
Anne E. Haxthausen
Wen-ling Huang
Markus Roggenbach (Eds.)

Applicable Formal Methods
for Safe Industrial Products

Fe
st

sc
hr

ift
LN

CS
 1

41
65

Essays Dedicated to Jan Peleska
on the Occasion of His 65th Birthday

SB 1 SB 2 SB 3

T2

T1

Lecture Notes in Computer Science 14165
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Anne E. Haxthausen · Wen-ling Huang ·
Markus Roggenbach
Editors

Applicable Formal Methods
for Safe Industrial Products
Essays Dedicated to Jan Peleska
on the Occasion of His 65th Birthday

Editors
Anne E. Haxthausen
Technical University of Denmark
Lyngby, Denmark

Markus Roggenbach
Swansea University
Swansea, UK

Wen-ling Huang
University of Bremen
Bremen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-40131-2 ISBN 978-3-031-40132-9 (eBook)
https://doi.org/10.1007/978-3-031-40132-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The illustration appearing on the cover of this book is the work of Jan Peleska, produced
in the context of his work in the field of formal railway control systems verification. Used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7349-8872
https://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-031-40132-9

Jan Peleska – February 2023

Preface

This Festschrift is dedicated to Jan Peleska on the occasion of his 65th birthday. Its title
“Applicable FormalMethods for Safe Industrial Products”mirrors Jan’s research interest
in the combination and application of existing methods and corresponding tools to ‘real-
world’ problems.Most of his research activities aremotivated by and applied to industrial
projects in the field of safety-critical embedded systems and distributed systems, such
as, for example, avionic systems and railway control systems. This Festschrift begins
with a laudatio, which celebrates Jan’s scientific contributions and acknowledges him
as a wonderful colleague and friend.

When asked to contribute to Jan’s Festschrift, no less than twenty-four friends, col-
laborators, and colleagues were more than happy to submit papers. Thematically, their
contributions address a wide range of topics, which we grouped into the four sections
of this Festschrift:

– Testing,
– Railway Verification and Safety & Security,
– Intelligent Systems and Cyber-Physical Systems, and
– Tools and Techniques for Specification, Verification and Code Generation.

Jan published research results in each of these topical areas.
Each paper was carefully read by two reviewers. We would like to

thank the reviewers for their time and efforts. We would like to thank all the contrib-
utors for their efforts in making this Festschrift a reality. A special thanks goes to Jim
Woodcock for his support and advice during the preparation of this Festschrift. Finally,
we also would like to extend our gratitude to Springer, for their willingness to publish
this Festschrift.

This Festschrift was presented to Jan on 3rd of March 2023 at the Colloquium held
at the University of Bremen, Germany. The event was attended by numerous colleagues,
friends and former students of Jan Peleska. We would like to express our appreciation
for the financial support provided for this event by the Department of Computer Science
of the University of Bremen and Verified Systems International GmbH.

March 2023 Anne E. Haxthausen
Wen-ling Huang

Markus Roggenbach

Organization

Program Committee

Jens Braband Siemens Mobility GmbH, Germany
Jörg Brauer Verified Systems International GmbH, Germany
Ana Cavalcanti University of York, UK
Werner Damm University of Oldenburg, Germany
Rolf Drechsler University of Bremen, Germany
Alessandro Fantechi University of Florence, Italy
John Fitzgerald University of Newcastle, UK
Martin Fränzle University of Oldenburg, Germany
Mario Gleirscher University of Bremen, Germany
Gloria Gori University of Florence, Italy
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Maritta Heisel University of Duisburg-Essen, Germany
Robert M. Hierons University of Sheffield, UK
Wen-ling Huang University of Bremen, Germany
Alexander Knapp University of Augsburg, Germany
Peter Gorm Larsen Aarhus University, Denmark
Pascale Le Gall Paris-Saclay University, France
Thierry Lecomte CLEARSY Safety Solutions Designer, France
Mohammad Reza Mousavi King’s College London, UK
Hoang Nga Nguyen Coventry University, UK
Ernst-Rüdiger Olderog University of Oldenburg, Germany
Alexander Pretschner Technical University of Munich, Germany
Markus Roggenbach Swansea University, UK
Robert Sachtleben University of Bremen, Germany
Thomas Santen Formal Assurance, Germany
Bernd-Holger Schlingloff Fraunhofer Fokus, Germany
Jim Woodcock University of York, UK

Jan Peleska – The Admirable Expert in Applicable
Formal Methods for Safe Industrial Products (Laudatio)

Anne E. Haxthausen

DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

This is a laudatio in honour of Jan Peleska on the occasion of his 65th birthday. Rather
than praising Jan’s whole scientific career and achievements, whichwould go beyondmy
space and time limits, this laudatio expresses my admiration for an outstanding person,
an admiration I know is shared by colleagues around the world.

The admirable expert in applicable formal methods for safe industrial products.
Jan Peleska has established an outstanding international reputation for his research and
leadership in the field of Applicable Formal Methods for Safe Industrial Products.

He has, in the most remarkable and successful way, combined a career in academia
with a career in industry.

After having been employed for 10 years in industry, in 1995 he became a full
professor in computer science at Bremen University. Since then, he has been conducting
research in applicable formal methods for validation, verification, and test of safety-
critical embedded systems, typically for the railway, avionics, automotive, and aerospace
domains.

In 1998 Jan and his wife, Cornelia Zahlten, founded the company Verified Systems
International GmbH, and since then, he has been scientific leader of the company as head
of Research & Development. Today, the company has 25 employees and provides tools
and services in the field of safety-critical system development, verification, validation,
and test.

In the company Jan’s research results from the university are adopted and used
for the development of safe industrial products for customers like Siemens, Airbus,
Daimler AG, and Astrium. Jan has been the brain behind Verified’s flagship product,
RT-Tester, a very comprehensive test automation tool suite for automatic test generation,
test execution and real-time test evaluation. Jan is especially famous for his methods for
complete testing, and in 2015, the company was awarded the runner-up trophy of the EU
Innovation Radar Prize for making a novel testing strategy, developed by him and his
colleagueWen-ling Huang at the university, available for industrial use. Indeed, Verified
has verified that Jan’s research results are industrial applicable!

The most wonderful colleague and friend. Besides being a brilliant researcher, Jan is
the most wonderful colleague and friend.

I have collaborated with Jan since 1996. It has been wonderful to have Jan as
collaborator and friend all these years. I am so grateful for that.

https://orcid.org/0000-0001-7349-8872

xii A. E. Haxthausen

Jan has influenced my career in such a great way: He put me on the right track, the
railway research track,when he in 1996 invitedme to collaborate on the formalmodelling
and verification of a real-world, distributed railway control system. Since then, we have
collaborated on many railway projects and we have co-authored 28 papers. Jan has
inspired me a lot, always full of exciting and innovative research ideas that have led to
success. He has a fantastic sense of what is needed and also knows how to achieve that.

Beyond this, Jan is also a really good friend: so caring, helpful, charming, and
generous.

Jan, thank you for the most wonderful collaboration and friendship over so many
years! My warmest congratulations on your birthday and my best wishes for a happy
and long life.

Contents

Testing

On Testing Ethical Autonomous Decision-Making . 3
Michael E. Akintunde, Martim Brandão, Gunel Jahangirova,
Hector Menendez, Mohammad Reza Mousavi, and Jie Zhang

Bringing RoboStar and RT-Tester Together . 16
Ana Cavalcanti, Alvaro Miyazawa, Uwe Schulze, and Jon Timmis

Implementation Relations for Distributed Testing . 34
Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez

Conformance Relations Between Input/Output Languages 49
Wen-ling Huang and Robert Sachtleben

On Scenario-Based Testing of Cyber-Physical Systems . 68
Alexander Pretschner, Florian Hauer, and Tabea Schmidt

Railway Verification and Safety and Security

Safety vs. Security – Why Separation of Concerns is a Good Strategy
for Safety-Critical Systems . 85

Jens Braband

Decomposing the Verification of Interlocking Systems . 96
Anne E. Haxthausen, Alessandro Fantechi, and Gloria Gori

Pattern-Based Risk Identification for Model-Based Risk Management 114
Maritta Heisel and Marvin Wagner

Software Model Checking of Interlocking Programs . 130
Phillip James, Faron Moller, and Markus Roggenbach

Formal Modelling to Improve Safety and Security . 147
Thierry Lecomte

xiv Contents

Intelligent Systems and Cyber-Physical Systems

Time for Traffic Manoeuvres . 163
Christopher Bischopink and Ernst-Rüdiger Olderog

Safer Than Perception: Assuring Confidence in Safety-Critical Decisions
of Automated Vehicles . 180

Martin Fränzle, Willem Hagemann, Werner Damm, Astrid Rakow,
and Mani Swaminathan

Supervision of Intelligent Systems: An Overview . 202
Mario Gleirscher

Fault Injection in Co-simulation and Digital Twins for Cyber-Physical
Robotic Systems . 222

Peter Gorm Larsen, Lukas Esterle, John Fitzgerald, and Mirgita Frasheri

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 237
Jim Woodcock

Tools and Techniques for Specification, Verification and Code
Generation

Source-Code-to-Object-Code Traceability Analysis for Airborne
Software: A Case for Tool Support . 257

Jörg Brauer

Space Telemetry Analysis with PyContract . 272
Bevin Duckett, Klaus Havelund, and Luke Stewart

An Intermediate Language-Based Approach to Implementing
and Verifying Communicating UML State Machines . 289

Alexander Knapp

Polynomial Formal Verification of Complex Circuits Using a Hybrid
Proof Engine . 308

Alireza Mahzoon and Rolf Drechsler

Debugging Frame Conditions . 320
Thomas Santen

Author Index . 333

Testing

On Testing Ethical Autonomous
Decision-Making

Michael E. Akintunde(B), Martim Brandão, Gunel Jahangirova,
Hector Menendez, Mohammad Reza Mousavi, and Jie Zhang

King’s College London, London, UK
{michael.akintunde,martim.brandao,gunel.jahangirova,hector.menendez,

mohammad.mousavi,jie.zhang}@kcl.ac.uk

Abstract. We present an initial proposal for a testing framework
for ethical decisions in autonomous agents, based on the well-known
perception-action model. We identify three main components in our
proposed framework for test-case generation, conformance analysis, and
learning and adaptation of ethical models based on examples from stake-
holders. We define a number of templates formalising the main ethical
theories in the literature that can be further instantiated for testing con-
crete systems according to such theories.

Keywords: Testing · Ethics · Autonomous Systems

1 Introduction

Ethics, in our context, is a systematic description of principles for what is right
and honourable [7,23]; examples of such behaviour include respecting the privacy
of patients (of/by an agent), dealing fairly with patients, and not deceiving
them in interactions. Autonomous systems are already taking decisions that are
ethically charged: software that takes credit ratings for mortgages can be unfair
or biased; a chatbot can be offensive and discriminatory; an assistive care robot
can violate patients’ privacy or make unethical decisions that damage patients’
integrity.

Different stakeholders may have different ethical concerns and even sub-
scribe to different meta-ethical frameworks. Even the opening, seemingly obvi-
ous, examples we gave above may be debated in different contexts and benefit
from more scrutiny, specification, and discussion in their specific context. The
diversity and ambiguity of these ethical concerns and meta-ethical frameworks
have been a challenge in their system-level testing. There have been a number
of recent approaches aiming to formalise specific meta-ethical frameworks for
autonomous systems [24,27,41]. There are also works that focus on testing spe-
cific ethical concerns, such as fairness or bias [5,16–18]. However, we are not
aware of any general framework that can be used to encode different stakehold-
ers’ ethical rules and concerns in order to test them.

Whether autonomous systems can be counted as fully-ethical agents is a
philosophical concern which is outside the scope of our paper; regardless of one’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-40132-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_1

4 M. E. Akintunde et al.

stance in this regard, it is helpful to have tools to evaluate autonomous decision-
making.

Our aim is to automate system-level testing for ethical decision-making that
is customisable to different meta-ethical frameworks. For this purpose, we pro-
pose a framework to: 1) generate challenging test scenarios/inputs, 2) analyse
the test results via oracles, and 3) adjust the oracles through stakeholder engage-
ment.

We do not aim to resolve disagreements among stakeholders; instead, we
would like to give different stakeholders a tool to understand their ethical con-
cerns better, use it to engage in a discussion with other stakeholders, and also test
black-box or third-party autonomous systems against their concerns. For under-
represented stakeholders and those with less power to scrutinise the design of
such systems, we would like to provide a tool to rigorously capture their concerns
and reveal any deviations from what they consider ethically significant. Our goal
can hence be summarised as providing a tool for providing more transparency
regarding ethical concerns in complex autonomous systems.

To illustrate the concepts presented in the remainder of this paper, we use
the following scenario as our motivating example.

Motivating Example. Consider an autonomous vehicle designed to drive
autonomously in urban traffic. A function of this autonomous vehicle focuses on
dealing with emergency vehicles such as ambulances and fire engines. Through
a vehicle-to-vehicle communication method, it can learn about vehicles that are
on a critical mission and their kinematics, and must react to this information.
Such a function can make ethically-charged decisions, e.g., decisions that may
help or harm the condition of a patient in an approaching ambulance at various
costs, such as violating traffic regulations.

Considering the significant amount of studies in human ethics and the com-
plexity of developing substantial frameworks that embed their knowledge, our
work identifies the following challenges for the testing framework:

1. Generating effective test scenarios: there is a significant amount of sce-
narios, creating a wide input space for autonomous decision-making. Focus-
ing on effective ones that are likely to reveal issues (or establish trust) is a
major challenge. Another significant challenge to cope with this limitation is
to define measures of effectiveness, both to steer the testing process and to
evaluate and compare different techniques.

2. Different meta-ethical frameworks: Ethics have evolved differently in dif-
ferent contexts, creating a plethora of ethical frameworks. A major challenge
in developing a discipline of testing is to choose one of them. However, since
there is no single agreed-upon framework, this choice is significantly complex.

On Testing Ethical Autonomous Decision-Making 5

3. Ethical oracles: Even within a fixed ethical framework, defining a rigorous
test oracle to judge ethical behaviours and pass verdicts about conflicting
ethical concerns is a highly non-trivial challenge.

4. Diversity and stakeholder engagement: Developing a responsible regime
of testing for ethical concerns requires interaction with a diverse population
of users. Overcoming this challenge involves gathering a truly diverse popu-
lation of stakeholders (both representing the diversity in their demographics
and backgrounds, but also in their roles and relationships with respect to
each other and the system under test). Additionally, it requires a testing
regime with artefacts (e.g., test models and test cases) that are meaningful
and understandable to the diverse population.

In the remainder of the paper, we propose an architecture for testing ethical
decision-making in Sect. 2. Then in Sect. 3, we focus on the formalisation of eth-
ical theories that can be used for test-case generation, test oracles, and learning
from stakeholder engagement. In Sect. 4, we review some of the related work
and in Sect. 5, we conclude the paper and present the directions of our ongoing
research.

2 Architecture for Testing Ethics

Figure 1 demonstrates our proposed architecture to test ethics in autonomous
systems. The overall workflow starts from the selected ethical model which along
with the System Under Test (SUT) is used to generate the test cases. The gen-
erated test cases are executed on the SUT, and the resulting system traces are
passed to the conformance analyser which checks whether the test cases pass or
fail the ethical tests according to the selected oracle. A subset of both passing
and failing test cases is then passed to the stakeholders for their consideration
and validation. It is important at this step to perform a meaningful test selection
so that these test executions are representative of the system’s overall behaviour
from the ethical perspective. The stakeholders/ethical experts can indicate the
test cases for which they do not agree with the outcome provided by the confor-
mance analyser. Such test cases become counter-examples to the adopted ethical
model. The learning module component can use generated counter-examples to
adjust the ethical model. This adjustment can be performed by applying the
ideas behind existing works on online and offline learning [14,19,31,37,49], as
well as search-based approaches to oracle improvement [29,30,46]. The presented
iterative process can continue until no more counter-example test cases can be
identified. This does not mean that the SUT eventually passes all tests but that
the stakeholder(s) eventually agree with the pass/fail decision of tests generated
by the system. Each stakeholder may be using the testing system separately
from other stakeholders and thus learning a different ethical model that reflects
their concerns. The test cases they generate can then be used for discussion and
negotiation with other stakeholders.

6 M. E. Akintunde et al.

Fig. 1. Proposed Architecture for Testing Ethics.

2.1 Test Input Generation

The test cases need to capture the scenarios where the decision taken by the
system puts various ethical principles of the ethical model into conflict. The aim
of test case generation in this architecture is to generate such test cases out of
the large space of all possible scenarios. One way to achieve this task is to cast
it as a search-based testing problem [28,34]. The search process can be guided

On Testing Ethical Autonomous Decision-Making 7

by two different goals: (1) detecting ethical faults more effectively (2) checking
the soundness of the ethical model.

The first goal concerns generating scenarios in which the violation of an
ethical model can be effectively established; in other words, we are looking for
scenarios in which the choices of the agent can clearly and quickly reveal the
violation of an ethical model. When generating such scenarios, we would like
to maximise the diversity between them as well as the coverage of the ethical
model and the space of possible scenarios. The target measure for diversity can
be uniformity which can be measured by using a statistical test related to the
uniform distribution, such as the L2-test [26]. As a target measure for coverage a
straightforward measure is the t-wise coverage of possible choices among actions.

The second goal aims to put the agent into ethical dilemmas, e.g., to force it to
make a choice between different actions that have similar ethical status. For this,
we can first identify test objectives that determine how far candidate tests are
from taking different ethically-charged actions. We then can guide the test gener-
ation process towards test scenarios that lead to undesired interactions between
these test objectives [3] by using many-objective optimisation algorithms such
as NSGA-II [20], HypE [12], and MOSA [36]. Game-theoretic formulations [25]
and synthesising scenarios towards an expected equilibrium can provide another
alternative approach.

For our motivating example, we need to first guide the scenario-generation
towards situations 1) where a particular rule of the road is applicable (e.g., as
specified in the Highway Code), and 2) where there is a potential conflict in
the rights of way and/or the rules of the road. Regarding case 1, a generated
test scenario should for example demonstrate whether a vehicle gives way to
an ambulance. If it does not, this can reveal faults in ethical decision-making.
A scenario pertaining to case 2 is when giving way to an ambulance involves
damaging another vehicle or hitting a curb or a road user. Moreover, we would
like to diversify the set of generated scenarios by considering substantially differ-
ent situations and also cover various possible conflicts, e.g., all possible pairwise
choices among conflicting actions.

2.2 Test Oracle Identification

Test oracle [13] identification is one of the key problems in testing ethics.
Autonomous systems are typically stochastic and the ground truth is not speci-
fied a priori. Moreover, for ethics itself, even human ethics are often faced with
difficult dilemmas without easy answers, in which each side might have valid
arguments. In our architecture, the conformance analyser needs to automati-
cally decide which decisions are acceptable and which are not. The ethical models
needed for conformance analysis can be extracted from various sources, discussed
below.

Ethical Models from Laws and Policies. Researchers and companies have
recommended various laws and regulations from government or non-profit insti-
tutions as a means of ensuring machine ethics. There are some widely acknowl-
edged regulations such as the “Ethics Guidelines for Trustworthy AI” from the

8 M. E. Akintunde et al.

European Commission [44] and “Recommendation on the Ethics of AI” from
the UNESCO Ad Hoc Expert Group [48]. IEEE developed an extensive process
model standard for incorporating ethical concerns during system design [1]. Some
of these standards have been translated into domain-specific guidelines, e.g., in
the domain of autonomous vehicles [24]. The information from these sources can
be extracted, in terms of rules or utility functions, to build the basis for an
ethical model to be used in our automated conformance analyser. In Sect. 3, we
provide the templates that can be used to encode these informal descriptions
into a formal specification.

Test Oracles from Stakeholders and Human Experts. The information
about the expected behaviour of the ethical model can be provided in the form
of a number of examples by the stakeholders or human experts. These exam-
ples can then be generalised into ethical models using learning algorithms (such
as automata learning or neural networks) in our templates for ethical theories
specified below. Our ethical theories specify a relative value for different types of
behaviour; when coming up with a complete model is challenging (due to lack of
sufficient examples or conflict among stakeholders), abstractions of such models
such as metamorphic properties can be used.

For example, for our motivating example, a specific ethical theory can 1)
specify the relative value of different actions, such as giving way to an ambulance,
damaging another vehicle, and hitting a road user, or 2) specify the total utility
of each course of actions for the other road users (including any quantification
of the resulting damage) by taking a weighted sum of the utility of actions for
the individual road users involved in a scenario.

The next section describes the ethical theories that can be used as templates
for ethical models.

3 Ethical Theories for Conformance Analysis

Passing a verdict on the decision-making scenarios (bottom-right corner of Fig. 1)
requires defining or learning an ethical model (top-left corner of Fig. 1), e.g.,
through a set of rules. Modelling the ethics of autonomous agents has been the
subject of machine ethics for the past few decades. It aims to understand the
consequences of machine behaviour on either other machines or people [7]. The
main goal of this field is to study and help construct systems that act under
a specific ethical theory. Instead of committing to a particular ethical theory,
in this paper, we develop a general semantic framework that can be used to
define different ethical models. These models can be learned using the examples
provided by the stakeholders by fitting the parameters of our semantic model.

In this section, we review the three major ethical theories, namely, deonto-
logical, consequentialist (or utilitarian), and virtue ethics [47], and present the
semantic templates for them. Our templates use the simple perception-action
agent model by Russel and Norvig [40], depicted in Fig. 2. This model postulates
two sets of Prc and Act, for percepts and actions, respectively. Our framework is

On Testing Ethical Autonomous Decision-Making 9

designed for black-box testing and can be further extended to take the details of
the agent implementation into account. Furthermore, depending on the ethical
theory we may need to model the environment or not.

Fig. 2. A Model of Agent and Tester Interaction.

3.1 Deontological Ethics

In deontological ethics, an action is morally good if it follows a predefined set of
moral values or rules [45]. There are two perspectives for defining the values of
actions: agent-centred and patient-centred. The former focuses the ethics on the
agent’s actions, while the latter focuses the ethics on the agent who receives the
action and the consequences [32]. Following the moral theory of deontological
ethics, our semantic template for a deontological oracle involves defining a value
for each action; the values are taken from any (pseudo-) metric space on a dis-
crete or continuous set, i.e., a set of values with a defined distance between them.
A basic domain is the discrete domain {Forbidden, Neutral, Obligatory}, with a
unit distance from Forbidden to Neutral and from Neutral to Obligatory. How-
ever, more sophisticated domains define a spectrum of actions and their relative
values to each other. The objective will be used to define the oracle as well as to
steer the test-case generation in a direction that is more likely to reveal ethical
issues. The test case input is a non-empty sequence of percepts. The considered
output is the last action in the sequence of actions produced as the result of
inputs. The oracle checks that the output action is not more than ε apart from
the ideal action after the input (first row in Table 1).

Consider our running example; assume that the agent has three moral duties:

1. an agent shall respect human lives,
2. an agent shall give way to ambulances, and
3. an agent shall not damage other cars.

Obviously these three moral duties can be in conflict and we model the conflict,
and the relative priority of these rules as follows. We define a model in which
the value of not giving way to the ambulance is −1, damaging a car is −0.5
and hitting a human road user is −2. Note that this choice of values are a
rough indication of the relative importance of the three rules; however, often
the domain of values needs to be more complex, e.g., be multi-dimensional. This
allows for comparing the outcomes of different scenarios based on deontological
ethics. For example, based on this oracle, a scenario in which a vehicle blocks

10 M. E. Akintunde et al.

the ambulance because it may damage another vehicle while giving way to the
ambulance is considered a failure, while blocking the ambulance when giving
way will lead to killing or seriously injuring a pedestrian will be considered a
pass.

Table 1. Model Templates for Different Theories of Ethics.

Framework Objective Test input Test output Test oracle

Deontological Obj : Act →
Val

α : Prc+ a : Act, last
observed
action

Obj(ideal after α) -
Obj(a after α) ≤ ε

Consequentialism Obj : Act ×
Env → Val

α : Prc+ β : Act+,
sequence of
observed
actions

Obj(ideal after α, env)
- Obj(β after α, env)
≤ ε

Virtue S ⊆
Prc+ × Act+,
Robotic saint

A⊆Prc+ B ⊆
Prc+×Act+

(1) ∀α ∈ B ∃β ∈
S · dist(α, β) ≤ ε ∧
∀β ∈ B ∃α ∈
S · dist(α, β) ≤ ε, (2)
Convergence to S

3.2 Consequentialism

Consequentialism focuses on consequences, e.g., aiming at maximising global
well-being [42]. According to this moral theory, the value of an action is deter-
mined by its global utility. Two of the sub-fields of consequentialism are act
utilitarianism and rule utilitarianism [42]. The former establishes that every sin-
gle act must focus on maximising utility. The latter focuses on social rules. It
establishes that the only rules that need to be applied are those that maximise
well-being.

The semantic framework for a consequentialist oracle (second row in Table 1)
involves an objective function that defines the value of actions through their
effects on the environment Env. The form of such an objective is a weighted sum
of the effect of actions (e.g., happiness) of agents in the environment. The input
and output, similar to the deontological case, are non-empty traces of percepts
and actions. The oracle asserts that the distance of the accumulative value of all
actions is not farther than ε from that of the ideal sequence.

In our running example, an ethical model assigns a value to the relative dam-
age to the different patients caused by an action (i.e., ego vehicle, other vehicles,
road users, and the emergency vehicle patient) and a weighting to calculate the
total utility of the scenario.

3.3 Virtue Ethics

In virtue ethics, an action is good if the agents manifest virtuosity when they
act [43]. A distinct form of virtue ethics is the exemplarist virtue theory [52]

On Testing Ethical Autonomous Decision-Making 11

where the morality of an agent is measured in terms of its similarity to an
exemplary agent (a moral saint).

Virtue ethics is a challenging ethical theory to test; we model the semantic
model of virtue ethics (third row of Table 1) as a robotic saint which is modelled
as a set of pairs of percept and action sequences. The test input is a set of
percept sequences and the test output is a set of pairs of percept- and action
sequences. We propose two types of oracles for testing virtue ethics; the first
type of oracle is a conformance oracle that checks for each behaviour of the
saint, there is a similar behaviour of the agent that is at most ε apart and vice
versa. The notion of distance is calculated based on a notion of action similarity
akin to the objective function of deontological ethics. The second type of oracle
measures the convergence of the agent’s behaviour towards the behaviour of the
saint, i.e., measures how much more conforming the longer traces of behaviour
become compared to the shorter traces. In our running example, an ethical
model is defined by learning the behaviour of an idealised driver, e.g., exploiting
driving logs, taking accidents as negative examples; subsequently, measures of
conformance [2] and convergence [4] can be used to measure the conformance of
an agent to the model.

4 Related Work

4.1 Ethical Oracle Identification

Test Oracles that Rely on Human Judgment. One way to identify test
oracles is to rely on the judgement of human (stakeholders and ethicists). Pon-
tier and Widdershoven [39] use human judges to provide oracles to find unethical
issues. Allen et al. [6] conducted a “Moral Turing Test” in which a “blind” observer
is asked to compare the behaviour of a machine to humans. Similarly, Ander-
son et al. [8] provided a self-made Ethical Turing Test to evaluate their ethical
principles: If the system performs as an ethical expert would, then it passes the
test. They also argued that ethically significant behaviour of autonomous sys-
tems should be guided by ethical principles determined by ethics experts. Wu
et al. [51] employed ordinary human data to derive human policies and help to
learn ethical behaviours as test oracles.

Test Oracles that Rely on Laws and Policies. Asaro [11] suggests the
existing legal system can be used as a starting point for deriving AI ethics.
Vanderelst and Winfield [50] test robot behaviours based on Asimov’s laws of
robotics. The use of Asimov’s laws has been extensively criticised, e.g., in [9].

Test Oracles with Simulations. The survey by Nallur [35] does not specif-
ically mention testing ethics. However, it discusses the evaluation of ethics by
simulation of ethical dilemmas. In this formulation, ethical dilemmas serve as
test cases, and if the autonomous system can resolve a dilemma in a particular
manner, then ethics were successfully implemented in this system.

12 M. E. Akintunde et al.

4.2 Ethical Representation

Arkoudas et al. [10,15] propose to use Horty logic to compose ethical seman-
tics. Dennis et al. [21] developed a framework for representing the context of
ethical reasoning, which involves encoding user values as a set of rules. An eth-
ical reasoner can then be embedded in a reasoning cycle to gather contextual
information and update its ethical encoding. Dennis et al. [22] apply the AJPF
model-checker to verify the behaviour of the consequence engine in a robot sys-
tem.

There are also several works that mentioned the importance of ethics testing.
Pontier and Hoorn talked about the importance of making ethics measurable [38]:
“Ethics must be made computable in order to make it clear exactly how agents
ought to behave in ethical dilemmas”. Madl and Franklin [33] discuss the neces-
sity of a set of moral tests to guarantee AI ethics and propose the idea of moral
test-driven development.

AI ethics considerations can be various, including privacy, fairness, account-
ability, explainability and others. The testing efforts on these aspects mainly
focus on fairness testing. We refer to Chen et al. [18] for a comprehensive survey
of the literature on testing AI fairness. As far as we know, there is no general
framework that is specially designed for testing ethical decision-making.

5 Conclusion and Future Research Roadmap

In this paper, we propose a framework for testing ethical aspects of decision-
making in autonomous systems. Our framework comprises three major parts: 1)
a test-case generation algorithm, 2) a conformance analyser, and 3) a learning
algorithm to learn an ethical model for the former two parts and adjust it based
on stakeholders’ feedback. We presented three formalisations of the major eth-
ical theories that can be used as templates for the ethical models in test-case
generation, conformance analysis, and learning from examples. The purpose of
our proposed framework is to provide a tool for various stakeholders, and par-
ticularly under-represented and less powerful ones, to specify their concerns and
test complex autonomous systems against them.

We plan to instantiate our framework with concrete algorithms in the domain
of autonomous vehicles. We are currently developing a simulation environment
in order to execute the generated scenarios, present the stakeholders with tangi-
ble examples, and receive their feedback. Our framework focuses on a black-box
perspective on the system under test; extensions of our framework can be devel-
oped by using more information from the agents’ state, including aspects such
as belief, desire, and intention as well as specifications of neuro-symbolic agents.

Acknowledgments. The support of the UKRI Trustworthy Autonomous Systems
Hub (reference EP/V00784X/1) and Trustworthy Autonomous Systems Node in Veri-
fiability (reference EP/V026801/2) is gratefully acknowledged. The authors are grateful
to Peta Masters and to the anonymous reviewers for their constructive comments.

On Testing Ethical Autonomous Decision-Making 13

References

1. IEEE standard model process for addressing ethical concerns during system design.
IEEE Std 7000–2021, pp. 1–82 (2021). https://doi.org/10.1109/IEEESTD.2021.
9536679

2. Abbas, H.: Test-Based Falsification and Conformance Testing for Cyber-Physical
Systems. Ph.D. thesis, Arizona State University, Tempe, USA (2015). https://hdl.
handle.net/2286/R.I.29861

3. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
2018 33rd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 143–154. IEEE (2018)

4. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Mont-
pellier, France, September 3–7, 2018, pp. 143–154. ACM (2018). https://doi.org/
10.1145/3238147.3238192

5. Aggarwal, A., Lohia, P., Nagar, S., Dey, K., Saha, D.: Black box fairness testing of
machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 625–635 (2019)

6. Allen, C., Varner, G., Zinser, J.: Prolegomena to any future artificial moral agent.
J. Exper. Theor. Artif. Intell. 12(3), 251–261 (2000)

7. Anderson, M., Anderson, S.L.: Machine ethics. Cambridge University Press (2011)
8. Anderson, M., Anderson, S.L.: Geneth: a general ethical dilemma analyzer. Pala-

dyn, J. Behav. Robot. 9(1), 337–357 (2018)
9. Anderson, S.L.: The Unacceptability of Asimov’s Three Laws of Robotics as a Basis

for Machine Ethics, pp. 285–296. Cambridge University Press (2011). https://doi.
org/10.1017/CBO9780511978036.021

10. Arkoudas, K., Bringsjord, S., Bello, P.: Toward ethical robots via mechanized deon-
tic logic. In: AAAI fall symposium on machine ethics, pp. 17–23. The AAAI Press
Menlo Park, CA, USA (2005)

11. Asaro, P.M.: What should we want from a robot ethic? In: Machine Ethics and
Robot Ethics, pp. 87–94. Routledge (2020)

12. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

13. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015)

14. Bottou, L.: Online algorithms and stochastic approxima-p tions. Online learning
and neural networks (1998)

15. Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for
engineering ethically correct robots. IEEE Intell. Syst. 21(4), 38–44 (2006)

16. Chakraborty, J., Majumder, S., Menzies, T.: Bias in machine learning software:
why? how? what to do? In: Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, pp. 429–440 (2021)

17. Chen, Z., Zhang, J., Sarro, F., Harman, M.: Maat: A novel ensemble approach to
addressing fairness and performance bugs for machine learning software. In: The
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) (2022)

https://doi.org/10.1109/IEEESTD.2021.9536679
https://doi.org/10.1109/IEEESTD.2021.9536679
https://hdl.handle.net/2286/R.I.29861
https://hdl.handle.net/2286/R.I.29861
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1017/CBO9780511978036.021
https://doi.org/10.1017/CBO9780511978036.021

14 M. E. Akintunde et al.

18. Chen, Z., Zhang, J.M., Hort, M., Sarro, F., Harman, M.: Fairness testing: A com-
prehensive survey and analysis of trends. arXiv preprint arXiv:2207.10223 (2022)

19. Damasceno, C.D.N., Mousavi, M.R., da Silva Simão, A.: Learning to reuse: Adap-
tive model learning for evolving systems. In: Ahrendt, W., Tarifa, S.L.T. (eds.)
Integrated Formal Methods - 15th International Conference, IFM 2019, Bergen,
Norway, December 2–6, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11918, pp. 138–156. Springer (2019). https://doi.org/10.1007/978-3-030-34968-
4_8

20. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

21. Dennis, L.A., Bentzen, M.M., Lindner, F., Fisher, M.: Verifiable machine ethics in
changing contexts. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol. 35, pp. 11470–11478 (2021)

22. Dennis, L.A., Fisher, M., Winfield, A.: Towards verifiably ethical robot behaviour.
In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015)

23. Dubber, M.D., Pasquale, F., Das, S.: The Oxford Handbook of Ethics of AI. Oxford
Univ. Press (2020). https://doi.org/10.1093/oxfordhb/9780190067397.001.0001

24. Evans, K., de Moura, N., Chauvier, S., Chatila, R., Dogan, E.: Ethical decision
making in autonomous vehicles: the AV ethics project. Sci. Eng. Ethics 26(6),
3285–3312 (2020). https://doi.org/10.1007/s11948-020-00272-8

25. Gogoll, J., Zuber, N., Kacianka, S., Greger, T., Pretschner, A., Nida-Rümelin,
J.: Ethics in the software development process: from codes of conduct to ethical
deliberation. Philos. Technol. 34(4), 1085–1108 (2021). https://doi.org/10.1007/
s13347-021-00451-w

26. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Gol-
dreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Inter-
play between Randomness and Computation. LNCS, vol. 6650, pp. 68–75. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_9

27. Govindarajulu, N.S., Bringsjord, S., Ghosh, R., Sarathy, V.: Toward the engineer-
ing of virtuous machines. In: Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society, pp. 29–35. AIES ’19, Association for Computing Machin-
ery, New York, NY, USA (2019)

28. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing. In: 2015 IEEE 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 1–12. IEEE (2015)

29. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: Test oracle assessment and
improvement. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 247–258 (2016)

30. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: An empirical validation of
oracle improvement. IEEE Trans. Softw. Eng. 47(8), 1708–1728 (2019)

31. Jain, L.C., Seera, M., Lim, C.P., Balasubramaniam, P.: A review of online learning
in supervised neural networks. Neural Comput. Appl. 25(3), 491–509 (2014)

32. Kant, I.: Groundwork for the Metaphysics of Morals. Yale University Press. Com-
mented by Jerome B Schneewind (1785)

33. Madl, T., Franklin, S.: Constrained incrementalist moral decision making for a
biologically inspired cognitive architecture. In: Trappl, R. (ed.) A Construction
Manual for Robots’ Ethical Systems. CT, pp. 137–153. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21548-8_8

http://arxiv.org/abs/2207.10223
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1093/oxfordhb/9780190067397.001.0001
https://doi.org/10.1007/s11948-020-00272-8
https://doi.org/10.1007/s13347-021-00451-w
https://doi.org/10.1007/s13347-021-00451-w
https://doi.org/10.1007/978-3-642-22670-0_9
https://doi.org/10.1007/978-3-319-21548-8_8

On Testing Ethical Autonomous Decision-Making 15

34. McMinn, P.: Search-based software test data generation: a survey. Software testing,
Verification and reliability 14(2), 105–156 (2004)

35. Nallur, V.: Landscape of machine implemented ethics. Sci. Eng. Ethics 26(5), 2381–
2399 (2020)

36. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

37. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

38. Pontier, M., Hoorn, J.: Toward machines that behave ethically better than humans
do. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol.
34 (2012)

39. Pontier, M.A., Widdershoven, G.A.M.: Robots that stimulate autonomy. In:
Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) AIAI 2013.
IAICT, vol. 412, pp. 195–204. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41142-7_20

40. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, 4th
edition edn. (2020)

41. Shea-Blymyer, C., Abbas, H.: Algorithmic ethics: Formalization and verification of
autonomous vehicle obligations. ACM Trans. Cyber-Phys. Syst. 5(4) (sep 2021).
https://doi.org/10.1145/3460975

42. Sinnott-Armstrong, W.: Consequentialism. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall
2021 edn. (2021)

43. Slote, M.: Agent-based virtue ethics. Handbuch Tugend und Tugendethik, pp. 1–10
(2020)

44. Smuha, N.: Ethics guidelines for trustworthy ai. In: AI & Ethics, Date: 2019/05/28-
2019/05/28, Location: Brussels (Digityser), Belgium (2019)

45. Tännsjö, T.: Understanding ethics. Edinburgh University Press (2013)
46. Terragni, V., Jahangirova, G., Tonella, P., Pezzè, M.: Evolutionary improvement

of assertion oracles. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1178–1189 (2020)

47. Tolmeijer, S., Kneer, M., Sarasua, C., Christen, M., Bernstein, A.: Implementations
in machine ethics: a survey. ACM Comput. Surv. (CSUR) 53(6), 1–38 (2020)

48. UNESCO: Recommendation on the Ethics of Artificial Intelligence. United Nations
Educational, Scientific and Cultural Organization (2022)

49. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

50. Vanderelst, D., Winfield, A.: An architecture for ethical robots inspired by the
simulation theory of cognition. Cogn. Syst. Res. 48, 56–66 (2018)

51. Wu, Y.H., Lin, S.D.: A low-cost ethics shaping approach for designing reinforce-
ment learning agents. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32 (2018)

52. Zagzebski, L.: Exemplarist virtue theory. Metaphilosophy (2010)

https://doi.org/10.1007/978-3-642-41142-7_20
https://doi.org/10.1007/978-3-642-41142-7_20
https://doi.org/10.1145/3460975
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

Bringing RoboStar and RT-Tester
Together

Ana Cavalcanti1(B) , Alvaro Miyazawa1 , Uwe Schulze2, and Jon Timmis3

1 University of York, York, UK
Ana.Cavalcanti@york.ac.uk

2 Verified Systems International GmbH, Bremen, Germany
3 University of Sunderland, Sunderland, UK

Abstract. In recent work, Cavalcanti and her group, including
Miyazawa and Timmis, have developed a CSP-based framework for
model-based engineering of robotic systems, called RoboStar. In this
paper, we describe our current effort to ally RoboStar and RT-Tester,
an award-winning tool that embodies many of Jan Peleska’s beautiful
results on formal testing. With our work, RoboStar users can benefit
from the testing infrastructure of RT-Tester to run simulations and tests
generated using the RoboStar automated techniques. The testing prim-
itives of RT-Tester simplify the implementation of test cases, and the
RT-Tester execution engine provides state-of-the-art high-performance
real-time facilities to carry out and report the traceable results of test
experiments.

Keywords: Testing · Formal models · CSP · Automation

1 Introduction

For many years now, we have known that “Testing can be formal, too” [21]. In
this line of work, tests arise from models described using some formal notation.
Back in 2006, Cavalcanti and Gaudel have presented a testing theory for models
written in CSP [8], but Jan Peleska had studied that a decade earlier [30].

In a seminal paper [31], Peleska and Siegel formalise a test-automation
method based on CSP. They define a conformance relation �C and establish
its relationship to failures and trace refinement in CSP. They also define and
study two extra conformance relations: divergence refinement and robustness.
They take the view that synchronisation is point-to-point and use an extra CSP
event to characterise tests that do not fail (are either inconclusive or successful).

Peleska and Siegel define “may” and “must” tests and characterise the capa-
bility detections of tests. The test sets in [31] required to establish refinement are
based on “may” and “must” tests for both the specification and implementation.
Their approach inspired the definition in [8] of exhaustive test sets based on the
traces s � 〈a〉 and failures (a,A) that are not admissible by the specification.

Over the years, Cavalcanti and Gaudel worked with others to enrich their
theory to consider a data-rich version of CSP, namely Circus [10], distributed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 16–33, 2023.
https://doi.org/10.1007/978-3-031-40132-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_2&domain=pdf
http://orcid.org/0000-0002-0831-1976
http://orcid.org/0000-0003-2233-9091
http://orcid.org/0000-0003-1055-0471
https://doi.org/10.1007/978-3-031-40132-9_2

Bringing RoboStar and RT-Tester Together 17

testing [13], specific selection strategies [1,9,11,12,17], and inputs and out-
puts [2,14]. The practical impact of this theoretical work has to be via tools
that mechanise test-generation and selection strategies to provide finite test
suites. In [18], the results of pursuing an approach based on theorem proving
are presented.

Jan Peleska, in his continuous pursuit to work both on beautiful theories and
practical techniques, has encouraged us to consider a model-checking approach.
Cavalcanti and Miyazawa have had the honour to collaborate with him and
his team, including Schulze, in European projects (COMPASS [36] and INTO-
CPS [26]). In [15], our teams have pursued together a formal link between the
mathematical underpinning of Jan Peleska’s practical test-generation techniques
and Cavalcanti and Gaudel’s testing theory for CSP using Hoare and He’s Uni-
fying Theories of Programming [23]. More recently, Peleska has taken a lead in
identifying finite and complete test suites [29].

In all these lines of research, our teams have worked extensively in the area
of cyber-physical systems. Currently, Cavalcanti, Miyazawa, and Timmis’s team
has been concerned with Software Engineering for Robotics. They are develop-
ing the RoboStar [4] framework, including domain-specific notations [16,27] for
modelling, verification, and simulation, all underpinned by CSP-based seman-
tics. In terms of testing, the RoboStar approach is based on that originally put
forward in [8]. In [6], we have presented a practical approach to test generation
based on RoboStar design models, but have not studied test execution.

Jan Peleska’ group at the University of Bremen, together with Verified Sys-
tems1, have developed RT-Tester [28,32]. This is a tool for automated generation
of test cases, test data, and test procedures from UML and SysML models, as
well as simulation and model checking. RT-Tester is distinctive in its compre-
hensive support for test execution, performance, and real-time capabilities.

Here, we describe our approach, depicted in Fig. 1, to use RT-Tester taking
advantage of the RoboStar notations. As indicated, for a RoboStar design model,
written in a notation called RoboChart [27], there is support for automatic
generation of (fault-based) tests using mutation [6]. The result is a suite of test-
case specifications to uncover the faults introduced by mutation.

RoboStar includes a technique to translate a RoboChart model to a simula-
tion model, written in a notation called RoboSim [16]. An automatically gener-
ated RoboSim model is correct by construction. It is perfectly valid, however, for
a development to start from a RoboSim, rather than RoboChart, model. More-
over, there is value in exercising the simulation to validate the RoboChart and
RoboSim models. In our approach, however the RoboSim model is obtained, it
is used to generate code that can be executed in RT-Tester. We describe in this
paper our technique for generation of code. It contains a simulator independent
component, capturing the behaviour of the RoboSim model, and an RT-tester
specific component to connect the code to the RT-Tester infrastructure.

In this paper, we also describe how we can generate test procedures for RT-
Tester from RoboStar test-case specifications. With the work presented here,

1 www.verified.de/.

www.verified.de/

18 A. Cavalcanti et al.

Fig. 1. RoboStar approach to testing using RT-Tester. Key: the dashed line indicates
an intended or established connection that ensures preservation of properties; the solid
arrow labelled “MUTATION” refers to an existing technique; dashed arrows represent
the work in this paper; the solid arrows without a label indicate data flow.

we can use RT-Tests to exercise the simulation using the tests generated from
RoboChart, and produce a report tracing verdicts to test procedures.

If execution of a test procedure gives a fail verdict, with our work, we can
trace it back to the test case used to generate the test procedure, and from that
to the mutation of the RoboChart model that has been used to generate the test
case. This gives rich information about the fault revealed and its possible cause.

Next, we give a brief overview of RoboSim. Section 3 describes RT-Tester. In
Sect. 4, we present our integration of RoboSim with RT-Tester, and in Sect. 5 we
describe an example of its use. We conclude in Sect. 6.

2 RoboStar Technology

The RoboStar framework addresses the need to support roboticists in benefitting
from a model-centric, rather than the current code-centric, approach to software
development. Many have worked on modern software engineering techniques for
robotics [7]. RoboStar is distinctive in its mathematical foundations to support
verification by proof (model checking and theorem proving) and to justify the
techniques for automatic generation of models, simulations, code, and tests.

A key line of work in RoboStar pursues mathematical foundations using pro-
cess algebras for refinement that extend CSP. They have themselves a predicative
relational semantics defined using the Unifying Theories of Programming [23],
and cater for rich data models, and hybrid or probabilistic behaviour. So, for
generation of tests, the body of work pioneered by Jan Peleska is extremely
relevant. With the work presented here, we seek to take advantage of that.

RoboStar includes a number of domain-specific notations. They cater for the
definition of design models for control software, of operational requirements (for
the robotic platform and the environment in which the robot is to be used) [5],
of simulation models, and of properties [35]. As said, the notation for designs is

Bringing RoboStar and RT-Tester Together 19

RoboChart. It uses the concept of a module to describe platform-independent
models of the control software. The notation to model simulations is RoboSim.

A RoboSim model has three components: a d-model, a p-model, and a plat-
form mapping. Loosely speaking, a d-model corresponds to a RoboChart module,
in that it describes the software controller of a robot using state machines and
abstractions of the services provided by the platform (represented by events,
variables and operations). Unlike RoboChart, however, a d-model embeds the
simulation paradigm: it describes a cyclic mechanism whose control flow is deter-
mined by a time period defining the length of the cycle. As usual, computation
happens infinitely fast at the sample times determined by the length of the cycle.

A p-model describes the physical structure of a robot in terms of its links,
joints, sensors, and actuators, as well as a robot’s behaviours in terms of a set of
differential equations. A platform mapping describes how the abstract services
used by the software (as defined in a d-model) can be realised in terms of the
outputs of sensors and inputs of actuators (of a p-model).

For illustration, we present in Fig. 2 the d-model for a wheeled robot that
moves in a straight line, turning when needed to avoid obstacles2. A d-model
is characterised by a module: in this example, it is defined by the block named
SimCMovement (bottom right). A module includes a block, in the example called
Vehicle, that gives the abstract characterisation of the robotic platform. In our
example, Vehicle provides (P) two operations, move(lv,av) and stop(), represent-
ing abstractions for motors defined in the interface MovementI (top left). Vehicle
also includes (i) an event obstacle defined in an interface ObstacleI to represent
inputs from a sensor that can detect obstacles in front of the robot.

Fig. 2. RoboSim d-model for a simple ranger robot.

2 Numerous more interesting examples are available at robostar.cs.york.ac.uk.

http://www.robostar.cs.york.ac.uk

20 A. Cavalcanti et al.

The behaviour of a module is defined by one or more parallel controllers.
In Fig. 2, SimCMovement has a single controller called SimMovement, referenced
in the module block, and defined in its own block (top right). The behaviour of
a controller is defined by one or more parallel state machines. Again, our simple
example uses one machine SimSMovement, defined on the left in Fig. 2.

The RoboSim (and RoboChart) state-machine notations are in many ways
similar to that of UML and SysML, but they have a precise action language, and
support for definition of time properties. First of all, in RoboSim, each module,
controller, and machine defines or constrains, via a cycleDef clause, a value for
cycle, a variable denoting the number of time units that specifies the length of
the simulation cycle. In Fig. 2, cycle is defined to be 1 everywhere. The value of
a time unit can be adjusted for different simulations or deployments.

Also, a RoboSim state machine can declare and use clocks. In SimSMovement,
we declare a clock MBC to time the turn of the robot when it finds an obstacle.
SimSMovement starts in the state SMoving, as indicated by the transition from
the initial junction, represented by a black circle with an i in the middle. The
entry action for that state calls the operation move; the argument lv (a constant
declared locally) defines a linear speed and the argument 0 indicates that the
movement is in a straight line (the angular speed is 0).

From SMoving, a transition without a guard or a trigger becomes immediately
enabled. So, SimSMovement immediately moves to the state DMoving. Enabled
transitions are urgent, so that time is predictable.

From DMoving, the only transition is guarded by the trigger exec. This indi-
cates that no more progress can be made in the current simulation cycle. In
the next cycle, however, that transition is taken to a junction, represented by a
black circle. Here, SimSMovement takes a transition back to DMoving, if the input
event $obstacle has not happened in the current cycle. If it has, SimSMovement
resets the clock (# MBC), calls stop, and moves to Waiting.

In Waiting, SimSMovement again pauses until the next cycle. At that point,
it moves to the state STurning, calls move(0,av) to turn with speed av, goes to
DTurning and again waits for the next cycle. The transitions from the junction
reached in the next cycle are guarded by a condition on the value of the clock. If
not enough time has passed (since(MBC) ¡ PI/av), then SimSMovement returns
to DTurning and waits again for the next cycle. (It is the evolution of the cycles
that advances the time.) Otherwise, SimSMovement returns to SMoving.

RoboTool is an implementation of the RoboStar notations and techniques.
These include RoboChart and RoboSim, as well as model transformations to
convert RoboChart models into RoboSim models, and both RoboChart and
RoboSim models into various formal notations (CSP, tock-CSP [3], a discrete-
time version of CSP, and CyPhyCircus [20], a state-rich hybrid version of CSP).
We also target a few tools (PRISM [25], Isabelle/UTP [19], and UPPAAL [37]),
and programming languages (for example, C, used here, and Rust).

Our goal is to support testing of RoboChart models through RT-Tester. This
can be achieved by (a) generating a simulation model in RoboSim; (b) generating

Bringing RoboStar and RT-Tester Together 21

simulation code; and (c) integrating the generated code with the RT-Tester test
harness. RoboTool can be used for (a); in Sect. 4, we describe our approach and
implementation to support (b) and (c).

3 RT-Tester

RT-Tester is an industrial-strength test-automation tool for automatic test exe-
cution and real-time test evaluation. Its key features include a strong C/C++-
based test script language, high-performance multi-threading, and hard real-time
capability. RT-Tester is associated with RT-Tester Model-Based Testing (RTT-
MBT), a test-generation tool. The core RT-Tester and RTT-MBT together sup-
port all test integration levels: from unit-tests to software-in-the-loop tests (mod-
ule tests) to hardware-in-the-loop tests and model-in-the-loop tests.

RTT-MBT is a commercial product arising from the adaptation by Verified
Systems of the results of the project TCGen3. It supports the generation of test
cases for different levels of model coverage allowing generation of test suites with
different test strengths. Traceability data relating requirements, test cases, test
procedures, and test results are generated and captured during test generation,
test execution, and test-result analysis. In addition to test generation, RTT-
MBT can also be used for bounded model checking of LTL formulas. We refer
to [33] and [28] for more details about RT-Tester and RTT-MBT.

RTT-MBT generates test procedures, that is, scripts implementing one or
more test cases, using the RT-Tester test language, called RTTL. In this way
the procedures can be directly used with RT-Tester. The test generator however
has been explicitly designed to support fast and easy implementation of test-
procedure generation for other languages.

Because RTT-MBT uses a model of the system under test (SUT), a simula-
tion of the SUT can be generated from that model. Generating test procedures
from a model and executing these tests against a simulation generated from
the same model is obviously not useful in helping to discover any flaws of the
real SUT. It can however be useful in (a) discovering design weaknesses of the
SUT by exercising the simulation, (b) verifying the test strength of a generated
test suite (if errors are injected into the simulation), and (c) testing a partly
implemented SUT or single parts of an SUT, by simulating the missing parts.

With our work, we support generation from RoboSim models of simulations
that can be executed by RT-Tester based on tests generated using other models.
In the future, we will also support test generation from RoboSim models.

If the SUT itself is a model, RT-Tester can be used to execute test proce-
dures against this model, as long as the model can be executed (through code
generation or a model interpreter or something similar) and the interface of the
model is accessible from the outside. The implementation of the communica-
tion between the RT-Tester test procedure and the model under test depends
on the concrete model and model-execution environment. This implementation
3 Funded by BIG Bremen Investitions-Gesellschaft mbH (research grant

2INNO1015B).

22 A. Cavalcanti et al.

Fig. 3. RoboTool approach to code generation of simulations from RoboSim models.

is normally encapsulated in a so-called interface module that is part of the test
environment used by the RT-Tester test procedure.

Our work provides, via generation of code and associated interface module,
a means to execute using RT-Tester a RoboSim model, that is, use it as a model
under test as part of an RT-Tester test procedure. The details of our encoding
of RoboSim in RT-Tester are given in the next section.

4 RoboSim and RT-Tester

The RoboTool approach to code generation from RoboSim models is outlined
in Fig. 3. The d-models (bottom right) can be used to generate platform-
independent code. As further detailed in the sequel, it is this facility that we
have built upon to cater for code that can be executed in RT-Tester.

The p-models (top left) can be used to generate XML-based documents,
written in the SDF format4, accepted by various off-the-shelf simulators as indi-
cated in Fig. 3 (DRAKE5, CoppeliaSim [34], Gazebo [24], and so on). SDF docu-
ments capture the links, joints, sensors, and actuators of a p-model, but not the
user-specified equations. Instead, the simulators use physics engines to describe
behaviour. An alternative indicated in Fig. 3 is the generation of a tailored sim-
ulation of the equations, rather than using an off-the-shelf simulator.

The platform mapping supports the generation of tool-specific wrappers. The
platform-independent code raises service requests as defined in the RoboSim
model (via the platform block of the module). These are implemented as defined
in the platform mapping, using the API of specific simulation tools.

In Sect. 4.1, we give an overview of our approach to generation of platform-
independent code. Section 4.2 describes the wrapper for RT-Tester.

4 sdformat.org.
5 drake.mit.edu/.

http://www.sdformat.org
http://www.drake.mit.edu/

Bringing RoboStar and RT-Tester Together 23

4.1 Platform-Independent Code Generation

The RoboTool code generation is based on model transformations: (1) a model-
to-model (m2m) transformation between a RoboSim d-model and an interme-
diate representation (IR) and (2) a family of model-to-text (m2t) transforma-
tions. In Fig. 3, the first is represented by the arrow from the RoboSim d-model
block (bottom right) to the block labelled IR, and the transformations in the
second set are depicted by the arrows from the IR block to blocks representing
code written in various programming languages, such as Rust and C.

This two-step approach separates the encoding of the semantics of RoboSim
d-models from the specific details of the concrete target programming language.
The m2m transformation (1) captures the semantics of RoboSim d-models in
terms of an abstract procedural programming language with explicit parallelism
constructs (IR), while the m2t transformations (2) implement the constructs of
the IR into specific target languages. So, extending our code generator to target
a new programming language requires implementing only a new m2t transforma-
tion, which is much simpler than encoding the semantics of RoboSim d-models.

The m2m transformation takes a RoboSim module as input and returns a
Program of our IR; Fig. 4 shows an excerpt of the IR metamodel. A Program con-
tains a name, any number of imports, enumerations, records, and procedures, and
an entry block. Imports, Enumerations, Records, and Procedures are comparable
to similar concepts in procedural programming languages like C (where we find,
respectively, includes, enums, structs, and functions). The EntryBlock is the
program’s starting point and is similar to C’s main function.

Figure 5 sketches the C rendering of the IR for our example in Fig. 2. The
C code is the result of an m2t transformation specific to C. Yet, it is in direct
correspondence with the IR, and so we use the code to illustrate the IR structure.

In Fig. 5, there are no imports arising from the IR (although some includes
are in the code, due to requirements of C). In general the imports are used to
reflect the structure of the RoboSim model in the code.

The enumerations represent (a) the execution stages of states (for instance,
ENTER, EXIT), (b) the possible outcomes of an execution step (WAIT or CONTINUE),
(c) the state and transition identifiers, and (d) the inputs and outputs of
each component of the RoboSim model (robotic platform, controllers and state
machines). In Fig. 5 (lines 1–4), M SimCMovement output Type is an enumeration
whose values include representations of the outputs of the module SimCMovement,
namely, move and stop. An extra exec constant is used as part of the realisa-
tion of the simulation event exec. The enumeration in the IR that represents
all values that can be communicated by an output of SimCMovement is ren-
dered in C as a struct, because an enum in C can include just constants (see
M SimCMovement output Enum in Fig. 5 (lines 6–8)).

The records specify the inputs (events), internal status (for instance, its cur-
rent active state), and the memories of the state machines. In Fig. 5 (lines 10–12),
a record type sm memory represents the memory of the occurrence of SimSMove-
ment in SimMovement (sm is the internal name of the reference to SimSMovement

24 A. Cavalcanti et al.

Fig. 4. Partial metamodel of the intermediate representation.

in SimMovement). In the example, the memory contains just the constant val-
ues (for PI, lv, and av, since SimSMovement has no variables (see Fig. 2)).

The procedures implement the behaviours of a single step of the execution
of states, state machines, controllers, and the module, and of the junctions and
actions. In Fig. 5 (lines 14–18), stm sm is the procedure for SimSMovement.

An EntryBlock is a special form of Block that defines the overall behaviour of
a Program; a set of Variables models the inputs. A Block has a sequence of zero
or more statements, and is itself a Statement. In a C program, the EntryBlock is
realised as the main function. In Fig. 5, it is sketched in lines 20–40.

The IR includes statements commonly available in programming languages,
such as assignment, loops, and conditionals (omitted in Fig. 4), but also an
explicit construct for ParallelComposition. This is shown in Fig. 4 as a subclass
of Statement. A ParallelComposition has two or more ParallelBlocks, each with a
name and channels that can be used for synchronisation, input and output.

A Channel has a name, a boolean value async, which indicates whether the
channel can be used for synchronous or asynchronous communication, and a
type for the values that can be communicated by the channel. Besides being
included in ParallelBlocks, channels are used in CommunicationStatements, which
can be either SyncStatements, InputStatements or OutputStatements. InputState-
ments additionally include a variable in which the received value is stored. Output-
Statements include the Expression (value) that is communicated. The Expressions
are those commonly encountered in programming languages.

Bringing RoboStar and RT-Tester Together 25

Fig. 5. Realisation of automatically generated IR in C.

In general terms, the semantics of a RoboSim module is given by the parallel
composition of (CSP) processes for each controller communicating via channels
representing their inputs and outputs. Similarly, the semantics of a controller
is the parallel composition of processes for its machines. The notions of Paral-
lelBlocks and Channels facilitates the encoding of this semantics in the IR; the
statements of the EntryBlock define this parallel composition.

For our C encoding, we have implemented a notion of channel. In Fig. 5,
stm sm takes the representation of the channels used to describe the behaviour
of SimSMovement in CSP as argument. They are called locally registerRead sm
and registerWrite sm. The main function creates the channels needed by
all ParallelBlocks and execute the functions that represent the controllers and
machines in separate threads (see lines 21–24 for an example).

In line 26 of Fig. 5, a thread pthread t is declared to represent the process
that captures the semantics of SimSMovement. Lines 27–28 declare and create
stm sm channels, whose components include the channels for SimSMovement.
Line 30 shows the creation of the thread (pthread create), using the function
stm sm and its channels stm sm channels for SimSMovement.

26 A. Cavalcanti et al.

As shown in Line 31, if the creation fails, the program is aborted. Otherwise,
other threads are created; in the example, we have one for the controller (line 33)
and one for the module (line 34). The pthread create function starts as well
as creates a thread. After all threads start, the main function waits for their
conclusion: lines 36–38 show the command for the stm sm id thread.

4.2 Connecting to RT-Tester

The parallel composition additionally includes a control Block to provide the
means for interacting with the Program. In its simplest form, the Block requests
inputs via the terminal, communicates them to the module Block, waits for out-
puts, and prints them to the terminal. The control Block is the component that
links the platform-independent code and the actual platform, be it a terminal,
a simulator, or a testing tool. The latter is our focus here.

The rendering of this control block in C is sketched in Fig. 6; it connects RT-
Tester and our simulation. In general, every control block needs to use a com-
munication mechanism to connect the platform-independent simulation code for
the RoboSim model with the simulator. For RT-Tester, we use shared memory.

In detail, the control block (for RT-Tester) extracts the RoboSim events from
the thread parameter (elided in line 5), initialises the shared memory (line 3),
declares variables that record the input events, the output events, and a ter-
mination flag terminate (lines 5–7) that can be used by the simulator to
interrupt the simulation, and starts the control loop (lines 9–34). (A semaphore,
omitted in Fig. 6, controls the cycle, that is, passage of time.)

The control loop is active while the termination flag is false and at each
step, it reads inputs in a loop (lines 10–22), produces outputs in a second
loop (lines 23–32), and waits the next cycle. The input loop is controlled by the
boolean variable inputdone, which becomes true once a done event is received
from the simulator. This event can be sent by a test or by (a simulation of) the
platform to indicate that no more inputs are available in the current cycle.

The loop to read inputs iteratively reads a value from the shared mem-
ory (line 12), and treats each event accordingly (lines 13–21). In particular, for
the input event obstacle (line 15), an equivalent event of the RoboSim mod-
ule is created and written to the module’s registerRead channel (lines 15–17).
The treatment of the remaining events (including the simulation events done
and end, omitted in Fig. 6) is similar, with additional assignments to control the
termination of the input and control loops.

The output loop is similarly controlled by a boolean variable outputdone.
Each iteration of the loop waits for an event on the module’s registerWrite
channel (lines 25–26) and processes it according to its type. For instance, if the
event is stop (line 27), the output variable is initialised (line 28) so that its
event type is set to stop (line 29) and the variable is written to the shared
memory (line 30). The event move is treated similarly, with additional steps to
record the values of the parameters. The simulation event exec is treated by
assigning true to the guard variable outputdone (omitted in Fig. 6).

Bringing RoboStar and RT-Tester Together 27

Fig. 6. Control block connecting RT-Tester and simulation in C.

The control over the passage of simulation cycles is in the tests to allow
precise control over when events can or must happen. This is discussed next.

5 Example: Testing the Simple Ranger Robot

Our approach to testing using RoboChart is based on the testing theories for
its (tock-)CSP semantics that we have mentioned above. For our example, a
RoboChart model, as well as several other RoboStar artefacts, are available6.

The RoboSim model, presented in Sect. 2, is a simplification (for didactic
reasons) of the model that has been automatically generated from the RoboChart
model. So, tests generated from the RoboChart model have the potential to
reveal mistakes of the RoboSim model (or of our code generator). Moreover, as
said in Sect. 3, there is value in running the tests, even if there is a connection
between the models used for generation of the tests and the simulation.

The tests generated from the RoboChart model are based on traces
that define negative (forbidden) behaviours. They have the form s � 〈r〉,
where s is a sequence of allowed events and r is a forbidden event. For
6 http://www.robostar.cs.york.ac.uk/case studies/sranger/.

http://www.robostar.cs.york.ac.uk/case_studies/sranger/

28 A. Cavalcanti et al.

example, a simple forbidden trace generated for our example is specified as
〈move.out.lv.0, obstacle.in〉. This trace indicates that after the occurrence of a
call move(lv,0), the input event obstacle cannot be accepted immediately. In the
testing theory for tock-CSP, the test for this trace can be described as follows.

inc →U move.out.lv.0 →U pass →U obstacle.in →U fail →U StopU

Here, we use inc, pass and fail to indicate the test verdicts inconclusive, pass,
and fail. This description can be interpreted as follows: (1) initially, the test is
inconclusive; (2) after the output move.out.lv.0 is observed, the test passes;
and if immediately after (2) an input obstacle.in is accepted, the test fails and
finishes. We note that operation calls are regarded as outputs of the simulation.

To implement and execute such tests in RT-Tester, we create test proce-
dures that describe particular executions of the controller. They all follow a pat-
tern (illustrated in Fig. 7) where input and output ports implemented through
the shared memory are declared (lines 2–3), the controller is executed in a sepa-
rate process (forked from the @INIT block – line 4), and a sequence of interactions
is defined (lines 5–39) that implement the test. In the example, we illustrate that
we can send events to the controller (lines 9–10), wait for events from the con-
troller (lines 14–15), and allow time to pass (omitted in Fig. 7).

In detail, the core of the test implementation is the @PROCESS component,
which declares the variables status, to record the results of communications,
robot action, to store observed outputs of the simulation, and stimulation,
to construct events sent to the simulation. Afterwards, @PROCESS defines three
TestSteps (delimited by @rttBeginTestStep and @rttEndTestStep).

The first test step (lines 8–11) sends the IR event done to inform the simu-
lation that no input events are being sent, since the first RoboSim event of the
test is an output move.out.lv.0 (representing an operation call).

The second test step (lines 13–23) first attempts to read (@rttSelect) an
event from the simulation (line 14) by waiting for a message on the input
port (shm sut2asts p). An upper bound of 1000 ms is imposed to allow for
execution delays, but this does not reflect the passing of simulation time : the
trace determines that no time must pass before move.out.lv.0, but in simulation
terms this means that the cycle cannot advance, but real execution time might.

Afterwards, in line 15, if the attempt to read is successful (status==0), we
retrieve the message from shm sut2asts p and store it in robot action. In
lines 16–19, we check the negation of the requirement that move.out.lv.0 must
happen (line 16): the communication is successful and the event communicated
is move.out.lv.0. This is implemented by checking the value of status again,
and inspecting the event communicated to ensure it is move with arguments 1.0
and 0.0. If the negation is true, then, in lines 20–21, the test step is ended and
the test procedure stops. This corresponds to the situation where the trace of the
test (containing just the event move.out.lv.0) cannot be reached. By stopping
the test without a verdict, RT-Tester implicitly records the inconclusive result.

The third test step (lines 25–37) sends, in order, the event obstacle and the
IR event done to the simulation, clears the port shm sut2asts p (line 33), waits

Bringing RoboStar and RT-Tester Together 29

Fig. 7. Control block connecting RT-Tester and a simulation in C. This example is for
the test for the trace 〈move.lv.0, obstacle〉. Details such as forking and killing simulation
processes, and documentation of tests, are omitted.

for an event on this port (lines 34–35), and asserts that either an event has
not occurred or that it is not obstacle treated (line 66). So, if the event
obstacle treated is observed, the test fails. The obstacle treated event
reflects the use of the input obstacle by the simulation. (This is recorded by a
platform-independent log, that is implemented for RT-Tester as extra events: one
for each input). Finally, the test is stopped (line 49).

In summary, a test implementation is obtained as follows, for a trace s � 〈r〉
with two parts, a trace s followed by a final forbidden event r. The events
in s are implemented as test steps that may cause the test to end early with
an inconclusive verdict or allow the test to proceed. The forbidden event r is
implemented as a final test step that asserts that r does not occur. An output,
such as move.lv.0, is implemented by selecting a port, reading an event, and
checking whether it is r. An input event, such as obstacle, is implemented by

30 A. Cavalcanti et al.

sending r and done to the simulation, since no other input events need to be
sent, and inspecting a log to determine whether the input has been accepted.

Our example does not explicitly include time information, although the
absence of a tock event indicates that the interactions must happen urgently: in
the current cycle. We can also handle tests that go over several cycles.
For instance, the trace 〈move.out.lv.0, tock,move.out.lv.0〉 checks an output
move.out.lv.0 in the second cycle of the simulation. It gives rise to the following
test.

inc →U move.out.lv.0 →U

inc →U (move.out?x?y →U StopU�stop.out →U StopU)
�1pass →U move.out.lv.0 →U fail →U StopU

Here, � indicates that after move.out.lv.0, there is a choice of outputs: either
move.out?x?y, representing calls to move with arbitrary arguments, or stop.out,
representing a call to stop, in the same cycle. If one of those outputs happen, we
have an inconclusive verdict. If, however, the cycle advances, as indicated by �1,
then the test passes, unless we observe move.out.lv.0, then the test fails.

We implement such a test much in the same way as above. The choice (�)
is implemented by waiting for an event from the simulation and checking it.
If an event listed in the choice happens (in the example, if it is a call to the
move operation or stop event), the test ends (@rttStopTest). Otherwise, the
test continues. The � operator is implemented by requesting the simulation to
advance the cycle (by sending the IR event next cycle).

In the future, the approach illustrated here will be generalised in the form of
translation rules from tests to RT-Tester test specifications.

6 Conclusions and Vision for the Future

Our focus in this paper has been to support the simulation of RoboSim models
with RT-Tester. This contribution has shown how it is possible to bring together
distinct but complementary pieces of work: test generation using RoboChart,
simulation of RoboSim models, and automated testing with RT-Tester. Whilst
each aspect of work has their own strengths, as we have discussed, by integrating
the tools in the way described, there are significant benefits that can be gained.

From a robotics perspective, being able to define clearly the model of the
software and hardware, and having a mechanism to test to a much more rig-
orous and extensive standard then has been previously possible, opens up new
possibilities. From the RT-Tester perspective, RoboSim, and its connection to
the other RoboStar notations and techniques, opens a door to tackle robotics
applications using a domain-specific notation.

Further work is required for the evaluation of several aspects of our approach.
Further examples will support an analysis of the scalability of our approach, in
terms of automatic generation of test procedures and test execution. Automa-
tion will also enable study of the detection capabilities of the various approaches

Bringing RoboStar and RT-Tester Together 31

to test generation from RoboChart models. They vary in the set of mutation
operators used and how they are applied, and in the form of test cases consid-
ered: timed or untimed, and for traces or failures refinement.

To improve testing efficiency, the tests generated from RoboChart can be
factorised, so that several forbidden traces are used to define a single adaptive
test that can cope with a choice of inputs and outputs. We plan to improve
our test procedures by considering factorisation and additional use of RT-Tester
embedded facilities to determine the verdicts.

The most relevant aspect of the RoboTool approach to code generation for
the work we present here is that concerning the d-model (right and bottom of
Fig. 3). This is because we have focussed on simulating and testing the software
component of a robotic system in isolation. Being able to integrate simulations
of the robotic platform, with the robotic control software in that platform, will
enable that wider testing of complete robotic systems before deployment. We
aim to work further on this as part of our on-going and future work.

Another ambitious goal is to support model-based testing from RoboChart
and RoboSim models entirely using RT-Tester. This objective requires encoding
into RT-Tester of the operational semantics of RoboChart and RoboSim, but
has the potential to yield very rich outcomes.

The RoboStar team looks forward to continued collaboration with Jan
Peleska, at least via his group and Verified Systems International GmbH, to
push forward the agenda to support further use of formal methods in indus-
try [22]. The fruits of Jan Peleska’s work will no doubt have long-term impact
in all applications of embedded and cyber-physical systems.

Acknowledgements. The work of Cavalcanti, Miyazawa, and Timmis has been
funded by the UK EPSRC Grants EP/R025479/1, and EP/V026801/2, and by the
UK Royal Academy of Engineering Grant No CiET1718/45.

References

1. Alberto, A., Cavalcanti, A.L.C., Gaudel, M.C., Simao, A.: Formal mutation testing
for Circus. Inf. Softw. Technol. 81, 131–153 (2017)

2. Baxter, J., Cavalcanti, A.L.C., Gazda, M., Hierons, R.: Testing using
CSP models: time, inputs, and outputs - extended version. Technical
report, RoboStar Centre on Software Engineering for Robotics (2022).
robostar.cs.york.ac.uk/publications/reports/BCGH22.pdf

3. Baxter, J., Ribeiro, P., Cavalcanti, A.L.C.: Sound reasoning in tock-CSP. Acta
Informatica 59, 125–162 (2022)

4. Cavalcanti, A., et al.: RoboStar technology: a roboticist’s toolbox for combined
proof, simulation, and testing. In: Software Engineering for Robotics, pp. 249–293.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66494-7 9

5. Cavalcanti, A., Baxter, J., Carvalho, G.: RoboWorld: where can my robot work?
In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp. 3–22.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92124-8 1

6. Cavalcanti, A., Baxter, J., Hierons, R.M., Lefticaru, R.: Testing robots using CSP.
In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 21–38. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31157-5 2

http://www.robostar.cs.york.ac.uk/publications/reports/BCGH22.pdf
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-92124-8_1
https://doi.org/10.1007/978-3-030-31157-5_2

32 A. Cavalcanti et al.

7. Cavalcanti, A.L.C., Dongol, B., Hierons, R., Timmis, J., Woodcock, J.C.P. (eds.):
Software Engineering for Robotics. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-66494-7

8. Cavalcanti, A., Gaudel, M.-C.: Testing for refinement in CSP. In: Butler, M.,
Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp.
151–170. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76650-
6 10

9. Cavalcanti, A., Gaudel, M.-C.: Specification coverage for testing in Circus. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 1–45. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16690-7 1

10. Cavalcanti, A.L.C., Gaudel, M.C.: Testing for refinement in Circus. Acta Informat-
ica 48(2), 97–147 (2011)

11. Cavalcanti, A., Gaudel, M.-C.: Data flow coverage for Circus-based testing. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 415–429. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 29

12. Cavalcanti, A.L.C., Gaudel, M.C.: Test selection for traces refinement. Theoret.
Comput. Sci. 563, 1–42 (2015)

13. Cavalcanti, A., Gaudel, M.-C., Hierons, R.M.: Conformance relations for dis-
tributed testing based on CSP. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011. LNCS,
vol. 7019, pp. 48–63. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24580-0 5

14. Cavalcanti, A.L.C., Hierons, R., Nogueira, S.: Inputs and outputs in CSP: a model
and a testing theory. ACM Trans. Comput. Logic (2020)

15. Cavalcanti, A., Huang, W., Peleska, J., Woodcock, J.: CSP and Kripke structures.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
505–523. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 29

16. Cavalcanti, A.L.C., et al.: Verified simulation for robotics. Sci. Comput. Program.
174, 1–37 (2019)

17. Cavalcanti, A.L.C., Simao, A.: Fault-based refinement-testing for CSP. Softw. Q.
J. (2019)

18. Feliachi, A., Gaudel, M.-C., Wenzel, M., Wolff, B.: The Circus testing theory revis-
ited in Isabelle/HOL. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol.
8144, pp. 131–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41202-8 10

19. Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Bae, K.,
Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 137–155. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7 7

20. Foster, S., Cavalcanti, A.L.C., Canham, S., Woodcock, J.C.P., Zeyda, F.: Unifying
theories of reactive design contracts. Theoret. Comput. Sci. 802, 105–140 (2020)

21. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-59293-8 188

22. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering:
a survey of professionals from Europe and north America. Empir. Softw. Eng.
25(6), 4473–4546 (2020)

23. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall (1998)
24. Koenig, N., Andrew, H.: Design and use paradigms for gazebo, an open-source

multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, pp. 2149–2154. IEEE (2004)

https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-642-16690-7_1
https://doi.org/10.1007/978-3-642-16690-7_1
https://doi.org/10.1007/978-3-642-54804-8_29
https://doi.org/10.1007/978-3-642-24580-0_5
https://doi.org/10.1007/978-3-642-24580-0_5
https://doi.org/10.1007/978-3-319-25150-9_29
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-642-41202-8_10
https://doi.org/10.1007/978-3-030-02146-7_7
https://doi.org/10.1007/3-540-59293-8_188

Bringing RoboStar and RT-Tester Together 33

25. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transfer 6(2), 128–
142 (2004)

26. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS, pp. 1–6 (2016)

27. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock,
J.C.P.: RoboChart: modelling and verification of the functional behaviour of
robotic applications. Softw. Syst. Model. 18(5), 3097–3149 (2019)

28. Peleska, J., Huang, W.: Industrial-strength model-based testing of safety-critical
systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-48989-6 1

29. Peleska, J.l., Huang, W., Cavalcanti, A.L.C.: Finite complete suites for CSP refine-
ment testing: Sci. Comput. Program. 179, 1–23 (2019)

30. Peleska, J.: Test automation for safety-critical systems: industrial application and
future developments. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS,
vol. 1051, pp. 39–59. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60973-3 79

31. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South
Afr. Comput. J. 19, 53–77 (1997)

32. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 22

33. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated model-based test-
ing with RT-tester. Technical report (2011). http://www.informatik.uni-bremen.
de/agbs/testingbenchmarks/turn indicator/tool/rtt-mbt.pdf

34. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 1, pp. 1321–1326. IEEE (2013)

35. Windsor, M., Cavalcanti, A.L.C.: RoboCert: property specification in robotics.
In: Riesco, A., Zhang, M. (eds.) International Conference on Formal Engineering
Methods. Lecture Notes in Computer Science, vol. 13478, pp. 386–403. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-17244-1 23

36. Woodcock, J., Cavalcanti, A., Fitzgerald, J., Foster, S., Larsen, P.G.: Contracts in
CML. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 54–73.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 5

37. Zhang, M., Du, D., Sampaio, A.C.A., Cavalcanti, A.L.C., Filho, M.C., Zhang, M.:
Transforming RoboSim models into UPPAAL. In: 15th International Symposium
on Theoretical Aspects of Software Engineering, pp. 71–78. IEEE (2021)

https://doi.org/10.1007/978-3-319-48989-6_1
https://doi.org/10.1007/978-3-319-48989-6_1
https://doi.org/10.1007/3-540-60973-3_79
https://doi.org/10.1007/3-540-60973-3_79
https://doi.org/10.1007/978-3-642-20398-5_22
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/tool/rtt-mbt.pdf
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/tool/rtt-mbt.pdf
https://doi.org/10.1007/978-3-031-17244-1_23
https://doi.org/10.1007/978-3-662-45231-8_5

Implementation Relations for Distributed
Testing

Robert M. Hierons1(B), Mercedes G. Merayo2, and Manuel Núñez2

1 Department of Computer Science, The University of Sheffield,
Sheffield S1 4GG, UK

r.hierons@sheffield.ac.uk
2 Design and Testing of Reliable Systems Research Group, Universidad Complutense

de Madrid, Madrid, Spain

Abstract. When testing a system that interacts with its environment
at several physically distributed interfaces (ports) it is normal to place
a local tester at each port. If the local testers do not synchronise their
actions then the local tester at port p can only observe the sequence of
inputs and outputs that occur at p. If, in addition, there is no global clock
then it may be impossible to reconstruct the global trace that occurred
in testing and testing is then using the distributed test architecture.
As a result, the System Under Test (SUT) might be able to produce a
global trace that is not allowed by the specification, and so would nor-
mally represent a failure, but where the local testers cannot observe this
difference. The use of the distributed test architecture thus affects the
ability of testing to distinguish between a specification and an SUT and
so leads to the need for a different notion of correctness (implementation
relation). This paper explores alternative implementation relations for
distributed testing and how they relate.

1 Introduction

Jan Peleska has made a significant long-term contribution to the development of
systematic test generation techniques based on formal models (see, for example,
[19]) and has shown how such techniques can be used in an industrial setting
[24–26]. This is an important contribution since testing is a core part of software
development. As Peleska has shown, if there is a model of the required behaviour
of the system under test (SUT) then there is potential to automate test gen-
eration based on this model, with this approach often being called model-based
testing (MBT). Further, if the model has a formal semantics then automated test
generation can be systematic, in the sense that one can formally reason about the
types of faults that test cases can find (see, for example, [1,7,19,20,24,27,28,30]).

Most work on MBT uses models in the form of a finite state machine (FSM)
or labelled transition system (LTS). However, the user is not expected to pro-
duce FSM or LTS models: the user can produce models written using a state-
based language such as Statecharts, with these models being mapped to FSMs

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 34–48, 2023.
https://doi.org/10.1007/978-3-031-40132-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_3

Implementation Relations for Distributed Testing 35

Tester 1 SUT Tester 2

?i1

!o1

?i2

msc MSC1

Fig. 1. A controllability problem [15]

or LTSs [6,7,20]. Testing is typically then a process in which a tester inter-
acts with the SUT, through providing inputs and observing outputs, and the
resultant sequence of inputs and outputs (trace) is checked against the origi-
nal model/specification. Although this captures how testing is often carried out,
testing can be rather different. For example, the communication between the
tester and the SUT might be through a medium that introduces a delay. Testing
is then asynchronous, with the trace that is observed by the tester potentially
not being the trace produced by the SUT since the tester observes inputs before
the SUT does and the SUT produces outputs before they are observed by the
tester [9,12,32]. The SUT might also interact with its environment at multiple
physically distributed interfaces, called ports, with there being a local tester at
each port. If the local testers do not synchronise their actions and there is no
global clock then testing is taking place in the distributed test architecture [21].
We use the term distributed testing when we refer to testing in the distributed
test architecture.

In the distributed test architecture, an observation consists of a number of
local traces, one for each port, as opposed to a single (global) trace. Early work on
distributed testing noted that it can lead to controllability problems, which occur
because a tester cannot observe the interactions at other ports and, therefore,
sometimes does not know when to supply an input [4,29]. To see how controlla-
bility problems can occur, consider the scenario shown in Fig. 1 in which three
processes interact (two testers and the SUT), arrows represent the exchange of
messages, and time progresses as we move down the line associated with a pro-
cess. Here, Tester 1 starts by sending input ?i1 to the SUT and should then
receive output !o1. After this, Tester 2 should send input ?i2. However Tester 2
cannot observe the interactions between Tester 1 and the SUT and so does not
know when to send its input.

There can also be observability problems, where a global trace not allowed
by the specification occurs but the observation made (the set of local traces)
is consistent with a behaviour of the specification [5]. To see how observability
problems can occur, consider the two scenarios shown in Fig. 2. Here, there are

36 R. M. Hierons et al.

Fig. 2. Observationally equivalent scenarios [15]

two different global traces but in each case Tester 1 observes ?i1!o1?i1!o1 and
Tester 2 observes !o2. As a result, these global traces are indistinguishable when
testing in the distributed test architecture.

Much of the early work on distributed testing aimed to produce test gen-
eration techniques that returned test sequences that do not suffer from con-
trollability or observability problems. This previous work thus used traditional
implementation relations such as ioco [30]: the implementation relation did not
reflect the reduced ability of testing to distinguish between different global traces
and so also different processes. As a result, for example, such work might consider
a test case to be sufficient to find a given fault even when no tester can observe
a difference in behaviour (again, see Fig. 2). This paper focuses on later work
that developed new implementation relations that reflected the nature of the
distributed test architecture and the ability of testing to distinguish processes
in this test architecture.

This paper is structured as follows. Section 2 defines the types of models
considered and introduces notation used throughout the paper. Section 3 then
formalises what we mean by distributed testing and Sect. 4 defines and compares
the implementation relations. Section 5 then outlines some related and future
work and Sect. 6 draws conclusions.

2 Preliminaries

In software testing, typically a tester applies inputs and observes outputs pro-
duced by the SUT. Throughout this paper we use I to denote the set of possible
inputs and O to denote the set of possible outputs. The sets I and O are therefore
disjoint. We will normally precede the name of an input by ‘?’ and the name of
an output by ‘!’. We will use a running example to illustrate the key principles.

Implementation Relations for Distributed Testing 37

Example 1. The system depicted in Fig. 3 represents a simplified version of the
diagnosis protocol of a gynaecological cancer screening centre management sys-
tem. It focuses on the functionality associated with the process that begins at
the moment a patient makes a date with the doctor. When a patient visits the
doctor, they can either prescribe some tests or diagnose an illness. In the first
case, the patient must go to the laboratory and image diagnosis section and make
the corresponding appointments. Once the results of the tests are available, the
patient will visit the doctor. If the results of the tests provide enough informa-
tion, then the doctor will diagnose the patient and prescribe the appropriate
medication. However, the doctor may need more tests to give a final diagnosis
and then the patient will begin the cycle again. The protocol is very close to a
real system. In order to simplify the presentation we only consider one battery
of tests: an ultrasound, a mammography and a smear test. After the test results
are received in the doctor’s office and the patient makes an appointment, the
patient will visit the doctor for a diagnosis.

The main type of model we use is an input output transition system, which is
a labelled transition system in which the set of actions is partitioned into inputs
and outputs.

Definition 1 (Input Output Transition System). An input output tran-
sition system (IOTS) r is defined by a tuple (Q, I,O, T, qin) in which Q is a
countable set of states, qin ∈ Q is the initial state, I is a countable set of inputs,
O is a countable set of outputs, and T ⊆ Q × (I ∪ O ∪ {τ}) × Q is the transition
relation. Here, τ represents an internal action, which cannot be observed.

We say that state q ∈ Q is stable if there is no q′ ∈ Q and y ∈ O ∪ {τ} such
that (q, y, q′) ∈ T . This represents the situation in which r cannot change state
without first receiving input. The process r is input-enabled if for all q ∈ Q and
?i ∈ I there is some q′ ∈ Q such that (q, ?i, q′) ∈ T .

We make the normal assumption that the SUT is input-enabled. In defining
implementation relations for distributed testing, we will also require that speci-
fications are input-enabled1. Some of the implementation relations described in
this paper have been generalised to the case where the specification need not be
input-enabled [17].

Example 2. The specification depicted in Fig. 3 is an IOTS in which input
actions represent different actions, such as the request of the different appoint-
ments (?app smear test , ?app ultrasound , . . .), the inclusion in the system of
the images or samples obtained by means of tests (?smear test , ?mammography ,
. . .), the registration of the diagnosis (?diagnosis) or the prescription of tests
(?tests presc). The output actions correspond to the information provided by
the system to the users. For example, the dates of the requested appointments
(!date smear test , !date ultrasound , . . .) or the results obtained from the tests

1 The alternative term Input Output Labelled Transition System is often used if a
process does not have to be input-enabled.

38 R. M. Hierons et al.

Fig. 3. Specification of the appointments protocol

carried out (!test lab results, !test image results). The initial state, s1, is shaded.
For the sake of clarity, not all transitions are included in the figure since this
would overload the graph. Specifically, we have omitted those required to ensure
that the system is input-enabled (the missing transitions lead to no change in
state).

We also introduce notation that can be used to define processes. Given action
a and process r, we use a.r to denote the process that becomes r after engaging
in action a. Further, if S is a countable set of processes then we use

∑
S to

denote the process that non-deterministically chooses to be any process in S.
As is usually done when testing from an IOTS, we assume that the tester

can observe the SUT being in a stable state (being quiescent). In practice, the
tester will do this via a timeout, with the time ΔT used being problem-specific.

Implementation Relations for Distributed Testing 39

There is thus the associated test hypothesis (assumption) that if the SUT does
not receive input or produce output for time ΔT then the SUT is in a stable
state. We use δ to denote quiescence.

Definition 2. Given IOTS r = (Q, I,O, T, qin), we can extend the transition
relation T to Tδ by adding the transition (q, δ, q) for each stable state q of r. We
use Act to denote the set of observable actions and so Act = I ∪ O ∪ {δ}.

Note that traces that (can) include quiescence are often called suspension
traces; we simply call them traces since we do not consider other types of traces.
The following standard notation is often used in the context of the standard
implementation relation ioco (see, for example, [30]).

Definition 3. Let r = (Q, I,O, T, qin) be an IOTS. We use the following nota-
tion.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write q a−−→ q′.
2. We write q

a==⇒ q′, for a ∈ Act, if there exist q0, . . . , qm and k ≥ 0 such
that q = q0, q′ = qm, q0

τ−−→ q1, . . . qk−1
τ−−→ qk, qk

a−−→ qk+1, qk+1
τ−−→

qk+2, . . . , qm−1
τ−−→ qm.

3. We write q
ε==⇒ q′ if there exist q1, . . . , qk, for k ≥ 1, such that q = q1,

q′ = qk, q1
τ−−→ q2, . . . qk−1

τ−−→ qk.
4. We write q

σ==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0,
q′ = qm such that for all 1 ≤ i < m we have that qi

ai+1
===⇒ qi+1.

5. We write r
σ==⇒ if there exists q′ such that qin

σ==⇒ q′ and we say that σ is a
trace of r.

6. We let T r∗(r) denote the set of finite traces of r.

Let q ∈ Q and σ ∈ Act∗ be a trace. We consider

1. q after σ = {q′ ∈ Q|q σ==⇒ q′}.
2. r after σ = qin after σ.
3. out(q) = {!o ∈ O ∪ {δ}|q !o==⇒}.

The last function can be extended to deal with sets in the expected way: Given
Q′ ⊆ Q we define out(Q′) = ∪q∈Q′out(q).

We say that the process r is deterministic if for every state q and a ∈ Act
there is at most one state q′ such that (q, a, q′) ∈ Tδ. We say that r is output-
divergent if it can reach a state from which there is an infinite trace that contains
outputs and internal actions only.

We will consider processes that are output-divergent but a number of the
definitions will require us to restrict attention to processes that are not output-
divergent. Note that output divergence can be undesirable in testing since a
process can choose to keep on providing outputs and not allow the tester to
supply inputs. We can now define the standard implementation relation ioco.

