
Chapter 6 
Application of Alternative Technologies 
for the Recovery of Bioactive Compounds 
from Microbial Sources 

Susana Ochoa and J. Felipe Osorio-Tobón 

Abstract Indiscriminate chemical compound usage, such as agrochemicals, pesti-
cides, fungicides, antibiotics, drugs, and other synthetic products, such as dyes, 
polymers, and heavy metals, have devastated soils, waters, and even living beings 
themselves. In this way, the development process for providing bioactive com-
pounds for human, animal, and environmental health is one of the most urgent 
needs to enhance the balance between human exploitation and nature. These needs 
focus on obtaining healthy and safe products obtained in sustainable processes. 
Therefore, the search for natural compounds that can be used as nutrients, natural 
pesticides, and antibacterial or anticancer agents is increased. 
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6.1 Introduction 

Plants, animals, and microorganisms are valuable sources of natural products with 
bioactivity [1, 2]. The natural products market was valued at USD 189 billion in 
2021. This market is projected to reach USD 300 Billion by 2030 [3]. Natural 
compound research from plants is a well-known field. However, further research 
regarding natural compounds obtained from microorganisms is necessary. 

Microorganisms produce primary metabolites such as amino acids, carbohy-
drates, proteins, and enzymes [3, 4]. Moreover, microorganisms can produce sec-
ondary metabolites with potential use for conservation or protection. These 
compounds are recognized by their bioactive properties, such as antimicrobial, 
antioxidant, anticarcinogenic, antiparasitic, and anti-inflammatory [2]. Therefore, 
the production and recovery of these compounds allow for obtaining high-value 
products. As can be observed in Table 6.1, microorganisms such as Archaea, 
bacteria, fungi, yeast, algae, and even some parasites produce bioactive compounds.
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Table 6.1 Bioactive compounds derived from different microbial sources 

Bioactive compound 
(s) 

Archaea Haloferax 
larsenii HA1 

Halocin Antibacterial protein 
and cell protector 

Kumar and 
Tiwari [5] 

Halorubrum 
sp. SH1 

Bacterioruberin Antioxidant de la Vega 
et al. [6] 

Bacteria Streptomyces 
Streptomyces 
anulatus NEAE-
94 

Unsaturated and sat-
urated fatty acids, 
alkenes, fatty acid 
esters, alkanes, and 
triterpenes 

Antimicrobial activ-
ity against Staphylo-
coccus aureus 

El-Naggar 
et al. [7] 

Streptomyces 
globisporus 
BU2018 

Exopolysaccharides Antioxidant Abdel-Aziz 
et al. [8] 

Streptomyces 
tunisialbus sp 

Fatty acids and 
menaquinones 

Antimicrobial activ-
ity against gram-
positive, and gram-
negative bacteria, 
yeast, and filamen-
tous fungi 

Ayed et al. 
[9] 

Streptomyces 
sp. BO7 

Biphenyls Antibacterial, antiox-
idant, and anticancer 

Taechowisan 
et al. [10] 

Bacillus 
Bacillus 
licheniformis 

Bacitracin Antimicrobial Ali et al. [11] 

Bacillus subtilis Fengycin Antifungal Wu et al. [12] 

Pseudomonas 
Pseudomonas 
cedrina 

Biomass extract rich 
in diketopiperazines 

Anticancer Sánchez-
Tafolla et al. 
[13] 

Lactobacillus 
Lactobacillus 
coryniformis 
NA-3 

Exopolysaccharides 
(α-rhamnose, 
α-mannose, 
α-galactose, and 
α-glucose) 

Antioxidant and anti-
biofilm 

Xu et al. [14] 

Fungus Aspergillus 
fumigatus 
MF029 

Chaetominine, 
sphingofungin, emo-
din, chaetominine, 
sphingofungin, and 
trypacidin 

Antitubercular 
activity 

Song et al. 
[15] 

Aspergillus 
fumigatus 

Biomass extract rich 
in phenolic com-
pounds (rutin, quer-
cetin, caffeic acid, 
kaempferol, and 
ellagic acid) 

Antibiofilm, 
antiproliferative, 
antioxidant, and 
antimutagenic 

Kaur et al. 
[16]
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The production of the compounds depends on the environmental or culture media 
conditions. Moreover, most of these bioactive compounds could have high demand 
in the medical, pharmacological, and food industries [22].
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Table 6.1 (continued)

Bioactive compound 
(s) 

Fusarium 
redolens 

Biomass extract rich 
in chrysophanol and 
fumaric acid 

Antimicrobial Nazir et al. 
[17] 

Yeast Metschnikowia 
yeast genus 

Alkaloids, antibi-
otics, and long-chain 
fatty acids 

Antifungal Fernandez-
San Millan 
et al. [18] 

Microalgae Nannochloropsis 
gaditana 

Omega-3 
eicosapentaenoic 
acid 

Prevention of cardio-
vascular diseases 

Martínez 
et al. [19] 

