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Abstract. When testing a system that interacts with its environment
at several physically distributed interfaces (ports) it is normal to place
a local tester at each port. If the local testers do not synchronise their
actions then the local tester at port p can only observe the sequence of
inputs and outputs that occur at p. If, in addition, there is no global clock
then it may be impossible to reconstruct the global trace that occurred
in testing and testing is then using the distributed test architecture.
As a result, the System Under Test (SUT) might be able to produce a
global trace that is not allowed by the specification, and so would nor-
mally represent a failure, but where the local testers cannot observe this
difference. The use of the distributed test architecture thus affects the
ability of testing to distinguish between a specification and an SUT and
so leads to the need for a different notion of correctness (implementation
relation). This paper explores alternative implementation relations for
distributed testing and how they relate.

1 Introduction

Jan Peleska has made a significant long-term contribution to the development of
systematic test generation techniques based on formal models (see, for example,
[19]) and has shown how such techniques can be used in an industrial setting
[24–26]. This is an important contribution since testing is a core part of software
development. As Peleska has shown, if there is a model of the required behaviour
of the system under test (SUT) then there is potential to automate test gen-
eration based on this model, with this approach often being called model-based
testing (MBT). Further, if the model has a formal semantics then automated test
generation can be systematic, in the sense that one can formally reason about the
types of faults that test cases can find (see, for example, [1,7,19,20,24,27,28,30]).

Most work on MBT uses models in the form of a finite state machine (FSM)
or labelled transition system (LTS). However, the user is not expected to pro-
duce FSM or LTS models: the user can produce models written using a state-
based language such as Statecharts, with these models being mapped to FSMs
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Fig. 1. A controllability problem [15]

or LTSs [6,7,20]. Testing is typically then a process in which a tester inter-
acts with the SUT, through providing inputs and observing outputs, and the
resultant sequence of inputs and outputs (trace) is checked against the origi-
nal model/specification. Although this captures how testing is often carried out,
testing can be rather different. For example, the communication between the
tester and the SUT might be through a medium that introduces a delay. Testing
is then asynchronous, with the trace that is observed by the tester potentially
not being the trace produced by the SUT since the tester observes inputs before
the SUT does and the SUT produces outputs before they are observed by the
tester [9,12,32]. The SUT might also interact with its environment at multiple
physically distributed interfaces, called ports, with there being a local tester at
each port. If the local testers do not synchronise their actions and there is no
global clock then testing is taking place in the distributed test architecture [21].
We use the term distributed testing when we refer to testing in the distributed
test architecture.

In the distributed test architecture, an observation consists of a number of
local traces, one for each port, as opposed to a single (global) trace. Early work on
distributed testing noted that it can lead to controllability problems, which occur
because a tester cannot observe the interactions at other ports and, therefore,
sometimes does not know when to supply an input [4,29]. To see how controlla-
bility problems can occur, consider the scenario shown in Fig. 1 in which three
processes interact (two testers and the SUT), arrows represent the exchange of
messages, and time progresses as we move down the line associated with a pro-
cess. Here, Tester 1 starts by sending input ?i1 to the SUT and should then
receive output !o1. After this, Tester 2 should send input ?i2. However Tester 2
cannot observe the interactions between Tester 1 and the SUT and so does not
know when to send its input.

There can also be observability problems, where a global trace not allowed
by the specification occurs but the observation made (the set of local traces)
is consistent with a behaviour of the specification [5]. To see how observability
problems can occur, consider the two scenarios shown in Fig. 2. Here, there are
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Fig. 2. Observationally equivalent scenarios [15]

two different global traces but in each case Tester 1 observes ?i1!o1?i1!o1 and
Tester 2 observes !o2. As a result, these global traces are indistinguishable when
testing in the distributed test architecture.

Much of the early work on distributed testing aimed to produce test gen-
eration techniques that returned test sequences that do not suffer from con-
trollability or observability problems. This previous work thus used traditional
implementation relations such as ioco [30]: the implementation relation did not
reflect the reduced ability of testing to distinguish between different global traces
and so also different processes. As a result, for example, such work might consider
a test case to be sufficient to find a given fault even when no tester can observe
a difference in behaviour (again, see Fig. 2). This paper focuses on later work
that developed new implementation relations that reflected the nature of the
distributed test architecture and the ability of testing to distinguish processes
in this test architecture.

This paper is structured as follows. Section 2 defines the types of models
considered and introduces notation used throughout the paper. Section 3 then
formalises what we mean by distributed testing and Sect. 4 defines and compares
the implementation relations. Section 5 then outlines some related and future
work and Sect. 6 draws conclusions.

