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Abstract Endophytes are microbes that can survive inside of a plant’s stable tissues 
without wreaking havoc on the host. Endophytes aid plant adaptation by conferring a 
variety of determining effects that can counteract the harmful impacts of abiotic or 
biotic stressors. As a result, there is significant potential for long-term agricultural 
output if endophytic bacteria are used to increase crop performance under stress 
circumstances including low temperatures, high salt, low humidity, and heavy metal 
contamination. In order to benefit from symbiotically conferred resistance to abiotic 
stress, at least two routes must activate host stress response systems soon after stress 
exposure. That way, plants can prevent or lessen the impact of the stress on their 
systems. Endophytes increase a plant’s resilience to stress through biochemical 
processes, such as the activation of biomolecules and plant stress genes. Endophytes 
are essential to sustainable agriculture due to their many beneficial impacts on the 
host plant. These effects include the regulation of phytohormone signalling, meta-
bolic activity, and plant defence response pathways. 
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13.1 Introduction 

De Barry [1] first used the term endophytes, which literally means “in the plant” 
(edon = within, phyte = plant). This phrase has a wide range of applications, 
encompassing not only the algae that may live within the algae but also the bacteria, 
fungus, plants, and insects that may live within them [2]. Consequently, endophytes 
are symbiotic bacteria that promote plant growth and live within plant tissues. It also 
plays beneficial roles related with plant responses under conditions of biotic and 
abiotic stress without being responsible for any disease symptoms on the host plant. 
There are a variety of methods by which endophytes influence plant growth in 
response to abiotic stimuli like salt, heat, temperature, heavy metal toxicity, and 
nutritional stress. These microbial communities generate numerous secondary active 
chemicals that shield plants from insect and fungal diseases, hence promoting plant 
growth. In addition, they can produce extracellular enzymes that promote endophyte 
colonisation of the host plant. Endophytic microbes play a significant role in helping 
plants adapt to stress and environmental variables that limit growth and output. 
Symbiotic connections between plants and microbes enable them thrive in harsh 
environments by facilitating mutually beneficial changes in both partners’ rates of 
evolution and fitness. 

It has been shown that endophytic microbes like bacteria, actinomycetes, and 
fungi create a protective microbial “nest” around their plant hosts, making them 
more resistant to frost and other environmental stresses [3, 4]. The absence of 
endophytes in a plant is not a natural condition [5]. Without endophytes, plants 
can’t fight off infections and will easily succumb to environmental stresses [6]. Endo-
phytic microbes, particularly fungi like Sebacina vermifera and Piriformospora 
indica and other Colletotrichum and Penicillium species, differentiate under 
unfavourable conditions to have more potent effects on plant growth [7, 8]. 

Generally speaking, the fungus, bacteria, and nematodes that aren’t directly 
hazardous to plants aren’t nearly as harmful when they’re among plants that have 
plant growth-promoting microorganisms (PGPM) attached to them. Phytohormones 
are produced as a result of the primary effects of PGPM. Modifications in chemical 
or physical plant defence strategies, known as mediated systemic resistance (ISR), 
may also be affected by PGPM [9]. Under a variety of adverse environmental 
conditions, PGPM has consistently expanded, proving its usefulness to plant life. 
Increasing tolerance to environmental stimuli like sun, drought, salinity, cold, and 
heavy metals has been proved time and time again to be one of the key activities of 
plant growth-promoting fungus (PGPF) [10–12]. Abscisic acid (ABA)-independent 
or abscisic acid-dependent pathways convey osmotic stress from salinity and 
drought [13], and low ABA development levels have been achieved through fungal 
activity [14, 15]. Treatment with endophytic Penicillium spp. brought about water 
balance in plants, as reported by Miransari [16], so plants didn’t have to try very hard 
to synthesize ABA and shield the progress of stressed cells.
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13.2 Role of Endophytes in Abiotic Stress Management 

Suboptimal to supra-optimal temperatures, soil pH imbalance (from acidity to 
salinity), soil moisture deficits and surpluses, heavy metal toxicity, ultraviolet 
radiation, and many other environmental factors have all been stressors for plants 
ever since they first appeared [17]. Due to their brief life span, endophytes are able to 
quickly adapt to their environment and impart a wide variety of stresses on to their 
host plant [18]. In reaction to abiotic stress, endophytes either (i) activate the host 
plant’s response system or (ii) produce compounds that are toxic to the stress [19]. In 
the following paragraphs, we will discuss the mechanisms involved in coping with 
abiotic stresses in greater depth. 

