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Abstract Time series analysis of Interferometric SyntheticAperture Radar (InSAR)
data is a crucial step for monitoring the displacement of the Earth’s surface. The
Persistent Scatterer InSAR (PS-InSAR) is a multi-temporal InSAR method that pro-
vides the displacement time series that can be used for studying ground deformation.
From a hazard assessment perspective, the rapid detection of deformation patterns
is crucial for identifying the areas that will be affected by damage due to landslides.
Understanding the relationship between triggering factors, such as rainfall and the
occurrence of mass movements from the interpretation of SAR time series is still
a major challenge. Herein, we first review some of the traditional methods, such
as Pearson correlation analysis for investigating whether there is any possible lin-
ear dependency between rainfall and ground deformation measurements. Then, we
describe the time series analysis tools in the least-squares wavelet software that can
be used for processing non-stationary time series which may not be evenly sampled.
Wedemonstrate how these tools can be utilized to understandmore about the relation-
ships between displacement and rainfall time series which have different sampling
rates without any need for filtering and/or aggregation.
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1 Introduction

Ground deformation can be studied by satellite Interferometric Synthetic Aper-
ture Radar (InSAR) [1]. In the Differential InSAR (DInSAR) techniques, two radar
images capturing the same region but taken at different times are compared to pro-
duce a map (i.e., interferogram). The map shows ground displacement along the
sensor’s line of sight between two acquisition times [2]. However, its main limitation
is related to the accuracy caused by spatial and temporal decorrelation (atmospheric
delay, topographic errors, etc.) between the two signals. This can be overcome (at
least for some particular points, called Persistent Scatterers), with the Advanced-
DInSAR (A-DInSAR) technique, which consists of combining a large number of
SAR images (multi-image technique). The Persistent Scatterer InSAR (PS-InSAR)
technique is an Advanced Differential Synthetic Aperture Radar Interferometry
(A-DInSAR) method to obtain the temporal evolution of displacements for stable
radar reflectors, in terms of temporal coherence and amplitude stability, in the inves-
tigation area: the so-called Persistent Scatterers PSs [3]. PS-InSAR has been widely
applied for different hazard investigations, from local-scale deformation processes
(e.g., those affecting a single building or structure) to large-scale deformation pro-
cesses (e.g., landslides, subsidence, tectonic deformations, etc.). The potential of
A-DInSAR measurements for landslides detection, mapping, and characterization
has been widely investigated to reconstruct the history of deformations through PS
time series analysis [4–7].

A-DInSAR technique allows the study of trend changes in time series, reflect-
ing the deformations observed in differential interferograms. The time series of
deformation processes are non-stationary, i.e., exhibit trends, jumps, and wavelike
components that change frequency and amplitude over time. Several methods were
examined to analyze and evaluate the relations between landslides and triggering
phenomena, in particular, heavy rainfalls [8, 9]. Heavy rainfall can determine an
increase in velocity trends of time series, providing interesting information about the
processes that governed the slope behavior [10]. A possible correlation between the
rain and the activation of a deformation phenomenon has been highlighted in [11]
through the analysis of Sentinel-1 interferograms and rainfall data. The deformation
phenomena detected during the interferometric analysis were mostly concentrated
during high rainfall periods, showing that rain could be considered the main trigger-
ing/accelerating factor of the studied landslides.

To investigate the possible influence of one phenomenon on another, one may
process their time series by several statistical methods. For example, the Pearson
correlation coefficient is a common statistical metric that shows the strength and
direction of a linear relationship between two variables, denoted by r [12]. However,
this metric only shows the possible linear dependency between two phenomena, e.g.,
deformation processes and rainfall. The deformation processes such as landslides,
discovered by the PS time series, are often sampled unevenly because of many
reasons, such as sensor defect, storage, and economy. Therefore, methods that can
rigorously consider irregularities in sampling and values of such time series are
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extremely demanding. To analyze the correlation of PS and rainfall in non-stationary
time series, we have to take into account that they may also have different sampling
rates with missing values. In addition, there might exist some time delay between the
wavelike components of the time series, e.g., a time delay between the annual cycles
of vegetation and climate or between the annual cycles of interferometric baseline
length and temperature [13, 14].