Spirulina 
(Arthrospira 
platensis) 

Phycocyanin Anti-inflammatory 
antioxidant, antiviral, 
immunity-boosting, 
and anticancer 

Lauceri et al. 
[20] 

Nannochloropsis 
oculata and 
Porphyridium 
purpureum 

Biomass extract rich 
in anticancer and 
antioxidant activities 

Anticancer Garcia-Parra 
et al. [21] 

Fig. 6.1 Steps involved in the recovery of bioactive compounds from microorganisms 

The recovery of bioactive compounds from microbial sources comprises several 
steps in a downstream process. A further selection of recovery and purification steps 
will depend on whether the product is inside or outside the cell. Figure 6.1 represents 
the main steps involved in the recovery of bioactive compounds from microorgan-
isms. Cell disruption is an initial step that is fundamental in the recovery of



compounds, and thus, the disruption method choice is crucial. In this context, the cell 
wall composition also influences the disruption method performance. For example, 
some microalgae with high cellulose, glucose, and mannose contents have more 
rigid cell walls. Moreover, cells in the stationary phase or growth in rich nutrient 
media can have strong cell walls, which influences the selection of the disruption 
method and its parameters [23]. 
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Among conventional disruption methods, mechanical and nonmechanical 
methods such as bead milling, high-pressure homogenization (HPH), osmotic 
shock, and enzymatic treatments are used for bioactive compound recovery. In the 
past decades, many alternative technologies have been explored for bioactive 
extraction from microbial sources, such as ultrasound-assisted extraction (UAE), 
supercritical fluid extraction (SFE), pulsed electric field extraction (PEF), 
microwave-assisted extraction (MAE), and others (Fig. 6.1). These alternative 
approaches are considered environmentally friendly and enhance extraction yields. 
In this context, the extraction with no previous cell disruption represents an excellent 
alternative to less energy-consuming process development. Alternative extraction 
techniques such as UAE, PEF, and MAE are mechanical methods that apply 
mechanical forces by waves or electric currents to break the cellular membrane. 

6.2 Bioactive Compounds from Microbial Sources 

Microorganisms produce novel antimicrobial, antitumoral, and anti-inflammatory 
molecules. Moreover, these compounds have potential applications in the biotech-
nological, nutraceutical, pharmaceutical, and environmental industries [24]. As 
shown in Table 6.1, bioactive compounds with antimicrobial, antifungal, and anti-
oxidant activities are produced by Archea, Prokaryotic, and Eukaryotic domains. 
Moreover, the production of macromolecules such as amino acids, proteins, lipids, 
and carbohydrates is influenced by temperature, pH, humidity, aeration, and sub-
strate. In this context, the interaction between these parameters and niches like 
oceans, mangroves, and caverns, even specific parts of plants or animal represent 
new opportunities to find novel bioactive compounds [25]. However, further 
research is necessary to identify the easy-to-cultivate and most productive microor-
ganisms to scale up the production on a large scale for their subsequent application. 
Next, mainly microbial sources of bioactive compounds are described. 

6.2.1 Main Microbial Sources of Bioactive Compounds 

6.2.1.1 Archea Bioactive Compounds 

Archaea compounds are produced under extreme conditions such as salt saturation, 
high temperature, and elevated UV radiation [26]. Archea produces bioactive



compounds such as exopolysaccharides, carotenoids, and proteins. These com-
pounds have potential applications in biomedical, pharmaceutical, cosmetic, envi-
ronmental, and industrial fields. Gómez-Villegas et al. [27] reported strains of 
Haloarchaea as a potential source of compounds. Haloferax larsenii HA1 [28] 
produces halocins and sulfolobicins [29]. Halocins and sulfolobicins are proteinic 
compounds that could be used as food preservative because it causes cellular 
deformation and release of cell contents leading to cell death. Carotenoids are 
produced by Haloarcula japónica, Halobacterium salinarum, and Halococcus 
morrhuae. Moreover, extremozymes are produced by Pyrococcus furiosus, 
Thermococcus littoralis, and Thermus aquaticus [30]. On the other hand, some 
pigments, such as carotenoids, bacteriorhodopsin, and bacterioruberin, are produced 
by Halobacterium Salinarum. These compounds help cells to adapt to hypersaline 
conditions by acting as a water barrier, allowing ions and oxygen molecules to pass 
through the cell membrane. Therefore, these compounds can be used as antioxidants 
and photoprotective in food and cosmetics. 
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6.2.1.2 Bacteria Bioactive Compounds 

Actinomycetes are one of the most reported genera that produce bioactive com-
pounds. For example, Streptomyces spp. can synthesize microbial compounds such 
as vinaceuline, bafilomycin, and antimycin [24]. Moreover, antioxidant compounds 
such as violacein and prodigiosin are produced by Streptomyces rubrireticuli and 
S. longisporus ruber [31]. These molecules or their derivatives are known for their 
antimalarial, antibacterial, and anticancer activities. Other strains of the genera 
Bacillus, Pseudomonas, Myxobacteria, Cyanobacteria [1], and Lactobacillus [32] 
can produce other bioactive molecules. For example, the antimicrobial compounds 
bacitracin and bacilysin are produced by B. liquenoformes and B. subtilis, respec-
tively [33]. On the other hand, Pseudomonas spp. (P. aeruginosa, P. fluorescent, and 
Pseudomonas chlororaphisin) produce antimicrobial compounds such as 
pyocyanin [3]. 