2 Preliminaries

In software testing, typically a tester applies inputs and observes outputs pro-
duced by the SUT. Throughout this paper we use I to denote the set of possible
inputs and O to denote the set of possible outputs. The sets I and O are therefore
disjoint. We will normally precede the name of an input by ‘?’ and the name of
an output by ‘!’. We will use a running example to illustrate the key principles.
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Example 1. The system depicted in Fig. 3 represents a simplified version of the
diagnosis protocol of a gynaecological cancer screening centre management sys-
tem. It focuses on the functionality associated with the process that begins at
the moment a patient makes a date with the doctor. When a patient visits the
doctor, they can either prescribe some tests or diagnose an illness. In the first
case, the patient must go to the laboratory and image diagnosis section and make
the corresponding appointments. Once the results of the tests are available, the
patient will visit the doctor. If the results of the tests provide enough informa-
tion, then the doctor will diagnose the patient and prescribe the appropriate
medication. However, the doctor may need more tests to give a final diagnosis
and then the patient will begin the cycle again. The protocol is very close to a
real system. In order to simplify the presentation we only consider one battery
of tests: an ultrasound, a mammography and a smear test. After the test results
are received in the doctor’s office and the patient makes an appointment, the
patient will visit the doctor for a diagnosis.

The main type of model we use is an input output transition system, which is
a labelled transition system in which the set of actions is partitioned into inputs
and outputs.

Definition 1 (Input Output Transition System). An input output tran-
sition system (IOTS) r is defined by a tuple (Q, I,O, T, qin) in which Q is a
countable set of states, qin ∈ Q is the initial state, I is a countable set of inputs,
O is a countable set of outputs, and T ⊆ Q × (I ∪ O ∪ {τ}) × Q is the transition
relation. Here, τ represents an internal action, which cannot be observed.

We say that state q ∈ Q is stable if there is no q′ ∈ Q and y ∈ O ∪ {τ} such
that (q, y, q′) ∈ T . This represents the situation in which r cannot change state
without first receiving input. The process r is input-enabled if for all q ∈ Q and
?i ∈ I there is some q′ ∈ Q such that (q, ?i, q′) ∈ T .

We make the normal assumption that the SUT is input-enabled. In defining
implementation relations for distributed testing, we will also require that speci-
fications are input-enabled1. Some of the implementation relations described in
this paper have been generalised to the case where the specification need not be
input-enabled [17].

Example 2. The specification depicted in Fig. 3 is an IOTS in which input
actions represent different actions, such as the request of the different appoint-
ments (?app smear test , ?app ultrasound , . . .), the inclusion in the system of
the images or samples obtained by means of tests (?smear test , ?mammography ,
. . .), the registration of the diagnosis (?diagnosis) or the prescription of tests
(?tests presc). The output actions correspond to the information provided by
the system to the users. For example, the dates of the requested appointments
(!date smear test , !date ultrasound , . . .) or the results obtained from the tests

1 The alternative term Input Output Labelled Transition System is often used if a
process does not have to be input-enabled.
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Fig. 3. Specification of the appointments protocol

carried out (!test lab results, !test image results). The initial state, s1, is shaded.
For the sake of clarity, not all transitions are included in the figure since this
would overload the graph. Specifically, we have omitted those required to ensure
that the system is input-enabled (the missing transitions lead to no change in
state).

We also introduce notation that can be used to define processes. Given action
a and process r, we use a.r to denote the process that becomes r after engaging
in action a. Further, if S is a countable set of processes then we use

∑
S to

denote the process that non-deterministically chooses to be any process in S.
As is usually done when testing from an IOTS, we assume that the tester

can observe the SUT being in a stable state (being quiescent). In practice, the
tester will do this via a timeout, with the time ΔT used being problem-specific.
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There is thus the associated test hypothesis (assumption) that if the SUT does
not receive input or produce output for time ΔT then the SUT is in a stable
state. We use δ to denote quiescence.

Definition 2. Given IOTS r = (Q, I,O, T, qin), we can extend the transition
relation T to Tδ by adding the transition (q, δ, q) for each stable state q of r. We
use Act to denote the set of observable actions and so Act = I ∪ O ∪ {δ}.

Note that traces that (can) include quiescence are often called suspension
traces; we simply call them traces since we do not consider other types of traces.
The following standard notation is often used in the context of the standard
implementation relation ioco (see, for example, [30]).