The traditional wavelet coherence and cross-wavelet transform have been used
in many applications to study possible relationships between two phenomena in the
time-frequency domain [15, 16]. However, these techniques have some limitations.
For example, at higher frequencies or small wavelet scales, peaks in the spectro-
grams/scalograms and cross-spectrograms/scalograms get smoothed out, resulting
in a reduction of power that can be misleading [17]. Another limitation of these
methods is that the time series should be evenly spaced with no missing values. The
Least-Squares Wavelet (LSWAVE) software [18, 19] is designed to process any type
of time series regardless of how they are sampled. This software contains several
tools each designed for a particular purpose described in more detail in Sects. 2.4,
2.5, 2.6, and 2.7.

The main goal of this study is to highlight the potential of the LSWAVE software
for analyzing and investigating the possible relationships between PS-InSAR and
precipitation time series. A rainfall time series, obtained from the nearest weather
station to an area in the Municipality of Borghi, Italy, affected by landslides, is
selected. Then its possible impact on the ground deformation is investigated by
performing correlation and coherency analyses with the ascending- and descending-
orbital geometries of the PS-InSAR time series. The results of these analyses are
demonstrated in Sect. 3. Finally, the discussion and conclusions are provided in
Sects. 4 and 5, respectively.

2 Materials and Methods

2.1 Study Region

The study area, which comprises the municipality of Borghi, is located in the typical
hilly landscape of the eastern part of the Forlì-Cesena province (Emilia Romagna
Region, Northern Italy, [21]) (Fig. 1). The local geology is represented by a turbiditic
sequence (flysch) composed of marly and pelitic rocks in alternation with fractured
sandstone layers [22, 23]. The consequence of such a heterogeneous alternation of
hard and soft rock layers is an intense slope instability that affects the study area,
expressed in relatively small and shallow slides, earth flows, and complex landslides.
According to the national-scale historical landslides archive IFFI (Inventario Dei
Fenomeni Franosi in Italia [24]), the majority of these landslides are classified as
active or dormant. The main triggering factor for the activation or reactivation of
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Fig. 1 Geographical location of the case study within the municipality of Borghi on 10 m
resolution digital elevation model [20]. The closest rainfall and temperature stations to the
studied area are represented by a blue triangle and a red diamond respectively (arpae database
https://www.arpae.it/). This map was generated with QGIS which is a free and open-source geo-
graphic information system (GIS).

landslides is related to long and intense rainfall during the whole year, or rapid
snowmelt during the springtime (March and April [25–27]).

2.2 Datasets

The meteorological data (rainfall and temperature) used herein are provided by the
Arpae agency and freely downloaded from https://www.arpae.it/. The A-DInSAR
dataset used in this study consists of 265 SAR images from the archives of the Italian
Space Agency (ASI) acquired from 2010 to 2019 in both orbital geometry:

– Ascending orbital geometry: 119 images in Single Look Complex (SLC) format
acquired by the COSMO-SkyMed satellites from 18 February 2011 to 03 August
2019;

– Descending orbital geometry: 146 images in Single Look Complex (SLC) format
acquired by the COSMO-SkyMed satellites from 23August 2010 to 01 September
2019.

https://www.arpae.it/
https://www.arpae.it/
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The COSMO-SkyMed constellation consists of four satellites, launched from
2007 to 2010, at an orbital height of 619.6 km and an orbital inclination of 97.86◦.
All satellites are equipped with high-resolution X-band radar (3.1 cm wavelength),
capable of observing through cloud cover and during the night. The repeat cycle is
16 days, and the revisit capability is variable because every single satellite will have
a near revisit time of 6 days. The policy on data acquisition of satellite missions, e.g.,
background missions (continuous acquisition for the same areas) versus on-demand
acquisitions, affects the availability of data. Since the COSMO-SkyMed satellite
mission has both military and civil purposes, the available archived images are not
exactly one every 6 days. Therefore, the dataset is not continuous over time. The
PS-InSAR time series values often contain outliers because of the technical issues
of the PSI method during the stack gathering from the SAR data, the atmospheric
phase estimation, and the deformation model used [28].

The selected PS-InSAR time series exhibit a mean cumulative displacement
(expressed in mm) of −91.3 mm (DESC) and −61.7 mm (ASC) in the time inter-
val of data acquisition (2011–2019 for the ascending geometry and 2010–2019 for
the descending one). The area of interest was carefully chosen within a quiescent
landslide reported in the IFFI database (IFFI-0400794100 [24]). Furthermore, the
possible correlation with intense rain events was emphasized by the presence of
strong accelerations within a small time window in the time series.