Lactic acid bacteria (LAB), such as Lactococcus and Pediococcus, have been 
reported to produce bacteriocins. Bacteriocins are known as immunomodulators 
with antimicrobial activity [32]. Phenolic compounds with antioxidant properties 
such as chlorogenic acid and gallic acid are produced by several cyanobacterial 
species [31]. On the other hand, fabclavines, xenocoumacins, xenorhabdins, and 
PAX peptides are antiparasitic compounds identified in Xenorhabdus and 
Photorhabdus [34]. Strains of Photorhabdus luminescens and Xenorhabdus 
nematophila showed anti-trypanosomal activity and potential use to develop novel 
drugs against Chagas disease [35]. Prokaryotes are an excellent choice for bioactive 
compound production due to their metabolic versatility and easy handling in the 
laboratory. Moreover, synthetic biology tools or heterologous systems could 
enhance bioactive compound production [31, 36].
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6.2.1.3 Fungi and Yeast Bioactive Compounds 

Fungi are eukaryotic organisms known to habit almost all ecological niches of the 
Earth, especially where there are organic sources and are in a state of decomposition. 
Many bioactive compounds are generated after mycelial growth and can affect direct 
sporulation. For example, Aspergillus nidulans and Fusarium gramineaum produce 
linoleic acid and zearalenone. Moreover, Alternaria alternata produces melanins as 
a proactive compound from UV rays. In addition, Aspergillus terreus has been 
recognized to produce lovastatin, which has metabolic activity. The most reported 
groups of secondary metabolites in this domain are polyketides, no ribosomal 
peptides, and terpenes [3]. Some endophytic fungi isolated from plants possess 
antimicrobial, antioxidant, and cytotoxic activities [37]. For example, compounds 
with antiprotozoal, antibacterial, and antiviral activity have been found in endo-
phytic fungi such as Colletotrichum, Diaporthe, Fusarium, Trichoderma, Penicil-
lium, and Xylariagenera [25]. Moreover, yeasts and other nonfilamentous eukaryotic 
microorganisms produce metabolites with antifungal such as piperidine and 
protoemetine (alkaloids), p-coumaroyl quinic acid (phenylpropanoid), which are 
produced by Metschnikowia pulcherrima [18]. Moreover, the yeast used in 
fermented beverage production (wine, beer) produces alcohols such as tyrosol, 
which is responsible for the flavor in fermented beverages and is recognized for its 
antioxidant and cardioprotective properties [38]. Yeast can also be used as a model 
cell for genetic engineering assays to produce compounds derivate from plants when 
the expression in a complex system is required [39]. 

6.2.1.4 Microalgae Bioactive Compounds 

Microalgae are found in oceans, fresh and wastewater, and extreme environments. 
Microalgae are an excellent source of metabolites such as fatty acids, carbohydrates, 
proteins, vitamins, and bioactive compounds [19]. Antimicrobial and anticancer 
compounds have been found in microalgae [21]. For example, phenolic compounds 
and hydroxycinnamic acids such as gallic acid, chlorogenic acid, ferulic acid, and 
caffeic acid have been found in Chlorella vulgaris, Haematococcus pluvialis, 
Diacronema lutheri, Phaeodactylum tricornutum, Tetraselmissuecica, 
Ankistrodesmussp., Spirogyrasp., Euglena cantabrica, Caespitella pascheri, and 
Porphyridiumpurpureum [31]. Metabolites such as exopolysaccharides with immu-
nomodulatory, anti-inflammatory, antiviral, antifungal, and antibacterial capacities 
are produced by Porphyridium sp., Arthospira sp., and Chlorella sp. [21]. On the 
other hand, some specific compounds, such as polyunsaturated aldehydes with 
anticancer activity, are found in marine diatoms [40]. Therefore, microalgae could 
be an excellent source of novel bioactive compounds with multiple applications.



