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Japanese Encephalitis Virus-Infected Cells 
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Abstract RNA virus infections have been a leading cause of pandemics. Aided by 
global warming and increased connectivity, their threat is likely to increase over 
time. The flaviviruses are one such RNA virus family, and its prototypes such as the 
Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., 
pose a significant health burden on several endemic countries. All viruses start off 
their life cycle with an infected cell, wherein a series of events are set in motion as 
the virus and host battle for autonomy. With their remarkable capacity to hijack 
cellular systems and, subvert/escape defence pathways, viruses are able to establish 
infection and disseminate in the body, causing disease. Using this strategy, JEV 
replicates and spreads through several cell types such as epithelial cells, fibroblasts, 
monocytes and macrophages, and ultimately breaches the blood-brain barrier to 
infect neurons and microglia. The neurotropic nature of JEV, its high burden on 
the paediatric population, and its lack of any specific antivirals/treatment strategies 
emphasise the need for biomedical research-driven solutions. Here, we highlight the 
latest research developments on Japanese encephalitis virus-infected cells and dis-
cuss how these can aid in the development of future therapies. 

Keywords Autophagy · Blood-brain barrier · Cell death · ER stress · Flavivirus · 
Innate immunity · Japanese encephalitis virus · Neuroinflammation · Neurotropic · 
Unfolded protein response 

Introduction 

Japanese encephalitis virus (JEV) remains one of the leading global causes of viral 
encephalitis. It poses a major threat to more than 2 billion people living in endemic 
regions like southeast Asian countries (van den Hurk et al. 2009; Pan et al. 2011) and 
is still evolving to new ecological niches of Europe, northern Australia and Africa
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(Simon-Loriere et al. 2017; Gao et al. 2019). According to a 2019 WHO report, JEV 
causes almost 68,000 cases with 13,600–20,400 deaths annually. The virus is 
neurotropic, and its clinical manifestations range from febrile illness to central 
nervous system (CNS) disorders and death (Sips et al. 2012). A majority of JEV 
infections remain asymptomatic, and less than 1% of infections develop into the 
disease, which is either mild or neuroinvasive. Of the diseased cases, one-third 
recover completely, one-third develop severe lifelong neurological complications, 
and one-third ultimately succumb to the disease (Solomon 2004). Children aged 
0–15 years are the most affected group and are likely to have more neurological 
complications than adults (Campbell et al. 2011). Currently, there is no antiviral 
therapy available and existing vaccines are struggling to control the JEV burden due 
to lack of long-term protection and cross-protection against newly emerging geno-
types. Treatment is only supportive and limited clinical trials have been conducted 
for testing antiviral and drug therapies (Turtle and Solomon 2018).
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JEV is an arthropod-borne flavivirus, which is transmitted in an enzootic life 
cycle between birds, pigs and other vertebrates by Culex mosquitoes. Humans are 
dead-end hosts due to low viremia. Following inoculation upon a blood-feeding 
mosquito bite, the virus first replicates in skin keratinocytes and then propagates to 
nearby lymph nodes and other tissues or organs like the liver and kidney, causing 
transient low viremia. If the virus is not restricted to the periphery, it can cross the 
blood-brain barrier (BBB) to gain entry into the CNS, which results in the neuro-
logical manifestations of the disease. The viral tropism and subsequent host 
responses govern disease pathogenesis and severity. JEV is known to infect diverse 
cell types such as epithelial cells, fibroblasts, monocytes, macrophages, dendritic 
cells (DCs), endothelial cells, brain resident microglial and neuronal cells, and 
activates an array of cellular responses. A detailed understanding of virus-host 
crosstalk is important for delineating crucial host responses and identifying cellular 
factors involved in disease pathogenesis and antiviral development. Herein we 
review the interactions of JEV with the mammalian host at the cellular and system 
level, and their role in disease biology. 

Epidemiology 

JE was first reported in Japan, with more than 6000 cases during the 1924 epidemic. 
The prototype Nakayama strain was isolated from the brain of a fatal case in 1935, 
and since then, the disease has been recognised across Asia (Miyake 1964; Solomon 
2003). Genetic studies have proposed that JEV evolved from an African ancestral 
virus that spread to the Indonesia-Malaysia region many centuries ago, from where it 
further spread throughout Asia (Solomon et al. 2003). In the first half of the twentieth 
century, JEV was recognised in the temperate regions of Asia such as Japan, Korea, 
Taiwan and mainland China; and continued to spread to southeast Asia, India, 
Bangladesh, Sri Lanka and Nepal over the next decades. By the 1990s, JEV showed



its presence even in the non-Asian regions, Saipan and Australia (Filgueira and 
Lannes 2019; Mulvey et al. 2021). 
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JEV has a total of five genotypes (I–V), arising from the ancestor virus of the 
Indonesia-Malaysia region. Genotype III was reported to be responsible for most 
human cases in Asia up to the 1990s, whereas genotype I is now likely to become the 
dominant strain and the major cause of JE disease in the region (Pan et al. 2011). In a 
2022 outbreak in Australia, a JEV genotype IV was identified (Sikazwe et al. 2022). 
Epidemiological and genetic studies have reported geographical expansion of dif-
ferent genotypes and JEV emergence in non-epidemic regions (van den Hurk et al. 
2009; Gao et al. 2019; Mulvey et al. 2021). The wide distribution of the virus over 
the years has been due to changes in climate, ecology, agricultural and animal 
practices. Migratory bird patterns and population shifts can potentially further 
contribute to virus expansion to non-endemic regions. Increased surveillance and 
reporting of JEV infections need to be undertaken to assess the true burden of JE. 