2.3 Pearson Correlation Method

The correlation between pairs of series can be measured to determine how
much two time series vary together. The most common quantitative measure of cor-
relation is the Pearson correlation coefficient, denoted by r , which can be computed
to determine the strength and direction of the relationship between two variables
[29]. The Pearson correlation coefficient is essentially a normalized measurement of
the covariance that indicates how far away the data points are from the best fitting
line, defined by Eq. (1):

rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (1)

where x and y are the means of variables x and y, respectively. The Pearson cor-
relation coefficient has a value between −1 and +1. This metric reflects only the
linear association between two sets of data to find how well they are related, ignor-
ing other types of relationships or correlations. Furthermore, xi and yi should ideally
be measurements corresponding to time ti when applying Eq. (1) to find the linear
dependency between two time series. This means that if the two time series have
different sampling rates, one should first resample the time series to match their
corresponding times before Pearson correlation analysis. Thus, the correlation result
will also depend on the resampling method.
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2.4 Least-Squares Spectral Analysis (LSSA)

The LSSA is a spectral analysis method for processing unevenly sampled time series
that may have trends or jumps ([30]). A least-squares spectrum (LSS) can be esti-
mated by choosing a frequency set and trend constituents, such as linear, quadratic, or
cubic. The LSS can be plotted as frequency vs. amplitude or frequency vs. percentage
variance. To obtain a LSS, trend and sinusoidal functions at each given frequency
are fitted to the time series via the least-squares optimization. Mathematically, let
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⎤

⎥
⎥
⎥
⎦

, (2)

where f (t j ) is the measurement estimated at time t j , ωk is a cyclic frequency, φ�

is a constituent of known form, and ck is the coefficient vector being estimated by
the least-squares method. For example, if φ1(t j ) = 1 and φ2(t j ) = t j for 1 ≤ j ≤ n,
then c1 and c2 will be the intercept and slope of a linear trend to be estimated. The
following cost function is minimized in LSSA after an optimization process.

�
(
ck

) = (
f − Φkck

)T(
f − Φkck

)
, (3)

where T is transpose. Thus, the estimated coefficient vector will be

ĉk = (
ΦT

k Φk
)−1

ΦT
k f. (4)

The amplitude of the sinusoid at ωk is the square root of the sum of squares of the
last two elements of ĉk . Since the first q columns in Φk are fixed, the amplitude
estimation using Eq. (4) is not computationally efficient, especially when estimating
LSS for a large set of frequencies. More details for computational optimization of
Eq. (4) can be found in [17, Supplementary Materials].

To obtain the percentage variance LSS, the time series may first be de-trended.
Then the LSS may be estimated for the residual time series, a process that takes
into account the correlation between the removed trend and the sinusoids at each
frequency. More precisely, let r(t j ) be the estimated residual at time t j , i.e., the
originalmeasurementminus the fitted trend value at t j . The normalized or percentage
variance LSS (after multiplying by 100) of the residual series is calculated by the
following formula:
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sk =
n∑

j=1

r(t j )
(
ĉk,1 cos(2πωk t j ) + ĉk,2 sin(2πωk t j )

)/ n∑

j=1

r(t j )
2, (5)

where ĉk,1 and ĉk,2 are the last two elements of ĉk in Eq. (4).
The graph of estimated amplitudes of the fitted sinusoids versus their frequencies

shows the amplitude LSS while the percentage variance LSS shows the contribution
amount of the estimated sinusoids to the residual time series versus the frequencies.
Note that when the trend is also fitted, both amplitude and percentage variance LSS
are obtained for the residual series while the effect of trend removal is considered in
the LSS estimation.

Assuming the normality of time series values, LSS in Eq. (5) will follow the
beta distribution [31]. From this statement, if a spectral peak value is larger than the
critical value at a certain significance level (e.g., 0.01), then the peak is statistically
significant at 99% confidence level.

2.5 Least-Squares Cross-Spectral Analysis (LSCSA)

The LSCSA is a time series decomposition method that simultaneously processes
two time series together for calculating coherency and phase differences between
the harmonic components of the time series [32]. To obtain the least-squares cross-
spectrum (LSCS) for two time series, first, the LSSof each time series is obtained, and
then the LSSs are multiplied by each other. The stochastic significance of a peak in
LSCS is also based on the normality assumption of the two time series whose values
are also statistically independent. The discrepancy between the estimated phases can
determine the time delay between the harmonics. For example, the phase difference
of 60◦ at frequency 2 cycles/year indicates that the harmonic in the first time series
leads/lags by about 30 days from the harmonic in the other time series. Note that the
season-trend fit is applied to the entire time series in both LSSA and LSCSA. There-
fore, the estimation of components whose frequencies and/or amplitudes change over
time is an overall average and so not accurate locally [32, 33].