6 Application of Alternative Technologies for the Recovery of. . . 109

6.3 Production of Bioactive Compounds 

During the past few decades, the bioactive compounds market from microbial 
sources has been growing due to its impact on the agriculture, food, and pharma-
ceutical industries. For example, the agroindustry uses bioactive compounds for pest 
control and plant growth promotion. Therefore, to take advantage of all properties 
offered by microorganisms, it is necessary to develop a sustainable process that 
produces bioactive compounds at low cost and high quality and effectiveness. Next, 
an overview of the main compounds produced by microbial sources is presented. 
Almost all bioactive compounds from microorganisms are related to their antimi-
crobial activity. Currently, there is a concern regarding the increase in antimicrobial 
resistance. As mentioned before, some antimicrobial molecules can disrupt the cell 
membrane. For example, membrane synthesis is inhibited by lipopeptides and 
polymyxin produced by Bacillus sp. and Paenibacillus polymyxa [33], respectively. 
In that context, antibiotics such as streptomycin, gentamicin, and tetracycline are 
produced by Streptomyces griseus, Micromonospora purpurea, and Streptomyces 
aureofasciencs [24]. These antibiotics inhibit protein synthesis in cells. Many of 
these compounds are recovered from marine microorganisms, which grow in 
extreme temperatures, under osmotic stress [41]. On the other hand, compounds 
such as bacteriocins isolated from the gastrointestinal tract are recognized for their 
immunomodulatory properties and antimicrobial capacity. Moreover, bacteriocins 
are used as a food preservative [32]. 

In the case of microalgae, the antimicrobial activity is related to the 
overproduction of fatty acids that can reduce the ability to breathe and cause cell 
death [24]. On the other hand, antifungal compounds such as glycolipids produced 
by Bacillus licheniformis can inhibit Aspergillus niger [2]. Antioxidant compounds 
such as polyphenols, carotenoids, or exopolysaccharides are produced by Aspergil-
lus spp. and Artrospira sp., among others. These compounds can scavenge free 
radicals and are recognized for their photo-protective properties. 
Exopolysaccharides are high-molecular-weight carbohydrate polymers with radical 
scavenging activities, metal chelation activity, and lipid peroxidation inhibition 
[31]. These compounds are one of the most exploited bioactive substances due to 
their antiaging capacity. Other bioactive properties, such as anticholinesterase, 
antituberculosis, and antimalarial activity, have been shown in microorganisms. 
Further research is necessary to explore the microbial capacity to obtain bioactive 
compounds. Combined with the develop alternative extraction processes can allow 
the obtaining of pure and safe molecules with application in the medical field, 
pharmaceuticals, food, and environment industries.
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6.3.1 Conventional Extraction Processes 

Conventional extraction methods such as maceration, Soxhlet, solvent extraction, 
and hot reflux extraction have been used for compound recovery from microbial 
sources. Although they consume large quantities of solvents and employ longer 
extraction times, these processes are recognized for their simplicity and low-cost 
implementation [42]. Generally, they are used as a reference to compare with 
alternative technologies. Maceration is a straightforward extraction process carried 
out at ambient temperature under agitation. Bioactive compounds from Pleurotus 
ostreatus were recovered by maceration after 90 min at 25 °C, 150 rpm, using water 
and ethanol as extraction solvents [43]. Different fractions rich in proteins and 
phenolic compounds were recovered depending on the solvent proportion. For 
example, a mixture with 95% ethanol enhances protein extraction, while 50% 
ethanol increases the content of phenolic compounds. In a similar approach, Daud 
et al. [44] recovered red pigments from the fungus Monascus purpureus at 30 °C but 
during 16 h under agitation (180 rpm). The red pigment solubility depends on the 
solvent polarity, where the best solvent was 60% ethanol, which allows a maximum 
yield of 207 AU/g dry fermented solids. On the other hand, hot water extraction is 
used for obtaining polysaccharides from mushrooms. For example, polysaccharides 
were obtained from Ganoderma resinaceum by hot reflux extraction at 100 °C for 
8  h [45]. 

Recently, Soxhlet extraction of oil from the microalgae Spirogyra [46] and 
Chlorella pyrenoidosa [47] was studied using extraction times ranging between 
1 and 4 h at boiling temperatures depending on the solvents (n-Hexane and 
2-Methyltetrahydrofuran). Oil extraction from Spirogyra required previous drying 
and milling pretreatments to enhance the extraction process due to a finer algae size 
causing better contact with the solvent. Moreover, usually, the more dried, the higher 
yield. In the drying/dehydration processes, freeze-drying is one of the most used 
methods. Low temperatures employed by freeze-drying keep the integrity of the 
compounds. However, freeze-drying is energy consuming, which could limit its 
application at the industrial scale. In this context, the direct extraction from wet 
biomass is getting more attention in the scientific community. For example, wet 
biomass was used as raw material in the oil recovery from Chlorella pyrenoidosa by 
Soxhlet [47]. Although lipid extraction is enhanced, total fatty acids content 
presented a reduction. Therefore, cell pretreatment influences extraction perfor-
mance in conventional extraction processes as well as in alternative techniques. 
Thus, further research is necessary to establish the optimal process conditions. As 
mentioned, high temperatures and long extraction times are characteristics of con-
ventional extraction methods. Therefore, energy consumption and thermally com-
pound degradation are drawbacks that must be overcome. However, these 
techniques will continue to be used to compare alternative or novel technologies.
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6.3.2 Alternative Extraction Technologies 

Over the past decades, the recovery of bioactive compounds using alternative 
technologies has been focused on by researchers in many fields, such as food, 
chemical, or biotechnology. Generally, alternative extraction methods are more 
feasible than conventional extraction methods. The use of solvents generally recog-
nized as safe (GRAS), the shorter extraction times, and the higher extraction yields 
are the main advantages of these methods. Among the most popular alternative 
extraction methods, ultrasound, microwaves, supercritical fluids, pressurized fluids, 
and electric fields are the most used technologies for bioactive extraction from 
microbial sources. Next, the concepts and applications of alternative extraction 
methods will be presented. 