Definition 3. Let r = (Q, I,O, T, qin) be an IOTS. We use the following nota-
tion.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write q a−−→ q′.
2. We write q

a==⇒ q′, for a ∈ Act, if there exist q0, . . . , qm and k ≥ 0 such
that q = q0, q′ = qm, q0

τ−−→ q1, . . . qk−1
τ−−→ qk, qk

a−−→ qk+1, qk+1
τ−−→

qk+2, . . . , qm−1
τ−−→ qm.

3. We write q
ε==⇒ q′ if there exist q1, . . . , qk, for k ≥ 1, such that q = q1,

q′ = qk, q1
τ−−→ q2, . . . qk−1

τ−−→ qk.
4. We write q

σ==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0,
q′ = qm such that for all 1 ≤ i < m we have that qi

ai+1
===⇒ qi+1.

5. We write r
σ==⇒ if there exists q′ such that qin

σ==⇒ q′ and we say that σ is a
trace of r.

6. We let T r∗(r) denote the set of finite traces of r.

Let q ∈ Q and σ ∈ Act∗ be a trace. We consider

1. q after σ = {q′ ∈ Q|q σ==⇒ q′}.
2. r after σ = qin after σ.
3. out(q) = {!o ∈ O ∪ {δ}|q !o==⇒}.

The last function can be extended to deal with sets in the expected way: Given
Q′ ⊆ Q we define out(Q′) = ∪q∈Q′out(q).

We say that the process r is deterministic if for every state q and a ∈ Act
there is at most one state q′ such that (q, a, q′) ∈ Tδ. We say that r is output-
divergent if it can reach a state from which there is an infinite trace that contains
outputs and internal actions only.

We will consider processes that are output-divergent but a number of the
definitions will require us to restrict attention to processes that are not output-
divergent. Note that output divergence can be undesirable in testing since a
process can choose to keep on providing outputs and not allow the tester to
supply inputs. We can now define the standard implementation relation ioco.

Definition 4 (Implementation relation ioco). Given IOTSs i and s we
have that i ioco s if for every trace σ of s we have that out(i after σ) ⊆
out(s after σ).



40 R. M. Hierons et al.

3 Distributed Testing

Implementation relations such as ioco implicitly assume that there is a single
global tester and this global tester is able to observe all of the actions in which
the SUT engages, as well as quiescence, and determine the order in which these
actions occurred. For example, if the SUT corresponding to the specification
presented in Fig. 3 produced output !test lab results and then !test image results
then the tester can observe both outputs and know that they were produced in
this order. For many systems, this is a reasonable assumption and so one can
use this type of implementation relation.

Research in the 1980 s, on testing implementations of communication proto-
cols [4,5] against an FSM specification, observed that sometimes one requires
multiple testers. In this work, there was an upper tester, which acted as the soft-
ware that was using the protocol, and a lower tester, which interacted with the
SUT through a communications network. For such systems, the SUT has multi-
ple (two) physically distributed interfaces (called ports), there is a separate local
tester at each port, and these local testers are not synchronised. This results in
the local tester at port p observing a local trace (the sequence of events at port
p) and so the overall observation made being a set of local traces: one local trace
for each port of the SUT.

Figure 4 shows two architectures that can be used when testing a system that
has multiple ports [17]. Figure 4(a) shows the case where there is a single global
tester that provides inputs at all of the ports and observes the outputs; this is
consistent with implementation relations such as ioco. Such a global tester can
reconstruct the global trace that occurred during testing, although sometimes it
may be difficult for the global tester to achieve this if the observation of an event
is given a local timestamp and the clocks used are not perfectly synchronised.
Figure 4(b) shows the distributed test architecture in which there is a separate
local tester at each port and each local tester observes a local trace. It is possible
to combine the two test architectures, leading to there being both a centralised
tester and local testers [13] but we will not discuss such a combined architecture.

As previously mentioned, early work on distributed testing observed that
it can lead to additional controllability and observability problems. The initial
response was to try to find test sequences that avoid controllability and observ-
ability problems. These are test sequences (traces) where, for example, one can
establish a global order of actions (see, for example, [2,11,22,23,31]). Later, it
was recognised that the distributed test architecture introduces inherent limita-
tions into testing and these limitations cannot be avoided unless some mechanism
can be established to synchronise the local testers [18]. As a result, if it is not
possible to synchronise the local testers then any test generation technique that
returns test sequences that overcome the limitations imposed by the distributed
test architecture must either be incomplete (misses some ‘faults’) or restricted to
a special class of FSMs. Naturally, similar observations apply to IOTSs. This led
to the definition of a new implementation relation for FSMs [18]; in this section
we focus on the corresponding implementation relations defined for IOTSs. We
need to include information about ports into models.
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Fig. 4. Testing architectures in systems with multiple ports

Definition 5. A distributed IOTS (dIOTS) is a pair (M,P), where M =
(Q, I,O, T, qin) is an IOTS and P is the set of ports. We partition I into pair-
wise disjoint sets Ip, for all p ∈ P, containing those inputs that can be received at
port p. Similarly, O is partitioned into pair-wise disjoint sets Op, for all p ∈ P,
containing those outputs that can be produced at port p.

