulating
automaton. At each step, the presence of each of the previously dropped pebbles
at the current node is determined using a separate pebble-checking automaton
for each pebble. This checking also gets more complicated, because the pebble
in question could have been dropped after some other pebbles, and then the
computations resulting in its being dropped get more complicated to simulate.
These pebble-checking automata are actually constructed inductively on the
number of pebbles.

2 Definitions

All definitions for graph-walking automata are inherited from the paper by Kunc
and Okhotin [11]. For graph-walking automata, the signature is analogous to an
alphabet for a 2DFA, and it determines the set of all labeled graphs that are
admissible as inputs for a graph-walking automaton. The signature defines the
possible labels for nodes and for edge end-points in graphs.

Definition 1 ([11]). A signature S is a quintuple S = (D,−, Σ,Σ0, (Da)a∈Σ),
where:

– D is a finite set of directions, which are labels attached to edge end-points;
– a bijection − : D → D provides an opposite direction, with −(−d) = d for all

d ∈ D;
– Σ is a finite set of node labels;
– Σ0 ⊆ Σ is a non-empty subset of possible labels of the initial node;
– Da ⊆ D, for every a ∈ Σ, is the set of directions in each node labelled with

a.

Like strings are defined over an alphabet, graphs are defined over a signature.
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Definition 2. A graph over a signature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a
quadruple (V, v0,+, λ), where:

– V is a finite set of nodes;
– v0 ∈ V is the initial node;
– edges are defined by a partial function +: V × D → V , such that if v + d is

defined, then (v+d)+(−d) is defined and equals v; also denote v−d = v+(−d);
– node labels are assigned by a total mapping λ : V → Σ, such that

i. v + d is defined if and only if d ∈ Dλ(v), and
ii. λ(v) ∈ Σ0 if and only if v = v0.

The function + defines the edges of the graph. If u + d = v, then the nodes
u and v in the graph are connected with an edge with its end-points labelled
with directions d (on the side of u) and −d (on the side of v). Multiple edges
and loops are possible.

A graph-walking automaton is defined similarly to a 2DFA, with an input
graph instead of an input string.

Definition 3. A (deterministic) graph-walking automaton (GWA) over a sig-
nature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q × Σ is a set of acceptance conditions;
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all q and a where δ is defined.

An automaton operating on a graph at each moment sees only the label of
the current node and knows its current state. Then, according to the transition
function, it enters a new state and moves in the given direction to one of the
neighbouring nodes. If the automaton enters an accepting pair of a state and
a node label (one in F ), then it accepts, and if it enters a pair not in F with
no transition defined, then it rejects. It may also loop, that is, continue walking
indefinitely.

Formally, an automaton’s configuration on a graph G = (V, v0,+, λ) is a
pair (q, v), with q ∈ Q and v ∈ V . A computation of an automaton A on
a graph G is the following uniquely defined sequence of configurations. The
computation starts in the initial configuration (q0, v0). For every configuration
(q, v) in the computation, if δ(q, λ(v)) is defined and equals (q′, d), then the next
configuration after (q, v) is (q′, v + d). Otherwise, the configuration (q, v) is the
last one in the computation; if (q, λ(v)) ∈ F , then the automaton accepts in
the configuration (q, v), otherwise it rejects. If the computation is an infinite
sequence, then the automaton is said to loop.

A graph walking automaton A defines the language L(A), this is the set of
graphs it accepts.

This paper investigates what happens, if a graph-walking automaton is given
finitely many distinguishable pebbles p1, . . . , pm, which it can drop at the nodes
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of a graph, but cannot lift. Once a pebble pi is dropped at some node v, it remains
at that node until the end of the computation. Later on it will be proved that
this model is not any stronger than graph-walking automata without pebbles.

Definition 4. A graph-walking automaton with drop-once pebbles over a sig-
nature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quintuple Ap = (Q, q0, P, F, δ), that
consists of the following components.

– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– P is a finite set of distinct pebbles.

When the automaton works on a graph, at every moment it is in a state q ∈ Q,
has a set of pebbles P1 ⊆ P in its hands, is at a node labelled with a ∈ Σ
and sees pebbles from P2 ⊆ P placed at this node. The quadruple (q, P1, a, P2)
contains all the information the automaton can use to decide what to do, and
it is called the environment.

– F ⊆ Q × 2P × Σ × 2P is the set of accepting environments. If the automaton
is in an environment (q, P1, a, P2) in F , then it accepts.

– δ : (Q×2P ×Σ ×2P )\F → Q×D ×2P is a partial transition function, which
determines the automaton’s action in each environment. If δ(q, P1, a, P2) =
(q′, d, P ′

2), this means that the automaton enters the state q′ and leaves the
node in the direction d, leaving behind the pebbles from P ′

2 (these are both
the pebbles that were at this node previously, and the pebbles dropped by this
transition). Accordingly, such a transition must satisfy the conditions d ∈ Da,
P2 ⊆ P ′

2 and P ′
2 ⊆ P1 ∪ P2, that is, there should be a direction d in nodes

labelled with a, the pebbles which are already at the node must remain there,
and in addition the automaton can leave any pebbles it has in its hands. After
the transition, the automaton has pebbles from P1\P ′

2 in its hands.

An automaton with drop-once pebbles starts its computation on a graph
at the initial node v0 in the state q0, with all pebbles in its hands, and with
no pebbles in any nodes of the graph. Then the automaton moves according
to the transition function, possibly dropping pebbles at some nodes. A pebble
once dropped at a node remains there until the end of the computation. If the
automaton gets into an accepting environment, then it accepts the graph; if it
gets into an environment with no transition defined, then it rejects, and if it
works forever, then it is said to loop.

Formally, a configuration of an automaton with drop-once pebbles on a graph
G = (V, v0,+, λ) is a triple (q, v, f), where q ∈ Q is the automaton’s current state,
v ∈ V is the node it is currently observing, and a partial function f : P → V says
for each pebble where it currently is. If a pebble is in the automaton’s hands, then
the value of f is undefined. The initial configuration is (q0, v0, f0), where f0 is
defined nowhere. The next configuration, and accepting and rejecting configura-
tions, are naturally defined according to the explanations above. A computation
is defined in the same way as for an ordinary graph-walking automaton.

The language L(Ap) recognized by an automaton Ap with drop-once pebbles
is the set of all graphs it accepts.
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3 Simulating One Drop-Once Pebble

The main result of this paper is that every graph-walking automaton with m
drop-once pebbles can be simulated by a graph-walking automaton without peb-
bles. This will first be proved in the case of one drop-once pebble.

Theorem 1. Let Ap = (Q, q0, {p}, F, δ) be a graph-walking automaton with one
drop-once pebble p, defined over a signature S = (D,−, Σ,Σ0, (Da)a∈Σ). Let
n = |Q| be the number of its states, and let k = |D| be the number of directions
in the signature.

Then there exists a graph-walking automaton A0 without pebbles, with (2k +
1)n2 + 2n states, which accepts the same set of graphs as Ap. Furthermore, A0

accepts or rejects at the same node as Ap (and if Ap loops, then so does A0).

Until Ap drops its pebble, A0 can just repeat the actions of Ap using the
set of states Q, simulating the transitions and the accepting conditions of Ap

with an imaginary pebble in its hands (that is, for P1 = {p} and P2 = ∅). If
Ap never drops the pebble on a graph G, then A0 simulates it correctly to the
end, using only states from Q. But a time may come when Ap decides to drop
its pebble, while the automaton A0 has no pebble to drop. What shall it do? It
can remember that the pebble has been dropped and simulate the subsequent
transitions of Ap using P1 = ∅. But in order to obtain P2, the set of pebbles at
the current node, the automaton should somehow determine whether there is a
pebble in it or not.

This is done in special states, in which A0 remembers the current state of the
simulated Ap, and performs a search in the graph to check whether the pebble
is at the current node. For convenience, this search procedure is defined as a
separate pebble-checking automaton B, which can be started from any node to
determine whether Ap drops the pebble precisely at that node. This B is defined
in the following lemma.

Lemma 1. For every automaton Ap with 1 drop-once pebble and with n states,
defined over a signature with k directions, there exists an automaton without
pebbles B = (Q(B), q

(B)
0 , F (B), δ(B)) over the same signature, with (2k + 1)n + 1

states, such that, if B is started at some node v of some graph G in its initial
state q

(B)
0 , then it eventually stops at the same node v, and

– if Ap, working on the graph G from its initial configuration, drops the pebble
at the node v, then B accepts at the node v;

– and if Ap, working on G from its initial configuration, never drops the pebble,
or drops it at a node other than v, then B rejects at v.

The computation of Ap before it drops the pebble is like a computation of an
automaton without pebbles. Therefore, what is done by Ap up to this point
can be reformulated without using pebble automata. Consider an automaton A
without pebbles with the same set of states as Ap, that operates as Ap with the
pebble in its hands. Once Ap decides to drop the pebble, A accepts. If Ap stops
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(that is, accepts or rejects) without dropping the pebble, then A rejects. Then,
instead of solving the problem whether Ap drops the pebble at the current node,
B can solve another equivalent problem: does A accept at the current node v?
Thus, Lemma 1 has been reduced to the following lemma.

Lemma 2. Let A be a graph-walking automaton with n states over some sig-
nature with k directions. Then there exists a graph-walking automaton B with
(2k + 1)n + 1 states, such that, if B is started at some node v of some graph G

in its initial state q
(B)
0 , then it eventually stops at the same node v, and, if the

automaton A accepts the graph G at the node v, then B also accepts at v, and
otherwise B rejects at v.

Proof (a sketch). Automata answering the question whether another automaton
accepts at the current node were already considered in the literature. Kunc
and Okhotin [11, Lemma 6] constructed an automaton B1 that answers a very
similar question. This automaton B1 works by traversing the tree of possible
computations of A that converge at a particular configuration at the node v,
in a particular state (the general idea of such a traversal is due to Sipser [14]).
The automaton B1 tries to find the initial configuration of A in this tree. If
it succeeds, then it stops at the initial node. If it fails, then it completes the
traversal and rejects at the same node v.

There are several differences with the desired automaton B: first, B1 starts
at the neighbouring node of v, rather than in v itself; secondly, B1 checks not
for any kind of acceptance at a node, but for acceptance in a particular state;
and if the answer is “yes”, then it gives it not at the node v, but at the initial
node of the graph.

The automaton B is constructed using B1. It runs B1 several times starting
from all neighbouring nodes of the current node v, and for all states in which
A could accept. Every time B1 fails to find an initial configuration, it returns
to v, and B restarts it from another accepting configuration. If B1 ever gives a
positive answer, then it does so at the initial node, and, next, B simulates A to
get back to v and accept.

The details are omitted due to space constraints. ��
The automaton B is used in the construction of the automaton A0 as follows.
Once the simulation of Ap carried out by A0 comes to the moment of dropping
the pebble, the automaton A0 continues as follows. Before simulating every sub-
sequent move of Ap, the automaton A0 will run B first, in order to determine
whether there is a pebble at the current node. The automaton B returns to the
same node with an answer, and then A0 can simulate the correct transition of
Ap. The simulation of Ap by A0 is illustrated in Fig. 1.

Proof (of Theorem 1). The set of states of the automaton A0 is Q(A0) = Q ∪
(Q × Q(B)), where the states from Q are used to simulate Ap up to the moment
when it drops the pebble. In the rest of the computation, if A0 is in a state
(q, q′) ∈ Q × Q(B), this means that the automaton A0 simulates Ap in the
state q and B in the state q′. While B runs, the state q of the automaton Ap
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Ap

A0

q0 q2q1

q3

q5

q6

...

...

...

q0 q2q1

q3

q5

q6
...

...

(q3,q')

q4

“NO” q4

(q5,q'')
“NO”

(q6,q''')
“YES”

...

v0

v0

Fig. 1. (top) A pebble automaton Ap drops the pebble and later sees it again; (bottom)
an automaton A0 without pebbles first works as Ap until it drops a pebble, and then
continues the simulation using B at each step to check whether the pebble was dropped
at the current node.

stays unchanged. Once the computation of B ends, A0 will have returned to the
node in which it is simulating Ap in the state q. The configuration of B will be
accepting if there is a pebble at this node, and rejecting otherwise. This is the
time to simulate the next step of Ap.

The initial state is q0 ∈ Q.
The transitions and acceptance conditions of A0 are defined as follows. Until

Ap drops the pebble, the automaton A0 repeats its transitions verbatim, using
the states from Q.

δ(A0)(q, a) = (r, d), for q ∈ Q, a ∈ Σ, δ(q, {p}, a, ∅) = (r, d, ∅)

If Ap accepts without having dropped a pebble, then A0 accepts as well.

(q, a) ∈ F (A0), for q ∈ Q, a ∈ Σ, (q, {p}, a, ∅) ∈ F

If Ap rejects without having dropped a pebble, then so does A0.
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Let the automaton Ap drop the pebble by a transition δ(q, {p}, a, ∅) =
(r, d, {p}). In this case, A0 moves to the same node, remembers the state r
and immediately starts simulating B in order to determine whether there is a
pebble at the node at the next step (and it may be there, since the graph may
contain loops).

δ(A0)(q, a) = ((r, q(B)
0 ), d), for q ∈ Q, a ∈ Σ, δ(q, {p}, a, ∅) = (r, d, {p})

The automaton B is simulated until the end, that is, up to its accepting or
rejecting configuration. While it runs, the current state of the automaton Ap at
the node where the simulation of B has started and where the simulation of Ap

has been suspended, is kept unchanged in the first component of the state.

δ(A0)((q, q′), a) = ((q, r′), d), for q ∈ Q, q′ ∈ Q(B), a ∈ Σ, δ(B)(q′, a) = (r′, d)

If the simulation of B ends in its accepting configuration, it means that
the automaton A0 has come to the node, in which the simulation of Ap was
suspended, and at the same time A0 has learned that the pebble is at this node.
Then A0 simulates the transition of Ap for the case of a pebble present at the
current node, and immediately starts a new simulation of B at the next node.

δ(A0)((q, q′), a) = ((r, q(B)
0 ), d), for q ∈ Q, q′ ∈ Q(B), a ∈ Σ,

(q′, a) ∈ F (B), δ(q, ∅, a, {p}) = (r, d, {p})

If Ap accepts with the pebble at the current node, then A0 accepts as well, and
thus concludes the simulation of Ap at the same node, at which Ap accepts the
graph.

((q, q′), a) ∈ F (A0), for q ∈ Q, q′ ∈ Q(B), a ∈ Σ,

(q′, a) ∈ F (B), (q, ∅, a, {p}) ∈ F

If Ap rejects with a pebble at the current node, then so does A0.
If there is no pebble at the node where Ap is being simulated, then the

simulation of B ends in a rejecting configuration. In this case, A0 simulates the
transition, acceptance or rejection of Ap for the case of no pebble at the current
node.

δ(A0)((q, q′), a) = ((r, q(B)
0 ), d), for q ∈ Q, q′ ∈ Q(B), a ∈ Σ,

δ(B)(q′, a) is undefined, δ(q, ∅, a, ∅) = (r, d, ∅)

((q, q′), a) ∈ F (A0), for q ∈ Q, q′ ∈ Q(B), a ∈ Σ,

δ(B)(q′, a) is undefined, (q, ∅, a, ∅) ∈ F

The automaton A0 without pebbles has been constructed, and it accepts the
same set of graphs as Ap, and accepts or rejects at the same nodes as Ap, and if Ap

loops, then A0 loops as well. The automaton A0 has exactly n+((2k+1)n+1)n =
(2k + 1)n2 + 2n states, as desired. ��
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4 When Pebbles Grow in Number

Automata with multiple drop-once pebbles can also be simulated by graph-
walking automata without pebbles. This is what the next theorem is about.

