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Preface

This book gathers the extended versions of a selection of the best contributions
presented in the eighth edition of the International Conference on Time Series and
Forecasting, ITISE 2022, held in Gran Canaria (Spain) in June 2022.

Fortunately, this conference was characterized by a return to normality, some-
thing that had not been achieved at ITISE since 2019. Let’s remember that the 2020
edition was cancelled due to the outbreak of the COVID-19 coronavirus and that the
2021 edition was held under very special conditions, with hybrid face-to-face/online
sessions. We can now happily remember the old saying “nothings lasts forever”,
which in its more popular version in Spanish we usually say “no hay mal que dure
100 años” (literally translated: “there is no evil that lasts a hundred years”). Let’s
cross our fingers and hope that the following editions maintain this new normality.

As is well known, this congress aims to provide a friendly discussion forum for
scientists, engineers, educators, and students to discuss the latest ideas and achieve-
ments in the fundamentals, theory, models, and applications in the field of time series
analysis and forecasting. More specifically, the main topics of the last edition of the
Congress were

1. Time series analysis and forecasting

– Nonparametric and functional methods
– Vector processes
– Probabilistic approaches to modeling macroeconomic uncertainties
– Uncertainties in forecasting processes
– Nonstationarity
– Forecasting with Many Models. Model integration
– Forecasting theory and adjustment
– Ensemble forecasting
– Forecasting performance evaluation
– Interval forecasting

v
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– Data preprocessing methods: Data decomposition, seasonal adjustment,
singular

– Spectrum analysis, detrending methods, etc.

2. Econometrics and forecasting

– Econometric models
– Economic and econometric forecasting
– Real macroeconomic monitoring and forecasting
– Advanced econometric methods

3. Advanced methods and on-line learning in time series

– Adaptivity for stochastic models
– On-line machine learning for forecasting
– Aggregation of predictors
– Hierarchical forecasting
– Forecasting with computational intelligence
– Time series analysis with computational intelligence
– Integration of system dynamics and forecasting models

4. High dimension and complex/big data

– Local versus global forecasts
– Dimension reduction techniques
– Multiscaling
– Forecasting Complex/Big data

5. Forecasting in real problems

– Health forecasting
– Atmospheric science forecasting
– Telecommunication forecasting
– Hydrological forecasting
– Traffic forecasting
– Tourism forecasting
– Marketing forecasting
– Modelling and forecasting in power markets
– Energy forecasting
– Climate forecasting
– Financial forecasting and risk analysis
– Forecasting electricity load and prices
– Forecasting and planning systems
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High-quality candidate papers from theConference ITISE2022 (15 contributions)
were invited to submit an extended version of their conference paper to be considered
for this special publication in the book series of Springer: Contributions to Statistics.
For the selection procedure, the information/evaluation of the chair of every session,
in conjunction with the review comments and the summary of reviews, was taken
into account.

So, now we are pleased to have reached the end of the whole process and present
the readerswith these final contributions thatwe hopewill provide a clear overviewof
the thematic areas covered by the ITISE 2022 conference. For the sake of readability,
the contributions presented in this book have been classified into different chapters
according to their content. Some chapters of the book contain pure theoretical contri-
butions. On the other hand, there are chapters with more practical contributions with
the intention of providing the readers with a more real-world view of the field. As
is common in these editions, a specific chapter of the book has been dedicated to
Econometrics, one of the most prominent applications of time series modeling and
forecasting. In the following, we will make a short summary of what the reader may
find in every chapter of the book:

– Theoretical Aspects of Time Series. Although in the field of time series it is difficult
to separate the theoretical aspects from the practical ones, since the presentation of
many of the theoretical developments usually ends with practical examples where
these developments could be applied, the papers in this first part have been selected
for being mainly theoretical. In contrast to previous editions, in which this chapter
was the one that included the largest number of contributions, in this edition only
two papers have been selected for this part. The first one deals with the study of
several online parameter estimation methods for irregular autoregressive models.
The second one introduces a new class of stochastic processes that the authors
call “Costationary Whitenoise Processes”, and propose a theoretical framework
to estimate their underlying parameters.

– Econometrics. This part aims at presenting some recent developments of time
series research applied to analysis and forecasting methods in Econometrics. Four
contributions have been selected. The first of these analyzes data from Airbnb in
Milan to find out which variables have the greatest influence on what apartments
aremore likely to be rented. In the second one, the authors test the ability of a semi-
Markov chain model to reproduce some typical facts, such as the persistence of
volatility, ofmanyfinancial time series during theCOVID-19 pandemic. The third,
very original in our view, makes use of machine learning approaches to address
the forecasting of stock price direction by analyzing news sentiment. Finally, the
last contribution of this part tries to analyze the published recommendations of
stockbrokers, their accuracy, and their real impact on portfolio trades that include
stocks of companies in the construction sector.
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– Time Series Analysis Applications. The third part of the book is dedicated to appli-
cations of time series analysis different from the ones related to Econometrics.
The idea is to state explicitly that applications of time series reach practically any
scientific discipline imaginable. Three contributions were selected for this part.
The first one presents an application of an automatic entropy-based clustering
algorithm for seasonal time series. In the second one, the authors examine the
impact of climate variables on the transmissibility of coronavirus and predict the
dynamics of confirmed COVID-19 cases using time series models and climate
data. This part ends with a paper focused on time series analysis of Interfer-
ometric Synthetic Aperture Radar data for monitoring the displacement of the
Earth’s surface. The authors also describe the time series analysis tools in the
least-squares wavelet software that can be used for processing non-stationary
time series which may not be evenly sampled.

– Time Series Forecasting. The fourth part of the book is dedicated to some appli-
cations of time series prediction. The first contribution explores one of the
most widely used models that explicitly deal with mixed-frequency datasets, the
MIDAS (MIxed DAta Sampling) models. The authors compare the nowcasting
and forecasting performance of different variants of thesemodels when predicting
the GDP growth of the four largest Euro Area economies between 2011Q4 and
2020Q3. In the next contribution, a new theoretical and practical scheme for
automatic forecasting model selection using R programming is developed, which
objectively can quantify which model has the “best” forecasting capacity with
dimensionless measures. Finally, in the last paper of this part, recurrent neural
networks with different types of gated cells for forecasting time series with
multiple seasonalities are compared.

– Time Series Applications in Energy. The last part of the book is dedicated to
the applications of time series analysis and forecasting methods in one of the
areas of greatest impact in recent years: energy. In particular, we have selected
contributions focused on power grids; wind energy production prediction; and
daily short-term gas, coal, oil, and carbon emission futures.

Last but not least, we would like to point out that this edition of ITISE was orga-
nized by the University of Granada (UGR), Spain, together with the Spanish Chapter
of the IEEE Computational Intelligence Society. The Guest Editors would also like
to express their gratitude to all the people who supported them in the compilation
of the book, especially to the contributing authors for their submissions, the chairs
of the different sessions, and to the anonymous reviewers for their comments and
useful suggestions in order to improve the quality of the papers.

We wish to thank our main sponsors as well: the Department of Computer Engi-
neering, Automation and Robotics of the University of Granada and the Research
Center for Information and Communications Technologies (CITIC-UGR) for their
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support and grants. Finally, we wish also to thank Dr. Veronika Rosteck, Springer
Editor, for their interest in editing a book series of Springer based on the best papers
of ITISE 2022.

We hope the readers of this book find these contributions interesting and helpful.

Granada, Spain
May 2023

Olga Valenzuela
Héctor Pomares

Luis Javier Herrera
Fernando Rojas
Ignacio Rojas
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Online Estimation Methods for Irregular
Autoregressive Models

Felipe Elorrieta , Lucas Osses, Matias Cáceres, Susana Eyheramendy ,
and Wilfredo Palma

Abstract In the last decades, due to the huge technological growth observed, it has
become increasingly common that a collection of temporal data rapidly accumu-
lates in vast amounts. This provides an opportunity for extracting valuable informa-
tion through the estimation of increasingly precise models. But at the same time,
it imposes the challenge of continuously updating the models as new data become
available. Currently available methods for addressing this problem, the so-called
online learning methods, use current parameter estimations and novel data to update
the estimators. These approaches avoid using the full raw data and speeding up
the computations. In this work, we consider three online learning algorithms for
parameters estimation in the context of time series models. In particular, the meth-
ods implemented are gradient descent, Newton-step and Kalman filter recursions.
These algorithms are applied to the recently developed irregularly observed autore-
gressive (iAR) model. The estimation accuracy of the proposed methods is assessed
by means of Monte Carlo experiments. The results obtained show that the proposed
online estimation methods allow for a precise estimation of the parameters that gen-
erate the data both for the regularly and irregularly observed time series. These online
approaches are numerically efficient, allowing substantial computational time sav-
ings. Moreover, we show that the proposed methods are able to adapt the parameter
estimates quickly when the time series behavior changes, unlike batch estimation
methods.

Keywords Autoregressive model · Online estimation · Streaming data · Gradient
descent
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1 Introduction

Several natural or social phenomena can be measured sequentially over time. There
are a wide range of tools to explain the temporal behavior of these phenomena.
Among the most popular methods are the autoregressive moving average (ARMA)
models. This model can be useful, for example, to explain the time dependence of
a stationary time series and to forecast its future behavior. However, these forecasts
become very uncertain over a large prediction horizon. This is an issue, since in
many cases temporal data are still being collected, which makes the time series
models useless if they are not updated recurrently.

This updating can be done in two ways: in batch or online setting. In the online
setting, each training instance is processed once “on arrival” without the need for
storage and reprocessing. In contrast, for batch learning, the whole dataset is required
to recalculate the current learning.

Avoiding storing and reprocessing previous information can be very useful to
optimize the computation time of the models if we need to fit large time series or
if we intend to model many time series simultaneously. The second case is a very
common challenge in time series classification based on features that are extracted
from the temporal behavior of each time series [19]. For example, in astronomy,
astronomical objects can be classified by the temporal behavior of their brightness
[5, 6, 23, 25].However, currently astronomical data is being processed in real time [2,
16] so that constant updating of time series models is a challenge which is addressed
in this work.

Several works have already addressed the problem of online estimation in regu-
larly observed time series [1, 18]. However, in some cases temporal data may not be
obtained regularly. This problem occurs frequently in astronomy [11], climatology
[20] or high-frequency finance [14].

Some models have been proposed in the literature to fit irregularly observed
time series. These models can be separated into two groups. The first one includes
models that assume continuous times, such as theContinuousAutoregressiveMoving
Average (CARMA[17]) orContinuous-TimeFractionally IntegratedARMAProcess
(CARFIMA [27]) models. These models are the solution of differential stochastic
equations and assume that there are small time gaps between observations.

On the other hand, the second group considers discrete times representation of
irregularly observed time series. Some models that follow this approach are the
irregular autoregressive (iAR [10]), complex irregular autoregressive (CiAR [7]),
bivariate irregular autoregressive (BiAR [8]) and the irregular autoregressive moving
average (iARMA [22]) models.

In this work, we are particularly interested in proposing online estimation meth-
ods for the irregularly observed autoregressive (iAR) model. For this purpose, we
follow two different approaches. First, following the work of Anava et al. [1], we
use numerical methods such as Gradient Descent and Newton–Raphson to derive
an update equation for the parameter of the iAR model. In the second approach, we
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obtain a recursive estimate of the posterior distribution of themodel parameter, under
a Bayesian structure [26].

The structure of this paper is as follows. In Sect. 2, we describe the irregularly
observed autoregressive model and the three online estimation methods proposed
in this work. In Sect. 3, we perform Monte Carlo experiments to evaluate the pro-
posed online estimation methods in different simulated scenarios. The application to
real-life data is shown in Sect. 4. Finally, the main findings of this work are discussed
in Sect. 5.

2 Methods

2.1 Irregular Autoregressive Model

The irregular Autoregressive (iAR) model was introduced by Eyheramendy et al.
[10] and it is defined as

yt j = φt j−t j−1 yt j−1 + σ

√
1 − φ2(t j−t j−1)εt j , (1)

where εt j is awhite noise sequencewith zeromean and unit variance,σ is the standard
deviation of yt j , and t j are the observational times such that j = 1, . . . , n.

The minus log-likelihood function of the process, under Gaussianity, is given by

l(θ) = n

2
log(2π) + 1

2

n∑
i=1

log vt j + 1

2

n∑
i=1

e2t j
vt j

, (2)

where the initial values are defined by et1 = yt j , vt1 = σ2 + δ2t1 . In addition, the one-
step predictor is defined by ŷt j = φt j−t j−1 yt j−1 , while the innovation is defined as
et j = yt j − ŷt j . The innovation variance is vt j = σ2(1 − φ2(t j−t j−1)) + δ2t j , where δ2t j
is the known variance of the measurement errors. Note that the parameter φ describes
the autocorrelation function of the process. Furthermore, yt j is a weakly stationary
process under 0 < φ < 1.

Generally, this model is fitted in an irregularly observed time series using all the
information available, i.e., in a batch setting. As mentioned above, in this work, we
propose online estimation procedures for the iAR model. With these methods, the
estimation of the parameter φ can be updated when new observations arrive without
the need to reprocess the previous information. In this work, we propose three online
estimation methods, which are introduced in the following subsection.
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2.2 Online Estimation Algorithms

A first approach to implement the online estimation algorithms for the iAR model
is based on the first-order optimization of a given loss function [1]. We propose two
estimation algorithms that follow this idea. The first one is called the Online Newton
Step (ONS) method. The ONS method was introduced by Hazan et al. [15] and is
based on the Newton–Raphson method. The main goal of this method is to exploit
the information to accelerate the convergence of the optimization. On the other hand,
we propose to use the Online Gradient Descent (OGD) method [3, 28], which aims
to optimize the parameter estimation by computing the gradient of a loss function.

A second approach is based on a Bayesian estimationmethod for the linear regres-
sion model. The algorithm that was built following this idea is the Online Bayesian
Regression (OBR), which assumes a prior distribution on the parameter of the model
and combines it with the likelihood of the observations to obtain the posterior dis-
tribution. The parameters of the resulting distribution contain the estimation results
for the parameter of the iAR model.

iAR Online Newton Step (iAR-ONS) The ONS algorithm uses the second deriva-
tive of the loss function. The adaptation of this algorithm for online estimation of
the parameter (φ) of the iAR process is as follows:

Input: φ1 initial value; learning rate η; A1 = η.

for j = 1 to n-1 do
Get ŷt j = φ

t j−t j−1

j yt j−1

Observe yt j and obtain the loss function l j (φ j );
Let � j = �l j (φ j ); Update A j+1 = A j + � j� j ;
Parameter update φ j+1 = (φ j − 1

η
A−1

j+1� j )

end
Algorithm 1: iAR-ONS

In our implementation, we assume that l j (φ j ) is the quadratic loss function
defined by (yt j − ŷt j )

2. Later, the gradient is defined by� j = −2(yt j − ŷt j )yt j−1(t j −
t j−1)φ

t j−t j−1−1
j .

iAR Online Gradient Descent (iAR-OGD) The second online estimation method
that we propose in this work is the iAR-OGD algorithm, which aims to optimize
the parameter estimation of the iAR process using the gradient descent method. The
steps to implement this algorithm are as follows:
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Input: φ1 initial value; learning rate η.
for j = 1 to n-1 do

Get ŷt j = φ
t j−t j−1

j yt j−1 ;
Observe yt j and obtain the loss function l j (φ j );
Let � j = �l j (φ j );
Parameter update φ j+1 = (φ j − 1

η
� j )

end
Algorithm 2: iAR-OGD

Here the loss function l j (φ j ) and the gradient � j are defined as in the iAR-ONS
algorithm.

iAROnlineBayesianRegression (iAR-OBR)TheOBR algorithm assumes aGaus-
sian prior distribution on the parameter φ of the iAR model, and combines it with
the likelihood of the current observation being analyzed, which is also Gaussian.
In addition, the parameter φ is defined by a random walk between the observations
[26]. This information can be combined to obtain the posterior distribution of the
parameter of the iAR model given the first j observations, in which its mean and
its variance are the estimated parameters φ j and Pj respectively. The parameters of
the posterior distribution can be obtained using a modified version of the Kalman
recursions, which are defined as follows:

Input: φ1, P1 initial values.

for j = 2 to n do
Observe yt j−1 and yt j ;

Let Sj = yt j−1 Pj−1 yt j−1 + σ2(1 − φ
2(t j−t j−1)

j−1 );

and K j = Pj−1 yt j−1 S
−1
j ;

Update φ j = φ j−1 + K j

[
yt j − yt j−1φ

(t j−t j−1)

j−1

]
;

and Pj = Pj−1 − K j S j K j ;
end

Algorithm 3: iAR-OBR

3 Simulation Experiments

In this section, we assess the parameter estimation accuracy of the three online
estimation methods for the iAR model proposed in this work. For the following
experiments, we generate each iAR process with 400 observations with random
observational times coming from the following four distributions:

• Regular time with constant gaps.
• Time gaps following a Uniform distribution with parameters a = 0.5 and b = 1.5.
• Time gaps following a Gamma distribution with parameters α = 3 and β = 3.
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• Time gaps following a mixture of two exponential distributions with means λ1 =
15 and λ2 = 2 and weights w1 = 0.15 and w2 = 0.85, respectively, such that

f (∇ j |λ1,λ2,ω1,ω2) = ω1g(∇ j |λ1) + ω2g(∇ j |λ2) ∀ j = 2, . . . , n

where g(.) is the exponential distribution and ∇ j = t j − t j−1 is the j-th time gap.

We chose these distributions in order to assess whether the size of the gaps in
which the observations are taken can affect the results of the estimation methods.
Both for the generation of the iAR process and the observational times, we use
functions available in the iAR package of R [9].

For each timedistribution,we implemented the three following scenarios. First,we
perform a simple sanity check, in which we generate the iARmodel with a parameter
φ and assess whether the proposed methods estimate the parameter accurately. The
second experiment consists of an abrupt change in the parameter of the model, i.e.,
the parameter of the model remains constant for the first half of each simulated iAR
process and for the second half it changes to another value. Finally, the last scenario
is the constant change, in which the parameter of the model changes slowly in time.
The abrupt change and the constant change experiments allow to evaluate whether
the online estimation can adapt to changes in the process structure.

Following the Monte Carlo method, each experiment was repeated 100 times. In
order to assess the proposed estimation methods we use three evaluation measures.
The first of them is the parameter estimation accuracy. Second, we evaluate the
goodness of fit by computing the Mean Squared Error (MSE) of the fitted values.
Finally, we evaluate the computation time of the proposed algorithms.

For the sanity check and constant change scenarios, we assumed that the first 50%
of the measurements of the time series were observed, while for the abrupt change
scenario we assumed that the initial 62.5% of the time series was observed. From
the observed values, we estimate the iAR model parameter in a batch setting. This
batch estimate was used as the initial value of the parameter for the online estimation
methods performed for the remaining observations. Finally, in each scenario, we
also compare the online estimation methods with the batch estimation which uses
all the values of each time series. The batch estimation of the iAR model is obtained
from the IARloglik function of the iAR package. From now we will refer to it as
iAR-MLE.

Table 1 shows a summary of the Monte Carlo experiments for the sanity check
scenario where the parameter of the simulated model is φ = 0.5 for the four distribu-
tions used to generate the observational times. In this table we present the last value
estimated by each estimation method, denoted by φ̂400. Note that the three online
estimation methods achieve a fairly accurate estimate at the end of the time series.
In the comparison between the online estimation methods, the iAR-ONS method
stands out with a closer estimation to the true value of the parameter for three of the
four time distributions.

In order to assess to the goodness of fit of each estimation method, we present
the MSE obtained from the fitted values estimated from the beginning of the online
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Table 1 Summary of the Monte Carlo experiments for the sanity check scenario performed using
a parameter φ = 0.5 in the iAR model for the four distributions used to generate the observational
times. Columns 2–5 of this table show the last value estimated for each method. The last four
columns show the mean squared error (MSE) computed for the fitted values

Obs. time φ̂400
MLE

φ̂400
OBR

φ̂400
OGD

φ̂400
ONS

MSE
MLE

MSE
OBR

MSE
OGD

MSE
ONS

Regular 0.502 0.48 0.49 0.504 0.74 0.7 0.74 0.78

Unif (0.5, 1.5) 0.5 0.475 0.479 0.496 0.74 0.7 0.74 0.77

Gamma (3, 3) 0.502 0.473 0.484 0.494 0.66 0.62 0.66 0.69

Exp. M(15, 2, 0.15,
0.85)

0.503 0.481 0.481 0.533 0.76 0.71 0.73 0.8

estimation until the end of each simulated series. From the MSE we observe that the
batch estimation method has higher values than the iAR-OBR method, indicating
that the use of this online estimation method gives better results for the fitted values
in this setting.

Furthermore, the complete trajectory of the parameters estimated using the pro-
posed methods are presented in Fig. 1. Note from Fig. 1a–c that the online estimation
methods converge quickly to the true parameter, particularly when the time gaps are
small.

Table 2 shows the results of the Monte Carlo simulations for the abrupt change
scenario in which the parameter of each simulated process of size n = 400 starts with
a parameter of φ = 0.7 for the first 200 observations and changes to φ = 0.3 for the
last 200 observations. As can be noticed, the proposed online estimation methods
can adapt to the structural change produced in the time series giving a last parameter
estimation closer to the true parameter of the second half of time series, unlike the
batch estimation which obtains an approximated last estimated parameter of 0.5 for
each observational time. The fact that the batch estimation fails to estimate well the
parameters used to generate each time series impacts on the time series fit, as can
be seen from the mean squared error value. As in the sanity check scenario, the
online method that obtains the best fit to the series is the iAR-OBR method, which
achieves the lowest mean squared error for the four distributions used to generate the
observational times. Figure 1d–f shows that the iAR-OGDmethod converges slower
to the true value of the parameter than the remaining online estimation methods.

The last simulation experiment that we perform is the constant change scenario.
In this example, the parameter of the iAR model decreases constantly from an initial
value of φ = 0.8 to a final value of φ = 0.4. Table 3 shows that, as in the abrupt
change scenario, the batch estimation of the iAR model parameter is very distant
from the true parameter. In particular, the last value estimated by the batch method
is close to the average of the values used to generate the simulated time series. In
contrast, the online estimation methods achieve values closer to the last parameter.
Here the iAR-OBR method stands out with a final parameter estimate closer to 0.4.
Regarding the goodness of fit, the iAR-OBR method again has the best fitted values
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Table 2 Summary of theMonte Carlo experiments for the abrupt change scenario performed using
a parameterφ = 0.7 for the first half andφ = 0.3 for the second half of each simulated time series for
the four distributions used to generate the observational times. Columns 2–5 of this table show the
last value estimated for each method. The last four columns show the mean squared error computed
for the fitted values

Obs. time φ̂400
MLE

φ̂400
OBR

φ̂400
OGD

φ̂400
ONS

MSE
MLE

MSE
OBR

MSE
OGD

MSE
ONS

Regular 0.502 0.294 0.309 0.319 0.93 0.84 0.94 0.96

Unif (0.5, 1.5) 0.494 0.299 0.316 0.31 0.92 0.82 0.91 0.92

Gamma (3, 3) 0.497 0.282 0.327 0.3 0.85 0.74 0.82 0.82

Exp. M(15, 2, 0.15,
0.85)

0.492 0.311 0.369 0.399 0.85 0.8 0.86 0.91

Table 3 Summary of the Monte Carlo experiments for the constant change scenario performed
using an initial parameter of φ = 0.8 which decreases to φ = 0.4 for the four distributions used to
generate the observational times. Columns 2–5 of this table show the last value estimated for each
method. The last four columns show the mean squared error computed for the fitted values

Obs. time φ̂400
MLE

φ̂400
OBR

φ̂400
OGD

φ̂400
ONS

MSE
MLE

MSE
OBR

MSE
OGD

MSE
ONS

Regular 0.604 0.409 0.416 0.479 0.75 0.64 0.69 0.71

Unif (0.5, 1.5) 0.597 0.427 0.429 0.483 0.75 0.65 0.7 0.72

Gamma (3, 3) 0.597 0.431 0.453 0.483 0.68 0.57 0.6 0.63

Exp. M(15, 2, 0.15,
0.85)

0.599 0.443 0.465 0.541 0.76 0.71 0.74 0.78

according to themean squared error. Finally, Fig. 1g–i shows a very slow decay of the
batch estimation, while the online estimations adapt quickly to the true parameter,
particularly the iAR-OBR and iAR-ONS methods.

In order to evaluate the efficiency of the estimation methods proposed in this
work, we obtained the computation times of each estimation method for different
sample sizes of the simulated times series, from n = 50 to n = 600. For each sample
size, the computation time was obtained 100 times. Later, we calculated the mean of
the computation times obtained in each repetition. In Fig. 2, it can be observed that
the online estimation methods are faster than the batch estimation for all the sample
sizes evaluated. Particularly, for time series of 100 observations, batch estimation
(0.0131 s) takes on average 12 times longer than iAR-OGD and iAR-ONS estimation
(0.0011 s) and 4 times longer than iAR-OBR estimation (0.0036 s). Furthermore,
this difference increases as more observations are required to be estimated.
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Fig. 1 Mean and confidence intervals of the online estimates for simulated irregular autoregressive
processes. The three rows represent (from top to bottom) the sanity check, abrupt change, and
constant change experiments. The three columns represent (from left to right) the examples for
regular, Gamma (3, 3) and Exp. M(15, 2, 0.15, 0.85) times. The black line represents the batch
estimation of the iARmodel. The brown, purple, and green lines represent the parameter estimation
using the iAR-ONS, iAR-OGD, and the iAR-OBR methods, respectively. Finally, the gray line is
the true parameter with which the time series were simulated

Fig. 2 Mean of the computation times of the estimation methods for the iAR model for simulated
processes with sample sizes from n = 50 to n = 600. The black line represents the batch estimation
of the iAR model. The brown, purple, and green lines represent the parameter estimation using the
iAR-ONS, iAR-OGD, and the iAR-OBR methods, respectively
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4 Application to Real-Life Data

4.1 Flow of the River Nile

For our first application, we use the Nile dataset available in R. In this time series,
the observations correspond to the measurement of the annual flow of the river Nile
below the Aswan Dam, in 108 m3. This dataset contains 100 observations regularly
observed between the years 1871 and 1970. The Nile time series has been analyzed
in several previous studies because it has an apparent change point in the year 1898,
which was first detected by Cobb [4]. Figure 3a shows the Nile time series. Before
implementing the estimation methods proposed in this work, we preprocessed the
data to ensure a constant mean and variance equal to one. For this purpose, we first
estimate the trend of the time series using the lowess method. Later, we remove the
trend from the series. Finally, we standardize the de-trended time series.

Figure 3b shows that the online estimation methods proposed in this work detect
this change point, exhibiting a break in the increasing trend of the parameter estimates
observed before 1898. After this break, the parameter estimates slowly decrease until
reaching an estimate close to the batch estimate (0.258) at the end of the time series.
Here, the iAR-OBRmethod has its last estimate (0.261) closest to the Batch estimate
of the parameter of the iAR model.

4.2 Infant Heart Rate

The second real dataset that we use in this work is the time series of the record of
a 66-day-old infant heart rate (in beats per minute). This time series is available in
the R package wavethresh [13] under the name BabyECG. The time series contains

Fig. 3 Online estimation of the flow of the river Nile time series. a Shows the time series of the
flow of the river Nile. b Shows the parameter estimation at each point of the time series. The black
line represents the batch estimation of the iAR model. The brown, purple, and green lines represent
the parameter estimation using the iAR-ONS, iAR-OGD, and the iAR-OBR methods, respectively.
The vertical line represents the year in which the change point occurs
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Fig. 4 Online estimation of the infant heart rate time series. a Shows the time series of the infant
heart rate. b Shows the parameter estimation at each point of the time series. c Shows the mean
squared error estimated at each point of the time series. The black line represents the batch estimation
of the iAR model. The brown, purple, and green lines represent the parameter estimation using the
iAR-ONS, iAR-OGD, and the iAR-OBR methods, respectively

2048 observations sampled regularly every 16 seconds between the 21:17:59 of a
day and the 06:27:18 of the following day. This data was introduced by Nason et
al. [21] as an example of a locally stationary time series due to the variations in
its behavior over time, as can be seen in Fig. 4a. Considering these variations over
time, the BabyECG time series is an interesting example to assess the ability of
online estimation methods to adapt to structural changes in the time series. As in the
previous example, we remove the trend from the time series and then standardize it
before applying the estimation methods.

Figure 4 shows high variability in the parameter estimates obtained from the
online estimation methods, particularly for the iAR-OGD and iAR-OBR. This result
indicates that the online estimation methods are able to detect the structural changes
in the time series. Furthermore, this can be validated by the goodness of fit obtained
for this time series from the online estimations. Note in Fig. 4c that the mean squared
error obtained by the online estimation methods is consistently lower than those
obtained from the batch estimation for more than half of the observations in the
time series. By calculating the mean of the estimated mean squared errors for each
observation, we note that the method with the best fit of this time series is the iAR-
OBR with an average MSE of 0.51. This value is lower than the MSE obtained from
the batch estimation (0.56).
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4.3 Brightness of Astronomical Object

For the last application to real data, we use the time series of the brightness of an
astronomical object. Unlike the time series used in the previous examples, this time
series is irregularly observed. The astronomical object we consider in this example
corresponds to an Active Galactic Nuclei (AGN) observed in the ZTF survey [2] and
coded as “ZTF20aagiimu”. The data processing was done by the broker ALeRCE
[12]. This object has been studied by Sanchez-Saez et al. [24], who have proposed
it as a candidate for a Changing-state AGN, i.e., an object that changes state in time,
so it is interesting to see if the estimation methods proposed in this work are able
to detect these behavioral changes. This time series contains 177 observations that
were measured in more than 3 years. This astronomical time series is presented in
Fig. 5a. Before implementing the estimation methods, we did the preprocessing of
the time series explained in the example in Sect. 4.1.

Figure 5b shows that the three online estimationmethods obtain an abrupt increase
in the estimated parameter during the second half of the time series, which may be
explained by a change of the state of this astronomical object. Furthermore, if we
observe the mean squared error obtained for each estimation method we notice that
again these values are lower for the iAR-OBR method (Fig. 5c), which reaches an
averageMSE of 0.6, while the Batch estimation reaches anMSE of 0.7. According to
this result, a parameter estimate which is able to be adapted to the new observations
obtains better fitted values for this time series than one that uses all the observed
data.

5 Discussion

In this work, we presented three online estimation methods for the irregular autore-
gressive (iAR) model. These methods are the first approach in the literature to the
online estimation of irregularly observed autoregressive processes, since so far the
online estimation methods applied to time series have been implemented on regular-
time ARMA processes.

In the experiments carried out throughout this paper, it is observed that the pro-
posed methods show at least two advantages over batch estimation. First, the online
estimationmethods have proven to be capable of adapting to structural changes in the
processes. In addition, we show that the proposed methods have shorter computation
times than the batch maximum likelihood estimator.

Among the proposed estimation methods, the iAR-OBR method achieves the
best goodness-of-fit indicators in the time series analyzed. In addition, this method
showed a faster adaptation to the structural changes of the time series. On the other
hand, the iAR-ONS and iAR-OGD methods are less computationally expensive.

Based on the results obtained, we consider that online estimation methods can
make an efficient estimation of streaming data, where new data arrive frequently and
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Fig. 5 Online estimation of the brightness of an astronomical object. a Shows the time series of the
brightness of a changing-state AGN candidate, b Shows the parameter estimation at each point of
the time series. c Shows the mean squared error estimated at each point of the time series. The black
line represents the batch estimation of the iAR model. The brown, purple, and green lines represent
the parameter estimation using the iAR-ONS, iAR-OGD, and the iAR-OBR methods, respectively

models must be updated to avoid becoming obsolete. This efficiency is reached in
terms of estimation accuracy and computation time.

In future works, we aim to extend these methods to perform online estimations of
other time seriesmodels for irregularly observed data (such as the complex irregularly
observed autoregressive model (CiAR [7]) and the bivariate irregularly observed
autoregressive model (BiAR [8]) models).
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Costationary Whitenoise Processes
and Local Stationarity Testing

Alessandro Cardinali

Abstract This paper provides three main contributions to the study of multiscale
locally stationary processes.We introduce a new class of stochastic processes that we
callCostationaryWhitenoise (CWN) processes, and propose a theoretical framework
to estimate their underlying parameters. We use this setup to devise a non-parametric
approximation method for the unknown distribution function of unobservable inno-
vations. We address this task by using CWN order statistics to approximate the
quantiles of unobservable innovations. Finally, we use the above frameworks to
derive a non-parametric bootstrap stationarity test for multiscale locally stationary
processes. The finite sample performances of this test are assessed through simu-
lations showing that our method successfully controls rejection rates for stationary
and locally stationary processes with both Gaussian and Student-t distributed inno-
vations. Finally, by applying our test to equity returns, we are able to associate the
presence of non-stationarities to the occurrence of economic shocks.

Keywords Local stationarity · Costationarity · Whitenoise · Bootstrap test

1 Introduction

For a stationary time series the statistical properties remain constant over time. For
a locally stationary (LS) time series the statistical properties can change slowly over
time. As a consequence, such series can appear stationary when examined over short
intervals, but appear non-stationary when examined on larger scales. Priestley [12,
13] provides a comprehensive review of locally stationary processes and their history.
A more recent review is provided by Dahlhaus [4]. The methods described in this
article can be applied to locally stationary time series that are a triangular stochastic
arrays defined in the rescaled time t/T , where T represents the sample size. Based on
this setup, Dahlhaus [3] proposed locally stationary Fourier (LSF) processes whose
underlying pseudo-spectral structure is defined in terms of Fourier basis. The locally
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stationary wavelet (LSW) model due to Nason et al. [9], instead, decomposes the
local structure of the process among different scales through a set of non-decimated
wavelets used as basis functions. In the following, we will consider the latter family
of processes defined as

Xt;T =
∞∑

j=1

∞∑

k=−∞
Wj

(
k

T

)
ψ j (t − k)ε j,k, (1)

where {ψ j (t − k)} j is a family of discrete non-decimated wavelet filters whose local
support includes the neighborhood of t , and is spanned by the index k. The parameter
j is integer valued and represents the scale of the correspondingwavelet. The function
Wj (k/T ) is a time localized amplitude of bounded variation, referring to dyadic
scales indexed by j . Finally, ε j,k is a sequence of doubly indexed i.i.d. standardized
random variables. This setup allows the definition of a time-varying generalization
of the classical spectra having a well-defined limit in the rescaled time z ∈ [0, 1)
defined as

Sj (z) = lim
T→∞

∣∣∣∣Wj

( [zT ]
T

)∣∣∣∣
2

, (2)

where we have set k = [zT ], and [x] is the integer part of x .
Assumption 1 For all j = 1, 2, ...,∞ and for z ∈ [0, 1), the wavelet spectra satis-
fies 0 < inf z S j (z) ≤ supz S j (z) < ∞. Moreover

∑
j supz S j (z) < ∞.

This multiscale LS framework has proven useful to estimate time-varying uncondi-
tional statistical properties of non-stationary time series. The estimation of local spec-
tra is relevant in a wide range of disciplines such as climatology, neuroscience, and
economics, where the underlying phenomena are characterized by regime changes
that cannot be appropriately taken into account by classical stationary models. A
biased estimate of the multiscale spectra can be obtained by the squared non-
decimated wavelet coefficients Il,k = |∑t ψl(t − k)Xt;T |2, whereas an asymptot-
ically unbiased estimate can be obtained as in Nason et al. [9] by

L j,k =
∑

l

A−1
j,l Il,k, (3)

where the A j,l are inner products of two autocorrelation wavelets defined at scales j
and l = 1, 2, ...,∞, see Nason et al. [9] for further details.

Assumption 2 For each j = 1, 2, ...,∞ and for k = 0, 1, ..., T − 1, the wavelet
periodogram sequences {L j,k}k have the L2 NED property, as stated in Definition
17.2 by Davidson [6].

In this paper, we use this framework to refine the study of time-varying linear com-
binations of LS processes which are (co)stationary, see Cardinali and Nason [1].
In particular, we devise a methodology to discover linear combinations which are
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not only stationary but also uncorrelated, and we call these Costationary Whitenoise
(CWN) processes. Furthermore, we use these new combinations to devise a bootstrap
non-parametric test for local stationarity. The contribution of this paper is therefore
threefold. We first propose a new consistent estimation methodology for the leading
coefficients of CWN processes. We then use CWN sequences to estimate the CDF of
(unobservable) locally stationary innovations. Finally, we incorporate this method-
ology into a bootstrap local stationarity test. The article is structured as follows.
Section 2 reviews the costationarity framework and the new estimation approach for
parameters of CWN processes. Section 3 illustrates the CDF estimation of innova-
tions based on CWN sequences, and Sect. 4 introduces the bootstrap non-parametric
local stationarity test. Section 5 shows the empirical size and local power of the test
by means of simulations. Section 6 illustrates an application of the test to equity
returns.

2 Costationary Whitenoise Processes

In this section we introduce a new class of stochastic processes and propose a consis-
tent estimator for their underlying parameters. Given Xt;T and Yt;T (possibly) locally
stationary processes, let

Zt = αt Xt;T + βt Yt;T , (4)

where αt and βt are deterministic functions of bounded variation. In the following
discussion we will focus on piecewise constant functions αt ,βt , measurable on a
disjoint sequence of half-opened dyadic intervals. In this paper, intervals of dyadic
length have been considered for computational convenience; however, in principle,
the theory we present will apply to intervals of arbitrary length. For a discussion
on segmentation issues and regularity conditions concerning costationary solutions,
we refer the interested reader to Cardinali and Nason [1]. Therefore, define L̃ Z

j,k

and L̄ Z
j , respectively, as the smoothed unbiased multiscale periodogram and average

periodogram for the Zt sequence. In the following, the periodogramwill be smoothed
using the wavelet shrinkage approach as outlined in Nason et al. [9]. Cardinali and
Nason [1] showed that when the functions αt and βt are estimated as a result of the
optimization

(α̂t , β̂t ) = argmin
αt ,βt

1

JT T

∑

j,k

(L̃ Z
j,k − L̄ Z

j )
2, (5)

the resulting combinations are second-order (co)stationary sequences.As inCardinali
and Nason [1], we will consider at and bt piecewise constant deterministic functions
with C equally spaced changepoints each.

Remark 1 In Cardinali and Nason [1], the functions αt and βt were expressed in
terms of orthogonal Haar wavelet expansions depending upon C coefficients each,
thus allowing for an efficient optimization process. We use the same approach here
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for the functions at and bt . Therefore, the optimizationwill be conducted targeting the
underlying Haar wavelet coefficients a = a1, ..., aC and b = b1, ..., bC rather than
the piecewise constant functions at and bt . The optimization will start for C = 1 and
continue for larger values, until successful convergence is achieved.

Therefore, in this section, we consider time-varying linear combinations

Wt = at Xt;T + bt Yt;T , (6)

which are not only stationary but also uncorrelated. We call these combinations
Costationary Whitenoise (CWN) processes. Define the parameters θ = (a,b) and
let θ̂ be their estimate. Then, consistent estimates of θ can be obtained as a result of
the optimization

θ̂ = argmin
θ∈�

1

T 2

JT∑

j=1

(
T−1∑

k=0

|L̃θ
j,k − 2− j |

)2

, (7)

where L̃θ
j,k is the smoothed version of the unbiasedmultiscale periodogram for theWt

sequence. The loss function appearing in (7) is based on the results from Fryzlewicz
et al. [7], where it was shown that the multiscale spectra for a whitenoise process
is given by Sj (z) = 2− j for z ∈ [0, 1), and j = 1, 2, .... Therefore, the metric from
(7) imposes stronger conditions on the spectra of the resulting processes than those
from (5). In fact its minimization requires the spectra of Wt not only to be time
invariant for each scale j = 1, 2, .. (implying stationarity as for processes Zt ), but
also imposes a specific rate of decay across scales. This latter additional condition
also implies absence of autocorrelations for the sequences Wt . The construction of
CWN sequences from real data requires the sequences ât and b̂t to be consistent
estimators of the functions at and bt , respectively. The following result establishes
this property.

Proposition 1 Let at and bt be piecewise constant functions with C equally spaced
changepoints each. For t = 0, 1, ..., T − 1, let Wt be defined as in (6) and let C ≤
log2(T )/2. Define ât and b̂t as the result of the optimization defined in (7). Then

ât
p→ at and b̂t

p→ bt as T → ∞.

Proof (Proposition 1) The dependence of the CWN smoothed periodogram and
spectra with respect the piecewise constant functions at and bt and their underlying
Haar wavelet coefficients θ = (a,b) will be denoted as L̃θ

j,k and Sθ
j (z), respectively.

The same notation will apply to sequences, vectors, and matrices containing multi-
scale periodograms and spectra of CWN processes. The proof is based on the fact
that the r.h.s. of Eq. (7) can be rewritten as a quadratic form

1

T 2

JT∑

j

(
T−1∑

k=0

|L̃θ
j,k − 2− j |

)2

= ĝT (θ)′ W ĝT (θ), (8)
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where ĝT (θ) is a JT -dimensional vector and W is a square identity matrix. For j =
1, ..., JT the elements of the vector ĝT (θ) are ĝ j;T (θ) = T−1 ∑

k |L̃θ
j,k − 2− j |, where

the dependence of Lθ
j,k with respect to the data and the functions at and bt is illustrated

by Eqs. (6) and (3). Moreover, W is the square identity matrix of dimension(s)
log2(T ). [1] showed that any combination Zt (therefore also combinations Wt ) is
an LS process with well-defined unbiased multiscale periodogram and spectra so
that limT→∞ ELθ

j,k = Sθ
j (z) + O(T−1). This setup can lead to an identified one-

step Generalized Method of Moments (GMM) estimator (Hansen, 1982), when the
number of moments (log2(T )) is larger than the number of parameters (2C). The
consistency of this estimator can be proved by verifying that the following conditions
are satisfied. These are the rescaled time equivalent of the conditions in Theorem 2.5
by Newey and McFadden [10], up to a remainder of order O(T−1).

Lemma 1 Let ĝT (θ) be a vector-valued function, continuous with respect to θ, such
that g(θ) = limT→∞ E[ĝT (θ)] = O(T−1) if and only if θ = θ0 ∈ �, for some com-
pact set �. In addition let ĝT (θ) and W be defined as in Eq. (8). Then Proposition 1
holds if the following conditions are fulfilled:

1. ĝT (θ)
p→ g(θ);

2. W converges in probability to a positive definite matrix;
3. Wg(θ) = O(T−1) if and only if θ = θ0;
4. θ ∈ � which is compact;
5. ĝT (θ) is continuous with respect to θ with probability 1;
6. limT→∞ E[supθ ||ĝT (θ)||] < ∞.

Proof (Lemma 1) For all j = 1, ..., JT , we have

1. Since L̃θ
j,k is an L2 NED sequence, so is the absolute value of their difference

from the deterministic term 2− j . Therefore, Theorem 20.19 by Davidson [6]

implies ĝ j;T (θ)
p→ g j (θ) + O(T−1) where g j (θ) = ∫ |Sθ

j (z) − 2− j |dz. This
determines the convergence in probability of the sample moments in ĝT (θ).

2. W = I is a deterministic identity matrix, which is positive definite.
3. limT→∞ E ĝ j;T (θ) = O(T−1) if and only if Sθ

j (z) = 2− j for all z ∈ [0, 1).
4. the parameter space is � = R

2C , which is a compact set.
5. ĝ j;T (θ) is continuous for all θ ∈ � since CWN processes are special cases of

Locally Stationary processes, thus having well-defined multiscale periodogram
and spectra. The condition follows by noting that for each k in ĝ j;T (θ) we have
limT→∞ E|Lθ

j,k − 2− j | = ±(Sθ
j (z) − 2− j ) + O(T−1) if 2− j ≶ Sθ

j (z), respec-
tively. We conclude by noting that the absolute value is continuous everywhere,
including at the point Sθ

j (z) = 2− j .
6. limT→∞ E sup

θ∈�

||ĝ j;T (θ)|| < ∞ by Assumption 1 and the application of the

continuous mapping theorem.
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Lemma1establishes that θ̂ is a consistent estimator for the parameters θ, and therefore
for the functions at , bt that are obtained by the inverseHaarwavelet transform applied
to the estimated parameters. This concludes the proof of Proposition 1.

We therefore define as realized Costationary Whitenoise processes the sequences

Ŵt = ât Xt;T + b̂tYt;T . (9)

Since realized CWN processes are obtained as a result of the optimization (7),
Proposition 1 implies that Ŵt will converge weakly to a zero-mean stationary and
uncorrelated sequence.

3 Estimation of CDF for Innovations

Among the many possible specifications ofWt , we will mainly be interested in those
where Xt;T is a locally stationary (LS) process (for which data are available) and
Yt;T is an independent Gaussian Whitenoise (GWN) process that we can simulate.
Let Yt;T ∼ GWN (0,σ2) and Wt be defined as in Eq. (6), then some convenient sta-
tistical properties characterize the resulting CWN processes. In fact, higher order
cumulants for Wt have a simplified form since all the Gaussian higher order cumu-
lants of Yt;T are equal to zero. This property, along with stationarity and absence of
autocorrelation, makes the order statistics of sequences Ŵt good instruments to esti-
mate the quantiles of the unobservable innovations ε. In order to obtain a smoothed
finite sample estimate of the innovations quantiles, we also benefit from the availabil-
ity of multiple CWN sequences, attainable by simulating multiple GWN processes
Yt;T . For i = 1, 2, ..., M , let W (i)

t be a CWN sequence resulting from performing
the optimization described in (7) using a simulated GWN process Y (i)

t;T , and let W
(i)
(t)

be the corresponding order statistics. Then a bootstrap estimator for the quantiles of
innovations ε is given by

ε̂(t) = 1

M

M∑

i=1

λ̂iW
(i)
(t) , (10)

where λ̂i = 1/σ̂Wi is the inverse of the estimated standard deviation for the stationary
sequence W (i)

t . The empirical CDF for the innovations can be obtained from these
smoothed quantiles and will be denoted as F̂ .

4 A Non-parametric Bootstrap Stationarity Test

The variety of models proposed to represent locally stationary processes led to a
variety of stationarity tests that have been proposed over the last decades. Priest-
ley and Subba Rao [11] proposed a two-way ANOVA test to detect significant
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spectral variation with respect to time and frequency, whereas Starica and
Granger [14] proposed a test evaluating departures of the periodogram from a para-
metric spectrum over different intervals. Several tests have been proposed more
recently, see Dahlhaus [4] and references therein for a review. Cardinali and Nason
[1] proposed a parametric multiscale bootstrap testing approach based on the repre-
sentation from Eq. (1), which however was restricted to Gaussian innovations. In this
section, we generalize this latter methodology by proposing a bootstrap algorithm
which is based on the non-parametric CDF estimation illustrated in the previous
section. Our stationarity test is based on the following hypotheses:

Ho (stationarity) : Sj (z) is a constant function of z, for all j,

and

Ha (local stationarity) : Sj (z) is not a constant function of z, for some j,

and for z ∈ [0, 1). In order to assess these hypotheses, we will consider the test
statistic

ρ̂T = T−1
JT∑

j

∑

k

(L̃ j,k − L̂ j )
2, (11)

where L̂ j is the average smoothedperiodogramat scale j . This statisticswas also used
in Cardinali and Nason [1] along with a parametric bootstrap resampling scheme.
We now propose its use in association with a non-parametric resampling scheme,
and the whole algorithm for the testing procedure is as follows:

1. Estimate the multiscale spectra and the average spectra with the smoothed unbi-
ased periodogram {L̃ j,k} j,k and its time averages {L̂ j } j , respectively. Calculate
the test statistic ρ̂T as defined in Eq. (11).

2. Use CWN processes to approximate the CDF of innovations by means of F̂ , as
illustrated in Sect. 3.

3. Simulate innovations ε∗ ∼ F̂ (see previous section). Then, for n = 1, 2, ..., N ,
simulate stationary sequences X∗

t,n of pseudodata from Eq. (1), where for each
scale j we replace the amplitudes Wj (k/T ) with the square root of the average
periodogram L̂ j .

4. Calculate the smoothed periodogram L̃∗
j,k from the series X∗

t,n , then calculate
L̃∗∗

j,k = ν L̃∗
j,k , where ν = sd(L̃ j,k)/sd(L̃∗

j,k).
5. For each simulated stationary sequence X∗

t,n , calculate the test statistics ρ̃∗∗
T,n =

T−1 ∑JT
j

∑
k(L̃

∗∗
j,k − L̂∗∗

j )2, where L̃∗∗
j,k was defined in the previous step, and

L̂∗∗
j is its average for scale j .

6. Use the simulated statistics to calculate the empirical p-values

pN = N−1
N∑

n=1

I(ρ̃∗∗
T,n > ρ̃T ).
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7. Reject the null hypothesis if pN < α, for a chosen significance level α%.

Remark 2 The periodogram obtained from simulated series has typically larger
variance than the periodogram from original data. This variance bias needs to be
tackled in order to compare the two types of periodograms and calculate meaningful
empirical p-values. This is addressed in step 4 above by rescaling the simulated
periodogram by ν, the ratio of standard deviations for the periodograms from data
and simulations, respectively.

5 Simulation Studies

In this section, we conduct a simulation study to assess the finite sample properties of
our local stationarity test. Computations of our test are conducted by using the least
asymmetric wavelet with support L1 = 8, see Daubechies [5] for a discussion of
their mathematical foundations. In order to estimate F , we simulate 10 realizations
of CWN processes by estimating functions at and bt with C = 3 changepoints. As
in Cardinali and Nason [2], the representation of these functions is in terms of C
Haar coefficients. In this and the next section, we consider dyadic sample sizes to
maximize computational efficiency. In order to evaluate the empirical p-values, for
each test we compute 200 bootstrap samples under the null hypothesis. We evaluate
both empirical size and power by simulating one stationary and one locally stationary
process of size T = 64, 128, 256, 512, then look at the empirical rejection rates at 5%
significance levels. For each sample size, we simulate 500 realizations and for each
proposed model we consider both Gaussian and Student−t distributed innovations
with five degrees of freedom. We initially evaluate the empirical rejection rate under
the null hypothesis by simulating the stationary process:

– Model 1. AR(2): Xt = 0.75Xt−1 − 0.4Xt−2 + εt .

We then evaluate the local power by applying our test to simulations of a locally
stationary process:

– Model 2. Autoregressive model with innovations having smooth time-varying
volatility:

Xt;T = 0.8Xt−1 + σ(t/T )εt ;

with εt ∼ i.i.d.(0, 1), where σ(t/T ) → σ(z) and

σ(z) = 3

2
+ sin(2πz) + 0.3 cos(2πz).