Transmission Cycle 

The Culex tritaeniorrhynchus mosquito which breeds in stagnant water (such as rice 
paddy fields), is the most important vector for human infections (Solomon et al. 
2003). Other domestic (cows, dogs, chickens, goats and horses) and wild animals 
(flying foxes, frogs, snakes and ducks) can also be infected with the virus, but ones 
with high viral loads (birds and pigs) maintain the virus (Mansfield et al. 2017). Due 
to brief and low viremia, humans do not transmit the disease further (Turtle and 
Solomon 2018). However, a recent report suggested possible JEV transmission via 
blood transfusion in humans (Cheng et al. 2018). Birds maintain and amplify the 
virus in the environment, and migratory/seasonal birds are responsible for JEV 
spread/expansion to new geographical areas (Johnsen et al. 1974; Rodrigues et al. 
1981; Yoshikawa et al. 2016; Bae et al. 2018; Preziuso et al. 2018; Turtle and 
Solomon 2018; Mulvey et al. 2021). Pigs are the natural hosts with prolonged and 
high viremia, and the virus can also transmit directly via the intra-nasal route in pigs 
(Ricklin et al. 2016; Garcia-Nicolas et al. 2018). The virus replicates and remains in 
the porcine tonsils for up to 25 days enabling its persistence in seasons when 
mosquitoes are inactive (Garcia-Nicolas et al. 2018). JEV can also persist in vaginal 
mucosa for several days and is shed in vaginal secretions in pigs, suggesting a 
potential for sexual transmission (Chapagain et al. 2022). 

Clinical Features 

The majority of the JEV infections in humans are either asymptomatic or cause 
febrile illness with mild flu-like symptoms such as fever, sore throat, headache, 
muscle pain, diarrhoea and vomiting, that lasts for 5–15 days. Neurologic



manifestations depend upon the site of infection in the CNS. Patients who develop 
symptoms of encephalitis suffer significant morbidity and mortality. Encephalitis is 
characterised by neck stiffness, disorientation, seizures, paralysis, coma and in 
severe cases, leads to death (Misra and Kalita 2010; Salimi et al. 2016). 
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JEV Molecular Biology 

JEV belongs to the Flaviviridae family that also contains several other pathogenic 
arboviruses such as West Nile virus (WNV), Zika virus (ZIKV), Dengue virus 
(DENV), Yellow fever virus (YFV), Murray valley Encephalitis (MVE), St. Louis 
encephalitis virus (SLEV) and Tick-borne encephalitis virus (TBEV). The 
enveloped virus contains a single-stranded positive-sense RNA genome of  11 kb 
(Vashist et al. 2011), which is a single open reading frame (ORF), flanked by 5′ and 
3′ non-coding regions (NCR). The viral polyprotein (  3400 aa) is cleaved into three 
structural proteins – Nucleocapsid (C), Membrane (M) and Envelope protein (E), 
and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and 
NS5), by the action of viral and host proteases (Chambers et al. 1990). The viral 
nucleocapsid is enclosed in a membrane containing the envelope (E) glycoprotein. A 
near-atomic structure of JEV has revealed various structural determinants associated 
with virus stability and neurovirulence (Wang et al. 2017b, c). The non-structural 
viral proteins are an integral part of the replication complex and also interact with 
diverse host factors involved in multiple cellular pathways to create an infection-
supportive environment. 

Infection Route: A Cellular Overview 

The JEV virus life cycle is an orchestration of six major steps: receptor binding, 
entry, polyprotein translation, genome replication, assembly and egress. Infection 
begins with the non-specific binding of the viral glycoprotein E to one or more 
cellular attachment factors, that enhance the avidity and facilitates specific interac-
tion with the receptor. Studies in different cell types have identified attachment 
factors (Heparan sulphate proteoglycans, glycosaminoglycans) and several potential 
receptors: Heat shock protein 70, vimentin, laminin receptor, CD4, α5β3 integrin, 
Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 
(DC-SIGN), Glucose-regulated protein 78 (GRP78), T cell immunoglobulin and 
mucin domain 1 (TIM-1), C type lectin member 5A (CLEC5A), plasmalemma 
vesicle-associated protein and gastrokine 3 (Chiou et al. 2005; Chien et al. 2008; 
Chen et al. 2012b; Nain et al. 2016; Nain et al. 2017; Mukherjee et al. 2018; Niu 
et al. 2018). 

Virus-receptor interaction results in receptor-mediated endocytosis. JEV is seen 
to exploit different endocytic routes in a cell-type-dependent manner. Studies have



now established that the virus utilises clathrin-mediated endocytosis (CME) to infect 
fibroblasts and epithelial cells, and under conditions of CME inhibition, it can 
employ clathrin-independent endocytosis (CIE) to infect neuronal cells (Zhu et al. 
2012; Kalia et al. 2013; Yang et al. 2013; Xu et al. 2016; Liu et al. 2017; Khasa et al. 
2019; Khasa et al. 2020). RNA interference-based screens have identified several 
membrane trafficking proteins such as the ARP2/3 complex, RhoA, Cdc42, Pak1, 
Rab5, Rab11, ezrin and valosin-containing protein (VCP) to be involved in JEV 
entry (Xu et al. 2016; Khasa et al. 2019; Khasa et al. 2020; Liu et al. 2020; Sehrawat 
et al. 2021; Zhou et al. 2021). Characterisation of JEV entry in neuronal cells, and its 
interaction with host factors, is an important research domain and can generate 
potential therapeutic targets to combat the virus at an early time of infection. 
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A low pH achieved in the endosome induces conformational changes in the viral 
E glycoprotein, which triggers the fusion of viral and host endosomal membranes 
and releases the viral RNA genome into the cytoplasm. The positive sense RNA is 
directly translated via the host translational machinery into two precursor 
polyproteins (with or without a ribosomal frameshifting at the beginning of NS2A-
coding region), that are cleaved into three structural (C, prM and E) and seven 
non-structural (NS1 to NS5) proteins, along with NS1’. 