Theorem 2. Let Ap = (Q, q0, P, F, δ) be a graph-walking automaton with
n = |Q| states and m = |P | drop-once pebbles, defined over a signature
S = (D,−, Σ,Σ0, (Da)a∈Σ) with k = |D| directions. Then there exists a graph-
walking automaton A0 without pebbles, over the same signature, which has at
most (2k + 1)mm!3

m(m+1)
2 nm+1 states and accepts the same set of graphs as the

automaton Ap.
Furthermore, A0 accepts or rejects at the same node as the pebble automaton

Ap, and loops if Ap loops.

Proof (a sketch). The theorem is proved by induction on the number of pebbles.
Base case: m = 0. This holds for A0 = Ap.
Induction step: m − 1 → m.
Let P = {1, . . . , m}. Similarly to the proof in Sect. 3, there will be a pebble-

checking automaton Bi for each i ∈ {1, . . . , m}, which tests whether the i-th
pebble is at the current node or not. This is done as follows.

Fix i ∈ {1, . . . , m}. The goal is to define a graph-walking automaton Bi

without pebbles, which, if it is started in its initial state q
(Bi)
0 at any node

v of any graph G, then it eventually stops at the node v, and accepts if the
automaton Ap operating on G ever drops the i-th pebble at the node v, and
rejects otherwise.

If the i-th pebble were always the first to be dropped by Ap, then the com-
putation of Ap up to the moment it is dropped would be the computation of an
automaton without pebbles, and then Bi could be obtained directly by Lemma 2.
The main difficulty is that the i-th pebble need not be the first to be dropped
by Ap. In this case, the computation of Ap leading to the i-th pebble’s being
dropped is a computation of a certain automaton Ai,p with m − 1 drop-once
pebbles. The solution is to make Ai,p accept as it is about to drop the i-th peb-
ble, apply the induction hypothesis to Ai,p to make it an automaton without
pebbles, and finally use Lemma 2 as before.

The automaton Ai,p has the same set of states Q as Ap, and has the set of
pebbles Pi = P\{i}. It works as Ap with the i-th pebble in its hands. If Ap drops
the i-th pebble, then Ai,p accepts. If Ap accepts or rejects without dropping the
i-th pebble, then Ai,p rejects.

Since the automaton Ai,p uses m − 1 pebbles, the induction hypothesis is
applicable to it, and it asserts that there exists a graph-walking automaton Ai

without pebbles with at most Nm−1 = (2k + 1)m−1(m − 1)!3
(m−1)m

2 nm states,
which accepts at the node, at which Ap drops the i-th pebble, and not accepts,
if Ap never drops the i-th pebble.

Next, Lemma 2 is applied to the graph-walking automaton Ai, and it yields
the desired pebble-checking automaton Bi with at most (2k+1)Nm−1+1 states.
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Now, for every pebble i, with i ∈ {1, . . . , m}, there is its own pebble-checking
automaton Bi without pebbles, which can be started in its initial state q

(Bi)
0 at

any node v of any graph, and then it will return to that node with information
on whether or not the automaton Ap drops the i-th pebble at this node.

This allows the simulating automaton A0 to work by the same principle
as for a single pebble, but this time at each step it will have to run multiple
automata Bi, for all pebbles previously dropped, to determine which of them lie
at the current node. The automaton A0 always remembers which pebbles it has
in its hands, and will not run the corresponding automata Bi for those pebbles
(because if an i-th pebble is currently in A0’s hands, then Bi might still report
the presence of this pebble at the current node, even though it would be dropped
here only in the future).

The desired graph-walking automaton A0 without pebbles that simulates the
pebble automaton Ap has two groups of states. First, there are the states Q used
to simulate the automaton Ap until it drops the first pebble. Later A0 uses more
complicated states of the form (q, P1, P2, i, q

′), where

– q ∈ Q is the simulated state of Ap;
– the set P1 ⊆ P is the set of pebbles in its hands;
– i ∈ {1, . . . , m}\P1 is the pebble that A0 is currently checking; it must not be

in P1, for otherwise it is known not to lie at the current node;
– P2 ⊆ {1, . . . , i − 1}\P1 is the set of pebbles less than i, which are known to

be at the node in which Ap is being simulated (that is, were put there before
the current step);

– The state q′ ∈ Q(Bi) is the state of the pebble-checking automaton Bi, exe-
cuted to determine whether the i-th pebble is at the node where Ap is being
simulated.

The construction of the transition function is omitted due to space constraints.
It remains to estimate the number of states in the automaton A0. It should be

noted that, in a quintuple (q, P1, P2, i, q
′), the sets P1 and P2 are disjoint and do

not contain i, and hence for each i there are at most 3|P |−1 pairs (P1, P2). Then
the number of states in A0 does not exceed |Q| + |Q| · 3|P |−1 · |P | · max{ |Q(Bi)| |
i = 1, . . . , m }, which has the following upper bound.

|Q| + |Q| · 3|P |−1 · |P | · max{ |Q(Bi)| | i = 1, . . . , m }
� |Q| + |Q| · 3|P |−1 · |P | · ((2k + 1)Nm−1 + 1)

� |Q| · 3|P | · |P | · ((2k + 1)Nm−1)

This is at most n3mm((2k + 1)Nm−1). Substituting Nm−1 = (2k + 1)m−1(m −
1)!3

(m−1)m
2 nm gives that the number of states in A0 is at most Nm = (2k +

1)mm!3
(m+1)m

2 nm+1, as claimed. ��

5 Conclusion

It has been shown that every graph-walking automaton with finitely many dis-
tinct drop-once pebbles can be simulated by a graph-walking automaton without
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pebbles with a certain number of states. How many states are necessary for this
construction? Does the simulation of an automaton with one drop-once peb-
ble indeed require a quadratic number of states? Proving any lower bounds is
proposed for future research.

Another question is: is there a more efficient construction for the cases of
TWA or 2DFA? For the more powerful nested pebbles, already one such pebble
makes TWA stronger [3], and even though 2DFA with m nested pebbles can
be simulated by ordinary 2DFA, this in the worst case requires an (m + 1)-fold
exponential number of states [9]—much more than for m drop-once pebbles.
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3. Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power
of pebble automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 157–168. Springer, Heidelberg (2006). https://
doi.org/10.1007/11786986 15

4. Budach, L.: Automata and labyrinths. Math. Nachr. 86(1), 195–282 (1978)
5. Disser, Y., Hackfeld, J., Klimm, M.: Tight bounds for undirected graph exploration

with pebbles and multiple agents. J. ACM 66(6), 40:1–40:41 (2019)
6. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Karhumäki,
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Abstract. We consider de Bruijn words and their recognition by finite
automata. While on one-way nondeterministic automata the recogni-
tion of de Bruijn words of order k requires exponentially many states
in k, we show a family of de Bruijn words such that the word wk of
order k, for k > 0, can be recognized by a deterministic two-way finite
automaton with O

(
k3

)
states. Using this result we are able to obtain an

exponential-size separation from deterministic two-way finite automata
to equivalent context-free grammars. We also show how wk can be gen-
erated by a 1-limited automaton with O

(
k3

)
states and a constant-size

work alphabet. This allows to obtain small 1-limited automata for certain
unary languages and to show an exponential-size separation from unary
deterministic 1-limited automata to equivalent deterministic pushdown
automata.

1 Introduction

Given an alphabet Δ with m symbols and an integer k > 0, a de Bruijn word
of order k over Δ is a string of length mk that, considered as a “circular word”,
contains each string of length k over Δ exactly once [4]. These combinatorial
objects have been widely investigated in the literature. In particular, an efficient
iterative construction for de Bruijn words over a binary alphabet was discovered
some years ago [19]. This construction suggested us to study the connection
between the generation of de Bruijn words and the investigation on descriptional
complexity of computational and formal models describing regular languages. We
now summarize these concepts and the results we present in this paper.

The typical recognizers for the regular languages are finite automata, in both
deterministic and nondeterministic variants, operating in one- and two-way fash-
ion [17]. In the one-way case, the nondeterminism can be eliminated with an
exponential increase in size, by using the well-known powerset construction. This
cost cannot be reduced in the worst case, and hence it is optimal [11]. The sit-
uation is quite different in the two-way case: while there exist exponential-size
transformations to convert two-way nondeterministic automata into determinis-
tic ones, it is not known whether this cost is necessary [18].

In the first part of the paper, we consider the problem of recognizing all the
finite prefixes of the word obtained by repeating infinitely many times a fixed
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de Bruijn word of order k.1 It is not difficult to show that, to recognize such
a language with a one-way automaton, a number of states exponential in k is
necessary, even when nondeterministic choices are allowed. A natural question
is whether this cost can be reduced for automata that are able to move the head
in both directions.

Here we give a positive answer for the de Bruijn word wk, of any order k > 0,
that is generated with the method proposed in [19]. Indeed, we show that such
a generation method can be turned into a “small” deterministic recognizer. In
this way we prove that, for each k > 0, the language consisting only of wk, as
well as the language consisting of the finite prefixes of the string wω

k which is
obtained by concatenating infinitely many occurrences of wk, are accepted by
two-way deterministic finite automata with O

(
k3

)
states.

Since generating the language consisting of a single de Bruijn word of order k
with a context-free grammar in Chomsky normal form requires a number of
variables exponential in k [1,5], this gives an exponential-size separation from
two-way deterministic finite automata to context-free grammars.

Finite automata are not the only recognizers for regular languages. Providing
two-way finite automata with rewriting capabilities restricted to the first time
they visit tape cells, the computational power does not change [20], but the
resulting model can represent languages in a more concise way. These devices
are known in the literature as 1-limited automata. They are a special case of
a more general model called d-limited automata, which are one-tape Turing
machines that, for a fixed d, are allowed to rewrite each tape cell contents only
the first d times the cell is visited. For each d > 1, this model characterizes the
class of context-free languages [7]. For a recent overview on limited automata
see [13].

The investigation of 1-limited automata from the descriptional complexity
point of view has started recently [14]. It has been proved that each 1-limited
automaton with n states can be simulated by a one-way deterministic automaton
with a number of states double exponential in a polynomial in n. This cost is
optimal and reduces to a single exponential when the 1-limited automaton is
deterministic.

The restricted case of unary 1-limited automata, i.e., with a one-letter input
alphabet, has been investigated in [15]. Also in this case an exponential lower
bound for the conversion of deterministic 1-limited automata into equivalent
deterministic finite automata has been proved. The same lower bound holds
for the conversion of deterministic 1-limited automata into equivalent two-way
nondeterministic finite automata. Due to upper bounds for general alphabets,
these lower bounds cannot be improved.

In the second part of the paper we present a deterministic 1-limited automa-
ton with O (k) states and O (1) symbols, that given in input any unary string
of length � ≥ 0, ends the computation finally leaving on the tape the prefix
of length � of wω

k . We consider some variants of this 1-limited automaton that,

1 We shortly mention that, for every k > 2, the de Bruijn word of order k is not

unique. Indeed, the number of de Bruijn words of order k is 22
k−1−k [4].
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keeping the same costs in terms of states and work alphabet, recognize some
interesting unary languages.

The first variant recognizes a language which is known to require exponential
size in k to be accepted by deterministic pushdown automata [12]. This gives an
exponential-size separation from deterministic 1-limited automata to determin-
istic pushdown automata. We point out that the definition of such a language is
given using de Bruijn words.

Another variant we consider allows to recognize the language {a2k}, where k
is any fixed integer. This gives an alternative proof of the exponential gap from
unary 1-limited automata to finite automata [15]. While in the previous proof
the size of the working alphabet of the witness 1-limited automaton is linear
in k, here it is constant. This is paid by increasing the number of states.

The results concerning the recognition of the de Bruijn word wk using two-
way deterministic finite automata are presented in Sect. 4, together with the
exponential-size separation from these devices to context-free grammar. Section 5
contains the results related to 1-limited automata and the exponential-size
separation from deterministic 1-limited automata to deterministic pushdown
automata. Before these parts, Sect. 2 contains preliminary notions and Sect. 3
is devoted to show how to recognize some strings, called necklaces, using “small”
two-way deterministic automata. This tool is fundamental for the implementa-
tion of the machines presented in the paper.

2 Preliminaries

In this section we recall some basic definitions useful in the paper. Given a
set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet Σ and a string w ∈ Σ∗, |w| denotes the length of w, and Σk the set of
all strings on Σ of length k.

We assume the reader familiar with notions from formal languages and
automata theory, in particular with the fundamental variants of finite automata
(1dfas, 1nfas, 2dfas, 2nfas, for short, where 1/2 mean one-way/two-way and
d/n mean deterministic/nondeterministic, respectively) and with context-free
grammars (cfgs, for short) in Chomsky normal form. For any unfamiliar termi-
nology see, e.g., [8].

A 1-limited automaton (1-la, for short) is a tuple A = (Q,Σ, Γ, δ, qI , F ),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite work
alphabet such that Σ ∪ {�,�} ⊆ Γ , �,� /∈ Σ are two special symbols, called
the left and the right end-markers, and δ : Q × Γ → 2Q×(Γ\{�,�})×{−1,+1} is
the transition function.

At the beginning of the computation, the input word w ∈ Σ∗ is stored
onto the tape surrounded by the two end-markers, the left end-marker being in
position zero and the right end-marker being in position |w|+1. The head of the
automaton is on cell 1 and the state of the finite control is the initial state qI .

In one move, according to δ and the current state, A reads a symbol from
the tape, changes its state, replaces the symbol just read from the tape by a new
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symbol, and moves its head to one position forward or backward. Furthermore,
the head cannot pass the end-markers, except at the end of computation, to
accept the input, as explained below. Replacing symbols is allowed to modify
the content of each cell only during the first visit, with the exception of the
cells containing the end-markers, which are never modified. For technical details
see [14].

The automaton A accepts an input w if and only if there is a computation
path which starts from the initial state qI with the input tape containing w
surrounded by the two end-markers and the head on the first input cell, and
which ends in a final state q ∈ F after passing the right end-marker. The device
A is said to be deterministic (deterministic 1-la, for short) whenever #δ(q, σ) ≤
1, for any q ∈ Q and σ ∈ Γ .

In this paper we are interested to compare the size of formal systems. The
size of a model is given by the total number of symbols used to write down its
description. Therefore, the size of deterministic 1-las is bounded by a polynomial
in the number of states and of work symbols, while, in the case of finite automata,
since no writings are allowed, the size is linear in the number of instructions and
states, which is bounded by a polynomial in the number of states and in the
number of input symbols. For recognizing models we will specify explicitly the
cardinality of the state set and of the work alphabet, if any.

Following the line of [5], the size of context-free grammars in Chomsky normal
form is bounded by a polynomial in the total number of variables.