The results of our simulations are displayed in Table 1, where we reported results
for both Gaussian (top section) and Student−t (bottom section) innovations. Look-
ing at the results for Gaussian simulations, overall our test shows a well-controlled
empirical size for all sample sizes (Model 1). The empirical rejection rate for the
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Table 1 Empirical rejection rates for stationarity tests: the top section refers to Gaussian innova-
tions. The bottom section refers to Student−t innovations (5 d.o. f.)

dF T Model 1 Model 2

N (0, 1) 64 0.01 0.86

128 0.00 0.95

256 0.00 0.97

512 0.00 1.00

t (5) 64 0.01 0.71

128 0.00 0.88

256 0.00 0.95

512 0.00 0.99

local alternative represented byModel 2 is also very large, even for moderate sample
sizes, and rapidly growing toward 1. Looking at the results for Student−t simula-
tions, overall our test still shows a well-controlled empirical size for all sample sizes
(Model 1). The rejection rate for Model 2 is still very large for sample sizes equal or
larger than 128. As in the Gaussian case, the rejection rate grows rapidly for larger
samples. Looking at the overall results, we have evidence that the test is very effective
for both distributions considered in our experiment.

6 Stationarity Testing of Equity Returns

We applied our test to a time series of log-returns for the ProShares UltraShort
Bloomberg Natural Gas Exchange Traded Fund. This Fund typically invests in Nat-
ural Gas Future Contracts but can switch to other types of derivatives (e.g., swaps)
in case of market disruptions. We considered a series of 512 returns covering the
period August 20, 2020–September 7, 2022. In order to locate economic shocks, we
conducted our test on rolling windows of size 128. We choose this length since sim-
ulations showed that our test has very good power for this and larger sample sizes.
The results of our sequential test are displayed in Fig. 1. The red circles correspond
to rejections of the null hypothesis and are located at the center of the corresponding
window. Their occurrence characterizes the presence of shocks causing significant
changes in the underlyingmarket.Wemainly noted two of such periods, a shorter one
during spring 2021 and a longer one corresponding to summer 2021. Both periods
seem to be caused by COVID and subsequent financial and logistic disruptions. The
non-stationarities found during summer 2021 seem to mark the end of a relatively
low volatility state and the beginning of a high volatility state that lasts to these days.
This change can be associated to the sharp increase of gas prices occurred in the
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Fig. 1 Sequential stationarity testing using moving windows of size 128. The vertical left axis
refers to returns value for quotes of the ProShares UltraShort Bloomberg Natural Gas Exchange
TradedFund. The red circles represent rejection of the stationarity hypothesis over the corresponding
window

second half of summer 2021. The underlying reasons that determined the beginning
of this turbulence could be the insufficient supply of natural gas, perhaps due to
logistic troubles following the pandemic, or due to a maximal level of supply that
was already reached with the infrastructures in place at that time.
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The Effects of Healthy and Sustainable
Transportation, Commerce,
and Spillover on Airbnb Performance

Jorge Chica-Olmo and Ruggero Sainaghi

Abstract This study explores the effects of location variables on Airbnb listing
performance. In particular, three groups of antecedents are explored: healthy and
sustainable transportation systems (metro, tourist bus and bike-sharing), commerce
(food and non-food establishments and shop centers) and spillover (nearby Airbnb
listings). The study includes five groups of control variables, articulated in no-
location variables (size, contractual terms, rules, host and guest) and one widely
used location antecedent (distance to the city center). Three hypotheses are tested,
all supposing a positive effect on listing revenue generated by the three additional
groups of location variables (transport, commerce and spillover). The empirical study
is carried out in the city of Milan (Italy), a complex destination able to attract (before
the COVID-19 outbreak) different targets with an important focus on fashion and
design. Four models are proposed, and empirical findings support the hypotheses.
Interestingly, food shops are not significant, while the non-food and commercial
centers positively affect the revenues.

Keywords Airbnb · Listing performance · RevPAR · Healthy and sustainable
transportation · Commerce · Spillover effect

1 Introduction

The start-up of Airbnb and more generally of other commercial peer-to-peer accom-
modation platforms (P2P APs) has progressively changed the tourism industry.
A plethora of studies were recently published, and some literature reviews have
identified many areas of inquires [28, 32, 33].
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The worldwide diffusion of peer-to-peer accommodation platforms, and espe-
cially of listings, attracted the interest of researchers to understand the determinants
of host price and revenue [26]. This is not surprising, considering that the main
motivation to rent an apartment in a peer-to-peer accommodation platform is to earn
an additional income, followed by the so-called social features [14]. This research
stream focuses on measuring the performance determinants, using the price, revenue
or more than one performance indicator as a dependent variable. The current results
clearly suggest that the listing antecedents are significantly different from the hotel
determinants, considering the deep differences in the business models.

In this work, we consider that the revenue of Airbnb accommodation depends
on its characteristics. A first wave of listing performance papers has identified some
promising determinants, focusing on the listing characteristics, such as listing type,
amenities, contractual terms and size. Other promising antecedents include the host,
guest reviews, location patterns and destination characteristics. A second wave of
studies has shown some more complex patterns, where some variables are able to
moderate the results [45], and some relationships change their effects in different
research contexts [40]. Furthermore, some counter-intuitive findings—as the effect
generated by professional hosts and by the number of guests’ reviews on perfor-
mance—show different signs moving from price to occupancy rate or revenue per
available room (RevPAR) [22]. The large majority of papers is based on ordinary
least squares (OLS) hedonic pricing models [27]. However, some new methodolo-
gies—such as spatial econometrics models [9], geographical weighted regression
[49], quantile regression method [19], multilevel model [10] and machine learning
frameworks [5]—appear to be more efficient. The second generation of studies,
paradoxically, has opened many new questions and has shown the paucity of current
knowledge, asking for new theoretical and empirical studies. Location, in particular,
appears a promising determinants and new models are necessary to evaluate the
complexity of listing locational patterns. This is the gap that this paper contributes
to fill and is epitomized in the following research questions (later discussed in the
Literature Review).

Research question 1. What is the effect generated by location on listing
performance?
Research question 2. What are the effects generated by three locational variables
(healthy and sustainable transportation systems; commerce; spillover) on Airbnb
listing performance?
Research question 3. How can the listing performance be measured?

2 Literature Review

As an old adage goes, there are three main variables that influence hospitality:
location, location and location. However, researchers analyzing the performance
of Airbnb listings have used less intensive location patterns than in the hospitality
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field. In this study, the following locational variables are proposed: accessibility,
transportation, commerce and spillover.

Previous studies have focused more on the so-called accessibility of points of
transportation or to other local attractions, mainly measured by the relative distance
from the city center [10, 21, 24, 40, 49]. These variables usually show a nega-
tive correlation with listing performance. Therefore, the higher the distance to the
local attractors, the lower the performance of the listing. Inside this wide group of
antecedents, distance from the city center is usually the most significant variable and
was therefore used in this study [21].

Considering the focus of the second research question on healthy and sustain-
able transportation systems, commerce, and spillover, following the effects of
these antecedents are succinctly discussed The variable of transportation is usually
measured by the distance from a destination hub [37] and, in particular, metro areas
[10]. The relationships between transportation variables and Airbnb listing results
are usually negative, suggesting that the higher the distance, the lower the listing
performance. In this connection, a study revealed that the ability to be located near a
transportation hub increased Airbnb listing results [7]. By contrast, however, another
study showed the absence of a significant correlation [21]. In this study, a positive
correlation was expected between healthy and sustainable transportation and Airbnb
performance. Airbnb guests, thanks to the transportation hub, can obtain rapid access
to a destination’s attractions. Another study confirms that public transport is the
most frequently used mode of transportation for tourists who visit small areas, and
the authors have found that the tourists’ level of education and the price of public
transportation are significant variables relating to the choice of transportation mode
[18]. While transportation is usually measured by focusing on metro stations, in this
study two additional variables are considered. The first is tourist buses. Many guests
use this service to get an overview of a destination’s attractions [21]. The second is
represented by bike-sharing systems. This mode of transportation combines several
advantages: it is a sustainable way to get around in a city and can be cheaper than
other alternatives. Unsurprisingly, 73% of tourists claim to like or be very favor-
able to the use of bike-sharing [13]. Therefore, this transportation system is of great
interest to a large percentage of tourists who are likely to be interested in selecting
accommodation close to this service. Consequently, the second research question
explores the ability of healthy and sustainable transportation systems to influence
Airbnb listing performance.

Commerce is the second location variable considered. Shopping is an important
activity involving many guests in all destinations around the world [11]. Examples of
shopping activities include the purchase of fashion products, gifts, food and souvenirs
[16, 17]. This study explores two different variables related to commerce. The first
focuses on food and beverages. Hotel guests do not have kitchen facilities, but Airbnb
listings are usually equipped with a kitchen. Previous studies revealed that the pres-
ence of a kitchen does not improve Airbnb listing performance. Guests can simply
buy food and beverages and choose apartments located closer to centers of commerce.
The second sub-variable related to commerce includes non-food and beverage prod-
ucts. This variable is expected to be relevant for many tourist destinations, and, in
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particular, for the city of Milan, which is considered as an icon for design products
and fashion goods worldwide. Usually, non-food shops are clustered in blocks, as in
specific streets famous for design, artisanal products and similar goods. There are
only a handful of previous studies exploring the non-food and beverage variables,
and their results are partially contradictory [3, 24, 46].

The third locational factor is spillover. Focusing on listing price (the object of
this paper), the spillover effect is the ability of neighboring apartments to influence
the rate of another listing. This agrees with the idea that near-spatial data are related
[39]. Some authors have used the word “contagion” to describe this process [9].
An updated literature review analyzed the tourism studies that have explored the
spillover effect [4]. The articles cited by these authors are mainly focused on tourism
demand. In this paper, the attention is on spatial spillover that can be defined in terms
of economic externalities “which produce non-compensated or indirect impacts for
a receiver situated nearby” [50]. As anticipated, previous studies are mainly focused
on tourism demand and explore the spatial spillover effects among nearby regions
[47]. The spillover effect can be positive or negative. The positive effect of spillover
identifies complementary interactions among neighbors, while the negative effect
suggests the presence of direct competition.Moving from the general field of tourism
demand to Airbnb listings, the spatial spillover effect has rarely been explored. Some
authors have found a positive effect on listing prices generated by their neighbors
(Airbnb apartments) [9]. Another study investigated the agglomeration effect in New
York City [43]. The study shows a positive agglomeration effect on Airbnb listing
revenue, reinforced by host tenure and mitigated by host capacity.

Based on the extensive analysis of previous literature, we have classified the rele-
vant variables into two groups: location and non-location variables. Within location
variables,we are interested in transport, commercial and spillover effects onRevPAR.
The current study tests the following hypotheses, focusing on location variables:

H1. The accessibility of sustainable and healthy transportation positively affects
the revenue per available room of Airbnb listings.
H2. The spatial distribution of commercial shops positively affects the revenue
per available room of Airbnb listings.
H3. The spillover effect positively influences the revenue per available room of
Airbnb listings.

3 Materials

3.1 Study Area

This study assumes the city ofMilan as a relevant destination for testing the proposed
hypotheses. Two main reasons support this decision. First, Milan is located in Italy,
an important worldwide country for tourism, well epitomized by the World Tourism
Organization (UNWTO) that ranks this country (before the COVID-19 outbreak)
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fifth in terms of arrivals and sixth for receipts. Second, Milan is a complex desti-
nation where different targets of guests are attracted and mixed. While other Italian
cities such as Rome, Venice and Florence center around leisure guests, Milan is
more of a business and a meeting, incentive, congress, exhibition (MICE) destina-
tion [30]. Milan is the economic capital of Italy, where the stock market is located.
Milan is also the second largest trade-fair center in Europe (Sainaghi R., Mauri,
Ivanov, & d’Angella, 2018). At the same time, Milan embraces an extraordinary
cultural heritage, including, among others, the Duomo, Leonardo da Vinci’s Last
Supper and many famous museums (Brera, Pinacoteca Ambrosiana, Museo del
Novecento, etc.). The brand and image of the city were strengthened by the Milan
Expo, hosted in 2015. This event was able to improve hotel performance and reduce
tourism seasonality [29, 34].

3.2 Data and Variables

This study ismainly based onAirDNAdata.AirDNAuses information taken from the
web related toAirbnb listings, reporting a rich set of information for each rental (such
as host and guest information, size of listings and other contractual characteristics).
AirDNAdata has beenused inmanyprevious studies. In this study, pre-pandemic data
was used. During the COVID-19 outbreak, Milanese Airbnb reservations reduced
considerably. A second level of data is represented by locational factors that were
measured using open data published by the Municipality of Milan.

Focusing on locational variables, a geographic information system (GIS) was
downloaded. Spatial density rations were calculated based on GIS data using the
approaches developed in previous papers [36]. In particular, the density ratio was
used for bike-share parking and commercial shops (food and beverage commerce as
well as non-food shops). The search radius per unit area (km2) of 200 m was used
to obtain indexes for shared parking. A search radius of 500 m per km2 was used for
commercial establishments (food and non-food). In addition, to determine the spatial
effect of big commercial establishments, we have considered the number of shopping
centers in each district. The number of apartments used was 10,922. Table 1 shows
the statistics of variables and their descriptions.

In this paper, we try to explain the RevPAR. Figure 1 shows the spatial distri-
bution of the apartments and their RevPAR. The highest values are in the city
center (“Centro Storico”). To control variables and location, this study has used
two groups of variables: location and non-location. Within non-location variables,
we have considered five groups of determinants: size, contractual terms, rules,
host and guest. Among the location variables are spatial trend, transportation,
commerce and spillover. Each group is succinctly discussed. With respect to non-
location characteristics, size is operationalized using three variables, the number of
bedrooms (Bedrooms), bathrooms (Bathrooms) and the maximum number of guests
(MaxGuests). Previous studies show a positive and strong impact of size variables
on price [6]. Generally speaking, the sample is mainly composed of small listings,
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Table 1 Descriptive statistics and description of variables—N = 10,922 apartments

Variable Mean Min Max Std. Dev. Description

RevPAR 60.283 10.028 570.372 36.806 Revenue per Available Room (e)

No-location factors

Size

Bedrooms 1.302 1 10 0.596 Number of bedrooms

Bathrooms 1.160 0 8 0.426 Number of bathrooms

MaxGuests 3.525 1 16 1.508 Number of maximum guests

Contractual terms

CancePolic 0.556 0 1 0.497 1 if apt. has cancelation policy, 0
otherwise

Security 1.016 0 45 2.379 Security deposit (in hundreds of e)

Cleaning 39.197 0 116 28.704 Cleaning fee (e)

ExtPeopFee 0.133 0 2.84 0.172 Extra people fee (in hundreds of e)

Checkin 0.0001 0 1 0.010 1 if check-in is after 19:00, 0
otherwise

Checkout 0.424 0 1 0.494 1 if check-out is 11:00, 0 otherwise

MinimumStay 2.836 1 365 10.390 Minimum stay (days)

Rules

Pets 0.207 0 1 0.405 1 if pets are allowed, 0 otherwise

Host

Superhost 0.222 0 1 0.416 1 if the apt. is superhost, 0 otherwise

ResponR 91.667 0 100 21.597 Response rate

ResponT 0.625 0 1 0.484 1 if response time is within an hour

NPhotos 21.039 1 200 12.246 Number of photos

Experience 2.249 0 9.469 1.810 Number of years of the apartment in
database

Guest

Nreviews 0. 374 0 7.9 0.629 Hundreds of reviews

OverRat 4.653 1 5 0.432 Overall rating

Location factors

Spatial trend

DtCityCenter 4.056 0.099 14.133 2.107 Distance from Duomo (km)

Transport

DtMetro 0.813 0.009 5.584 0.632 Distance from nearest metro station
(km)

DtTuribus 1.721 0.024 7.128 1.160 Distance from nearest tourist bus
stop (km)

(continued)
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Table 1 (continued)

Variable Mean Min Max Std. Dev. Description

DBikePark 2.800 0.000 11.459 2.332 Share-bike parking density (index)

Commerce

DFood 0.0002 0 0.0021 0.0002 Medium-large commercial food
establishments density (index)

DNon-food 0.001 0 0.026 0.002 Medium-large commercial non-food
establishments density (index)

Shop Centers 2.530 1 5 1.441 Number of shopping centers into
district

considering that the average number of bedrooms is 1.3. Contractual terms include
a group of antecedents regulating some technical conditions. Strict cancelation
policy (CancePolic), security deposit fee (Security), cleaning fee (Cleaning) and
extra people fee (ExtPeopFee) usually affect the rates positively [20, 42]. The only
variable listed under the third block (rules) considers whether pets are allowed or not
(Pets). Roughly 20% of samples offer this service. In another study [9], this variable
has a negative effect on price. The host group focuses on five relevant variables.
Approximately, 22% of hosts are classified as superhosts (Superhost). The response
rate of superhosts (ResponR) is very high (91.6%), and 62.5% respond within an
hour (ResponT). The average number of published photos (NPhotos) is roughly
21. The average experience or membership (Experience) is 820 days (2.2 years).
Previous studies have shown positive effects generated by these antecedents on
dependent variables [2, 31, 40]. The guest group focuses on the number of reviews
(Nreviews) and overall ratings (OverRat). While this latter antecedent positively
affects the rates [3], the number of reviews primarily has a negative effect on price
[42], but a positive effect on occupancy [44] and revenue [10] and RevPAR [43]. In
this work, all of the above variables are control variables.

Regarding location factors, the distance to the city center has traditionally been
considered [21], and this variable represents the spatial drift or trend [8]. Here,
this variable is considered as a control variable. However, transport, commerce and
revenue of neighboring apartments have not been widely considered in the litera-
ture, and for this they are considered as interest factors. Transport mode of choice
is an important aspect of tourism research [18], and Airbnb guests are likely to be
willing to pay more money for better accessibility to places of interest. Hence, apart-
ment prices will be higher in locations close to transportation hubs. To contrast the
hypothesis (H1) that RevPAR depends on the accessibility of sustainable and healthy
transportation, we have considered three variables: the Euclidean distance from the
nearest metro station (DtMetro), the Euclidean distance from the nearest tourist bus
stop (DtTuribus) and bike-share parking density (DdBikePark). The distance to the
nearest subway station from a rental has been included in the hedonic hotel price
models [48], but not much in the Airbnb hedonic models. Accessibility to tourist
bus routes can be an antecedent of Airbnb listing results and is a key locational
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Fig. 1 Milan’s districts, city center and Revenue per Available Room (RevPAR) in euros

asset to hosts and guests [41]. Bike-sharing is also a potential determinant [13],
and therefore the concentration of bike-share parking can influence the revenue of
Airbnb apartments. A secondmap (not reported in this study because of space limita-
tions) shows the spatial distribution of transport variables. The map suggests a strong
concentration of the three analyzed transport variables in the city center, while the
connections with the peripheral Milanese blocks are mainly covered by metro lines.
Transport depicts a clear center/peripheral distribution. We assume that the sign of
the coefficients of the distance variables (DtCityCenter, DtMetro and DtTuribus) is
negative because the revenue is inversely related to the distance of these points of
interest, in order to reduce the friction cost. On the other hand, we expect that the
areas where there is a greater abundance (density) of bike-sharing stations will have
higher revenue because the tourist demand will be greater.
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The commerce factors include three independent variables. The first two measure
the density of medium to large commercial food and non-food establishments. The
third measures the number of shopping centers in given districts. As previously
explained in the literature reviews, these determinants were used less in previous
studies. We expect a positive relationship to emerge between the dependent variable
for non-food shops and shopping centers.

4 Methods

This paper adopts a semi-log hedonic model to explain the dependent variable, repre-
sented by the log of RevPAR [46]. In this case, the coefficients of continuous explana-
tory variablesmultiplied by 100 represent the percentage impact of these variables on
RevPAR. However, when the explanatory variable is binary, this impact is obtained
with [exp(b) − 1]∗100 [12]. Ordinary least squares (OLS) is the classic model used
in similar papers. Some authors, however, suggest caution, given the possible pres-
ence of perturbances and autocorrelations [1]. The inclusion in this study of spillover
requires the integration of the OLS with some spatial models. In particular, a first
spatial autoregressive (SAR)modelwas considered (see the following formula 1), and
a second spatial error model (SEM) with spatial nuisance dependence was adopted
(see the second following formula):

SAR : y = rWy + xb + e (1)

SEM : y = Xb + u,with : u = /Wu + e (2)

The variable y is the dependent variable and, as anticipated, is the natural loga-
rithm of RevPAR (lnRevPAR). X includes the independent variables (those listed in
Table 1), while β are the associated parameters. The neighboring listings are summa-
rized in theW variable, which includes a row-normalized spatial weights matrix.Wy
(WlnRevPAR) and r represent the spatially lagged dependent variable and global
spatial spillover effect, respectively; Wu and / represent the spatially lagged distur-
bances and their associated coefficient, respectively, and e represents a normal iid
vector of disturbances.

To evaluate these models, the maximum likelihood (ML) is employed as a consis-
tent method [1]. In this study, however, the perturbances show heteroscedasticity. In
this case, the two-stage least squares (2SLS) is adequate [15]. Moran’s I test was
used to quantify the errors, considering the possible presence of spatial autocorrela-
tion in the disturbances. Finally, to choose between the appropriateness of the two
spatial models (SAR versus SEM), the Lagrange multiplier (LM) tests (LM-error
and LM-lag) and the robust versions (RLM-error and RLM-lag) of the OLS models
were calculated.
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Focusing on the SAR model, the coefficients cannot be directly interpretable.
Because of this, the direct and indirect effects of the explanatory variables were
calculated. In particular, the indirect effects represent the spatial spillover effects.

5 Findings

Table 2 depicts four nested classical models estimated using OLS and two SAR
models estimated with 2SLS. The first model (Mod1.ols) includes non-location
traditional independent variables largely used in previous papers. The second model
(Mod2.ols) annexes the location classical variable (distance to city center). The third
model (Mod3.ols) adds the transport variables and the fourth model (Mod4.ols)
appends commerce variables. The spatial models Mod4.2sls withW1 andMod4.2sls
with W2 include the spatial spillover effects with two different weight matrices,
inverse distance and k-nearest, respectively.

In Table 2,Models adjusted R-squared for a nestedmodel with each group of vari-

ables (R
2
j ) is shown. The Size group of variables is shown as the one with the greatest

explanatory power. The rest of the non-location variables increase the explanatory
capacity of the model by 33% ((0.294–0.221)/0.221), while the location variables,
with respect to the non-location ones, allow to increase in the explanatory capacity
by 43% ((0.421–0.294)/0.294). The distance to the city center is, without a doubt,
the location variable with the greatest explanatory capacity. It is possible that this
happens because the main tourist attraction is concentrated in the center of the city of
Milan. This polarizing effect of the city center over the whole city is named spatial
trend. However, this effect does not consider changes within each area caused by
other location variables, such as accessibility to means of transport and commerce,
that could cause a modulation in the revenue of the apartments.

The results shown in Table 2 allow us to contrast the established hypotheses. Thus,
all coefficients of the transport variables (DtMetro, DtTuribus and DBikePark) are
significant and have the expected sign. Therefore, Airbnb apartments that are located
in areas close to sustainable means of transport, such as metro stations and tourist
bus stops, or where there is a high density of shared bike parks (which is a healthy
means of transport), have high revenue from available rooms (H1). This may be an
indicator that there is a greater demand for apartments in these areas due to their
proximity to these means of transport.

On the other hand, H2 has been contrasted since, as shown in Table 2, a positive
and significant relationship has been detected both between RevPAR and the number
of shopping centers in the district where the apartment is located (ShopCenters), as
with the density of commercial non-food establishments in the area (DNon-Food).
Thismay be due to the fact that tourists prefer to stay near commercial establishments
related to shopping (fashion, gift, etc.). However, the proximity of food stores has
not been detected to have a significant effect on RevPAR.
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The H3 has also been contrasted, that is, the presence of spatial spillover effect,
both globally and for the explanatory variables. These effects have been estimated
considering two types of neighborhood specifications. The results (Table 2) indicate
that both, global effect and the explanatory variables (indirect effects), are more
significant if the k-nearest (W2) is considered versus the inverse of the distance
(W1). Part of the presence of the global spillover effect could be due to the presence
of spatial contagion, that is, as in real estate, apartment owners tend to imitate the
prices of their neighbors, and therefore revenue will also be similar.

6 Discussion and Conclusion

This study basically confirms the relevancy of control variables (non-location
antecedents) used in previous studies (presented and discussed in the literature
review). Size is the most relevant determinant in terms of adjusted R2, while the
other groups (contractual terms, host and guest), despite being highly significant and
showing the expected signs, play amoremarginal explanation power.Moving to loca-
tional variables, this study introduces three additional variables other than the clas-
sical distance to the city center. The three tested hypotheses are confirmed: healthy
and sustainable transport systems, commerce and spillover effects significantly and
positively affect the listing RevPAR.

Airbnb may be indirectly causing an increase in the carbon footprint due to the
process of displacement of residents and gentrification that it could produce [10].
However, Airbnb could cause the contrary effect, this is, a reduction in pollution
because guests opt for public transport due to it being cheap and accessible, which
can have an impact on a reduction in the level of pollution. The rental of Airbnb apart-
ments can also increase the demand for sustainable and healthy means of transport,
which could not only have a positive effect on the environment, but could also affect
the health of the tourists who use them. Moreover, this study sheds light on the rela-
tionships between Airbnb guests and city commercial offers. Thus, although accessi-
bility to the nearest shopping center and medium-large non-food establishments has
a significant and positive effect on RevPAR, this does not occur with food establish-
ments. This is in line with the Airbnb guest profile, more interested in discovering
local and authentic products [23]. Themeasurement of spillover effects contributes to
filling an important gap in the Airbnb performance literature about competition and
collaboration among hosts and more generally agglomeration and contagion effects.
The two spatial econometrics models developed clearly illustrate the positive impact
of spatial spillover effect on RevPAR. Finally, while previous studies were more
centered on rates, this paper, in line with some recent academic articles (see Section
Listing performance), suggested the higher relevance of RevPAR, able to consider
the listing sales.

The new variables used in this study can orient the location choices and the
communication strategies implemented by Airbnb listings with their guests. The
proximity to healthy and sustainable transportation systems (metro, tourist bus and
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bike sharing) can support the rise of RevPAR, as well as the proximity to non-food
stores and more generally shop centers. Airbnb hosts can signal these services on
theirwebpages. The spillover effect is supportive of agglomeration strategies.Nearby
listings exercise a positive effect on RevPAR. This finding can change the perception
of neighbors, moving from a competitive to a more collaborative approach. Finally,
the dependent variable is more in line with hosts’ focus on revenue rather than on
rates. An increase in price, without a parallel rise in occupancy rate, does not improve
the listing performance.

This is an explorative study based on a single case study. Despite the sample size
being robust (more than 10 thousand listings), the findings must be confirmed in
other different empirical settings.
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A Semi-Markov Approach to Financial
Modelling During the COVID-19
Pandemic

Riccardo De Blasis

Abstract We assess the capabilities of the weighted-indexed semi-Markov chain
(WISMC) model applied to high-frequency financial data during the COVID-19
pandemic which was characterised by periods of extreme volatility. In particular, we
test the ability of the WISMC model to reproduce the typical stylised facts of the
financial time series, such as the persistence of volatility. For a general analysis, we
apply the model to three major indexes of the financial markets, i.e. the Standard &
Poor 500 (SPX), the Dow Jones Industrial Average (DJI) and the Financial Times
Stock Exchange 100 (FTSE) over a period that covers the first year of the COVID-19
pandemic, from January 2020 to December 2020. Moreover, we compare the results
with the standard GARCHmodel. AMonte Carlo simulation shows that theWISMC
model is able to reproduce the persistence of volatility and clearly outperforms the
GARCH model in three different specifications.

Keywords Semi-Markov · WISMC · COVID-19 · Financial markets

1 Introduction

In this manuscript, we assess the capabilities of the weighted-indexed semi-Markov
chain (WISMC)model byD’Amico and Petroni [7] to reproduce some of the stylised
facts of the financial time series, such as the persistence of volatility, during the first
year of the COVID-19 pandemic. The WISMC model belongs to a class of models
that are part of the micro- to macro-approach, which focusses on the observable
quantities and exploits the point process [12]. On the contrary, the macro- to micro-
approach, which bases its analysis on the application of the standard econometric
tools, is the general approach employed in the literature where the observed price is
considered as a noisy representation of an unobserved price.

D’Amico and Petroni introduced the WISMC model as a generalisation of the
semi-Markov model applied to financial data, which was initially exploited in [6].
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Also, they provided some extensions of the model, in particular, in the multivariate
setting [8, 9]. The main difference between the WISMC and the standard semi-
Markovmodel is that while the latter employs two randomvariables, i.e. the observed
price returns and the time between each price change, the former introduces a third
variable that allows us to track the history of the process, thus allowing for better
reproduction of the observed quantities. In the financial setting, the added variable
is constructed using a function of the squared returns, e.g. the moving average or the
exponentially weighted moving average (EWMA). This addition enables us to create
a dependence of the returns’ dynamic on the volatility level, which is an important
feature of the financial time series.

As reported by D’Amico and Petroni, the application of the WISMC model to
financial time series requires some calibrations to perform, among which is the
discretisation of the continuous values of both the returns and the volatility index
into discrete state spaces. This conversion can be performed manually by looking
at the distribution of the processes or it can be automated. Some of the automatic
algorithms have been proposed in [4, 11]. The latter will be the reference for the
analysis of this manuscript by employing two machine learning algorithms, i.e. the
Gaussian mixture model (GMM) and the k-means.

As the WISMC model has only been tested on financial markets during peri-
ods of stability, we assess its validity by considering the latest financial disruptions
caused by the COVID-19 pandemic, in which the markets experienced extremely
high volatility, especially around April 2020. To strengthen our results, we compare
the WISMC model with some GARCH specifications, thus comparing the micro- to
macro-approach and themacro- to micro-approach. Results from aMonte Carlo sim-
ulation show that theWISMCmodel is able to reproduce the persistence of volatility
and clearly outperform the GARCH model in three different specifications.

The manuscript is organised as follows. Section 2 describes the semi-Markov
and WISMC model while Sect. 3 covers the application of the model to financial
data during the COVID-19 pandemic along with the comparisons with the GARCH
model. Section 4 concludes the manuscript.

2 The Model

Before introducing the details of the weighted-indexed semi-Markov model, we
describe the semi-Markov process which is the base of the WISMC. Initially, Levy
[14] and Smith [19] introduced the semi-Markov processes independently. Other
authors then studied them in [2, 17, 18]. After their introduction, the theory has been
further implemented and expanded and the processeswere used inmany applications,
from industrial to financial markets, see, e.g. [16, 20, 21]. For further analysis, the
reader can refer to [1, 13].

In general, semi-Markov processes are considered a generalisation of the renewal
processes and the Markov chain. Let us consider a probability space (Ω,F , P) and
two random variables
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Xn : Ω −→ E Tn : Ω −→ R+,

where E = {1, ..., k} is a finite state space, n ∈ N and 0 = T0 < T1 < T2 < . . ..
A process is called aMarkov renewal process (X, T ) with state space E × R+ if

P(Xn+1 = j, Tn+1 − Tn ≤ t |X0, . . . , Xn; T0, . . . , Tn)
= P(Xn+1 = j, Tn+1 − Tn ≤ t |Xn) a.s., ∀n ∈ N, j ∈ E, t ∈ R+.

(1)

Assuming the time homogeneity of the process, the probabilities are independent
of the time and can be written as

P(Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i) = Q(i, j, t), (2)

where Q is the semi-Markov kernel, with Q(i, j, 0) = 0, ∀i, j ∈ E .
Taking the limit of the kernel for t −→ +∞, we obtain the transition probabilities

of the Markov chain {Xn}n∈N , with state space E . Thus, for each pair (i, j),

lim
t−→+∞ Q(i, j, t) = P(i, j), (3)

with P(i, j) ≥ 0 and
∑

j∈E P(i, j) = 1, i, j ∈ E .
Moreover, dividing the semi-Markov kernel in (2) by the transition probabilities

in (3), with the convention that G(i, j, t) = 1 if P(i, j) = 0,

G(i, j, t) = Q(i, j, t)

P(i, j)
, (4)

we can compute the conditional waiting time distribution function defined as

G(i, j, t) = P(Tn+1 − Tn ≤ t |Xn = i, Xn+1 = j). (5)

Also, [2] reports that the increments Tn+1 − Tn are conditionally independent
given the Markov chain Xn . In particular, when the state space E reduces to a sin-
gle point, the increments are independent and identically distributed non-negative
random variables, thus obtaining a renewal process.

Finally, the semi-Markovprocesswith state space E and transitionkernelQ(i, j, t)
is a continuous-time parameter process defined as

Yt = Xn for t ∈ [Tn, Tn+1). (6)

The process can be seen as a system in a certain time t moving from one state to
another with random sojourn times in between [2]. The sojourn intervals [Tn, Tn+1)

are a randomvariable themselves. Their distributiondepends on the state beingvisited
Xn and the next state to be visited Xn+1. When their distribution is exponential, the
semi-Markovprocess becomes a continuous-timeMarkov chain. Instead, ifwe ignore
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the time variables, we obtain a discrete-time Markov chain. Therefore, as the semi-
Markov follows the Markov property only at the jumps instants and because it is
not a memoryless process, it cannot be considered a Markovian process. Hence, the
name semi-Markov.

If we extend the semi-Markov model with the inclusion of the memory of
the process, we can obtain a high-order semi-Markov process, see, e.g. [10, 15].
However, the estimation of the such process required a lot of effort when we increase
the dimension of the state space and the memory. To overcome this limitation,
D’Amico and Petroni [3] extended the semi-Markov process with the inclusion of
a third variable which collects the history of the process. The authors also provided
applications to financial markets with some extensions [5, 7].

We consider a stochastic processUn with values inR representing an index process
with historical information of the semi-Markov process. D’Amico and Petroni [9]
defined it as

Un(θ) =
n−1∑

k=0

Tn−k−1∑

a=Tn−1−k

f (Xn−1−k, Tn, a,θ)) + f (Xn, Tn, Tn,θ), (7)

where f : E × N × R −→ R is aBorelmeasurable bounded function andU0 is known
and non-random. The size of the vector of parameters, θ, depends on the chosen
function f .

We can define the process Yt as aweighted-indexed semi-Markov chain (WISMC)
if, ∀n ∈ N, the following equality holds true:

P(Xn+1 = j, Tn+1 − Tn ≤ t |X0, . . . , Xn; T0, . . . , Tn;U0, . . . ,Un)

= P(Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i,Un = v) := Q(i, j, t, v),
(8)

with Q being the indexed semi-Markov kernel.
The condition affirms that we only need the knowledge of the last state i and

the last value of the index process Un to define the probability of the next state.
Therefore, to identify the system at any jump time Tn we only need the triple of
processes {Xn, Tn,Un}. Also, we note that if the indexed semi-Markov kernel is
constant in v, then it falls back to a semi-Markov kernel.

Moreover, for each pair (i, j) and each value of the index, we have that Q(i, j,
0, v) = 0 and the transition probabilities of the Markov chain, {Xn}n∈N , with state
space E , are defined as

P(i, j, v) = P(Xn+1 = j |Xn = i,Un = v). (9)

Contrary to the probabilities in (3), they include the dependence on the index level.
Finally, the conditional waiting time distribution function also includes the depen-

dence on the index level

G(i, j, t, v) = P(Tn+1 − Tn ≤ t |Xn = i, Xn+1 = j,Un = v). (10)
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So far, we have not defined the functional form of the index, Un(θ), even though
it is necessary to apply the model to real data. The simplest and intuitive approach to
financial data is to consider a moving average or the exponentially weighted moving
average (EWMA) of the squared process, (Xn)

2 as in [5, 7], respectively. Choosing
the dependence on the squared process, the authors introduce a dependence on the
volatility and, in particular, on its clustering dynamic, which is an observed stylised
fact in financial markets. Specifically, using the EWMA definition, the function
becomes

f (Xn−1−k, Tn, a,λ) = λTn−a X2
n−1−k

∑n−1
k=0

∑Tn−k−1
a=Tn−1−k

λTn−a
. (11)

3 Application to Financial Data

We assess the capabilities of the WISMC model during the first year of the COVID-
19 pandemic by considering three major indexes of the financial markets, i.e. the
Standard&Poor 500 (SPX), theDowJones IndustrialAverage (DJI) and theFinancial
TimesStockExchange 100 (FTSE).We consider only the first year of the pandemic as
it is the one in which the financial markets suffered the highest volatility. Considering
the opening and closing times of the stock exchanges within the analysed time range,
which is from January to December 2020, the price returns data, collected from the
Thomson Reuters Datascope, are sampled at 5-second intervals to guarantee enough
observations to estimate the model’s parameters.

Figure 1 shows the three series of the percentage log-returns over the selected
horizon along with their histogram. From the figure, it is clear that all series present
a high volatility period of about 2 months just after the outburst of the COVID-19
pandemic in February 2020. Moreover, the histograms depict a high concentration
of observations around zero returns in all series.

The summary statistics of the log-returns in percentage are reported in Table 1.
From the figure, we observe that the average returns are approximately zero for
all three series and that all standard deviations are very low, as expected from the
visual analysis of the histograms. All series present autoregressive conditional het-
eroscedasticity as Engle’s test at 1, 6 and 12 lags on the residuals of the GARCH
models are all statistically significant at the 1% level. This means that a GARCH
specification should correctly capture the time-varying structure of the variance.

The WISMC model requires the calibration of some of its parameters before
proceeding with the estimation of the transition probability matrices P(i, j, v) and
the conditionalwaiting time distributionG(i, j, t, v). Specifically, we have to convert
the returns process into a discrete state space, as well as the volatility index which
has values in R. D’Amico and Petroni [7] based both discretisations on the visual
analysis of their histograms. In a more recent paper [4], they employ a change point
approach to overcome this subjectivity in the partitioning of the state space. Finally,
De Blasis [11] proposed the use of some machine learning algorithm to automate
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Fig. 1 Time series and histogram of the 5-second log-returns in percentage of the three major
indexes, i.e. standard & Poor 500 (SPX), Dow Jones industrial average (DJI) and financial times
stock exchange 100 (FTSE)

both procedures, specifically the Gaussian Mixture Model (GMM) and the k-means.
In particular, the GMM algorithm proved to be very useful in the high-frequency
setting when discretising the price returns. In our current analysis, we employ the
GMM algorithm to discretise the price returns into a 3-state space, i.e. negative, zero
and positive returns, and the k-means algorithm to discretise the volatility index into
a 5-state space. We included five states for the volatility to extend the range of its
possible values. With the application of the GMM algorithm to the discretisation
of the returns, we filter the continuous values for the three series based on the bins
defined in Table 2.

Further calibrationwould be needed to set the smoothing parameter of the EWMA
function of the volatility index. However, empirical analysis suggests that values
around 0.97 obtained the best results in applications to financial markets, see, e.g.
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Table 1 Summary statistics of the 5-second log-returns in percentage for the three major indexes,
i.e. standard & poor 500 (SPX), Dow Jones industrial average (DJI) and financial times stock
exchange 100 (FTSE). The time range is from January to December 2020. ARCH refers to the
statistic of Engle’s test for autoregressive conditional heteroscedasticity at 1, 6 and 12 lags

SPX DJI FTSE

Obs. 1240676 1240683 1546345

Mean 0.0000 0.0000 0.0000

Median 0.0000 0.0000 0.0000

Max 0.5992 0.6208 1.453

Min –0.9906 –1.2129 –1.4207

Std. dev. 0.0152 0.0181 0.0134

Skewness –0.1059 –0.2976 –1.3887

Excess Kurtosis 61.8876 58.3234 618.3075

Jarque-Bera 197997658*** 175865281*** 24632753326***

ARCH(1) 36846.4*** 49224.4*** 164658.2***

ARCH(6) 73774.8*** 85371.3*** 210398.6***

ARCH(12) 89276.3*** 101593.9*** 216061.2***
∗∗∗ Indicate the rejection of the null hypothesis of the tests at the 1% levels of significance

Table 2 Discretisation bins of the price returns employing the GMM algorithm

State –1 State 0 State 1

SPX [–0.991,0.010) [0.010,0.039) [0.039,0.599]

DJI [–1.213,0.012) [0.012,0.046) [0.046,0.621]

FTSE [–1.421,0.009) [0.009,0.045) [0.045,1.453]

[7, 8]. Therefore, in the remainder of the analysis, we will apply the same smoothing
value, λ = 0.97.

After the model’s calibration, we need to perform the estimation of the transition
probability matrices and conditional waiting time distributions. To this extent, we
follow the estimation procedure outlined in Appendix B in [8].

Finally, to assess the validity of the WISMC model we perform a Monte Carlo
simulation following the algorithm presented in [7] that we report here:

1. set n = 0, X0 = i , T0 = 0, U0 = v, horizon time = T ;
2. given Xn and Un , sample X from P(i, j, v) and set Xn+1;
3. given Xn and Xn+1, sample W from G(i, j, t, v) and set Tn+1 = Tn + W ;
4. set Un+1 using (7) and (11);
5. if Tn+1 ≥ T stop, else set n = n + 1 and go to 2.

With the simulations, we verify the ability of the WISMCmodel to reproduce the
long-range serial correlation of the squared returns which is a typical stylised fact of
the financial returns series. The autocorrelation function of the squared returns used
for the analysis is as follows:
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Table 3 Root mean square error (RMSE) and mean absolute error (MAE) between real and syn-
thetic autocorrelation functions reported for WISMC model and compared with different GARCH
models

SPX DJI FTSE

RMSE WISMC 0.013 0.012 0.014

GARCH(1,1) 0.090 0.132 0.184

GARCH(1,2) 0.152 0.169 0.160

GARCH(2,1) 0.113 0.131 0.141

MAE WISMC 0.011 0.010 0.011

GARCH(1,1) 0.070 0.120 0.122

GARCH(1,2) 0.111 0.146 0.140

GARCH(2,1) 0.069 0.103 0.108

�(τ ) = Cov(Y 2(t + τ ),Y 2(t)

Var(Y 2(t)
, (12)

where Y is the process of the returns and τ is the time lag. We estimate the auto-
correlation for both real and simulated data and compute the root mean square error
(RMSE) and mean absolute error (MAE) for comparison. Additionally, as Engle’s
test of the squared returns suggested that the GARCH specification should suffice to
model the varying volatility, we assess both WISMC and GARCH models’ ability
to reproduce the long-range serial correlation by comparing their RMSE values.

Figure 2 shows the autocorrelation functions of the squared returns for both real
and synthetic time series using the WIMSC model. In all three time series, i.e. SPX,
DJI and FTSE, the model shows a good ability to reproduce the serial correlation
of the real data. Specifically, the values of the autocorrelation from the simulated
data at small lags are directly comparable with the values from the real data. Some
differences between the real and synthetic values are evident when considering a
higher number of lags.

However, to perform a proper comparison, we report the RMSE and MAE values
for theWISMCmodel alongwith three differentGARCHspecifications in Table 3. In
all cases, the WISMCmodel outperforms the GARCH specifications in reproducing
the long-range serial correlation of the squared returns.

In addition, we test the WISMCmodel for the ability to reproduce the probability
mass function of the price returns. To this extent, we employ the Kolmogorov–
Smirnov (KS) hypothesis test to compare the distributions of both real and simulated
data. Figure 3 reports the comparison of the distributions for the three indexes.
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Fig. 2 Autocorrelation
functions of the squared
returns for real data and
synthetic time series using
the WISMC model
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Fig. 3 Comparison of the probability mass function for real and simulated data for each index
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4 Conclusion

In this manuscript, we tested the capability of the weighted-indexed semi-Markov
chain (WISMC) model by D’Amico and Petroni [7] to reproduce the typical stylised
facts of the financial time series, such as the persistence of volatility. In particular, we
tested the model during a period of extreme volatility, like the COVID-19 pandemic.
We applied themodel to threemajor indexes of the financialmarkets, i.e. the Standard
& Poor 500 (SPX), the Dow Jones Industrial Average (DJI) and the Financial Times
Stock Exchange 100 (FTSE) in the first year of the COVID-19 pandemic, from
January 2020 to December 2020 and compare the results with the general GARCH
specification.

Results from the Monte Carlo simulation clearly show that the WISMC model
is able to reproduce the long-range serial correlation of the squared returns of the
selected time series. Moreover, it outperforms the GARCH model in three different
specifications.

References

1. Barbu, V.S., Limnios, N.: Semi-Markov Chains and Hidden Semi-Markov Models toward
Applications: their Use in Reliability and DNA Analysis. Lecture Notes in Statistics. Springer,
New York, NY (2009). https://link.springer.com/book/10.1007/978-0-387-73173-5

2. Çinlar, E.: Markov renewal theory: a survey. Manag. Sci. 21(7), 727–752 (1975). https://doi.
org/10.1287/mnsc.21.7.727

3. D’Amico, G.: Age-usage semi-Markovmodels. Appl.Math.Modell. 35(9), 4354–4366 (2011).
https://doi.org/10.1016/j.apm.2011.03.006

4. D’Amico, G., Lika, A., Petroni, F.: Change point dynamics for financial data: an indexed
Markov chain approach.Ann. Finance 15(2), 247–266 (2019). https://doi.org/10.1007/s10436-
018-0337-0

5. D’Amico, G., Petroni, F.: A semi-Markovmodel withmemory for price changes. J. Stat.Mech.:
Theory Exp. 2011(12), P12009 (2011). https://doi.org/10.1088/1742-5468/2011/12/P12009

6. D’Amico, G., Petroni, F.: A semi-Markov model for price returns. Phys. A: Stat. Mech. Appl.
391(20), 4867–4876 (2012). https://doi.org/10.1016/j.physa.2012.05.040

7. D’Amico, G., Petroni, F.: Weighted-indexed semi-Markov models for modeling financial
returns. J. Stat. Mech.: Theory Exp. 2012(07), P07015 (2012). https://doi.org/10.1088/1742-
5468/2012/07/P07015

8. D’Amico, G., Petroni, F.: Copula based multivariate semi-Markov models with applications in
high-frequency finance. Euro. J. Oper. Res. 267(2), 765–777 (2018). https://doi.org/10.1016/
j.ejor.2017.12.016

9. D’Amico, G., Petroni, F.: A micro-to-macro approach to returns, volumes and waiting times.
Appl. Stoch. Models Bus. Ind. 37(4), 767–789 (2021). https://doi.org/10.1002/asmb.2622

10. D’Amico, G., Petroni, F., Prattico, F.: First and second order semi-Markov chains for wind
speed modeling. Phys. A: Stat. Mech. Appl. 392(5), 1194–1201 (2013). https://doi.org/10.
1016/j.physa.2012.11.022

11. De Blasis, R.: Theweighted-indexed semi-Markovmodel: Calibration and application to finan-
cial modelling (2022). https://papers.ssrn.com/abstract=4212391

12. Fodra, P., Pham, H.: Semi-Markov model for market microstructure. Appl. Math. Finance
22(3), 261–295 (2015). https://doi.org/10.1080/1350486X.2015.1037963

https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-0-387-73173-5
https://doi.org/10.1287/mnsc.21.7.727
https://doi.org/10.1287/mnsc.21.7.727
https://doi.org/10.1016/j.apm.2011.03.006
https://doi.org/10.1007/s10436-018-0337-0
https://doi.org/10.1007/s10436-018-0337-0
https://doi.org/10.1088/1742-5468/2011/12/P12009
https://doi.org/10.1016/j.physa.2012.05.040
https://doi.org/10.1088/1742-5468/2012/07/P07015
https://doi.org/10.1088/1742-5468/2012/07/P07015
https://doi.org/10.1016/j.ejor.2017.12.016
https://doi.org/10.1016/j.ejor.2017.12.016
https://doi.org/10.1002/asmb.2622
https://doi.org/10.1016/j.physa.2012.11.022
https://doi.org/10.1016/j.physa.2012.11.022
https://papers.ssrn.com/abstract=4212391
https://doi.org/10.1080/1350486X.2015.1037963


58 R. De Blasis

13. Janssen, J., Manca, R.: Applied Semi-Markov Processes. Springer New York, NY, first edn.
(2006). https://link.springer.com/book/10.1007/0-387-29548-8

14. Levy, P.: Processus semi-Markoviens. In: Proceedings of the International Congress of Mathe-
maticians. vol. III, pp. 416–426. North-Holland Publishing Co., Amsterdam, 1956, Amsterdam
(1954)

15. Limnios, N., Opri, G.: Ch. 14. An introduction to semi-Markov processes with application to
reliability. In: Handbook of Statistics, Stochastic Processes:Modelling and Simulation, vol. 21,
pp. 515–556. Elsevier (2003). https://doi.org/10.1016/S0169-7161(03)21016-6

16. Pasricha, P., Selvamuthu, D., D’Amico, G., Manca, R.: Portfolio optimization of credit risky
bonds: a semi-Markov process approach. Financ. Innov. 6(1), 25 (2020). https://doi.org/10.
1186/s40854-020-00186-1

17. Pyke, R.: Markov renewal processes: definitions and preliminary properties. Ann. Math. Stat.
32(4), 1231–1242 (1961). https://doi.org/10.1214/aoms/1177704863

18. Pyke, R.: Markov Renewal Processes with FinitelyMany States. Ann. Math. Stat. 32(4), 1243–
1259 (1961). https://doi.org/10.1214/aoms/1177704864

19. Smith, W.L.: Regenerative stochastic processes. In: Proc. R. Soc. London. Ser. A, Math. Phys.
Sci. 232(1188), 6–31 (1955). https://doi.org/10.1098/rspa.1955.0198

20. Swishchuk, A., Hofmeister, T., Cera, K., Schmidt, J.: General semi-Markov model for limit
order books. Int. J. Theor. Appl. Financ. 20(03), 1750019 (2017). https://doi.org/10.1142/
S0219024917500194

21. Vasileiou, A., Vassiliou, P.C.G.: An inhomogeneous semi-Markov model for the term structure
of credit risk spreads. Adv. Appl. Probab. 38(1), 171–198 (2006). https://doi.org/10.1239/aap/
1143936146

https://springerlink.bibliotecabuap.elogim.com/book/10.1007/0-387-29548-8
https://doi.org/10.1016/S0169-7161(03)21016-6
https://doi.org/10.1186/s40854-020-00186-1
https://doi.org/10.1186/s40854-020-00186-1
https://doi.org/10.1214/aoms/1177704863
https://doi.org/10.1214/aoms/1177704864
https://doi.org/10.1098/rspa.1955.0198
https://doi.org/10.1142/S0219024917500194
https://doi.org/10.1142/S0219024917500194
https://doi.org/10.1239/aap/1143936146
https://doi.org/10.1239/aap/1143936146


From News to Sentiments and Stock
Price Directions

Fennee Chong and Bharanidharan Shanmugam

Abstract Forecasting stock price direction using news sentiment has gained
momentum as trading activities are information driven in this digital era. News fuel
pessimism or optimism in the investors mindset which are often translated by market
sentiment indicators that influence stock price direction. The type of information
that affects short-term market reactions are political news, business news and tech-
nical indicators. Of late, machine learning technique has become one of the popular
approaches being applied in stock market predictions. The merit of this approach in
predicting stock price directions using news sentiments as inputs has been confirmed
by a case study included in this chapter.