Definition 4 (Implementation relation ioco). Given IOTSs i and s we
have that i ioco s if for every trace σ of s we have that out(i after σ) ⊆
out(s after σ).

40 R. M. Hierons et al.

3 Distributed Testing

Implementation relations such as ioco implicitly assume that there is a single
global tester and this global tester is able to observe all of the actions in which
the SUT engages, as well as quiescence, and determine the order in which these
actions occurred. For example, if the SUT corresponding to the specification
presented in Fig. 3 produced output !test lab results and then !test image results
then the tester can observe both outputs and know that they were produced in
this order. For many systems, this is a reasonable assumption and so one can
use this type of implementation relation.

Research in the 1980 s, on testing implementations of communication proto-
cols [4,5] against an FSM specification, observed that sometimes one requires
multiple testers. In this work, there was an upper tester, which acted as the soft-
ware that was using the protocol, and a lower tester, which interacted with the
SUT through a communications network. For such systems, the SUT has multi-
ple (two) physically distributed interfaces (called ports), there is a separate local
tester at each port, and these local testers are not synchronised. This results in
the local tester at port p observing a local trace (the sequence of events at port
p) and so the overall observation made being a set of local traces: one local trace
for each port of the SUT.

Figure 4 shows two architectures that can be used when testing a system that
has multiple ports [17]. Figure 4(a) shows the case where there is a single global
tester that provides inputs at all of the ports and observes the outputs; this is
consistent with implementation relations such as ioco. Such a global tester can
reconstruct the global trace that occurred during testing, although sometimes it
may be difficult for the global tester to achieve this if the observation of an event
is given a local timestamp and the clocks used are not perfectly synchronised.
Figure 4(b) shows the distributed test architecture in which there is a separate
local tester at each port and each local tester observes a local trace. It is possible
to combine the two test architectures, leading to there being both a centralised
tester and local testers [13] but we will not discuss such a combined architecture.

As previously mentioned, early work on distributed testing observed that
it can lead to additional controllability and observability problems. The initial
response was to try to find test sequences that avoid controllability and observ-
ability problems. These are test sequences (traces) where, for example, one can
establish a global order of actions (see, for example, [2,11,22,23,31]). Later, it
was recognised that the distributed test architecture introduces inherent limita-
tions into testing and these limitations cannot be avoided unless some mechanism
can be established to synchronise the local testers [18]. As a result, if it is not
possible to synchronise the local testers then any test generation technique that
returns test sequences that overcome the limitations imposed by the distributed
test architecture must either be incomplete (misses some ‘faults’) or restricted to
a special class of FSMs. Naturally, similar observations apply to IOTSs. This led
to the definition of a new implementation relation for FSMs [18]; in this section
we focus on the corresponding implementation relations defined for IOTSs. We
need to include information about ports into models.

Implementation Relations for Distributed Testing 41

Fig. 4. Testing architectures in systems with multiple ports

Definition 5. A distributed IOTS (dIOTS) is a pair (M,P), where M =
(Q, I,O, T, qin) is an IOTS and P is the set of ports. We partition I into pair-
wise disjoint sets Ip, for all p ∈ P, containing those inputs that can be received at
port p. Similarly, O is partitioned into pair-wise disjoint sets Op, for all p ∈ P,
containing those outputs that can be produced at port p.

Actp denotes the set of observations that can be made at p, that is, Actp =
Ip ∪ Op ∪ {δ}.

Example 3. Let us consider the IOTS depicted in Fig. 3, which is actually a
dIOTS. The system has three different ports that correspond to the laboratory,
the image diagnosis section and the consultations. These ports are connected to
the central server where information related to patients is stored. The different
types of lines used to draw the transitions are related to the different ports: solid
for the doctor’s office, dashed for the image diagnosis office and dotted for the
laboratory office.

Given port p and a (global) trace σ ∈ Act∗, we let πp(σ) denote the projection
of σ onto port p and this is called a local trace.

Definition 6 (Projection onto port p). Let p ∈ P and σ ∈ Act∗ be a
sequence of actions. We let πp(σ) denote the projection of σ onto port p and
πp(σ) is called a local trace. Formally,

πp(σ) =

⎧
⎨

⎩

ε if σ = ε
aπp(σ′) if σ = aσ′ ∧ a ∈ Actp
πp(σ′) if σ = aσ′ ∧ a ∈ Act \ Actp

Given σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be distinguished when
making local observations, that is, for all p ∈ P we have that πp(σ) = πp(σ′).

Note that quiescence is observed at all ports.

42 R. M. Hierons et al.

4 Implementation Relations

Recall that in the distributed test architecture, there is a separate local tester at
each port. These testers make local observations and the local observations are
used in order to produce a test verdict such as pass (if the observed behaviour
is consistent with the specification) or fail (if the observed behaviour is not
consistent with the specification). The initial focus was on two main alternatives.
In the first of these alternatives, the local tester at port p produces a local verdict
vp: the tester determines whether the local observation at p is one allowed by
the specification. The local verdicts are then combined, with the overall verdict
being fail if and only if one or more of the local verdicts are fail. This leads to
the following implementation relation [17].

Definition 7 (The pdioco implementation relation). Let i, s be dIOTSs
with port set P. We write i pdioco s if for every trace σ ∈ T r∗(i) and for every
port p ∈ P there exists some trace σ′ ∈ T r∗(s) such that πp(σ) = πp(σ′).

Let us suppose that σ is a global trace. Clearly, σ uniquely defines the corre-
sponding local traces but, in addition, the converse is not the case: there may be
some different global trace σ′ that has the same set of local traces. It is therefore
unsurprising that pdioco is strictly weaker than ioco.

Proposition 1. Let i, s be dIOTSs. We have that i ioco s implies i pdioco s.
However, there exist processes s and i such that i pdioco s but where we do not
have that i ioco s.

A practical benefit of pdioco is that the test infrastructure for such an
implementation relation may be relatively simple: each local tester records its
local verdict and these local verdicts are either sent to a central tester that
combines them or are locally stored and combined later. Thus, the complexity
of the oracle problem2 is essentially the same as that of ioco (there is a multiplier
of |P|). Note also that it has been shown that i pdioco s holds if and only if, for
every p ∈ P, the projection of i onto p conforms, under ioco, to the projection
of s onto p [17].

Although pdioco is appealing, the local testers might have observed
projections of different global traces of the specification. As a result,
the verdict might be pass despite the global trace that occurred being
very different from any global trace of the specification. For example,
consider the global trace ?app doctor !date doctor?test presc?app smear test
?app mammography !date mammography !date smear test . This global trace is
not allowed by our specification. However, the projection of this trace onto each
port (?app doctor !date doctor?test presc, ?app smear test !date smear test and
?app mammography !date mammography) will lead to a pass verdict. Testing can
be strengthened by allowing the local testers to log their observations (local
traces), with these logs being brought together after testing is complete. This
leads to a different implementation relation [16,17].
2 The oracle problem is the problem of deciding whether an observation made in

testing is one allowed by the specification.

Implementation Relations for Distributed Testing 43

Fig. 5. A variant of the protocol

Definition 8 (The dioco implementation relation). Let i, s be dIOTSs.
We write i dioco s if for every trace σ such that i

σ==⇒ i′ for some i′ that is in

a stable state, there exists a trace σ′ such that s
σ′

==⇒ s′ and σ′ ∼ σ.

Example 4. Let us consider the specification presented in Fig. 3. If we replace
its subgraph starting at s4 and ending at s12 and s13 by the subgraph depicted
in Fig. 5 we obtain an alternative protocol. This new protocol does not conform
to the original one with respect to dioco. For example, if we consider the trace
reaching the stable state s′

10 in this new protocol, σ = ?app doctor !date doctor
?test presc?app smear test?app mammography !date smear test , there does not
exist any trace σ′ in the original model such that σ′ ∼ σ. This is due to the fact
that, in the original model, the projection of the traces corresponding to the
laboratory office and reaching the transitions labelled with ?app mammography
present the input ?smear test . This action does not appear in σ. However, the
changes included in the new protocol do not modify the original order of the
actions at the different ports and, therefore, it does conform to the original one
if we use pdioco.

44 R. M. Hierons et al.

Proposition 2. There exist dIOTSs s and i such that i dioco s but not
i ioco s. There also exist dIOTSs s and i such that i pdioco s but not i dioco s.

Although dioco has the advantage of being stronger than pdioco, it has
the disadvantage that one can no longer express the oracle problem in terms of
separate instances of the oracle problem for the local testers. In fact, even for a
deterministic FSM specification, the oracle problem becomes NP-Complete [10].

Notice that the definition of dioco only considers traces that reach stable
states of the SUT. The reason for this is that the local testers can effectively
‘stop testing’ at such stable states: the local testers all observe quiescence at the
end of the trace. In practice, the local testers can keep on observing outputs until
a stable state is reached and then determine that the state was stable through
a sufficiently long timeout.

This approach, of only considering traces that reach stable states, has the
benefit of relatively simplicity and leads to an implementation relation that is
defined in a similar way to ioco. However, dioco can be unsuitable if a process
is output divergent. To see why this is the case, consider some trace σ of the
SUT that reaches a quiescent state and an infinite extension σ.σ′ such that none
of the states after σ are stable: for every non-empty prefix σ′′ of σ′ we have
that σ.σ′′ does not reach a stable state. The above definition of dioco does not
consider any of these σ.σ′′, even if they are clearly ‘different’ from the traces of
the specification.

An alternative approach has been defined in terms of observations of a pro-
cess; these correspond to tuples of local traces that might be observed when
interacting with the process. Essentially, when a global trace occurs, each local
tester observes a prefix of the corresponding local trace (it observes the entire
local trace if it waits long enough). In the following, given a (local) trace σp we
let pref (σp) denote the set of prefixes of σp.

Definition 9 (Observation). Given dIOTS r with m ports, we say that obs =
(σ1, . . . , σm) is an observation of r if there exists a global trace σ ∈ T r∗(r) such
that for all p ∈ P, we have that σp ∈ pref (πp(σ)). We let Obs(r) denote the set
of possible observations of r.

Given IOTS r′ we say that obs is allowed by r′ if and only if obs ∈ Obs(r′).

If one considers the above definition and a specification s, then we can give
an observation obs verdict pass if and only if obs is allowed by s. The idea simply
is that although the testers do not know that the local traces they have observed
are all projections of the same global trace of the SUT, they do know that they
are all prefixes of projections of a global trace of the SUT.

We can now define an alternative implementation relation on the basis of
the above: it essentially says that an SUT conforms to a specification if and
only if all observations regarding the SUT are also observations regarding the
specification [15].

Definition 10 (The diocoo implementation relation). Given dIOTSs i
and s with the same input and output alphabets and the same set of ports, we
write i diocoo s if and only if Obs(i) ⊆ Obs(s).

Implementation Relations for Distributed Testing 45

Note that the oracle problem for diocoo is also NP-Complete [15]. The above
implementation relation is suitable for processes that are output-divergent and
is equivalent to dioco if the processes are not output-divergent [15].

Proposition 3. Given dIOTSs i and s that are not output-divergent, i dioco s
if and only if i diocoo s.

The implementation relation diocoo is thus a conservative generalisation of
dioco. A different conservative generalisation of dioco has been defined in terms
of infinite traces of processes [17]. However, this alternative generalisation has
been shown to be too strong in the sense that an implementation i might fail to
be a correct implementation of a specification s even though no finite observation
can distinguish the SUT and specification [15].

5 Related and Future Work

The focus of this paper has been on defining suitable implementation relations,
which formalise what it means for an SUT to be a correct implementation of
a dIOTS. Such implementation relations can support systematic testing but
they do not, on their own, address the problem of generating test cases for use
in testing. There have been two main approaches to test generation for test-
ing in the Distributed Test Architecture. One class of approaches, developed
for testing from an FSM, involves producing test sequences that have no con-
trollability and/or observability problems (see, for example, [3,23]). Naturally,
these techniques lack generality (there are FSMs for which there is no such test
sequence) but are potentially powerful where they can be applied. A second class
of approaches allows the local testers to exchange synchronisation messages and
typically aims to minimise the number of messages or communications channels
required in order to overcome controllability and/or observability problems in a
given test sequence (see, for example, [22,33]).

Some work has taken into account the nature of distributed testing during
test generation. One proposal is to generate test cases in the form of tuples
of (local) test cases: one local test case per port [17]. It is then possible to
check whether such a test case introduces controllability and/or observability
problems. It is unclear, however, how one might generate suitable test cases
that are guaranteed to be free from such problems; it may be best to simply
generate test cases and accept that controllability problems may lead to non-
determinism in the interaction between a test case and an SUT even if the SUT
is deterministic. A second disadvantage of this approach, in which one generates
a separate local test case for each port, is that it is more difficult to relate these
test cases to test objectives, such as covering part of a model. If one is interested
in generating test cases to cover part of a model then one might instead represent
test generation as a multi-player game problem, although it transpires that the
existence of test cases guaranteed to lead to, for example, a given state being
reached is undecidable [8]. A third approach limits the aim of testing to finding
faults that can be found using controllable test cases [14] and returns test suites

46 R. M. Hierons et al.

that find all such faults (subject to the standard FSM testing assumption that
we have a known upper bound on the number of states of the SUT).

Recent work by Huang and Peleska [20] has devised a model-independent
approach to testing. They observe that the semantics of a state-based model
is a set L of traces and if the original model is finite-state then L is regular.
The semantics L thus induces an LTS LTS(L), which can be defined largely
through the use of Nerode-equivalence (two traces σ and σ′ reach the same state
of the induced LTS if they have the same set of continuations in L). Testing
can then be based on the induced model LTS(L). This approach addresses a
weakness of test generation based on coverage, which is that two models may be
equivalent (have the same semantics) and yet lead to different test suites. It also
moves coverage away from the coverage of syntax and towards the coverage of
semantics. It would be interesting to adapt this approach to distributed testing
and there appear to be at least two possible routes. First, one could define a
language whose elements are tuples of (local traces) and define a notion similar
to Nerode-equivalence for such a language. Alternatively, one could extend the
language L defined by an LTS by including all traces that are observationally
equivalent to traces of L and use this extended language as the basis for inducing
an LTS.

6 Conclusions

Although testing is an important part of software development, it is often man-
ual and so expensive and error-prone. If there is a model (specification) of the
required behaviour of the SUT and this model has a formal semantics then
there is potential to base systematic test generation on this model. However, it
is important to use a suitable implementation relation since otherwise, for exam-
ple, testing might incorrectly suggest that a correct SUT is faulty or a faulty
SUT is correct.

Most approaches to model-based testing (MBT) assume that there is a single
tester that interacts with the SUT and can observe the global trace produced
by the SUT. Sometimes, however, the SUT has multiple physically distributed
ports and there is a local tester at each port. If the distributed test architecture
is used then no tester can observe the global trace produced by the SUT and
verdicts must instead be based on local traces (projections of the global trace).

We have described several different implementation relations defined for the
distributed test architecture. The simplest approach is for each local tester to
compare its observation (local trace) against the local traces allowed by the
specification, with the overall verdict being fail if and only if one of these local
verdicts is fail. The corresponding implementation relation pdioco is equivalent
to the one produced if one compares the projections of the SUT and specifica-
tion using the standard implementation relation ioco. However, we have seen
that pdioco can hold between an SUT and a specification even if the SUT has
behaviours (global traces) that are very different from those of the specification.
This motivated the definition of a stronger implementation relation, dioco, that

Implementation Relations for Distributed Testing 47

corresponds to a scenario in which the local tester observe local traces and the
local traces are brought together. We have also seen that this can be generalised
to remove the constraint that processes are not output-divergent.

The implementation relations provide a formal basis for testing within the
distributed test architecture. However, much remains to be done. For example,
we have also seen that there has been relatively little work on test generation
algorithms that target these implementation relations. In this context, it may
be possible to extend the approach of Huang and Peleska [20], which bases test
generation on a model induced by the language defined by the specification.

References

1. Braunstein, C., et al.: Complete model-based equivalence class testing for the
ETCS ceiling speed monitor. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 380–395. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11737-9 25

2. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing. Inf.
Softw. Technol. 41(11–12), 767–780 (1999)

3. Chen, W., Ural, H.: Synchronizable checking sequences based on multiple UIO
sequences. IEEE/ACM Trans. Netw. 3, 152–157 (1995)

4. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: 5th
WG6.1 International Conference on Protocol Specification, Testing and Verifica-
tion, PSTV 1985, pp. 483–494. North-Holland (1985)

5. Dssouli, R.., von Bochmann, G.: Conformance testing with multiple observers.
In: 6th WG6.1 International Conference on Protocol Specification, Testing and
Verification, PSTV 1986, pp. 217–229. North-Holland (1986)

6. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: ACM SIGSOFT Symposium on Soft-
ware Testing and Analysis, ISSTA 2002, pp. 112–122. ACM Press (2002)

7. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.: Model-based quality assur-
ance of protocol documentation: tools and methodology. Softw. Testing Verification
Reliab. 21(1), 55–71 (2011)

8. Hierons, R.M.: Reaching and distinguishing states of distributed systems. SIAM
J. Comput. 39(8), 3480–3500 (2010)

9. Hierons, R.M.: The complexity of asynchronous model based testing. Theor. Com-
put. Sci. 451, 70–82 (2012)

10. Hierons, R.M.: Oracles for distributed testing. IEEE Trans. Softw. Eng. 38(3),
629–641 (2012)

11. Hierons, R.M.: Overcoming controllability problems in distributed testing from an
input output transition system. Distrib. Comput. 25(1), 63–81 (2012)

12. Hierons, R.M.: Implementation relations for testing through asynchronous chan-
nels. Comput. J. 56(11), 1305–1319 (2013)

13. Hierons, R.M.: Combining centralised and distributed testing. ACM Trans. Softw.
Eng. Methodol. 24(1), article 5 (2014)

14. Hierons, R.M.: Generating complete controllable test suites for distributed testing.
IEEE Trans. Softw. Eng. 41(3), 279–293 (2015)

15. Hierons, R.M.: A more precise implementation relation for distributed testing.
Comput. J. 59(1), 33–46 (2016)

https://doi.org/10.1007/978-3-319-11737-9_25
https://doi.org/10.1007/978-3-319-11737-9_25

48 R. M. Hierons et al.

16. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 200–215. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68524-1 15

17. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations and test gener-
ation for systems with distributed interfaces. Distrib. Comput. 25(1), 35–62 (2012)

18. Hierons, R.M., Ural, H.: The effect of the distributed test architecture on the power
of testing. Comput. J. 51(4), 497–510 (2008)

19. Hörcher, H.-M., Peleska, J.: Using formal specifications to support software testing.
Softw. Qual. J. 4(4), 309–327 (1995)

20. Huang, W., Peleska, J.: Model-based testing strategies and their (in)dependence
on syntactic model representations. Int. J. Softw. Tools Technol. Transfer 20(4),
441–465 (2018)

21. Joint Technical Committee ISO/IEC JTC 1. International Standard ISO/IEC
9646–1. Information Technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 1: general concepts. ISO/IEC (1994)

22. Jourdan, G.-V., Ural, H., Yenigün, H.: Minimizing coordination channels in dis-
tributed testing. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 451–466. Springer, Heidelberg (2006). https://
doi.org/10.1007/11888116 32

23. Luo, G., Dssouli, R., von Bochmann, G.: Generating synchronizable test sequences
based on finite state machine with distributed ports. In: 6th IFIP Workshop on
Protocol Test Systems, IWPTS 1993, pp. 139–153. North-Holland (1993)

24. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: 8th Workshop on Model-Based Testing, MBT 2013, EPTCS 111,
pp. 3–28 (2013)

25. Peleska, J.: Model-based avionic systems testing for the airbus family. In: 23rd
IEEE European Test Symposium, ETS 2018, pp. 1–10. IEEE Computer Society
(2018)

26. Peleska, J., et al.: A real-world benchmark model for testing concurrent real-time
systems in the automotive domain. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0 11

27. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. S. Afr.
Comput. J. 19, 53–77 (1997)

28. Sachtleben, R., Peleska, J.: Effective grey-box testing with partial FSM models.
Softw. Testing, Verification Reliab. 32(2) (2022)

29. Sarikaya, B., von Bochmann, G.: Synchronization and specification issues in pro-
tocol testing. IEEE Trans. Commun. 32, 389–395 (1984)

30. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

31. Ural, H., Whittier, D.: Distributed testing without encountering controllability and
observability problems. Inf. Process. Lett. 88(3), 133–141 (2003)

32. Weiglhofer, M., Wotawa, F.: Asynchronous input-output conformance testing. In:
33rd Annual IEEE Computer Software and Applications Conference, COMPSAC
2009, pp. 154–159. IEEE Computer Society (2009)

33. Wu, W.-J., Chen, W.-H., Tang, C.Y.: Synchronizable test sequence for multi-party
protocol conformance testing. Comput. Commun. 21(13), 1177–1183 (1998)

https://doi.org/10.1007/978-3-540-68524-1_15
https://doi.org/10.1007/11888116_32
https://doi.org/10.1007/11888116_32
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Conformance Relations Between
Input/Output Languages

Wen-ling Huang and Robert Sachtleben(B)

Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{huang,rob_sac}@uni-bremen.de

Abstract. In this paper, we propose a novel unifying approach to
characterising well-known conformance relations between finite state
machines, including equivalence, reduction, and variations thereof. This
approach is based on languages over input/output alphabets. It allows
for easier comparison between conformance relations, and gives rise to a
fundamental necessary and sufficient criterion for conformance testing.

Keywords: Languages · Model-based testing · Conformance testing ·
Complete testing theories

1 Introduction

Motivation. In the field of model-based testing (MBT), a large variety of con-
formance relations have been developed that describe the conditions under which
a system-under-test (SUT) conforms to the reference model. Examples of such
relations include equivalence, requiring both systems to exhibit the exact same
behaviour (see [18]), and quasi-reduction (see [11]), which allows the SUT to
differ from the reference model. Unfortunately, little effort has been made to
develop a unifying framework of these conformance relations,1 hindering direct
comparisons between them and the development of generalised testing strate-
gies. Also, the test strength of such strategies often depends on the syntactic
representation of reference models, despite the relations being defined only over
their behavioural semantics. Examples of this are discussed in [8].

Main Contributions. In this paper, we propose a unifying treatment of confor-
mance relations, allowing for easier comparisons between them. The approach is
independent of the syntactic representation of the reference model and not based
on a particular modelling formalism such as finite state machines (FSM). Instead,
we define the relations purely over languages which represent the behavioural
semantics of the model. We derive a fundamental necessary and sufficient cri-
terion for conformance that applies to any conformance relations definable via

1 Compare, for example, the various definitions of quasi-equivalence in [4,5,11–13].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 49–67, 2023.
https://doi.org/10.1007/978-3-031-40132-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_4&domain=pdf
http://orcid.org/0000-0002-9915-5357
http://orcid.org/0000-0001-5514-7593
https://doi.org/10.1007/978-3-031-40132-9_4

50 W. Huang and R. Sachtleben

our characterisation. For this criterion, we sketch how it may serve as a foun-
dation for the generation of test algorithms. Finally, we show that testing for
quasi-equivalence, quasi-reduction and strong-reduction can be transformed into
testing for reduction.

Related Work. Model-based testing strategies which are independent of the
syntactic representation of the model have been considered in [8]. Based on an
existing strategy from FSMs [1,18], the authors develop a strategy for testing
for language equivalence. Some other conformance relations we consider have
also been introduced together with complete testing methods, as in the case of
reduction for completely specified FSMs (see [3,14]), quasi-equivalence and quasi-
reduction (see [4,5,11–13]) or strong-reduction for partial FSMs (see [15]). It has
been shown in [7] that such strategies may be lifted to more expressive formalisms
such as reactive IO-state-transition systems (RIOSTS) via partitioning of states
and inputs into equivalence classes.

Overview. Sect. 2 introduces basic definitions and notation used throughout
this paper. Next, Sect. 3 introduces our approach, defines several conformance
relations and derives relations between them. Examples of conformance rela-
tions studied in this paper are presented via FSMs. A fundamental criterion for
conformance is developed and discussed in Sect. 4, which also showcases how
conformance relations may be expressed in terms of reductions, with detailed
proofs presented in Appendix A. Finally, Sect. 5 presents the conclusion.

2 Preliminaries

In this section, we give some basic definitions and notation used in this paper.
An input (output) alphabet ΣI (ΣO) is a non-empty set. Elements of ΣI are

called inputs and elements of ΣO are called outputs. Σ∗ is the set of all finite
sequences over Σ = ΣI × ΣO and, as usual, ε 6∈ Σ ∪ΣI ∪ΣO denotes the empty
sequence. Σ∗

O and Σ∗
I are defined analogously. For σ = (x, y) ∈ Σ we also use

the notation σ = x/y, and for input and output sequences x = x1x2 . . . xk, y =
y1y2 . . . yk of the same length we use x/y to denote (x1/y1)(x2/y2) . . . (xk/yk).
Elements of Σ∗ are called words and will be denoted by lower case Greek letters
α, β, etc. Given two words α and β we denote by α.β the concatenation of α and
β. We say that α is a prefix of β if there exists a word γ such that α.γ = β. A
subset L ⊆ Σ∗ is called a language over Σ. We say that L is prefix closed if for
any word β ∈ L and each prefix α of β we have α ∈ L. The subset LL(π) for any
word π ∈ Σ∗ is defined as LL(π) = {τ ∈ Σ∗ | π.τ ∈ L}. Two words α, β are ∼L

2

equivalent, if LL(α) = LL(β). In this paper we restrict our study to non-empty
prefix closed languages.

Let L be a non-empty prefix closed language over Σ = ΣI × ΣO. An input
sequence x is said to be defined or executable in a word π of L if there is an

2 There is no difference between ∼L and Nerode congruence [9].

Conformance Relations Between Input/Output Languages 51

output sequence y such that π.x/y ∈ L. We use execL(π) to denote the set of
all defined input in π of L, i.e.,

execL(π) = {x ∈ ΣI | ∃y ∈ ΣO, π.x/y ∈ L}.

Definition 1. For any π ∈ Σ∗ and any x ∈ Σ∗
I define the set of all outputs or

responses to x after π as

outL(π, x) = {y ∈ Σ∗
O | π.(x/y) ∈ L}. (1)

Hence, outL(π, x) = ∅ if and only if π 6∈ L or x is not defined in π.
Language L is called completely specified, if for any word π ∈ L and any

input x ∈ ΣI , outL(π, x) 6= ∅ holds. This is equivalent to execL(π) = ΣI , for any
word π ∈ L.

In subsequent sections, when using indexed identifiers Li for languages, we
omit symbol L in terms over Li such as LLi

, execLi
, and out

L
†
i

, and simply write

Li, execi, and outi† , respectively.

3 Conformance Relations

In this section, we study two classes of conformance relations on non-empty
prefix closed languages over Σ = ΣI × ΣO. The first class is introduced in
Subsect. 3.1. It arises from a unifying characterisation of several conformance
relations previously proposed for finite state machines. As examples of this class,
we provide characterisations of equivalence (see [1,18]), reduction (see [3]), quasi-
equivalence (see [11]), quasi-reduction (see [4]) and strong-reduction (see [15]).

Subsection 3.2 thereafter introduces a modification of this characterisation
which gives rise to a novel class of conformance relations. As examples of this
class we describe four novel conformance relations: semi-equivalence, strong-
semi-equivalence, semi-reduction, and strong-semi-reduction. To the best of our
knowledge, these have not been considered in the literature before.

For the conformance relations employed as examples, we examine in Sub-
sect. 3.3 whether conformance with respect to one relation implies conformance
w.r.t. another. An overview of the obtained results is given in Fig. 2 on page 10.

Running Example. Throughout this section, we present concrete examples
for the considered conformance relations using finite state machines. For these
examples it is sufficient to view FSMs as directed graphs whose nodes are called
states and whose edges are called transitions and labelled with input-output
(IO) pairs in ΣI ×ΣO. Each FSM M exhibits an initial state, represented in the
following by an incoming edge with no source. Finally, the language L(M) of
M is the set of all IO-traces obtained by projecting finite paths from the initial
state of M to the labels of their transitions. Thus L(M) always includes ε and
is prefix closed. A more formal definition can be found in [5].

52 W. Huang and R. Sachtleben

FSM M1 shown in Fig. 1a models a simple vending machine. It exhibits a
simple graphical user interface which in initially displays two buttons (C) and
(T) for coffee and tea, respectively. Upon pressing one of these buttons, the
machine requests payment (RP) and enters state C or T. These can be exited
only by offering payment (P), which releases the selected beverage, represented as
outputs (RC) and (RT). In the initial state S, a request for tea may alternatively
and nondeterministically be fulfilled without payment. Offering payment in the
initial state is rejected and a rejection message is displayed, which is represented
by output (−). In states C and T, the machine does not display buttons (C) and
(T), which is represented by these inputs not being defined in these states.

In the following, we consider the FSMs shown in Fig. 1 and check their con-
formance to M1 under the discussed relations. Table 1 provides a summary.

3.1 Equivalence, Quasi-equivalence, Reduction, Quasi-reduction,
and Strong-Reduction

Two of the most widely employed conformance relations in model-based test-
ing are (language) equivalence and reduction (see [1,3,18]). A system-under-test
(SUT) with language L1 conforms to a reference model with language L2 with
respect to equivalence if L1 = L2 holds, that is, if and only if it exhibits exactly
the same set as behaviours as the reference model. Conformance with respect to
reduction only requires L1 ⊆ L2 to hold, where L2 often represents the set of all
safe behaviours. Thus, a conforming SUT may omit behaviours of the reference
model, but may not add any.

Of the FSMs in Fig. 1, no FSM other than M1 is equivalent to M1, as they
add or omit behaviour. For example, M3 implements (T/RP).(C/RP) /∈ L(M1).
Any FSM equivalent to M1 must in particular allow arbitrary many repetitions
of the T/RT self-loop, excluding FSMs with finite languages such as M2. M2

here represents a system that allows selecting tea in the GUI once but does
not allow any further action. Thus, it drastically reduces the capabilities of M1,
but does not introduce any additional behaviour, and hence is a reduction. In
contrast, M3 is not a reduction of M1, as it adds a button for coffee in state T .

Instead of directly comparing L1 and L2 in their entirety, we propose a
characterisation of conformance relations that is based on comparing the outputs
produced for each input after each trace in both languages. To this end, we
introduce conformance relation �H parameterised over relation H ⊆ 2ΣO ×2ΣO .

Definition 2. Let H ⊆ 2ΣO × 2ΣO be a relation on the power set of ΣO. A
language L1 is called �H-conform to a language L2, in notation L1 �H L2, if
∀π ∈ L1 ∩ L2, ∀x ∈ ΣI ,

(outL1
(π, x), outL2

(π, x)) ∈ H. (2)

By selecting suitable relations H , it is then possible to represent a large
class of practically relevant conformance relations. For example, equivalence and

Conformance Relations Between Input/Output Languages 53

Fig. 1. Example FSMs

Table 1. Overview of the satisfaction of the discussed conformance relations by the
example FSMs provided in Fig. 1 with respect to reference model M1 described in
Fig. 1a. A check mark in column Mi indicates that Mi conforms to M1 w.r.t. the
conformance relation given in the corresponding row.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

�equiv M1 X
�red M1 X X X X X
�quasieq M1 X X
�quasired M1 X X X X
�strongred M1 X X
≤semieq M1 X X X X
≤semired M1 X X X X X X X X
≤strongsemieq M1 X X
≤strongsemired M1 X X X X

54 W. Huang and R. Sachtleben

reduction can be defined as

L1 = L2 ⇐⇒ L1�equiv L2 where equiv = {(A, A) | A ⊆ ΣO} (3)

L1 ⊆ L2 ⇐⇒ L1�red L2 where red = {(A, B) | A ⊆ B ⊆ ΣO} (4)

A detailed proof of (3) and (4) is given in Appendix A.
Based on equivalence and reduction, the conformance relations quasi-equiv-

alence, quasi-reduction and strong-reduction have been proposed in the litera-
ture (see [5,11,15]), which pose more elaborate constraints on how a conforming
SUT should behave with respect to defined and undefined inputs of the refer-
ence model. In the following, we show how these conformance relations can be
characterised via �H-conformance.

Quasi-equivalence and quasi-reduction respectively modify equivalence and
reduction by allowing the SUT to have arbitrary responses to undefined inputs.
More precisely, language L1 is called quasi-equivalent to L2 if for any π ∈ L1∩L2

and any input x ∈ ΣI defined in π of L2, i.e., x ∈ exec2(π), it holds that
out1(π, x) = out2(π, x). For any input x ∈ ΣI which is not defined in π of L2,
out1(π, x) can be arbitrary. Hence

quasieq = {(A, A) | A ⊆ ΣO} ∪ {(A, ∅) | A ⊆ ΣO}. (5)

is a suitable relation to characterise quasi-equivalence:

L1 is quasi-equivalent to L2 ⇐⇒ L1�quasieq L2. (6)

Similarly, language L1 is a quasi-reduction of language L2 if for any π ∈
L1 ∩ L2 and any input x ∈ ΣI defined in π of L2, x is defined in π of L1 as well
and out1(π, x) ⊆ out2(π, x). Hence

quasired = {(A, B) | ∅ 6= A, A ⊆ B ⊆ ΣO} ∪ {(C, ∅) | C ⊆ ΣO}. (7)

is a suitable relation to characterise quasi-reduction:

L1 is a quasi-reduction of L2 ⇐⇒ L1�quasired L2. (8)

Quasi-equivalence and quasi-reduction are employed if the reference model is
not completely specified and undefined inputs may be implemented by the SUT,
in which case arbitrary responses are allowed. In example FSM M1, input C is
not defined after traces ending on T/RP (i.e. in state T). Thus, a conforming
SUT may behave arbitrarily on this input, for example by switching the order to
coffee as implemented in M3. It is not allowed, however, to add a new response
to a defined input, as with (T/RP).(P/−) ∈ L(M10) \ L(M1), or to omit a
defined input, as occurs in M2, which does not offer button C in the initial state.
Quasi-equivalence differs from quasi-reduction by additionally not allowing any
response to a defined input to be omitted, as occurs in M4, which does not
support tea to be released in the initial state.

Strong-reduction, introduced in [15], can be derived from quasi-reduction by
adding conditions to ensure that undefined inputs remain undefined. It can also

Conformance Relations Between Input/Output Languages 55

be derived from reduction by requiring defined inputs to remain defined. That is,
language L1 is a strong-reduction of language L2 if L1 is a quasi-reduction of L2

and for any π ∈ L1∩L2 and any input x ∈ ΣI it holds that if out2(π, x) = ∅, then
also out1(π, x) = ∅. Thus, strong-reduction may be characterised by removing
all (A, ∅), A 6= ∅, from quasired or by removing all (∅, A), A 6= ∅, from red:

strongred = {(A, B) | ∅ 6= A ⊆ B ⊆ ΣO} ∪ {(∅, ∅)}, (9)

which is the intersection of quasired and red:

L1 is a strong-reduction of L2 ⇐⇒ L1�strongred L2. (10)

In the running example, strong-reductions of example FSM M1 do not include
M2, which omits inputs, or M4, which adds inputs not present in M1. An example
for a strong-reduction can be found in M5, which, compared to M1, merely drops
the release of tea in the initial state.

3.2 Semi-equivalence, Strong-semi-equivalence, Semi-reduction,
Strong-semi-reduction

As previously discussed for quasi-equivalence and quasi-reduction, the condition
(A, ∅) ∈ H , A ⊆ ΣO indicates that the SUT’s response to inputs that are not
defined in the reference model can be arbitrary. To allow the SUT to reject some
inputs that are defined in the reference model, we can add pairs (∅, A) to H .
However, it is often desirable for the SUT not to reject every defined input and
to produce an expected output for at least one defined input. To achieve this,
we need to specify an additional condition that reflects this requirement.

Definition 3. Let L1 and L2 be languages over Σ and H ⊆ 2ΣO ×2ΣO . We say
L1 is ≤H-conform to L2, denoted L1 ≤H L2, if

1. ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : (out1(π, x), out2(π, x)) ∈ H,
2. ∀π ∈ L1 ∩ L2 :

(

exec2(π) 6= ∅ =⇒ ∃x ∈ ΣI : out1(π, x) ∩ out2(π, x) 6= ∅
)

.

That is, L1 ≤H L2 if and only if L1 �H L2 and we can not find a deadlock
π ∈ L1 ∩L2 which is not already a deadlock in L2. Here, we say a word π ∈ L is
a deadlock, if LL(π) = {τ ∈ Σ∗ | π.τ ∈ L} = {ε}. By the definition of execL(π),
we can reformulate the definition for ≤H-conformance as follows

L1 ≤H L2 ⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : (out1(π, x), out2(π, x)) ∈ H

∧ (out2(π, x) 6= ∅ =⇒ ∃x′ ∈ ΣI : out1(π, x′) ∩ out2(π, x′) 6= ∅).
(11)

From this definition it follows that M2 6≤H M1 for any relation H , since T/RP
is a deadlock in M2 but not in M1.

56 W. Huang and R. Sachtleben

Example 1 (Semi-equivalence). We introduce a modification of quasi-equivalence
that allows a conforming SUT to omit some (but not all) defined inputs. Lan-
guage L1 is called semi-equivalent to language L2 if for any π ∈ L1 ∩L2 and any
input x ∈ ΣI satisfying out2(π, x) 6= ∅, we have

out1(π, x) = ∅ ∨ out1(π, x) = out2(π, x), and

∃x′ ∈ ΣI : out1(π, x′) ∩ out2(π, x′) 6= ∅.

Hence, for any π ∈ L1 ∩ L2 and any input x ∈ ΣI , we have

out2(π, x) = ∅ =⇒ out1(π, x) is arbitrary, and

out2(π, x) 6= ∅ =⇒ out1(π, x) = ∅ ∨ out1(π, x) = out2(π, x).

This can be expressed by

out1(π, x) = out2(π, x) ∨
(

outi(π, x) = ∅ ∧ outj(π, x) 6= ∅, {i, j} = {1, 2}
)

.

Hence, L1 is semi-equivalent to L2 if and only if L1≤semieq L2, where

semieq = {(A, A) | A ⊆ ΣO} ∪ {(∅, A) | A ⊆ ΣO} ∪ {(A, ∅) | A ⊆ ΣO}. (12)

In Fig. 1, M6≤semieq M1, where M6 omits inputs C and P after ε and exhibits
both responses to T exhibited by M1. In state T, M6 furthermore adds response
− to input C (undefined in M1), notifying the user that the order cannot be
switched to coffee. In contrast, M7 6≤semieq M1, as it omits one of the responses
to T in M1.

Example 2 (Semi-reduction). A similar modification can be made to quasi-reduc-
tion by adding to quasired all (∅, A) where A ⊆ ΣO. We say that language L1

is a semi-reduction of language L2 if L1≤semired L2, where

semired = {(A, B) | A ⊆ B ⊆ ΣO} ∪ {(C, ∅) | C ⊆ ΣO}. (13)

Example 3 (Strong-semi-equivalence). Semi-equivalence allows SUT to have
arbitrary responses to undefined inputs. This feature is not available for
strong-semi-equivalence. Strong-semi-equivalence requires SUT to leave unde-
fined inputs as undefined. This can be achieved by removing all (A, ∅), A 6= ∅,
from semieq. We define that L1 is called strongly semi-equivalent to language
L2 if L1≤strongsemieq L2, where

strongsemieq = {(A, A) | A ⊆ ΣO} ∪ {(∅, A) | A ⊆ ΣO} = semieq ∩ red. (14)

In Fig. 1, M8≤strongsemieq M1, where M8 is a very simple but practically use-
ful implementation that allows arbitrarily many repetitions of the process of
requesting, possibly paying for and finally receiving tea. Additional behaviour
such as adding input C to state T in M6 are not allowed. Furthermore, dropping
behaviour on the remaining defined inputs, as for example the release of tea
without payment in M9, is forbidden.

Conformance Relations Between Input/Output Languages 57

Example 4 (Strong-semi-reduction). Analogous to strong-semi-equivalence, we
define strong-semi-reduction by removing all (A, ∅), A 6= ∅, from semired. That
is, L1 is called a strong-semi-reduction of L2 if L1≤strongsemired L2, where

strongsemired = {(A, B) | A ⊆ B ⊆ ΣO} = semired ∩ red = red. (15)

These differences to strong-semi-equivalence allow M9≤strongsemired M1 but
still forbid the additions in M6.

3.3 Comparing Conformance Relations

The parameterisation of �H-conformance and ≤H-conformance by a relation H
enables abstract comparisons between conformance relations based on compar-
isons between their parameters. For example, if H1 ⊆ H2 holds, then �H1

and
�H2

are related as follows for arbitrary H1, H2.

Lemma 1. Let L1, L2 be any languages over Σ = ΣI × ΣO. Let H1, H2 ⊆
2ΣO × 2ΣO be any relations on the power set of ΣO. Suppose H1 ⊆ H2. Then
L1 �H1

L2 =⇒ L1 �H2
L2.

Proof. Suppose that H1 ⊆ H2. Then by Definition 2,

L1 �H1
L2 ⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : (out1(π, x), out2(π, x)) ∈ H1

=⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : (out1(π, x), out2(π, x)) ∈ H2

⇐⇒ L1 �H2
L2.

Hence L1 �H1
L2 =⇒ L1 �H2

L2. ⊓⊔

From this lemma, the following properties over relations discussed in 3.1
follow immediately after unfolding the definitions of the employed relations (see
(3), (4), (5), (7), (9)):

Theorem 1. Let L1, L2 be any two languages over Σ. Then

L1�equiv L2 =⇒ L1�strongred L2 =⇒ L1�red L2,

L1�equiv L2 =⇒ L1�strongred L2 =⇒ L1�quasired L2,

L1�equiv L2 =⇒ L1�quasieq L2 =⇒ L1�quasired L2.

The following Lemma is analogous to Lemma 1 for ≤H -conformance. We
omit the analogous proof.

Lemma 2. Let L1, L2 be any languages over Σ. Let H1, H2 ⊆ 2ΣO × 2ΣO .
Suppose H1 ⊆ H2. Then L1 ≤H1

L2 =⇒ L1 ≤H2
L2.

We can also compare �H-conformances and ≤H-conformances using the fol-
lowing criterion.

Lemma 3. Let L1, L2 be any two languages over Σ and H1, H2 ⊆ 2ΣO × 2ΣO .
Suppose H1 ⊆ H2 and for any (A, B) ∈ H1 it holds B 6= ∅ ⇒ A ∩ B 6= ∅. Then
L1 �H1

L2 =⇒ L1 ≤H2
L2.

58 W. Huang and R. Sachtleben

Fig. 2. Overview of the inclusion relations on the conformance relations discussed in
Sect. 3 and established in Theorems 1 and 2. An arrow from A to B indicates that if
L1 conforms to L2 w.r.t. relation A, then it also does so w.r.t. B.

Proof. Suppose L1 �H1
L2 and H1 ⊆ H2. Then for any π ∈ L1 ∩ L2, and

any x ∈ ΣI , (out1(π, x), out2(π, x)) ∈ H1 ⊆ H2. Furthermore, suppose that
out2(π, x) 6= ∅. Since for any (A, B) ∈ H1, B 6= ∅ ⇒ A ∩ B 6= ∅ holds, we have
that out1(π, x) ∩ out2(π, x) 6= ∅. Consequently, L1 �H1

L2 =⇒ L1 ≤H2
L2. ⊓⊔

From Lemma 2, Lemma 3 and unfolding definitions (18), (19), (20) and (21),
the following relations between conformance relations discussed in Subsects. 3.2
and 3.1 then follow. Together with those shown in Theorem 1, these are visualised
in Fig. 2.

Theorem 2. Let L1, L2 be any languages over Σ. By definition we have

L1≤strongsemieq L2 =⇒ L1≤semieq L2 ∧ L1�red L2,

L1≤strongsemired L2 =⇒ L1≤semired L2 ∧ L1�red L2.

Furthermore,

L1≤semieq L2 =⇒ L1≤semired L2, (16)

L1≤strongsemieq L2 =⇒ L1≤strongsemired L2, (17)

and

L1�quasieq L2 =⇒ L1≤semieq L2, (18)

L1�quasired L2 =⇒ L1≤semired L2, (19)

L1�equiv L2 =⇒ L1≤strongsemieq L2, (20)

L1�strongred L2 =⇒ L1≤strongsemired L2. (21)

Conformance Relations Between Input/Output Languages 59

Remark 1 (Completely specified languages). When considering �H-conformance
or ≤H-conformance on completely specified languages, we may remove from H
all pairs containing the empty set. Let Π denote the set of such pairs. That is,
let Π = {(A, ∅) | A ⊆ ΣO} ∪ {(∅, A) | A ⊆ ΣO}. By definition, the relations
discussed above collapse into two classes under removal of Π :

equiv \ Π = quasieq \ Π = semieq \ Π = strongsemieq \ Π, and

red \ Π = quasired \ Π = strongred = semired \ Π = strongsemired \ Π.

Also note that, by Definition 3, for any completely specified languages L1, L2

and any relation H , we have that L1 �H L2 and L1 ≤H L2 are equivalent. Thus,
for completely specified languages, there is no difference between equivalence and
quasi-, semi-, or strong-semi-equivalence. Similarly, the reduction relation, quasi-
reduction, strong-reduction, semi-reduction and strong-semi-reduction define the
same conformance relations between completely specified languages.

4 Conformance Testing

In this section, we present a fundamental necessary and sufficient criterion for
conformance testing for �H -conformance and ≤H -conformance. Furthermore,
we present different ways of completing languages such that testing for quasi-
equivalence, quasi-reduction and strong-reduction can be transformed into test-
ing for reduction, allowing for the re-use of test generation algorithms.

4.1 A Fundamental Criterion for Conformance Testing

To determine if L1 �H L2 or L1 ≤H L2, a comparison must be made between
the sets out1(π, x) and out2(π, x) for all π ∈ L1 ∩ L2 and all x ∈ ΣI . However,
if α ∈ Σ∗ satisfies

L1(π) = L1(α) ∧ L2(π) = L2(α) (22)

we can replace the use of π with α, as they both exhibit the same information
on L1 and L2. This means, it is sufficient to only examine one representative
from each equivalence class, where the equivalence relation on Σ∗ is defined by
(22)3.

To this end, we introduce state cover and transition cover of L1 ‖ L2 :=
{(π, π) | π ∈ L1 ∩ L2}, the parallel composition of L1 and L2.

Definition 4. We call set V ⊆ Σ∗ a state cover and set P = V ×ΣI a transition
cover of L1 ‖ L2, if

∀π ∈ L1 ∩ L2, ∃α ∈ V : L1(π) = L1(α) ∧ L2(π) = L2(α).

The following two theorems show that checking for �H-conformance and
≤H -conformance reduces to checking conformance over a transition cover.

3 Recall that L(π) = {τ ∈ Σ
∗ | π.τ ∈ L} for any π ∈ Σ

∗.

60 W. Huang and R. Sachtleben

Theorem 3 (Fundamental Criterion for �H-conformance). Let L1, L2 be
two languages over Σ and H ⊆ 2ΣO ×2ΣO . Suppose V is a state cover of L1 ‖ L2

and P = V × ΣI . Then

L1 �H L2 ⇐⇒ ∀(π, x) ∈ P ∧ π ∈ L1 ∩ L2 : (out1(π, x), out2(π, x)) ∈ H.

Proof. Let π ∈ L1 ∩ L2 and x ∈ ΣI be any input. Since V is a state cover
of L1 ‖ L2, there exists some α ∈ V such that Li(π) = Li(α), for i = 1, 2.
Then for any output y ∈ ΣO, it holds x/y ∈ Li(π) ⇔ x/y ∈ Li(α). Hence,
outi(π, x) = outi(α, x), for i = 1, 2, and consequently,

(out1(π, x), out2(π, x)) ∈ H ⇐⇒ (out1(α, x), out2(α, x)) ∈ H.

Thus, we obtain the claim by unfolding the definition of �H :

L1 �H L2 ⇐⇒ ∀π ∈ L1 ∩ L2, x ∈ ΣI : (out1(π, x), out2(π, x)) ∈ H

⇐⇒ ∀(α, x) ∈ P ∧ α ∈ L1 ∩ L2 : (out1(α, x), out2(α, x)) ∈ H. ⊓⊔

Theorem 4 (Fundamental Criterion for ≤H-conformance). Let L1, L2 be
two languages over Σ and H ⊆ 2ΣO ×2ΣO . Suppose V is a state cover of L1 ‖ L2

and P = V × ΣI . Then

L1 ≤H L2 ⇐⇒ ∀(π, x) ∈ P ∧ π ∈ L1 ∩ L2 : (out1(π, x), out2(π, x)) ∈ H

∧ out2(π, x) 6= ∅ =⇒

∃(π, x′) ∈ P : out1(π, x′) ∩ out2(π, x′) 6= ∅.

We omit the proof here, as it is analogous to that of Theorem 3.
Theorems 3 and 4 show that complete (sound and exhaustive) testing algo-

rithms for �H-conformance and ≤H-conformance may be generated by selecting
an algorithm that computes state covers, extending its output to a transition
cover P , and applying for all (π, x) ∈ P first π and then x to the reference model
and the system-under-test, in order to obtain out1(π, x) and out2(π, x). These
responses are then compared as described in Theorems 3 and 4, respectively, in
order to obtain a verdict.

In practice, further assumptions are placed on L1 and L2, in order to obtain
finite state covers. For example, the following lemma obtains a finite state cover
if both languages are regular. It can be proven using standard techniques.

Lemma 4. We call each L(π) with π ∈ L state of L. Suppose L1 has at most n
states and L2 has at most m states. Then

V = {π ∈ Σ∗ | |π| ≤ mn − 1}

is a state cover of L1 ‖ L2.

Employing this result to compute state covers for finite state machines, whose
languages are regular, and extending these to transition covers by appending all
x ∈ ΣI results in the so-called ’brute-force’ testing strategy4.

4 This strategy has been described, for example, in the lecture notes provided by
Peleska and Huang in [10, Section 4.5].

Conformance Relations Between Input/Output Languages 61

The size of the state covers may be reduced by considering the selected
conformance relation �H or ≤H during the computation of the state cover. For
example, the complete test suites generated for �equiv on FSMs with upper
size bounds n and m using the H-Method (see [2]) are of size at most O(n2 ·
|Σ|m−n+1). This is significantly smaller than the general result of Lemma 4.
In future research, we would like to examine the possibility of deriving efficient
algorithms for computing state covers for �H or ≤H and arbitrary relations H
by generalising from techniques proposed for specific conformance relations (see,
for example, [2,3,12,16]), analogously to our development of Definitions 2 and 3.

Theorems 3 and 4 describe conditions for conformance that are both neces-
sary and sufficient. They can be employed to verify whether a given test strategy
is complete. Also note that Theorem 3 is closely related to the so-called SPY-
condition for completeness of test suites (see [16, Theorem 1]).

4.2 Quasi-equivalence, Quasi-reduction and Strong-Reduction
as Reductions

In the selection of test algorithms for �H1
-conformance for a given relation H1,

it is also interesting to examine whether this task may be reduced to checking
another conformance relation by augmenting the considered languages. That is,
given H1, we search for a relation H2 and a function f such that for all L1, L2,
L1 �H1

L2 holds if and only if f(L1) �H2
f(L2) holds. In the following, we

show that quasi-equivalence can be expressed via quasi-reduction, which in turn
can be expressed via reduction, as can strong-reduction. Thus, test strategies for
these conformance relations may be generated from test strategies for reduction.
Proofs for the theorems in this subsection are available in Appendix A.

To express quasi-equivalence through quasi-reduction, both languages need
to be augmented. This augmentation can be achieved by adding a new symbol y†

to the output alphabet for each output symbol y, which indicates the absence of
output y whenever some defined input fails to produce output y. This technique
was first introduced in [5] for finite state machines.

Definition 5. Let Σ†
O = {y† | y ∈ ΣO} and assume that ΣO ∩Σ†

O = ∅. For any

language L over Σ = ΣI × ΣO, L† is a language over ΣI × (ΣO ∪ Σ†
O) defined

as follows

L† = L ∪ {π.x/y†.τ |(π, x) ∈ L × ΣI , out(π, x) 6= ∅,

y ∈ ΣO \ out(π, x), τ ∈ (ΣI × Σ†
O)∗}.

Note that L† is non-empty and prefix closed, since L is non-empty and prefix
closed by assumption. Furthermore, L† is completely specified if and only if L
is completely specified .

The following theorem shows that quasi-equivalence can be expressed via
quasi-reduction without the restriction that L1 is completely specified, as
required in [5].

62 W. Huang and R. Sachtleben

Theorem 5. L1�quasieq L2 ⇐⇒ L†
1�quasired L†

2.

Next, to express quasi-reduction via reduction, we modify both languages by
augmenting them so that all inputs are defined. More precisely, we first add an
output symbol ⊥ that is not part of ΣO, resulting in the set Σ⊥

O = ΣO ∪ {⊥}.
Then we append after each trace π in the language all sequences over ΣI × Σ⊥

O

whose first input symbol is undefined in π. This effectively allows arbitrary
behaviour after undefined inputs.

Definition 6. For any language L over ΣI × ΣO define language D(L) over
ΣI × Σ⊥

O by

D(L) = L ∪ {π.x/y.τ | π ∈ L, out(π, x) = ∅, y ∈ Σ⊥
O , τ ∈ (ΣI × Σ⊥

O)∗}.

Since L is non-empty and prefix closed, D(L) is non-empty and prefix closed as
well. Moreover, D(L) is completely specified.

This augmentation is sufficient to express quasi-reduction via reduction:

Theorem 6. L1�quasired L2 ⇐⇒ D(L1)�red D(L2).

Finally, we show the novel result that strong-reduction can also be expressed
by reduction. To this purpose, we again employ ⊥ and Σ⊥

O . We then augment a
language by considering each contained trace π and allowing after each prefix of
π the insertion of x/ ⊥ if x is not defined after the prefix. Thus, in contrast to the
previous construction for quasi-reduction, we do not insert arbitrary behaviour
after undefined inputs.

Definition 7. For any language L over ΣI ×ΣO define language L⊥ over ΣI ×
Σ⊥

O by

L⊥ = {π1.τ1.π2.τ2 . . . πk.τk |π1 . . . πk ∈ L, k ≥ 1,

τi ∈ {x/ ⊥| x ∈ ΣI , out(π1 . . . πi, x) = ∅}∗}.

We note that L ⊆ L⊥ and for any π ∈ L⊥, π|Σ ∈ L. Moreover, for any x ∈ ΣI ,

out⊥(π, x) = out⊥(π|Σ , x) =

{

out(π|Σ , x) ⊆ ΣO if out(π|Σ , x) 6= ∅,

{⊥} if out(π|Σ , x) = ∅,

is always non-empty. Hence L⊥ is completely specified.
The following theorem shows that the augmentation is suitable to express

strong-reduction via reduction

Theorem 7. L1�strongred L2 ⇐⇒ L1
⊥�red L2

⊥.

5 Conclusions

In this paper, we present a unifying treatment of well-known conformance rela-
tions that does not depend on the syntactic representation or modelling formal-
ism of reference models. We derive a simple method to compare conformance

Conformance Relations Between Input/Output Languages 63

relations and a fundamental necessary and sufficient criterion for conformance,
which may be employed to generate test algorithms. We also show that quasi-
equivalence, quasi-reduction and strong-reduction can be characterised in terms
of reductions.

For future work, we plan to develop efficient test algorithms based on this
criterion, extending the previous work [8]. Another direction could be to extend
our framework to other conformance relations such as safety-related ones (see [6])
or conformance relations appearing in labelled transition systems (see [17] for
an overview).

Acknowledgement. We would like to express our gratitude to Jan Peleska for the
opportunity to collaborating with him and for his guidance in the field of testing. This
paper was supported by the German Federal Ministry of Economic Affairs, Project
“HiDyVe – Highly Dynamic Virtual and Hybrid Validation and Verification” under
grant agreement 20X1908E.

A Proofs

In this appendix, we present proofs for equivalences (3) and (4), as well as for
Theorems 5, 6, and 7 discussed in Subsect. 4.2.

First recall equivalences (3) and (4), which state how the conformance rela-
tions equivalence and reduction can be expressed as �H-conformances:

L1 = L2 ⇐⇒ L1�equiv L2 where equiv = {(A, A) | A ⊆ ΣO} (3)

L1 ⊆ L2 ⇐⇒ L1�red L2 where red = {(A, B) | A ⊆ B ⊆ ΣO} (4)

Proof. To prove (3) and (4), we first show that (4) holds. To this end, let π ∈
L1 ∩ L2 and x ∈ ΣI . Suppose that L1 ⊆ L2. For any y ∈ ΣO, y ∈ out1(π, x)
holds if an only if π.x/y ∈ L1, which by L1 ⊆ L2 implies π.x/y ∈ L2 and hence
y ∈ out2(π, x). Thus, we obtain that out1(π, x) ⊆ out2(π, x), and therefore that
the pair (out1(π, x), out2(π, x)) is contained in the relation red. Consequently,
L1�red L2.

To prove the other direction, suppose L1�red L2. Let π ∈ L1 be any word in
L1. We show by induction on |π| ≥ 0 that π ∈ L2. Since ε ∈ L1 ∩ L2 is the only
word of length 0, |π| = 0 =⇒ π ∈ L2. Suppose for some k ≥ 0 that |π| ≤ k
implies π ∈ L2. Let π.x/y ∈ L1 be any word in L1 with |π| = k, x ∈ ΣI and
y ∈ ΣO. Then by definition of L1�red L2 and the induction assumption that
π ∈ L1 ∩ L2, we have out1(π, x) ⊆ out2(π, x). Since π.x/y ∈ L1, y ∈ out1(π, x),
and then y ∈ out2(π, x), consequently π.x/y ∈ L2 and L1 ⊆ L2. This proves (4).
To prove (3), we first note that

64 W. Huang and R. Sachtleben

L1 = L2 ⇐⇒ L1 ⊆ L2 ∧ L2 ⊆ L1, (23)

and derive

L1�equiv L2 ⇐⇒ L1�red L2 ∧ L2�red L1 (24)

by considering that for any π ∈ L1 ∩ L2, x ∈ ΣI ,

(out1(π, x), out2(π, x)) ∈ equiv

⇐⇒ out1(π, x) = out2(π, x)

⇐⇒ out1(π, x) ⊆ out2(π, x) ∧ out2(π, x) ⊆ out1(π, x)

⇐⇒ (out1(π, x), out2(π, x)) ∈ red ∧ (out2(π, x), out1(π, x)) ∈ red,

(3) then follows directly from (24), (4) and (23). ⊓⊔

Theorem 5. L1�quasieq L2 ⇐⇒ L†
1�quasired L†

2.

Proof. First note the following properties of the augmented languages, which
follow from Definition 5.

For any π ∈ L† and x ∈ ΣI , it holds

out†(π, x) =











out(π, x) ∪ {y† ∈ Σ†
O | y 6∈ out(π, x)} if out(π, x) 6= ∅,

∅ if π ∈ L ∧ out(π, x) = ∅,

Σ†
O if π 6∈ L.

Furthermore, for any languages L1, L2 over Σ,

π ∈ L†
1 ∩ L†

2 =⇒

{

π ∈ L1 ∩ L2 if π ∈ Σ∗,

π ∈ L†
1 ∩ L†

2 \ (L1 ∪ L2) if π 6∈ Σ∗.

Hence, for any π ∈ (L†
1 ∩ L†

2) \ Σ∗ and any x ∈ ΣI , out1†(π, x) = Σ†
O =

out2†(π, x).
By definitions (5), (7), (2) and the above, we then have

L†
1�quasired L†

2

⇐⇒ ∀π ∈ L†
1 ∩ L†

2, ∀x ∈ ΣI : ∅ 6= out1†(π, x) ⊆ out2†(π, x) ∨ out2†(π, x) = ∅

⇐⇒ ∀π ∈ (L†
1 ∩ L†

2) \ Σ∗, ∀x ∈ ΣI : ∅ 6= out1†(π, x) ⊆ out2†(π, x)

∨ out2†(π, x) = ∅

∧ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : ∅ 6= out1†(π, x) ⊆ out2†(π, x) ∨ out2†(π, x) = ∅

⇐⇒ ∀π ∈ (L†
1 ∩ L†

2) \ Σ∗, ∀x ∈ ΣI : out1†(π, x) = Σ†
O = out2†(π, x)

∧ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : ∅ 6= out1†(π, x) ⊆ out2†(π, x) ∨ out2†(π, x) = ∅

⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : ∅ 6= out1†(π, x) ⊆ out2†(π, x) ∨ out2†(π, x) = ∅

⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : out2(π, x) = ∅ ∨
(

∅ 6= out1(π, x) ∧

Conformance Relations Between Input/Output Languages 65

out1(π, x) ∪ {y† ∈ Σ†
O | y 6∈ out1(π, x)} ⊆

out2(π, x) ∪ {y† ∈ Σ†
O | y 6∈ out2(π, x)}

)

⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : out2(π, x) = ∅ ∨
(

∅ 6= out1(π, x) ∧

out1(π, x) = out2(π, x)
)

⇐⇒ L1�quasieq L2 ⊓⊔

Theorem 6. L1�quasired L2 ⇐⇒ D(L1)�red D(L2).

Proof. First note the following properties of the augmented languages, which fol-
low from Definition 6. Let L be any language over Σ. We use notation outD(π, x)
for outD(L)(π, x). Then

outD(π, x) =

{

out(π, x) ⊆ ΣO if out(π, x) 6= ∅,

Σ⊥
O if out(π, x) = ∅.

We show first that from L1�quasired L2 follows

∀π ∈ D(L1) ∩ D(L2) \ (L1 ∩ L2), ∀x ∈ ΣI : out2(π, x) = ∅. (25)

Suppose not, there exists some π ∈ D(L1) ∩ D(L2) \ (L1 ∩ L2) and x ∈ ΣI

such that out2(π, x) 6= ∅. Since L1�quasired L2, we have out1(π, x) 6= ∅. Hence
π ∈ L1 ∩ L2. This leads to a contradiction to π ∈ D(L1) ∩ D(L2) \ (L1 ∩ L2).

Then by definition, the above, and (25),

D(L1)�red D(L2)

⇐⇒ ∀π ∈ D(L1) ∩ D(L2), ∀x ∈ ΣI : outD1
(π, x) ⊆ outD2

(π, x)

⇐⇒ ∀π ∈ D(L1) ∩ D(L2), ∀x ∈ ΣI : outD2
(π, x) = Σ⊥

O

∨ ∅ 6= out1(π, x) ⊆ out2(π, x)

⇐⇒ ∀π ∈ D(L1) ∩ D(L2) \ (L1 ∩ L2), ∀x ∈ ΣI : outD2
(π, x) = Σ⊥

O

∧ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : out2(π, x) = ∅ ∨ ∅ 6= out1(π, x) ⊆ out2(π, x)

⇐⇒ ∀π ∈ D(L1) ∩ D(L2) \ (L1 ∩ L2), ∀x ∈ ΣI : out2(π, x) = ∅

∧ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : out2(π, x) = ∅ ∨ ∅ 6= out1(π, x) ⊆ out2(π, x)

⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : out2(π, x) = ∅ ∨ ∅ 6= out1(π, x) ⊆ out2(π, x)

⇐⇒ L1�quasired L2. ⊓⊔

Theorem 7. L1�strongred L2 ⇐⇒ L1
⊥�red L2

⊥.

66 W. Huang and R. Sachtleben

Proof. By definition we have

L1�strongred L2

⇐⇒ ∀π ∈ L1 ∩ L2, ∀x ∈ ΣI : ∅ 6= out1(π, x) ⊆ out2(π, x)

∨ out1(π, x) = ∅ = out2(π, x)

⇐⇒ ∀π ∈ L1
⊥ ∩ L2

⊥, ∀x ∈ ΣI : ∅ 6= out1(π|Σ , x) ⊆ out2(π|Σ , x)

∨ out1(π|Σ , x) = ∅ = out2(π|Σ , x)

⇐⇒ ∀π ∈ L1
⊥ ∩ L2

⊥, ∀x ∈ ΣI : {⊥} 6= out1⊥(π, x) ⊆ out2⊥(π, x)

∨ out1⊥(π, x) = {⊥} = out2⊥(π, x)

⇐⇒ ∀π ∈ L1
⊥ ∩ L2

⊥, ∀x ∈ ΣI : out1⊥(π, x) ⊆ out2⊥(π, x)

⇐⇒ L1
⊥�red L2

⊥. ⊓⊔

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978)

2. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436_16

3. Hierons, R.M.: Testing from a nondeterministic finite state machine using adaptive
state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004)

4. Hierons, R.M.: Testing from partial finite state machines without harmonised
traces. IEEE Trans. Software Eng. 43(11), 1033–1043 (2017)

5. Hierons, R.M.: FSM quasi-equivalence testing via reduction and observing
absences. Sci. Comput. Program. 177, 1–18 (2019)

6. Huang, W., Özoguz, S., Peleska, J.: Safety-complete test suites. Software Qual. J.
27(2), 589–613 (2019)

7. Huang, W., Peleska, J.: Complete model-based equivalence class testing for non-
deterministic systems. Formal Aspects Comput. 29(2), 335–364 (2017)

8. Huang, W., Peleska, J.: Model-based testing strategies and their (in)dependence
on syntactic model representations. STTT 20(4), 441–465 (2018)

9. Nerode, A.: Linear automaton transformations. Proc. Am. Mathem. Soc. 9(4),
541–544 (1958)

10. Peleska, J., Huang, W.: Test Automation - Foundations and Applications of Model-
based Testing. University of Bremen (2021), https://www.informatik.uni-bremen.
de/agbs/jp/papers/test-automation-huang-peleska.pdf

11. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for
partial nondeterministic FSM. In: Grieskamp, W., Weise, C. (eds.) FATES 2005.
LNCS, vol. 3997, pp. 118–133. Springer, Heidelberg (2006). https://doi.org/10.
1007/11759744_9

12. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementations
specified by nondeterministic FSMs. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 162–178. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0_12

https://doi.org/10.1007/11562436_16
https://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
https://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
https://doi.org/10.1007/11759744_9
https://doi.org/10.1007/11759744_9
https://doi.org/10.1007/978-3-642-24580-0_12
https://doi.org/10.1007/978-3-642-24580-0_12

Conformance Relations Between Input/Output Languages 67

13. Petrenko, A., Yevtushenko, N.: Adaptive testing of nondeterministic systems with
FSM. In: 15th International IEEE Symposium on High-Assurance Systems Engi-
neering, HASE 2014, Miami Beach, FL, USA, 9–11 January 2014. pp. 224–228.
IEEE Computer Society (2014). https://doi.org/10.1109/HASE.2014.39,

14. Petrenko, A., Yevtushenko, N., v. Bochmann, G.: Testing deterministic implemen-
tations from nondeterministic FSM specifications. In: Baumgarten, B., Burkhardt,
H.-J., Giessler, A. (eds.) Testing of Communicating Systems. ITIFIP, pp. 125–140.
Springer, Boston, MA (1996). https://doi.org/10.1007/978-0-387-35062-2_10

15. Sachtleben, R., Peleska, J.: Effective grey-box testing with partial fsm models.
Softw. Testing Verificat. Reliab. 32(2), e1806 (2022). https://doi.org/10.1002/stvr.
1806

16. da Silva Simão, A., Petrenko, A., Yevtushenko, N.: On reducing test length for
fsms with extra states. Softw. Testing Verificat. Reliab. 22(6), 435–454 (2012)

17. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8_1

18. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

https://doi.org/10.1109/HASE.2014.39,
https://doi.org/10.1007/978-0-387-35062-2_10
https://doi.org/10.1002/stvr.1806
https://doi.org/10.1002/stvr.1806
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

On Scenario-Based Testing
of Cyber-Physical Systems

Alexander Pretschner(B), Florian Hauer, and Tabea Schmidt

Technical University of Munich, Munich, Germany
{alexander.pretschner,florian.hauer,tabea.schmidt}@tum.de

Abstract. We present several results on scenario-based testing, an
equivalence class testing method typically applied to cyber-physical sys-
tems. We show that randomly sampling as well as re-using tests in general
is problematic and that instead, new tests need to be generated for each
new version of the systems. We discuss empirical results on the power
of heuristic search and show that different algorithms lead to largely
different results—with some generated test suites finding safety-critical
behavior and some failing to do so. Finally, we present different dimen-
sions of and criteria for completeness of scenario-based test suites.

1 Introduction

Automated tests of increasingly autonomous vehicles play a large role in assessing
the safety of such systems. One suggestion is to choose single test drives from a
large set of recorded test drives, randomly or on the grounds of specific selection
criteria, and to subsequently use this subset of recorded test drives as test cases
[3,20,23,29,30]. Unfortunately, if we aim to test these systems with “good” test
cases and, thus, go beyond merely using random tests, this approach cannot
be justified convincingly [15]. Instead, new system-specific test cases have to
be generated for each version of the system. Such “good” test cases can be
created through the intelligent instantiation of so-called scenario types and by
performing a heuristic search.

In this paper, we center our treatise of scenario-based testing around the
argument to generally not re-use tests for automated vehicles in three steps
[15]. First, we recap the two-fold function of testing, which is used both to
check functionality and to detect defects; and show that a meaningful notion of
“good” test cases is based on a defect-based definition. Since approaches that are
not defect-based do not allow to discriminate between test cases, no test case is,
consequently, “better” than another with these approaches. Secondly, we explain
the idea of recording test drives and replaying them as test cases - and argue
why this is problematic: One such recorded test drive may provoke a lane change
assistant to change the lane—or not. If no lane change happens, is this test case
useful? And if a lane change does happen, is the corresponding situation in any
way superior to other lane changes and in this sense “better” than these other
situations/test cases? Our answer is “no:” roughly speaking, a good test case
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 68–82, 2023.
https://doi.org/10.1007/978-3-031-40132-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_5

On Scenario-Based Testing of Cyber-Physical Systems 69

for a Volkswagen beetle is not automatically a good test case for a Ferrari. This
means that recorded test drives, or test cases respectively, should not be reused
“blindly” if the dynamics of the two vehicles under test differ. Thirdly, we show
how the problem can be solved with system-specific test case generation from
scenario types that present typical situations that the autonomously operating
system should be able to handle.

This test case generation procedure is based on encoding the definition of
good test cases as an optimization problem where we typically try to minimize
the distance to obstacles or other vehicles. The optimization problems are com-
monly solved by using heuristic search algorithms. By definition, heuristic search
in general cannot guarantee optimality of the solutions it finds. We discuss recent
results [27] that show that for testing the autopilot software of drones, different
heuristic search algorithms, applied in different order, lead to results that differ
by as much as 20% in terms of the minimum distance to obstacles. Some com-
binations of search algorithms do lead to scenario instances that cause crashes,
and some do not. This unfortunately seems to suggest that it is not sufficient to
just use one search algorithm, but rather multiple algorithms (and even this will
not guarantee optimal solutions). This makes test case generation with heuristic
search possibly a prohibitively expensive endeavor.

Scenario-based test case generation depends on the existence of abstract sce-
nario types. These can be derived by experts or mined from recorded drives
by means of clustering. We argue that redundancy between the two approaches
is a promising way of arguing about completeness. Several approaches to clus-
tering have been suggested in the literature. Unfortunately, it is hard to judge
how “good” the resulting clusters are. Moreover, these clusters represent point
clouds. If they are to be turned into scenario types that can subsequently be
used for test case generation, we need to transform the clusters into a format
that has clear semantics and that can be used for test case generation. This in
turn, is not too hard a problem in itself. However, it is difficult to argue about
the quality and accuracy of these semantic descriptions. We discuss recent work
that helps provide respective arguments.

We conclude with a discussion of different facets of completeness for scenario-
based testing.

2 Defect Hypotheses for “Good” Test Cases

Testing is an expensive process that is necessarily restricted to a few selected exe-
cutions of the system. Testing has the double purpose of increasing confidence in
the compliance of a system with its specification and of detecting defects. Regard-
ing these two goals, “good” test cases reveal potential defects with good cost-
effectiveness. Defects must be potential in this definition: When assuming actual
defects instead, no good test cases could be created for a hypothetical defect-free
system. The cost-effectiveness refers to the severity and occurrence probability
of the failures as well as the effort of test generation and test execution [26].
These two perspectives are the foundations of risk-based and requirement-based

70 A. Pretschner et al.

testing: Risk-based testing is driven by the occurrence probability and severity of
potential failures. While requirements-based testing does not explicitly consider
the severity of potential failures, it implicitly emphasizes the functionality that
is assumed to be executed more commonly or is more critical: those functions
for which requirements are explicitly formulated.

While the idea of explicit potential defects is not present in test selection
strategies based on code coverage, it is a constituent of many other test selection
criteria. These include limit testing or combinatorial testing; potential defects
are also encoded in many static analysers or when fuzzing for array overflows,
null-pointer exceptions or divisions by zero; and they are also reflected in the idea
of fault injection for measuring the quality of test cases. In practice, probably
the most widespread variant is limit testing. Here, engineers assign “empirically
interesting” values to input variables or internal variables; values which often
proved incorrect in the past. If the corresponding variable types are ordered,
these interesting values often are at the ends of the regarded intervals: MININT
or MAXINT; NEGINFTY or POSINFTY; empty list or NULL; etc.

From a practical tester’s perspective, these defect-based testing approaches
by definition strongly limit the possible (input) values, namely to the mentioned
few extreme values. Such a filter is missing in both purely requirements-based
and coverage-based testing: all tests of one type are initially regarded as equiva-
lent. These equivalence classes, or blocks of a partition of the input space, often
result from the decomposition of the input space into categories that are mean-
ingful from an application’s requirements point of view, such as implemented
scenarios or user stories. Sometimes they are created implicitly, namely when
code coverage criteria are applied to select test cases. In many cases, it is pos-
sible to arrange (order) the values in the corresponding equivalence classes and
to select test cases at the “corners” of these classes. If this type of test selection
is applied, the underlying tests are based on a defect hypothesis.

If no defect hypothesis justifies the choice of the equivalence classes or the
choice of elements from one class, all elements of a class or even the whole
input space are, in fact, equivalent concerning their a-priori failure probability
[31]. Then, test cases can be randomly selected from the equivalence classes or
the whole input space. However, it is not clear how “good” these test cases
are. This is in contrast to the test cases derived by test procedures based on
defect hypotheses, which select input data with a-priori increased probabilities
of revealing potential failures, e.g., input data at the edges of intervals. This
argumentation also applies when testing autonomous driving systems: If we aim
to justify why one test case is “better” than another, an assumption about
potential defects is necessary [26].

3 (Regression) Testing with Recorded Drives

From the perspective of the system under test (SUT), the ego vehicle, recorded
test drives are descriptions of its environment. For a lane change assistant, these
descriptions include the vehicles that surround the ego vehicle and that are

On Scenario-Based Testing of Cyber-Physical Systems 71

Fig. 1. Lane change of the SUT (ego) and the safety distance to the vehicle in front,
undercut by the SUT.

relevant for the lane change decision. A typical goal for testing a lane change
assistant is to test whether it keeps sufficient distance to the vehicles in its
environment when changing lanes. For this purpose, the actually maintained
distance to these vehicles is compared with a given safety distance.

Let us assume that our underlying test objective is the minimization of the
distance that the ego vehicle keeps to the vehicle in front when changing lanes. It
is reasonable to assume the existence of such a test objective because otherwise,
our testing process would not be able to distinguish between the many situations
in which a lane change occurs, most of which are uncritical anyway because, for
instance, there are no cars in the vicinity. Let us further assume that during the
execution of a test case we discover that the lane change assistant undercuts the
safety distance when changing lanes, e.g., to a vehicle in the target lane in front of
it (Fig. 1). Intuitively, this test case is useful because it reveals actually defective
system behavior. Additionally, let us assume that the underlying problem in
the system is subsequently solved by configuring the planner of the lane change
assistant to be more “defensive,” i.e., to only change lanes when the distance to
the vehicle in front is sufficiently large. When testing the new system version of
the lane change assistant, we may be tempted to reuse the same test case that has
previously shown misbehavior. This exactly is what happens when once recorded
test drives are used independently of the system for testing.

If we use the same test case in our example to test the new system version, the
ego vehicle now does not change lanes when performing this test case (see Fig. 2),
a consequence of the planner being more defensive. For the new system version,
the previously useful test case no longer fulfills our test goal of minimizing the
distance to the front vehicle when changing lanes because the lane change does
not occur in the first place! And even if a lane change did take place, we would
not know whether the second criterion of a minimum distance is fulfilled and
whether the test case would be “good” in the sense that it provokes a lane change
with minimum distance to the front vehicle. Since the test for the new system
no longer meets its test objective, we cannot assume that it is “good.”

This example suggests that the quality of test cases in general is system-
specific: They can be “good” for one version of the system and “bad” for
another version. In this sense, reused test cases are generally indistinguishable
from randomly selected test cases. Therefore, they should generally not be exe-
cuted “blindly,” as spelt out in [15], if one shares the opinion that random tests

72 A. Pretschner et al.

Fig. 2. SUT (ego vehicle) and safety distance to the vehicle in front. Here, the SUT
does not change lanes anymore.

should perhaps complement, but not entirely replace, systematically generated
test cases for the considered safety-critical systems. In this process, it does not
matter where a reused test case originates, i.e., whether it was created by hand,
generated by automatic test case generation, or extracted from recorded driv-
ing data. This essentially questions the very idea of system-level regression tests
when the dynamics of the vehicle, or parameters relevant for the vehicle dynam-
ics, have been altered. Without further knowledge, re-playing test drives as test
cases is no better than random testing and - as far as the goal is to be verifiably
better than random testing - cannot be conclusively justified.

One might argue that the test case T that does not provoke a lane change
anymore is nevertheless “good” because it also tests a requirement, namely not
to perform a lane change in precisely this situation. However, there is no evident
reason to prefer this test case T over any other test case that does not provoke a
lane change either. In this sense, T is no longer “good,” or rather “better,” than
any random test. The selection of T is neither defect-based, nor risk-based, nor
requirement-based since there is usually no specific requirement that describes
precisely this one situation (and as an additional complication, in this case, there
is no explicit specification of the lane change assistant in practice anyway).

In sum, if we modify the vehicle dynamics of the SUT, test cases generally
need to be recreated system-specifically. In the field of regression testing, this is
self-evident: tests that refer to the modified functionality of the system need to
be created anew. Regression tests are meant to test unmodified behavior. When
testing driving systems, the use of recorded drives as a reference test suite for all
systems is not only problematic because of our theoretical derivation, but also
directly contradicts the practice of regression tests.

4 Generating Test Cases

4.1 Levels of Abstraction

A promising approach for generating test cases [1,2,5,13] is based on the idea of
instantiating abstract scenario types into concrete scenarios [21] by optimizing an
objective function that encodes the quality of the test case, e.g., minimizing the
distance to surrounding vehicles. Three levels of abstraction are methodologically
relevant: scenario types, parameterized scenarios, and scenario instances (Fig. 3).

On Scenario-Based Testing of Cyber-Physical Systems 73

Fig. 3. Different kinds of scenarios [21]: Abstract scenario types are formalized as
parameterized scenarios. Single parameter combinations of one parameterized scenario
are scenario instances, which are the executable test cases. Their quality is determined
by an objective function. Especially interesting are the “good” test cases in the limit
region. Shape and location of the limit region are system-specific.

Scenario types are typical situations, e.g., a “lane change on the highway
while a car is approaching on the left lane from behind.” Scenario types are often
depicted as pictures that describe a traffic situation using boxes representing
vehicles and arrows that represent their movement in the scenario type, as in
Fig. 2. These pictures do not come with a precise semantics but are very easily
understood by humans both in terms of the spatial and temporal setup.

In order to be operational, scenario types need to be characterized by essen-
tial parameters and their value ranges, e.g., the number and width of lanes,
the curvature of the road, or the number and position of surrounding vehicles.
Determining the parameters and their ranges is crucial, as the completeness of
the derived test suite critically depends on whether all relevant parameters have
been accounted for. For instance, the friction coefficient of the road may or may
not matter; and so do light and weather conditions. A parameterized scenario
describes relevant parameters and their ranges as well as the maneuvers that
the SUT (the ego car) and the other traffic participants are performing, i.e., the
temporal and geometric constraints of a traffic situation.

Each concrete vector of parameter values constitutes one concrete scenario
instance. Both scenario types and parameterized scenarios hence describe sets
of scenario instances. Projecting a scenario instance to the behavior of the other
traffic participants yields one concrete test case for the ego vehicle under test.

Note that both scenario types and parameterized scenarios constitute a par-
titioning of the input domain of the system under test. Scenario-based testing
hence is an instance of partition-based testing. Both scenario types and param-
eterized scenarios as such usually are not defect-based but rather requirements-
based. Defect-based testing is done within each scenario type. (If a history of
real traffic accidents is used to derive scenario types, one needs to consider why
automated vehicles should end up in the same accidents as human drivers.)

74 A. Pretschner et al.

4.2 Big Picture

The question then is which scenario instance or parameter value combination to
choose. One obvious idea is to pick them at random, specifically given that the
power of random tests is widely acknowledged. However, when considering the
high dimensionality of the parameter space, pursuing this approach alone seems
questionable. Moreover, it cannot answer the question when the test process can
be stopped without running prohibitively many tests.

It is natural to consider the definition of a test selection criterion that encodes
some intuitive notion of quality. One idea is to use the distance to the surround-
ing vehicles as a quality measure because it is directly related to safety-critical
behavior of the SUT. We assume that we consider only those situations where
the ego vehicle can effectively avoid a crash. This is not always possible, e.g.,
when deer jump directly in front of the car. Now, if the distance to other traffic
participants becomes negative in these “reasonable” situations, the SUT cer-
tainly is defective as this negative distance indicates a crash. If the distance is
not negative but below an acceptable safety margin, this behavior is likely to
constitute a defective situation and needs to be checked by an expert.

The idea of scenario-based test case generation now is to generate scenario
instances where the distance to surrounding vehicles is minimized. The result,
a scenario instance in Fig. 3, represents a test case that is “good” according to
our definition above: If a scenario instance is found in which a minimum safety
distance to a surrounding vehicle is undercut, possibly defective behavior of the
system has been found. Remarkably, also if no such undercut is found, the test
case is still “good” in the sense of limit testing since it approaches a potential
undercut. Thus, it tests for a potential defect. And in contrast to a re-used test
case, whose effectiveness cannot be measured, there is a clear argumentation for
the purpose and necessity of this generated test case, which is desirable from the
perspective of a safety argument.

Technically, this is done in a XiL simulation [12] where different values for the
parameters of the scenario type are iteratively generated with heuristic search
to optimize the value of a target function with the goal of reaching a limit value
(Fig. 3). In our example, the objective function to minimize is the distance to at
least one surrounding vehicle.

4.3 Scenario Types Derived by Experts and by Clustering

We have sketched why heuristic search should be used: because “good” test cases
can and need to be generated in a defect-based manner. We now consider the
overall process of how to do this in more detail, sketched in Fig. 4.

Scenario types built by experts. Intuitively, scenario-based testing starts with
a sound and complete list of scenario types. Thus, initially, we need to gather
these scenario types 1 . One way is the manual derivation 2 by experts, who use
vehicle specifications, requirements and sometimes information about accidents
3 as well as their mental models 4 based on experience for this task. Structured

On Scenario-Based Testing of Cyber-Physical Systems 75

Fig. 4. Test case generation for scenario-based testing with search-based techniques.

approaches, e.g., ontologies [4,10], turn out to be convenient in this process. The
determination of both granularity and structure of the scenario types is part of
this process. Whether or not these are appropriate and suitable is generally hard
to argue. Thus, validation is required, for which we suggest redundancy.

Scenario types built by clustering recorded drives. One way to achieve such redun-
dancy is by automated clustering 5 , which takes scenario instances recorded in
real traffic 6 as input and yields clusters of these scenario instances [16,28] as
output. This requires the choice of appropriate distance measures in-between
scenario instances and, more difficult, adequate thresholds for determining the
number of clusters. In practice, this is usually done using criteria such as the
silhouette score or the elbow criterion.1 However, these may or may not lead
to an adequate set or size of the clusters. In any case, it is desirable that the
clustering be as independent of the experts’ mental model as possible [16]. Only
then can true redundancy be achieved. Note that it is not the goal to replace
the experts but to complement their efforts. Ideally, the automated derivation
of scenario types will yield some scenario types that the experts did not come
up with, and vice versa.

4.4 From Clusters to Descriptions of Scenario Types

The clusters are mere point clouds and therefore cannot directly be used for the
generation of test cases. We hence need to transform them into scenario type

1 https://en.wikipedia.org/wiki/Elbow method (clustering)
https://en.wikipedia.org/wiki/Silhouette (clustering).

https://en.wikipedia.org/wiki/Elbow_method_(clustering)
https://en.wikipedia.org/wiki/Silhouette_(clustering)

76 A. Pretschner et al.

descriptions. A first step is to take individual points and turn them into textual
descriptions of the corresponding scenario instance. This is not particularly dif-
ficult and has been done in a variety of ways, see [18] for an overview. However,
it is less obvious how to verify the correctness of the resulting semantic scenario
instance descriptions. Any manual approach is cumbersome. We have suggested
[18] to take any method of transforming a point from the cluster to a semantic
description, e.g. in the OpenScenario format, then replay this scenario instance
in a simulator, and compute the distance between (1) the original trajectory
(the point from the cluster) and (2) the result of transforming the original point
into a semantic description which in turn is transformed back into a trajectory
by means of simulation. An intuitive way of comparing two trajectories is the
Fréchet distance,2 colloquially known as the “walking dog” distance between two
time series. A necessary second step then is the generalization of the semantic
description of the cluster’s most central point into a scenario type.

4.5 Completeness of Recorded Drives W.r.t. Relevant Scenario
Types

In addition to improving and validating the completeness of the scenario types
using redundancy, we suggest to perform a statistical completeness check 7 .
Intuitively, one can always come up with an additional scenario type, e.g., by
simply adding another lane. However, not all scenario types are equally likely to
occur in reality. This fact can be used to statistically assess that a given list of
scenario types at least contains all scenario types that take place in real traffic
up to a certain likelihood [14]. Similarly, it is important to statistically assess
whether there is sufficient knowledge about the variety of different instances of
a scenario type in real traffic [9]. If the statistical assessment suggests incom-
pleteness, further manual effort needs to be undertaken and further data for
automated clustering has to be collected. Conversely, if statistical completeness
is achieved, the scenario types are ready for test case generation 8 .

4.6 Test Case Generation with Heuristic Search

Recall that scenario types are not operational as they abstractly represent traffic
situations and do not provide details about parameter types, ranges, and the
precise trajectories of the traffic participants. Before test cases can be generated,
we hence need to derive 9 parameterized scenarios 10 with their parameter
types 11 [21,22]. The parameters and their ranges [19] are either determined
by experts or are a result of the clustering process and hence the initial data
collection process; see the comment on mental models above.

By definition, a parameterized scenario describes a multitude of different
scenario instances: Each combination of concrete parameter values defines one
such scenario instance. We have sketched above that the goal of the test case
generation procedure is to identify the most challenging and interesting scenario
2 https://en.wikipedia.org/wiki/Fr%C3%A9chet distance.

https://en.wikipedia.org/wiki/Fr%C3%A9chet_distance

On Scenario-Based Testing of Cyber-Physical Systems 77

instances. These are the desired test cases 12 . It is not surprising that many
approaches in the literature, e.g., [1,6,7], and industry, e.g., [11], suggest the use
of search-based techniques. Those techniques iteratively create candidate sce-
nario instances. The search is guided by evaluating the quality of the current
candidates. This quality is determined by a so-called fitness function 13 that
encodes the test objective and hence is identical to the optimization criterion
mentioned above. The quality of a test case thus represents the quality of the
system’s performance in this test case [13]. In this way, “interesting” test cases
are searched for and based on the quantitative measurement, it can be auto-
matically decided in which of the many test cases the driving system passed or
failed.

When using heuristic search, it does not suffice to encode the quality of a
test case, i.e., the optimization criterion, as a fitness function 14 . In addition,
we need to encode the parameterized scenario itself, that is, the temporal and
spatial relationships in-between the different traffic participants, e.g., “when the
lane change occurs, another car is approaching with high speed from behind on
the left lane.” Intuitively, this appears to be a complex task, but it turns out that
at least typical scenarios on highways and urban intersections can conveniently
be composed by a set of only very few atomic fitness functions [13,17].

Test case generation is performed with the help of simulated scenarios and
a model of the SUT, its software, or hardware 15 embedded into the XiL sim-
ulation. By thoroughly testing the system, some defective behavior might be
revealed. After the development team has resolved the underlying issues, testing
is performed again. Intuitively, failed test cases from the past could be reused,
as they were proven to be “good” test cases. However, as previously discussed,
these test cases should not be reused. Instead, we suggest to re-execute the test
case generation procedure for each new system version.

Assuming that the heuristic search identifies the most challenging test case
and that the driving system still behaves safely in this most challenging scenario,
one can argue that it is also safe in any other scenario instance of the same
scenario type. Repeating this argument for all scenario types ideally yields an
overall safety argument.

5 Non-optimality of Tests Generated by Heuristic Search

The above approach relies on the idea that the optimal scenario instances gen-
erated by heuristic search indeed represent the worst possible behavior of the
SUT in that they minimize, for instance, the distance to other vehicles and thus
constitute limit tests. We have seen that the resulting test case is “good” in
any case: if the minimum distance is negative, a crash has been detected; if it
is smaller than some relevant safety distance, this may or may not constitute
defective behavior but needs to be checked by an expert; and if it is larger than
the safety distance, safe behavior can be assumed.