A de Bruijn word βk of order k is a word of length 2k having each word of
length k over the alphabet {0, 1} exactly once as a factor, when βk is considered
as a circular word ; namely, where the word “wraps around” at the end back
to the beginning. So, using this representation, the last k − 1 symbols of the
“unrolled” word, that are equal to the first symbols of the de Bruijn word, are
omitted. For example, the circular word β3 = 00011101 is a de Bruijn word
for k = 3. All the strings of length 3 appear exactly once in β3, when considered
circularly, in the following order: 000, 001, 011, 111, 110, 101, 010, and 100.
Instead of seeing de Bruijn as circular words, sometimes it is suitable to present
them as standard words. In this case the “unrolled” word of order k, denoted β′

k

has length 2k + k − 1 and it is obtained by concatenating to βk its prefix of
length k − 1. For instance β′

3 = 0001110100.

3 Recognizing Necklaces with 2DFAs

In this section we develop a tool that will be used later to obtain our result: we
study the recognition, by 2dfas, of special strings, called necklaces, of a given
length. A necklace is the lexicographically smallest string in an equivalence class
of strings under rotation. Let

Nk = {w ∈ {0, 1}k | w is a necklace}
be the language of all necklaces of length k on the alphabet {0, 1}.
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Procedure 1: isNecklace(k)
Returns true if the portion of the tape that starts from the current head position

and consists of k consecutive cells contains a necklace of length k; false otherwise

(See Footnote 2)

1 p ← 1
2 for j ← 2 to k do
3 move the head to the cell in position j − p
4 σ ← read()

5 move the head to the cell in position j
6 if read() < σ then return false
7 if read() > σ then p ← j
8 if k mod p �= 0 then return false
9 return true

We are going to show how Nk can be recognized by a 2dfa A of size polyno-
mial in k. In particular, A implements Procedure 1. Such a procedure is inspired
by an algorithm presented by Gabric et al. [6, Algorithm 2], which is based on
the least circular shift algorithm [3], a generalization of the Knuth-Morris-Pratt
pattern matching algorithm [9].
Let us give some details about the implementation of isNecklace.

The 2dfa A uses this procedure to check whether the k consecutive cells
starting from the one scanned by the input head contain a necklace of length k.
To do so, A uses a variable, say head, to store the position of the head along the
portion of the tape containing the string to recognize. The values that head
can get range from 1 to k. Therefore, at the beginning of the execution of
isNecklace, head is initialized to 1, and then it is incremented or decremented
when the head is moved to right or left, respectively. In such a way, it is possible
to ensure that the device does not visit any extra cell during the execution of
this procedure.

When the procedure is called, A initializes the variables p and j to 1 and 2,
respectively (Lines 1 and 2). The variable j is used to keep track of the position
of the next symbol that must be compared with the symbol in position j − p,
where p contains the length of the longest period occurring in the necklace,
starting from the leftmost symbol. To reach position j− p (Line 3), the machine
moves the head to the right, until cell j, and then it moves the head to the left,
decrementing p at each step, until p becomes 0. The 2dfa stores the scanned
symbol (in position j− p) into the variable σ (Line 4).2 Then, it moves the head
to the right until cell j, incrementing p at each step to restore its correct value
(Line 5).

If the two symbols in position j and j − p are not equal, then two cases are
possible: either the scanned symbol is less than the symbol in position j − p,

2 Here and in the next procedures, the function read returns the input symbol scanned
by the device, without moving the input head. All the head movements are explicitly
indicated in the instructions.
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then the string under consideration can be rotated to obtain a lexicographically
smallest one, so it is not a necklace (Line 6); or the scanned symbol is greater
than the symbol in position j − p, then the prefix analyzed so far must be the
period of the necklace, so the variable p is updated accordingly (Line 7). We
point out that this is a general procedure for recognizing necklaces and that
here comparisons are based on the lexicographic order of the symbols.

After having analyzed the whole string of length k (Lines 2 to 7), the machine
checks whether the string is periodic. So the string is a necklace, and hence it is
accepted, if and only if the period length p divides k (Lines 8 and 9).

As already mentioned, the correctness of this technique is discussed in [6].
We observe that the automaton A has to store the variables p, j, and the

position of the head. The values of these three variables range from 1 to k. This
allows us to prove:

Theorem 1. For every fixed integer k, the language Nk can be recognized by a
2dfa with O

(
k3

)
states.

Proof. The 2dfa A described above can recognize Nk by first checking whether
the input string has length k and, if so, by performing one call to isNecklace.
Using the analysis above, we easily conclude that this can be done with O

(
k3

)

states. �	

4 de Bruijn Words and Finite Automata

This section is devoted to the recognition of de Bruijn words. We shall present
a 2dfa of polynomial size in k, accepting a language related to some de Bruijn
words of order k. This automaton, which is interesting per se, will allow us to
obtain an exponential-size separation from 2dfas to cfgs.

Given a de Bruijn word βk, let us consider the language

dBβk
= {x ∈ {0, 1}∗ | x is a finite prefix of βω

k },

where βω
k is the infinite word obtained by concatenating infinitely many copies

of βk.
The language dBβk

requires an exponential number of states in k to be
accepted by one-way finite automata, even when nondeterministic moves are
allowed:

Theorem 2. For every fixed integer k, every 1nfa for dBβk
has at least 2k

states.

Proof. To prove that each 1nfa accepting dBβk
needs 2k states, we use the

fooling set technique [2]. Consider the set

X = {(xi, yi) | xiyi is the prefix of length i + k of βω
k ,

where |xi| = i and |yi| = k, for i = 0, . . . , 2k − 1}.
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Notice that, by the definition of de Bruijn words, the yi’s are pairwise different
and {yi | i = 0, . . . , 2k − 1} = {0, 1}k. We are going to show that X is a fooling
set for dBβk

.
It is obvious that the word xiyi belongs to dBβk

, for i = 0, . . . , 2k − 1.
Now, take j 
= i, 0 ≤ j < 2k. Since all strings in dBβk

are prefixes of the same
infinite string, xiyj ∈ dBβk

would imply yi = yj , which is a contradiction. Hence,
xiyj /∈ dBβk

and X is a fooling set for dBβk
.

This allows to conclude that every 1nfa for dBβk
has at least #X = 2k

states. �	
As mentioned in the introduction, for k > 2 there are many different de

Bruijn words of order k. We point out that the proof of Theorem2 does not
depend on the specific de Bruijn word βk chosen to define the language. From
now on, we consider the fixed de Bruijn word wk that is obtained with the
efficient iterative construction presented by Sawada, Williams, and Wong [19]
(this method is also called PCR3 (J1) [6]). Such a construction starts from the
string 0k and, at each step, computes the next symbol of the word by applying,
to the suffix α = a1a2 · · · ak of length k of the word generated until then, the
function f : {0, 1}k → {0, 1} defined as follows:

f(a1a2 · · · ak) =

{
1 − a1 if a2a3 · · · ak1 is a necklace
a1 otherwise.

For further details and the correctness of this algorithm we address the reader
to [19].

We now consider the language dBwk
that, for brevity, in the following will

be denoted as dBk. By Theorem 2, an exponential number of states is necessary
to recognize it with a 1nfa. Let us now turn our attention to the recognition
by 2dfas. To this aim, let us now show how to adapt the generation technique
mentioned above to obtain a 2dfa N recognizing dBk (see Procedure 2). In
this case, the automaton uses a “virtual” relative window of k consecutive cells.
The cells of the relative window are indexed from 1 to k. The position of the
window is implicitly shared with the procedure isNecklaceSuccessor called by
isDeBruijn, by using the variable head that keeps track of the position of the
head along the window (cf., Sect. 3). In fact, the contents of the relative window
when such a procedure is called, corresponds to the k cells on which it operates.
The window initially contains the first k input cells, and the head is on the cell 1.

At the beginning of the computation, the device has to check whether the
first k symbols are equal to 0 (Line 10); this is done by scanning the contents of
the relative window entirely. If, during this step, the right end-marker is reached,
then N accepts.

After checking that the prefix of the input word is 0k, the machine has
to iteratively compute the next symbols of wk and compare them with the
following input symbols (Lines 11 to 19). Hence, for each iteration, it com-
putes f(a1a2 · · · ak), where a1a2 · · · ak is the contents of the relative window,
and stores the result in the variable successor (Lines 12 to 16, details are dis-
cussed below). After that, the machine shifts the relative window one cell to the
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Procedure 2: isDeBruijn(k)
Accepts if the string on the tape is in dBk; rejects otherwise

10 if the first cells do not contain 0k then Reject

11 while read() �= � do
12 move the head to the cell in relative position 1
13 τ ← isNecklaceSuccessor(k)
14 move the head to the cell in relative position 1
15 successor ← read()

16 if τ then successor ← 1 − successor
17 shift the current window one cell to the right
18 move the head to the cell in relative position k
19 if read() �∈ {�, successor} then Reject

20 Accept

right (Line 17), moves the head to the rightmost cell of the window (Line 18),
and compares the input symbol with the symbol stored in the variable successor.
If the two symbols do not match and the input is not over, then the input is
not a prefix of wω

k , hence the machine rejects (Line 19). This process is repeated
until the end of the input is reached (Line 11). In this case, if every symbol of
the input matches with the content of the variable successor computed at each
iteration, then the machine accepts (Line 20).

To check whether the string a2 · · · ak1 is a necklace, a call to the procedure
isNecklaceSuccessor is made (Line 13). Such a procedure (Procedure 3) is a
slightly-modified version of isNecklace (Procedure 1) that analyzes the symbols
of the relative window starting from the second one (in fact, j is initialized with
the value 3, cf. Line 22). Moreover, in this case, for analyzing the last symbol,
which is always a 1, the last loop is unrolled to prevent the machine entering
the cell in position k + 1 (Lines 28 and 29). Notice that Line 29 corresponds to
Line 27, in which the symbol in position k + 1 − p is not stored (so it is directly
scanned using read) and the symbol in position k is always 1, so it is sufficient
to test if read() = 0.

For implementing the procedure isDeBruijn the 2dfa N uses a variable
successor, which can assume values in {0, 1}, and the same variables used by the
procedure isNecklaceSuccessor. The position of the head along the relative
window of size k is shared with the main procedure isDeBruijn. Hence N can
implement isDeBruijn with O

(
k3

)
states, which is analogue to the cost of

isNecklace. This analysis leads us to the following result:

Theorem 3. For every fixed integer k, the language dBk can be recognized by a
2dfa with O

(
k3

)
states.

Let us now restrict our attention to the language Wk = {w′
k}, consisting only

of the “unrolled” de Bruijn word of order k.
In order to recognize Wk, we can modify Procedure 2 and the 2dfa imple-

menting it in such a way that, at the end of each iteration of the while-loop
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Procedure 3: isNecklaceSuccessor(k)
Returns true if the symbols contained in the k − 1 consecutive cells starting after

the one scanned by the input head concatenated with the symbol 1 is a necklace,

false otherwise. Notice that the cell in position k + 1 is never entered during the

execution of this procedure

21 p ← 1
22 for j ← 3 to k do
23 move the head to the cell in relative position j − p
24 σ ← read()

25 move the head to the cell in relative position j
26 if read() < σ then return false
27 if read() > σ then p ← j
28 move the head to the cell in position k + 1 − p
29 if read() = 0 then p ← k
30 if k mod p �= 0 then return false
31 return true

(Line 19), it verifies that the string in the current relative window (i.e., the suf-
fix of length k of the input prefix inspected so far) coincides with the suffix
of length k of w′

k. In this case the machine accepts, otherwise it continues the
execution of the while-loop. To make such a modification, O (n) extra states are
enough. Furthermore, since Wk consists only of one string of length 2k + k − 1,
each 1nfa accepting it cannot contain any loop in accepting paths. Hence, it
requires at least 2k +k states. This allows us to extend Theorems 3 and 2 to Wk:

Theorem 4. For each fixed integer k, the language Wk can be recognized by
a 2dfa with O

(
k3

)
states, while every 1nfa accepting it requires at least 2k + k

states.

The exponential-size gap in Theorem 4 can be strengthen by replacing 1nfas
by cfgs. In fact, in [5], using a result from [1], the following was proved:

Lemma 1. There exists a constant c such that, for all k ≥ 1, the number of
variables in the smallest cfg in Chomsky normal form generating Wk is at
least c 2k

k .

As a consequence we obtain the following size gap:

Theorem 5. Converting a 2dfa in an equivalent cfg can cost exponential in
size.

Concerning the opposite direction, we remind the reader that the cost of the
conversion of cfgs generating regular languages into finite automata cannot be
bounded by any recursive function [11]. However, in the restricted case of cfgs
generating unary languages this cost is exponential, as proved in [16] for the
conversion into 1dfas and 1nfas. Because of a lower bound presented in [10,
Theorem 9], this cost cannot be reduced even if the target machine is a 2nfa.
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Procedure 4: deBruijnUnary(k)
A deterministic 1-la executing this procedure accepts if the input string is in Uk;

rejects otherwise

32 write 0 in the first k cells
33 while read() �= � do
34 move the head to the cell in relative position 1
35 τ ← isNecklaceSuccessor(k)
36 move the head to the cell in relative position 1
37 successor ← read()

38 if τ then successor ← 1 − successor
39 shift the current window one cell to the right
40 move the head to the cell in relative position k
41 if read() �= � then write(successor)
42 move the head one cell to the left
43 if read() = 1 then Accept

44 else Reject

5 de Bruijn Words and 1-Limited Automata

In this section we exploit the techniques illustrated in the previous sections in
order to deepen the investigation of the descriptional complexity of unary deter-
ministic 1-las [15]. In particular, we prove that, for each integer k, there exists
a unary language Uk that is accepted by a 1-la of size polynomial in k, but for
which any deterministic pushdown automaton requires a size exponential in k.

The language we consider is

Uk = {a� | the �-th symbol of wω
k is 1},

which is the set of positions, encoded in unary, of the symbols equal to 1 in the
infinite word obtained by cyclically repeating de Bruijn word wk of order k. For
example, for k = 3, w3 = 00011101 and U3 = {a4, a5, a6, a8} · {a8}∗ because
the prefixes of wk of length 4 (0001), 5 (00011), 6 (000111), and 8 (00011101)
end with the symbol 1, and then they repeat after the period 00011101 having
length 8: 000111010001, 0001110100011, 00011101000111, 0001110100011101,
and so on.

Let us briefly show how to recognize the language Uk with a deterministic
1-la (see Procedure 4). We can use the same approach used to recognize dBk,
with the only difference that our deterministic 1-la writes the de Bruijn word on
the tape (Lines 32 and 41) and, when the end of the input is reached, it accepts
if the last symbol written is 1 (Lines 42 to 44). Also in this case, the obtained
device has size polynomial in k.

We stress that this procedure can be implemented by a deterministic 1-la
because each cell is written during the first visit only (Lines 32 and 41).

We point out that the deterministic 1-la described above “generates” the de
Bruijn word on its tape. More precisely, receiving in input the string a�, it ends
the computation with the prefix of length � of wω

k on its tape.
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Theorem 6. For every fixed integer k, the language Uk can be recognized by a
deterministic 1-la with O

(
k3

)
states and O (1) work symbols.

As proved in [12], even each deterministic pushdown automaton accepting Uk

would require an exponential size in k. Therefore we obtain the following gap in
size:

Theorem 7. Converting a unary deterministic 1-la into an equivalent deter-
ministic pushdown automaton can cost exponential in size.