Keywords News · Sentiments · Stock price directions ·Machine learning

1 Introduction

Classical financial theory argues that market is efficient as investors are rational and
trade is based on unbiased cognitive evaluation and maximisation of expected utility,
hence investor sentiment is irrelevant. This assertion is supported by the Capital
Pricing Model and the Efficient Market Hypothesis. Nonetheless, the occurrences of
anomalies such as stock market crisis and housing market crisis have challenged this
view, implying that the idiosyncrasies in human behaviour vary and this leads to the
fluctuation in asset prices. Consequently, behavioural finance was introduced as an
area of study on howpsychological influences can drivemarket to behave irrationally.
The influence of psychological biases is one of the key aspects of behavioural finance
studies. Shefrin [1] wrote that
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... the market has a psychology, more specifically it has a character. It has thoughts, beliefs,
moods, and sometimes stormy emotions (2005, pp. 203).

Many subsequent studies have provided evidence to support this claim. De Long
et al. [2] posited that asset prices would be determined in part by noise traders.
And noise traders are investors who make decisions based on sentiment, irrational
beliefs or biases instead of fundamental analysis. This was supported by Kumar and
Lee [3] who contended that feedback from social interactions generates emotions
and sentiments that led to trade in concert rather than diversified trade in the asset
market. Positive sentiment induces investors to be more assured about investing in
certain assets while negative sentiment involves a greater level of uncertainty and
therefore has the opposite effects [4].

The advancement of information, communication and technology sector has facil-
itated high-speed dissemination of news covering large demographics within a very
short time frame, and this further expedites the formation of emotions and sentiment
swings in the market. Therefore, in order to better understand and response to how
the market behave, it is crucial for investors, regulators and analyst to incorporate
sentiment analysis in market evaluation and price prediction.

2 What Contribute to Sentiment and Share Prices?

Investors access information from various sources to generate buy and sell decisions.
Therefore, information availability becomes the key that determines the behaviour
of investors on whether to buy or sell and this behaviour moves prices. Investors
can be affected by news made available through formal channel such as company
announcements, market news or via non-formal channel such as blogs, tweeter or
other social platforms. Information will generate emotions that drive sentiments
and eventually decision formation. The type of news that drives changes in market
sentiment can be

• Political news: This can range from information released to the public from the
central or state government, ministries, government departments or international
news related to political changes of certain country.

• Business news: Referring to company announcements, reports or develop-
ments concerning changes in the industry, new product launches or change in
managements.

• Rumours and speculation: These are often stories or report of uncertain or doubtful
truth that are being circulated in the market with no concrete source.

• Other factors: Recent price movements, price projections and market dynamics
of other assets available in the market.

All these news generate trading signals and fuel pessimism or optimism in the
investors mindset which are often translated by market sentiment indicators that
would influence stock price directions eventually.
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3 Analysing Stock Price Trends

Predicting stock price trends or directions can be challenging but useful in aiding
decision-making on the timing to buy, hold or sell certain stock. The common ways
that have been used are

• Fundamental analysis: Asses the stock’s intrinsic value to predict potential direc-
tion of stock prices. This method utilises both the qualitative and quantitative
information included in the company’s reports and financial statements, condi-
tions within the industry and data of the overall state of the economy including but
not limited to employment rates, gross domestic product, interest rates and others.
The main objective is to examine whether a stock is undervalued or overvalued.

• Technical analysis: This method of stock analysis is considered in contrast to
fundamental analysis as it bypasses the company’s underlying fundamentals and
focussingon the statistical trendof charts of a stock in predicting future directionof
a stock. Informationused in technical analysis includes historical pricemovements
and trading volume. Technical analysis is more suitable to be used to formulate
short-term trading strategy.

• Sentimental analysis: It is often referred to as opinion mining which is performed
to evaluate subjective expressions. This method is an effective way to evaluate
written or spoken language and classify the expression as positive, negative or
neutral to give useful indication of emotions and predict market sentiment and
responses based on the predicted emotions.

• Machine learning techniques: This is a powerful technique that uses algorithm to
predict stock price trends. Input variables can be from one or a combination of
the above techniques. The advantage of this method is its suitability for handling
big data and the variety of data that may be used for analysis. Nonetheless, it is
also prone to biases including sample biases, measurement bias, exclusion bias,
recall bias and confirmation bias [5].

Investors and researchers can use one of the methods above or use one method in
conjunction with the others in determining trends and directions of stock prices.

For this chapter, a case study is presented below to answer the following questions:

1. Do news sentiments impact stock price trends in the short run?
2. What is the predictive accuracy of news sentiment and technical analysis on stock

trend using selected machine learning algorithms?

4 A Case Study on How News Sentiment Affects Stock
Price Direction Using Machine Learning Model

To provide an example on whether news sentiment affect stock price direction using
machine learning algorithms, the paper entitled “Do News Sentiments Predict Stock
Price Direction?” presented in the 2022 ITSE will be discussed [6].
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4.1 Background of the Study

As indicated earlier, behavioural finance argues that trading emotions such as fear
and greed determine the overall sentiment of the financial market. On the other
hand, news and information represent the primary factors that influence emotions
and hence determine market sentiment [7, 8]. Types of news that are available in the
financial market are historical prices which indicate trends and used in technical anal-
ysis, political news, business news as well as insider information. Most of the time,
investors are conditioned to follow sentiment of the market. Therefore, a quantitative
approach for measuring sentiment in text by deriving scores for positive or negative
sentiments can gauge investors’ decision-making process, and hence the stock price
and market trend. Sentimental analysis emerged as a subfield of text mining in infor-
mation technology and become popular about two decades ago [9, 10]. Numerous
studies have provided evidence that machine learning algorithms can be effective in
predicting stock prices [11, 12]. However, applying the machine learning method to
determine stock prices directions is relatively new.

Bustos andPomares-Quimbaya conducted a systematic reviewon the stockmarket
forecast and found that variables such as technical indicators and raw market infor-
mation are commonly used for prediction while recent studies have included social
network news, and this addition has improved prediction accuracy [11]. The authors
also indicated that frontier and emerging countries show more accurate stock price
prediction using machine learning method compared to developed countries due to
the higher level of randomness and complexity of the developedmarkets. On average,
machine learning algorithms can predict at an accuracy of 0.7–0.8 level. In terms
of machine learning algorithms used, they indicated that Support Vector Machine
(SVM) remains the most popular technique to date.

Khan et al. predicted stock market trends using public sentiment from Twitter
and political events by classifying them either a positive or negative news. They
posited that the impact of public sentiment only produced 0–3% increase in accu-
racy while political events produced a significantly higher (10–20%) improvement
of prediction accuracy [13]. Song et al. introduced a news-based stock portfolio
construction approach using financial news sentiment scores and historical returns as
ranking features to develop stock selection rules. This study achieves profound results
whereby the selected portfolio using learning-to-rank algorithms outperformed both
the S&P500 index and the hedge fund industry average performance during the same
period [12]. In a related study, Kinyua et al. examined how market sentiment as a
result of President Trump’s tweets have on DJIA and S&P500 using two datasets: the
tweets dataset and the stock market indices dataset. With machine learning regres-
sions including linear regression, decision tree regression and random forest regres-
sion, they found that market reacted significantly to this information. In addition,
except for the extreme tweet sentiment categories, generally, all other tweet senti-
ments led to a decline in the trend of the twomarket indices included in this study [14].
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Chu et al. posited that financial news have persuasive impact on market perfor-
mance. They introduced sentiment-of-topic to improve accuracy of prediction for
traders. Incorporating financial news as a proxy for market sentiment is important as
financial time-series data often display challenging behaviourwhich can compromise
the accuracy for commonly used financial forecasting techniques. Finding showed
double-digit improvement in portfolio return after including sentiment generated
from financial news [15]. On the other hand, Renault contended that the size of the
dataset used in a study has profound impact on results. Complex algorithms would
not help to improve the accuracy of the results without the presence of good dataset
and text mining skills. To provide reliable result, a dataset of approximately 100,000
to 250,000 labelled messages is considered sufficient [16].

A similar study by Weng et al. employed three machine learning algorithms
including decision trees, neural networks and SVM to investigate whether time-
series data, technical indicators and online news are capable of predicting next day’s
stock directions. In this experiment, they managed to achieve an 85% predictive
accuracy which provided support to the value of online information in predicting
stock trends [17]. These results were endorsed in a more recent study by Moulkalled
et al.which examined similar set of variables using recurrent neural network (RNN),
feedforward neural network (FFNN) and support vector regression (SVR). The
authors also asserted that SVM provided the highest level of accuracy in directional
prediction [18].

4.2 Machine Learning Models Used in This Case Study

Generally, there are two machine learning models: supervised and unsupervised.
Many researchers have applied either single or a combination of machine learning
approaches including SVM, Decision trees, Logic Regression and Random Forest
to predict stock prices. For this case study, supervised machine learning approaches,
Support Vector Machine (SVM) and Extreme Gradient Boosting (XGB) are used.
Data collected from April 2015 to April 2021 are used for analysis. The types of
news used in this study are business news and political news collected from Reuters
and Bloomberg for stocks listed on the S&P500 index. A total of 304,000 news
articles are gathered for analysis and this is within the range of similar studies [19–
22]. Loughran &McDonald Financial Dictionary is used for sentiment classification
while Valence Aware Dictionary and Sentiment Reasoner (VADER) is employed
to detect sentiments expressed in social media [21, 23, 24]. News sentiments are
classified as positive, negative or neutral.

Other input variables used are the historical prices and technical indicators.
Seven technical indicators are included in the analysis including moving averages
(MA), momentum (MOM), moving average convergence divergence (MACD), rate
of change (ROC), relative strength index (RSI), commodity channel index (CCI) and
Bollinger bands (BB) [21, 25]. Four models listed below are tested in this studywhile
Model 1 serves as the base model.
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Model 1:

Stock Price Direction = f(Historical Price, Technical Indicators)

Model 2:

Stock Price Direction = f(Historical Price, Technical Indicators, Political News
Sentiment)

Model 3:

Stock Price Direction = f(Historical Price, Technical Indicators, Business News
Sentiment)

Model 4:

Stock Price Direction = f(Historical Price, Technical Indicators, Political News
Sentiment, Business News Sentiment).

4.2.1 Support Vector Machine (SVM)

Over time, many prediction models have focussed on linear statistical time-series
models for stock market prediction. However, the variance underlying the movement
of stocks and other assetsmakes linear techniques suboptimal, and non-linearmodels
to have lower predictive errors. SVM algorithm was developed by Vapnik [26]. It is
based on statistical learning theory and has been applied to stock market prediction
formany years. Binary classifiers are one of the best approaches that could be applied
for prediction and support vectormachines are one of the best binary classifiers. They
create a decision boundary such that most points in one category fall on one side of
the boundary while other points in the other category fall on the other side of the
boundary. Radial kernel approach was applied in this case study as it is one of the
most popular kernel functions and is defined as follows:

K (xi , xk) = exp

⎛
⎝− 1

∂2

n∑
j=1

(xi j − xk j )
2

⎞
⎠ (1)

where δ is known as the bandwidth of the kernel function [27]. The primary advantage
of this function is it can handle diverse input sets, as the condition on the geometry
is very few for the input data. Additionally, it classifies test examples based on
the example’s Euclidean distance to the training points, and weights closer training
points more heavily. Another primary advantage is the classification is based heavily
on the most similar training examples and takes advantage of patterns in the data.
This works exactly as what is needed for time-series data such as stock prices that
display trends over a period of time.
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4.2.2 Extreme Gradient Boosting (XGB)

Gradient boosting is a type of classifier used to merge different slow learners to
produce a robust forecasted model [28]. The critical advantages of XGB are the flex-
ibility, usage of parallel processing, handling the missing data at ease and works well
with small-to-medium datasets. The following principle describes gradient boosting:
initially, develop an error function, and that function is optimised at the time ofmodel
building. Following that, iteratively develop weak model for forecasting and finally
combine all the weak models to create a more robust model. The Extreme Gradient
Boost model is an early experimental model [29] and is an improved version of the
gradient boosting algorithm, it is more scalable and efficient. This model supports
the regularisation technique to avoid overfitting and has the capability to learn from
non-linear datasets. Moreover, the parallelisation feature allows for it to train with
multiple CPU cores [30]. It is one of the tree-based ensemble additive models that are
composed of multiple base learners. In general, the XGBoost can be represented as

F = { m1, m2, m3, m4 . . . mn} set of base learners,

Predictive model = yi =
∑

nt = 1mt(xi)
(2)

where ˆyi is the final predictive model, which is the combination of all weak learners,
and x is the input feature for each weak learner, i.e. m [30].

4.3 Experiment Design and Evaluation

This case study utilised the following framework (Fig. 1).
In this experiment, the output of the experiment will produce a value ranging from

0 to 1. For example, a value of 0.56 indicates a 56% of uptrend on the next day for a
particular stock under study. For model evaluation, this case study adopted the train/
test split and K-fold cross validation [31]. The validation process was as shown in
Fig. 2. The train/test approach splits data into test data and trained data while K-Fold
cross validation separates dataset into k subsets (folds) to be trained on (k-1) random
subset and test the outstanding subset in an iterative manner.
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Fig. 1 Experiment framework

Fig. 2 Algorithm validation diagram

4.4 Analysis and Discussion of Results

This section reports and discusses results from the experiments. The accuracy metric
was used as the evaluation criterion to examine the predictive power of sentimental
proxies on stock price directions using the SVM and XGB algorithms in conjunction
with technical analysis indicators and adjusted historical price. Table 1 exhibits the
results of the experiment.

From the results displayed, the predictive value of daily political and business
news sentiments on stock price trend was confirmed. Comparing the results across
the four models analysed, it was found that the inclusion of both political and busi-
ness news sentiments was able to further improve accuracy comparing to the base
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Table 1 Test results

Evaluation ML algorithms Model 1 Model 2 Model 3 Model 4

Accuracy SVM 0.521 0.530 0.521 0.527

(ACC) XGB 0.818 0.826 0.818 0.826

Note Variables used: Model 1: Historical price and technical indicators, Model 2: Historical price,
technical indicators and political news sentiment,Model 3: Historical price, technical indicators and
business news sentiment, Model 4: Historical price, technical indicators, political news sentiment
and business news sentiment

model (Model 1). Between political and business news, political news sentiment
was proved to be able to predict stock price trend more accurately than its counter-
part. However, the differences in terms of performance between models are mild.
This implies that historical pricemovements and technical analysis indicators remain
valid in predicting stock price directions. It was also observed that SVM’s prediction
performance is relatively low at around 52% due to its inefficiency in kernel function
and burden of memory complexity. Nonetheless, results from this study are in line
with Schumaker and Chen’s studywhich produces 57% of directional accuracy using
SMV while testing on a S&P500 dataset ranging from 26 October to 28 November
2005 [32].

Findings from this study provided support that accuracy evaluations are in the
range of 50 to 88 percent; implying that the predictive values obtained from news
sentiments are strong enough formarket participants tomake stockdirectional predic-
tion using machine learning algorithms despite the variation detected in algorithm
performances [13, 15].

Table 2 shows more details of the experiment. From the results, XGB has consis-
tently outperformed SVM, showing overall accuracy of slightlymore than 80 percent
for all models. Generally, the performance of SVM and XGB confirmed the findings
from previous studies [11, 13, 33]. While comparing the results of all models, it was
obvious thatModel 4 consisting of all variables (historical price, technical indicators,
political news sentiment, business news sentiment) had outperformed other models
which further recognises the predictive power of political and business news senti-
ment in stock price directions. The contribution of news sentiment to stock trend
prediction in this study is also consistent to those of the results of Khan et al. which
asserted that political news is having a more significant impact than other public
news with 10–20% and 1–3% of increase in accuracy, respectively [13].
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Table 2 Accuracy of results by machine learning algorithms and prediction models

Evaluation Algorithms Model 1 Model 2 Model 3 Model 4

Threefold Cross Validation SVM 0.515 0.570 0.601 0.535

XGB 0.815 0.826 0.816 0.822

Fivefold Cross Validation SVM 0.576 0.528 0.488 0.547

XGB 0.818 0.823 0.818 0.823

15-fold Cross Validation SVM 0.562 0.523 0.518 0.507

XGB 0.823 0.829 0.822 0.827

Data-split 70–30 SVM 0.431 0.505 0.478 0.518

XGB 0.818 0.828 0.814 0.830

Data-split 80–20 SVM 0.584 0.503 0.506 0.498

XGB 0.822 0.826 0.819 0.829

5 Conclusion

Forecasting stock price movement can be challenging; however, accurate predic-
tions are beneficial to retail and institution investors, investment advisors and fund
managers. In order to facilitate more accurate investment decisions, researchers and
analysts have utilised predictive attributes including fundamental analysis, technical
analysis and sentimental analysis in conjunction with powerful statistical platform.
More recently, using sentimental indicators with reference to social network has
gained momentum. News represents one of the most powerful influencers on the
mood and the sentiments of decision-makers in the stockmarket. The recent advances
in machine learning models, an artificial intelligence technique, have allowed appli-
cation of software to predict more accurate outcomes. Using political news, busi-
ness news, technical indicators and historical prices, Vo, Chong and Shanmugam
conducted a study to predict S&P 500 next day’s stock directions using the SVM
and XGB machine learning algorithm [6]. Findings from this study confirms that
news sentiments are valid predictors of stock price directions. Furthermore, polit-
ical news produces more prominent result than business news. Both SVM and XGB
can provide price direction prediction to a high level of accuracy. Among these two
machine algorithms, XGB can produce prediction accuracy up to 83 percent, this
result confirmed findings from previous studies [11, 13, 32]. Consequently, there are
reasonable grounds to believe that the addition of political and business news senti-
ment to technical indicators and historical price information can produce promising
model for traders to predict, and hence facilitate more accurate investment decisions.

References

1. Shefrin, H.: A behavioural approach to asset pricing. Elsevier Academic Press, USA (2005)



From News to Sentiments and Stock Price Directions 69

2. De Long, J., Shleifer, A., Summers, L., Waldman, R.: Noise trader risk in financial markets. J.
Polit. Econ. 98(4), 703–738 (1990)

3. Kumar, A., Lee, C.: Retail Investor Sentiment and Return Comovements. 61(5), 2451–2486
(2006)

4. Kuhnen, C., Knutson, B.: The influence of effect on beliefs, preferences, and financial decisions
46(3), 605–626 (2011)

5. Lim, H.: 7 types of data bias in machine learning. https://lionbridge.ai/articles/7-types-ofdata-
bias-in-machine-learning/ (2020), last accessed 2022/8/26

6. Vo, R, Chong, F, Shanmugam, B.: Do News sentiments predict stock price direction? Presented
in the ITISE 2022, Gran Canaria 27th–30th June 2022 (2022).

7. Shiller, R.: Irrational Exuberance. Princeton University Press, USA (2000)
8. Chong, F.: Disposition effect and flippers in the Bursa Malaysia. The Journal of Behavioural

Finance 10(3), 152–157 (2009)
9. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in

Information Retrieval. 2(1–2):1–135. https://doi.org/10.1561/1500000011
10. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In Mining text data,

415–463. Springer (2012)
11. Bustos, O., Pomares-Quimbaya, A.: Stock market movement forecast: A systematic review.

Expert Syst. Appl. 156, 113464 (2020). https://doi.org/10.1016/j.eswa.2020.113464
12. Song, Q., Liu, A., Yang, S.Y.: Stock portfolio selection using learning-to-rank algorithms with

news sentiment. Neurocomputing 264, 20–28 (2017)
13. Khan,W.,Malik,U.,Ghazanfar,M.A.,Azam,M,A.,Alyoubi, K.H.,Alfakeeh,A.S.: Predicting

stock market trends using machine learning algorithms via public sentiment and political
situation analysis. Soft Computing, 24, 11019–11043 (2020)

14. Kinyua, D., Mutigwe, C., Cushing, D.J., Poggi, M.: An analysis of the impact of President
Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis. J.
Behav. Exp. Financ. 29(2), 100447 (2021)

15. Chu,W.C.,Wong, R.K., Chen, F., Ho, I., Lee, J.: Enhancing portfolio return based on sentiment-
of-topic. Data Knowl. Eng. (2017). https://doi.org/10.1016/j.datak.2017.07.004

16. Renault, T.: Sentiment analysis and machine learning in finance: a comparison of methods and
models on one million messages. Digital Finance 2(1), 1–13 (2020)

17. Weng, B., Ahmed, M.A., Megahed, F.M.: Stock market on-day ahead movement prediction
using disparate data sources. Expert Syst. Appl. 79, 153–163 (2017)

18. Moulalled, M., El-Hajj, W., Jaber, M.: Automated stock price prediction using machine
learning. In Proceedings of the second financial narrative processing workshop (FNP 2019),
Turku Finland No. 165, 16–24. Linkoping University Electronic Press (2019)

19. Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J. Z., Chen, H.: Knowledge-driven stock trend
prediction and explanation via temporal convolutional network. Companion Proceedings of
the 2019 World Wide Web Conference (2019)

20. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction.
Proceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence,
(2015)

21. Li, X., Wu, P., Wang, W.: Incorporating stock prices and news sentiments for stock market
prediction: A case of Hong Kong. Inf. Process. Manage. 57(5), 102212 (2020)

22. Turner, Z., Labille, K., Gauch, S.: Lexicon-based sentiment analysis for stock movement
prediction. World Academy of Science, Engineering and Technology: International Journal
of Mechanical and Industrial Engineering.14 (5) (2020)

23. Hutto, C., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment analysis of social
media text. Proceedings of the InternationalAAAIConference onWeb and socialmedia, (2014)

24. Sohangir, S., Petty, N., Wang, D.: Financial sentiment lexicon analysis. 2018 IEEE 12th
International Conference on Semantic Computing (ICSC) (2018)

25. Yıldırım, D.C., Toroslu, I.H., Fiore, U.: Forecasting directional movement of Forex data using
LSTM with technical and macroeconomic indicators. Financial Innovation 7(1), 1–36 (2021)

https://lionbridge.ai/articles/7-types-of
https://doi.org/10.1561/1500000011
https://doi.org/10.1016/j.eswa.2020.113464
https://doi.org/10.1016/j.datak.2017.07.004


70 F. Chong and B. Shanmugam

26. Cortes, C., Vapnik, V. Support Vector Networks, Machine Learning, 20, 273–297, https://doi.
org/10.1007/BF00994018, (1995)

27. Halls-Moore, M.: Support vector machines: A guide for beginners, http://www.quantstart.com/
articles/Support-Vector-Machines-A-Guide-for-Beginners (2014), last accessed 2022/8/29.

28. Friedman, J.H.:Greedy function approximation:Agradient boostingmachine.Ann. Stat. 29(5),
1189–1232 (2001)

29. Yan, D., Zhou, Q., Wang, J., Zhang, N.: Bayesian regularisation neural network based on
artificial intelligence optimisation. International Journal Production Research 55, 2266–2287
(2017)

30. Padhi, D.K., Padhy, N., Bhoi, A.K., Shafi, J., Ijaz, M.F.: A fusion framework for fore-
casting financial market direction using enhanced ensemble models and technical indicators.
Mathematics 9(21), 2646 (2021). https://doi.org/10.3390/math9212646

31. Shen, S., Jiang, H., Zhang, T.: Stock market forecasting using machine learning algo-
rithms. https://cs229.stanford.edu/proj2012/ShenJiang Zhang-Stock Market Forecasting using
MachineLearningAlgorithms.pdf (2012)

32. Schumaker, R.P., Chen,H.: TextualAnalysis of StockMarket PredictionUsingBreaking Finan-
cialNews:TheAZF in text system.ACMTransactions on InformationSystems27, 1–19 (2009).
https://doi.org/10.1145/1462198.1462204

33. Ali, M. R.: Prediction Accuracy of financial data – Applying several resampling techniques.
Master thesis. North Dakota state University (2020)

https://doi.org/10.1007/BF00994018
http://www.quantstart.com/articles/Support-Vector-Machines-A-Guide-for-Beginners
https://doi.org/10.3390/math9212646
https://cs229.stanford.edu/proj2012/ShenJiang
https://doi.org/10.1145/1462198.1462204


Recommendations of Stockbrokers
Versus Fuzzy Portfolio Approach
in Construction Sector

Anna Łyczkowska-Hanćkowiak and Aleksandra Wójcicka-Wójtowicz

Abstract In portfolio management, we can use oriented fuzzy numbers (OFNs)
which include information uncertainty and imprecision related to financial market.
In such a case, we also utilise an expected fuzzy discount factor which leads to an
imprecise present value (PV). Basing on those factors we can obtain recommenda-
tions (buy, sell, accumulate, reduce) for individual stocks included in the portfolio.
Similarly, agents of stock-brokerage regularly issue analogous recommendation bas-
ing on their knowledge, experience and quantitative analysis. Themain purpose of the
paper is to analyse the published recommendations of stockbrokers, their accurate-
ness and actual impact on the operations on portfolio including stocks of companies
in construction sector. The created portfolio includes securities identified by a present
value assessed with the use of trapezoidal-oriented fuzzy number (TrOFNs) in times
of issuance of the recommendation. All theoretical considerations are illustrated
by an empirical case study. The elements of portfolio are positively or negatively
oriented.

Keywords Fuzzy numbers · Imprecision · Portfolio analysis · Recommendations

1 Introduction

Individual investors before making an investment decision frequently search for reli-
able information on particular company or sector. However, though they seek profes-
sional support in decision-making, often they have limited experience with advanced
numerical methods. Therefore, they prefer the linguistic information, which is
more comprehensible than numerical one, despite the fact that numerical methods
can be more efficient. The required linguistic information can take various forms.
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An example of such information is the recommendation of stockbrokers who are
regarded as professionals with broad knowledge and experience in this field [13,
15]. However, both knowledge and experience usually are classified as imprecise
and inaccurate foundations which, in turn, can make the recommendation slightly
imprecise as imprecision is one of the main characteristics of any financial market
information.

Considering the main assumption of the uncertainty that any unknown future state
of affairs is uncertain [4] we can ex ante analyse the efficiency of the obtained rec-
ommendation as the given recommendation might or might not realise in the future.
This way we can assess whether the information was correct or not. As uncertainty
is derived from the ignorance of future states of affairs, it can be modelled with
a certain probability. This can be achieved if we can point out a specific time in
which the analysed state of affairs will be known to the observer. It allows us to use
the trapezoidal-oriented fuzzy numbers (TrOFNs) in making portfolio investment
decisions [12, 14]. In our paper, we investigate individual entities from construction
sector included in a portfolio with PVs described by trapezoidal-oriented fuzzy num-
bers. Furthermore, the analysis based on fuzzy discount factor is less difficult than
the one based on a return rate.

Any security gives its owner a right to obtain future financial income that is payable
at a specifiedmaturity. The value of this gain can be presented as an anticipated future
value of capital. However, as the present value of future cash flows is an approximated
value, it can be expressed by trapezoidal-oriented fuzzy numbers which are simpler
in case of operations.

In our research, a financial portfolio is understood as an arbitrary, finite set of
assets. We consider both, a multi-asset portfolio and a single asset portfolio, as an
individual security can be assumed a portfolio. Any analysed asset is regarded as a
fixed security in a long position. The considered portfolio elements are positively or
negatively oriented. Their fuzzy discount factor is tested. Then, a weighted sum of
positively oriented discount factors and aweighted sum of negatively oriented factors
is calculated (due to the fact that adding oriented fuzzy numbers is not associative).
Consequently, a portfolio discount factor is obtained as a weighted addition of both
sums. In our procedure, we use both entropy and energy measures for the estimation
of the imprecision risk of obtained investment portfolios.

The paper is organised as follows. Introduction is followed by Sect. 2 which
presents trapezoidal fuzzy numbers, along with their main properties. In Sect. 3, the
evaluation of imprecision for oriented fuzzy numbers is shown. Section 4 includes
the notion of imprecisely estimated PVs and expected discount factor. Section 5
compares the accurateness of brokers’ recommendations and the recommendations
resulting from the TrOFNs analysis. The research is illustrated by a case study pre-
senting two strategies: one strategy follows the recommendations of stockbrokers and
the other the recommendations of a portfolio analysis basing on TrOFN approach.
Section 6 concludes the findings of the research.
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2 Fuzzy Numbers—Overview

Fuzzy Numbers (FNs), which were initially introduced by Dubois and Prade [1],
constitute the broadest set of numbers in fuzzy theory. However, they can be divided
into smaller subgroups depending on their characteristics [10].

2.1 Oriented Fuzzy Numbers

Ordered fuzzy numbers were distinguished by Kosiński [2, 3]. The author intro-
duced them intuitively as a fuzzy number model. Ordered fuzzy number S was
determined for any sequence of numbers (a, b, c, d) as an ordered pair of continu-
ous real functions (fS , gS) defined on the interval [0, 1], i.e. fS : [0, 1] → UPS and
gS : [0, 1] → DOWNS , whereUPS = [a, b] andDOWNS = [c, d ]. Functions fS and
gS are, respectively, called rising (UP) and falling (DOWN), which satisfy the con-
ditions: fS (0) = a, fS (1) = b, gS (1) = c, gS (0) = d . The numbers that are defined
as above described are called Kosiński’s numbers.

Further research into fuzzy numbers and ordered fuzzy numbers revealed a signif-
icant drawback of Kosiński’s theory, i.e. that there exist such ordered fuzzy numbers
which, in fact, are not fuzzy numbers. Therefore, the notion of ordered fuzzy num-
bers must have been revised by Piasecki [8]. Ultimately, the drawbacks of Kosiński’s
theory led to narrowing the notion to Oriented Fuzzy Numbers (OFNs).

Definition 1 [8] For any monotonic sequence (a, b, c, d) ⊂ R, Oriented Fuzzy

Number—OFN
←→L = ←→L (a, b, c, d , SL,EL) is a pair composed of an orientation−→

a, d = (a, d) and a fuzzy number defined by its membership function
μL (·|a, b, c, d , SL,EL) ∈ [0, 1]R

μL (x) = μL (x|a, b, c, d) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x /∈ [a, d ] ≡ [d , a] ,
SL, x ∈ [a, b [ ≡ ] a, b ] ,
1, x ∈ [b, c] ≡ [c, b] ,
EL, x ∈ ] c, d ] ≡ [c, d [,

(1)

where the starting function SL ∈ [0, 1][a,b] and the ending functionEL ∈ [0, 1][c,d ] are
semi-continuous from above, monotone function satisfying the condition [L]0+ =
[a, d ].

2.2 Trapezoidal-Oriented Fuzzy Numbers

Following the notion of Oriented Fuzzy Numbers, we can distinguish a subgroup of
Trapezoidal-Oriented Fuzzy Numbers (TrOFNs) which are a special presentation of
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OFNs. TrOFNs, determined by (a, b, c, d), are divided into positively and negatively
oriented. In case of a positive orientation, we expect a rise in the value of an estimated
TrOFN and vice versa, in case of a negative orientation, we expect a drop in the value
of an estimated TrOFN which can be presented as follows:

a < d → (
−→
a, d), (2)

a > d → (
←−
a, d). (3)

Definition of TrOFNs proposed by Piasecki in [8] is as follows:

Definition 2 For anymonotonic sequence (a, b, c, d) ⊂ R ,TrOFN
←→
Tr (a, b, c, d) =←→τ is OFN ←→τ ∈ KTr is determined explicitly by its membership functions μT ∈

[0, 1]R

μT (x) = μTr (x|a, b, c, d) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x /∈ [a, d ] ≡ [d , a] ,
x−a
b−a , x ∈ [a, b [ ≡ ] a, b ] ,
1, x ∈ [b, c] ≡ [c, b] ,

x−d
c−d , x ∈ ] c, d ] ≡ [c, d [.

(4)

Arithmetic operations on fuzzy numbers such as an extended sum � and dot
product � are not straightforward and must be defined as follows:

←→
Tr (a, b, c, d) � ←→

Tr (p − a, q − b, r − c, s − d) ={←→
Tr (min {p, q} , q, r,max {r, s}) , (q < r) ∨ (q = r ∧ p ≤ s) ,←→
Tr (max {p, q} , q, r,min {r, s}) , (q > r) ∨ (q = r ∧ p > s) .

(5)

β � ←→
Tr (a, b, c, d) = ←→

Tr (β · a,β · b,β · c,β · d) . (6)

2.3 Energy and Entropy Measures

Energymeasure can be used to evaluate the level of ambiguity riskwhich results from
unequivocal recommendations. The higher the level of the ambiguity, the higher the
risk of choosing the wrong alternative decision among the available ones. Entropy
measure can be used to evaluate the level of indistinctness resulting from the inability
to distinguish between the recommended and non-recommended decisions.

Both of these measures are important indicators in decision-making approach
because the imprecision risk is estimated as a sum of ambiguity and indistinctness
levels. In case of TrOFN (a, b, c, d), the entropy and energymeasures are determined
in a following manner, respectively:

d (TrOFN (a, b, c, d)) = 1

2
· |d + c − b − a| , (7)
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e (TrOFN (a, b, c, d)) = 1

4
· |d − c + b − a| . (8)

In the paper, the results are presented by an imprecise assets benefit (also regarded as
a relative profit) defined in a portfolio approach by a function ω : (KTr)

2 × [0, 1] →
KTr as follows:

(K,L,λ) = (λ � K) � ((1 − λ) � L) . (9)

Theorem 1 For any real number λ ∈ [0, 1], we have

– for any pair
(←→
K ,

←→
L

)
∈ (

K
−
Tr × K

−
Tr

) ∪ (
K

+
Tr × RK

−
Tr

) × (
K

+
Tr ∪ R

)

d
(
�

(←→
K ,

←→
L ,λ

))
= λ · d

(←→
K

)
+ (1 − λ) · d

(←→
L

)
, (10)

e
(
�

(←→
K ,

←→
L ,λ

))
= λ · e

(←→
K

)
+ (1 − λ) · e

(←→
L

)
, (11)

– for any pair
(←→
K ,

←→
L

)
∈ ((

K
+
Tr ∪ R

) × K
−
Tr

)

d
(
�

(←→
K ,

←→
L ,λ

))
≤

⎧
⎨

⎩

λ · d
(←→
K

)
− (1 − λ) · d

(
Core

(←→
L

))
, �

(←→
K ,

←→
L , λ

)
∈ K

+
Tr ∪ R,

(1 − λ) · d
(←→
L

)
− λ · d

(
Core

(←→
K

))
, �

(←→
K ,

←→
L , λ

)
∈ K

−
Tr ∪ R,

(12)

where Core (A) = {x : μA (x) = 1} ,A ∈ F (R),

– for any pair
(←→
K ,

←→
L

)
∈ ((

K
+
Tr ∪ R

) × K
−
Tr

) ∪ (
K

−
Tr × (

K
+
Tr ∪ R

))

e
(
�

(←→
K ,

←→
L ,λ

))
� min

{
λe

(←→
K

)
, (1 − λ) e

(←→
L

)}
. (13)

For more information about TrOFNs, see [5, 6, 9, 11].

3 Methods

3.1 Oriented Present Value

In case of portfolio analysis, it is worth stressing that OFNs are more convenient
than FNs. Moreover, in [6] the fuzzy present value was replaced by the closest
approximation of changes in market prices given by the quoted levels of the analysed
security prices. Such a replacement was possible due to the redefinition of the PV
determined as a present equivalent of a pay-off in a given time in the future. Taking
all the above into account, we can assume that imprecise PV may be defined by
an OFN [5, 6]. Such PV will be called an Oriented PV (OPV) represented by a
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monotonic sequence
(
Vs,Vf ,Vl,Ve

)
given by the formula:

OPV = TrOFN
(
Vs,Vf ,Vl,Ve

)
, (14)

where themonotonic sequence
(
Vs,Vf , P̆,Vl,Ve

)
is determined by P̆—quoted price,

[Vs,Ve] ⊂ R
+—interval of all PV possible values,

[
Vf ,Vl

] ⊂ [Vs,Ve]—interval of
all prices that do not significantly differ from the quoted price P̆.

If we expect an increase in price, the present value is determined by a positively
oriented TrOFN. Japanese candle models are examples of trapezoidal OPVs [9]. In
turn, if we expect a decrease in price, the present value is determined by a negatively
oriented TrOFN. Moreover, if we assume a time horizon t > 0 of a fixed investment,
the asset is described by an anticipated future value and an assessed present value.
The profit from owing a given asset is a basic return rate given by the identity:

rt = Vt − V0

V0
= Vt

V0
− 1. (15)

Assuming that future value (FV) is a random variable Ṽt : � → R
+ where ω is a

set of elementary states ω of the financial market and present value is identified by
a given quoted price P̆, then the return rate is a random variable determined by

rt (ω) = Ṽt (ω) − P̆

P̆
. (16)

Practitioners of financialmarkets usually try to determine the lack of sufficient knowl-
edge (uncertainty risk) by the probability distribution of a return rate given by a
function of a cumulative distribution Fr (·|r) : R → [0, 1] .

3.2 Expected Discount Factor

If we assume that the expected value r̄ of the distribution and the expected discount
factor v̄ exist then we can denote the expected discount factor (EDF) as

v̄ = (1 + r̄)−1 . (17)

Then, following this direction of reasoning and taking together (15) and (16) we get
the formula for the return rate:

rt = rt (V0,ω) = P̆ · (1 + r̄ (ω))

V0
− 1 (18)

and the imprecise EDFV : R+ → R
+ given as a unary operator transforming PV [7]:
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V (V0) =
(
P̆ · (1 + r̄)

V0

)−1

= v̄

P̆
· V0. (19)

As the imprecise PV, given by Eq. (14), is estimated with the use of TrOFN, then

the imprecise EDF
←→V

(←→
PV

)
also is defined as follows:

←→V
(←→
PV

)
= ←→

Tr

(
Vs · v̄
P̆

,
Vf · v̄
P̆

,
Vl · v̄
P̆

,
Ve · v̄
P̆

)

= ←→V
(←→
Tr

(
Vs,Vf ,Vl,Ve

))
.

(20)
Consequently, the entropy and energy measures derived from imprecise EDF←→

V (Ŝ) can be determined by

d
(←→V

(
Ŝ
))

=
∣
∣
∣
∣
∣

(
Ve + Vl − Vf − Ve

) · v̄
2P̆

∣
∣
∣
∣
∣
, (21)

e
(←→V

(
Ŝ
))

=
∣
∣
∣
∣
∣

(
Ve − Vl + Vf − Ve

) · v̄
4P̆

∣
∣
∣
∣
∣
. (22)

3.3 Portfolio Approach

In the research, the portfolio is regarded as an arbitrary set of assets which is finite.
An asset (also referred to as share or stock) is, in turn, comprehended as a fixed
security in a long-term investment. Each security is characterised by three elements:

– its price P̆i ∈ R
+,

– its imprecise present value
←→
PV i = ←→

Tr
(
V (i)
s ,V (i)

f ,V (i)
l ,V (i)

e

)
,

– its EDF v̄i defined by (17).

As the PV of a whole portfolio π∗ is the sum of its elements determined by
TrOFNs, i.e. the sums of PVs of rising securities π+ and falling securities π− we can
determine that

←→
PV ∗ = ←→

PV + � ←→
PV − (23)

=←→
Tr

(
V (+)
s ,V (+)

l ,V (+)

f ,V (+)
e

)
� ←→

Tr
(
V (−)
s ,V (−)

l ,V (−)

f ,V (−)
e

)
.

Finally, we can determine the imprecise EDFs for a given portfolio (π+ and π∗)
as follows:
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←→V + = T̄r

⎛

⎜
⎝

∑

Yi∈π+

v̄+ · p(+)
i

vi
· D(i)

s ,
∑

Yi∈π+

v̄+ · p(+)
i

vi
· D(i)

f ,
∑

Yi∈π+

v̄+ · p(+)
i

vi
· D(i)

l ,
∑

Yi∈π+

v̄+ · p(+)
i

vi
· D(i)

e ,

⎞

⎟
⎠

(24)

←→V ∗ = ←→
Tr

(
D∗

s ,D
∗
f ,D

∗
l ,D

∗
e

)
=

(
v̄∗ · q+

v̄+ � ←→V +
)

�
(
v̄∗ · q−

v̄− � ←→V −
)

, (25)

where

– M+ = ∑
Yi∈π+ P̆i,M− = ∑

Yi∈π− P̆i,M ∗ = M+ + M− are the values of the portfo-
lios π+,π− and π∗;

– p+/−
i = P̆i

M+/− represent the shares of a given asset Yi ∈ π+/−, respectively, in an
individual portfolio (π+/−);

– q+/−
i = M (+/−)

M ∗ represent the share q+/− of an individual portfolio π+/− in a port-
folio π∗;

– v̄+/− =
(∑

Yi∈π+/−
p+/−
i
v̄i

)−1
, v̄∗ =

(
q+
v̄+ + q−

v̄−

)−1
are, respectively, the EDFs

v̄+/v̄−/v̄∗ of the portfolios π+,π− and π∗.

The formula for an imprecise EDF for a portfolio π− is analogous to the formula
of an imprecise EDF for a portfolio π+.

Eventually, the formulas for energy and entropy are defined as follows:

d
(←→V +/−

)
=

∑

Yi∈π(+/−)

v̄+/− · q(+/−)

i

v̄i
· d

(←→V (Yi)
)

, (26)

e
(←→V +/−

)
=

∑

Yi∈π(+/−)

v̄+/− · q(+/−)

i

v̄i
· e

(←→V (Yi)
)

, (27)

where the energy and entropy measures must meet the conditions, respectively:

d
(←→V ∗

)
=≤

⎧
⎨

⎩

v̄∗·q+
v̄+ · d

(←→V +
)

− v̄∗·q−
v̄− · d

(
Core

(←→V−
))

,
←→V ∗ ∈ K

+
Tr ∪ R,

v̄∗·q−
v̄− · d

(←→V −
)

− v̄∗·q+
v̄+ · d

(
Core

(←→V+
))

,
←→V ∗ ∈ K

−
Tr ∪ R

(28)
and

e
(←→V ∗

)
� min

{
v̄∗ · q+

v̄+ · e
(←→V +

)
,
v̄∗ · q−

v̄− · e
(←→V −

)}

. (29)
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4 Findings

In the conducted research, we analyse a portfolio consisting of the assets of five
companies listed on the Warsaw Stock Exchange (WSE). Those companies belong
to the construction sector and are included inWIG (main index on theWarsaw Stock
Exchange). The portfolio will be analysed basing on two different approaches and
therefore we will distinguish Portfolio π1 (basing solely on TrOFNs) and Portfolio
π2 (basing on brokers’ recommendations).

The detailed composition of the analysed Portfolio π∗ along with the number of
individual securities is presented in Table 1.

Basing on the closing of WSE session on 8 September 2021, for each analysed
security, its PV equal to TrOFN PVi (describing its Japanese candles) is determined.

A quoted price P̆Y of each single element of the observed portfolio becomes the
initial price on the subsequent following day (9 September 2021).

The obtained results of Portfolio π∗—TrOFN PV, energy and entropy measures,
quoted price—are shown in Table 2.

The first two companies (variables YCOM and YMST) are characterised by positively
oriented TrOFNs, hence the investor might expect the increase of their value in the
future. That would suggest that in the future the investor will have an opportunity
to sell the securities with the profit. The other three variables (YPEK, YSEL and YSNK)
are described by negatively oriented TROFNs. In this case, the investor can expect
a drop in their value in the future. That would suggest a future opportunity to buy
the shares of given companies in the future at a lower price. For each variable, the

Table 1 Composition of initial portfolio π∗

Variable Name Tick No. of stocks

YCOM COMPREMIUM COM 1600

YMST MOSTOSTALZAB MST 950

YPEK PEKABEX PEK 550

YSEL SELENAFM SEL 1005

YSNK ŚNIEŻKA SNK 120

Table 2 Results of portfolio π∗

Variable Present value Quoted price Energy
measure

Entropy
measure

YCOM
←→
Tr (4.86, 4.95, 5.04, 5.06) 5.02 0.0305 0.0038

YMST
←→
Tr (1.85, 1.89, 2.03, 2.14) 2.04 0.1007 0.0176

YPEK
←→
Tr (23.50, 23.10, 22.90, 22.90) 22.70 0.0168 0.0042

YSEL
←→
Tr (29.00, 29.00, 27.90, 27.20) 28.00 0.0495 0.0060

YSNK
←→
Tr (84.20, 84.20, 82.00, 81.80) 82.00 0.0268 0.0006
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Table 3 Characteristics of Portfolio π+, π− and π∗

Portfolio EDF v̄ Imprecise EDF
←→V

π+ 0.9854
←→
Tr (0.9134, 0.9263, 0.9580, 0.9716)

π− 0.9675
←→
Tr (0.9882, 0.9839, 0.9562, 0.9428)

π∗ 0.9704
←→
Tr (0.9760, 0.9745, 0.9565, 0.9475)

above-mentioned initial price for the following day is given.Also, energy and entropy
measures are calculated for each individual security. The linear portfolio analysis is
not possible for considered portfolio π∗.

The next step included computing the portfolios π+, π− and π∗ determined by
TrOFN (

←→
PV ).

←→
PV + = ←→

Tr (9533.50, 9667.50, 9992.50, 10129.00), (30)

←→
PV − = ←→

Tr (52174.00, 51954.0, 50474.50, 49747.00), (31)

←→
PV ∗ = ←→

Tr (61707.50, 61621.50, 60467.00, 59876.00). (32)

The
←→
PV ∗ is defined by a negatively oriented TrOFNs, and therefore we conclude that

we are to expect a decrease in the value of the portfolio in the future. EDFs of the
given portfolios π+, π− and π∗ as well as the values of imprecise EDF are given in
Table 3.

The obtained data fromTable 3 enabled the computation of the energy and entropy

measures of EDF
←→V ∗ of Portfolio π∗ which, respectively, reached the levels of

d(
←→V ∗) = 0.0233 and e(

←→V ∗) = 0.0026.
Basing on the above premises from the TrOFNs analysis we would advise the

investor to buy additional shares of YCOM and YMST to sell them in the future at a
higher price and to sell some shares of YPEK , YSEL and YSNK to buy them cheaper in
some time.

4.1 Case Study—Portfolio π1

Portfolio π1 is the case in which the investors follow the above-presented recommen-
dations of the TrOFNs (the recommendations of TrOFNs are dominant). Therefore,
the investors decide to

1. sell 20 shares of SNK,
2. sell 50 shares of PEK,
3. sell 5 shares of SEL,
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Table 4 Composition of Portfolio π∗
1

Variable Name Tick No. of stocks

YCOM COMPREMIUM COM 2000

YMST MOSTOSTALZAB MST 1000

YPEK PEKABEX PEK 500

YSEL SELENAFM SEL 1000

YSNK ŚNIEŻKA SNK 100

4. buy 50 shares of MST,
5. buy 400 shares of COM.

Basing on the closing of WSE session on 10 September 2021, for each analysed
security, its PV equal to TrOFN

←→
PVi (describing its Japanese candles) is determined.

A quoted price P̆Y of each single element of the observed portfolio becomes the
initial price on the subsequent following day (11 September 2021).

For each variable, the above-mentioned initial price for the following day is given.
Also, energy and entropy measures are calculated for each individual security. The
linear portfolio analysis is not possible for considered portfolio π∗

1 (Table 4).
The next step included computing the portfolios π+

1 , π−
1 and π∗

1 determined by

TrOFN (
←→
PV ).

←→
PV +

1 = ←→
Tr (29210.00, 29310.00, 29920.00, 30200.00), (33)

←→
PV −

1 = ←→
Tr (30370.00, 30330.00, 29830.00, 29310.00), (34)

←→
PV ∗

1 = ←→
Tr (59580.00, 59640.00, 59750.0059750.00). (35)

The
←→
PV ∗

1 is defined by a positively orientedTrOFNs, and thereforewe expect a further
increase in the value of the portfolio in the future. EDFs of the given portfolios π+

1 ,
π−
1 and π∗

1 , as well as the values of imprecise EDF, are given in Table 5.
The obtained data fromTable 5 enabled the computation of the energy and entropy

measures of EDF
←→V∗

1 of Portfolio π∗
1 which, respectively, reached the levels of

d(
←→V∗

1 ) = 0.02538 and e(
←→V∗

1 ) = 0.000248.

Table 5 Characteristics of Portfolio π+
1 , π

−
1 and π∗

1

Portfolio EDF v̄1 Imprecise EDF
←→V1

π+
1 0.9523

←→
Tr (0.9314, 0.9350, 0.9549, 0.9642)

π−
1 0.9945

←→
Tr (0.9784, 0.9771, 0.9608, 0.9441)

π∗
1 0.9733

←→
Tr (0.9547, 0.9559, 0.9579, 0.9579)
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4.2 Case Study—Portfolio π2

Portfolio π2 is the case in which the investors decided to seek additional support.
This support comes in the form of brokers’ recommendations as brokerage houses
specialise in stock investments. In this case study, the recommendations of brokers are
dominant. The official recommendations of brokers issued for analysed companies
in the given time are presented in Table 6.

Comparing the recommendations in Strategy 1 (Portfolio π1) and in Strategy
2 (Portfolio π2) we can notice that the recommendations of brokers for analysed
companies in the given time differ insignificantly from the recommendations reached
on thebasis ofTrOFNs.Therefore, in case that the recommendations in both strategies
are identical, the investor takes the same decision regarding individual company.
However, in this strategy (if the recommendations differ), the investor chooses the
recommendations of brokers.

Therefore, the investors decides to

1. sell 20 shares of SNK,
2. buy 50 shares of MST,
3. buy 5 shares of SEL,

while the number of shares of the remaining two companies stays the same. Finally,
we obtain the following Portfolio π∗

2 presented in Table 7.
Basing on the closing of WSE session on 10 September 2021, for each analysed

security, its PV equal to TrOFN PVi (describing its Japanese candles) is determined.
A quoted price P̆Y of each single element of the observed portfolio becomes the

initial price on the subsequent following day (11 September 2021).