Unfortunately, the assumption that optimal test cases are derived is not
necessarily true in practice. On the one hand, this does not come as a surprise

78 A. Pretschner et al.

because heuristic search is incomplete by design. On the other hand, this simple
fact seems to be neglected in the current literature, even though it does have a
profound impact on the feasibility and practicability of the approach.

To see why, we have used scenario-based testing for assessing the quality of
an open-source autopilot for drones, the PX4 autopilot with obstacle avoidance
[27]. Similar to the automotive case, the goal of scenario-based testing for drones
is to create scenario instances, consisting of both static and dynamic obstacles,
that are maximally challenging for the autopilot in that they minimize the dis-
tance in-between the drone and obstacles. To assess the quality of the generated
scenario instances, we use multiple commonly used heuristic search algorithms
both individually and in combination, including the popular Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [8], Particle Swarm Optimization [24],
and Bayesian Optimization [25]. NSGA-II turns out to be the best individual
algorithm in terms of the minimum distance between the drone and obstacles
that it can be provoke: The minimum distance it finds in the scenarios under
scrutiny is, on average, 21% smaller than that found by Bayesian Optimization.
This is consistent with the literature on the performance of heuristic search
algorithms.

As a next step, we sequentially apply the algorithms in the sense that the best
solution found by one algorithm is used as a seed value for the next one, and do
so for different permutations. It turns out that specific sequential combinations
of algorithms outperform the individually best performing NSGA-II by a fur-
ther 10% to 20%. More strikingly, sequentially composed algorithms do identify
situations where the drone violates the safety distance, whereas the individual
algorithms do not detect such unsafe behavior. Using the “wrong” algorithms
would hence incorrectly suggest that the autopilot is operating correctly.

Once again, from a theoretical perspective it is not surprising that heuristic
search does not necessarily find optimal solutions. However, the practical con-
sequences seem severe: If we cannot know in advance which algorithm performs
best, and if we cannot know in advance which combination of algorithms in
which order performs best, we need to subject our optimization problem to all
possible combinations, which requires the execution of 3*2=6 (or 4*3*2=24 in
the case of four algorithms) differently ordered optimizations rather than just
one, which increases the necessary computation power by about one order of
magnitude. And even then, also a combination of algorithms cannot guarantee
that the optimum solution will be found.

Given that the optimization of the simulation runs is very costly and given
our argument that test cases need to be re-generated whenever the vehicle
dynamics change, this means that it is economically mandatory to look into
clever ways of how to combine optimizations—maybe not just at the level of
entire optimization results but also at the level of the individual iterations within
each algorithm. Anyway, this finding shows that it is not obvious how to directly
construct convincing safety arguments from the results of scenario-based testing.

On Scenario-Based Testing of Cyber-Physical Systems 79

6 Completeness

Once crucial concern with testing always is completeness. Throughout our con-
siderations, we have come across different forms of completeness, both implicitly
and explicitly. Given that the current public debate often does not differentiate
between different forms of completeness, we consider it worthwhile to conclude
this article with a sketch of these different forms.

The first kind of completeness refers to completeness of scenario types: are
all relevant traffic situations in the real world covered? As there is no ground
truth w.r.t. which completeness could possibly be measured, we suggest to apply
a redundancy argument here: Experts come up with a catalog of scenario types
E, and clustering recorded drives leads to a catalog of scenario types C. The
sets E \ C and C \ E provide interesting hints at scenario types that experts
may have forgotten and that have not been detected by means of clustering.
This consideration alone does, of course, not guarantee completeness, but it
may increase confidence that the catalogs converge over time (and it can be
expected that they do evolve over time). Note that it is not necessarily the
case that those scenario types that are the result of a clustering procedure are
easily understandable by humans. In practice, this tends to be the case, but this
possibly is a result of the mental model encoded in the clustering procedure.

The second kind of completeness then refers to the parameters that define
parameterized scenarios. These parameters are either provided explicitly by
experts or implicitly by the parameters that have been used for recording actual
drives (or are a result of a subsequent principal component analysis which usu-
ally is not interpretable by humans). Either way, these parameters define the
granularity with which scenario types (or clusters) are described: Do lighting
conditions matter? Does steepness of the road matter? Does friction of the road
matter? Does the number of lanes matter? Does the temperature matter? Do
wind conditions matter? Theoretically speaking, it seems hard to provide con-
vincing completeness arguments in this context. Pragmatically speaking, it is
likely that engineers will gain an increasingly complete understanding of what
influences the behavior of ther vehicles under test.

Two further kinds of completeness relate to recorded drives. The third notion
refers to the relative completeness of recorded drives w.r.t. a predefined catalog
of scenarios. This completeness can be assessed in a statistical manner [14]. The
fourth notion of completeness relates recorded drives to scenario types in the real
world: If drives are exclusively recorded in the flatlands close to a coast, it seems
unlikely that hairneedle pins will be covered. Abstractly speaking, this notion
can be reduced to a combination of the first and fourth kind of completeness.

A fifth kind of completeness also has been discussed above: Does the test case
generation algorithm provide optimal results? As we have seen, this is generally
not the case. As of today, it is not obvious how to overcome this challenge.

Then, it seems practical to use the extreme candidates as limit tests and
maybe a few tests from the “interior” of the scenario, as provided by early
iterations of the optimization. Whether these are representative of all (defective)
behaviors is an assumption that may be justified by the empirical practice of
requirements-based and limit testing. It constitutes a sixth form of completeness.

80 A. Pretschner et al.

Finally, we have only used one optimization goal, namely that of the distance
to other traffic participants. Of course, there can be different goals that optimize,
for instance, energy consumption or well-being of passenger and that are thus
likely to yield different test cases.

7 Summary and Outlook

We have argued that test cases should be justifiably “good,” especially in the
context of safety-critical systems. Good test cases address potential defects.
Scenario-based testing is one methodology to derive good test cases: scenario
types that abstractly describe typical traffic situations are refined into opera-
tional parameterized scenarios that describe a set of concrete scenario instances.
Heuristic search is then used to find the best instances. We have shown how
the notion of “good” tests can be captured by the distance to surrounding vehi-
cles. Heuristically searching for traffic scenarios with minimum distance turns
scenario-based testing into a special form of limit testing.

If one wants to go beyond random tests, good test cases for cyber-physical
systems cannot be reused for (regression) testing arbitrary variants or revisions
of a system. If the system dynamics change, reused test cases are either no longer
good, or there is no obvious argument for their quality. This is independent of
whether the test cases were extracted from recorded drives, created manually, or
generated automatically. Our argument is based on the example of autonomous
and automated driving systems, but the considerations apply to CPS in general.

Accordingly, test cases must, in general, be re-generated for each system
variant and version if changes to the system impact the functionality that is
addressed by a test, or if we do not know if there is such an impact. This is
theoretically and practically possible with scenario-based test case generation.
Unfortunately, heuristic search cannot guarantee optimal results, an obvious fact
that nonetheless seems overlooked in the current literature. We have provided
an example from the context of drones where different search algorithms indi-
vidually and in combination yield largely differing results, to the extent that one
algorithm (combination) suggests the drone to be safe whereas another generates
scenario instances that lead to unsafe behavior. This shows that safety arguments
cannot directly be constructed from the results of scenario-based testing alone.

Relevant questions now refer (1) to the completeness and granularity of the
catalogs of scenario types to be tested, (2) to the completeness of the relevant
parameter sets of these scenario types, (3) to the impossibility of the heuristic
search to guarantee global optima and (4) to the practical necessity of defin-
ing system and environment models for the simulation. (1) and (2) ultimately
concern the question of well-founded test ending criteria, which are relevant in
all areas of testing. Scenario types are usually defined by experts; obvious cri-
teria for their completeness do not exist. We believe that this is where the true
benefits of large amounts of recorded drives materialize. On the one hand, it is
possible to calculate how many recorded trips would be necessary to prove the
completeness of a list of scenario types [14]. On the other hand, scenario types

On Scenario-Based Testing of Cyber-Physical Systems 81

can be derived automatically from existing trips by automated clustering [16].
A comparison with manually created catalogs may indicate incomplete data and
missing scenario types in the manually created catalogs; and recorded test drives
may also help to identify relevant parameters, such as whether the humidity of
the road plays a role when testing the system.

While we have hinted at several open questions, overall we see good indica-
tions that scenario-based test case generation provides a sound and certification-
relevant basis for arguing about the quality and completeness of tests that are
performed on safety-critical systems.

References

1. Abdessalem, R.B., Nejati, S., Briand, L., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: 31st
IEEE/ACM International Conference on Automated Software Engineering, pp.
63–74 (2016)

2. Althoff, M., Lutz, S.: Automatic generation of safety-critical test scenarios for
collision avoidance of road vehicles. In: IEEE Intelligent Vehicles Symposium, pp.
1326–1333 (2018)

3. Bach, J., Holzäpfel, M., Otten, S., Sax, E.: Reactive-replay approach for verification
and validation of closed-loop control systems in early development. SAE Technical
Paper (2017)

4. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the devel-
opment of automated vehicles. IEEE Intelligent Vehicles Symposium, pp. 1813–
1820 (2018)

5. Bühler, O., Wegener, J.: Evolutionary functional testing of an automated parking
system. In: Proceedings of the International Conference on Computer, Communi-
cation and Control Technologies (CCCT) and the 9th International Conference on
Information Systems Analysis and Synthesis (ISAS) (2003)

6. Calò, A., Arcaini, P., Ali, S., Hauer, F., Ishikawa, F.: Generating avoidable col-
lision scenarios for testing autonomous driving systems. In: IEEE International
Conference on Software Testing, Validation and Verification (ICST), pp. 375–386
(2020)

7. Calò, A., Arcaini, P., Ali, S., Hauer, F., Ishikawa, F.: Simultaneously searching
and solving multiple avoidable collisions for testing autonomous driving systems.
In: Genetic and Evolutionary Computation Conference, pp. 1055–1063 (2020)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. de Gelder, E., Paardekooper, J.-P., Op den Camp, O., De Schutter, B.: Safety
assessment of automated vehicles: how to determine whether we have collected
enough field data? Traffic injury prevention 20.sup1 (2019)

10. De Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehi-
cles (2020). arXiv preprint arXiv:2001.11507

11. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A.,
Pfitzer, T.: Experience paper: search-based testing in automated driving control
applications. IEEE/ACM International Conference on Automated SW Engineer-
ing, pp. 26–37 (2019)

12. Großmann, J., et al.: Model-Based X-in-the-Loop Testing. In: Model-Based Testing
for Embedded Systems, pp. 299–337. Taylor & Francis (2012)

http://arxiv.org/abs/2001.11507

82 A. Pretschner et al.

13. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated
and autonomous driving systems. In: International Conference on Computer Safety,
Reliability, and Security, pp. 69–84 (2019)

14. Hauer, F., Schmidt, T., Holzmüller, B., Pretschner, A.: Did we test all scenarios for
automated and autonomous driving systems? In: IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 2950–2955 (2019)

15. Hauer, F., Pretschner, A., Holzmüller, B.: Re-using concrete test scenarios gener-
ally is a bad idea. In: IEEE Intelligent Vehicle Symposium (IV) (2020)

16. Hauer, F., Gerostathopoulos, I., Schmidt, T., Pretschner, A.: Clustering traffic
scenarios using mental models as little as possible. In: IEEE Intelligent Vehicles
Symposium (IV) (2020)

17. Kolb, N., Hauer, F., Pretschner, A.: Fitness function templates for testing auto-
mated and autonomous driving systems in intersection scenarios. In: 24th IEEE
International Intelligent Transportation Systems Conference, pp. 217–222 (2021)

18. Kolb, N., Jordan, C., Huber, F., Pretschner, A.: Automatic evaluation of automat-
ically derived semantic scenario instance descriptions. In: IEEE 25th International
Conference on Intelligent Transportation Systems, pp. 1565–1571 (2022)

19. Kolb, N., Hauer, F., Golagha, M., Pretschner, A.: Data-driven assessment of
parameterized scenarios for autonomous vehicles. In: 41st International Confer-
ence on Computer Safety, Reliability, and Security, pp. 350–364 (2022)

20. Lages, U., Spencer, M., Katz, R.: Automatic scenario generation based on laser
scanner reference data and advanced offline processing. In: IEEE Intelligent Vehi-
cles Symposium Workshops, pp. 146–148 (2013)

21. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and vali-
dation of automated vehicles. In: IEEE Intelligent Vehicles Symposium, pp. 1821–
1827 (2018)

22. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional
to logical scenarios: detailing a keyword-based scenario description for execution in
a simulation environment. IEEE Intelligent Vehicles Symposium (IV), pp. 2383–
2390 (2019)

23. Minnerup, P., Kessler, T., Knoll, A.: Collecting simulation scenarios by analyz-
ing physical test drives. In: IEEE Intelligent Transportation Systems Conference
(ITSC), pp. 2915–2920 (2015)

24. Moradi, M., Abedini, M.: A combination of genetic algorithm and particle swarm
optimization for optimal dg location and sizing in distribution systems. Int. J.
Electr. Power Energy Syst. 34(1), 66–74 (2012)

25. Nogueira, F.: Bayesian Optimization: open source constrained global optimization
tool for Python. https://github.com/fmfn/BayesianOptimization (2014)

26. Pretschner, A.: Defect-Based testing. In: Dependable Software Engineering (2015)
27. Schmidt, T., Pretschner, A.: StellaUAV: a tool for testing the safe behavior of UAVs

with scenario-based testing (Tools and Artifact Track). In: IEEE 33rd International
Symposium on Software Reliability Engineering, pp. 37–48 (2022)

28. Tkachenko, P., Zhou, J., del Re, L.: Unsupervised clustering of highway motion pat-
terns. IEEE Intelligent Transportation Systems Conference, pp. 2337–2342 (2019)

29. Wachenfeld, W., Junietz, P., Wenzel, R., Winner, H.: The worst-time-to-collision
metric for situation identification. In: IEEE Intelligent Vehicles Symposium (2016)

30. Wagner, S., Groh, K., Kuhbeck, T., Dorfel, M., Knoll, A.: Using time-to-react
based on naturalistic traffic object behavior for scenario-based risk assessment of
automated driving. In: IEEE Intelligent Vehicles Symposium (2018)

31. Weyuker, E., Jeng, B.: Analyzing partition testing strategies. IEEE Trans. Software
Eng. 17(7), 703–711 (1991)

https://github.com/fmfn/BayesianOptimization

Railway Verification and Safety
and Security

Safety vs. Security – Why Separation
of Concerns is a Good Strategy
for Safety-Critical Systems

Jens Braband(B)

Siemens Mobility GmbH, Ackerstr. 22, 38023 Braunschweig, Germany
jens.braband@siemens.com

Abstract. Cybersecurity plays an increasing role in critical infrastructure, in par-
ticular safety systems. Hence, it is necessary to compose systems that fulfill secu-
rity and safety requirements, which are partially conflicting. Safety related soft-
ware will rarely be changed after approval, whereas security related software
needs almost permanently updates. This leads to problems that are hard to solve.
Recently CENELEC TS 50701 “Cybersecurity for Railways” has been released
that proposes separation concepts. In this paper we will discuss this approach and
show, how a suitable architecture can help to satisfy the security as well as the
safety requirements. We consider some examples of such architectures and show,
how systems can be constructed that on the one hand side contain a safety code
that is not changed and on the other hand side security software that can easily be
patched.

Keywords: Railways · Safety Case · Cybersecurity Case

1 Introduction

1.1 Standardization Background

The discussion on the relationship between cybersecurity and safety has produced many
different recommendations. In IEC TR 63069 [1] some general guidance for standard-
ization has been worked out, but this paper aims at a more specific derivation and
justification of basic principles for safety critical systems, in particular for railways.

Concerning terminology, ‘security’ is used in this paper often synonymously for
cybersecurity unless physical security or other issues are explicitly meant. In the same
way, ‘safety’ is used for functional safety. It is assumed that the reader is familiar with
the basic safety and security concepts as stated, e.g., in standards such as EN 50126 [2],
EN 50129 [3] the IEC/EN IEC 62443 series [4] and CENELEC TS 50701 [5].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 85–95, 2023.
https://doi.org/10.1007/978-3-031-40132-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_6

86 J. Braband

1.2 Differences Between Safety and Security

Safety and security have.

• complementary goals: safety mainly protects people or the environment from mal-
functions of automation systems, while security protects the technical systems from
attacks from the environment

• different regulatory authorities, e. g. the Federal Railway Authority (EBA) and Fed-
eral Office for Information Security (BSI) in Germany, the National Cybersecurity
Agency (ANSSI) and the national railways safety agencies in France, the European
Union Agency for Railways (ERA) and the European Union Agency for Network
and Information Security (ENISA) in Europe, etc.

• different concepts e.g., hazards are considered in safety and threats are considered in
cybersecurity

• different communities, e.g., journals, conferences and standardization committees
are mostly separated

• different standards, e.g., the EN 50126 and EN 50129 series for RAMS (including
safety) and the ISO 27000 or IEC/EN IEC 62443 series for security.

In safety, frequent changes should be avoided because of the cost of safety approval
renewal. In security, updates should be easy to be applied in order to be able to patch
the system in a timely manner, as frequently as needed, e. g. when vulnerabilities are
discovered. This is in particular important, if commercial-off-the-shelf (COTS) compo-
nents are used. Thus, this provides a strong rationale to segregate security from safety
as far as possible.

Methods and solutions are also different, as are requirements, which are often con-
flicting. A simple example is an emergency message (e.g., to immediately shut down or
stop a system). From the safety view themessage should be transmitted as fast as possible
and the reaction should be executed immediately. From a security perspective the mes-
sage should be authenticated to prevent masquerade which might lead at least to denial
of service if an attacker could send emergency messages. But the coding and decoding
of cryptographic algorithms consumes time and leads to a delay of the emergency mes-
sage and the reaction. Alternatively, emergency messages could be pre-calculated at the
sender side to save some time, but this may open the door for replay attacks. Another
possibility might be the cyclic sending of heartbeat messages, which would trigger an
emergency reaction if these were not received in time. So, the sender would stop sending
heartbeats, but the delay would depend on the cycle time. In summary the trade-off in
safe and secure system design is not easy and it can be sometimes hard to find an optimal
solution.

So, we should conclude that safety and security are different and that they cannot
easily bemerged. Furthermore, security cannot simply be regarded as an add-on to safety
or vice versa.

Safety vs. Security – Why Separation of Concerns 87

2 Co-engineering of Safety and Security

2.1 Security from a Safety Perspective, and Vice Versa

Safety relies on several environmental conditions or influences that need to be controlled
in order to guarantee safety. These are listed in chapter 7.2 of EN 50129 and form
a mandatory subclause, “assurance of safety with adverse external influences”, in the
technical safety case. One of these aspects to be covered is access protection and this is
where security has its interface with safety.

Furthermore, it is required that the safety management process aims at minimizing
the residual risk of safety-related systematic faults and security threats, which shall be
managed during the risk assessment and hazard control. Finally, Measures addressing
security shall be recorded or referenced in the Safety Case, that may be understood as a
“security-informed safety case”.

The view from a security perspective, e.g., IEC 62443, is similar. Here safety is
viewed as an essential function that needs to be protected. Other essential functions are
operational functions or availability. This means that safety functions can only fulfil their
intended use in an appropriate secure environment. And this also explains why the UK
Department of Transport is promoting “If it is not secure, it is probably not safe.” Thus,
the security environment should protect essential functions, incl. Safety.

In addition to safety, the availability of railway applications needs to be ensured at the
same level of priority when considering security functions. While losses of availability
for trains or railway networks might be considered safe in the scope of functional safety,
continuous operation is one of the primary goals of security.

2.2 Process Interfaces

Because of the many differences it is not reasonable to integrate safety and security.
However, the processes and lifecycles need to be coordinated and appropriate interfaces
need to be established.

In particular, hazards resulting from security problems need to be identified, and
they are then treated as threats in the security threat and risk assessment. The safety
engineer needs to support the assessment to provide the safety implications (impact). The
definition of the appropriate security countermeasures is the responsibility of security
engineers in accordance with security standards. This means that security threat and risk
assessment is the main interface with safety analysis on system level.

Conflicts between the identified safety and security measures must be resolved.
During the safety risk assessment, the safety assessor evaluates the safety implications of
the systemdesignwhich includes the implementation of its security requirements. Here it
can be helpful if the securitymanagement supplies evidence in amanner compatible with
safety management, e.g., trusted verification documents with clearly stated assumptions
and application rules, so that safety and security assessments can be decoupled.

The conclusion is to separate security and safety as far as possible but coordinate
them effectively. This is also recommended by EN 50129, which recommends referenc-
ing security analyses in the safety case only. In order to ease the integration, as well as

https://doi.org/10.1007/978-3-031-40132-9_7

88 J. Braband

compatibility, it is recommended to base security considerations on established inter-
national standards such as ISO 27000 or IEC 62443, which may be adapted by sector
specific guidelines such as CENELEC TS 50701.

2.3 Responsibility for Security

As in safety, there is usually no single individual or body fully responsible for all security
aspects. It is a joint effort of the operators (often called asset owners in security), the
system integrators (who supply complete systems) and the suppliers (implementing
subsystems) andmanufacturers (who sell components). But unlike safety, themonitoring
processes operate at a higher frequency in security. Even without any incident it is good
practice to update threat and risk assessments at least once per year and to feed the results
forward and backward to the stakeholders at the interfaces. So, security is a collaborative
continuous effort.

And similarly, to safety, effective security protection relies heavily on the company
culture. Many successful attacks show a similar pattern:

• first, the attacker gains access to the system (network),
• then the attacker explores the system, often trying to gain higher privileges, until
• finally, the attacker carries out the attack.

Access or higher privileges can be obtained by exploiting vulnerabilities (e.g., weak
passwords) or by socialmeans such as phishing. Often, the attacker cannot achieve hisher
goals without operators or employees who breach security rules or are complacent. So, it
is very important that security awareness is promoted and trained as part of the company
culture.

3 The Cybersecurity Case

3.1 Principles

To ensure the necessary stability of safety-related documentation and approval, it is
recommended to separate cybersecurity and safety issues as far as possible and coordinate
them adequately in order to decouple the different lifecycles and the approval processes.
Otherwise, each change affecting the security of the system may trigger a new safety
approval.

One possible solution to achieve separation and coordination between cybersecu-
rity and safety processes is to define only a limited number of coordinated cybersecu-
rity objectives on a high level. These objectives need to be fulfilled through security
requirements or if not feasible, by security-related application conditions (SecRAC).

The fulfilment of the high-level cybersecurity objectives is the main part of the
cybersecurity case. Either they are fulfilled by the cybersecurity functions or under
certain security conditions and assumptions.

The cybersecurity case shall be maintained and updated. If the cybersecurity func-
tions are changed, it shall be demonstrated that the safety-related cybersecurity objec-
tives still hold (including the exported SecRAC). The cybersecurity case can be assessed
according to the relevant cybersecurity standards.

Safety vs. Security – Why Separation of Concerns 89

Example: In the first release Safety Case 1.0 refers to Cybersecurity Case 1.0. Then
Cybersecurity Case is changed to 1.1 but safety-related security requirements and safety-
related security application condition remain unchanged. Then a Change report (con-
firming that requirements and application conditions have not changed) is submitted to
the SafetyManager, and after approval Safety Case 1.0 remains valid with Cybersecurity
Case 1.1. This principle of encapsulation can be iterated, to Cybersecurity Case 1.2 etc.
In case of a major change, Cybersecurity Case is changed to 1.1 but safety-related secu-
rity requirements or safety-related security application condition have to be changed.
Then the safety case has to be updated to 1.1 as well and a new approval has to be
granted.

As a result of this documentation structure, the documentation regarding functional
safety can be considered stable as long as the cybersecurity process is properly adapted
to changing threat scenarios. Hence, while the security documentation may be subject
to frequent updates as a result of the volatile threat landscape, the safety approval can
remain valid.

3.2 Contents

The cybersecurity case and its contents are introduced in CENELEC TS 50701. The
structure it quite similar to a safety case (Table 1).

Table 1. Table of Contents of the Cybersecurity Case

Chapter Title Content

1 Introduction System Definition (incl. Zoning Model),
Risk Assessment

2 Cybersecurity Requirements Assumptions, High-level objectives and
derived requirements

3 Cybersecurity Management Cybersecurity Policy, Plans, Processes
incl. Vulnerability Management

4 Cybersecurity Fulfilment Evidence e. g. of Implementation of
Security Measures, V&V results

5 Security-related application conditions Related e. g. to Installation,
Maintenance and Operation

6 Conclusion Incl. Residual Risks

3.3 Modularization

For several reasons it is inadequate to collect the evidence necessary for a Cybersecurity
Case in a single document or folder, e. g. due to the fact that some information is
confidential and is not disclosed to all stakeholders. Also, the evidence can be collected
continuously during the lifecycle by the different stakeholders.

90 J. Braband

Table 2 shows a possibility to modularize the cybersecurity case based on system
level and stakeholder. Each level contains a kind of specification, that is assessed and for
which an assessment report or similar is provided, that clearly identifies the rules that
are exported from the phase.

Table 2. Modular Cybersecurity Case

Level Stakeholder Specification Assessment Rules

System Asset Owner Threat & Risk
Assessment

Assessment
Report

Application
Rules

Security
Subsystem

System
Integrator

Cybersecurity
Case

Inspection Report SecRAC

Generic Product Supplier (Technical)
Cybersecurity
Case

Inspection Report SecRAC

Component Manufacturer Security Evidence Certificate or
similar

Application
Manual

The assessment or inspection report should be written by an accredited assessor, so
that the next level can rely on the results and there is no need for double-checking. By
this way also the safety assessor does not need to check the cybersecurity case, but just
needs to make sure that the requirements are adequate and that the exported rules are
handled correctly.

4 Implementation Examples

4.1 The Importance of Architecture

While it is important that standards support separation and modularization, the real
success factor to achieve a good implementation of safety and security requirements is
the architecture. Safety and security architecture really makes the difference. It is hard to
generalize the good practices that are known, but this paper tries to give a few example
patterns.

4.2 The “Detect Single Faults” Pattern

The first example is a straightforward solution. We start with a well-known qualitative
design pattern, which works for many safety-related systems. This is the so-called “fail-
safe” system, see EN 50129. This pattern has also its merits for safety vs. security.

Assume, a single component K is added to the edge of a class 2 system S (or zone)
according to EN 50159 [6], see Fig. 1. It could be a gateway or similar to protect the
zone boarder.

Safety vs. Security – Why Separation of Concerns 91

Fig. 1. Adding a security component K to a safety system S

Even if one just adds K to S, some safety homework still needs to be done, as K may
have impact on S even if K does not implement a function for S. For example K may
increase latency, decrease reliability etc. So, non-interference with S needs to be proven.
The situation gets worse whenK is connected to some outside network. Then, in addition
a security risk assessment must be carried out, as intrusion may now be possible. Let
us assume that this has been managed. However, the solution is not yet complete. One
has still to make sure that the security functions implemented in K are fulfilling to their
specification and that they persist doing this.

Normally the safety standards require that the security mechanisms of K are moni-
tored by S. But the detailed requirements depend on the function that K implements and
its architecture.

Example 1: Single-Component-Architecture. Assume K is a filter or firewall just as
a kind of gatekeeper that lets only permitted traffic pass (simple whitelisting). If there is
a reasonable single failure mode, e. g. bypass, that (partially) deactivates the function,
then it is quite likely that monitoring has to be included to make sure that K continues to
work as intended. The results need to be checked by a safe procedure as required by EN
50159 [6]. However, the monitoring needs not necessarily be performed by a technical
function, it could also be done by an operator.

Example 2: Two-Component-Architecture:AssumeKencrypts transparently all traf-
fic from S to a neighboring zone S*, which has a counterpart K*. If nowK fails to decrypt
or encrypt any messages, then this will be immediately noticed at the other zone when
messages start missing. So given a sufficient traffic flow, it is highly unlikely that both
components suffer from similar faults with the same effect within a few milliseconds.
One can neglect this risk and there is no need to implement any additional monitoring
on the safety level. However, it is necessary to ensure that there are no common causes
in the two components or in supporting processes as e. g. maintenance that may lead
to the same failure on both sides. Examples are the deactivation of encryption on both
sides, use of default keys outdated algorithms etc.

92 J. Braband

Fig. 2. Adding cybersecurity evidence to the safety case

Figure 2 shows how the necessary evidence can be incorporated into the system
safety case. Already on system level the architecture can be evaluated, and it can be
assured that the correct requirements are added into the cybersecurity requirements
specification (CRS). This can generically be assessed by the safety assessor, who also
needs to assess the non-interference of the additional component with the safety system,
but this holds for any COTS component. For security aspects the safety case may point to
the cybersecurity case. Also, in the cybersecurity case some aspects like appropriateness
of processes and conformance with standards can be evaluated on a high level. Only the
conformity of a particular component K needs to be evaluated on a low level. And, if
the requirements do not change and the SecRAC stay the same for another component,
then the components may be exchanged without changing the safety case.

4.3 The “Safety Channel” Pattern

Patching is a particularly hot topicwhen considering systems that need to fulfil safety and
requirements. In safety applications, there is reluctance to change the certified “golden
code”, while in security some applications shall be updated or patched almost every day.
This seems to be a contradiction. But it can be solved using an appropriate architecture.

Example 3: Assume a safety application, which needs to be protected by a virus
checker (VC). A more general situation is, where 3rd party SW needs to be run on the
same entity, be it a computer, a kernel or a virtual machine. Assume a majority of votes
of different entities is needed for a safety critical decision, e.g., moving a switch.

The basic idea is to split the population of entities into two tribes: the entities labeled
N are never changed - or only when the safety application needs to be updated, the
entities labeled P can be patched as often as necessary. Of course, some integration tests

Safety vs. Security – Why Separation of Concerns 93

need to be carried out before patching. Additionally, the architecture contains voters V
that check the outputs. All components must be type checked before first operation.

Figure 3 shows this architecture for a 2oo2 configuration with one N and one P entity.
Both run the same safety application, but entity P has another software implemented
that needs regular updates. Entity N is sealed, physically and logically protected, e. g.
tamper-proof. It is never touched (unless you want to change the safety application). In
P the safety application is also never changed. On both channels this shall be checked,
e.g., by using a hash code on the application or other means as a command from the
voter requiring a specific response from both channels, which must coincide. Functional
differences in both channels can be detected by the voter. Nowwhenever a safety decision
needs to be taken, both N and P must agree, which is checked by the voter. So, a final
decision of the system is only possible, if the unchanged safety application of N agrees
with the decision of the application in P. And thus, it does not matter what other SW runs
on P or if it is patched or not. If P was hacked or tampered with or the safety application
influenced by the other applications, then P could not change the decision of N. But also,
N cannot take any decisions of its own, it always needs an agreement of P, the channel
that is virus protected etc.

P RR

Voter
Output Output

Safety
App

N

VC Safety
App

3rd
party

3rd
party

Type checked –
frozen configurationType checked –

flexible configuration

Safety
channel

Security
channel

Fig. 3. Update-friendly architecture

This may now be generalized for example to 2 N and 2 P channels demanding that
always a majority agrees etc. Note that some architecture elements have been left out
for the clarity of the argument for example the inputs, power supply, communication as
well as separation between the channels.

94 J. Braband

4.4 The “Mixed Architecture” or “EN 50159” Pattern

In some cases, it is not possible or not wanted to strictly separate the safety and the
security components. Assume that in the safety part some security functions are inte-
grated, i.e., because on the application level some encryption or message authentica-
tion is running. This type of function is implemented since measures described in EN
50159 are required. One must note that EN 50159 is not a cybersecurity standard, it is
for safety related communications. So, the measures, although partially the same as in
cybersecurity, are dedicated against technical processes that might influence or degrade
communication. The failure mechanisms are different in cybersecurity, see Braband and
Schäbe [7]. Nevertheless, we can derive the architecture in Fig. 4.

Fig. 4. Mixed Architecture

Assume that such a system is connected to a similar one. This means, that the safe
transmission part of the system as well as the safety parts should not be changed (golden
code). All patches should be applied in the cybersecurity part, which then also must
compensate for thosemeasures for cybersecurity that cannot andwill not be implemented
in the safety block.

Example 4: Let us consider the following example. In the safe transmission block,
there is a cryptographic algorithm to protect the data with regards to confidentiality
and authenticity (like ETCS). Of course, this protection would not be complete since a
hacker might attack the safety part of the system and get access to the data and the code.
Therefore, an additional security module is necessary to ensure complete cybersecurity
protection. In this example, the security part is split: a never change tribe consisting of
the safety part – including the safe transmission part and a patch tribe consisting of the
security part. This is a bit similar to example 2 described above. In order to cope with
the increasing possibilities of hackers, the security parts are patched.

From example 4, we see that it is only partially possible to design combined systems.
Only methods that would not require permanent patching can be implemented in the
safety part. Regarding the algorithms, they must work with a certain reserve, i.e., not
only provide the simplest and most basic solutions to the problems. In the safety part,
encryption can be used, where a method needs to be chosen that cannot be broken
within the next years. Here, one must also not only look for the time that the method
can withstand brute force attacks, but backdoors and exploits need to be absent. But of
course, these basis security measures in the safety part do not need to be perfect. The
main security protection is implemented in the cybersecurity part. Other components as
interface drivers, firewalls etc. should not be contained in the safety part since they are
candidates for permanent patching.

Safety vs. Security – Why Separation of Concerns 95

5 Discussion and Conclusion

In this paper, we have presented the cybersecurity case concept and example system
architectures that allow to fulfill the requirements arising from security as well as
from safety, while decoupling the approvals as far as possible. This allows in particular
patching security or COTS components without renewing the system approval.

The solution has been found in parallel also in other contexts. For example, in the
Technical Specification for Interoperability (TSI) for the Control-Command System of
European Train Control System similar problems exist, e. g. when SW must be patched
for bug-fixing [8]. The major difference is that the TSI procedure is for a particular fixed
functionality describe in the TSI, so the requirements and the interfaces are fixed. The
result is then, that (safety-related) application conditions may not be changed.

We have shown by examples, that with the help of an appropriate architecture, the
dilemma of conflicting requirements can be solved in an efficient manner. Surely, not
each architecture is applicable for each situation.

References

1. IEC: Industrial-process measurement, control and automation - Framework for functional
safety and security, TR 63069 (2019)

2. CENELEC: Railway Applications - The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS), EN 50126, part 1 & 2 (2017)

3. CENELEC:Railway applications - Communication, signalling and processing systems - Safety
related electronic systems for signaling, EN 50129 (2018)

4. IEC: Industrial communication networks – Network and system security, multiple parts, IEC
62443

5. CENELEC: Railway applications – Cybersecurity, TS 50701 (2021)
6. CENELEC: Railway applications Communication, signalling and processing systems Safety-

related communication in transmission systems, EN 50159 (2010)
7. Braband, J., Schäbe, H.: Probability and security – pitfalls and chances. Safety and reliability

36, 3–12 (2016)
8. Schuster, H.: s, Global Railway Review. (2019)

Decomposing the Verification
of Interlocking Systems

Anne E. Haxthausen1(B) , Alessandro Fantechi2 , and Gloria Gori2

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 University of Florence, Firenze, Italy
{alessandro.fantechi,gloria.gori}@unifi.it

Abstract. This paper considers model checking the safety for mem-
bers of a product line of railway interlocking systems, where an actual
interlocking system is modelled as an instance of a generic model config-
ured over the network under its control. For models over large networks
it is a well-known problem that model checking may fail due to state
space explosion. The RobustRailS tools that combine inductive reason-
ing with SMT solving using Jan Peleska’s powerful RT-Tester tool suite
have pushed considerably the limits of the size of networks that can
be handled. To further push these limits, we have proposed a compo-
sitional method that can be combined with RobustRailS to reduce the
size of networks to be model checked: the idea is to divide the network
of the system to be verified into two sub-networks and then model check
the model instances for these sub-networks instead of that for the full
network. In this paper we propose a strategy for applying such network
divisions repeatedly to achieve a fine granularity decomposition of a given
network into a number of small sub-networks. Under certain conditions,
these sub-networks all belong to a library of pre-verified elementary net-
works, so model checking of the sub-networks is no longer needed.

Keywords: Formal Methods · Model Checking · Compositional
Verification · Interlocking Systems

1 Introduction

Formal methods have successfully been applied to development and verification
of railway systems [3,5,6]. In particular, it has been popular to use model check-
ing techniques for formal verification of interlocking systems (controlling train
movements inside a railway network) as these are fully automated. Interlocking
systems are configured with application data that reflect the elements and topol-
ogy of the railway network layout. Hence, formal verification aims to verify both
the generic application with its algorithms for safe allocation of routes to trains,
and the specific application produced by the configuration with application data
for the network under control.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 96–113, 2023.
https://doi.org/10.1007/978-3-031-40132-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_7&domain=pdf
http://orcid.org/0000-0001-7349-8872
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-8482-2612
https://doi.org/10.1007/978-3-031-40132-9_7

Decomposing the Verification of Interlocking Systems 97

Model checking is subject to state space explosion, which limits scalability
of the approach so that automatic verification of interlocking systems for large
networks is demanding in terms of computing resources, and may even fail [4].

Abstraction techniques have typically been adopted to limit state space explo-
sion in model checking: abstraction should preserve the desired properties, hence
the adopted abstraction technique should be defined specifically for the kind of
system and properties under examination. For interlocking systems, a conve-
nient abstraction can be based on the locality principle: properties concerning
the allocation of a route to a train are typically not influenced by train move-
ments over networks elements that are distant from, and not interfering with,
the considered route. Locality of a safety property can be used to limit the
state space by abstracting away such “distant movements”. In [26] this principle
supports domain-oriented optimisation of the variable ordering in a BDD-based
verification; it also enables property-directed model slicing, ([4,10,11]), in which
verification is performed only over the portion of the model that concerns the
property of interest (cone of influence), allowing for an efficient verification of
a property, but requiring to perform slicing and verification for every property
(plus checking that that slicing preserves the related property).

It has also been suggested to use bounded model checking to perform k-
induction proofs of safety properties expressed as state invariants to avoid explor-
ing the whole state space. In the RobustRailS verification tools [25] for inter-
locking systems this technique was implemented using the powerful SMT-based
bounded model checker of Jan Peleska’s RT-Tester tool1; this made it possible
to considerably push the bounds of the size of networks that can be verified
without state space explosion [25].

Locality has also enabled our proposal of a compositional approach for
addressing verification for very large networks: the idea is to divide the network
to be verified into two (or more) sub-networks and then model check the model
instances for these sub-networks instead of model checking the model instance
of the full network [2,8,15,16]. For model checking, we use the RobustRailS ver-
ification tools. The soundness result for compositional safety verification given
in [8] guarantees that, when properly cutting a network, proving safety for the
sub-networks suffices to prove safety for the full network. In this way, the task of
proving safety for a large network can be reduced to the task of verifying safety
for sub-networks of a size manageable by the model checker.

The idea of compositional verification is also shared by the approach
described in [12–14]. This approach that is based on the criteria of functional
decomposition of interlocking systems defined by the Belgian railways in order
to deal with the control of large networks by dividing the network into sub-
networks, each possibly controlled by separate interlocking systems. A compari-
son of this approach with ours is presented in [1]. Indeed, it appears that decom-
position of a network in this approach is grounded on pragmatic domain-related
criteria, while our approach is more general. Furthermore, this approach uses an

1 https://www.verified.de/products/rt-tester/.

https://www.verified.de/products/rt-tester/

98 A. E. Haxthausen et al.

assume-guarantee approach for verification which requires not only verification
for the sub-networks as in our approach, but also verification of contracts.

The question of where to divide a network during compositional verification
has triggered the contribution of this paper: an iterative decomposition strategy
to achieve a fine granularity decomposition of a network into a number of small
sub-networks, that under certain conditions belong to a library of pre-verified
elementary networks. The soundness result for compositional safety verification
guarantees that safety for the full network is given by the pre-verified safety of
sub-networks. Therefore, to verify a network, it is in principle no more needed to
run a model checker, independently of the size of the network, if specific network
conditions are met.

The paper is structured as follows: First, in Sects. 2 and 3, short descriptions
of the RT-Tester tool suite and of the RobustRailS verification method, built on
top of RT-Tester, are given. Then, in Sect. 4, our compositional method using
the RobustRailS tools is presented and a strategy for performing decomposition
is discussed. The latter is the main, novel contribution of this paper. Section 5
draws some conclusions and ideas for future work.

2 The RT-Tester Tool Suite

In 1998 Jan Peleska and Cornelia Zahlten founded the company Verified Sys-
tems International GmbH, and Jan has been head of Research & Development
in the company since then. The company provides tools and services in the field
of safety-critical system development, verification, validation and test, and has a
wide variety of customers including Siemens, Airbus and its suppliers. Verified’s
flagship product is RT-Tester2, a very comprehensive model-based test automa-
tion tool suite for automatic test generation, test execution and real-time test
evaluation. RT-Tester can not only be used for testing (see e.g. [19]), but also
for bounded model checking (BMC) of which we will give an example in next
section. RT-Tester’s automation capabilities are discussed in [18], and special
test case generation strategies implemented in RT-Tester are described in [9].
In 2015, the company was awarded the runner-up trophy of the EU Innova-
tion Radar Prize due to the special testing strategy that was developed by Jan
Peleska and Wen-ling Huang.

3 The RobustRailS Verification Method and Tools

In the RobustRailS research project3 that was accompanying the Danish re-
signalling programme on a scientific level in 2012–2017, a formal method with
tools support for automated, formal verification of railway interlocking systems
was developed [22–25] by Linh Hong Vu under supervision of Jan Peleska and
Anne Haxthausen. This section gives a short description of the RobustRailS
method and tools.
2 https://www.verified.de/products/rt-tester/.
3 http://robustrails.man.dtu.dk.

https://www.verified.de/products/rt-tester/
http://robustrails.man.dtu.dk

Decomposing the Verification of Interlocking Systems 99

Fig. 1. A railway network layout example. From [23].

The Considered Interlocking Systems. An interlocking system is a sig-
nalling system component that is responsible for safe routing of trains through
(a fraction of) a railway network under its control. An interlocking system is
traditionally specified by a layout of the railway network that it controls and
a so-called interlocking table that specifies allowed routes through the network
and conditions for these routes to be exclusively reserved by a train. In Fig. 1
an example of a railway network layout for a small station is given. As it can
be seen it consists of (1) train detection sections that are either linear sections
(like t10) or switchable points (like t11) having a stem side and two branching
sides (e.g. t11 has its stem next to t10 and its branches next to t20 and t12,
respectively) and (2) markerboards4 (like mb10) placed at the ends of linear sec-
tions and only visible in one direction (e.g. mb10 is visible in direction UP). As
a general rule for the networks considered in this paper, there is at most one
markerboard in each end of a linear section and it can only be seen when leaving
the section. Furthermore, at the borders of a network, there are always two linear
sections (like b10 and t10) with a signal configuration having an entry signal on
the border section and an exit signal on the section next to the border section.
Furthermore, networks are assumed to be loop-free5.

The Tools and Method. The RobustRailS tools are centred around two inter-
related DSLs (domain-specific languages):

– IDL: a DSL [23] for specifying (1) a generic, behavioural, formal model of a
product line of interlocking systems and their environment and (2) generic
safety properties in the form of state invariants, and

– ICL: a DSL [22] for specifying configuration data (a railway network layout
and an interlocking table) that can be used to instantiate generic models and
properties.

The RobustRailS tools can be used to formally verify the design of an inter-
locking system in the following steps, summarized in Fig. 2:

1. A generic model and generic properties are specified in IDL.
4 We are considering modern ERTMS level 2 based interlocking systems for which

there are no physical signals. They are replaced by markerboards, and in the control
system there are virtual signals associated with the markerboards. Throughout the
paper we use the term signal as a synonym for markerboard.

5 A network is loop-free, if there are no physically possible path through the network
containing the same section more than once.

100 A. E. Haxthausen et al.

Fig. 2. The RobustRailS tool suite. From [23].

2. A railway network layout and its corresponding interlocking table are specified
in ICL in the following order: first the network layout, and then the inter-
locking table. The creation of the latter is either done manually or generated
automatically from the network layout.

3. A static checker verifies whether the configuration data is statically well-
formed [7] according to the static semantics [24] of ICL.

4. Generators instantiate a generic behavioural model and generic safety prop-
erties with the well-formed configuration data to generate a model and safety
properties for the network and routes described in the configuration data.

5. The generated model instance is then checked against the generated proper-
ties by a bounded model checker performing a k-induction proof.

The static checking in step (3) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (5) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using Jan
Peleska’s RT-Tester framework [18,21]. The bounded model checker in RT-Tester
uses the SONOLAR SMT solver [20] to compute counterexamples showing the
violations of the base case or induction step.

Applications. The RobustRailS method and tools have been used to success-
fully verify the safety of several interlocking systems. The first application was
the Danish interlocking system for EDL, the first regional line in Denmark com-
missioned in the Danish Signalling Programme. First, the IDL language was
used to specify a generic model for the novel family of Danish interlocking sys-
tems and generic safety conditions expressing that there are no train collisions
(i.e. there must at most be one train on each section at the same time) and no

Decomposing the Verification of Interlocking Systems 101

derailments (i.e. when a train traverses a point, the point must be switched in
the right direction for the train to pass). Then the network for the complete
EDL line consisting of eight stations of various complexity was specified in the
ICL language and an interlocking table was automatically generated from this.
Then method steps 3–5 were performed. The verification metrics can be found
in Table 1. For more details on this case study, see [25]. Other applications are
mentioned in Sect. 4.2.

This achievement of model checking an interlocking system for such a big
railway network was quite remarkable. A key reason for that was the use of
RT-Tester’s SMT based bounded model checker to perform an induction proof.
That pushed considerably the limits of the size of networks for which interlocking
systems can be verified.

4 Compositional Verification

However, networks of very large stations still exceed the model checking capacity.
Therefore, to be able to perform verification for any size of networks, we have
previously [2,8,15,16] suggested to use a compositional verification method on
top of the RobustRailS verification method.

The idea of our compositional method is as follows: Assume given a generic
model and generic safety properties for no collisions and no derailments. To ver-
ify an interlocking system instance for a specific network N , divide the network
into two parts (sub-networks) N1 and N2, and then verify the interlocking sys-
tem instances for these two networks using the RobustRailS method and tools.
This division process can be applied repeatedly until all sub-networks are small
enough to be verified.

In Sect. 4.1, we explain the compositional method in more detail, and in
Sect. 4.2 we report on some case studies applying the method. Using our com-
positional method rises the question: which decomposition of a given network
should be made? In Sect. 4.3 we explain an idea for that.

4.1 A Method for Compositional Verification

To introduce the compositional method, we first need to define what is a cut of
a network, and how the sub-networks should be generated by the cut.

Cut Specifications. A single cut is a cut that can be performed between any
two neighbouring, non-border sections t1 and t2 in a network N . An example
of a single cut is shown in Fig. 3. The specification of that single cut is the pair
(t1, t2). To divide a network into two parts, it is not always enough to perform a
single cut, but a cluster cut consisting of several single cuts may be needed. An
example of a cluster cut is shown in Fig. 4. The specification of a cluster cut is
the set of specifications of each of its single cuts. A cut is legal, if it divides the
network into exactly two parts, no route is cut by more than one single cut, and
no flank/front protecting elements6 are separated by the cut from the sections
they protect. In this paper we assume that flank/front protecting is not adopted.
6 In the end of Sect. 4.3 the notion of flank protection is explained.

102 A. E. Haxthausen et al.

Fig. 3. An example of a single cut. From [8].

Fig. 4. An example of a cluster cut. From [8].

Decomposing a Network According to a Cut Specification. Given a net
N and a legal cut specification, the network is decomposed into two networks as
follows:

– if a single cut is between linear sections t1 and t2, first divide the network N
between t1 and t2, obtaining two sub-networks N−1 and N−2, and then add
to N−1 and N−2 at the respective cut a border section and also an entry and
an exit signal at that border, if there were not already signals placed around
the cut. By doing so, two well-formed networks are obtained: N1 and N2.
Figure 5 shows how a network is decomposed into two networks by a single
cut (t1, t2). It can be seen how N1 is obtained from the sub-network N−1

on the left-hand side of the cut by adding a border section b1 and border
signals sentry1 and sexit1 . N2 is obtained in a similar way. When it is clear
from the context, sometimes we also call the resulting networks N1 and N2

sub-networks;
– if a single cut is between a linear section t1 and a point p, the decomposition

is treated as if there was an additional linear section t2 between t1 and p, and
the cut specification was (t1, t2);

– if a single cut is between two points p1 and p2, the decomposition is treated
as if there were two additional linear sections t1 and t2 between p1 and p2,
and the cut specification was (t1, t2).

– if the cut is a cluster cut, the above rules are simultaneously applied to each
of its single cuts.

A tool that takes a network and a cut specification as arguments and returns
the two networks obtained by decomposing the network according to the cut
specification has been developed [17]. This tool is called the RobustRailS Network
Cutter.

Decomposing the Verification of Interlocking Systems 103

Fig. 5. An example of a decomposition of a network into two networks. From [8].

Method Steps. Using a legal cut allows to perform compositional verification
in the following steps:

1. Decompose a network N according to a legal cut specification, achieving two
networks N1 and N2.

2. For i = 1, 2, apply the interlocking table generator to Ni, check the resulting
specification by the static checker, and generate a model mi and properties
φi from that.

3. For i = 1, 2, verify that mi satisfies φi.

In [8] it is proved that this method is sound. This means that in order to prove
safety of the model generated from the whole network, it is suffcient to verify
safety for each of the models generated from the two sub-networks formed by a
legal cut.

4.2 Case Studies

A number of case studies applying the presented compositional verification app-
roach to different networks with different characteristics and layouts have been
carried out. Table 1 shows the savings in verification time and needed memory
obtained applying the compositional method to non-trivial cases. For each case,
the statistics are shown first for each sub-network, then the global consumption
of time and memory of the compositional approach and its reduction are shown
in comparison with that of a monolithic verification for the full network. The
first three examples have been presented at international conferences [1,2,16];
in particular the first one is the already mentioned EDL line, which has been
decomposed in sub-networks related to each station of the line, among which the

104 A. E. Haxthausen et al.

Table 1. Verification statistics for the compositional verification method applied to
some interlocking examples.

Example Linears Points Signals Routes Time (s) Memory (MB)

NFM2017 [16]
Gadstrup 14 3 16 21 62 567
Havdrup 10 2 12 14 19 264
L. Skensved 15 3 16 21 72 616
Køge 58 23 62 75 5170 9243
Herfølge 6 2 10 14 13 210
Tureby 6 2 10 14 11 203
Haslev 10 2 12 14 14 256
Holme-Olstrup 12 2 16 20 22 352
Compositional 5383 9243
Full EDL 110 39 126 179 14352 22476
Reduction % 72.49% 68.88%

SEFM2017 [2]
Low 28 13 26 56 12895.35 12176.6
High 25 10 24 66 8052.92 9517.9
Compositional 20948.27 12176.6
Full Fismn 49 23 46 124 51770.64 42483.7
Reduction % 59.54% 71.34%

RSSRail22 [1]
LVR7A Left 20 7 31 30 670 2083
LVR7B Right 15 5 23 18 108 846
Compositional 778 2083
Full LVR7 26 12 42 48 2387 5467
Reduction % 67.41% 61.90%

Tramway line
Down 12 5 12 12 81.42 462.8
Middle 9 4 8 12 55.77 392.2
Up 8 3 8 10 22.40 266.7
Compositional 159.59 462.8
Full line 22 12 20 62 28206.00 22762.7
Reduction % 99.43% 97.97%

Flying junction
Each of 4 subnetworks 12 4 12 20 108.47 max 600.2 max
Compositional 369.69 600.2
Full junction 24 16 16 40 55853.76 23587.2
Reduction % 99.34% 97.45%

Decomposing the Verification of Interlocking Systems 105

Køge station maintains its own high complexity. The second example is a single
cut of a large network whose layout has been extracted from a portion of the
main Florence station, while the third is a Belgian station on which a cluster cut
has been applied, with the aim to compare the method with the decompositional
approach of [14]. The remaining two have been purposedly defined to explore
different layout characteristics: one is inspired by a tramway network, that is,
a single track tramway line with several branches and passing loops; the other
is a complex flying junction, that allows grade-separated crossing of two double
track lines, as well as full interconnection among the tracks of the two lines.

The highest savings are obtained when, in the full network, several routes
do not conflict and therefore can be used concurrently, contributing to the state
space explosion, due to interleaving of concurrent train movements over such
routes: if the cut is made such that the number of independent routes inside
a sub-network is low, the concurrency degree is dramatically decreased. This
is the case of the tramway line example, divided into three sub-networks, and
of the flying junction example, where the cut produces four almost isomorphic
sub-networks of far lower complexity.

A deeper study on the correlation between full network topology, cut strategy,
and verification savings by decomposition is planned as future work.

4.3 A Decomposition Strategy

Using the presented compositional verification method leaves the question: which
cuts should be made in order to decompose a network into small networks that
are fast to verify? In this section we will exploit the idea of providing a library
of pre-verified, elementary networks and a strategy for dividing a given network
into sub-networks of which as many as possible are elementary.

Elementary Networks. As elementary networks we allow one of the network
patterns shown in Fig. 6: an elementary network can be a sequence of linear
sections having only the required signals at the two borders (see a) and b)). It can
alternatively (see c) and d)) be a network containing just one point surrounded
by at least two linear sections on each of its three sides. There are only the
required signals at the three borders and optionally zero, one, two or three of
the signals shown directly facing the point. All patterns admit an unbounded
number of linear elements at specific positions. In c) there is only one linear
section between the the point and each of the three border sections, while in d),
there are two (or more) linear sections between the point and the border section
on the stem side. In a similar way it is allowed to have two (or more) linear
sections between the point and the border sections on the branching sides of the
point.

Model instances of the networks of Fig. 6 have been model checked to be
safe, for all the admitted combinations of presence of markerboards, but without
the presence of the admitted extra linear sections. Moreover, a result from [8]
allows us to add an unbounded number of linear sections at the indicated specific

106 A. E. Haxthausen et al.

Fig. 6. Patterns for elementary networks.

positions without impacting safety. Hence, we can conclude that model instances
for all elementary networks are safe.

Decomposing a Network. Given a network, now the idea is to search for
places to make legal cuts, one by one, such that the network can be divided into
parts that are either elementary networks or non decomposable networks (that
is, they cannot be cut without breaking the rules for legal cuts). In the ideal
case that the decomposition leads to networks that are all elementary, no model
checking is needed.

As an example, consider the network shown in Fig. 7. By making the three
cuts (two single cuts (083, PM02U) and (PM02U,PM03U) and the cluster cut
{(802, PM04U), (801, PM04U)}) shown by green lines, one by one, one achieves
the four elementary networks N1

1 , N2
1 , N3

1 , and N3
2 shown in Fig. 8.

Fig. 7. Cuts shown on a network (LVR1).

In practice, a possible process of finding such cuts for a loop-free network N
is as follows, provided that there are no flank/front protecting elements:

Decomposing the Verification of Interlocking Systems 107

Fig. 8. Decomposition of the LVR1 network in three steps according to the three
cuts shown in Fig. 7. The four resulting green sub-networks N1

1 , N2
1 , N3

1 , and N3
2 are

elementary.

1. Start searching from the neighbour (linear section) l of some border section
b of N . The search direction is from l towards the next adjacent element in
the direction opposite to b.

2. Follow the sections from l one by one as long as they are linear and do not
have any signals attached until one of the following happens:
(a) If a linear section having an exit signal is found, we have reached a border

and no cut should be made, as the considered network is an elementary
linear network.

(b) If two consecutive, linear sections l1 and l2 are found, and at least one
of them has a signal facing the other, then a decomposition using the cut
(l1, l2) should be made. By this the generated sub-network containing
l1 will by construction be an elementary linear network. The search for
further cuts should then continue from l2 in the other sub-network.

(c) If a point p is found, then we should continue to search for cuts on the two
other sides of p. This search depends on from which side p was found: the

108 A. E. Haxthausen et al.

stem or one of the branching sides. In both cases the search also depends
on whether the two other sides are connected or not.7
i. If coming from the stem of p, and the two branching sides are not

connected, then we should search for cuts in each of the two branches.
The search here is similar to the search starting from a border, except
that if a second point is found, a single cut must be made just before
that point. The two searches may hence lead to totally zero, one or two
single cuts, dividing the network into (1) an elementary point network
containing p and (2) zero, one or two additional sub-networks in which
a search for cuts must be performed. For instance, when searching for
a cut in network N1

2 in Fig. 8 (a), starting from PM02U_ex_stem,
a single cut, cut2 : (PM02U,PM03U), will be found in the lower
branch, while no cuts are found in the upper branch (as a border is
met before any further points or non-border signals), so it results in
two sub-networks.

ii. If coming from the stem, and the two branching sides are connected,
then a similar search is made in each of the branches. In this case
two single cuts (one in each branch) will be found and these must
be combined in a cluster cut (in order to divide the network into
two parts) leading to an elementary point network containing p and
one additional sub-network to which search for cuts must be recur-
sively applied. That is e.g. the case when searching for a cut (cut3)
in network N2

2 in Fig. 8 (b), starting from PM03U_ex_stem.
iii. If coming from a branching side of p, and the stem and the other

branching side are not connected, searches for cuts in the other branch
and on the stem side must be performed in a similar way to case i)
above. That happens e.g. when searching for the first cut in Fig. 7
starting from linear section 533.

iv. If coming from a branching side of p, and the stem and the other
branching side are connected, the search to be performed is similar
to case ii), except that in some cases it is not possible to find a legal
cluster cut: that happens if a potential cluster cut divides a route
into three parts8, as shown in Fig. 9, where the cluster cut shown
by a red, dotted line is found when searching from L1 on the upper
branching side of point P1. In such a case we should then start a
search from another border to see if a cut can be found from there. It
is our conjecture that it is always possible to find a border from which
it is possible to find a legal cluster cut through the connected sub-
component, provided that the network is loop-free. For instance, in
Fig. 9, the legal cluster cut {(P2, P1), (L24, P4)} shown by a dashed,
green line can be found when searching from L2. Figure 10 gives an

7 By connected we mean that by navigating the graph of the not yet visited part of
the network starting from the two sides we eventually reach a common point.

8 Note that when coming from the stem, we do not have such a problem, as a route
cannot pass through a point via its two branches.

Decomposing the Verification of Interlocking Systems 109

example of a network that cannot be decomposed into elementary
networks as the network is not loop-free.

Fig. 9. The cluster cut {(P1, P2), (L13, P3)} shown by a red, dotted line is illegal
as it divides the route shown as a blue, solid arrow in three parts. The cluster cut
{(P2, P1), (L24, P4)} shown by a green, dashed line is legal. (Color figure online)

Fig. 10. An example of a non-loop-free, non-decomposable network.

In railway interlocking systems, specific additional mechanisms may be
included to enforce safety also in the case in which trains do not strictly respect
signals, due to a driver’s misbehaviour or accidental inability to brake. In the
Flank Protection mechanism points and signals not belonging to the route are
properly set in order to avoid hostile train movements into the route at an inci-
dent point. In the example of Fig. 11 locking of route r requires the point t20
to be in the straight position in order to protect the flank of route r by a train
accidentally missing the closed mb20 signal. If both point t20 and route r lie in
the same sub-network when a cut is operated, the extra condition on the point
position has no impact on compositionality: but this is not the case for the drawn
cut, which separates the protecting and the protected points. As discussed in [8],
in this case compositional verification results do not fully hold, so we consider
such a cut as not legal: both elements should instead be in the same sub-network,
which is therefore not elementary, since it contains two points. In the presen-
tation of our approach, we have assumed that there is no flank protection. If
flank protection was adopted, legal cuts would not be allowed to separate the
protecting and the protected points. However, then we would no longer be able
to decompose a loop-free network into networks that are all elementary.

110 A. E. Haxthausen et al.

Fig. 11. Cut through a flank protection.

5 Conclusions and Future Work

In this paper we have presented a compositional method for model checking
the safety of interlocking systems. The idea of the compositional method is to
divide the network under control into some sub-networks and then model check
the model instances for these networks instead of model checking the model
instance of the full network. The paper suggests a novel strategy for decomposing
a network into a number of small sub-networks that, under certain conditions,
all belong to a library of pre-verified elementary networks, so no model checking
is actually needed for the specific application.

This strategy will be the subject of further work, including its implementation
in a tool for the automatic decomposition of a network: this will be accompa-
nied by a deeper assessment of its soundness and completeness, as well as of its
tractability, and on the other end will enable experimenting it on several com-
plex layout examples. Also, this study will address a consolidated definition of
the conditions under which the conjecture of full decomposition in elementary
networks holds, and the impact of flank protection or other analogous protection
mechanisms on the applicability of the decomposition algorithm.

Dedication and Acknowledgements

We dedicate this paper to Jan Peleska who we admire so much for his brilliant
research in applicable formal methods for safe industrial products. The first
author (Anne Haxthausen) would like to express her gratitude to Jan for more
than 25 years of the most enjoyable, inspiring, and fruitful collaboration.

The RobustRailS tools used in the work presented in this paper were devel-
oped by her PhD student, Linh H. Vu, under co-supervision by Jan Peleska
who came with brilliant ideas and generously provided the possibility of using
RT-Tester as backend. All three authors are very indebted to Peleska and Vu.
Furthermore, the authors would like to thank Hugo D. Macedo, who contributed
to the initial work on the compositional method used in this paper, and to thank
Anna Nam Anh Nguyen and Ole Eilgaard for their network cutter tool which
we have also used in this paper.

Decomposing the Verification of Interlocking Systems 111

References

1. Fantechi, A., Gori, G., Haxthausen, A.E., Limbrée, C.: Compositional verifica-
tion of railway interlockings: comparison of two methods. In: Dutilleul, S.C., Hax-
thausen, A.E., Lecomte, T. (eds.) Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Verification, and Certification: Fifth International Con-
ference, RSSRail 2022, Paris, France, June 1–2, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13294, pp. 3–19. Springer Nature Switzerland AG (2022).
https://doi.org/10.1007/978-3-031-05814-1_1

2. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of inter-
locking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1_15

3. Ferrari, A., Ter Beek, M.H.: Formal methods in railways: a systematic mapping
study. ACM Comput. Surv. 55(4), 1–37 (2022)

4. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT 2010 - Formal Methods for Automation and
Safety in Railway and Automotive Systems. pp. 107–115. Springer (2010). https://
doi.org/10.1007/978-3-642-14261-1_11

5. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal methods tools for railway signaling system design. IEEE
Trans. Softw. Eng. 48(11), 4675–4691 (2022)

6. Ferrari, A., Mazzanti, F., Basile, D., Ter Beek, M.H., Fantechi, A.: Comparing for-
mal tools for system design: a judgment study. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pp. 62–74. ICSE 2020,
Association for Computing Machinery, New York, NY, USA (2020)

7. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifi-
cation of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3_19

8. Haxthausen, A.E., Fantechi, A.: Compositional verification of railway interlocking
systems. Form. Asp. Comput. 35(1) (2023). https://doi.org/10.1145/3549736

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.
Softw. Tools Technol. Transfer 18(3), 265–383 (2016)

10. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H.: Decomposing scheme plans to manage verification complexity. In: Schnieder,
E., Tarnai, G. (eds.) FORMS/FORMAT 2014–10th Symposium on Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems, pp. 210–220.
Institute for Traffic Safety and Automation Engineering Technische Univ., Braun-
schweig (2014)

11. James, P., et al.: Verification of solid state interlocking programs. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05032-4_19

12. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of Railway Inter-
locking - Compositional Approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_10

13. Limbrée, C., Pecheur, C.: A framework for the formal verification of networks of
railway interlockings - application to the Belgian railway. Electr. Commun. Eur.
Assoc. Study Sci. Technol. 76 (2018)

https://doi.org/10.1007/978-3-031-05814-1_1
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1145/3549736
https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1007/978-3-319-33951-1_10

112 A. E. Haxthausen et al.

14. Limbrée, C.: Formal verification of railway interlocking systems. Ph.D. thesis, UCL
Louvain (2019)

15. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3_20

16. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8_11

17. Nguyen, A.N.A., Eilgaard, O.B.: Development and use of a tool supporting com-
positional verification of railway interlocking systems. Master’s thesis, Technical
University of Denmark, DTU Compute (2020)

18. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) 8th Workshop on Model-Based
Testing, Rome, Italy. vol. 111, pp. 3–28. Open Publishing Association (2013)

19. Peleska, J., et al.: A real-world benchmark model for testing concurrent real-time
systems in the automotive domain. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0_11

20. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5_22

21. Verified systems international GmbH: RT-Tester model-based test case and test
data generator - RTT-MBT - User Manual (2013). http://www.verified.de

22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Institute for Traffic Safety and Automation
Engineering Technische Universität, Braunschweig (2014)

23. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for
generic interlocking models and their properties. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems. Mod-
elling, Analysis, Verification, and Certification: Second International Conference,
RSSRail 2017, Pistoia, Italy, November 14–16, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10598, pp. 99–115. Springer Cham (2017). https://doi.
org/10.1007/978-3-319-68499-4_7

24. Vu, L.H.: Formal development and verification of railway control systems - In the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-57288-8_11
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-642-24580-0_11
https://doi.org/10.1007/978-3-642-20398-5_22
http://www.verified.de
https://doi.org/10.1007/978-3-319-68499-4_7
https://doi.org/10.1007/978-3-319-68499-4_7

Decomposing the Verification of Interlocking Systems 113

25. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Programm. 133, Part
2, 91–115 (2017)

26. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp.
246–260. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-
1_24

https://doi.org/10.1007/978-3-642-34032-1_24
https://doi.org/10.1007/978-3-642-34032-1_24

Pattern-Based Risk Identification
for Model-Based Risk Management

Maritta Heisel(B) and Marvin Wagner

University of Duisburg-Essen, Duisburg, Germany
{maritta.heisel,marvin.wagner}@uni-due.de

Abstract. In a previous publication, we have introduced Risk Issue
Questionnaires (RIQs) that serve to support risk identification for crit-
ical systems. The starting point of our risk identification method are
architectural patterns contained in a system architecture, e.g., process
control loops or interactive systems. A RIQ enumerates the typical risks
associated with such a pattern. By assessing for each issue contained in
a RIQ whether it is relevant or not, risks for the system under analysis
are identified in a systematic way.

In this paper, we complement the RIQ method by a method to set up
and validate CORAS threat models for documenting the identified risks.
In this way, we provide a basis to perform the further steps of a model-
based risk management process. We equip our RIQs with modeling hints
that specify what kind of modeling element should be used to represent
a given issue in a threat model. Furthermore, we define formal valida-
tion conditions (VCs) that allow the risk modeler to check the generated
threat models for coherence and completeness, and present a modeling
tool that is able to check the defined VCs.

1 Introduction

A thorough risk management process is of crucial importance for many IT-based
systems that are used in modern society. Critical infrastructure has been subject
to attacks in the past and will probably be so in the future. Autonomous systems
can cause accidents that should be avoided. Our financial system would collapse
if a longer outage of the underlying software occurred, and so on.

The ISO 31000 standard [1] defines the following steps that belong to a risk
management process:

1. Context establishment: The objectives of the risk management process have
to be stated, as well as the scope of the analysis. The external (e.g., legal)
and internal (e.g., organizational) contexts have to be described. Moreover,
the risk criteria must be defined, such as the definition of likelihoods and the
level at which risk is acceptable or unacceptable. In particular, the assets that
must be protected by the risk management process must be identified.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 114–129, 2023.
https://doi.org/10.1007/978-3-031-40132-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_8

Pattern-Based Risk Identification for Model-Based Risk Management 115

2. Risk identification: Sources of risk must be identified, as well as possible areas
of impact, and events that may cause negative1 consequences. In particular,
for each asset, unwanted incidents that may harm the asset must be identified.
Furthermore, it must be described how such unwanted incidents can happen.

3. Risk estimation: Risk involves unwanted incidents harming an asset. For each
such unwanted incident, it has to be assessed how likely it is and how severe
the consequences of the unwanted incident are. In model-based risk manage-
ment, all elements of the risk model (such as the ones introduced in Sect. 2.1)
are taken into account for risk estimation.

4. Risk evaluation: For each risk, it has to be determined whether it is acceptable
or not. Often, this is performed using a risk matrix, where the lines are
annotated with likelihoods and the columns are annotated with consequence
levels. The cells of this matrix indicate whether the risk consisting of the
given likelihood and the given consequence level is acceptable (green cells) or
not (red cells). Is is also possible to have more cell colors, for example orange
ones that indicate that the given risk must be monitored.

5. Risk treatment: For unacceptable risks, appropriate treatments must be cho-
sen, e.g., encrypted communication. For the so changed system, the risk man-
agements steps must be repeated, because the treatments can introduce new
risks.

The risk management process terminates when all risks have been accepted
or reduced to an acceptable level. In such a process, risk identification plays a
crucial role, because missing a risk that is present in a system could lead to
catastrophic consequences.

To support systematic risk identification, we have developed a method that
uses the architecture of a given system to identify risks that come with a use of
different architectural patterns, e.g., process control loops or interactive systems
[2]. We have defined risk issue questionnaires (RIQs) for a number of architec-
tural patterns that are frequently used in critical systems. Such a RIQ contains
a list of issues that are related to specific properties of the system in question.
Examples of issues are whether a sensor could be too slow or an operator could
be malicious. For a given system, all architectural patterns that are contained in
its architecture must be identified and instantiated. The corresponding RIQs are
instantiated, too. For each issue contained in a RIQ, it must be decided whether
it is relevant for the given system or not. The result of applying the RIQ method
is a set of relevant issues for a given system that constitute risks and that has to
be fed into the subsequent risk management process. These issues are expressed
in natural language.

However, it is of advantage to use models for risk management. Models are
often more concise than natural language text, and they can be equipped with
formal semantics. They are machine-processable and can evolve during the risk

1 Note that ISO 31000 also mentions positive consequences. However, such conse-
quences do not require any treatment and are hence not taken into account in our
work.

116 M. Heisel and M. Wagner

Fig. 1. CORAS notation for threat diagrams

management process. CORAS [3] is a prominent example of a model-based risk
management method and notation.

In this paper, we connect the RIQ method to CORAS. In this way, we pave
the way for performing steps 3) - 5) of the risk management process in a model-
based manner. To this end, we equip the RIQs with modeling hints that propose
a way how to model the relevant issues in a CORAS threat diagram. Besides
preparing the later steps of risk management, the models allow us to define formal
validation conditions (VCs) for the developed models and to check them with
tool support. Such VCs are necessary conditions for the models to be sensible.

We present the necessary background in Sect. 2, followed by our risk modeling
method in Sect. 3. The method is applied on an example in Sect. 4. Section 5
describes our support tool and how it can be used to check validation conditions.
We discuss related work in Sect. 6 and conclude in Sect. 7.

2 Background

We briefly introduce CORAS threat models and summarize the RIQ method [2].

2.1 CORAS

CORAS [3] is a method for risk management that is equipped with a graphical
notation to represent different aspects of risk modeling. We do not discuss the
CORAS steps, which cover the entire risk management process. CORAS uses
different kinds of diagrams, of which we only use threat diagrams. Figure 1 shows
the notational elements that we will use in our modeling method, drawn with our
tool (see Sect. 5). Table 1 explains these elements and introduces abbreviations
for them that we will use in the modeling hints.

For further risk analysis, the links in a threat diagram can be annotated, e.g.,
with likelihoods. We will not use such annotations, however, in our method.

2.2 RIQ Method

We summarize the risk identification method introduced earlier [2]. It is based on
architectural patterns such as the pattern for process monitoring given in Fig. 2.

Pattern-Based Risk Identification for Model-Based Risk Management 117

Table 1. CORAS notational elements

Element Abbr. Definition taken from [3]

asset — something to which a party assigns value and
hence for which the party requires protection

unwanted incident UI event that harms or reduces the value of an
asset

threat — potential cause of an unwanted incident

threat scenario TS chain or series of events that is initiated by a
threat and that may lead to an unwanted
incident

vulnerability V weakness, flaw or deficiency that opens for, or
may be exploited by, a threat to cause harm or
to reduce the value of an asset

Element Abbr Explanation (not contained in [3])

human threat (deliberate) HTD person who attacks the system

human threat (accidental) HTA person who inadvertently causes harm

non-human threat NHT technical element that causes harm

Fig. 2. Architectural Pattern: Process Monitoring

Process monitoring systems use sensors to monitor a part of the physical world
to inform operators about its state, using a display. Based on the displayed
information, the operator may take actions that are outside the scope of the
system to be analyzed.

Each risk is associated with unwanted incidents that harm an asset, and a
risk level, often expressed by the likelihood of that incident to happen, com-
bined with the severity of its consequences. The issues in the RIQs describe
conditions or scenarios that might lead to harm of an asset. We use the term
“issue” because we do not want to distinguish between threats, vulnerabilities,
attacks, etc. Everything that can lead to harm of an asset can be listed in a RIQ.
This means that all kinds of risks can be identified using RIQs, in particular,
security, safety, fault tolerance and even non-technical risks.

We have defined RIQs for a number of well-established architectural patterns
used in the context of critical systems, in particular, process control systems,

118 M. Heisel and M. Wagner

interactive systems, persistent storage systems, and communication channels. It
is our goal to obtain a larger catalog of RIQs in the future.

RIQ for Process Monitoring. We present in RIQ 1 an excerpt of the RIQ for
process monitoring systems. The complete RIQ can be found in [2]. The numbers
of the RIQ items refer to the numbers used in Fig. 2. Each entry describes a
possible risk, and the question to be answered is whether the described risk issue
is relevant for the system under analysis or not. Each high-level issue (numbered
1–8) may contain sub-issues that further detail the high-level issue. If a high-level
issue is assessed not to be relevant, its sub-issues are irrelevant, too. The RIQ
also contains the modeling hints that will be explained in Sect. 3 (indicated by
“→” and using the abbreviations introduced in Table 1). We completely present
items 1,2, and 7 of the RIQ. The other items are grayed out, and their sub-items
are not shown.

RIQ 1 Process Monitoring (PM), with modeling hints

1 Sensors cannot read entities from physical world properly (even though they function
as intended) → TS
1.1 Sensors not correctly installed→ V
1.2 Inappropriate Sensors → V

1.2.1 Sensors not fast enough → V
1.2.2 Sensors do not measure what is needed → V

2 Sensor delivers wrong (HAZOP2) values → TS
2.1 Sensor is single point of failure (insufficient redundancy) → V
2.2 Sensor not sufficiently physically protected against environmental influences → V
2.3 Sensor not sufficiently physically protected against attacks → V
2.4 Sensor needs maintenance / repair → V
2.5 Sensor is hacked → TS
2.6 Sensor values do not reflect reality → V

3 Monitoring Software receives wrong (HAZOP) values from sensors → TS
4 Monitoring Software does not behave as intended, i.e., does not conform to its speci-

fication → TS
5 Display receives wrong (HAZOP) commands → TS
6 Display does not function correctly (HAZOP) → TS
7 Operator does not react as intended → TS

7.1 Operator cannot correctly interpret displayed information → TS
7.1.1 Too much information given → V
7.1.2 Not enough information given → V
7.1.3 Irrelevant information given → V
7.1.4 Information incomprehensible → V

7.2 Problems with Operator → TS
7.2.1 Operator is malicious → HTD
7.2.2 Operator is naive / careless / not concentrated → V
7.2.3 Operator is mistaken about the situation / has wrong information → V
7.2.4 Operator is not authentic → HTD

7.3 Operator cannot act as intended → TS
8 Unexpected condition in physical world → TS

2 When we use the term “HAZOP”, we mean that the HAZOP guide-words [4] should
be considered to determine what “wrong” values may be, e.g. no, early, reverse, etc.

Pattern-Based Risk Identification for Model-Based Risk Management 119

Risk Identification Method. To perform risk identification using RIQs, the
architectural patterns used in the system under analysis are identified. For each
occurrence of such a pattern, the corresponding RIQ is instantiated accordingly.
Each instantiated RIQ is then processed by determining for each issue whether
it is relevant or not, and documenting the reasons for the answers. The resulting
list of relevant issues is the final result of the risk identification method.

3 Modeling Method

The contribution of this paper is to enhance the RIQ method in such a way that
the processed RIQs can be used to systematically set up CORAS threat dia-
grams. Thus, we achieve a seamless transition to model-based risk management.
Furthermore, we equip threat diagrams with a rigorous semantics by defining
a metamodel the developed models must adhere to. Based on this metamodel,
formal validation conditions can be defined, which can be checked with tool
support. This helps to assure the quality of the developed threat models and
contributes to the overall quality of the risk management results.

To prepare for the modeling method, the RIQ method must be adjusted
in two ways. First, when processing a RIQ, it must be specified what asset is
harmed when an issue becomes relevant. Second, the RIQs must be equipped
with modeling hints. These hints specify which model element should be chosen
for incorporating a relevant issue in the developed threat model.

We first discuss the modeling hints and then describe the modeling method
in more detail.

3.1 Defining Modeling Hints

The modeling hints are heuristics that have been validated by various examples.
Our method is not automatic but gives guidelines that usually will lead to a
meaningful threat model. If the modeler finds a situation where the modeling
hint is not appropriate, a more appropriate way of modeling the given issue
should be chosen.

The following modeling elements are at our disposition: unwanted incident,
threat scenario, vulnerability, as well as three different kinds of threats (see
Table 1. There are very few unwanted incidents used as modeling hints. This is
because the possible assets are so diverse that unwanted incidents can hardly
be identified on a pattern level. An exception is the RIQ for persistent storage.
There, we have issues corresponding to the confidentiality, integrity, or availabil-
ity of the persistent storage. Compromising one of the CIA properties is an issue
for which an unwanted incident is proposed as a modeling element.

High-level issues of RIQs are often modeled as threat scenarios. For example,
all issues 1 – 8 in RIQ 1 have “TS” as a modeling hint. This is because threat
scenarios indicate that there is some behavior in the system that may lead to an
unwanted incident harming an asset, and hence, a risk is present. For example,

120 M. Heisel and M. Wagner

issue 2 of RIQ 1 “Sensor delivers wrong (HAZOP) values” describes a behavior
that can constitute a risk.

Sometimes, however, a RIQ issue may correspond more to a condition than
to a behavior. In this case, the modeling hint is a “V”. For example, issue 2.1 of
RIQ 1 “Sensor is single point of failure (insufficient redundancy)“ is modeled as
a vulnerability, because it points out a design flaw that in itself does not harm an
asset, but that can enable a situation where fault tolerance is not given, which
may lead to a failure of the system.

Still other issues are appropriately modeled as threats. For example, a
malicious operator (see issue 7.2.1 of RIQ 1) should be modeled as a human
threat (deliberate), and suitable vulnerabilities should be identified that enable
the threat scenario “Problems with Operator” corresponding to issue 7.2 (see
Sect. 3.2). Note that the cases of a careless and a malicious or fake operator
are modeled differently. Whereas a careless operator constitutes a vulnerabil-
ity to the system, a malicious or fake operator constitutes a threat for which
vulnerabilities should be identified.

3.2 How to Set up Threat Models from RIQs with Modeling Hints

Starting point for constructing a threat model is an initial threat model consist-
ing of all identified assets that are subject to risk and the unwanted incidents
harming these assets. That information must be elicited before starting risk iden-
tification and hence is not subject of this paper. Furthermore, an instantiated
RIQ must be given, together with the information which asset is harmed for
each issue that is deemed relevant.

The model is constructed by incorporating all relevant issues and sub-issues
one by one, using the modeling hints. Whenever a new model element is intro-
duced following a modeling hint, the model must be completed in two ways:
first, a path in the model must be constructed that starts from the new model
element and ends in an unwanted incident, which in turn harms the asset that
was specified when the issue was assessed as relevant. This means, we connect
the model element “to the right”. Second, a path must be constructed that starts
from a threat and leads to the new model element. This means, we complete the
model “to the left”. If the new model element is itself a threat, then is does not
need to be completed “to the left”, but a vulnerability should be searched for –
if not yet present – that allows the threat to cause a threat scenario.

The following detailed method describes how to introduce new model ele-
ments according to the modeling hints contained in a RIQ. To decide what
elements should be introduced, pairs of modeling hints are considered, namely
an issue i and one of its sub-issues i.j. Depending on different combinations
of modeling hints for i and i.j, the method gives guidelines how to add new
elements to the intermediate model. In particular:

1. For each relevant issue, collect the relevant sub-issues.
2. If an issue is relevant, but none of its sub-issues is, use the modeling hint to

model the issue, complete it “to the left” and connect it “to the right”.

Pattern-Based Risk Identification for Model-Based Risk Management 121

3. For each relevant sub-issue:
(a) If the modeling hint proposes a vulnerability, and the super-issue is a

threat scenario, model the sub-issue as a vulnerability that leads to the
threat scenario. Identify the threat that can exploit the vulnerability.

(b) If the modeling hint proposes a vulnerability, and the higher-level issue is
also a vulnerability, do not model the higher-level vulnerability. Instead,
connect the new vulnerability to a suitable threat scenario as described
in Step 4a.

(c) If the modeling hint proposes a threat scenario, model the sub-issue as a
threat scenario.

i If the super-issue is a threat scenario, probably the super-issue does
not have to be modeled at all. This is because the sub-issue is a special
case of the super-issue and gives more information about the risk than
the super-issue.

ii If the super-issue is modeled as an unwanted incident, introduce the
unwanted incident (if not yet present), and connect the threat scenario
to the unwanted incident.

(d) If the modeling hint proposes a threat, model the sub-issue as a threat,
identify a vulnerability if possible, and connect it to a suitable threat
scenario, which will often be representing the super-issue.

(e) We have not yet found a situation where the modeling hint proposes an
unwanted incident for a sub-issue, but only for top-level issues.

4. For each newly introduced threat scenario:
(a) Connect the threat scenario to an unwanted incident, either directly, or

indirectly. In the second case, the newly introduced threat scenario can
lead to an already existing threat scenario, or one can identify one or
more new threat scenarios to which the new one leads and that lead to
an unwanted incident.3.

(b) Complete the model “to the left”, i.e. identify a threat that may cause
the threat scenario (new one or re-use existing one). If possible, identify
a vulnerability that makes the threat scenario possible. Otherwise, not
vulnerability will be given in the model.

Note that the method relies on the human understanding of the introduced
modeling elements. It is possible that the threat scenario arising from the model-
ing hint does not sufficiently explain why the threat scenario can lead to harm for
an asset. If this is the case, new threat scenarios must be introduced that clarify
how the asset can be harmed in the context of the issue under consideration.

In performing the above method, we obtain separate models for each instan-
tiated RIQ. When several RIQs need to be processed, they may have common
elements, which must have the same name. Hence, it may be necessary to rename
model elements4. With the help of our tool, different models obtained from dif-
ferent RIQs can be merged into one final threat model.
3 The chain of threat scenarios must explain how the newly introduced threat scenario

can harm the asset, which has been specified when marking the issue as relevant.
4 It is not mandatory that the names of the modeling elements reflect the wording of

the instantiated RIQs, but usually it is useful for traceability reasons.

122 M. Heisel and M. Wagner

3.3 Validation Conditions

We define various validation conditions (VCs) for the modeling method described
in Sect. 3.2. Such validation conditions may refer to RIQs, threat models, or the
relation between RIQs and threat models. In this paper, we present validation
conditions that refer to the threat models developed with our method.

Since CORAS threat models can be regarded as directed graphs, formal
validation conditions referring to paths in such a graph can be identified. Some
examples are:

1. Each path in the final model starts from a threat and ends at an asset.
2. Each path not only ends in an asset, but there is an unwanted incident imme-

diately before the asset in the path.
3. For each asset for which a risk was identified, there is a path that ends in it.

How the above VCs can be checked with tool support is discussed in Sect. 5.

4 Example

We now illustrate the modeling method explained in Sect. 3 by the same example
as used in our previous paper [2]. We do not explain why we assessed some issues
as relevant and others as non-relevant, but refer the interested reader to [2]. The
example is a patient monitoring system in an intensive care unit (ICU) of a
hospital, taken from [5]. The informal description is as follows:

A patient monitoring program is required for the intensive-care unit of a
hospital. Each patient is monitored by an analog device which measures
factors such as pulse, temperature, blood pressure, and skin resistance.
The program reads these factors on a periodic basis (specified for each
patient) and stores the factors in a database. For each patient, safe ranges
for each factor are also specified by medical staff. If a factor falls outside
a patient’s safe range, or if an analog device fails, then the nurses’ station
is notified.

The assets that are relevant for this system are the health of the patient,
which is safety-related, and the confidentiality of the patients’ data, which is
security-related.

Figure 3 shows the part of the system architecture that is an instance of the
Process Monitoring pattern. Instances of three other patterns are also contained
in the architecture, see [2]. We apply our modeling method to selected issues
of the RIQ for process monitoring in RIQ 2, using the instantiated RIQ 1. We
again consider issues 1,2, and 7, as in Sect. 2.2. Issues that are assessed to be
irrelevant or do not belong to issues items 1,2, or 7, are grayed out.

RIQ 2 Instantiated RIQ PM for Patient Monitoring System, with modeling hints

1 Analog Devices cannot read factor values properly → TS

Pattern-Based Risk Identification for Model-Based Risk Management 123

Fig. 3. Process Monitoring Part of Patient Monitoring System

1.1 Analog Devices not correctly installed → V
1.2 Inappropriate Analog Devices → V

2 Analog Devices deliver wrong or no values → TS
2.1 Analog Devices are single point of failure (insufficient redundancy) → V
2.2 Analog Devices not sufficiently physically protected against environmental influ-

ences → V
2.3 Analog Devices not sufficiently physically protected against attacks → V

3 Monitor Machine receives wrong (HAZOP) values from sensors → TS
4 Monitor Machine does not behave as intended, i.e., does not conform to its specification

→ TS
5 Nurses’ Station receives wrong (HAZOP) commands → TS
6 Nurses’ Station does not function correctly (HAZOP) → TS
7 Nurse does not react as intended → TS

7.1 Nurse cannot correctly interpret displayed information → TS
7.2 Problems with Nurse → TS

7.2.1 Nurse is malicious → HTD
7.2.2 Nurse is naive / careless / not concentrated → V
7.2.3 Nurse is mistaken about the situation / has wrong information → V
7.2.4 Nurse is not authentic → HTD

All issues are related to the asset Patient Health with the associated unwanted
incident Exceeded limits not noticed and not treated. The model taking into
account issues 1,2, and 7 is derived as follows. The final threat model is shown
in Fig. 4.

Issue 1 Our method tells us to introduce a threat scenario 1. Analog Devices
cannot read factor values properly5 with a vulnerability 1.1 Analog Devices not
correctly installed. The corresponding threat is a human threat (accidental) Med-
ical Staff. However, the threat scenario 1. Analog Devices cannot read factor
values properly does not sufficiently explain why the Patient Health is harmed.
Therefore, we introduce a new threat scenario Alarm cannot be determined.

Issue 2 Our method tells us to introduce a threat scenario 2. Analog Devices
deliver wrong or no values with a vulnerability 2.3 Analog Devices not suffi-
ciently physically protected against attacks. Here, the envisaged scenario is that

5 To better map the model with the RIQ items, we include the number of the RIQ
issue in the name of the modeling element.

124 M. Heisel and M. Wagner

Fig. 4. Developed CORAS Tool, showing threat model for Patient Monitoring System

a patient in a confused mental state might want to get rid of the analog devices
and manipulates them accordingly. Hence, we introduce an intermediate threat
scenario Patient manipulates Analog Devices, and a human threat (accidental)
Patient. To connect the new threat scenario “to the right”, we introduce a threat
scenario Wrong values used to determine alarm to clarify how wrong or no sensor
values may harm the Patient Health.

Issue 7 According to the method Step 3(c)i, we do not introduce a threat
scenario corresponding to the top-level issue but rather to the sub-issue 7.2.
Sub-issues 7.2.1, 7.2.2, and 7.2.4 are treated as described in Steps 3a and 3d.
To connect the new threat scenario 7.2 Problems with Nurse “to the right”,
we introduce the threat scenario Nurse does not go to see patient (We do not
consider a scenario where a malicious nurse actively harms a patient, because
this would not be related to the operation of the monitor machine).

The final model, as shown in Fig. 4, has been developed systematically by
following the modeling method of Section 3 and using the modeling hints of
the instantiated RIQ 2. It fulfills all the validation conditions enumerated in
Sect. 3.3 and can now be used as the basis for the further steps of a model-based
risk management process.

Pattern-Based Risk Identification for Model-Based Risk Management 125

5 Tool Support

In this section, we introduce the used CORAS metamodel [3] and our prototype
tool. We implement the metamodel in the Eclipse Modeling Framework (EMF)6.
The tool is implemented in Sirius7 with Java Services. Both frameworks are open
source. EMF provides an editor to create metamodels which are similar to UML.
EMF automatically creates Java code based on the metamodel. Sirius builds on
that Java code. Sirius uses the language Acceleo Query Language (AQL)8, which
is similar to the Object Constraint Language(OCL)9. Sirius makes it possible to
easily create editors and provides default actions, such as creating, deleting,
and editing elements. We use the ObeoDesigner10 as an Integrated Development
Environment (IDE). There are three levels in our tool:

– Metamodel The metamodel is realized in EMF. It defines the semantics for
any CORAS model which can be created with our tool. It is part of the tools’
backend. The metamodel is not relevant for the user of the tool.

– Model Instance Each model instance is an instance of the metamodel and
describes a concrete CORAS model. The model instance can be created and
edited with our graphical editor.