The virus non-structural proteins: NS4A, NS4B, NS1, NS2A, NS2B, NS3 and 
NS5 are known to interact/associate with several host factors, majorly ER-associated 
proteins and lipids to form the ER-derived replication complexes (Arakawa and 
Morita 2019). Distinct structures referred to as convoluted membranes (CMs) and 
vesicle packets (VPs) can be seen in flavivirus-infected cells and are the sites for 
polyprotein translation/processing and viral RNA replication, which proceeds 
through the formation of the viral dsRNA intermediate. The signal peptidase com-
plex subunit 1 (SPCS1) is a crucial host factor that interacts with NS2B and impacts 
the post-translational processing of JEV proteins and virus assembly (Ma et al. 
2018). The ER-associated degradation pathway (ERAD) proteins such as 
microtubule-associated protein 1 light chain 3-I (MAP1LC3-I, hereafter LC3-I), 
EDEM1 and Sel1L are also found enriched in the JEV VPs and CMs (Sharma, 
Bhattacharyya et al. 2014; Sarkar et al. 2020). The replication complex has a pore 
opening into the cytosol for entry of nucleotides and exit of the positive-strand RNA 
for packaging. Interestingly, the production of the plus strands is  10–100 fold higher 
than minus strand RNA, showing an asymmetric and semi-conservative process of 
replication (Uchil and Satchidanandam 2003). The viral capsid protein, along with 
LC3-I (autophagy-independent form), is observed to be concentrated on lipid drop-
lets (LDs), and this is likely to be the site of RNA packaging (Sarkar et al. 2020). 
Interestingly, the number of LDs decreases in JEV-infected cells suggesting a 
negative regulation of lipid metabolism, an observation which is also supported by 
proteome studies describing the down-modulation of lipid metabolic proteins in 
JEV-infected cells (Sarkar et al. 2020; Sharma et al. 2021a). 

Virion assembly in the ER lumen follows as the viral genome and proteins 
assemble abundantly. The nucleocapsid is further enclosed by E and prM proteins 
decorated on ER membranes to form immature virus particles. These undergo 
maturation before budding out of the cell membrane, via furin protease activity



that cleaves prM to M during exocytosis via the trans-golgi network (Stadler et al. 
1997; Li et al. 2008; Yu et al. 2008). Mapping the virus-host interactome and 
developing inhibitors to block the virus-receptor/host dependency factor interaction 
are attractive targets for antiviral drug development. 
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Cellular Response to Infection 

Viruses have evolved strategies to interfere with cellular signalling pathways and 
exploit organellar compartments, which perturbs cellular homeostasis and triggers 
the activation of stress responses in infected cells. Flaviviruses are shown to induce 
stress responses such as the formation of stress granules, oxidative stress, and ER 
stress leading to the activation of the unfolded protein response (UPR), autophagy 
and activation of innate immunity. Cross-communication between these pathways 
regulates the antiviral and cell survival response, in addition to other cellular 
functions such as translation, metabolism, cytoskeletal organisation and inflamma-
tion, and therefore influences the viral pathogenesis and disease outcome. 

Alteration of Signalling Pathways 

Activation of PI3-kinase/Akt signalling has been observed early during JEV infec-
tion and is thus likely to be a result of virus-receptor interaction (Das et al. 2010). 
JEV attachment can also specifically activate EGFR-PI3K signalling (Xu et al. 
2016), resulting in phosphorylation of EGFR, and infection can be blocked by 
using EGFR inhibitors (Zhang et al. 2022). MAPK signalling including ERK, p38, 
MAPK and JNK plays an important role in JEV-induced caspase activation (Gupta 
et al. 2011) and neuroinflammation (Ye et al. 2016; He et al. 2017). JEV has also 
been shown to modulate several tyrosine phosphorylation-mediated signalling 
events in infected cells (Raung et al. 2005, 2007; Yang et al. 2012). 

PKR Activation and Formation of Stress Granules 

Recognition of viral dsRNA activates the interferon (IFN)-induced protein kinase R 
(PKR), which phosphorylates the eukaryotic translation initiation factor 2α subunit 
(eIF2α), and results in a block of protein translation. PKR activation also results in 
the sequestration of actively transcribing mRNA into cytoplasmic foci called stress 
granules (SG), and this process is circumvented by nearly all viruses to enable their 
propagation. The JEV NS2A protein can counteract PKR activation and eIF2-
α-phosphorylation (Tu et al. 2012). JEV capsid protein has been shown to inhibit 
the SG formation by binding to the RNA-binding protein, Caprin-1 which is an



essential component of the stress granules (Katoh et al. 2013). JEV NS4B can also 
recruit the VCP-NPL4 complex and block stress granule formation (Arakawa et al. 
2022). 
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Induction of Oxidative Stress 

Oxidative stress is generated when there is an imbalance between the production and 
neutralisation of reactive oxygen species (ROS). In general, ROS is produced as a 
by-product of normal aerobic metabolism, by a variety of enzymes present in 
mitochondria, ER, and peroxisomes, which are simultaneously taken care of by 
the antioxidant system (Go and Jones 2008; Roy et al. 2017; Zhang et al. 2019). ROS 
acts as a double-edged sword in cell health, as its maintenance to a certain level is 
necessary for signalling activation and survival. However, stress conditions such as 
pathogen infection, accumulate intracellular ROS, resulting in cell injury or death. 