Table 6 Recommendations of brokers for analysed companies

Company Recommendation Date of recommendation

ŚNIEŻKA SELL 2021-09-08

MOSTALZAB BUY 2021-09-07

PEKABEX HOLD 2021-09-07

SELENAFM BUY 2021-09-07

COMPREMUM HOLD 2021-09-06

Table 7 Composition of portfolio π∗
2

Variable Name Tick No. of stocks

YCOM COMPREMIUM COM 1600

YMST MOSTOSTALZAB MST 1000

YPEK PEKABEX PEK 550

YSEL SELENAFM SEL 1010

YSNK ŚNIEŻKA SNK 100
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Table 8 Results of portfolio π∗
2

Variable Present value Quoted
price

Energy
measure

Entropy
measure

YCOM
←→
Tr (5.06, 5.06, 5.16, 5.20) 5.18 0.0221 0.0018

YMST
←→
Tr (2.27, 2.23, 2.13, 2.11) 2.08 0.0597 0.00069

YPEK
←→
Tr (21.90, 22.10, 22.80, 23.20) 22.80 0.0419 0.0063

YSEL
←→
Tr (28.10, 28.10, 27.70, 27.20) 27.60 0.0225 0.0043

YSNK
←→
Tr (81.40, 81.40, 82.00, 82.00) 82.00 0.0070 0.0000

Furthermore, we calculate the portfolios π+
2 , π−

2 and π∗
2 determined by TrOFN

(
←→
PV ). ←→

PV +
2 = ←→

Tr (28281.00, 28391.00, 28996, 29280.00), (36)

←→
PV −

2 = ←→
Tr (30651.00, 30611.00, 30107.00, 29582.00), (37)

←→
PV ∗

2 = ←→
Tr (58932.00, 59002.00, 59103.00, 59103.00). (38)

The
←→
PV ∗

2 is defined by a positively oriented TrOFNs, and therefore we expect a
further increase in the value of the portfolio in the future.

The obtained data enabled the computation of the energy and entropy measures
for individual securities which are presented in Table 8.

The entropy and energy measures of EDF
←→V∗

2 of Portfolio π∗
1 which, respectively,

reached the levels of d(
←→V∗

2 ) and e(
←→V∗

2 ) = 0.000292.

5 Conclusions

Portfolio analysis and management frequently use oriented fuzzy numbers (OFNs)
which include information uncertainty and imprecision related to financial market.
That enables the utilisation of an expected fuzzy discount factor which leads to an
imprecise present value (PV). Finally, we obtain recommendations (buy, sell, accu-
mulate, reduce) for individual stocks included in the portfolio. Similarly, agents of
stock-brokerage regularly issue analogous recommendation basing on their knowl-
edge, experience and quantitative analysis which also are imprecise.

The main purpose of the paper is to analyse the published recommendations of
stockbrokers, their accurateness and actual impact on the operations on portfolio
including stocks of companies in construction sector. The created portfolio includes
securities identified by a present value assessed with the use of trapezoidal-oriented
fuzzy number (TrOFNs) in times of issuance of the recommendation. All theoretical
considerations are illustrated by an empirical case study. The elements of portfolio
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are positively or negatively oriented. Themain objective of this paper was to compare
the usefulness of the recommendations made by stockbrokers and suggested by the
fuzzy portfolio analysis which was conducted with the use of fuzzy discount factor.

The results show that the fuzzy portfolio analysis was more accurate for the
companies in construction sector assessed by a forecast of the closest change in
prices than the recommendations of the brokers.

Using OFNs an initial decrease in the value of a portfolio was anticipated. The
decrease occurred in both of analysed strategies; however, in case of the second
strategy, the decrease was of a smaller value.

The case study shows that recommendations obtained with the use of OFNs are
better if we consider energy and entropy measures (their values are smaller). It
can also result from the fact that OFN recommendation, unlike most of brokers’
recommendations, are short-term recommendations.

The results based on OFNs are better because they are less imprecise.
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Time Series Analysis Applications



Automatic Clustering for Seasonal Time
Series Based on Entropy

Miguel Ángel Ruiz Reina

Abstract Automatic clustering for seasonal time series based on entropy is a tool
developed to understand decision-making behaviours for economic agents. An unsu-
pervised learning system reduces information and is a powerful statistical learning
tool. This method is a multiple-choice classification solution under uncertain envi-
ronments. The empirical application is in the tourist accommodation market, where
international tourists must choose various accommodation options (hotels, tourist
apartments, campsites and rural apartments). Seasonal uncertainty for offers can
solve information gaps in understanding human behaviour. The three-dimensional
information of spatial extension, spatial location and temporal extension is offered for
the Spanish tourist market of foreigners who visit the Spanish Autonomous Commu-
nities from January 2001 to June 2022. The results have revealed similarities and
dissimilarities among the analysed Spanish regions depending on the seasonal period.
In addition, the internal verification criteria have allowed us to quantify similarities
in intragroup behaviour as an added value to this study.

Keywords Time series · Clustering · Shannon entropy

1 Introduction

The economy has been connected to physics; many economic elements and people
are connected, generating a high probability of chaos in each system. Understanding
human behaviour patterns reduces uncertainty and reduces clutter in complex social
systems. The ultimate goal of managing complex realities is to control the systems,
optimise them, and reduce entropy. In this sense, unsupervised learning clustering
of time series with seasonality provides tools to economic agents to quantify
the decision-making process. However, modelling and clustering techniques vary
depending on the problem or data set to be analysed; these techniques can affect
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the results and the process of understanding decision-making [1]. In this order, this
research proposes a novel unsupervised clustering system for time serieswith cyclical
fluctuations in contexts of uncertainty for multiple choice. The proposed application
aims to understand a disordered time-series system by making unconnected deci-
sions and creating an order based on the seasonal automatic clustering system for
spatio-temporal data [2].

Classification algorithms are not new in uncertain environments; the research
directions are varied, highlighting: the granulation of systematic procedures, exten-
sive data processing and adequate selection of characteristics and methods to find
similar groups. Information theory allows machine learning algorithms to classify
based on entropy and even find outliers. The problem can be divided roughly into
pattern detection techniques; supervised machine learning, unsupervised learning
and finding potential anomaly issues. The challenge of our work is to develop
an unsupervised model according to similarities among groups and differences,
although without prior knowledge of the categories, combining pre-processing,
seasonal entropy calculations, time-series techniques and machine learning anal-
ysis. Shannon’s concept of entropy (1948) measures uncertainty, and classifica-
tion algorithms allow knowing spatio-temporal information for decision-making
[4]. However, we will provide the scientific literature with automatic classification
and internal verification techniques, ensuring that data partitions show within-group
similarities and out-of-group differences.

In the contextualisation of our modelling, the main idea is to provide a nonpara-
metric estimation of space–time information based on the measurement of seasonal
entropy for the decision-making of economic agents. We establish an automatic
clustering model based on specific stochastic processes’ degree of uncertainty
and randomness. In this way, without prior knowledge, we will find economic
agents’ behaviour patterns and habits. The classification system allows time-series
researchers to reduce the information to smaller dimensions for data exploitation.

The empirical work will deal with how foreign tourists visiting Spain decide on
tourist accommodation; we can indicate that uncertainty is created multifactorial, as
we will see in the methodological section. The lack of knowledge presents the degree
of anticipation before making the accommodation decision among hotels, tourist
apartments, campsites and rural apartments for the regions of Spain (Autonomous
Communities). The strategic and economic relevance of the Spanish tourism industry
is represented by 12% of the Gross Domestic Product (GDP) in 2019, its loss of
weight in the Spanish economy due to the crisis caused by COVID-19 and its resur-
gence after the crisis period. Measuring this uncertainty and its spatio-temporal
grouping will help economic agents make efficient decisions. In this way, it will
try to recover entry levels of foreign tourists in Spain similar to those of 2019, when
it represented the second largest number of people in the world (82.7 million) of the
arrival of people only behind France (89.4 million). Ahead of the world giant USA
(79.6 million), in fourth position China with 62.9 million, in fifth Italy, with 62.1 and
sixth position Turkey with 45.7 million people received [5]. COVID-19 has harmed
tourism activity in 2020 and 2021. So much so that the sector’s contribution went
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from 12% of GDP in 2019 to 7.4% in 2021. It is expected that in 2022 the situation
of this industry will improve and, with it, the contribution to national wealth [6].

The book chapter is structured as follows: Sect. 2 deals with the literature review,
studying state of the art in depth, allowing us to understand and propose the new
methodology; Sect. 3 completely describes the method for unsupervised entropy
clustering for seasonal data. The novel clustering system contributes to the dimen-
sional reduction of time series and its subsequent empirical exploitation; the data and
empirical application section is the fourth section, and it describes the natural results
of the study. Data collection empirically supports the decision-making process for
theoretical researchers and practitioners; Sect. 5 ends with the revealing conclusions
of the study.

2 Literature Review

Clustering metric methods are crucial for many real-world applications, and distance
metrics provide learning models with better performance than is generally achieved
[7]. Unsupervised learning automatically generates categorisation problems into new
categories for the same attributes [8]. Initially, cluster analysis was investigated with
cross-sectional data; in the 1960s, issues of the number of clusters, better clustering
algorithms and answering questions about outliers were solved [4]. Subsequently, the
development of data Extraction, Transformation and Loading (ETL) techniques led
to an excellent availability that was unsuspected at the beginning of the investigation
[9]. The dimensional reduction applied to time series seasonal allows to improve the
following processes: understand the business problem, understand the data, prepare
the data, build a model, evaluate and finally deploy.

In recent years, the increasing availability of time series, classification and reduc-
tion techniques has attracted increasing interest. Initially, a more significant contri-
bution of time-series univariate clustering techniques was found, but research has
allowed the development of multivariate clustering techniques to remain challenging
[10]. In this sense, the dimensionality of the series is related to time; additionally, the
analysis can be made up of several values that change in the same time scale; in this
case, it would be calledmultivariate time series. Clustering techniques are variants for
time series reducing dimensionality; they constitute a wide area of research [10]. The
techniques that have been recently developed are based on algorithms: connectivity-
based clustering [11], centroid-based clustering [12], distribution-based clustering
[13] and density-based clustering [14]. The techniques used are broad and relevant,
where the primary classification of clustering algorithms could be cited as follows:
time-series clustering by features; the clustering approach is based on stochastic
time-seriesmodels, density function and forecast density, functionalmethod, splines,
copulas or tail dependence and series transformations [4].

The spatio-temporal analysis depends on the context of the data set, the objective
and the available data’s taxonomy. The spatio-temporal dataset clustering methods
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can be as follows: Descriptive and generative model-based clustering, Distance-
based clustering methods, Density-based methods and the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) family, visual-aided approaches,
micro clustering methods, and flocks and convoy, important places and borderline
cases: patterns [1].

In particular, with the help of spatial statistical tools based on entropy and infor-
mation theory, the analysis and interpretation fill the literature gaps not included
in the previous paragraphs. Entropy-based uncertainty for space–time analysis has
been used in geosciences [15], categorical variables of interest on a dataset linked
to climate change and evolution of land cover types in Nordic areas [16], for
non-Gaussian spatial random fields, are explored for spatial field reconstruction in
environmental and sensor network monitoring [17] o analyse traffic predictions in
smarts urban areas [18]. For space–time data with seasonal cycles, the grouping
method called Neighbourhoods Seasonal Entropy based on Median Seasonal Clus-
tering Entropy (MdSCENsrjt) was developed, unsupervised modelling process that
starts from complete information gaps and uses entropy as a measure of uncer-
tainty to classify information [4]. This learning method is a sequential process that
analyses the binary process’s decision-making. However, the number of clusters
is open to the nature of the data set. Consequently, after the literature review, our
proposal could improve the different clustering methods based on automatic groups
for spatio-temporal data with cyclical fluctuations.

After reviewing the literature, in our work, we consider a gap in the literature for
the concept of multichoice of Shannon’s entropy (1948) to make classifications and
reductions according to the recognition of seasonal patterns. In particular, we propose
a new method that classifies time series according to repetitive cyclical flows based
on the distance to a reference series in contexts of knowledge gaps before analysis.
We call it Automatic Clustering Entropy Seasonal (AutoCEs), and it is developed in
a high triple dimension of spatial extension, spatial location and temporal extension
to achieve information reduction. This contribution allows knowing the differences
among the dynamic behaviour of an aggregate series and the different series that
compose it.

3 Methods

This study proposes an automatic unsupervised clustering procedure for time series
with cyclic fluctuations based onmulti-optional entropy calledAutoCEs. This assem-
bled algorithm allows information to be grouped in contexts of prior global uncer-
tainty about the space–time data set. This learning statistics technique allows for
obtaining cyclical informationbasedon the concept of Shannon’s InformationTheory
(1948). An overview of this proposal is included in Fig. 1, presenting the classifica-
tion phases for High-Dimensional Time Series (HDTS): (1) spatio-temporal data pre-
processing; for Reduction-Dimensional Time Series (RDTS): (2) Entropy modelling
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Fig. 1 AutoCEs: phases for High-Dimensional Time Series (HDTS) to Reduction-Dimensional
Time Series (RDTS). Own elaboration

and Seasonal Automatic Clustering and (3) final aggregation: decision-making.
Finally, we get the aggregation, and the knowledge is used in decision-making.

The AutoCEs process with seasonal fluctuations is based on the concept of
Shannon entropy as ameasure of uncertainty.Wewill divide our analysis process into
two large blocks: HDTS and RDTS. Initially HDTS, the spatial information is disor-
dered and contains hidden theoretical details on the original series to be analysed.
This first process consists of ETL data. The second block of the analysis, and more
important in this work, is RDTS, where the series is transformed into knowledge
for decision-making. The series is grouped, and the uncertainty is quantified with
Information Theory, mainly working with the original concept of Shannon entropy.
Once the entropy has been quantified, we develop automatic clustering modelling
for machine learning techniques. In the last step, clusters classified according to
seasonal, cyclical fluctuations are obtained to make decisions efficiently for the field
of application. In the following subsections, the points of the automatic decision
algorithm will be detailed.

3.1 High-Dimensional Time Series (HDTS):
Spatio-Temporal Data Pre-processing

Formally the set of xl j t ∈ Xl jt∀〈l = 1, 2, . . . , L; j = 1, 2, . . . , J ; t = 1, 2, . . . , T 〉
where l represents the options of the variables x in a space j for a temporal analysis
period of each t in the data set (temporal space t is divided into seasonal flows s).
We assume that Xl jt , as a collection of available data, the length will depend on the
data engineering. Note that we can store data for variables with different samples,
but for homogeneity in the study, we will assume the same length for each xl j t . For
a deep understanding, it is recommended to know the nature of the data, so prior



94 M. Á. R. Reina

visualisation and analysis tools are necessary to understand the process [19]. This
work models AutoCEs in the following subsections to reduce RDTS data, supporting
our study compared with several unsupervised dissimilarity clustering methods such
as Median Seasonal Clustering Entropy (MdSCENsrjt) [4].

Reduction-Dimensional Time Series (RDTS): Uncertainty, Clustering and
Knowledge. Depending on the selected data set, a dimensional reduction can add
value whatever the objective or scheme adopted for RDTS. In particular, spatio-
temporal analysis is a large container, including several kinds of data that exhibit
properties and opportunities for knowledge extraction [1]. Although clustering algo-
rithms vary according to the technique [20], we provide an automatic unsupervised
cluster number technique in this work. We will define the following intermediate
steps: entropy modelling and automatic clustering.

Entropy modelling: the initial objective is to classify the temporal data set Xl jt ,
where we can define entropy measurement based on the portions of space–time.
Shannon’s entropy measures the degree of disorder in spatio-temporal decision-
making in a multifactorial context, represented as follows:

Hjt (X jt ) = −
L∑

l=1

p(xl j t ) log2 p(xl j t ) (1)

The proportions of each series are obtained p(xl j t ) = 0 ≤ (
xl j t

)/(
L∑

l=1
xl j t

)
≤ 1

and verified
L∑

l=1
p(xl j t ) = 1 for measurement in discrete times. The entropy vectors

would be organised for each temporary space
−−−−−→
Hjt (X jt ) f or j ∈ R

j .
Once uncertainty has been defined as a pattern before grouping, it is convenient to

indicate the group by uncertainties where the time series Hjt (X jt ) = 0 will represent
a series with little variability in decision-making, and the maximum uncertainty will
be foundwith values far from zero argmax Hr (xrt ). Wewill organise the information
based on a reference series complying 0 ≤ Hr (xrt ) ≤ argmax Hr (xrt ).AutoCEswill
allow us to arrange the groups unsupervised around the proximity to the reference
value Hr (xrt ) and dimensional reduction related to a seasonal pattern s.

Automatic clustering—AutoCEs: The seasonal sequential automatic cluster selec-
tion process begins after the preliminary phases of spatio-temporal data pre-
processing and entropy measurement s. We will divide this last phase into the neces-
sary sequences to obtain the final knowledge: sequence 1, the reference series and
seasonal grouping will determine the centroid of the clusters; sequence 2, measures
of dissimilarity; sequence 3, automatic clustering and clustering check. After this
sequential automated work, we would enter the final phase of aggregation and
efficient decision-making in the fields of application [1].

Part 1: having reduced the high-dimensional matrix Xl jt in a reduced entropy

vector
−−−−−→
Hjt (X jt ), it is convenient to work with the latter and find a time reference

series Hr (xrt ) to be the centroid of the automatic clustering. In our paper, we will
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work with monthly cyclical fluctuations, being s ∈ [1, 12]. However, the seasonal
space could vary for quarters s ∈ [1, 4] or for daily s ∈ [1, 365]. After this, we
regroup the uncertainty series seasonally Hjts(x jts), being j = 1, 2, . . . , J spatial
location, t = 1, 2, . . . , T the temporal extension of data and s = 1, 2, . . . , S the
temporary subdivision t . The centroid value of the j seasonal time series entropy is
the seasonal reference series, Hrts(xrts) and the rest of the entropy series to classify
would be Hjts(x jts).

Part 2: Distance Measures. Calculating the distances with Hrts(xrts) it is one of
the pillars of any clustering algorithm. To classify and avoid measures of outliers
or extreme values, we will use the concept of Median Seasonal Clustering Entropy
(MdSCENrjts), which measures the Euclidean distance among the seasonal entropy
series j and the seasonal reference series. Mathematically, the measure of seasonal
difference according to the j series is defined as follows:

MdSCENr jts = Median

(√(
Hrts(xrts) − Hjts(x jts)

)2
)

(2)

Part 3: Automatic Seasonal Clustering Entropy. AutoCEs is an automatic classi-
fication rule that finds the optimal number of clusters for a series of seasonal data. A

sample N =
AutoSCEs∑

i=0

(
AutoSCEs − 1

i

)
= (1 + 1)AutoSCEs−1 contains the bino-

mial coefficient for AutoCEs for N observations (numbers of entropy series once
RDTS is done) for locations j and seasons s, where the cluster number i includes
the number of samples. Finally, applying logarithms shows that the optimal number
of clusters is expressed by AutoSCEs = 1 + log2(N ).

Part 4: Cluster evaluation. The clustering process is commonly considered unsu-
pervised for this reason; the internal evaluation is usually entirely subjective; some
validation mechanism is required to evaluate the quality of the obtained cluster [19].
The research areas largely determine the Cluster Validity Indices (CVIs) [21, 22].
The CVIs we propose are a relative internal validation in which we seek to verify the
similarity of the cluster members. In particular, we work with the Neighbourhood’s
Internal Verification Coefficient—N IVCsq [4]. Finally, this task is subdivided into
finding the width of the interval and then deriving N IVCsq :

– The maximum distance intracluster is defined as the breadth of a cluster i BCi →
0 i f N → ∞

– The following expression will determine the Neighbourhood’s Internal Verifica-
tion Coefficient:

N IVCsq = max[d(MdSCENu
sr jt ,MdSCENl

sr j t )]
BCi

(3)

The numerator expression max[d(MdSCENsr jt
u,MdSCENl

sr j t )] includes the
elements of the cluster found and may coincide with the maximum value of

the breadth of a group
(
max[d(MdSCENu

sr jt ,MdSCENl
sr j t )] ≤ BCi

)
. Verifying
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0 ≤ N IVCsq ≤ 1, the most remarkable intra-group similarity will occur when
N IVCsq = 0; otherwise, we will find greater diversity with N IVCsq = 1. Under
the internal verification criterion, there may be limited values that meet the condi-
tions. However, we consider this study a valid tool to establish clusters and eliminate
acyclicity to make objective decisions.

This clustering NIVCsq allows the series to be grouped objectively based on
seasonal entropy. Likewise, it is possible to identify the outliers of interest in different
research fields. In our case, we will use a definition that is easy to interpret, and it
is the use of divided intervals in neighbourhoods for non-grouped data. There are
optimisation arguments and more in-depth readings in the literature, but it is not
within the scope of this work [21–23].

Final aggregation: decision-making. The interpretation of clustering technique
consists of interpreting the patterns identified in the algorithm. The identified
space–time entropy trajectories allow us to know how the information systems
transmit information to the cluster. Designs allow identifying laws and rules about
trends and prediction, characterising individual and group behaviour [24]. Finally,
the neighbourhood-based clusters are obtained: clusterq = cluster1, cluster2, …,
clusterQ.

The criterion based on medians allows overcoming statistical problems based on
outliers that could distort the cluster’s seasonal interpretation. This methodology
proves its value in understanding the spatial uncertainty among two time series for
different series j. In the next section, we will study the actual use of this analysis
method in uncertainty models applied to the tourism sector.

4 Empirical Results

In this fourth empirical section of thiswork, we connect entropy and informationwith
the automatic clustering algorithm developed. The entropy clustering of a macrostate
(high dimension) will allow us to reduce the data to a microstate (dimensional reduc-
tion) for the understanding of the decision-making of economic agents based on
behaviour patterns [25]. The empirical results show a work scheme described in
Fig. 1. Next, wewill detail the data pre-processing, uncertaintymodelling and cluster
processing for the sample period analysed. The empirical results obtained from the
methodological application exposed above come from the Spanish hotel occupancy
survey; in particular, it is data on overnight stays of foreigners in Spain from January
2001 to June 2022 collected by official Spanish statistics.

Data pre-processing. In this paper, the temporal database used comes from the
Spanish National Institute of Statistics (INE)—it contains multichoice data from the
spatial extension l = (1 = overnight stay in hotels, 2 = campsites, 3 = tourist apart-
ments and 4 = rural apartments) according to Spanish Autonomous Communities
from January 2001 to June 2022 (t = 1.2, …, T). The data with 20,640 observations
represent the spatial location j of the overnight stays by foreign tourists visiting Spain
for j = (1 = Andalusia, 2 = Aragon, 3 = Asturias, 4 = Balearic Islands (Balears),
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5 = Canary Islands, 6 = Cantabria, 7 = Castile Leon (C. Leon), 8 = Castilla la
Mancha (C. Mancha), 9 = Catalonia, 10 = Valencia, 11 = Extremadura, 12 =
Galicia, 13 = Madrid, 14 = Murcia, 15 = Navarra, 16 = Basque Country, 17 = La
Rioja) and the added variable called “Total” is the reference series r, variable “Total”
collects all the seasonal and cyclical behaviours of all the regions analysed. INE data
reveal seasonal behaviour and tourist flows with similar patterns by geographic area.
The distances of each nationality j concerning the total number of overnight stays in
Spain will be the reference measure r (denoted as Total in the rest of the document).
We indicate that we group the seasonal classification values s = January, February,
March, …, December. In the next section on entropy modelling, we will represent
the entropy time series for all the analysed time series.

Uncertainty modelling. Figure 2 represents the spatio-temporal uncertainty
modelling for Autonomous Communities; this is the dimensional reduction of the
original 20,640 observations collected in the sampling period. The multi-optional
entropy function results show a cyclical behaviour with a periodicity of less than one
year (monthly seasonality), compatible with the seasonality of the time series for
the nationalities of origin described above. Based on our study, we have selected the
reference series r as the one called Total. This series shows the global behaviour of
all series, and the measurement/comparison of this series with the rest will allow us
to cluster the information before decision-making.

Automatic Clustering Processing. The automated clustering processing results
are presented in Table 1 analyses in detail grouped for January; the results of the
automatic procedure have been a maximum of seven clusters in which finally, in
the last group, zero elements have been included. The constant width of the inter-
vals is 0.1176, starting with the lowest value of 0.0493 and ending with 0.8724; the
number of members (for the 17 regions or Autonomous Communities) that make
up the automatic seasonal grouping are: cluster 1 are two elements (Andalucia,

Fig. 2 Time series of spatial location entropy j from January 2001 to June 2022. Own elaboration
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Canary Islands); cluster 2 are two elements (Murcia, Valencia); cluster 3 are four
elements (Navarra, Cantabria, Aragon, Extremadura); cluster 4 are three elements
(Balears, C. Leon, Catalonia); cluster 5 are five elements (C. Mancha, Basque
Country, Madrid, Asturias, Rioja); cluster 6 is an element (Galicia); cluster 7 being
an empty set proposed by the automatic system.

Regarding the similarity of seasonal behaviour of the series, we can say that
the verifier N IVCq in all groups is less than one (N IVCq ≤ 1); in this way, we
quantify dissimilarities among elements of the same cluster. Note that the groups
with the most remarkable disparity accepted by the automatic methodology among
features system are N IVC1 = 0.5090, N IVC3 = 0.5416, and N IVC5 = 0.56.
Cluster 2 presents a value of N IVC2 = 0.1368, and cluster 4 has a dissimilarity of
N IVC4 = 0.3756; finally, group 6 does not show significant differences (N IVC7 =
0) because only one member belongs. The internal verification of the regions allows
an understanding of the cyclical fluctuations for January; this way, the stakeholders
could act as a consequence of the international tourism demand. This last analysis
of similarity verifies what was studied in part 4 of the methodology of the previous
sections; it provides the theoretical-practical connection of the study presented in
this work.

The following Table 2 collects the results of the automatic grouping of peaks of
high tourist demand in Spain. This table is intended not to analyse all the months of
the automated algorithm; with the interpretation of the previous table and Table 2, the
reader could elaborate and interpret their data for the rest of database. Table 2 jointly
represents the grouping months for July and August; it is presented simultaneously
because they show similar automatic grouping behaviour. For both months, cluster
1 (for July: Catalonia, Extremadura, Navarra, C. Leon, Basque Country, Aragon,
Rioja, Andalucia, Valencia,Galicia; forAugust:Catalonia, BasqueCountry,Galicia,

Table 1 AutoCEs and NIVC1q for the clusters found in the treatment process according to
Autonomous Communities visited by foreigners (AutoCEs for January). Own elaboration

Automatic Cluster January

Limits Elements NIVC Regions

Lower Upper

1 0.0493 0.1669 2 0.5090 Andalucia, Canarias

2 0.1669 0.2845 2 0.1368 Murcia, Valencia

3 0.2845 0.4020 4 0.5416 Navarra, Cantabria,
Aragon, Extremadura

4 0.4020 0.5196 3 0.3756 Balears, C. Leon,
Catalonia

5 0.5196 0.6372 5 0.5600 C. Mancha, Basque
Country, Madrid,
Asturias, Rioja

6 0.6372 0.7548 1 0.0000 Galicia

7 0.7548 0.8724 0 0.0000 –
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Navarra, Aragon, C. Leon, Rioja, Extremadura, Andalucia, Valencia) presents 10
regions with seasonal similar behaviour to the reference series; the month of July
presents 4 elements in cluster 2 (Canarias, Murcia, Asturias, Cantabria) and August
5 elements (Asturias, Murcia, Canarias, C. Mancha, Cantabria); Cluster 3 (C.
Mancha), 4 (Balears) and 6 (Madrid) only contains one region in every group for
July; Cluster 3 (Balears) and 6 (Madrid) only include one region for August. Finally,
we can say that the number of groups in July is 5 and in August it is 4, this means
that in the peaks of these months, the global behaviour is highly concentrated. The
internal verification values are similar and, in all cases, less than 0.4083. For July,
the internal verification presents the most significant disparity in the first cluster,
and this is due to a large number of elements within the group. The second group
shows an internal difference of N IVC2 = 0.3476; in the rest, there is no disparity
because there are no elements or only one region. For the case of August, the values
are similar to July with N IVC1 = 0.3657 and N IVC2 = 0.1566; we can confirm
that there is less dissimilarity among members.

To close this empirical analysis section and avoid repeating similar comments for
the reader, we encourage the reader to download the data referenced in this work
and create their groups. The interpretation of the results is similar to that carried
out previously. This way, researchers and practitioners could analyse an actual data
set, this work is methodological, and we intend that users replicate the theoretical
content. The following discussion and conclusion section with theoretical and prac-
tical implicationswill expose this tool’s usability inmaking data-driven decisions in a
digital environment. It will always be done under the central hypothesis of groupings:
intra-group similarity and dissimilarity among groups. The robust criteria illustrate
measurable behaviours that create value for public or private institutions.

5 Discussions and Conclusions

This study addresses unsupervised automatic clustering for seasonal time-series
(AutoCEs) data in contexts of uncertainty and information gaps. The method assists
practitioners and researchers with final analysis tasks in finance, economics, pattern
recognition and information theory, among other fields of the final application.
Automatic clustering adjusts its decision based on the number of spatial locations
for a seasonal extent of global space t. The spatio-temporal information is veri-
fied with the so-called N IVCsq final generated clusters. The dimensional reduc-
tion of the proposed technique helps the objective interpretation of the data, avoids
transferring cognitive biases of the investigation and improves understanding of the
data-generating processes [26].

The results for a time–space problem of multi-locational tourist accommodation
decisions show that the numbers of clusters are dynamic, adjusting to the charac-
teristics of the entropy series and verifying intra-group similarity. Representing this
knowledge in groups suggests policymakers’ applications and decisions based on
similarities of spatio-temporal behaviour based on entropy. However, the grouping is
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Table 2 AutoCEs and NIVC7q for the clusters found in the treatment process according to
Autonomous Communities visited by foreigners (AutoCEs for July and August). Own elaboration

Automatic Cluster July

Limits Elements NIVC Regions

Lower Upper

1 0.0915 0.1717 10 0.4083 Catalonia, Extremadura,
Navarra, C. Leon, Basque
Country, Aragon, Rioja,
Andalucia, Valencia,
Galicia

2 0.1717 0.2519 4 0.3476 Canarias, Murcia,
Asturias, Cantabria

3 0.2519 0.3320 1 0.0000 C. Mancha

4 0.3320 0.4122 1 0.0000 Balears

5 0.4122 0.4924 0 - -

6 0.4924 0.5726 1 0.0000 Madrid

7 0.5726 0.6528 0 – –

Automatic Cluster August

1 0.0854 0.1694 10 0.3657 Catalonia, Basque
Country, Galicia,
Navarra, Aragon, C.
Leon, Rioja,
Extremadura, Andalucia,
Valencia

2 0.1694 0.2535 5 0.1566 Asturias, Murcia,
Canarias, C. Mancha,
Cantabria

3 0.2535 0.3375 1 0.0000 Balears

4 0.3375 0.4216 0 – –

5 0.4216 0.5056 0 – –

6 0.5056 0.5897 1 0.0000 Madrid

7 0.5897 0.6738 0 – –

informative without a previous step to be applied by the researcher or policymaker.
The empirical section results respond to the non-dynamic limitations of dynamic
clustering of the literature in the tourism sector using 20,640 observations from INE
[27]. We can state that different groupings are created by focusing on a reference
series; it is noteworthy that March (usually Easter Week) and the months of July or
August show a substantial similarity with the reference series, being 9, 10 and 10
intracluster elements, respectively. The latter shows temporal fluctuations similar to
the reference series called Total. From an administrative perspective, this partition
allows us to classify Autonomous Communities according to their decision-making
ability from an objective perspective for analysis.
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In addition, using external metrics or a combination of these can help balance the
methods to generate profits in the possible field of application. Not all application
areas are the same; each will present its empirical application and its characteristics.
However, this method contributes to conglomerate techniques and the dimensional
reduction in contours of global uncertainty before the analysis. The application in
digital markets and a globally connected economy represent future investigations of
this type of unsupervised cluster. The empirical results of this study verify the theoret-
ical aspects raised in the methodological section, verifying an automatic system for
grouping time series and dynamic data depending on the seasonal patterns studied.

In its current state, the approach of this unsupervised machine learning of clus-
ters presented in this study offers several limitations and restrictions. They are not
the only ones, but perhaps the most significant ones could be as follows: (1) The
processing method requires time to analyse data arrays that generally must have the
same length. Although this is not a limiting assumption since seasonal groupings
are finally carried out. (2) The number of clusters is generated automatically; in this
work, we have worked with spatial location information to divide up to a maximum
of seven clusters. More clusters can be obtained with a more significant number
of data, and intra-cluster similarity would be checked automatically. The introduc-
tion of a visual analysis could help to understand the data better. (3) Introducing
specialised and sophisticated graphs could help/complement the previous under-
standing of dimensional reduction. However, this work is in the context of initial
and exploratory uncertainty for researchers. (4) This work is framed in an unsuper-
vised learning context, so it might be interesting to compare it with other clustering
methods. Finally, the data in periods of confinement due to the coronavirus in Spain
indicate increased entropy and disorder values. This argument can be the basis for
studying structural changes in the data sets. Perhaps, the periods elapsed until the
elaboration of this work would not resolve conclusive results. In the future, it will
be an option for researchers.

Some of these issues may need in-depth study. In unsupervised learning and
dimensional reduction of time series, they can vary according to the results of the
mixed metrics used. The plausibility of specific methods will likely depend on the
data set to be analysed; the truth is that the machine learning method is robust and
presents its validation criteria. Finally, numerous real cases in which seasonal and
spatio-temporal clustering algorithms are applied—that is, any analysis with time
series data volumes—are of interest to researchers and practitioners for transport,
electricity markets, operation research or finance, among others.
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Modelling and Predicting the Dynamics
of Confirmed COVID-19 Cases Based on
Climate Data

Yuzhi Cai, Fangzhou Huang, and Jiao Song

Abstract We examine the impact of climate variables on the transmissibility of
coronavirus (COVID-19) and predict the dynamics of confirmed COVID-19 cases
using time series models and climate data. Although our method can be used in other
parts of the world, our research focusses on Wales, UK. We find that temperature
changes have a significant negative impact on the transmissibility, implying that as
winter approaches, the spread of COVID-19 is likely to be aggravated. However, our
findings also show that, due to the particular climate condition in Wales with consid-
erably less volatile seasonal temperature change, the economic impact of the climate
variables on suppressing the spread of COVID-19 inWales is limited, suggesting that
effective measures and potential intervention are crucial, particularly, during another
wave. We also find that the accuracy of our forecasting results is high, indicating
that our models are robust for forecasting and the climate variables are significant
predictors of the COVID-19 daily cases in Wales. Our findings provide numerical
evidence and are of importance when informing evidence-based policy-making on
public health in Wales.

Keywords Temperature changes · COVID-19 · Forecasting · Climate variables ·
Public health

1 Introduction

Two and a half years have passed since the outbreak of the coronavirus (COVID-
19). The spread of COVID-19 has triggered a global public health crisis. Therefore,
there is still an urgent need to reduce the transmissibility of the pandemic. Predicting
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the spread of COVID-19 and determining the factors that impact the spread of the
disease have played an important role in the decision-making process of public health
officials around the world.

Different methods have been applied to obtain more accurate forecasts. For exam-
ple, Tomar and Gupta [16] used neural network method to predict the number of
COVID-19 cases in India. Kufel et al. [8] used autoregressive integrated moving
average models to predict the COVID-19 cases in several European countries, while
Barría-Sandoval et al. [2] also used autoregressive integratedmoving averagemodels
to predict the COVID-19 cases in Chile. The official data modellingmethodwas used
by Li et al. [9] to study the transmission process and prediction of the COVID-19.

On the other hand, some researchers studied various factors that may affect the
spread of the disease. For example, Kuchler et al. [7] used the structure of social
networks as measured by Facebook to study the geographic spread of COVID-19.
Sajadi et al. [14] studied the impact of climate variables on the spread of COVID-19
and found that several cities with substantial community spread had consistently
similar weather patterns. Mollalo et al. [10] used several socio-economic factors to
explain the variation of the spread of COVID-19 in the US. Zhao et al. [17] studied
the impact of the policies that local authorities adopted on the spread of COVID-19.
Shanmugam et al. [13] used a binomial-based approach to predict COVID-19 cases
after a family gathering. Chen et al. [3] found that a country, which was located 1000
km closer to the equator, could expect 33% fewer cases per million inhabitants. A
review on the recent research related to COVID-19 can be found in Shah et al. [15].
There are a number of more recent studies specifically focussed on the respiratory
infections and climate factors in England and Wales. Nichols et al. [11] investigated
the seasonality of coronaviruses infection, and suggested that infection was more
likely to happen when temperature was low and humidity was high. Nottmeyer and
Sera [12] also concluded that meteorological factors, such as temperature and humid-
ity, were associated with COVID-19 case development. Lacobucci (2021) pointed
out the “double risk” of outbreak of COVID-19 and flu in winter.

Due to considerably mild weather conditions in Wales, it is not clear how climate
variables affect the spread of COVID-19 in Wales. Understanding the effect of the
climate variables in relation to the spread of COVID-19 can provide solid evidence to
policy-makers inWales when new policies are to be informed. Although a number of
models exist in the literature, very few specifically focussing on predicting the spread
of COVID-19 in Wales. Therefore, it is of importance to develop regional-specific
models for prediction. In this paper, we examine the impact of climate variables on
the spread of COVID-19 inWales, and predict the dynamics of confirmed COVID-19
cases based on time series models and climate data.

We find that temperature changes have a significant negative impact on the spread
of coronavirus in Wales. Therefore, lower temperatures will accelerate the spread.
We also find that the economic impact of the climate variables on the spread of
COVID-19 inWales is limited. Therefore, once the number of daily cases of COVID-
19 is high, relying on temperature change to suppress the wave would be of little
effectiveness, and if other measures and interventions are not taken, the daily cases
would remain at that level for a long period of time. In addition, our forecasting
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results for the dynamics of COVID-19 cases in Wales between 1 July 2021 and 31
August 2021 show high accuracy, indicating that our models are robust for short-
term forecasting and the climate variables are good predictors of COVID-19 cases in
Wales. Our findings also contribute to policy-making in Wales to control the spread
of COVID-19.

In the next section, we discuss the data that we have collected, and in Sect. 3 we
discuss our models. Our findings are discussed in Sect. 4, and the final section is the
conclusion.

2 The Data

In this study, the climate data were collected from the Centre for Environmental
Data Analysis (CEDA). Four climate variables are used in this paper, namely, daily
precipitation, daily sunshine hours, daily maximum surface temperature and daily
minimum surface temperature, where the daily precipitation measures the liquid that
falls to the ground or condenses on the ground, the daily sunshine hours measures the
amount of sunshine per day and the minimum and maximum temperatures measure
the lowest and highest temperatures near the ground, respectively.

The daily number of new cases ofCOVID-19 is reported by theWalesGovernment
and can be downloaded from the government website (see COVID-19 data, 2021).
Due to the availability of the data, both climate data and COVID-19 data cover the
time period from 31 January 2020 to 31 August 2021. We show the time series plots
of the data in Fig. 1. It can be seen that the second wave of COVID-19 started around
October 2020, and the third wave started near the start of June 2021 when lockdown
was fully eased.

The summary statistics of the data are given in Table 1. It can be seen that during
this period, the daily minimum number of COVID-19 cases was 0 and the maximum
was 3502. The daily average number of COVID-19 cases is 448 and the standard
deviation is 651.9, indicating that the number has changed significantly. During this
period, 25% of the days had fewer than 49 daily cases, and 25% of the days had more
than 697 daily cases.

For the climate conditions during this period, the average daily sunshine hours
was 4.8 h and the standard deviation was 3.1 h. The average daily precipitation
was 3.9 mm and the standard deviation was 5.6 mm. The average daily minimum
and maximum temperatures were 6.2 ◦C and 13.9 ◦C, respectively, 25% of the daily
minimum temperaturewas lower than 2.5 ◦C, 25%of the dailymaximum temperature
was higher than 18.6 ◦C. Therefore, the climate condition in Wales was relatively
stable with little sign of extreme. In the next section, we will examine how this
climate condition affects the spread of COVID-19 in Wales.
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Fig. 1 Plots of the observed data, where the vertical line indicates the date of 1 July 2021

Table 1 Summary statistics of the data

Mean SD Min Q1 Median Q3 Max

COVID cases 481.1 651.9 0.0 49.0 177.0 697.5 3502.0

Precipitation 3.9 5.6 0.0 0.6 2.2 4.9 52.5

Sunshine 4.8 3.1 0.1 2.5 4.0 6.7 14.8

Min-temp. 6.2 4.6 –6.1 2.5 5.8 10.0 16.2

Max-temp. 13.9 5.5 0.8 10.0 13.6 18.6 27.8
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3 The Model

Within the time seriesmodelling framework, a number of issues need to be considered
when developing a model that will allow us to examine how the climate variables
affect the spread of COVID-19 in Wales and how to obtain a short-term forecast of
the future spread of COVID-19 in Wales.

Thefirst issue is that all time series should be stationary. Figure 1 clearly shows that
these time series are not stationary, which has also been confirmed by the Augmented
Dickey–Fuller test (see, Cheung and Lai [4]). Therefore, directly examining how
climate variables affect the spread of COVID-19 in Wales cannot be applied, but
examining how short-term climate changes affect the spread of COVID-19 in Wales
can be applied instead. This would require the change in each variable to be defined.

Let ut be the number of new COVID-19 cases on day t , and w j t be the climate
variable, where j = 1, 2, 3 and 4 correspond to daily precipitation, daily sunshine
hours and dailyminimum temperature and dailymaximum temperature, respectively.
Then, we define the change in the number of new COVID-19 cases during the time
period (t − h1, t) as the difference quotient

yt = ut − ut−h1

h1
, (1)

where h1 is a positive integer. So, yt is the slope of the line segment joining the points
(t − h1, ut−h1) and (t, ut ). For example, if h1 = 7 and yt = 10, then the slope of the
line segment on (t − 7, t) is 10. This means that the number of COVID-19 cases on
day t will be 70 more than the number of COVID-19 cases a week ago. Similarly,
we define the change of climate variables in the time period (t − h2, t) as

x jt = w j t − w j t−h2

h2
, j = 1, . . . , 4, (2)

where h2 is a positive integer.
Since it is crucial to examine the impact of past climate change on the current

spread of COVID-19, we let h1 ≥ h2. On the other hand, according to the latest
scientific and public health advice (https://gov.wales/self-isolation), “everyone must
continue to self-isolate for 10 days if they test positive for Covid-19”, we let 1 ≤
h2 ≤ h1 ≤ 10. This defines that the minimum time period for changes in ut and w j t

is (t − 1, t), and the longest time period is (t − 10, t).
After defining yt and x jt , ADF test is employed to check their stationarity. The

results show that for all possible values of h1 and h2, they are stationary. Therefore,
yt and x jt can be used to examine the impact of climate variables on the spread of
COVID-19 in Wales.

The second issue is that past values of yt , for example, yt−1, . . . , yt−p , can also
affect yt , where p is a positive integer. Therefore, for similar reasons for h1 and h2,
in this study, we define the maximum value of p equal 10.

https://gov.wales/self-isolation
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Table 2 Correlation coefficient between climate variables

Precipitation Sunshine Min-temp. Max-temp.

Precipitation 1.000 −0.314 0.024 −0.145

Sunshine −0.314 1.000 0.135 0.467

Min-temp. 0.024 0.135 1.000 0.891

Max-temp. −0.145 0.467 0.891 1.000

The final issue is that correlation among the four climate variables needs to be
examined. The results are given in Table 2. It is seen that the correlation between the
daily minimum and maximum temperatures is considerably high (> 0.89), which
suggests that they should not be employed in the same model to avoid potential
multicollinearity. Therefore, we consider the following two models:

yt = β1yt−1 + β2yt−2 + · · · + βp yt−p + α0 + α1x1t−d + α2x2t−d + α3x3t−d + et ,
(3)

yt = β1yt−1 + β2yt−2 + · · · + βp yt−p + α0 + α1x1t−d + α2x2t−d + α4x4t−d + et ,
(4)

where 1 ≤ h1, h2, p ≤ 10, h2 ≤ h1 and d = h1 − h2 + 1. It is seen that d also takes
values from 1 to 10. For ease of discussion of our results, we refer to model (3)
and model (4) as Model A and Model B, respectively. Therefore, Model A does not
include the change in daily maximum temperature and Model B does not include the
change in daily minimum temperature. Each model defines a set of similar type of
models, these models have the same climate variables, but h1, h2 and p take different
values.

4 Findings and Discussions

We divide the data into two parts: the first part contains data between 31 January
2020 and 30 June 2021 (inclusive), and the second part contains the data between 1
July 2021 and 31August 2021 (inclusive). The first part of the data is used to estimate
models and examine the impact of climate variables on the spread of COVID-19 in
Wales, and the second part of data is used to check the accuracy of the forecasting
results.

4.1 Estimated Models and Impact of Climate Variables

Since different values of h1, h2 and p correspond to different models, we use the
Bayesian Information Criterion (BIC) to determine the best model and use the best
model to examine the impact of short-term climate changes on the spread of COVID-
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19 inWales. BIC is one of the commonly used criteria formodel selection. According
to BIC, the best model corresponds to the model with the smallest BIC value. We
present the estimated models in Table 3.

It is interesting to see that the best Model A and the best Model B have the
same values of h1, h2, p, and hence d. Both models show that the effect of the
changes in daily precipitation and sunshine hours is not significant, but the effect
of the changes in minimum and maximum temperatures is statistically significant.
The negative coefficients of the two temperature variables indicate that an increase
in daily temperature changes will result in a decrease in the spread of COVID-19.
However, due to the less volatile weather conditions in Wales, the daily temperature
changes are rather modest. The statistical inference of estimated models is further
scrutinized.

Consider Model A, where h1 = 7, h2 = 2 and d = h1 − h2 + 1 = 6. When
change in daily minimum temperature x3t−d = x3t−6 increases by 1 unit, the slop of
the line segment between (t − d − h2, w3t−d−h2) = (t − 8, w3t−8) and (t − d, w3t−d) =
(t − 6, w3t−6) will increase by 1 unit. Therefore, the minimum temperature will
increase by 2 ◦C at time t − 6 from the minimum temperature at time t − 8. On the
other hand, when x3t−6 increases by 1 unit, yt will decrease 1.889 units. This means
that the slope of the line segment between (t − h1, ut−h1) = (t − 7, ut−7) and (t, ut )
will decrease 1.889 units. Therefore, the number of COVID-19 cases at time t − j
will be 1.889(h1 − j) = 1.889(7 − j) less than the number of COVID-19 cases at
time t − 7, where j = 6, 5, . . . , 0. Table 4 shows the number of cases that will be
decreased in the next 7 days if the temperature increases by 2 ◦C at time t − 6. The

Table 3 Parameters of the estimated models

Model A Model B

h1 = 7, h2 = 2 h1 = 7, h2 = 2

p = 7, d = 6 p = 7, d = 6

Variables Estimate P-value Estimate P-value

yt−1 0.546 0.000∗∗∗ 0.552 0.000∗∗∗

yt−2 0.213 0.000∗∗∗ 0.207 0.000∗∗∗

yt−3 0.151 0.002∗∗∗ 0.147 0.003∗∗∗

yt−4 0.054 0.274 0.058 0.234

yt−5 −0.215 0.000∗∗∗ −0.218 0.000∗∗∗

yt−6 0.235 0.000∗∗∗ 0.236 0.000∗∗∗

yt−7 −0.207 0.000∗∗∗ −0.205 0.000∗∗∗

Intercept 1.143 0.792 1.140 0.793

Precipitation −0.200 0.366 −0.287 0.186

Sunshine −0.611 0.344 −0.135 0.824

Min-temp. −1.889 0.016∗∗

Max-temp. −1.371 0.061∗

Note ***, **, and * Indicate significance at the 1%, 5%, and 10% levels, respectively
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Table 4 COVID-19 cases reduced daily for the next 7 days when temperature increases by 2 ◦C
t − 6 t − 5 t − 4 t − 3 t − 2 t − 1 t

Model A 2 4 6 8 9 11 13

Model B 1 3 4 5 7 8 10

results of Model A show that the total number of COVID-19 cases reduced within 7
days is limited. Similar results for Model B are also given in Table 4.

As theweather conditions inWales are fairly stable,weusually expect that the tem-
perature will not change significantly within a short period of time (e.g. 2 days), and
therefore the number of daily cases will change very little accordingly. This indicates
that once the number of COVID-19 cases reaches a high level, intervention needs
to be adopted to suppress the spread of the disease and climate variables, especially
changes in temperature would have little impact on confining the transmissibility of
COVID-19.

4.2 Forecasting Results

Wenow discuss how to use themodels in Table 3 to predict future number of COVID-
19 cases from 1 July 2021 to 31 August 31 2021, based on the information we have
up to 30 June 2021. We let T represent the date of 30 June 2021. The vertical line in
Fig. 1 indicates the position of T .

Let ŷT+m be the predicted value of yT+m and let ûT+m be the predicted value
of uT+m , where m = 1, . . . , 62, i.e. 62 days after 30 June 2021. Then, it follows
from (1) that

ûT+m = ŷT+mh1 + ûT+m−h1 , (5)

where m = 1, 2, . . . , 62 and ûT+m−h1 = uT+m−h1 if T + m − h1 ≤ T , because in
this case we have the observed data. It is seen that once ŷT+m can be obtained
from the estimated models, we can use the formula (5) to calculate ûT+m , which
is the forecast of the number of COVID-19 cases at time T + m. Figure 2 shows
the predicted and the observed number of COVID-19 cases from 1 July 2021 to 31
August 2021.We can see that the number of COVID-19 cases observed and predicted
during this period is very close.