– Graphical Representation The model instance can be represented as a
CORAS threat diagram. We specify different instruments to create and mod-
ify model elements based on the graphical representation.

5.1 Metamodel

The basis of our metamodel is the CORAS metamodel [3]. Since we focus on
CORAS threat diagrams, we do not need the entire CORAS metamodel, but
leave out some classes and associations. The main class of our metamodel shown
in Fig. 5 is CORASModel, containing Diagrams, of which ThreatDiagram is an
instance. We add two associations to the class Diagram to ensure that we can
assign Relation(s) and Element(s). For ThreatDiagrams, the association ends are
named relationsDiagram and elementsDiagram, respectively. These additional
associations are necessary because the result of our modeling method consists
of multiple ThreatDiagrams, namely one for each RIQ that has been processed.
However, not all diagrams share the same Relations and Elements.

5.2 Graphical Editor

The graphical representation of our tool builds on the Sirius framework. A
screenshot of the tool is shown in Fig. 4. In the lower part, you can see the

6 https://www.eclipse.org/modeling/emf/, accessed January 11, 2023.
7 https://www.eclipse.org/sirius/, accessed January 11, 2023.
8 https://www.eclipse.org/acceleo/documentation/, accessed January 11, 2023.
9 https://www.omg.org/spec/OCL/, accessed January 11, 2023.

10 https://www.obeodesigner.com/en/, accessed January 11, 2023.

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/documentation/
https://www.omg.org/spec/OCL/
https://www.obeodesigner.com/en/

126 M. Heisel and M. Wagner

Fig. 5. Modified CORAS Metamodel; abstract classes shown in gray

property view. Each diagram element has a property view, where its attributes
are represented and editable.

The Palette, on the right-side of Fig. 4, consists of the instruments to create
new diagram elements. For each metamodel class except the main class and the
abstract classes, an instrument to create that element is available. The creation
involves a dialog, where the necessary information for an element can be entered,
e.g., the name of the element. If an element of the class Relation should be cre-
ated then the user needs to click first on the source of the relation and then
on the target of the relation. The creation is semantically checked through the
metamodel. For example, the instrument for Initiates allows only diagram ele-
ments of the class Threat as source elements and diagram elements of the class
CoreElement as destinations.

A right-click in the diagram window opens a context menu, where the vali-
dation conditions can be checked using ’Validate diagram’.

5.3 Implemented Validation Conditions

All validation conditions of Sect. 3.3 are implemented in the tool. Here, we only
describe the implementation of the following validation condition:

For each asset, there is a path that ends in it.
That validation condition is formalized in AQL as follows:

Context : : ThreatDiagram
aql : s e l f . re lat ionsDiagram−> f i l t e r (co ras : : Impacts) .

t a rge tRe la t i on −>i n c l ud e sA l l (s e l f . elementsDiagram−> f i l t e r (
co ras : : Asset))

In this AQL predicate, ’self’ is an instance of the class ThreatDiagram. We con-
sider the Relations assigned to the ThreatDiagram and filter them for instances
of the class class Impacts. This Relation is the only one which has as a target of
class Asset.

Pattern-Based Risk Identification for Model-Based Risk Management 127

With ’targetRelation’ we select all instances of the class Asset which have
an input relation. After that, we check whether the following elements are in
that set, expressed by ’includesAll’. We select all Elements which are assigned
to the ThreatDiagram and filter them so that the set only contains Elements
that are an instance of the class Asset. If all Elements of the second set are
included in the first one, then we can conclude that all Assets are used in the
ThreatDiagram.

6 Related Work

The earlier paper [2] contains an extensive discussion of related work on risk
identification, which is also relevant for this paper. We discussed a number of
vulnerability enumerations that are available on the Internet, e.g., the Common
Vulnerability Scoring System (CVSS)11. These enumerations mostly focus on
cyber-security, which is a narrower scope than the one we address. Security is
also the focus of pattern-based approaches to risk analysis discussed in [2].

More approaches to security risk analysis are discussed in the literature
review by Tuma et al. [6]. All of these are more specialized than ours. Mayer et
al. [7] use a similar metamodel as we do and connect security risk analysis with
enterprise architecture management. Their analysis is confined to security and
rather takes a business process perspective than a system architecture perspec-
tive. It could complement our method.

The security risk assessment method proposed by Gol Mohammadi et al.
[8] uses diagrams of the system architecture to exhibit security risks, but is
focused on cloud systems. Maidl et al. [9] propose a metamodel for expressing
system architectures that is specifically defined to support the security analysis
of cyber-physical systems.

Shaked et al. [10] take a completely different approach than ours to cyber-risk
identification, which is based on AI techniques as well as ontologies. They aim
to automate cyber risk identification by integrating information from different
resources. Our method does not strive for automation, but for systematization
of risk identification.

As far as safety risks are concerned, established methods such as Hazard and
Operability Study (HAZOP) [4], as well as the more recent approach System-
Theoretic Process Analysis (STPA) [11] have been discussed in [2]. However,
none of these methods is applicable to various kinds of risks, and none produces
a model that can serve as a basis for the subsequent steps of risk management.

In contrast, Beckers et al. [12] have proposed a model-based method for
Hazard Analysis and Risk Assessment (HARA) in the automotive sector, also
using guide-words and taking ASILs (automotive safety integrity levels) into
account. This method deals with risk identification, and it produces models,
but is specialized on safety in the automotive sector. The risk analysis method
presented by Neema et al. [13] is also focused on a specific domain, namely
railway systems.
11 https://www.first.org/cvss/, accessed January 6, 2023.

https://www.first.org/cvss/

128 M. Heisel and M. Wagner

The CORAS method [3] contains a risk identification phase, but that phase
is performed by brainstorming. Our method serves to replace the brainstorming
process by a more systematic and repeatable method.

In summary, we can note that there are many risk analysis methods special-
ized to security. Safety-related methods, on the other hand, are often special-
ized to application domains, taking into account relevant safety standards. Even
though CORAS publications mostly deal with security, CORAS is a general risk
analysis method and notation, and therefore, is a good candidate to complement
the RIQ method, which agnostic to the kind of risk that is identified with it.

7 Conclusion and Outlook

With the RIQ method [2] and the modeling method presented in this paper, we
have established a solid basis to identify risks for critical systems, for which an
architecture is given. That architecture must contain architectural patterns for
which a RIQ is defined. The identified risks are not confined to security risks or
any other kind of risk.

By developing risk models in a systematic way, we prepare the ground for
the subsequent phases of a model-based risk management process. The approach
does not depend on CORAS and its specific modeling notation. If a different
notation should be used, the modeling hints and the metamodel of the tool, as
well as the used icons, need to be adjusted. But the procedure would remain
largely untouched, because the notions of risk management are shared among
different risk management techniques.

Using models to represent the artifacts of a risk management process makes
it possible to define formal validations conditions that can be checked with tool
support. This can significantly improve the quality of the models and hence the
entire risk management process.

In the future, we intend to enhance our catalog of available RIQs, and we want
to identify and implement further validation conditions. As already mentioned,
such validation conditions could also refer to RIQs without considering models,
or to relations between RIQs and models. To this end, the metamodel needs to
be extended to also cover RIQs and their relations to models.

Acknowledgments. We thank Jens Leicht, Thomas Santen and Roman Wirtz for
their useful comments on this work.

References

1. International Organization for Standardization: ISO 31000:2018 Risk management
- Principles and guidelines. Standard (2018)

2. Heisel, M., Omerovic, A.: Risk identification based on architectural patterns.
In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.)
QUATIC 2021. CCIS, vol. 1439, pp. 341–355. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85347-1 25

https://doi.org/10.1007/978-3-030-85347-1_25
https://doi.org/10.1007/978-3-030-85347-1_25

Pattern-Based Risk Identification for Model-Based Risk Management 129

3. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis, The CORAS
Approach. Springer (2010). https://doi.org/10.1007/978-3-642-12323-8

4. IEC: Hazard and Operability Studies (HAZOP studies). IEC 61882, International
Electrotechnical Commission (IEC) (2001)

5. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Longman Publishing Co., Inc. (2001)

6. Tuma, K., Çalikli, G., Scandariato, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144, 275–294 (2018)

7. Mayer, N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., Wieringa, R.J.: An
integrated conceptual model for information system security risk management sup-
ported by enterprise architecture management. Softw. Syst. Model. 18(3), 2285–
2312 (2019)

8. Mohammadi, N.G., Goeke, L., Heisel, M., Surridge, M.: Systematic risk assessment
of cloud computing systems using a combined model-based approach. In Filipe, J.,
Smialek, M., Brodsky, A., Hammoudi, S., eds.: Proceedings of the 22nd Interna-
tional Conference on Enterprise Information Systems, ICEIS 2020, Prague, Czech
Republic, 5–7 May 2020, vol. 2, pp. 53–66. SCITEPRESS (2020)

9. Maidl, M., Wirtz, R., Zhao, T., Heisel, M., Wagner, M.: Pattern-based modeling
of cyber-physical systems for analyzing security. In Sousa, T.B., ed.: Proceedings
of the 24th European Conference on Pattern Languages of Programs, EuroPLoP
2019, Irsee, Germany, 3–7 July 2019, pp. 23:1–23:10. ACM (2019)

10. Shaked, A., Margalit, O.: Sustainable risk identification using formal ontologies.
Algorithms 15(9), 316 (2022)

11. Leveson, N.: Engineering a safer world : systems thinking applied to safety. MIT
Press (2011)

12. Beckers, K., Frese, T., Hatebur, D., Heisel, M.: A structured and model-based
hazard analysis and risk assessment method for automotive systems. In: Procs of
the 24th IEEE International Symposium on Software Reliability Engineering, pp.
238–247. IEEE Computer Society (2013)

13. Neema, H., Wang, L., Koutsoukos, X.D., Tang, C.Y., Stouffer, K.: Model-based
risk analysis approach for network vulnerability and security of the critical railway
infrastructure. In David, D.P., Mermoud, A., Maillart, T. (eds.).: Critical Informa-
tion Infrastructures Security - 16th International Conference, CRITIS 2021, Lau-
sanne, Switzerland, 27–29 September 2021, Revised Selected Papers, vol. 13139.
LNCS, pp. 79–98. Springer (2021). https://doi.org/10.1007/978-3-030-93200-8 5

https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-030-93200-8_5

Software Model Checking of Interlocking
Programs

Phillip James , Faron Moller , and Markus Roggenbach(B)

Swansea University, Swansea, UK
{p.d.james,f.g.moller,m.roggenbach}@swansea.ac.uk

Abstract. In this paper, we report and reflect on successful technology
transfer from Swansea University to Siemens Mobility over the years
2007–2022. This transfer concerns formal software verification technology
for interlocking computers. It spans over Technology Readiness Levels
TRL 1–7 and was reported on in two REF Impact Case Studies, in 2014
and 2021 [17,18].

To Jan
Who shows us that
excellence in research, both foundational and applied, and
technology transfer go hand in hand.

1 A Signalling Problem and Our Approach to Solving It

Interlockings are safety-critical systems which form an essential part of rail con-
trol systems. They are often realised as programmable logic controllers pro-
grammed in the language Ladder Logic, cf. IEC standard 61131 [8]. In the con-
text of rail signalling systems, they provide a safety layer between a (human or
automatic) controller and the physical track which guarantees safety principles
such as: before a signal can show proceed, all train detection devices in the route
indicate the line is clear. Rail authorities such as the UK Rail Safety and Stan-
dards Board as well as rail companies such as Siemens Mobility have defined
such safety principles (currently, we work with about 350 principles) that shall
guarantee safe rail operation. This poses the research question of how one can
verify that a given program written in Ladder Logic fulfils a safety property, i.e.,
a logical representation of a safety principle.

Our journey to answer this question went, up to now, through three phases,
cf. Fig. 1. A number of themes stayed invariant in all of them, though each phase
shed its specific light on them: how to ensure faithful models of the software
and its desired properties? what program size can be treated? who can use the
produced artefacts? how can different components interact with each other?

The first phase concerns Theoretical Foundations, cf. Sect. 2. In terms of arte-
facts involved, all are paper-based documents, speaking about faithfully repre-
senting Ladder Logic programs and their properties in propositional logic and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 130–146, 2023.
https://doi.org/10.1007/978-3-031-40132-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_9&domain=pdf
http://orcid.org/0000-0002-4307-649X
http://orcid.org/0000-0001-9535-8053
http://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-031-40132-9_9

Software Model Checking of Interlocking Programs 131

Fig. 1. The three phases of our journey.

first order logic. Only programs of a few lines length can be treated manually.
Academics can work out examples. It is key to preserve semantics between the
different artefacts (logics and automata), cf. Example 1 below.

The next phase was on building a 1st Prototype for carrying out Aca-
demic Experiments. As a proof of concept, selected rail-specific safety principles
were modelled in first order logic and transformed into propositional formu-
lae. Abstraction through program slicing turned out to be a necessity in order
to verify interlocking programs of small railway stations with the SAT solvers
and computing power available in 2010. The 1st Prototype could be operated
mainly by the original tool developers. Its components were written in different
languages with data exchange through text files.

The performance of the 1st Prototype was promising enough to support devel-
opment of a 2nd Prototype, starting a process of Technology Transfer, i.e., for
performing verification in the industrial setting of Siemens Mobility. Safety prop-
erties were systematically encoded in first order logic, their transformation to
propositional logic was proven to be semantics-preserving using a temporal first
order logic. In terms of scalability, optimised encodings of the safety properties
were developed. The 2nd Prototype was developed with Rail Engineers as users
in mind. All software was written in C� and bespoke Siemens Mobility interfaces
were used to guarantee interoperability with existing Siemens Mobility tools.

Utilizing the notion of Technology Readiness Levels (TRLs)1, the rest of the
paper describes our journey through these three phases. The paper concludes
with a perspective on the final phase: establishing an improved 2nd Prototype
as a standard tool in interlocking design.

This paper can be read in different ways. The domain expert on Ladder Logic
will find out about concrete, state-of-the-art steps of how to verify Ladder Logic
programs of industrial size. The formal methods expert or industrial research
manager will find a report on a successful technology transfer together with
reflections on lessons learnt.

An early version of this paper appeared as an extended abstract in the pro-
ceeding of Isola’21 [3].

1 Technology Readiness Levels, HORIZON 2020, Annex G.

132 P. James et al.

2 Theoretical Foundations

We discuss the theoretical foundations of our first prototype. This includes basic
principles (TRL1) and the formulation of a technology concept (TRL2).

2.1 Textbook Knowledge on Verifying Finite Transition Systems

The following definition is standard:

Definition 1. Let x̄ = (x1, . . . , xn), x̄′ = (x′
1, . . . , x

′
n), and ī = (i1, . . . , im) be

vectors of Boolean variables, for some m,n ≥ 0. Given propositional formulae
I(x̄) (the initialisation condition) and T (x̄, ī, x̄′) (the transition condition), we
define a labelled transition system S = (S,−→, Init) as follows:

• The set of all Boolean vectors S = {0, 1}n is the set of states;
• −→ ⊆ S × {0, 1}m × S is the transition relation given by

s
i−→ s′ :⇐⇒ T (s, i, s′) evaluates to 1;

• Init = {s ∈ S | I(s) evaluates to 1}.

We say that a state s is reachable in S, if there exists a (possibly empty)
sequence of transitions from a state init ∈ Init to s. We write Reachable(S) for
the set of reachable states of S.

Given a propositional formula P (x̄), we say the transition system S has
safety property P if P (s) evaluates to 1 for all s ∈ Reachable(S).

Fig. 2. A finite transition system

Example 1. Figure 2 shows the transition system defined by the initialisation
condition I = x ∧ y and the transition condition

T =
(
x′ ←→ (¬x ∧ y)

) ∧ (
y′ ←→ y

) ∧ (
z′ ←→ a ⊕ y′)

Software Model Checking of Interlocking Programs 133

over the vectors (x, y, z), (x′, y′, z′) and (a) of Boolean variables. The initial
states are marked by double circles. Considering the property P = x∨ y, we can
see that it holds for all reachable states; however, the property Q = y ∧ z does
not hold, as, e.g., the state 010 is reachable.

The following Theorem attests to the fact that various verification methods
can be applied to such transition systems.

Theorem 1. Let S be a transition system as in Definition 1, and let P (x̄) be a
propositional formula representing a safety property.

Inductive Verification: Provided
• I(x̄) −→ P (x̄) and
• P (x̄) ∧ T (x̄, ī, x̄′) −→ P (x̄′)

hold, then S has safety property P .
Inductive Strengthening: Let Inv(x̄) be a propositional formula such that

Inv(s) evaluates to 1 for all s ∈ Reachable(S). Provided
• I(x̄) −→ P (x̄) and
• P (x̄) ∧ Inv(x̄) ∧ T (x̄, ī, x̄′) −→ P (x̄′)

hold, then S has safety property P .
Bounded Model Checking: If S has safety property P , then for all k ≥ 0:

I(x̄) ∧ T (x̄, ī, x̄′) ∧ T (x̄′, ī′, x̄′′) ∧ · · · ∧ T (x̄(k−1), ī(k−1), x̄(k)) −→ P (x̄(k)).

(In the above, given a vector of boolean variables z, we denote by z̄(m) a vector
in which each variable has m prime symbols.)

Applying Theorem 1 to Fig. 2, we observe the following.

• Inductive Verification cannot be used to show that S has property P , as it
considers all states rather than only reachable states; this over-approximation
provides a false positive resulting from the unsafe state 001 being reachable
from the safe but unreachable state 101.

• Inductive Strengthening can be used to show that S has property P , using
the invariant Inv = ¬((x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ ¬z)).

• Bounded Model Checking can be used to show that S does not have the
property Q: I(x̄)∧T (x̄, ī, x̄′) → Q(x̄′) does not hold as I(110) evaluates to 1,
T (110, 0, 010) evaluates to 1, but Q(010) evaluates to 0.

The three verification methods listed in Theorem 1 can be decided utilising
SAT solving. All conditions listed are of the form |= ϕ for some propositional
formula ϕ, i.e., we need to determine if a formula ϕ is valid. This is equivalent
to determining if ¬ϕ is satisfiable.

Definition 1 and Theorem 1 can be extended to cater for safety properties P
that speak about several consecutive states and also take inputs into account.

134 P. James et al.

2.2 Verifying Propositional Safety Properties of Ladder Logic
Programs

The operation of an interlocking (IXL) can be described in terms of the following
imperative program:

Algorithm 1: PLC Operation
input : Sequence of values
output: Sequence of values

initialisation
while (true) do

read (Input) %% read
State′ ← LadderLogicProgram(Input, State) %% process
write (Output′) & State ← State′ %% update

After initialisation of the system’s state, the IXL runs in a non terminating
loop. This loop consists of three steps: First, the IXL reads Input, a set of values;
based on this Input and the IXL’s current State, utilizing a Ladder Logic pro-
gram, the IXL computes its next state State′ which also includes some Output′

values; finally, the PLC writes Output′ and updates its state.
Ladder Logic, defined in the IEC standard 61131 [8], is a graphical program-

ming language for PLCs. It gets its name from its ladder-like appearance for
programs. We consider a sublanguage of Ladder Logic, which from a mathemat-
ical point of view is a subset of propositional logic.

Definition 2. Let I and C be finite, disjoint sets of Boolean variables, where I
represents input variables and C = {c1, . . . , cn} represents n distinct state/output
variables, from which we define a set of update state/output variables C ′ =
{c′

1, . . . , c
′
n}. A Ladder Logic formula ψ is a propositional formula of the

form
ψ ≡ (c′

1 ↔ ψ1) ∧ (c′
2 ↔ ψ2) ∧ · · · ∧ (c′

n ↔ ψn)

in which, for each i ∈ {1, . . . , n}, vars(ψi) ⊆ I∪{c′
1, . . . , c

′
i−1}∪{ci, . . . , cn}. The

conjuncts of ψ are referred to as rungs; and the restriction on variables ensures
that the update value c′

i of each rung depends only on input variables along with
update values (c′

j with j < i) from earlier rungs and non-update values (ck with
k ≥ i) from the previous cycle.

Formula T from Example 1 is a Ladder Logic formula. Processing program
T with Algorithm 1 runs it through the states as shown in Fig. 2, provided the
initialisation step sets the initial states according to formula I.

This connection allows to apply the verification methods listed in Theorem 1
to prove that a propositional safety property holds for a Ladder Logic program.

2.3 Translating Generic Safety Principles to Track Plan Specific
Ones

Safety principles, as stated by the UK Rail Safety and Standards Board or rail
companies such as Siemens Mobility, are often formulated in tables, with one

Software Model Checking of Interlocking Programs 135

column providing preconditions for an effect such as “movement authority can
be given”, and further columns indicating the kind of route (main or shunting)
to which a rule applies. The table entries are written in natural language. As
such, the first step towards verification is to formalise such safety principles in,
e.g., many-sorted first order logic (FOL) with variables ranging over entities such
as points, signals, routes and track segments, resulting in predicates describing
track layout and system state.

Example 2. The safety principle

For all pairs of distinct routes that share a track segment,
at most one route is set to ‘proceed’.

can be formalised as

∀rt , rt ′ ∈ Route .∀ts ∈ Segment . rt �= rt ′ −→(
(part of(ts, rt) ∧ part of(ts, rt ′)

) −→ ¬(
route set(rt) ∧

route set(rt ′)
)

The following Theorem attests to the fact that, given a concrete track plan,
formulae expressing safety principles in FOL can be translated to a logically
equivalent formula in propositional logic (PL).

Theorem 2.

1. Every formula in FOL is logically equivalent to a formula in prenex normal
form (i.e., a formula is written as a string of quantifiers and bound variables,
followed by a quantifier-free part).

2. Assuming that the carrier of a sort symbol s is freely generated by finitely
many constant symbols c1, . . . , ck : s,

• ∀x ∈ s . ϕ(x) ↔ ϕ(c1) ∧ · · · ∧ ϕ(ck) and
• ∃x ∈ s . ϕ(x) ↔ ϕ(c1) ∨ · · · ∨ ϕ(ck).

The formula in Example 2 is in prenex normal form. Using quantifier replace-
ment as formulated in Theorem 2, a typical resulting subformula looks like:

(
part of(ts54 , rt26) ∧ part of(ts54 , rt27)

)

−→ ¬(
route set(rt26) ∧ route set(rt27)

)

This subformula contains two different kinds of predicates. The first kind
concerns the topology of a track plan: part of(ts54 , rt26). The property, if track
segment 54 is part of route 26, can automatically be evaluated by analysing the
track plan under discussion. The second kind concerns the state of the inter-
locking: route set(rt26). This predicate, including its application to a constant,
corresponds to a variable in the Ladder Logic program under discussion.

Outcomes:

General safety principles can be formalised within in FOL.
Then they are translated into track plan specific safety properties in PL.
Such properties in PL can be verified for Ladder Logic programs.

136 P. James et al.

3 Technology Prototype

Having developed a sound formal basis, our work moved towards developing a
verification process for Siemens Mobility. The main goal here was to provide an
academically built, prototypical tool chain that allowed for experimental proof of
concept (TRL3) and a technology that was validated in the controlled setting of
an academic environment (TRL4). Many groups have worked on similar projects.
As an example, we mention here Groote et al. who, as early as 1995, applied
software verification to a real world interlocking [9].

3.1 Automatising Translations

The first aspect of our tooling concerns transformation between data formats.
For our setting, the following data translations were required:

• Ladder Logic Programs L represented in Siemens Westrace format needed
parsing and automatic translations to our defined transition system ψ(L) (in
a suitable formal format).

• Our first order logic safety principles needed translating into propositional
logic instances specific to the given track plan T .

• A process for translating counterexamples from failed model checking
attempts into a insightful format was needed.

We briefly explore initial tools that were developed, to overcome these challenges.
For detailed reading we refer to [10–13].

The verification tool created by Kanso [12] and James [10] consisted of two
underlying programs, one concerned with verification and the other concerned
with safety properties. The general outline of these tools is shown in Fig. 3
and Fig. 4. The verification component of the tool was predominantly pro-
grammed using Haskell. As input, it takes a Ladder Logic program and a formal
safety condition obtained from the safety condition generator. This program

Fig. 3. Architecture of the verification tool.

Software Model Checking of Interlocking Programs 137

Fig. 4. Architecture of the Safety Condition Generator.

firstly uses a Ladder Logic parser to parse the Ladder Logic program into an
internal abstract syntax for propositional formula. Using this propositional for-
mula, and the safety condition (given by the process below), the program con-
structs either a pair of inductive formulae to be verified, or a bounded model
checking problem. These formulae are then passed to a SAT solver to be verified.
Depending on the result from the SAT solver, the program would then either
report that the system was safe, or provide a counterexample showing the sys-
tem to be unsafe; the counterexample would be run through a series of scripts
to present it in pictorial form for the engineers at Siemens Mobility to study.

From Fig. 4, we can see that there are two inputs to the program for generat-
ing safety conditions to be used in the verification phase. One is an informal first
order safety condition, given in a language defined by Kanso [12]. The other is a
railway plan constructed out of two further parts: a railway topology describing
the layout of the railway via an encoding in Prolog, and a Java mnemonic wrap-
per. The name space of the railway topology used for signals, points and other
entities differs from the name space of the concrete Ladder Logic program. For
this reason, a specific name space mnemonic wrapper was created in Java. This
wrapper is responsible for converting names used in the railway topology into
concrete names used within the Ladder Logic program.

Given these inputs, the safety condition generation program transforms the
informal safety condition into a series of propositional formulae to be verified.
The propositional formulae would contain concrete names instead of the abstract
names that were given in the informal safety condition. For example the word
“point” could be replaced by the actual point “TP101”. These names are gained,
as explained above, from the Prolog encoding and Java wrapper.

3.2 First Academic Experiments

Initial experiments conducted using the produced tool chain were based on two
small interlocking programs (each around 300 rungs in size) and around five
safety principles. The results [10,12] highlighted the following.

• Inductive verification can be successfully applied to verify properties of
‘small’ interlockings, although some properties could not be verified due to

138 P. James et al.

false-positives (see Theorem 1). Strengthening the approach to include k-
induction [10] (also know as temporal induction [5]), which aims to avoid
such false positives, was not feasible due to the size of the problems.

• The bounds that were practically explored using bounded model checking
were fairly limited in size. However, applying bounded model checking allowed
successful error detection (with run times stretching over hours).

• Presenting counterexamples that only included information on the final vio-
lating state were less useful in identifying underlying issues than studying (in
a somewhat laborious manner) counterexample traces produced by bounded
model checking.

3.3 Improving Verification Through Slicing

During the development of these results, it was clear that any potential abstrac-
tions that could be formulated to reduce the size of the state space for verification
would greatly improve the applicability of the tool. The proposed approaches for
the verification of Ladder Logic programs quickly give rise to large formulae to
be verified. As the formula size increases, both the space and time requirements
increase. This increase leads to a rather small bound (approximately 2 000) on the
number of iterations of a Ladder Logic program that could be verified. Hence, in
a somewhat hand-in-hand nature whilst running initial experiments, a program
slicing abstraction was developed [10,11] following ideas presented in [6,9].

The intuition behind slicing is that the variables occurring in a safety con-
dition often depend only on some part of the Ladder Logic program, and hence
parts that have no effect on the safety condition can be removed. At a high level,
the approach takes the following steps.

Step 1: Extract variables from safety conditions. Given a safety condition
ϕ, we extract its variables U = vars(ϕ).

Step 2: Calculate dependant variables. Calculate all the variables of the
Ladder Logic formula that affect the variables in U . To do this, we begin
at the last rung Ri ≡ c′

i ↔ ψi of the Ladder Logic formula and compare its
variable c′

i with the set of variables U . If c′
i ∈ U , then we add all the variables

occurring in ψi to the set U . This step is repeated for each rung until a fixed
point U is reached.

Step 3: Extract dependant rungs. Using the variable set U , we remove all
rungs that do not affect the safety condition. To do this, we construct the
set

index =
{

i ∈ {1, . . . , n} | ci ∈ U or c′
i ∈ U

}
.

We then remove from the original program all rungs Ri whose indices do not
appear in index. The result ψϕ is the sliced version of program ψ.

Example 3. Considering the finite transition system in Example 1 and the safety
property P = x ∨ y, we can construct a sliced version of the propositional for-
mulae. Here we can compute the variables in the formulae that affect the set
U = {x, y} of variables from our safety property. In particular, the formulae

Software Model Checking of Interlocking Programs 139

defining the values of x and y are both required, but the formula defining z is
not. We can thus remove z from our transition system as it does not affect the
values in U . This results in the transition system given in Fig. 5.

Fig. 5. The transition system from Example 1 after slicing

In [10] we proved the following theorem:

Theorem 3. Let ϕ be a safety condition over a Ladder Logic formula ψ. The
transition system induced by ψ has safety property ϕ iff the transition system
induced by ψϕ has safety property ϕ.

Slicing proved effective in the two interlockings with which we experimented.
For the first interlocking, the number of rungs was reduced, on average, from
331 rungs to 60 rungs. For the second interlocking, the number of rungs was
reduced, on average, from 238 rungs to 25 rungs [11].

The novelty of our approach was that we gave the first proof that slicing
is correct with respect to reachable states [10,11]. We also demonstrated that
the above approach gave a significant reduction – a full order of magnitude
on average – in the size of the state space required for verification of the five
initial properties considered. For the first of the two interlockings with which we
experimented. the number of rungs was reduced, on average, from 331 rungs to 60
rungs. For the second interlocking, the number of rungs was reduced, on average,
from 238 rungs to 25 rungs. For full details and results we refer to [10,12].

Outcomes:

The 1st prototype fully automatically verifies Ladder Logic programs.
With slicing, it can effectively handle small IXLs (∼ 300 rungs).
General safety properties are translated into location specific ones.

140 P. James et al.

4 Technology Transfer

In the latest phase of development, a substantial effort has been put towards re-
developing the technology stack. This has seen new formats developed for data
along with a complete re-writing of the verification tool. This has allowed the
demonstration of the verification process within the operational environment of
signalling system design at Siemens Mobility (TRL 7). Here we highlight the
main scientific and technological challenges.

4.1 Logic Rework

From a methodological point of view, in the logical approach developed in Sect. 2
one could see a number of weaknesses. The first concerns the nature of the safety
properties under discussion. By their very nature, they are temporal properties
relating consecutive states. However, we formulated them in FOL without mod-
elling the temporal aspect. The second weakness is that, when translating a
generic safety property in FOL to a track plan specific one in PL, for each track
plan we are building a specialised logic. For instance, the truth of the formula
part of(ts54 , rt26) depends on the track plan under discussion. Diaconescu dis-
cusses how to build logics (institutions) with predefined types [4]. The final
weakness concerns the application of a hybrid specification. Verification is car-
ried out in PL, whilst the translation of generic safety properties to track plan
specific properties is carried out in FOL with predefined types. These two logics
are combined only by the sharing of signature elements rather than by a semantic
integration.

Addressing the first and the last of these points, we sketch here a temporal
logic based on ideas published in Gruner et al. [7]. Signatures are many sorted,
first-order logic signatures. A model at a point of time is a pair (T, I) where
T is a track plan and I is a propositional model for all propositional variables
associated with T , e.g. I(S106.G) ∈ {true, false}. Sorts and functions are given
a fixed interpretation according to the track plan, e.g.,

• SignalT = {S100, ...} : iff T has signals S100, ...
• routesOfT (s) = {r1, ..., rn} : iff in T, signal s has routes r1, ..., rn

Predicates obtain their interpretations usually from a combination of looking
up information from both the track plan T and the propositional model I:
p isInCorrectPositionForT,I r holds iff

• case 1: in T , p needs to be in reverse for r and I(p.RL) is true
• case 2: in T , p needs to be in normal for r and I(p.NL) is true

Here, p is a point, r is a route, and p.NL and p.RL are variables in the
Ladder Logic program representing point p being set to normal or reverse
position respectively. The models of a signature are sequences of the form
(T, I0), (T, I1), ..., i.e., the track plan in the first component stays constant, only
the state of the propositional variables is changing.

Software Model Checking of Interlocking Programs 141

Formulae are standard first order logic formulae, where predicate symbols can
also appear with up to k primes, k ≥ 0. The prime indicates that a predicate
shall be evaluated in the k-th successor state.

Given k+1 models (T, I0), . . . , (T, Ik), satisfaction of a formula is satisfaction
as in first order logic, where l primed predicates are evaluated over (T, Il). A
formula ϕ holds in a sequence 〈(T, I0), (T, I1), . . . 〉, iff for all i ≥ 0 the formula
ϕ holds over (T, Ii), . . . , (T, Ii+k).

4.2 Data Formats, Interoperability and Efficiency

A large focus of the redevelopment was on both expansion of the number of
interlocking safety principles to cover the full standard (approximately 350 prop-
erties) and interoperability of the tool with existing Siemens Mobility formats.
Here, the following core technology changes were made:

Systematic Documentation of Ladder Logic Variable Naming Schemes. Differ-
ent interlockings use various naming schemes for variables. Typically these are
dependant on the type of signalling scheme being deployed and the geographic
location of the interlocking. Here, to allow for generalisability of the verification
process, an XML schema was defined that allows for parameterisation of the
verification process by a naming scheme.

Rewrite of the Verification Engine with a Focus on Efficiency. The underlying
Haskell verification engine was rewritten in C#. Here, the main focus was on
improvements in efficiency and ensuring Siemens Mobility development processes
for developing safety critical software we followed.

Representation of Safety Properties. In order to provide a standardised language
for Safety Properties, a new XML schema was defined that captured first order
logic with predicates describing objects that occur within the railway domain.
Rather than having an ad-hoc definition, these predicates were designed to align
with an existing Siemens Object Model used internally to capture railway com-
ponents. However, the language was also influenced by the earlier Prolog for-
mats and included predicates to describe states of variables (such as in the next
step). All 350 safety principles were then modelled within this language. To
ease readability of the XML, an XSLT transformation was defined to produce
HTML-viewable formulae. This also allowed for independent validation of the
modelling. Finally, a C# module was developed to translate the XML properties
down into the concrete condition format used by the verification engine which
we developed. This translation included a mapping for variable names as defined
by the given XML mapping presented above.

Professional UI Supporting Verification Work-flow. An extensive user interface
was developed in C# allowing signalling engineers to interact with the verifi-
cation process. Here, not only were obvious features implemented such as file
interactions, but also strategies for verification were introduced that involved
imposing order on proof attempts (for example inductive, then bounded model
checking) along with parallelisation of proof attempts. Another feature that was

142 P. James et al.

heavily explored was dealing with particularly large and lengthy counterexam-
ples. This led to a parser for counterexamples being developed along with features
for filtering and the dynamic selection of variables based on the failing property.
Here, earlier work on counterexample visualisation was used as a motivation [16].

4.3 Technicalities of Real World Constraints

During the redevelopment, the verification process was actively tested against a
number of more complex interlockings (see Sect. 4.4). During this, several unex-
pected phenomena were observed that challenged the underlying theoretical
foundations of the tool. There were also improvements made to the efficiency
of the verification engine thanks to insights from domain knowledge.

Fleeting Outputs. Fleeting outputs are regarded as outputs that “flip” their value
for a single cycle of the interlocking. Such outputs can cause counterexamples
when model checking; however, in practice, this flip happens at a rate that is
quicker than can be observed on the railway, and thus is not too concerning
for signalling engineers. Here, a strategy was devised to allow checks that can
ignore fleeting outputs if requested by the engineer during verification. Logically,
‘Fleeting outputs’ require more than two successive states to be encoded into a
safety property, i.e., changing a formula from x̄ and x̄′ to x̄1, x̄2, . . . , x̄k, k = 3
appears to be enough. This is, however, a check that should only be enabled
after careful consideration of the original counterexample.

Boundary Based Properties. A number of interlocking safety principles concern
the operation of the interlocking with respect to the boundary regions of the
railway it controls. Here, verification of these particular principles became a
challenge as it became apparent that the principles relied on assumptions made
about a bordering interlocking controlling an adjacent region. Here, the decision
was made that such assumptions would be documented, and an option provided
within the use interface to verify with or without this assumption being included
as an additional constraining formula when verifying.

Optimised Encoding of Safety Properties. During tests, it was observed that the
underlying translation of safety properties was simpler/more efficient if proper-
ties were expressed in a particular manner. For example,

∀x . ϕ(x) → (∀y . ψ(x, y) → ξ(x, y)
)

leads to faster verification than a property of the form

∀x, y .
(
ϕ(x) ∧ ψ(x, y)) → ξ(x, y)

)

We believe this is due to the falsified cases of the precondition being large
when a condition is expressed for a concrete interlocking.

Invariants Based on Design Decisions. Finally, optimisations to the verification
procedure were also devised thanks to extended discussions around variables

Software Model Checking of Interlocking Programs 143

within the Ladder Logic program. Inevitably, some variables exhibit inherent
relationships thanks to design decisions. A typical example would be a classic
SR latch where, if the reset bit is set, we know the output will be reset. This
can allow for constraints on these variables to be added as invariant formulae
to the model checking procedure, in turn constraining the state space. Here we
have yet to systematically analyse the effect of this on verification.

4.4 Fully Functional Prototype at Siemens Mobility

As documented in our REF 2021 impact case study [18], there is now a fully
functioning Ladder Logic Verifier running at Siemens Mobility. It has roughly 350
safety principles implemented, taken from various standards and developed from
Siemens test objectives. This 2nd prototype is fully integrated into the Siemens
Mobility ecosystem of IXL development tools and has been demonstrated in
Siemens Mobility operational environment through the verification of about 10
interlockings with up to 12 000 rungs and 75 000 variables. Safety checking of one
IXL takes about two hours. The verification approach has uncovered mistakes
in IXLs that Siemens Mobility deems non-detectable by testing.

One unresolved challenge is that there are safety properties with can neither
be decided by inductive verification nor by bounded model checking: inductive
verification fails; and bounded model checking does not find a counterexample
within reasonable bounds, meaning the property may or might not hold. In our
verification practice, depending on the IXL under discussion, about 35–40% of
all properties fall into this category.

Outcomes:

The 2nd prototype is fully integrated in the Siemens Mobility ecosystem.
Large IXLs can now be verified against 350 properties within two hours.
But 35–40% of an IXL’s safety properties cannot be decided.

5 Future Development

Though our 2nd prototype is a big step towards the ultimate goal to automat-
ically verify Ladder Logic programs, there are still a number of aspects to be
addressed before it is complete and qualified (TRL 8) and is proven in the oper-
ational environment (TRL 9).

In terms of completeness, it is necessary to include decision procedures
that allow to effectively prove or disprove all safety properties. Section 5.1 and
Sect. 5.2 discuss ongoing work to address this. In terms of introducing the tech-
nology, key enablers and inhibitors to the acceptance and adoption of utilising
the 2nd prototype within Siemens Mobility need to be identified, and, based on
a data collection, it remains to be shown that overall it is beneficial to use this
new technology. Our plans in this direction are discussed in Sect. 5.3.

144 P. James et al.

5.1 IC3 Algorithm

In order to address the 35–40% of safety properties that cannot be decided
with the verification technologies implemented in the 2nd prototype, the MRes
project by Bryant [2] investigated if Bradley’s IC3 algorithm [1] would offer a
suitable solution. Bryant could show that with IC3, all properties can effectively
be decided. Here, runtime per verification task was smaller than a second.

5.2 Invariant Finding via Reinforcement Learning

It is accepted that so-called invariants, properties which hold for all states under
which a system operates, can help reduce occurrences of false positives. However,
automated deduction of these invariants remains a challenge. We are currently
exploring the use of reinforcement learning [19] where agents are used to build a
dataset of observed states. These observations are then used to compute correla-
tion coefficients between all variables composing a Ladder Logic program. This
in turn allows proposals for candidate invariant properties [14,15].

5.3 Measuring Cost and Benefit

In an interdisciplinary project, spanning Business Management, Engineering and
Computer Science we plan to identify key enablers and inhibitors to the accep-
tance and adoption of utilising the 2nd prototype within Siemens Mobility. To
this end, we will embed a longitudinal comparative study to align data collection
with Siemens Mobility (i.e., within each development and testing cycle, a parallel
stream embedding the Ladder Logic Verification will be added in order to gather
data enabling robust comparisons). As part of this data collection, insight will
be gained through the interaction with the technical and management teams
responsible for setting up and carrying out contracts to understand the complex
dynamics at play and identify factors that may prevent the organisation from
accepting and embracing the new methodology. Such interaction will be both of
a formal and informal nature, spanning meeting observations, interviews, focus
groups and semi-quantitative surveys. The multi-faceted nature of the data gath-
ered will enable the development of a robust business case for the introduction
and adoption of the novel methodology within Siemens Mobility.

Ideal Outcomes:

Our verifier is integral to any IXL development at Siemens Mobility.
It efficiently decides all properties under discussion.
Rail authorities accept its proofs as evidence within certification.

Software Model Checking of Interlocking Programs 145

6 Summary

For us, one important learning outcome of this long-lasting technology trans-
fer project is that it becomes only clear at the end of each phase what the
next challenges will be. Having understood the theory (as given in Sect. 2), it
was clear what transformations needed to be implemented and that counterex-
amples would need to be presented in a user friendly way, leading to the 1st

prototype (as discussed in Sect. 3). Driven by the need to integrate with the
Siemens Mobility ecosystem and follow Siemens practices, the 2nd prototype
was created (as discussed in Sect. 4). Here, experience from the 1st prototype
aided in system architecture and data type choices. In addition, a closer working
relationship with Siemens Mobility allowed for extensive experimentation and
brought in deeper domain knowledge. This led to a number of optimisations.
The Siemens Mobility research team is now convinced by the technology. How-
ever, there is future work to be done (see Sect. 5). A formal business case remains
to be made demonstrating the advantages of the process. Furthermore, experi-
ence gained whilst evaluating the second prototype towards verification coverage
demonstrates that further verification methods are needed.

Overall, our journey turns out to be a far longer one than expected. Orig-
inally, perhaps as naive academics, we thought that the 1st prototype would
be the end. When the decision came to build the 2nd prototype, we thought
that this would then be the end. Having now implemented the 2nd prototype,
we understand that there is still further to go towards a fully deployed tech-
nology. Overall, the journey up to now (excluding natural periods of inactivity)
has taken about eight years and allowed us to gain expertise on the process of
technology transfer.

Thanks to a long standing collaboration between industry and academia, it
has been possible to explore the applicability of a set of formal methods to a
challenge in the real world (with all its complexities). Though our endeavour
continues, substantial progress has been made and there is honest belief by all
involved that the above stated ideal outcomes will be achieved.

Acknowledgment. The authors would like to thank Siemens Mobility for the long-
standing, fruitful and successful research collaboration, the students and colleagues
in the Swansea Railway Verification Group for their support and helpful feedback and
discussions, and Erwin R. Catesbeiana (Jr.) for pointing out that logic is not everything.

References

1. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31612-8 1

2. Bryant, H.: Exploring the IC3 algorithm to improve the Siemens-Swansea ladder
logic verification tool. MRes Dissertation (under submission), Swansea University
(2023)

https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1

146 P. James et al.

3. Chadwick, S., James, P., Moller, F., Roggenbach, M., Werner, T.: A journey
through software model checking of interlocking programs. In: Leveraging Applica-
tions of Formal Methods, Verification and Validation: 10th International Sympo-
sium on Leveraging Applications of Formal Methods, ISoLA 2021, Rhodes, Greece,
October 17–29, 2021, Proceedings. vol. 13036, p. 495. Springer Nature (2021)

4. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)
5. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electron.

Notes Theoret. Comput. Sci. 89(4), 543–560 (2003). bMC’2003, First International
Workshop on Bounded Model Checking

6. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to
ladder logic diagrams. In: FMICS 1998 (1998)

7. Gruner, S., Kumar, A., Maibaum, T., Roggenbach, M.: On the Construction of
Engineering Handbooks - with an Illustration from the Railway Safety Domain.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44648-2

8. Programmable Controllers - Part 3: Programming languages. IEC Standard 61131–
3 (2003)

9. J. Groote, S. v.Ṽ lijmen, J.K.: The safety guaranteeing system at station hoorn-
kersenboogerd. Technical report, Utrecht University (1995)

10. James, P.: Sat-based model checking and its applications to train control systems.
MRes Dissertation, Swansea University (2010)

11. James, P., Roggenbach, M.: Automatically Verifying Railway Interlockings using
SAT-based Model Checking. In: Proceedings of AVoCS 2010. Electronic Commu-
nications 35 of EASST (2010)

12. Kanso, K.: Formal verification of ladder logic, MRes dissertation, Swansea Univer-
sity (2008)

13. Lawrence, A.: Verification of railway interlockings in SCADE. MRes dissertation,
Swansea University (2011)

14. Lloyd-Roberts, B., James, P., Edwards, M.: Mining Invariants from State Space
Observations. Extended abstract at 33rd Nordic Workshop on Programming The-
ory, NWPT (2022)

15. Lloyd-Roberts, B., James, P., Edwards, M., Werner, T., Robinson, S.: Improving
railway safety: human-in-the-loop invariant finding. In: Case Studies of HCI in
Practice, CHI 2023. ACM (2023, to appear)

16. Pantekis, F., James, P., O’Reilly, L., Archambault, D., Moller, F.: Visualising
railway safety verification. In: Hasan, O., Mallet, F. (eds.) FTSCS 2019. CCIS,
vol. 1165, pp. 95–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
46902-3 6

17. Improving processes and policies in the UK railway industry. https://results.
ref.ac.uk/(S(ozgare1un34qrlg44nt3gsh3))/DownloadFile/ImpactCaseStudy/pdf?
caseStudyId=5798

18. Improving performance, safety and software development of railway signalling.
https://results2021.ref.ac.uk/impact/a117e4ed-a960-4dc6-8e13-8c98d8ea5aef?
page=1

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

https://doi.org/10.1007/978-3-030-44648-2
https://doi.org/10.1007/978-3-030-46902-3_6
https://doi.org/10.1007/978-3-030-46902-3_6
https://results.ref.ac.uk/(S(ozgare1un34qrlg44nt3gsh3))/DownloadFile/ImpactCaseStudy/pdf?caseStudyId=5798
https://results.ref.ac.uk/(S(ozgare1un34qrlg44nt3gsh3))/DownloadFile/ImpactCaseStudy/pdf?caseStudyId=5798
https://results.ref.ac.uk/(S(ozgare1un34qrlg44nt3gsh3))/DownloadFile/ImpactCaseStudy/pdf?caseStudyId=5798
https://results2021.ref.ac.uk/impact/a117e4ed-a960-4dc6-8e13-8c98d8ea5aef?page=1
https://results2021.ref.ac.uk/impact/a117e4ed-a960-4dc6-8e13-8c98d8ea5aef?page=1

Formal Modelling to Improve Safety and
Security

Thierry Lecomte(B)

CLEARSY, 320 Avenue Archimède, Aix en Provence, France

thierry.lecomte@clearsy.com

Abstract. System safety is based on the implementation of technical
and organisational principles to ensure that a feared event cannot occur
more frequently than expected. Such a demonstration, so-called safety
case, relies on domain specific standards which capitalise on experience
gained after decades of development and operation. For more than a
decade, the threat of human attacks aimed at disrupting the operation
of such systems has become more acute. In the railways, communica-
tions between on board and track-side equipment are naturally subject
to targeted attacks aimed at reducing the availability of the equipment or
disrupting its operational safety to the point of creating accidents. This
paper aims to sketch the range of logical and hardware attacks practised
today that could be used in the future to attack railway systems to make
them less available or less secure. It also presents a combination of tech-
niques and technologies that, assisted by formal methods, can reduce the
chances of success of such attacks.

Keywords: formal methods · cybersecurity · safety

1 Introduction

Railway signalling is a safety-critical system whose responsibility is to guarantee
a safe and efficient operation of railway networks. Given the safety-critical nature
of railway signalling and the complexity of novel distributed signalling solutions,
their safety should be guaranteed. With the forthcoming progressive distribu-
tion of the signalling functions (sensing, making decision, controlling) based on
network connectivity, it is also mandatory to ensure their security as well. The
two worlds, namely safety and security, are quite orthogonal as they require to
resist to “probabilistic failures” on one hand and to specifically crafted attacks
that would timely target the existing vulnerabilities on the other hand. Their
requirements are sometimes contradictory, as safety critical systems are usually
expected to last decades without modification once certified, while secure sys-
tems are supposed to evolve often to take into account uncovered vulnerabilities.

System safety is a field with a long history of experience, effective stan-
dards and established industry practice. Formal methods have experienced a
notable boom in many industrial fields where they are used in a reasoned man-
ner. If the reliability of digital technologies is nowadays mastered, their security
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 147–159, 2023.
https://doi.org/10.1007/978-3-031-40132-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_10

148 T. Lecomte

is undermined by attackers using their human intelligence, technical knowledge
and inventiveness to devise new means (including social engineering) capable of
disrupting digital systems or taking control of them.

This article provides an overview of the use of formal methods to ensure
rail transport safety. It also sketches the range of logical and hardware security
attacks practised today that could be used in the future to attack railway systems
to make them less available or less secure. It then presents a combination of
formal techniques can reduce the chances of success of such attacks.

This paper is structured in 6 parts. Section 2 introduces the terminology.
Section 3 describes how formal methods are used to improve the safety of railway
systems. Section 4 presents the security attacks that are used today at software
and hardware levels to either perturb the behaviour or take control of the target
system. Section 5 provides an inventory of current formal techniques that could
be used to improve the safety level of existing and future railway systems, before
concluding in Sect. 6.

2 Terminology

This section contains specific definitions, concepts, and abbreviations used
throughout this paper.

CCT refers to Constant Time Cryptography. It is related to cryptographic
algorithms and protocols that take the same amount of time to execute regardless
of the input data or key values. The goal of constant-time cryptography is to
prevent timing attacks, which are a type of side-channel attack that can be
used to extract sensitive information from a cryptographic implementation by
analysing the time it takes to perform certain operations. This can be achieved
by designing algorithms and protocols that avoid branching or other operations
that depend on the input data or key values.

CRC refers to Cyclic Redundancy Check. It is a checksum used for error
detection.

Cybersecurity refers to the protection of digital systems and related net-
works from information disclosure, theft of or damage to their hardware, soft-
ware, or electronic data, as well as from the disruption or misdirection of the
services they provide.

HSM refers to Hardware Security Module. It is a device that safeguards and
manages digital keys, performs encryption and decryption functions for digital
signatures, strong authentication and other cryptographic functions.

PKI refers to Public Key Infrastructure. It is a set of roles, policies, hardware,
software and procedures needed to create, manage, distribute, use, store and
revoke digital certificates and manage public-key encryption. It binds public keys
with respective identities of entities. The binding is established through a process
of registration and issuance of certificates at and by a certificate authority.

TEE refers to Trusted Execution Environment. It is a secure area of a main
processor. It guarantees code and data loaded inside to be protected with respect
to confidentiality and integrity.

Formal Modelling to Improve Safety and Security 149

TPM refers to Trusted Platform Module. It is a secure cryptoprocessor, a
dedicated microcontroller designed to secure hardware through integrated cryp-
tographic keys, compliant to the TPM international standard.

3 Ensuring Safety with Formal Methods

Safety in the railway industry refers to the measures and practices that are put
in place to protect passengers, employees, and the general public from accidents
and injuries. This includes both physical safety, such as preventing collisions or
derailments, as well as the safety of passengers and employees while on or around
trains and railway infrastructure. The safety measures that are commonly used in
the railway industry include track maintenance and inspection to ensure that the
rails and other infrastructure are in good condition and free of defects, automatic
train control systems that help to prevent collisions by automatically slowing or
stopping trains that are going too fast or are on a collision course, and positive
train control systems, which use GNSS and other technologies to monitor train
location and speed, and can automatically slow or stop a train if necessary. Rail-
ways safety on a number of standards such as EN 50128 and EN 50129 which
provide guidelines for respectively the safety-related software-based and elec-
tronic systems used in railway signalling and control systems. These standards
are intended to ensure the safety, reliability, and availability of these systems,
which are critical for the safe operation of trains. They cover the entire life-cycle
of safety-related software and electronic systems, from requirements gathering
and design to installation, commissioning, operation, and maintenance. They
include requirements for software development and system design, including the
use of formal methods and hazard analysis, as well as guidelines for testing and
validation.

A number of successful applications of formal methods to operational systems
have been reported so far, in the railways as well as in other industries [16,24,25].
A large number of publications [15] cover the subject extensively. Only a few
applications are listed below, addressing various safety-related activities (Fig. 1).

Software Development, Verification and Validation. A set of mathematical tech-
niques and tools are used to formally specify, design, and verify the behaviour
of software systems. They are used to ensure that software systems are correct,
consistent, and secure, and that they meet their requirements and specifications.
Target software are for example Automatic Train Protection for the computa-
tion of braking curves, or Boolean equations solver to compute interlocking states
[5,9,13]. Formal methods are either part of the development process or imple-
mented in the verification and validation phase. Software may be programmed
with languages like C, Ada, assembly, one of the 5 standardised languages used
to program PLC, or even DSL/diagrams used for relay-based and wired logic
[1]. For the highest safety integrity levels, software safety is tightly linked with
the safety computer [3,18,35] executing it.

150 T. Lecomte

Data Validation. Formal data validation [11,26,30] refers to the process of for-
mally checking that data satisfies certain predefined constraints or rules (type-
checking, range checking, logical constraints, complex constraints). These con-
straints and rules are expressed mathematically, and the process of validation
typically involves using model checking, to check that the data meets these con-
straints. A model checker will either ensures that the data complies with the
formal model or provides all the counterexamples [17,23]. This is particularly
useful in the context of safety-critical systems, where even small errors or incon-
sistencies in the data can have serious consequences, when data is used by a
safety function.

Fig. 1. Example of formal activities covering the V cycle.

System Validation. This is where the most errors are likely to be found when
the different elements of a railway system are integrated. Because of the variety
of elements involved and the complexity of their relationships, the use of for-
mal methods at system level is less mature than the activities listed above. The
large size and variety of models involved make modelling difficult to grasp for
a human being [29] and model-checking impossible to complete once the model

Formal Modelling to Improve Safety and Security 151

under consideration becomes significant [14,19,22,34]. Validation is then limited
to small configurations or reduced scenarios [21]. Taking into account both con-
tinuous and discrete aspects [2], for describing physical laws and controller timed
actions, is constrained at the moment to toy models and lacks proof tools able
to handle resulting heterogeneous verification conditions. Modelling the safety
reasoning rather than the structural and behavioural aspects of a system seems
to overcome the constraints of size and complexity [10,31,32] at the cost of a
greater effort to communicate with the architects of the system in order to find
the reasons that led to its specification.

4 Software and Hardware Security Attacks

Railway systems are becoming vulnerable to cyber attack [6] due to the move
away from bespoke stand-alone systems to open-platform, standardised equip-
ment built using Commercial Off The Shelf (COTS) components, and increasing
use of networked control and automation systems that can be accessed remotely
via public and private networks. The connection of a safety-critical component
to any network is not secure as this component has been designed to resist to
“probabilistic failures”, not to specifically crafted attacks that would timely tar-
get the existing vulnerabilities. In reaction, the Technical Specification CLC/TS
50701 ‘Railway applications - Cybersecurity’ has been issued in 2021 to provide
requirements and recommendations to handle cybersecurity in a unified way
for the railway sector. This specification takes into consideration relevant safety
related aspects (EN 50126) and takes inspiration from different sources (IEC
62443-3-3, CSM-RA), adapting them to the railway context. It covers numer-
ous key topics such as railway system overview, cybersecurity during a railway
application life cycle, risk assessment, security design, cybersecurity assurance
and system acceptance, vulnerability management and security patch manage-
ment.

Taking into account cybersecurity at equipment level requires to consider
both logical and physical attacks.

Logical Attacks. They are certainly the most popular, following the multiplica-
tion of recent attacks against hospitals, websites and corporate computer net-
works. They allow to make computer systems non-responsive, to take control of
them remotely, and to access sensitive data. Man-in-the-middle, eavesdropping
are usual kind of attacks, requiring both technical knowledge (network architec-
ture, communication protocol, programming, intrusion toolkit, vulnerabilities
database) and social engineering to identify and exploit non-patched vulnera-
bilities. Some attacks may even target computer systems not connected to a
computer network.

Physical Attacks. They refer to any type of offensive action that targets the
physical components of a computer or network, such as the hardware or infras-
tructure. These types of attacks can be particularly difficult to defend against

152 T. Lecomte

because they involve direct manipulation of the devices and systems that make
up the network. They include tampering with or damaging equipment, reverse-
engineering the device, injecting fault, performing side-channel attack1.

Fig. 2. Example of attack aimed at corrupting the result of the test with fault injection
(power consumption analysis and clock glitch) and bypassing the Android Secure-Boot.
In [12], 15min are required to upload a malicious Linux kernel and take control of the
device.

Railways connected equipment are potentially subject to both attacks, pos-
sibly in combination:

– Logical attacks are aimed at the communication between any equipment,
installed on-board, on the tracks or in the technical rooms of stations, and
supervision systems (SCADA). Topics of interest are logs exchanged, com-
mands issued and received, and firmware updates. Accessing logs helps to
better understand the behaviour of a device. With an attacker impersonating
another device, valid commands can be issued to change the configuration or
status of the equipment. Finally generating a valid firmware allows to fully
reprogram the device and to implement any dangerous behaviour.

1 It is a type of security exploit that aims to extract secret information from a system
by analysing its physical characteristics, such as power consumption, electromagnetic
emissions, or even the sound or vibration it produces, rather than by attempting to
directly access the data stored on it. One of the most common forms of side-channel
attacks is the power analysis attack, which relies on measuring the power consumed
by a device as it performs cryptographic operations. By analysing the fluctuations in
power consumption, an attacker can extract information about the secret key used in
the encryption. Timing analysis is another popular side-channel attack which relies
on measuring the time it takes a device to perform a specific operation, an attacker
can extract information about the secret key and operations.

Formal Modelling to Improve Safety and Security 153

– Physical attacks are aimed either dumping the binary code of the firmware2,
uploading a malicious bootloader or firmware, degrading the service provided,
or denying any action. The spectrum of attacks is very broad and constantly
changing [33] as a reaction to the countermeasures put in place by the indus-
try. A laser, an electromagnetic shock, X-rays, an extra and very short clock
pulse (glitch), a supply current that is too low can all disrupt the behaviour
of a processor or alter the content of the memory. Synchronising such distur-
bances (Fig. 2) can allow for example a firmware with an invalid signature to
be successfully loaded by disturbing the result of the signature validity test
[12].

None of the safety features implemented by EN 50128 and 50129-compliant
safety computers protect against such attacks. In particular, the main integrity
check is usually based on CRC that is not considered as a cryptographic prim-
itive3. Messages received can only be checked well-formed, but not issued from
a valid emitter.

Three principles need to be added to railways connected equipment:

– confidentiality (keeping data secure): ensures that sensitive information are
accessed only by an authorised person and kept away from those not autho-
rised to possess them;

– integrity (keeping data clean): ensures that information are in a format that
is true and correct to its original purposes.

– availability (keeping data accessible): ensures that information and resources
are available to those who need them.

Usually security design implements these three principles with public key
cryptography and specific hardware to constitute a Root of Trust, a source that
can always be trusted within a cryptographic system and is critical for PKI.
Hardware could rely on a TPM4, a HSM5 or any Secure Enclave module. In
addition, an isolated execution environment (a TEE, such as ARM TrustZone)
provides security features such as isolated execution, integrity of applications
executing with the TEE, and confidentiality of their assets.

The security standards do not impose any particular architecture, so the
detailed design may vary depending on the hardware platform and associated
security features, on the software architecture (bare-metal or OS-based applica-
tion), and selected communication protocols. Demonstration of compliance with

2 With reverse-engineering in mind for vulnerability analysis or with the idea of making
copies.

3 They are not robust to collision attacks, meaning that somebody can take a given
CRC and easily find a second input that matches it.

4 A TPM contains a hardware random number generator, facilities for the secure
generation of cryptographic keys for limited uses, a generator of unforgeable hash
key summary of a configuration, and a data encryptor/decryptor.

5 A HSM is similar to a TPM. HSMs are focused on performance and key storage
space, where as TPMs are only designed to keep a few values and a single key in
memory and don’t put much effort into performance.

154 T. Lecomte

security standards also depends: IEC 62443 covers the whole development cycle
while Common Criteria-based CSPN6 only requires a Security Target document,
a user manual, and a third-party penetration testing.

Finally the embedding of cryptographic capabilities (algorithms, data stor-
age) requires resources (computing, memory) that are not necessarily available
on-board. Ciphering and deciphering, generating and managing keys7, control-
ling correct protocol execution imply extra processing time that could prevent
hard real-time compliance.

5 Formal Techniques for Security

Even if a secure system is not intended to be modified once certified (except for
functional changes in the expected services or in the environment) whereas a safe
system will have to evolve to take into account new threats, the formal methods
apply in an similar way to both types of systems. However, the broad spectrum
of attacks that have been (and will be) carried out makes it easier to formally
demonstrate the safety of a system against known failures than to ensure its
security against yet unknown vulnerabilities. A number of formal techniques are
used to cover logical attacks.

Absence of Programming Errors. Formal development (à la B) and (assertion-
based) verification techniques (see Sect. 3) are proven techniques that are fre-
quently used in the development of software for SIL3 or SIL4 level systems.
They allow to avoid programming errors and in particular, in a security con-
text, buffer overflows or bad pointer management, sometimes for restricted use
(pointer management in Windows device drivers [27]).

Security Policy Enforcement. The Common Criteria standard requires the pro-
duction of a formal modelling of the security policy and the demonstration by
mathematical proof that the specification of the product in charge of secu-
rity enforces this policy. This evaluation is focused on the components that
are directly involved in establishing and maintaining security. [7] exposes the
modelling principles of a smart card Memory Protection Unit used to obtain an
EAL6+ CC3.1 certificate8.

Protocol Engineering. Using formal methods, the cryptographic protocols can
be mathematically proven to provide a desired level of security, such as con-
fidentiality, integrity, and authenticity. Tools such as ProVerif [8] are used for
Protocol Engineering in order to prove secrecy and authenticity properties of

6 Certification de Sécurité de Premier Niveau - https://www.ssi.gouv.fr/administra
tion/produits-certifies/cspn/.

7 A PKI has to implemented on the network. If not, security is degraded as it is only
based on fixed pre-shared secrets on all equipment.

8 See https://www.ssi.gouv.fr/administration/produits-certifies/cc/produits-certifies-
cc to get access to the up-to-date list of certified products.

https://www.ssi.gouv.fr/administration/produits-certifies/cspn/
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/
https://www.ssi.gouv.fr/administration/produits-certifies/cc/produits-certifies-cc
https://www.ssi.gouv.fr/administration/produits-certifies/cc/produits-certifies-cc

Formal Modelling to Improve Safety and Security 155

cryptographic protocols. The program ProVerif takes as input a description of
a cryptographic protocol, and checks whether it satisfies secrecy, authenticity,
or equivalence properties. Protocol analysis is considered with respect to an
unbounded number of sessions and an unbounded message space. Moreover,
the tool is capable of attack reconstruction: when a property cannot be proved,
ProVerif tries to reconstruct an execution trace that falsifies the desired property.
This kind of tool makes it possible to ensure the specification of a protocol and
to determine the impact on security of disclosing one of the secrets implemented
in the protocol (Fig. 3).

Fig. 3. MQV-based key exchange UKS protocol attack trace graph obtained with
ProVerif.

Constant-Time Cryptography. The cryptographic constant-time (CCT) property
is an effective counter-measure against practical side-channel attacks. It has been
shown in practice that compilers do not always preserve this non-functional prop-
erty and introduce vulnerabilities in otherwise secure programs. Formal methods
may be used [4] to prove that a compiler is not subject to this issue: even though
it transforms the control-flow and introduces memory accesses, it will neither
remove counter-measures nor introduce sensitive information flows.

156 T. Lecomte

Inverted Test Redundant-Check Countermeasure. To counter fault injection
based attacks, sensitive software use redundancy based countermeasure schemes.
In particular, critical checks in the code are duplicated to ensure that an attacker
cannot bypass such a check by flipping its result in order to get to a protected
point9 [28] exposes a source-codelevel verification technique of the correct imple-
mentation of such countermeasures, based on code instrumentation and deduc-
tive verification.

For physical and covert channel attacks, formal methods can be used a pos-
teriori to show the effectiveness of a technical measure against a known attack,
but they cannot provide definitive proof of its effectiveness against original
attacks using new penetration vectors. Some technical measures used to verify
the integrity of a processor’s operation (by equipping it with markers, by encod-
ing and redundantly storing the contents of certain memories) have recourse to
techniques that were developed and used in the 1980s to ensure the integrity of
the processing carried out (PSC - Coded Secure Processor10, DIGISAFE proto-
col).

6 Conclusion and Perspectives

The safety and security of rail transport are nowadays closely linked due to the
increasing interconnection of equipment and technical systems of various kinds.
While good industrial practices have made it possible to build up a strong nor-
mative reference framework in terms of safety, security does not have the same
degree of maturity. Repeated attacks on critical infrastructures (pipelines, hos-
pitals, etc.) have shown that the security problem is global. Rail transport sys-
tems seem to be prime targets, potentially exposing the health or lives of a large
number of passengers while offering a considerable attack surface11 to (usually
nation-state) attackers. [20] analysed recently threats and vulnerabilities of fun-
damental rail-road automation systems such as computer based interlocking,
automatic train control and automatic train protection and found many vulner-
abilities at all levels (incorrect protocol implementation, private keys embedded
on distributed equipment, etc.). Such equipment subject to cyber attacks have
to resist to reverse engineering, logical and physical attacks.

It appears that the formal techniques used to establish the safety of a rail-
way system can be used to improve its security level. The combination of these
analyses with physical penetration tests is successfully practised in the Com-
mon Criteria framework. However, given the wide variety and scalability of the
attacks, the conclusions of formal analyses can only be ad hoc and partial. The

9 Corresponding to a successful authentication or code integrity verification.
10 https://www.atelierb.eu/wp-content/uploads/2021/03/Le-Rail-136-Methode-B.

pdf.
11 A major breakdown of Denmark’s train network in October 2022 was the result of

a malicious hacker attack on an IT subcontractor’s software testing environment.
The attack prompted subcontractor Supeo to shut down its servers, which in turn
affected locomotive drivers’ ability to operate the trains for several hours.

https://www.atelierb.eu/wp-content/uploads/2021/03/Le-Rail-136-Methode-B.pdf
https://www.atelierb.eu/wp-content/uploads/2021/03/Le-Rail-136-Methode-B.pdf

Formal Modelling to Improve Safety and Security 157

more intertwined combination of formal techniques used to model both safety
and security seems to be the way forward. These are often used independently at
different levels (specification, source code, binary, electronic circuit, silicon) and
for different types of analysis (functional, temporal, dysfunctional). In any case,
the consideration of safety and security requires very specialised knowledge and
skills and it is perhaps this aspect that will limit the effective implementation
of efficient technical means.

Acknowledgements. The work and results described in this article were partly
funded by BPI-France (Banque Publique d’Investissement) as part of the project
CASES (Calculateur Sûr et Sécuritaire) selected for the call “Stratégie Cyber 2021
- Développement de technologies innovantes critiques”.

References

1. de Almeida Pereira, D.I., Deharbe, D., Perin, M., Bon, P.: B-specification of relay-
based railway interlocking systems based on the propositional logic of the system
state evolution. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSS-
Rail 2019. LNCS, vol. 11495, pp. 242–258. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18744-6 16

2. Banach, R.: Issues in automated urban train control: ‘tackling’ the rugby club
problem. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z, pp. 171–186. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91271-4 12

3. Baro, S.: A high availability vital computer for railway applications: architecture
& safety principles. In: Embedded Real Time Software and Systems (ERTS2008),
Toulouse, France, January 2008. https://hal.archives-ouvertes.fr/hal-02269811

4. Barthe, G., Grégoire, B., Laporte, V., Priya, S.: Structured leakage and applica-
tions to cryptographic constant-time and cost. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2021, pp.
462–476. Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484761

5. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

6. Bendovschi, A.: Cyber-attacks - trends, patterns and security countermeasures.
Procedia Econ. Finance 28, 24–31 (2015)

7. Benveniste, M.V.: On using B in the design of secure micro-controllers: an experi-
ence report. Electr. Notes Theor. Comput. Sci. 280, 3–22 (2011)

8. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.04: automatic cryp-
tographic protocol verifier, user manual and tutorial, November 2021

9. Burdy, L., Meynadier, J.M.: Experience on the use of a formal method in a railway
company. IFAC Proc. Vol. 33, 193–197 (2000)

10. Comptier, M., Leuschel, M., Mejia, L.F., Perez, J., Mutz, M.: Property-based mod-
elling and validation of a CBTC zone controller in Event-B, pp. 202–212, January
2019

https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-319-91271-4_12
https://hal.archives-ouvertes.fr/hal-02269811
https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22

158 T. Lecomte

11. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial
Deployment of System Engineering Methods, pp. 27–43. Springer, Cham (2013).
https://doi.org/10.1007/978-3-642-33170-1 4

12. Fanjas, C., Gaine, C., Driss Aboulkassimi, D., Pontié, S., Potin, O.: Combined fault
injection and real-time side-channel analysis for android secure-boot bypassing,
November 2022

13. Fantechi, A.: The role of formal methods in software development for railway appli-
cations (2012)

14. Fantechi, A., Gnesi, S., Haxthausen, A.: Formal methods for distributed computing
in future railway systems, pp. 389–392, October 2020

15. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: International Conference on Reliability, Safety, and Security of Rail-
way Systems (2019)

16. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, Simon, Lecomte, Thierry, Romanovsky, Alexan-
der (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18744-6 15

17. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14261-
1 11

18. Forin, P.: Vital coded microprocessor principles and application for various transit
systems. IFAC Proc. Volumes 23(2), 79–84 (1990). IFAC/IFIP/IFORS Symposium
on Control, Computers, Communications in Transportation, Paris, France, 19–21
September. http://www.sciencedirect.com/science/article/pii/S1474667017526531

19. Geisler, S., Haxthausen, A.: Stepwise development and model checking of a dis-
tributed interlocking system using raise. Formal Aspects Comput. (2020)

20. Gordeychik, S., Timorin, A.: The great train cyber robbery, December 2015
21. Halchin, A., Feliachi, A., Singh, N.K., Aı̈t-Ameur, Y., Ordioni, J.: B-PERFect -

applying the PERF approach to B based system developments. In: International
Conference Reliability, Safety, and Security of Railway Systems. Modelling, Anal-
ysis, Verification, and Certification (RSSRail 2017), vol. 10598, pp. 160–172, Pris-
toia, Italy, November 2017. https://hal.archives-ouvertes.fr/hal-02451007

22. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level
3 principles using a formal B model. Int. J. Softw. Tools Technol. Transfer 22,
315–332 (2020)

23. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

24. Lecomte, T.: Safe and reliable metro platform screen doors control/command sys-
tems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
430–434. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 32

25. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

26. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012)

https://doi.org/10.1007/978-3-642-33170-1_4
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
http://www.sciencedirect.com/science/article/pii/S1474667017526531
https://hal.archives-ouvertes.fr/hal-02451007
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-642-04570-7_3

Formal Modelling to Improve Safety and Security 159

27. Leino, K.R.M.: Developing verified programs with Dafny. In: Proceedings of the
2012 ACM Conference on High Integrity Language Technology, HILT 2012, pp.
9–10. Association for Computing Machinery, New York, NY, USA (2012). https://
doi.org/10.1145/2402676.2402682

28. Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based counter-
measures: a case study, pp. 1849–1852, April 2022

29. Metayer, C., Clabaut, M.: DIR 41 case study. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 357–357. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 44

30. Peleska, J., Krafczyk, N., Haxthausen, A.E., Pinger, R.: Efficient data valida-
tion for geographical interlocking systems. In: Collart-Dutilleul, S., Lecomte, T.,
Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 142–158. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 9

31. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

32. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7
(Flushing) modernization project. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS,
vol. 7316, pp. 369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30885-7 34

33. Shepherd, C., et al.: Physical fault injection and side-channel attacks on mobile
devices: a comprehensive analysis. Comput. Secur. 111, 102471 (2021)

34. Stankaitis, P., Iliasov, A.: Theories, techniques and tools for engineering hetero-
geneous railway networks, In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.)
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verifi-
cation, and Certification, RSSRail 2017. LNCS, vol. 10598, pp. 241–250. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 16

35. Zheng, S., Cao, Y., Zhang, Y., Jing, H., Hu, H.: Design and verification of general
train control system’s safety computer 38, 128–134+145 (2014)

https://doi.org/10.1145/2402676.2402682
https://doi.org/10.1145/2402676.2402682
https://doi.org/10.1007/978-3-540-87603-8_44
https://doi.org/10.1007/978-3-030-18744-6_9
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-319-68499-4_16

Intelligent Systems and Cyber-Physical
Systems

Time for Traffic Manoeuvres

Christopher Bischopink(B) and Ernst-Rüdiger Olderog

Carl von Ossietzky University Oldenburg, Oldenburg, Germany
{bischopink,olderog}@informatik.uni-oldenburg.de

Abstract. The use of driving assistance systems up to the level of
autonomous cars asks for methods showing that cars equipped with such
systems behave safely. In previous work, we realised that spatial rea-
soning is a key to prove collision freedom. Our method was based on a
dedicated Multi-lane Spatial Logic (MLSL) for traffic on motorways [10].

In this paper, we extend this approach by taking into account the plans
of cars in the near future up to a certain time bound. We employ run-
time monitoring of car traffic on motorways using extended State Clock
automata for State Clock Logic (SCL) as defined in [17]. The extensions
are that the SC automata use MLSL formulae as propositional symbols as
in Timed MLSL [2] and communication primitives as in Timed Automata
of UPPAAL. The idea is that a car can perform a traffic manoeuvre like
a lane change only if it successfully communicates with all surrounding
cars that check their internal extended SC automata for compliance with
their safety and time constraints in the near future.

Keywords: Multi-lane Spatial Logic · State Clock Automata ·
Bounded Runtime Enforcement

1 Introduction

With Jan Peleska we share the interest in safe traffic systems. The development
and verification of railway control systems has been one of the major research
topics of Jan Peleska [7,8,16]. Of traffic systems, trains have less freedom to move
than cars and planes. This provides new challenges for the latter ones. Since
some time our group in Oldenburg is working on formal specification methods
for the safety of car traffic. In [10], we realised that safety in the sense of col-
lision freedom is a spatial property and introduced an abstract model of traffic
on multi-lane motorways and a dedicated logic called Multi-lane Spatial Logic
(MLSL) that is well-suited to express safety-related properties of cars perform-
ing traffic manoeuvres. This approach has been extended to more demanding
topologies of traffic like country roads [9] and intersections in urban traffic [19].

An overview of various results on MLSL is presented in [15]. A limiting factor
has been the emphasis on safety. Currently, we are extending our approach to
include timed liveness in the sense that we would like to show that certain traffic
manoeuvres like a lane change can be performed within given time bounds. In
[2], we introduced a timed version of MLSL called TMLSL that is able to specify
such properties. This logic combines State Clock Logic (SCL) [17] with MLSL.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 163–179, 2023.
https://doi.org/10.1007/978-3-031-40132-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_11

164 C. Bischopink and E.-R. Olderog

In this paper, we employ the concept of runtime enforcement. According to Y.
Falconer, ‘runtime enforcement is a techniques dedicated to ensure that a run of a
system satisfies a given desired property’ (see Definition 4 in [4]). We instantiate
this concept by equipping each car with a monitor for TMLSL properties that it
wishes to achieve. When some other car intends to perform a traffic manoeuvre,
this will be communicated to its neighbouring cars asking for permission. These
cars employ their monitors to check it for compliance with their safety and time
constraints in the near future. If this is not the case, permission will be denied.

The notion of enforcing properties at runtime goes back to F.B. Schneider,
who introduced the notion of security automata to enforce security policies [18].
The idea of enforcing properties is also pursued by Jan Peleska who studies safety
supervisors for robotic and autonomous systems [6].

The remainder of this paper is structured as follows. Section 2 recalls the
concepts of Multi-lane Spatial Logic with scopes, State Clock Logic as well as
State Clock Automata with some basic properties, and Timed Multi-lane Spatial
Logic. Section 3 illustrates our approach by an example and Sect. 4 provides the
formalisation. Section 5 presents a conclusion.

Dedication. Ernst-Rüdiger Olderog dedicates this paper to Jan Peleska, who has
the talent of understanding real-world applications in the area of distributed,
real-time systems and being able to translate their challenges into problems in
formal methods so that mathematically oriented researchers can contribute to
their solutions. During the years 1995–98 this happened in the context of the
project UniForM Workbench, where Jan Peleska and Bernd Krieg-Brückner of
the University of Bremen collaborated with the second author in Oldenburg and
Alexander Baer of the company Elpro LET in Berlin [11]. The application area
was railway control for trams driving in Berlin. The engineers at Elpro used
programming languages dedicated for Programmable Logic Controllers (PLCs).
My group learned the essence of PLCs and was able to built an abstract formal
model called PLC automata with formal semantics amenable for real-time model
checking [3].

2 Preliminaries

2.1 Multi-lane Spatial Logic with Scopes

Multi-lane Spatial Logic (MLSL) was introduced in [10] to express spatial prop-
erties of cars driving along a multi-lane motorway. One can distinguish between
spaces that a car has reserved for its exclusive use and spaces, called claims, that
it wishes to reserve next in order to prepare for a lane change. Formulae of that
logic are evaluated on an abstract model of the motorway built upon the notion
of a traffic snapshot, which gives a static picture of the motorway. To model
car dynamics, transitions are introduced that describe the evolution of a traffic
snapshot. MLSL is well suited to express safety properties of car traffic like col-
lision freedom, meaning the disjointness of reserved spaces. For full MLSL the
satisfaction problem is undecidable [13]. To obtain decidability results, a variant

Time for Traffic Manoeuvres 165

of MLSL with scopes (MLSLS) has been introduced in [5]. A scope limits the
cars to be considered to a finite set.

Abstract Model. In our model of multi-lane motorway traffic, cars have unique
identifiers drawn from an infinite set I = {A,B, . . .}, the road is considered
infinite in length, with positions represented by real numbers in R, and finite in
width, with lanes represented by a finite set L = {0, . . . , N} of natural numbers.
On a motorway, all traffic proceeds in one direction, with increasing position
values, in pictures shown from left to right.

A traffic snapshot describes where currently cars are positioned on the road
and what their speed and acceleration is. The speed determines how much space
a car reserves or claims because the length of a reservation or claim is taken
as the size of the car plus its (speed-dependent) braking distance. Formally, a
traffic snapshot is a tuple TS = (res, clm, pos , spd , acc) with functions

– res/clm : I → P(L), stating the lanes each car reserves/claims, and
– pos/spd/acc : I → R, stating the position/speed/acceleration of each car.

Figure 1 shows the graphical representation of three traffic snapshots, where
each of them has two lanes and two cars, both of them in lane one, with car
A behind car B. The pentagon in front of the rectangle depicts the braking
distance of the car. In the second and third traffic snapshot, car A is preparing
for a lane change: it has set its turn signal to lane two, which is represented as
a claim, shown as a dashed copy of its reserved space on lane one, to that lane.

Fig. 1. A transition sequence including the graphical representation of three traffic
snapshots and two transitions.

Evolution. While a traffic snapshot describes the static situation at one point
in time, this situation may evolve when the cars in the traffic snapshot execute
actions α, formalised by transitions between traffic snapshots: TS α−→ TS ′. We
consider the following actions α for a car C: claiming a lane n (α = c(C, n)),
withdrawing a claim (α = wd c(C)), reserving a formerly claimed lane (α =
r(C)), withdrawing all reservations except the one on lane n (α = wd r(C, n)),
and setting its acceleration to some value a (α = acc(C, a)). We usually assume
that there is a bound on the acceleration values of the cars, without mentioning
concrete values here. Additionally, the passing of t time units (α = t) is possible.
For a formal definition see [10]. We consider each labelled arrow α−→ as a relation
on traffic snapshots. These relations can be combined by relational composition.

166 C. Bischopink and E.-R. Olderog

For example, t−→ ◦ acc(C,a)−−−−−→ expresses that first a delay of time t occurs and then
the acceleration of car C is set to a.

By the set Act of MLSL actions we mean the transitions above, without the
one where time passes. Figure 1 illustrates the evolution of a traffic snapshot
along a transition sequence (〈cl(A, 2), 2.1〉), where car A claims lane 2 and after-
wards 2.1 time units pass, during which the two cars move along the lanes with
their speeds and accelerations. We will consider timed words over Act :

Definition 1 (Timed words over MLSL actions). A timed word or
timed sequence over MLSL actions is an infinite or finite sequence ω =
〈(α1, t1), (α2, t2), . . . 〉 with αi ∈ Act and 〈t1, t2, . . . 〉 forming a real-time
sequence, that is, a monotonically increasing sequence of time stamps.

Although the road itself is considered as infinite, at each moment only a finite
part of it is relevant for each car E, called its view. Formally, a view is a tuple
V = (L,X,E), with L being the set of lanes visible to the view’s owner E, and
X the finite extension (length of the road) visible to E. The view is also entering
the definition of the semantics of MLSLS.

Spatial Logic. We consider MLSLS, the variant of the Multi-lane Spatial Logic
MLSL with scopes proposed in [5]. It restricts quantification and free spaces in
formulae to range over a finite set of car identifiers. This is done by prefixing a
formula with a scope, a finite subset cs ⊆ CVar of car variables. Given c, γ, γ′ ∈
CVar , k ∈ R and finite cs ⊆ CVar , the syntax of MLSLS formulae ϕ is as follows:

ϕ ::= true | γ = γ′ | free | re(γ) | cl(γ) | l = k (atoms)
| ¬ϕ1 | ϕ1 ∧ ϕ2 | ∃ c : ϕ1 (first-order logic)

| ϕ1 � ϕ2 | ϕ2

ϕ1
| cs : ϕ1 (chop and scope)

Atomic formulae are true, checks for equality of two car variables, free denoting
free space on a lane, re(γ) and cl(γ) denoting a reservation and a claim of a
car γ, respectively, and a check for equality of the length of a segment against
some value k. Formulae can be combined by Boolean operations, quantification
over car variables, and two chop operators. The chop ϕ1 � ϕ2 expresses that the
view can be split horizontally into a first part where ϕ1 holds and a second part

where ϕ2 holds. The chop
ϕ2

ϕ1
expresses that the view can be split vertically

into a lower part where ϕ1 holds and an upper part where ϕ2 holds. Also, the
evaluation of formulae can be restricted to a certain scope cs of cars. We denote
the set of all MLSLS formulae by ΦMLSLS .

Formulae are called well-scoped if every formula containing the atom free or
existential quantification has a scope and every scoped formula is followed by an
existential quantification or the atom free. For the moment, we require that the
scope of all formulae is the same.

The semantics of a formula is evaluated in a model consisting of a traffic
snapshot TS , a scope CS , the car’s view V , and a valuation ν assigning values

Time for Traffic Manoeuvres 167

to variables. Instead of CS ,TS , V, ν � ϕ we usually write TS � ϕ and require a
sufficiently large view V and scope CS and a proper valuation ν. For a detailed,
formal semantics see [5].

An important abbreviation is the two-dimensional modality somewhere

defined by 〈ϕ〉 ≡ true �

⎛
⎝

true
ϕ

true

⎞
⎠ � true, expressing that in some space within

the considered view, ϕ holds. For example, the car ego has a potential collision
if somewhere its claim overlaps with the reservation or claim of another car,
formally:

pc(ego) ≡ ∃c : c �= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉 .

The formula
〈

cl(A) � free
re(A) � free � re(B)

〉
specifies that car A has a claim on the lane

next to its reservation, there is free space in front of both, and car B is in front
of A. On the second traffic snapshot depicted in Fig. 1, this formula holds.

2.2 State Clock Logic

State Clock Logic (SCL) has been introduced in [17] to specify real-time
properties. It comes with a corresponding operational model called state-clock
automata (see Sect. 2.3). Unlike timed automata [1], they are complementable so
that language inclusion is decidable. The syntax of SCL formulae ψ is as follows:

ψ ::= p | ¬ψ | ψ1 ∨ ψ2 | ψ1Uψ2 | ψ1Sψ2 | �∼c ψ | ψ �∼c,

where ∼ ∈ {<,≤,=,≥, >}. Here p ranges over a set P0 of propositional symbols,
which are used to describe the phases. Apart from Boolean combinations and the
temporal operators U (until) and S (since), there are two real-time operators:
the state prophecy operator � and the state history operator �. The formula
�∼c ψ describes that the time until ψ holds for the next time must satisfy the
constraint ∼ c, and ψ �∼c handles the analogous case for the past. We use also
some abbreviations, for example �[l,r) ψ stands for �≥l ψ∧ �<r ψ.

A timed sequence of states is an infinite sequence m = 〈(s0, I0), (s1, I1), . . . 〉,
where si ⊆ P0 and Ii is a real–valued non–empty interval. It is required that
any two neighbouring intervals are adjacent and there is no Zeno behaviour, i.e.,
that time progresses beyond any bounds. Each pair (si, Ii) is considered as a
state.

Formulae of SCL are evaluated on timed sequences of states. The semantics
of Boolean operators and U and S is as expected. The real-time operators �∼c ψ
(ψ �∼c) are true when the time until (since) ψ holds (held) for the next (last)
time complies to ∼ c. For �∼c ψ, this means tj − ti � ∼ c, with tj being the
left border of the interval of the state where ψ holds for the next time and ti
the time point �∼c ψ is evaluated at. For a detailed, formal definition of the
semantics, we refer to [17]. There it is defined when an SCL formula ϕ holds
in a timed sequence of states m at position i and at time t ∈ Ii, abbreviated
(m, i, t) � ϕ. Further on, m is a model of ϕ, abbreviated m � ϕ, iff (m, 0, 0) � ϕ.

168 C. Bischopink and E.-R. Olderog

2.3 SC Automata

In [17], a corresponding model of automata that accepts timed sequences of
states, called State Clock automata (SC automata), is defined. An SC automaton
A = (P, CP , L, L0, E,L,Δ,F) consists of a finite set P ⊆ P0 of propositions, a
finite set CP of clocks, with two clocks for each proposition p, a history clock xp

and a prophecy clock yp, a finite set L of locations with a non-empty set L0 ⊆ L
of start locations, a set E ⊆ L × L of edges, a proposition labelling function
L : L → 2P representing for each location l the set of propositions that are true
in l, a constraint labelling function Δ : L → 2C, where C is the a set of time
constraints on the clocks in CP , and a family F of Büchi acceptance sets Fi ⊆ L.

In [17], the notion of a run of A accepting a timed sequence of states m
is defined. In particular, one location of each of the Büchi acceptance sets Fi

must be visited infinitely often, and the timing constraints on the clocks of each
visited location must be respected. The idea of the clocks is that xp records the
time since p held the last time, whereas yp records the time until p holds for the
next time. The language L(A) is a set of timed sequences of states accepted by
A. A main result of [17] is that for each SCL formula ϕ an SC automata Aϕ can
be constructed such that a timed sequence of states is a model of ϕ iff it is in
L(Aϕ).

We extend SC automata so that other automata can interact with them,
allowing them to make decisions which actions to execute based on the state an
SC automaton is in. For this purpose, we enable SC automata to communicate
with each other by (a) broadcast communication on the edges of E, (b) evaluating
guards, and (c) simple operations regarding lists and MLSL actions.

We do not introduce all of these concepts formally, but would like to give
intuitions for each of them. For the broadcast communication (a) to occur on an
edge, we can chose from two set of communication actions, input actions In and
output actions Out . The latter one describes sending data −→c over a communi-
cation channel com, denoted by com!−→c . A communication from In “listens” on
a communication channel, say com, and synchronises when data −→c received via
this channel satisfies its communication guard ϕc, denoted by com?−→c : ϕc.
In addition to communication guards, “normal” guards (b) can be used to
restrict the usage of a transition. When taken, transitions can execute (c) cer-
tain actions, for which we allow MLSL actions and operations on lists. These
concepts are as in timed automata of UPPAAL [12] and Automotive-Controlling
Timed Automata [19], to which we refer for formal definitions.

Definition 2 (Communicating State Clock automata). A communicating
SC automaton is a tuple A = (P, CP , L, L0, E

′,L,Δ,F), where all components
are the same as stated above, except for the set of edges E′ = E ∪ Ec with
Ec ⊆ L × ϕ × In/Out × Act ′ × L, where Act ′ is the set of MLSL actions Act
plus the previously mentioned operations on lists.

For an example of a communicating SC automaton see Fig. 6 in Sect. 4. The
semantics of these automata and networks of them is as expected, it accepts
runs that visit a location from each accepting set for each of the automata in

Time for Traffic Manoeuvres 169

the network infinitely often. In doing so, guards, communication and actions on
communication edges need to be respected. In particular, communication edges
with Out communication synchronise with each enabled communication edge
with In communication over the same channel where all guards are satisfied.
Also, edges with In communication cannot be taken if there is no corresponding
Out communication. We denote a network of two communicating SC automata
A and B as A || B.

In this paper, we use SC automata as monitors of finite prefixes of their runs.
After such a prefix, the values of the prophecy clocks can be unknown, and thus
the monitor can be in several possible locations. We compute the set of reachable
locations of an SC automaton A = (P, CP , L, L0, E,L,Δ,F).