Actp denotes the set of observations that can be made at p, that is, Actp =
Ip ∪ Op ∪ {δ}.

Example 3. Let us consider the IOTS depicted in Fig. 3, which is actually a
dIOTS. The system has three different ports that correspond to the laboratory,
the image diagnosis section and the consultations. These ports are connected to
the central server where information related to patients is stored. The different
types of lines used to draw the transitions are related to the different ports: solid
for the doctor’s office, dashed for the image diagnosis office and dotted for the
laboratory office.

Given port p and a (global) trace σ ∈ Act∗, we let πp(σ) denote the projection
of σ onto port p and this is called a local trace.

Definition 6 (Projection onto port p). Let p ∈ P and σ ∈ Act∗ be a
sequence of actions. We let πp(σ) denote the projection of σ onto port p and
πp(σ) is called a local trace. Formally,

πp(σ) =

⎧
⎨

⎩

ε if σ = ε
aπp(σ′) if σ = aσ′ ∧ a ∈ Actp
πp(σ′) if σ = aσ′ ∧ a ∈ Act \ Actp

Given σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be distinguished when
making local observations, that is, for all p ∈ P we have that πp(σ) = πp(σ′).

Note that quiescence is observed at all ports.
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4 Implementation Relations

Recall that in the distributed test architecture, there is a separate local tester at
each port. These testers make local observations and the local observations are
used in order to produce a test verdict such as pass (if the observed behaviour
is consistent with the specification) or fail (if the observed behaviour is not
consistent with the specification). The initial focus was on two main alternatives.
In the first of these alternatives, the local tester at port p produces a local verdict
vp: the tester determines whether the local observation at p is one allowed by
the specification. The local verdicts are then combined, with the overall verdict
being fail if and only if one or more of the local verdicts are fail. This leads to
the following implementation relation [17].

Definition 7 (The pdioco implementation relation). Let i, s be dIOTSs
with port set P. We write i pdioco s if for every trace σ ∈ T r∗(i) and for every
port p ∈ P there exists some trace σ′ ∈ T r∗(s) such that πp(σ) = πp(σ′).

Let us suppose that σ is a global trace. Clearly, σ uniquely defines the corre-
sponding local traces but, in addition, the converse is not the case: there may be
some different global trace σ′ that has the same set of local traces. It is therefore
unsurprising that pdioco is strictly weaker than ioco.

Proposition 1. Let i, s be dIOTSs. We have that i ioco s implies i pdioco s.
However, there exist processes s and i such that i pdioco s but where we do not
have that i ioco s.

A practical benefit of pdioco is that the test infrastructure for such an
implementation relation may be relatively simple: each local tester records its
local verdict and these local verdicts are either sent to a central tester that
combines them or are locally stored and combined later. Thus, the complexity
of the oracle problem2 is essentially the same as that of ioco (there is a multiplier
of |P|). Note also that it has been shown that i pdioco s holds if and only if, for
every p ∈ P, the projection of i onto p conforms, under ioco, to the projection
of s onto p [17].

Although pdioco is appealing, the local testers might have observed
projections of different global traces of the specification. As a result,
the verdict might be pass despite the global trace that occurred being
very different from any global trace of the specification. For example,
consider the global trace ?app doctor !date doctor?test presc?app smear test
?app mammography !date mammography !date smear test . This global trace is
not allowed by our specification. However, the projection of this trace onto each
port (?app doctor !date doctor?test presc, ?app smear test !date smear test and
?app mammography !date mammography) will lead to a pass verdict. Testing can
be strengthened by allowing the local testers to log their observations (local
traces), with these logs being brought together after testing is complete. This
leads to a different implementation relation [16,17].
2 The oracle problem is the problem of deciding whether an observation made in

testing is one allowed by the specification.
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Fig. 5. A variant of the protocol

Definition 8 (The dioco implementation relation). Let i, s be dIOTSs.
We write i dioco s if for every trace σ such that i

σ==⇒ i′ for some i′ that is in

a stable state, there exists a trace σ′ such that s
σ′

==⇒ s′ and σ′ ∼ σ.