To quantify the accuracy of the forecasts, as widely accepted measures, Mean
Absolute Deviation (MAD), Mean Absolute Percent Error (MAPE) and Root Mean
Square Error (RMSE) are employed tomeasure the accuracy of our prediction results,
where the MAD is defined by the average of |ûT+m − uT+m |, the MAPE of the
prediction results is defined by the average of |ûT+m − uT+m |/uT+m ∗ 100 and the
RMSE is defined by the square root of the average of (ûT+m − uT+m)2. Values of
MAPE, MAD and RMSE of the forecasting results are shown in Table 5. Table 5



Modelling and Predicting the Dynamics … 113

0
10

00
20

00
30

00
40

00

1.7.2021 15.7.2021 1.8.2021 31.8.2021

Forecasting results for Model A

Observed
Predicted

0
10

00
20

00
30

00
40

00

1.7.2021 15.7.2021 1.8.2021 31.8.2021

Forecasting results for Model B

Observed
Predicted

Fig. 2 The prediction results of the daily number of COVID-19 cases in Wales from 1 July 2021
to 31 August 2021

shows thatModelB is slightly better thanModelA,which shows thatwhen predicting
the dynamics of COVID-19 cases, the daily maximum temperature change is better
than the daily minimum temperature change. According to MAPE, on average, the
deviation of the prediction from the actual observed number of cases does not exceed
1.099%. Based on MAD, the average absolute difference between the observed and
predicted number of cases is less than 12 cases. Finally, according to RMSE, the
square root of the average squared difference between the observed and predicted
number of cases is less than 14 cases. All these results show that the accuracy of our
prediction results is high, which indicates that our models are robust for short-term
prediction of the dynamics of COVID-19 cases in Wales, and the climate variables
show good predictive power in forecasting.
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Table 5 Results of forecasting accuracy

MAPE RMSE MAD

Model A 1.099 13.419 11.464

Model B 0.906 10.714 9.026

5 Conclusion

We used actual observable data from 31 January 2020 to 30 June 2021 to study the
impact of climate variables on the spread of COVID-19 in Wales. We found that
temperature changes had a statistically significant negative impact on the spread of
COVID-19 inWales.However, since theweather conditions inWales are less volatile,
exceptional large temperature changes within a short period of time is not commonly
expected. Therefore, the economic impact of the climate variables on the spread of
COVID-19 in Wales is limited, which shows that once the number of daily cases of
COVID-19 reaches a high level, effective measures are crucial to confine the spread
of COVID-19. We also found that the accuracy of the forecasting results obtained
from our models was high, which implies that our models are robust for short-term
forecasting and the climate variables show good predictive power in predicting the
dynamics of confirmed COVID-19 cases in Wales.

The implications of thefindings are: high temperature has impact onpreventing the
spread of COVID-19, while the impact ismarginal. Therefore, from public health and
socio-economic perspective, taking effective measures and intervention to suppress
the daily cases is the key to a re-opened economy. Nonetheless, climate variables,
especially temperature changes, should be included as risk factors to the future public
health surveillance framework. Our results are of value to policy-makers in Wales
to inform evidence-based policy-making, specifically to the recovery of regional
economy and sustaining healthcare system.
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Least-Squares Wavelet Analysis
of Rainfalls and Landslide Displacement
Time Series Derived by PS-InSAR
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Abstract Time series analysis of Interferometric SyntheticAperture Radar (InSAR)
data is a crucial step for monitoring the displacement of the Earth’s surface. The
Persistent Scatterer InSAR (PS-InSAR) is a multi-temporal InSAR method that pro-
vides the displacement time series that can be used for studying ground deformation.
From a hazard assessment perspective, the rapid detection of deformation patterns
is crucial for identifying the areas that will be affected by damage due to landslides.
Understanding the relationship between triggering factors, such as rainfall and the
occurrence of mass movements from the interpretation of SAR time series is still
a major challenge. Herein, we first review some of the traditional methods, such
as Pearson correlation analysis for investigating whether there is any possible lin-
ear dependency between rainfall and ground deformation measurements. Then, we
describe the time series analysis tools in the least-squares wavelet software that can
be used for processing non-stationary time series which may not be evenly sampled.
Wedemonstrate how these tools can be utilized to understandmore about the relation-
ships between displacement and rainfall time series which have different sampling
rates without any need for filtering and/or aggregation.
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1 Introduction

Ground deformation can be studied by satellite Interferometric Synthetic Aper-
ture Radar (InSAR) [1]. In the Differential InSAR (DInSAR) techniques, two radar
images capturing the same region but taken at different times are compared to pro-
duce a map (i.e., interferogram). The map shows ground displacement along the
sensor’s line of sight between two acquisition times [2]. However, its main limitation
is related to the accuracy caused by spatial and temporal decorrelation (atmospheric
delay, topographic errors, etc.) between the two signals. This can be overcome (at
least for some particular points, called Persistent Scatterers), with the Advanced-
DInSAR (A-DInSAR) technique, which consists of combining a large number of
SAR images (multi-image technique). The Persistent Scatterer InSAR (PS-InSAR)
technique is an Advanced Differential Synthetic Aperture Radar Interferometry
(A-DInSAR) method to obtain the temporal evolution of displacements for stable
radar reflectors, in terms of temporal coherence and amplitude stability, in the inves-
tigation area: the so-called Persistent Scatterers PSs [3]. PS-InSAR has been widely
applied for different hazard investigations, from local-scale deformation processes
(e.g., those affecting a single building or structure) to large-scale deformation pro-
cesses (e.g., landslides, subsidence, tectonic deformations, etc.). The potential of
A-DInSAR measurements for landslides detection, mapping, and characterization
has been widely investigated to reconstruct the history of deformations through PS
time series analysis [4–7].

A-DInSAR technique allows the study of trend changes in time series, reflect-
ing the deformations observed in differential interferograms. The time series of
deformation processes are non-stationary, i.e., exhibit trends, jumps, and wavelike
components that change frequency and amplitude over time. Several methods were
examined to analyze and evaluate the relations between landslides and triggering
phenomena, in particular, heavy rainfalls [8, 9]. Heavy rainfall can determine an
increase in velocity trends of time series, providing interesting information about the
processes that governed the slope behavior [10]. A possible correlation between the
rain and the activation of a deformation phenomenon has been highlighted in [11]
through the analysis of Sentinel-1 interferograms and rainfall data. The deformation
phenomena detected during the interferometric analysis were mostly concentrated
during high rainfall periods, showing that rain could be considered the main trigger-
ing/accelerating factor of the studied landslides.

To investigate the possible influence of one phenomenon on another, one may
process their time series by several statistical methods. For example, the Pearson
correlation coefficient is a common statistical metric that shows the strength and
direction of a linear relationship between two variables, denoted by r [12]. However,
this metric only shows the possible linear dependency between two phenomena, e.g.,
deformation processes and rainfall. The deformation processes such as landslides,
discovered by the PS time series, are often sampled unevenly because of many
reasons, such as sensor defect, storage, and economy. Therefore, methods that can
rigorously consider irregularities in sampling and values of such time series are
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extremely demanding. To analyze the correlation of PS and rainfall in non-stationary
time series, we have to take into account that they may also have different sampling
rates with missing values. In addition, there might exist some time delay between the
wavelike components of the time series, e.g., a time delay between the annual cycles
of vegetation and climate or between the annual cycles of interferometric baseline
length and temperature [13, 14].

The traditional wavelet coherence and cross-wavelet transform have been used
in many applications to study possible relationships between two phenomena in the
time-frequency domain [15, 16]. However, these techniques have some limitations.
For example, at higher frequencies or small wavelet scales, peaks in the spectro-
grams/scalograms and cross-spectrograms/scalograms get smoothed out, resulting
in a reduction of power that can be misleading [17]. Another limitation of these
methods is that the time series should be evenly spaced with no missing values. The
Least-Squares Wavelet (LSWAVE) software [18, 19] is designed to process any type
of time series regardless of how they are sampled. This software contains several
tools each designed for a particular purpose described in more detail in Sects. 2.4,
2.5, 2.6, and 2.7.

The main goal of this study is to highlight the potential of the LSWAVE software
for analyzing and investigating the possible relationships between PS-InSAR and
precipitation time series. A rainfall time series, obtained from the nearest weather
station to an area in the Municipality of Borghi, Italy, affected by landslides, is
selected. Then its possible impact on the ground deformation is investigated by
performing correlation and coherency analyses with the ascending- and descending-
orbital geometries of the PS-InSAR time series. The results of these analyses are
demonstrated in Sect. 3. Finally, the discussion and conclusions are provided in
Sects. 4 and 5, respectively.

2 Materials and Methods

2.1 Study Region

The study area, which comprises the municipality of Borghi, is located in the typical
hilly landscape of the eastern part of the Forlì-Cesena province (Emilia Romagna
Region, Northern Italy, [21]) (Fig. 1). The local geology is represented by a turbiditic
sequence (flysch) composed of marly and pelitic rocks in alternation with fractured
sandstone layers [22, 23]. The consequence of such a heterogeneous alternation of
hard and soft rock layers is an intense slope instability that affects the study area,
expressed in relatively small and shallow slides, earth flows, and complex landslides.
According to the national-scale historical landslides archive IFFI (Inventario Dei
Fenomeni Franosi in Italia [24]), the majority of these landslides are classified as
active or dormant. The main triggering factor for the activation or reactivation of
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Fig. 1 Geographical location of the case study within the municipality of Borghi on 10 m
resolution digital elevation model [20]. The closest rainfall and temperature stations to the
studied area are represented by a blue triangle and a red diamond respectively (arpae database
https://www.arpae.it/). This map was generated with QGIS which is a free and open-source geo-
graphic information system (GIS).

landslides is related to long and intense rainfall during the whole year, or rapid
snowmelt during the springtime (March and April [25–27]).

2.2 Datasets

The meteorological data (rainfall and temperature) used herein are provided by the
Arpae agency and freely downloaded from https://www.arpae.it/. The A-DInSAR
dataset used in this study consists of 265 SAR images from the archives of the Italian
Space Agency (ASI) acquired from 2010 to 2019 in both orbital geometry:

– Ascending orbital geometry: 119 images in Single Look Complex (SLC) format
acquired by the COSMO-SkyMed satellites from 18 February 2011 to 03 August
2019;

– Descending orbital geometry: 146 images in Single Look Complex (SLC) format
acquired by the COSMO-SkyMed satellites from 23August 2010 to 01 September
2019.

https://www.arpae.it/
https://www.arpae.it/
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The COSMO-SkyMed constellation consists of four satellites, launched from
2007 to 2010, at an orbital height of 619.6 km and an orbital inclination of 97.86◦.
All satellites are equipped with high-resolution X-band radar (3.1 cm wavelength),
capable of observing through cloud cover and during the night. The repeat cycle is
16 days, and the revisit capability is variable because every single satellite will have
a near revisit time of 6 days. The policy on data acquisition of satellite missions, e.g.,
background missions (continuous acquisition for the same areas) versus on-demand
acquisitions, affects the availability of data. Since the COSMO-SkyMed satellite
mission has both military and civil purposes, the available archived images are not
exactly one every 6 days. Therefore, the dataset is not continuous over time. The
PS-InSAR time series values often contain outliers because of the technical issues
of the PSI method during the stack gathering from the SAR data, the atmospheric
phase estimation, and the deformation model used [28].

The selected PS-InSAR time series exhibit a mean cumulative displacement
(expressed in mm) of −91.3 mm (DESC) and −61.7 mm (ASC) in the time inter-
val of data acquisition (2011–2019 for the ascending geometry and 2010–2019 for
the descending one). The area of interest was carefully chosen within a quiescent
landslide reported in the IFFI database (IFFI-0400794100 [24]). Furthermore, the
possible correlation with intense rain events was emphasized by the presence of
strong accelerations within a small time window in the time series.

2.3 Pearson Correlation Method

The correlation between pairs of series can be measured to determine how
much two time series vary together. The most common quantitative measure of cor-
relation is the Pearson correlation coefficient, denoted by r , which can be computed
to determine the strength and direction of the relationship between two variables
[29]. The Pearson correlation coefficient is essentially a normalized measurement of
the covariance that indicates how far away the data points are from the best fitting
line, defined by Eq. (1):

rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (1)

where x and y are the means of variables x and y, respectively. The Pearson cor-
relation coefficient has a value between −1 and +1. This metric reflects only the
linear association between two sets of data to find how well they are related, ignor-
ing other types of relationships or correlations. Furthermore, xi and yi should ideally
be measurements corresponding to time ti when applying Eq. (1) to find the linear
dependency between two time series. This means that if the two time series have
different sampling rates, one should first resample the time series to match their
corresponding times before Pearson correlation analysis. Thus, the correlation result
will also depend on the resampling method.
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2.4 Least-Squares Spectral Analysis (LSSA)

The LSSA is a spectral analysis method for processing unevenly sampled time series
that may have trends or jumps ([30]). A least-squares spectrum (LSS) can be esti-
mated by choosing a frequency set and trend constituents, such as linear, quadratic, or
cubic. The LSS can be plotted as frequency vs. amplitude or frequency vs. percentage
variance. To obtain a LSS, trend and sinusoidal functions at each given frequency
are fitted to the time series via the least-squares optimization. Mathematically, let

f =

⎡

⎢
⎢
⎢
⎣

f (t1)
f (t2)

...

f (tn)

⎤

⎥
⎥
⎥
⎦

, ck =

⎡

⎢
⎢
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⎢
⎢
⎢
⎢
⎣
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c2
...

cq
ck,1
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⎤

⎥
⎥
⎥
⎥
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⎥
⎦

,

Φk =

⎡

⎢
⎢
⎢
⎣

φ1(t1) φ2(t1) · · · φq(t1) cos(2πωk t1) sin(2πωk t1)
φ1(t2) φ2(t2) · · · φq(t2) cos(2πωk t2) sin(2πωk t2)

...
... · · · ...

...
...

φ1(tn) φ2(tn) · · · φq(tn) cos(2πωk tn) sin(2πωk tn)

⎤

⎥
⎥
⎥
⎦

, (2)

where f (t j ) is the measurement estimated at time t j , ωk is a cyclic frequency, φ�

is a constituent of known form, and ck is the coefficient vector being estimated by
the least-squares method. For example, if φ1(t j ) = 1 and φ2(t j ) = t j for 1 ≤ j ≤ n,
then c1 and c2 will be the intercept and slope of a linear trend to be estimated. The
following cost function is minimized in LSSA after an optimization process.

�
(
ck

) = (
f − Φkck

)T(
f − Φkck

)
, (3)

where T is transpose. Thus, the estimated coefficient vector will be

ĉk = (
ΦT

k Φk
)−1

ΦT
k f. (4)

The amplitude of the sinusoid at ωk is the square root of the sum of squares of the
last two elements of ĉk . Since the first q columns in Φk are fixed, the amplitude
estimation using Eq. (4) is not computationally efficient, especially when estimating
LSS for a large set of frequencies. More details for computational optimization of
Eq. (4) can be found in [17, Supplementary Materials].

To obtain the percentage variance LSS, the time series may first be de-trended.
Then the LSS may be estimated for the residual time series, a process that takes
into account the correlation between the removed trend and the sinusoids at each
frequency. More precisely, let r(t j ) be the estimated residual at time t j , i.e., the
originalmeasurementminus the fitted trend value at t j . The normalized or percentage
variance LSS (after multiplying by 100) of the residual series is calculated by the
following formula:
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sk =
n∑

j=1

r(t j )
(
ĉk,1 cos(2πωk t j ) + ĉk,2 sin(2πωk t j )

)/ n∑

j=1

r(t j )
2, (5)

where ĉk,1 and ĉk,2 are the last two elements of ĉk in Eq. (4).
The graph of estimated amplitudes of the fitted sinusoids versus their frequencies

shows the amplitude LSS while the percentage variance LSS shows the contribution
amount of the estimated sinusoids to the residual time series versus the frequencies.
Note that when the trend is also fitted, both amplitude and percentage variance LSS
are obtained for the residual series while the effect of trend removal is considered in
the LSS estimation.

Assuming the normality of time series values, LSS in Eq. (5) will follow the
beta distribution [31]. From this statement, if a spectral peak value is larger than the
critical value at a certain significance level (e.g., 0.01), then the peak is statistically
significant at 99% confidence level.

2.5 Least-Squares Cross-Spectral Analysis (LSCSA)

The LSCSA is a time series decomposition method that simultaneously processes
two time series together for calculating coherency and phase differences between
the harmonic components of the time series [32]. To obtain the least-squares cross-
spectrum (LSCS) for two time series, first, the LSSof each time series is obtained, and
then the LSSs are multiplied by each other. The stochastic significance of a peak in
LSCS is also based on the normality assumption of the two time series whose values
are also statistically independent. The discrepancy between the estimated phases can
determine the time delay between the harmonics. For example, the phase difference
of 60◦ at frequency 2 cycles/year indicates that the harmonic in the first time series
leads/lags by about 30 days from the harmonic in the other time series. Note that the
season-trend fit is applied to the entire time series in both LSSA and LSCSA. There-
fore, the estimation of components whose frequencies and/or amplitudes change over
time is an overall average and so not accurate locally [32, 33].

2.6 Least-Squares Wavelet Analysis (LSWA)

The LSWA, an extension of LSSA, can process non-stationary time series that may
not be evenly sampled [32, 33]. In LSWA, a least-squares wavelet spectrogram
(LSWS) is computed by sliding a window over time whose size is inversely propor-
tional to the frequency, i.e., as the frequency increases the window size decreases,
allowing a more accurate estimation of short-duration waves. The number of obser-
vations or measurements within a window is called the window size or segment
size.
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Spectrograms are usually displayed as time versus frequency versus amplitude
or time versus frequency versus percentage variance. The LSWA also estimates the
phases of sinusoids. To obtainLSWS, awindowing technique is implemented.Within
each sliding window, LSSA is applied to estimate a spectral peak corresponding to
that window using Eqs. (4) or (5). In other words, for each time and each frequency,
the amplitude or percentage variance is estimated by simultaneously fitting the trend
and sinusoids at the given frequency to the segmentwithin the slidingwindow located
at the given time. The percentage variance shows how much the residual segment
contains the sinusoids at a given frequency.

A Gaussian function may be used to define weights for time series values within
each window. Therefore, the values toward the window center get higher weights
(more important) than the values toward the margins of the window (less important)
during the season-trend estimation. This results in a smooth spectrogram, i.e., an
optimal time-frequency resolution. Furthermore, the weights are useful when there
exist missing values in non-stationary time series, so the values further away from
the window center receive relatively lower weights. In fact, the Gaussian weights
and harmonics in the LSWA model are like the Morlet wavelet in the least-squares
sense [17, 32]. Note that the window location and window center are the same when
the time series is evenly sampled or an equally spaced set of times is selected for
estimating the spectrogram.

Like LSSA, the spectrogram peaks can be statistically assessed with the normality
assumption. Note that in some applications, this assumption may not be valid but has
no effect on the estimation of a spectrogram. In other words, regardless of whether
the time series values are normally distributed or not, a spectrogram can still be
estimated. A stochastic confidence level surface, shown herein as a gray surface, can
show which spectrogram peaks are significant stochastically [32]. In other words, if
a peak stands above the surface, then it is statistically significant.

2.7 Least-Squares Cross-Wavelet Analysis (LSCWA)

The least-squares cross-wavelet analysis (LSCWA) is a time-frequency decompo-
sition technique proposed for coherency analysis and estimating phase differences
between the harmonics of two time series [32, 33]. LSCWA can be directly applied
to time series that are sampled at different time intervals, and it can account for
the measurement errors. Moreover, the cross-spectrograms in LSCWA have higher
time-frequency resolution compared to the ones in XWT [17].

The Least-squares cross-wavelet spectrogram (LSCWS) is obtained from themul-
tiplication of the spectrograms of the two time series [32]. Since the time series may
have different sampling rates, a common time vector is selected first that can be
either the union of the time vectors in both time series or any equally spaced time
vector whose values are within the common time interval of the two time series. The
cross-spectrograms are plotted as time versus frequency versus percentage variance
(coherency). The percentage variance shows the coherency amount between the har-
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monics of two time series segments—the higher the percentage variance, the higher
the coherency and vice versa [17, Supplementary Materials].

The LSCWA also estimates the phase differences between the harmonics fitted
to time series segments. The phase difference is a number between −180 and 180◦,
and it is usually plotted by an arrow on the 2D view of the cross-spectrogram. For
example, arrows pointing to the positive and negative directions of the time axismean
that the harmonics are in-phase and out-of-phase, respectively. Arrows pointing to
the positive and negative direction of the frequency axismean that the harmonic in the
second time series lags and leads the one in the first time series by 90◦, respectively
[14]. Given the frequency, the estimated angle can be converted to time.

When the time series values are statistically independent and normally distributed,
a confidence level surface can identify whether an estimated peak in the cross-
spectrogram is statistically significant [32]. The MATLAB and Python software
packages developed for LSSA, LSCSA, LSWA, and LSCWA are comprehensively
described in [18, 19].

3 Results

3.1 Results of Traditional Methods

The relationship between temperature and rainfall variability was investigated by
using monthly averages of temperature and cumulative rainfall (Fig. 2). These data
were calculated from the daily cumulative temperature and rainfall for the 2011–
2019 time period. Borghi municipality climate is classified as warm and temperate
(Cfa, the acronym for humid subtropical climate, according to the Köppen-Geiger
climate classification [34]). Temperatures are at their highest from June to August
(summer) while they are at their lowest from December to February (winter) (Fig.
2a). The average temperature is 11.9 ◦C. Rainfall amount is significant throughout
the year, with an average annual rainfall of 74.3 mm. Even the driest month (August)
has an average rainfall of 41.8 mm.

There is no statistically significant linear correlation between mean temperature
and cumulative rainfall, as highlighted by Fig. 2b. This lack of correlation can be due
to the different trends of temperature and rainfall. As underlaid by the annual mean
temperature and cumulative rainfall trends, the rainfall seems to show no seasonal
tendency (Fig. 2c), while the temperature is characterized by an annual periodicity
(Fig. 2d). Both rainfall and temperature exhibit significant monthly variability.

The analysis of the correlation is not straightforward for unevenly spaced time
series, as PS-InSAR. To face this problem, the original unevenly spaced time series
were butter-filtered and resampled daily in order to remove outliers and obtain
equidistant points of measure (Top panels of Fig. 3). The correlations between
PS (ascending and descending) and rainfall time series are underlined in the bot-
tom panels of Fig. 3. On one hand, the Pearson correlation coefficient shows that
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Fig. 2 The climate charts showing the temperature and rainfall of Borghi municipality during the
2011–2019 time period. The monthly mean temperature and cumulative rainfall, a show a decrease
in the rain during the summer season (from June to August) when the mean temperature increases.
The Pearson coefficient, b indicates a poor negative correlation between the two variables. The
box plots of rainfall c and temperature, d reveal a great variability during months. The outliers are
shown by gray hexagons, and the horizontal lines inside the boxes show the median values

Fig. 3 Top three panels: PS-InSAR time series for both ascending (ASC) and descending (DESC)
satellite orbits and cumulative rainfall time series. The red curves show the filtered and daily
resampled time series. Bottom three panels: Pearson correlation results between the selected daily
time series
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the ascending and descending PS time series are positively correlated with r � 1
(p-value < 0.01). On the other hand, a strong negative relationship between PS and
rainfall time series is highlighted by the r -value close to −1 (p-value < 0.01). Since
the occurrence of landslides can be directly caused by intensive rainfall, identifying
an increasing change in rainfall could determine the identification of a change in the
occurrence of landslides. Overall, traditional methods of correlation do not allow the
analysis of the quantitative relationship between the volume of rainfall and landslide
occurrence for the identification of triggers.

3.2 The LSWAVE Results

The percentage variance and amplitude spectra and spectrograms for rainfall and
temperature time series are illustrated in Fig. 4. The linear trend is used for both
LSSA and LSWA. Interestingly, there is no statistically significant annual component
at 99% confidence level in the rainfall time series (Fig. 4a). Furthermore, from the
LSS, there is no statistically significant seasonal component in the rainfall time series
while the LSWS shows short-duration seasonal components in the years 2012, 2014,
2015, 2016, and 2018 (shown in reddish). The amplitude spectrogram in Fig. 4b also
shows relatively higher estimated amplitudes for the seasonal components at 4–5
cycles/year (period of 2–3 months) in 2015 and 2018.

The temperature time series shows a dominant annual component that is statisti-
cally significant in both LSS andLSWS (cf. Fig. 4c). On the other hand, the amplitude
spectrogram illustrated in Fig. 4d clearly shows the amplitude of the temperature has
decreased since 2011 while this cannot be observed from LSS amplitude because
LSS only shows frequency versus amplitude not time-frequency versus amplitude.

Figure 5 shows the LSCSs and LSCWSs of the climate and PS-InSAR displace-
ment time series. A linear trend was estimated and removed from each segment
when estimating LSCWSs in panels (a)–(d) and from each time series when estimat-
ing LSCSs in panels (a) and (b) while a cubic trend was fitted and removed from the
displacement time series when estimating LSCSs in panels (c) and (d).

One can see from Fig. 5a that the annual cycles of temperature and rainfall time
series are coherent at 99% confidence level though the percentage variance is very
low (about 2%). Arrows displayed on the significant annual peaks are pointing to the
left, meaning that the annual cycles of temperature and rainfall are almost out-of-
phase. The estimated phase difference using LSCSA is approximately −170◦. This
means that when the annual cycle of the temperature reaches its maximum value,
the annual cycle of the rainfall reaches its minimum value and vice versa. Note that
Fig. 3b only showed a weak negative correlation (r � −0.16) but neither showed the
seasonality nor temporal change.

From Fig. 5b, a statistically significant coherency can be observed for the annual
components, where the annual cycle of time series for the ascending geometry leads
the one for the descending geometry by about one to two months over time. The
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Fig. 4 The percentage variance and amplitude spectra and spectrograms for a, b rainfall and
c, d temperature time series. The red lines in LSSs displayed in panels, a and c show the critical
values at 99% confidence level. Also, the gray color map is the stochastic surface at 99% confidence
level

cross-spectral peaks are not estimated for the locations with data gaps (e.g., between
the end of 2016 and early 2017).

Interestingly, the short-duration seasonal components of displacement (ascending
geometry) and rainfall at 4–5 cycles/year (about 2–3 months period) toward the end
of 2014 are coherent at 99% confidence level (cf., Fig. 5c), with approximately 120◦
or one month phase difference. In other words, as the rainfall value increases, the
displacement value decreases. It is also known that landslides occurred toward the
end of 2014.

The annual cycle in the years 2013 and 2018 for rainfall lags the one for the
displacement (descending geometry) by about one month, see Fig. 5d. This is in
agreement with the fact that there were landslides in the years 2013 and 2018. Fur-
thermore, in the year 2016 both LSCWSs, illustrated in Fig. 5c, d, show statistically
significant coherency at 3 cycles/year with about 90◦ phase difference. This indicates
that the four-month cycle of the displacement time series leads the one in the rainfall
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Fig. 5 The cross-spectra and cross-spectrograms of climate and PS-InSAR time series. The red
lines in LSCSs show the critical values at 99% confidence level. Also, the gray color map represents
the stochastic surface at 99% confidence level. The white arrows on LSCWSs show the local phase
differences. Arrows pointing to the right, left, top, and bottom indicate that the seasonal cycles of
the segments in the first time series are in-phase, out-of-phase, leads, and lags with/from the ones
in the second time series, respectively. To avoid displaying too many arrows on LSCWSs, arrows
are displayed only for some of the most significant peaks

by approximately one month which could mean that the rainfall might have played a
significant role in the ground deformation. Note that landslides also occurred during
2016.
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4 Discussion

As observed in Fig. 4a, there was no statistically significant annual component at
99% confidence level in the rainfall time series as opposed to a significant annual
component that usually exists in rainfall time series in other regions (e.g., [13, 17]).
The annual amplitude attenuation over time in the temperature time series was also
an interesting observation. From the negative Pearson correlation (r � −0.16) and
the direction of the arrows displayed on the annual peaks in Fig. 5a, it can be deduced
that the warm summers tended to be drier and cool winters tended to be wetter in
this study region—like the results in some other regions (e.g., [35, 36]).

As demonstrated in Fig. 5, the seasonal cycles of the displacement time series
generally led the ones in the rainfall time series by nearly one month during major
landslides. The least-squares spectral and wavelet analyses did not show any sta-
tistically significant annual component in the rainfall time series while the annual
component of the rainfall was weakly coherent with the one in the displacement time
series which could have also triggered the landslides. Before applying the Pearson
correlation analysis, the time series had to be aggregated, i.e., the displacement time
series had to be regularized and resampled so that both displacement and rainfall data
align in time. However, the LSWAVE tools did not require any such pre-processing
and were directly applied to process the climate and displacement time series with
different sampling rates and gaps.

The impact of rainfall on ground deformation requires further investigation. For
example, the wavelike components of the displacement time series could have been
created by several factors, such as possible biases created during the InSAR data
pre-processing steps, and land cover and climate change. Applying the methods
mentioned herein to process displacement and rainfall time series for other regions
may help in a better understanding of their relationships which is subject to future
work.

5 Conclusions

We briefly reviewed the tools in the LSWAVE software and showed how they may
be utilized to investigate possible relationships between rainfalls and displacement
time series derived by PS-InSAR (both ascending and descending geometry) in the
municipality of Borghi, Italy. We also investigated the relationship between rainfalls
and temperature in the study region. We highlighted what additional information
one can obtain when using these tools as compared to traditional ones like Pearson
correlation analysis. The tools in the LSWAVE software were directly applied to
unevenly sampled time series having different sampling rates without any filtering
and/or aggregation. As for future work, we shall generate geospatial maps using
these tools for investigating possible spatiotemporal relationships between rainfalls
and displacement time series. We hope that such analyses help geologists to better
understand the pattern of landslides and their triggering factors.
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Macroeconomic Forecasting Evaluation
of MIDAS Models

Nicolas Bonino-Gayoso and Alfredo Garcia-Hiernaux

Abstract We compare the nowcasting and forecasting performance of different
variants of MIDAS models (ADL-MIDAS, TF-MIDAS and U-MIDAS) when pre-
dicting theGDPgrowth of the four largest EuroArea economies between 2011Q4and
2020Q3. We consider various high-frequency indicators, horizons and sub-periods,
each of the latter with a distinct level of uncertainty. A meta-regression, with an
average error metric as exogenous variable, is estimated to account for potential dif-
ferences in performance by country, indicator, sample period or method. The results
obtained with the whole sample do not reveal any difference in the predictive accu-
racy of the models under comparison. The findings are robust to the forecasting error
metric used, RMSFE or MAFE.

Keywords Nowcasting · Forecasting · Mixed-frequency models · MIDAS ·
U-MIDAS · TF-MIDAS · RMSFE · MAFE

1 Introduction

Access to real-time assessments of the state of the economy as well as to forecasts of
its expected evolution is essential in the decision-making process, either for policy-
makers or businesspeople. Up-to-date macroeconomic projections are critical inputs
for designing and adjusting economic policy. This becomes even more important
in non-stable and challenging economic environments, such as those faced with
COVID-19 pandemic and the Russo-Ukrainian War.

However, data offered by the System of National Accounts is delivered with
considerable delay. In the case of European countries, Eurostat provides the value
of EU and Euro Area GDP 70 days after the end of each quarter, preceded by a
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first preliminary estimate and a second estimate 30 and 45 days after the end of the
quarter, respectively. This delay, as pointed out by [8], is the consequence of the
difficulties in producing timely and accurate low-frequency aggregates: (i) not all
disaggregated data are available when needed to compute a relevant aggregate; (ii)
many disaggregated time series are only preliminary estimates, subject to substantial
revisions, so they are not accurate descriptions of the current conditions.

Nevertheless, a considerable number of short-term economic indicators available
at a much earlier stage could be used to capture information about the state of the
economy. For instance, we have access to monthly data from consumer surveys or
the industrial production index, daily data from financial markets and even more
frequently observed variables, such as Google or Twitter trends and, sometimes,
phone mobility data. Although likely not as complete as data from the System of
National Accounts, these high-frequency (HF) indicators can improve the prediction
of relevant economic aggregates, such as GDP growth, inflation or unemployment
(see, e.g., [33, 35]).

Classical models usually require using data observed at the same frequency, repre-
senting a setback when working with amore complete dataset integrated by variables
observed at different frequencies. The way to extract information from the available
high-frequency indicators is not always a simple task; there are several methodolo-
gies, with different levels of complexity, to do it. Various classes of models have been
proposed to work explicitly with mixed-frequency datasets, some of the most widely
used being the so-called MIDAS (MIxed DAta Sampling) models. These models
have attracted considerable attention recently, even being adopted by many official
institutions.

Original MIDAS models [22, 23, 25] were defined in terms of a Distributed Lag
(DL) polynomial, explicitly modeling the relationship between variables observed
at different frequencies. In order to keep parsimony, standard MIDAS models are
built in terms of a few parameters. In this chapter, to differentiate them from other
classes of MIDAS models, we will name this standard MIDAS model as ADL-
MIDAS (Autoregressive Distributed Lag-MIxed DAta Sampling). This model has
been used to nowcast GDP, private consumption and corporate bond spreads, among
other variables (see [10, 11, 14, 26, 36]).

A specific variation of the previous standard model, known as Unrestricted
MIDAS (U-MIDAS), was first introduced by [30] and later deeply analyzed by
[17]. Based on a set of simulation exercises, these authors state that U-MIDAS now-
casting precision outperforms the standard MIDAS when the difference in sampling
frequencies is not large, specially formonthly to quarterly frequencies, as it is usually
the case of macroeconomic nowcasting.

Amore recent variation of the originalMIDASmodel called TF-MIDAS, standing
for Transfer Function MIDAS, is introduced by [4]. The authors demonstrate that
TF-MIDAS is a general version ofU-MIDAS and show that thismodel beats the latter
in terms of out-of-sample nowcasting performance for several HF data generating
processes in a set of simulation exercises.
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A considerable number of studies compare the different variants of MIDAS mod-
els in terms of their nowcasting and forecasting accuracy when projecting macroe-
conomic variables.

A first group of papers focuses on the nowcasting and predictive performance of
the original ADL-MIDASmodel in comparison with a set of alternative non-MIDAS
models. Specifically, [37] compares ADL-MIDAS model to bridge equations and
an AR model through an empirical exercise, in which Euro Area GDP growth is
nowcast for the period 2010Q1–2014Q4. The author finds that MIDAS models tend
to outperform bridge equations for most predictors, but only for a few indicators do
these models beat a simple AR model.

Jansen et al. [28] consider Euro Area and its five largest economies (Germany,
France, Italy, Spain and the Netherlands) to test the predictive capacity of a wide
range of models, including random walk, ARmodel, Bayesian VARmodel (BVAR),
bridge equation, dynamic factor model, MF-VAR and ADL-MIDAS. They analyze
the predictive accuracy of these models in two disjoint evaluation samples: 1996Q1–
2007Q4 and 2008Q1–2011Q3, which allows them to consider a stable and a volatile
period. They conclude that MF-VAR and MIDAS models yield better predictions
after the financial crisis, but this does not occur in stable times.

More recently [6] employ data from six developed countries (US, UK, Japan,
France, Germany, Italy) and the Euro Area to obtain empirical evidence on the pre-
dictive performance of five classes of models (AR, Factor Augmented DL, MIDAS,
BVAR, and DSGEmodel). They consider a general evaluation sample that goes from
1993Q1 up to 2011Q3 and also split that sample into 5-year windows for most of
the considered countries. The conclusions are that MIDAS models work better at
1-period ahead horizons. Nevertheless, they also show t-statistics with large spreads,
meaning that they work well for the median country but poorly for some individual
countries. For 4-period ahead forecasts, BVAR clearly performs better.

Other papers comparing ADL-MIDASwith other forecasting models are [32], for
the Euro Area with an evaluation sample 1999Q2–2008Q1, [15], again for the Euro
Area with evaluation sample 2003Q1–2009Q1, [10], for US on 1985Q2–2005Q1,
[9], for Canada on 2002Q1–2016Q2, [38], for Singapore on 2001Q1–2010Q4, [18],
for Switzerland on 2005Q1–2015Q2, or [12], for Turkey on 2010Q2–2015Q1.

A second and less numerous group of papers compares the nowcasting and fore-
casting performance of U-MIDAS model with alternative non-MIDAS models. For
example [2], consider U-MIDAS model versus the classical bridge equation model
to build a daily indicator of growth for the Euro Area. The results show that forecasts
obtained fromU-MIDASconsidering different indicators present a higher forecasting
accuracy when they are combined with inverse Mean Square Error (MSE) weights.

In this sense, [31] compare the predictive performance of U-MIDAS versus
Dynamic mixed-frequency Factor Model (DFM) for Baden Württemberg’s regional
GDP growth. The evaluation sample, in this case, spans from 2012Q1 to 2019Q3.
The paper findsMIDAS-based predictions to bemore robust and to outperformDFM
slightly.

Last, a third set of papers is formed by those simultaneously comparing ADL-
MIDAS and U-MIDAS predictive precision against other non-MIDAS models. For
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instance, [13] analyses the nowcasting and short-term forecasting power of U-
MIDAS and ADL-MIDAS against an AR and bridge equations benchmark models
for the Euro Area in the evaluation sample 2007Q1–2012Q4. The results show that
MIDAS models contribute to increasing predictive capacity. Additionally, differ-
ences in forecasting precision between ADL-MIDAS and U-MIDAS tend to vanish
as the forecasting horizon increases.

Similarly, [17] compare U-MIDAS with the traditional ADL-MIDAS and an AR
benchmark model in terms of their power to nowcast and short-term forecast US and
Euro Area GDP growth. They use two evaluation samples for US (1985Q1–2006Q4
and 1985Q1–2011Q1) and one for the Euro Area (2003Q1–2010Q4). Similar results
are observed for the two regions. Neither U-MIDAS nor ADL-MIDAS have a sig-
nificantly superior performance during the more stable pre-crisis period, even failing
against the AR benchmark. However, ADL-MIDAS and U-MIDAS significantly
outperform the AR model for the crisis sample.

Additional papers simultaneously comparing ADL-MIDAS and U-MIDAS with
other forecasting models are [29], employing Korean data with evaluation data
2000Q1–2013Q4, and [34], for the Philippines on 1999Q1–2019Q4.

In brief, researchers have yet to reach a consensus onwhichmodel, if any, presents
the best performance at predictingmacroeconomic variables. As this literature review
suggests, it seems that MIDAS models (either, ADL- or U- MIDAS) have bet-
ter results at nowcasting and short-term forecasting than most of the alternatives,
although results may depend on the sample, country and HF indicator applied. Addi-
tionally, differences between MIDAS models’ accuracy still need to be clarified. For
this reason, we run a comparative exercise of forecasting performance of MIDAS
models in which a new MIDAS-class model, not yet considered by the literature, is
added.

Therefore, this chapter assesses the empirical nowcasting and forecasting per-
formance of the three variants of MIDAS models: ADL-MIDAS, TF-MIDAS and
U-MIDAS. With this aim, we use data from the four major Euro Area economies,
France, Germany, Italy and Spain, covering the period 1995Q1–2020Q3, analyze
the out-of-sample forecast for the evaluation sample 2011Q4–2020Q3, and consider
several sub-periods with different levels of uncertainty. When the forecasting errors
obtained in the whole sample are observed, we find a slightly higher accuracy, ranged
between 2.4 and 4.1% in terms of the root mean squared forecast error (RMSFE), of
TF-MIDAS models. However, when these errors are analyzed in a meta-regression,
where we include model, country, indicator, horizon and sample dummies, we do not
find a statistically significant difference in the predictive performance of the mod-
els under comparison, nor in terms of RMSFE or the mean absolute forecast error
(MAFE). Part of the content presented in this paper and further conclusions drawn
from the country, indicator, horizon and sample effects (not included here due to the
lack of space) can be found in the unpublished Chap. 4 of the Ph.D. Thesis [3].

The chapter is organized in five sections, including the present introduction. In
Sect. 2, compared MIDAS models are briefly reviewed, describing the main differ-
ences among the three variants considered. Section 3 details the empirical forecasting
performance evaluation exercise and presents the first results of the relative out-of-
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sample nowcasting performance. In Sect. 4, we estimate a meta-regression to obtain
the individual effects of several variables on two accuracy forecasting measures.
Finally, Sect. 5 summarizes the main results and concludes.

2 MIDAS Models Under Comparison

This section reviews the main theoretical features of the mixed-frequency models
compared in the chapter: ADL-MIDAS, U-MIDAS and TF-MIDAS. Additionally,
we briefly discuss the identification, estimation and how the nowcasts and forecasts
have been computed.

Throughout the chapter we follow the notation used in [4], which is summarized
in the following lines. A high-frequency (HF) indicator is denoted by letter x . Let t
be the time index for this variable x , t = 1, ..., T (i.e., in this chapter, months), being
T the last period for which data of variable x is available. L denotes the lag operator
for this HF indicator. If xt is the monthly industrial production index, then Lxt will
be the previous month’s value of the index.

Similarly, let y be the low-frequency (LF) variable that is aimed to be nowcast,
sampled at periods denoted by time index tq = 1, ..., Tq (i.e., in this chapter, quarters),
being Tq the last period for which data of variable y is available. Usually, T ≥ kTq ,
as observations of HF indicators are available earlier than LF ones. Past realizations
of the LF variable will be denoted by the lag operator Z , where Z ≡ Lk . So, if ytq is
quarterly GDP, then Zytq will be the previous quarter’s GDP value.

The HF indicator x is sampled k times between samples of y. For example, for
quarterly GDP and monthly indicator, k = 3.

Finally, both the target variable y and the indicator x are assumed to be stationary,
so these variables often correspond to a (log) differenced version of some raw series.

2.1 ADL-MIDAS Model

The original MIDAS (MIxed DAta Sampling) model was introduced by [22, 23, 25].
From now on, we will refer to it as ADL-MIDAS (or simply ADL-M) to emphasize
the differences with other variants. In the ADL-M model, the response of the LF
variable to an HF explicative variable is modeled through a Distributed Lag polyno-
mial, but particular attention is paid to parsimony. To avoid the so-called “parameter
proliferation” problem, lag coefficients are not free, but are defined as a function of
a vector of a few parameters, θ , known as hyperparameters.

Andreou et al. [1] extend the DL specification of MIDAS model introducing an
autoregressive term. In the case of only one HF indicator and only one autoregressive
LF term,which is themostwidely used form in practice, ADL-Mequation for h-steps
ahead nowcast can be written as
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yt = β0 + λ yt−pyk + β

Kmax∑

j=1

b( j; θ) xt− j−h+1 + εt t = k, 2k, ..., T k, (1)

where Kmax is the maximum number of lags of the HF variable included in the
model and py is the lag of the autoregressive term, which is a function of the
nowcasting/forecasting horizon (i.e., py = s ∈ N, such that h satisfies the condi-
tion (s − 1)k ≤ h ≤ sk). The process εt is assumed to be a white noise in weak
sense.

Function b( j, θ), a component of the lag polynomial, is used to model the
weights assigned to each lag of the HF indicator. This function depends on the
indicator’s period, j , and the vector of hyperparameters θ . An overview of different
weighting functions proposed in the literature is provided by [20], the most popular
being Exponential Almon and Beta functions.1 Several variations have been built
upon the basic MIDAS model. A detailed summary of their main features can be
found in [21].

Once ADL-M model is estimated by Non-Linear Least Squares (NLS), nowcasts
and forecasts for yTk+k conditional on information available at period T k + k − h
(i.e., h-steps ahead nowcasts and forecasts) are calculated as

ŷT k+k | T k+k−h = β̂0 + λ̂ yTk−(py−1)k (4)

+ β̂

Kmax∑

j=1

b( j; θ̂) xTk+k− j−h+1

where h is the forecasting horizon (notice that Eq. (4) generates nowcasting if 0 ≤
h < k and forecasting if h ≥ k) and py is the lag of the autoregressive term. In the
forecasting performance exercise, the ADL-M predictions will be built from Eq. (4).
We will consider several values for Kmax, ranging from 1 to 24, in order to account
for ADL-M models with different levels of parsimony.

1 The Exponential Almon weighting function was proposed in [24], and it has the following expres-
sion, with Q shape parameters:

b( j; θ) = exp(θ1 j + ... + θQ j Q)
∑Kmax

j=0 exp(θ1 j + ... + θQ j Q)
, where θ = {

θ1, θ2, . . . , θQ
}
. (2)

Beta weighting function, proposed for the first time in [23], includes only two shape parameters:

b( j; θ) =
β(

j

Kmax
; θ1, θ2)

∑Kmax
j=0 β(

j

Kmax
; θ1, θ2)

, where θ = {θ1, θ2} , (3)

and β(·) is the Beta probability density function.
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2.2 U-MIDAS Model

Koenig et al. [30] introduced a variant of MIDAS model known as U-MIDAS (here-
inafter U-M), which was later thoroughly studied by [16, 17]. U-M does not employ
functional distributed lag polynomials to model the relationship between x and y,
but a linear lag polynomial.

The idea behind this variant is that when the difference in sampling frequencies
is not large the risk of falling into the curse of dimensionality becomes less relevant,
and so it does the need to resort to functional DL polynomials.

Similarly to the previous model, U-M model with one HF indicator and one
autoregressive term is defined by:

yt = β0 + λ yt−pyk +
Kmax∑

j=1

β j xt− j−h+1 + εt t = k, 2k, ..., T k, (5)

where, again, h is the forecasting horizon, Kmax is the maximum number of lags of
the HF variable, and py is the lag of the autoregressive term.

Foroni et al. [17] state that basic ADL-Mmodel can be considered nested in U-M
specification because it is the result of imposing a particular dynamic pattern on it.
An important computational advantage of U-Mmodel over the basicMIDASmodels
is that it can be estimated by OLS, as long as lag orders py and Kmax are long enough
to make the error term, εt , uncorrelated and so the weak white noise assumption can
be validated.

Once U-M model is fitted by OLS, nowcasts and forecasts for yTk+k conditional
on information available at period T k + k − h (i.e., h−steps ahead nowcasts and
forecasts), when considering only one autoregressive term, are computed as

ŷT k+k | Tk+k−h = β̂0 + λ̂ yT K−(py−1)k +
Kmax∑

j=1

β̂ j xt− j−h+1 (6)

Similarly to ADL-M, the U-M predictions will be built from Eq. (6), and values
ranged from 1 to 24 will be considered for Kmax to apply models with different levels
of parsimony.

2.3 TF-MIDAS Model

Recently, [4] have proposed another variant of the basic MIDAS model, called TF-
MIDAS model (or simply TF-M), in which instead of a DL polynomial expression,
an alternative representation based on a transfer function is applied.

General TF-Mmodel with one HF indicator is easier defined using two equations:
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(1) the equation that models the relation between y and x :

yt = β0 +
k∑

j=1

a j (Z)

b j (Z)
xt− j + ηt , and (7a)

(2) the equation that models the noise:

φ(Z)ηt = θ(Z)εt , t = k, 2k, ..., T k. (7b)

In Eq. (7a, 7b), a j (Z) and b j (Z) are finite lag polynomials and Z ≡ Lk , while
φ(Z) and θ(Z) are, respectively, autoregressive and moving average polynomials of
order p and q. Additionally, let φ(Z) and θ(Z) have all their zeros lying outside the
unit circle and do not have common factors [see, e.g., 5], and εt be a weak white
noise process.

For monthly-quarterly data (i.e., k = 3), one HF indicator and 1−step ahead
nowcast, the previous equations become

yt = β0 + a1(Z)

b1(Z)
xt−1 + a2(Z)

b2(Z)
xt−2 + a3(Z)

b3(Z)
xt−3 + ηt (8a)

φ(Z)ηt = θ(Z)εt , t = k, 2k, ..., T k, (8b)

where xt−1 is the second monthly observation of the current quarter, xt−2 is the first
monthly observation of the current quarter, and xt−3 is the third monthly observation
of the previous quarter.

TF-Mmodel is estimated by exact ML. To do so, it is transformed into its equiva-
lent state space formulation.2 As ML convergence sometimes depends on the initial
values of the parameters and TF-MIDAS usually has a considerable number of them,
we suggest applying a procedure to get consistent estimates for those values prior
to the ML estimation. Here we use the procedure by [19]. Then, the exact ML is
computed using the standard Kalman filter equations for a state space model with
stochastic inputs [see, 7] by iterating on the set of parameters. Obviously, the esti-
mation through iterative methods may entail some drawbacks with respect to LS
techniques, as computational cost and stability issues.

Once the TF-M model is estimated, nowcasts and forecasts for yTk+k conditional
on information available at period T k + k − h (i.e., h−steps ahead nowcasts and
forecasts) are calculated as

2 In order to keep focused on themodels’ performance evaluation and comparison, we do not present
in this chapter the ML function and its corresponding Kalman filter equations, as these are standard
in the state space models literature. However, for readers unfamiliar with this type of formulations,
all the equations needed to compute theML can be found in [7], Sect. 5.3.2, where expression (5.50)
specifically shows the log-likelihood function used.
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ŷT k+k | T k+k−h = β̂0 + â1(Z)

b̂1(Z)
xTk+k−h (9)

+ â2(Z)

b̂2(Z)
xTk+k−h−1 + â3(Z)

b̂3(Z)
xTk+k−h−2

+ θ̂ (Z)

φ̂(Z)
ε̂Tk+k

where φ̂(Z) = 1 + φ̂1Z + φ̂2Z2 + ... + φ̂p Z p, θ̂ (Z) = θ̂1Z + θ̂2Z2 + ... + θ̂q Zq ,
and â j (Z) and b̂ j (Z), with j = 1, 2, 3, are finite lag polynomials, whose order will
be specified by means of information criteria (see Sect. 3.2 and Table 3 for more
detail).3

3 Forecasting Performance Evaluation

This section first describes the data used in the forecasting evaluation exercise. Later,
it details how the performance evaluation has been designed. Finally, a discussion of
the unconditional distribution of the forecasting errors is also presented.

3.1 Data Description

We employ data from the four major economies of the Euro Area (France, Germany,
Italy and Spain) in the period 1995Q1–2020Q3. In all cases, we have transformed
GDP data to make it stationary, so our target variable is the quarterly change in
seasonally adjusted log real GDP. The source of GDP data is Eurostat.4

We consider a set of fifteen monthly-observed economic indicators for each GDP,
whose description is reported in Table 1. Each indicator series is seasonally adjusted
and, as GDP, transformed to induce stationarity. These data were also obtained from
Eurostat.5

3 Notice that the polynomial θ̂ (Z) does not include the unit term as ε̂kTq+es is not known at period
Tqk + es.
4 GDP data were downloaded from the webpage: https://ec.europa.eu/eurostat/web/national-
accounts/data/database.
5 Volume Index of Industrial Production indicators were downloaded from the webpage: https://
ec.europa.eu/eurostat/databrowser/view/sts_inpr_m/default/table?lang=en
Consumer Confidence Indicators were downloaded from the webpage: https://ec.europa.eu/
info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-
surveys/download-business-and-consumer-survey-data/time-series_en.

https://ec.europa.eu/eurostat/web/national-accounts/data/database
https://ec.europa.eu/eurostat/web/national-accounts/data/database
https://ec.europa.eu/eurostat/databrowser/view/sts_inpr_m/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/sts_inpr_m/default/table?lang=en
https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-surveys/download-business-and-consumer-survey-data/time-series_en
https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-surveys/download-business-and-consumer-survey-data/time-series_en
https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-surveys/download-business-and-consumer-survey-data/time-series_en
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Table 1 Description of the indicators

Name Description

1 IPI Volume index of industrial production (Mining and quarrying,
manufacturing, electricity, gas, etc.)

2 IPI2 Volume index of industrial production (IPI; construction)

3 COF Consumer confidence indicator: total value

4 COF1 Consumer confidence indicator: financial situation over last 12
months

5 COF2 Consumer confidence indicator: financial situation over next 12
months

6 COF3 Consumer confidence indicator: general economic situation
over last 12 months

7 COF4 Consumer confidence indicator: general economic situation
over next 12 months

8 COF5 Consumer confidence indicator: price trends over last 12
months

9 COF6 Consumer confidence indicator: price trends over next 12
months

10 COF7 Consumer confidence indicator: unemployment expectations
over next 12 months

11 COF8 Consumer confidence indicator: major purchases at present

12 COF9 Consumer confidence indicator: major purchases over next 12
months

13 COF10 Consumer confidence indicator: savings at present

14 COF11 Consumer confidence indicator: savings over next 12 months

15 COF12 Consumer confidence indicator: statement on financial situation
of household

Source European Commission

3.2 Evaluation Design

As [27] show evidence of changing predictive capacity over time, we decide to
separate our out-of-sample GDPs forecasts in three disjoint periods of three years
(12 quarterly forecasts) each. The dates are 2011Q4–2014Q3, 2014Q4–2017Q3 and
2017Q4–2020Q3.We choose these periods deliberately to analyze the behavior of the
methods in three substantially different economic contexts: the European sovereign
debt crisis in the first period, a recovery and more stable phase during the second
period, and a third convulsive period struck by the COVID-19 pandemic. We will
check if changes in the underlying structure of the economies and the exogenous
shocks affect the methods’ relative forecasting performances.