JEV has been demonstrated to trigger oxidative stress in infected cells together 
with the production of toxic oxygen species in neutrophils (Srivastava et al. 1999), 
human astrocytoma and astroglioma cell lines (Mishra et al. 2008), the superoxide 
anion and nitric oxide species in rat cortical glial cells (Liao et al. 2002), and ROS 
intermediates in murine neuroblastoma cells (Raung et al. 2001). The elevated ROS 
level during JEV infection is implicated in virus-induced cell death (Ghoshal et al. 
2007; Ghosh and Basu 2009; Kumar et al. 2009b; Yang et al. 2010). Alterations in 
mitochondrial health (Lin et al. 2004), and high levels of proinflammatory mediators 
secreted by activated microglia (Ghoshal et al. 2007), are major drivers of 
JEV-induced oxidative stress. Even UV-inactivated JEV (replication incompetent) 
damages actively growing neuronal cells through a ROS-mediated pathway (Lin 
et al. 2004). ROS is thus a major contributor of JEV pathogenesis and therapeutic 
modulation of JEV-induced oxidative stress could be beneficial for the host (Zhang 
et al. 2014). Oxidative stress has also been linked to UPR activation, autophagy, 
immunity, inflammation and cell death pathways (Olagnier et al. 2014; Chen et al. 
2018a; Sharma et al. 2018; de Almeida et al. 2020). 

Activation of the Unfolded Protein Response 

The ER is a ubiquitous and versatile organelle involved in multiple cellular functions 
including protein production, folding, trafficking and turnover; lipid synthesis and 
distribution, calcium homeostasis, cell signalling and innate immunity. The ER is 
central to the JEV life cycle as it provides both a scaffold for viral protein translation 
and ER resident proteins and lipids for virus replication complex biogenesis and 
virion assembly. This poses a significant burden on the organelle, resulting in the 
induction of ER stress and activation of UPR (Yu et al. 2006; Blazquez et al. 2014). 
The three main pathways that modulate UPR are protein kinase-like ER resident



kinase (PERK), the activating transcription factor 6 (ATF6), and the inositol-
requiring enzyme 1 (IRE-1) (Liu and Kaufman 2003). The activation of the PERK 
pathway follows eIF2α-phosphorylation and causes global translational arrest. The 
insufficiency of translational arrest in reducing ER stress, leads to the activation of 
the IRE1 and ATF6 pathways, which upregulate the expression of ER chaperons and 
ERAD machinery components, to boost protein folding capacity and degrade ter-
minally misfolded proteins. The UPR signalling attempts to restore ER homeostasis, 
however, prolonged ER stress and high-level signalling through PERK and eIF2α, 
results in ATF4 activation and expression of transcription factor GADD153 
(CHOP), which altogether arrests the cell-cycle and induces apoptosis (Rozpedek 
et al. 2016). Activation of ER stress has also been linked to other crucial cellular 
processes such as lipid metabolism, autophagy, innate immunity and differentiation 
(McLean et al. 2011; Blazquez et al. 2014; Datan et al. 2016; Chan and Ou 2017; 
Sharma et al. 2017; Carletti et al. 2019), expanding its role in generating the 
integrative stress response against viral infections. 
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Studies have demonstrated that JEV infection generates ER stress and triggers the 
activation of all three sensors (PERK, ATF6 and IRE-1) of the UPR. PERK 
activation and CHOP expression have been linked to virus-induced apoptosis and 
disease pathogenesis (Su et al. 2002; Wang et al. 2019). The regulated IRE1-
dependent decay (RIDD) pathway has been shown to benefit viral replication and 
enhance cell death (Bhattacharyya et al. 2014). In contrast, the XBP1 and ATF6-
mediated UPR pathways exert a protective role against JEV-induced cell death via 
upregulating autophagy in neuronal cells (Yu et al. 2006; Sharma et al. 2017). The 
cellular ERAD pathway degrades the extra membrane-anchored JEV NS proteins in 
convoluted membranes and this process is essential for optimal virus replication 
(Tabata et al. 2021). 

Upregulation of Autophagy 

Autophagy is a highly conserved, multi-step degradative process which is greatly 
involved in maintaining cellular homeostasis by degrading misfolded/faulty proteins 
and damaged organelles through lysosomal compartments. Autophagy has basal 
housekeeping functions and is induced by stress conditions such as hypoxia, path-
ogen infection, ER stress, oxidative stress and accumulation of aggregated proteins 
and damaged organelles. In the context of viruses, autophagy can either restrict or 
enhance infection, depending on the virus and cell type (Ahmad et al. 2018). To 
restrict virus proliferation, autophagy either directly targets the viral components for 
degradation or indirectly modulates other host antiviral and survival pathways 
(Lennemann and Coyne 2015; Abdoli et al. 2018; Choi et al. 2018; Sharma et al. 
2019). 

During JEV infection, autophagy has been shown to be induced in both in vitro 
and in vivo model systems. JEV-induced autophagy has been shown to support virus 
replication by suppressing the cellular immune environment (Li et al. 2012a; Jin



et al. 2013), however, some studies have suggested otherwise (Sharma et al. 2014; 
Xu et al. 2017). Significant enhancement of JEV replication and titres has been 
observed in autophagy-deficient (ATG5/ATG7 depleted) mouse fibroblasts and 
neuronal cells (Sharma et al. 2014). The E3 ubiquitin ligase Nedd4 protein also 
restricts JEV-induced autophagy and facilitates JEV replication in human neuro-
blastoma cells (Xu et al. 2017). Autophagy thus appears to play an antiviral role for 
JEV by restricting virus replication and virus-induced cell death (Sharma et al. 
2014). JEV-infected cells also show enhanced mitophagy flux and a decrease in 
mitochondria number through the interaction of the viral NS4A protein with PTEN-
induced kinase 1 (Agarwal et al. 2022). Interestingly, based on the anti-inflammatory 
and neuroprotective properties, autophagy activators have the potential to be 
repurposed as antivirals against JEV infection. 
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Innate Immune Activation 