2.6 Least-Squares Wavelet Analysis (LSWA)

The LSWA, an extension of LSSA, can process non-stationary time series that may
not be evenly sampled [32, 33]. In LSWA, a least-squares wavelet spectrogram
(LSWS) is computed by sliding a window over time whose size is inversely propor-
tional to the frequency, i.e., as the frequency increases the window size decreases,
allowing a more accurate estimation of short-duration waves. The number of obser-
vations or measurements within a window is called the window size or segment
size.
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Spectrograms are usually displayed as time versus frequency versus amplitude
or time versus frequency versus percentage variance. The LSWA also estimates the
phases of sinusoids. To obtainLSWS, awindowing technique is implemented.Within
each sliding window, LSSA is applied to estimate a spectral peak corresponding to
that window using Eqs. (4) or (5). In other words, for each time and each frequency,
the amplitude or percentage variance is estimated by simultaneously fitting the trend
and sinusoids at the given frequency to the segmentwithin the slidingwindow located
at the given time. The percentage variance shows how much the residual segment
contains the sinusoids at a given frequency.

A Gaussian function may be used to define weights for time series values within
each window. Therefore, the values toward the window center get higher weights
(more important) than the values toward the margins of the window (less important)
during the season-trend estimation. This results in a smooth spectrogram, i.e., an
optimal time-frequency resolution. Furthermore, the weights are useful when there
exist missing values in non-stationary time series, so the values further away from
the window center receive relatively lower weights. In fact, the Gaussian weights
and harmonics in the LSWA model are like the Morlet wavelet in the least-squares
sense [17, 32]. Note that the window location and window center are the same when
the time series is evenly sampled or an equally spaced set of times is selected for
estimating the spectrogram.

Like LSSA, the spectrogram peaks can be statistically assessed with the normality
assumption. Note that in some applications, this assumption may not be valid but has
no effect on the estimation of a spectrogram. In other words, regardless of whether
the time series values are normally distributed or not, a spectrogram can still be
estimated. A stochastic confidence level surface, shown herein as a gray surface, can
show which spectrogram peaks are significant stochastically [32]. In other words, if
a peak stands above the surface, then it is statistically significant.

2.7 Least-Squares Cross-Wavelet Analysis (LSCWA)

The least-squares cross-wavelet analysis (LSCWA) is a time-frequency decompo-
sition technique proposed for coherency analysis and estimating phase differences
between the harmonics of two time series [32, 33]. LSCWA can be directly applied
to time series that are sampled at different time intervals, and it can account for
the measurement errors. Moreover, the cross-spectrograms in LSCWA have higher
time-frequency resolution compared to the ones in XWT [17].

The Least-squares cross-wavelet spectrogram (LSCWS) is obtained from themul-
tiplication of the spectrograms of the two time series [32]. Since the time series may
have different sampling rates, a common time vector is selected first that can be
either the union of the time vectors in both time series or any equally spaced time
vector whose values are within the common time interval of the two time series. The
cross-spectrograms are plotted as time versus frequency versus percentage variance
(coherency). The percentage variance shows the coherency amount between the har-
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monics of two time series segments—the higher the percentage variance, the higher
the coherency and vice versa [17, Supplementary Materials].

The LSCWA also estimates the phase differences between the harmonics fitted
to time series segments. The phase difference is a number between −180 and 180◦,
and it is usually plotted by an arrow on the 2D view of the cross-spectrogram. For
example, arrows pointing to the positive and negative directions of the time axismean
that the harmonics are in-phase and out-of-phase, respectively. Arrows pointing to
the positive and negative direction of the frequency axismean that the harmonic in the
second time series lags and leads the one in the first time series by 90◦, respectively
[14]. Given the frequency, the estimated angle can be converted to time.

When the time series values are statistically independent and normally distributed,
a confidence level surface can identify whether an estimated peak in the cross-
spectrogram is statistically significant [32]. The MATLAB and Python software
packages developed for LSSA, LSCSA, LSWA, and LSCWA are comprehensively
described in [18, 19].