In addition to the different periods, each prediction is calculated for four countries
(Germany, France, Italy and Spain), seven forecast horizons, fifteen indicators and
nine methods. Horizons have been chosen to investigate if nowcasting and forecast-
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Table 2 Model acronyms

Name Description

1 ADL-M3 ADL-MIDAS with up to 3 lags of HF variable

2 ADL-M6 ADL-MIDAS with up to 6 lags of HF variable

3 ADL-M12 ADL-MIDAS with up to 12 lags of HF variable

4 ADL-M24 ADL-MIDAS with up to 24 lags of HF variable

5 U-M3 U-MIDAS with up to 3 lags of HF variable

6 U-M6 U-MIDAS with up to 6 lags of HF variable

7 U-M12 U-MIDAS with up to 12 lags of HF variable

8 U-M24 U-MIDAS with up to 24 lags of HF variable

9 TF-M TF-MIDAS (see Table 3 for models structure)

ing affect the methods’ performance differently. We set the forecasting horizons to
0, 1, 2, 3, 6, 9 and 12.

On the other hand, Table 2 presents the acronyms and a short description of the
models employed. The methods are divided into four ADL-MIDAS models, ADL-
M3, ADL-M6, ADL-M12 and ADL-M24, four U-MIDAS models, U-M3, U-M6, U-
M12 and U-M24 and the TF-M model.

EachADL-MKmax andU-MKmax method considers a set ofmodels that range from 1
to Kmax lags of the HF variable and one autoregressive termwith lag py . In the case of
TF-M, a set of sixteenmodels are considered, see Table 3, covering different orders of
lag polynomials a j (Z), b j (Z), θ(Z) and φ(Z). Every specification for ADL-MKmax ,
U-MKmax and TF-M is then fitted. We choose one specification for each method with
the in-sample lowest BIC information criterion for each new observation. These
chosen models are then used to compute the corresponding predictions.6

Finally, each sub-period analyzed is made up of twelve out-of-sample forecasts.
Every prediction is computed using a recursive (expanding) forecasting scheme,
i.e., we use all observations available from the beginning of the sample up to the
forecasting origin in both the identification and estimation process.

In order to check the robustness of the results obtained, two measures of point
forecasting performance are used: (1) the rootmean squared forecast error (RMSFE),
and (2) themean absolute forecast error (MAFE).Eachof thesemeasures is calculated
with the previous twelve observations.

6 In some specific cases, probably due to the presence of outliers, data was adjusted in order to not
alter subsequent results and conclusions. In practice, the detection and treatment of these extreme
nowcasts/forecasts would be easily addressed by an analyst. In summary, less than 0.9% of predic-
tions were adjusted, most of them corresponding to Italy and Spain. Regarding the methods applied,
the adjustments distribute uniformly, except for U-M3 and ADL-M3 that account for half of the
adjusted values corresponding to each one of the rest of the methods. The exact same estimations
have been calculated without these corrections and conclusions do not vary significantly.
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Table 3 Polynomials structure of the TF-M model (8a–8b)

Model structure

1 a j (Z) = a j,0; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1 + φZ; θ(Z) = 1 + θ Z

2 a j (Z) = a j,0; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1 + φZ; θ(Z) = 1

3 a j (Z) = a j,0; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1; θ(Z) = 1 + θ Z

4 a j (Z) = a j,0; b j (Z) = 1, j = 1, 2, 3; φ(Z) = θ(Z) = 1

5 a j (Z) = a j,0, j = 1, 2, 3; b j (Z) = 1 + b j,1Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1 + φZ; θ(Z) = 1 + θ Z

6 a j (Z) = a j,0, j = 1, 2, 3; b j (Z) = 1 + b j,1Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1 + φZ; θ(Z) = 1

7 a j (Z) = a j,0, j = 1, 2, 3; b j (Z) = 1 + b j,1Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1; θ(Z) = 1 + θ Z

8 a j (Z) = a j,0, j = 1, 2, 3; b j (Z) = 1 + b j,1Z , j = 1, 2; b3(Z) = 1;
φ(Z) = θ(Z) = 1

9 a j (Z) = a j,0 + a j,1Z; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1 + φZ; θ(Z) = 1 + θ Z

10 a j (Z) = a j,0 + a j,1Z; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1 + φZ; θ(Z) = 1

11 a j (Z) = a j,0 + a j,1Z; b j (Z) = 1, j = 1, 2, 3; φ(Z) = 1; θ(Z) = 1 + θ Z

12 a j (Z) = a j,0 + a j,1Z; b j (Z) = 1, j = 1, 2, 3; φ(Z) = θ(Z) = 1

13 a j (Z) = a j,0 + a j,1Z , j = 1, 2, 3; b j (Z) = 1 + b j Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1 + φZ; θ(Z) = 1 + θ Z

14 a j (Z) = a j,0 + a j,1Z , j = 1, 2, 3; b j (Z) = 1 + b j Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1 + φZ; θ(Z) = 1

15 a j (Z) = a j,0 + a j,1Z , j = 1, 2, 3; b j (Z) = 1 + b j Z , j = 1, 2; b3(Z) = 1;
φ(Z) = 1; θ(Z) = 1 + θ Z

16 a j (Z) = a j,0 + a j,1Z , j = 1, 2, 3; b j (Z) = 1 + b j Z , j = 1, 2; b3(Z) = 1;
φ(Z) = θ(Z) = 1

We use E4 [7] and Midas [20] MatLab Toolboxes to perform the estimation and
prediction processes. 7

3.3 Unconditional Distribution of the Forecasting Errors

This section investigates the relative performance of the consideredMIDASmethods
in terms of their nowcasting and forecasting accuracy according to the twomeasures,
RMSFE and MAFE. The results obtained for RMSFE are summarized in Fig. 1.8

According to this figure, TF-M presents the lowest average RMSFE (in white in
Fig. 1), although the discrepancy with respect to the other methods is not very large.
The percentage difference in terms of average RMSFE between the best performing

7 Matlab code to estimate TF-MIDAS model is available from the authors.
8 The analogous figure for MAFE can be found in [3]. The main conclusions do not differ signifi-
cantly from those for RMSFE.
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Fig. 1 Violin and box plots for RMSFE by nowcasting/forecasting method. Values displayed in
white inside the boxes are the average RMSFE

method (TF-M) and the second best (U-M24) is 2.4%, and with the worse one (ADL-
M24) is 4.1%. Moreover, the RMSFE distributions displayed by the violin and box
plots look really similar compared to the differences observed by countries, indicators
and horizons.9 Similar results are obtained for MAFE measure.

4 Forecasting Performance: A Meta-Regression Analysis

Asmentioned, when looking at themean of the forecasting performancemeasures by
methods in the previous section, we do not account for the potential effect of the rest
of the variables. In this section, we address this matter through a meta-regression.

4.1 Description of the Meta-Regression Analysis

Weaim to study how the forecasting performancemeasure (RMSFEorMAFE) varies
with the method applied, the source country, the HF indicator, the horizon and the
specific sample considered. For that, we will run a meta-regression with the whole
sample, containing 11,340 observations.

The main feature we consider is the model applied. To analyze its influence on the
forecasting performance metric, we use eight dummy variables, each corresponding
to a specific ADL-M and U-M model. The benchmark model is thus TF-M.

The impact of the country origin of the dataset is evaluated by including three
dummy variables, choosing Germany as the baseline country.

9 Analogous figures for RMSFE by countries, indicators and horizons can be found in [3].
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The third feature whose impact on the forecasting performance is assessed is the
HF indicator used, so we create fourteen dummy variables, one for each indicator,
being IPI the baseline indicator.

We also include six dummy variables corresponding to horizons 1, 2, 3, 6, 9 and
12. The effect of horizon 0 is captured by the constant.

Finally, we also want to study the effect of the specific sample chosen on the
forecasting performance measure. This way, we evaluate how stable or uncertain
periods affect the nowcasting or forecasting performance metrics. So, we create
two dummy variables: sample1 for the period 2011Q4–2014Q3 and sample2 for
2014Q4–2017Q3, being 2017Q4–2020Q3 the benchmark period.

From these definitions the meta-regression equation is

AMi = β0 +
8∑

j=1

βM
j DM

i j +
3∑

j=1

βC
j D

C
i j (10)

+
14∑

j=1

β I
j D

I
i j +

6∑

j=1

βH
j DH

i j

+
2∑

j=1

β S
j D

S
i j + εi ,

where DM
i , DC

i , DI
i , D

H
i and DS

i are, respectively, Model, Country, Indicator, Hori-
zon and Sample dummy variables for each AMi (Accuracy Measure) observation
obtained. AMi is either the RMSFE or MAFE discrepancy quantity, computed with
12 observations characterized by the variables in Eq. (10) for the observation i .
Obviously, dummy variables do not include TF-M, Germany, IPI, horizon0 and sam-
ple3, as these effects are captured by β0. The value of the rest of coefficients (all βs
different from β0) are interpreted as gains/losses relative to the benchmark model.

4.2 Meta-Regression Main Results

Table 4 presents estimates of the regression in Eq. (10), for RMSFE and MAFE
accuracy measures. Results for both metrics are very similar, except for the expected
different scale. As the stars denoting the statistical significance show, regressors’
significance do not depend on the metric considered.

First, as the unconditional analysis showed, theβs corresponding to the estimation
methods are all greater than zero, suggesting a better performance of the TF-M
model. In fact, for RMSFE, the loss of precision when not using TF-M ranges from
2.4% to 4.1% (U-M24 and ADL-M24 coefficients, respectively, in terms of the mean
dependent variable). The percentages for MAFE, although lower, show the same
picture. However, when looking at the statistical significance, none of the methods
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Table 4 Main meta-regression

Variable RMSFE MAFE Variable
(cont.)

RMSFE MAFE

constant 6.8072*** 3.0862*** IPI2 0.2153** 0.0875**

ADL-M3 0.1291 0.0230 COF 1.1614*** 0.4269***

ADL-M6 0.1180 0.0236 COF1 1.1972*** 0.4493***

ADL-M12 0.1226 0.0267 COF2 1.1451*** 0.4112***

ADL-M24 0.1336 0.0332 COF3 1.0932*** 0.3939***

U-M3 0.1056 0.0150 COF4 0.6538*** 0.2418***

U-M6 0.0785 0.0057 COF5 0.9766*** 0.3555***

U-M12 0.0812 0.0085 COF6 0.9856*** 0.3440***

U-M24 0.0765 0.0072 COF7 0.9574*** 0.3454***

France 1.8110*** 0.6613*** COF8 0.7321*** 0.2704***

Italy 1.4176*** 0.5161*** COF9 1.1802*** 0.4218***

Spain 2.7054*** 0.9578*** COF10 1.0755*** 0.4012***

Horizon1 –0.0485 –0.0243 COF11 1.0528*** 0.3748***

Horizon2 –0.1978** –0.0765*** COF12 1.0638*** 0.3928***

Horizon3 0.1251 0.0385 Sample1 –7.9969*** –3.3184***

Horizon6 –1.2200*** –0.3369*** Sample2 –8.3018*** –3.4809***

Horizon9 –1.4023*** –0.3963***

Horizon12 –1.4122*** –0.3926***

N 11340 11340

Mean dep.
variable

3.2534 1.5275

R2 0.7899 0.8434

Notes ‘∗’, ‘∗∗’ and ‘∗∗∗’ mean rejection of the Null of the corresponding coefficient equal to zero
at 10%, 5% and 1% level, respectively

presents a different nowcasting/forecasting accuracy, at least at a 10% significance
level; see Table 4.

Regarding country dummies, all of them have a statistically significant and posi-
tive effect on the error quantity, either RMSFE or MAFE, meaning that predictions
for France, Italy and particularly Spain are less accurate than those computed for
Germany, apparently no matter the sample, method, horizon or indicator. This result
would be originated in a more stable and thus predictable economic environment in
Germany compared to the other countries in the sample.

All indicator dummies present a statistically significant increase in RMSFE and
MAFE with respect to the use of IPI as HF indicator. First, this reveals that the
inclusion of construction’s production in IPI2 does not contribute to improving the
accuracy of GDP’s predictions. Second, it also shows that COF-related indicators do
not provide more valuable information than IPI to reduce prediction errors.

Concerning the effect of the horizon on the accuracy measure, only horizon1 and
horizon3 dummies have no statistically significant effect with respect to horizon0.
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The rest of horizon’s dummies present a negative relevant impact on RMSFE and
MAFE compared to horizon0. Contrary to the literature, and leaving aside horizon2,
whose effect deviates from the rest of shorter horizons, these results seem to point out
that MIDASmodels have a better performance at longer horizons, i.e., at forecasting
much more than at nowcasting. This somehow baffling result might be induced by
the interaction of these dummies with others in the meta-regression. Therefore, a
more profound analysis in this direction is needed here to understand the roots of
this finding.

Finally, βs associated to both period dummies reveal a strong negative effect on
RMSFE andMAFE compared to the benchmark sample 3. This result is easily under-
standable, as sample 3 corresponds to the period including COVID-19 pandemic and
the last observations in the sample are muchmore unpredictable than any in the other
two sample periods.

In summary, the main findings obtained from this meta-regression analysis are: (i)
the TF-M lowest error quantities are not large enough to show statistically significant
coefficients of the rest of the model dummies, implying that either ADL-M or U-M
models report a similar forecasting performance relative to TF-M, once we control
for the other factors; (ii) all country dummies are relevant variables, indicating that
nowcasts and forecasts for Italy, France and Spain are less accurate than the ones
for Germany; (iii) using other indicator than IPI results in a statistically significant
increase in RMSFE and MAFE; (iv) horizon dummies result to be most relevant,
although with differences: while for shorter horizons (i.e., nowcasts), only horizon
2 presents a clear gain in accuracy in comparison to horizon 0, longer horizons (i.e.,
forecasts) do show in all cases a statistically significant reduction in RMSFE and
MAFE relative to horizon 0; (v) predictions for the first period and second period
(i.e., 2011Q4–2014Q3 and 2014Q4–2017Q3) are much more accurate than the ones
for the third period (i.e., 2017Q4–2020Q3), which is consistent with the fact that
this period involves a huge uncertainty associated with COVID-19 pandemic; and,
finally, (vi) conclusions do not depend on the specific accuracy measure applied, as
RMSFE and MAFE yield very similar results.

5 Conclusions

This chapter attempts to shed some light on the use of the different variants ofMIDAS
models in forecasting. To do so, we assess the empirical nowcasting and forecasting
performance of the ADL-, U- and TF- MIDAS family models. We use data from the
four main Euro Area economies (France, Germany, Italy and Spain) for the period
1995Q1–2020Q3, accounting for different HF indicators and horizons.We report the
results of the out-of-sample forecasting analysis for the sample 2011Q4–2020Q3 and
three disjoint sub-periods characterized by different levels of volatility and uncer-
tainty: 2011Q4–2014Q3 (European sovereign debt crisis), 2014Q4–2017Q3 (recov-
ery and stable phase) and 2017Q4–2020Q3 (including COVID-19 pandemic shock).
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The predictive accuracy of the distinct MIDASmodels is compared according to two
accuracy measures: RMSFE and MAFE.

The results of an unconditional analysis reveal a better performance of TF-MIDAS
in terms of lowest RMSFE and MAFE. However, a meta-regression with the whole
sample does not show a statistically significant difference in the predictive accuracy
of the compared methods at standard significance levels. Some other interesting
features were found instead: (i) German GDP seems to be more predictable than
Italy, France and, specially, Spain’s; (ii) IPIs turn out to be the best HF indicators;
(iii) contrary to the literature, MIDAS models seem to perform better at forecasting
(longer horizons) than nowcasting; and, (v) as expected, the studied sub-periods can
be decreasingly sorted according to predictability as 2014Q4–2017Q3, 2011Q4–
2014Q3 and 2017Q4–2020Q3. All these findings are robust to the error metric used,
either RMSFE or MAFE.

Finally, these results were obtained without including interaction terms in the
meta-regression, which could cast some light on the conclusions drawn. This will be
the object of future research.
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Relative Measures of Forecasting:
Lambda-Family-Measures

Miguel Ángel Ruiz Reina

Abstract We develop a robust theoretical and practical scheme for automatic
forecasting model selection using R programming. We present Lambda-Family-
Measures for forecasting by point in time series to solve the problem of lack of
definition. Through the work scheme, we can objectively quantify which model has
the “best” forecasting capacity with dimensionless measures. The empirical results
show no significant differences among predictive models for 53 series analysed from
the tourism sector in Spain. Using data from the Spanish National Institute of Statis-
tics, we compare forecasting capacity data from January 1999 to December 2019.
Our results make it possible to empirically measure and quantify the accuracy of the
models through multiple series and forecasting models. This proposed methodology
supposes a homogenisation for the forecasting model comparisons. In particular, we
usemeasures based onminimising the prediction error, themeasure of theRootMean
Square Error criterion for this work, not the only option. The proposed solution is a
contribution to statistics and time-series analysis.

Keywords Forecast accuracy · Time series · Lambda theorem of accuracy

1 Introduction

Forecasting modelling and evaluation have always been at the core of scientific
research; traditionally, forecasting has been a field of statisticians and econo-
metricians. Nowadays, companies are hiring data scientists with computational
forecasting tasks [1], and the application techniques have evolved in the last 40
years depending on the researchers’ skills [2]. Theoretical and practical growth
since the beginning of the twenty-first century [3] has allowed significant advances
in applying computational techniques in analytics and data science [4]. Traditional
methods of forecasting, despite being considered older methods, many of these
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approaches are robust and not prone to overfitting more modern techniques. These
models lay the foundation for any comparison in the field of forecasting based on
uncorrelated forecast errors. Machine learning techniques have been a competitor
against traditional models in the literature [5, 6]. The combination and assembly
of the techniques formally contribute to the improvements in computer science
[4]. In practice, to propose accuracy measures and compare predictive models, but
generally, they are not applicable from one definition, undefined results, and can
cause problems of misleading results [7]. On other occasions, ruptures occur, caused
by parameter estimation errors and forecast modelling [8].

This work aims to provide a model selection strategy, so-called Lambda-Family-
Measures, for forecasting by point in time series. The benefits are immediate and can
be summarised as follows: first, establish a work scheme referenced to forecasting
horizon windows; in this way, it is possible to see the behaviour of the models in
the different scenarios h. Second, it introduces a robust contrast for differences in
variances using the median as a reference based on non-Gaussian normality [9].
Third, contribute to the solution when the predictive models contain zeros or exact
predictions not covered by literature [7], overcoming limitations of interpretation
among relative measures or even problems of lack of definition. This solution is the
Lambda-Relative-Measures that supposes a contribution to one of the main limita-
tions of the relative accuracy measures. In our theoretical development, we propose
using the Root of Mean Square Error - RMSE for predictions in time series windows
horizons h. This fact will allow the development of the Lambda-Relative-Measures
Theorem.

To demonstrate Lambda-Relative-Measures’ accuracy, we proved a series of
actual data on hotel overnight stays in Spain and 52 provinces from January 1999
to December 2019. We are interested in comparing the accuracy of six methods
with the R package automatically: (1) SARIMA [10]; (2) Singular Spectrum Anal-
ysis—SSA [11]; (3) ARAR algorithm—ARAR [12, 13]; (4) Hierarchical Neural
Networks—HNN [14]; (5) Holt—Winter Methods, Holt—Winter Additive (HWA)
and Holt—Winter Multiplicative (HWM) [15].

This work presents a tool to select the “best” point forecast depending on the error
or accuracy [16], and the objective is to establish a criterion for the selection under
the criteria of reliability, robustness and interpretability, avoiding undefined results.
To test model selection criteria and overcome the limitations above, we propose
estimates in the sample period from January 1999 to December 2018 to subsequently
evaluate the ex-post predictive capacity from January 2019 to December 2019. The
models are tested for monthly windows horizons h = 3, 6, 12.

The development of this document consists of four more sections added to this
first introductory section. The second section describes the background where basic
concepts of accuracy and the most relevant are discussed. The third section develops
the methodological aspect of choosing the “best” model under the three principles
of reliability, robustness and interpretability. The fourth section forms the empirical
section with the previous modelling for the aggregate series. The fifth section is
dedicated to the conclusions of this study and thefinal lines on future research. Finally,
we include an appendix with empirical results after the bibliographical references.
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2 Forecast Errors: A Short Literature Review

The forecast errors are generated by the mismatch of the modelling estimate with its
Data Generating Process (DGP). These errors are explained by contamination from
outliers and multiple breaks at unknown times. Every analysis process presents the
costs and benefits of selection for forecasting. We could deduce that the costs of
model selection are less than the benefit of finding systematic flaws in the forecast
[4]. From a scientific point of view, we can consider that the first formal predictions
occurred in the early 1700s, giving rise to a vast field of knowledge [17]. Proof
of this, there have been forecasting competitions in the last 40 years, allowing the
development of new techniques for accuracy [18].

Currently, forecasting techniques are a vast number of options, making it impos-
sible to gather all of them in a single work of state-of-the-art theoretical and practical
forecasting. The forecasting theory in time series is based on theoretical approaches
to future values by identifying past patterns [19]. It is finding two main types of
predictions, point estimation (future point values) and interval estimation (based on
probability windows). On large scales, we distinguish theoretical models: statistical
and econometric; Bayesian forecasting; variable and model selection; combining
forecasts; data-driven methods; methods for intermittent demand; or reasoning and
mining. Forecasting techniques improve decision-making in practice by reducing
the uncertainty of the exogenous factors that determine the value to be forecast.
The empirical applications are varied: operations and supply chain management,
economics and finance; energy markets and consumption; environmental appli-
cations; social good and demographic forecasting; systems and humans; tourism
demand forecasting; forecasting for aviation; traffic flow forecasting; car arrival
forecasting; election forecasting; sports forecasting; agricultural forecasting, among
other fields [4].

In analysing time-series data, comparing models to evaluate the predictive
capacity is expected. When a new forecasting technique is proposed, it is common
for its performance to be benchmarked according to some measure of forecast accu-
racy against other methods using a sub-sample of some particular time series [4].
The scientific literature has extensively discussed forecast and accuracy measures.
The authors have focused their accuracy analysis on errors [20]. Other authors have
focused their interest on analysing the direction of structural changes, concluding
that the cost can be significantly ignored [21]. The debate has taken place in the
literature with discussions among error measures and forecast direction analysis in
decision-making, concluding the usefulness of the study of direction changes as a
complement to the traditional criteria [22].
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2.1 Most Common Error Measures and Others
in Forecasting

Hyndman and Koehler [7] studied three examples of series within-sample and out-
sample (ex-post) predictions, finding limitations of undefined or infinite solutions.
They compared estimation methods for (a) series 472 from M-3 competition; (b) 10
years of monthly log stock returns for the Walt Disney Corporation, 1990–1999; (c)
3 years of monthly sales of a lubricant product sold in large containers. In partic-
ular, Mean Absolute Percentage Error (MAPE) forecasting accuracy measures were
compared [23]; Geometrical Mean Relative Absolute Error (GMRAE), symmetric
MAPE (sMAPE), Median Relative Absolute Error (MdRAE), Median Absolute
Percentage Error (MdAPE) and symmetric Median Absolute Percentage Error
(sMdAPE) [24, 25]; Mean Absolute Scaled Error (MASE) [7].

A considerable forecasting measure has been used in the applied modelling:
MAPE, MdAPE, Root Mean Square Percentage Error (RMSPE), Root Mean Square
Percentage Error (RMSPE); measures based on relative errors: Mean Relative Abso-
lute Error (MRAE), Median Relative Absolute Error (MdRAE), GMRAE; relatives
measures or scaled errors. Even more recent articles with new measures such as
Unscaled Mean Bounded Relative Absolute Error (UMBRAE) [26] or trigonom-
etry measures of forecast called the Mean Arcotangent Absolute Percentage Error
(MAAPE) [27]. Researchers seem to prefer unit-free measures to compare fore-
casting methods [24]. RootMean Squared Error (RMSE) was the most used criterion
in M-competition [23]. However, the researchers have preferred additional measures
such as the MAPE, which is relevant only by ratio-scaled data and penalised by
extreme values in the predictions [24]. Using the different forecast accuracymeasures
in the modelling is difficult; the authors reveal difficulties of consistent homogeni-
sation. After extensive reading and investigation, we can conclude that there is no
agreement on the best forecast measure [17].

In the following sections of this paper, we will propose a solution to the relative
measures among models. This work aims to provide the researchers with a decision
tool to improve their analysis in point estimation [28]. The proposal is the develop-
ment of a working scheme to compare models that meet three principles (reliability,
robustness and interpretability) that allow the identification of the “best” model on a
set of predictivemodels.We understand that in practice, forecasting scientific articles
try to provide a better model than techniques used in the literature. Our contribution
is for new researchers to have a dimensionless measure of comparison of predictive
models, and the robustness of this measure will be given by the Lambda-Relative-
Measures Theorem [29]. We consider our proposal applicable for new estimation
methods compared to existing ones and is usable on different time granularities [30].
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3 Theoretical Framework

Time series present pitfalls in evaluating forecasts associated with the character-
istics of the DGP to be analysed [1]. We will differentiate the training period
t = 1, 2, . . . ,T and the out-sampling training period (ex-post) t+hwith the window
of time horizon h. Starting from the definition of the ex-post forecast, we will denote
an actual value yt+h on the horizon t + h, where t ∈ T is the last value of the training
period of the models that we use to predict on a horizon h ∈ H . Similarly, we can
denote the predictive value as ŷt+h this prediction can be made by any existing model
in the next univariate forecasting techniques section. Prediction errors are defined by
εt+h = ŷt+h − yt+h; giving the prediction results; the goal is to minimise the expec-
tation of the error argminE(εt+h). The limitation for the relative accuracy measures
appears when ŷt+h = yt+h being obtained εt+h = 0 for the numerator or denominator
for forecasting relative accuracy measures [7].

These models will provide support for the development of the empirical section.
A second subsection will be the contribution of this paper with the theoretical
development of Lambda-Relative-Measures, giving rise to the Lambda-Relative-
Measures Theorem of accuracy. These theoretical aspects will be verified in the
empirical section; in particular, wewill workwith data applied to the Spanish tourism
industry, in which the importance of anticipating future demand is “mandatory” and
a significant area of research [4, 31, 32].

Figure 1 represents the steps for choosing the “best” model under reliability,
robustness, and interpretability characteristics. The initial data must be used to esti-
mate forecasting and control tasks by the researcher—the models to be used by
researchers and the desired window time horizon h selection. The empirical time
horizon will be determined by the science in which the methodology is applied.
Testing the robustness of the projections will involve knowing whether the models
are significantly different from the current predicted values (ex-post). From this
step, we can find the problem and redirect the modelling. Finally, we will propose
the “best” model with the Lambda decision matrix and the theoretical support of the
Lambda-Relative-Measures Theorem.

Fig. 1 A scheme to find the time-series model with the least forecast error. Own Elaboration
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3.1 Automatic Forecasting and Testing: Univariate
Forecasting Techniques

For the estimation of models, we use the R package, and the techniques are as follows
SARIMAmodels [10], HWAandHWM[15], ARARmodel [12], SSA [11] andHNN
[14]. One of the aspects to be dealt with in evaluating predictions is the “forecast
distribution” [17]. Our work scheme (Fig. 1.) tests the equality of variances to find
representative differences among forecasting models based onmedians. The primary
motivation is that predictions can range from short to long terms [33].

Once the prediction models have been proposed for the analysis, it is convenient
to compare the variances for the evaluation period horizon h. We apply the Brown-
Forsythe test’s robust homogeneity of variance [9].

Suppose we have lv prediction methods ∀ v = 1, 2, 3 . . . L and we evaluate
the same time horizon h(∀ h = 1, 2, 3 . . .H ). Once the prediction tasks with the
lv techniques, we know the standard deviations of all models σ1, σ2, σ3, . . . , σL. The
Brown-Forsythe test calculation formula for the predictions would be defined as
follows:

W = (Hl − l)
∑l

k=1 hk
(
Zk − Z

)2

(l − 1)

{
l∑

k=1

hk∑

i=1

(
Zki − Zk

)2
} ∼ F(l−1)(Hl−l) (1)

The W1 statistic is distributed as approximately F-Fisher-Snedecor under the null
hypothesis of equality of variances among time series compared [34]. In the case
of rejecting the null hypothesis, we must consider whether the differences with the
present value are significant or not. Otherwise, the option of not rejecting the null
hypothesis should bemeasured.With the equality of statistical variances certified, it is
convenient to quantify the improvement using the differentmodels. The final decision
criterion is developed in the following subsection: “Family forecasting Evaluation:
Lambda-Relative-Measures”.

Family forecasting Evaluation: Lambda-Relative-Measures. In this methodolog-
ical section, we will develop the Lambda-Relative-Measures of accuracy. We would
not encounter problems with exact predictions in measures based on the errors for
an individual model ŷt+h = yt+h → εt+h = 0. The problem occurs when our deci-
sion on the choice of the model is based on the dimensionless relative ratio among
different models for the same forecasting capacity [19]. An example of this could be
the Relative Ratio of RMSE (RRMSE), which can be expressed as follows:

1 Zki = ∣
∣yklv t+h − median(yklv t+h)

∣
∣; Z = (

1
/
Hl

) l∑

k=1

hk∑

i=1
(Zki);Zk = (

1
/
hk

) hk∑

k=1
(Zki).
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RRMSEi,j =

√
H∑

h=1

(
ŷit+h − yt+h

)2

√
H∑

h=1

(
ŷjt+h − yt+h

)2
(2)

The advantage of using relativemethods lies in easy interpretability; i.e., in ex-post
forecasting, we will say that model i is better than the model j when RRMSEi,j < 1,
otherwise, we will say that j is better than the model i. In this case of RRMSEi,j = 1,
both have the same predictive capacity.

Its relative expression has been proposed in the literature, meaning a change of
scale in the measurement [7]. We suggest Lambda-Relative-Measures and the deci-
sionmatrix. The ratio is easy to interpret, based on results around 1. If ŷjt+h−yt+h = 0,
we find a problem of mathematical undefinition that invalidates the selection process
of predictive models. The relative measure ratio cited is a solution to the undefined
problem using RMSE. For our development, we will assume that Rt the variable
is ordered t = 1, 2, . . . ,T . Thus, the errors εt+h are distributed with E[εt+h] = 0

and var[εt+h] = σ 2. From which it can be deduced that RRMSEi,j = σ 2
i

/
σ 2
j with

σ 2
i , σ 2

j ≥ 0. Undefined problems occur when σ 2
j = 0, being a plausible and not

improbable result.
The proposed solution is the Lambda-Relative-Measures, which expression for

RMSE is as follows:

λ − RRMSEi,j =
λ +

√
H∑

h=1
(ŷit+h−yt+h)

2

h

λ +

√
H∑

h=1

(
ŷjt+h−yt+h

)2

h

(3)

Being λ a constant value that we introduce ad-hoc, and that can take any value
λ �= 0. To demonstrate the validity of this criterion, we must show the limits of the
expression:

lim λ − RRMSEi,j
RMSEj→0

= λ + σ 2
i

λ
(4)

Given any value of σ 2
i ≥ 0 and σ 2

j = 0 with λ �= 0, we can indicate that we have
found a solution to RMSEj → 0. Analogously, we can find an expression in the limit

of RMSEi → 0 being lim λ − RRMSEi,j
RMSEi→0

= λ
/

(λ + σ 2
j ). The λ values will depend

on the dimensions of the variables to be analysed. In our empirical work, we use a
λ = 1, and the main idea is not to distort the interpretability of the ratio, this criterion
being the basis for solving the problem of mathematical indefiniteness.
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A decision is based on Matrix λ − RRMSEi,j establishing a better model with
a more significant predictive capacity for the DGP. This matrix is developed with
robust laws avoiding undefined results. The idea of replicating different automatic
models to the same data framework and obtaining a prediction result for eachwindow
time horizon h [35]. For this, we define the decision tool calledMatrix λ−RRMSEi,j:

Matrix λ − RRMSEi,j =

⎛

⎜
⎜
⎜
⎝

λ − RRMSE1,1 λ − RRMSE1,2 · · · λ − RRMSE1,j

λ − RRMSE2,1 λ − RRMSE2,2 · · · λ − RRMSE2,j
...

...
...

...

λ − RRMSEi,1 λ − RRMSEi,2 · · · λ − RRMSEi,j

⎞

⎟
⎟
⎟
⎠

(5)

The robustness of this matrix is determined by the fulfilment of three axioms:
completeness, transitivity and rationality. Completeness implies that a model can be
rated on a scale of good, bad or the same as that model itself. Transitivity allows
us to organise the models according to the criterion of least λ − RRMSEi,j. Based
on the above, rationality is fulfilled when the best ex-post predictive capacity model
presents the lowest λ − RRMSEi,j. The matrix results are easy to interpret; we will
say that model i is better than the model j when λ − RRMSEi,j < 1, otherwise, we
will say that j is better than the model i. In this case of λ −RRMSEi,j = 1, both have
the same predictive capacity.

The theoretical results could be summarised in the following Lambda Theorem
of Accuracy:

For any pair of time series predicted using forecast models (ŷit+h, ŷ
j
t+h) on a variable under

study out-sample of the training period yt+h. If ∃Lambda−Relative−Measures �= 0. Then,
an ordering allows quantifying the closeness or distance to the actual value yt+h.

In the following empirical section, we will develop the conceptual scheme of
Fig. 1. For a data set, we will make the predictions with six models, and finally,
we will be able to quantify which model is better in terms of accuracy avoiding
inconsistency decisions.

4 An Empirical Application to Evaluate Automatic
Forecasting Modelling of Tourism Data

The empirical application of themethodological framework is carried outwith official
data from the SpanishNational Institute of Statistics (INE in Spanish). Themodelling
period runs from January 1999 toDecember 2019. The variable to study is the number
of foreign tourists’ hotel overnight stays in Spain. The results have been tested in 52
Spanish provinces, but we will show the aggregate "Spain" time series. We will take
January 1999 to December 2018 as the training period of the models with an ex-
post forecasting training period for the year 2019. For reasons of avoiding repetitive
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calculations and interpretations, in this work, we will present the results of the Spain
time series for the horizons h = 3, 6, 12. For the rest of the 52 Spanish provinces, we
will present the decision matrix for h = 3 (see appendix); it is a similar application
and interpretation for h = 6, 12. In appendix 3, we offer the comparative decision
matrix with the SARIMA model; however, any researcher could select the desired
comparative model.

Figure 2 shows the application of ex-post estimation and forecasting methods
for the data mentioned (Spain) in the previous section. The results observed in the
graph make it impossible to decide at a glance which model presents the minimum
forecasting error with a seasonal component observed throughout the data training
period. This factmakes it sense to continuewith the proposedwork scheme to contrast
significant differences in variances and subsequently classify the models using the
Matrix λ − RRMSEi,j. This way, we improve decision-making based on objective
data and robust statistical processes.

In Table 1, the robust variances test based on the forecasting methods’ medians
indicates no significant differences among the processes. The p-values in Table 1
verify the non-existence of differences between prediction methods with windows h
= 3, 6, 12 for the Spain time series.
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00
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Fig. 2 Out-sample forecast for the aggregate series for foreign tourists visiting Spain h = 3, 6, 12
(Jan. 2019 to Dec. 2019). Own Elaboration

Table 1 Brown-Forsythe test
results. Horizons (January
2019 to December 2019).
Null hypothesis: the variances
of the forecasting methods are
the same for the time horizons
h—own elaboration

Brown-Forsythe test

Horizon df Value p-value

h = 3 (6, 14) 0.0057 1.00

h = 6 (6, 35) 0.0108 1.00

h = 12 (6, 77) 0.0221 1.00
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The non-existence of variance differences has been empirically demonstrated
in the Spanish case. The application of differences of variances Brown-Forsythe
test for the 52 provinces (outside of this work) shows no significant differences
with a high confidence level (p-values = 1). We are interested in mentioning other
time horizons for the rest of the 52 provinces (h = 6, 12); this test shows only
statistically significant differences among prediction methods for the cases of the
Balearic Islands (h = 12; HWM), Palencia (h = 6, 12; ARAR) and Melilla (h = 12;
ARAR) provinces. According to these results, we can deduce there are no differences
among the variances of the estimation methods for a total of 159 predictions with
the horizon windows h = 3, 6, 12.

The last step is the calculation of the “best” model. The results of the models used
in the literature are very limited to the data set and the homogeneity [17]. The results
of table 2 verify the validity of each model for the time horizon for the time series
analysed for the Spanish case according to the methodological section. For h = 3,
the ranking is (1) ARAR, (2) HWA, (3) HNN, (4) SARIMA, (5) HWM and (6) SSA;
for h = 6, the order is (1) ARAR, (2) SARIMA, (3) HWM, (4) HNN, (5) HWA and
(6) SSA; finally the best models for a time horizon of 12 months are (1) SARIMA,
(2) HWA, (3) HNN, (4) ARAR, (5) HWM and (6) SSA (Table 2).

Once the entire evaluation process of forecasting models with tourist accommo-
dation data for Spain has been empirically described, we proceed to the conclu-
sions, discussions on the procedure, future research lines of investigation and
recommendations.

5 Conclusions and Discussions

This work aims to offer a forecast model selection strategy, aware of the limitations
and uncertainty. The most significant advantage is identifying mathematical patterns
and avoiding excess optimism or pessimism with critical approaches based on scien-
tific literature. Not forgetting that the forecasts’ accuracy and the uncertainties’
correction will depend on the patterns in the DGP period analysed [4]. Using bench-
marks to evaluate models meaningfully quantifies the model’s advantages compared
to similar tools.

We have proposed a granularity working scheme for selecting models in time
horizon windows (h = 3, 6, 12). Our optimal model will minimise the ratio
λ − RRMSEi,j, previous the analysis described under the principles of reliability,
robustness and interpretability. These three principles represent a theoretical and
empirical contribution of precision comparison among methods or hypothesis vali-
dation. The criteria developed in this work contribute to the traditional problem of
selecting the “best” model [36], and its granularity allows quantifying the compara-
tive analysis of predictivemodels [30]. In thisworkwithLambda-Relative-Measures,
we can measure the “profits” and the costs of using different models [17].
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Table 2 Matrix λ−RRMSEi,j for Spanish forecasting methods. January 2019 to December 2019).
Rankings in brackets. Own elaboration

Horizon For. methods Forecasting methods

SARIMA (4) SSA (6) ARAR (1) HNN (3) HWA (2) HWM (5)

h = 3 SARIMA (4) 1.00 0.57 1.39 1.03 1.12 0.92

SSA (6) 1.75 1.00 2.42 1.81 1.95 1.61

ARAR (1) 0.72 0.41 1.00 0.75 0.80 0.67

HNN (3) 0.97 0.55 1.34 1.00 1.08 0.89

HWA (2) 0.90 0.51 1.24 0.93 1.00 0.89

HWM (5) 1.08 0.62 1.50 1.12 1.21 1.00

SARIMA (2) SSA (6) ARAR (1) HNN (4) HWA (5) HWM (3)

h = 6 SARIMA (2) 1.00 0.49 1.05 0.99 0.74 1.00

SSA (6) 2.05 1.00 2.15 2.04 1.52 2.05

ARAR (1) 0.95 0.46 1.00 0.95 0.70 0.95

HNN (4) 1.01 0.49 1.06 1.00 0.74 1.01

HWA (5) 1.35 0.66 1.42 1.35 1.00 1.35

HWM (3) 1.00 0.49 1.05 0.99 0.74 1.00

SARIMA (1) SSA (6) ARAR (4) HNN (3) HWA (2) HWM (5)

h = 12 SARIMA (1) 1.00 0.42 0.54 0.66 0.93 0.43

SSA (6) 2.36 1.00 1.27 1.56 2.18 1.02

ARAR (4) 1.85 0.79 1.00 1.23 1.71 0.80

HNN (3) 1.51 0.64 0.81 1.00 1.40 0.65

HWA (2) 1.08 0.46 0.58 0.72 1.00 0.47

HWM (5) 2.31 0.98 1.25 1.53 2.14 1.00

From a theoretical point of view, studying differences in medians for windows
temporal horizons implies knowing the significant differences among predictive
models. The analysis of the difference of medians overcomes the theoretical limi-
tations on the distribution of the predictions since each predicted observation is
unique and unrepeatable [16]. In cases where there are no significant differences,
the Lambda-Relative-Measures represent an efficient decision-making tool and a
statistical measure with the optimal accuracy option [36].

The debate is quite broad in the scientific literature, and we currently consider
that there is no standard criterion concerning the “best” predictive model. However,
our contribution to a robust model selection criterion must be evaluated on several
practical problems: (a) The prediction of seasonal time series is questioned for several
reasons. There are almost as many model applications as there are series to study in
practice. Seasonality depends on the temporal frequency and the repetitive cycles of
each series. So, it is complicated to determine previously “the best” predictivemodel;
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(b) according to DeGoijer and Hyndman in 2006, forecasting analysis for time series
with seasonal patterns presents robustness problems. The conclusions depend on the
results carried out. Therefore, the researchers consider no consensus on which model
is preferred; (c) ex-post forecasting allows quantifying the differences with actual
values. Depending on the type of model, the weighting of the last observations.
For this, model predictions are subject to possible structural changes not previously
modelled [8, 37]. Examples of them can be economic crises in economics or health
crises [38].

The robust criteria in decision-makingovercomemany limitations of the literature.
This criterion opposes previous criticisms of using error measures depending on the
situation since it reliably compares the relative differences with actual values [24]. In
the empirical section, it has been observed that there is not always the best predictive
model for the 53 series (Spain and 52 provinces) and different windows of time
horizons. The Lambda theorem of accuracy allows us to quantify and decide the
“best” model in the analysed window horizon. In this work, we have used some
forecasting techniques, which are many more in the literature [20, 42]. Furthermore,
in the empirical section, data have been used for tourism forecasting and are widely
studied in the literature [40–44].

The implications of this study are varied, and the suggested future research
lines: (1) We encourage demonstrating the Lambda theorem of accuracy with other
measures of accuracy different from RMSE [7]; (2) We have found results for the
tourism industry, and we suggest it replicate the methodology to other disciplines
of science [4]; (3) New alternative robustness tests can be developed. We encourage
practitioners and researchers to reflect deeply on the limitations of forecasting in order
to improve theoretical and applied sciences and ultimately improve the knowledge
society.

Data Availability Statement https://www.ine.es/jaxiT3/Tabla.htm?t=2074.

Appendix

See Table 3.

https://www.ine.es/jaxiT3/Tabla.htm?t=2074
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Table 3 λ−RRMSESARIMA,j for all Spanish provinces, including the Spanish series (h= 3, January
2019 to March 2019). Own elaboration

h = 3 SARIMA
versus
SARIMA

SARIMA
versus SSA

SARIMA
versus
ARAR

SARIMA
versus
HNN

SARIMA
versus
HWA

SARIMA
versus
HWM

Spain 1,0000 0,5716 1,3857 1,0349 1,1151 0,9232

Alava 1,0000 0,9994 0,9999 1,0599 1,0001 1,0000

Albacete 1,0000 0,9997 0,9999 1,0000 1,0050 1,0049

Alicante 1,0000 0,9981 0,9987 0,9986 0,9996 1,0009

Almería 1,0000 0,9968 1,0003 1,0001 1,0003 1,0003

Avila 1,0000 0,9996 0,9999 1,0000 1,0001 1,0001

Badajoz 1,0000 0,9996 0,9998 1,0000 1,0002 1,0003

Baleares 1,0000 0,9995 0,9977 0,9981 0,9987 0,9861

Barcelona 1,0000 1,0005 0,9998 0,9947 0,9982 0,9972

Burgos 1,0000 0,9995 1,0002 0,9999 1,0001 1,0001

Caceres 1,0000 0,9997 1,0001 1,0001 1,0001 1,0001

Cádiz 1,0000 0,9958 0,9999 0,9997 0,9997 0,9998

Castellon 1,0000 0,9985 1,0001 0,9997 0,9997 0,9991

Ciudad_Real 1,0000 1,0002 1,0000 1,0000 1,0001 1,0001

Cordoba 1,0000 0,9999 0,9999 1,0000 1,0001 0,9999

A_Coruña 1,0000 0,9985 1,0000 0,9995 0,9998 1,0001

Cuenca 1,0000 0,9999 0,9999 0,9999 1,0000 0,9999

Gerona 1,0000 0,9971 1,0000 1,0004 1,0008 1,0017

Granada 1,0000 0,9962 0,9997 1,0003 1,0007 1,0016

Guadalajara 1,0000 0,9999 1,0000 1,0000 1,0000 1,0000

Gipuzcoa 1,0000 0,9991 0,9998 0,9997 0,9998 0,9996

Huelva 1,0000 0,9975 0,9997 0,9999 1,0000 0,9970

Huesca 1,0000 0,9990 1,0005 0,9999 0,9999 0,9998

Jaen 1,0000 0,9995 1,0000 1,0001 1,0001 1,0002

Leon 1,0000 1,0003 1,0004 1,0003 1,0002 1,0002

Lleida 1,0000 0,9991 0,9999 1,0001 1,0000 1,0002

La_Rioja 1,0000 0,9998 1,0001 1,0000 1,0000 1,0001

Lugo 1,0000 0,9993 0,9997 0,9995 0,9996 0,9996

Madrid 1,0000 0,9938 0,9990 0,9979 0,9997 0,9987

Malaga 1,0000 0,9962 0,9996 0,9976 0,9985 0,9985

Murcia 1,0000 0,9973 1,0000 0,9998 1,0001 1,0000

Navarra 1,0000 0,9992 1,0000 0,9999 1,0000 0,9999

Ourense 1,0000 0,9999 1,0000 1,0000 1,0000 1,0000

Asturias 1,0000 0,9983 0,9997 0,9998 1,0002 1,0001

Palencia 1,0000 0,9999 1,0081 1,0000 1,0000 1,0000

(continued)
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Table 3 (continued)

h = 3 SARIMA
versus
SARIMA

SARIMA
versus SSA

SARIMA
versus
ARAR

SARIMA
versus
HNN

SARIMA
versus
HWA

SARIMA
versus
HWM

Las_Palmas 1,0000 1,0336 1,0033 1,0054 1,0044 1,0007

Pontevedra 1,0000 0,9983 1,0001 1,0000 1,0009 1,0012

Salamanca 1,0000 0,9993 0,9998 1,0000 1,0002 1,0001

S.C. Tenerife 1,0000 1,0053 1,0006 1,0009 0,9996 1,0031

Cantabria 1,0000 0,9981 0,9997 0,9998 1,0000 0,9999

Segovia 1,0000 0,9995 0,9999 1,0000 1,0001 0,9999

Sevilla 1,0000 0,9999 0,9994 0,9993 1,0000 0,9987

Soria 1,0000 0,9998 1,0000 1,0000 1,0000 1,0000

Tarragona 1,0000 0,9987 0,9996 0,9993 0,9983 0,9994

Teruel 1,0000 0,9995 0,9999 1,0000 1,0001 1,0001

Toledo 1,0000 0,9999 1,0001 1,0000 1,0001 1,0000

Valencia 1,0000 0,9948 1,0004 0,9995 0,9983 0,9997

Valladolid 1,0000 0,9998 0,9998 1,0000 1,0001 1,0001

Bizkaia 1,0000 0,9990 1,0001 0,9995 1,0001 0,9997

Zamora 1,0000 0,9996 0,9998 1,0000 1,0001 1,0000

Zaragoza 1,0000 0,9996 1,0008 1,0003 1,0007 1,0017

Ceuta 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Melilla 1,0000 1,0001 1,0739 2,0457 1,9483 2,0195
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Recurrent Neural Networks
for Forecasting Time Series with Multiple
Seasonality: A Comparative Study

Grzegorz Dudek , Slawek Smyl , and Paweł Pełka

Abstract This paper compares recurrent neural networks (RNNs) with different
types of gated cells for forecasting time series with multiple seasonality. The cells
we compare include classical long short-term memory (LSTM), gated recurrent unit
(GRU), modified LSTM with dilation, and two new cells we proposed recently,
which are equipped with dilation and attention mechanisms. To model the temporal
dependencies of different scales, our RNN architecture has multiple dilated recurrent
layers stacked with hierarchical dilations. The proposed RNN produces both point
forecasts and predictive intervals (PIs) for them. An empirical study concerning
short-term electrical load forecasting for 35 European countries confirmed that the
new gated cells with dilation and attention performed best.

Keywords LSTM · Multiple seasonality · RNN · Short-term load forecasting ·
Time series forecasting

1 Introduction

Forecasting time series (TS) with multiple seasonality is a challenging problem. To
solve it, a forecasting model has to deal with short- and long-term dynamics as well
as a trend and variable variance. Classical statistical methods such as autoregressive
moving average (ARMA) and exponential smoothing methods can be extended to
multiple seasonal cycles [1, 2] but they suffer from many drawbacks. The most
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important of these are: their linear nature, limited adaptability, limited ability to
model complex seasonal patterns, problems with capturing long-term dependencies
and problems with introducing exogenous variables.