Definition 3 (Reachable locations after a prefix). For a prefix m =
(s0, I0), . . . , (sn, In) of a timed sequence of states of a run of A, the set A[m〉 of
reachable locations after m is defined inductively:

– If |m| = 1, A[m〉 = {l | l ∈ L0 ∧ L(l) = s0 ∧ m � Δh(l)}
– If |m| > 1, A[m〉 = {l′ | ∃ l : l ∈ A[m−)〉 ∧ (l, l′) ∈ E ∧ m � Δh(l′)},
where Δh(l) denotes the part of Δ(l) constraining the history clocks and, intu-
itively, m � Δh(l) iff for each history clock xϕi

the time since ϕi held for the
last time satisfies the timing constraint for this clock, and m− is m without the
last state (sn, In),

Later we need the notion of “bad” locations. These are the locations from
which it is impossible to find a suffix that leads to an accepting infinite run.

Definition 4 (Bad locations). The set of bad locations of A is defined as
{s ∈ L | ∃Fi ∈ F ∀f ∈ Fi : (s, f) �∈ E∗}.
Lemma 1 (Extensions to timed sequences of states). For a finite prefix
m of a timed sequence of states of a run of A, where ∀ l ∈ A[m〉 : l ∈ bad, there
does not exist a continuation m′ with m.m′ ∈ L(A). For a finite prefix n, where
∃ l ∈ A[n〉 : l �∈ bad, there exists at least one continuation n′ with n.n′ ∈ L(A).

Proof. This follows immediately from Definition 3 and Definition 4. �

2.4 Timed Multi-lane Spatial Logic

In [2], we introduced Timed Multi-lane Spatial Logic (TMLSL) as a combination
of SCL and MLSLS, where the uninterpreted propositions p of SCL are instan-
tiated by MLSLS formulae p ∈ ΦMLSLS . This way MLSLS formulae express the
static properties of traffic snapshots whereas the temporal and real-time opera-
tors of SCL enable us to express properties of the evolution of traffic snapshots.

For infinite sequences and the “strong” semantics, an infinite sequence of
actions ω satisfies a formula ϕ iff it visits a location from each Büchi set infinitely
often. We denote this as TS, ω � ϕ. In what follows, however, we focus on finite
sequences. The reason is that we require the cars to plan ahead up to a given

170 C. Bischopink and E.-R. Olderog

time bound only. Intuitively, a finite sequence of actions ω and a traffic snapshot
TS satisfy a formula if “nothing bad happened yet” (TS , ω �� ¬ϕ), sometimes
called weak semantics. More formally, we require that the evolution of TS along
ω leads to a timed sequence of states m whose prefix up to the time bound
t satisfies the TMLSL formula ϕ. We denote this as TS , ω �t ϕ. We elaborate
more on the connection between timed sequences of actions and timed sequences
of states in Sect. 4.

3 Example

We illustrate our approach of collectively finding “good” actions for the cars to
take. Consider three cars, A, B and E, with reservations, positions and speeds
as shown in Fig. 2. The accelerations are assumed to be 0. Suppose that (1)
the cars A and B do not change their behaviour by executing any actions,
only time passes, (2) car E is required to change lanes soon, it needs to have
two neighbouring reservations within 8 time units, and (3) the size of each car
including its braking distance is 5.

Fig. 2. Prefix of the accepted sequence of actions ω2, where car E announces a claim
on lane 2 at t = 3.5, with a potential collision that is resolved after 0.25 time units.

In this example, cars are allowed to change lanes if the claim of a car is stable
for at least 4 time units and no potential collision was detected during that time,

expressed by the TMLSL formula ϕ1 = (〈pc(E)〉 ∨ ¬ 〈cl(E)〉) �≥4→
〈

re(E)
re(E)

〉
.

Another formula that we want the cars to respect is ϕ2 = 〈pc(ego)〉 →�[0,2)

¬ 〈pc(ego)〉. This formula means that an intersection of a car’s claim and another
car’s reservation can take place, but needs to be resolved within 2 time units.
The cars use monitors to represent the satisfaction of these formulae. An excerpt
of the monitor representing formula ϕ2 is shown in Fig. 3.

Car E now wants to change lanes, therefore it first announces the actions
it wants to execute for this purpose, and then waits for answers from the other
cars. To this end, each location of each monitor is equipped with an extra transi-
tion. These transitions check whether the announced behaviour leads to a “bad”
location. In case of the monitor from Fig. 3, a bad location (and the ones that
can be reached from there on) would be the ones coloured red, as in this case we

Time for Traffic Manoeuvres 171

arrived here with a potential collision and are not going to resolve it within 2
time units. A visualisation of the transitions that decide whether the announced
actions are allowed is depicted in Fig. 5 of Sect. 4.

We now give two examples of timed sequences of MLSL actions that car E
can announce. The first one is ω1 = 〈(c(E, 2), 1.25), (r(E), 6)〉 and the second
one is ω2 = 〈(c(E, 2), 3.5), (r(E), 8)〉.

The first sequence is denied by car A. Assuming that its monitor (Fig. 3)
is in location l1, the announced action c(E, 2) at time t = 1.25 leads to an
immediate potential collision (overlap starting in position 21.25). It would take
2.5 time units to resolve this, as we assumed that car A and B cannot change
their acceleration and car E did not announce an acceleration change. Therefore
the negotiating transition of the monitor computes that it would make it to the
bad location l5 with this sequence and thus the sequence is rejected.

The second sequence is allowed by car A. Assuming that the monitor is again
in location l1, the announced action c(E, 2) at time t = 3.5 leads again to an
immediate potential collision. However, it would only take 0.25 time units until
the potential collision is resolved. The monitor therefore computes that it would
reach location l4. Assuming that the second announced action r(E) at time t = 8
also does not lead to a bad state, car A allows the actions and thus car E executes
them. The part of the sequence ω2 where the potential collision occurs and is
resolved is shown in Fig. 2.

Fig. 3. Excerpt of the monitor for property ϕ2 with the prophecy clock y¬pc. The
red locations are bad ones because a path through these locations does not resolve a
potential collision fast enough and thus cannot be accepting. (Color figure online)

4 Formalisation

We now formalise our approach of finding actions for the cars to take in a dis-
tributed manner such that these actions respect the cars’ specification up to
some time bound t. The idea is to utilise the monitors representing the satisfac-
tion of the cars’ specifications for this purpose. The monitors cooperate with the
cars’ controllers in a way that they first check whether the announced actions
are going to violate its car’s specification within the next t time units. If so, the
announced actions are denied, and allowed otherwise.

Let us reconsider two terms introduced in Sect. 2: timed sequences of states
and timed sequences or words over MLSL actions. The first one stems from

172 C. Bischopink and E.-R. Olderog

SC automata and is a sequence of propositions valid during intervals and is
the semantic basis for SCL and TMLSL formulae. The second one stems from
MLSL and describes what actions cars execute at which time points. Applying
the actions to a traffic snapshot can change the propositions valid on it. Figure 4
illustrates the connection between these two concepts. Several sequences of states
〈(s0, I0), . . . , (sn, In)〉 hold when applying ω = 〈(α0, t0), . . . , (αn−1, tn−1)〉 to TS .
We consider here a timed sequence of states m(TS , ω) that is complete and
consistent, only using the MLSLS formulae as propositions that ϕ is built from.

TS0 TS1 TS2
. . . TSn

s0 s1 s2
↑
t

(α0, t0) (α1, t1) (α2, t2) (αn−1, tn−1)

Fig. 4. Illustration of the different sequences used in our approach. The pairs (αi, ti)
form the timed sequence of actions that the cars want to find such that the traf-
fic snapshot TS0 evolves in a way that it successively satisfies the states of m =
(s0, I0), . . . , (sn, In), where t is the right end point of the interval In.

For all that follows, let a monitor Aϕ = (P, CP , L, L0, E,L,Δ,F) represent-
ing the satisfaction of a TMLSL formula ϕ be given. This monitor Aϕ is a normal
(not communicating) SC automaton and some of its locations are labelled bad.

For Aϕ we define now the set of reachable locations after a finite sequence of
actions is applied to a given traffic snapshot TS0, similar to Definition 3.

Definition 5 (Reachable locations after a timed word). For a timed word
of actions ω = 〈(α1, t1), . . . , (αn, tn)〉, the set locset(Aϕ,TS 0, ω) of reachable
locations is defined inductively:

– If |ω| = 0, locset(Aϕ,TS 0, ω) = {l ∈ L0 | TS 0 � L(l)}.
– If |ω| ≥ 1, locset(Aϕ,TS 0, ω) = {l′ | l ∈ locset(Aϕ,TSn−1, ω

−) ∧ (l, l′) ∈
E ∧ TSn−1

tn−tn−1−−−−−→ ◦ αn−−→ TSn ∧ m(TS0, ω) � Δh(l′) ∧ TSn � L(l)},

where ◦ denotes relational composition, Δh(l) again denotes the constraints of
Δ(l) over history variables, and ω− is ω without the last pair (αn, tn).

Later we consider runs that start from a set of locations L′
0 that may be different

from the initial one, in particular when L′
0 is reached during a previous evolution

along some timed word. We write Aϕ,L′
0

if the set of initial locations L0 of Aϕ

is replaced by L′
0.

Time for Traffic Manoeuvres 173

One could assume that there is a result corresponding to Lemma 1, expressing
that one can find a sequence of actions that yields a satisfying run, as long as no
bad location is visited. However, the possibility to extend a finite timed sequence
of states into a satisfying one is not sufficient when asking for a corresponding
timed sequence of actions:

Lemma 2 (Extensions to timed words of actions). For an SC automaton
Aϕ over MLSLS propositions and a timed word of actions ω, if there exists a
location l ∈ locset(Aϕ,TS 0, ω) that is not bad, there does not necessarily exist a
sequences of timed actions ω′ s.t. TS, ω.ω′ � ϕ.

Proof. We describe the structure of a counterexample, showing that under the
assumptions of the lemma, the property TS, ω.ω′ � ϕ does not hold. Consider a
traffic model with only one lane and only two cars A and B on it. We assume
that a TMLSL formula ϕ is given such that the corresponding SC automaton
Aϕ accepts the infinite timed sequence

m′ =
∏
n∈N

〈(ϕA, 4n + [0, 1)), (ϕC , 4n + [1, 2), (ϕB , 4n + [2, 3), (ϕC , 4n + [3, 4)〉,

where
∏

n∈N
seqn denotes the iterated concatenation of the sequences seqn and

ϕA = 〈re(A) � re(B)〉∧ϕC , ϕB = 〈re(B) � re(A)〉∧ϕC , ϕC = ¬ 〈re(A) ∧ re(B)〉.
Consider the finite prefix m = 〈(ϕA, [0, 1), (ϕC , [1, 2)〉 of m′. Suppose that m
leads to a location l ∈ Aϕ[m〉 with l �∈ bad and that for the continuation
m′′ = 〈(ϕB , [2, 3), (ϕC , [3, 4)〉·∏n∈N\{0}〈(ϕA, 4n+[0, 1), (ϕC , 4n+[1, 2), (ϕB , 4n+
[2, 3), (ϕC , 4n + [3, 4)〉 of m the property m.m′′ = m′ � ϕ holds.

However, since our abstract model has only a single lane and ϕA is true in
the beginning, no action sequence ω.ω′ corresponding to the timed sequence of
states m′ can lead to a traffic snapshot where ϕB is satisfied without violating
ϕC in between. �

In this counterexample, no sequence of actions can exist that yields a satisfy-
ing timed sequence of states. In other cases, however, there could be a satisfying
sequence of actions but with acceleration values for some of the cars that are
beyond any reasonable bounds. In [2], we therefore considered constraints on the
acceleration forces and speeds of the cars when answering the question whether
a specification is satisfiable at all.

We already motivated in Sect. 2 that we enable SC automata to communicate
with each other. The reason is that we want to enable the monitors to enforce
the properties up to some time bound. For this purpose, we add transitions to
the monitors that are used to check whether the announced actions of the cars
violate the specification that this monitor represents.

Definition 6 (Negotiating Transitions). Let t(l) = (l, true, com?ω, cl),
(cl, check(·, l , ω), allow !(ego, ω), l), (cl,¬check(·, l , ω), deny !ω, l) denote a negoti-
ating transition for Aϕ with l ∈ L, ω is a timed word of MLSL actions and ‘com’,
‘deny’ and ‘allow’ are channels with corresponding input and output actions.

174 C. Bischopink and E.-R. Olderog

Fig. 5. Transition that we add to each location l of the monitors. After receiving a
planned sequence of actions ω via a channel com, the predicate check(TS , l, ω) deter-
mines whether the sequence should be allowed or denied. The first parameter TS is
not shown on the transition; it is implicitly forwarded to check(TS , l , ω) when the
transition is triggered.

A graphical representation of these transitions is shown in Fig. 5. The predicate
check(TS , l , ω) (with the first parameter hidden in the negotiating transitions) is
used to determine whether the announced behaviour is allowed by the monitor.
For this purpose, the monitor virtually applies the announced actions to the
traffic snapshot and computes the set of locations that it would reach in an
evolution caused by the announced actions:

Definition 7 (check(TS , l, ω)). Triggered in a location l of Aϕ, we define for
a traffic snapshot TS and a sequence of actions ω

check(TS , l, ω) = true iff ∃l′ ∈ locset(Aϕ,{l},TS , ω) ∧ l′ �∈ bad.

One can check the satisfaction of this predicate in traffic snapshots TS differ-
ent from the initial one. We incorporated this in Definition 7 by considering a
location l, where the predicate check is evaluated, which might be different from
the initial location of Aϕ. This location might be reached by the evolution along
some timed word.

Lemma 3 (Guarded execution of actions). Given two traffic snapshots

TS 0 and TS with TS 0
ω′
−→ TS, a location l ∈ locset(Aϕ,TS 0, ω

′) reached by
the evolution along ω′, a time bound t, a sequence of actions ω up to t, we have
check(TS , l, ω) = true iff TS0, ω

′.ω �t ϕ.

Proof. Consider check(TS , l, ω) being true in a location l ∈ locset(Aϕ,TS 0, ω
′)

reached in Aϕ by a timed sequence of actions ω′ with TS 0
ω′
−→ TS . By Defini-

tion 7, ∃l′ ∈ locset(Aϕ,l,TS , ω)∧l′ �∈ bad. Therefore there exists a timed sequence
of states m(TS 0, ω

′.ω) = 〈(s0, I0), . . . , (sn, In)〉 with TS 0 � s0∧TS ′ � sn∧t ∈ In.
Since l′ �∈ bad, m(TS , ω′.ω) �� ¬ϕ. Therefore TS 0, ω

′.ω �t ϕ. �

In what follows, we do not employ that we can start in traffic snapshots
different from the initial one and instead always start the planning there. A
benefit, however, is that one could use the evolution from TS0 to TS to model
that the planning and communication of controllers and monitors needs time
and thus the traffic situation evolves. A further utilisation could be possible

Time for Traffic Manoeuvres 175

when this procedure is executed iteratively to achieve a satisfaction beyond t,
cf. Sect. 5. We now add the transitions of Definition 6 to every location l ∈ L of
Aϕ:

Definition 8 (Supervisor). Given a monitor Aϕ for a specifica-
tion ϕ and negotiating transitions according to Definition 6, A′

ϕ =
(P, CP , L, L0, E

′,L,Δ,F), where E′ = E ∪ {t(l) | ∀l ∈ L} is a supervisor or
an enforcer for ϕ up to time t.

The communicating SC automaton A′
ϕ can now check for announced sequences

of actions whether they conform to the ϕ that it is build from. This feature
can be used in various ways. Every single controller that conforms to the simple
protocol: (1) it announces all actions that it wants to execute up to time bound t
and (2) only executes them when the supervisors allow it, now satisfying ϕ
up to t.

In the Example of Sect. 3, only a single car participated. In case that there is
more than one controller present, the controllers first need to cooperate and build
the sequence of actions to announce collectively before starting the request to
the supervisors. A detailed interplay between the controllers and enforcers could
be possible here, with strategies and heuristics about finding optimal actions
to announce. Yet, for the moment, we only propose a simple nondeterministic
controller C, where the cars simply guess their actions, communicate them via a
channel a and append them to the sequence of actions to execute and re-do this
in the case the sequence was rejected until an allowed one is found. A (simplified)
graphical representation of this controller is depicted in Fig. 6.

In the initial location l0, the controllers successively guess actions α that they
wish to execute at time t, communicate them via the channel a and append these
actions to the sequence of actions ω. We silently assume that each controller only
guesses actions for its own car. At any point, the controller, if the time stamps of
ω form a real-time sequence, can proceed to the intermediate location (denoted
by •), announcing the sequence ω to the supervisors and the other controllers
via the channel com. The controller then waits for the supervisors to allow the
sequence. Positive answers to this are stored in the list β of cars that already
allowed for the sequence. If all supervisors allow the sequence, the controller
proceeds to l1 and executes the actions it itself appended to β, until there are no
further actions to execute. In case a supervisor denies the sequence of actions,
both the sequence of actions ω and the list β of cars that already allowed for the
sequence are deleted and the location is changed to l0 again.

Using the controller C, we can now state that every sequence found indeed
respects the cars’ specification:

Theorem 1 (Every sequence in the semantics is a solution). For every
sequence m ∈ L(A′

ϕ || C) there is a timed word of actions ω that is the outcome
of the negotiating transitions of the enforcer A′

ϕ such that (1) the states in m
describe the evolution of TS along ω, and (2) ω and TS are a model of ϕ up to
time t, TS, ω �t ϕ.

176 C. Bischopink and E.-R. Olderog

Fig. 6. A nondeterministic controller C. Multiple of these controllers collectively
“guess” a sequence of actions to announce and execute their actions if the sequence is
accepted. In the case of a reject, the controllers start the procedure again. We omitted
propositions and clock constraints forcing the controller to actually take the transitions
and reach the final location.

Proof. A satisfying sequence m needs to visit the final location of the controller
C. Therefore, the all allowed(β) transition was taken and A′

ϕ avoided its bad
locations. Thus, there is an initial location l0 in A′

ϕ and a sequence ω such that
check(TS 0, l0, ω) was successful. Due to Lemma 3, TS 0, ω �t ϕ holds. �

Please note that we do not distinguish between A′
ϕ being the supervisor for

a single or for all cars in the theorem. In the case of multiple cars, A′
ϕ is the

network A′
ϕA

|| A′
ϕB

|| . . . of the supervisors for the single cars A,B, The
same applies for the controller C.

Even though no one would want this non-deterministic controller in practice
in her/his car, we can use it to show that the supervisor A′

ϕ does not hinder the
execution of any satisfying sequence of actions and if there exists a satisfying
sequence of actions, it can actually be found:

Theorem 2 (Existence of a solution). Every timed word of actions ω with
TS 0, ω � ϕ satisfies m(TS 0, ω) ∈ L(A′

ϕ,L′
0

|| C) with L′
0 = {l ∈ L0 | TS 0 � L(l)}.

This theorem follows immediately from Theorem 1 and the nondeterminism
in the controllers.

5 Conclusion

We presented and demonstrated an approach for autonomous vehicles in motor-
way traffic for finding actions that respect the specifications of all participating
cars up to a time bound. In doing so, the cars utilise internal monitors represent-
ing the satisfaction of their specification. Enabling the monitors to communicate,
they act as supervisors for their specification and allow announced actions only
if these actions do not violate the specification up to a given time bound. Using
a nondeterministic controller, we showed that the supervisors do not forbid any
actions that respect the satisfaction of the specification.

Time for Traffic Manoeuvres 177

Future Work. A topic for future work is enforcing the satisfaction of a TMLSL
property not only up to a certain time bound, but along a possibly infinite
evolution. There are different possibilities to achieve this. In [2], we employed
equivalent traffic snapshots for determining if, given an initial traffic snapshot
TS 0, a specification is satisfiable at all, along some infinite evolution starting in
TS 0. The idea is that a sequence entering a loop, where a traffic snapshot TS ′

is equivalent to a previous traffic snapshot TS (in symbols TS ≡ TS ′), can be
extended by executing the loop infinitely often, with all MLSL formulae valid
during the first loop execution would also be valid during any further execution of
the loop. Figure 7 illustrates the mentioned behaviour. Utilising these equivalent
traffic snapshots, one could extend our enforcement approach to allow a sequence
of actions only if each accepting set is visited along a sequence of actions and
equivalent traffic snapshots are reached, so that the found sequence could be
executed infinitely often. In this case, one would need to plan ahead such that a
desired behaviour (for all cars) is part of the loop.

Fig. 7. Illustration of behaviour that can be executed infinitely often.

Another option would be to plan sufficiently ahead and trigger a re-planning
of the sequence. For this, it is of interest what a sufficient time bound is. In
this case, one would need to plan so far ahead such that the sequences do not
necessarily lead to any undesired behaviour. Even without the knowledge of the
exact boundaries to plan ahead, re-planning should lead to a satisfaction of a
property along a longer run.

For both extensions just mentioned as well as the approach introduced in this
paper, an implementation is desirable and ongoing work. For this, a visualisation
of the behaviour of the monitors and the cars movement in SuMo [14] is the goal.

The model of MLSL presented in this paper only considers motorway traffic.
Over the years, different extensions were proposed, e.g. for country roads [9] and
urban traffic [19]. The extension of TMLSL and the runtime monitoring approach
to also cover these traffic scenarios is thus a further desirable extension.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Bischopink, C., Olderog, E.R.: Spatial and timing properties in highway traffic.
In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) Theoretical Aspects of Computing,
ICTAC 2022, Proceedings. LNCS, vol. 13572, pp. 114–131. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17715-6

3. Dierks, H.: PLC-automata: a new class of implementable real-time automata.
Theor. Comput. Sci. 253(1), 61–93 (2001). https://doi.org/10.1016/S0304-
3975(00)00089-X

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-031-17715-6
https://doi.org/10.1016/S0304-3975(00)00089-X
https://doi.org/10.1016/S0304-3975(00)00089-X

178 C. Bischopink and E.-R. Olderog

4. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.)
Runtime Verification, pp. 89–105. Springer, Cham (2010). https://doi.org/10.1007/
978-3-642-16612-9

5. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours -
towards a realizable interpretation of MLSL. In: Meyer, R., Platzer, A., Wehrheim,
H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 152–171. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23506-6 11

6. Gleirscher, M., Peleska, J.: Complete test of synthesised safety supervisors for
robots and autonomous systems. In: Farrell, M., Luckcuck, M. (eds.) Proceedings
Third Workshop on Formal Methods for Autonomous Systems, FMAS 2021, Vir-
tual. EPTCS, vol. 348, pp. 101–109 (2021). https://doi.org/10.4204/EPTCS.348.
7

7. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Software Eng. 26(8), 687–701 (2000). https://
doi.org/10.1109/32.879808

8. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011). https://doi.org/10.1007/s00165-009-0143-6

9. Hilscher, M., Linker, S., Olderog, E.R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Program-
ming and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Cham (2013).
https://doi.org/10.1007/978-3-642-39698-4 12

10. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6 28

11. Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The UniForM workbench,
a universal development environment for formal methods. In: Wing, J.M., Wood-
cock, J., Davies, J. (eds.) FM 1999 - Formal Methods, World Congress on For-
mal Methods in the Development of Computing Systems, Proceedings, Volume II.
LNCS, vol. 1709, pp. 1186–1205. Springer, Cham (1999). https://doi.org/10.1007/
3-540-48118-4

12. Larsen, K., Petterson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1+2), 134–152 (1997). https://doi.org/10.1007/s100090050010

13. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Log. Methods
Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-11(3:4)2015

14. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: The 21st IEEE
International Conference on Intelligent Transportation Systems, pp. 2575–2582.
IEEE, November 2018. https://elib.dlr.de/127994/

15. Olderog, E.R.: Space for traffic manoeuvres: an overview. In: Jones, C.B., Wang,
J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol.
11180, pp. 211–230. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01461-2

16. Peleska, J.: New distribution paradigms for railway interlocking. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation: Applications, ISoLA 2020, Proceedings, Part III. LNCS, vol. 12478,
pp. 434–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6

17. Raskin, J.-F., Schobbens, P.-Y.: State clock logic: a decidable real-time logic. In:
Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0014711

https://doi.org/10.1007/978-3-642-16612-9
https://doi.org/10.1007/978-3-642-16612-9
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.4204/EPTCS.348.7
https://doi.org/10.4204/EPTCS.348.7
https://doi.org/10.1109/32.879808
https://doi.org/10.1109/32.879808
https://doi.org/10.1007/s00165-009-0143-6
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/3-540-48118-4
https://doi.org/10.1007/3-540-48118-4
https://doi.org/10.1007/s100090050010
https://doi.org/10.2168/LMCS-11(3:4)2015
https://elib.dlr.de/127994/
https://doi.org/10.1007/978-3-030-01461-2
https://doi.org/10.1007/978-3-030-01461-2
https://doi.org/10.1007/978-3-030-61467-6
https://doi.org/10.1007/BFb0014711

Time for Traffic Manoeuvres 179

18. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

19. Schwammberger, M.: An abstract model for proving safety of autonomous urban
traffic. Theor. Comput. Sci. 744, 143–169 (2018). https://doi.org/10.1016/j.tcs.
2018.05.028

https://doi.org/10.1145/353323.353382
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1016/j.tcs.2018.05.028

Safer Than Perception: Assuring
Confidence in Safety-Critical Decisions

of Automated Vehicles

Martin Fränzle1, Willem Hagemann2(B), Werner Damm1, Astrid Rakow1,
and Mani Swaminathan3

1 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{fraenzle,damm,rakow}@informatik.uni-oldenburg.de

2 German Aerospace Center, Oldenburg, Germany
willem.hagemann@dlr.de

3 Federal Office for Information Security, Bonn, Germany

Abstract. We address one of the key challenges in assuring safety of
autonomous cyber-physical systems that rely on learning-enabled classi-
fication within their environmental perception: How can we achieve confi-
dence in the perception chain, especially when dealing with percepts safe-
guarding critical manoeuvres? We present a methodology which allows
to mathematically prove that the risk of misevaluating a safety-critical
guard conditions referring to environmental artefacts can be bounded to
a considerably lower frequency than the risk of individual misclassifica-
tions, and can thereby be adjusted to a value less than a given level of
societally accepted risk.

Keywords: Highly Automated Vehicles · Learning-enabled cyber
physical systems · Learning Algorithms · Safety Assurance · Perception
Chain

1 Introduction

Inspired by our joint interest with Jan Peleska in rigorously assuring safety of
highly automated transportation systems, we present a methodology and archi-
tecture for assuring the safety of highly automated vehicles (HAV), which guar-
antees that what the ego car, i.e. the own car, believes to be true about its
environment, and the actual ground truth, rarely differ for all aspects which
are relevant for ensuring the safety of the ego vehicle. How rare is rare enough
is a matter of societal debates—e.g. the German Department of Transportation
requires HAV to reduce the overall rate of fatalities compared to human-operated

M. Fränzle—Supported by the State of Lower Saxony within the Zukunftslabor
Mobilität as well as by Deutsche Forschungsgemeinschaft under grant no. DFG FR
2715/5-1.
M. Swaminathan—Contribution while employed at the University of Oldenburg.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 180–201, 2023.
https://doi.org/10.1007/978-3-031-40132-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_12

Safer Than Perception 181

Fig. 1. An ontology for labelling occupancies in an occupancy grid.

vehicles. No matter what order of magnitude these debates will converge to, they
will formally result in acceptance thresholds r and s bounding the likelihood of
false adoption and of false omission, resp., of safety-critical manoeuvres, where
a false positive decision for a safety-critical manoeuvre potentially leads to a
risk while a false negative decision against such a manoeuvre potentially incurs
a performance penalty. The respective bounds r and s will inevitably be orders
of magnitude tighter than what machine-learning-based perception and classifi-
cation systems can guarantee currently and in the foreseeable future.

This paper sets out to bridge this gap between actual perception perfor-
mance and expected societal acceptance thresholds by answering the following
question: if r, s are the level of societally accepted risk (performance penalty,
resp.) budgeted for relevant misperceptions induced by false positives (false neg-
atives, resp.), then (1) what renders a misperception “relevant”, (2) how can we
mathematically prove that perception of relevant environmental artefacts errs
with false-positive rate of at most r while guaranteeing a true-positive rate of at
least 1 − s, and (3) what requirements do these false-positive and true-positive
rates of relevant, in general compound, percepts imply for the permissible mis-
perception rates of atomic percepts?

We provide a mathematical setting for addressing this challenge, which is
based on a reference architecture for the key functional ingredients of the per-
ception chain. While each Original Equipment Manufacturer (OEM) has highly
proprietary implementations, there seems to be an emerging consensus that an
agreement on a functional reference architecture is both desirable and achiev-
able. Our proposal for the reference architecture uses labelled occupancy grids
for fusion of sensor data from radar, lidar, video, etc., and as interface to
learning-algorithms based components for classifying objects in the environment
of the ego-vehicle according to a (generally partially ordered, e.g., collecting cars,

182 M. Fränzle et al.

trucks, motor-cycles, etc. into a super-class of vehicles, like in Fig. 1) ontology.
Such an occupancy grid partitions the geometric vicinity of the ego car into
finitely many grid elements and records an occupancy information label from
the ontology for each of these. Typical conditions enabling or blocking—and
thereby meant to safeguard—critical manoeuvres then take the form of Boolean
combinations of statements concerning the occupancy of certain traffic spaces,
i.e. elements of the occupancy grid, by certain object types named in the ontol-
ogy, plus maybe additional environmental ones, e.g., visibility conditions. As an
example take an evasive manoeuvre of a car to the sidewalk in order to make
room for an emergency vehicle: initiation of such a manoeuvre by the ego car
would naturally be safeguarded by a Boolean condition requiring (1) presence
of an emergency vehicle somewhere in the occupancy grid elements belonging to
the traffic space reasonably close behind the ego car, (2) absence of vulnerable
road users within some sufficiently large and connected group of occupancy grid
elements belonging to the bike lane and sidewalks just ahead of the ego vehi-
cle, (3) absence of any obstacles, including parked or stopped cars, on the line
between the current ego position and the space for evasion identified via the pre-
vious condition, and finally (4) general (like absence of dense mist, presence of
light) and geometric (like absence of occlusions) visibility conditions pertaining
to the critical objects mentioned throughout the previous conditions.

While all the sub-conditions of the above guard condition intuitively make
sense as being necessary conditions for safe execution of the safety-critical eva-
sive manoeuvre, a safety risk due to misperception of some of the atomic state-
ments occurring in the guard condition prevails, as no technical (nor a biological)
perception system is perfect. In complex road scenes, we can neither expect to
detect all potentially relevant objects nor are safe from misclassification of harm-
ful objects as harmless and irrelevant. With absolute object detection rates often
dropping below 2

3 and classification accuracy easily falling below 90% in non-
ideal visibility conditions [6], would our reliance into the evaluation of the guard
condition drop into similar ranges due to the weakest link principle?

Intuitively, it might not have to, being a massive Boolean combination of
atomic percepts such that individual misperceptions might mask each other: not
every pedestrian needs to be detected, as allowing oneself to cross a strip of
pedestrian lane certainly does not depend on whether it hosts a single or a num-
ber of pedestrians. Likewise, slight misplacements of perceived objects would not
affect evaluation of the guard condition, as given small enough cells of the occu-
pancy grid, a slight offset in locating a cyclist will not change drivability of the
manoeuvre. Neither will mistaking a pedestrian for a cyclist do. The weakest link
principle thus does not seem to apply here. The very nature of reasonable safe-
guarding conditions for safety-critical manoeuvres intuitively seems to induce a
considerably lower misevaluation rate for the overall condition than for its con-
stituents, i.e., than for the atomic percepts dealing with detecting, locating, and
classifying objects. Within this note, we are trying to make this intuitive argu-
ment rigorous and formal, thus lifting reliability levels of combinatorial critical
environmental perception well beyond the figures for atomic percepts achieved
by state-of-the-art perception [6] paired with fusion techniques [11].

Safer Than Perception 183

The main result of this paper is a methodology for formally establishing refined
bounds on the risks of misperception for guard conditions concerning safety-
critical manoeuvres based on the rates of misperception of atomic environmen-
tal artefacts. It complements both formal synthesis-based approaches towards
achieving safe controllers as well as engineered control architectures, as our refer-
ence architecture does not restrict the typically highly proprietary planning and
manoeuvre control of HAV, and instead provides a generic interface between any
such proprietary solutions and the perception chain. It does so by allowing to
tune the confidence level of individual percepts to their current criticality, allow-
ing to optimise the trade-off between availability (induced from “don’t knows”)
and safety (bounding the error of misconception to societally accepted risk).

This paper is organised as follows: Sect. 2 provides a simple example show-
casing the effect of why and how the evaluation of a complex guard condition
safeguarding a safety-critical manoeuvre can be “safer than perception”. The
subsequent Sect. 3 develops the mathematical framework facilitating quantita-
tive analysis of this effect and proving its existence. Sections 4 and 5, finally,
refer related work and provide a summary and pointers to future work.

2 A Simple Example

Let us assume the ego car is in a situation as the blue car in Fig. 2a. As the
ego car wants to make progress, detecting the obstacle A1 would prompt it to
consider circumventing the obstacle by temporarily moving across the dividing
line into the oncoming lane. This manoeuvre would, however, only be selected iff
it (1) is necessary to avoid collision on the originally planned track and (2) it is
considered safe w.r.t. the available information about the environmental state.

The manoeuvre would thus be (safe-)guarded by a guard condition g defined
as g ≡ necessary ∧ safe, where

necessary ≡
7∨

x=6

5∨

y=1

obstacle@(xego + x, y)

denotes that some type of obstacle is detected as being present on the own lane,
i.e. between 1 and 5 in y position, within relevant x distance (here, for the
sake of a depictable example, shown as just 6 to 7 grid elements away in the x
direction — the real figure would be considerably larger). Within the ontology,
obstacle denotes an arbitrary type of road-blocking object and is defined as a

(a) Ego car in scenario 1 (b) Ego car in scenario 2

Fig. 2. Example Scenarios

184 M. Fränzle et al.

disjunction about different basic object classification labels, like trash container,
tire, debris, or ball (cf. Fig. 1). Note that this very definition already induces
perceptive fault-tolerance: identifying the necessity for circumvention neither
requires identifying the full back frontier of the obstacle, as the disjunction across
y positions would evaluate to true already if only a fraction of the frontier is
detected, nor identifying correctly the exact type of obstacle, as obstacle is a
disjunction across numerous obstacle types. Even identification of the x position
of the obstacle would permit for tolerances if circumvention manoeuvres are
dimensioned with a safety margin: locating A1 further left than it actually is
would not cause risk (yet extend the circumvention), while locating it too far
right stays collision-free if the misplacement remains within the safety margin.
Note the combinatorially vast number of distorted perceptions of A1 that would
thus still lead to the same truth value as the ground truth does. The likelihood
of failing to detect the necessity of a circumvention consequently remains very
low compared to the reliability of atomic percepts. This implies that the rate
of false negative verdicts in the evaluation of necessary remains low. We will
later see that by just some rewriting to the way necessary is expressed, we will
also be able to reduce the false-positive rate of the evaluation of necessary to a
frequency well below the false-positive rate of the atomic percepts.

We now turn to the safety condition, yet do in this note simplify its exposition
slightly by omitting some additional conditions that are structurally perfectly
similar to the ones shown. These omissions deal with occluded areas and are per-
fectly symmetric to the conditions on oncoming traffic explicated in the sequel.
With these simplifications, the safety condition reads

safe ≡ ¬
10∨

y=6

⎛

⎜⎝

∨20
x=1 pedestrian@(xego + x, y) ∨

∨40
x=−4 car@(xego + x, y) ∨

∨60
x=−1 motorcycle@(xego + x, y)

⎞

⎟⎠ .

It determines presence of critical objects on the oncoming lane within the ego
car’s vicinity, constituting the safety condition that may block the circumvention
manoeuvre when its execution may become hazardous. As this condition safe
structurally resembles necessary with an outermost negation added, its fault-
tolerance properties concerning misperception might at first glance seem dual:
where necessary is massively disjunctive and therefore tolerant against some or
even numerous lacking or inaccurate percepts, safe as a negation over a disjunc-
tion essentially is conjunctive and consequently seems to require completeness
of all percepts across the large set of atomic observations it mentions. This
would, however, be devastating! If true and insurmountable, it would imply that
the very safety condition safe were not only as, but even orders of magnitude
more fragile against misperception than any of the atomic percepts involved.
Sufficiently reliable evaluation of the safety condition would consequently seem
elusive, given that reliability of atomic percepts already falls considerably short
of our actual safety targets.

Luckily, this problem can be alleviated by careful analysis of the Boolean
problem structure of the safety condition safe or more generally the guard

Safer Than Perception 185

condition g, which we pursue via the general mathematical framework provided
in the next section. An idea of how the problem is resolved by careful mathe-
matical and logical analysis can readily be obtained from the situation depicted
in Fig. 2b. The choice whether ego actually circumvents A1 given (perceived)
validity of necessary now depends on detecting A2 or A3. It neither is necessary
to detect both of them nor to locate them exactly or to see their full frontier
nor even to classify them accurately! Ego will not choose to circumvent A1 even
when recognizing only one (or part of one) of the oncoming motorbikes and even
when it only detects some vehicle without being able to determine exact vehicle
type. Again, and not withstanding the logical complementarity between the con-
ditions necessary and safe, there is a combinatorially vast set of misperceptions
that do not alter perceived truth of safe compared to its ground truth.

Consequently, both necessary and safe and therefore also their combination
in the guard condition g enabling the safety-critical manoeuvre seem rather safe
against misevaluation due to misperception. Intuitively this is the case as they
are or can be rephrased, as we will see, in a form that is both highly symmetric
and not over-specific. Highly symmetric here means that they feature multiple
large groups of atoms that have the same effect on the overall truth value of g,
like e.g. the detection of obstacles at different occupancy grid points. This also
implies that they are not over-specific in that they neither have a particularly
small nor a particularly large set of models, i.e. of satisfying grid valuations,
but that models rather come in large combinatorial groups. The consequential
cardinality and topology of the set of models renders them relatively robust
against misperceptions as we will see.

3 Boolean Formulae as Classifiers

Let Φ be a formula that guards a safety-critical manoeuvre in the sense that the
driving function will only adopt the manoeuvre when it has positive evidence of
the validity of Φ in the current situation, implying that the manoeuvre would be
avoided (and a safer substitute adopted) whenever Φ is violated or evaluation of
Φ remains inconclusive. Such formulae Φ are generated by the prediction compo-
nent on the fly. They comprise massive Boolean combinations of conditions on
individual cells of the occupancy grid, where both the particular cells referenced
and the individual conditions vary situationally, i.e. the universe of such queries
Φ is far too large to compute optimised detectors in advance. E.g. Φ may safe-
guard a fast transit of a critical passage by ensuring that there are no humans
on the sidewalk, where the geometric position of the sidewalk will depend on
street geometry and position of the car in the lane, while the lookahead and
thus number and distance of the cells referenced depends on current speed, road
conditions, etc. In this particular setting Φ = lit1∧ lit2∧· · ·∧ litn is a conjunction
of literals liti = ¬Ai of the form “it is false that there is a human at cell ci”.
The truth value of each atom Ai directly depends on a classifier output, which
is, in this particular example, a classifier for the object class “human”.

Our ultimate goal is to find an optimal combination of threshold values for the
related classifiers, separately for each cell, such that the risk of misperception, i.e.

186 M. Fränzle et al.

the false-positive rate for evaluation of Φ, is restricted to a given safety bound ε
while the availability, i.e. the true-positive rate for evaluation of Φ, is maximised.
In the following we show that both the true-positive and the false-positive rate
of a compound observation predicate ca be bounded by polynomials over the
respective rates of atomic percepts such that the aforementioned optimization
problem can be translated into a polynomial optimisation problem. While we
will not solve the optimisation problem in this note, we will subsequently show
the translation and discuss some of its properties. We first summarise the main
results here and give brief notes on the evidence. The reader will find a detailed
version of the proofs in the appendix.

3.1 Probabilistic Preliminaries and Assumptions

Let {A1, . . . , An} be the set of atoms. Each atom Ai corresponds to a classi-
fier whose sensitivity and specificity can be adjusted by parameters. Thus, for
fixed parameters, any atom Ai is a discrete random variable that maps any pos-
sible outcome ω ∈ Ω to a pair Ai(ω) = (Aλ

i (ω), Aπ
i (ω)) consisting of its label

Aλ
i (ω) = λi ∈ {−,+, ? } assigned by the perception component and its actual

ground-truth value Aπ
i (ω) = πi ∈ {⊥,�}. The label values −,+, ? denote respec-

tively negative, positive, or inconclusive evidence for validity of the atom under
consideration. The truth values ⊥,� denote respectively that Ai is actually invalid
or valid. Instead of Aλ

i (ω) = λi with λi ∈ {−,+, ? } we often use the short nota-
tion Aλi

i and likewise we often use Aπi
i with πi ∈ {⊥,�} instead of Aπ

i (ω) = πi.
A formula is a Boolean combination of atoms. By the following inductive

definition any formula also is a discrete random variable.

Definition 1. We extend the set of discrete random variables to formulae.

(i) Any atom is a discrete random variable.
(ii) Let φ be a random variable. Then ¬φ also is a random variable, where the

truth value (¬φ)π is given as usual and (¬φ)+ :⇔ φ−, (¬φ)− :⇔ φ+, and
(¬φ) ? :⇔ φ ? .

(iii) Let φ, ψ be two random variables. Then φ ∧ ψ is a random variable too,
where the truth value (φ ∧ ψ)π is given as usual and (φ ∧ ψ)+ :⇔ φ+ and
ψ+, (φ ∧ ψ)− :⇔ φ− or ψ−, and (φ ∧ ψ) ? otherwise.

(iv) Let φ, ψ be two random variables. Then φ ∨ ψ is a random variable, and
is defined using the classical equivalence φ ∨ ψ ↔ ¬(¬φ ∧ ¬ψ) that induces
appropriate two- and three-valued interpretations.

Let φ be an arbitrary formula, let m = (Aπ1
1 , . . . , Aπn

n) be a truth assignment
that assigns a truth value to each atom Ai, and l = (Aλ1

1 , . . . , Aλn
n) be a label

assignment that assigns a label to each atom Ai. We write m |= φπφ if and only
if φ evaluates to πφ under the assignment m. Similarly, we write l |= φλφ if and
only if l yields the label λφ for φ. We will occasionally consider domain models
for the ground truth. A domain model M further restricts the admissible truth
assignments of atoms, in general by enforcing domain invariants. For example,
M could restrict the minimum number of (adjacent) grid occupancies for large

Safer Than Perception 187

vehicles or define non-occupiable cells due to buildings, etc. Note that domain
models do not restrict the admissible label assignments.

We extend the usual true positive (TP), false negative (FN), true negative
(TN), and false positive (FP) rates to formulae as expected:

Definition 2. For any formula φ we define the following performance rates:

TPRφ := P (φ+ | φ�), FNRφ := P (φ− | φ�),

TNRφ := P (φ− | φ⊥), FPRφ := P (φ+ | φ⊥),

where P (φλφ | φπφ) denotes the conditional probability that φ is labelled with
λφ ∈ {+,−, ? } given that the truth value of φ is πφ ∈ {�,⊥}.

Let φ be an arbitrary formula with label φλφ and truth value φπφ . Our goal
is to relate the respective performance rates of the complex Boolean formula φ
to performance rates of its atoms. The main device of such a reduction is an
explicit enumeration of all label and truth assignments l and m that yield φλφ

and φπφ . As all these assignments are disjoint sets, a first option is to exploit
the σ-additivity P (A ·∪ B) = P (A) + P (B). However, since the rates under
consideration are conditional probabilities where the event set is determined by
the label and the conditional event is determined by the truth value, we need to
decompose the event as well as the conditional event set. Let us first consider a
decomposition for the conditional event.

Lemma 1. Let a1
b1

, . . . , an

bn
be fractions with real numbers a1, . . . , an and positive

real numbers b1, . . . , bn. Then the following bounds hold:

min
i=1,...,n

{
ai

bi

}
≤

∑n
i=1 ai∑n
i=1 bi

≤ max
i=1,...,n

{
ai

bi

}
.

Proof. The inequality can be proved by induction over n using the mediant
inequality a

b ≤ c
d =⇒ a

b ≤ a+c
b+d ≤ c

d for real numbers a, b and positive real
numbers b, d. Details can be found in the appendix.
�

This generalised median inequality permits decomposition for the conditional
event as follows.

Lemma 2. Let B1, . . . , Bn be disjoint events. For the conditional probability
P (A | ⋃· n

i=1 Bi) the following inequalities hold:

min
i=1,...,n

{P (A | Bi)} ≤ P (A |
n⋃
·

i=1

Bi) ≤ max
i=1,...,n

{P (A | Bi)}.

Proof. The inequalities follow by exploiting the σ-additivity and rewriting.
Details can be found in the appendix.
�

Thus, using the preceding lemma, we can decompose the truth condition of
rates and estimate the rate as follows, where m = (Aπ1

1 , . . . , Aπn
n).

188 M. Fränzle et al.

min
m|=φπφ

P (φλφ | m) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

P (φλφ | m).

We can even step further and decompose the event φλφ into proper assignments
l = (Aλ1

1 , . . . , Aλn
n).

min
m|=φπφ

∑

l|=φλφ

P (l | m) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

∑

l|=φλφ

P (l | m). (1)

The following plausible assumption allows a further decomposition of the
labelling event into atomic labelling events.

Assumption 1 (Independent Labelling). We assume that labelling Aλi
i of

an atom Ai depends on a given truth assignment Aπ1
1 , . . . , Aπn

n but not on the
label assignment of other atoms, i.e., for any i �= j the independent labelling
property P (Aλi

i | Aπ1
1 , . . . , Aπn

n , A
λj

j) = P (Aλi
i | Aπ1

1 , . . . , Aπn
n) holds.

The independent labelling assumption allows us to decompose simultaneous
labelling of different atoms.

Lemma 3. The independent labelling property is equivalent to for all i �= j:

P (Aλi
i , Aλi

j | Aπ1
1 , . . . , Aπn

n) = P (Aλi
i | Aπ1

1 , . . . , Aπn
n)P (Aλj

j | Aπ1
1 , . . . , Aπn

n).

Proof. The reader is referred to the appendix.
�
The Independent Labelling Assumption 1 allows us to decompose any

labelling event l of the form l = (Aλ1
1 , . . . , Aλn

n) into products over its atoms.

min
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Aλi
i | m) ≤ P (φλφ | φπφ) ≤ max

m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Aλi
i | m). (2)

As the pertinent recommendations concerning operational domains [21] sug-
gest that true positive rates, false negative rates, etc., ought maintain their
accepted lower or upper, resp., bounds across all operational domain, i.e. no
operational domain gets “discriminated” by having to accept excessive FNR for
example, we adopt the following additional assumption.

Assumption 2. Let Ai be an arbitrary atom (in our case reflecting an element
of the occupancy grid). We assume that the following lower and upper bounds on
the conditional probability P (Aλi

i | Aπ1
1 , . . . , Aπn

n) exist depending on the labelling
Aλi

i and the truth value Aπi
i and are valid for all truth assignment Aπ1

1 , . . . , Aπn
n .

TPRAi
≤ P (A+

i | Aπ1
1 , . . . , A�

i , . . . , Aπn
n) ≤ TPRAi

,

FNRAi
≤ P (A−

i | Aπ1
1 , . . . , A�

i , . . . , Aπn
n) ≤ FNRAi

,

TNRAi
≤ P (A−

i | Aπ1
1 , . . . , A⊥

i , . . . , Aπn
n) ≤ TNRAi

,

FPRAi
≤ P (A+

i | Aπ1
1 , . . . , A⊥

i , . . . , Aπn
n) ≤ FPRAi

.

Safer Than Perception 189

Note that the bounds only depend on the label and the truth value of Ai and are
independent from the truth value of other atoms. I.e., we assume that for all
atoms Ai and their given truth values Aπi

i the limit probabilities P and P with

P (Ai
λi | Ai

πi) ≤ P (Aλi
i | Aπ1

1 , . . . , Aπi
i , . . . , Aπn

n) ≤ P (Ai
λi | Ai

πi)

exists for all truth assignments m = (Aπ1
1 , . . . , Aπn

n) with m |= Aπi
i , such that

TPRAi
= P (Ai

+ | Ai
�), TPRAi

= P (Ai
+ | Ai

�),

FNRAi
= P (Ai

− | Ai
�), FNRAi

= P (Ai
− | Ai

�),

TNRAi
= P (Ai

− | Ai
⊥), TNRAi

= P (Ai
− | Ai

⊥),

FPRAi
= P (Ai

+ | Ai
⊥), FPRAi

= P (Ai
+ | Ai

⊥).

Lemma 4. The following identities hold for all P , P and i �= j:

P (Aλi
i , A

λj

j | Aπi
i , A

πj

j) = P (Aλi
i | Aπi

i)P (Aλj

j | A
πj

j),

P (Aλi
i , A

λj

j | Aπi
i , A

πj

j) = P (Aλi
i | Aπi

i)P (Aλj

j | A
πj

j).

Proof. The identities can be obtained by a chain of rewritings. The detailed
rewriting steps can be found in the appendix.
�
Theorem 1. Under Assumption 2 the following inequalities hold any given for-
mula φ with label φλφ and truth value φπφ :

P (φλφ | φπφ) ≤ P (φλφ | φπφ) ≤ P (φλφ | φπφ).

Proof. Application of Lemma 4 on Eq. (1) yields the requested inequalities, see
the appendix for further details.
�

The derived inequalities now permit rigorous analysis of misperception rates
of formulae comprising a non-trivial Boolean combination of occupancy atoms,
as in guard conditions of safety-critical manoeuvres.

3.2 Estimating Classification Rates for Complex Boolean Formulae

The following central theorem summarises reducibility of classification rates for
compound formulae to the respective rates of their atomic constituents.

Theorem 2. Under Assumptions 1 and 2, the TP, FN, TN and FP rates of any
Boolean formula Φ can be bounded by the minimum and maximum of polynomials
over certain bounds of the respective rates of the atoms occurring in Φ.

In particular the following inequalities hold for any formula φ, where M is a
domain model, m = (Aπ1

1 , . . . , Aπn
n) runs over all admissible truth assignments,

and l = (Aλ1
1 , . . . , Aλn

n) over all label assignments:

min
M,m|=

φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi) ≤ P (φλφ | φπφ) ≤ max
M,m|=

φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi)

190 M. Fränzle et al.

or, slightly more explicit,

min
M,m|=φ�

∑

l|=φ+

n∏

i=1

P (Ai
λi | Ai

πi) ≤ TPRφ ≤ max
M,m|=φ�

∑

l|=φ+

n∏

i=1

P (Ai
λi | Ai

πi),

min
M,m|=φ�

∑

l|=φ−

n∏

i=1

P (Ai
λi | Ai

πi) ≤ FNRφ ≤ max
M,m|=φ�

∑

l|=φ−

n∏

i=1

P (Ai
λi | Ai

πi),

min
M,m|=φ⊥

∑

l|=φ−

n∏

i=1

P (Ai
λi | Ai

πi) ≤ TNRφ ≤ max
M,m|=φ⊥

∑

l|=φ−

n∏

i=1

P (Ai
λi | Ai

πi),

min
M,m|=φ⊥

∑

l|=φ+

n∏

i=1

P (Ai
λi | Ai

πi) ≤ FPRφ ≤ max
M,m|=φ⊥

∑

l|=φ+

n∏

i=1

P (Ai
λi | Ai

πi).

Proof. The reader is referred to the appendix.
�
To ease practical application we give the reader the following concretisa-

tions of the central theorem that allow a decomposition of a formula φ along its
Boolean operators. While a decomposition along a negation is possible without
restriction, for conjunction and disjunction we have to assume that the result-
ing subformulae have no common atoms. This requirement is given, e.g., after a
Shannon expansion of the formula, or for binary decision trees (BDD) and their
ordered and reduced variants (ROBDD).

Theorem 3. For any formula ¬φ the following identities for the performance
rates of ¬φ hold:

TPR¬φ = TNRφ, TPR¬φ = TNRφ, TPR¬φ = TNRφ,

FNR¬φ = FPRφ, FNR¬φ = FPRφ, FNR¬φ = FPRφ,

TNR¬φ = TPRφ, TNR¬φ = TPRφ, TNR¬φ = TPRφ,

FPR¬φ = FNRφ, FPR¬φ = FNRφ, FPR¬φ = FNRφ.

Proof. By simple rewriting.
�
Theorem 4. Let φ and ψ be two formulae such that φ and ψ have no atom
in common. Then the following identities for the limiting performance rates of
φ ∧ ψ and φ ∨ ψ hold:

TPRφ∧ψ = TPRφTPRψ, TPRφ∧ψ = TPRφTPRψ,

TNRφ∨ψ = TNRφTNRψ, TNRφ∨ψ = TNRφTNRψ,

FNRφ∧ψ = FNRφ + FNRψ − FNRφFNRψ,

FNRφ∧ψ = FNRφ + FNRψ − FNRφFNRψ,

FPRφ∨ψ = FPRφ + FPRψ − FPRφFPRψ,

FPRφ∨ψ = FPRφ + FPRψ − FPRφFPRψ.

Safer Than Perception 191

Proof. The reader is referred to the appendix.
�
Theorem 5. Let φ and ψ be two formulae such that φ and ψ have no atom in
common. Then the following inequalities for the limiting performance rates of
φ ∧ ψ and φ ∨ ψ hold:

min

⎧
⎨

⎩

TPRφ + TPRψ − TPRφTPRψ,
TPRφ + FPRψ − TPRφFPRψ,
FPRφ + TPRψ − FPRφTPRψ

⎫
⎬

⎭ ≤ TPRφ∨ψ,

TPRφ∨ψ ≤ max

⎧
⎨

⎩

TPRφ + TPRψ − TPRφTPRψ,
TPRφ + FPRψ − TPRφFPRψ,
FPRφ + TPRψ − FPRφTPRψ

⎫
⎬

⎭ ,

min
{

FNRφFNRψ,FNRφTNRψ,TNRφFNRψ

} ≤ FNRφ∨ψ,

FNRφ∨ψ ≤ max
{

FNRφFNRψ,FNRφTNRψ,TNRφFNRψ

}
,

min

⎧
⎨

⎩

TNRφ + TNRψ − TNRφTNRψ,
TNRφ + FNRψ − TNRφFNRψ,
FNRφ + TNRψ − FNRφTNRψ

⎫
⎬

⎭ ≤ TNRφ∧ψ,

TNRφ∧ψ ≤ max

⎧
⎨

⎩

TNRφ + TNRψ − TNRφTNRψ,
TNRφ + FNRψ − TNRφFNRψ,
FNRφ + TNRψ − FNRφTNRψ

⎫
⎬

⎭ ,

min
{

FPRφFPRψ,FPRφTPRψ,TPRφFPRψ

} ≤ FPRφ∧ψ,

FPRφ∧ψ ≤ max
{

FPRφFPRψ,FPRφTPRψ,TPRφFPRψ

}
.

Proof. The reader is referred to the appendix.
�
The preceding theorems show how to estimate misevaluation risk for a given

complex formula evaluating safety-critical situations against the misevaluation
risk of the atomic classifiers involved. In particular, the theorems allow the true-
positive and false-positive rate of the overall formula to be constrained by minima
and maxima over polynomials of appropriate atomic classifier rates. In addition
to the consequential identification of critical or noncritical atomic classifiers, this
approach can also be used for deriving parameter setting of atomic classifiers that
optimise the overall sensitivity and specificity of the given formula.

Concerning the question of whether our systems can be “safer than percep-
tion”, a look at the above inequalities and thereby especially the bounds provided
by Theorem 2 provide an affirmative answer: if enough atoms are symmetric in
that setting one to true (false, resp.) has the same effect on the truth value
of Φ than setting the other to true (false, resp.) then both true-positive and
false-negative rates of evaluating Φ compare favourably to those of perceiving
the underlying atoms. We claim that this property is inherent to many if not
most of the safeguarding transitions encountered in well-designed safety-critical
systems, as evidenced by the example from Sect. 2.

192 M. Fränzle et al.

3.3 An Exemplary Computation

To demonstrate the derived formula and, as it were, as a continuation of the
example from Sect. 2, let us consider ten atoms A1, . . . , A10 observing the occu-
pancy state of neighbouring cells on a lane segment as in φ ≡ ∨10

i=1 Ai. The
setting thus is equivalent to formula necessary from Sect. 2. Further assume that
in the particular domain at least five cells are occupied by any vehicle, i.e., in
any admissible assignment of the domain model M either none or at least five
cells are occupied. We observe that over M, the above condition φ is equivalent
to the condition |{i | Ai}| ≥ k, for any k ∈ {1, . . . , 5}, in the sense that for
each model m |= M it holds that m |= φ iff m |= |{i | Ai}| ≥ k. We exploit
this fact to obtain an equivalent, yet more robust observation formula g that
is satisfied if and only if at least four cells are occupied, i.e., we replace φ by
the M-equivalent formula |{i | Ai}| ≥ 4. Condition g constitutes a so-called
pseudo-Boolean constraint [7], yet can also be encoded using classical Boolean
connectives if desired. We would like to determine the total performance of g
assuming that all atoms have the same performance rates with TPRAi

= 0.8,
FNRAi

= 0.1, TNRAi
= 0.7, and FPRAi

= 0.1 (where the portions missing from
1 are assigned to inconclusive verdicts). Under the given domain model M, we
computed the following bounds using Theorem 2

TPRg = 0.82537, TPRg = 0.99914, FNRg = 0.00086, FNRg = 0.17463,

TNRg = TNRg = 0.98720, FPRg = FPRg = 0.01280.

In comparison with the atomic performance rates, even in the worst case, the
true-positive rate has increased and at the same time the false-positive rate
decreased significantly by almost an order of magnitude. Note that change of
the threshold k in observation formula |{i | Ai}| ≥ k can be used to trade false-
positive against true-positive rate: selecting k = 3 instead of 4, as used in g,
would result in even higher and thus better true-positive rate at the price of also
increased and thereby somewhat worse—though still considerably better than
FPRAi

—false-positive rate.
In fact, the true-positive rate will always, i.e. irrespective of the particular

choice of k ∈ {1, . . . , 5}, be better than TPRAi
, which follows from the fact that

a ground-truth positive features, due to M, at least five positives: misperceiving
it as a negative would thus require to perceive at least 5 − k + 1 true atoms Ai

as false while not perceiving a masking number of false atoms Aj as true. More
exactly the false-negative rate of evaluating gk ≡ |{i | Ai}| ≥ k can be bounded
from above by

FNRgk
≤ max

m∈{5,...,10}

m∑

n=m−k+1

n−(m−k+1)∑

n′=0

m!
n!

(FNRAi
)n · (10 − m)!

n′!
(FPRAi

)n′

≤ (FNRAi
)5−k+1 ≤ FNRAi

,

as misperceiving a satisfying assignment with m ∈ {5, . . . , 10} true atoms as
false would require to perceive n ∈ {m − k + 1, . . . , m} true atoms as false and

Safer Than Perception 193

simultaneously at most n − (m − k + 1) false atoms as true. The first inequality
in the second line becomes strict if, as usual, FNRAi

neither is 0 nor 1. Then

TPRgk
= 1 − FNRgk

> 1 − FNRAi
= TPRAi

follows, i.e. the true-positive rate of the compound percept always is better than
that of the atomic percepts if we deal with disjunctive statements φ.

For the false-positive rate, the situation is more complex. At first glance,
a reduction of false-positive rate for disjunctive statements below that of the
atomic percepts might seem implausible, but the numeric example from the pre-
vious page demonstrates that such a reduction can be achieved and can even
be substantial. The amount of decrease (or, in the unlucky case, even increase)
however depends on the particular value of FPRAi

and the choice of the thresh-
old k, where higher values for k obviously reduce the false-positive rate of the
compound percept g′.

4 Related Work

Highly automated vehicles are typically learning-enabled cyber physical sys-
tems operating in an uncertain dynamic environment, where detection of prop-
erties about the dynamic environment is enabled through inaccurate sensors
and subsequent machine-learnt classifiers. This renders an exact inference of
the state of the environment infeasible, necessitating suitable representations of
the uncertainty in such an inference about the dynamic environment. Appro-
priate representations of uncertainty in the inference have been investigated
within the paradigm of probabilistic robotics [20], among others, particularly as
applied to vehicle localization in urban environments [10,11,14], with localiza-
tion being a special and historically more well-understood instance of the gen-
eral problem of safe-guarding critical manoeuvre decisions. In these and related
works such as [1,12], the environment uncertainty is represented as probabilis-
tic beliefs. Applications of learning components in high assurance systems has
been addressed in [18]. More recently, the challenge of assuring the autonomy
of learning-enabled cyber physical systems has been considered in the works
[2,8,13]. In particular, [2] considers the problem of falsifying signal temporal logic
specifications for learning-enabled cyberphysical systems, with the technique
demonstrated on a simplified model of an automatic emergency braking system
with a perception component based on deep neural networks (DNNs). Contract-
based compositional reasoning of learning-enabled autonomous systems is con-
sidered in [13], where DNNs constitute the learning components dealing with
behavioural strategies. Markov Decision Processes form the operational basis
of the models in [8] generated from reinforcement learning, where behavioural
(not perceptive) strategies conforming to probabilistic temporal logic specifica-
tions are synthesised with the aim of enabling the safe navigation of autonomous
systems among humans.

All the aforementioned approaches are based on assumptions concerning the
quantitative reliability of perception component, and thus need to be comple-
mented by approaches measuring or analytically determining the latter. Various

194 M. Fränzle et al.

approaches to combining multiple classifiers can be found in the literature, e.g.,
see [5,17] for an overview. The goal of such a combination is often to compensate
for individual shortcomings in the performance by a better performance of the
multitude of classifiers [17]. While in the pre-classification level the combination
happens at the sensor or raw data level, the focus of this note is on fusion of
classifiers at the post-classification level, as on-the-fly combinations of the deci-
sion of multiple atomic classifiers are considered. A major challenge for fusion on
the decision level arises from the fact that the least genuine information about
the object of observation is available at this level [9].

Fig. 3. Empirical ROC curve with
convex hull (ROCCH).

An important aid for the performance
analysis on the decision level of adjustable
classifiers is its empirical ROC curve
(receiver operating characteristics) [4,15].
The ROC curve is obtained by plotting the
true positive rate against the false positive
rate for the different parameter settings
into a graph. The coordinates of each point
of the ROC curve reflect the true positive
rate in the y-axis and the false positive rate
in the y-axis for the respective threshold
setting. The space spanned by these axes
is referred to as the ROC space. The cor-
responding rates are measured against a
test data set, which is independent from
the training data set used for establishing the classifiers. Empirically determined
ROC curves are step-like functions that approximate the true curve as the sam-
ple size increases; see Fig. 3. The ROC space allows us to compare individual
threshold settings. One point in the ROC space denotes a better threshold set-
ting than another if its true positive rate is larger and its false positive rate is
smaller. Thus, an optimal threshold setting is found in the upper left of the ROC
space at those curve points which have the largest perpendicular distance to the
diagonal spanned by (0,0) – (1,1) in their vicinity [15].

To contextualise the study of fusion of multiple classifiers at the decision
level as found in [3,4,9,15,16,19], consider the optimal points of an empiri-
cal ROC curve identified above as individual classifiers. An important result
is that each point of the convex hull curve (ROCCH) (see Fig. 3) of these
points corresponds to a realizable classifier that can be obtained by a probabilis-
tic linear interpolation of the decision of the convex hull generating classifiers
[19]. Several papers [3,9,16] exploit that—under the assumption of conditional
independence—Boolean combinations of the response of multiple classifier yield
points in the ROC space that show a better performance than the ROCCH.

Despite the apparent relatedness of the presented approaches for classifier
combinations, those works are mainly concerned with the consideration of the
fusion of multiple classifiers with the goal of improving the overall performance
of the classification of a single object of observation. Especially with respect to

Safer Than Perception 195

Boolean combinations of such classifiers, the conditional independence assump-
tion turns out to be problematic since all observations refer to a common object.
In our approach, however, we consider complex Boolean combiners of diverse
atomic classifiers, including different polarities, where each classifier refers to
spatially separated cells, making the conditional independence assumption, here
stated as Independent Labelling Assumption 1, less problematic. Altogether,
work on improving the performance of generation and classification of atomic
percepts, e.g. by sensor fusion, and our work showing a “safer than percep-
tion” property of combined safety-critical percepts are complementary in that
advances in each of the two fields will combine to improve overall safety of
autonomous systems.

5 Conclusion

While rigorously guaranteed safety of autonomous systems is a prerequisite for
their sustained societal acceptance, providing such guarantees at the appropriate
quantitative safety levels is intrinsically hard, given the currently as well as for
the foreseeable future relatively high misperception rates of technical perception
chains. When mapping an autonomous vehicle’s vicinity, their error rates are gen-
erally much higher than the pertinent safety targets for autonomous operation.
Consequently, to overcome the weakest link principle prevalent in current safety
considerations, we need stringent arguments for why our designed systems actu-
ally are “safer than perception”. More precisely, this requires a rigorous assess-
ment of the likelihood that a safety-critical manoeuvre is erroneously adopted,
and this assessment has to provide much tighter bounds for such manoeuvre
adoption than for misperception. This note provides a mathematical framework
supporting such an argument and indeed showing that for well-posed guard con-
ditions, i.e. guard conditions that are not overspecific w.r.t. to their satisfying
models but rather admit numerous satisfying and numerous violating models, as
well as exhibit symmetry in that different atomic percepts share similar effect
on the resultant logical value of the guard condition, “safer than perception”
naturally applies. As the likelihood of misperception of a relevant, in the sense
of safe-guarding a critical manoeuvre, property can thus be bounded to a con-
siderably lower frequency than the risk of individual misclassifications of atomic
percepts, the overall risk induced by an autonomous system can consequently
be adjusted to a value less than a given level of societally accepted risk without
imposing extraneous reliability demands on individual atomic percepts.

The analysis does only rely on the logical structure of the guard condition
and could potentially be refined by also reflecting topology or geometry of mod-
els over the grid geometry of the occupancy grid: currently, all grid elements are
considered as atomic carriers of occupancy information devoid of any geometry-
induced relation. It would, however, be reasonable to refine analysis w.r.t. geom-
etry, knowing that a slight misplacement of a detected object both is more likely
to happen and more unlikely to change a guard’s perceived truth value than
a large displacement. This analysis, then obviously to be pursued in spatial

196 M. Fränzle et al.

logic, is subject of further research. The same applies for the obvious option of
exploiting the derived analytical formulae concerning guard misevaluation prob-
ability within an optimization framework: here, the optimization would be used
to automatically adjust the detection thresholds of individual sensor components
on demand, i.e., derives from the analytic formula for a given guard condition
g and a socially desired maximal false-negative rate an optimal assignment of
the sensor thresholds along their receiver operating characteristic (ROC) curves
such that maximal true-positive rate is obtained.

Acknowledgements. The research reported herein has been supported by the State
of Lower Saxony within the Zukunftslabor Mobilität as well as by Deutsche Forschungs-
gemeinschaft under grant no. DFG FR 2715/5-1 “Konfliktresolution und kausale
Inferenz mittels integrierter sozio-technischer Modellbildung”. It furthermore benefit
from technical discussions with Jan Peleska, and we dedicate it to him on the occasion
of his 65th anniversary.

A Proofs

Proof of Lemma 1. We use induction over n to show that the inequality

min
i=1,...,n

{
ai

bi

}
≤

∑n
i=1 ai∑n
i=1 bi

≤ max
i=1,...,n

{
ai

bi

}

holds for any positive integer n and fractions a1
b1

, . . . , an

bn
with real nominators

a1, . . . , an and positive real denominators b1, . . . , bn. The base case n = 1 is
trivial and the case n = 2 follows immediately from the mediant inequality
a
b ≤ c

d =⇒ a
b ≤ a+c

b+d ≤ c
d for real numbers a, b and positive real numbers

b, d. Assume that the induction hypothesis holds for n − 1. For any fraction an

bn

with real an, bn > 0 at least one of the inequalities (i)
∑n−1

i=1 ai
∑n−1

i=1 bi
≤ an

bn
or (ii)

an

bn
≤

∑n−1
i=1 ai

∑n−1
i=1 bi

holds. From case (i) it follows

min
i=1,...,n

{
ai

bi

}
= min

i=1,...,n−1

{
ai

bi

}
≤

∑n−1
i=1 ai∑n−1
i=1 bi

(∗)
≤

∑n
i=1 ai∑n
i=1 bi

(∗)
≤ an

bn
= max

i=1,...,n

{
ai

bi

}

and from case (ii) it follows

min
i=1,...,n

{
ai

bi

}
=

an

bn

(∗)
≤

∑n
i=1 ai∑n−1
i=1 bi

(∗)
≤

∑n−1
i=1 ai∑n−1
i=1 bi

≤ max
i=1,...,n−1

{
ai

bi

}
= max

i=1,...,n

{
ai

bi

}

where (∗) denotes the application of the mediant inequality.
�
Proof of Lemma 2. We have to show that the inequalities

min
i=1,...,n

{P (A | Bi)} ≤ P (A |
n⋃
·

i=1

Bi) ≤ max
i=1,...,n

{P (A | Bi)}

Safer Than Perception 197

hold for all disjoint events B1, . . . , Bn. Using the identity P (A | ⋃· n
i=1 Bi) =

∑n
i=1 P (A,Bi)∑n

i=1 P (Bi)
, an application of Lemma 1 yields

min
i=1,...,n

{
P (A,Bi)
P (Bi)

}
≤

∑n
i=1 P (A,Bi)∑n

i=1 P (Bi)
≤ max

i=1,...,n

{
P (A,Bi)
P (Bi)

}
,

which finally rewrites to the asserted inequalities.
�
Proof of Lemma 3. We have to show that the identity

P (Aλi
i | Aπ1

1 , . . . , Aπn
n , A

λj

j) = P (Aλi
i | Aπ1

1 , . . . , Aπn
n) (3)

is equivalent to the identity

P (Aλi
i , Aλi

j | Aπ1
1 , . . . , Aπn

n) = P (Aλi
i | Aπ1

1 , . . . , Aπn
n)P (Aλj

j | Aπ1
1 , . . . , Aπn

n) (4)

for all positive integers n, atoms A1, . . . An, and i �= j, i ≤ n, j ≤ n. Note that
we implicitly assume the well-definedness of Eq. (3) and Eq. (4). I.e., both iden-
tities stipulate P (Aπ1

1 , . . . , Aπn
n) > 0 and Eq. (3) additionally stipulates P (Aλj

j |
Aπ1

1 , . . . , Aπn
n) > 0. The equivalent transformation from Eq. (3) to Eq. (4) is

obtained by multiplying both sides of Eq. (3) with P (Aλj

j | Aπ1
1 , . . . , Aπn

n). The
equivalent transformation from Eq. (4) to Eq. (3) by division is valid as long as
the stronger stipulation P (Aλj

j | Aπ1
1 , . . . , Aπn

n) > 0 imposed by Eq. (3) holds.

Finally, note that for P (Aλj

j | Aπ1
1 , . . . , Aπn

n) = 0 the identity Eq. (4) does not
contain any deeper findings, as it degenerates to the trivial identity 0 = 0 in this
case.
�
Proof of Lemma 4. We have to show that the identities

P (Aλi
i , A

λj

j | Aπi
i , A

πj

j) = P (Aλi
i | Aπi

i)P (Aλj

j | A
πj

j),

P (Aλi
i , A

λj

j | Aπi
i , A

πj

j) = P (Aλi
i | Aπi

i)P (Aλj

j | A
πj

j)

hold for the limit probabilities P and P for all i �= j. To see this consider the
following chain of rewritings.

P (Aλi
i | Aπi

i)P (Aλj

j | A
πj

j) = P (Aλi
i | Aπi

i , A
πj

j)P (Aλj

j | Aπi
i , A

πj

j)

= P (Aλi
i , A

λj

j | Aπi
i , A

πj

j).

The corresponding identity for P follows analogously.
�
Proof of Thm. 1. We have to show that

P (φλφ | φπφ) ≤ P (φλφ | φπφ) ≤ P (φλφ | φπφ)

holds for any formula φ with label φλφ and truth value φπφ . In Eq. (1) we already
showed

min
m|=φπφ

∑

l|=φλφ

P (l | m) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

∑

l|=φλφ

P (l | m).

198 M. Fränzle et al.

As all involved probabilities are nonnegative, monotonicity of ≤ yields

min
m|=φπφ

∑

l|=φλφ

P (l | m) ≤ min
m|=φπφ

∑

l|=φλφ

P (l | m)

max
m|=φπφ

∑

l|=φλφ

P (l | m) ≤ max
m|=φπφ

∑

l|=φλφ

P (l | m)

Combining the inequalities yields the asserted estimation.
�
Proof of Thm. 2. Let φ be an arbitrary formula with given label φλ

φ and
truth value φπφ . Further let m = (Aπ1

1 , . . . , Aπn
n) be a truth assignment and

l = (Aλ1
1 , . . . , Aλn

n) a label assignment for all atoms Ai. In order to establish the
theorem we show

min
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi).

The bounds

min
m|=φπφ

∑

l|=φλφ

P (l | m) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

∑

l|=φλφ

P (l | m)

can be obtained without any further assumption and have already been estab-
lished in Eq. (1). In Eq. (2) we already argued that the bounds

min
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Aλi
i | m) ≤ P (φλφ | φπφ) ≤ max

m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Aλi
i | m)

can be derived under the Independent Labelling Assumption 1. Finally, Assump-
tion 2 allows us to bound each term of the form P (Aλi

i | m) = P (Aλi
i |

Aπ1
1 , . . . , Aπn

n) by its respective lower and upper bound P (Ai
λi | Ai

πi) and
P (Ai

λi | Ai
πi). As all involved terms are nonnegative, we obtain

min
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi) ≤ P (φλφ | φπφ) ≤ max
m|=φπφ

∑

l|=φλφ

n∏

i=1

P (Ai
λi | Ai

πi).

�
Proof of Thm. 4. We show the identities for the lower limiting rates TPRφ∧ψ =
TPRφTPRψ and FNRφ∧ψ = FNRφ+FNRψ−FNRφFNRψ. The identities for the
upper limiting rates follow analogously. The remaining estimations for TNRφ∨ψ,
FPRφ∨ψ, TNRφ∨ψ, and FPRφ∨ψ can be obtained from the identity φ ∨ ψ ≡
¬(¬φ ∧ ¬ψ) and Thm. 3.

Safer Than Perception 199

We decompose the conditional probabilities into proper assignments using
Lemma 3 and Thm. 1.

TPRφ∧ψ = P ((φ ∧ ψ)+ | (φ ∧ ψ)�) = P (φ+, ψ+ | φ�, ψ�)

= P (φ+ | φ�)P (ψ+ | ψ�) = TPRφTPRψ,

FNRφ∧ψ = P ((φ ∧ ψ)− | (φ ∧ ψ)�)

= P (φ− | φ�, ψ�) + P (ψ− | φ�, ψ�) − P (φ− | φ�, ψ�)P (ψ− | φ�, ψ�)

= P (φ− | φ�) + P (ψ− | ψ�) − P (φ− | φ�)P (ψ− | ψ�)
= FNRφ + FNRψ − FNRφFNRψ.

�
Proof of Theorem 5. We show the inequalities for the lower limiting rates only.
The corresponding inequalities for the upper limiting rates follow analogously.
Note that for the conditional probabilities TPRφ∨ψ = P ((φ ∨ ψ)+ | (φ ∨ ψ)�)
and FNRφ∨ψ = P ((φ ∨ ψ)− | (φ ∨ ψ)�)) the conditioning event (φ ∨ ψ)� can be
decomposed into disjoint models yielding

TPRφ∨ψ = P ((φ ∨ ψ)+ | {φ�, ψ�} ·∪ {φ�, ψ⊥} ·∪ {φ⊥, ψ�}),

FNRφ∨ψ = P ((φ ∨ ψ)− | {φ�, ψ�} ·∪ {φ�, ψ⊥} ·∪ {φ⊥, ψ�}).

Lemma 2 allows us to infer a lower estimate of the rates:

min

⎧
⎨

⎩

P ((φ ∨ ψ)+ | φ�, ψ�),
P ((φ ∨ ψ)+ | φ�, ψ⊥),
P ((φ ∨ ψ)+ | φ⊥, ψ�)

⎫
⎬

⎭ ≤ TPRφ∨ψ,

min

⎧
⎨

⎩

P ((φ ∨ ψ)− | φ�, ψ�),
P ((φ ∨ ψ)− | φ�, ψ⊥),
P ((φ ∨ ψ)− | φ⊥, ψ�)

⎫
⎬

⎭ ≤ FNRφ∨ψ.

We decompose the labelling of (φ∨ψ)+ and (φ∨ψ)− of each term in the minimum
and maximum expression individually, where conjunctive events can further be
decomposed into products using Lemma 3 E.g., the first term of the estimate
for TPRφ∨ψ is rewritten as follows:

P ((φ ∨ ψ)+ | φ�, ψ�)

= P (φ+ | φ�, ψ�) + P (ψ+ | φ�, ψ�) − P (φ+, ψ+ | φ�, ψ�)

= P (φ+ | φ�) + P (ψ+ | ψ�) − P (φ+ | φ�)P (ψ+ | ψ�)
= TPRφ + TPRψ − TPRφTPRψ,

and the second term as follows:

P ((φ ∨ ψ)+ | φ�, ψ⊥)

= P (φ+ | φ�, ψ⊥) + P (ψ+ | φ�, ψ⊥) − P (φ+, ψ+ | φ�, ψ⊥)

= P (φ+ | φ�) + P (ψ+ | ψ⊥) − P (φ+ | φ�)P (ψ+ | ψ⊥)
= TPRφ + FPRψ − TPRφFPRψ.

200 M. Fränzle et al.

After rewriting all terms accordingly, the lower bounds for TPRφ∨ψ and FNRφ∨ψ

are established. The upper bounds for TPRφ∨ψ and FNRφ∨ψ follow analogously,
and the remaining bounds for for TNRφ∧ψ, TNRφ∧ψ, FPRφ∧ψ, and FPRφ∧ψ are
obtained using De Morgan’s law.
�

References

1. Baig, Q., Perrollaz, M., Laugier, C.: A robust motion detection technique for
dynamic environment monitoring: a framework for grid-based monitoring of the
dynamic environment. IEEE Robot. Automat. Mag. 21(1), 40–48 (2014)

2. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

3. Fawcett, T.: ROC graphs: notes and practical considerations for researchers. Mach.
Learn. 31(1), 1–38 (2004)

4. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

5. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) 42(4), 463–484
(2011)

6. Geirhos, R., Janssen, D.H.J., Schütt, H.H., Rauber, J., Bethge, M., Wichmann,
F.A.: Comparing deep neural networks against humans: object recognition when
the signal gets weaker. CoRR abs/1706.06969 (2017). http://arxiv.org/abs/1706.
06969

7. Hammer, P.L., Rudeanu, S.: Pseudo-Boolean programming. Oper. Res. 17(2), 233–
261 (1969). https://doi.org/10.1287/opre.17.2.233

8. Junges, S., Jansen, N., Katoen, J.-P., Topcu, U., Zhang, R., Hayhoe, M.: Model
checking for safe navigation among humans. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 207–222. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 13

9. Khreich, W., Granger, E., Miri, A., Sabourin, R.: Iterative Boolean combination
of classifiers in the ROC space: an application to anomaly detection with HMMs.
Pattern Recogn. 43(8), 2732–2752 (2010). https://doi.org/10.1016/j.patcog.2010.
03.006

10. Levinson, J., Montemerlo, M., Thrun, S.: Map-based precision vehicle localization
in urban environments. In: Proceedings of Robotics: Science and Systems. Atlanta,
GA, USA, June 2007. https://doi.org/10.15607/RSS.2007.III.016

11. Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using
probabilistic maps. In: IEEE International Conference on Robotics and Automa-
tion, pp. 4372–4378 (2010)

12. Moras, J., Cherfaoui, V., Bonnifait, P.: Moving objects detection by conflict anal-
ysis in evidential grids. In: IEEE Intelligent Vehicles Symposium (IV 2011), pp.
1120–1125 (2011)

13. Păsăreanu, C.S., Gopinath, D., Yu, H.: Compositional verification for autonomous
systems with deep learning components. In: Yu, H., Li, X., Murray, R.M., Ramesh,
S., Tomlin, C.J. (eds.) Safe, Autonomous and Intelligent Vehicles. UST, pp. 187–
197. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97301-2 10

https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
http://arxiv.org/abs/1706.06969
http://arxiv.org/abs/1706.06969
https://doi.org/10.1287/opre.17.2.233
https://doi.org/10.1007/978-3-319-99154-2_13
https://doi.org/10.1007/978-3-319-99154-2_13
https://doi.org/10.1016/j.patcog.2010.03.006
https://doi.org/10.1016/j.patcog.2010.03.006
https://doi.org/10.15607/RSS.2007.III.016
https://doi.org/10.1007/978-3-319-97301-2_10

Safer Than Perception 201

14. Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for
autonomous urban driving. Auton. Robots 26(2–3), 123–139 (2009)

15. Powers, D.: Evaluation: From precision, recall and f-measure to ROC, informed-
ness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

16. Radtke, P.V., Granger, E., Sabourin, R., Gorodnichy, D.O.: Skew-sensitive Boolean
combination for adaptive ensembles – an application to face recognition in video
surveillance. Inf. Fus. 20, 31–48 (2014). https://doi.org/10.1016/j.inffus.2013.11.
001

17. Sagi, O., Rokach, L.: Ensemble learning: a survey. WIREs Data Min. Knowl. Dis-
covery 8(4), e1249 (2018). https://doi.org/10.1002/widm.1249

18. Schumann, J., Liu, Y. (eds.): Applications of Neural Networks in High Assurance
Systems, Studies in Computational Intelligence, vol. 268. Springer, Cham (2010).
https://doi.org/10.1007/978-3-642-10690-3

19. Scott, M.J.J., Niranjan, M., Prager, R.W.: Realisable classifiers: improving operat-
ing performance on variable cost problems. In: Proceedings of the British Machine
Vision Conference, pp. 31.1–31.10. BMVA Press (1998)

20. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, Cambridge (2005)

21. U.S. Department of Transportation, N.H.T.S.A.: Automated driving systems 2.0.
a vision for safety (2017). www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/
13069a-ads2.0 090617 v9a tag.pdf

https://doi.org/10.1016/j.inffus.2013.11.001
https://doi.org/10.1016/j.inffus.2013.11.001
https://doi.org/10.1002/widm.1249
https://doi.org/10.1007/978-3-642-10690-3
www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf

Supervision of Intelligent Systems: An
Overview

Mario Gleirscher1,2(B)

1 Mathematics and Computer Science, University of Bremen, Bibliothekstr. 5,
28359 Bremen, Germany

mario.gleirscher@uni-bremen.de
2 Assuring Autonomy International Programme, University of York,

Deramore Lane, York YO10-5GH, UK

Abstract. Intelligent, online-learning, and other adaptive systems, such
as the ones using reinforcement learning, have the potential to behave in
an undesired way and are, thus, subjected to corrective external influ-
ence when they are used in critical contexts. We speak of supervision
when referring to such influence, and of supervisors when talking of
the components performing supervision. This work introduces core con-
cepts in supervision and provides an overview of supervision techniques,
highlighting recent applications in the supervision of intelligent systems.
Furthermore, we will discuss the synthesis and assurance of supervisors,
focusing on aspects of their modelling, verification, validation, and cer-
tification as well as their correct construction and the accompanying
qualification of appropriate development tools. Our main conclusion is
that reliable supervision offers a separation of the concerns of correctness
and autonomy, enabling new options in the assurance and operation of
intelligent and learning components in safety-critical applications.

Keywords: Intelligent systems · Cyber-physical systems · Safe
autonomy · Reinforcement learning · Supervisory control · Controller
synthesis · Sound development · Formal methods

1 Introduction

Systems have been controlled by software under human supervision for many
decades and in many application domains. Our societies are, however, facing
the quest for governance of machine intelligence used increasingly as a con-
trol technology in safety-critical public, industrial, and domestic areas. A wide
variety of research hence deals with governance through automated supervision
by controllers responsible for fulfilling critical properties. We call these con-
trollers supervisors. Automated supervision is a software-intensive technology
and, as such, subjected to corresponding software engineering and certifica-
tion practices, including standard-compliant assurance, for example, according
to IEC 61508 [30]. In this work, we examine the following three questions:

– What do adequate supervisors for intelligent systems look like?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 202–221, 2023.
https://doi.org/10.1007/978-3-031-40132-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_13&domain=pdf
http://orcid.org/0000-0002-9445-6863
https://doi.org/10.1007/978-3-031-40132-9_13

Supervision of Intelligent Systems: An Overview 203

– How can supervisors be constructed correctly?
– What are the criteria for supervisors to receive certification credit?

Accordingly, Sect. 2 introduces three running examples with the aim of aiding the
discussion. Section 3 clarifies important terms as well as the specific viewpoint
taken in this work. Section 4 gives an overview of several approaches to supervi-
sion, both in general and specific to intelligent systems. Section 5 summarises two
universal approaches to the correct automated construction of supervisors, and
Sect. 6 adds notes on the appropriate modelling for this purpose. Section 7 con-
tains a brief account of industry-focused assurance workflows specific to super-
visory control. Section 8 concludes with some key observations.

2 Examples of Supervised Intelligent Systems

The following three examples highlight categories of safety-critical systems with
an increasing use of machine intelligence. These systems are, thus, subjected to
supervision and should make the examination below more tangible.

In robotic surgery [9,28], robots assist in surgical tasks, usually under manual
supervision or teleoperation by the surgeon. The safety requirements can, for
example, include the avoidance of harm of any critical tissue to be left unaffected
by the task. Moreover, a usual performance goal would be for the surgery to
be minimally invasive. An intelligent robot in a surgical setting could learn to
optimise parts of this performance goal while obeying hard safety constraints
through automatic supervisory control. The supervisor could, for instance, be
a separate embedded system deployed in the robot or a control infrastructure
component with remote access to the robot’s sensors and actuators.

In manufacturing automation, where human-robot collaboration has been
around more or less since the early 1970s [54], modern intelligent control enables
a wide range of interaction settings. Humans can collaborate on complex tasks
in necessarily close vicinity to stationary robot arms, robotic utility vehicles,
and other machines. Safety requirements usually pertain to the freedom of colli-
sion and clamping, while performance requirements can be about the avoidance
of nuisance, quick progress, low energy consumption, and cost reduction in gen-
eral [22]. Intelligent robots can then use safe learning techniques (explained later)
to optimise multiple performance goals while guaranteeing task completion and
safety constraints. Supervision is then, for example, taking care of the scenario-
specific implementation of the completion goals and constraints [22].

Supervisory control also plays a critical role in driving automation [10,34].
The controllers of the lateral and longitudinal dynamics of autonomous vehicles
receive inputs from a human driver or even a traffic information system in terms
of set point changes to follow. Safety requirements in this domain include colli-
sion avoidance, keeping the lane, and dealing with dangerous internal hazards,
such as running out of fuel or a failure of a control software component, dynamo,
or battery. Performance requirements may include fuel efficiency and the min-
imisation of the estimated time to arrival. An intelligent vehicle can optimise its

204 M. Gleirscher

performance goals (e.g., specific to a geographical region) via learning. Mean-
while, a supervisor handles combinations of the mentioned hazards automatically
or by falling back to an attentive human driver [11,26].

3 Background

Our discussion in this and the following sections will adopt some terminology
from control theory and control engineering [53]. Readers from the software
engineering domain unfamiliar with these terms are invited to have a look into
the gentle software engineering related introduction in [38]. Here, we will not
delve into the mathematics needed to properly apply control techniques.

Control theory aims at providing sound tools for control engineering. There,
the central concept is that of the process to be controlled, often called “controlled
process” or “plant”. Section 2 presents three prominent types of safety-critical
cyber-physical systems, where a process (e.g., surgery, industrial manufacturing,
driving on a public road) is to be controlled by some control regime.

An important characteristic of a process is its natural response, its behaviour
without external stimulus. We will see that it is useful to think of a discrete-
event system, such as a software system, as such a process. In traditional control
practice, the typical case considered is that of a stable system where the response
to pulse (e.g., driving over a barrier) or step (e.g., holding the gas pedal down)
signals stabilises at the original (e.g., chassis is straight) or a defined new (e.g.,
high speed) state, respectively, after an appropriate transition period without
further interaction. To focus on controller design, a stable natural response can
sometimes even be zeroed in (i.e., removed from) the used model. However, in
more complex supervisory control settings, we need to consider unstable systems,
that is, systems whose natural response is chaotic, occasionally more than some
imposed safety constraints permit. These constraints allude to Leveson’s fruitful
notion of safety as an emergent property [36]. In our context, this chaotic natural
response can be understood as an instance of autonomy. Hence, we will call the
processes under supervision the autonomous processes.

An autonomous process can perform complex tasks, such as “driving from
A to B”, “resource efficient operation of a production line”, or “fuel efficient
heating of a building”. Systems involved in performing this task might exhibit
some, not necessarily human, intelligence. By “intelligent” or “smart”, we refer
to a comparatively rich ability of environmental perception of a system, the focus
of human-machine interaction on non-trivial decision making or the exchange of
final task results, and, thus, a corresponding autonomy of the process over a
wide range of decisions. Moreover, this kind of intelligence is not necessarily
present initially but might be the result of learning, a process of adaptation of
the initially defined behaviour towards a behaviour that optimises some cost (or
fitness) functional. This adaptation is normally driven by a series of interactions
of components within an autonomous process and by these components receiving
rewarding or penalising stimuli. A class of techniques widely-used in artificial
intelligence (AI) applications and following these ideas is known as reinforcement

Supervision of Intelligent Systems: An Overview 205

learning (RL) [51, Chap. 21]. Because it is non-trivial to determine which was
first, intelligence or the ability to learn, we could as well equate intelligence with
the ability to adapt to new situations. For a discussion of the notion of machine
intelligence, we refer the reader to Russell and Norvig’s textbook [51, Sect. 1.1].