Example 4. Let us consider the specification presented in Fig. 3. If we replace
its subgraph starting at s4 and ending at s12 and s13 by the subgraph depicted
in Fig. 5 we obtain an alternative protocol. This new protocol does not conform
to the original one with respect to dioco. For example, if we consider the trace
reaching the stable state s′

10 in this new protocol, σ = ?app doctor !date doctor
?test presc?app smear test?app mammography !date smear test , there does not
exist any trace σ′ in the original model such that σ′ ∼ σ. This is due to the fact
that, in the original model, the projection of the traces corresponding to the
laboratory office and reaching the transitions labelled with ?app mammography
present the input ?smear test . This action does not appear in σ. However, the
changes included in the new protocol do not modify the original order of the
actions at the different ports and, therefore, it does conform to the original one
if we use pdioco.
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Proposition 2. There exist dIOTSs s and i such that i dioco s but not
i ioco s. There also exist dIOTSs s and i such that i pdioco s but not i dioco s.

Although dioco has the advantage of being stronger than pdioco, it has
the disadvantage that one can no longer express the oracle problem in terms of
separate instances of the oracle problem for the local testers. In fact, even for a
deterministic FSM specification, the oracle problem becomes NP-Complete [10].

Notice that the definition of dioco only considers traces that reach stable
states of the SUT. The reason for this is that the local testers can effectively
‘stop testing’ at such stable states: the local testers all observe quiescence at the
end of the trace. In practice, the local testers can keep on observing outputs until
a stable state is reached and then determine that the state was stable through
a sufficiently long timeout.

This approach, of only considering traces that reach stable states, has the
benefit of relatively simplicity and leads to an implementation relation that is
defined in a similar way to ioco. However, dioco can be unsuitable if a process
is output divergent. To see why this is the case, consider some trace σ of the
SUT that reaches a quiescent state and an infinite extension σ.σ′ such that none
of the states after σ are stable: for every non-empty prefix σ′′ of σ′ we have
that σ.σ′′ does not reach a stable state. The above definition of dioco does not
consider any of these σ.σ′′, even if they are clearly ‘different’ from the traces of
the specification.

An alternative approach has been defined in terms of observations of a pro-
cess; these correspond to tuples of local traces that might be observed when
interacting with the process. Essentially, when a global trace occurs, each local
tester observes a prefix of the corresponding local trace (it observes the entire
local trace if it waits long enough). In the following, given a (local) trace σp we
let pref (σp) denote the set of prefixes of σp.

Definition 9 (Observation). Given dIOTS r with m ports, we say that obs =
(σ1, . . . , σm) is an observation of r if there exists a global trace σ ∈ T r∗(r) such
that for all p ∈ P, we have that σp ∈ pref (πp(σ)). We let Obs(r) denote the set
of possible observations of r.

Given IOTS r′ we say that obs is allowed by r′ if and only if obs ∈ Obs(r′).

If one considers the above definition and a specification s, then we can give
an observation obs verdict pass if and only if obs is allowed by s. The idea simply
is that although the testers do not know that the local traces they have observed
are all projections of the same global trace of the SUT, they do know that they
are all prefixes of projections of a global trace of the SUT.

We can now define an alternative implementation relation on the basis of
the above: it essentially says that an SUT conforms to a specification if and
only if all observations regarding the SUT are also observations regarding the
specification [15].

Definition 10 (The diocoo implementation relation). Given dIOTSs i
and s with the same input and output alphabets and the same set of ports, we
write i diocoo s if and only if Obs(i) ⊆ Obs(s).
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Note that the oracle problem for diocoo is also NP-Complete [15]. The above
implementation relation is suitable for processes that are output-divergent and
is equivalent to dioco if the processes are not output-divergent [15].

Proposition 3. Given dIOTSs i and s that are not output-divergent, i dioco s
if and only if i diocoo s.

The implementation relation diocoo is thus a conservative generalisation of
dioco. A different conservative generalisation of dioco has been defined in terms
of infinite traces of processes [17]. However, this alternative generalisation has
been shown to be too strong in the sense that an implementation i might fail to
be a correct implementation of a specification s even though no finite observation
can distinguish the SUT and specification [15].