3 Results

3.1 Results of Traditional Methods

The relationship between temperature and rainfall variability was investigated by
using monthly averages of temperature and cumulative rainfall (Fig. 2). These data
were calculated from the daily cumulative temperature and rainfall for the 2011–
2019 time period. Borghi municipality climate is classified as warm and temperate
(Cfa, the acronym for humid subtropical climate, according to the Köppen-Geiger
climate classification [34]). Temperatures are at their highest from June to August
(summer) while they are at their lowest from December to February (winter) (Fig.
2a). The average temperature is 11.9 ◦C. Rainfall amount is significant throughout
the year, with an average annual rainfall of 74.3 mm. Even the driest month (August)
has an average rainfall of 41.8 mm.

There is no statistically significant linear correlation between mean temperature
and cumulative rainfall, as highlighted by Fig. 2b. This lack of correlation can be due
to the different trends of temperature and rainfall. As underlaid by the annual mean
temperature and cumulative rainfall trends, the rainfall seems to show no seasonal
tendency (Fig. 2c), while the temperature is characterized by an annual periodicity
(Fig. 2d). Both rainfall and temperature exhibit significant monthly variability.

The analysis of the correlation is not straightforward for unevenly spaced time
series, as PS-InSAR. To face this problem, the original unevenly spaced time series
were butter-filtered and resampled daily in order to remove outliers and obtain
equidistant points of measure (Top panels of Fig. 3). The correlations between
PS (ascending and descending) and rainfall time series are underlined in the bot-
tom panels of Fig. 3. On one hand, the Pearson correlation coefficient shows that
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Fig. 2 The climate charts showing the temperature and rainfall of Borghi municipality during the
2011–2019 time period. The monthly mean temperature and cumulative rainfall, a show a decrease
in the rain during the summer season (from June to August) when the mean temperature increases.
The Pearson coefficient, b indicates a poor negative correlation between the two variables. The
box plots of rainfall c and temperature, d reveal a great variability during months. The outliers are
shown by gray hexagons, and the horizontal lines inside the boxes show the median values

Fig. 3 Top three panels: PS-InSAR time series for both ascending (ASC) and descending (DESC)
satellite orbits and cumulative rainfall time series. The red curves show the filtered and daily
resampled time series. Bottom three panels: Pearson correlation results between the selected daily
time series
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the ascending and descending PS time series are positively correlated with r � 1
(p-value < 0.01). On the other hand, a strong negative relationship between PS and
rainfall time series is highlighted by the r -value close to −1 (p-value < 0.01). Since
the occurrence of landslides can be directly caused by intensive rainfall, identifying
an increasing change in rainfall could determine the identification of a change in the
occurrence of landslides. Overall, traditional methods of correlation do not allow the
analysis of the quantitative relationship between the volume of rainfall and landslide
occurrence for the identification of triggers.

3.2 The LSWAVE Results

The percentage variance and amplitude spectra and spectrograms for rainfall and
temperature time series are illustrated in Fig. 4. The linear trend is used for both
LSSA and LSWA. Interestingly, there is no statistically significant annual component
at 99% confidence level in the rainfall time series (Fig. 4a). Furthermore, from the
LSS, there is no statistically significant seasonal component in the rainfall time series
while the LSWS shows short-duration seasonal components in the years 2012, 2014,
2015, 2016, and 2018 (shown in reddish). The amplitude spectrogram in Fig. 4b also
shows relatively higher estimated amplitudes for the seasonal components at 4–5
cycles/year (period of 2–3 months) in 2015 and 2018.

The temperature time series shows a dominant annual component that is statisti-
cally significant in both LSS andLSWS (cf. Fig. 4c). On the other hand, the amplitude
spectrogram illustrated in Fig. 4d clearly shows the amplitude of the temperature has
decreased since 2011 while this cannot be observed from LSS amplitude because
LSS only shows frequency versus amplitude not time-frequency versus amplitude.

Figure 5 shows the LSCSs and LSCWSs of the climate and PS-InSAR displace-
ment time series. A linear trend was estimated and removed from each segment
when estimating LSCWSs in panels (a)–(d) and from each time series when estimat-
ing LSCSs in panels (a) and (b) while a cubic trend was fitted and removed from the
displacement time series when estimating LSCSs in panels (c) and (d).

One can see from Fig. 5a that the annual cycles of temperature and rainfall time
series are coherent at 99% confidence level though the percentage variance is very
low (about 2%). Arrows displayed on the significant annual peaks are pointing to the
left, meaning that the annual cycles of temperature and rainfall are almost out-of-
phase. The estimated phase difference using LSCSA is approximately −170◦. This
means that when the annual cycle of the temperature reaches its maximum value,
the annual cycle of the rainfall reaches its minimum value and vice versa. Note that
Fig. 3b only showed a weak negative correlation (r � −0.16) but neither showed the
seasonality nor temporal change.