The state space reachable in an autonomous process will often include unde-
sired or dangerous regions, for example, an autonomous vehicle could leave the
road unsafely. This unsafe leaving of the road can be an undesired outcome of a
driving action. Of particular interest is the situation where that action was one
of several options to be chosen from by the vehicle’s controller. But what were
the circumstances for the undesired outcome? Was it

– some unexpected disturbance,
– the result of a (learned) decision, or
– a some other internal fault?

In each of these three cases, we encounter the notion of risk in the situation of
interest. Qualitatively, risk can stem from an action with one or more (potentially
uncertain) outcomes, of which at least one is undesired. Quantitatively, risk can
be described as a function of

– the probability of exposure to a certain situation,
– the probability of an undesired outcome of an action enabled in that situation,

and
– the severity of that outcome [27].

In more complicated settings not discussed here, one might not only consider
risk of an action but also the chance of that action. Chance as the dual of risk
is referring to the possibility (or probability) of desired outcomes. Note that we
allow deterministic actions with exactly one undesired outcome. Moreover, the
autonomous process usually has a choice between several actions enabled in a
situation. This choice is one of the main entry points of influence for a supervisor.

Consequently, we view supervision as the separation of the concerns of cor-
rectness and autonomy. Here, correctness can comprise two independent aspects:

– Safety or, quantitatively, the degree of freedom from unacceptable risk, and
– Progress or, quantitatively, the degree of task performance or productivity.

As already hinted at, autonomy results from the process’ natural response, its
behaviour without (corrective) stimuli from the supervisor’s perspective.

Hence, we use the term supervisory control to refer to the occasional—
discrete or temporarily continuous—influence on an otherwise autonomous pro-
cess with the goal to achieve or maintain correctness [46] while allowing the
process to optimise some performance criteria given, for example, as a cost func-
tional. Clearly, that process needs to be observable and controllable to the degree
needed to successfully perform supervision (Fig. 1). Supervisory control can be
performed manually and is traditionally done by human operators in, for exam-
ple, chemical process plants, power stations, critical infrastructure, manufactur-
ing (Sect. 2), and other domains of industrial automation, known as “supervisory
control and data acquisition” (SCADA [14]).

206 M. Gleirscher

Fig. 1. A supervisor component embedded into a closed-loop system (the world) with
an autonomous process and an optional process-external and task-specific, perhaps
human or human-assisted, process controller

4 Supervision

This section introduces a light-weight taxonomy of supervision (Sect. 4.1), several
universal techniques (Sect. 4.2), specialisations of these approaches suitable for
the supervision of intelligent systems (Sect. 4.3), and closes with a discussion of
the relationships to safety verification, controller synthesis (Sect. 4.4), and digital
twins (Sect. 4.5).

4.1 A Taxonomy of Supervision

Our focus is on automatic supervision and supervisory control. First of all, super-
vision is characterised by being done online, that is, at run-time or during the
operation of an autonomous process. Supervision can be performed passively or
actively, with a soft global or hard local impact, and triggered based on events
and/or applied permanently (Fig. 2).

Fig. 2. A light-weight taxonomy of supervision

Regarding its mode of influence or response, passive supervision does not
alter the process but raises awareness of anomalies, such as hazardous deviations
from parameter reference intervals. Human operators (as indicated in Fig. 1) or a
specific component of the autonomous process itself then have the possibility or
even the responsibility to react to these anomalies (e.g., by single corrections or
falling back to a mode of teleoperation or shared control [9]). Active supervision

Supervision of Intelligent Systems: An Overview 207

extends the passive mode by the capability to influence the process, normally
through direct control (sometimes called “override”) of certain process param-
eters otherwise controlled by the process itself. For example, the surgeon takes
over the remote control of the robot arm, or the human driver takes over in a
traffic situation with too much uncertainty for automatic control.

Considering the power of influence, a supervisor can perform soft, indirect, or
global actions on the process. The supervisor acts as a moderator with a global
impact on the process, that is, supervision and natural response are superim-
posed. The soft or indirect approach to supervision is typically exercised via the
optimisation of a cost function in optimal and adaptive control and its appli-
cations to intelligent systems (e.g., in automated driving, a cost function could
exponentially penalise fuel consumption). In contrast to that, we have the fre-
quently practised hard, direct, or local supervision, where constraint mechanisms
lead to a local influence aside from the natural response in critical regions of the
process. Prominent examples for hard supervision are lane-keeping assistants,
ADAS L11 functions used in modern cars for promptly correcting the trajec-
tory and alerting the driver. Global and local influence have different properties
regarding their ability to provide correctness guarantees. For example, it can be
much harder to define a globally influencing supervisor to maintain an invariant
than to define a locally acting supervisor to achieve safety [37].

One can distinguish two abstraction levels where supervision takes place.
First, event-based (or high-level) supervision can be seen as a form of discrete-
event control: the supervisor observes the process and influences it whenever
some (e.g., dangerous or otherwise significant) events occur (e.g., an undesired
lane change). Another example would be a safety system responsible for startup
and shutdown routines triggered upon dangerous incidents, such as the handling
of broken valves in a chemical process plant. A special case of this event-triggered
control scheme is supervision at the occurrence of regular clock events (e.g., an
equidistantly sampled comprehensive inspection of the patient’s health status
during the surgery). Second, low-level (or continuous) supervision is charac-
terised by the (usually sampled) observation and temporarily continuous influ-
ence of the process (e.g., the low-level manoeuvre control for collision avoidance
in a particular mode of the supervisor [20]). Low-level supervision can be imple-
mented by standard approaches to control engineering. An example for this
would be a corrective PID2 controller used to locally stabilise an aeronautic
system against wind, enabling a pilot to focus on more strategic decisions.

4.2 Fundamental Approaches to Supervision

The perhaps most widely-used class of approaches to supervision is called safety
monitoring (e.g., SMOF [40]). There, usually simple but highly reliable moni-
toring mechanisms (also called “watchdogs”, “policing functions”, etc.) are trig-
gered by hazardous events occurring in a process. These mechanisms then send

1 Automated driving assistance system at autonomy level 1 [43].
2 Proportional-Integral-Derivative; see, for example, [53].

208 M. Gleirscher

warnings, for example, to a human supervisor or another higher-level (supervi-
sory) control system. Passive supervision beyond the monitoring of formal safety
properties [15] is also known as run-time verification [35].

A broad line of work gathers under the term of run-time enforcement. While
run-time enforcement usually includes safety monitoring, its main purpose is to
actively transform (e.g., ignore, correct, or otherwise modify) observed deficient
discrete sequences or continuous signals such that they maintain a correctness
specification [19,47,52] before being forwarded to some actuators in the process.
One of the perhaps oldest and simplest mechanisms for intercepting and alter-
ing control inputs to the process is called safety limiter. In many cases, safety
monitors and limiters are still manually engineered components.

Run-time verification and enforcement techniques are based on automata the-
ory as well as qualitative and quantitative variants of temporal logic.3 These tech-
niques enable a variety of monitoring and enforcement schemes. Some of these
schemes are amenable to prior deductive verification (e.g., the ModelPlex tool
for the monitoring of hybrid systems [42]) and automated supervisor construc-
tion (e.g., the Yap tool for synthesising supervisors implementing risk-informed
response properties [22]). Another example is shielding [7], motivated by the
treatment of error-prone behaviour of complex electronic hardware. Shielding
enables run-time enforcement by providing an approach to synthesising discrete
supervisors (called shields) for fast output validation and correction in reactive
control hardware. Shielding has already been investigated for use in intelligent
and learning systems with uncertainties, as discussed in the next section.

4.3 Supervision of Intelligent Systems

As suggested in the above discussion, supervision is of particular interest in the
context of autonomous, intelligent, and learning processes. There, the subject
of supervision is not only the behaviour of a particular “snapshot” of a process
but also the way how this process adapts itself to new situations, with the result
of changing its behaviour in a rather subtle but potentially hazardous manner.
Indeed, several techniques are available that can be understood as supervision
techniques according to our characterisation in Sect. 4.1. Some of these tech-
niques are natural extensions of the approaches introduced in Sect. 4.2.

In risk-sensitive optimal control, a technique also applicable in intelligent
control systems, supervision occurs in a subtly indirect form as a weighting
parameter of an exponential cost functional to be minimised [56]. That parame-
ter’s role is to heavily penalise disruptive or destabilising controls (e.g., produced
by some state-feedback controller) with the expectation to increase robustness
of the controlled process against chaotic disturbances or overly disruptive set
point changes, while keeping track of performance goals. Risk-sensitive control
can, thus, help in avoiding unnecessary overreactions, for example, when circum-
venting an obstacle on the road, or when touching critical tissue.

3 For example, signal temporal logic, a variant of metric (time) temporal logic, par-
ticularly well-suited for reliable and efficient signal checking.

Supervision of Intelligent Systems: An Overview 209

Supervision plays a central role in safe reinforcement learning. The wide suc-
cess of reinforcement learning [51] is perhaps due to the advantage (over plain
dynamic programming) of being able to learn merely from rather local reward
stimuli, penalties, and observations and without complete prior knowledge of
the process’ internal dynamics or a global cost functional. There are several
approaches implementing indirect and direct forms of supervision in RL appli-
cations. A soft form of RL supervision is based on reward shaping and impact
regularisation [37]. These techniques aim at the creation of reward functions
that penalise large—hence, potentially unsafe—state changes or any entrance of
dangerous regions of the state space. As a result, the learning process is expected
to avoid unsafe actions and highly likely or fully circumvent unsafe regions.

In contrast to soft RL supervision, safety-constrained RL [32] works in two
stages. In the first stage, a safe sub-process of the Markov process describing
the autonomous process is determined. That constrained sub-process then acts
as a direct global supervisor for the RL agent’s remaining learning episodes. In
the second stage, the actual learning, the agent can then safely optimise some
performance specification relative to the previously imposed constraint.

Shielding mechanisms (Sect. 4.2) have been extended to be used in RL appli-
cations. For example, to block locally unsafe actions available to the choice of an
RL agent, a shield is computed online (using model checking) from the knowl-
edge of states reachable by hypothetically performed actions in a locally mod-
elled Markov process [33]. The result is an online-executable safety-constrained
form of RL, with the learning forced to remain in the set of the safety invariant.
Similar ideas have been developed for other control applications [1,5].

The overarching goal of the discussed approaches is the protection against
hazardous events and their consequences with the potential of sacrificing perfor-
mance under nominal conditions. The usual hypothesis is that incidents with
harmful consequences—stemming from hazardous events in the autonomous
process—would not have occurred or would have been far less likely when under
supervision. In this sense, supervision can be intuitively defined to be effective
by means of a, potentially probabilistic, counterfactual argument.

4.4 Relationship to Safety Verification and Controller Synthesis

While supervision is primarily understood as an online control technique, there
are techniques, usually employed offline, with quite similar effects when applied
to an autonomous process: safety verification and controller synthesis.

Safety verification aims at providing guarantees for the safety of the
behaviour of an autonomous process, already at design time. There, a range
of techniques (e.g., formal methods such as B, Z, VDM; automated reasoning
such as temporal logic model checking or automated deduction; see, e.g., [48])
allow one to derive a firm conclusion about the correctness (here, safety) of all
possible executions of that process. Accordingly, the safety verification problem
is in many cases formulated as an invariant property that needs to hold along
these executions, or, equivalently, as an invariant set of states that an execution
must never leave, given it starts from an initial state in that set.

210 M. Gleirscher

This characterisation can, of course, be seen as an indirect form of supervi-
sion. Now, would such a design-time approach make the use of separate supervi-
sors redundant? Well, on the one hand, safety verification can bear the sometimes
unrealistic assumption that the model used to formally reason about these exe-
cutions faithfully captures all the relevant parts of the real autonomous process,
down to a sufficient level of detail. On the other hand, if the model is reliably
conservative and allows the transfer of the safety guarantees to the process imple-
mentation, it might still be practical or even be required to separate supervisory
control from task control.

Controller synthesis is another offline technique aiming at the computation of
controllers, more specifically, control policies applicable to the whole state space
and lifetime of a process. For example, the winning region4 of a safety game (as,
e.g., used in shielding [7]) has to be computed fully in advance in order to know
how the process needs to be safely initialised and influenced on-the-fly.

Although, at the same level of abstraction, off- and online techniques can be
quite different, techniques such as controller synthesis, mainly used offline, can
serve the construction of a supervisor (even online as, e.g., shown in [2]) that
then performs online to reduce or avoid hazards in an autonomous process.

4.5 Relationship to Digital Twins

Recent developments in simulation and virtual prototyping and commissioning
culminated in the rise of digital twins employed in a variety domains [55]. Digital
twins enable a more or less strongly coupled execution of a primary system in
operation (i.e., the process or physical twin) and a, not necessarily fully equiva-
lent, secondary system (i.e., the digital twin). While not much is genuinely new
about digital twins, the latter can be seen as a modern instance of a multi-
purpose environment with a high-bandwidth connection to the primary system.
Digital twins can thus be useful in a range of tasks in data-intensive (model-
based) systems engineering and operation. Among these tasks are, for example:

– Flexible integration testing by model-, software-, or hardware-in-the-loop test-
ing, whilst offering various modes of co-simulation (e.g., [17,22,39]).

– Conformance testing of critical components (e.g., supervisors) by using appro-
priate abstractions and coupled test execution (e.g., [23]).

– Simulation-informed teleoperation or shared control, perhaps as a form of
SCADA with a multi-modal human-machine interface (Sect. 3).

– Supervision by using the digital twin as a reference model and comparing
complex observations between primary and secondary systems (e.g., [57]).

– Active supervision going beyond safety monitoring and teleoperation.

Consequently, it can be beneficial to build digitally twinned supervisors in order
to test these critical parts in parallel to their operation in the real process [22]. As
opposed to that, the whole digital twin itself could be understood and used as a
4 The set of states from where it is always and indefinitely possible for the controller

to win (here, to maintain an invariant) by exercising its previously computed policy.

Supervision of Intelligent Systems: An Overview 211

supervisor, given the appropriate instrumentation built into it. However, it needs
to be examined on a case-by-case basis, whether the complexity of a practical
digital twinning architecture (e.g., taking advantage of a heavy-weight computing
infrastructure) gets in the way of using it reliably in a critical supervision task.

5 Synthesis of Supervisors

As already hinted at in Sect. 4.1, it is reasonable to think of complex supervisors
as discrete-event or hybrid controllers. Controller design automation then imme-
diately raises the question of the automated synthesis of supervisors. Controller
or program synthesis is a traditional multi-disciplinary and, thus, well-researched
area. In the Sects. 5.1 and 5.2, we will briefly examine two main approaches,
dynamic programming and the solving of dynamic games, with a focus on their
respective discrete variants. These approaches became available from over seven
decades of research. However, a historical perspective is out of scope here.

5.1 Dynamic Programming of Supervisors

Dynamic programming refers to a wide class of dynamic optimisation techniques
that can find a controller from a potentially infinite set of possible controllers.
This set is sometimes called the design space. The solution of the corresponding
search problem is guided by evaluating a cost functional for all possible exe-
cutions of a process model. These executions result from applying a range of
admissible control signals to the model of the process dynamics.

More specifically, the cost-optimal controller can, for example, be easily
constructed by a comparatively simple numerical algorithm called value itera-
tion [51, Sect. 17.2]. This algorithm computes optimal control inputs backwards
for the whole (admissible) state space and the considered lifetime of the process.
The result is a control policy defined for all (initial) states of the admissible state
space and for the chosen time interval. Dynamic programming can be applied in
continuous and discrete settings. Hence, it is suitable for synthesising supervisors
for both event-based or high-level supervision [22] and for low-level supervision.

Two advantages of dynamic programming over other dynamic optimisation
techniques are of interest here: Particularly, when using value iteration for super-
visor synthesis, discrete dynamic programming can approximate autonomous
processes with non-linear natural response reasonably well. Moreover, value iter-
ation allows for a simple yet useful mechanism to locally constrain control policies
such that they avoid moving the process into an unsafe area. Clearly, discrete
dynamic programming has important limits, especially when executed online, if
the precision and lifetime requirements lead to very large state and input spaces.
For a broader introductory treatment of this quite well-researched area, readers
may consider [51, Sect. 17].

212 M. Gleirscher

5.2 Game-Based Supervisor Synthesis

Game-based supervisor synthesis refers to a class of approaches, building on
and generalising dynamic programming and other control techniques. One of
the main differences of dynamic game theory over plain dynamic program-
ming is that the controller construction directly takes into account adversar-
ial behaviour—in control theory, usually referred to as “disturbance”—of the
autonomous process. For example, a patient moves their body during the surgery,
or a vehicle’s lane positioning sensors are bounded inaccurate.

From solving such games, we can obtain controllers that work as desired
under worst-case assumptions about the process. The cost functionals used for
these games then become quite critical because they carry the hypothesis that,
in less adversarial situations, the controllers should perform even better, that is,
even safer. The circumstance creating this hypothesis is due to the completeness
of the search problem (in the discrete game) or the convexity of the optimisa-
tion problem (in the weighted game). In other words, it is assumed that this
completeness or convexity reflects reality. In fact, in many practical applications
this assumption was proven to be justified. Our focus in the remainder of this
section lies on discrete games (e.g., [47]).

Worth mentioning are automata-based games with qualitative winning con-
ditions, for example, the specific class of discrete games suitable for construct-
ing controllers that provably maintain a finite state invariant. Such games are
called safety games and their winning conditions are of the kind “never leave
the invariant”. The result of such a game can be a permissive policy (i.e., a still
non-deterministic controller) that exerts corrective influence only if it is needed,
for example, whenever the autonomous process is about to approach the bound-
ary of an invariant set. Safety games are, for example, used for determining the
corrective influence applied in shields [7], as already described in Sect. 4.2.

There are other classes of games allowing more expressive [47] and quantita-
tive [6] winning conditions. Imagine an autonomous process with hazards or inci-
dents that cannot be fully avoided but are occasionally occurring. Further envis-
age that the process’ capabilities are insufficient or insufficiently incentivised to
mitigate such events and leave the corresponding region of the state space. More-
over, consider that the supervisor, perhaps because of a lack of resources, only
observes the process at sparse points in time but can, on demand, devote more
effort in supervision. The required type of corrective influence in this scenario
usually goes beyond the capacity of a safety game. However, a combination of a
reachability game with a safety game might be able to address this situation. The
winning condition of this combined game leads the synthesis algorithm looking
for supervisors that can always return (i.e., progress) to the safe region from
some unsafe state. An instance of these ideas is investigated in [22,47].

6 Modelling for Supervisor Construction

It does not matter which approach to supervision is chosen or whether one
manually constructs a supervisor or wants to use synthesis for that. A frequent

Supervision of Intelligent Systems: An Overview 213

cross-cutting concern is the modelling for the purposes of supervisor specification,
synthesis, and verification. The main question is: What needs to be included in
a desirable model, for example,

– to feed a synthesis procedure for correct-by-construction supervisors,
– to aid an embedded software developer or control system engineer in imple-

menting a validated supervisor design, or
– to help a verification engineer in examining a supervisor implementation?

The following model ingredients appear to be generally useful in this context:

1. A model of the autonomous process (i.e., the world or control loop model),
in particular, with descriptions of the relevant actors performing in that
domain (e.g., the surgeon, a transport robot, an oncoming vehicle; cf. Sect 2).
These actors may describe human behaviour and mental models thereof to
capture human-machine interaction being subject of supervision.

2. A parametric description of the design space for the supervisor or some kind
of specification of the monitoring and control capabilities (e.g., the event and
action alphabet) of any supervisor to be constructed.

3. A model of the uncertainties arising from both the world model and the
supervisor specification. For example, the actors of the world model to be
influenced may react with uncertainty, they can be fallible. Moreover, the
supervisor could have faulty sensors or actuators. These phenomena justify
the use of stochastic modelling as, for example, exemplified in [22].

4. A model of the supervision requirements, perhaps derived from standards for
safety-critical systems [31] or from a domain-specific hazard analysis and risk
assessment (HARA) of the autonomous process.

The world model (1), the design space (2), and the uncertainty model (3) can
then be integrated into a model of the closed-loop system, as depicted in Fig. 1
and discussed in more detail in [22,23]. In a next step, the integrated model can
be validated by checking it against the supervision requirements (4). These four
ingredients have the potential to be core assets in industry-strength supervisor
development workflows and life cycles [34], useful to all participating stakehold-
ers (e.g., robotics and AI engineers, analysts, and assessors) and amenable to
certification. The latter immediately leads us to the next section.

7 Certifiable Assurance of Supervisors

One of the crucial questions with systems used for critical purposes is that of
whether these systems are dependably correct, that is, whether they are perform-
ing the right tasks in a highly reliable, available, and secure manner? Clearly,
supervisors are systems subjected to all these requirements.

So far, we have dealt with supervision both as a control technique and as a
run-time assurance mechanism, without looking into the details of how super-
visors are implemented correctly and how they are certified. In this section, we
view supervisors from a verification and certification perspective [48], that is,

214 M. Gleirscher

as critical components under development. Observing that supervisors perform
critical tasks, their operation is subject to certification before entry into service.

Section 7.1 examines world model validation, correct supervisor synthesis,
and supervisor verification with a focus on complete testing [45]. Section 7.2
explores the domain of supervisor certification and the accompanying qualifica-
tion [50] of the tools used in supervisor engineering.

7.1 Correct-by-Construction Supervisors

Model Validation. The normally desired use of models obviously raises the ques-
tion of model validation. Supervisor models themselves need to be checked for
potential incompleteness, their parameters identified using appropriate tech-
niques and empirical data, all with the aim to close the so-called “reality gap”.5

An advantage of supervisors is that they are sometimes, and preferably, orders
of magnitude simpler than the autonomous process to be supervised, such that
it might be comparatively easy to detect and close the reality gap.

Depending on the language or formalism, the world model (Sect. 6, Fig. 1) is
provided in, model validation can be tackled

– by (tool-supported) reviews or formal inspection, if the world model is, for
example, provided as a (textual) SysML or UML model and the supervision
requirements remain informal statements;

– by (temporal logic or stochastic) model checking, if the world model is given as
a lower-level (probabilistic) transition system with supervision requirements
encoded as (probabilistic) temporal logic formulas [22]; or

– by deductive verification, if the world model is represented as a more abstract
program or state machine and the supervision requirements are given, for
example, as a Hoare triple or dynamic logic formula.

The correctness and well-formedness properties required for model validation
can usually be derived from process and component HARAs as well as from
the modelling formalisms used. An important aspect when using formalisms to
specify these properties and the models is the avoidance of vacuous checks [12],
that is, checks that do not contribute positive evidence to an assurance effort.

Correct Automated Construction. Tightly interwoven with the question of devel-
oping correct supervisors from valid world models is that of the correct auto-
matic construction of supervisors (Sect. 5), in particular, the correct construc-
tion of supervisor implementations (i.e., program code, micro-controller code, or
a circuit description for electronic hardware synthesis)6 and intermediate repre-
sentations (e.g., the input formalism of some model checker or proof assistant).
For example, supervisors resulting from discrete game-based controller synthesis

5 An undesired conceptual or representational gap between a real object and a usually
fully independent representation of it, a typical side-effect of any modelling with a
potentially huge impact on the overall validity of a model.

6 For example, a C++, PLC, or VHDL program.

Supervision of Intelligent Systems: An Overview 215

and discrete dynamic programming require as inputs a world model given as
some kind of non-deterministic transition system. The synthesised supervisors
can, thus, be represented straightforwardly as deterministic transition systems,
amenable to temporal logic model checking. It is worth noting that the latter
technique is frequently used in industrial practice. Hence, it is likely that certifi-
cation authorities will have gained useful experiences with such formal techniques
in a regulatory context (see [24] for a more detailed discussion).

Supervisor Verification. Depending on the complexity of the development steps
to be made to get from a non-deterministic world model including a supervi-
sor specification or design space to a particular supervisor implementation, the
latter will at some point need to be verified against the initial world model
and supervision requirements. We speak of supervisor verification. This verifica-
tion might even be necessary if part of the supervisor development is based on
correct-by-construction synthesis [23].

According to several widely-used industrial standards (e.g., DO-178 [30,49],
IEC 61508, ISO 26262), the primary way of achieving certification credit for a
supervisor implementation is testing, as examined in [34, p. 93] and illustrated
in [44] for sensor systems in train supervisors. Among the variety of (normally
incomplete) testing techniques used in practice, the testing of critical systems,
such as supervisors, is typically accompanied with the requirement of being com-
plete. Completeness, inherent to formal verification, means showing the absence
of faults under all circumstances. Accordingly, complete in the context of testing
then means that a supervisor test suite is able to detect every possible fault in
a certain (usually quite large) formalism-induced7 fault domain.

Complete testing can be used to formally verify refinement [45] and obser-
vation equivalence [41]. The latter can be accomplished, for example, by the
W- [13] or H-methods [16]. These methods work by deriving a test suite (a set
of input sequences) from a specification (e.g., a minimal deterministic Mealy
machine or I/O automaton) that is able to detect every faulty state machine
implementation, given the latter has a limited number of additional states. This
form of testing suffers particularly from a problem similar to that of state space
explosion in model checking. Because supervisors can often be designed as rela-
tively simple state machines, this issue might not be a limiting factor. Moreover,
many supervisors can be abstracted into non-deterministic symbolic transition
systems where complete equivalence class testing techniques are available [29].
Non-determinism as an abstraction technique can strongly reduce the complex-
ity in complete testing of supervisors for autonomous processes as encountered in
intelligent cyber-physical and socio-technical systems. However, complete test-
ing often requires an automata-based specification, which can be hard to craft
manually. Hence, it is crucial to be able to synthesise abstract supervisors from
even more abstract (e.g., property-based) supervisor specifications.

7 If automata are used to represent the test reference, every faulty automaton possible
in the fault domain can be detected by at least one test case of the suite.

216 M. Gleirscher

7.2 Industrial Certification of Supervisors

Certification of supervisors according to IEC 61508 [30] or related standards
involves a number of tasks.

First of all, supervisor specifications will usually be the result of a regulatory
process HARA for an autonomous process. The outcome of such a HARA can be
a range of (supervision) requirements, some of which specify the safety measures
or corrective influence to be implemented in the (synthesised) supervisor.

Moreover, supervisors as critical components are subjected to a component
HARA and, consequently, to safety integrity level (SIL) classification. A SIL
represents a set of assurance requirements with the goal to reduce the failure
likelihood of a supervisor. As already mentioned, the failures of interest here
can be caused by faulty sensors, planning or decision algorithms, and actuators.
Thus, the SIL determines the assurance measures (e.g., testing, formal verifi-
cation, delivery of an assurance case) to be taken—according to the applicable
standard—to receive certification credit for the supervisor implementation.

Importantly, in the context of artificially intelligent systems, such credit is
to be achieved with respect to AI safety requirements and AI regulations. The
safety requirements can capture known failure modes of AI components used in
the autonomous process, as summarised in, for example, [3,8]. The regulations
can include, for instance, recent EU directives [18], the novel ANSI/UL 4600
standard [4], or general safety-critical system standards, such as IEC 61508 [30].

The regulations mandate the creation of evidence (e.g., test verdicts, math-
ematical proofs) and a documented argument demonstrating that the designed
and implemented supervisors are correct and compliant. Such an argument needs
the correctness properties of the autonomous process and the supervisor to be
derived from the aforementioned AI failure modes and the HARAs. Part of these
properties need to be translated into supervisor models [44], appropriate proof
obligations (e.g., temporal logic formulas used in model checkers, theorems ini-
tialising proof efforts in proof assistants), and exhaustive test campaigns to be
run against supervisor implementations [23]. The aim of all stakeholders should
then be to turn the resulting argument into an explicit, well-structured, and
rigorously [21] challenged and evidenced assurance case.

Tool Qualification. In most situations, engineers are interested in using tools for
design automation and the aforementioned development and assurance stages.
In a certification context (e.g., where DO-178C is applicable), this desire quickly
leads to the task of tool qualification as required by the corresponding stan-
dards (e.g., DO-330 [50]), that is, the assurance of the software tools used for
supervisor development and assurance. Especially, we need to rule out, for exam-
ple, that a synthesis tool introduces faults in the generated supervisor implemen-
tations, faults subsequently encountered during operation.

As already mentioned, supervisors are critical components and their failure
can have catastrophic consequences. The same holds of tools directly involved in
the automated construction of supervisors. Erroneous verification tools do not
directly introduce but perhaps only mask potential supervisor faults. Hence, they

Supervision of Intelligent Systems: An Overview 217

are subjected to a less8 stringent qualification regime [24]. However, erroneous
synthesis tools can directly introduce faults into supervisors. Consequently, these
tools need to undergo a stringent qualification, applying the assurance measures
described in the Sects. 4.4 and 7.1, in particular, formal proofs of property or
semantics preservation across the involved transformations and translations.

8 Conclusions

This work outlines and highlights important issues and questions to be dealt
with when engineering supervisors for intelligent systems, accompanied by an
approach to the certifiable synthesis and verification of supervisors.

In coherence with Leveson’s notion of safety as an emergent property [36], we
made the assumption that autonomy can be treated as a chaotic natural response
in a sufficiently observable and controllable process. An important observation
based on this assumption is that, after separating the concerns of correctness
and autonomy resulting from reliable supervision, the circumstance of whether
or not an autonomous process exhibits intelligence or learning abilities, can take
on a less critical and more manageable role in system assurance. Moreover, the
criticality of supervision in intelligent cyber-physical systems will likely demand
lean, fast, and easy to verify supervisor implementations with a highly direct con-
nection to the process. Consequently, the domain of automatic supervision and
supervisory control is in need of sound workflows for supervisor development [34],
specifically to cope with new challenges in supervising intelligent systems.

A valuable goal of this endeavour addressing the Manifesto of Applicable
Formal Methods [25] could be to provide engineers developing intelligent control
systems and AI safety practitioners in industry with a formally-integrated [21]
workflow for supervisor engineering, including development, synthesis, and assur-
ance. Finally, it will also be worthwhile to further examine how recent platforms,
for example, digital twins, could be used as a versatile supervision instrument,
accompanied with high-fidelity simulation and data processing capabilities.

Acknowledgements. It is my pleasure to thank Jan Peleska for his proactive profes-
sional mentoring, his warm and friendly attitude, a very welcoming work atmosphere
in his formal methods group, and a solid portion of jazz music during my time as
a postdoctoral researcher at the University of Bremen. Furthermore, I would like to
thank the anonymous reviewers for their helpful suggestions.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI Conference on Artificial Intelligence,
vol. 32 (2018). https://ojs.aaai.org/index.php/AAAI/article/view/11797

8 Nevertheless, when using verification tools, tool qualification ideally amounts to the
verification of the verification results.

https://ojs.aaai.org/index.php/AAAI/article/view/11797

218 M. Gleirscher

2. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30(4), 903–918 (2014). https://doi.org/
10.1109/TRO.2014.2312453

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR (2016)

4. ANSI/UL 4600: Standard for safety for the evaluation of autonomous products.
Standard, Underwriters Laboratories (2019). http://UL4600.com

5. Bastani, O., Li, S., Xu, A.: Safe reinforcement learning via statistical model predic-
tive shielding. In: Robotics: Science and Systems (RSS). RSS Foundation (2021).
https://doi.org/10.15607/rss.2021.xvii.026

6. Bersani, M.M., Soldo, M., Menghi, C., Pelliccione, P., Rossi, M.: PuRSUE – from
specification of robotic environments to synthesis of controllers. Form. Asp. Com-
put. 32(2-3), 187–227 (2020). https://doi.org/10.1007/s00165-020-00509-0

7. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533–548. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 51

8. Bommasani, R., Liang, P., et al.: On the opportunities and risks of foundation
models. CoRR (2021). https://doi.org/10.48550/arXiv.2108.07258

9. Boyraz, P., Dobrev, I., Fischer, G., Popovic, M.B.: Robotic surgery. In: Biomecha-
tronics, pp. 431–450. Elsevier (2019). https://doi.org/10.1016/b978-0-12-812939-
5.00015-x

10. Broy, M.: Challenges in automotive software engineering. In: 28th International
Conference on Software Engineering (ICSE). ACM Press (2006). https://doi.org/
10.1145/1134285.1134292

11. Calinescu, R., Alasmari, N., Gleirscher, M.: Maintaining driver attentiveness in
shared-control autonomous driving. In: 16th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE (2021).
https://doi.org/10.1109/seams51251.2021.00021

12. Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for formal verification.
Int. J. Softw. Tools Technol. Trans. 8(4), 373–86 (2006). https://doi.org/10.1007/
s10009-004-0175-4

13. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

14. Dey, C., Sen, S.K.: Industrial Automation Technologies. CRC Press (2020).
https://doi.org/10.1201/9780429299346

15. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verifica-
tion. Theor. Comput. Sci. 537, 29–41 (2014). https://doi.org/10.1016/j.tcs.2014.
02.052

16. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 16

17. Douthwaite, J., et al.: A modular digital twinning framework for safety assurance
of collaborative robotics. Front. Robot. AI 8, 402 (2021). https://doi.org/10.3389/
frobt.2021.758099

18. European Commission: Report on the safety and liability implications of
artificial intelligence, the internet of things and robotics. Technical report,
COM/2020/64, EU (2020). https://eur-lex.europa.eu/legal-content/en/TXT/?
uri=CELEX:52020DC0064

19. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities. Form. Method. Syst. Des.
38(3), 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4

https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/TRO.2014.2312453
http://UL4600.com
https://doi.org/10.15607/rss.2021.xvii.026
https://doi.org/10.1007/s00165-020-00509-0
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.48550/arXiv.2108.07258
https://doi.org/10.1016/b978-0-12-812939-5.00015-x
https://doi.org/10.1016/b978-0-12-812939-5.00015-x
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1109/seams51251.2021.00021
https://doi.org/10.1007/s10009-004-0175-4
https://doi.org/10.1007/s10009-004-0175-4
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1201/9780429299346
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1007/11562436_16
https://doi.org/10.3389/frobt.2021.758099
https://doi.org/10.3389/frobt.2021.758099
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52020DC0064
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52020DC0064
https://doi.org/10.1007/s10703-011-0114-4

Supervision of Intelligent Systems: An Overview 219

20. Foster, S., Gleirscher, M., Calinescu, R.: Towards deductive verification of control
algorithms for autonomous marine vehicles. In: 25th International Conference on
Engineering of Complex Computer Systems, ICECCS 2020 Singapore, pp. 113–118
(2020). https://doi.org/10.1109/ICECCS51672.2020.00020

21. Foster, S., Nemouchi, Y., Gleirscher, M., Wei, R., Kelly, T.: Integration of formal
proof into unified assurance cases with Isabelle/SACM. Formal Aspects Comput.
33(6), 855–884 (2021). https://doi.org/10.1007/s00165-021-00537-4

22. Gleirscher, M., et al.: Verified synthesis of optimal safety controllers for human-
robot collaboration. Sci. Comput. Program. 218, 102809 (2022). https://doi.org/
10.1016/j.scico.2022.102809

23. Gleirscher, M., Plecher, L., Peleska, J.: Sound development of supervisors. Working
paper, U Bremen (2022). https://arxiv.org/abs/2203.08917

24. Gleirscher, M., Sachtleben, R., Peleska, J.: Qualification of proof assistants, check-
ers, and generators: where are we and what next? Sci. Comput. Program. 226(3),
102930 (2023). https://doi.org/10.1016/j.scico.2023.102930

25. Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Softw. Syst. Model., 1–17 (2023, in press). https://arxiv.org/abs/2112.
12758

26. Gold, C., Damböck, D., Bengler, K., Lorenz, L.: Partially automated driving as a
fall-back level of high automation. In: Fahrerassistenzsysteme, 6. Tagung, vol. 28
(2013). https://mediatum.ub.tum.de/doc/1187198/

27. Hansson, S.O.: Risk. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University (2018). https://plato.
stanford.edu/entries/risk/

28. Howe, R.D., Matsuoka, Y.: Robotics for surgery. Annu. Rev. Biomed. Eng. 1(1),
211–240 (1999). https://doi.org/10.1146/annurev.bioeng.1.1.211

29. Huang, W., Peleska, J.: Complete model-based equivalence class testing for nonde-
terministic systems. Formal Aspect. Comput. 29(2), 335–364 (2016). https://doi.
org/10.1007/s00165-016-0402-2

30. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. Standard, The 61508 Association (2011). http://www.
61508.org/

31. ISO/PAS 21448: Road vehicles - safety of the intended functionality (SOTIF).
Standard, ISO (2019). https://www.iso.org/standard/70939.html

32. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

33. Könighofer, B., Rudolf, J., Palmisano, A., Tappler, M., Bloem, R.: Online shielding
for stochastic systems. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 231–248. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8 15

34. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary chal-
lenge. IEEE Intell. Transp. Syst. Mag. 9(1), 90–96 (2017). https://doi.org/10.1109/
MITS.2016.2583491

35. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr.
Progr. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

36. Leveson, N.G.: A systems-theoretic approach to safety in software-intensive sys-
tems. IEEE Trans. Dependable Secure Comput. 1(1), 66–86 (2004). https://doi.
org/10.1109/tdsc.2004.1

https://doi.org/10.1109/ICECCS51672.2020.00020
https://doi.org/10.1007/s00165-021-00537-4
https://doi.org/10.1016/j.scico.2022.102809
https://doi.org/10.1016/j.scico.2022.102809
https://arxiv.org/abs/2203.08917
https://doi.org/10.1016/j.scico.2023.102930
https://arxiv.org/abs/2112.12758
https://arxiv.org/abs/2112.12758
https://mediatum.ub.tum.de/doc/1187198/
https://plato.stanford.edu/entries/risk/
https://plato.stanford.edu/entries/risk/
https://doi.org/10.1146/annurev.bioeng.1.1.211
https://doi.org/10.1007/s00165-016-0402-2
https://doi.org/10.1007/s00165-016-0402-2
http://www.61508.org/
http://www.61508.org/
https://www.iso.org/standard/70939.html
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-030-76384-8_15
https://doi.org/10.1109/MITS.2016.2583491
https://doi.org/10.1109/MITS.2016.2583491
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1109/tdsc.2004.1
https://doi.org/10.1109/tdsc.2004.1

220 M. Gleirscher

37. Lindner, D., Matoba, K., Meulemans, A.: Challenges for using impact regularizers
to avoid negative side effects. In: Espinoza, H., et al. (eds.) 3rd SafeAI Workshop.
AAAI (2021). http://ceur-ws.org/Vol-2808/

38. Litoiu, M., et al.: What can control theory teach us about assurances in self-
adaptive software systems? In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H.
(eds.) Software Engineering for Self-Adaptive Systems III. Assurances. LNCS,
vol. 9640, pp. 90–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
74183-3 4

39. Löcklin, A., Müller, M., Jung, T., Jazdi, N., White, D., Weyrich, M.: Digital twin
for verification and validation of industrial automation systems - a survey. In:
25th International Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE (2020). https://doi.org/10.1109/etfa46521.2020.9212051

40. Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.P., Roy, M., Masson, L.:
SMOF: a safety monitoring framework for autonomous systems. IEEE Trans. Syst.,
Man, Cybern., Syst. 48(5), 702–715 (2018). https://doi.org/10.1109/tsmc.2016.
2633291

41. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice-Hall (1989)

42. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Form. Method. Syst. Des. 49(1-2), 33–74 (2016). https://
doi.org/10.1007/s10703-016-0241-z

43. On-Road Automated Driving (ORAD) Committee: Taxonomy and definitions for
terms related to driving automation systems for on-road motor vehicles. Standard
J3016 201806, SAE International (2018). https://www.sae.org/standards/content/
j3016 201806/preview/

44. Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for
autonomous train control. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation. Practice, ISoLA 2022. LNCS,
vol. 13704. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19762-8 22

45. Peleska, J., Huang, W., Cavalcanti, A.: Finite complete suites for CSP refinement
testing. Sci. Comput. Program. 179, 1–23 (2019). https://doi.org/10.1016/j.scico.
2019.04.004

46. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control. Optim. 25(1), 206–230 (1987). https://doi.org/10.
1137/0325013

47. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement of timed properties
using games. Form. Asp. Comput. 32(2–3), 315–360 (2020). https://doi.org/10.
1007/s00165-020-00515-2

48. Roggenbach, M., Cerone, A., Schlingloff, B.H., Schneider, G., Shaikh, S.: Formal
Methods for Software Engineering. EATCS. Springer, Switzerland (2020). https://
doi.org/10.1007/978-3-030-38800-3

49. RTCA/DO-178C: Software considerations in airborne systems and equipment cer-
tification. Standard, RTCA SC-205 (2011). http://www.rtca.org/

50. RTCA/DO-330: Software tool qualification considerations. Standard, Radio Tech-
nical Commission for Aeronautics (RTCA) (2011). https://standards.globalspec.
com/std/1461615/RTCADO-330

51. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3 edn. Pearson
International (2014)

52. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

http://ceur-ws.org/Vol-2808/
https://doi.org/10.1007/978-3-319-74183-3_4
https://doi.org/10.1007/978-3-319-74183-3_4
https://doi.org/10.1109/etfa46521.2020.9212051
https://doi.org/10.1109/tsmc.2016.2633291
https://doi.org/10.1109/tsmc.2016.2633291
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://www.sae.org/standards/content/j3016_201806/preview/
https://www.sae.org/standards/content/j3016_201806/preview/
https://doi.org/10.1007/978-3-031-19762-8_22
https://doi.org/10.1016/j.scico.2019.04.004
https://doi.org/10.1016/j.scico.2019.04.004
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/s00165-020-00515-2
https://doi.org/10.1007/s00165-020-00515-2
https://doi.org/10.1007/978-3-030-38800-3
https://doi.org/10.1007/978-3-030-38800-3
http://www.rtca.org/
https://standards.globalspec.com/std/1461615/RTCADO-330
https://standards.globalspec.com/std/1461615/RTCADO-330
https://doi.org/10.1145/353323.353382

Supervision of Intelligent Systems: An Overview 221

53. Schwarzenbach, J.: Essentials of Control. Longman (1999)
54. Sugimoto, N.: Safety engineering on industrial robots and their draft standards for

safety requirements. In: 7th International Symposium on Industrial Robots, pp.
461–470 (1977)

55. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven
product design, manufacturing and service with big data. Int. J. Adv. Manuf.
Technol. 94(9), 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

56. Whittle, P.: Risk-sensitive linear/quadratic/gaussian control. Adv. Appl. Probab.
13(04), 764–777 (1981). https://doi.org/10.2307/1426972

57. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantification
and runtime monitoring using environment-aware digital twins. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp. 72–87. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-83723-5 6

https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.2307/1426972
https://doi.org/10.1007/978-3-030-83723-5_6

Fault Injection in Co-simulation and Digital
Twins for Cyber-Physical Robotic Systems

Peter Gorm Larsen1(B) , Lukas Esterle1 , John Fitzgerald2 ,
and Mirgita Frasheri1

1 DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Aarhus,
Denmark

{pgl,lukas.esterle,mirgita.frasheri}@ece.au.dk
2 School of Computing, Newcastle University, Newcastle upon Tyne, UK

john.fitzgerald@ncl.ac.uk

Abstract. The model-based engineering of dependable robotic systems brings
challenges that include the need to work effectively with a range of models,
owners and operators, and addressing the extent to which the systems evolve
over time. This paper explores the linking of co-simulation, which allows for the
exploration of models composed of multiple diverse simulation units, with the
concept of a digital twin, which provides a framework for coupling virtual models
with the real, evolving systems that they are intended to represent. We describe a
systematic and generic approach to fault injection in multi-formalism models that
use the Functional Mockup Interface standard, alongside the embedding of such
multi-models in digital twins. We illustrate the potential and challenges of such
an approach using a small “desktop” version of a commercial semi-autonomous
agricultural robot. Inspired by the work of Jan Peleska on test automation, we
identify directions for future research and innovation in this setting.

1 Introduction

In domains such as agriculture, increasing reliance is being placed on ‘smart’ cyber-
physical robot systems that have a degree of autonomy. Techniques and tools for design-
ing and maintaining such systems should assist engineers in delivering the level of
dependability demanded by the application. Model-Based Design (MBD) is an attrac-
tive option for offering the evidence and rationale required to deliver dependability, but
it faces some challenges in this setting. We focus on two of these. First, such systems are
often composed of separate subsystems that are documented to varying levels of detail
and that may have highly diverse models. Second, such systems may operate over a
long period in a wide range of physical environments, and may be adapted, repaired
and maintained so that, over time, the systems ‘as built’ diverge from their original
design models.

We aim to contribute to meeting these challenges by proposing: (i) the use of co-
simulation technology to allow smart Cyber-Physical Systems (CPSs) to be described
by clusters of diverse models, coupled with (ii) the use of a Digital Twin (DT) con-
cept which provides a framework for linking virtual models with the real, evolving
systems that they purport to represent [8]. In this setting, we describe a systematic and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 222–236, 2023.
https://doi.org/10.1007/978-3-031-40132-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_14&domain=pdf
http://orcid.org/0000-0002-4589-1500
http://orcid.org/0000-0002-0248-1552
http://orcid.org/0000-0001-7041-1807
http://orcid.org/0000-0001-7852-4582
https://doi.org/10.1007/978-3-031-40132-9_14

Fault Injection in Co-simulation and Digital Twins 223

generic approach to fault injection in multi-formalism models alongside the embedding
of such multi-models in DTs. Our goal here is to provide techniques that allow a DT
to provide a level of supervisory control that enhances dependability in the presence of
autonomy [7].

In order to ensure the dependability of robots and other autonomous systems, a
significant body of research has focussed on synthesising supervisory controllers and
devoting test regimes to ensure that they are correct [15]. Much of the work in this area
tends to abstract away from some types of fault in the physical devices, as well as com-
munications delays over networks. This is done in order to be able to express complete-
ness and soundness, but from a practical perspective additional analysis is needed. For
example, in [37], the authors propose a two-stage ROS-based verification mechanism
that consists in static verification for multi-goal multi-agent decision-making using
probabilistic model-checking, and runtime verification which uses invariant checking
and focuses on the processing of real-time data. Finding the right granularity for the
decision-making, i.e., having a proper mapping between high-level decisions and low-
level abilities (of the agent/robot), remains a challenge.

In this paper we present work in progress towards the development of dependable
robots utilising DTs. Specifically, we describe work on model-based fault injection
allowing us to explore the limitations of a CPS by introducing various types of faults
into its simulation. With a dedicated wrapper, which can be used on generic models
implementing the Functional Mockup Interface (FMI) standard1, we can inject virtual
faults at runtime and interact with physical robots executing in real-time.

Section 2 briefly introduces the background technologies of co-simulation and DTs.
We then present an overview of the techniques we propose to allow analysis of the
dependability-related properties of CPSs (Sect. 3). Later in the paper, we describe the
provision of support for analysing faults and failures using these approaches. These are
exemplified in Sect. 4 on a small case study simulating Robotti – a real commercial agri-
cultural robot2. Finally, Sect. 5 reviews these first steps and considers research directions
towards enhanced CPS dependability through DTs coupled in test automation.

2 Background: Co-simulation and Digital Twins

The goal of our work is to facilitate the MBD of dependable cyber-physical robotic sys-
tems. In this context, dependability encompasses properties including reliability, safety,
integrity and availability [1]. Engineering for dependability covers both the provision
of evidence and arguments to justify the reliance placed on a system and the ability
to avoid unacceptably serious or frequent failure. Research on engineering depend-
able CPSs therefore includes techniques, tools, processes and standards that provide
for modelling, analysis and tolerance of faults, errors and failures, as well as the verifi-
cation of designs and implementations.

For the reasons outlined in Sect. 1, our work builds on techniques for simula-
tion of multiple diverse models describing different aspects of CPSs (described in
Sect. 2.1) and the potential of DTs for maintaining models in line with the evolving
CPS (described in Sect. 2.2).

1 https://fmi-standard.org/.
2 https://agrointelli.com/.

https://fmi-standard.org/
https://agrointelli.com/

224 P. G. Larsen et al.

2.1 Co-simulation

Our work is focussed on enabling simulation of abstract CPS models as an element
of design. A CPS is composed of computational and physical processes. We therefore
expect that a CPS is described with multiple diverse models often generated by many
different tools, some using discrete event formalisms, and some over continuous time
domains. In practice, some of these constituent models will come from providers who
may not wish to release full descriptions, and so we require to be able to coordinate the
execution of diverse simulation units without necessarily requiring the full release of
intellectual property. In order to ensure that the models are sufficiently faithful it may
be necessary to perform different kins of calibration.

Our approach uses collaborative/coupled simulation (co-simulation) [20]. This tech-
nique brings individual simulation units of the CPS constituents together into a simula-
tion of the CPS as a whole. This is achieved through coordinated time progression and
exchange of values between the constituent simulations. Thus, a co-simulation typically
consists of a repetitive procedure of setting inputs on the simulation units, making them
progress in time, and retrieving their outputs. An introduction to and survey of work on
co-simulation has been provided by Gomes et al. [16].

Although it is possible to define simulation composition for each potential pair of
formalisms, a more open and general simulation approach requires that the units con-
form to a standard supporting interoperability. Our work is based on the FMI version
2 (FMI2) de-facto standard [2,3]. The individual simulation units in an FMI-based co-
simulation are referred to as Functional Mockup Units (FMUs). Each FMU is expected
to implement a set of C-interfaces conforming to the standard, provide a static descrip-
tion file describing the given simulation unit, and be packaged in a defined fashion.

The realisation of a co-simulation, and thereby a composition of FMUs, is carried
out by a Co-simulation Orchestration Engine (COE) employing an orchestration algo-
rithm. In the work reported here we used the Maestro2 COE [34,35] which for example
contains its own language for controlling the orchestration.

2.2 Digital Twins

Advances in data gathering technology, networks and computational power have made
it possible to think of real-world systems having their own Digital Twins (DTs) –
including virtual models of reality that are continually updated about the actual state of
their physical counterparts and which can enable decision-making that in turn leads to
changes in the real world. The DT concept has garnered significant attention, driven by
the potential to bring benefits such as visualisation, what-if analysis, preventive main-
tenance, performance optimisation and design space exploration [6]. Crucially for the
work described here, fault diagnosis, safety monitoring [10], reconfiguration [23] and
autonomy [18,30] are also seen as potential benefits of deploying DTs.

A feature of the DT concept is that the twin is added to the system being
twinned, enhancing it, offering improvements over the original system’s operation.
These improvements emerge from the interaction between the original system and the
DT. Consequently, we regard the engineering of the DT to deliver these improvements
as a systems engineering task.

Fault Injection in Co-simulation and Digital Twins 225

A DT is a system built around virtual representations (different models) of a ‘real-
world’ system of interest. In this paper, we call the real-world system the Physical Twin
(PT) to contrast it with the DT, although it can in fact be a combination of computa-
tional and physical processes and thus be a CPS. The representations at the heart of
a DT could make a number of different abstractions to support different analyses, for
example of performance or of safety. It is for this reason that we are interested in DTs
built around multiple models. The DT also receives data about the PT, and these data
can be used to update the models or to conduct analyses using those models. A DT
delivers its added value by supporting analysis and reasoning services over the models
and data, ultimately delivering capabilities such as anomaly detection, what-if analysis,
visualisation or adaptation.

Kritzinger et al. [19] categorise reports of DTs according to the level of integration
of the DT into the system of interest. A digital model is a representation of a PT that
does not benefit from any automatic data exchange with the PT. A digital shadow is
a model that receives an automated data flow from the PT so that the model is able
to reflect changes in the observed state of the PT. A full-fledged DT is then a digital
shadow that has the ability to send data to the PT, providing the DT with a level of
control. An important aspect here is that the time delay in the data streamed from the
PT to the DT is under control at an acceptable rate in order to still act as a DT [13].

Initial considerations for the engineering of DTs using a combination of models
inside the DT that could be coupled together using co-simulation were presented in
[9]. We make use of the INTO-CPS3 multi-model toolchain [21]. Subsequently the
streaming of data from a PT (possibly filtered for noise) using the FMI standard was
established using RabbitMQ wrapped into an FMU [12]. This was taken further in [5]
with an increased level of autonomy, where safety becomes even more important. This
is the underlying technology we use for our fault injections as described below.

3 Fault Injection in Co-simulations

As we indicated in Sect. 2, the ability to analyse faults, errors and failures is an impor-
tant aspect of ensuring dependability. In order to do this, it is important to be able
model faults so that we can observe potential causal chains and examine alterna-
tives for tolerating, limiting or mitigating their consequences. However, in the multi-
formalism, multi-owner environment of a CPS project, the introduction of faults into
closed-IP models is a particular challenge since the inherit behaviour of such models
are unknown. In this section, we describe an approach to Fault Injection (FI) in our
INTO-CPS multi-model toolchain.

FI techniques are used across software and hardware domains to analyse the robust-
ness and dependability of system designs. In recent years, there has been a focus shift
towards software FI [29], which can be applied at different levels, from changes that
emulate bugs injected into code, to data injection for manipulating memory states and
registers, and interface injections that target the inputs and outputs of the injected com-
ponents. In any case, it is necessary to construct adequate fault models, that define the

3 https://into-cps.org/.

https://into-cps.org/

226 P. G. Larsen et al.

what, when, and where of the faults being injected, with trade-offs on representation,
usability, and efficiency [29]. These techniques have also been applied to MBD, i.e.,
Model-Implemented FI, where the response to faults is evaluated in simulation (e.g.,
Simulink [31], LabVIEW [17] and dSPACE [27] models). Nevertheless, there are some
known drawbacks, such as:

1. FI artefacts are integrated in the system model [25,28,32], thus leading to high intru-
sion of the methods in the actual system model.

2. The FI has to be adapted each time the original model changes, as a consequence of
the previous point.

3. External tools are required for performing the FI, which means that these tools are
not seamlessly integrated in the modelling process.

We propose an FI approach that is FMI-compliant and extends our co-simulation
framework based on Maestro through a configurable plugin. This allows faults to be
injected at the interface points of FMUs, alleviating the drawbacks of current model-
implemented FI. Additionally, the framework enables hardware-in-the-loop testing with
FI, as described in Sect. 4.

Using co-simulation to implement a DT utilises MBD, allowing to perform fault-
injection at the interface points between individual models and components (FMUs).
An initial exploration of this has been reported by Frasheri et al. [14]. In our proposed
approach, Maestro (the COE) is extended through a plugin to support fault injection of
FMUs during run-time4. The plugin creates a wrapper around the FMU(s) of interest
(Fig. 1), which can be configured through an xml file. In this xml file, one can specify
different events that can be applied at different periods of time during the co-simulation,
affecting one or several inputs/outputs, of one or more FMUs. The wrapper injects the
specified values if the time conditions are satisfied, otherwise it simply serves as a proxy
by setting inputs, and getting outputs [13]. Examples of such a file are given below:

Fig. 1. (a) High-level schematic of the connections between FMUs; (b) High-level schematic of
the fault injection mechanism. Adapted from [14].

4 The repository for the plug-in is to be found at https://github.com/INTO-CPS-Association/
fault-injection-maestro.

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro

Fault Injection in Co-simulation and Digital Twins 227

�

1 <events>
2 <event id="1" when="(t>=0.2)&(t<0.4)">
3 <variable valRef="3" type="real" newVal="57.0+t"
4 vars=""/>
5 </event>
6 </events>

�� �

An event entry is characterised by the id field (line 2), used to specify which FMU is
affected by this event, and the when field (line 2), used to specify the timing condition,
i.e., interval under which the fault is to be injected. Within this event, one or more
inputs/outputs can be injected with specifiable values (line 3), where valRef is the value
reference of the desired input/output, type refers to the type (among int, bool, string, and
double), and newVal, specifying the new value to be injected. An arbitrary value can be
given, as well as a function dependent on time as in this example. Events targeting
different FMUs can be given as well, within the same file, as shown below:

�

1 <events>
2 <event id="id-A_1" when="(t>=0.2)&(t<0.5)" >
3 <variable valRef="3" type="real" newVal="t+2*var_3" vars="var_3," />
4 </event>
5
6 <event id="id-A_2" when="t=8.0" >
7 <variable valRef="1" type="bool" newVal="~var_1" vars="var_1," />
8 </event>
9

10 <event id="id-B_1" when="t>=10.0" >
11 <variable valRef="5" type="int" newVal="var_5+35" vars="var_5," />
12 </event>
13
14 <event id="id-B_2" when="t=12.0" >
15 <variable valRef="7" type="string" newVal="halloj" vars=""/>
16 </event>
17 </events>

�� �

The first two events (Lines 2–8) will be applied to the FMU identified by id-A_*,
whereas the other two (lines 10–16) will affect the FMU identified by id-B_*. Addi-
tionally, the injected values can be calculated based on the state of other variables in the
system, e.g., as in line 3, where the injected value for variable with value reference 3 is
calculated based on the previous value of the same variable. In this case, this variable
should be declared in the vars field so that the plugin is able to interpret it correctly. The
time variable does not need to be declared. Similar operations can be done for the other
types, except for the string type, where it is only possible to provide the plugin with an
arbitrary string. It is also possible to write more complex timing conditions that depend
on the values of the involved variables as shown below (line 1):

�

1 <event id="1" when="(t>=0.2)&(t<0.4)" other="var_2>0" vars="var_2,">
2 <variable valRef="2" type="real" newVal="t+36" vars="var_2," />
3 </event>

�� �

The interaction between Maestro and the FI plugin is depicted in Fig. 2. Typi-
cally, three phases characterise co-simulation: initialisation, execution and termination.
We omit the termination phase here for simplicity. Maestro loads and instantiates the
involved FMUs during initialisation. Thereafter, a wrapper is created for each FMU
the user wants to fault inject. A list of FMU instances and the xml file are provided

228 P. G. Larsen et al.

to the plugin. Maestro concludes the initialisation phase, by initialising each FMU and
wrapper such that the starting point of each is coordinated.

The execution phase corresponds to a loop, where each iteration is in fact a simu-
lation step, moving the co-simulation from time t to t + h, where h is the step-size.

Fig. 2. Interaction between Maestro, wrapper, and FMU. Adapted from [14].

Fault Injection in Co-simulation and Digital Twins 229

The execution phase will continue until a termination condition is met, or in other
words the pre-specified end time is reached. At the beginning of each iteration, Mae-
stro sets the inputs of the FMUs through setXXX calls. Thereafter, Maestro requests a
doStep from each FMU. This effectively progresses the simulation in time with the
given step-size. Before the iteration concludes, Maestro gets the outputs of all involved
FMUs through getXXX calls. The fault injected FMUs are operated through their wrap-
pers, i.e., Maestro requests the different calls, setXXX, doStep, getXXX through the
wrapper interface. The wrapper itself can operate in inject and proxy mode. In inject
mode, the wrapper will tamper with the values given by Maestro through setXXX
calls, and the outputs provided by the FMU before passing them to Maestro through
getXXX calls, if so specified in the configuration file. If no injection is specified at
some t, the wrapper simply proxies the values.

4 A Case Study: The Desktop Robotti

In this section we first briefly explain the Desktop Robotti (DR) platform in Sect. 4.1.
After that Sect. 4.2 describes how the PT is operating in parallel with the DT which
is monitoring the operation of the PT. Finally Sect. 4.3 and Sect. 4.4 both illustrates
how the FI techniques presented in this paper can be used to inject faults during the
PT operation and how the monitoring capability can pretend additional obstacles being
present in front of the DR.

4.1 Platform Description

The DR, shown in Fig. 3, is a 4-wheel robot that serves as a prototype of the Robotti
field robot developed by AgroIntelli [11]. The DR is under continuous development,
in terms of both hardware and software upgrades, as such in the following we provide
the description that is relevant for the experiments and results reported in this paper,
also discussed in [24]. It is possible to operate the DR through a teleoperation inter-
face executing in a ROS2 network [26] within a virtual machine, acting as the system
controller. Movement commands, consisting of a desired speed and heading angle, can

Fig. 3. The Desktop Robotti.

230 P. G. Larsen et al.

be sent to the robot via this interface. These values are calculated initially for a virtual
bicycle model [36], thereafter translated into values for each wheel and sent to a ded-
icated ROS2 node running on the Raspberry Pi 4 Model B+, that serves as the brain
of the DR. The real wheels have dedicated control loops in order to regulate the speed
which run on an Arduino UNO, and continuously receive control parameters from the
ROS2 node running on the Pi. Localisation is supported by processing the planar scans
coming from a 2D lidar, that allow tracking of how the robot moves as compared to the
initial pose. In later versions of the robot, the Marvelmind indoor positioning system
has also used for localisation.

4.2 Parallel Operation and Monitoring

A characteristic of a DT is the ability to follow the operation of its PT during run-time
by determining the state of the said twin in real-time. To achieve this, the DT utilises
sensory data from the PT and applies filtering and time-series prediction approaches. In
our setting, the state refers to the position of the robot expressed in (x, y) coordinates. It
is therefore crucial to evaluate the accuracy of these predictions, and potentially deter-
mine bounds within which the error is expected to be. To this end, we have conducted
initial tests, where the DT is run alongside its PT for a time window of 30s. The DT
in these experiments (Fig. 4) consists of an actuation and kinematic model used for
prediction, and a monitor that visualises the predicted and real data. The communica-
tion with the PT is realised through the ROS network, by utilising an FMU setup with

Fig. 4. The DT is composed of the actuation and kinematic models used to predict the position
of the robot given the control commands sent from the user. The monitor displays the predicted
and real data that come from the robot. The data is propagated through the ROS network, where
a dedicated ROS-compatible FMU serves as the external interface point of the DT. The broker
component gets the user commands and propagates it to both the DT and PT, as well as has access
to the real position of the robot which is sent to the DT.

Fault Injection in Co-simulation and Digital Twins 231

UniFMU [22] that encapsulates a ROS node. The Broker node forwards the user com-
mands to both the DT and PT, while also forwarding the position of the robot to the DT.
During the defined time window, both are fed with the same teleoperation commands
that were intended to drive the robot through a three point turn.

Fig. 5. Trajectories are illustrated as executed by the robot (in blue), and as predicted by the DT
(in red) in Fig. a. Figure b shows the absolute positional error as well as the error of the physical
robot and the digital model along the x- and y-axis. (Color figure online)

The outcome of this experiment is shown in Fig. 5a. Note that the error increases
quickly as the robot starts moving, although there is a clear overall resemblance between
the two trajectories. These discrepancies can be attributed to (i) the difference of start
and break times between the twins as seen in the first, second and fourth stops, and (ii)
a faster change of the heading angle performed by the PT as can been seen in during the
middle left turn. The discrepancy regarding the break time could partly be caused by
not including the mechanical delay caused by the DC motors in the actuation model. It
still is unclear why the model stops before the actual PT. This can also be seen in direct
comparison of the position along the x- and y-axis and the absolute positional error as
illustrated in Fig. 5b. This experiment sheds more light into the challenge of achieving
high fidelity on the DT side during parallel operation, and is an area that clearly requires
future work.

4.3 Hardware-in-the-Loop Fault Injection

A DT setup can be used to perform hardware-in-the-loop testing, and support the injec-
tion of faults in order to evaluate the robustness of the fault-tolerance mechanisms in
place. Below we describe a simple example of such an experiment, in order to provide
an idea of what can be realised with our toolset. Assume as in the case of the parallel
operation that the DT is coupled to the DR, with a two-way communication in place,
and that the robot receives the target speed from a user. In such a case, it would be of
interest to evaluate how the robot behaves should it receive distorted control signals,
that make it jump back and forth, while it is following some trajectory. It is possible
to simulate this scenario at the DT level (Fig. 6), by placing within the DT a controller
to which fault injection is applied using the same tools as described in Sect. 3. The tar-
get speed provided by the user is also sent to the DT, which is then forwarded to the

232 P. G. Larsen et al.

controller. The latter will output distorted values that are afterwards sent to the robot,
received by the MockCntrl node which controls the robot, for a specific period of time.
This scenario is depicted in Fig. 7. On the left side, under normal conditions, the con-
troller will simply relay the speed set by the user, whereas on the right side, the output
of the controller is fault injected from time step 5 s to 11.1 s, where values jump from
−20 to 40 cm/s.

Fig. 6. The DT is composed of the controller, which can be fault injected. The communication
with the PT is done through RMQFMU. On the PT a mock controller is placed which will simply
rely the commands sent by the controller in the DT.

Fig. 7. Normal operation (left), where the controller in the DT relays the user speed, and fault
injected conditions (right), where the controller outputs bad values that are thereafter sent to the
robot, red shaded area.

While still a simple setup, this experiment gives a sense of what can be achieved
with DTs that support FI capabilities, where it is possible to perform experiments with
hardware, as soon as it becomes available.

Fault Injection in Co-simulation and Digital Twins 233

4.4 Emergency Stop at the DT Level

A DT can be used in a variety of ways after being deployed alongside its PT, e.g.,
for prediction (as seen in Sect. 4.2), reconfiguration of the system as a whole, and for
adding a supervisory monitoring layer, able to kick in should the PT behave in way that
is not desired. Below we describe a simple setup for an emergency stop scenario, where
the DT sends such a command to the robot if the native monitor on the PT malfunctions
(is not able to correctly detect an obstacle ahead)5. In order to simulate this scenario,
without the need of developing a faulty monitor for the PT, we follow a similar method
to Sect. 4.3. Specifically, we place the native monitor (PTM) in the DT and use FI to
simulate faulty behaviour of the component (Fig. 8). Additionally, in the DT there is
the supervisory level component (DTM), as well as the RMQFMU which enables the
communication with the PT. A mock of the native monitor is placed in the PT itself,
that simply relays the data to the controller. While the robot is running, in this case
moving ahead towards a virtual obstacle, its position data, and the perceived position of
the obstacle are continuously being sent to the DT. They are used both at the PTM and
DTM to evaluate whether an emergency stop should be issued. The latter will take place
if the distance to the known obstacle is smaller than a predefined threshold. Without the
FI, both monitors will send a stop command, whichever is processed first will cause the
robot to stop. However, when the PTM is injected, by tampering its output (changing the
stop command to a go ahead), as expected only the command from the DTM consists
in a stop. In a simple manner, we are able to test, with the hardware in the loop, the
expected behaviour of the DTM. It is clear that, at the time the DT would be deployed,
it would be possible to let the PTM reside within the PT itself.

Fig. 8. PT-DT system configured with a faulty PTM. ptdata refers to the positions of the robot and
obstacle, whereas ctrldata refers to the eventual emergency stop command sent from DTM/PTM.

5 Note that the work regarding this experiment is at the time of writing under review.

234 P. G. Larsen et al.

5 Looking Forward

The interest in robotic systems with increasing levels of autonomy naturally gives rise to
a concern for dependability, and particularly safety. DTs coupled with the co-simulation
of multi-formalism models have potential to help ensure the levels of dependability
required of such smart systems with their physical and computational elements. In our
future work, we plan to integrate the FI primitives described in this paper with the
test automation process. This allows us to explore tolerances of the system under test
against different kinds of faults, following the approaches pioneered by Jan Peleska.
Specifically, we will utilise Design Space Exploration (DSE) approaches [4] to perform
controlled exploration of potential faults with multiple FIs. Integrated feedback loops
will enable us to identify and explore corner cases in more detail where necessary.

In a DT context, incorporation of results from the run-time verification community
makes a lot of sense [33]. In this way the desired properties are not only examined at
the time of developing a PT but also examined after its deployment on the DT side.
We expect that the FI work presented here can be used at development time and in a
deployment setting in order to not just detect that a fault has occurred but to be able to
diagnose it by seeing that the pattern is similar to what was experienced during FI.

Acknowledgements. We are grateful to the Poul Due Jensen Foundation for supporting the
establishment of a Centre for Digital Twin Technology at Aarhus University, advancing the
principles, tools and applications of Digital twin Engineering. We thank Jakob Levisen, Gill
Lumer-Klabbers, Jacob Odgaard Hausted and Malthe Faurschou Tøttrup for their contributions
for the Desktop Robotti case-study. We gratefully acknowledge Innovation Foundation Denmark
for funding the AgroRobottiFleet project and ITEA for funding the UPSIM project. Finally we
would like to thank the anonymous reviewers for valuable feedback on the original version of this
paper.

Dedication. It is a pleasure to offer this paper in honour of Jan Peleska, whose leadership in the
formal methods and the test automation communities has enabled collaborations research like
ours. His work on formal approaches and their application in the rail sector will have a profound
and long-lasting impact. Reflecting in particular on our collaboration on formal approaches in
systems-of-systems, we thank Jan for the many lessons we have learned from him and for the
friendship that he has shown us.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Depen. Secure Comput. 1, 11–33 (2004).
https://doi.org/10.1109/TDSC.2004.2

2. Blochwitz, T., et al.: The functional mockup Interface 2.0: the standard for tool independent
exchange of simulation models. In: Proceedings of the 9th International Modelica Confer-
ence, Munich, Germany, September 2012

3. Blochwitz, T.: Functional mock-up interface for model exchange and co-simulation, July
2014. https://www.fmi-standard.org/downloads

https://doi.org/10.1109/TDSC.2004.2
https://www.fmi-standard.org/downloads

Fault Injection in Co-simulation and Digital Twins 235

4. Bogomolov, S., et al.: Tuning Robotti: the machine-assisted exploration of parameter spaces
in multi-models of a cyber-physical system. In: Fitzgerald, J.S., Oda, T. (eds.) Proceedings
of the 18th International Overture Workshop, pp. 50–64. Overture, December 2020

5. Esterle, L., Gomes, C., Frasheri, M., Ejersbo, H., Tomforde, S., Larsen, P.G.: Digital twins
for collaboration and self-integration. In: 2021 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion (ACSOS-C). IEEE (2021)

6. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduction to
digital twin engineering. In: The Annual Modeling and Simulation Conference, Virginia,
USA, pp. 1–12 (2021)

7. Feng, H., et al.: Integration of the MAPE-K loop in digital twins. IEEE, 18–20 July 2022.
https://doi.org/10.23919/ANNSIM55834.2022.9859489

8. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduction to
digital twin engineering. In: Proceedings of the 2021 Annual Modeling and Simulation Con-
ference, Virtual Conference. IEEE, July 2021

9. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the engineering
of cyber-physical systems: towards the digital twin. In: ter Beek, M.H., Fantechi, A., Semini,
L. (eds.) From Software Engineering to Formal Methods and Tools, and Back. LNCS, vol.
11865, pp. 40–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5_4

10. Flammini, F.: Digital twins as run-time predictive models for the resilience of cyber-physical
systems: a conceptual framework. Phil. Trans. R. Soc. A 379(2207), 1–11 (2021)

11. Foldager, F., Balling, O., Gamble, C., Larsen, P.G., Boel, M., Green, O.: Design Space Explo-
ration in the Development of Agricultural Robots. In: AgEng Conference, Wageningen, The
Netherlands, July 2018

12. Frasheri, M., Ejersbo, H., Thule, C., Esterle, L.: RMQFMU: bridging the real world with
co-simulation for practitioners. In: Macedo, H.D., Thule, C., Pierce, K. (eds.) Proceedings
of the 19th International Overture Workshop. Overture, October 2021

13. Frasheri, M., et al.: Addressing time discrepancy between digital and physical twins. Robot.
Auton. Syst. 161, 104347 (2023). https://doi.org/10.1016/j.robot.2022.104347

14. Frasheri, M., Thule, C., Macedo, H.D., Lausdahl, K., Larsen, P.G., Esterle, L.: Fault injecting
co-simulations for safety. In: The 5th International Conference on System Reliability and
Safety, ICSRS 2021 (2021)

15. Gleirscher, M., Peleska, J.: Complete test of synthesised safety supervisors for robots and
autonomous systems. In: Farrell, M., Luckcuck, M. (eds.) Proceedings 3rd Workshop on
Formal Methods for Autonomous Systems, pp. 101–109. FMAS, October 2021. https://arxiv.
org/abs/2110.12589

16. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey.
ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

17. He, D., Hu, N., Wang, M.: Study on real-time fault injection and simulation of mechanic-
electronic-hydraulic control system based on AMESim and LabVIEW. In: 2014 Prognostics
and System Health Management Conference, PHM-2014 Hunan, pp. 446–450. IEEE (2014)

18. Hribernik, K., Cabri, G., Mandreoli, F., Mentzas, G.: Autonomous, context-aware, adaptive
digital twins: state of the art and roadmap. Comput. Industr. 133, 103508 (2021). https://
doi.org/10.1016/j.compind.2021.103508. https://www.sciencedirect.com/science/article/pii/
S0166361521001159

19. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a
categorical literature review and classification. IFAC-PapersOnLine 51, 1016–1022 (2018)

20. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn.
Syst. 6(2), 93–113 (2000)

21. Larsen, P.G., et al.: The INtegrated TOolchain for Cyber-Physical Systems (INTO-CPS): a
Guide. Technical report, INTO-CPS Association, October 2018. www.into-cps.org

https://doi.org/10.23919/ANNSIM55834.2022.9859489
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1016/j.robot.2022.104347
https://arxiv.org/abs/2110.12589
https://arxiv.org/abs/2110.12589
https://doi.org/10.1016/j.compind.2021.103508
https://doi.org/10.1016/j.compind.2021.103508
https://www.sciencedirect.com/science/article/pii/S0166361521001159
https://www.sciencedirect.com/science/article/pii/S0166361521001159
www.into-cps.org

236 P. G. Larsen et al.

22. Legaard, C.M., Tola, D., Schranz, T., Macedo, H.D., Larsen, P.G.: A universal mechanism
for implementing functional mock-up units. In: Wagner, G., Werner, F., Ören, T.I., Rango,
F.D. (eds.) Proceedings of the 11th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, SIMULTECH 2021, Online Streaming, 7–9
July 2021, pp. 121–129. SCITEPRESS (2021). https://doi.org/10.5220/0010577601210129

23. Leng, J., et al.: Digital twin-driven rapid reconfiguration of the automated manufacturing
system via an open architecture model. Robot. Comput. Integr. Manuf. 63, 101895 (2020).
https://doi.org/10.1016/j.rcim.2019.101895

24. Lumer-Klabbers, G., Hausted, J.O., Kvistgaard, J.L., Macedo, H.D., Frasheri, M., Larsen,
P.G.: Towards a digital twin framework for autonomous robots. In: The 5th IEEE Interna-
tional Workshop on Software Engineering for Smart Systems (SESS), COMPSAC 2021.
IEEE, July 2021

25. Macedo, H.D., Rasmussen, M.B., Thule, C., Larsen, P.G.: Migrating the INTO-CPS applica-
tion to the cloud. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12233, pp. 254–271.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54997-8_17

26. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot Operating System 2:
design, architecture, and uses in the wild. Sci. Robot. 7(66) (2022). https://doi.org/10.1126/
scirobotics.abm6074

27. Markwirth, T., Jancke, R., Sohrmann, C.: Dynamic fault injection into digital twins of safety-
critical systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 446–450 (2021). https://doi.org/10.23919/DATE51398.2021.9474066

28. Moradi, M., Gomes, C., Oakes, B.J., Denil, J.: Optimizing fault injection in FMI co-
simulation through sensitivity partitioning. In: SummerSim, pp. 32–1 (2019)

29. Natella, R., Cotroneo, D., Madeira, H.S.: Assessing dependability with software fault injec-
tion: a survey. ACM Comput. Surv. (CSUR) 48(3), 1–55 (2016)

30. Rosen, R., Wichert, G., Lo, G., Bettenhousen, K.: About the importance of autonomy and
digital twins for the future of manufacturing. IFAC Papersonline 48(3), 567–572 (2015)

31. Silveira, A.M., Araújo, R.E., de Castro, R.: FIEEV: a co-simulation framework for fault
injection in electrical vehicles. In: 2012 IEEE International Conference on Vehicular Elec-
tronics and Safety, ICVES 2012, pp. 357–362. IEEE (2012)

32. Svenningsson, R., Eriksson, H., Vinter, J., Törngren, M.: Generic fault modelling for fault
injection. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 287–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
25271-6_15

33. Temperekidis, A., Kekatos, N., Katsaros, P.: Runtime verification for FMI-based co-
simulation. In: Dang, T., Stolz, V. (eds.) Runtime Verification, pp. 304–313. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17196-3_19

34. Thule, C., et al.: Building custom, extensible, fast and verifiable, co-simulations with Mae-
stro2 (2022, submitted)

35. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theor. 92, 45–61 (2019).
https://doi.org/10.1016/j.simpat.2018.12.005. http://www.sciencedirect.com/science/article/
pii/S1569190X1830193X

36. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantification and run-
time monitoring using environment-aware digital twins. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2020. LNCS, vol. 12479, pp. 72–87. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-83723-5_6

37. Yang, Y., Holvoet, T.: Generating safe autonomous decision-making in ROS. Electron. Proc.
Theoret. Comput. Sci. 371, 184–192 (2022). https://doi.org/10.4204/eptcs.371.13

https://doi.org/10.5220/0010577601210129
https://doi.org/10.1016/j.rcim.2019.101895
https://doi.org/10.1007/978-3-030-54997-8_17
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.23919/DATE51398.2021.9474066
https://doi.org/10.1007/978-3-642-25271-6_15
https://doi.org/10.1007/978-3-642-25271-6_15
https://doi.org/10.1007/978-3-031-17196-3_19
https://doi.org/10.1016/j.simpat.2018.12.005
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
https://doi.org/10.1007/978-3-030-83723-5_6
https://doi.org/10.1007/978-3-030-83723-5_6
https://doi.org/10.4204/eptcs.371.13

Towards a Unifying Framework
for Uncertainty in Cyber-Physical

Systems

Jim Woodcock(B)

University of York, York, England
jim.woodcock@york.ac.uk

Abstract. This paper is dedicated with affection to Jan Peleska on the
occasion of his 65th birthday. We discuss a unifying theory of uncertainty
in robotics based on Hoare & He’s unifying theories of programming and
Hehner’s probabilistic predicative programming. We start a long-term
research agenda with a semantics for Prism and end with many questions.

Dedication

I have known Jan for many years. We first met in 1991 when he was with DST
in Hamburg. He invited me to give a course for his development team on using
formal methods. DST were developing the Airbus Interphone System. I went
with my colleague Joy Reed to Hamburg with my lectures and practicals well-
prepared in advance. Jan had different ideas and made me work hard! He asked
me to adapt the examples and practicals. Every night I revised my course and
worked on the problem. We found a significant error in the specification of the
Interphone. Cabin crew members could get locked out of a conference call during
an emergency. We found this error by writing the formal specification in Z [35,39]
and then reasoning about important scenarios. Jan and I became firm friends,
meeting at conferences and visiting each other in Bremen, Oxford, and York.
We worked together on European projects, such as INTO-CPS, influential in
cyber-physical systems. I am constantly impressed by Jan’s ability to develop
and apply formal methods in real-world applications. Jan is one of those enviable
people who always make progress on challenging problems.

In 2015, Jan developed a runtime verification technique for CSP by translat-
ing CSP to Kripke structures [25]. He checks that a system under test satisfies
properties over CSP failures. This depends on the soundness of the translation
and on traceability of the analysis back to the CSP model. With Ana Caval-
canti and Wen-ling Huang, we formalised the soundness argument. We unified
the languages involved: normalised graphs in CSP model checking, action sys-
tems, and Kripke structures [4]. When Wen-ling asked me to contribute to Jan’s
Festschrift, I decided to revisit this work. I wanted to unify formalisms for treat-
ing uncertainty in robotics and to formalise Prism’s semantics in particular.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 237–253, 2023.
https://doi.org/10.1007/978-3-031-40132-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_15

238 J. Woodcock

1 Introduction

1.1 Uncertainty in Robotics

To motivate robotic uncertainty, here are two scenarios [28]. (i) An autonomous
vehicle tries to drive quickly through an intersection with no signals. Instead of
accelerating, it slows down. It gathers information on the intentions of pedes-
trians and other traffic. This helps the vehicle coordinate actions with others.
It achieves its goal faster. (ii) A robotic arm pushes an irregular object to a
designated pose. The robot must minimise the number of actions. It decides not
to push the object directly towards the final pose. It uses the first few pushes
to gather information on the object’s centre of mass. Later actions are more
effective. Both robots are uncertain. They learn more about their environment
so they can achieve their goals. How do we model and reason about uncertainty?

1.2 A Unifying Framework for Uncertainty?

Our problem is how to model and solve robot decision and control tasks under
uncertainty. This includes noisy sensing, imperfect control, environment changes,
and inaccurate models. Applications include localisation and navigation, search
and tracking, autonomous driving, multi-robot systems, object manipulation,
and human-robot interaction. Robots must reason about outcomes of actions
with limited sensor information. Actions have short-term rewards and inform
long-term success. Notations for modelling uncertainty include pGCL [19],
MDPs [13], POMDPs [28], dynamic epistemic logic [22], and the epistemic mu-
calculus [34]. What would a unifying theory look like?

Research Hypothesis. We can unify different theories of uncertainty using: prob-
abilistic relations [20,41]; Bayesian semantics [21]; and information theory [33].

1.3 Candidate Theory for Unification: POMDPs

POMDPs are partially observable Markov decision processes [28], generalising
standard MDPs. POMDPs model an agent decision process with MDP dynam-
ics, but the agent cannot observe the underlying state. It must maintain a sensor
model and the underlying MDP. The sensor model is a probability distribution
of observations, given the current state. An MDP policy function maps states
to actions. A POMDP policy maps the observation history (the belief states) to
actions. POMDPs have discrete states, actions, observations, and time. Robots
operate in the physical world and need continuous control models. A unifying
semantics could address the generalisation from discrete to continuous.

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 239

1.4 Unifying Semantics for Prism

Our first step towards a unifying theory of uncertainty is to outline seman-
tics for Prism. We propose specification-oriented semantics for probabilistic
proof and refinement. We use Hoare & He’s Unifying Theories of Program-
ming (UTP) [5,24,36,37] and Hehner’s Probabilistic Predicative Programming
(PPP) [20]. These provide a probabilistic relational calculus, a Bayesian inter-
pretation, and a link to information theory. We start with discrete-time Markov
chains and extend this in later work to MDPs, POMDPs, continuous-time Mark-
ov chains, probabilistic automata, probabilistic timed automata, and partially
ordered probabilistic timed automata. The semantics can unify Prism and a wide
variety of other modelling languages. The denotational semantics that we define
is the gold standard. Galois connections [18,24] link our denotational seman-
tics for individual languages. We derive operational semantics from denotational
semantics, guaranteeing soundness. The derivation and soundness proofs for the
operational semantics provide laws for algebraic semantics. We will establish a
probabilistic Hoare logic [7] and a refinement theory and calculus [29]. We will
complement the verification theory with a testing theory for practical systems
(cf. Gaudel [17]). Finally, we will mechanise everything in the Isabelle/UTP
theorem prover [15].

1.5 This Paper

We give a small motivating example of a Prism DTMC in Sect. 2. We discuss
why we need a formal semantics for Prism in Sect. 3. In Sect. 4, we present a
non-probabilistic Kripke-style semantics for the Unity programming language,
which has a similar structure to the non-probabilistic part of Prism’s language.
We describe the existing system module semantics for Prism in Sect. 5. We
present Hehner’s Predicative Programming technique in Sect. 6 as a notation for
defining Kripke semantics. We present Hehner’s Probabilistic Predicative Pro-
gramming technique in Sect. 7 as a notation for defining probabilistic semantics.
We describe a simple example of reasoning about probabilistic specifications in
Sect. 8. We give a description of related work in Sect. 9. We discuss where we go
from here in Sect. 10.

2 A Prism Example

We start with an example of a simple Prism program solving a DTMC.

Example 1 (Prism DTMC Example). Throw a pair of six-sided dice until they
are equal. How long will this take? A Prism program to answer this is in Fig. 1.

240 J. Woodcock

Fig. 1. Prism program simulating throwing two six-sided dice until equal.

So we have a Prism model, but what properties does it have? How many throws,
on average, do we need to terminate? The reward structure gives us the time
steps: what is the expected time taken to reach, from the initial state, s=3?
Prism says: you need 5.99997028280834 throws (with apologies for the spurious
accuracy). But what if we have 10 dice? How many throws do we now need? We
can generalise the program in Fig. 1, but that does not help us much: the resulting
DTMC is too large and Prism cannot provide the answer. We need to reason
outside the model checker.

3 Why Do We Need Another Formal Semantics
for Prism?

An anonymous paper describes the semantics of the Prism language [32]. The
semantics is not compositional because variables are shared between modules.
Process algebraic operators combine modules. The semantics shows first how to
flatten this structure into a single system module. This module is then given a
semantics as a probabilistic Kripke structure. So why do we need yet another
formal semantics for Prism?

Kwiatkowska et al. describe the combination of Prism’s modules using “the
standard CSP parallel composition”: modules synchronise over all their com-
mon actions [27]. They describe Prism’s support for several other CSP parallel
operators, including alphabetised parallel and interleaving. But Prism’s exist-
ing semantics is not straightforward. Its process algebraic operators may well
be CSP-based, but some aspects are only syntactic, not semantic. For instance,
action labels are not CSP events. Deadlock is not CSP deadlock. The hiding
operator is not CSP’s hiding operator.

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 241

Formal semantics can help us find more powerful probabilistic verification
and validation techniques. Refinement theory can enable correctness by construc-
tion. Assertional reasoning can enable design by contract and runtime checking.
Formal semantics can integrate tools, such as combining model checking and
theorem proving. Testing theory can enable scalable validation and verification
of practical systems. To extend Marie-Claude Gaudel’s insight [17], probabilistic
testing can be formal, too. We explain this below.

3.1 Prism Action Labels Are Not CSP Events

In Prism, an unlabelled guarded command is a kind of silent action similar to τ
in CCS. Consider the example in Fig. 2a. Perhaps this behaves like the process
τ → P � b → Q . Since τ is not part of CSP, how else might this behaviour arise?
The answer lies in the hiding operator. The τ event could result from hiding the
event a: (a → P � b → Q) \ {a}. But the algebraic semantics of CSP has a law
that says what happens when we hide an event in an external choice:

(a → P � b → Q) \ {a} = P \ {a} � ((P \ {a}) � (b → (Q \ {a})))

Fig. 2. Labelled and unlabelled guarded commands.

The silent, internalised a event might occur so fast that the environment
cannot choose the b event. This is the behaviour P \ {a}. The other behaviour
(P \ {a}) � (b → (Q \ {a})) gives the environment the possibility of the b
event. The choice between these two behaviours is nondeterministic. This is not
what is happening in the Prism code. The issue of action labels (events) is a red
herring, since action labels are eliminated in the semantics once the translation
reaches the system module [32].

3.2 Prism Deadlock Is Not CSP Deadlock

Deadlock (in the CSP sense) is structurally forbidden in Prism. Why? Because
Prism’s formalism has (probabilistic) Kripke semantics. This is important for the

242 J. Woodcock

semantics of Prism’s logics. Prism’s property specification language has aspects
of PCTL (probabilistic computation tree logic), CSL (continuous stochastic
logic), PLTL (probabilistic linear temporal logic) and PCTL∗ (unified CTL and
LTL). PCTL specifies discrete-time DTMCs and PTAs and real-time PTAs. CSL
extends PCTL for CTMCs. LTL and PCTL∗ specify discrete-time and untimed
CTMCs. Prism supports most of CTL. Semantics for these logics requires infi-
nite sequences. CSP deadlock represents a bounded behaviour. For this reason,
a Prism program cannot deadlock. Every state must have at least one outgoing
transition. This also guarantees proper distributions in the transition probabil-
ity matrix. If we need deadlock in a probabilistic program, we must model it
in some way. We represent deadlock with a state with a single self-transition.
Reaching these states is the same as deadlocking. Prism automatically searches
models for deadlocks and fixes them by adding these self-loops.

3.3 Prism Hiding Is Not CSP Hiding

Hiding an event in CSP makes that event internal and urgent. Is this also true for
Prism? Consider the module in Fig. 2b choosing between labelled and unlabelled
commands. This does not prioritise the first command over the second.

1. For each command [] g -> p1: u1+ ... + pn: un of M’
add [] g -> p1: u1+ ... + pn: un to the commands of M

2. For each a /∈ A and command [a] g -> p1: u1+ ... + pn: un of M’
add [a] g -> p1: u1+ ... + pn: un to the commands of M

3. For each a ∈ A and command [a] g -> p1: u1+ ... + pn: un of M’
add [] g -> p1: u1+ ... + pn: un to the commands of M

This is not the semantics of CSP hiding.

3.4 Refinement Theory

Correctness by construction (CbyC) is sound stepwise development. Examples
include the refinement calculi of Back [2], of Morgan [30], and of Morris [31]. We
want to extend the refinement calculus to probabilistic programs. Probabilis-
tic CbyC (pCbyC) applies rules preserving correctness. It relies on probabilistic
program refinement. This is important because probabilistic correctness is noto-
riously unintuitive [29].

3.5 Programming Logic

Morgan & McIver define a weakest pre-expectation calculus for pGCL [19]. This
generalises Dijkstra’s weakest precondition calculus [9]. Den Hartog’s thesis pro-
poses a probabilistic logic: pH [7]. This is a sound and complete calculus extend-
ing Hoare logic [23]. Both are variations of Dijkstra’s Guarded Command Lan-
guage GCL [8]. They include probabilistic choice Q ⊕p R, selecting Q with
probability p and R with probability 1 − p.