6.3.2.1 Ultrasound-Assisted Extraction (UAE) 

Ultrasound is one of the most used extraction technologies employed in the bioactive 
compound recovery from fruits, vegetables, herbs, spices, seeds, and microorgan-
isms. In UAE, cell disruption is caused by an acoustic phenomenon known as 
cavitation. In cavitation, the ultrasound waves generate rarefaction and compression 
cycles, creating gas bubbles in the cytoplasm. Once the bubbles have reached a 
maximum size, they collapse and release large amounts of energy (5000 K and 
2000 atm) [48]. The cell wall is disrupted due to mechanical effects, the solvent has 
more intimate contact with the target compounds, and the extraction rates are 
enhanced [49]. Extraction parameters such as ultrasound power, frequency, temper-
ature, solvent, type of device, and extraction time influence the extraction process. 
As shown in Table 6.2, temperatures ranging from 25 °C and 70 °C are used for 
compound recovery. Ultrasonic power from 100 W to 1000 W and short extraction 
times are used (e.g., minutes). Regarding extraction solvents, GRAS solvents such as 
water, ethanol, buffers, and deep eutectic solvents (DESs) are used. DESs are 
recognized as environmentally friendly, inexpensive, and chemically stable [50]. 

Depending on the microorganism, the effect on extraction parameters can be 
different. Generally, an increase in the ultrasound power, temperature, and extraction 
time increases the recovery of the compounds. The increase in the ultrasonic power 
enhances the cavitation, the cell structure is disrupted faster, and the solvent pene-
trates more efficiently [51]. The increase in temperature enhances the solubility of 
the compounds. Moreover, the denaturation of the membrane can be promoted by 
temperature [52]. However, excessive temperature or ultrasonic power may trigger 
the degradation of the compounds through the failures of the chemical structure or 
the generation of ROS [53]. Regarding frequency, cell disruption is enhanced by the 
acceleration caused by higher frequencies. The higher the frequency, the smaller the 
cavity sizes and the faster the bubbles collapse [48].
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Table 6.2 UAE applications of bioactive compounds from microbial sources 

Compound 
(s) recovered 

Morchella importuna Polysaccharides 62 °C, 600 W, 31 min, cho-
line chloride/oxalic acid 
(DESs) 

Pan et al. 
[50] 

Dictyosphaerium sp. Polysaccharides 50 °C, 500 W, 50 min, water Chen et al. 
[51] 

Saccharomyces cerevisiae Polysaccharides 70 °C, 1000 W, 8 h, 0.2 M 
sodium hydroxide 

Eom et al. 
[58] 

Arthrospira Platensis Lutein/zeaxanthin 60–70 °C, 10 min, methanol Sam et al. 
[59] 

Chlorella vulgaris and 
Porphyridium purpureum 

Carotenoids 70% power, ethanol (60%) Vintila 
et al. [60] 

Nannochloropsis gaditana Omega-3 long 
chain-
polyunsaturated 
fatty acids 

50 °C,100 W, 30 min, 
ethanol 

Castejón 
and Marko 
[61] 

Diaporthe schini Antioxidant 
compounds 

25 °C, 400 W, pulsed mode 
(0.93), 15 min, ethanol 

da Rosa 
et al. [62] 

Saccharomyces cerevisiae, 
saccharomyces boulardii, 
Metschnikowia fructicola 
andTorulaspora delbrueckii 

Mannoproteins 80% amplitude, 4 min, 0.1 M 
phosphate buffer, pH 6.5 

Snyman 
et al. [63] 

Grifola frondosa Polysaccharides 65 °C, 4.5 h, water Ji et al. 
[64] 

Agrocybe cylindracea Dietary fiber Ultrasonic-assisted enzy-
matic method, the α-amylase 
concentration of 1.50%, 
protamex concentration of 
1.20%, 150 W 

Jia et al. 
[65] 

Haematococcus pluvialis Astaxanthin 25 °C, 80% amplitude, 
pulsed mode (3 min off and 
12 min on), (NH4)2SO4 salt 
solution/2-propanol 

Khoo et al. 
[66] 

Porphyridium cruentum and 
Porphyridium purpureum 

Proteins, carbohy-
drates, lipids, fatty 
acids and 
phycoerythrin 

30 °C, 100 W, 13–15 min, 
50 mM Na-phosphate buffer 
(P. cruentum), and water 
(P. purpureum) 

Ardiles 
et al. [67] 