Extraction of endophytic fungi from medicinal plants by Chathurdevi and Gowrie 
[20] revealed that these fungi release extracellular enzymes that aided the plants’ 
growth when subjected to abiotic stress. More than 50 unique endophytic fungal 
strains rich in enzymes like laccase, amylase, pectinase, cellulase, lipid hydrolase, 
and proteinase were isolated and identified by Sunitha et al. [21]. Breakdown 
enzymes for 1-aminocyclopropane-1-carboxylate (ACC) Bacterial endophytes 
have been studied in relation to the enzymes amylase, deaminase, esterase, 
pectinase, cellulases, lipids, protease, phytase, asparaginase, and xylanase [22– 
25]. A group of researchers led by Vijayalakshmi [26] has recently isolated bacterial 
endophytes from medicinal plants. These endophytes secrete extracellular enzymes 
such as amylase, protease, and cellulase. 

The potential for several different types of endophytic bacteria with molecular 
weights between 400 and 1500 daltons to create siderophores has been studied 
[27]. In addition to catecholate and salicylate, bacteria can also produce 
hydroxamate and carboxylate as siderophores. Streptomyces, Pseudonocardia, 
Actinopolyspora, Nocardia, Salinispora, Micromonospora, Actinomadura, and 
Kibdelosporangium are all examples of endophytic actinobacteria that create 
siderophores [27–29]. To regulate plant growth and confer disease resistance, plants 
rely on endophytic actinobacteria, which use an exomechanism to produce 
siderophores [30]. 

The phytohormone salicylic acid (SA) plays an important role in a wide range of 
processes, including development of the plant’s root system, germination of seeds, 
induction of flowering, closure of the plant’s stomata, and resistance to abiotic and 
biotic stress. Produced by bacterial endophytes, SA promotes development and 
protects plants against pathogens such as fungus, making them more resilient to 
drought [31]. 

13.3 Endophytes in Biotic Stress Management 

Generally speaking, endophytic bacteria are considered to be effective biocontrol 
agents. Endophytic fungi are extremely important for both grasses and conifers in 
mitigating the damage caused by insect herbivores. Bacillus subtilis, an endophytic



bacterium isolated from Speranskia tuberculata (Bge.) Baill, has been shown to 
have antagonistic effect against Botrytis cinerea, a fungus responsible for the 
spoilage of tomato fruits during storage [32]. Poplar canker was the subject of a 
biocontrol study in which novel endophytes including Burkholderia pyrrocinia 
JK-SH007 and Bacillus cepacia were employed [33]. 
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Recombinant endophytic strains, which may be found in many plants, can be 
used to create a wide variety of anti-pest proteins, which can then be used to combat 
a wide range of plant pests. Hassan et al. [34] biocontrolled Culex pipiens and Musca 
domestica with copper nanoparticles made by the endophyte Streptomyces 
capillispiralis Ca-1. The endophytic actinomycetes Streptomyces zaomyceticus 
Oc-5 and Streptomyces pseudogriseolus Acv-11, found in the plant Oxalis 
corniculata L., synthesised copper oxide nanoparticles with antimicrobial activity 
against four phytopathogenic fungi: Phoma destructiva, Alternaria alternaria, 
Fusarium oxysporum, and Curvularia lunata [35]. 

In asymptomatic colonisation, the host and the endophyte maintain a dynamic 
equilibrium in which their antagonistic interactions are roughly balanced. Although 
only a fraction of endophytes are thought to be dormant pathogens, all endophytes 
investigated so far have developed the exoenzymes essential to infect and colonise 
the host [36–39]. Almost all of them can produce compounds that are poisonous to 
plants (phytotoxins) [2, 40]. Hosts, just like they would in reaction to pathogens, can 
develop preformed and induced defensive metabolites [2, 41–45]. If the virulence of 
the fungus and the defence mechanisms of the plant are about equal, there will be no 
visible signals of danger. 

The dynamics of an antagonistic relationship can shift depending on the host and 
endophyte’s tolerance to biotic and abiotic environmental conditions and the state of 
health of both parties. Many endophytes, for instance, can infect as a pathogen, 
colonise cryptically, and sporulate as either a pathogen or a saprophyte, making them 
masters of phenotypic plasticity. Therefore, diversity is required to act as a check on 
this trend; if this is the case, then endophytic interactions are creative and can drive 
evolutionary change, with symbioses having the potential to develop into both 
highly specialised mutualisms and parasitisms or forms of exploitation [46]. 