A natural question is whether Theorem 7 holds if we consider the conversion
into nondeterministic pushdown automata or, equivalently, cfgs. Concerning
the converse, we already proved that each unary cfg can be converted into
a 1-la of polynomial size [15].

In [15], we considered the languages Lk = {a2k} and Jk = {a2k}∗
, proving

that they can be accepted by deterministic 1-las with O (k) states and O (k)
work symbols. The technique used to recognize Uk developed here can be easily
adapted to recognize Lk and Jk. In particular, it is sufficient to notice that,
given an integer k, the word wk computed using Procedure 4 is fixed, and so the
suffix γk of length k of wk is known. Moreover, we remind that wk has length 2k.
For example, for k = 3, w3 = 00011101 and γ3 = 101. Hence, a deterministic
1-la can accept Jk by writing wk on the tape using the same approach as
deBruijnUnary(k) (Lines 32 to 41) but, when it reaches the right end-marker,
checks whether the suffix of the word written on the tape is γk. This last step
can be implemented with O (k) states. To accept Lk the automaton has to verify,
in addition, that γk appears only once on the tape.

Theorem 8. For every fixed integer k, the languages Lk and Jk can be recog-
nized by deterministic 1-las with O

(
k3

)
states and O (1) work symbols.

We can observe that the size of the above-mentioned machines presented in [15]
are smaller than those of the equivalent machines in Theorem8. Indeed, the num-
ber of entries in the transition tables is quadratic in k in the former case, while
it is cubic in the latter. However the work alphabet of machines in Theorem8 is
fixed, i.e., it does not depend on the parameter k.
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Abstract. We consider the implementation of the transduction of auto-
matic sequences, and their generalizations, in the Walnut software for
solving decision problems in combinatorics on words. We provide a num-
ber of applications, including (a) representations of n! as a sum of three
squares (b) overlap-free Dyck words and (c) sums of Fibonacci represen-
tations.

1 Introduction

The k-automatic sequences form an interesting class that has been studied for
more than fifty years now [1,6]. This class is defined as follows: a sequence
(a(n))n≥0 over a finite alphabet is k-automatic if there exists a deterministic
finite automaton with output (DFAO) that, on completely processing an input
of n expressed in base k, reaches a state s with output a(n).

One nice property is that the first-order theory of these sequences, with addi-
tion, is algorithmically decidable [3]. Walnut, a free software system created and
implemented by Hamoon Mousavi [14], makes it possible to state and evaluate
the truth of nontrivial first-order statements about automatic sequences, often in
a matter of seconds [16]. With it, we can easily reprove old theorems in a simple
and uniform way, explore unresolved conjectures, and prove new theorems.

According to a famous theorem of Cobham [6], the class of k-automatic
sequences is closed under deterministic t-uniform transductions. The particular
model of transducer here is the following: outputs are associated with transitions,
so that every input letter results in the output of exactly t letters. Cobham’s
theorem was later extended to the more general class of morphic sequences by
Dekking [8].

Transducers make it possible to manipulate automatic sequences in useful
and interesting ways. For example, it follows that the running sum and running
product (taken modulo a natural number M ≥ 2) of a k-automatic sequence
taking values in Σt = {0, 1, . . . , t − 1} is k-automatic.
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In this paper we report on a recent implementation of Dekking’s result in
Walnut, carried out by the second author. This new capability of transducers
has been implemented in the latest version of Walnut, which is available for free
download at

https://cs.uwaterloo.ca/~shallit/walnut.html .
With it we are able to obtain a number of results, including reproving the

results of Burns [5] on the representation of n! as a sum of three squares, in a
simpler and more general way. We also prove a new result on overlap-free Dyck
words. Lastly, we briefly discuss the transduction of Fibonacci automata and
automata in other numeration systems.

Because of length restrictions, many of our results and proofs had to be
omitted. The interested reader can see the full paper at [17].

2 Transducers

We assume the reader has a basic knowledge of automata theory and formal
languages as given in, for example, [11]. For reasons of space we omit the usual
definitions.

In this paper we deal only with 1-uniform transducers. A 1-uniform deter-
ministic finite-state transducer (or transducer for short) is a 6-tuple

T = 〈V,Δ,ϕ, v0, Γ, σ〉,

where V is a finite set of states, Δ is a finite set representing the input alphabet,
ϕ : V × Δ → V is the transition function, v0 ∈ V is the initial state, Γ is
a finite set representing the output alphabet, and σ : V × Δ → Γ is the output
function. A transducer can be viewed as a deterministic finite automaton (DFA),
together with an output function σ, where a single element of Γ is output at
each transition.

Transducing a sequence x = (xn)n≥0 means passing the sequence through
the transducer symbol by symbol, obtaining an infinite sequence resulting from
concatenating the single symbol output at each transition. Formally, the trans-
duction of a sequence x = (xn)n≥0 over the alphabet Δ by a transducer T is
defined to be the infinite sequence

T (x) = σ(v0, x0) σ(ϕ(v0, x0), x1) · · · σ(ϕ(v0, x0 · · · xn−1), xn) · · · .

Example 1. Consider the famous Thue-Morse sequence t = μω(0) defined by
the 2-uniform morphism μ : Σ∗ → Σ∗ given by μ(0) = 01, μ(1) = 10, with
Σ = {0, 1}. The first few terms of the sequence are:

t = 0110100110010110 · · · .

Suppose we wish to compute the running sum (mod 2) of the Thue-Morse
sequence. We can do this with the transducer RUNSUM2, which transduces a
sequence a0a1a2 · · · over {0, 1} into b0b1b2 · · · where bk = (

∑k
i=0 ai) mod 2. The

https://cs.uwaterloo.ca/~shallit/walnut.html
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Fig. 1. Transducer RUNSUM2 for running sum mod 2.

transducer is illustrated in Fig. 1. The notation a/b means the transducer out-
puts b on input a. The resulting transduced sequence 0100111011100100 · · · is
sequence A255817 in the On-Line Encyclopedia of Integer Sequences (OEIS) [18].

Example 2. Let p = 10111010 · · · be the period-doubling sequence [7], the fixed
point of the morphism 1 �→ 10, 0 �→ 11, and sequence A035263 in the OEIS.
Applying the transducer of Example 1 to p gives t̂ = 11010011 · · · , the Thue-
Morse sequence with its first symbol removed.

As mentioned above, the transduction of an k-automatic sequence always
produces another k-automatic sequence.

Theorem 1 (Cobham). Let x = (xn)n≥0 be a k-automatic sequence over Δ,
and let T = 〈V,Δ,ϕ, v0, Γ, σ〉 be a transducer. Then the sequence

T (x) = σ(v0, x0) σ(ϕ(v0, x0), x1) · · · σ(ϕ(v0, x0 · · · xn−1), xn) · · ·
is k-automatic.

Dekking [8] provides a constructive proof of this theorem, and it is the basis for
our implementation of transducers in Walnut.

3 Implementation

We give a brief overview of the construction, implementation, and complexity of
the resulting automaton. See Sects. 3 and 4 of [17] for a more in-depth discussion.

3.1 Construction

We give a brief overview of the construction of the resulting DFAO that computes
T (x) as in Theorem 1, where x = (xn)n≥0 is a k-automatic sequence, so x =
λ(q) where h : Q∗ → Q∗ is a prolongable k-uniform morphism, the coding λ
maps Q∗ → Δ∗, q = hω(q0) = q0q1q2 · · · . For all y ∈ Δ∗, define the function
fy : V → V by fy(v) = ϕ∗(v, y). Note that fy1y2 = fy2 ◦ fy1 for all y1, y2 ∈ Δ∗.
We need the following lemma.

Lemma 1 ([17]). For allw ∈ Q∗, the sequences fλ(w), fλ(h(w)), . . . , fλ(hn(w)), . . .
are ultimately periodic with the same period and preperiod, i.e., there exist integers
p ≥ 1, r ≥ 0 such that fλ(hi(w)) = fλ(hp+i(w)) for all w ∈ Q∗ and i ≥ r.

https://oeis.org/A255817
https://oeis.org/A035263
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After finding p and r as in Lemma 1, define the following:

– the states Q̃ = {(a, I(w)) : a ∈ Q,w ∈ Q∗}, where

I(w) = (fλ(w), fλ(h(w)), . . . , fλ(hp+r−1(w)));

– the k-uniform1 morphism h̃ : Q̃∗ → Q̃∗ by

h̃(a, I(w)) = (h(a)1, I(h(w))) · · · (h(a)k, I(h(w)h(a)1 · · · h(a)k−1)),

where h(a)i denotes the i’th symbol of h(a); and
– the coding λ̃ : Q̃∗ → Γ ∗ by

λ̃(a, I(w)) = σ(fλ(w)(v0), λ(a)) = σ(ϕ∗(v0, λ(w)), λ(a)).

The resulting DFAO that computes T (x) is then M ′ = 〈Ω,Σ, δ̃, q̃0, Γ, λ̃〉 where
Ω ⊂ Q̃ is the set of reachable states in Q̃ from Q̃0 = (q0, I(ε)), the input alphabet
of the DFAO is Σ = {0, . . . , k − 1}, and the transition function δ̃ : Q̃ × Σ → Q̃
is defined by

δ̃((a, I(w)), d) = (h(a)d, I(h(w)h(a)1 · · · h(a)d−1)).

3.2 Complexity Analysis

The proof of Lemma 1 in [17] finds p and r by iterating through the finite
set (V V )|Q| until a repetition is found, which requires to iterate through at
most |V ||Q|·|V | maps. Consequently we get that p, r ≤ |V ||Q|·|V |. The total
number of states |Ω| is, in the worst case, at most |Q̃| ≤ |Q| · |V |(p+r)|V | ≤
|Q| · |V |2·|V ||Q|·|V |+1

. To find the reachable states Ω, we run a breadth-first
search starting from the initial state, which, in the worst-case, takes time
O(|Q| · |V |(p+r)|V | + k · |Q| · |V |(p+r)|V |) = O((k + 1) · |Q| · |V |2·|V ||Q|·|V |+1

).
In practice, however, we do not usually see this kind of astonishingly large

worst-case complexity.2

4 Applications

In this section, we illustrate the usefulness of our implementation of transducers
in Walnut with two applications. In the first, we find a simple and direct proof
of a result of Burns [5]. In the second, we prove a new result about overlap-free
Dyck words.

1 Recall that the morphism ˜h : ˜Q∗ → ˜Q∗ is k-uniform if |˜h(q)| = k for all q ∈ ˜Q.
2 All of the computations in this paper took at most a few seconds to run.
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4.1 Factorial as a Sum of Three Squares

Let S3 = {0, 1, 2, 3, 4, 5, 6, 8, . . .} be the set of natural numbers that can be
expressed as the sum of three squares of natural numbers. A well-known theorem
of Legendre (see, for example, [15, §1.5]) states that N ∈ S3 if and only if it cannot
be expressed in the form 4i(8j +7), where i, j ≥ 0 are natural numbers. It follows
that the characteristic sequence of the set S3 is 2-automatic, a fact first observed
by Cobham [6, Example 8, p. 172]. Indeed, N ∈ S3 if and only if (N)2 is accepted
by the automaton depicted in Fig. 2. Recently a number of authors [4,5,9,10] have
been interested in studying the properties of the set S = {n : n! ∈ S3}. In partic-
ular, the set S is 2-automatic. In this section, we show how to determine a DFAO
for (the characteristic sequence of) S by using transducers. Let ν2(n) denote the
exponent of the highest power of 2 dividing n. The basic idea is to use the fact that
n! =

∏
1≤i≤n i, and keep track of both the parity of the exponent of the highest

power of 2 dividing i and the last 3 bits of i/2ν2(i).

0

0
1

1

0

2

1
0

3
1

1

4

0

1

5
0

1

0

Fig. 2. Automaton accepting (S3)2.

Clearly ν2(mn) = ν2(m)+ν2(n) for m,n ≥ 1. It now follows that ν2(n!) mod
2 is the running sum (mod 2) of the sequence ν2(1) · · · ν2(n).

Let g(n) = (n/2ν2(n)) mod 8 for n ≥ 1 and set g(0) = 1. Then it is easy to see
that g(n) ∈ {1, 3, 5, 7} for all n ≥ 1 and g(mn) = (g(m)g(n)) mod 8 for m,n ≥ 1.
Thus g(n!) is the running product (mod 8) of the sequence g(1)g(2) · · · g(n).

Hence ν2(n!) mod 2 can be computed by a running-sum transducer, and g(n!)
can be computed by a running-product transducer. Now n /∈ S3 if and only if
ν2(n) ≡ 0 (mod 2) and g(n) = 7, and therefore n /∈ S if and only if ν2(n!) =∑n

i=1 ν2(i) ≡ 0 (mod 2) and g(n!) ≡ ∏n
i=1 g(i) ≡ 7 (mod 8).

We can now implement these ideas in Walnut. We first define the DFAO
NU_MOD2, which generates the sequence (ν2(n) mod 2)n≥1, illustrated in Fig. 3.
This can be done with the following Walnut command, which defines it via a
regular expression:

reg nu2odd msd_2 "(0|1)*10(00)*":
combine NU_MOD2 nu2odd:

It is easy to see that g satisfies the following identities: g(2n) = g(n), and
g(8n + i) = i for i ∈ {1, 3, 5, 7}. From these identities, a least-significant-digit
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first automaton G8 for g is trivial to derive, as illustrated in Fig. 4. We can then
reverse this automaton, using the following Walnut command:

reverse G_MOD8 G8:

and get a 12-state DFAO G_MOD8 that computes g(n) in msd-first format.
Lastly, we define the transducer RUNPROD1357, which transduces the sequence

g(1)g(2) · · · g(n) into the sequence h1h2 · · · hn where the n’th term is the running
product (mod 8) of the sequence g(1)g(2) · · · g(n), i.e., hk =

∏k
i=1 g(i) mod 8.

The transducer is illustrated in Fig. 5.

0/0

0

1/0
1

1

2/1
0

0, 1

Fig. 3. DFAO NU_MOD2 computing ν2(n) mod 2.

0/1

0

1/11

2/1

0

3/3

1

4/1

0

5/51

6/30

7/7

1

0,1

0,1

0,1

0,1

Fig. 4. DFAO computing g(n) in
lsd-first format.

0

1 / 1
1

3 / 3

2

5 / 5

3

7 / 7

3 / 1

1 / 3
7 / 5

5 / 7

5 / 1

7 / 3

1 / 5

3 / 77 / 1
5 / 3

3 / 5
1 / 7

Fig. 5. Transducer RUNPROD1357 for run-
ning product mod 8.