6.3.2.2 Supercritical Fluid Extraction (SFE) 

SFE uses substances at temperatures and pressures above their critical point. These 
substances are known as supercritical fluids (SCF). Above the critical point, the 
fluids can diffuse as gas and has liquid solvation power [54]. For SFE, generally, 
before extraction, the microbial biomass is freeze-dried and disrupted. For instance, 
a ball mill is used to enhance the extraction of intracellular compounds from 
Scenedesmus almeriensis [55] and Nannochloropsis sp. [56]. CO2 is the most used



Species Extraction conditions References

solvent in SFE, and it is recognized as safe (GRAS), inexpensive, has low toxicity, 
readily available, and has an easily accessible critical point (31 °C and 73.8 bar) 
[57]. Temperatures between 40 °C and 85 °C and pressures between 250 and 550 bar 
are suitable for bioactive compound extraction (Table 6.3). The selectivity of the 
CO2 is modified by changing the temperature and pressure. For example, the solvent 
density increases as the temperature increases, and the solvent density increases as 
the pressure increases. Thus, the solubility of the intracellular compounds is 
enhanced by increasing the pressure at a constant temperature. This behavior has 
been observed in the recovery of omega-3 fatty acids and phenolic compounds from 
Nannochloropsis sp. [56] and Aurantiochytrium sp. [68]. 
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Table 6.3 SFE applications of bioactive compounds from microbial sources 

Compound 
(s) recovered 

Scenedesmus 
almeriensis 

Lutein 65 °C, 550 bar, 14.48 g/min 
CO2 

Mehariya et al. 
[55] 

Nannochloropsis 
sp. 

Omega-3 fatty acids 75 °C, 550 bar, 14.48 g/min 
CO2 

Leone et al. 
[56] 

Aurantiochytrium 
sp. 

Omega-3 fatty acids 
and phenolic 
compounds 

80 °C, 300 bar, 12 g/min CO2 De Melo et al. 
[68] 

Diaporthe schini Antioxidant 
compounds 

40 °C, 250 bar, 4 g/min CO2, 
biomass:Ethanol, 1:1.5 (w/v) 

da Rosa et al. 
[69] 

Usnea 
subfloridana 

Usnic acid 85 °C, 150 bar, 2 mL/min CO2 Boitsova et al. 
[70] 

Schizochytrium 
sp. 

Docosahexaenoic acid 
(DHA) 

77 °C, 465 bar, 5 mL/min 
CO2, 1.25 mL/min ethanol 

Rodríguez-
España et al. 
[73] 

Inonotus obliquus Triterpenoids 50 °C, 350 bar, 3 mL/min CO2 Huynh et al. 
[74] 

Coccomyxa 
onubensis 

Lutein and phenolic 
compounds 

70 °C, 400 bar, 2 mL/min 
CO2, 2.30 mL/min ethanol 

Ruiz-
Domínguez 
et al. [75] 

Haematococcus 
pluvialis 

Astaxanthin 50 °C, 500 bar, 2 L/min CO2 Espinosa 
Álvarez et al. 
[76] 

Chlorella vulgaris Phenolic compounds 60 °C, 250 bar, 40 g/min CO2 

(ethanol 10% w/w) 
Georgiopoulou 
et al. [77] 

Although CO2 is the most common SFC used for bioactive compound extraction 
from microbial sources by SFE, it only allows the extraction of nonpolar compounds 
as lipids. Thus, CO2 is used mainly for lipid or fatty acid extraction from microbial 
sources such as microalgae, as shown in Table 6.3. On the other hand, for polar 
compound extraction (e.g., phenolic compounds), a co-solvent such as ethanol is 
necessary. For instance, ethanol is used as a co-solvent for bioactive compound 
extraction from fungi [69], microalgae [55], and lichen [70]. SFE allows obtaining 
higher purity extracts while solvent recycling is possible.
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Table 6.4 MAE applications of bioactive compounds from microbial sources 

Species Compound (s) recovered Extraction conditions References 

Nannochloropsis 
oceanica 

Proteins 40 °C, 700 W, 30 min, 
choline acetate 

Motlagh 
et al. [72] 

Rhizopus oryzae Chitosan 300 W, 22 min, 1 N 
NaOH 

Sebastian 
et al. [81] 

Haematococcus 
pluvialis 

Astaxanthin 75 °C, 700 W, 7 min 
dimethyl sulfoxide 

Aslanbay 
Guler et al. 
[82] 

Auxenochlorella 
Protothecoides 

Lipids 2.8 kW, 200 μs pulse, cell 
suspension 

Zhang 
et al. [83] 

Chlorella vulgaris and 
Botryococcus braunii 

Lipids 400 W, 40 s, cell 
suspension 

Rokicka 
et al. [84] 

Kappaphycus alvarezii β-Carotene, chlorophyll, 
antioxidants 

45 °C, 170 W, 
12.5–14.5 min 80% 
methanol 

Baskararaj 
et al. [85] 