To improve the ability of statistical models to capturemultiple seasonality, various
approaches have been applied, such as extending the model with Fourier terms [3,
4], TS decomposition [5] and local modeling [6, 7]. Machine learning (ML) gives
additional opportunities to the models and makes them more flexible. The main idea
behind ML is to learn from past observations any inherent structures, patterns or
anomalieswithin the data,with the objective of generating future values for the series.
Themost popularMLmodels in the field of forecasting are neural networks (NNs) [8]
as they can flexibly model complex nonlinear relationships with minimum a-priori
assumptions and reflect process variability in uncertain dynamic environments. They
offer learning of representation, cross-learning on massive datasets and modeling
temporary relationships in sequential data. In particular, RNNs, whichwere designed
for sequential data such as TS and text data, are extremely useful for forecasting. They
form a directed graph along a temporal sequence which is able to exhibit temporal
dynamic behavior using their internal state (memory) to process sequences of inputs.

Modern RNNs, such as LSTM and GRU, are capable of learning both short
and long-term dependencies in TS [9]. They are equipped with recurrent cells that
can maintain their states over time and, using nonlinear “regulators” called gates,
can control the flow of information inside the cell. Recent works have reported
that gated RNNs provide high accuracy in forecasting and outperform most of the
statistical and ML methods, such as ARIMA (integrated ARMA), support vector
machine, and shallow NNs [10]. A comparison of RNNs on multiple seasonality
forecasting problems performed in Bianchi et al. [11] showed that LSTM, GRU and
classical ElmanRNNdemonstrate comparable performance but are relatively slow in
terms of training time due to the time-consuming backpropagation through the time
procedure. To improve the learning capability and forecasting performance facing
RNN, different mechanisms have been used such as residual connections [12] and
dilated architecture [13],which solves themajor challenges ofRNNwhen learning on
long sequences: i.e., complex dependencies, vanishing and exploding gradients, and
efficient parallelization. Hybrid solutions have also been proposed combining RNN
with TS decomposition [14] or other methods such as exponential smoothing. One
such hybrid model won the reputed M4 forecasting competition in 2018, showing
impressive performance [15].

Motivated by the superior performance of RNN in TS forecasting, in this study,
we compare RNNswith different recurrent cells.We consider a problem of univariate
forecasting TS with multiple seasonality on the example of short-term electrical load
forecasting (STLF). We propose a stacked hierarchical RNN architecture trained
globally across all series and equipped with recurrent cells of different types. We
normalize TS input data and encode output data using coding variables determined
from recent history. This is to better capture the current dynamics of the process.
Such prepossessing has proven successful in other forecasting models for multiple
seasonality, see our papers [6, 16, 17].
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The contribution of this study is as follows:

1. Wepropose a newRNNarchitecture for forecastingTSwithmultiple seasonality.
It is composed of three dilated recurrent layers stackedwith hierarchical dilations
to deal with multiple seasonality. It uses a combined asymmetrical loss function
which enables the model to produce both point forecasts and PIs and also to
reduce the forecast bias.

2. We compare five types of gated recurrent cells: classical LSTM and GRU, mod-
ified LSTM with dilation, and two new cells we proposed recently, which are
equipped with dilation and attention mechanisms.

3. We empirically demonstrate on real data for the electricity demand for 35 Euro-
pean countries that our proposed model copes successfully with complex sea-
sonality. The new attentive dilated recurrent cell significantly outperforms its
competitors in terms of accuracy.

The remainder of the paper is organized as follows. Section 2 describes the fore-
casting problem and data representation. Section 3 presents the recurrent cells and
Sect. 4 describes RNN architecture. Section 5 describes the results of experiments
and discusses our findings. Finally, Sect. 6 concludes the paper.

2 Forecasting Problem and Data Representation

In this study, as an example of forecasting time series with multiple seasonality, we
consider a problem of STLF. The hourly load time series, {zτ }Mτ=1, express triple
seasonality: yearly, weekly and daily (see Smyl et al. [18] for details, where such
time series are analyzed). Our goal is to forecast the daily profile (24 h) for the next
day based on historical loads (univariate problem).

As input information,we introduce aweeklyprofile,whichprecedes the forecasted
day. This profile is represented by the input pattern defined as follows:

xt = zw
t − zw

t

std(zw
t )

(1)

where xt ∈ R
168 is the t-th weekly pattern, zw

t ∈ R
168 is the original sequence of the

t-th week, and zw
t and std(zw

t ) are its mean and standard deviation, respectively.
Note that Eq. (1) expresses standardization of the weekly sequence. Thus the

weekly sequences for t = 1, ..., N are unified, i.e., they are centered around zero
with a unit variance. This operation filters out the trend and yearly seasonality.

An output pattern represents a forecasted daily sequence as follows:

yt = zdt − zw
t

std(zw
t )

(2)

where yt ∈ R
24 is the t-th daily pattern and zdt ∈ R

24 is the forecasted sequence
(following directly weekly sequence zw

t which is encoded in xt ).
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Note that in Eq. (2), we encode the daily sequence using the mean and standard
deviation of the preceding week. This enables us to decode the forecasted pattern, ŷ,
into the real sequence as follows:

ẑd = ŷstd(zw) + zw (3)

where zw and std(zw) are coding variables determined on the basis of the historical
weekly sequence represented by query pattern x.

Following Smyl et al. [18], to introduce more input information related to the
forecasted sequence, we extend the input vector with the following components:
log10(z̄

w
t ), which informs about the level of the time series, dw

t ∈ {0, 1}7, dm
t ∈

{0, 1}31 and dy
t ∈ {0, 1}52, which are binary one-hot vectors encoding day of the

week, day of the month and week of the year for the forecasted day. The extended
input pattern takes the form:

x′
t = [xt , log10(z̄t ), dw

t , dm
t , dy

t ] (4)

The paired input and output patterns constitute the training set, {(x′
i , yi )}Ni=1. The

proposed model is trained in cross-learning mode, i.e., on many time series [15],
which enables it to capture the shared features of the individual series and prevents
over-fitting. The training sets for all L time series are combined:� = �1 ∪ ... ∪ �L .

3 Recurrent Cells

In our study, we explore RNNswith different gated recurrent cells. They include clas-
sical cells such as LSTM and GRU, modified LSTM, i.e., dilated LSTM (dLSTM),
and two new solutions proposed recently, dRNNCell and adRNNCell.

3.1 LSTM

LSTM was proposed in Hochreiter and Schmidhuber [19] for learning problems
related to sequential data. The main idea behind LSTM is a memory cell that carries
relevant information throughout the processing of the sequence, and nonlinear gating
units that regulate the information flow in the cell. Due to the memory, long-term
temporal relationships can be captured and the effects of short-term memory can be
reduced, i.e., even information from the earlier time steps can make its way to later
time steps. Moreover, in LSTM, unlike in simple RNNs, the optimization problem
with vanishing gradients was reduced, which improved learning capabilities.

Figure 1 shows a diagram of LSTM. LSTM uses two states: a cell state, ct , and a
hidden state, ht . The states contain information learned from the previous time steps.
At each time step t , information is added to or removed from the cell state. These
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- vector concatenation operator

ft = σ(Wfxt +Vfht−1 + bf )
it = σ(Wixt +Viht−1 + bi)
ot = σ(Woxt +Voht−1 + bo)
c̃t = tanh(Wcxt +Vcht−1 + bc)
ct = ft ⊗ ct−1 + it ⊗ c̃t
ht = ot ⊗ tanh(ct)
yt = ht

Fig. 1 LSTM

updates are controlled using three gates, which in fact are layers of learned nonlinear
transformations. They comprise input gate (i), forget gate ( f ) and output gate (o).
All of the gates receive the hidden state of the past cycle and the current time series
sequence as inputs. They can learn what information is relevant to keep or forget
during training. At time step t , the cell uses the recent states, ct−1 and ht−1, and the
input sequence, xt , to compute new updated states ct and ht . The hidden and cell
states are recurrently connected back to the cell input. The new hidden state, ht , has
two functions. It controls the gating mechanism in the next step and it is treated as
the cell output, yt , which goes to the next layer.

The compact form of the equations describing LSTM is shown in Figure 1, where:
W and V are learned weight matrices, b are learned bias vectors, ⊗ denotes the
Hadamard product and σ is a logistic sigmoid function.

3.2 GRU

In comparison to LSTM, in GRU the cell state was eliminated so the hidden state is
used to both store information and control the gating mechanism [20]. GRU only has
two gates, a reset gate (r ) and an update gate (u). The update gate acts in a similar
way as the forget and input gates in LSTM. It decides what information to remove
and what new information to add. The reset gate decides how much past information
to forget. The output gate was eliminated. The gating mechanism of GRU and the
corresponding equations are shown in Fig. 2.

3.3 dLSTM

To improve the modeling of long-term dependencies in time series, we propose a
dilated LSTM cell (Fig. 3). Our modification comes down to two elements. First, in
addition to the hidden state ht−1, we introduce a delayed hidden state, ht−d , d > 1.
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1-

rt = σ(Wrxt +Vrht−1 + br)
ut = σ(Wuxt +Vuht−1 + bu)

h̃t = tanh(Whxt +Vh(rt ⊗ ht−1) + bh)

ht = (1 − ut) ⊗ ht−1 + ut ⊗ h̃t

yt = ht

Fig. 2 GRU

ft = σ(Wfxt +Vfht−1 +Ufht−d + bf )
it = σ(Wixt +Viht−1 +Uiht−d + bi)
ot = σ(Woxt +Voht−1 +Uoht−d + bo)
c̃t = tanh(Wcxt +Vcht−1 +Ucht−d + bc)
ct = ft ⊗ ct−1 + it ⊗ c̃t
h′
t = ot ⊗ tanh(ct)

ht = [h′
t,1, ..., h

′
t,sh

]

yt = [h′
t,sh+1, ..., h

′
t,sh+sy ]

Fig. 3 dLSTM

This allows the data processing in time t to be controlled using not only information
from the recent state but also using direct information from the delayed state. This
can be useful for seasonal time series, in which case the dilation can correspond to
the period of seasonal variations. Second, the output hidden state, h′

t , is split into
“real output” yt , which goes to the next layer, and a controlling output ht , which
is an input to the gating mechanism in the following time steps. This solution was
inspired by Ben-Ari and Shwartz-Ziv [21]. The size of the c-state is equal to the
summed sizes of h-state and y-output, i.e., sc = sh + sy .

The equations corresponding to dLSTM are shown in Fig. 3, where: W, V and U
are learned weight matrices, b are learned bias vectors, and sh, sy are the lengths of
hidden state and output vectors, respectively.

3.4 dRNNCell

A dilated recurrent NN cell, dRNNCell, was introduced in Smyl et al. [18] as a
combination of GRU and LSTM cells, see Fig. 4. It was designed to operate as part
of a multilayer dilated RNN [13]. Its output is split into yt and ht as in dLSTM.

As in LSTM, dRNNCell uses two states, i.e., c-state and h-state. But, unlike
LSTM, dRNNCell is fed by both most recent states, ct−1 and ht−1, and delayed
states, ct−d andht−d , d > 1. dRNNCell is equippedwith three gates, which transform
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1- 1-

ft = σ(Wfxt +Vfht−1 +Ufht−d + bf )
ut = σ(Wuxt +Vuht−1 +Uuht−d + bu)
ot = σ(Woxt +Voht−1 +Uoht−d + bo)
c̃t = tanh(Wcxt +Vcht−1 +Ucht−d + bc)
ct = ut ⊗ (ft ⊗ ct−1 + (1 − ft) ⊗ ct−d)

+ (1 − ut) ⊗ c̃t
h′
t = ot ⊗ ct

ht = [h′
t,1, ..., h

′
t,sh

]

yt = [h′
t,sh+1, ..., h

′
t,sh+sy ]

Fig. 4 dRNNCell

nonlinearly input vectors using logistic sigmoid function. They comprise fusion ( f ),
update (u), and output (o) gates. A candidate c-state, c̃t , is produced by transforming
input vectors using tanh nonlinearity. The operation of the cell is described by the
equations shown in Fig. 4.

Note that the c-state is a weighted combination of past c-states and new candidate
state c̃t computed in the current step. Update vector, ut , decides in what proportion
the old and new information are mixed in the c-state, while fusion vector ft decides
about the contribution of recent and delayed c-states in the new state.

3.5 adRNNCell

An attentive dilated recurrent NN cell, adRNNCell, was proposed in Smyl et al.
[22] as an extended version of dRNNCell. It combines two dRNNCells to obtain a
more efficient cell, which is able to preprocess dynamically the sequence data. It is
equipped with an attention mechanism for weighting the input information.

Figure 5 shows adRNNCell composed of lower and upper dRNNCells. The former
produces attention vector mt of the same length as the input vector xt . The compo-
nents of mt , after processing by exp function, are treated as weights for the inputs
collected in xt . Theweighted inputs, x2t , feed the upper cell. The goal of such an atten-
tion mechanism is to dynamically strengthen or weaken particular inputs depending
on their relevance. Note that this process is dynamic, the weights are adjusted to the
current inputs at time t . Both cells, lower and upper, learn simultaneously. Based on
the weighted input vector, x2t , the upper cell predicts vector yt .

The mathematical model describing adRNNCell is shown in Fig. 5.
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1- 1-

1- 1-

ft = σ(Wfxt +Vfht−1 +Ufht−d + bf )
ut = σ(Wuxt +Vuht−1 +Uuht−d + bu)
ot = σ(Woxt +Voht−1 +Uoht−d + bo)
c̃t = tanh(Wcxt +Vcht−1 +Ucht−d + bc)
ct = ut ⊗ (ft ⊗ ct−1 + (1 − ft) ⊗ ct−d)

+ (1 − ut) ⊗ c̃t
x2
t = xt ⊗ mt

h1′
t = o1

t ⊗ c1t
h1
t = [h1′

t,1, ..., h
1′
t,sh

]

mt = [h1′
t,sh+1, ..., h

1′
t,sh+sm ]

h2′
t = o2

t ⊗ c2t
h2
t = [h2′

t,1, ..., h
2′
t,sq ]

yt = [h2′
t,sq+1, ..., h

2′
t,sq+sy ]

Fig. 5 adRNNCell

4 RNN Architecture

In this study, we adopt RNN architecture from Smyl et al. [22]. It is composed of
three single-layer blocks, see Fig. 6. In each block, the cells are dilated differently,
i.e., 2, 4 and 7, respectively. Delayed connections enable the direct input into the cell
of information from a few time steps ago. This can be useful in modeling seasonal
dependencies. To model the temporal dependencies of different scales, our architec-
ture has multiple dilated recurrent layers stacked with hierarchical dilations. It also
uses ResNet-style shortcuts between blocks to improve the learning process [12].

To reduce input dimensionality, the calendar variables, dw
t , dm

t and dy
t , are embed-

ded using a linear layer into d-dimensional continuous vector dt . The second linear
layer at the top of stacked recurrent layers, produces the point forecasts, ŷt , and
two vectors of quantiles, a lower one, ŷ

t
∈ R

24, and an upper one, ˆ̄yt ∈ R
24. These

quantiles of assumed orders, q and q , define the PI.
To enable our RNN to learn both point forecasts and PI quantiles, we employ the

following loss function [18]:

L = ρ(y, ŷq∗) + γ(ρ(y, ŷq) + ρ(y, ŷq)) (5)

where ρ is a pinball loss:

ρ(y, ŷq) =
{

(y − ŷq)q if y ≥ ŷq
(y − ŷq)(q − 1) if y < ŷq

(6)
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...

...

Linear layer

Block 3, d = 7

Block 2, d = 4

Linear layer

...

Block 1, d = 2

Fig. 6 RNN architecture

q ∈ (0, 1) is a quantile order, y is an actual value (standardized), ŷq is a forecasted
value of q-th quantile of y, q∗ = 0.5 corresponds to the median, q ∈ (0, q∗) and
q ∈ (q∗, 1) correspond to the lower and upper bound of PI, respectively, and γ ≥ 0
is a parameter controlling the impact of the components related to PI on the loss
function, typically between 0.1 and 0.5.

The first component in (5) is a symmetrical loss for the point forecast, while
the second and third components are asymmetrical losses for the quantiles. The
asymmetry level, which determines PI, results from the quantile orders. For example,
we obtain a 90% symmetrical PI for q = 0.05 and q = 0.95.
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Remarks:

1. In Sect. 5, we compare RNN with the different cell types which were described
in Sect. 3. Note that RNN shown in Fig. 6 requires cells equipped with both
recent and delayed connections. Classical LSTMandGRUare not equippedwith
delayed inputs. RNNwith these cells are considered in two variants: (i) LSTM1,
GRU1—the delayed connections are removed and cells are fed with only recent
inputs t − 1, and (ii) LSTM2, GRU2—the recent connections are removed and
cells are fed with only delayed inputs, t − 2, t − 4 or t − 7, depending in the
layer.

2. The pinball loss gives the opportunity to reduce the forecast bias by penalizing
positive and negative deviations differently. When the model tends to have a
positive or negative bias, we can reduce the bias by introducing q∗ smaller or
larger than 0.5, respectively (see Smyl [15] and Dudek et al. [23]).

5 Experimental Study

We compare the performance of the proposed RNN with different recurrent cells
on STLF problems for 35 European countries. The data, collected from ENTSO-E
repository (www.entsoe.eu/data/power-stats), concerns real-world hourly electrical
load time series. The data period is from 2006 to 2018 but a large amount of data
is missing in this period (about 60% of the countries have complete data). For 35
countries, the data provides a variety of time series with triple seasonality expressing
different properties such as different levels, trends, variance and daily shapes (see
Section II in Smyl et al. [18] where these time series are analyzed). We treat data
from 2018 as test data. We predict daily load profiles for each day of the test period
and each country with the exception of three countries. For these three countries, due
to missing data, the test periods were shorter, i.e., for Estonia and Italy (missing last
month of data) and Latvia (missing last two months of data).

The RNNs were optimized on data from the period 2006–17. As performance
metrics we use: mean absolute percentage error (MAPE), median of APE (MdAPE),
interquartile range of APE (IqrAPE), root mean square error (RMSE), mean PE
(MPE), and standard deviation of PE (StdPE). Below, we report results for an ensem-
ble of five RNNs (average of five RNN runs). We use a similar training and opti-
mization setup as in Smyl et al. [22]. The key hyperparameters were: sc = 250,
sh = sq = sy = 125, q∗ = 0.5, q = 0.05, q = 0.95, γ = 0.3, number of epochs: 10,
learning rates: 3 · 10−3 (epochs 1–5), 10−3 (epoch6), 3 · 10−4 (epoch7), 10−4 (epochs
8–10), batch size: 2 (epochs 1–3), 5 (epochs 4–10).

Table 1 displays the forecasting quality metrics averaged over the 35 countries.
The results indicate that, on average, adRNNCell is the best cell according to three
accuracy measures, MAPE, MdAPE and RMSE. It also produces the least dispersed
forecasts—see the lowest values of IqrAPE and StdPE. The second most accurate
and precise cell is dRNNCell. The worst results are for GRU1.

www.entsoe.eu/data/power-stats
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Table 1 Forecasting quality metrics

Cell type MAPE MdAPE IqrAPE RMSE MPE StdPE

GRU1 2.31 2.10 2.23 318.69 –0.06 3.86

GRU2 2.26 2.04 2.19 308.92 –0.15 3.78

LSTM1 2.25 2.03 2.18 307.09 –0.19 3.78

LSTM2 2.16 1.94 2.10 293.00 –0.10 3.60

dLSTM 2.19 1.97 2.12 297.58 –0.19 3.66

dRNNCell 2.15 1.93 2.09 292.60 –0.15 3.57

adRNNCell 2.12 1.91 2.07 289.32 –0.14 3.52

Fig. 7 Results of the
Giacomini-White test

MAPE ranking

0 5 10 15 20 25 30 35
#countries

GRU1
GRU2
LSTM1
LSTM2
dLSTM

dRNNCell
adRNNCell

RMSE ranking
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#countries

GRU1
GRU2
LSTM1
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dLSTM

dRNNCell
adRNNCell

1
2
3
4
5
6
7

Rank

Fig. 8 Results of MAPE and RMSE rankings

To confirm the performance of adRNNCell, we perform a pairwise one-sided
Giacomini-White test (GM test) for conditional predictive ability [24] (we used
the multivariate variant of the GW test implemented in https://github.com/jeslago/
epftoolbox; [25]). Figure 7 shows the obtained p-values of this test. The closer the
p-values are to zero the significantly more accurate the forecasts produced by the
model on the X -axis are than the forecasts produced by the model on the Y -axis. The
black color is for p-values larger than 0.10, indicating rejection of the hypothesis
that the model on the X -axis is more accurate than the model on the Y -axis. Figure 7
clearly shows that adRNNCell and dRNNCell performed best.

https://github.com/jeslago/epftoolbox
https://github.com/jeslago/epftoolbox
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Fig. 9 Examples of the forecasts. 90% PIs for adRNNCell are shown as gray-shaded areas

Figure 8 shows rankings of the examined RNNs based on average errors for each
country. Note the high position of adRNNCell. For 31 out of 35 countries this model
gave the lowest MAPE, and for 27 countries it also gave the lowest RMSE. The
second highest ranked model was dRNNCell.

In Table 1, we also showMPE, which is ameasure of the forecast bias. Its negative
values for all cases indicate over-prediction. The proposed model, thanks to the
pinball-type loss function, can control the bias. For example, to reduce the bias for
dRNNCell and adRNNCell we assumed q∗ = 0.485. This resulted in a reduction of
MPE to −0.04 without decreasing the forecast accuracy. So, it is possible to reduce
the biases shown in Table 1 further, but we were trying to prevent over-tuning of the
hyperparameters, so left them as they are reported.

Figure 9 shows example forecasts of daily profiles for different days of the week.
Note that forecasts generated by RNN with different cells do not differ much from
each other. Figure 9 also shows PIs for adRNNCell. To evaluate the accuracy of the
PIs, we calculated the percentage of forecasts lying inside, above and below their
PIs. The results are shown in Table 2. The predicted 90% PIs cover the forecasts
most accurately in the case of GRU2. But note that our loss function (5) gives us
the opportunity to tune further PIs. This can be performed by adjusting the quantiles
determining the PI bounds, q and q .

In Table 2, a Winkler score is also shown. For observations that fall within the
PI, this score is simply the length of the PI, while for observations outside PI, the
penalty applies, which is proportional to how far the observation is outside PI [26].
To bring the Winkler scores for different countries to a comparable level, we divide
these scores by the mean loads of the corresponding countries in the test period. Such
unified Winkler scores are shown in Table 2. Note that adRNNCell has the lowest
Winkler score and dRNNCell the second lowest.

Our research shows that adRNNCell is the best gated cell for forecasting time
series with multiple seasonality. In Smyl et al. [22] we compared RNN based
on adRNNCells with a variety of forecasting models including statistical models
(ARIMA, exponential smoothing, Prophet) and ML models (MLP, SVM, ANFIS,
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Table 2 Evaluation of the PIs

Cell type % in PI % below PI % above PI Winkler score

GRU1 92.78±2.80 3.19±1.33 4.03±1.68 0.1524±0.2579

GRU2 90.40±3.40 4.79±1.74 4.81±1.80 0.1448±0.2710

LSTM1 89.16±4.07 5.30±2.05 5.53±2.21 0.1428±0.2760

LSTM2 88.52±3.88 5.53±1.96 5.96±2.04 0.1368±0.2741

dLSTM 88.84±3.74 5.59±1.96 5.57±1.94 0.1393±0.2737

dRNNCell 87.51±3.54 6.16±1.92 6.33±1.77 0.1363±0.2771

adRNNCell 88.41±3.14 5.68±1.67 5.91±1.62 0.1332±0.2683

LSTM, GRNN, nonparametric models). This comparison clearly showed that the
adRNNCell-based approach outperforms all its competitors in terms of accuracy.

6 Conclusion

In this study, we explore the potential of RNNs with different cells for forecast-
ing time series with multiple seasonality. The best RNN solutions use dRNNCells
and adRNNCells, cells designed especially for such complex time series. They out-
perform classical GRU and LSTM cells as well as modified LSTM with dilation.
adRNNCell, which is the most advanced cell with dilation and attention, combines
two dRNNCells: one of which learns an attention vector while the other uses this
vector to weight the inputs. The attention mechanism enables the cell to preprocess
dynamically the sequence data while the delayed connections enable it to capture
the long-term and seasonal dependencies in time series.

Apart from the dilation and attention mechanisms, the superior performance of
the proposed RNN has its sources in the following mechanisms and procedures. First
is the multilayer architecture, which is composed of several dilated recurrent layers
stacked with hierarchical dilations to deal with multiple seasonality. Second is cross-
learning onmany time series,which enablesRNN to capture the shared features of the
individual series and helps to avoid over-fitting. Third is a time series representation
using standardized weekly patterns as inputs and encoded daily patterns as outputs.
The encoding variables are determined from the history, which enables decoding.
Fourth is a composed asymmetrical loss function based on quantiles, which enables
RNN to produce both point forecasts and PI and also to reduce the forecast bias.

In further research, we plan to enrich the input information with a learned context
vector. This represents information extracted from other time series, which can help
predict a given time series.
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Markov Processes for the Management
of a Microgrid

Salvatore Vergine, César Álvarez-Arroyo, Guglielmo D’Amico,
Juan Manuel Escaño, and Lázaro Alvarado-Barrios

Abstract In this work, a stochastic modelization of wind and photovoltaic power
productions is coupled with a two-level optimization in which the operating costs
of a hybrid and isolated microgrid are minimized. First, the power demand is mod-
eled and predicted using an autoregressive moving average model (ARMA), and the
renewable productions are modeled using Markov reward processes. Then, the opti-
mization problem is solved through a stochastic unit commitment and an economic
dispatch. The results show that the stochastic models correctly capture the behavior
of renewable sources in all system configurations proposed in the different scenar-
ios. Furthermore, the different impacts caused by wind and photovoltaic sources and
battery energy storage system on operating costs are also highlighted, which is more
punctual for the first and more regular and smoother for the second.

Keywords Uncertainty · Economic dispatch · Stochastic unit commitment

1 Introduction

In recent years, the need to reduce carbon dioxide emissions and the use of fossil
fuels has led to a transformation of centralized grids into decentralized networks,
with the aim of increasing the penetration of renewable energy sources coupled with
battery energy storage systems. In this context, microgrids have demonstrated their
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fundamental role in the management of photovoltaic and wind units [10]. Generally,
the optimization problem applied to the microgrid is composed of the following two
stages: the unit commitment to schedule the on/off state of the controllable power
units and the battery behavior, and the economic dispatch to know how much power
each available generating unit should supply to minimize the operating cost. This
process is amixed integer nonlinear optimization problem (MINLP) due to the binary
variable representing the on/off decision and the nonlinearity of the operating cost.
The intermittent nature of renewable energy sources and the resulting uncertainty
make it essential to add a stochastic approach to this problem, with the Stochastic
Unit Commitment [1, 13]. The deterministic formulation of this kind of problem
considers only a predicted scenario and assumes that controllable power units have
enough available capacity to supply the difference in power between real and forecast
demand. Studies [8, 15] propose a deterministic unit commitment to solve optimiza-
tion problems related tomicrogrids tominimize the objective function. This approach
shows some limitations, such as not considering the stochastic nature of renewable
energy sources or limiting the study only to some of them, such as power demand.
In the study [17], the authors consider the uncertain nature of wind and photovoltaic
power sources in a two-state optimization problem throughMarkov processes. These
processes are one of the most important categories of stochastic models that have
many applications in real-world problems, including wind and photovoltaic power
predictions [6, 18]. They non-parametrically describe the sequencing of an event by
assuming that what happens in the next state depends only on the current state [9].
The obtained results show that the stochastic models faithfully represent the gener-
ation of renewable energy, which has a significant impact on the microgrid’s overall
cost.

In this study, we apply the methodology proposed in [17], where, firstly, the
uncertainties of wind and photovoltaic power productions are modeled according
to general Markov processes, and, secondly, a microgrid optimization problem is
solved. The latter considers a two-stage problem with the aim of minimizing the
total operating costs under technical constraints related to the design of themicrogrid.
We extend this contribution by measuring the impact of each renewable unit and the
battery energy storage system through the implementation of five different scenarios.

2 System Modeling

In this section, the microgrid structure is described and the stochastic modeling of
power demand, wind, and photovoltaic power is presented and explained.
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2.1 Microgrid Structure

Themicrogrid is composed of two controllable power units, a microturbine (MT) and
a diesel engine (DE), two renewable sources, a wind turbine (WT) and a photovoltaic
unit (PV), and a battery energy storage systems (BESS). This is a hybrid and isolated
microgrid studied in an optimization problem to minimize its operating cost. As
shown in Fig. 1, this study is divided into three stages: the first dealswith themodeling
of the two renewable sources and the demand for electricity, the second and third are
part of the optimization problem and include a stochastic unit commitment and two
economic dispatches.

2.2 ARMA Model for Demand Prediction

The data set to model and predict the power demand Dt is based on 2-year historical
data from Sardinia (Italy). According to the recent literature [2, 17], we use an
autoregressive moving average (ARMA) model. The ARMA model is composed
of two polynomials: the first for the autoregressive part (AR), which regresses the
variable on its past values, and the second for the moving average part (MA), which
models the errors as a linear combination of their values from the present and the
past; see, e.g. [4].

The ARMA model is defined as

Dt = φ1Dt−1 + ... + φpDt−p + at − θ1at−1 − ... − θqat−q . (1)

At this point, we introduce the back-shift operator B

Load
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Wind power
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Stage 2
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Fig. 1 Optimization problem structure
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BDt = Dt−1. (2)

Applying B to Dt−1, we obtain BDt−1 = Dt−2 and if we replace it in Eq. (2), we
obtain B(BDt ) = B2Dt = Dt−2. In general, B j Dt = Dt− j , with j = 1, 2, ....

Using the operator B, we can write Eq. (1) as follows:

(1 − φ1B − φ2B
2 − ... − φp B

p)Dt = (1 − θ1B − ... − θq B
q)at , (3)

or, equivalently, φp(B)Dt = θq(B)at , where φp and θp are polynomials of order p

and q, respectively, in B. Therefore, we obtain the equation Dt = θq (B)

φp(B)
at , where

{at } ∼ WN (0,σ2
a) is a white noise process.

Dt is the demand at time t thatmust be predicted, andφp and θq are the coefficients
of the autoregressive model and the moving averages, respectively. at represents
errors due to predictions. The value of the demand at any time t is a linear combination
of its previous values p and the previous values q of errors. We use 2-year data to
model power demand, and the Akaike Information Criterion (AIC) is applied to
obtain the values of p = 6 and q = 5.

2.3 Non-homogeneous Markov Model for Wind Generation

We used a ten-year data set consisting of hourly wind speed from 01/08/2008 to
01/08/2018 provided by [5]. The considered location is in Sardinia (39.5N8.75E).We
use the following power curve to obtainwind power production for∀t ∈ {1, 2, ..., 24}
[12, 16, 17]:

WT (t) =

⎧
⎪⎨

⎪⎩

0 for v < vci and v > vco
Pr

v3−v3ci
v3r −v3ci

for vci < v < vr ,

Pr for vr < v < vco,

(4)

where Pr is the rated power (in kW) and represents the maximum power that the
WT can produce at the rated wind speed vr (in m/s). vci is the wind speed cut-in and
represents the speed at which the WT starts to produce power; vice versa, vco is the
wind speed cut-off, which is the point at which the WT must shut down due to the
risk of damage, and v is the current wind speed. In this case, we use the power curve
plotted in Fig. 2, where Pr = 2 MW, 13 ≤ vr < 25 m/s, vci = 4 m/s and vco = 25
m/s.We scaled the data obtained to have amaximumwind power production equal to
80 kW, which corresponds to about 30% of the maximum hourly power request. We
model wind power production as done in [17], building a non-homogeneous Markov
reward process with state space EW = {1, 2, 3, 4, 5} in which each state denotes a
different level of wind power. In particular, a power production between 0 and 16
kW is identified with state 1, 16 and 32 kW which are the limits that identify state
2, and state 3 includes the power values between 32 and 48 kW, state 4 between 48
and 64 kW, and state 5 between 64 and 80 kW. We indicate the wind power at the
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Fig. 2 Power curve of the
considered WT

n − th transition with JW
n which occurs from one hour to the next and depends on

the current hour. The relationship that governs the 24 transitions that occur in 24 h
is the following:

P[JW
n+1 = j | JW

n = in, J
W
n−1 = in−1, ..., J

W
1 = i1, (5)

JW
0 =i0] = P[JW

n+1 = j | JW
n = in] = pin , j (n + 1).

Thus, the relation (5) affirms that the wind power at the next hour depends only
on the wind power at the current hour and not on the hours before. However, the
probabilities depend on time n + 1, and thus change according to the hour of the
day.

In practice, the transition probabilities in formula (5) can be estimated with the
maximum likelihood estimator as follows:

p̂in , j (n + 1) = Nin , j (n + 1)

Nin (n)
, (6)

where Nin , j (n + 1) indicates the number of transitions from state i at hour n to state j
at hour n + 1, and the denominator Nin (n) represents the total number of visits to state
i at hour n. In this way, we have a total of 24 probability transition matrices, one for
each possible transition within a day, that is, P(k) = (pi j (k))i, j∈EW , k = 1, 2, ..., 24.
We define �(s, t) = (φi j (s, t))i, j∈EW , s, t ∈ N a matrix of functions with elements
obtained by φi j (s, t) = P[JW

t = j | JW
s = i] that denote the probability of having

wind power j at time t , since wind power is i at time s. Transition probability
functions are obtained according to the following equation:

�(s, t) =
t∏

k=s+1

P(k), s, t ∈ N, 0 ≤ s ≤ t. (7)
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Table 1 The Markov transition matrices refer to four different hours within a day

In Table 1, we report four probability matrices referring to the transition from hour
1:00 am to hour 2:00 am (a), from 5:00 am to 6:00 am (b), from 12:00 to 1:00 pm
(c) and from 6:00 pm to 7:00 pm (d). For example, we can notice that the system
moves from state 4 to state 5 with very different probabilities (0.12; 0.26; 0.20; 0.08)
depending on the time we consider (1:00 am; 5:00 am; 12:00 pm; 6:00 pm).

Whenever the system occupies a state i ∈ EW at any hour, theMarkov chain gives
us the range of possible power values. To establish the point value, we consider a r.v.
R that describes the power conditionally in the occupied state i . In symbols,

Fi (x) = P(R ≤ x |Jn = i) ∀n ∈ {1, 2, . . . , 24} and i ∈ EW . (8)

The cumulative distribution function (cdf) Fi (·) can be empirically estimated:

F̂i (x) =
∑Ni

h=1 1{wi≤x}
Ni

, (9)

where Ni = ∑24
k=1 Ni (n), and {wi }Ni

i=1 are the sample values of the powers belonging
to the state range i . In Fig. 3 the empirical cdf of the wind powers is shown.

The curve related to state 1 has a probabilitymass equal to about 0.4 corresponding
to zero production. This happens when the wind speed is below the cut-in speed. The
curve referred to state 5 has a probability mass equal to about 0.7 corresponding to
the case of maximum production when 13 m/s wind speed or greater occurs.
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Fig. 3 Empirical cumulative
distribution functions for
each state of the Markov
chain
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Fig. 4 Comparison between
real and simulated hourly
wind power averages

After obtaining the 24 transition probability matrices and the 5 cumulative dis-
tribution functions, we simulate power production in order to have synthetic data as
follows:

1. Set n = 0 and J0 = i0, R0 = 0.
2. Sample the r.v. J ∼ pJn ,·(n) and set Jn+1 = J (ω).
3. Sample the r.v. R ∼ FJn+1(·) and set Rn+1 = R(ω).
4. Set n = n + 1 and continue to Step 2 until n = 24.

The application of this algorithm gives simulated wind power for one day. The
algorithm can run for several days as requested in the application.

Figure 4 shows that the hourly averages of wind power for real and simulated data
have equal behavior, confirming the accuracy of the used Markov reward process.
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2.4 Homogeneous Markov Model for Photovoltaic
Generation

We download ten-year hourly solar irradiation data set referring to the same period
and geographical coordinates that characterize wind speed data [5]. We obtain the
photovoltaic power PV (t) using the following equation [11, 17]:

PV (t) = PSTC
n · EM,t

ESTC
[1 + h(TM,t − TSTC)], ∀t ∈ {1, 2, ..., 24} . (10)

PV (t) depends on solar irradiance EM,t , on module temperature TM,t , on maximum
power PSTC , on irradiance ESTC and on temperature TSTC under Standard Test
Conditions (STC). The coefficients n and h indicate the number of PV panels and
the power temperature coefficient (%/◦C), respectively. In this case, we scale the data
to a maximum power equal to 40 kW, which corresponds to approximately 15% of
the maximum hourly power request in the microgrid.

The photovoltaic production is modeled as done in [17]. First of all, it is detrended
by calculating the difference between the average hourly power of the considered
month and the power data. PV power presents a daily and a monthly periodicity.
This operation allows us to obtain the residuals that we model using a homogeneous
Markov reward process [7]. This is a particular case of the non-homogeneous process
used to model the wind speed data, and it is characterized by only 1 probability
transition matrix valid for each time n.

Let J PV
n be the random values that represent the state of the system in the n-th

transition and have values within the set EPV = {1, 2, 3}. In this case, state 1 groups
all residual values less than 0, state 2 for all residual values equal to 0, and state 3 for
all residuals greater than 0. The transition probabilities satisfy the following relation:

P[J PV
n+1 = j | J PV

n = in, J
PV
n−1 = in−1, ..., J

PV
1 = i1, (11)

J PV
0 = i0] = P[J PV

n+1 = j | J PV
n = in] = pi j .

The transition probability matrix is as follows:

⎛

⎝

1 2 3

1 0.91 0.04 0.05
2 0.08 0.82 0.10
3 0.08 0.10 0.82

⎞

⎠. (12)

Thus, if the system is in state 2, it will remain there with a probability of 82%.
After obtaining the simulatedMarkov chain, we estimate the cdf for states 1 and 3

with the empirical estimator (as done for wind power). This gives the punctual values
of the residual. Finally, we sum the detrended power and the simulated residuals and
obtain the simulated power over the day. In Fig. 5, the real and simulated photovoltaic
hourly averages are compared over 24 h.
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Fig. 5 Comparison between
real and simulated hourly
photovoltaic power averages

3 Optimization Strategy

In this section, the optimization strategy presented in [17] is described. The first
subsection shows the system constraints, and the second subsection describes the
two-step optimization process.

3.1 System Constraints

The total power generated by controllable units (MT and DE), renewable sources
(WT and PV), and the power supplied or stored in the BESS must be equal to the
demand. This constraint is valid for each time step t and is described by the following
equation representing the power balance:

D(k) = PV(t) + WT(t) + BESS(t) + δMT(t) · MT(t) + δDE(t) · DE(t). (13)

The power provided by MT and DE is bounded at any time, i.e.

DEmin ≤ DE(t) ≤ DEmax (14)

MTmin ≤ MT(t) ≤ MTmax (15)

where DEmax and DEmin, and MTmax and MTmin are the maximum and minimum
powers of DE and MT, respectively. Regarding the battery energy storage sys-
tem (BESS), it provides or stores energy depending on the demand power and
its state of charge (SOC) is updated at each time t using the following equation
∀t ∈ {1, 2, ..., 24} [3]:
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SOC(t) = SOC(t − 1) −
{
�t · B(t) · ηc for BESS(t) < 0

�k·B(t)
ηd

for BESS(t) > 0
(16)

where�t is the time between samples and ηc and ηd are the charging and discharging
efficiency, respectively. The SOC limits must satisfy the inequality:

SOCmin ≤ SOC(t) ≤ SOCmax (17)

for all t ∈ {1, ..., 24}, where SOCmax and SOCmin are the maximum and minimum
levels of SOC determined by the capacity of the BESS connected to the system.

3.2 Optimization Process

In this study, a two-step optimization process is applied to obtain the power delivered
by each controllable power unit at each time step during the day. We indicate with
d̂(t) the vector containing the forecast of demand D̂(t) and renewable sources P̂(t)
and Ŵ (t), and u(t) the vector associated with controllable sources BESS(t), MT(t)
and DE(t), respectively. We denote them as follows:

d̂(t) = [D̂(t), P̂(t), Ŵ (t)], (18)

u(t) = [δMT(t), δDE(t),BESS(t),MT(t),DE(t)], (19)

where δMT(t) and δDE are binary variables that indicate whether the power unit is
on or off. The first step of the optimization process (Stage 2) consists in solving the
stochastic unit commitment in which a controllable power source is turned on or off
at each time step t for a decision horizon of one day. Then, an economic dispatch is
solved to know howmuch power each power unit must deliver to cover the predicted
demand.

The second step of the optimization process (Stage 3) begins when the microgrid
real-time operations are calculated and the difference between the demand prediction
and the current value is known. The error is covered by using the spinning reserve
delivered by the BESS and the two controllable units. It is assumed that these power
units are always able to cover the error, which guarantees reliable microgrid oper-
ation. Then, in the second optimization problem, a second economic dispatch is
solved, in which it is decided which power unit must cover the variation in demand
to minimize the operating cost.

The spinning reserve represents an extra generation unit and is indicated as Ru
MT(t)

when provided by the DE and Ru
MT(t) when provided by the MT. The equations that

represent it analytically are the following ∀t ∈ {1, 2, ..., 24}:
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Ru
DE(t) = DEmax − DE(t) (20)

Ru
MT(t) = MTmax − MT(t). (21)

The prediction of demand D̂(t) is affected by an error with a normal distribution
N (μt ,σ

2
t ). Taking into account the ARMAmodel used to predict demand, in 99.73%

of the cases, these errors are within the interval [μt − 3σt ,μt + 3σt ], according to the
criteria 3σ. For this reason, the spinning reserve must respect the following equation:

Ru
DE(t) + Ru

MT(t) ≥ 3σt . (22)

These constraints are reported considering theminimumpower that can be generated:

Rd
DE(t) = DE(t) − DEmin (23)

Rd
MT(t) = MT(t) − MTmin (24)

Rd
DE(t) + Rd

MT(t) ≥ 3σt . (25)

MT and DE are the only power units with which a cost is associated. In particular, we
indicate withCMT the cost of the power produced byMT and withCDE the cost of the
power produced byDE for each time step and for j = 0 . . . , N − 1. Furthermore, we
indicate withCRMT the cost of the spinning reserve supplied byMT and withCRDE the
cost of the spinning reserve supplied by DE. The costs associated with controllable
power units are the same as those considered in [2, 14, 17]. Therefore, we formulate
the first optimization problem as follows:

min
δMT, δDE,
BESS,MT,DE

N−1∑

j=0

CMT(δMT( j), M( j)) + CMT(δMT( j),DE( j)) + CRMT RuMT( j) + CRMT RuMT( j) (26a)

s.t. D̂(t + j) = P̂V (t + j) + Ŵ T (t + j) + B( j) + MT( j) + DE( j) (26b)
ˆSOC( j + 1|t) = f

( ˆSOC( j |k),BESS( j)
)

(26c)
ˆSOC(0) = SOC(t) (26d)
ˆSOC( j |t) ∈ S, (26e)

δMT( j), δMT( j) ∈ {0, 1} (26f)
MT( j),DE( j), B( j) ∈ E (26g)
Ru ( j) ≥ 3σ j (26h)
Rd ( j) ≥ 3σ j (26i)

where ˆSOC( j + 1|t) is the SOC prediction for time j + 1 at the current time t . Set
S indicates the BESS charge and set E indicates the power limits.

In stage 3, the binary variables δMT(t), δDE(t) are constant and the demand is
obtained by adding the error to the expected demand, as follows:

D(t) = D̂(t) + ω(t). (27)
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In this step, the power increments of each controllable power unit are decided to
cover the current demand and minimize the operating cost:

min
�MT , �DE, �BESS

N−1∑

j=0

[
aMTδMT( j) + bMT(MT( j) + �MT( j)) + cMT(MT( j) + �MT( j))2

+aMTδMT( j) + bMT(DE( j) + �DE( j)) + cMT(DE( j) + �DE( j))2
] (28a)

s.t. ω( j) = �MT( j) + �DE( j) + �BESS( j), (28b)
DEminδMT( j) ≤ DE( j) + �DE( j) ≤ DEmaxδMT( j), (28c)
MTminδMT( j) ≤ MT( j) + �MT( j) ≤ MTmaxδMT( j), (28d)

ˆSOC( j + 1|t) = f
( ˆSOC( j |t),BESS( j) + �BESS( j)

)
, (28e)

ˆSOC(0) = SOC(t), (28f)
ˆSOC( j |t) ∈ S, (28g)

MT( j) + �MT( j),DE( j) + �DE( j),BESS( j) + �BESS( j) ∈ E . (28h)

4 Application

In this section, six scenarios are presented and explained, characterized by different
configurations of the system. Then, we present and comment on the results obtained.

4.1 Scenarios Studied

This methodology is applied to six different scenarios shown in Table 2. We consider
a Base Scenario in which all the parameters of the different power units belonging
to the microgrid are established. In Scenario 1 we assume that the contribution of
renewable energies is absent. Themeaning of this scenario is to have a visualmeasure
of the maximum cost (or the maximum objective function) facing the microgrid in
the worst case, which means using power supplied only fromMT and DE. Scenario 2
presentswhere themaximumpower of theWT is reduced to 40 kWand themaximum
power of the PV is increased to 80 kW. The same quantities are set to the same value
equal to 80 kW in Scenario 3. In Scenario 4, the capacity of the BESS is increased up
to double compared to the Base Scenario, and in Scenario 5 both maximum charge
and discharge power of the BESS are increased from 80 to 120 kW.
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Table 2 Parameters of the base scenario and differences of all the other scenarios

Base
scenario

Source Pmax (kW) Pmin (kW) Pc
max (kW) Pd

max (kW) SOCmin
(kW)

SOCmax
(kW)

MT 150 5 – – – –

DE 150 15 – - – –

WT 80 0 – – – –

PV 40 0 – – – –

BESS – – 80 80 70 280

Scenario 1 No use of renewable sources

Scenario 2 Maximum power of WT unit equal to 40 kW and

maximum power of PV unit equal to 80 kW

Scenario 3 Maximum power of WT unit equal to 80 kW and

maximum power of PV unit equal to 80 kW

Scenario 4 Double capacity of the BESS with SOCmin = 70 kWh and SOCmax = 490 kWh

Scenario 5 Maximum charge power of the BESS Pc
max = 120 kW and

maximum discharge power of the BESS Pd
max = 120 kW

4.2 Results

In this section, we present the result obtained by applying the two-level optimization
process in each scenario studied for both real and simulated data and refer to 30-
day sample considered (from 2008/08/01 to 2008/08/30). In Fig. 6, an example of
the result of the economic dispatch for real (6a) and simulated (6b) data referred to
August 23 is shown. This allows us to know exactly which power unit contributes
to satisfy the power demand at each hour of the day, and it emphasizes the behavior
of the system that charges the BESS when the power demand is low and discharges
when it is high to decrease the operating cost.

Hereafter, all figures present the same setting and show the daily objective function
and the total wind and photovoltaic powers for real and synthetic data. The results
referred to the Base Scenario are shown in Fig. 7 where it is evident that the objective
function is largely influenced by the amount of power supplied by the wind plant,
while the photovoltaic power determines the general trend or slope acquired by the
objective function. When the trend of photovoltaic power decreases with time, the
objective function shows an increasing trend. Scenario 1 corresponds to the worst-
case situation in which there is no contribution from renewable energies. In fact, the
objective function develops in a range from 9940e to 9915e, as shown in Fig. 8.
Scenario 2 represents the situation in which the PV has a higher maximum power
(equal to 80 kW), while the WT can deliver a maximum of 40 kW. The results are
shown in Fig. 9.
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Fig. 6 Economic dispatch of the real (a) and (b) simulated data referred to August 23

Fig. 7 Objective function and daily total wind and photovoltaic powers in the base scenario for
real (a) and synthetic (b) data

Fig. 8 Objective function in
scenario 1
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Fig. 9 Objective function and daily total wind and photovoltaic powers in Scenario 2 for real (a)
and synthetic (b) data

Fig. 10 Objective function and daily total wind and photovoltaic powers in Scenario 3 for real (a)
and synthetic (b) data

In Scenario 3, both thewind and photovoltaic units are setwith the samemaximum
power (80 kW) and in Fig. 10 it is evident that the objective function values decrease
in the sample considered compared to the previous scenarios. In Scenario 4 a double
BESS capacity is used, and in Fig. 11 the results are shown. It is noticeable that
in Scenarios 3 and 4 a high availability of wind power corresponds to lower values
of the objective function in comparison with the other scenario. This is because a
greater amount of wind power can be used both for the larger BESS capacity and for
the higher maximum power of WT and PV. In Scenario 5, the maximum charge and
discharge powers of the BESS are increased to 120 kW, and the results are presented
in Fig. 12. Table 3 shows the mean and standard deviation of the objective function
referred to both real and synthetic data and for each scenario studied.

By comparing each scenario with the Base Scenario, in terms ofmean, it is evident
that the worst case occurs for Scenario 1 when there is no contribution from wind
and solar sources. The situation improves in Scenario 2 when the highest maximum
renewable power is assigned to the photovoltaic source, even if the total maximum



204 S. Vergine et al.

Fig. 11 Objective function and daily total wind and photovoltaic powers in Scenario 4 for real (a)
and synthetic (b) data

Fig. 12 Objective function and daily total wind and photovoltaic powers in Scenario 5 for real (a)
and synthetic (b) data

Table 3 Objective function mean and standard deviation in e for real and simulated data and for
each scenario studied

Scenario Real Simulation

Mean Std. Mean Std.

Base 6733.85 1209.17 6394.39 1555.73

1 9922.21 4.4027 9926.66 14.09

2 6026.81 912.90 5508.90 653.48

3 5315.84 1051.08 5001.80 1296.02

4 6053.01 1133.97 5750.96 1425.78

5 6421.45 1314.70 6472.68 1182.20
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installed renewable power is constant. This could be due to the fact that this power
has a more constant feature during the sample period considered (which is August).
Scenario 3 presents the lowest cost due to the highest power characterizing both
renewable sources. Doubling the BESS capacity in Scenario 4 leads to a considerable
benefit both for real and simulated data due to the most performing characteristic
of the BESS, which allows better power management. Increasing the maximum
charge and discharge powers in Scenario 5 leads to limited benefits compared to the
base scenario. The results obtained from the simulated data are in line with those
from the real data, and this indicates that the two Markov models correctly simulate
the behavior of the wind and photovoltaic power sources. The best performance is
obtained in Scenario 3 and this indicates that having a higher maximum power for
both renewable sources is more important than having a double capacity of the BESS
or increasing its maximum charge and discharge powers.