We can then transduce NU_MOD2 with RUNSUM2 (defined in Example 1) to get
a resulting DFAO NU_RUNSUM, depicted in Fig. 6, using the Walnut command

transduce NU_RUNSUM RUNSUM2 NU_MOD2:

We similarly transduce G_MOD8 with RUNPROD1357 to get a resulting DFAO
G_RUNPROD (depicted in Fig. 7) with the following Walnut command:

0/0

0
1/0

1

2/1

0

3/11

0

1

0

1

Fig. 6. DFAO NU_RUNSUM computing the running sum (mod 2) of NU_MOD2.
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0/1

0

1/1

1

2/1

0

3/3

1

4/3
0 5/7

1

1

6/5

0

0

7/31

8/7

0

9/5

1

1
10/7

0

11/3

0

12/1

1

1

13/5

0
1

0

1

0

0

14/5

1

0
1

0

1

0

15/7

1

0

1

Fig. 7. DFAO G_RUNPROD computing the running product (mod 8) of G_MOD8.

transduce G_RUNPROD RUNPROD1357 G_MOD8:

Lastly, we generate the final automaton that accepts S, using the charac-
terization above that n ∈ S if and only if ν2(n!) =

∑n
i=1 ν2(i) ≡ 1 (mod 2)

or g(n!) ≡ ∏n
i=1 g(i) �≡ 7 (mod 8), which can be directly translated into the

following Walnut command:

def nfac_in_s "(NU_RUNSUM[i]=@1) | ~(G_RUNPROD[i]=@7)":

Figure 4 of Burns [5] depicts an automaton accepting n, represented in base-2
with least-significant digit first, if n! cannot be written as a sum of 3 squares
represented in the lsd_k. We can now obtain their automaton by reversing and
negating the automaton nfac_in_s using the following Walnut command:

def nfac_in_s_rev_neg "~‘$nfac_in_s(i)":

This gives us a 35-state automaton, depicted in Fig. 8, which is identical to Fig. 4
of Burns [5]. We have therefore rederived Burns’ result in a simpler and more
natural way.

4.2 Overlap-Free Dyck Words

In this section we cover another interesting application of transducers, to overlap-
free Dyck words. We need a few definitions.

A word of the form axaxa, where a is a single letter, and x is a (possibly
empty) word, is called an overlap. An example is the French word entente.
A word is said to be overlap-free if it contains no block that is an overlap.
A binary word is a Dyck word if it represents a word of balanced parenthe-
ses, if 0 is treated as a left paren and 1 as a right paren. The nesting level N(x)
of a finite Dyck word x is defined as follows: N(ε) = 0, N(1x0) = N(x) + 1 if x
is balanced, and N(xy) = max(N(x), N(y)) if x, y are both balanced.

In the paper [13], the following result is proved: there are arbitrarily long
overlap-free binary words of nesting level 3. Here we can prove the same
result using a different construction involving the Thue-Morse morphism μ,
where μ(0) = 01 and μ(1) = 10:

Theorem 2. Define x0 = 10 and xn+1 = μ(101μ(xn)101) for n ≥ 0. Define
yn = 00xn11 for n ≥ 0. Then yn is overlap-free for n ≥ 0 and yn has nesting
level 3 for n ≥ 1.
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Fig. 8. LSD-first automaton accepting the complement of S = {n : n! ∈ S3}.

Proof. We start by defining the infinite binary word d = 01 y0y1y2 · · · .
We will prove the results about the yn, indirectly, by proving results about d
instead. We claim that

(a) |yn| = 6 · 4n for n ≥ 0.
(b) yn = d[2 · 4n..2 · 4n+1 − 1] for n ≥ 0.
(c) Define I = i ∈ {2} ∪ {2 · 4n − 2 : n ≥ 1} ∪ {2 · 4n + 1 : n ≥ 1}.

Then d differs from μ2(d) precisely at the indices in I, and furthermore d
is the unique infinite binary word starting with 0 with this property.

(d) d is generated by the 10-state DFAO depicted in Fig. 9.
(e) Each yn is overlap-free, for n ≥ 0.
(f) Each yn has nesting level 3, for n ≥ 1.

We now prove each of the claims.

(a) Clearly |xn+1| = 4|xn| + 12 for n ≥ 0. That, together with |x0| =
2, gives |xn| = 6 · 4n − 4 by an easy induction. Hence |yn| = 6 · 4n.

(b) Again, an easy induction shows
∑

0≤i≤n |yi| =
∑

0≤i≤n 6 · 4i = 2 · 4n+1 − 2,
which proves the claim.

(c) It suffices to show that d[0..2 · 4i+1 − 1] differs from μ2(d[0..2 · 4i − 1])
precisely at the indices I ∩ {0, . . . , 2 · 4i+1 − 1}. To see this, note that

d[0..2 · 4i+1 − 1] = 01 y0

∏

1≤j≤i

yj = (01)(001011)
∏

1≤j≤i

00xj 11

= (01)(001011)
∏

1≤j≤i

00100110μ2(xj−1) 10011011

= (01)(001011)
∏

0≤j<i

00100110μ2(xj) 10011011.

On the other hand,

μ2(d[0..2 · 4i − 1]) = μ2(01
∏

0≤j<i

yj)

= 01101001
∏

0≤j<i

μ2(yj)

= (01)(101001)
∏

0≤j<i

μ2(00xj 11)

= (01)(101001)
∏

0≤j<i

01100110μ2(xj) 10011001.
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Inspection now shows that the differences occur precisely at the indices
mentioned. For uniqueness, assume there is some other binary word
e starting with 01 and having the stated property. An easy induction on i
now shows that e[0..2 · 4i − 1] = d[0..2 · 4i − 1] for all i. Hence e = d.

(d) We save the automaton in Walnut and then verify the word generated sat-
isfies the criterion of part (c).

morphism dd "0->01 1->23 2->45 3->67 4->28 5->65 6->56 7->93
8->89 9->98":

morphism c "0->0 1->1 2->0 3->0 4->1 5->0 6->1 7->1 8->0 9->1":
promote D1 dd:
image D c D1:
# the automaton in the figure for the word d
morphism mu2 "0->0110 1->1001":
image DP mu2 D:
# the automaton for mu^2(d)
reg power4 msd_2 "0*1(00)*":
def differ "D[n]!=DP[n]":
# indices where they differ
eval test "An $differ(n) <=> (Ex $power4(x) & x>=4 &

(n=2|n=2*x-2|n=2*x+1))":
# check if criterion satisfied

And Walnut returns TRUE.
(e) We use the following Walnut code. It asserts that there is a segment of d

inside a yn that is an overlap. When we run it, Walnut returns FALSE.

eval has_overlap "Ex,i,n $power4(x) & i>=2*x & n>=1 & i+2*n<8*x &
At,u (t>=i & t<=i+n & u=t+n) => D[t]=D[u]":

(f) To check the nesting level, we first make a finite-state transducer that, on
input a word x, computes the nesting level if it is ≤ 3 (and outputs 4 if it
is ≥4 or <0). It is depicted in Fig. 10. We now simply run our sequence d
through this transducer and examine the output. It has no outputs of 4, so
the nesting level of d is ≤3.
We can determine the positions of the 0’s in the transduced sequence as
follows:

transduce DN nest D:
eval zeros "An DN[n]=@0 <=> (Ex $power4(x) & n=2*x-1)":
eval threes "Am,n (m<n & DN[m]=@0 & DN[n]=@0 & m>=7) =>

Et m<t & t<n & DN[t]=@3":

The first assertion is that 0’s occur in the transduced sequence at exactly the
positions corresponding to 2 · 4i − 1. The second is that between two occur-
rences of 0 in the transduced sequence dn there is always an occurrence of
3, provided the first occurrence is at a position ≥7. Walnut returns TRUE for
both. Thus each yn, n ≥ 1, has nesting level exactly 3.

This completes the proof. ��
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5 Going Beyond k-automatic sequences

So far, we have only worked with transducers for k-automatic sequences and
automata that take input over base-k representations of numbers. However, some
famous sequences, such as the Fibonacci word [2], are not k-automatic, but rather
automatic with respect to a different numeration system N , such as Fibonacci
representation [12,19]. We call such sequences N -automatic.

Dekking’s construction, suitably modified, can be used to prove the following
theorem.

Theorem 3. Let a = (an)n≥0 be an N -automatic sequence, and let T be a
1-uniform deterministic finite-state transducer. Then T (a) is also N -automatic.

Proof. We provide a sketch of the construction in [17]. The N -automatic
sequence a = (an)n≥0 is computed by a finite automaton with output M =
〈Q,Σ, δ, q0,Δ, λ〉, where for each q ∈ Q and a ∈ Σ, we have |δ(q, a)| ∈ {0, 1}
(i.e., there is at most one edge going out of q on input a). When M receives
the N -representation of n as input over some digit set Σ = {0, 1, . . . , k − 1}, the
automaton computes an. Note that M is only defined on valid N -representations.

The idea is to extend M to a new DFAO M ′ that is defined on all base-
k representations and behaves identically to M on N -representations. This is
accomplished by defining a dead state q# with an output of # that all inputs
that are not valid N -representations will end at. Then M ′ is a DFAO that accepts
all inputs in Σ∗, and computes a k-automatic sequence b = (bn)n≥0, satisfying
bn = am where m ∈ N is such that [m]N = [n]k.

We similarly define an extension T ′ of T where the input and output alpha-
bets are extended to include #. Upon reading # on state q, the extended trans-
ducer T ′ outputs # and transitions back to q. Then a new DFAO N computes
T ′(b), such that for all n,m ∈ N satisfying [m]N = [n]k, we have T ′(b) = T (a).
We may then remove all states of N that have an output of # to get a finite
automaton with output N ′ that computes T (a) and is only defined on valid
N -representations, completing the proof. ��

We now turn to an example. Define s(n) to be the second-to-last bit of
the Fibonacci representation of n (most-significant-digit first), and let s′(n) =
1 − s(n). Table 1 gives the first few terms of these sequences.
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Table 1. Second-to-last bit of Fibonacci representation.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s(n) 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
s′(n) 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1

Then s(n) is sequence A123740 in the OEIS and s′(n) is sequence A005713.
Another characterization of s(n), given in OEIS sequence A123740, is that s(n) =
�(n + 2)τ� − �nτ� − 3, where τ = (1 +

√
5)/2. We can verify this claim using a

synchronized automaton for �nτ�, given in [16, p. 278], as follows:

reg sldf msd_fib "0*(10|0)*10":
# second lowest bit of Fibonacci expansion is 1
combine SLDF sldf:
reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":
def aseq "?msd_fib Ex,y x=y+3 & $phin(n+3,x) & $phin(n+1,y)":
def test1 "?msd_fib An $aseq(n) <=> SLDF[n]=@0":

and Walnut returns TRUE. We now prove the following new result:

Theorem 4. Let f = 01001010 · · · be the Fibonacci word, fixed point of the
morphism 0 �→ 01, 1 �→ 0. Then f [n + 1] = (

∑
0≤i≤n s′(n)) mod 2 for all n ≥ 0.

Proof. We use the new capabilities of Walnut.

def nsldf "?msd_fib ~$sldf(n)":
combine NSLDF nsldf:
# sequence A005713
transduce TS RUNSUM2 NSLDF:
# A005614; this is infinite Fibonacci word shifted by 1
eval test2 "?msd_fib An TS[n]=F[n+1]":
# Walnut returns TRUE

��

6 Conclusion

Implementation of transducers in Walnut allow us to reprove existing theorems
in more straightforward ways, and also prove new results. We hope readers will
experiment with the new capabilities and find yet more applications.

AZ thanks Andrey Boris Khesin for useful discussions. Both authors thank
the CIAA referees and Robert Burns for their helpful comments.

https://oeis.org/A123740
https://oeis.org/A005713
https://oeis.org/A123740
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Measuring Power of Generalised Definite
Languages
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Abstract. A language L is said to be C-measurable, where C is a class
of languages, if there is an infinite sequence of languages in C that “con-
verges” to L. In this paper, we investigate the measuring power of GD
of the class of all generalised definite languages. Although each gener-
alised definite language only can check some local property (prefix and
suffix of some bounded length), it is shown that many non-generalised-
definite languages are GD-measurable. Further, we show that it is decid-
able whether a given regular language is GD-measurable or not.

1 Introduction

C-measurability for a class C of languages is introduced by [14] and it was used
for classifying non-regular languages by using regular languages. A language L
is said to be C-measurable if there is an infinite sequence of languages in C
that converges to L. Roughly speaking, L is C-measurable means that it can
be approximated by a language in C with arbitrary high precision: the notion
of “precision” is formally defined by the density of formal languages. Hence
that a language L is not C-measurable (C-immeasurable) means that L has a
complex shape so that it can not be approximated by languages in C. While
the membership problem for a given language L and a class C just asks whether
L ∈ C, the C-measurability asks the existence of an infinite sequence of languages
in C that converges to L. In this sense, measurability is much more difficult than
the membership problem and its analysis is a challenging task. For example, the
author [15] showed that, for the class SF of all star-free languages, the class of
all SF-measurable regular languages strictly contains SF but does not contain
some regular languages. However, the decidability of SF-measurability for regular
languages is still unknown. Only for some very restricted subclasses C of star-
free languages, the decidability of C-measurability is known [16]. A language L
is called locally testable [5,9,18] if it is a finite Boolean combination of languages
of the form uA∗, A∗v and A∗wA∗. Although the definition of local testability is
very simple, it was shown in [16] that many non-locally-testable languages are
LT-measurable, where LT is the class of all locally testable languages, and any
unambiguous polynomial (language definable by the first-order logic with two
variables) is LT-measurable. However, the decidability of LT-measurability for
regular languages was left open in [16].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 278–289, 2023.
https://doi.org/10.1007/978-3-031-40247-0_21
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In this paper, as a continuation research of [16], we examine the measuring
power of languages defined by definiteness, which is a natural restriction of
the notion of local testability. A language L is called definite (reverse definite,
respectively) [3] if it is a finite Boolean combination of languages of the form
A∗u (uA∗, respectively). Also, L is called generalised definite [7] if it is a finite
Boolean combination of languages of the form uA∗ and A∗v. We consider GD-
measurability and also consider D-measurability and RD-measurability where
D,RD and GD is the class of all definite, reverse definite and generalised definite
languages. The main results of this paper are two folds. We show:

(1) A simple automata theoretic and algebraic characterisation of RD-
measurability (Theorem 1 and Theorem 3).

(2) The equivalence of the GD-measurability and the LT-measurability (Propo-
sition 1) and a decidable characterisation of GD-measurability (Theorem4).
This decidability result answers a question posed in [16].

The structure of this paper is as follows. Section 2 provides preliminaries
including density, measurability and definitions of fragments of locally testable
languages. An automata theoretic characterisation of RD-measurability is given
in Sect. 3, and a decidable characterisation of GD-measurability is given in
Sect. 4, respectively. Related and future work are described in Sect. 5.

2 Preliminaries

This section provides the precise definitions of density, measurability and local
varieties of regular languages. REGA denotes the family of all regular languages
over an alphabet A. We assume that the reader has a standard knowledge of
automata theory including the concept of syntactic monoids (cf. [8]).

2.1 Languages and Automata

For an alphabet A, we denote the set of all words (all non-empty words, respec-
tively) over A by A∗ (A+, respectively). We write |w| for the length of w and
An for the set of all words of length n. For a word w ∈ A∗ and a letter a ∈ A,
|w|a denotes the number of occurrences of a in w. We denote by wr = ak · · · a1

the reverse of w = a1 · · · ak, and denote by Lr = {wr | w ∈ L} the reverse of the
language L. A word v is said to be a factor of a word w if w = xvy for some
x, y ∈ A∗. For a language L ⊆ A∗, we denote by L = A∗ \ L the complement of
L. A language L is said to be dense if L ∩ A∗wA∗ �= ∅ holds for any w ∈ A∗.
L is not dense means L ∩ A∗wA∗ = ∅ for some word w by definition, and such
word w is called a forbidden word of L.