The cell recognises a virus infection through its pathogen recognition receptors 
(PRRs) that bind specific pathogen-associated molecular patterns (PAMPs). The 
PRR-PAMP association triggers downstream effectors and the production of type-I 
interferons (IFN-α and IFN-β) and inflammatory cyto/chemokines, which further 
initiates the JAK-STAT signalling in an autocrine and paracrine fashion. The 
IFN-driven JAK-STAT pathway ultimately induces the expression of a wide array 
of genes collectively referred to as interferon-stimulated genes (ISGs) that function 
to inhibit virus infection by directly acting on the virus itself or by enhancing the 
cellular antiviral state. 

Various cell line and animal model studies have established the crucial role of 
numerous PRRs such as RIG-I, MDA-5, MyD88 (Kato et al. 2006), TLR3 (Han 
et al. 2014) and TLR7 (Nazmi et al. 2014; Awais et al. 2017), in sensing JEV 
components for innate immune activation. The quality and magnitude of the antiviral 
response of brain resident cells govern JE pathogenesis. Activation of RIG-I, 
MDA-5 and TLR-3 in JEV-infected neuronal and microglial cells is critical for 
virus inhibition, as their deletion compromised antiviral immunity and increased 
viral load (Nazmi et al. 2011; Jiang et al. 2014). Various reports have demonstrated 
the activation of a wide variety of ISGs including PKR, OAS, TRIM21, ISG15, 
IFITs, IFITMs, GBPs, MX1, etc., upon JEV infection (Clarke et al. 2014; Sharma 
et al. 2021a, b) (Fig. 10.1). Some of these such as IFNα, ISG15, MX2 and OAS-L 
have been shown to have an antiviral role against JEV (Hsiao et al. 2010; Liu et al. 
2013; Zheng et al. 2016). Type-I IFN production by astrocytes restricts viral spread 
in the CNS and virus-induced cytopathic effects (Lindqvist et al. 2016). 

The virus also engages to counteract the IFN response and establish a replication 
niche. JEV NS5 is a potent antagonist of IFN-induced Jak-STAT signalling through 
abrogation of nuclear translocation and tyrosine phosphorylation of Tyk2 and 
STAT1 (Lin et al. 2006). JEV NS4A also functions as an IFN-antagonist through 
inhibition of STAT phosphorylation (Lin et al. 2008). JEV NS1’ has been shown to
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inhibit mitochondrial antiviral signalling protein (MAVS) mediated IFNβ induction 
by blocking dephosphorylation of CDK1 (Li et al. 2021b).
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The transcription factor IRF8 modulates microglial activation during infection 
and enhances IFN-γ production resulting in reduced viral loads in the brain (Tripathi 
et al. 2021). Activated microglial cells and astrocytes also produce a strong wave of 
pro/anti-inflammatory cytokines including RANTES, TNF-α, IL1-α, IL-6, IL-12, 
IL-18, IL1-β, CCL2, CXCL9, CXCL10, CXCL11 and pro-inflammatory enzymes 
like cyclooxygenase-2 and iNOS during JEV infection (Chen et al. 2004; Bhowmick 
et al. 2007; Ghoshal et al. 2007; Das et al. 2008; Gupta et al. 2010a, b; Chen et al. 
2011a, b; Kaushik et al. 2011; Fadnis et al. 2013; Lannes et al. 2017a; Yu et al. 
2019), which is thought to be the major driver of JEV-induced neuroinflammation 
and bystander neuronal cell death (Ye et al. 2016; He et al. 2017; Singh et al. 2020; 
Ashraf et al. 2021). The suppression of anti-inflammatory cytokine IL-10 has also 
been observed during JEV infection (Swarup et al. 2007). A quantitative 
phosphoproteomic analysis identified JNK1 cascade activation upon JEV infection 
as a major contributor to virus-induced encephalitis and lethality (Ye et al. 2016). 

Viral infections including JEV, also activate an epithelial-mesenchymal transition 
(EMT)-like process as an antiviral strategy through activation of the Snail transcrip-
tion factor, via coregulation with type-I IFN (Vedagiri et al. 2021). 

All flaviviruses, including JEV, produce a unique subgenomic flavivirus RNA 
(sfRNA) as a result of incomplete degradation of genomic RNA by the cellular 
exoribonuclease XRN1. This consists of the highly structured 3′UTR and plays an 
important role in viral pathogenesis through the regulation of cellular mRNA decay 
and IFN responses (Clarke et al. 2015). Activation of the RNA decay pathways are 
an important aspect of the innate immune response to virus infection. The monocyte 
chemoattractant protein 1-induced protein 1 (MCPIP1) ribonuclease binds JEV 
RNA and targets it for degradation (Lin et al. 2013). The zinc finger protein 
ZFP36L1 recognises the AUUUA motif in the 3′-UTR of the JEV genome and 
destabilises it by degrading the viral RNA through the 5′-3′ XRN1 and 3′-5′RNA-
exosome RNA decay pathways (Chiu et al. 2022). 

These studies highlight the importance of active innate immunity hubs in virus 
restriction and necessitate their detailed exploration for understanding disease sever-
ity. An optimal innate immune response is also crucial for limiting JEV at the 
periphery and blocking viral entry to CNS, a decisive checkpoint in JE pathogenesis. 