From Fig. 5b, a statistically significant coherency can be observed for the annual
components, where the annual cycle of time series for the ascending geometry leads
the one for the descending geometry by about one to two months over time. The
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Fig. 4 The percentage variance and amplitude spectra and spectrograms for a, b rainfall and
c, d temperature time series. The red lines in LSSs displayed in panels, a and c show the critical
values at 99% confidence level. Also, the gray color map is the stochastic surface at 99% confidence
level

cross-spectral peaks are not estimated for the locations with data gaps (e.g., between
the end of 2016 and early 2017).

Interestingly, the short-duration seasonal components of displacement (ascending
geometry) and rainfall at 4–5 cycles/year (about 2–3 months period) toward the end
of 2014 are coherent at 99% confidence level (cf., Fig. 5c), with approximately 120◦
or one month phase difference. In other words, as the rainfall value increases, the
displacement value decreases. It is also known that landslides occurred toward the
end of 2014.

The annual cycle in the years 2013 and 2018 for rainfall lags the one for the
displacement (descending geometry) by about one month, see Fig. 5d. This is in
agreement with the fact that there were landslides in the years 2013 and 2018. Fur-
thermore, in the year 2016 both LSCWSs, illustrated in Fig. 5c, d, show statistically
significant coherency at 3 cycles/year with about 90◦ phase difference. This indicates
that the four-month cycle of the displacement time series leads the one in the rainfall
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Fig. 5 The cross-spectra and cross-spectrograms of climate and PS-InSAR time series. The red
lines in LSCSs show the critical values at 99% confidence level. Also, the gray color map represents
the stochastic surface at 99% confidence level. The white arrows on LSCWSs show the local phase
differences. Arrows pointing to the right, left, top, and bottom indicate that the seasonal cycles of
the segments in the first time series are in-phase, out-of-phase, leads, and lags with/from the ones
in the second time series, respectively. To avoid displaying too many arrows on LSCWSs, arrows
are displayed only for some of the most significant peaks

by approximately one month which could mean that the rainfall might have played a
significant role in the ground deformation. Note that landslides also occurred during
2016.
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4 Discussion

As observed in Fig. 4a, there was no statistically significant annual component at
99% confidence level in the rainfall time series as opposed to a significant annual
component that usually exists in rainfall time series in other regions (e.g., [13, 17]).
The annual amplitude attenuation over time in the temperature time series was also
an interesting observation. From the negative Pearson correlation (r � −0.16) and
the direction of the arrows displayed on the annual peaks in Fig. 5a, it can be deduced
that the warm summers tended to be drier and cool winters tended to be wetter in
this study region—like the results in some other regions (e.g., [35, 36]).

As demonstrated in Fig. 5, the seasonal cycles of the displacement time series
generally led the ones in the rainfall time series by nearly one month during major
landslides. The least-squares spectral and wavelet analyses did not show any sta-
tistically significant annual component in the rainfall time series while the annual
component of the rainfall was weakly coherent with the one in the displacement time
series which could have also triggered the landslides. Before applying the Pearson
correlation analysis, the time series had to be aggregated, i.e., the displacement time
series had to be regularized and resampled so that both displacement and rainfall data
align in time. However, the LSWAVE tools did not require any such pre-processing
and were directly applied to process the climate and displacement time series with
different sampling rates and gaps.

The impact of rainfall on ground deformation requires further investigation. For
example, the wavelike components of the displacement time series could have been
created by several factors, such as possible biases created during the InSAR data
pre-processing steps, and land cover and climate change. Applying the methods
mentioned herein to process displacement and rainfall time series for other regions
may help in a better understanding of their relationships which is subject to future
work.

5 Conclusions

We briefly reviewed the tools in the LSWAVE software and showed how they may
be utilized to investigate possible relationships between rainfalls and displacement
time series derived by PS-InSAR (both ascending and descending geometry) in the
municipality of Borghi, Italy. We also investigated the relationship between rainfalls
and temperature in the study region. We highlighted what additional information
one can obtain when using these tools as compared to traditional ones like Pearson
correlation analysis. The tools in the LSWAVE software were directly applied to
unevenly sampled time series having different sampling rates without any filtering
and/or aggregation. As for future work, we shall generate geospatial maps using
these tools for investigating possible spatiotemporal relationships between rainfalls
and displacement time series. We hope that such analyses help geologists to better
understand the pattern of landslides and their triggering factors.
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