A deterministic automaton A over A is a quadruple A = (Q, ·, q0, F ) where Q
is a finite set of states, · : Q×A → Q is a transition function, q0 ∈ Q is an initial
and F ⊆ Q is a set of final states. The language recognised by A is denoted by
L(A) = {w ∈ A∗ | q0 ·w ∈ F}. For a set of states Q′ ⊆ Q and a word w, we write
Q′ · w for the set of transition states from Q′ by w: Q′ · w = {q · w | q ∈ Q′}.
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The automaton A is called accessible if for every state p ∈ Q there is a word
w such that q0 · w = p. In this paper, we only consider accessible deterministic
automata. Q′ is called strongly connected if for every p, q ∈ Q′, there is some
word w such that p · w = q. We say that Q′ is a sink if it is strongly connected
and there is no outgoing transition from Q′, i.e., Q′ · w ⊆ Q′ for any w.

2.2 Locally Testable and Definite Languages

For a family CA of languages over A, we denote by BCA the finite Boolean closure
of CA. The class LTA of all locally testable languages over A can be defined as

LTA = B{wA∗, A∗w,A∗wA∗ | w ∈ A∗}.

The class DA,RDA and GDA of all definite, reverse definite [3] and generalised
definite [7] languages over A are defined as follows:

DA = B{A∗w | w ∈ A∗}, RDA = B{wA∗ | w ∈ A∗},

GDA = B{A∗w,wA∗ | w ∈ A∗}.

Hence these classes are proper subclasses of locally testable languages.

Remark 1 (cf. [5]). In [3,7] definite languages are originally defined as follows. A
language L is called:

– definite if and only if L = E ∪ A∗F for some finite sets E,F ⊆ A∗.
– reverse definite if and only if L = E ∪ FA∗ for some finite sets E,F ⊆ A∗.
– generalised definite if and only if L = E ∪⋃

i∈I FiA
∗Gi for some finite sets E

and Fi, Gi ⊆ A∗ for all i ∈ I, where I is a finite index set.

For any word w ∈ A∗, the singleton {w} can be written as the Boolean combina-
tion wA∗ ∩⋃

a∈A waA∗, hence any finite subset F ⊆ A∗ is in B{wA∗ | w ∈ A∗}.
Conversely, for any w, the complement wA∗ can be written in the form of a
reverse definite language: {u ∈ A∗ | |u| < |w|} ∪ (A|w| \ {w})A∗. Hence, these
original definitions can be modified by using the finite Boolean closure as above.

2.3 Density and Measurability of Formal Languages

For a set X, we denote by #(X) the cardinality of X. We denote by N the set
of natural numbers including 0.

Definition 1 (cf. [2]). The density δA(L) of L ⊆ A∗ is defined as

δA(L) = lim
n→∞

1
n

n−1∑

k=0

#
(
L ∩ Ak

)

#(Ak)

if it exists, otherwise we write δA(L) = ⊥. The language L is called null if
δA(L) = 0, and dually, L is called co-null if δA(L) = 1.
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Example 1. It is known that every regular language has a rational density
(cf. [11]) and it is computable. Here we explain two examples of (co-)null lan-
guages.

(1) For each word w, the language A∗wA∗, the set of all words that contain w
as a factor, is of density one (co-null). This fact follows from the so-called
the infinite monkey theorem (this is also called as “Borges’s theorem”, cf. [6,
p.61, Note I.35]): take any word w. A random word of length n contains w
as a factor with probability tending to 1 as n → ∞.
A language L having a forbidden word w is always null: having a forbidden
word w means A∗wA∗ ⊆ L hence we have δA(A∗wA∗) ≤ δA(L), which
implies δA(L) = 1 by the infinite monkey theorem.

(2) The set of all palindromes Lpal = {w ∈ A∗ | w = wr} over A = {a, b} is
dense but null. This follows from the fact that #(Lpal ∩ An) equals to 2�n/2	

and 2�n/2	/2n < 2(1−n/2) tends to zero if n tends to infinity.

We list some basic properties of the density as follows.

Lemma 1. Let K,L ⊆ A∗ with δA(K) = α, δA(L) = β. Then we have:
(1) α ≤ β if K ⊆ L. (2) δA(L \ K) = β − α if K ⊆ L. (3) δA(K) = 1 − α.
(4) δA(K ∪ L) ≤ α + β if δA(K ∪ L) �= ⊥. (5) δA(K ∪ L) = α + β if K ∩ L = ∅.
(6) δA(uL) = δA(Lu) = δA(L) · #(A)−|u| for each u ∈ A∗.

For more properties of δA, see Chap. 13 of [2].
The notion of “measurability” on formal languages is defined by a standard

measure theoretic approach as follows.

Definition 2 ([14]). Let CA be a family of languages over A. For a language
L ⊆ A∗, we define its CA-inner-density μCA

(L) and CA-outer-density μCA
(L)

over A as

μCA
(L) = sup{δA(K) | K ⊆ L,K ∈ CA, δA(K) �= ⊥} and

μCA
(L) = inf{δA(K) | L ⊆ K,K ∈ CA, δA(K) �= ⊥}, respectively.

A language L is said to be CA-measurable if μCA
(L) = μCA

(L) holds. We say
that an infinite sequence (Ln)n of languages over A converges to L from inner
(from outer, respectively) if Ln ⊆ L (Ln ⊇ L, respectively) for each n and
limn→∞ δA(Ln) = δA(L).

We give some examples of LTA-(im)measurable languages from [14,16].

Example 2.

(1) The set of all palindromes Lpal = {w ∈ A∗ | w = wr} is LTA-measurable.
The sequence of locally testable languages Lk = {wA∗wr | |w| = k} con-
verges to Lpal from outer if k tends to infinity (see [14] for the detail). The
density of Lpal is zero as stated in Example 1, hence the constant sequence
of the empty language trivially converges to Lpal from inner.
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(2) For any real number α ∈ [0, 1], there is an LTA-measurable language L
whose density is α. See [15] for the detailed construction.

(3) The language Mk = {w ∈ {a, b}∗ | |w|a = |w|b mod k} is LT-immeasurable
for any k ≥ 2. See [16] or Sect. 4.1 for the proof.

For a family CA of languages over A, we denote by ExtA(CA) (RExtA(CA),
respectively) the class of all CA-measurable languages (CA-measurable regular
languages, respectively) over A. A family of regular languages over A is called a
local variety [1] over A if it is closed under Boolean operations and left-and-right
quotients.

Lemma 2 ([15]). ExtA is a closure operator, i.e., it satisfies the following
three properties for each C ⊆ D ⊆ 2A∗

: (extensive) C ⊆ ExtA(C), (monotone)
ExtA(C) ⊆ ExtA(D), and (idempotent) ExtA(ExtA(C)) = ExtA(C). Moreover,
RExtA is a closure operator over the class of all local varieties of regular lan-
guages over A, i.e., CA-measurability is preserved under Boolean operations and
quotients for any local variety CA.

The following lemma is useful and will be used in Sect. 3 and Sect. 4.

Lemma 3. Let A = (Q, ·, q0, F ) be a deterministic automaton, Q1, · · · , Qk be
its all sink components and let Q′ = Q \ ⋃k

i=1 Qi. Then the language P ′ = {w ∈
A∗ | q0 · w ∈ Q′} is of density zero, Pi = {w ∈ A∗ | q0 · w ∈ Qi} satisfies
Pi = PiA

∗ and has a non-zero density for each i.

Proof. The condition Pi = PiA
∗ is clear because Qi is a sink for each i: Qi ·

w ⊆ Qi holds for every w. For each i, Pi is non-empty because A is accessible
(all automata in this paper are accessible as stated in Sect. 2.1). Let w be a
word in Pi. By Lemma 1, we have δA(Pi) ≥ δA(wA∗) = #(A)−|w|

> 0, i.e.,
Pi has a non-zero density. Now we show that the density of P ′ is zero. Let
Q′ = {q0, q1, · · · , qn}. For every state qi in Q′, there exists some word wqi such
that qi ·wqi is in some sink component. Because every qi in Q′ is not in any sink
component, qi is not reachable from the state qi · wqi , i.e.(qi · wqi) · w /∈ Q′ for
every w. Define u0 = wq0 and ui = wqi·vi−1 if qi · vi−1 ∈ Q′ and ui = ε otherwise
for each i ∈ {1, · · · , n} where vi−1 is the word of the form u0 · · · ui−1. By the
construction, for every qi in Q′, we have qi · u0 · · · un /∈ Q′. This means that
u0 · · · un is a forbidden word of P ′ and hence P ′ is of density zero by the infinite
monkey theorem. ��

For simplicity, here after we fix an alphabet A and omit the subscript A for
denoting local varieties.

3 Simple Characterisation of RD-Measurability

The next theorem gives a simple automata theoretic characterisation of RD-
measurability.
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Theorem 1. For a minimal deterministic automaton A, the followings are
equivalent:

(1) Every sink component of A is a singleton.
(2) L(A) is RD-measurable.

Proof. Let L = L(A), Q1, · · · , Qk be all sink components of A = (Q, ·, q0, F ) and
let Q′ = Q\⋃k

i=1 Qi. For each i ∈ {1, · · · , k}, define Pi = {w ∈ A∗ | q0 ·w ∈ Qi}
and define P ′ = {w ∈ A∗ | q0 · w ∈ Q′}. Clearly, P1, · · · , Pk and P ′ form the
partition of A∗, and we have δA(P ′) = 0 by Lemma 3.
Proof of (1) ⇒ (2): Because each Qi is a singleton, Pi is contained in L if the
state in Qi belongs to F and Pi is contained in L otherwise. Define

M =
⋃

{Pi | Qi ⊆ F} and M ′ =
⋃

{Pi | Qi ⊆ Q \ F}.

By the definition and Lemma3, we have M = MA∗ ⊆ L and M ′ = M ′A∗ ⊆ L.
Because P1, · · · , Pk, P ′ form the partition of A∗ and the density of P ′ is zero,
we can deduce that δA(M) + δA(M ′) = 1, which implies δA(M) = δA(L) and
δA(M ′) = δA(L′). For each n ∈ N and i, the set Mn = {w ∈ M | |w| ≤ n} and
M ′

n = {w ∈ M ′ | |w| ≤ n} are finite and hence the sequence of reverse definite
languages MnA∗ and M ′

nA∗ converges to L from inner and outer, respectively,
i.e.(i) MnA∗ ⊆ L and M ′

nA∗ ⊇ L holds for each n, and (ii) limn→∞ δA(MnA∗) =
δA(L) and limn→∞ δA(M ′

nA∗) = δA(L).
Proof of (2) ⇒ (1): This direction is shown by contraposition. We assume
that (1) is not true, i.e., some sink component, say Qj , is not a singleton. By
the minimality of A, Qj contains at least one final state, say p, and at least one
non-final state, say p′ (if not, all states in Qj are right equivalent). For each
q ∈ Qj , we write Lq for the language Lq = {w ∈ A∗ | q0 · w = q}.

Because Pj is non-empty and Pj = PjA
∗ holds, the density of Pj is not zero.

Pj has non-zero density implies that there exists at least one state q in Pj such
that Lq has non-zero density. Since Qj is a sink (strongly connected, especially),
there exist some words wq,p and wp,p′ such that q · wq,p = p and p · wp,p′ = p′.
Thus Lqwq,p ⊆ Lp holds, from which we can deduce that δA(Lp) ≥ δA(Lqwq,p) =
δA(Lq) · #(A)−|wq,p|

> 0, i.e., Lp has non-zero density, say α > 0.
We can show that, for every reverse definite language R = E ∪ FA∗ (where

E,F are finite sets) such that R ⊆ L, FA∗ ∩ Lp = ∅ holds as follows. If there
is some word w ∈ FA∗ ∩ Lp, then wwp,p′ is in FA∗ ∩ L since wwp,p′ ∈ Lp′

and p′ is non-final. This violates the assumption R ⊆ L. This means that every
reverse definite subset R = E ∪ FA∗ of L should have density less than or equal
to δA(L \ Lp) = δA(L) − α < δA(L). Hence, no sequence of reverse definite
languages converges to L from inner. ��

For a given automaton A, we can construct its reverse automaton Ar recog-
nising L(A)r by flipping final and non-final states and reversing transition
relations. By the definition of definite and reverse definite languages, L is D-
measurable if and only if Lr is RD-measurable. Hence, we can use Theorem 1 to
deduce the decidability of D-measurability.
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Corollary 1. For a given regular language L it is decidable whether L is RD-
measurable (D-measurable, respectively).

3.1 Algebraic Characterisation

In this subsection we give an algebraic characterisation of RD-measurability,
which is a natural analogy of the algebraic characterisation of RD stated as
follows. Let S be a semigroup. An element x ∈ S is called a left zero if xS = {x}
holds. An element x ∈ S is called an idempotent if x2 = x holds.

Theorem 2 (cf. [4]). For a regular language L and its syntactic semigroup SL,
the followings are equivalent:

(1) L is in RD.
(2) Every idempotent of SL is a left zero.

Let M be a monoid. For elements x and y in M , we write x ≤R y if xM ⊆ yM
holds. Notice that x ≤R y if and only if yz = x for some z ∈ M . An element x
is called R-minimal if y ≤R x implies x ≤R y for every y in M .

Theorem 3. For a regular language L and its syntactic monoid ML, the fol-
lowings are equivalent:

(1) L is RD-measurable.
(2) Every R-minimal element of ML is a left zero.
(3) Every R-minimal idempotent of ML is a left zero.

Proof. Let A = (Q, ·, q0, F ) be the minimal automaton of L. Notice that ML

is isomorphic to the transition monoid T = ({fw : Q → Q | w ∈ A∗}, ◦, fε) of
A where fw is the map defined by fw(q) = q · w, the multiplication operation
◦ is the composition fu ◦ fv = fuv and the identity element fε is the identity
mapping on Q. Hence, we identify ML with T .
Proof of (1) ⇒ (2): Let f be an R-minimal element of T . If f(q) is not
in any sink component of A for some q, there is a some word w such that
(f ◦ fw)(q) = f(q) · w is in some sink component. But this means that f is not
R-minimal because q is not reachable by f(q) · w, which implies (f ◦ fw) ◦ g �= f
for any g ∈ T . Hence, f(q) is in some sink component. By the assumption and
Theorem 1, every sink component of A is a singleton. This means that f(q)·w = q
holds for every w, i.e., f is a left zero.
Proof of (2) ⇒ (1): This direction is shown by contraposition. Assume (1) is
not true. That is, there is a sink component Q′ ⊆ Q which is not a singleton
by Theorem 1. Let p and q in Q′ be two different states and f be an R-minimal
element in T such that f(q0) = p (such f always exists since A is accessible and
Q′ is sink). Because Q′ is strongly connected, there is some word w such that
p · w = q. This means that f �= f ◦ fw (because f(q0) = p �= q = (f ◦ fw)(q0)),
i.e., f is not a left zero.
Proof of (2) ⇔ (3): (2) implies (3) is trivial. Assume (3). Let x be an R-
minimal element of ML. Because ML is finite, there is some index i ≥ 1 such
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that xi is an idempotent. By the R-minimality of x and xi = x · xi−1 ≤R x,
xi · y = x holds for some y. But xi is a left zero by the assumption, this means
that x = xi. ��

4 Decidable Characterisation of GD-Measurability

In this section we consider the GD-measurability. First we show that the GD-
measurability is equivalent to the LT-measurability.