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 243

3.6 Testing Theory

The seminal paper on principled system testing is by Gaudel: Testing Can Be
Formal, Too (1995) [17]. Given specification SP and system under test SUT ,
testing uses a satisfaction (conformance) relation: SUT sat SP . The SUT is
executable, raising issues of observability and controllability. Can probabilistic
testing be formal, too? How?

3.7 Example: Decision Support

Suppose you are in a maze with three doors in front of you. Which door should
you choose fairly to make further progress in the maze? You have a one-euro coin
in your pocket to help you. What is your strategy? You have an idea: transform
the coin’s distribution with rejection sampling [3]: transform uniform(0 . . 1) to
uniform(0 . . 2). This is the acceptance-rejection method. (Compare with Knuth-
Yao’s algorithm [26]):

1. Flip the coin twice. Interpret the outcome as a binary number.
2. Accept if the result is in 0 . . 2 (a door number). Finish.
3. Reject if the outcome is out of range. Repeat.

Is this fair? What is the average time to choose a door? Consider yourself as the
system under test. Assume you behave like the Prism code in Fig 3. Note the
implicit assumption in the program code that your coin is not biased.

Fig. 3. Prism program using a coin to choose between doors.

3.8 How Do We Assess Your Strategy?

We want to test the SUT’s behaviour. Two questions must be answered by any
theory of probabilistic testing: (i) Correctness: Is the strategy fair? (ii) Perfor-
mance: What is the average time needed for a choice?

244 J. Woodcock

Morgan & McIver ask the question, what is the issue about testing proba-
bilistic systems [29]? Dijkstra said that program testing can be used effectively
to show the presence of bugs [10]. Morgan & McIver said that for probabilistic
programs, we cannot even establish that presence. Odd behaviours may occur in
correctly operating probabilistic systems. Correctness is about the distribution
of outputs. Are bugs sufficiently rare? Evidence of quantitative errors requires
many traces and statistical analysis. Debugging probabilistic programs is a chal-
lenge, even with that evidence.

4 Unity

Chandy & Misra describe an

Fig. 4. Unity code to sort three numbers.

experimental programming lan-
guage: Unity [6]. Unity describes
what is computed, not where,
when, or how. Program com-
mands execute nondeterministi-
cally with no control-flow. Pro-
grams can run indefinitely. Exe-
cution ceases if the program con-
verges on a fixed point. Com-
mands are (simultaneous) condi-
tional assignments. There are no other commands, but there is a module struc-
ture. This model is asynchronous computation: an unstructured set of guarded
assignments with nondeterministic selection. See also Alur & Henzinger’s Reac-
tive Modules [1] and Dill’s Murφ [11]. The Unity program in Fig. 4 sorts three
numbers into ascending order. The program has a Kripke structure semantics
that provides two infinite traces.

4.1 Kripke Structures

A Kripke structure describes models with propositionally labelled states. Tem-
poral logic semantics uses Kripke structures. The essence is a transition relation.
Nodes represent reachable states and edges state transitions. A labelling func-
tion maps nodes to sets of properties holding in that state. Kripke structures
represent closed finite-state models with observability related to real executions.
A trace is a sequence of observable parts of states.

Ordinary Kripke models are not reactive [16]. A reactive process executes
internally before pausing for interaction with its environment. A Kripke model
does not react, respond, or change while we evaluate it.

AP is a set of atomic propositions over variables, constants, and predicate
symbols. A Kripke structure over AP is a quadruple M = (S , I ,R,L), as follows.
(i) A finite set of states S and a set of initial states I ⊆ S . (ii) A left-total
transition relation R ⊆ S × S , ∀ s : S • ∃ s ′ : S • (s, s ′) ∈ R. (iii) A labelling
function L : S → PAP . Left-totality ensures an infinite path exists through

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 245

the structure. Deadlocked states are modelled by single outgoing self-loops. For
state s ∈ S , the set L(s) defines atomic propositions valid in s. Every path is an
infinite state-sequence: ρ = 〈s1, s2, s3, . . .〉, such that for each i > 0, R(si , si+1)
holds. A path ρ corresponds to word w , a sequence of sets of atomic propositions:
w = 〈L(s1),L(s2),L(s3), . . .〉, an infinite sequence over alphabet PAP .

4.2 Unity Module Semantics

Let C be the multiset of commands in a module and let V = {v1, . . . , vm} be
the set of its local and global variables. States are tuples (x1, . . . , xm), where xi
is a value for vi . The set of all states S consists of valuations of variables in
V . The set of initial states is given either by explicit values for each variable or
by implicit values defined by a predicate over variables (the init ... endinit
construct). An unspecified initial value for a variable is simply the minimum
value in the range.

4.3 Unity Single Command Semantics

Consider a guarded command c ∈ C []g->u. The guard g is a predicate over
variables in V . This command is enabled in a sub-state space Sc = { s ∈ S | s |=
g }. In UTP, this is simply g . The command u is a (simultaneous) assignment
to the variables in V : u : Sc → S . Unmentioned variables stay the same.

5 Prism System Module Semantics

We start by considering the semantics for single commands. The assumptions
are the same as for Unity. Command c of C is schematically: [a] g → p1 :
u1+· · ·+pn : un . The action label a is needed only for flattening process-algebraic
operators. It has no semantics purpose once that has been done. Guard g is a
predicate over the variables in V . Each state of the system is a variable valuation.
g defines a subset of the global state Sc = { s ∈ S | s |= g }. In UTP, this is simply
g . Update uj of c is a transition assigning values to variables uj : Sc → S . Let
uj =

∧
i : 1. .m • (v ′

i = ei). Each s ∈ Sc , is an m-tuple: i ∈ 1. .m ⇒ (ti = ei(s)).
Update uj in c occurs with probability pj . c defines, for s ∈ Sc , a function
μc,s : S → R≥0, for t ∈ S : μc,s(t) =̂

∑
j : 1 . . n • [[[uj (s) = t]]] ∗ pj . DTMC and

MDP syntax guarantees μ c, s is a probability distribution over S .
A discrete-time Markov chain is defined by a transition probability matrix.

Define the matrix, for any s, t ∈ S : P(s, t) =̂
∑

c : C • μc,s(t). The rows
of P may sum to more than 1. Why? Local nondeterminism in a module arises
from overlapping guards. Prism warns when local nondeterminism is detected in
a DTMC. Nondeterministic choice is randomised. A probability distribution is
obtained by normalising P : P(s, t) =̂ P(s, t)/

∑
u : S • P(s, u). This replaces

nondeterminism by uniform probabilistic choice between transitions.

246 J. Woodcock

6 Predicative Programming

Predicative Programming (PP) is Hehner’s CbyC technique [20], related to Hoare
& He’s UTP [24]. Variables model observations. State variables are either before-
(x) or after-variables (x ′). Specifications are predicative relations over observa-
tions and state variables. PP uses pointwise relational calculus: ∀, ∃, =, ⇒, ∧,
∨, ¬ , ; , · · · . The implementation relation is refinement: P � Q = [Q ⇒ P].
(Here the brackets universally close the alphabet of P , which is the alphabet of
Q .) Refinement requires every behaviour of Q is a behaviour of P . Refinement is
transitive. P is implementable if ∀ σ • ∃ σ′ • P . Here σ = x , y , · · · is the alpha-
bet of before-variables and σ′ = x ′, y ′, · · · is the alphabet of after-variables. P is
deterministic just in case each before-state has a unique after-state.

6.1 Notation

Identity. II = (σ′ = σ), for state vector σ.

Assignment. x := e = (x ′ = e) ∧ (y ′ = y) ∧ · · · .

Conditional Composition. if b then P else Q = b ∧ P ∨ ¬ b ∧ Q .

Sequential Composition. P ; Q = ∃σ′′ • P [σ′′/σ′] ∧ Q [σ′′/σ]. Where σ =
x , y , · · · are initial values, σ′′ = x ′′, y ′′, · · · are intermediate, and σ′ = x ′, y ′, · · ·
are final.

Execution Time. Variable t records execution starting time. Variable t ′ records
execution termination time. Nontermination has t ′ = ∞. In partial correctness,
a program must produce a correct result whenever it terminates. In total cor-
rectness a program must terminate, and when it does it must produce a correct
result. PP introduces super-total correctness: a program must terminate within
a specified time, and when it does it must produce a correct result.

Fig. 5. Semantics of program in Fig. 4.

A guarded command in PP is
just conjunction: g → P = g ∧ P .
The Unity program in Fig. 4 has the
semantics defined by the recursive
PP program in Fig. 5. The transi-
tion matrix is defined by the body
of the program without the recur-
sive calls. Refinement of Unity pro-
grams is simply PP refinement.

7 Probabilistic Predicative Programming

Definition 1 (Discrete distribution). Let e be an expression with free vari-
ables v. It is a discrete distribution if it satisfies two criteria: (i) Its value (for all
assignments to v) is a probability: [0 ≤ e ≤ 1]. (ii) Its sum (for all assignments
to v) is 1:

∑
v • e = 1.

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 247

Example 2. Suppose n and m are strictly positive integers. Then (1⁄2)n+m is a
discrete distribution because it satisfies the two criteria:

1. values: ∀n,m : 1 . . ∞ • 0 ≤ (1⁄2)n+m ≤ 1;
2. sum: (

∑
n,m : 1 . . ∞ • (1⁄2)n+m) = 1.

Example 3. Suppose n and m are nonnegative integers (in contrast to the last
example). (1⁄2)n+m is not a distribution, because it fails the second criterion:
(
∑

n,m : 0 . . ∞ • (1⁄2)n+m) �= 1.

A distribution is the frequency of occurrence of values of variables. Example 2−n :
says n has value 3 for 1⁄8 of the time. Example (1⁄2)n+m : says state (n = 3) ∧
(m = 1) occurs 1⁄16 of the time. If n,m : N1 are distributed as (1⁄2)n+m , then∑

m : N1 • (1⁄2)n+m = (1⁄2)n gives the frequency of occurrence of values of
n. Independent variables are the product of distributions partitioning variables.
Example: (1⁄2)n+m = (1⁄2)n ∗ (1⁄2)m , so n and m are independent. Average value
of e as v varies according to distribution p is

∑
v • e ∗ p. Example: average

value of n2 as n varies over N1 with (1⁄2)n is
∑

n : N1 • n2 ∗ (1⁄2)n = 6.
Average value of n − m as n and m vary over N1 with distribution (1⁄2)n+m is∑

n,m : N1 • (n − m) ∗ (1⁄2)n+m = 0.

Definition 2 (Iverson bracket). [[[P]]] = (1 � P � 0) = if P then
1 else 0.

This maps a predicate into a function of its free variables to the set [0, 1]. In UTP,
[[[P]]] has free variables up to αP . A mapping exists in the opposite direction: from
probabilities to predicates. We define the inverse Iverson mapping implicitly in
a Galois connection (but see Law 1 for an explicit definition).

Definition 3 (Inverse Iverson bracket). 〈〈〈N 〉〉〉I � P = [N ≤ [[[P]]]I].

Law 1 (Iverson)

〈〈〈N 〉〉〉 = N > 0 [¬ 〈〈〈N 〉〉〉] = [N = 0]
〈〈〈1〉〉〉 = true 〈〈〈0〉〉〉 = false
[N ≤ [[[〈〈〈N 〉〉〉]]]] 〈〈〈[[[P]]]〉〉〉 � P
P � Q ⇒ [[[P]]] ≤ [[[Q]]] (M ≤ N) ⇒ (〈〈〈M 〉〉〉 � 〈〈〈N 〉〉〉)
[[[P ∧ Q]]] = [[[P]]] ∗ [[[Q]]] [[[P ∨ Q]]] = [[[P]]] + [[[Q]]] − [[[P]]] ∗ [[[Q]]]
[[[¬ P]]] = 1 − [[[P]]]

[[[k ∈ A]]] + [[[k ∈ B]]] = [[[k ∈ A ∪ B]]] + [[[k ∈ A ∩ B]]]
[[[x ∈ A ∩ B]]] = [[[x ∈ A]]] ∗ [[[x ∈ B]]]
[[[∀m • P(k ,m)]]] =

∏
m • [[[P(k ,m)]]]

[[[∃m • P(k ,m)]]] = min{1,
∑

m • [[[P(k ,m)]]]}
Suppose the variables are x and y in the following commands.

Null Statement. skip changes no variable and immediately terminates. Its seman-
tics is the one-point distribution of final states: (x ′ = x) ∗ (y ′ = y). On termi-
nation, the after-state is equal to the before-state with probability 1. All other
assignments to the after-state have probability 0. skip =̂ [[[x ′ = x]]] ∗ [[[y ′ = y]]].

248 J. Woodcock

Assignment x := e is the one-point distribution of the final state (Dirac). x :=
e =̂ [[[x ′ = e]]] ∗ [[[y ′ = y]]].

Conditional statement if c then A else B composes weighted distributions of A
and B . Example if 1⁄3 then x := 0 else x := 1. With probability 1⁄3, assign value
0 to x . With probability 2⁄3, assign 1 to x . if c then A else B =̂ c∗A+(1−c)∗B .

Sequential composition A ; B composes A with B . It is the conditional proba-
bility of B , given A. A ; B =̂

∑
x0, y0 • A[x0, y0/x ′, y ′] ∗ B [x0, y0/x , y].

Parallel composition A ‖ B normalises the product A with B . It is the joint
probability of A and B . In its most general form, neither A nor B need to be
proper distributions, but the result will be. A ‖ B =̂ N (A ∗ B).

Let E be an expression: (i) Whose value (for all assignments of values) is
nonnegative. (ii) Whose sum (over all assignments of values) is strictly between
0 and ∞. Then, the normalisation N (E) is a distribution. Its values are in the
same proportion as the values of E .

Definition 4 (Normalisation). N (E) =̂ E /
(∑

n • E
)
(for free variable

n).

Definition 5 (Distribution of Final States). Suppose S is a deterministic,
probabilistic specification. Let p be a distribution describing the initial state σ.
Then the distribution describing the final state σ′ is

∑
σ • S ∗ p

Example 4. Let x and y be integer variables. Suppose that x starts with value
7 for 1⁄3 of the time and 8 for 2⁄3 of the time. The initial distribution is X =
1⁄3 ∗ (x = 7) + 2⁄3 ∗ (x = 8). Suppose y also starts with 7 for 1⁄3 of the time and
8 for 2⁄3 of the time. Initial distribution is Y = 1⁄3 ∗ (y = 7) + 2⁄3 ∗ (y = 8).
Distribution of initial states is the product X ∗ Y . Let S = (if x = y then
x , y := 0, 0 else x , y := abs(x − y), 1). This is a deterministic specification (and
trivially probabilistic). It has the following distribution of final states:

∑
x , y • S ∗ X ∗ Y = 5⁄9 ∗ ((x ′, y ′) = (0, 0)) + 4⁄9 ∗ ((x ′, y ′) = (1, 1))

The right-hand side is exactly the semantics of the Prism command

� �

1 5/9: (x’=0) & (y’=0) + 4/9: (x’=1) & (y’=1);
� �

8 Example: Killer Robots

Two robots, cyberman and dalek , attack the Tardis daily. cyberman has proba-
bility 1⁄2 of a successful attack. dalek has probability 3⁄10 of a successful attack.
cyberman attacks more often than dalek . cyberman attacks with probability of

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 249

Fig. 6. Prism program and semantics for the attack on the Tardis.

3⁄5 on a particular day. dalek attacks with probability 2⁄5 on that day. What is
the probability that there is a successful attack today? This is a problem in
conditional probability: P(A ∧ B) = P(A) ∗ P(B | A).

P(cyber) = 3⁄5,P(succ | cyber) = 1⁄2,P(dalek) = 2⁄5,P(succ | dalek) = 3⁄10

P(succ)= P(cyber ∧ succ) + P(dalek ∧ succ)

= P(cyber) ∗ P(succ | cyber) + P(dalek) ∗ P(succ | dalek)

= 3⁄5 ∗ 1⁄2 + 2⁄5 ∗ 3⁄10

= 21⁄50

The problem is described by the Prism program in Fig. 6a and the PPP program
in Fig. 6b.

This program has the following semantics:

Tardis = if 3⁄5 then (robot := cyber ; if 1⁄2 then attack := succ else attack := fail)
else (robot := dalek ; if 3⁄10 then attack := succ else attack := fail)

= 3⁄10 ∗ (robot , attack := cyber, succ) + 3⁄10 ∗ (robot , attack := cyber, fail)
+ 6⁄50 ∗ (robot , attack := dalek, succ) + 14⁄50 ∗ (robot , attack := dalek, fail)

The final line is equivalent to the Prism program in Fig. 7 (modulo the state
variables s and t). We can see that the probability of a successful attack is
3⁄10 + 6⁄50 = 21⁄50, the same answer as before.

250 J. Woodcock

Fig. 7. Prism program for the abstract attack on the Tardis.

9 Related Work

The only formal semantics for Prism is that contained in the anonymous docu-
ment describing the translation and the system module [32]. Conserva Filho et al.
analyse RoboChart with probabilities [14]. Woodcock et al. [38] give a different
account of the probabilistic semantics of RoboChart. Ye et al. [41] describe prob-
abilistic modelling and verification using RoboChart and Prism. Ye et al. [42]
describe a UTP semantics for reasoning about probabilistic sequential programs
with theorem proving. Woodcock et al. [40] discuss uncertainty quantification
and runtime monitoring using environment-aware digital twins. Esterle et al. [12]
discuss verification and uncertainties in self-integrating systems.

10 Conclusions and Further Work

What would a unifying theory for uncertainty look like? What connects the
semantics and tools that support different approaches? Can we establish more
connections? Can we support probabilistic and statistical model checking with
theorem proving? Can we support theorem proving with probabilistic and sta-
tistical model checking? Can we establish uncertainty properties using CbyC?
What about probabilistic refinement model checking? Can we qualify an analy-
sis tool for high assurance? What’s the formal testing theory for a system with
unknown MDP semantics? What are the testability hypotheses? How do we
exploit testing, proof, and model checking together? What about uncertainty
and runtime verification? How do we develop, apply, and evaluate uncertain
systems? We described preliminary work towards answering these questions.

Acknowledgements. This work has benefited from extensive discussions with Radu
Calinescu, Ana Cavalcanti, Simon Foster, Rob Hierons, Peter Gorm Larsen, Zhiming
Liu, Mohammad Mousavi, and Kangfeng Ye. The work is supported by (i) EPSRC
EP/R025479/1 RoboTest: Systematic model-based testing and simulation of mobile
autonomous robots; and (ii) EPSRC EP/V026801/2 UKRI Trustworthy Autonomous
Systems Node in Verifiability.

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 251

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1)
(1999)

2. Back, R.-J., von Wright, J.: Refinement Calculus – A Systematic Introduction.
Graduate Texts in Computer Science. Springer (1998). https://doi.org/10.1007/
978-1-4612-1674-2

3. Casella, G., Robert, C.P., Wells, M.T.: Generalized Accept-Reject Sampling
Schemes. University of Michigan, Institute of Mathematical Statistics Lecture
Notes Series (2004)

4. Cavalcanti, A., Huang, W., Peleska, J., Woodcock, J.: CSP and kripke structures.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
505–523. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 29

5. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theories
of programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006). https://doi.org/10.
1007/11889229 6

6. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison Wesley
(1988)

7. den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like
logic. Int. J. Found. Comput. Sci. 13(3), 315–340 (2002)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

9. Edsger, W.: Dijkstra, A Discipline of Programming. Prentice-Hall (1976)
10. Dijkstra, E.W.: On the reliability of programs. In: Apt, K.R., Hoare, T.D. (eds.)

Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 359–370. ACM / Morgan
& Claypool (2022)

11. Dill, D.L.: The Murphi verification system. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61474-5 86

12. Esterle, L., Porter, B., Woodcock, J.: Verification and uncertainties in self-
integrating system. In El-Araby, E., Kalogeraki, V. (eds.) IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems, ACSOS 2021, pp.
220–225. IEEE (2021)

13. Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Processes. Kluwer
(2002)

14. Conserva Filho, M.S., Marinho, R., Mota, A., Woodcock, J.: Analysing robochart
with probabilities. In: Massoni, T., Mousavi, M.R. (eds.) SBMF 2018. LNCS, vol.
11254, pp. 198–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03044-5 13

15. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Sci. Comput. Pro-
gram. 197, 102510 (2020)

16. Gabbay, D.M.: Introducing reactive Kripke semantics and arc accessibility. Ann.
Math. Artif. Intell. 66(1–4), 7–53 (2012)

17. Floyd, C.: Theory and practice of software development. In: Mosses, P.D., Nielsen,
M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 25–41. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-59293-8 185 pg

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-319-25150-9_29
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/11889229_6
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/978-3-030-03044-5_13
https://doi.org/10.1007/978-3-030-03044-5_13
https://doi.org/10.1007/3-540-59293-8_185

252 J. Woodcock

18. Harwood, W., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85762-4 10

19. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command
language. Sci. Comput. Program. 28(2–3), 171–192 (1997)

20. Hehner, E.C.R.: Probabilistic predicative programming. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 169–185. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27764-4 10

21. Hehner, E.C.R.: A probability perspective. Formal Aspects Comput. 23(4), 391–
419 (2011)

22. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
23. Hoare, C.A.R.: An axiomatic basis for computer programming (reprint). Commun.

ACM 26(1), 53–56 (1983)
24. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall (1998)
25. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.

Softw. Tools Technol. Transf. 18(3), 265–283 (2016)
26. Knuth, D., Yao, A.: Algorithms and Complexity: New Directions and Recent

Results, chapter The complexity of nonuniform random number generation. Aca-
demic Press (1976)

27. Kwiatkowska, M.Z., Norman, G., Parker, D.: Quantitative analysis with the prob-
abilistic model checker PRISM. In: Cerone, A., Wiklicky, H. (eds.) Proceedings of
the Third Workshop on Quantitative Aspects of Programming Languages, QAPL
2005, Edinburgh, UK, 2–3 April 2005, vol. 153. ENTCS, pp. 5–31. Elsevier (2005)

28. Lauri, M., Hsu, D., Pajarinen, J.: Partially observable Markov decision processes
in robotics: A survey. CoRR, abs/ arXiv: 2209.10342 (2022)

29. McIver, A., Morgan, C.: Correctness by construction for probabilistic programs.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 216–239.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 12

30. Morgan, C.: Programming from Specifications, 2nd edn., International series in
computer science. Prentice Hall (1994)

31. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program. 9(3), 287–306 (1987)

32. Prism. The PRISM language — semantics. www.prismmodelchecker.org/doc/
semantics.pdf

33. Shannon, C.L., Weaver, W.: Mathematical Theory of Communication. University
of Illinois (1963)

34. Shilov, N.V., Garanina, N.O.: Combining knowledge and fixpoints. Technical
Report Preprint 98, A.P. Ershov Institute of Informatics Systems, Novosibirsk
(2002).www.iis.nsk.su/files/preprints/098.pdf

35. Woodcock, J.C.P.: Properties of Z specifications. ACM SIGSOFT Softw. Eng.
Notes 14(5), 43–54 (1989)

36. Woodcock, J.: Hoare and He’s unifying theories of programming. In: Jones, C.B.,
Misra, J., (eds.) Theories of Programming: The Life and Works of Tony Hoare, pp.
285–316. ACM / Morgan & Claypool (2021)

37. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in unifying theories
of programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004. LNCS,
vol. 2999, pp. 40–66. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24756-2 4

https://doi.org/10.1007/978-3-540-85762-4_10
https://doi.org/10.1007/978-3-540-85762-4_10
https://doi.org/10.1007/978-3-540-27764-4_10
https://doi.org/10.1007/978-3-540-27764-4_10
http://arxiv.org/abs/2209.10342
https://doi.org/10.1007/978-3-030-61362-4_12
www.prismmodelchecker.org/doc/semantics.pdf
www.prismmodelchecker.org/doc/semantics.pdf
www.iis.nsk.su/files/preprints/098.pdf
https://doi.org/10.1007/978-3-540-24756-2_4
https://doi.org/10.1007/978-3-540-24756-2_4

Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems 253

38. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic semantics
for robochart. In: Ribeiro, P., Sampaio, A. (eds.) UTP 2019. LNCS, vol. 11885,
pp. 80–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31038-7 5

39. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice
Hall international series in computer science. Prentice Hall (1996)

40. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantification
and runtime monitoring using environment-aware digital twins. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp. 72–87. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-83723-5 6

41. Ye, K., Cavalcanti, A., Foster, S., Miyazawa, A., Woodcock, J.: Probabilistic mod-
elling and verification using RoboChart and PRISM. Softw. Syst. Model. 21(2),
667–716 (2022)

42. Ye, K., Foster, S., Woodcock, J.: Automated reasoning for probabilistic sequential
programs with theorem proving. In: Fahrenberg, U., Gehrke, M., Santocanale, L.,
Winter, M. (eds.) RAMiCS 2021. LNCS, vol. 13027, pp. 465–482. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88701-8 28

https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-83723-5_6
https://doi.org/10.1007/978-3-030-88701-8_28

Tools and Techniques for Specification,
Verification and Code Generation

Source-Code-to-Object-Code Traceability
Analysis for Airborne Software: A Case

for Tool Support

Jörg Brauer(B)

Verified Systems International GmbH, Bremen, Germany
brauer@verified.de

https://www.verified.de

Abstract. Industrial practise frequently warrants small, not so common
verification activities, where dedicated tool support can significantly ease
the workload associated with these activities, even though the verification
activities cannot be automated fully. Source-code-to-object-code (STO)
traceability analysis, which is one form of structural coverage analysis
required by RTCA DO-178C for avionic software of development assur-
ance level A (DAL-A), is one of these not so common verification activ-
ities. The purpose of STO analysis is to ensure that the entire object
code has been exercised by requirements-based tests. However, perform-
ing the STO analysis manually is very time-consuming and requires a
lot of expertise in the domain. In this paper, we argue that dedicated
special-purpose tools, which implement only a few specific analyses, can
to a great extent be used to automate the STO analysis activity and
contribute to the certification of airborne software.

1 Introduction

One question that frequently arises during the development of safety-critical
software is: Has the software been tested sufficiently? This is not an easy ques-
tion, and indeed, development standards such as RTCA DO-178C [17] for air-
borne software contain detailed guidance on the completeness of verification
activities [17, Tab. A-7]. While many of the objectives and techniques described
in [17, Tab. A-7] can be considered common knowledge nowadays—for example,
verification of exhaustive requirements coverage by testing via the examination
of traceability matrices—there is one daunting objective for Design Assurance
Level A (DAL-A):

“Verification of additional code, that cannot be traced to Source Code, is
achieved.”

Additional code may be introduced during the compilation process, which
means that 100% structural coverage on source code level does not neces-
sarily mean 100% structural coverage on object code level. Even though the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 257–271, 2023.
https://doi.org/10.1007/978-3-031-40132-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_16

258 J. Brauer

requirements-based tests indicate 100% structural coverage on source code level,
the binary may still contain code that has not been verified. Satisfaction of the
above DAL-A objective thus relies on two activities:

– Identification of additional object code which was introduced during compi-
lation and cannot be traced to source code.

– Verification of additional object code.

Establishing a tracing between source code and object code is thus a prereq-
uisite for the identification of additional code. Unfortunately, compilers used in
aviation typically do not provide such tracing information, for which reason it
must be derived. Once the additional code has been identified, it shall be veri-
fied. Observe that DO-178C does not enforce verification of additional code by
testing. As an alternative to testing, the additional code can thus be verified by
some kind manual or automatic analysis.

A connected topic that is frequently raised by certification authorities is con-
fidence in the correctness of the compiler, as many verification activities are
performed on source code level, and the validity of these verification results
depends on the consistency of source code and object code. In some application
domains, this issue is addressed by utilising validated compilers. This approach,
however, is not accepted in aviation, and pure testing can be considered insuf-
ficient to substantiate confidence in correctness of the compiler. For instance,
a requirements-based test typically contains assertions on some outputs of the
software in order to show that the outputs are consistent with the software
requirements. However, a test does not verify that all outputs are consistent
with all software requirements, but only exercises a subset of the output state.
The compiler could have introduced an undesired store operation, which would
not be detected by requirements-based unit testing, which could ultimately lead
to a critical failure of the software.

1.1 Objectives and Contributions

In this paper, we describe an automated approach to STO traceability analy-
sis. We discuss how variants of adding, removing, or transforming code can be
detected by a combination of several static analyses, namely: (a) control flow
analysis, (b) memory allocation analysis, (c) hidden call detection, and (d) store
analysis. Pass (a) detects all variants of branches added or removed during com-
pilation, (b) identifies data structures allocated with insufficient memory, (c)
detects untraceable function calls, and (d) finds untraceable accesses to mem-
ory and registers. The analyses have been implemented in the industrial tool
Rtt-Sto and applied for the STO traceability analysis of DAL-A code for a
commercial avionics control system. We also identify the tool qualification needs
for Rtt-Sto and present a strategy for tool qualification as a verification tool
according to the guidelines of DO-330 [18].

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 259

The overall flow of analyses implemented in Rtt-Sto is depicted in Fig. 1.
The control flow analysis is the prequisit for all other analyses, which rely on
matched representations of object code and source code. All analysis passes
produce verification sheets, which consist of two sections:

– One section contains all the verification details that could be automated by
Rtt-Sto. For example, this could be a traceability matrix, which maps all
traceable branches in source code to the corresponding object code state-
ments.

– The other section contains those branches in source code and object code
that could not be traced. This section needs to be edited by a verification
engineer.

After the manual edits have been completed, the verification evidence is
complete and can serve as evidence for the certification authorities. Since Rtt-
Sto is qualified, the tool support for the generation of the verification sheets
provides a guarantee that all relevant branches have been covered.

Fig. 1. Sequence of analyses implemented in Rtt-Sto.

1.2 Outline

In what follows, Sect. 2 discusses the branching analysis, which is used to match
control flow representations on source code and object code level. The key steps
of the approach are discussed by means of a worked example. Next, Sect. 3
discusses the remaining three static analyses for memory allocation analysis,

260 J. Brauer

hidden call detection and store analysis, before the topic of tool qualification
is covered in Sect. 5. Details on the verification sheets produced by Rtt-Sto
for the certification process are provided in Sect. 4. The paper concludes with a
presentation of related in work in Sect. 6 and a discussion in Sect. 7.

2 Control Flow Traceability

As discussed before, STO analysis using Rtt-Sto is structured into four succes-
sive analysis passes. The base of these analysis passes is the branching analysis,
the purpose of which is to associate branches on source code and object code
level. If successful, control flow in both program representations is indistinguish-
able, and the control flow graphs (CFGs) can be considered isomorphic.1 The
key idea of branching analysis in the context of STO analysis is thus to pro-
vide a technique that derives an isomorphism between the CFGs, a technique
that is familiar when comparing different versions of the same executable pro-
gram [9,10,12]. This section thus addresses the question of how isomorphisms
between source and object code CFGs can be established.

In order to detect whether two CFGs are isomorphic, we turn to a represen-
tation using deterministic finite automata (DFAs). The DFAs are derived from
a CFG so as to represent the control flow of the underlying CFG. Then, two
or more CFGs can be considered isomorphic if their DFAs accept the same lan-
guages, an observation that can be used as a criterion for isomorphism. Recall
that a DFA A is defined as a tuple (Q,Σ, δ, q0, F), where

– Q is a finite set of states,
– Σ is a finite input alphabet whose elements are called symbols,
– δ : Q × (Σ ∪ {ε}) → Q is a transition function,
– q0 ∈ Q is an initial state, and
– F ⊆ Q is a set of accepting states.

Here, ε is used to denote the empty label. An intuitive choice is to associate
with each basic block in the CFG a state q ∈ Q and to define the input alphabet
of A as the set of edges of the CFG. We sketch the DFA construction and the
decision procedure for isomorphism by means of a worked example.

2.1 From CFGs to Finite Automata

Figure 3 depicts the C code for a function f() that serves as the running exam-
ple. This function is part of a simple state machine, where the current state is
evaluated using a switch statement, and the respective handlers are called in
sub-functions. The CFG generated from the above source code is shown in Fig. 2.

1 CFG reconstruction from source code and object code is not the scope of the paper,
and we thus assume that CFGs for both representations are readily available; see
Sect. 6 for further details on this issue.

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 261

Fig. 2. Control flow graph extracted from the code of a function that uses a switch

statement with seven case branches and one default branch, see Fig. 3.

It consists of an entry node and 12 basic blocks2, each of which is represented
by a single node. The exit node l.34 corresponds to the return statement in
line 34. Note that the if-statement represented by l.3 induces an explicit then-
branch to the switch-statement in l.5 as well as an implicit else-branch that
targets the return-statement represented by l.34.

As sketched before, a DFA A can be extracted by adding a state for each
basic block and then labelling the edges with unique descriptions of their role.
In the running example, we choose labels IfThen and IfElse for the edges induced
by the if statement in line 3 and Case i with i ∈ {0, . . . 7} for the edges from the
switch statement to the case and default branches. All other edges receive
the empty label ε. As accepting state, we additionally introduce a distinguished
exit-node end, whose incoming edge is labelled with E. We likewise add an initial
state start. This way, we obtain the DFA A given in Fig. 4, where the fresh nodes
are highlighted using dashed lines. Likewise, we obtain a CFG and a DFA from
the object code of the function in Fig. 3. The DFA is depicted in Fig. 5. Whilst
this DFA looks quite similar to the one generated from source code, it is yet to
decide whether both DFAs implement isomorphic control flow.

2.2 Deciding CFG Isomorphism

The final step is thus a decision procedure for isomorphism of two or more
CFGs represented by their DFAs. The comparison of two DFAs A1 and A2 is
implemented using a variant of Hopcroft’s algorithm [13], which ensures that two
DFAs which accept the same language are equal up to isomorphism. Minimised
DFAs can thus be compared using graph traversal. In the worked example, the
verdict is that the control flow of the CFGs differs because the resulting DFAs
are not isomorphic due to the transition from b0 to L236 in Fig. 5 labelled by
Case 8.

2 In the example, nodes are labelled with their line numbers from the listing. However,
the choice of a labelling is inconsequential as long as the node labels are unique.

262 J. Brauer

Fig. 3. C code for the worked example.

Fig. 4. DFA derived from the CFG in Fig. 2.

Fig. 5. DFA derived from the object code generated from the source code in Fig. 3.

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 263

Now that the branching analyzer has shown that the source code and the
object code implementation of function f() implement a differing branching
structure, additional effort has to be put into understanding the reason for this
deviation. It turns out that the least value handled in the switch-statement,
STATE INIT is defined as holding the integer value 1. The compiler—even though
it has been configured to perform no optimisations at all—thus produces code
that preventively checks whether the value of parameter state is at least 1; if
not so, control is passed directly to the default-branch without exercising all
the possible branches in the switch-statement itself (in the DFA in Fig. 5, this
branch is represented by the transition b0

Case 8−→ L236, for which no counterpart
is found on source code level). This form of control flow is invisible from source
code level. However, the branch is reachable and legitimate, and thus two dis-
tinguished test cases are required: one that passes value 0 for parameter state
and thus triggers the additional branch, and another one that passes another
unhandled value so as to trigger the actual default-branch.

2.3 Limitations of Branching Analysis Using DFAs

The alert reader will have observed that the chosen representations of the control
flow using CFGs and DFAs are not equivalent. Indeed, the described transforma-
tion from CFGs to DFAs inevitably leads to a loss in precision. As an example,
let us return to Fig. 5. Suppose the compiler has by mistake generated code
that gives a transition b0

Case 8−→ L235 instead of b0
Case 8−→ L236. The branching

analysis based on comparison of automata does not uncover this flaw, which
may appear to be a serious problem of the approach; it is not. Branching anal-
ysis in the context of DO-178C is not a stand-alone analysis, but complements
requirements-based testing activities. Such erroneous edges would thus have been
uncovered using requirements-based tests beforehand.

3 Additional Analyses

As argued before, one of the key aspects of STO analysis is to provide evidence
that the branching structure of the compiled object code of a program correctly
models the branching structure induced by the source code. However, tracing
branches in both representations is only the first step required to receive certifi-
cation credit. This section focuses on further subtleties that need to be analysed.

3.1 Hidden Call Detection

Even if the branching structure of the object code matches the source code, this
does not imply that the compiler has not introduced additional function calls.
Naively, one could argue that the compiler is not allowed to do so. This is not
true. For example, suppose a program on a 32-bit PowerPC (PPC) platform
uses a 64-bit integer division, which is not natively supported by the processor.

264 J. Brauer

The compiler then should replace this operation by a call to a built-in function,
which in turn leads to a different calling structure and stack layout compared
to what is expected from source code. The identification of such hidden calls
is straightforward, given the information about the program structure that has
been derived during branching analysis.

Recall that for branching analysis, we have determined a mapping between
basic blocks in both source code and object code. Hence, it suffices to check
whether all basic blocks invoke the same sub-functions in exactly the same order
in both program representations. If this is not the case, a traceability issue has
been detected, thereby requiring additional verification.

As an example, consider the following assembly fragment generated by a PPC
compiler, which contains calls to two functions getMsgTime() and udiv64().
The function getMsgTime() returns an unsigned 64-bit integer value.

1: bl getMsgTime
2: mr r12, r4
3: mr r11, r3
4: mr r4, r12
5: mr r3, r11
6: lis r6, 15
7: addi r6, r6, 16960
8: li r5, 0
9: bl __udiv64

10: mr r12, r4
11: mr r11, r3
12: stw r12, 16(r31)

This basic block could directly be traced to the following C block, which contains
just one call:

msg->timestamp = (uint32) (getMsgTime() / MILLI_TO_NANO);

The function udiv64() called in the assembly has been inserted by the compiler
to implement the unsigned 64-bit division. The code is thus not traceable, yet
correct, and additional verification measures have to be taken. With the trace-
ability data for basic blocks, it is straightforward to point verification engineers
to program locations that need to be examined.

3.2 Memory Allocation Analysis

The memory allocation analysis checks whether the object code contains data
allocations (on the heap, on the stack, or in form of registers) where the size
of the allocated memory region does not conform to the size expected from
the type declarations in the source code. The concept behind this analysis is
thus simple: Sound expectations have to be derived from the source code, and
an object code analysis has to determine whether the object code meets these
expectations. The size-allocation strategies for data structures are usually laid

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 265

out in the application binary interface (ABI) of the target processor, cf. [19], and
can thus be mimicked by the STO traceability analyzer to infer the expected
values. Moreover, compilers typically provide information as to how they set up
stack frames. For the example from Fig. 3, for instance, we obtain the following
information:

#function: f
#stack frame size: 16
#link area offset: 0
#local storage area offset: 12
#gpr save area offset: 12
#status r31 local
#state r11 param

These outputs indicate that the overall size of the stack frame of f() is 16, that
parameter state is passed via register r11, and that status is stored locally
in register r31. Along with the declarations of global data in the .data respec-
tively .rodata sections the object code, this information needs to be analyzed.
Of course, one also has to check whether the object code correctly allocates the
data regions, in particular the setup of the stack frame. However, such an analy-
sis comes for free when performing a dedicated store analysis, which is discussed
in the following section.

3.3 Store Analysis

A quite subtle observation is that an erroneous compiler may have inserted unde-
sired store operations targeting some memory addresses. Since requirements-
based tests typically only examine the effects of desired store operations in the
expected results—but not all possible alterations of the memory state—such
malicious behaviour is likely to be missed during testing.

On RISC processors, all accesses to memory are implemented using explicit
load and store operations such as stw r12, 4(r31), which stores the contents
of register r12 in the memory cell addressed in r31 with an offset of 4. It is
therefore important that the store analysis traces the values of those registers
that are used as sources respectively targets in the load and store operations. The
abstract interpretation is thus implemented as an intraprocedural fixed-point
iteration on assembly code [1,6] with an abstract domain specifically designed
to trace variable addresses. We thus build on the side-effect analysis for PPC
assembly of Flexeder et al. [11], which infers side-effects of procedure calls onto
the runtime stack, and straightforwardly extend it to heap-based data.

A noteworthy characteristic of PPC assembly is that loading addresses of
variables into registers is distributed over multiple instructions. Suppose that
label .L42 in the assembly refers to a global variable x. Then, the code fragment

lis r4, %hiadj(.L42)
addi r4, r4, %lo(.L42)

266 J. Brauer

loads the address of x into register r4, that is, it corresponds to the C-expression
&x: first, the upper half word of the address is loaded into r4, and then its lower
half word is added. This address handling pattern has to be tracked during
abstract interpretation.

4 Verification Sheets and Application

Prior to the development of Rtt-Sto, we identified three key requirements
for the successful application of Rtt-Sto, all of which are soft, non-functional
requirements:

Req #1 Rtt-Sto shall produce a low number of false positive warnings, thus
promising a significant reduction of the verification efforts.

Req #2 Rtt-Sto shall support verification engineers during the challenging
manual verification activities.

Req #3 Rtt-Sto shall generate evidence that can convincingly be presented
to the certification authorities.

While Req #1 is addressed by the analyses described in Sect. 2 and Sect. 3,
the latter two have not been addressed thus far. Addressing Req #3, from our
industrial experience, spreadsheets provide a well-established way to convinc-
ingly present verification results. Important activities such as searching, filtering
checking for completeness, etc. are natively supported and understood by all
participants of the verification process, which is why we prefer spreadsheets over
customized documents. It is much simpler to ensure completeness of evidences
in a spreadsheet than in a customized document. Therefore Rtt-Sto should
generate spreadsheets—here called verification sheets. For DAL-A verification
projects, the structure of the verification sheets and how verification engineers
should generate and edit the verification sheets have to be defined in the process
definitions of the project. We defined so-called verification procedures, which are
guidelines/instructions that define the different tasks of the verification engineers
for STO analysis and how these tasks have to be executed.

We addressed Req #2 by ensuring that the presentation of outputs is helpful
for verification staff. For example, for hidden function call analysis, the verifica-
tion sheet would contain columns as follows:

– The name of the assembly file that contains a hidden function call [auto-
generated].

– The line number in the assembly file thatn contains a hidden function call
[auto-generated].

– The name of the hidden library function that is called [auto-generated].
– The name of the source code file that contains the hidden function call [auto-

generated].
– The line number in the source code file that is traced to the hidden function

call [auto-generated].

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 267

– The name of the function in the source code that contains the hidden function
call [auto-generated].

– The name of the responsible verification engineer [manually assigned].
– The verdict chosen by the verification engineer [manually edited].
– A reference to the manual analysis that serves as justification for the verdict

[manually edited].
– The name of the reviewer of the justification and verdict [manually assigned].
– The verdict chosen by the reviewer [manually edited].

This way, it is virtually impossible that manual activities are missed. The
aforementioned verification procedures contain precise instructions on how the
manually edited cells have to be processed. By using such kinds of verification
sheets with detailed instructions, our verification team was able to produce com-
plete verification results with (relatively) little effort, as the verification duties
were already prepared by Rtt-Sto and served as input to the manual verifica-
tion activities.

We have applied Rtt-Sto for the STO analysis of an avionic control system,
which has been certified for DAL-A. This section discusses our experiences from
this project. The software itself is written in C and targets a 32-bit PPC platform.
The overall codebase consists of about 300 functions. The overall warning rate
was low. For example, Rtt-Sto detected 28 untraceable control flows, which
were caused more or less by two constructs:

– The compiler uses two different strategies for generating object code from
switch statements: it either implements a binary decision tree to compare
the switch variable with the specified cases (including the default case), or
produces a jump table. In both cases, the compiler may produce untraceable
object code. If the different cases refer to integer values c1, . . . , cn and there
exists a value c0 < c1, the object code may contain an additional branch
for handling this situation in addition to the implementation of the default
branch. We have seen this situation in Sect. 2.1.

– As a 32-bit platform, the PPC target naturally has to emulate 64-bit arith-
metic using a sequence of operations that may contain additional branching.
For example, if a 64-bit unsigned integer x is compared to a 32-bit unsigned
integer variable y, the compiler emits code to first compare the most signifi-
cant 32 bits of x to 0 and subsequently compare the least significant 32 bits of
x to y. The compiler thus generates branches that are not directly traceable
to source code, and that have not been exercised during requirements-based
testing.

The additional code inserted by the compiler could easily be verified correct
be experienced verification engineers, with guidance provided through the verifi-
cation sheets that exactly highlighted the differing control flows. Our experiences
with respect to the other analysis passes are similar.

268 J. Brauer

5 Tool Qualification

The DO-330 [18] clarifies tool qualification considerations for tools applied in
the software development life cycle according to DO-178C. Intuitively, the DO-
178C requires evidence that a tool applied during the development satisfies its
needs and is reliable, given the safety-critical context. All in all, the DO-330
specifies tool life cycle processes for the development and application of software
tools in airborne software development [18, Fig. 1-1]. The exact needs for tool
qualification depend on the impact of the software tool on the software life cycle
process, for which several criteria are defined [18, App. B]. Depending on the
impact and the design assurance level of the software, a tool qualification level
is determined. The criteria are (cp. [18, App. B]):

Criteria 1 The output of Rtt-Sto is not part of the resulting software and
thus could not insert an error.

Criteria 2 The output of Rtt-Sto is not used to justify the elimination or
reduction of other development activities than STO-analysis.

Criteria 3 Rtt-Sto is a tool that, within the scope of its intended use, could
fail to detect an error.

Only criteria 3 is fulfilled, hence the applicable tool qualification level is
TQL-5 [18, App. D, Chap. 1.5.3.3.4], the least rigorous level. As described in [18,
App. D, Chap. 1.5.3.3.4], TQL-5 is a replacement for the category of verification
tools used in DO-178B developments. The tool qualification evidence required for
TQL-5 tools mainly consists of the tool operational requirements, data to show
that the tool satifies its tool operational requirements in the installed environ-
ment, configuration management and a verification/validation report. Further
details are provided in [18, App. D, Chap. 1.6].

Rtt-Sto could successfully be qualified for DAL-A using the above evi-
dences. The most critical part was the development of an automated tool quali-
fication test suite, which consists of a collection of (both automatic and manual)
verification cases and covers the entire set of tool operational requirements of
Rtt-Sto. The tool qualification suite is executed using RT-Tester [20] in the
operating environment of Rtt-Sto.

6 Related Work

According to the DO-178C [17, Tab. A-7], STO traceability analysis is part of
structural coverage analysis. It is important to note that structural coverage
analysis is performed to identify any functionality that was not exercised during
the requirements-based testing activities [16, Chap. 9.7.4]. Structural coverage
analysis must thus not be confused with structural testing (which is considered
inadequate for projects in the domain of DO-178C), the purpose of which is to
systematically exercise a software based on the structure of its code. Important
sources of information regarding STO analysis in avition are the Certification
Authorities Software Team (CAST) position papers on STO analysis [7,8].

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 269

To the best of our knowledge, little effort has so far been put into the automa-
tion of the STO traceability analysis process, which may be explained by the fact
that STO analysis is indeed a niche topic, which is only relevant for a small sub-
set of systems—that is, DAL-A software systems—in aviation. The tool Cou-
verture [4] uses Qemu [3]—which performs dynamic binary translation—to
provide a virtualized execution environment for the target software on a host
rather than the actual target. The software is then executed and coverage is
measured. The approach can be seen as diametrically opposed to ours. Whereas
our work is based on static analysis—and possibly additional tests on the target
for verification of additional code—Couverture relies on dynamic measure-
ments. However, to us it is unclear how the approach followed by Couverture
could actually be integrated into the software development lifecycle to obtain
certification credit for DAL-A. Other tools, such as Osmose [2] use dynamic
symbolic execution to generate test cases directly on the level of object code. An
interesting aspect of Osmose is that it identifies potentially infeasible branches
directly in the binary, and the authors argue that tools such as Osmose are
useful to complement to source-level testing activities.

The commercial tool RapiCover Zero [15] measures branch traces pro-
duced by the system-under-test without access to source code. For STO analysis,
the debug information produced by the compiler is used to trace between source
code and object code. Another commercial tool for STO analysis and object
code verification is TBobjectbox [14], which generates tracing data between
object code and source code so as to identify uncovered object code fragments.
Further, this paper is based on our own previous work [5], which describes the
underlying algorithms.

7 Conclusion

We argue that the automation of very specialized verification activities such
as STO analysis can significantly ease the certification of DAL-A avionics soft-
ware. The Rtt-Sto tool described in this paper builds upon a set of well-
understood and well-established techniques from the areas of program analy-
sis, abstract interpretation and automata theory to address one very specific
challenge, and thereby deviates from the established processes. Rierson [16,
Chap. 9.7.4.4] describes the way STO analysis is usually performed in practise
as follows:

“The analysis is usually applied using a sample of the actual code, rather
than 100% of the code. The sample used should include all constructs that
are allowed in the source code and comprise at least 10% of the actual code
base. [. . .] The analysis requires an engineer with knowledge of the specific
language, assembly, machine code, and compilers.”

This brief summary directly exposes the contributions of our work compared
to the state-of-the-art and our proposal for the integration of formal methods
into industrial processes. Rtt-Sto performs the analysis on the entire code base

270 J. Brauer

rather than a sample, and, consequently covers all constructs used in the source
code, and requires less engineering man-power with expertise in assembly lan-
guage, due to a high degree of automation. The savings by tool-based automation
in terms of workload—and thus cost—are significant.

There are certain situations in which Rtt-Sto fails to detect traceability
even though the code is traceable. In practise, discussions with certification
authorities often circle around the question how completeness of the verification
activities can be proven. A simple but very valuable side-effect of tool-supported
STO analysis, even if the tools produce some false positive warnings, is that it
guides verification engineers to locations that warrant manual verification, and
guarantees that there are no gaps in the verification activities and evidence.

References

1. Balakrishnan, G., Reps, T.W.: WYSINWYX: what you see is not what you execute.
ACM Trans. Program. Lang. Syst. 32(6), 1–87 (2010)

2. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction from
unstructured programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 54–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
18275-4 6

3. Bartholomew, D.: Qemu: a multihost, multitarget emulator. Linux J. 2006(145)
(2006)

4. Bordin, M., Comar, C., Gingold, T., Guitton, J., Hainque, O., Quinot, T.: Object
and source coverage for critical applications with the couverture open analysis
framework. In: ERTS (2010)

5. Brauer, J., Dahlweid, M., Pankrath, T., Peleska, J.: Source-code-to-object-code
traceability analysis for avionics software: don’t trust your compiler. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 427–440.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24255-2 31

6. Brauer, J., Noll, T., Schlich, B.: Interval analysis of microcontroller code using
abstract interpretation of hardware and software. In: SCOPES. ACM (2010)

7. Certification Authorities Software Team (CAST): Guidelines for Approving Source
Code to Object Code Traceability - Position Paper CAST-12. CAST (2002)

8. Certification Authorities Software Team (CAST): Structural Coverage of Object
Code - Position Paper CAST-17. CAST (2003)

9. Dullien, T., Rolles, R.: Graph-based comparison of executable objects. SSTIC 5,
1–13 (2005)

10. Flake, H.: Structural comparison of executable objects (2004)
11. Flexeder, A., Petter, M., Seidl, H.: Side-effect analysis of assembly code. In: Yahav,

E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 77–94. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23702-7 10

12. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

13. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton.
Technical report, DTIC Document (1971)

14. LDRA Inc.: TBobjectbox. https://ldra.com/products/tbobjectbox

https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1007/978-3-319-24255-2_31
https://doi.org/10.1007/978-3-642-23702-7_10
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16
https://ldra.com/products/tbobjectbox

Source-Code-to-Object-Code Traceability Analysis for Airborne Software 271

15. Rapita Systems Ltd.: RapiCover Zero. https://www.rapitasystems.com/products/
rapicoverzero

16. Rierson, A.: Developing Safety-Critical Software. CRC Press, Boca Raton (2013)
17. RTCA SC-205/EUROCAE WG-71: Software Considerations in Airborne Systems

and Equipment Certification. No. RTCA DO-178C, RTCA Inc, 1140 Connecticut
Avenue, N.W., Suite 1020, Washington, D.C. 20036 (2011)

18. RTCA SC-205/EUROCAE WG-71: Software Tool Qualification Considerations.
No. RTCA DO-330, RTCA, Inc. (2011)

19. Sobek, S., Burke, K.: Power PC Embedded Application Binary Interface (EABI):
32-Bit Implementation. Freescale Semiconductor Inc. (2004)

20. Verified Systems International GmbH: RT-Tester. https://www.verified.de/
products/rt-tester

https://www.rapitasystems.com/products/rapicoverzero
https://www.rapitasystems.com/products/rapicoverzero
https://www.verified.de/products/rt-tester
https://www.verified.de/products/rt-tester

Space Telemetry Analysis with PyContract

Bevin Duckett, Klaus Havelund(B), and Luke Stewart

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

Abstract. PyContract is a Python library for trace analysis, also
characterized as an internal DSL (Domain-Specific Language). It com-
bines flavors of state machines and rule-based programming, supporting
states that can carry data, thus allowing for monitoring of events that
carry data. The fact that it is a Python library offers full expressiveness,
and access to a vast amount of libraries, which becomes useful for realis-
tic situations. This is in this paper illustrated by its real life application
to data analysis of telemetry logs obtained during testing of NASA’s
Europa Clipper flight computer. The mission will place a spacecraft in
orbit around Jupiter in order to perform a detailed investigation of its
moon Europa. The analysis includes not only verifying functional cor-
rectness but also, and especially, performance analysis such as execution
times and rates of change. This includes generation of data in table for-
mat and visualization as graphs. The important message is that runtime
verification and data analysis are closely related topics, which can only
be addressed with highly expressive specification languages.

1 Introduction

Runtime Verification (RV) is normally seen as a discipline of verifying whether
a system/program execution is correct wrt. a given set of properties, yielding
a Boolean true/false flavored verdict1. It can with this view be seen as a light-
weight formal method, where the specification is formal, but where only single
executions are checked, in contrast to all executions, or even necessarily many
executions. Runtime verification is complementary to test case generation but
can be used for formulating test oracles, or it can be applied after deployment of
the system in the real world to verify that the system performs as desired during
operation. Properties are usually expressed in formal Domain-Specific Languages
(DSLs) of temporal nature, such as e.g. various forms of temporal logic, regular
expressions, state machines, grammars, rule-based systems, and stream process-
ing formalisms. Runtime verification can be applied online, monitoring a system

The research performed was carried out at Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space Admin-
istration.
1 Some RV theories operate with extensions of the Boolean domain with a small finite

set of additional values, e.g. [6].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 272–288, 2023.
https://doi.org/10.1007/978-3-031-40132-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_17

Space Telemetry Analysis with PyContract 273

as it executes, or it can be applied offline, analysing a log produced by a previ-
ous run of a system. In this paper we shall study offline RV, combining classical
Boolean verdict RV with data analysis, where the focus is on producing data
from logs.

A classical distinction amongst DSLs is that of external versus internal DSLs
[17]. An external DSL is a “small language” with its own grammar and parser.
An internal DSL (sometimes referred to as an embedded DSL) is a library in
a general purpose programming language. Numerous external RV DSLs have
been developed over time, including [1,2,4,5,9,12,15,22,23,25]. Internal DSLs
are usually again grouped into deep and shallow [18]. In a deep internal DSL,
data structures in the host language are used to represent DSL constructs in
an explicit manner, e.g., as an AST (Abstract Syntax Tree), which can then
be processed by writing either an interpreter or a compiler for execution. Some
examples are [19,30]. A shallow internal DSL includes the constructs of the host
language as part of the DSL, using the host language’s native runtime system to
execute them. Examples of shallow internal DSLs in Scala include [3,20,21,24].

PyContract [10] is a very expressive internal shallow DSL for runtime ver-
ification. In this work we present its application to data analysis of telemetry
from NASA’s Europa Clipper mission [16] flight computer during real life testing
of its performance. We present sketches of five such monitors. The purpose is not
only to check functional correctness of temporal properties, but also to analyze
and visualize non-functional properties, such as performance wrt. time and data
volumes. The possible advantages of using PyContract for such data analysis
has been previously suggested in [11]. The mentioned advantages include the
fact that Python is already highly popular in the field of data analysis, and e.g.
used extensively within NASA’s Jet Propulsion Laboratory (JPL) for telemetry
analysis on ground, examining data coming from spacecraft and rovers. An inter-
nal DSL is “just” another library in a familiar language. It allows to use favorite
development tools (such as IDEs) and other libraries for the host language. It
is expressive, and implementation and maintenance of the DSL is easier. A dis-
advantage of shallow internal DSLs (when compared to external DSLs and deep
internal DSLs) is lack of analyzability. However, Python supports powerful meta-
programming features allowing a program to inspect its own AST. We use this
for visualizing specifications.

Although only briefly touched upon in the paper, our work includes a web-
based interface to the use of PyContract, programmed using the Dash visu-
alization library [13]. It provides a unified convenient framework for requesting
analyses to be performed as well as for visualizing and tabulating results.

The paper is organized as follows. Section 2 introduces the PyContract
library. Section 3 describes how it is applied to the five different data analysis
problems, each resulting in a PyContract monitor. Section 4 concludes the
paper.

274 B. Duckett et al.

2 The PyContract Core Library

PyContract allows to specify first-order temporal properties over a trace of
events. A temporal property relates events occurring at different points in the
trace. The first-order capability allows to also relate the data occurring in events
across different points in the trace, turning the logic very expressive. The fact
that PyContract is a Python library furthermore augments the expressive-
ness, allowing to combine temporal properties and general purpose program-
ming, making it Turing complete. PyContract is inspired by rule-based pro-
gramming [4,21] in that the memory of a monitor is a set of facts, where a
fact in its basic form is a named data record. However, facts, like states in
state machines, can have transitions which, upon triggering, can generate other
facts, while removing the fact who’s transition is taken. In the following we shall
demonstrate how this looks like. PyContract is inspired by the Scala DSL
Daut [14,20] and is developed for Python 3.10 that supports pattern matching
[29]. PyContract is available under the Apache 2.0 open-source license at [28].

The general approach is to define a monitor as a sub-class of the Monitor
class, create an instance of it, and then feed it with events, as shown in Fig. 1.
Events can be fed, one by one, using the evaluate(event: object) method. In
the case of a finite sequence of observations, for example when examining a log
file, a call of the end() method tells the monitor that the sequence has ended.
Note that end() may not be called when monitoring is online, but if it is called,
any outstanding obligations that have not been satisfied (expected events that
did not occur) will be reported as errors. Events can be provided by the user in
different ways. If examining a log file for example, they can be read from any
file format such as e.g. CSV, JSON, XSML, etc. This would in the example in
Fig. 1 take place in line 7, where we instead of providing the trace explicitly, as
done here, would read it from a file.

Fig. 1. General approach for defining and using a PyContract monitor.

As an example we will define a monitor for verifying command execution
on board the spacecraft. The example yields a Boolean verdict, in the tradition
of classical RV. Commands are submitted to the spacecraft, and on board dis-
patched, followed hopefully by a completion. Commands have a name and each

Space Telemetry Analysis with PyContract 275

command dispatch has in addition a number. Events can in PyContract be
any data object. We shall in this paper focus on events represented as dictio-
naries: mapping from fields to values. E.g. the dispatch of a command may be
represented by the event:

{“name” : “dispatch”, “cmd” : “TURN”, “nr” : 3, ”time” : 382649}
We shall verify the following property:

Commands: The dispatch of a command, with a number, must be followed
by a completion within 3 seconds, and no failure of that command dispatch
must be observed in between. In addition, a dispatch number can only be
completed once (no double execution).

Note that the “within 3 s” constraint can have two interpretations: either that
a failure is reported exactly after 3 s without having seen a completion, or that
a failure is reported when observing an event occurring after 3 s without hav-
ing seen a completion within 3 s. The former interpretation requires an internal
clock in the monitor, whereas the latter interpretation can rely on the time
stamps carried by events. We adopt the latter interpretation, which is suitable
for log analysis. For online runtime verification, however, the former interpreta-
tion would be more appropriate.

The property is implemented as the monitor in Fig. 2. First we import the
PyContract module (line 1). The monitor is defined as a class extending the
Monitor class (line 3). The body of the monitor defines a transition function
(lines 4–7), and two states: DoComplete (lines 10–20) and Executed (lines 23–
29). The outer transition function (lines 4–7) processes all events submitted
to the monitor. It takes an event as argument and matches it against possible
patterns, using the pattern matching features provided in Python from version
3.10 [29]. In this case just one pattern matches if the name of the command is
"dispatch". If so it binds the command id, number, and time to the variables c,
n, and t respectively, and returns a new state: DoComplete with these bindings
as arguments. This state is now added to the memory of the monitor. The actual
type of the transition function is:

def transition(self , event: Event) ->
Optional[State | List[State]]

where Event is the type of events (dictionaries in this case). It returns either
None (corresponding to no match), a state, or a list of states. We leave out the
types in the remaining transition function definitions.

The DoComplete state extends HotState, meaning that it must eventually
be removed, otherwise an error is reported when the end() method is called at
the end of the trace. It will e.g. be removed when the command it monitors
completes. The state is parameterized with a command id, a dispatch number,
and the time of dispatch. The body defines a transition function applicable when
the state is active, which offers three options for processing an incoming event (if
none match the state remains in the monitor memory). The first case matches

276 B. Duckett et al.

if the command (with the same id and number) fails2. In this case an error is
reported. The second case matches if any event is observed with a time stamp
more than 3 s from the dispatch time. This also results in an error being reported.
The third case matches if the command completes, in which case an Executed
state, parameterized with the dispatch number, is returned, and recorded in the
monitor memory (while the DoComplete state is removed). The Executed state
itself is just a State, meaning that it is ok to terminate in this state. It monitors
that the dispatch number does not complete again.

We mentioned above that the outermost transition function (lines 4–7) is
applied to all events submitted to the monitor. Behind the scenes it is trans-
lated to an initial so-called AlwaysState, as shown in Fig. 3 (lines 2–7). An
AlwaysState state is always active. The former style is, however, more conve-
nient to write.

PyContract offers other features, such as allowing to return a list of states
from a transition, next-states (failing if no transition cases match an event),
querying the fact memory (used for expressing past time properties), grouping
of monitors, and user-defined indexing (slicing) to optimize monitoring, similar
to what is supported in RV systems such as MOP [25] and QEA [30]. In addition
one can of course add any Python code to be executed in transition actions,
and use general Python expressions as transition conditions. PyContract was
evaluated against other systems in [10], performing reasonably by processing 4
million events in under 100 s.

PyContract visualizes a monitor using PlantUML [27] by first analyzing
the AST of the monitor (using Python’s meta-programming capabilities) and
then generating PlantUML text. Figure 4 is such a visualization of the monitor
in Fig. 2. Green states (the initial state) are always active, and safe to terminate
in. Bright yellow states, the DoComplete state, indicate danger: they must be left
eventually. Faded yellow states, the Executed state, are safe to terminate in as
well. Finally red states are error states. Transitions out of a state are numbered
to indicate the order of evaluation caused by the semantics of Python’s match-
statements.

3 Data Analysis Scripts

In this section we present five different monitors using the PyContract library
for performing various forms of combined property checking and data analysis.
We show only essential code fragments that provide the general idea. The scripts
offer user options for different behaviours, which we largely ignore in this presen-
tation. A spacecraft reports telemetry to ground as individual messages. There
are three general types of spacecraft data sent to ground [7]:

2 In Python’s pattern matching, dotted names, such as self.cmd, must match the
incoming value, whereas non-dotted names, such as c, are binding the incoming
value.

Space Telemetry Analysis with PyContract 277

Fig. 2. A monitor for property Commands.

– Time series data (EHAs3) representing onboard measurements of spacecraft
state over time. JPL missions generally refer to this type of data as “channel-
ized telemetry” or “channels”, with each channel representing a time series of
measurements from spacecraft hardware sensors, as well as data reported by
software components (e.g. onboard memory states).

– Event Records (EVRs) representing single events that occur onboard the
spacecraft. Rather than the single data value of a channel record, each EVR
record contains a message string, which contains further spacecraft state infor-
mation embedded in that message.

– Data Products (DPs), each containing a range of types of information, depend-
ing on the need. There are a wide variety of data products used by projects,
including snapshots of state such as memory and data management states.

3 EHA stands for ‘Engineering Housekeeping & Accountability’.

278 B. Duckett et al.

Fig. 3. Translation of the outermost transition function of the Commands monitor
in Fig. 2 to an AlwaysState containing the transition function.

Fig. 4. Visualization of the monitor in Fig. 2, generated by PyContract.

In this work we are only concerned here about the first two kinds (EHAs and
EVRs). The five monitors will analyze logs containing sequences of such space-
craft data. These include (1) counting of EHAs per 5 s, illustrating a very basic
monitor not using state machines; (2) reporting of EVRs that occur within a
certain time frame after having been reported missing, illustrating a temporal
property formulated as state machine with multiple states active, as well as the
handling of time in such a state machine; (3) file uplink to the spacecraft, con-
sisting of several events that must occur in order, and where at the end several
statistics are computed, illustrating data storage, many states, and hot states;
(4) verification that issued commands are followed by expected responses (suc-
cess, failure), and the durations of these (minimal, maximal, average, median),

Space Telemetry Analysis with PyContract 279

illustrating trace slicing for optimization and modeling of past time properties;
and finally (5) measuring rates with which sampled values change, illustrating a
more complicated past time property. The examples are non-trivial, and demon-
strate the combination of Boolean first-order temporal properties combined with
data analysis going beyond Boolean verdicts.

3.1 The Sample Counting Monitor

Our first monitor shows the number of channel values (EHAs) that are received
per 5 s. Figure 5 shows the first lines of an example CSV file4. Each row reports
the reading of a channel in a particular software module on board the spacecraft.
Specifically, column D contains channel IDs of the form <module>-<chan>, con-
sisting of a module name and a channel number. Column J contains time stamps
of the form <year>-<day>T<hour>:<min>:<sec>.<ms>. To process this we can
import and use various Python libraries, in this case csv (for reading CSV files),
re (regular expressions), datetime (handling of time stamps), statistics (for
statistics), and the substantial data analysis and visualization libraries pandas
[26] and dash [13], illustrating why an internal programming oriented monitoring
library is useful.

Fig. 5. An example of a log represented as a CSV file.

Figure 6 shows the type of events (used for all scripts), namely that of dic-
tionaries from CSV column names to values. The function convert (line 8–12)
takes as argument an event and augments it with additional fields, in this case
the module in which the channel is sampled, and the time. This approach of
extending events with additional “columns” is used as a general approach to deal
with data fields, who’s composition needs processing before being referred to in
monitors.

Figure 7 illustrates a statistics module that our monitor will instantiate and
update. The essence here is that of going beyond Boolean verdict monitoring.
The statistics module maintains a list of channel reading counts per 5 s, and a
mapping from module names to the number of channel readings in that module.
Finally the results can be shown textually and in graphs, implemented using
Python’s dash library.
4 Data have been left out or renamed to keep sensitive data hidden.

280 B. Duckett et al.

Fig. 6. The event type and functions for extending events.

Fig. 7. The statistics class.

Finally, our monitor can be programmed as shown in Fig. 8. Note that this
monitor represents a basic case where no states are needed, only the top level
transition function. It corresponds to basically just writing a program. We have
shown it here to illustrate how also such a monitor can be made to fit into the
library’s vocabulary, extending the Monitor class and defining the transition
function. The result of running the monitor is statistics about how many channels
were read per 5 s, an example is visualized in Fig. 9, as well as various tables,
including e.g. one showing how many readings that were observed per module,
see Fig. 10.

3.2 The Missed Event Monitor

The second monitor in Fig. 11 highlights (as its output) any row that reports a
missing EVR (line 4), which then occurs anyway (line 19) with a matching name
later within 5 s, and without any intervening rows reporting a timeout (line 13),
another failure report for the same EVR (line 15), or a success report for that
EVR (line 17). This monitor is temporal in nature in that upon detection of
a reported missing event (line 4), it creates a new Watch-state, parameterized
with the EVR name and the time. The Watch-state subsequently watches rows
relevant for that EVR. Note that if several EVRs are missing a Watch-state will

Space Telemetry Analysis with PyContract 281

Fig. 8. The channel sample counting monitor.

Fig. 9. Graphing of channel counts per 5 s.

be created for each. The monitor demonstrates a temporal property combined
with reporting, via calls of the info method, of events that modify its state.

3.3 The File Uplink Monitor

The objective of the next monitor is to report on file uplinks from Earth to
spacecraft. A file uplink is recorded in the telemetry as a sequence of EVRs,

282 B. Duckett et al.

Fig. 10. Tabulation of channel counts per module.

Fig. 11. The missing EVR monitor.

each providing additional information about the uplink. This information must
be gathered and shown, including durations between EVRs, the total duration,
the file size, and file size divided by duration, etc. In addition various statistics
across file uplinks must be tabulated.

Figure 12 sketches the monitor for this analysis. Upon detecting the start of
a file uplink (line 8) a ReceiveMeta state is created, that now looks for the next
relevant event in the file uplink process. The monitor illustrates a number of
points that one normally does not see in temporal specifications. First, we define
storage to keep track of statistics across file uplinks (line 4). This resembles the

Space Telemetry Analysis with PyContract 283

variable state of an extended finite state machine [8]. Second, instead of passing
numerous parameters to each state, a single object containing all data for a
particular uplink sequence is created and passed as argument (line 9). This is
then parameter to each state (e.g. line 13), and can be updated (line 21) before
being passed on. Three more states are needed (lines 24–31), all following the
same pattern that one is replaced by the next upon a certain event, and where in
the final Finish state, upon detecting the end of the uplink, statistics is printed
out. Note that the pc.ok return state (line 18) indicates that monitoring of this
particular file uplink is terminated, a FIT_INFO event aborts the monitoring of
this particular uplink.

3.4 The Command Execution Monitor

The next monitor examines the execution of commands and tabulates their exe-
cution time (minimal, maximal, average, median). The monitor also verifies that
expected responses (success, failure) follow the dispatch of commands. That is, a
dispatched command must be followed by a success or failure, with command id
and number (and other parameters) matching (all extracted by regular expres-
sions from data columns). Furthermore, a success or failure of a command that
has not been dispatched should cause an error.

The monitor in Fig. 13 performs this analysis. The monitor creates a Succeed
state upon detection of a command dispatch (line 19), which then watches for
success or failure of the command. The monitor illustrates a few points. First of
all, as previously, we notice the statistics updating (lines 4 and 32). The monitor
also shows the definition of the key function (lines 6–9), which overrides its
definition in the Monitor class (where it returns None) to return the hash value
of an event. This is used for storing Succeed states in hash buckets for faster
lookup. As mentioned before, this corresponds to slicing as found in systems
such as MOP [25] and QEA [30]. A final comment concerns the definition of
the monitored function (lines 11–14), which is called as a transition condition
(line 21), returning true if a Succeed state exists in the monitor memory, with
appropriate command code and number. It is here used to flag if a command
succeeds or fails without a previous dispatch.

3.5 The Sample Rate Monitor

The last analysis reports, amongst other things, the rates with which chan-
nels change per second, measured for each channel in periods of 15 s, called
rate events. The data can be collected in two modes chosen by the user with
an option: (1) across the entire log, or (2) in so-called autopsy windows only.
Autopsy windows are 60 s periods where the spacecraft records autopsy infor-
mation in a buffer, which is then later dumped to a data product and sent to
ground, indicated by a recording off EVR at the end of the window. During
analysis, however, we do not know when a 60 s window begins until we see the
recording off EVR, complicating the analysis from a temporal point of view.
Events overlapping an autopsy window are considered relevant if they terminate

284 B. Duckett et al.

Fig. 12. The file uplink monitor.

within 60 s after the recording off EVR. The monitor reports in table format
statistics such as time periods of autopsy windows, rates of change for each
channel, and file compression rates.

Figure 14 shows fragments of this monitor. The main transition function
(lines 2–10) creates different kinds of states, depending on what the incoming
event is. Specifically an EventBegun (line 6, expiring on a 15 s timeout in line
19) when a channel is read, and a DumpBegun (line 10) when a autopsy win-
dow end has been detected (expiring on a 60 s timeout in line 28). Note that
rate event monitoring is not initiated in the 60 s after the autopsy recording off
event, ensured by a call of the dumping function (defined in a similar manner
as the monitoring function in Fig. 13 line 11) in the transition condition (line
5). Note how we record each 60 s autopsy window (line 9) upon detecting the
end of the window with a recording off event. Due to the fact that we only
know the windows at their end, we need to re-access all information produced

Space Telemetry Analysis with PyContract 285

Fig. 13. The command execution monitor.

during monitoring once we know the windows. PyContract stores all messages
produced with the methods error and info internally, which can be extracted
with a call of the method get_all_messages(). These are then processed again,
this time taking the now known windows into account. The fact that we have to
process the messages again illustrates a weakness in the PyContract library
wrt. expressing past time properties. Note, however, that even if PyContract
could express past time properties conveniently, there is still the data analysis
aspect which complicates matters.

286 B. Duckett et al.

Fig. 14. The sample rate monitor.

4 Conclusion

We presented an application of the RV library PyContract in Python to the
analysis of log files from NASA’s Europa Clipper flight computer. The analysis
had as purpose to evaluate functional as well as non-functional (performance)
properties. The effort demonstrates how such a temporal formalism can be used
for data analysis, where the objective is not only to produce Boolean yes/no
verdicts as in classical runtime verification, but also to produce richer forms of
data. PyContract supports writing temporal properties. Adding data analysis
to these becomes easy due to the fact that PyContract is a Python library,
allowing to mix temporal specifications with code. Current work includes further
development of the web-based interface using Dash, allowing easier construction
and application of monitors as plugins. The interface allows to select monitors
and logs to which they are applied. The logs are extracted from a database. The
interface allows convenient browsing (filtering and coloring) of logs as well as

Space Telemetry Analysis with PyContract 287

visualization and tabulation of results. Wrt. longer term future work, there are
rich opportunities for log analysis visualization.

References

1. Ancona, D., Franceschini, L., Ferrando, A., Mascardi, V.: RML: theory and practice
of a domain specific language for runtime verification. Sci. Comput. Prog. 205,
102610 (2021)

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_5

3. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_7

4. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 111–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77395-5_10

5. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Method. Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

6. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5_11

7. Castano, R., et al.: Operations for autonomous spacecraft. In: 2022 IEEE Aerospace
Conference (AERO). IEEE (2022)

8. Cheng, K.-T., Krishnakumar, A.: Automatic functional test generation using the
extended finite state machine model. In: 30th ACM/IEEE Design Automation
Conference, pp. 86–91 (1993)

9. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring of real-time
Java programs (tool paper). In: Proceedings of the 2009 Seventh IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM 2009),
Washington, DC, pp. 33–37. IEEE Computer Society (2009)

10. Dams, D., Havelund, K., Kauffman, S.: A Python library for trace analysis. In:
Dang, T., Stolz, V. (eds.) Proceedings of the 22nd International Conference on
Runtime Verification (RV). LNCS, vol. 13498, pp. 264–273. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17196-3_15

11. Dams, D., Havelund, K., Kauffman, S.: Runtime verification as documentation.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Software Engineering (ISoLA). LNCS, vol. 13702, pp.
157–173. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19756-7_9

12. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of TIME 2005: The 12th International Symposium on Temporal Repre-
sentation and Reasoning, pp. 166–174. IEEE (2005)

13. Dash. https://plotly.com/dash
14. Daut. https://github.com/havelund/daut
15. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Softw. Tools

Technol. Transf. 18(2), 205–225 (2016)

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-031-17196-3_15
https://doi.org/10.1007/978-3-031-19756-7_9
https://plotly.com/dash
https://github.com/havelund/daut

288 B. Duckett et al.

16. Europa Clipper Mission. https://europa.nasa.gov
17. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley (2010)
18. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-

dings (functional pearl). In: Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2014), New York, pp. 339–347.
Association for Computing Machinery (2014)

19. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

20. Havelund, K.: Data automata in Scala. In: 2014 Theoretical Aspects of Software
Engineering Conference, TASE 2014, Changsha, 1–3 Sept 2014, pp. 1–9. IEEE
Computer Society (2014)

21. Havelund, K.: Rule-based runtime verification revisited. Softw. Tools Technol.
Transf. 17(2), 143–170 (2015)

22. Kauffman, S., Havelund, K., Joshi, R.: nfer – a notation and system for inferring
event stream abstractions. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 235–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9_15

23. Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance tool
for Java. In: Proceedings of the 1st International Workshop on Runtime Verifica-
tion (RV 2001). Electronic Notes in Theoretical Computer Science, vol. 55, no. 2.
Elsevier (2001)

24. Kurklu, E., Havelund, K.: A flight rule checker for the LADEE lunar spacecraft.
In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020. LNCS, vol. 12545, pp.
3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64276-1_1

25. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Techniq. Technol. Transf. 249–289
(2011)

26. Pandas. https://pandas.pydata.org
27. PlantUML. http://plantuml.com
28. PyContract. https://github.com/pyrv/pycontract
29. Python Pattern Matching. https://peps.python.org/pep-0636
30. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.

In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_55

https://europa.nasa.gov
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-030-64276-1_1
https://pandas.pydata.org
http://plantuml.com
https://github.com/pyrv/pycontract
https://peps.python.org/pep-0636
https://doi.org/10.1007/978-3-662-46681-0_55

An Intermediate Language-Based Approach
to Implementing and Verifying Communicating

UML State Machines

Alexander Knapp(B)

Universität Augsburg, Augsburg, Germany
alexander.knapp@uni-a.de

Abstract. UML state machines provide a rich language for specifying and realis-
ing reactive and timed parts of software systems. When targeting diverse back-ends
for system integration, the interplay of the various language features make code
generation for different implementation and verification tasks challenging. We
describe the “State Machine Intermediate Language” Smile that combines con-
structs for capturing the main control flow of executing a UML state machine with
abstract primitives for communication with the environment and handling under-
lying data. Smile is at the basis of the UML translation tool Hugo/RT which can
generate Java and C++ code for implementations as well as Promela and timed
automata specifications for model checking in Spin and UppAal. We illustrate
Hugo/RT and Smile for different UML state machine features in several case
studies.

1 Introduction

In model-based software development, models as the central artefacts not only serve
as documentary specifications but are the source for code generation, system analysis,
and verification [5,11]. Typically, different model transformations have to be applied
for obtaining model views from different viewpoints, like executable code, quantitative
analysis, or model checking. The more these transformations share in their semantical
basis beyond the model syntax only, the more the results of the different views are aligned
and compatible. As in compiler design [1], intermediate representations and virtual run-
time environments may bridge the gap between the various targets and back-ends of the
model transformations [13].

We describe the “State Machine Intermediate Language” Smile for implement-
ing and verifying the state machine dialect of the “Unified Modeling Language”
(UML [15]) that is also part of the “Systems Modeling Language” (SysML [17]).
This behavioural model has evolved from ROOM charts that introduced the notion
of a “run-to-completion” (RTC) step [21,22]. Differing from Harel’s state charts [7],
when reacting to an event, a UML state machine only focuses on executing a transi-
tion from one state configuration to another and does not consider any other events
during the reaction. On the other hand, UML state machines comprise a rich vocabu-
lary for behaviour specification, like hierarchical states, orthogonal regions, compound
transitions, dynamic choices, or history states. The intermediate language Smile offers
constructs for capturing the main control flow of executing a UML state machine together
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 289–307, 2023.
https://doi.org/10.1007/978-3-031-40132-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_18&domain=pdf
http://orcid.org/0000-0002-4050-3249
https://doi.org/10.1007/978-3-031-40132-9_18

290 A. Knapp

Fig. 1. Overview of Hugo/RT

with abstract primitives for communication with a virtual UML environment that also
handles underlying data. Smile is at the basis of the open-source UML translation tool
Hugo/RT1, see Fig. 1: Hugo/RT reads a UML model from a standard “XML-based
Metamodel Interchange” (XMI) or a proprietary “UML Text” (UTe) file, transforms the
state machines of the UML model into Smile, and then generates Java and C++ code
for implementations as well as Promela and timed automata specifications for model
checking in Spin2 and UppAal3.

UML/SysML state machines have been widely employed in the model-based devel-
opment of reactive and embedded systems [11]. For their implementation, libraries and
internal domain-specific languages, like MSM4 or QP5; code generation, like Umple6;
or direct model-based execution, like xUML [19], have been considered. The “dynamic
metamodelling” approach [6] advocates to extend the abstract syntax of the UML meta-
model by semantic concepts that can be used in an operational semantics, which has
been taken up by the GEMOC initiative7 and OMG’s “Precise Semantics of UML State
Machines” [16]. For verification, mainly by model checking, a host of proposals support-
ing different sublanguages and offering rather various tool support exists—the survey
by É. André et al. [3] lists 24 translational approaches and 12 approaches based on a
separate operational semantics. For the case of simple, non-hierarchical state machines
executable state machine code has also been combined with monitoring and a model
checker for verification [4]. In contrast to these approaches, the Smile-based scheme
aims at providing a common, uniform semantical tier for supporting different translation
targets for implementation and verification.

1 https://bitbucket.org/knappale/hugo-rt/.
2 https://spinroot.com.
3 https://uppaal.org.
4 https://boost.org/doc/libs/release/libs/msm.
5 https://sourceforge.net/projects/qpc/.
6 https://umple.org.
7 https://gemoc.org.

https://bitbucket.org/knappale/hugo-rt/
https://spinroot.com
https://uppaal.org
https://boost.org/doc/libs/release/libs/msm
https://sourceforge.net/projects/qpc/
https://umple.org
https://gemoc.org

Implementing and Verifying Communicating UML State Machines 291

Synopsis. In Sect. 2, we briefly summarise the concrete and abstract syntax of commu-
nicating UML state machines as well as their semantics mainly by means of an example.
Section 3 introduces Smile and demonstrates its use in capturing one of the example’s
state machines. Hugo/RT’s overall translation process is described in Sect. 4 illustrating
also the Smile representation of some special UML features. Section 5 explains how
Hugo/RT translates Smile further into programming languages (Java, C++/Arduino)
and for model checkers (Spin, UppAal). Finally, Sect. 6 concludes and gives an outlook
to future work.

2 Communicating UML State Machines

We briefly recapitulate the main syntactic and semantic concepts of UML state machines
by means of modelling the commonly used case study of the “Generalised Railroad
Crossing” problem (GRC [8]; see, e.g., [9,14,18]): A gate shall be operated at a railroad
crossing for several tracks. Whenever a train passes the gate, the gate must be closed.
Moreover, within some tolerance, the gate must be open when not occupied; as soon
the gate initiates opening, it must become fully open and must stay open for a certain
period.

Fig. 2. “Generalised Railroad Crossing” timing annotations

The modelling problem, see Fig. 2, assumes that around the gate there are sensors
for each track indicating whether a train is entering (position A) or exiting (position E).
All trains pass this critical section around the gate from left to right. Inside the critical
section there is at most one train on any track, but trains on different tracks may travel
at different speeds. The time a train takes to pass from the entry sensor at A to the gate
at D is at least ta and at most Ta; the minimal resp. maximal time a train takes to pass
the gate from D to E is tg resp. Tg. The gate bars take the time gu resp. gd to go from
fully closed resp. open to fully open resp. closed. The period the gate has to stay open
is denoted by go.

Accounting for possible communication delays Δ ≥ 0, the gate has to start closing at
g+d = gd +Δ before the fastest train may reach the gate after passing A, i.e., at location
C. In order to avoid the gate opening only partly, the gate may only initiate opening
when at least the time g+uo = gu + go +Δ remains before the next closing is scheduled,
that is, when there is no train beyond location B (requiring that ta − g+d − g+uo > Δ).

292 A. Knapp

2.1 Modelling the GRC in UML

We model the GRC problem in UML by three classes Track, Gate, and Controller, that
also show dynamic behaviour specified by state machines, see Fig. 3.

Statically, every (instance of) Controller refers to a single Gate and, vice versa, every
Gate is controlled by a single Controller. Moreover, every Controller is connected to k
instances of Track, each Track knowing its Controller via ctrl and holding its number in
num. A Controller records the number of trains currently in the critical region in the
attribute trains. A Gate reacts to the signals open and close for opening and closing of
the gate. A Controller reacts to the signals enter(i) and exit(i) for an integer i reporting a
train entering or exiting the critical section on track i, as well as to the signals doOpen
and doClose for internal requests to open or close the gate.

Fig. 3. UML model of the “Generalised Railroad Crossing” problem

Implementing and Verifying Communicating UML State Machines 293

The dynamics of each instance of Gate, Track, and Controller is governed by a
separate instantiation of its respective state machine. The state machine for Gate shows
an initial pseudostate and four simple states Open, Closing, Closed, and Opening. The
transition from source state Open to target state Closing can only be fired when a signal
event for close is present as its trigger. The transition from Closing to Closed will be fired
when a time event occurs, which is raised after gd time units have elapsed since Closing
has been activated. The transitions from Closed to Open via Opening work analogously
such that, in particular, closing and opening a gate takes the required amount of time.

Analogously, the state machine for Track sojourns, once having activated Approach,
in this state at least for the time ta before firing the transition to Crossing and at most
the time Ta. The transition from NoTrain to Approach is triggered by a completion event
which occurs when all activities of a state, of which there are none in this case, have
finished. This transition also shows an effect, viz., that signal enter(num) is raised for
the instance of Controller referred to as ctrl. Hence, the state machines for the tracks
simulate the entering and exiting of trains in the critical section; the minimal time a train
may take for this distance is ta + tg, the maximal time is Ta + Tg.

Finally, the state machine for Controller shows an orthogonal composite state con-
sisting of several orthogonal regions. The upper k orthogonal regions, the ith region
handling the entering and exiting of a train on the ith track, all provide the same
behaviour: When a train on track i has entered the critical region, an internal signal
doClose requesting the closing of the gate is raised after ta − g+d − Δ, and when a train
on track i leaves the critical region an internal signal doOpen requesting the opening of
the gate is raised. The last orthogonal region actually handles closing and opening of the
gate: When in Open and receiving a signal event for doClose, a signal event for close to
the instance in gate is sent. However, when in Closed only a signal event for doOpen is
reacted to—should a signal event for doClose arrive in this state it is discarded by the
whole state machine as there is no other transition taking such an event as its trigger.
The transition fired by a signal event for doOpen has two possible target states, linked
by a junction pseudostate: If the guard trains == 0 is true on firing the transition indeed a
signal event for open on gate is raised and Open is activated; otherwise the other branch
is taken: Closed is first deactivated but becomes activated immediately again.

2.2 UML Metamodel and Semantics

The abstract syntax of the UML is captured by its metamodel (see [15]), which also forms
the basis for describing the meaning of a UML model. Figure 4 shows the main concepts
and relationships for UML state machines as supported by Hugo/RT and Smile.

294 A. Knapp

Fig. 4. Excerpt of the UML metamodel for state machines

A StateMachine consists of at least one top-level Region. Regions contain Vertexes
linked by Transitions; a Vertex may be a State or a Pseudostate. A State without inner
Regions is called simple otherwise it is composite; if it contains a single Region it is
simple composite, if several then orthogonal composite. Each Pseudostate has a kind,
which may be junction, choice, (shallow) history, fork, or join. Transitions can be chained
by connecting Pseudostates into compound transitions. This may start with a join for
synchronously exiting states in different orthogonal regions. Then some junctions and
choices may follow, where guards at junctions are evaluated before any effect along the
compound transition is executed and decisions at choices are taken dynamically based
on previously executed effects. A compound transition can have a fork as one of its
Pseudostates from which then different orthogonal regions are targeted. It can stop
at States or at a history for activating the most recently recorded State. A simple or
composite state is deactivated inside-out w.r.t. its regions, executing all exit Behaviors
in this order; conversely, a state is activated outside-in executing entry Behaviors. A
compound transition has a single Event as its trigger, which may be a signal, a call, a
time, or a completion; signal events are handled asynchronously, whereas call events
have to be acknowledged.

Semantically, the actual state of a state machine is given by its active state config-
uration and by the contents of its event pool. The active state configuration is the tree
of active states; in particular, for every active composite state one state in each of its
regions has to be active. The event pool holds the events that have not yet been handled
by the machine. In a state configuration, an event dispatcher chooses some event from
the pool, mainly in a queue-like fashion, but always prioritising completion and time
events; the event is then processed in a run-to-completion (RTC) step: First, a maximal

Implementing and Verifying Communicating UML State Machines 295

conflict-free, prioritised set of enabled compound transitions is chosen. A compound
transition is enabled if all of its source states are contained in the active state configu-
ration, its trigger is matched by the current event, and its guard evaluates to true; two
enabled compound transitions are in conflict if they share a source state; and a compound
transition takes priority over another if it starts at a deeper hierarchical level than the
other. From all the compound transitions in the set, the least common ancestor (LCA) is
determined that is the lowest composite state that contains all the compound transition’s
source and target states. The overall main source state, that is the direct substate of
the LCA containing the source states, is then deactivated, the transition’s actions are
executed, and its target states are activated. If there is no enabled compound transition,
the event may be marked as deferred in the active state configuration such that it is put
back into the event pool; otherwise the event is discarded.

3 SMILE

Smile (State Machine Intermediate Language) is an abstract guarded-command lan-
guage for capturing the semantics of UML state machines. The language provides a
simple set of control structures, like conditionals and loops, and several primitives for
interacting with a state machine’s environment of data and event pools. The language has
been modelled on Spin’s input language Promela (PROtocol MEta LAnguage). How-
ever, rather than yielding a general-purpose language with rich data structures, Smile
programs always are to be interpreted in a UML environment. This environment on the
one hand determines the particular implementation of the event pools and the commu-
nication between state machines. On the other hand, Smile delegates the evaluation of
UML expressions and the execution of UML actions to the surrounding implementation
of data attributes. Thus, Smile programs yield an alternative representation of UML
state machines with the same dependencies on an abstract execution environment as
state machines, but reducing the semantic control structures to simpler terms.