Psylocibe cubensis Psilocin and psilocybin 50 °C, 600 W, 5 min, 60% 
methanol 

Polo-
Castellano 
et al. [86] 

Lactococcus lactis Menaquinones 50 °C, 600 W, 5 min, 
ethanol 

Lee et al. 
[87] 

Porphyridium 
cruentum and 
Porphyridium 
purpureum 

Proteins, carbohydrates, 
lipids, fatty acids, and 
phycoerythrin 

200 W, 60 s, 50 mM 
Na-phosphate buffer/ 
water (54:46 v/v) 

Ardiles 
et al. [67] 

6.3.2.3 Microwave-Assisted Extraction (MAE) 

MAE is an alternative technology recognized by the shorter extraction time and the 
use of GRAS solvents, which increase extraction yields and preserve the integrity of 
the extracts. MAE has several applications, mainly in the food industry, regarding 
the extraction of bioactive compounds. In the compound recovery from microor-
ganisms, microwaves are applied to a cell suspension prepared with an organic 
solvent. The cell suspension can be prepared using wet or dried biomass. Among 
organic solvents, dielectric or polar solvents such as water or ethanol are preferred. 
Microwaves with frequencies ranging between 300 MHz and 300 GHz cause fast 
boiling of the intracellular liquid, which increases the internal pressure and the size 
expansion of the cells, producing cell disruption [71]. However, although micro-
waves can cause cell disruption, previous cell disruption (e.g., high-pressure or bead 
milling) of microorganisms such as microalgae is recommended before MAE 
[72]. This pretreatment increases the cell wall disruption and enhances the extraction 
yields. Microwave power, temperature, solvent, extraction time, and matrix are the 
main parameters that influence MAE. Interaction between solvent and compounds is 
fundamental because the target compound should be highly soluble, and the solvent 
must have a high dielectric constant. Solvents such as water, methanol, and ethanol 
can absorb high amounts of microwave energy, and as shown in Table 6.4, these



solvents are used for compound recovery from microorganisms. Temperature and 
extraction time are related. Higher temperatures and longer extraction times allow an 
increase in extraction yields [78]. For example, as can be observed in Table 6.4, the 
recovery of compounds from microorganisms is performed using temperatures and 
extraction times up to 75 °C and 30 min. However, exposure to high temperatures 
during prolonged times triggers compound degradation. 
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6.3.2.4 Pulsed Electric Field (PEF) Extraction 

PEF is a nonthermal technology with growing interest in biotechnology industries 
for cell disruption due to its many advantages. PEF is an environmentally friendly 
process with shorter extraction times that increases extraction yields, avoiding 
triggering the degradation of the bioactive compounds [79]. In PEF, the sample is 
placed in the treatment chamber where a uniform and strong electric field is applied. 
The pass of short high-voltage electric pulses causes an electropermeabilization of 
the cell membranes without altering the bioactive compounds [80]. This 
permeabilization allows the recovery of the compounds from the microorganisms, 
minimizing the formation of cell debris with further simplification of the down-
stream operations. 

As can be observed in Table 6.5, electrical impulses ranging between 15 kV/cm 
and 40 kV/cm are enough to allow the recovery of the compounds from the 
microorganisms. Although the effects of the electric field strength depend on the 
matrix characteristics, this range generates the irreversible permeabilization of 
microbial cells [88]. During membrane permeabilization, many transmembrane 
pores are formed, which enhances solvent penetration and further extraction of the 
bioactive compounds. For example, in the extraction of carotenoids from 
Xanthophyllomyces dendrorhous after PEF at 20 kV/cm for 135 μs, 80% of 
permeabilization was obtained, which increases the extraction yield up to 70% of 
total carotenoids contained in the yeast suspension. Moreover, extraction parameters 
such as extraction time, pulse width, conductivity, and pulse frequency can also 
influence permeabilization and PEF efficiency. For example, the increase from 
25 kV/cm to 40 kV/cm in the electric field in the extraction of lipids from Chlorella 
cells increases lipid extraction [89]. However, when the electric field strength 
reaches a threshold value, the lipid extraction yield decreases due to the release of 
other compounds and the generation of large amounts of cell debris. This technology 
could represent many advantages at the industrial scale due to its low-energy 
consumption and easy incorporation into the processing line [90]. 