Cell Death Pathways 

An infected cell exposed to unrecoverable intracellular perturbations activates cell 
death pathways. Depending on the cell type and host response, viruses lead to three 
major regulated cell death modalities: apoptosis and inflammation programmed – 
necroptosis and pyroptosis (Dhuriya and Sharma 2018; Imre 2020). Cell death may 
repress virus replication and alter the local and systemic immune responses by 
releasing a variety of death-associated molecular patterns (DAMPS). Viruses have



evolved strategies to inhibit or activate cell death pathways to escape the defence 
mechanism or to kill certain cell populations to dysregulate host immune responses. 
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Direct neuronal infection and prolonged microglial activation (gliosis) driven 
inflammatory environment trigger diverse markers of cell death pathways in 
JEV-infected neuronal cells (Chen et al. 2012a, b; Mukherjee et al. 2019). Several 
studies have supported the role of prolonged ER stress and virus-induced UPR 
pathways in neuronal cell death (Su et al. 2002; Mukherjee et al. 2017; Wang 
et al. 2019). JEV also activates mitochondrial stress leading to ROS production 
and cytochrome-c release in the cytoplasm and activation of Caspase-8, -9 and -3 
(Tsao et al. 2008; Yang et al. 2009, 2010; Wongchitrat et al. 2019). Recent evidence 
points to the role of inflammation-driven necroptosis and pyroptosis in the patho-
genesis of JEV infection. The levels of the MLKL protein, a marker of necroptosis, 
increase in neuronal cells upon JEV infection, and its deletion reduces JE progres-
sion and inflammatory cytokines in the mouse model (Bian et al. 2017). 
JEV-infected fibroblasts and mouse brain showed upregulated levels of Gasdermin 
D and MLKL, along with increased transcript levels of genes of the necroptosis 
pathways (Sharma et al. 2021a). JEV-infected-pyroptotic macrophages release 
IL1-α, which is shown to be responsible for viral neuroinvasion (Wang et al. 
2020a, b). Transcriptomic analysis of macrophages has also shown the launch of 
diverse programmed cell death pathways upon JEV infection (Wang et al. 2020a, b). 
A crucial role of necroptosis has been shown in neuroinflammation and cell death in 
other neurological disorders, signifying that targeting these cell death pathways can 
potentially reduce disease severity. 

Downregulation of Cell Adhesion Molecules 

JEV infection downregulates several collagens, laminin and other cell adhesion 
proteins involved in proteoglycan binding and ECM organisation (Sharma et al. 
2021a). This could be a host-driven immune activation strategy for the generation of 
potential ligands for T and NK cell activation (Fig. 10.1). 

Metabolic Reprogramming 

All virus infections reprogramme the cellular metabolome to meet the high energy 
and resource demands of virus replication. In parallel, the cell also regulates its 
metabolism as an innate immune defence programme. A proteome wide-study has 
shown that JEV infection of fibroblasts down-modulates several metabolic enzymes 
of sterol and lipid biosynthetic pathways and transporters (solute carrier and 
ATP-binding cassette transporter) involved in shuttling metabolites and ions across 
membranes (Sharma et al. 2021a). Downmodulation of cholesterol/lipid biosynthetic 
activities is likely to be intimately linked with the IFN and inflammatory response.



Increased glycolysis and pentose phosphate pathway flux, impaired oxidative phos-
phorylation and catabolic patterns of lipid metabolism are hallmarks of JEV repli-
cation in neurons (Li et al. 2021a). The unique metabolic signature of JEV infection 
is still an underexplored area, but we are likely to see this field expanding rapidly in 
the coming years with antiviral treatment strategies based on targeted metabolic 
modulation. 
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Infection Route: A Host Overview 

Infection Route in the Periphery 

JEV enters through an infected-mosquito bite, where the dermis layer acts as a 
primary site of infection. The local dermal cells (fibroblasts, endothelial, tissue-
resident dendritic cells and pericytes) surrounding the mosquito bite area become 
infected and spread the virus to local lymph nodes, resulting in primary asymptom-
atic viremia (Filgueira and Lannes 2019; Ashraf et al. 2021). The virus escapes 
through either a hematogenous route or efferent lymphatic system and might infect 
multiple organs (liver, spleen, heart, muscle, kidney), generating secondary symp-
tomatic viremia. Very little is known about how JEV affects the cardiovascular, 
respiratory, digestive, reproductive and urinary systems in humans (Qi et al. 2020; 
Chapagain et al. 2022); however, mouse model studies have clearly indicated that 
JEV infects several visceral organs in addition to the brain (Li et al. 2017). In the 
periphery, JEV mainly replicates in the monocytes/macrophages and DCs (Aleyas 
et al. 2009; Terry et al. 2012; Wang et al. 2016; Garcia-Nicolas et al. 2019). The 
virus migrates through the body either as free virions or via migratory infected DCs. 
In most cases, virus infection is cleared by an effective peripheral immune response. 
However, the virus can utilise various immune evasion strategies to escape periph-
eral immune surveillance to cross the BBB (Aleyas et al. 2010; Aleyas et al. 2012; 
Adhya et al. 2013; Manocha et al. 2014; Sood et al. 2017; Wang et al. 2017a; 
Banerjee and Tripathi 2019). 

Peripheral Immune Response to Infection 

Antigen-presenting cells (APCs) such as DCs and macrophages are the first cells to 
generate a robust immune response with the production of various anti-/pro-inflam-
matory cytokines and lowering of blood viremia (Solomon 2004). The IFN-β 
response in macrophages and their migration to the CNS is regulated by the 
RNA-binding protein quaking (QKI), which functions as an immune suppressor 
(Liao et al. 2021; Deng et al. 2022). DCs initiate the adaptive immune response by 
stimulating T-cell activation (Aleyas et al. 2009; Li et al. 2011; Sooryanarain et al.