Table 1. Smile grammar

Stm ::= ; | Var = Expr; | Stm Stm | break;
| if (:: Expr -> Stm)∗ [:: else -> Stm] fi;

| do (:: Expr -> Stm)∗ [:: else -> Stm] od;

| execute(Actionuml); | initialisation(); | success(); | fail();
| fetch(); | acknowledge(); | defer(); | chosen();
| complete(Stateuml); | uncomplete(Stateuml);

| starttimer(Eventuml); | stoptimer(Eventuml);

Expr ::= true | false | Stateuml | Transitionuml | Var

| Expr == Expr | Expr != Expr | !Expr | Expr && Expr | Expr || Expr

| eval(Expressionuml) | match(Eventuml)

| isCompleted(Stateuml) | isTimedOut(Eventuml)

296 A. Knapp

Table 1 summarises the grammar of Smile. All non-terminals marked with uml

denote entities external to Smile. This comprises state, transition, and event constants,
as well as UML expressions and actions. The internal data state of a Smile program is
given by state, transition, and flag variables.

We do not detail the formal semantics of Smile programs, but rather illustrate the
language idioms by means of the simple UML state machine for Track depicted in Fig. 3
(in fact, the code presented does not differ much from what is produced by Hugo/RT, see
Sect. 4). All Smile code is to be executed in a virtual UML environment that contains an
event pool for each system object and representations of the object states as given by the
attribute valuations. The full state of each Track object thus consists of an integer value
for num, an object ctrl, an event pool for the completion event for NoTrain and the time
events after(ta, Ta) and after(tg, Tg), and, in particular, a state variable top_state
recording the currently active state.

An initialisation block calls the primitive initialisation() for setting up the
attributes, sets the top_state state to the constant <NoTrain>, and signals by the
primitive complete() that this state is immediately complete such that a completion
event is added to the event pool by the environment:
initialisation();
top_state = <NoTrain>;
complete(<NoTrain>);

The main loop for executing the remaining state machine amounts to fetching an event
from the object’s event pool and reacting to the selected event in a run-to-completion
step until termination; in fact, Track does not show a final state. An implementation
of the fetch() command has to respect the rules of UML event pools that require
completion events to be prioritised. The fetched event for Track must be one of the time
events or the only completion event. A conditional if . . . fi or an indefinite loop do . . .
od blocks if none of its branches can be chosen. On the other hand, also several branches
may be enabled such that an exhaustive execution has to consider backtrack points.
do
:: else ->

event = fetch();
if
:: match(event, <time Approach after [ta, Ta]>) -> . . .
:: match(event, <time Crossing after [tg, Tg]>) -> . . .
:: match(event, <completion NoTrain>) -> . . .
fi;

od;

The reaction to each of the events found by a match() first checks whether the
machine is in a state where this event can be consumed by an outgoing transition; other-
wise the event is discarded. Subsequently the state configuration is changed accordingly
executing the transition effects on the way. For the completion event for NoTrain, an enter

Implementing and Verifying Communicating UML State Machines 297

signal with the Track’s num has to be sent to the Track’s ctrl, a timer for the approaching
train has to be started and the configuration has to be updated to Approach:
if
:: top_state == <NoTrain> ->

execute(ctrl.enter(num));
starttimer(<time Approach after [ta, Ta]>);
top_state = <Approach>;

:: else -> ;
fi;

The primitive execute() delegates the handling of the attribute evaluation and the
sending proper to the environment. It is also the obligation of the environment to raise
a time event for after(ta, Ta) in between ta and Ta time units. The reaction to this time
event starts a new timer for the train crossing; the configuration is updated to Crossing:
if
:: top_state == <Approach> ->

starttimer(<time Crossing after [tg, Tg]>);
top_state = <Crossing>;

:: else -> ;
fi;

Finally, the reaction to the time event after(tg, Tg) sends the signal exit with the
Track’s num to the Track’s ctrl and moves to NoTrain, which is also immediately again
completed:
if
:: top_state == <Crossing> ->

execute(ctrl.exit(num));
top_state = <NoTrain>;
complete(<NoTrain>);

:: else -> ;
fi;

All the remaining Smile primitives also communicate with the surrounding UML
environment. The commands success() and fail() signal (un-)successful overall
execution; acknowledge()means an acknowledgement of the reception of an operation
call as the current event on a state machine; defer() puts the current event back to
the event pool; chosen() signals that some event has been consumed and not deferred
such that now deferred events may be re-considered; uncomplete() ensures that some
state is not marked as completed any more, stoptimer() that some timer cannot elapse
any more. For the expressions, eval() evaluates a UML expression; isCompleted()
checks whether a state is currently marked as complete; and isTimedOut() checks
whether some timer has elapsed.

4 Representing UML State Machines in SMILE

The translation of UML state machines into Smile as used by Hugo/RT directly gen-
erates code for executing a run-to-completion step as briefly summarised in Sect. 2.2.

298 A. Knapp

The template for this procedure acting on an active state configuration conf stored in
Smilestate variables is shown in Algorithm 1. We first discuss the transition selection
(steps) and the transition firing part (handleTransition) of RTC. Some more details on
handling the deferring and acknowledging of events as well as the treatment of choice
and history pseudostates are given in Sects. 4.1 to 4.3.

After fetching an event (1. 2 of Algorithm 1) a maximal conflict-free, prioritised
set of compound transitions, called a step, is chosen (1. 3); if there are no reacting
compound transitions, then step is the empty set. In Hugo/RT, the choice of a step
is achieved by a Smileif . . . fi conditional. All possibilities are computed by the
algorithm for steps given an active state configuration conf and the chosen event,
shown in Algorithm 2. The algorithm works like the computation of all configurations
in a prime event structure (cf. [23]): if some next compound transition (1. 7) is in
conflict with the previously selected transitions and also has a higher priority, then the
transition selection is only valid if the guard of the next transition is false. For orthogonal
regions all possible combinations of simultaneously enabled compound transitions are
thus considered. However, their number may rise exponentially with the number of
regions. For example, in the GRC Controller for k tracks, see Fig. 3, when disregarding
the parameters for enter and exit, there are 2k possibilities for each of the events.

In Hugo/RT’s translation, any trying to add a prioritised compound transition later
on is avoided by considering all the transitions “inside-out”, starting with the inner-
most transitions with the highest nesting level. Conflicts are detected by updating flags
r_chosen for all regions r and ensuring that no two transitions leaving the same region
are selected. Additionally, it is statically checked whether parameter conditions are
contradictory, such that for enter and exit only the following clauses remain:

Algorithm 1. Run-to-completion step
1 RTC(conf) ≡
2 event ← fetch()
3 step ε steps(conf, event)
4 if step = ∅ ∧ event ∈ deferred(conf)
5 then defer(event) fi
6 for transition ∈ step do
7 conf ← handleTransition(conf, transition) od
8 if isCall(event) ∧ event /∈ deferred(conf)
9 then acknowledge(event) fi

10 conf

Implementing and Verifying Communicating UML State Machines 299

Algorithm 2. Maximal conflict-free, prioritised set of (compound) transitions
1 steps(conf, event) ≡
2 {step | (guard, step) ∈ steps(conf, enabled(conf, event)) ∧ |= guard}
3 steps(conf, transitions) ≡
4 steps ← {(ff , ∅)}
5 for transition ∈ transitions do
6 for (guard, step) ∈ steps(conf, transitions \ {transition}) do
7 if inConflict(conf, transition, step)
8 then if higherPriority(conf, transition, step)
9 then guard ← guard ∧ ¬guard(transition) fi

10 else step ← step ∪ {transition}
11 guard ← guard ∧ guard(transition) fi
12 steps ← steps ∪ {(guard, step)} od od
13 steps

Algorithm 3. Compound transition handling
1 handleTransition(conf, transition) ≡
2 for state ∈ insideOut(exited(transition))
3 uncomplete(state)
4 for timer ∈ timers(state) do stopTimer(timer) od
5 execute(exit(state))
6 conf ← conf \ {state} od
7 execute(effect(transition))
8 for state ∈ outsideIn(entered(transition)) do
9 execute(entry(state))

10 for timer ∈ timers(state) do startTimer(timer) od
11 conf ← conf ∪ {state}
12 complete(state) od
13 conf

if
:: match(event, <send entering>) ->

if
:: Ctrl1_state == <Controller.Ctrl1.Away1> && eval(num == 0) -> . . .
:: Ctrl2_state == <Controller.Ctrl2.Away2> && eval(num == 1) -> . . .
:: else -> ;
fi;

:: match(event, <send exit>) ->
if
:: Ctrl1_state == <Controller.Ctrl1.Critical1> && eval(num == 0) -> . . .
:: Ctrl2_state == <Controller.Ctrl2.Critical2> && eval(num == 1) -> . . .
:: else -> ;
fi;

:: . . .
fi;

For firing all selected transitions Algorithm 3 is used. The generated code takes care
of deactivating all exited states and activating the entered states. The stopping of timers

300 A. Knapp

and the marking of states as not being completed is needed if a state is not left by the
dedicated time or completion event and discards pending events in the event pool.

The separation of transition selection and transition handling reflects the general
UML procedure of the run-to-completion step but may lead to rather inefficient code.
Hugo/RT mitigates this by employing partial evaluation and data-flow analysis to infer
possible values of its state, transition, and flag variables and to reduce the code
accordingly. For example, the generated code for the Controller is reduced from 366 to 99
lines of Smile code. However, reduction is sometimes more limited if more complicated
UML patterns are used, see Sect. 4.2.

4.1 Deferring and Acknowledging

Calls of operations, as opposed to the raising of signals, have to be handled synchronously
such that the callee acknowledges the processing of a call to the caller. While waiting
for this acknowledgement the caller is suspended; in particular, any self-call leads to
a deadlock of the caller. An acknowledgement is also sent if the call event is simply
discarded since it cannot be handled in the active state configuration. If, however, the
call event is marked as deferred, the acknowledgement is delayed (1. 4 and 1. 8 of
Algorithm 1).

Fig. 5. UML model for the “Dining philosophers” problem

Consider, for example, the model of the well-known “Dining Philosophers” problem
(see [12,20]) in Fig. 5. Only if a Fork fetches a call event for take in Free, it will send
an acknowledgement such that the calling Philosopher makes progress. The Smile code
generated for the completion of the state Thinking of a Philosopher is
if
:: top_state == <Thinking> ->

execute(left.take(this)); execute(right.take(this));
top_state = <Eating>; complete(<Eating>);

:: else -> ;
fi;

Implementing and Verifying Communicating UML State Machines 301

Waiting for an acknowledgement has to be handled by the surrounding UML envi-
ronment when a call is executed. The Smile code generated for handling a call to take
in a Fork combines deferring and acknowledging:
if
:: top_state == <Free> ->

chosen(); top_state = <Taken>; acknowledge(event);
:: else -> defer(event);
fi;

Here, the primitive chosen() tells the UML environment that some event has
been consumed and that hence deferred events may be reconsidered. Without this hint,
an event may be repeatedly deferred and then immediately reconsidered by the event
dispatcher.

4.2 Choice Pseudostates

A compound transition may target one or several choice pseudostates. When reaching a
choice some outgoing (compound) transition has to be chosen based on the guards; if
none is enabled, the current execution fails. The enabledness of an outgoing transition,
however, may depend on the previous execution sequence of transition effects in the
same RTC step. As transitions outgoing from a choice may leave the containing state,
conflicts may arise with the previously chosen transitions. Whether a conflict will arise
is statically undecidable, in general, since transitions between choice pseudostates make
for a Turing complete language. For dynamic conflict detection, the regions r left
by transitions are recorded in flag variables r_chosen. Before executing a transition
outgoing from a choice, the flags for regions in conflict with the main source state of the
transition are checked; if a conflict is detected the execution fails.

Fig. 6. Sample UML state machine with choice pseudostate

Consider the (rather artificial) example in Fig. 6. If event e occurs in the configuration
containing S11 and S21, the only maximal conflict-free set of compound transitions
leads to S22 and the choice pseudostate, leaving S11 and S21. If x is greater than zero,
no conflict will occur, as the transition from the choice to S12 does not leave any new
state. If x is less than zero, a conflict is bound to occur, as now the transition from the
choice to S has to be fired, which also leaves C, in conflict with S21. The most intricate
case occurs when x is zero on leaving S11 and S21: A conflict will only happen, if the

302 A. Knapp

transition from S21 to S22 is fired before the choice is left. This transition selection for
event e and the subsequent transition firing are represented in Smile as follows:
if
:: top_state == <C> ->

if
:: R1_state == <C.R1.S11> -> R1_transition = <C.R1.S11_2_C.R1.Choice>;

if
:: R2_state == <C.R2.S21> -> R2_transition = <C.R2.S21_2_C.R2.S22>;
:: else -> ;
fi;

:: R1_state != <C.R1.S11> && R2_state == <C.R2.S21> ->
R2_transition = <C.R2.S21_2_C.R2.S22>;

:: else -> ;
fi;
do
:: R1_transition == <C.R1.S11_2_C.R1.Choice> ->

R1_transition = <empty>; execute(x++;);
R1_state = <C.R1.Choice>; R1_chosen = false;
if
:: eval(x > 0) ->

if :: !top_chosen || R2_chosen -> ; fi;
R1_chosen = true; top_chosen = true; R1_state = <C.R1.S12>;

:: eval(x <= 0) ->
R1_state = <empty>; R2_state = <empty>; if :: !top_chosen -> ; fi;
top_chosen = true; top_state = <S>;

:: !eval(x <= 0) && !eval(x > 0) -> fail();
fi;

:: R2_transition == <C.R2.S21_2_C.R2.S22> ->
R2_transition = <empty>; execute(x--;);
if :: R2_chosen && !top_chosen || !R2_chosen && R1_chosen -> ; fi;
R2_chosen = true; top_chosen = true; R2_state = <C.R2.S22>;

:: R1_transition == <empty> && R2_transition == <empty> -> break;
od;
top_chosen = false; R1_chosen = false; R2_chosen = false;

:: else -> ;
fi;

4.3 History Pseudostates

A history pseudostate in a region records the state of this region which has been last
active when the region is left; if this last active state is a final state, the history pseudostate
is reinitialised to being empty. When reaching such a pseudostate on a transition the last
active state is restored and activated. If, however, there is no state recorded then either
there are outgoing transitions from the history and one of these is fired or the default
entry of the history’s region is used, i.e., some transition outgoing from the region’s
initial pseudostate is fired.

Consider the “CD Player” example in Fig. 7 (see [2,24]). The reaction to play has to
consider the history in the state Busy and is represented in Smile as follows:

Implementing and Verifying Communicating UML State Machines 303

Fig. 7. UML model of the “CD Player”

if
:: top_state == <Busy> ->

if
:: Busy_history == <empty> ->

Busy_state = <Busy.Playing>; Busy_history = <Busy.Playing>;
complete(<Busy.Playing>);

:: Busy_history == <Busy.Paused> -> Busy_state = <Busy.Paused>;
:: Busy_history == <Busy.Playing> ->

Busy_state = <Busy.Playing>; complete(<Busy.Playing>);
fi;

:: top_state == <Final> -> ;
:: eval(present) && top_state == <NotPlaying> ->

NotPlaying_state = <empty>; top_state = <Busy>; Busy_state = <Busy.Playing>;
Busy_history = <Busy.Playing>; complete(<Busy.Playing>);

:: eval(!present) && top_state == <NotPlaying> ->
NotPlaying_state = <NotPlaying.Closed>;

fi;

5 Code Generation and Verification

For a Smile-based generation of executable code from UML state machines in a par-
ticular programming language it suffices to represent the control structures provided by
Smile in the target language, to support eval and execute for some UML expression
and action language, and to implement the remaining Smile primitives by an event pool
library.

Hugo/RT directly supports Java and C++ in this manner. Each object of a class with a
state machine is executed in a separate thread and all these threads communicate through
the event pools attached to the objects. The task code of each thread implements the
main loop of fetching and matching, the reaction to each event is delegated to different
methods for readability. Such a split can be conveniently obtained by employing partial
evaluation for all possible events on the overall Smile code. The event pool library in
both cases supports timers and realises a queue in which completion and time events are

304 A. Knapp

prioritised. Although each active object is represented by a thread, the mutual exchange
of synchronous call events may lead to a deadlock; for a self-call a deadlock is inevitable
(see Sect. 4.1) and Hugo/RT issues a warning about this fact.

Hugo/RT also offers a more specialised translation for producing code that can be
directly executed on an Arduino8. The model of execution on an Arduino, however,
is single-threaded. Unlike the general C++-translation, several communicating state
machines are thus run in a round-robin fashion. Moreover, synchronous operation calls
now have to be handled differently, as the caller would always keep polling for an
acknowledgement from the callee and thus would block all machines. Hugo/RT hence
generates additional events for acknowledging operation calls and splits the Smile code
into resumption blocks where a caller would block. For the Philosopher’s transition from
Thinking to Eating (see Fig. 5) three methods for first handling the completion event and
then resuming after acknowledgements are generated:
void Philosopher::completion_Thinking() {

if (top_state == THINKING) {
ep->waitforacknowledgement(ackLEFT_TAKE_THIS__);
this->left->take(ep, this);

}
}

void Philosopher::resume_left_take_this__() {
ep->waitforacknowledgement(ackRIGHT_TAKE_THIS__);
this->right->take(ep, this);

}

void Philosopher::resume_right_take_this__() {
top_state = EATING;
ep->insertcompletion(COMPLETION_EATING);

}

For verifying communicating UML state machines, Hugo/RT implements a Smile-
based generation of input for the model checker Spin (for untimed Linear Time Logic,
LTL) and the model checker UppAal (for timed Computation Tree Logic, TCTL).
Generating Promela code, the input language of Spin, is rather straightforward as
Smile has been designed along the lines of Promela. Only the event pool functionality
has to be provided, where Promela’s channel functionality can be reused directly. The
translation of Smile into timed automata as used by UppAal is somewhat more expensive
as all control structures have to be turned into automata terms which often leads to a
thicket of locations and transitions. The translation of the Controller of the GRC problem
(see Fig. 3), for instance, results in 28 locations and 68 transitions. Hugo/RT splits the
event pool of a state machine into an internal buffer for the prioritised completion and
time events and an external separate timed automaton for buffering signal and call events.
Each event in the external buffer can be delayed by an adjustable amount of time, only
events with the same sender are delivered in their order of arrival. Also the sizes of both
buffers can be adjusted, where the size of the external buffer grows quadratically with
its number of places.

8 https://arduino.cc.

https://arduino.cc

Implementing and Verifying Communicating UML State Machines 305

For the properties to be verified, Hugo/RT offers special variants of LTL and TCTL
using UML terms directly as well as UML interactions [10] for describing timed traces
of events. For example, the safety property of the GRC can be expressed as
AG (track1.inState(Crossing) or track2.inState(Crossing)) implies

gate.inState(Closed);

It is verified with UppAal 64 4.1.26-2 for two tracks with all internal and external buffer
sizes set to 2 on an i7-system with 2.80GHz and 16GB in 0.13 s. That the gate stays
open at least go time units can be expressed by a UML interaction that asks for an
execution with less time elapsed between a gate.open() and a gate.close(); here UppAal
reports that this impossible in 0.37 s.

6 Conclusions

We have described the “State Machine Intermediate Language” Smile and its use in
the UML translation tool Hugo/RT. On the one hand, Smile is an abstract guarded-
command language for capturing the main control flow of the run-to-completion step
of UML state machines. On the other hand, Smile comprises primitives for delegating
object data handling and the communication between state machines via event pools to
an underlying UML environment. Hugo/RT uses Smile as a common abstraction for
aligned and compatible translations of UML state machines to Java, C++, Spin, and
UppAal from a single source.

Smile should be extended to cover the remaining UML state machine features,
most notably activity Behavior that runs while a state machine is in a state, and entry
and exit point Pseudostates for structuring compound transitions. The flexibility of the
translation scheme offered by Smile, like in which order state entry and exit Behavior is
executed on a compound transition, should be made available to the user, for example
by using templates. More generally, the intermediate representation could be made a
stand-alone language such that external translation could start with (a) Smile.

Dedication. This article is dedicated to Jan Peleska on the occasion of his 65th birthday.
It is a pleasure to collaborate now with him on SysML 2, in particular, and modelling, in
general. Jan is a rôle model both for making deep theoretical research insights applicable
in usable tools and as an academic teacher explaining all topics profoundly and vividly.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools,
2nd edn. Addison-Wesley, Boston (2006)

2. André, É., Benmoussa, M.M., Choppy, C.: Translating UML state machines to coloured Petri
nets using acceleo: a report. In: Pang, J., Liu, Y. (eds.) Proceedings of 3rd International Work-
shop Engineering Safety and Security Systems (ESSS). Electrics, Processing and Theoretical
Computer Science, vol. 150, pp. 1–7 (2014). https://doi.org/10.4204/EPTCS.150.1

3. André, É., Liu, S., Liu, Y., Choppy, C., Sun, J., Dong, J.S.: Formalizing UML state machines
for automated verification – a survey (2014). draft, https://lipn.fr/~andre/UML-SMD-survey.
pdf

https://doi.org/10.4204/EPTCS.150.1
https://lipn.fr/~andre/UML-SMD-survey.pdf
https://lipn.fr/~andre/UML-SMD-survey.pdf

306 A. Knapp

4. Besnard, V., Teodorov, C., Jouault, F., Brun, M., Dhaussy, P.: Unified verification and mon-
itoring of executable UML specifications. Softw. Syst. Model. 20(6), 1825–1855 (2021).
https://doi.org/10.1007/s10270-021-00923-9

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering, Morgan & Claypool Publ. (2012). https://doi.
org/10.2200/S00441ED1V01Y201208SWE001

6. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: a graphical
approach to the operational semantics of behavioral diagrams in UML. In: Evans, A., Kent,
S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-40011-7_23

7. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

8. Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: a case study in formal ver-
ification of real-time systems. In: Proceedings of 15th IEEE Real-Time Systems Symposium
(RTSS), pp. 120–131. IEEE (1994). https://doi.org/10.1109/REAL.1994.342724

9. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and collaborations.
In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–414. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_23

10. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T. (ed.) MODELS
2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-69489-2_6

11. Kordon, F., Hugues, J., Canals, A., Dohet, A. (eds.): Embedded Systems: Analysis and
Modeling with SysML, UML and AADL, Wiley-ISTE (2013)

12. Liu, S., et al.: A formal semantics for complete UML state machines with communications. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38613-8_23

13. Mellor, S.J., Scott, K., Uhl, A.: MDA Distilled: Principles of Model-driven Architecture.
Addison-Wesley Professional, Boston (2004)

14. Niewiadomski, A., Penczek, W., Szreter, M.: A new approach to model checking of UML
state machines. Fund. Inform. 93(1–3), 289–303 (2009). https://doi.org/10.3233/FI-2009-
0103

15. Object Management Group: Unified Modeling Language. Standard formal/2017-12-05, OMG
(2017). https://www.omg.org/spec/UML/2.5.1

16. Object Management Group: Precise semantics of UML state machines. Standard formal/2019-
05-01, OMG (2019). https://www.omg.org/spec/PSSM/1.0

17. Object Management Group: Systems Modeling Language. Specification ptc/22-08-02, OMG
(2022) https://www.omg.org/spec/SysML/1.7

18. Okalas Ossami, D.D., Mota, J.M., Thiry, L., Perronne, J.M., Boulanger, J.L., Mariano, G.:
A method to model guidelines for developing railway safety-critical systems with UML. In:
Filipe, J., Shishkov, B., Helfert, M. (eds.) Proceedings of 2nd International Conference on
Software and Data Technologies (ICSOFT), vol. SE, pp. 236–243. INSTICC Press (2007)

19. Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I.: Model Driven Architecture with
Executable UML. Cambridge University Press, Cambridge (2004)

20. Rodríguez, R.J., Åke Fredlund, L., Herranz, Á.: From UML state-machine diagrams to Erlang.
In: Proceedings of 13th Spanish Conference on Programming and Computer Languages
(PROLE), pp. 288–299 (2013)

21. Selic, B.: An efficient object-oriented variation of the statecharts formalism for distributed
real-time systems. In: Agnew, D., Claesen, L.J.M., Camposano, R. (eds.) Proc. 11th IFIP
WG10.2 International Conference on Computer Hardware Description Languages and their
Applications (CHDL), IFIP Transactions, vol. A-32, pp. 335–344. North-Holland (1993)

https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1007/3-540-40011-7_23
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/REAL.1994.342724
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.3233/FI-2009-0103
https://doi.org/10.3233/FI-2009-0103
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/PSSM/1.0
https://www.omg.org/spec/SysML/1.7

Implementing and Verifying Communicating UML State Machines 307

22. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley Profes-
sional Computing, Wiley, Hoboken (1994)

23. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Semantic Modelling, Handbook of Logic in Computer Science,
vol. 4, pp. 1–148. Clarendon Press (1995)

24. Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state machines. In:
Proceedings of 4th International Conference on Secure Software Integration and Reliability
Improvement, Companion, vol. pp. 1–7 (2010). https://doi.org/10.1109/SSIRI-C.2010.11

https://doi.org/10.1109/SSIRI-C.2010.11

Polynomial Formal Verification of Complex
Circuits Using a Hybrid Proof Engine

Alireza Mahzoon1(B) and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, Bremen, Germany
{mahzoon,drechsler}@uni-bremen.de

2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract. The size and complexity of digital circuits are increasing; thus,
they are becoming more and more error-prone. In order to prevent the bugs
from escaping to silicon, formal verification is a mandatory and impor-
tant phase after the design. In particular, Polynomial Formal Verification
(PFV) has gotten a lot of attention in recent years, since it makes the ver-
ification process scalable and predictable in terms of memory usage and
run-time. However, applying PFV is not always easy, especially when it
comes to complex circuits.

In this paper, the concept of PFV is reviewed. Then, we introduce a
hybrid proof engine to attack the problemof verifying complexmodern sys-
tems in polynomial space and time. The engine takes advantage of several
verification techniques, such as combinational equivalence checking based
on bit-level approaches, like SAT and Binary Decision Diagrams (BDDs),
as well as word-level verification based on e.g. Symbolic Computer Alge-
bra (SCA) andWord-Level Decision Diagrams (WLDDs). The correctness
of each block or system task can be ensured in polynomial time using a
specific verification technique from the environment. Thus, we overcome
the shortcomings of using only one verification method and pave the way
toward polynomial verification of highly complex architectures.

Keywords: Polynomial Formal Verification · Complexity · Proof
Engine · Binary Decision Diagram · Symbolic Computer Algebra

1 Introduction

Recently, the verification community has achieved many successes in proving the
correctness of a wide variety of digital circuits. Several formal methods based
on equivalence checking, model checking, and theorem proving have been pro-
posed to verify both combinational and sequential circuits. Particularly, the for-
mal verification of arithmetic circuits has gotten a lot of attention due to the
high complexity and big size of these circuits: (a) Binary Decision Diagram
(BDD) [21] and SAT-based [22] verification methods report very good results
for different types of adder architectures, (b) Multiplicative Binary Moment Dia-
grams (*BMDs) [4,13] are used to verify multipliers, and (c) Symbolic Computer
Algebra (SCA) [15,20,25] is employed to verify multipliers and dividers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 308–319, 2023.
https://doi.org/10.1007/978-3-031-40132-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_19&domain=pdf
http://orcid.org/0000-0001-9342-1098
http://orcid.org/0000-0002-9872-1740
https://doi.org/10.1007/978-3-031-40132-9_19

PFV of Complex Circuits Using a Hybrid Proof Engine 309

However, the main shortcoming of these techniques is unpredictability in
performance, leading to several verification problems:

– It cannot be predicted before actually invoking the verification tool whether
it will successfully terminate or run for an indefinite amount of time.

– The scalability of these techniques remains unknown, i.e., it is not predictable
how much the run-time and the required memory increase when the size of
the circuit grows.

– It is not possible to compare the performance of verification methods for a
specific design and choose the best one.

In order to resolve the unpredictability of a verification method, its time and
space complexities have to be calculated. Knowing the complexity bounds for a
verification technique alleviates the three aforementioned verification problems.
We are particularly interested in space and time complexities with the smallest
possible polynomial order, i.e. O(nc), where n is a circuit parameter (e.g. the
number of input bits) and c is a positive number. The concept of Polynomial
Formal Verification (PFV) was first introduced in [6], where the author proved
that PFV can be applied to three adder architectures using BDDs. Shortly, the
complexity bounds for the verification of various circuits were calculated and new
PFV techniques were proposed. A formal verification method with polynomial
complexity bounds (time and space), where the exponent in the polynomial is
not too high, is scalable and can be carried out successfully for different circuit
sizes.

Modern digital circuits consist of several sub-components. For example, an
Arithmetic Logic Unit (ALU) is made of several sub-components to carry out
logic and arithmetic operations. It is usually the case that a monolithic proof
engine cannot ensure the correctness of the entire circuit in polynomial space and
time. For example, a word-level proof engine cannot be used for the PFV of the
entire ALU. In this paper, we propose a hybrid proof engine to make the PFV
of complex modern systems possible. The engine takes advantage of both bit-
and word-level formal approaches. Thus, the correctness of each block or system
task can be ensured in polynomial space and time using a specific verification
approach from the environment. We take advantage of two case studies, i.e., an
ALU and a structurally complex multiplier, in order to demonstrate the success
of our hybrid proof engine in PFV of complex circuits. It is an important step
toward PFV of highly complex designs, e.g., Central Processing Units (CPUs),
Digital Signal Processing (DSP) blocks, and AI-synthesized architectures.

1.1 Related Works

In the last few years, researchers have come up with various PFV methods to
resolve the verification unpredictability. They involve 1) proving the polynomial
bounds for existing verification methods and 2) improving and extending existing
formal methods to obtain polynomial upper-bound complexities [10].

PolyAdd [6] for the first time proved that the formal verification of three
adder architectures (i.e., ripple carry adder, conditional sum adder, and carry

310 A. Mahzoon and R. Drechsler

look-ahead adder) is possible in polynomial time using BDDs. The proof is based
on the fact that underlying BDDs remain polynomial during the whole construc-
tion process. However, PolyAdd did not provide the upper-bound complexities.
The authors of [18] and [19] extended PolyAdd by obtaining the upper-bound
time complexities of conditional sum adder and parallel prefix adders (i.e., serial
prefix adder, Ladner-Fischer adder, and Kogge-Stine adder). They calculated the
time complexities by adding up the computational complexity of If-Then-Else
(ITE) operation in each step of the symbolic simulation. Formal verification
of AI-generated prefix adders in polynomial time was investigated in [9]. The
authors of [12] proved that PFV of a simple ALU, consisting of arithmetic and
logic operations, is possible. Authors of [23] focused on the PFV of approxi-
mate adders. They proved that the upper-bound time complexities of verifying
approximate ripple carry adder, conditional sum adder, and carry look-ahead
adder, as well as handcrafted approximate adders, are polynomial using BDDs.

The authors of [5,17] proposed a BDD-based verification technique to ensure
the correctness of multipliers. They also proved that the output BDD sizes are
polynomial. However, they did not calculate the verification complexity. The
work of [16] considered the PFV of a multiplier for the first time. The authors
demonstrated that the verification of a Wallace-tree like multiplier can be car-
ried out in polynomial space and time using *BMDs. The proof was extended
by [1] to arithmetic circuits consisting of multiplication and addition operations.
Moreover, the authors showed that PFV can be also performed using SCA. The
authors of [11] proved that SCA-based methods have exponential upper-bound
complexities when it comes to verifying structurally complex multipliers. Then,
they came up with a hybrid formal method based on SCA and BDDs to achieve
polynomial bounds.

In addition to arithmetic circuits, there have been some efforts to make PFV
possible for other types of circuits. The authors of [8] and [7] proved that ensur-
ing the correctness of symmetric functions and tree-like circuits is possible in
polynomial space and time using BDDs. The work of [24] proposed two methods
to generate polynomially verifiable circuits for an approximate function.

In this paper, we highlight the limitations of a monolithic proof engine in
PFV of complex digital circuits. Then, we propose a hybrid proof engine that
takes advantage of bit- and word-level verification approaches to overcome these
limitations.

2 Background

In this section, we first review the bit-level verification methods with a focus on
BDDs. Then, we give an overview of word-level methods, particularly SCA.

2.1 Verification Using Bit-Level Techniques

In a bit-level verification method, a circuit is described in the Boolean domain,
i.e., the functions receive the intermediate and input signals as individual

PFV of Complex Circuits Using a Hybrid Proof Engine 311

Boolean variables and return the outputs in the Boolean domain as well. The ver-
ification method based on BDDs is one of the examples of bit-level verification.
In this section, we focus on BDD-based verification.

We first briefly summarize some basics of BDD:

– Binary Decision Diagram (BDD): a directed, acyclic graph whose nodes
have two edges associated with the values of the variables 0 and 1. A BDD
contains two terminal nodes (leaves) that are associated with the values of
the function 0 or 1.

– Ordered BDD (OBDD): a BDD, where the variables occur in the same
order along each path from the root to a leaf.

– Reduced OBDD (ROBDD): an OBDD that contains a minimum number
of nodes for a given variable order.

We refer to ROBDD as BDD in the rest of the paper, since it is the canonical
representation that is used in the verification of arithmetic circuits.

The ITE operator (If-Then-Else) [2] is used to calculate the results of the
logic operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f ∧ h), (1)

The basic binary operations can be presented using the ITE operator:

f ∧ g = ITE(f, g, 0),
f ∨ g = ITE(f, 1, g),
f ⊕ g = ITE(f, g, g),

f = ITE(f, 0, 1). (2)

In order to formally verify a circuit, we need to have the BDD representation
of the outputs. Symbolic simulation helps us to obtain the BDD for each primary
output. In a simulation, an input pattern is applied to a circuit, and the resulting
output values are observed to see whether they match the expected values. On
the other hand, symbolic simulation verifies a set of scalar tests (which usually
covers the whole input space) with a single symbolic test. Symbolic simulation
using BDDs is done by generating corresponding BDDs for the input signals.
Then, starting from primary inputs, the BDD for the output of a gate (or a
building block) is obtained using the ITE operation. This process continues until
we reach the primary outputs. Finally, the output BDDs are evaluated to see
whether they match the BDDs of the circuit.

2.2 Verification Using Word-Level Techniques

In a word-level verification method, a circuit is described in the integer domain,
i.e., the functions receive the intermediate and input signals as individual
Boolean variables and return the outputs in the integer domain. The verification
method based on SCA is one of the examples of word-level verification.

We now summarize some basics of SCA:

312 A. Mahzoon and R. Drechsler

Fig. 1. Half-adder

– Monomial: power product of the variables, i.e. M = xa1
1 xa2

2 . . . xan
n , where

ai ≥ 0.
– Polynomial: finite sum of monomials, i.e. P = c1M1 + · · · + cjMj with

coefficients in field k.
– Division: Assuming p is a polynomial and F is a set of polynomials, the

division of p by F is denoted by p
F−→ r, where r is called a remainder.

The goal of SCA-based verification is to formally prove that all signal assign-
ments consistent with the gate-level or AND Inverter Graph (AIG) representa-
tion evaluate the Specification Polynomial (SP) to 0. The SP determines the
word-level function of an arithmetic circuit based on its inputs and outputs,
e.g. for the half-adder of Fig. 1 SP = 2C + S − (A + B), where 2C + S repre-
sents the word-level representation of the 2-bit output, and A+B represents the
addition of the 1-bit inputs.

Before verification, the gates of the circuit should be modeled as polynomials
describing the relation between inputs and outputs. If the circuit is built from
basic logic gates (e.g., NOT, AND, OR, and XOR), four different operations
might happen in the circuit. Assuming z is the output, and a and b are the
inputs of a gate, the polynomials for the basic logic gates are as follows:

z =¬a ⇒ pg := z − 1 + a,

z =a ∧ b ⇒ pg := z − a · b,
z =a ∨ b ⇒ pg := z − a − b+ a · b,
z =a ⊕ b ⇒ pg := z − a − b+ 2a · b. (3)

The extracted gate polynomials are in the form Pg = x− tail(Pg), where x is
the gate’s output, and tail(Pg) is a function based on the gate’s inputs. Similarly,
the polynomials for the nodes can be extracted in an AIG representation (see [20,
26]).

Based on the Gröbner basis theory, all signal assignments consistent with the
AIG evaluate the specification polynomial SP to 0, iff the remainder of dividing
SP by the gate polynomials is equal to 0 (see [15] for more details).

PFV of Complex Circuits Using a Hybrid Proof Engine 313

The step-wise division of SP by gate polynomials for the half-adder of Fig. 1
is as follows:

SP := 2C + S − (A+B),

SP
PAND−−−−→ SP1 = 2AB + S − (A+B),

SP1
PXOR−−−−→ r = 0. (4)

Since the remainder is zero, the circuit is bug-free. In arithmetic circuits,
dividing SPi by a gate polynomial Pgi = xi − tail(Pgi) is equivalent to substi-
tuting xi with tail(Pgi) in SPi. For example, dividing SP1 by PXOR in Eq. (4)
is equivalent to substituting S with tail(PXOR) = A+B− 2A ·B in SP1. In the
results, we always replace powers xai

i with ai > 1 by xi, since xi can only take
values from {0, 1}. In the theory, this corresponds to adding x2

i − xi to the gate
polynomials. The process of step-wise division (substitution) is called backward
rewriting.

3 PFV Using a Hybrid Proof Engine

In this section, we first introduce our hybrid proof engine that uses both bit- and
word-level approaches for PFV. Then, we present two case studies to illustrate
the applications of our hybrid proof engine.

3.1 Overview

Despite the progress in PFV of various circuits, most of the works are still lim-
ited to the polynomial verification of individual components, e.g., adders, and
are based on a monolithic proof engine. Thus, the PFV of complex systems,
consisting of many different sub-components, is an almost unexplored area. The
challenge originates from the fact that a verification method (e.g., equivalence
checking using BDDs) might verify a sub-component (e.g., an adder) in poly-
nomial time but have an exponential verification complexity for another sub-
component (e.g., a multiplier).

We propose a hybrid proof engine that integrates both bit- and word-level
approaches in an environment. As a result, the verification is not limited to a
single formal method. Each sub-component or system task can be verified using
a suitable formal approach that ensures PFV. Consequently, PFV can be applied
to complex circuits which could not be verified using a single formal method in
polynomial space and time. We take advantage of BDDs and SCA as our bit-
level and word-level verification methods in our hybrid proof engine, since their
polynomial upper-bounds have been proven for a wide variety of circuits (see
e.g., [1,11,18,19]).

314 A. Mahzoon and R. Drechsler

Fig. 2. Symbolic representation of the ALU

Table 1. List of supported operations

s2 s1 s0 function

0 0 0 0 . . . 0

0 0 1 b − a

0 1 0 a − b

0 1 1 a+ b

1 0 0 a × b

1 0 1 a ⊕ b

1 1 0 a ∨ b

1 1 1 a ∧ b

3.2 Case Study I: PFV of an ALU

An ALU is a combinational digital circuit that performs arithmetic and bitwise
operations on integer binary numbers. The type and the number of supported
operations in an ALU depend on the application. Figure 2 shows the symbolic
representation of a general ALU. It receives two n-bit inputs a and b. The oper-
ation between the inputs is determined by an m-bit select. Finally, the result of
the operation is returned as a 2n-bit output.

In this paper, we consider an ALU with 8 operations, i.e. the select signal
has 3 bits. The complete list of supported operations is depicted in Table 1. The
ALU can perform three arithmetic operations (i.e., addition, subtractions, and
multiplication) as well as three bitwise logic operations (i.e., XOR, OR, and
AND).

The addition and subtraction are implemented based on the carry look-ahead
algorithm. On the other hand, the architectures for the three stages of the mul-
tiplier (see Fig. 3) are as follows: simple partial product generator, array, and
ripple carry adder. The multiplier is structurally simple, since the second and
third stages are only made of half-adders and full-adders.

We now discuss the results of verifying the ALU using a monolithic proof
engine based on BDDs and SCA:

PFV of Complex Circuits Using a Hybrid Proof Engine 315

Fig. 3. Multiplier structure

– BDD-based verification reports very good results when it comes to ensuring
the correctness of various adder architectures. It has been proven in [6] that
carry look-ahead adder can be verified in polynomial space and time using
BDDs. PFV can be also applied to the subtractor, since it is built by adding
XOR gates to the inputs of the adder. However, BDD-based verification runs
out of memory when it comes to the verification of multipliers. It has been
proven in [3] that the size of output BDDs becomes exponential for a multi-
plier. As a result, a monolithic proof engine based on BDDs cannot be used
for the PFV of the entire ALU.

– SCA-based verification has shown very good results for the verification of
structurally simple multipliers. The experimental results demonstrated the
efficiency of SCA-based verification in proving the correctness of million-gate
multipliers [20]. In addition, it has been shown that the PFV of structurally
simple multipliers is possible using SCA [11]. However, SCA-based methods
run quickly out of memory when it comes to the verification of adders that
are not only made of half-adders and full-adders. The authors of [11] have
proven that the size of intermediate polynomials becomes exponential during
the verification of a carry look-ahead adder. As a result, a monolithic proof
engine based on SCA cannot be used for the PFV of the entire ALU.

We can overcome the limitations of monolithic proof engines in verifying
the ALU by using our hybrid proof engine. The verification of logic operations
(AND, OR, and XOR) as well as addition and subtraction is performed using
BDDs in polynomial space and time. Moreover, the SCA-based method is used
for the PFV of the multiplication operation. As a result, the entire ALU can be
verified polynomially using our hybrid proof engine.

316 A. Mahzoon and R. Drechsler

Fig. 4. 4 × 4 structurally complex multiplier

3.3 Case Study II: PFV of a Structurally Complex Multiplier

If the second and third stages of a multiplier (see Fig. 3) are not only made of
half-adders and full-adders, it is called a structurally complex multiplier. Figure 4
depicts a 4 × 4 structurally complex multiplier, where the final stage adder has
a carry look-ahead adder architecture. Ensuring the correctness of structurally
complex multipliers is a big challenge for the verification community. Several
formal verification methods based on SCA have been proposed to overcome the
challenges [14,20]. However, it is not trivial to prove their polynomial complexity
for all multiplier architectures due to some heuristics in their flow.

We now discuss the results of verifying the complex multiplier using a mono-
lithic proof engine based on BDDs and SCA:

– Similar to the structurally simple multipliers, the size of output BDDs
becomes exponential for structurally complex multipliers. Several techniques
have been proposed to make the verification of multipliers possible using
BDDs. The work of [5] considers the partial products as new input variables
and constructs the output BDDs based on them. As a result, the size of out-
put BDDs becomes polynomial with respect to the input width. However, it is

PFV of Complex Circuits Using a Hybrid Proof Engine 317

Fig. 5. 4 × 4 structurally simple multiplier

still not clear whether the size of intermediate BDDs is polynomially bounded
during the symbolic simulation. Thus, BDD-based verification cannot ensure
the PFV of structurally complex multipliers.

– Although SCA-based verification has shown very good results for the veri-
fication of structurally simple multipliers, it fails when it comes to ensuring
the correctness of structurally complex multipliers. It has been shown exper-
imentally that the size of intermediate polynomials grows drastically during
backward rewriting. The authors of [11] proved that the size of intermediate
polynomials increases exponentially for structurally complex multipliers. As
a result, a monolithic proof engine based on SCA cannot be used for the PFV
of a structurally complex multiplier.

If the design hierarchy, including the boundaries between the three stages
of the multiplier (i.e. PPG, PPA, and FSA) and the components in each stage
are available, we can take advantage of our hybrid proof engine to ensure the
correctness of the structurally complex multiplier. Our method consists of three
main steps:

1. the final stage of the multiplier, i.e. FSA, is replaced with a ripple carry adder,
2. the new multiplier architecture is verified using SCA,
3. the FSA is verified using BDDs.

If both verification methods ensure correctness, the multiplier is bug-free.
Otherwise, it is buggy.

It is now possible to calculate the space and time complexity of SCA and
BDD-based methods separately and prove their polynomial upper-bounds with
respect to the multiplier size: After replacing the FSA with a ripple carry adder,
the new multiplier is structurally simple, since the second and third stages are
made of half-adders and full-adders (see Fig. 5). It has been proven in [11] that
structurally simple multipliers can be verified in polynomial space and time using
SCA. On the other hand, PFV can be applied to the original FSA using BDDs
as proven in [6]. As a consequence, PFV of structurally complex multipliers
becomes possible.

318 A. Mahzoon and R. Drechsler

4 Conclusions

In this paper, we illustrated the importance of using a hybrid proof engine for
PFV. Complex digital circuits usually consist of many sub-components, which
can be verified in polynomial space and time using a suitable verification tech-
nique. However, the PFV cannot be guaranteed using a monolithic proof engine.
This problem can be alleviated by introducing a hybrid proof engine that inte-
grates bit- and word-level formal methods in an environment. Thus, each sub-
component or system task is verified using one of the formal methods in poly-
nomial space and time. We discussed the success of a hybrid proof engine in the
PFV of an ALU and a structurally complex multiplier.

In the future, we plan to investigate the PFV of other complex digital circuits
such as CPUs and DSP blocks using a hybrid verification engine.

Acknowledgements. This paper has been dedicated to the 65th birthday of Jan
Peleska. Parts of this work have been supported by DFG within the Reinhart Koselleck
Project PolyVer: Polynomial Verification of Electronic Circuits (DR 287/36-1).

References

1. Barhoush, M., Mahzoon, A., Drechsler, R.: Polynomial word-level verification of
arithmetic circuits. In: ACM and IEEE International Conference on Formal Meth-
ods and Models for Codesign, pp. 1–9 (2021)

2. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: Design Automation Conference, pp. 40–45 (1990)

3. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans.
Comput. 40(2), 205–213 (1991)

4. Bryant, R.E., Chen, Y.A.: Verification of arithmetic circuits with binary moment
diagrams. In: Design Automation Conference, pp. 535–541 (1995)

5. Burch, J.: Using BDDs to verify multipliers. In: Design Automation Conference,
pp. 408–412 (1991)

6. Drechsler, R.: PolyAdd: polynomial formal verification of adder circuits. In: IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp.
99–104 (2021)

7. Drechsler, R.: Polynomial circuit verification using BDDs. In: International Con-
ference on Electrical, Electronics, Communication, Computer Technologies and
Optimization Techniques, pp. 466–483 (2021)

8. Drechsler, R., Dominik, C.: Edge verification: Ensuring correctness under resource
constraints. In: Symposium on Integrated Circuits and System Design, pp. 1–6
(2021)

9. Drechsler, R., Mahzoon, A.: Towards polynomial formal verification of AI gen-
erated arithmetic circuits. In: International Symposium on Devices, Circuits and
Systems (2023). https://ieeexplore.ieee.org/document/10153522

10. Drechsler, R., Mahzoon, A.: Polynomial formal verification: Ensuring correct-
ness under resource constraints. In: International Conference on Computer-Aided
Design, pp. 70:1–70:9 (2022)

https://ieeexplore.ieee.org/document/10153522

PFV of Complex Circuits Using a Hybrid Proof Engine 319

11. Drechsler, R., Mahzoon, A., Goli, M.: Towards polynomial formal verification of
complex arithmetic circuits. In: IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems, pp. 1–6 (2022)

12. Drechsler, R., Mahzoon, A., Weingarten, L.: Polynomial formal verification of
arithmetic circuits. In: International Conference on Computational Intelligence and
Data Engineering, pp. 457–470 (2021)

13. Hamaguchi, K., Morita, A., Yajima, S.: Efficient construction of binary moment
diagrams for verifying arithmetic circuits. In: International Conference on
Computer-Aided Design, pp. 78–82 (1995)

14. Kaufmann, D., Beame, P., Biere, A., Nordström, J.: Adding dual variables to alge-
braic reasoning for gate-level multiplier verification. In: Design, Automation and
Test in Europe, pp. 1431–1436 (2022)

15. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining
SAT and computer algebra. In: Formal Methods in Computer-Aided Design, pp.
28–36 (2019)

16. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal
verification of multipliers. Formal Method. Syst. Des. Int. J. 22(1), 39–58 (2003)

17. Kumar, J., Miyasaka, Y., Srivastava, A., Fujita, M.: Formal verification of integer
multiplier circuits using binary decision diagrams. IEEE Trans. Comput. Aided
Des. Circuit. Syst. (2022). https://ieeexplore.ieee.org/document/9832648

18. Mahzoon, A., Drechsler, R.: Late breaking results: polynomial formal verification
of fast adders. In: Design Automation Conference, pp. 1376–1377 (2021)

19. Mahzoon, A., Drechsler, R.: Polynomial formal verification of prefix adders. In:
Asian Test Symp, pp. 85–90 (2021)

20. Mahzoon, A., Große, D., Drechsler, R.: RevSCA-2.0: SCA-based formal verification
of non-trivial multipliers using reverse engineering and local vanishing removal.
IEEE Trans. Comput. Aided Des. Circuit. Syst. 41(5), 1573–1586 (2022). https://
ieeexplore.ieee.org/document/9440537

21. Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Logic verifi-
cation using binary decision diagrams in a logic synthesis environment. In: Inter-
national Conference on Computer-Aided Design, pp. 6–9 (1988)

22. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting a fresh
look at combinational logic synthesis. In: Design Automation Conference, pp. 532–
535 (2006)

23. Schnieber, M., Fröhlich, S., Drechsler, R.: Polynomial formal verification of approx-
imate adders. In: EUROMICRO Symposium on Digital System Design, pp. 761–
768 (2022)

24. Schnieber, M., Fröhlich, S., Drechsler, R.: Polynomial formal verification of approx-
imate functions. In: IEEE Annual Symposium on VLSI, pp. 92–97 (2022)

25. Yu, C., Brown, W., Liu, D., Rossi, A., Ciesielski, M.: Formal verification of arith-
metic circuits by function extraction. IEEE Trans. Comput. Aided Design Circuit.
Syst. 35(12), 2131–2142 (2016)

26. Yu, C., Ciesielski, M., Mishchenko, A.: Fast algebraic rewriting based on and-
inverter graphs. IEEE Trans. Comput. Aided Design Circuit. Syst. 37(9), 1907–
1911 (2017)

https://ieeexplore.ieee.org/document/9832648
https://ieeexplore.ieee.org/document/9440537
https://ieeexplore.ieee.org/document/9440537

Debugging Frame Conditions

Thomas Santen(B)

Formal Assurance, Aachen, Germany
santen@formalassurance.com

http://www.formalassurance.com

Abstract. Frame conditions play an important role in formal specifica-
tions of system behavior or software operations. A frame condition spec-
ifies that a particular part of the data in a system state will not change
during a state transition. In abstract system specifications, explicit equa-
tions of the form x′ = x describe frame conditions, whereas in contracts
of imperative or object-oriented programs, frame conditions can also be
described implicitly by specifying a set of heap locations that are allowed
to change whereas the content of other heap locations must not change
during an operation execution.

Too liberal or too strong framing is a notorious source of error during
the development of a formal specification. Based on experience from cus-
tomer projects, this article describes common framing errors in abstract
system models, expressed in Alloy, and an approach using model finding
to systematically debug such erroneous specifications.

Keywords: Framing · Debugging Formal Specifications · Formal
Verification

1 Introduction

Consider a system that manipulates its data state by way of a number of oper-
ations. A formal specification of such a system can abstractly describe the data
that the system holds, possibly with data invariants, and transition predicates
that describe operations by their effect on the data. If a specific implementation
in a programming language is to be considered, a contract-style specification of
an imperative or object-oriented program describes the effect of the operation
implementations by pre-/post-condition contracts.

For both kinds of specification, the concept of framing plays an important
role. It refers to the fact that an operation specification not only describes the
desired change of data in the system state, but it must also describe the part of
the system state that does not change when the operation is executed.

Various concepts of object-ownership have been developed to ease the formal
specification of the heap frame in contract-style formal specifications of imper-
ative or object-oriented programs [5]. They particularly strive to address the
complexity of program behavior caused by pointer aliasing or concurrency.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 320–332, 2023.
https://doi.org/10.1007/978-3-031-40132-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40132-9_20&domain=pdf
https://doi.org/10.1007/978-3-031-40132-9_20

Debugging Frame Conditions 321

Abstracting from specific programming features, a formal system model can
describe the data held in a system state and system operations manipulating that
data without referring to programming concepts like heap memory. Languages
such as Alloy [7] in its latest Version 6 [1], VDM [8], or Z [13] support this style
of specification. In such a model, system operations may be specified in terms of
transition relations between the valuations of variables in the states before and
after execution of the system operation. Here, framing equations of the form
x′ = x serve to specify that the value of a state component x is not changed by
the operation.

Framing is a common source of error when developing system models or
program contracts. Framing equations are easily forgotten when specifying the
effect of an operation. This results in too liberal a specification that allows
certain parts of the state to change arbitrarily. Dually, a too narrow heap frame
or framing equations that are too strong may contradict state changes required
by the desired effect of the operation, thus precluding certain desired behavior
or resulting in an inconsistent specification.

This paper focusses on erroneous framing equations in abstract system spec-
ifications, and approaches how to debug them. The discussion draws on experi-
ence from customer projects comprising several tens of thousands lines of formal
specification code. To respect customers’ non-disclosure requirements, and to
keep the presentation self-contained, a simple mockup system is used for illus-
tration purposes: a rover maneuvering around obstacles on a plain.

For a simple system like this, an experienced verification engineer will easily
spot and correct framing errors. For a sizeable specification of a real system, how-
ever, it is challenging to keep track of the different parts of a specification that
contribute to a particular frame and spot inconsistencies just by inspection. Con-
sequently, debugging framing errors often is time consuming and tedious. Under
change of the system functionality or its requirements, and consequently their
formal representations, debugging framing errors may be even more challenging.
Identifying a single erroneous framing equation in the process of integrating a
new feature into a sizeable formal specification can easily require several person
days of debugging effort.

The structure of the presentation in Sects. 2 to 4 mimics a formal specifica-
tion effort leading to a defective specification. Section 5 discusses why standard
approaches to debugging such a specification do not provide adequate support
to identify the erroneous part of the specification. Section 6 introduces a more
systematic approach to debugging inconsistent abstract system specifications,
which has the potential to considerably reduce the time and effort needed to
fix erroneous framing equations. Section 7 discusses related work, and Sect. 8
concludes with suggestions for future work.

2 A System Model in Alloy

For system modeling, this paper uses the formal language Alloy [7], which is a
temporal first-order relational logic. The Alloy analyzer uses the Kodkod rela-
tional model finder and several SAT solvers to explore Alloy models and verify

322 T. Santen

Listing 1. Alloy signatures of the Rover system
1 s i g Coord {
2 ad j a c e n t : some Coord
3 }
4

5 f a c t ad j a c e n tF a c t s {
6 i r r e f l e x i v e [a d j a c e n t]
7 symmetr ic [a d j a c e n t]
8 }
9

10 ab s t r a c t s i g Thing {
11 va r p o s i t i o n : Coord
12 }
13

14 one s i g Rover extends Thing {}
15 s i g Obs tac l e extends Thing {}
16

17 one s i g theSystem {
18 r : Rover ,
19 os : s e t Obs tac l e
20 }{
21 a l l t : r+os | t . p o s i t i o n not i n (r+os−t) . p o s i t i o n
22 }

assertions about them. The latest Version 6 of the Alloy language and analyzer
[1] comes with new features allowing one to specify and assess behavioral mod-
els natively. It allows one to mark the mutable data of a system state, specify
the transition relation between system states, and assert temporal properties of
the resulting set of system traces. In addition to checking bounded traces with
SAT solving, standard model checkers like NuSMV [2,3] can be used to verify
temporal properties of unbounded traces.

The running example illustrating framing errors and their debugging is a
rover maneuvering around obstacles on a plain. A set of abstract coordinates
and an adjacency relation between them describes the topology of the plain.
The positions of the rover and the obstacles are coordinates locating them on
the plain. The positions of all objects on the plain must be distinct.

In Alloy, signatures define new types. Listing 1 shows the signatures formally
representing the concepts of the rover example. The signature Coord has a field
adjacent, which is a non-empty set of coordinates. In the Alloy semantics, a field
of a signature is a globally visible relation mapping the signature type to the
declared type of the field, i.e., the semantics of adjacent is a binary relation on
Coord. Referring to that global semantics, the axiom adjacentFacts states that
the adjacency relation between coordinates is irreflexive and symmetric, i.e., a
coordinate it not adjacent to itself, and adjacency is not directed.

Debugging Frame Conditions 323

Listing 2. Transition predicates and system traces
1 pred moveTo [p : Coord] {
2 p i n theSystem . r . p o s i t i o n . a d j a c e n t
3 theSystem . r . p o s i t i o n ’ = p
4 a l l o : theSystem . os | o . p o s i t i o n ’ = o . p o s i t i o n
5 }
6

7 pred move {
8 some p : theSystem . r . p o s i t i o n . a d j a c e n t | {
9 moveTo [p]

10 }
11 }
12

13 pred i n i t {
14 theSystem . os = Obs tac l e
15 }
16

17 pred s t ep {
18 move
19 }
20

21 f a c t t r a c e s {
22 i n i t
23 a lways s t ep
24 }

The abstract signature Thing generalizes rovers and obstacles. The keyword
var declares its field position to be mutable, i.e., its value may change in a state
transition, whereas fields that are not marked with var remain constant during
the entire lifetime of a system. The signatures Rover and Obstacle extend Thing.
The former has exactly one instance whereas the number of obstacles is not
constrained in the signature declaration.

The signature theSystem contains the state of the entire system, i.e., one rover
and a set of obstacles. Its invariant requires that the rover and all obstacles have
distinct positions.

The definitions in Listing 2 describe how the rover moves around the plain
while avoiding obstacles. The predicate moveTo[p] moves the rover to a position
p, provided p is adjacent to the current position of the rover. The primed version
of a mutable field, such as theSystem.r. position ’ denotes the value of the field in
the post-state of a state transition. The universally quantified framing equations
o. position ’ = o.position specify that all obstacles keep their positions while the
rover moves. The predicate move non-deterministically chooses a position adja-
cent to the rover and requires it to move to that position. The system invariant
(Line 21 of Listing 1) ensures that the rover does not attempt to move to a
position that is occupied by an obstacle.

324 T. Santen

Listing 3. Operation push

1 pred push {
2 some o : theSystem . os | {
3 o . p o s i t i o n i n theSystem . r . p o s i t i o n . a d j a c e n t
4 moveTo [o . p o s i t i o n]
5 o . p o s i t i o n ’ i n o . p o s i t i o n . ad j acen t−theSystem . r . p o s i t i o n
6 a l l oo : theSystem . os−o | oo . p o s i t i o n ’ = oo . p o s i t i o n
7 }
8 }
9

10 pred s t ep {
11 move
12 | |
13 push
14 }

The axiom traces defines the set of traces of the rover system by way of a
temporal formula, where the predicate init requires that in an initial system
state all obstacles are placed somewhere on the plain, and the predicate step
says that each state transition consists of a single move of the rover.

A number of desired properties of the rover system, omitted in Listing 2,
serve as sanity checks for the formal specification. They include a check of the
consistency of the specification as well as a model exploration showing that the
desired moves of the rover indeed form the set of specified traces. Assertions
requiring that the rover only moves to free adjacent positions, and that the
positions of obstacles never change are other sanity checks validating the rover
specification. Specific examples of sanity checks are further discussed in Sect. 4.

3 A New Feature

After a thorough analysis of the rover system presented in Sect. 2, a new feature
is to be added to the system: the rover is enhanced to be able to push obstacles
out of its way. Listing 3 shows the modifications to integrate this feature into the
formal specification. In addition to the operation move, which moves the rover
to a free adjacent position, the new operation push allows the rover to move to
an adjacent position that is occupied by an obstacle, provided that the obstacle
can itself be moved to a free adjacent position.

The specification of push requires that there exists an obstacle o that is adja-
cent to the rover. It uses the predicate moveTo to update the position of the
rover, and it moves the obstacle o to an adjacent position (Line 5). The framing
equations in Line 6 of Listing 3 ensure that all other obstacles remain at their
original positions. Like for the specification of move, the system invariant ensures
that the obstacle o is moved to a free position.

The modified definition of step in Listing 3 reflects the extended behavior of
the rover system: each single state transition is a move or a push operation.

Debugging Frame Conditions 325

Listing 4. Validation of the modified rover system
1 run {} f o r 10
2 run { e v e n t u a l l y push} f o r 10
3 run push f o r 10

4 Specification Validation

As for the original version of the specification, sanity checks must be performed
to validate the formal specification. Listing 4 shows some of them.

The run command in Line 1 tells the Alloy Analyzer to find a model that
satisfies the true predicate and in which all signatures have at most 10 instances.
Thus the consistency of the specification as a whole is verified. This sanity check
is successful.

Since the modified step predicate is a case distinction, sanity checks should
demonstrate that each case is reachable, i.e., for each system operation, there is
an initial system state such that the operation can eventually be applied. For
step this means that both system operations should be executed in some traces
of the system. In particular, there should exist a trace from an initial system
configuration to a state in which push is performed. The predicate eventually push
in Line 2 formalizes that sanity check as a temporal proposition. Model finding
for this sanity check fails: there is no trace of the modified system that eventually
executes push.

This motivates the final sanity check in Line 3, which also fails. The maximal
cardinality of 10 specified for each type in the run command is sufficient to exhibit
a model satisfying push, if there is one. Therefore, the failing sanity check shows
that the predicate push is inconsistent, i.e., there is no state transition executing
push, not even for a pre-state that may not be reachable from an initial state.

5 Approaches to Debugging

The failing sanity checks indicate that the definition of push in Listing 3 is faulty,
but they do not easily provide a clue as to what part of the specification is wrong
or how to correct it. The failure occurs in an attempt to find a model for push,
i.e., the SAT solver invoked by the Alloy Analyzer does not find a model for this
predicate.

The standard means to debug an inconsistent specification is to inspect a
minimal unsatisfiable core [10] of the failing model finding attempt. This is a
minimal contradictory set of clauses of the specification. The Alloy Analyzer
provides a version of MiniSAT [6] with the ability to compute a minimal unsat-
isfiable core.

For the specification of the modified rover system, the unsatisfiable core of
push consists of three formulas: the system invariant (Line 21 of Listing 1), the
rover position update and the framing equations of moveTo (Line 3 and Line 4 of

326 T. Santen

Listing 2). This core can be instrumental in debugging the specification, because
it is quite concise and it does include the erroneous framing predicate of moveTo
that makes the specification of push inconsistent: The obstacle o in the definition
of push is “pushed” to an adjacent position and therefore does change its position
in contradiction with the framing predicate of moveTo.

However, the unsatisfiable core tends to provide useful information for debug-
ging only for specifications of very limited size and predicates of limited complex-
ity. Already the unsatisfiable core of eventually push (Line 2 of Listing 4) is too
large, relative to the size of the specification, to be of much use: it includes the
complete definitions of moveTo, move, and push, as well as the system invariant;
it highlights only the system invariant and the rover position update. Therefore,
it is of little help for debugging the specification.

For a specification of a real system of considerable size and complexity, like
the one that motivated the present work, the unsatisfiable core often is of no
use at all. In a situation where a specification comprising several thousand lines
of code is modified to incorporate a new feature, the unsatisfiable core tends to
comprise the newly specified functionality and the parts of the specification it
depends on. Given the project context, namely that the modification builds on
a thoroughly validated specification, the unsatisfiable core thus only provides
the redundant information that the newly added code is not consistent with the
parts of the existing specification to which it refers.

Systematic inspection is another way of debugging an inconsistent specifi-
cation. For an experienced person, it will be easy to find the fault in the tiny
specification of the rover system just by inspection. They will first convince
themselves that the update predicates of the specification correctly capture the
intended effect of the operation. Then, they will focus on framing equations as
a known source of specification errors, and will easily spot the contradiction
between Line 5 of Listing 3 and Line 4 of Listing 2.

However, if the specification is so large that it is hard to mentally keep track
of all details necessary to identify an error, and if the offending framing equation
resides several levels down in the reference hierarchy of predicate definitions in
some remote part of the code base, the erroneous framing equation will not be
so easy to spot. Under these circumstances, debugging is reduced to tedious
manual slicing of the code base until a sufficiently small part of the specification
can be inspected to find the offending framing predicate. This process is time
consuming, and therefore expensive, because model finding takes considerably
more time to terminate for an inconsistent specification than for a consistent
one since the solver must in essence explore the complete model space to make
sure that no model of the specification can be found.

6 Systematic Frame Equation Debugging

A more systematic approach to debugging an inconsistent specification exploits
the fact that usually only a few lines of the specification contribute to the con-
tradiction, in particular, if it is related to framing. Assuming such a situation,

Debugging Frame Conditions 327

Listing 5. Instrumented rover specification
1 one s i g _moveTo_00 , _push_00 , _push_01
2 extends BlameLabel {}
3

4 pred moveTo [p : Coord] {
5 p i n theSystem . r . p o s i t i o n . a d j a c e n t
6 theSystem . r . p o s i t i o n ’ = p
7 a l l o : theSystem . os |
8 _bl [o . p o s i t i o n ’ = o . p o s i t i o n , _moveTo_00]
9 }

10

11 pred push {
12 some o : theSystem . os | {
13 o . p o s i t i o n i n theSystem . r . p o s i t i o n . a d j a c e n t
14 moveTo [o . p o s i t i o n]
15 _bl [o . p o s i t i o n ’
16 i n o . p o s i t i o n . ad j acen t−theSystem . r . p o s i t i o n ,
17 _push_01]
18 a l l oo : theSystem . os − o |
19 _bl [oo . p o s i t i o n ’ = oo . p o s i t i o n , _push_00]
20 }
21 }

successive weakening of the specification, one predicate at a time, is promising.
With some instrumentation of the specification code, model finding can support
a process of successive weakening steps, and thus become a valuable debugging
aid. The general idea of this approach is to identify a class of predicates that
likely contribute to the inconsistency, framing equations in our case, and form
disjunctions of those predicates with a set of blame predicates to which model
finding will assign truth values in a controlled way. If model finding assigns true
to a blame predicate, then the original specification predicate in the respective
disjunction is effectively removed from the specification. Conceptually, blame
predicates are similar to clause selectors [10] used to compute minimal unsatis-
fiable cores, but they are used in a dual way.

6.1 Instrumentation

Listing 5 shows how the signature BlameLabel and the macro _bl [.,.] are used
to instrument the definition of push and moveTo. Their definitions and the sup-
porting Alloy code are shown in Listing 6. They are explained in the remainder
of this section. The blame labels _moveTo_00, _push_00, and _push_01 provide
markers for parts of the specification that are considered likely candidates con-
tributing to the detected inconsistency. The first two blame labels mark framing
equations, whereas the label _push_01 marks the position update of the obstacle
o, which is not a framing equation. It is included for illustration purposes only.

328 T. Santen

Listing 6. Instrumentation Support for Debugging
1 ab s t r a c t s i g BlameLabel {}
2

3 ab s t r a c t s i g BlameCard {}
4 one s i g blameZero , blameOne , blameTwo extends BlameCard {}
5

6 one s i g theBlame {
7 ca rd : one BlameCard ,
8 toBlame : s e t BlameLabel ,
9 r e q u i r e d : s e t BlameLabel ,

10 knownS ing l e s : s e t BlameLabel ,
11 knownPai rs : s e t BlamePair
12 }{
13 no (toBlame & r e q u i r e d)
14 no (toBlame & knownS ing l e s)
15 a l l bp : knownPai rs | toBlame & bp . p != bp . p
16 {
17 ca rd = blameZero => no toBlame
18 ca rd = blameOne => one toBlame
19 ca rd = blameTwo => card2 [toBlame]
20 }
21 }
22

23 pred blame [l b l : BlameLabel] {
24 l b l i n theBlame . toBlame }
25

26 pred b l ameScena r i o [c : BlameCard , r : s e t BlameLabel ,
27 s : s e t BlameLabel , p : s e t BlamePair] {
28 theBlame . ca rd = c && theBlame . r e q u i r e d = r
29 theBlame . knownS ing l e s = s && theBlame . knownPai rs = p }
30

31 l e t _bl [prd , l b l] = {(blame [l b l] | | (prd))}

The Alloy code in Listing 6 defines the semantics of the instrumentation. It
introduces the abstract signature BlameLabel as the type of labels like _push_00
that are declared in the instrumentation of a specification.

The sub-signatures of BlameCard allow one to specify how many labeled predi-
cates model finding should remove from the specification in order to make it con-
sistent. For example, blameTwo specifies that two predicates should be removed
from the specification.

The signature theBlame maintains information to control the search for a
consistent sub-specification. The field card specifies the number of labeled pred-
icates to remove from the specification. The field toBlame contains a set of
labels referring to predicates that make the specification inconsistent. Thus, for
card = blameOne the cardinality of toBlame is required to be one. This relationship
is expressed in the signature invariant.

Debugging Frame Conditions 329

The other fields of theBlame further constrain the possible values of toBlame.
The set of required blame labels denotes predicates that must not be removed
from the specification. The sets knownSingles and knownPairs are used in the
debugging process to accumulate single blame labels and pairs of blame
labels, respectively, referring to predicates that cause inconsistencies. Together,
the fields of theBlame but toBlame describe a blame scenario. The predicate
blameScenario[c, r , s ,p] describes a blame scenario, requiring the fields of theBlame
to be equal to the respective parameter values.

Finally, the macro _bl[prd, lbl] forms a disjunction of the predicate prd and
a blame[lbl] with the provided label lbl . Thus, if a model of the instrumented
specification assigns true to blame[lbl], then the original specification predicate
prd is (semantically) removed from the specification. The definition of blame[lbl]
says that the parameter is a member of the set of labels “to blame”, and thus
establishes the logical connection to the blame scenario described in theBlame.

6.2 Process

The search for predicates that make the original specification inconsistent pro-
ceeds by adding blame scenarios (as axioms) in turn to the original specification.
For the rover example, this process works as follows:

A first exploration focusses on framing equations. Therefore, the blame label
_push_01 is required in all scenarios of this exploration. In a first step of the
exploration, model finding for the sanity check Line 3 of Listing 4 with the
axiom

fact blameScenario[blameOne,_push_01,none,none]

provides a model where theBlame.toBlame = _moveTo_00. Thus, already this first
exploration step exhibits the actually erroneous framing predicate.

Considering _moveTo_00 a member of knownSingles, the second step uses the
axiom

fact blameScenario[blameOne,_push_01,_moveTo_00,none]

to search for a different predicate that might cause an inconsistency while keep-
ing the original framing equation labeled _moveTo_00. It turns out that model
finding fails, i.e., just relaxing the other framing predicate labeled _push_00 does
not yield a consistent specification.

This analysis provides sufficient information to correct the specification. With
minimal effort, it correctly identifies the erroneous frame condition, from which
an experienced verification engineer can easily derive a fix of the specification.

The following exploration of scenarios of cardinality two just serves as an
illustration of a debugging process for a more complex specification error. With-
out requiring any predicate, model finding with the axiom

fact blameScenario[blameTwo,none,none,none]

330 T. Santen

searches for two predicates to be removed from the specification in order to make
it consistent. The SAT solver finds a model where theBlame.toBlame contains the
two labels _moveTo_00 and _push_00, which in turn are provided as a known
pair by the axiom

fact blameScenario[blameTwo,none,none,bp[_moveTo_00,_push_00]]

to another round of model finding. This yields another pair of blame labels:
_moveTo_00 and _push_01. The final model finding run with the axiom

fact blameScenario[blameTwo,none,none,
bp[_moveTo_00,_push_00]+bp[_moveTo_00,_push_01]]

does not succeed and thus confirms that no other pairs of labeled predicates can
be weakened to yield a consistent specification.

6.3 Generalization and Automation

The use of the blame label _push_01 shows that the technique described in
this section is not restricted to debugging frame conditions. Blame labels may
be attached to any predicate. For example, when debugging large specifications
with a deep call hierarchy within predicate definitions, it may be useful to first
label calls to predicates within the top-level definitions of transition relations,
and once predicates contributing to an inconsistency are identified, label specific
types of predicates, e.g., framing equations, in the definitions of those predicates.

If the types of predicates to be labeled have a specific syntactic form, such as
framing equations do, it is easy to automatically instrument a specification with
blame labels. This can either be done by directly modifying the source code, or
more elegantly by augmenting the parse tree of a specification.

Likewise, the exploration described in Sect. 6.2 can be automated by succes-
sively generating the model exploration commands and accumulating the results,
which can be mapped back to the source code to highlight the predicates that
cause an inconsistency without explicitly presenting blame labels at the user
interface.

7 Related Work

Technically, the use of blame labels is similar to clause selectors [10] used in
computing a minimal unsatisfiable core, or activation variables [4] proposed for
debugging unrealizable assume/guarantee temporal specifications. However, in
those approaches, these variables serve to mark an inconsistent subset of spec-
ification clauses, whereas the approach presented in Sect. 6 aims at finding a
consistent sub-specification by removing just one or two predicates from an
inconsistent specification.

There is comprehensive research on computing an unsatisfiable core for incon-
sistent or unrealizable temporal specifications, e.g., [11,12]. The general assump-
tion underlying that work is that an algorithmically determined unsatisfiable set

Debugging Frame Conditions 331

of clauses of a specification will provide verification engineers with sufficient
information to find specification errors. Experience from our customer projects
show, however, that this is often not the case in practice.

Könighofer et al. [9] consider not just one but all unsatisfiable cores to com-
pute counterstrategies to debug unrealizable assume/guarantee specifications.
This work targets application scenarios in the context of hardware design with
error patterns that concern the (global) reactive behavior of a system. Their
approach is conceptually and computationally more complex than the present
work, and, if applicable, would require much more effort to support the scenario
of debugging framing equations.

8 Discussion

Inconsistent abstract system specifications of non-trivial size are hard to debug.
In particular, contradictions of framing equations and other predicates deter-
mining a transition relation form a common error pattern. In such a situation,
model finding for the original specification does not succeed and computing a
minimal unsatisfiable core often does not yield useful information. This is a quite
common case in formal specification efforts for real systems.

Section 6 presents a proof of concept of a computationally light-weight but
practically useful way of using model finding to debug inconsistent specifications.
The underlying hypothesis is that, in a real-life project, large parts of a specifi-
cation that evolves over time are adequate, and if an inconsistency occurs in an
updated version of a specification, then only very few places in the specification
contribute to that inconsistency. Thus, it is more productive to search for the
erroneous part of the specification by removing small parts from it until it is
consistent, rather than trying to derive debugging information from one or all
(minimal) unsatisfiable cores.

Current tool support for abstract formal system specifications, like the Alloy
Analyzer, provide little support for debugging inconsistencies. Implementing the
present work as a feature of those tools – as sketched in Sect. 6.3 – would provide
a valuable debugging aid to practitioners.

Acknowledgements. Since the early 1990 s,s, when I first met him, Jan Peleska has
been a pioneer in applying Formal Methods to industrial software systems. His work
has been and continues to be a source of inspiration throughout my professional life.
Thank you! Thanks also to the anonymous reviewers and to Maritta Heisel for valuable
comments on an earlier draft of this paper.

References

1. Alloy analyzer version 6 (2021). https://allytools.org/alloy6.html
2. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.

In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

https://allytools.org/alloy6.html
https://doi.org/10.1007/3-540-45657-0_29

332 T. Santen

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic
model verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
495–499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_44

4. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52–67. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78163-9_9

5. Dietl, W., Müller, P.: Object ownership in program verification. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. Types,
Analysis and Verification. LNCS, vol. 7850, pp. 289–318. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36946-9_11

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. Revised edi-
tion. MIT Press (2011)

8. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall
(1990)

9. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. Int. J. Softw.
Tools Technol. Transf. 15(5-6), 563–583 (2013). https://doi.org/10.1007/s10009-
011-0221-y

10. Lynce, I., Silva, J.P.M.: On computing minimum unsatisfiable cores. In: SAT 2004
- The Seventh International Conference on Theory and Applications of Satisfi-
ability Testing, Online Proceedings (2004). http://www.satisfiability.org/SAT04/
programme/110.pdf

11. Roveri, M., Ciccio, C.D., Francescomarino, C.D., Ghidini, C.: Computing unsat-
isfiable cores for LTLf specifications. In: Giacomo, G.D., Guzzo, A., Montali, M.,
Limonad, L., Fournier, F., Chakraborti, T. (eds.) Proceedings of the Workshop on
Process Management in the AI Era (PMAI 2022). CEUR Workshop Proceedings,
vol. 3310, pp. 81–84. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3310/paper12.
pdf

12. Schuppan, V.: Enhanced unsatisfiable cores for QBF: weakening universal to exis-
tential quantifiers. Int. J. Artif. Intell. Tools 29(03n04), 2060012:1–2060012:27
(2020). https://doi.org/10.1142/S021821302060012X

13. Spivey, J.M.: The Z Notation - A Reference Manual, 2nd edn. Prentice Hall (1992)

https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/978-3-642-36946-9_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s10009-011-0221-y
https://doi.org/10.1007/s10009-011-0221-y
http://www.satisfiability.org/SAT04/programme/110.pdf
http://www.satisfiability.org/SAT04/programme/110.pdf
http://ceur-ws.org/Vol-3310/paper12.pdf
http://ceur-ws.org/Vol-3310/paper12.pdf
https://doi.org/10.1142/S021821302060012X

Author Index

A
Akintunde, Michael E. 3

B
Bischopink, Christopher 163
Braband, Jens 85
Brandão, Martim 3
Brauer, Jörg 257

C
Cavalcanti, Ana 16

D
Damm, Werner 180
Drechsler, Rolf 308
Duckett, Bevin 272

E
Esterle, Lukas 222

F
Fantechi, Alessandro 96
Fitzgerald, John 222
Fränzle, Martin 180
Frasheri, Mirgita 222

G
Gleirscher, Mario 202
Gori, Gloria 96

H
Hagemann, Willem 180
Hauer, Florian 68
Havelund, Klaus 272
Haxthausen, Anne E. 96
Heisel, Maritta 114
Hierons, Robert M. 34
Huang, Wen-ling 49

J
Jahangirova, Gunel 3
James, Phillip 130

K
Knapp, Alexander 289

L
Larsen, Peter Gorm 222
Lecomte, Thierry 147

M
Mahzoon, Alireza 308
Menendez, Hector 3
Merayo, Mercedes G. 34
Miyazawa, Alvaro 16
Moller, Faron 130
Mousavi, Mohammad Reza 3

N
Núñez, Manuel 34

O
Olderog, Ernst-Rüdiger 163

P
Pretschner, Alexander 68

R
Rakow, Astrid 180
Roggenbach, Markus 130

S
Sachtleben, Robert 49
Santen, Thomas 320
Schmidt, Tabea 68

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. E. Haxthausen et al. (Eds.): Peleska Festschrift 2023, LNCS 14165, pp. 333–334, 2023.
https://doi.org/10.1007/978-3-031-40132-9

https://doi.org/10.1007/978-3-031-40132-9

334 Author Index

Schulze, Uwe 16
Stewart, Luke 272
Swaminathan, Mani 180

T
Timmis, Jon 16

W
Wagner, Marvin 114
Woodcock, Jim 237

Z
Zhang, Jie 3

	 Preface
	 Organization
	 Jan Peleska – The Admirable Expert in Applicable Formal Methods for Safe Industrial Products (Laudatio)
	 Contents
	Testing
	On Testing Ethical Autonomous Decision-Making
	1 Introduction
	2 Architecture for Testing Ethics
	2.1 Test Input Generation
	2.2 Test Oracle Identification

	3 Ethical Theories for Conformance Analysis
	3.1 Deontological Ethics
	3.2 Consequentialism
	3.3 Virtue Ethics

	4 Related Work
	4.1 Ethical Oracle Identification
	4.2 Ethical Representation

	5 Conclusion and Future Research Roadmap
	References

	Bringing RoboStar and RT-Tester Together
	1 Introduction
	2 RoboStar Technology
	3 RT-Tester
	4 RoboSim and RT-Tester
	4.1 Platform-Independent Code Generation
	4.2 Connecting to RT-Tester

	5 Example: Testing the Simple Ranger Robot
	6 Conclusions and Vision for the Future
	References

	Implementation Relations for Distributed Testing
	1 Introduction
	2 Preliminaries
	3 Distributed Testing
	4 Implementation Relations
	5 Related and Future Work
	6 Conclusions
	References

	Conformance Relations Between Input/Output Languages
	1 Introduction
	2 Preliminaries
	3 Conformance Relations
	3.1 Equivalence, Quasi-equivalence, Reduction, Quasi-reduction, and Strong-Reduction
	3.2 Semi-equivalence, Strong-semi-equivalence, Semi-reduction, Strong-semi-reduction
	3.3 Comparing Conformance Relations

	4 Conformance Testing
	4.1 A Fundamental Criterion for Conformance Testing
	4.2 Quasi-equivalence, Quasi-reduction and Strong-Reduction as Reductions

	5 Conclusions
	A Proofs
	References

	On Scenario-Based Testing of Cyber-Physical Systems
	1 Introduction
	2 Defect Hypotheses for ``Good'' Test Cases
	3 (Regression) Testing with Recorded Drives
	4 Generating Test Cases
	4.1 Levels of Abstraction
	4.2 Big Picture
	4.3 Scenario Types Derived by Experts and by Clustering
	4.4 From Clusters to Descriptions of Scenario Types
	4.5 Completeness of Recorded Drives W.r.t. Relevant Scenario Types
	4.6 Test Case Generation with Heuristic Search

	5 Non-optimality of Tests Generated by Heuristic Search
	6 Completeness
	7 Summary and Outlook
	References

	Railway Verification and Safety and Security
	Safety vs. Security – Why Separation of Concerns is a Good Strategy for Safety-Critical Systems
	1 Introduction
	1.1 Standardization Background
	1.2 Differences Between Safety and Security

	2 Co-engineering of Safety and Security
	2.1 Security from a Safety Perspective, and Vice Versa
	2.2 Process Interfaces
	2.3 Responsibility for Security

	3 The Cybersecurity Case
	3.1 Principles
	3.2 Contents
	3.3 Modularization

	4 Implementation Examples
	4.1 The Importance of Architecture
	4.2 The “Detect Single Faults” Pattern
	4.3 The “Safety Channel” Pattern
	4.4 The “Mixed Architecture” or “EN 50159” Pattern

	5 Discussion and Conclusion
	References

	Decomposing the Verification of Interlocking Systems
	1 Introduction
	2 The RT-Tester Tool Suite
	3 The RobustRailS Verification Method and Tools
	4 Compositional Verification
	4.1 A Method for Compositional Verification
	4.2 Case Studies
	4.3 A Decomposition Strategy

	5 Conclusions and Future Work
	References

	Pattern-Based Risk Identification for Model-Based Risk Management
	1 Introduction
	2 Background
	2.1 CORAS
	2.2 RIQ Method

	3 Modeling Method
	3.1 Defining Modeling Hints
	3.2 How to Set up Threat Models from RIQs with Modeling Hints
	3.3 Validation Conditions

	4 Example
	5 Tool Support
	5.1 Metamodel
	5.2 Graphical Editor
	5.3 Implemented Validation Conditions

	6 Related Work
	7 Conclusion and Outlook
	References

	Software Model Checking of Interlocking Programs
	1 A Signalling Problem and Our Approach to Solving It
	2 Theoretical Foundations
	2.1 Textbook Knowledge on Verifying Finite Transition Systems
	2.2 Verifying Propositional Safety Properties of Ladder Logic Programs
	2.3 Translating Generic Safety Principles to Track Plan Specific Ones

	3 Technology Prototype
	3.1 Automatising Translations
	3.2 First Academic Experiments
	3.3 Improving Verification Through Slicing

	4 Technology Transfer
	4.1 Logic Rework
	4.2 Data Formats, Interoperability and Efficiency
	4.3 Technicalities of Real World Constraints
	4.4 Fully Functional Prototype at Siemens Mobility

	5 Future Development
	5.1 IC3 Algorithm
	5.2 Invariant Finding via Reinforcement Learning
	5.3 Measuring Cost and Benefit

	6 Summary
	References

	Formal Modelling to Improve Safety and Security
	1 Introduction
	2 Terminology
	3 Ensuring Safety with Formal Methods
	4 Software and Hardware Security Attacks
	5 Formal Techniques for Security
	6 Conclusion and Perspectives
	References

	Intelligent Systems and Cyber-Physical Systems
	Time for Traffic Manoeuvres
	1 Introduction
	2 Preliminaries
	2.1 Multi-lane Spatial Logic with Scopes
	2.2 State Clock Logic
	2.3 SC Automata
	2.4 Timed Multi-lane Spatial Logic

	3 Example
	4 Formalisation
	5 Conclusion
	References

	Safer Than Perception: Assuring Confidence in Safety-Critical Decisions of Automated Vehicles
	1 Introduction
	2 A Simple Example
	3 Boolean Formulae as Classifiers
	3.1 Probabilistic Preliminaries and Assumptions
	3.2 Estimating Classification Rates for Complex Boolean Formulae
	3.3 An Exemplary Computation

	4 Related Work
	5 Conclusion
	A Proofs
	References

	Supervision of Intelligent Systems: An Overview
	1 Introduction
	2 Examples of Supervised Intelligent Systems
	3 Background
	4 Supervision
	4.1 A Taxonomy of Supervision
	4.2 Fundamental Approaches to Supervision
	4.3 Supervision of Intelligent Systems
	4.4 Relationship to Safety Verification and Controller Synthesis
	4.5 Relationship to Digital Twins

	5 Synthesis of Supervisors
	5.1 Dynamic Programming of Supervisors
	5.2 Game-Based Supervisor Synthesis

	6 Modelling for Supervisor Construction
	7 Certifiable Assurance of Supervisors
	7.1 Correct-by-Construction Supervisors
	7.2 Industrial Certification of Supervisors

	8 Conclusions
	References

	Fault Injection in Co-simulation and Digital Twins for Cyber-Physical Robotic Systems
	1 Introduction
	2 Background: Co-simulation and Digital Twins
	2.1 Co-simulation
	2.2 Digital Twins

	3 Fault Injection in Co-simulations
	4 A Case Study: The Desktop Robotti
	4.1 Platform Description
	4.2 Parallel Operation and Monitoring
	4.3 Hardware-in-the-Loop Fault Injection
	4.4 Emergency Stop at the DT Level

	5 Looking Forward
	References

	Towards a Unifying Framework for Uncertainty in Cyber-Physical Systems
	1 Introduction
	1.1 Uncertainty in Robotics
	1.2 A Unifying Framework for Uncertainty?
	1.3 Candidate Theory for Unification: POMDPs
	1.4 Unifying Semantics for Prism
	1.5 This Paper

	2 A Prism Example
	3 Why Do We Need Another Formal Semantics for Prism?
	3.1 Prism Action Labels Are Not CSP Events
	3.2 Prism Deadlock Is Not CSP Deadlock
	3.3 Prism Hiding Is Not CSP Hiding
	3.4 Refinement Theory
	3.5 Programming Logic
	3.6 Testing Theory
	3.7 Example: Decision Support
	3.8 How Do We Assess Your Strategy?

	4 Unity
	4.1 Kripke Structures
	4.2 Unity Module Semantics
	4.3 Unity Single Command Semantics

	5 Prism System Module Semantics
	6 Predicative Programming
	6.1 Notation

	7 Probabilistic Predicative Programming
	8 Example: Killer Robots
	9 Related Work
	10 Conclusions and Further Work
	References

	Tools and Techniques for Specification, Verification and Code Generation
	Source-Code-to-Object-Code Traceability Analysis for Airborne Software: A Case for Tool Support
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Outline

	2 Control Flow Traceability
	2.1 From CFGs to Finite Automata
	2.2 Deciding CFG Isomorphism
	2.3 Limitations of Branching Analysis Using DFAs

	3 Additional Analyses
	3.1 Hidden Call Detection
	3.2 Memory Allocation Analysis
	3.3 Store Analysis

	4 Verification Sheets and Application
	5 Tool Qualification
	6 Related Work
	7 Conclusion
	References

	Space Telemetry Analysis with PyContract
	1 Introduction
	2 The PyContract Core Library
	3 Data Analysis Scripts
	3.1 The Sample Counting Monitor
	3.2 The Missed Event Monitor
	3.3 The File Uplink Monitor
	3.4 The Command Execution Monitor
	3.5 The Sample Rate Monitor

	4 Conclusion
	References

	An Intermediate Language-Based Approach to Implementing and Verifying Communicating UML State Machines
	1 Introduction
	2 Communicating UML State Machines
	2.1 Modelling the GRC in UML
	2.2 UML Metamodel and Semantics

	3 Smile
	4 Representing UML State Machines in Smile
	4.1 Deferring and Acknowledging
	4.2 Choice Pseudostates
	4.3 History Pseudostates

	5 Code Generation and Verification
	6 Conclusions
	References

	Polynomial Formal Verification of Complex Circuits Using a Hybrid Proof Engine
	1 Introduction
	1.1 Related Works

	2 Background
	2.1 Verification Using Bit-Level Techniques
	2.2 Verification Using Word-Level Techniques

	3 PFV Using a Hybrid Proof Engine
	3.1 Overview
	3.2 Case Study I: PFV of an ALU
	3.3 Case Study II: PFV of a Structurally Complex Multiplier

	4 Conclusions
	References

	Debugging Frame Conditions
	1 Introduction
	2 A System Model in Alloy
	3 A New Feature
	4 Specification Validation
	5 Approaches to Debugging
	6 Systematic Frame Equation Debugging
	6.1 Instrumentation
	6.2 Process
	6.3 Generalization and Automation

	7 Related Work
	8 Discussion
	References

	Author Index