Proposition 1. A language L is LT-measurable if and only if L is GD-
measurable.

Proof. For proving the equivalence ExtA(LT) = ExtA(GD), it is enough to
show that every locally testable language is GD-measurable by the monotonic-
ity and idempotency of ExtA (Lemma 2): ExtA(GD) ⊇ LT implies ExtA(GD) =
ExtA(ExtA(GD)) ⊇ ExtA(LT) ⊇ ExtA(GD). Further, since GD is closed under
Boolean operations, GD-measurability is closed under Boolean operations by
Lemma 2 and hence we only have to show that wA∗, A∗w and A∗wA∗ are
all GD-measurable for every w. The languages of the form wA∗ and A∗w are
already in GD, thus it is enough to show that A∗wA∗ is GD-measurable. This
was essentially shown in [16] as follows. Since the case w = ε is trivial, we
assume w = a1 · · · an where ai ∈ A and n ≥ 1. Define Wk = (Ak \ Kk)wA∗

where Kk = {u ∈ Ak | ua1 · · · an−1 ∈ A∗wA∗} for each k ≥ 0. Intu-
itively, Wk is the set of all words in which w firstly appears at the posi-
tion k + 1 as a factor. By definition, Wk is generalised definite (reverse def-
inite, in particular). Clearly, Wi ∩ Wj = ∅ and δA(Wi) > 0 for each i �= j,

thus we have
⋃

k≥0 Wk = A∗wA∗ and hence limn→∞ δA

(⋃n
k≥0 Wk

)
= 1, i.e.,

μ
GD

(A∗wA∗) = 1. Thus A∗wA∗ ∈ ExtA(GD). ��
Next we give a decidable characterisation of GD-measurability for regu-

lar languages. The characterisation is not so much simple as the one of RD-
measurability stated in Theorem 1, but the proof is a natural generalisation of
the proof of Theorem 1.

Theorem 4. Let A = (Q, ·, q0, F ) be a deterministic automaton and let
Q1, · · · , Qk be its all sink components and let Q′ = Q \ ⋃k

i=1 Qi. Define

Pi = {w ∈ A∗ | q0 · w ∈ Qi} P ′ = {w ∈ A∗ | q0 · w ∈ Q′}
Si = {w ∈ A∗ | Qi · w ⊆ F} S′

i = {w ∈ A∗ | Qi · w ⊆ Q \ F}
for each i ∈ {1, · · · , k}, and define

M =
k⋃

i=1

PiSi and M ′ =
k⋃

i=1

PiS
′
i.

Then L = L(A) is GD-measurable if and only if δA(L) = δA(M) and δA(L) =
δA(M ′) holds.



286 R. Sin’ya

Proof. By the construction, clearly M ⊆ L and M ′ ⊆ L holds. Also, by
Lemma 3, we have M =

⋃k
i=1 PiA

∗Si and M ′ =
⋃k

i=1 PiA
∗S′

i. Intuitively,
M and M ′ are “largest” (with respect to the density) languages of the form
PA∗S included in L and L, respectively. “if” part is easy. δA(L) = δA(M) and
δA(L) = δA(M ′) implies that the two sequences of generalised definite languages
Mn =

⋃k
i=1{uA∗v | u ∈ Pi, v ∈ Si, |u| + |v| ≤ n} and the complements of

M ′
n =

⋃k
i=1{uA∗v | u ∈ Pi, v ∈ S′

i, |u| + |v| ≤ n} converges to L if n tends to
infinity from inner and outer, respectively.

Next we show “only if” part by contraposition. With out loss of generality,
we can assume that δA(L) > δA(M). For every u, v ∈ A∗, we show that

uA∗v ⊆ L ⇒ (uA∗ \ P ′)v ⊆ M. (♦)

This implies δA(uA∗v) = δA((uA∗ \ P ′)v) ≤ δA(M) (because P ′ has density
zero by Lemma 3), from this we can conclude that every generalised definite
language should have density less than or equal to the density of M . Hence,
no sequence of generalised definite languages converges to L from inner by the
assumption δA(L) > δA(M). Let u, v ∈ A∗ be words satisfying uA∗v ⊆ L, and
let uw be a word in uA∗ \ P ′. Because uw is not in P ′, uw is in Pj for some
j ∈ {1, · · · , k}. The condition uA∗v ⊆ L implies uwA∗v ⊆ L and hence we have
uww′v ∈ L for any word w′ ∈ A∗. For every q ∈ Qj , there is some word w′ such
that q0 · uww′ = q because Qj is strongly connected. Thus we can conclude that
q ·v ∈ F for each q ∈ Qj , which means that v is in Sj and hence uwv is in M (by
uw ∈ Pj and v ∈ Sj), i.e., the condition (♦) is true. Let R = E∪⋃

i∈I FiA
∗Gi be

a generalised definite language included in L, where E and Fi, Gi ⊆ A∗ are finite
for all i ∈ I and I is a finite index set. The condition (♦) and R ⊆ L implies that⋃

i∈I(FiA
∗ \ P ′)Gi ⊆ M (note that E is density zero because it is finite). This

means that any generalised definite subset of L should have a density smaller or
equal to δA(M) which is strictly smaller than δA(L) by the assumption. Thus
there is no convergent sequence of generalised definite languages to L from inner.
��

By the construction, clearly, all languages Pi, Si, S
′
i are regular and automata

recognising these languages can be constructed from A. Hence, we can effec-
tively construct two automata recognising M and M ′ from A. Also, checking
the condition δA(L) = δA(M) and δA(L) = δA(M ′) is decidable: this condition
is equivalent to δA(M ∪ M ′) = 1, and it is decidable in linear time whether a
given deterministic automaton recognises a co-null regular language (cf. [13]).

Corollary 2. For a given regular language L it is decidable whether L is GD-
measurable (equivalently, LT-measurable by Proposition 1).

4.1 Remark on the Measuring Power of GD

As we stated in Example 2, the language Mk = {w ∈ {a, b}∗ | |w|a = |w|b
mod k} is LT-immeasurable for any k ≥ 2. The proof of the above fact given
in [16] uses an algebraic characterisation of locally testable languages. However,
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through Proposition 1, we can more easily prove this fact by showing that Mk is
LT-immeasurable as follows.

Proposition 2. Mk = {w ∈ {a, b}∗ | |w|a = |w|b mod k} is GD-immeasurable
for any k ≥ 2.

Proof. By simple calculation, we have δA(Mk) = 1/k. By definition, every infi-
nite generalised definite language must contain a language of the form uA∗v
for some u, v ∈ A∗. Let n = |uv|a − |uv|b mod k, define w = b if n = 0 and
w = ε otherwise. Then we have uwv ∈ L but uwv �∈ Mk. This means that
μ
GD

(Mk) = 0 < δA(Mk), i.e., Mk is GD-immeasurable. ��
A non-empty word w is said to be primitive if there is no shorter word v

such that w = vk for some k ≥ 2. In [14], it is shown that the set Q of all
primitive words over A = {a, b} is REG-immeasurable where REG is the class of
all regular languages. The proof given in [14] involves some non-trivial analysis
of the syntactic monoid of a regular language. If we consider the more weaker
notion, GD-measurability, the proof of the GD-immeasurability is almost trivial:
by definition, every infinite generalised definite language must contain a language
of the form uA∗v. But uA∗v contains the non-primitive word uvuv, hence there
is no infinite generalised definite subset of Q.

From the last example, one can naturally consider that the GD-measurability
is a very weaker notion than the REG-measurability. We are interested in how
far the GD-measurability is from the REG-measurability: is there any natural
subclass GD � C � REG of regular languages such that the C-measurability
differs from these two measurability? A possible candidate is SF the class of all
star-free languages as we discussed in the next section.

5 Related and Future Work

As we stated in Sect. 1, the decidability of SF-measurability [15] for regular
languages is still unknown. The decidability of LT-measurability was left open
in [16], but thanks to Proposition 1 and Theorem 4, it was shown that LT-
measurability (= GD-measurability) is decidable.

For some weaker fragments of star-free languages, the decidability of mea-
surability for regular languages are known: a language L is called piecewise
testable [12] if it can be represented as a finite Boolean combination of lan-
guages of the form A∗a1A

∗ · · · A∗akA∗ (where ai ∈ A for each i), and L is called
alphabet testable if it can be represented as a finite Boolean combination of lan-
guages of the form A∗aA∗ (where a ∈ A). We denote by PT and AT the class
of all piecewise testable and alphabet testable languages, respectively. It was
shown in [16] that AT-measurability and PT-measurability are both decidable.
Moreover, AT-measurability and PT-measurability do not rely on the existence
of an infinite convergent sequence, but rely on the existence of a certain single
language [16]:

– L is AT-measurable if and only if L or its complement contains
⋂

a∈A A∗aA∗.
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– L is PT-measurable if and only if L or its complement contains a language of
the form A∗a1A

∗ · · · A∗akA∗

In [17] the tight complexity bounds of AT-measurability and PT-measurability
for regular languages was given: AT-measurability is co-NP-complete and PT-
measurability is decidable in linear time, if an input regular language is given by
a deterministic automaton. Even though AT is a very restricted subclass of PT,
the complexity of AT-measurability is much higher than PT-measurability. This
contrast is interesting. Thanks to Theorem 1, RD-measurability is decidable in
linear time, if an input regular language is given by a minimal automaton.

Our future work are three kinds.

(1) Give the tight complexity bound of D- and GD-measurability.
(2) Prove or disprove ExtA(GD) � ExtA(SF).
(3) If ExtA(GD) � ExtA(SF), prove or disprove the decidability of SF-

measurability.

As demonstrated in the proof of Theorem 4, GD-measurability heavily relies
on the existence of an infinite sequence of different generalised definite lan-
guages. Hence the situation is essentially different with AT-measurability and
PT-measurability. One might naturally consider that GD-measurability has a
more higher complexity than AT-measurability.

To tackle the problem (2) and (3), perhaps we can use some known techniques
related to star-free languages, for example, the so-called separation problem for
a language class C: for a given pair of regular languages (L1, L2), is there a
language L in C such that L1 ⊆ L and L ∩ L2 = ∅ (L “separates” L1 and L2)?
It is known that the separation problem for SF is decidable [10].
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Abstract. We consider the problem of running the regex pattern match-
ing in a space-efficient manner. Given a regex, we suggest a bit-packing
scheme for representing a compiled regex in a compressed way, which
is its position automaton. Our scheme reduces its representation size
further by relying on the homogeneous property of position automata
and practical features of regexes. We implement the proposed scheme
and evaluate the memory consumption using a practical regex bench-
mark dataset. Our approach produces a much smaller representation
compared to two common FA representations. In addition, experimental
results show that our bit-packing regex engine is effective for matching
regexes that have large compiled forms, by showing less memory con-
sumption compared to the current state-of-the-art regex engine (RE2).

Keywords: Regex engine · Position automata · Bit-packing scheme ·
Regular expressions

1 Introduction

Regular expressions (regexes in short) are useful to represent patterns in various
applications such as natural language processing, intrusion detection systems,
and bioinformatics [9,17,21]. Once we write a desirable pattern P as a regex,
the regex pattern matching engine (regex engine in short) finds corresponding
pattern occurrences in a text string T with respect to the pattern regex. A typical
regex engine runs in two steps: compilation and matching. In the compilation
step, the regex engine converts P into an equivalent finite-state automaton called
a compiled regex. Then, in the matching step, the engine determines whether
or not the compiled regex accepts T (membership test), or reports where P
occurs as a substring of T (searching test). [10] Most programming languages
allow regexes and speed up the matching process by storing compiled regexes
in memory. For example, the regex engine of C# keeps a compiled regex in
main memory and avoids the re-compilation of the same regex repeatedly [8]. A
C++ library named ctre eliminates the regex compilation overhead in runtime,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Nagy (Ed.): CIAA 2023, LNCS 14151, pp. 290–301, 2023.
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by compiling a program with regexes [10]. As the volume of data increases, the
regex becomes larger and more complicated. These larger regexes may cause a
speed issue when the amount of memory is limited; for example, IoT or sensor
devices. This motivates us to study an effective way of reducing the memory
consumption for storing compiled regexes.

We present a bit-packing scheme for space-efficient representation of position
automata [16,20], which are one of the most popular compiled regex representa-
tions. Our method facilitates the compression methods for word dictionaries by
Daciuk and Weiss [11] with additional features to support practical regexes.

Our bit-packing regex engine (BP-engine) compiles a regex to its posi-
tion automaton, and converts the automaton to a bit-packed regex (BP-regex)
according to our bit-packing scheme. Our engine matches the BP-regex directly
for memory efficiency, bypassing the need for the unpacking process that con-
verts a BP-regex back into the corresponding position automaton. This gives
rise to memory-efficient processing. For instance, an intrusion detection sys-
tem embedded in an IoT device has limited computing resources. The system
often processes large regexes of malicious patterns, which are hard to process
in low-resource devices. We may convert such regexes to BP-regexes, then our
BP-engine directly processes BP-regexes without redundant unpacking steps.
Figure 1 shows an overview of our matching process.

Regular Expression

(union|sel
ect|insert|
update|...

Compilation

BP-regex
10

0
1

10

MatchingPacking

Compiled Regex

Input String

(Bit-Packing Scheme)

...aunione...

Low-Resource Device

10
0
1

10

union

Resultaunion
↑

e

Fig. 1. An overview of our BP-regex matching process with a BP-regex.

We demonstrate the effectiveness of our memory-saving approach by answer-
ing the following questions.

RQ1: How much does the proposed scheme reduce the size of compiled regexes
compared to existing formats? (Sect. 5.2)

RQ2: How much does the precompiled BP-regex reduce the memory usage
during pattern matching compared to the engines with compila-
tion? (Sect. 5.3)

RQ3: How long does it take for BP-regex to pack a compiled regex according
to our scheme? (Sect. 5.4)
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We present a bit-packing scheme for converting practical regexes to smaller
representations. Our scheme relies on the homogeneous property [5] of the posi-
tion automata (Sect. 3.1) and some practical features of regexes (Sect. 3.2) for
reducing the representation size. We implement our BP-engine based on the
proposed scheme, and demonstrate its effectiveness for addressing the memory
shortage problem through experiments.

The rest of the paper is organized as follows. In Sect. 2, we define the terms
including special labels in practical regexes. We propose a bit-packing scheme
and present major features of the scheme in Sect. 3. Then, in Sect. 4, we recall
the Grail format and dumped regexes for comparison. We evaluate our scheme
and compare its performance with existing solutions in Sect. 5 and conclude the
paper in Sect. 6.

2 Background

An alphabet Σ is a set of symbols and a string w is a finite sequence of symbols.
A regex E over Σ is defined as follows. The empty set ∅, the empty string λ, and
a single symbol σ ∈ Σ are regexes. For regexes E1 and E2, the concatenation
(E1E2), the union (E1|E2) and Kleene star (E∗

1 ) are regexes. A nondeterministic
finite-state automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q is a set
of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is a transition function, q0 ∈ Q
is the initial state, and F ⊆ Q is a set of final states. The NFA A recognizes
the language {w ∈ Σ∗ | δ∗(q0, w) ∩ F �= ∅}, where δ∗ : Q × Σ∗ → 2Q is defined
by δ∗(q, λ) = {q} and δ∗(p,wσ) = {r ∈ Q | r ∈ δ(q, σ) for some q ∈ δ∗(p,w)}.
An NFA is a deterministic finite-state automaton (DFA) if |δ(q, σ)| ≤ 1 for any
q ∈ Q and σ ∈ Σ.