6.3.2.5 Other Alternative Technologies 

Other alternative technologies are used for bioactive compound recovery from 
vegetal sources but with less intensive application in microbial sources. For exam-
ple, pressurized liquid extraction (PLE) uses solvents above their boiling point but



Species Extraction conditions References

below their critical point, applying high pressures. The high pressure allows deeper 
penetration of the solvent, and the temperature reduces the solvent viscosity, 
enhancing the extraction of the compounds [78]. Currently, PLE is mainly applied 
to contaminant detection in several areas. However, PLE can also be used for 
compound recovery from microorganisms after drying and cell disruption. Unsatu-
rated fatty acids and carotenoids have been recovered from oleaginous yeasts [91] 
and microalgae [92–94] using temperatures ranging from 80 °C to 150 °C and 
pressures of 100 bar. An alternative to PLE is continuous pressurized solvent 
extraction (CPSE), which uses lower temperatures and pressures than PLE, keeping 
similar or even higher yields. For example, carotenoids and phycobiliproteins from 
Cyanobium sp. LEGE 06113 by CPSE at 70 °C and 1.5 mL/min (ethanol) have been 
recovered using CPSE [95]. 
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Table 6.5 PEF applications of bioactive compounds from microbial sources 

Compound 
(s) recovered 

Chlorella vulgaris Water-soluble pro-
teins, carbohydrates, 
and lipids 

25 °C, 20 kV/cm, 100 kJ/kgSUSP, 
5 μs of pulse width, water (1 h), 
ethyl acetate (3 h) 

Carullo 
et al. [80] 

Chlorella Lipids 35 kV/cm, the conductivity of 
400 μS/cm, water,30 min 

Zhang et al. 
[89] 

Chlorella 
pyrenoidosa 

Lipids 25 °C, 20 kV/cm, 6 μs of pulse 
width, chloroform/methanol 

Han et al. 
[101] 

Nannochloropsis 
oculata 

Carbohydrates, pro-
teins, and pigments 

30 °C, 40 kV/cm, 10 μs of pulse 
width, water,30 min 

Zhang et al. 
[102] 

Saitozyma 
podzolica 

Lipids 20 °C, 15 kV/cm, 1 μs of pulse 
width, ethanol and hexane, 

Gorte et al. 
[103] 

Xanthophyllomyces 
dendrorhous 

Carotenoids, 
astaxanthin 

25 °C, 20 kV/cm, 3 μs of pulse 
width, ethanol 

Aguilar-
Machado 
et al. [104] 

Ultrahigh pressure extraction (UHPE) is similar to PLE but uses higher pressures 
(up to 8000 bar). This variation allows performing the extraction process without 
previous cell disruption due to higher pressure can break down the cell membrane. 
For example, UHPE (one cycle at 6000 bar at 50 °C) enhanced the extraction of 
carotenoids from Haematococcus pluvialis and Porphyridium cruentum microalgae 
compared with PLE [96]. However, the performance also depends on the microor-
ganisms and type of compound. For example, although UHPE (one cycle at 1000 bar 
and 50 °C) was not superior to PLE in the carotenoid extraction from 
Nannochloropsis oceanica, UHPE increased the extraction of polyunsaturated 
fatty acids [93]. 

Ohmic heating (OH) is based on the Joule effect, where an electric current flows 
through resistive materials such as the cell wall [97]. Heating in OH is faster and 
more homogeneous than traditional thermal treatments. Moreover, OH causes cell 
wall breakdown, enhancing the mass transfer of intracellular compounds. For 
example, the ethanolic extracts obtained from Cyanobium sp. by OH (70 °C,



5 min, and 20 kHz) showed high antioxidant capacity [95]. Moreover, yields and 
antioxidant activity obtained by OH were better than the extraction by homogeni-
zation. Recently, OH has been applied in bioactive compound recovery from 
microalgae. In this context, nutrients from Coelastrella sp. LFR1 [98] were recov-
ered by OH at 217 V/cm and 100 °C, showing higher performance for cell disrup-
tion. This combination allows the yield increase of chlorophyll and proteins in 
microalgae biomass. OH is also used for the recovery of bioactive compounds 
from Spirulina platensis. This photosynthetic cyanobacterium is recognized for 
producing antioxidant, antiviral, anti-cancer, and anti-inflammatory compounds. 
Ferreira-Santos et al. [99, 100] reported the feasibility of OH in the recovery of 
intracellular compounds using temperatures between 30 °C and 50 °C, 4 V/cm, and 
20 kHz of frequency. OH is a technology with higher extraction yields, lower energy 
consumption, and shorter extraction times than conventional extraction processes 
with potential use at an industrial scale (Table 6.5). 
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6.4 Conclusions and Future Perspectives 

Microorganisms can be an excellent source of valuable compounds with applications 
in several industries. Antibiofilm, antiproliferative, antioxidant, antimicrobial, anti-
inflammatory, and antimutagenic activities are found in bioactive compounds recov-
ered from microbial sources. Depending on the localization of the compounds, 
different pretreatments and extraction techniques can be explored. Pretreatment 
and extraction techniques are applied depending on the localization of the com-
pounds. Pretreatment as drying or cell disruption is necessary for intracellular 
compounds. Some alternative extraction techniques like UAE, MAE, and OH 
allow simultaneous cell disruption and extraction. Alternative extraction technolo-
gies have higher yields and shorter extraction times than conventional processes. 
However, the initial cost and the lack of scaling-up criteria still are the main 
shortcomings. Therefore, large-scale systems development and further research 
regarding process optimization are necessary. To the extent that industrial-scale 
equipment and economically viable processes are developed, these alternative tech-
nologies could be more extensively used. 
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