4.3 Conclusions

In this chapter, two stochastic modelizations referring to wind and photovoltaic pow-
ers are associated with the scheduling problem of an isolated hybrid microgrid. The
problem consists in minimizing total operating costs while measuring how the uncer-
tainty of renewable energy production influences the results. The ARMA model is
used to forecast power demand, and wind and photovoltaic productions are modeled
using Markov reward processes. The authors always juxtapose the real and simu-
lated results to show the suitability of the models. Wind power strongly influences
the objective function, and its low presence promptly increases the cost. Photovoltaic
power has a more constant influence, determining the general trend of the objective
function. The six scenarios studied provide a sensitivity analysis with respect to the
parameters of the model and allow us to understand how they impact the results.
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Deep Learning Applied to Wind Power
Forecasting: A Spatio-Temporal
Approach

Rubén del Campo , Eloy Anguiano , Álvaro Romero ,
and José R. Dorronsoro

Abstract The problem of wind energy production prediction has been one of the
most prolific topics of study in the field of machine learning applied to the energy
sector. Usually, these models receive data in tabular format. However, in this work
we propose to solve the problem of predicting wind power like a spatio-temporal
prediction problem as if it were an image or video analysis problem. On the one
hand, energy production and the weather variables provided by Numerical Weather
Prediction models (NWP) are time series, justifying the temporal treatment. On the
other hand, NWP variables are provided in a regular grid format (in terms of lati-
tude and longitude). Thus, the data are arranged as different meteorological variables
in the shape of a grid, justifying the spatial treatment as if it were a low-resolution
image, where the meteorological points are treated as pixels. For this reason, the goal
of this article is to carry out an initial benchmark that compares the performance
measured between different types of deep learning architectures that take advan-
tage of these temporal and spatial features. The proposed architectures are CNN,
LSTM, LSTM+CNN (Stacked), LSTM+CNN (Parallel), ConvLSTM and Vision
Transformer.
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1 Introduction

In recent years, the development of the electricity system toward a production system
based on renewable energies has enabled society to move toward a more efficient
and ecologically sustainable way of life. However, the generation of some of these
energies cannot be controlled by humans, as their performance is inevitably linked
to weather conditions. Both generating agents and the electricity system operators
have always shown great interest in obtaining the best possible information on the
production capacity that a station will be able to generate in consecutive hours or
days. Being able to make this prediction reliably means great benefits, not only from
an economic point of view, but also allows safeguarding the structural integrity of
the entire transmission grid.

Given the great importance that this problem has gained in view of the large
percentage that renewables already occupy in the energy mix, in recent decades a
considerable amount of research has been carried out in the field ofmachine learning.
However, classicalmachine learning techniques seem to have reached theirmaximum
capacity for improvement with regard to the problem at hand. Thanks to the advances
made both in the field of GPU computing, whichmake it possible to execute complex
algorithms in reasonable times, and in the field of artificial intelligence and machine
learning with the implementation of new, more efficient optimization algorithms, the
state of the art has evolved into what is known as deep learning. However, all these
techniques have in common that they use input data in a tabular form.

The objective of this work is to review several of the techniques that make up the
state of the art of deep learning, applying them to the problem of predicting wind
power production from a spatio-temporal point of view. Many of the implementa-
tions presented throughout this paper have in common the attempt to take advantage
of the geospatial component of weather forecast data and also from the temporal
information provided by both the production series and weather forecasts.

2 State of the Art

2.1 CNN

Inspired by human visual perception, CNNs [12] apply a series of filters where
a kernel is slid through the bidimensional input image, thus extracting the most
important features of the image. The fundamental operation here is the convolution
which consists in applying to the input image a filter of smaller width and length
and equal depth to that image, performing an element-by-element multiplication of
each matrix and adding all the results so that we obtain a single value. In this way, it
continues sliding in a sequential way going through all the input pixels several times,
resulting in a new coded image with a new dimensionality.
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Convolutional layers are often stacked multiple consecutive filters, so the dimen-
sionality of the data increases dramatically. For this reason, it is very common to
alternate convolutional layers with pooling layers. These layers are not trainable, but
their only function is to compress the information always trying to preserve the most
important features found by the filters of the convolutional layers.

2.2 RNN/LSTM

Deep neural networks have demonstrated a great ability to find complex relation-
ships among variables. However, when we confront them with problems that have
temporal information and future instants are related to past instants, we need a type
of architecture that takes this feature into account. Recurrent networks (RNN) [13]
were proposed with the aim of being able to encode this type of dependencies. In this
type of network, each past input xt−1 is used in the next iteration when xt arrives. The
information propagated from previous states at time moment t is known as hidden
state.

In [15], bidirectional recurrent networks were proposed. When they process time
series data, the prediction is notmade solely on the basis of the past instants following
the time order, since in some problems the sequences are not always ordered in time.
For example, in our particular case it is quite common for meteorology to have a
certain time shift due to the complication of generating such forecasts. The units of
this type of network are divided into two parts: one that processes the inputs in the
same direction of time t and the other in the reverse direction.

Despite the great popularity of recurrent networks for solving time-dependent
problems, theyhaveproven to havemajor limitationswhen taking into account depen-
dencies that extend widely in time. Gradient vanishing [8] occurs when taking the
backpropagation so many steps back in time. For this reason, in [9] the LSTM archi-
tecture was proposed as a solution to this problem. Themain idea behind this solution
lies in the use of a memory that is propagated during different time instants [17]. The
main parts of the LSTM are

– Cell state is responsible for propagating the information passed along the following
time instants.We can understand that it gives the LSTMakind ofmemory capacity.
The information flow of the cell state is regulated by the different sigmoid gates
that limit the information that passes through the different time instants.

– Forget gate has the function of establishing how much information from the input
and the hidden state reaches the cell state.

– Input gate is in charge of deciding how much information from the cell output has
to be propagated to the cell state, i.e., how much new information must be taken
into account.

– Output gate is in charge of establishing the relevance of the new information
calculated to be passed as hidden state to the next time instant.
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2.3 Transformers

Transformers have become the state of the art of Natural Language Processing.
This new architecture is used in this type of problems due to what is called self-
attention [19]. This self-attention strategy is able to extract contextual information
between the different points of a sequence of information, which fits very directly
with text-related problems, since semantic and grammatical relations between words
can be captured.

However, there are also adaptations of this architecture that have improved the
state of the art in image classification problems, calledVision Transformers (ViT) [6].
In this approach, the image is divided into different groups of pixels as if it were a
vector to be introduced into a Transformer Encoder with a fictitious parameterized
vector added (usually known as CLS Token), so that the output of the encoding of
that vector serves as input to the prediction of a series of fully connected layers. This
trick of the CLS parameter is commonly used in document classification problems,
since it allows us to summarize all the contextual information of the sequence (in
this case the image) in a single vector that can be processed later.

Therefore, for our particular use case, we will use this approach as one of the
models to consider for that spatial, but not temporal, approach to solving the problem
in question.

2.4 Metrics

In this research, a wide variety of neural network architectures have been developed
and therefore, each of them has an associated prediction error. This error must be
quantifiable and ideally interpretable so that we can compare networks with each
other and establish which one is better. Within the field of knowledge of machine
learning, this problem falls into the category of regression, which is made up of those
problems in which the objective is to achieve a single continuous numerical result.
Classically, the metrics used in this type of problem are given in absolute terms.
However, in the case of our problem, it is obvious that for a wind farm with a high
maximum productive capacity, called installed power, these measurements will be
much higher than for other farms with a lower installed power. It is for this reason
that the previous measurements are always normalized by the installed power of the
wind farm. This feature makes this type of metrics make the target insensitive to
changes in installed power over time.

– Normalized Mean Absolute Error:

NMAE(Y, Ŷ ) = 1

n

∑ ∣∣y − ŷ
∣∣

InstalledPower
(1)
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– Normalized Mean Squared Error:

NMSE(Y, Ŷ ) = 1

n

∑ (
y − ŷ

InstalledPower

)2

(2)

where y ∈ Y are the observations given and ŷ ∈ Ŷ are the predictions made by the
model for which its performance is to be measured.

On the other hand, in the search for measures that are independent of the data
domain, we will use measures such as

– Coefficient of determination (R2 Score):

R2(Y, Ŷ ) = 1 −
∑

(y − ŷ)2∑
(y − ȳ)2

(3)

where ȳ is the mean of all observations.
– Explained Variance:

Exp_Var(Y, Ŷ ) = 1 − Var[y − ŷ]
Var[y] . (4)

2.5 Related Work

The problem of renewable production prediction has been widely studied in the field
of machine learning. All kinds of papers have been published on the subject using a
wide variety of techniques and algorithms.

In recent years, following the popularization of deep learning, we have started
to see some research using this type of novel techniques. Focusing on publications
that use data similar to those available for this work, we find some research such as
[1], where they simply extend the idea of the multilayer perceptron by increasing the
number of layers and neurons per layer. On the other hand, in [18] they continued
with the idea by increasing the number of layers even more.

Architectures based on LSTM have also begun to be used in the renewable pre-
diction problem, as they are particularly well suited to deal with time series. For
example, in [7] they use an LSTM to predict the production of a photovoltaic farm
using meteorological data.

One of the first publications that began to try to exploit the geospatial component
of meteorological data was [5]. In it, a three-dimensional dataset is constructed
where the first dimension is the meteorological variables, the second dimension is
the latitude and the third is the longitude. It showed that this type of approach taking
into account the location of each weather point brought new information to themodel
that the other traditional methods were unable to appreciate.
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Extending this idea of encoding the input data bymeans ofCNNs, some researches
proposed that the output of the last convolutional, instead of attaching it to a fully
connected layer, should be attached to an LSTM layer such as [3, 14]. We will call
this type of architecture CNN-LSTM Stacked. Another approach of combining CNN
with LSTM is found in [11], where instead of connecting the output of one network
to the input of another, what they propose is that both process the same input in
parallel, concatenating their output to pass it to a fully connected layer. We will call
this type of architecture CNN-LSTM Parallel.

Following the approach of trying to encode both temporal and geospatial infor-
mation of meteorological data, the idea of ConvLSTM [16] arises. In essence, what
is proposed is an architecture similar to LSTMs except that the input data, instead of
being one-dimensional data on which tensor multiplication operations are applied,
are two-dimensional data on which the convolution operation is applied using con-
volutional layers. That is the reason why they have been used in video analysis
problems.

3 Methodology

3.1 Data Sources

To solve the problem of renewable production forecasting, we need two sources of
data: productions and weather forecasts.

– Production data: We have used the series of actual productions measured in a wind
farm located in Spain for every hour of the years 2019, 2020 and 2021.

– Meteorological data: Meteorological forecasts made with NumericalWeather Pre-
diction models (NWP) have been obtained for 24 horizons corresponding to the
years 2019, 2020 and 2021. For all these time instants, meteorological variables
have been obtained forming a 9 × 9 regular grid around the location of the park.
We have used the following variables: u and v wind components at 10 and 100
m altitude with its module (V 10 and V 100), the temperature at 10 m altitude (T )
and the surface pressure (p). So we can understand this grid of points as if it were
an “image” where each meteorological point would be a pixel and each variable
would be a channel of it.

3.2 Exploratory Analysis

It has been previously emphasized throughout this work that one of the purposes
of this work is to try to take advantage of the spatial characteristics of the weather
forecast data. In order to justify this decision, an analysis has been carried out, which
is shown in Fig. 1, where the Pearson correlation of each of the variables in the grid
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Fig. 1 Correlation of the meteorological variables with the wind farm production in each one of
the coordinates

is measured with the wind production target. In this way, we can clearly see how,
depending on the variable, there will be certain geographical areas that are much
more relevant than others. The winds that have more impact on the target are those
measured in points of the northwest-southeast diagonal. For this reason, neural net-
work architectures that take into consideration this type of geospatial characteristics
such asCNNorViT seemmore than adequate to solve this problem. In other variables
such as pressure and temperature, although their correlation also occurs in specific
areas, this value is very small. Nevertheless, it is convenient to keep in mind that
the Pearson correlation only finds linear relationships, so we will not exclude these
variables from the study.

3.3 Experimentation

In order to arrive at the neural network architectures that will be described later, we
have carried out an exhaustive experimentation process. During this process, multi-
ple variations on the networks have been tested, varying their structure (number of
units, shape of the layers, lags passed, etc.), their hyperparameters (dropout, bidirec-
tionality, hidden size, etc.) or even parameters affecting the training (learning rate,
batch size, etc.).
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4 Implemented Neural Architectures

4.1 LSTM

Thefirst of the implemented architectures is the one based onLSTMnetworks,which,
as previously explained, are especially appropriate for time series-related problems.
We note that this network simply receives the data records in one-dimensional form
by applying time delays of the received data. Furthermore, they have been used in
their bidirectional mode which is capable of analyzing the data sequence in both
temporal directions.

In this problem where the input data are meteorological predictions with their
associated error, bidirectionality can be an improvement since it can happen that the
predictions received are correct in the magnitude of the meteorological variables,
but these are wrongly ordered in time. The bidirectional network, by evaluating the
sequence in both directions, can mitigate this effect that could worsen the training
capacity of our network.

4.2 CNN

It has been justified during the previous sections that considering the spatial compo-
nent in meteorological data by treating our data in a two-dimensional form can help
our models to find relationships that would be difficult to appreciate using a tabular
format. For this reason, it is proposed to use a CNN as shown in the CNN parts of
Fig. 2.

For this architecture, we start changing input data shape to a three-dimensional
representation (D variables ×L latitudes ×M longitudes). In the first block, a con-
volutional layer is used applying zero-padding so that our network can take into
consideration the information presented by the variables corresponding to the points
located at the ends of the grid of points. Subsequently, an average-pooling layer
is used to reduce the dimensionality of the input data. This is followed by a series
of identical blocks consisting of two convolutional layers followed by batch nor-
malization layers in charge of reducing the internal covariate shift and favoring a
fast convergence during training [10]. Although the batch normalization layer may
sometimes make it unnecessary to apply dropout layers [2], it has been seen that in
this case they are convenient, since they help to reduce the overfitting that can be
caused in a complex network such as the one proposed. Finally, before passing the
data through fully connected layers, an average-pooling layer is applied, also with
the aim of reducing the data dimension, which at that moment is very high after
having applied a large number of convolutional filters. The activation function used
is ELU [4] that has proved to be one of the most reliable activation functions in the
state of the art.
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4.3 Combinations

As discussed above, CNNs are particularly suitable for capturing the spatial informa-
tion provided by the input data, while LSTMs are particularly suitable for capturing
the temporal information of the input data. For this reason, it has been decided to
apply combinations between the CNN and LSTM networks detailed in the previous
subsections:

– CNN+LSTM Stacked: in this solution, the networks are connected in such a way
that the output of the CNN is immediately directed to the input of the LSTM
network, as can be seen in the first Fig. 2. It should be noted that the CNN output
has to be flattened so that it can be treated by the LSTM input.

– CNN+LSTM Parallel: this solution is similar to the one previously explained
except that, as shown in the second Fig. 2, in this case the input of the neural
network is passed equally to the CNN and the LSTM, except that the former will
receive the data in three-dimensional form and the latter will not. The output of
both networks will be flattened and concatenated into a single one-dimensional
vector.

Fig. 2 Implemented CNN-LSTM parallel and stacked neural network architectures
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4.4 ConvLSTM

The ConvLSTM presents an architecture that, instead of treating the CNN and the
LSTM as independent networks, merges the underlying idea of both of them trying
to achieve a conceptually more complete architecture that by itself is able to process
both spatial and temporal information of meteorological data.

Wehave used twoConvLSTMunits separated by dropout and batch normalization
layers that help to maintain a stable training avoiding overfitting. In the first unit, the
convolutional layers use a 5×5 filter, while in the second unit they use a 3 × 3. In
this way, the former can focus on more general features of the input data while the
latter can focus on more specific ones.

4.5 ViT

As mentioned above, the ViT model architecture groups chunks of pixels disjointly.
For the current implementation, we have grouped the pixels into three vectors to
which a last parameterizable vector (called CLS) is added. To these four vectors,
we add a vector representing their positional encoding to move the projection to the
latent space of the next dense layer of the network. After encoding this information
through a Transformer Encoder, the output corresponding to the position of the CLS
vector is used for a fully connected network to give us the prediction value we are
looking for (Fig. 3).

Fig. 3 Implemented ViT neural network architecture
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Table 1 Test metrics of every model averaged over the first 24 prediction horizons

NMAE NMSE R2 VarScore

CNN 0.084 0.019 0.778 0.779

LSTM 0.080 0.017 0.802 0.801

CNN+LSTM
Parallel

0.082 0.018 0.788 0.791

CNN+LSTM
Stacked

0.082 0.018 0.795 0.796

ConvLSTM 0.081 0.018 0.788 0.789

ViT 0.080 0.017 0.799 0.802

Ridge 0.104 0.020 0.762 0.765

MLP 0.103 0.020 0.765 0.800

SVM 0.092 0.018 0.791 0.797

5 Results

5.1 Benchmark Results

During this research, we have carried out a multitude of executions with the aim of
arriving at neural network architectures that offer the best performance in accordance
with the metrics we have previously explained. All of them have been trained and
tested under the same conditions: we have used the 2019 and 2020 data for training
and validation and the 2021 data for testing.

In Table 1, we can see the comparison among all the implemented architectures.
We can see that the results obtained in the comparison do not differ much between
the different proposed solutions. In spite of this, the neural network architectures that
have finally shown the best performance in all metrics are LSTM and ViT. LSTM,
thanks to its bidirectional characteristic, is able to minimize the intrinsic temporal
error in weather predictions. ViT also demonstrates excellent performance, which
further validates the idea of using spatially-aware network architectures to address
this problem. However, although this problem has both a spatial and a temporal
component, the combinations between CNNs (spatial) and LSTMs (temporal) do not
end up being the best performers. This leaves the door open for further investigation
of new combination techniques.

Nevertheless, it has been proven that the deep learning methods proposed during
this research are a considerable improvement over other classical machine learning
methods applied to regression problems, such as Ridge, MLP and SVM.
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Fig. 4 Comparison of NMAE by prediction step between LSTM and ViT with its confidence
interval

5.2 Degradation Study

Since the weather-based forecasting problem is based on source data that are also
forecasts, models may have different performances at different forecast horizons.
Therefore, comparing models solely by a metric averaged over such prediction hori-
zons seems to us to lack all the analysis that a model’s performance might receive,
since onemodel might perform better for near-prediction horizons and another might
perform better at far horizons (Fig. 4).

This is why this part of the study focuses on comparing the performance of the
differentmodels over the prediction horizons and the error distributions of themodels.

6 Conclusion

The prediction of wind energy production is a complex task, as it is influenced by
meteorological and geographical factors. For this reason, the aim of this paper is to
provide a new perspective on the problem by applying the latest Deep Learning tech-
niques that have been classically used in other disciplines such as NLP or Computer
Vision.

After an extensive research on the state-of-the-art techniques in neural network
architectures applied to time series and spatial data together with their combina-
tions and variants, we have proposed many architectures to solve the problem. These
approaches have been CNN, LSTM, LSTM+CNN (Stacked), LSTM+CNN (Paral-
lel), ConvLSTM and Vision Transformer.

Despite the high computational cost of training this type of architectures based
on deep neural networks, an exhaustive benchmark has been elaborated in order to
compare, applying different metrics, the performance of the proposed architectures.
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All the implementations have obtained results of similar quality, although the LSTM
and ViT have stood out, obtaining an NMAE of 0.080. Thus, with the former, the
temporal approach to the problem has been justified, while with the latter, the spatial
approach has been justified. Moreover, all the proposed solutions have been shown
to be a clear improvement over classical machine learning models using tabular data.
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Forecasting Natural Gas Prices with
Spatio-Temporal Copula-Based Time
Series Models

Sven Pappert and Antonia Arsova

Abstract In this work, we model and forecast commodity price time series using
multivariate copula-based time seriesmodels. In particular, we consider theGaussian
copula, the t-copula and D-vine copulas to model both the contemporaneous and the
temporal dependencies of the series. We focus on daily short-term gas, coal, oil and
carbon emission futures in the period from March 2010 to February 2021. Further,
we examine how the copula-based model gives rise to non-elliptical conditional
probabilistic forecasts. During volatile periods, the conditional forecast density can
become bimodular. This can be problematic when not only a distributional but also
a mean forecast is desirable. Because for such probabilistic forecasts, it is not clear
what represents a goodmean forecast. A possible solution is to augment the forecasts
by an artificial neural network that predicts the best quantile to use as mean forecast
based on past values and past best quantiles. In a forecasting study, the predictive
performances of the models are examined and compared with a benchmark. The
distributional forecasts are examined by the CRPS. Themean forecasts are examined
by the RMSE. The copula-based models are competitive with benchmark models.

Keywords Copula · Dependence modeling · Deep neural network · Energy
forecasting · Probabilistic forecasting
1 Introduction

Modeling and forecasting commodity prices is important for trading and political
decision-making. In this work, we focus on modeling and forecasting short-term
natural gas future prices jointly with related commodity prices. We model the time
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series jointly to exploit the additional information carried by theirmutual dependence.
To this aim, we employ spatio-temporal copula-based time series models.

Copulas are popular choices to model the cross-sectional dependence in multi-
variate time series with the copula-GARCH approach in financial markets [16, 18],
as well as in energy markets [2, 7]. In the copula-GARCH approach, the temporal
dependence of each time series is modeled by univariate time series models, such
as ARMA-GARCH. The cross-sectional dependence structure of the time series
can be captured by the copula of the standardized residuals of the univariate time
series model. However, such models are only able to allow for flexible dependence
structures in the cross-sectional dimension. The mean process is modeled linearly.

On the other hand, temporal copula modeling (or ‘copula-based time series mod-
eling’) as well as spatio-temporal copula time series modeling offers an alternative
to classical linear time series approaches. The models are able to flexibly model con-
temporaneous dependencies across multiple time series, as well as temporal depen-
dencies. There is emerging literature on the topic. Chen and Fan [9] investigate
the estimation of univariate copula-based semiparametric time series models. The
authors provide conditions for β-mixing and prove consistency as well as asymptotic
normality of the model parameters. Beare [4] further investigates mixing conditions.
Smith et al. [24] decompose the serial dependence of intraday electricity load using
pair copula constructions. Simard and Rémillard [22] investigate the forecasting per-
formance of the spatio-temporal t-copula, dependent on the strength and structure of
the dependence as well as the marginal distributions. Loazia-Maya et al. [19] explore
heteroskedasticity modeling using copulas. Beare and Seo [5] as well as Nagler et
al. [20] examine spatio-temporal vine copula models.

Examples where flexible dependence modeling can be important are the follow-
ing. The cross-sectional dependence between international stock markets can be
asymmetric with dominant lower tail dependence, indicating the phenomenon of
contagion in financial markets [16]. With regard to energy markets, it was found by
Aloui et al. [2] that crude oil and gas markets comove rather during bullish periods,
thereby also displaying an asymmetric cross-sectional dependence structure. A con-
cise example for a possible emergence of non-linear dependence structures in the
temporal domain and hence requiring sophisticated dependence modeling is given in
the introduction of the work by Beare [4]: The continuous growth of financial time
series contrasted with their sudden and quick decrease represents an asymmetric
temporal relation. Thus, cross-sectional as well as temporal dependence modeling
can be important in many fields.

In this paper, we explore the performance of spatio-temporal copula models for
modeling energy commodity prices. The basic idea underlying spatio-temporal time
series modeling with copulas is a decomposition of the joint distribution. Using
Sklar’s theorem [23], the joint distribution of consecutive observations is decomposed
into dependence and marginal structure, FXt ,Xt−1(a,b) = C

[
FXt (a), FXt−1(b)

]
. Var-

ious copula specifications can be employed. In this work, the t-copula (discussed in
detail in [11]) and the Gaussian copula are considered. Vine copula models [1, 10]
are also considered. Spatio-temporal forecasting with the t-copula was examined in
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[22]. The spatio-temporal vine copula modeling of multivariate time series is, among
others, explored in [5, 20, 24].

By employing conditional copulas, the models can be used for forecasting. The
resulting probabilistic forecasts can be non-elliptical. It is not obvious what consti-
tutes a sensible mean forecast in this case. The expectation value is a sensible mean
forecast for elliptical or almost elliptical probabilistic forecasts. For non-elliptical
forecasts, e.g. a bimodular probabilistic forecast, the expectation value predicts points
that are unlikely. One possible solution to this problem would be to take the mode
of the probabilistic forecast as the mean forecast. Another possibility is to augment
the forecasting procedure by an artificial neural network (ANN).1 The ANN predicts
which quantile of the probabilistic forecast is optimal (in MSE sense) as mean fore-
cast. The inputs of the ANN are past values of the times series and the last optimal
quantiles. One advantage of the ANN-augmented forecast is that the ANN can be
estimated and used for prediction completely independent from the probabilistic time
series model used for forecasting. In this approach, the ANNmean forecasts are also
equipped with an underlying probabilistic distribution, enabling the calculation of
confidence intervals and other distributional properties. The models’ performances
are examined in a forecasting study. The ARMAX-AVTGARCH model, closely
related to the model from [6], which was shown to outperform other popular models,
is considered as a benchmark. We find that the spatio-temporal copula models with
ANN-augmented mean forecasts are indeed competitive for natural gas and related
commodity price forecasting.

The main contributions of this paper are two-fold. The first contribution is the
application-oriented exploration of spatio-temporal copula-based time series models
for predicting energy commodity prices. We evaluate the performance of the models
in a forecasting study and find that they perform well. The second contribution
is the methodological exploration of optimal mean forecasting from non-elliptical
probabilistic forecasts by means of ANNs.

In the next Section, Sect. 2, the data used in this work is introduced briefly.
Section 3 describes the statistical methods used in this work. The empirical results of
the forecasting study are presented in Sect. 4, while Sect. 5 summarizes the results
and outlines some avenues for future research.

2 Data Description

In this work, we analyze month-ahead natural gas futures (NGas) from the Nether-
lands (TTF Hub). The related commodities used for modeling are short-term carbon
emission futures (CEF), short-term brent oil futures (oil) and short-term coal futures
(coal). The analyzed time series are comprised of daily observations. The observation
period spans fromMarch 2010 to February 2021. In total, each time series comprises
2861 observations. Missing values, which occur especially during the holidays, are

1 We refer to [14] for a concise introduction.
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Fig. 1 First differences of the respective commodity price time series

trivially imputed as the last known value. The original time series are non-stationary.
To obtain stationarity, which is necessary for the methods used in this report, the time
series are differenced once. The differenced time series are displayed in Fig. 1. The
hypothesis of non-stationarity in the first differences is rejected by the Dickey-Fuller
test at the level α = 0.01 for all time series.2

3 Statistical Methods

This section describes the methods used in this study. First copulas and related
notions are introduced in Sect. 3.1. The copula specifications used in the analysis
are presented. In particular vine copulas are presented in Sect. 3.2. The application
of copulas to time series modeling is discussed in Sect. 3.3. The emergence of non-
elliptical probabilistic forecasts is examined with regard to the t-copula in Sect. 3.4.
It is shown how the t-copulamay be used tomodel conditional heteroskedasticity.We
note that Loazia-Maya et al. [19] also explored heteroskedasticity modeling based,
among others, on the t-copula. The need for newmean forecast methods is presented.

3.1 Copulas

Copulas are distribution functions on the unit cube with uniform marginals:

2 Results are omitted for brevity, but available upon request.
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C : [0, 1]d → [0, 1]. (1)

Copulas gain their relevance by Sklar’s theorem [23]. It states that every multivari-
ate distribution can be decomposed into a copula and marginal distributions. Let
X1, . . . , Xd be real-valued random variables with joint distribution FX1,...,Xd and
marginal distributions FX1 , . . . , FXd . Then it holds that there exists a copula C such
that

FX1,...,Xd (x1, . . . , xd) = CU1,...,Ud

[
FX1(x1), . . . , FXd (xd)

]
, (2)

where (U1, . . . ,Ud) := (FX1(X1), . . . , FXd (Xd)). In the following, the indices of
the copula will be dropped. If the random variables X1, . . . , Xd are continuous,
then the decomposition is unique [17]. The pseudo-observations (u1, . . . , ud) :=
FX1(x1), . . . , FXd (xd) are, by virtue of the probability integral transformation, real-
izations from a uniform distribution, Ui = FXi (Xi ) ∼ U [0, 1], i ∈ {1, . . . , d} [3].
This permits the copula to be interpreted as the dependence structure of the random
variables X1, . . . , Xd . The copula density c, which couples the joint density fX1,...,Xd

and marginal densities fX1 , . . . , fXd , can be derived directly from Eq. 2 by taking
derivatives (if the copula is differentiable) :

fX1,...,Xd (x1, . . . , xd) = c
[
FX1(x1), . . . , FXd (xd)

]
fX1(x1) . . . fXd (xd), (3)

c[u1, . . . , ud ] = ∂dC[u1, . . . , ud ]
∂u1 . . . ∂ud

. (4)

The copula density is important for estimation via maximum likelihood as well as for
the visualization of dependence structures. In this paper, the copula density will also
be used to introduce the notion of vine copula models. Another important notion for
dependence modeling is the conditional copula of U1, . . . ,Ui given Ui+1, . . . ,Ud ,
alongwith the respective conditional copula density. The conditional copula (density)
can also be derived from Eq. 2. It is given as [22],

C[u1, . . . , ui |ui+1, . . . , ud ] = ∂ui+1 . . . ∂udC[u1, . . . , ud ]
c[ui+1, . . . , ud ] , (5)

c[u1, . . . , ui |ui+1, . . . , ud ] = c[u1, . . . , ud ]
c[ui+1, . . . , ud ] . (6)

Conditional copulas are especially relevant for conditional time series models as
presented in this paper. The relation between the conditional density and the copula
is as follows:
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fX1,...,Xi |Xi+1...Xd (x1, . . . , xi |xi+1, . . . , xd) = c
[
FX1(x1), . . . , FXd (xd)

]

c[FXi+1(xi+1), . . . , FXd (xd)]
(7)

× fX1(x1) . . . fXi (xi ).

The copula approach to multivariate modeling allows for separate modeling of
marginal properties and dependence structure. This feature renders the approach far
moreflexible than standardmultivariatemodeling. Joint distributions such as themul-
tivariate normal or Students t-distribution restrict the choice ofmarginal distributions.
In the copula approach, marginal distributions can be arbitrary. Also the dependence
structure of random variables can exhibit various features that have to be accounted
for by choosing an appropriate copula specification. In this work, the Gaussian,
Clayton, Gumbel and t-copula are utilized. In the following, they will be introduced
briefly as the joint distribution of random variables Ui ∼ U [0, 1], i ∈ {1, . . . , d}.
The Gaussian copula is a popular choice for modeling linear dependence structures.
The Gaussian copula is constructed by extracting the dependence structure of the
multivariate normal distribution and filtering the marginal influences [17],

CGaussian[u1, . . . , ud ] = ��[φ−1(u1), . . . ,φ
−1(ud)], (8)

where φ is the cumulative distribution function of the standard normal distribution
and �� is the d-variate cumulative distribution function of the normal distribution
with correlation matrix �. The correlation matrix � ∈ [−1, 1]d×d contains d(d−1)

2
dependence parameters, ρ1, . . . , ρ d(d−1)

2
, governing the linear dependencies among

the random variables U1, . . . ,Ud . The density of a bivariate Gaussian copula with
dependence parameter ρ = 0.4 is displayed in the upper left panel of Fig. 2. The
density only displays a linear relation between the variables. Similar to recovering
linear dependence structures from the multivariate normal distribution, heavy-tailed
dependence structures can be recovered from the multivariate t-distribution using the
t-copula

Ct [u1, . . . , ud ] = t�,ν[t−1
ν (u1), . . . , t

−1
ν (ud)], (9)

where tν is the cumulative distribution function of the t-distribution with degree of
freedom ν and where t�,ν is the cumulative distribution function of the multivari-
ate t-distribution with correlation matrix � and degree of freedom ν. Incorporating
the degree of freedom ν ∈ (2,∞) permits heavy-tailed dependence structures. The
heavy-tailedness can be interpreted as a higher probability of extreme events coin-
ciding. A lower degree of freedom ν implies heavier tails. The density of a bivariate
t-copula with dependence parameter ρ = 0.4 and degree of freedom ν = 4 is dis-
played in the upper right panel of Fig. 2. The density displays the linear relation
between the variables as well as the coincidence of extreme events. Another class of
dependence structures can be described as asymmetric dependence structures. Two
relevant copulas are the Gumbel and Clayton copula. The Gumbel copula exhibits
dominant upper tail dependence while the Clayton copula exhibits dominant lower
tail dependence. Their bivariate densities are displayed in the lower left, respectively
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Fig. 2 Simulated density plots of four different two-dimensional copula specifications. The upper
left plot shows the Gaussian copula density with dependence parameter set to ρ = 0.4. Upper right
shows the t-copula density with dependence parameter ρ = 0.4 and degree of freedom ν = 4. The
lower left plot displays the Gumbel copula density with dependence parameter θ = 2. The lower
right plot displays the Clayton copula density with dependence parameter θ = 2. All plots were
created from simulations with 2000 samples

lower right panel of Fig. 2. Both copulas are part of the Archimedean copula family.
They are constructed as C[u1, . . . , ud ] = �−1 (�(u1) + . . . + �(ud)) with a suit-
able generator function � [12, 15]. The generators for the Gumbel, respectively
Clayton copula, are given by

�Clayton(t) = (1 + t)−
1
θ , (10)

�Gumbel(t) = e−t
1
θ
. (11)

The dominant lower tail dependence of the Clayton copula can be interpreted as
lower tail events coinciding more often than upper tail events and vice versa for the
dominant upper tail dependence of the Gumbel copula. An even more flexible copula
model is the vine copula model. Vine copula models will be explained next.

3.2 Vine Copulas

Vine copulas are special pair copula constructions. The idea of pair copula construc-
tions is to decompose a d-variate dependence structure into a product of bivariate
copulas. The joint density of d random variables can, by virtue of the law of total
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probability, be decomposed into a product of conditional densities. Using the relation
between conditional densities and copula densities (Eq. 7), one possible decompo-
sition of a d-variate copula density can be derived as [1, 10]

c[u1, . . . , ud ] =
d−1∏

j=1

d− j∏

i=1

c[ui , ui+ j |ui+1, . . . , u j−1], (12)

where indices of the copula densities were dropped again. Furthermore, we neglect
the influence of conditioning on the copula density. In the literature, this model
then is called simplified vine [20]. The decomposition is not unique. The decom-
position in Eq. 12 is called drawable vine (D-vine). The unconditional copulas
in the product all capture the dependence structure of neighboring variables, e.g.
c[ui , ui+1], c[ui+1, ui+2] and so forth. In a graphical representation, the connection
between the variables resembles a straight line, hence the name D-vine.3 The vine
copula approach allows for flexible dependence modeling. It is advantageous in con-
texts where the bivariate dependence structures between variables can take different
forms, e.g. the dependence structure between variables U1 and U2 may be linear
whereas the dependence structure between U2 and U3 may be heavy-tailed and so
forth. Vine copula models can be estimated by maximum likelihood; we refer to [1]
for details.

3.3 Modeling Time Series with Spatio-Temporal Copulas

So far, our discussion on copulas referred to modeling dependence in a general mul-
tivariate setting. In this subsection, the copula-based time series models are reviewed
and summarized. Further, it is explained how these models can be used for forecast-
ing. First, the temporal copula modeling of univariate time series (see, for example,
[4, 9]) is introduced. Next, the copula-based modeling of multivariate time series,
the spatio-temporal copula modeling, is discussed. The exposition on the spatio-
temporal t-copula is based on [22], while for vine copula modeling we refer to [5, 8,
20, 24]. It will be examined how conditional temporal copula models offer an alter-
native approach to conditional heteroskedasticity modeling, which was also explored
in [19]. The emergence of non-elliptical conditional probabilistic forecasts will be
exemplified. The consequences for forecasting and the need for newmean forecasting
methods will be discussed.

Let Xt be a univariate stationary Markov(1) time series. The temporal evolution
of the time series is completely specified by the joint distribution of random variables
from consecutive time points, i.e. FXt ,Xt−1 . Using Sklar’s theorem (Eq. 2), the joint

3 Another special class of decompositions are canonical vines (C-vine). In this decompo-
sition, the unconditional dependence structures are all centered around one variable, e.g.
c[ui , ui+1], c[ui , ui+2], . . .. In a graphical representation, the unconditional connection between
variables resembles a star. In this study only D-vines are used.
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distribution can be decomposed into copula and marginal distributions as

FXt ,Xt−1(a, b) = C
[
FXt (a), FXt−1(b)

]
. (13)

By the stationarity of Xt , FXt = FXt−1 =: FX . Hence, themodel can be determined by
choosing an appropriate marginal distribution FX and an appropriate copula spec-
ification. Note that the marginal distribution FX is the unconditional distribution
of Xt . Conditional properties of the time series are completely determined by the
conditional copula. The conditional density of Xt |Xt−1 is given by

fXt |Xt−1(a|b) = c [FX (a), FX (b)] fX (a). (14)

Hence, for forecasting, the conditional density of (Xt |Xt−1 = xt−1) can be used
as a probabilistic forecast. This model can be understood as a generalization of
the AR(1) model [24].4 The Gaussian autoregressive model can be recovered by
choosing C = CGaussian and FX = �. When allowing other dependence structures,
any temporal dependency representable by a copula can be reproduced. The concept
of the copula-based time series models can be further illustrated by its conditional
model equation:

Xt |(Xt−1 = xt−1) = F−1
X (C−1

[
wt |FX (xt−1)

]
), wt

i id∼ U [0, 1]. (15)

In this formulation, the non-linear connection between Xt and Xt−1 becomes
obvious. The generalization of the temporal copula time series model to d-variate
time series, hence spatio-temporal time series models, is straightforward. Let Xt =
(X1,t , . . . , Xd,t ) be a stationary Markov(1) time series. The structure of the time
series is completely captured by the joint distribution of Xt and Xt−1,

FXt ,Xt−1(a,b) = C
[
FX1(a1), . . . , FXd (ad), FX1(b1), . . . , FXd (bd)

]
. (16)

The conditional density, given the observations from time point (t − 1), is as follows:

fXt |Xt−1(a|b) =c
[
FX1(a1), . . . , FXd (ad), FX1(b1), . . . , FXd (bd)

]

c
[
FX1(b1), . . . , FXd (bd)

] (17)

× fX1(a1) · · · fXd (ad).

To sample from the conditional distribution, as necessary for Monte Carlo approx-
imations of conditional forecasts, the following procedure as in [22] in employed.
First transform the observations at time t − 1 to pseudo-observations. This is done by
applying the probability integral transform to the observations, (ut−1,1, . . . , ut−1,d)

:= (FX1(xt−1,1), . . . , FXd (xt−1,d)). Then sample n d-dimensional realizations from

4 The generalization to AR(p) models can be achieved by permitting the time series to be a
Markov(p) process.
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the conditional copula, Eq. 5 (Details on how to sample from the t-copula can be
found in [22]. Details to sampling from vine copulas can be found in [1]). At last,
the n realizations have to be quantile-transformed with their respective marginal
distribution, yielding the n samples of the conditional distribution.

For our empirical study, namely forecasting energy commodity prices,we consider
the following models: First, the spatio-temporal time series model where the copula
is specified as the Gaussian copula (Eq. 8). The marginals are approximated non-
parametrically by the empirical distribution:

FXt ,Xt−1(a,b) =��[φ−1(Femp
X1

(a1)), · · · φ−1(Femp
Xd

(ad)), (18)

φ−1(Femp
X1

(b1)), · · · ,φ−1(Femp
Xd

(bd))].

This model is sensible to use when the dependence structure between the variables
as well as the temporal dependence is linear. When the dependence structure exhibits
heavy-tailedness, the spatio-temporal t-copula model with non-parametric marginals
poses a viable alternative, which we consider as well,

FXt ,Xt−1(a,b) =tν,�[t−1
ν (Femp

X1
(a1)), . . . t

−1
ν (Femp

Xd
(ad)), (19)

t−1
ν (Femp

X1
(b1)), . . . , t

−1
ν (Femp

Xd
(bd))].

Third, to allow for more flexibility, we utilize the spatio-temporal D-vine copula with
non-parametric marginals. For convenience, the model is presented in terms of its
joint density and with variables (a,b) =: p,

fXt ,Xt−1(p) =
2d−1∏

j=1

2d− j∏

i=1

c[FXi (pi ), FXi+ j (pi+ j )|FXi+1(pi+1), . . . , FX j−1(p j−1)]

× fX1(p1) · . . . · fXd (pd) fX1(pd+1) . . . fXd (p2d). (20)

This model is sensible to use when the dependence between variables differs in its
structure or when the temporal dependence differs from the cross-sectional depen-
dence.

Fourth, applicable solely for temporal modeling, the temporal t-copula is
employed,

FXt ,Xt−1(a, b) = tν,�[t−1
ν (Femp

X (a)), t−1
ν (Femp

X (b))]. (21)

The heavy-tailed temporal dependence that this model exhibits is suitable for condi-
tional heteroskedasticity modeling as discussed in [19]. This, and the emergence of
non-elliptical probabilistic forecasts, is what we focus on next.
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Fig. 3 Visualization of the conditional density structure depending on the value of the conditioning
variable. The underlyingmodel assumes the t-copulawith dependence parameterρ = 0.4 anddegree
of freedom ν = 2.1. The marginal distribution is assumed as the standard normal distribution. The
upper left panel shows the copula density of 2000 realizations of the before mentioned t-copula. The
three lines indicate the three caseswhere the conditional density is examined.The conditional density
is calculated by collecting all values in the neighborhood (u1 ± 0.025) of the conditioning variable
and quantile-transforming them. The density in the upper right panel displays the conditional density
given u1 = 0.03. The lower panels display the conditional densities given u1 = 0.5, respectively
u1 = 0.97

3.4 Emergence of Non-elliptical Probabilistic Forecasts

The conditional distributions, respectively probabilistic forecasts from (spatio)-
temporal copula time series models, can be non-elliptical because of non-linear
influences of the conditioning variable. In the following, the behavior of the con-
ditional distributions will be examined with regard to the temporal t-copula with
standard normal marginal distribution.5 The emergence of non-elliptical conditional
densities from the heavy-tailed t-copula is visualized in Fig. 3.When the conditioning
variable takes moderate values around u1 = 0.5, the resulting conditional density is
approximately elliptical. However, when the conditioning variable takes extreme val-
ues, e.g. u1 = 0.03 and u1 = 0.97, the conditional density becomes bimodular. Thus,
depending on the value of the conditioning variable, the resulting conditional density
can have fundamentally different structures. This behavior offers a new approach to
conditional heteroskedasticity modeling. Instead of widening the conditional density
as in GARCH models, the density gets bimodular. This can be viewed as a sensible
approach to volatility because the extreme behavior in volatile phases is mirrored
in this model: When the time series takes a very low value at time point (t − 1), it

5 The choice of the standard normal distribution is just for convenience. The example would still
be valid with other marginal distributions, e.g. students t-distribution.
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can be expected that the value at time point t will either be also very low or very
high. The variance at time point t is increased nevertheless, but the mechanism for
the increase in variance is a new one.

The temporal t-copula approach to conditional volatility, however, holds a prob-
lem. When the conditional density is non-elliptical, it is not clear what constitutes a
sensible mean forecast. The expectation value may not be suitable in extreme cases
where the conditional density is bimodular because the expectation value will take a
value which is less probable than, e.g. the modes. Taking the mode as mean forecast
could be a solution. Another possible solution to the problem of mean forecasting is
to augment the forecast by an artificial neural network (ANN). The ANN predicts
which quantile of the conditional distribution is best (in terms of MSE) to use as
mean forecast. The inputs of the ANN are past values of the time series and the last
optimal quantiles. The ANN architecture used in this work is the basic multi-layer
perceptron (MLP) structure. We refer to [14] for an introduction to the topic.

4 Forecasting Study

This section comprises the results of an expanding window forecasting study, inves-
tigating the one-step-ahead forecasting performance of different models. The first
1000 observations are used as initial training data set. The following models are
considered for evaluation.

(1) The temporal t-copula model with non-parametric marginals, Eq. 21, henceforth
denoted by Tem-t,

(2) The spatio-temporal D-vine copula model, Eq. 20, henceforth denoted by S-Tem
D-vine,

(3) The spatio-temporal t-copula model, Eq. 19, henceforth denoted by S-Tem-t,
(4) The spatio-temporal Gaussian copula model, Eq. 18, henceforth denoted by S-

Tem-Gaussian,
(5) The autoregressive moving-average model with external regressors and abso-

lute value, threshold generalized autoregressive conditional heteroskedasticity
model, henceforth denoted by ARMAX-AVTGARCH (closely related to the
newly proposed model of [6]).

The models’ distributional forecasting performance is examined by the continuous
ranked probability score (CRPS) [13]. Further, the ANN-assisted mean forecasts of
the S-Tem D-vine model and the Tem-t model are compared with the mean fore-
casts from the ARMAX-AVTGARCH model by RMSE. For each time series, the
ARMAX-AVTGARCH model is fitted individually. All models are estimated via
Maximum Likelihood. However, the marginals of the copula models are estimated
non-parametrically to avoid transmitting estimation errors caused by two-step esti-
mation [21]. The order of the variables in the S-Tem D-vine copula model is fixed
as
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Table 1 Aggregated CRPS values of the competing models for their one-day-ahead probabilistic
forecast for the four commodities. The CRPS is evaluated for the period 12/19/2013 to 02/23/2021,
comprising 1861 observations

Model/commodity S-Tem
D-Vine

ARMAX-
AVTGARCH

Tem-t S-Tem-t S-Tem-
Gaussian

Natural gas 0.236 0.227 0.230 0.234 0.234

Oil 0.564 0.548 0.551 0.559 0.558

Coal 0.400 0.389 0.392 0.398 0.397

CEF 0.236 0.222 0.229 0.234 0.234

CEF − coal − oil − NGas − NGas lag − oil lag − coal lag − CEF lag. (22)

This order is chosen to enable the lagged natural gas price to directly interact with
the non-lagged natural gas price. The Gaussian, Gumbel, Clayton and t-copula are
allowed as bivariate copulas in the D-vine decomposition (Eq. 12). The probabilis-
tic forecasts of all models are approximated by Monte Carlo simulations with 1000
samples for each forecast. Table 1 displays the models’ performances in terms of
the CRPS. The ARMAX-AVTGARCH model performs best with regard to univari-
ate distributional forecasting. However, the S-Tem D-vine model, the S-Tem-t and
the Tem-t model are competitive. The performance of the copula models may be
enhanced, when the marginal distributions are modeled parametrically. The empiri-
cal marginal distributions of the copula may not capture all marginal features of the
time series. More versatile copula models could be used to enhance the forecast. The
conditional dependencemodelingmay only be able to capture parts of the conditional
effects.

The probabilistic forecasts from the Tem-t model during a volatile period are dis-
played in Fig. 4. During volatile times, the probabilistic forecasts are non-elliptical.
During these times, the ANN-augmented mean forecasts can be valuable. The mean
forecasting performance of the models can be found in Table 2. The evaluation starts
at the 2001st observation, because the first 1000 probabilist forecasts are used to
train the ANN. The hybrid, ANN-augmented S-Tem vine and the ANN-augmented
Tem-t model generate the best mean forecasts. The mean forecasts of the ARMAX-
AVTGARCHmodel are competitive though. Note that the ANNmodel used for fore-
casting is built according to the basic multi-layer perceptron architecture. It is not
perfectly suitable for catching sequential patterns. Using recurrent neural networks,
especially long short-term memory architectures could enhance the performance
even more and could be subject to future research. Also incorporating a measure for
the structure of the probabilistic forecast could enhance the performance. However,
this would require more advanced architectures.
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Fig. 4 Probabilistic forecasts for natural gas futures generated from the temporal t-copula model.
The forecast densities can be non-elliptical during volatile times (August 2019–September 2019)

Table 2 Aggregated RMSE values of the competing mean forecasting procedures for the four
commodities. The RMSE is evaluated for the period 10/23/2017 to 02/23/2021, comprising 861
observations

Model/commodity S-Tem
D-Vine ANN

ARMAX-
AVTGARCH

S-Tem
D-Vine mean

S-Tem
D-Vine mode

Tem-t ANN

Gas 0.594 0.600 0.599 0.597 0.589

Oil 1.222 1.222 1.236 1.246 1.220

Coal 1.000 0.999 1.009 1.002 0.997

CEF 0.605 0.608 0.614 0.604 0.607

5 Conclusion

The application of copula-based time series models to natural gas and related com-
modity prices is explored in this work. An expanding window forecasting study is
conducted. The time series comprises short-term future price series of natural gas,
crude oil, coal and carbon emissions.

After introducing the basic notions of dependence modeling with copulas and the
D-Vine copula, the copula-based time series models from the literature are reviewed.
The emergence of non-elliptical probabilistic forecasts is exemplified using the
temporal t-copula. It is visualized how the temporal t-copula offers an alternative
approach to conditional heteroskedasticity modeling. It is not clear what constitutes
a sensible mean forecast when the probabilistic forecast is non-elliptic. To this end,
an artificial neural network is employed to predict what quantile of the probabilistic
forecast is best to use as mean forecast. The inputs of the artificial neural network
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are past values of the multivariate time series and the last best quantiles of the prob-
abilistic forecast.

In a forecasting study, the predictive performance of the temporal t-copula, the
spatio-temporal t-copula and the spatio-temporal D-Vine copula is examined. The
marginal distributions are estimated by the respective empirical distribution. The per-
formance is compared with the performance of an autoregressive moving-average
model with external regressors and absolute value, threshold generalized autore-
gressive conditional heteroskedasticity model (ARMAX-AVTGARCH). A closely
related model was recently shown to be the best model for natural gas forecasting.
Hence, it is understood as a benchmark model. The distributional predictive perfor-
mance is examined by the continuous ranked probability score (CRPS). We find that
the copula-based time seriesmodels are competitivewith theARMAX-AVTGARCH
model. The mean forecasts are evaluated by the root mean squared error (RMSE).
The ANN-augmented mean forecasts perform best, although the forecasts from the
ARMAX-AVTGARCH model are still competitive.

The performance of the copula-based time series models could be enhanced by
modeling the marginal distributions parametrically. The non-parametric modeling
may not catch all marginal features of the time series. However, this procedure
requires the estimation to be conducted in one step to guarantee efficient estimation.
Another possibility to enhance the performance is to consider more versatile copula
models. The current modeling may not capture all conditional features of the time
series. Another possibility, with regard to the vine copula model, is to consider other
vine structures. In this work, the D-vine structure was imposed. Other structures may
be able to capture the dependencies better. As for the mean forecasts, it was shown
that the ANN-augmented forecasts perform well. Even though we choose to uti-
lize the standard multi-layer perceptron architecture, which cannot model sequential
information perfectly well, the precision was increased. Using more sophisticated
architectures that are more suited to catch sequential information will be subject to
future research. It would also be interesting to use other models to predict the best
quantile for mean forecasting.
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