2012; Sharma et al. 2021b). The virus infection can also result in inflammatory 
demyelination in the peripheral nervous system (Wang et al. 2022). 
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JEV also replicates in monocytes and upregulates various antiviral and immune 
factors, resulting in their activation and differentiation into monocyte-derived den-
dritic cells (MoDCs) and monocyte-derived macrophages (MoDMs) (Cao et al. 
2011; Sooryanarain et al. 2012; Gupta et al. 2014; Garcia-Nicolas et al. 2019). 
JEV induces functional impairment of DCs through MyD88-dependent and -inde-
pendent pathways, which leads to poor CD4(+) and CD8(+) T cell responses, and 
boosts viral survival and dissemination in the body (Aleyas et al. 2009). The virus 
also reduces the expression of co-stimulatory cytokines in human and mouse DCs, 
leading to suppressed T cell activation and enhanced Treg (T regulatory cell) 
differentiation (Cao et al. 2011; Gupta et al. 2014) (Fig. 10.2). Transcriptional 
profiling of JEV-infected human MoDCs has demonstrated the activation of antiviral 
and inflammatory pathways, and expansion of Tregs in an allogenic response 
(Chauhan et al. 2021). Overall, the enhanced Tregs response can exert a 
neuroprotective effect by reducing excessive inflammatory response as seen in 
another virus-induced encephalitis (Lund et al. 2008; Anghelina et al. 2009; Lanteri 
et al. 2009; James et al. 2016). Numerous mouse studies have exhibited the contri-
bution of DCs in protection against JE via T cell-dependent and -independent 
mechanisms. CD11chi DCs regulate the innate CD11b+ Ly-6Chi monocyte differen-
tiation to protect immune-privileged CNS during JEV infection (Kim et al. 2015). 
The ablation of CD11chi DC is seen to lead to a higher ratio of CD4+ Th17/Treg cells 
and CD11b+ Ly-6Chi /Ly-6Clo monocytes in the lymphoid tissue and CNS leading to 
enhanced permeability of the BBB (Choi et al. 2017). 

The exact function of T cells in JEV pathogenesis is still unclear as diverse mouse 
studies suggested different outcomes with partial or complete protection against 
JE. T cell activation leads to the production of various antiviral cytokines like IFN-γ, 
generation of T cell memory response, and humoral response (Sharma et al. 2021b) 
(Fig. 10.2). The involvement of human memory T cells in protection against human 
JE has been reported (Turtle et al. 2016). Interestingly, the responses of T cell 
subsets including CD4 (+) and CD8 (+) T cells are found to be associated with 
different clinical outcomes of JEV infection (Aleyas et al. 2009, 2010, 2012; Adhya 
et al. 2013; Turtle et al. 2016). The JEV-mediated cytolytic CD8 + T cell activation 
and associated IFN-γ response provide complete protection against JEV-induced 
morbidity (Larena et al. 2013; Jain et al. 2017). The CD4 (+) effector T cells are 
essential for B cell activation and in generating humoral response (Li et al. 2012b; 
Tarlinton 2019). In patients, IgM antibody response specific to JEV infection reaches 
a maximum within 7 days of infection and can be detected both in the serum and 
cerebrospinal fluid (Burke et al. 1985). JEV is also seen to modulate humoral 
response in mice by increasing myeloid-derived suppressor cell (MDSC) 
populations, which suppresses CD4+ T cell function and thus diminishes the splenic 
B cells (CD19+) and blood plasma cells (CD19 + CD138+) (Wang et al. 2017b, c). 
The generation of neutralising antibody response specific to JEV infection is shown 
to provide long-term immunity and protection (Lee et al. 1995; Lin et al. 1998; 
Konishi et al. 1999; Gupta et al. 2003; Plotkin 2010; Lee et al. 2016; Qiu et al. 2018).



Animal studies have demonstrated that passive transfer of JEV-specific monoclonal 
antibodies could provide protection against JE (Kimura-Kuroda and Yasui 1988; 
Zhang et al. 1989; Beasley et al. 2004; Goncalvez et al. 2008; Van Gessel et al. 2011; 
Fernandez et al. 2018), and this has potential as an early treatment strategy. 
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Fig. 10.2 Peripheral immune response to JEV infection. JEV enters the human body through the 
bite of an infected Culex mosquito. The virus first replicates in the skin and local lymph nodes and 
then infects the peripheral immune cells, primarily monocytes resulting in the production of TNF-α, 
which causes activation and differentiation of monocytes into dendritic cells and macrophages. 
These cells then result in T cell activation, secretion of inflammatory cytokines (IL-6 and TNF-α) 
and upregulation of co-stimulatory molecules. JEV also directly impairs DCs function leading to 
suppressed T cell activation and enhanced Tregs. After systemic infection, the virus crosses the 
blood-brain barrier and enters the brain either directly or through trans-endothelial migration of 
virus-infected monocytes
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Virus Entry into the CNS 

The CNS is protected from peripheral contaminants by the BBB, which tightly 
regulates the selective transport of soluble factors and immune cells from blood to 
the brain. The BBB is comprised of tightly packed brain microvascular endothelial 
cells (BMECs) supported through interactions with microglial cells, astrocytes, 
pericytes and mast cells in the neurovascular unit that maintain the CNS microen-
vironment and neuronal function (Keaney and Campbell 2015; Villabona-Rueda 
et al. 2019). 