5 Related and Future Work

The focus of this paper has been on defining suitable implementation relations,
which formalise what it means for an SUT to be a correct implementation of
a dIOTS. Such implementation relations can support systematic testing but
they do not, on their own, address the problem of generating test cases for use
in testing. There have been two main approaches to test generation for test-
ing in the Distributed Test Architecture. One class of approaches, developed
for testing from an FSM, involves producing test sequences that have no con-
trollability and/or observability problems (see, for example, [3,23]). Naturally,
these techniques lack generality (there are FSMs for which there is no such test
sequence) but are potentially powerful where they can be applied. A second class
of approaches allows the local testers to exchange synchronisation messages and
typically aims to minimise the number of messages or communications channels
required in order to overcome controllability and/or observability problems in a
given test sequence (see, for example, [22,33]).

Some work has taken into account the nature of distributed testing during
test generation. One proposal is to generate test cases in the form of tuples
of (local) test cases: one local test case per port [17]. It is then possible to
check whether such a test case introduces controllability and/or observability
problems. It is unclear, however, how one might generate suitable test cases
that are guaranteed to be free from such problems; it may be best to simply
generate test cases and accept that controllability problems may lead to non-
determinism in the interaction between a test case and an SUT even if the SUT
is deterministic. A second disadvantage of this approach, in which one generates
a separate local test case for each port, is that it is more difficult to relate these
test cases to test objectives, such as covering part of a model. If one is interested
in generating test cases to cover part of a model then one might instead represent
test generation as a multi-player game problem, although it transpires that the
existence of test cases guaranteed to lead to, for example, a given state being
reached is undecidable [8]. A third approach limits the aim of testing to finding
faults that can be found using controllable test cases [14] and returns test suites
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that find all such faults (subject to the standard FSM testing assumption that
we have a known upper bound on the number of states of the SUT).

Recent work by Huang and Peleska [20] has devised a model-independent
approach to testing. They observe that the semantics of a state-based model
is a set L of traces and if the original model is finite-state then L is regular.
The semantics L thus induces an LTS LTS(L), which can be defined largely
through the use of Nerode-equivalence (two traces σ and σ′ reach the same state
of the induced LTS if they have the same set of continuations in L). Testing
can then be based on the induced model LTS(L). This approach addresses a
weakness of test generation based on coverage, which is that two models may be
equivalent (have the same semantics) and yet lead to different test suites. It also
moves coverage away from the coverage of syntax and towards the coverage of
semantics. It would be interesting to adapt this approach to distributed testing
and there appear to be at least two possible routes. First, one could define a
language whose elements are tuples of (local traces) and define a notion similar
to Nerode-equivalence for such a language. Alternatively, one could extend the
language L defined by an LTS by including all traces that are observationally
equivalent to traces of L and use this extended language as the basis for inducing
an LTS.

6 Conclusions

Although testing is an important part of software development, it is often man-
ual and so expensive and error-prone. If there is a model (specification) of the
required behaviour of the SUT and this model has a formal semantics then
there is potential to base systematic test generation on this model. However, it
is important to use a suitable implementation relation since otherwise, for exam-
ple, testing might incorrectly suggest that a correct SUT is faulty or a faulty
SUT is correct.

Most approaches to model-based testing (MBT) assume that there is a single
tester that interacts with the SUT and can observe the global trace produced
by the SUT. Sometimes, however, the SUT has multiple physically distributed
ports and there is a local tester at each port. If the distributed test architecture
is used then no tester can observe the global trace produced by the SUT and
verdicts must instead be based on local traces (projections of the global trace).

We have described several different implementation relations defined for the
distributed test architecture. The simplest approach is for each local tester to
compare its observation (local trace) against the local traces allowed by the
specification, with the overall verdict being fail if and only if one of these local
verdicts is fail. The corresponding implementation relation pdioco is equivalent
to the one produced if one compares the projections of the SUT and specifica-
tion using the standard implementation relation ioco. However, we have seen
that pdioco can hold between an SUT and a specification even if the SUT has
behaviours (global traces) that are very different from those of the specification.
This motivated the definition of a stronger implementation relation, dioco, that
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corresponds to a scenario in which the local tester observe local traces and the
local traces are brought together. We have also seen that this can be generalised
to remove the constraint that processes are not output-divergent.

The implementation relations provide a formal basis for testing within the
distributed test architecture. However, much remains to be done. For example,
we have also seen that there has been relatively little work on test generation
algorithms that target these implementation relations. In this context, it may
be possible to extend the approach of Huang and Peleska [20], which bases test
generation on a model induced by the language defined by the specification.
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