We can think of δ as a set of labeled transitions (p, σ, q), where q ∈ δ(p, σ).
For each transition (p, σ, q) ∈ δ, we say states p and q as the source state and
the target state of the transition, respectively. We also say that the transition is
an out-transition of p and an in-transition of q. An NFA has the homogeneous
property if the in-transitions of each state have the same label, and position
automata have the homogeneous property [6]. The density of A is the ratio |δ|

|Q|2
of the number of transitions to the number of state pairs. Note that the density of
position automata is between 0 and 1 because each state of a position automaton
has at most |Q| out-transitions. For any symbol σ, we say that a state q ∈ δ(p, σ)
is an adjacent state of p. We do not use the term next state to avoid confusion
with the state that follows in the memory.

Real-world regexes have several features for practical implementation. For
instance, anchors denote empty strings at constrained positions; anchor ^ and
anchor $ denote start-of-line and end-of-line, respectively. A character class is
another special feature that denotes a set of characters by enclosing the char-
acters or ranges of characters in square brackets. One can also denote the
inverted character set by the caret following the opening bracket. For exam-
ple, [^aeiou0-9] is the set of characters that are neither vowels nor digits.
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Literal denotes non-special symbols. In practice, most regex engines have a pri-
ority mechanism that enables an engine to choose one out-transition over another
out-transitions to facilitate the matching preference [2].

3 Proposed Bit-Packing Scheme

Daciuk and Weiss [12] proposed an effective bit-packing scheme for storing a
word dictionary in an acyclic DFA. They represented each state by listing its out-
transitions together with their labels and the addresses of target states (target
addresses). They also introduced a variable-length coding (v-coding) of addresses.
The first bit of each byte indicates whether or not the byte is the last byte of the
encoded address, and the remaining seven bits denote the value of the address.
For a state q, let in-memory next state be the state following q in memory. The
representation of a transition also includes N-, L-, and F- flags as follows:

– N: no address; we do not need a target state address since the target state is
the in-memory next state.

– L: this is the last transition of the source state.
– F: this is a transition to a final state.

This scheme produces the CFSA2 format, which is a dictionary representa-
tion that enables an acyclic DFA matching against a CFSA2 input. The scheme
is suitable for a finite set of strings but cannot handle an infinite set of strings
or character classes.

Based on their work, we propose a bit-packing scheme for compiled regexes (=
NFAs) with practical regex features. Figure 2 shows the change in the transition
layout; the left is in the CFSA2 format and the right one is our scheme.

7 6 5 4 3 2 1 0

label index i

v-address

v-address (contd)

N L F

bit

0

0

1

label (only if i = 0)

1

2

7 6 5 4 3 2 1 0
bit

1st address

type of labelNS-value

1

1st address (contd)10

last address1

last address (contd)00

· · ·

multi-byte encoded label

(a) (b)

Fig. 2. An illustration for (a) a transition in the CFSA2 format and (b) a state in the
BP-regex format.

While v-coding in the CFSA2 format represents a single target address only,
we extend v-coding to handle multiple target addresses that share the source
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state and the same label. In addition to the first bit indicating whether the byte
is at the end of an encoded address, we use the second bit of the last byte to
indicate that the address is the last address of the label. Then, we arrange the
transitions in decreasing order of priority.

We also support special labels for practical regexes. The first byte denotes a
label type, and the following bytes represent a multi-byte encoded label whose
length and encoding method depend on its label type. The NS-value denotes
no addresses and a self-loop. If there is an adjacent state that is neither an
in-memory next state nor the state itself, then the NS-value is 0. Otherwise, we
have three possible cases for the NS-value. The value 1 indicates that the state
has only one adjacent state, which is the in-memory next state. The values 2 and
3 both indicate that the state also has a self-loop; the only difference between
these two values is the priority between the self-loop and the transition targeting
the in-memory next state. For these three cases, we do not need the address of a
target state. We use two more optimizations for saving space—the homogeneous
property optimization and the consecutive literal optimization.

3.1 Homogeneous Property Optimization

Once we represent a state in the BP-regex format depicted in Fig. 2(b), each out-
transition of a state consumes memory for its label. We utilize the homogeneous
property of position automata—all in-transitions of a state have the same label—
to reduce the memory consumption. Thus, instead of keeping all out-transition
labels for each state, we only keep its unique in-transition label. We represent the
initial state as the sequence of the next addresses without labels because it has
no in-transitions. Figure 3 illustrates the homogeneous property optimization.

ASCII code of ‘b’

literal0

0

address 0x080

0

address 0x0f0 0

literal

ASCII code of ‘c’

ASCII code of ‘a’

literal0

0

0 1

0 0

q
b

c

a
addr.:0x08

addr.:0x0f

(b)(a) (c)

0

address 0x08

address 0x0f
a

b
addr.:0x0b

0 1 address 0x0b

0 0 address 0x08

1

Fig. 3. (a) A graph representation of a state, (b) storing all out-transition labels and
(c) storing its unique in-transition label based on the homogeneous property.
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3.2 Consecutive Literal Optimization

Literal labels often appear in sequence as strings within patterns in practical
regexes. For example, a pattern ^(\w+:)?tape-record-admin$1 has consecutive
literals tape-record-admin. Sung et al. [28] demonstrated the high usage of con-
catenation compared to other regular operations. After the compilation, symbols
in the middle of these strings become states with a single in-transition and a sin-
gle out-transition—in the previous example, each symbol of ape-record-admi
does. In such cases, it is efficient to have all bytes within a certain interval rep-
resent the ASCII code of the literal label rather than spending extra bytes to
indicate that the state label is literal. We optimize the consecutive literal label
case by utilizing the first bit of the ASCII byte. Figure 4 depicts the consecutive
literal optimization.

7 6 5 4 3 2 1 0
bit

ASCII code of the 1st literal

1NS-value 0

1

0

1

ASCII code of the 2nd literal12

ASCII code of the last literal0k

· · ·

addresses of the last state... · · ·

Fig. 4. The layout of a sequence of states with literal labels after the consecutive literal
optimization.

4 NFA Structure Formats

There are several formats to represent NFAs including FAdo [1], Grail [26],
JFLAP [27] or memory dumping [25]. We consider Grail and memory dumping
for comparison.

4.1 Grail Format

Grail is a C++ library for automata programming, which is developed for sup-
porting formal language and automata research. The library uses a newline-
separated list of instructions for input automata. Each instruction is a transition
triple of a source state, a label and a target state. Grail denotes the initial state 0
by the instruction ‘(START) |- 0’. Final states F are denoted using a label -|
and a target state (FINAL); the instruction is ‘F -| (FINAL)’.
1 We bring this example from polyglot [13]. Here, \w is a character class for alphanu-

meric characters and an underscore.
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4.2 NFA Structure Dumping

Structure dumping is an object serializing technique that saves an entire data
instance in the main memory as a file without deforming. We call the format
obtained by dumping such NFA objects Dump, which represents a state as a
transition map where the key is an out-transition label of the state and the
value is an array of pointers to target states of each transition [7,19].

Although the exact size in memory of the NFA state might vary depending
on its implementations, the size of each transition map cannot be less than the
sum of the sizes of its transition label σ and the pointers to the target states
in δ(q, σ). For a fair comparison, we underestimate the size of a dumped file of
an NFA by adding up the sizes of essential components: target-state pointers,
out-transition labels for each state, and pointers to initial and final states. We
assume 4-byte pointers, and the byte size of the character class label is

1 + (# of characters in the class) + 2 × (# of ranges in the class),

where the first one-byte term is a flag value indicating the inversion of the classes.
We also consider another format called HDump, which is similar to Dump, where
each state has only an in-transition label of the state instead of out-transition
labels. This is for the homogeneous property of position automata.

5 Experimental Results and Analysis

5.1 Experiment Setting

Our BP-engine is based on the Thompson matching algorithm [29] for the match-
ing. Note that the current state-of-the-art regex engine, RE2, also uses the
Thompson algorithm. We evaluate the matching time by the membership test
instead of the searching test since we focus on the peak memory consumption
for smaller FA representations while reading the whole input. Note that it is
straightforward to extend the membership test to the search test by prepending
and appending Σ∗ to an input regex.

We use the polyglot corpus [13], a large-scale regex corpus for statistical
analysis of real-world regexes, for our evaluation dataset. The polyglot corpus
contains a vast collection of regexes from eight different programming languages:
JavaScript, Java, PHP, Python, Ruby, Go, Perl, and Rust. These languages are
widely used in different fields, and the corpus is a common benchmark dataset
for practical regex tasks [3,14,22,28].

Since the polyglot dataset has only regexes and no matching strings, we
construct input strings using Xeger [30] that generates strings by performing a
random walk. From 537,806 regexes in the dataset, we remove 171,111 regexes
that RE2 and our engine cannot process due to unsupported features such as
lookaround or backreference. The number of the remaining regexes is 366,695.
We use Massif of Valgrind [23] for tracking the memory footprint of engines and
reporting the peak memory usage. For each experiment, we exclude outliers that
do not fall within 1.5 times the interquartile range to prevent the statistical
analysis from being biased by few extreme cases [31].



Smaller Representation of Compiled Regular Expressions 297

5.2 Size Reduction of Our Scheme

We compare BP-regexes to Grail and Dump formats to verify the possible advan-
tages of using BP-regexes from a storage perspective (RQ1). We use the Dump
format for the underestimation of the dumped files. Figure 5 shows the size of
each NFA format obtained by compiling real-world regexes. The result shows
that regexes in the Grail format are the largest, representing NFAs using 121.73
bytes on average. The Dump format uses 92.0 bytes, and its optimized version,
HDump, compresses the size to 83.62 bytes. Our BP-regex achieves the smallest
size 23.17 bytes.

0 50 100 150 200 250 300 350

BP-regex
HDump
Dump
Grail

Format Size (Byte)

Fig. 5. The box-and-whisker plot of each NFA format size; (1) the whiskers indicate
the minimum and maximum values, (2) the box indicates first second and third quartile
values, and (3) the dot indicates the average value.

The comparison between Dump and HDump demonstrates the usefulness
of the homogeneous optimization—reduces the size of NFA by 8.38 bytes on
average. The homogeneous optimization essentially reduces the size of states with
more than one out-transition label. In general, as the density of the transition
function increases, the number of states with more than one out-transition label
increases as well. This implies that the homogeneous optimization is beneficial for
high-density NFAs. Table 1 supports our claim by showing that the optimization
reduces the size more when the NFA has a higher density.

Table 1. The average size of the memory dump method with or without the homo-
geneous optimization for different NFA densities. We divide the density ranges non-
linearly to keep the number of regexes in each row similar. The last column shows the
average of the size reduction ((1 − HDump/Dump) × 100%).

Density of NFA

(ρ = |δ|/|Q|2)
# of Regexes Size (Byte) Reduction (%)

Dump HDump

0 < ρ ≤ 1/16 135,730 255.19 224.16 4.81 ↓
1/16 < ρ ≤ 1/8 115,082 76.84 68.67 9.73 ↓
1/8 < ρ ≤ 1 115,883 54.80 44.32 18.19 ↓
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A small NFA representation is important for fast matching as well as memory
efficiency. During the matching process, we can reduce cache misses and page
faults by loading a large number of FA transitions into memory. However, we
notice that RE2 outperforms our BP-engine in our experiment. This is because
of the several optimizations that the current BP-engine does not support.

5.3 Memory Saved by Precompiled BP-Regex

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

102

103

104

Number of Transitions in NFA

Memory
Usage
(KB)

RE2 BP-engine BP-engine w/ precompiled

Fig. 6. The peak memory usage for regex pattern matching with respect to the number
of transitions.

We examine how much memory is saved by precompiling the BP-regex,
instead of compiling a regex at runtime (RQ2). We take the peak memory usage
for evaluations as it is a common metric for evaluating memory-efficient algo-
rithms [18,24]. We analyze our BP-engine matching process with the compilation
and the matching process that uses precompiled BP-regexes. For comparison, we
also measure the peak memory usage of RE2, which compiles regexes at runtime.

Figure 6 shows that the BP-engine with precompiled BP-regex outperforms
the other engines as the NFA is larger. In other words, compiling the regex
before the runtime is more efficient for long regexes that potentially generate
more transitions when compiled, such as malicious pattern rules in intrusion
detection systems. For example, our BP-engine is suitable for real-time virus
packet monitoring on an IoT device by using BP-regexes.

Observe that the memory consumption of our approach is stable, whereas the
other approaches increase the consumption substantially as the number of tran-
sitions increases. For example, the benefit of our approach becomes notable when
the number of transitions is 20 or more. This is because the compilations con-
sume more memory for constructing larger NFAs and, therefore, our bit-packing
scheme has more room for improvement. Overall, based on the experimental
results in Sects. 5.2 and 5.3, we claim that using precompiled regex formatted in
BP-regex is the most suitable approach when the amount of memory is limited.
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5.4 Packing Time of BP-Regex

RQ3 examines the impact of bit-packing on overall time consumption for pre-
matching regex processing. We measure the compilation time and the bit-packing
time to answer the question. We study RE2 as well as BP-regex to compare the
compilation step of the real-world regex engine. Figure 7 shows the time spent
on the compilation of RE2, BP-engine without packing, and BP-engine with
packing.

0 20 40 60 80 100 120

BP-engine
BP-engine w/o packing

RE2

Time (in µs)

Fig. 7. The compilation time of different engines.

The compilation of BP-regex takes 25.6 ms on average, and adding the pack-
ing increases the preprocessing time by 11.3 ms. Comparing the average 25.6
and 36.9 ms of BP-regex and BP-regex with packing, the packing increases the
preprocessing time by 1.35 times.

The result shows a trade-off for the compactness of BP-regex shown in
Sect. 5.2. Note that, in most cases, the compilation time of BP-regex is shorter
than RE2 but has a significantly higher variance. This is due to the NFA con-
struction algorithm; BP-regex uses the position construction whose resulting
automaton has O(n2) transitions in the worst-case [4], where n is the number
of symbols and operations in a regex. On the other hand, RE2 uses a modified
Thompson construction that produces O(n) transitions [15]. This gives rise to a
large variance in the compilation time of the BP-engine compared to RE2.

6 Conclusions

We have proposed a bit-packing scheme that packs compiled regexes into
space-efficient BP-regexes. Our scheme compresses compiled regexes by using
(1) extended v-coding that supports multiple target addresses, (2) a smaller
representation of states using the homogeneous property, and (3) an optimiza-
tion for literals labels that occur consecutively. Our BP-engine performs the
regex matching with low memory consumption by using BP-regexes.

The experiments demonstrate the effectiveness of our scheme. We have com-
pared the resulting BP-regex with the Grail format and memory dumping, and
demonstrated that the BP-regex has a much smaller size. Then, we have pre-
sented an advantage of our approach for loading a bit-packed NFA in terms
of peak memory consumption. Our approach is more beneficial when the input
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regex has a larger compiled form. The last experiment has shown that the addi-
tional time is relatively small compared to the reduction of memory usage.
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