In individuals who develop disease the virus crosses the BBB and replicates 
efficiently in the CNS. Mouse model studies suggest four possible mechanisms; 
(1) transcellular transport: virus infection in endothelial cells followed by passive 
transport of viral particles without affecting the cell viability; (2) diapedesis of virus-
infected peripheral immune cells through endothelial cell junctions (“Trojan Horse” 
mechanism) or entry of infected immune cells through known physiological ways 
such as via the choroid plexus into the ventricular space; (3) virus transport via the 
peripheral nervous system (retrograde neuronal transport); and (4) virus entry upon 
BBB disruption due to virus-induced inflammatory mediators produced from cells 
present in both apical (blood) and basolateral (brain) sides of the BBB (Hsieh and St 
John 2020; Patabendige et al. 2018; Filgueira and Lannes 2019; Sharma et al. 
2021b). A recent study using a BBB model of human brain endothelial cells and 
astrocytes suggested that JEV infection triggers the production of diverse host 
mediators, which regulate JEV production but disrupt BBB integrity, thus allowing 
virus to breach into the brain (Patabendige et al. 2018) (Fig. 10.3). Several inflam-
matory cytokines and metalloproteases produced from JEV-infected astrocytes and 
microglial cells trigger the proteasomal degradation of tight junction proteins 
(claudin-5 and ZO-1), leading to subsequent dysfunction of the endothelial barrier 
which promotes BBB leakage (Chen et al. 2014; Chang et al. 2015; Lannes et al. 
2017b). Several studies also show that the virus gains CNS entry before BBB 
disruption (Li et al. 2015; Wang et al. 2018), and the breach is a fallout of a massive 
neuroinflammatory response in the brain. 

In the JEV-infected brain, the basal ganglia, thalamus and nuclei of the brainstem 
are the most affected regions (Kumar et al. 2009a). Virus-induced damage to the 
midbrain, brain stem, motor neurons in the spinal cord, periventricular tissue dam-
age, etc., may result in different clinical pathologies (Misra and Kalita 2010; Suman 
et al. 2016). 

CNS Response to Infection 

Encephalitis is the hallmark of JEV pathogenesis. JEV infection of microglia 
(Thongtan et al. 2012; Gupta et al. 2017), astrocytes (Chen et al. 2011a, b) and 
neurons (Chen et al. 2018b; Yu et al. 2019), and subsequent upregulation of cell



death and inflammatory responses contributes to virus-induced neuroinflammation. 
Genes associated with glutamate signalling are downregulated in JEV-infected 
mouse brains suggesting a potential negative impact on neurotransmission as well 
(Clarke et al. 2014). The virus can also modulate dopamine levels and can use 
dopamine-mediated neuronal communication to enhance infection of D2R neurons 
(Simanjuntak et al. 2017). Microglial activation in response to JEV PAMPS or 
DAMPs triggers various inflammatory factors and cytokines such as TNF-α, 
IL-1β, IL6, RANTES, MCP-1, etc., which upon overproduction leads to neuronal 
damage (Ghoshal et al. 2007; Chen et al. 2011a, b; Yang et al. 2012; Lannes et al. 
2017a; Chen et al. 2018b) (Fig. 10.3). During infection, the initial microglial 
activation and subsequent production of cyto-/chemokines is necessary to eliminate 
the pathogen which can be executed either by directly targeting the virus or by 
recruiting immune cells (Chen et al. 2011a, b). In response to cytokines, the immune 
cells including inflammatory monocytes (Terry et al. 2012) and JEV-specific T cells, 
may also be recruited to the infected brain. However, prolonged microglial
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Fig. 10.3 CNS response to JEV infection. After systemic infection, JEV crosses the BBB and 
enters into CNS either directly or by Trojan horse mechanism (transmigration of monocytes 
containing virus). Virus infection then leads to the activation of pericytes, astrocytes and microglial 
cells (acting as virus reservoir), subsequently leading to the release of certain inflammatory 
cytokines and new virion particles. Virus infection of neurons causes neuronal cell death either 
directly or by causing excessive neuroinflammation resulting in neuronal damage. The increased 
levels of cytokines result in enhanced level of metalloproteases (MMP2/9) causing degradation of 
tight junction proteins including ZO-1 and Claudin-5 and disruption of BBB. This increases the 
permeability of BBB facilitating enhanced migration of JEV-infected leukocytes and JEV particles 
into the CNS, thereby increasing the neuroinflammation and causing excessive neuronal tissue 
damage



activation is detrimental as it leads to a magnified proinflammatory response and 
enhanced immune cell infiltration which causes bystander neuronal cell death 
(Ghoshal et al. 2007; Wang et al. 2019; Singh et al. 2020). In several cases, the 
virus is cleared from the brain with minimal collateral damage, but in rare cases, 
heightened inflammation and direct infection to neurons may lead to neuronal cell 
death and damage to key centres in the brain with long-term deficiencies or a fatal 
outcome (Sarkari et al. 2012; Shirai et al. 2015). Chronic JEV infection of microglial 
cells (Thongtan et al. 2010; Lannes et al. 2017a) and lymphocytes (Sharma et al. 
1991) has been reported, which increases the possibility of virus reactivation.

10 Japanese Encephalitis Virus-Infected Cells 269

Perspectives 

Significant progress has been made in understanding the complex interplay of the 
JEV-host interaction at the cellular level. This has been augmented by high through-
put omics studies that enable a holistic view of virus-driven changes in diverse 
cellular systems. The identification of crucial host dependency factors and pathways 
has also fuelled antiviral drug discovery. In addition, the cellular and animal model 
studies have given significant insights into the host immune response and disease 
pathogenesis. More epidemiological and molecular studies are required in the 
amplifying animal reservoirs (pigs and birds) and the transmitting insect vectors to 
better understand the virus propagation and spread. In the near future, we can expect 
to see advances driven by lipidomic, metabolomics, genomic and epigenomic 
studies that should enable biomarker development and enhance our understanding 
of their association with disease severity. These research-driven efforts will supple-
ment disease management strategies and foster therapeutic development. 
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