13.4 Signalling During Abiotic and Biotic Stresses 

Plants have a number of built-in systems that allow them to sense stress signals and 
continue to grow even in adverse conditions. Information is routinely relayed across 
pathways and signal molecules/cofactors in the signalling response to any stressor, 
biotic event abiotic [47]. Reactive oxygen species (ROS) such as NO2,  Ca

2+ , inositol 
phosphates, and systemin have a function in signalling as well, complementing the 
effect of phytohormones. Drought causes osmotic stress, while salt stress causes 
ionic stress [48]. ROS production has been proposed as a critical mechanism for 
responding to biotic and abiotic stresses. New research reveals that Ca2+ and NO 
have a large impact on hormone signalling, which is important in stress response



pathway crosstalk. Plant defence, ABA-dependent stomata movement, and drought 
stress responses depend on nitric oxide and Ca2+ signalling [49]. MAPK/MPK 
cascades regulate proliferation, cell differentiation, cell death, development, and 
stress responses. The mitogen-activated protein kinase (MAPK) cascade drives 
cellular responses to biotic and abiotic stresses. Cellular responses to biotic and 
abiotic stressors depend on the MAPK cascade. Plants produce heat shock proteins 
to avoid protein denaturation and maintain protein homeostasis in severe 
temperatures [50]. 
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Fungal endophytes have been discovered to contain compounds that counteract 
the effects of flavonoids, phenols, terpenoids, alkaloids, saponin, nematode poly-
saccharides, and tannins [51, 52]. Treatment of diseases caused by a wide range of 
pathogens may be possible in future, with the help of bioactive compounds 
synthesised by endophytic actinomycetes [53]. In addition to their biocontrol 
actions, endophytic bacteria also have favourable impacts on abiotic stress. 

13.5 Induced Systemic Resistance (ISR) 

Plants’ natural defences are boosted by endophytic bacteria, making them more 
resilient to disease. “Induced systematic resistance” (ISR) describes this phenome-
non [54]. Endophytic microbes colonise plants by escaping defence responses, as 
seen in Bacillus and Pseudomonas [45]. ISR can be activated by several bacterial 
agents, including salicylic acid, antibiotics, siderophores, N-acyl-homoserine lac-
tones, jasmonic acid, volatiles (such acetoin), and lipopolysaccharides [55]. ISR was 
associated with the development of defences and immunity against herbivorous 
insects and diseases. Many types of endophytic bacteria have had their ISR triggered 
by salicylic acid, but it is also known that the plant hormones ethylene (ET) and 
jasmonic acid (JA) play crucial regulatory roles in the signalling pathways involved 
in ISR induction [56]. ISR induction by the endophytic bacterium Pseudomonas 
fluorescens 89B-61 protects cucumbers from the disease anthracnose [45]. Changes 
in the native endophytic population were associated with improved plant resistance 
to Pectobacterium atrosepticum when the endophytic bacterium Methylobacterium 
sp. IMBG290 was present in potato soil. Correlations between changes in the 
endophytic community and resistance to disease show the crucial role this popula-
tion plays in preventing illness [57]. Endophytic fungi have been involved in defence 
mechanisms via ISR induction to a lesser degree than endophytic bacteria [58]. The 
ability of endophytic fungi to create metabolites has been linked to both herbivore 
control and disease prevention. There are numerous different types of metabolites, 
including alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, chlori-
nated compounds, phenols, and quinols [59, 60]. Fungal endophytes cause localised 
illness in their hosts but have been connected to the discovery of compounds with 
antibacterial, antiviral, insecticidal, and antifungal activities due to their horizontal 
spread [61].
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13.6 Abiotic Stress Alleviation by Microbial Endophytes 

Different extreme situations, such as environmental pressures and strains induced by 
living communities, limit plant growth and development. 

Plants are able to withstand abiotic stress in two ways: (i) by immediately 
activating response systems after being stressed [62] and (ii) by generating biochem-
ical compounds that act as antistress agents, which are then metabolised by endo-
phytes [40]. Both up- and down regulation of several stress-inducible genes were 
reduced in pepper plants after inoculation with the endophyte Arthrobacter sp. and 
Bacillus sp. Cucumber plants exposed to salt chloride and dehydration stress 
benefited greatly from inoculation with Phoma glomerata and Penicillium sp., as 
measured by increased nutrient absorption (particularly magnesium, potassium, and 
calcium), increased plant biomass, and enhanced growth metrics, as well as 
decreased sodium toxicity [63]. Bailey et al. [64] concluded that Trichoderma 
sp. isolated from Theobroma cacao improved the cocoa plant’s tolerance to abiotic 
stress, particularly drought, via modifying gene expression. 

Plants grown from Kalmia latifolia L. tissue cultures were found to be more 
resilient to drought when inoculated with the endophytic fungus Streptomyces 
padanus AOK-30, according to research by Hasegawa et al. [65]. Under drought 
stress, sugars and amino acids were shown to be considerably higher in endophyte-
colonised plants compared to non-colonised plants [66]. Due to a complex 
symbiotic interaction, plants with a drought-tolerant phenotype are able to produce 
more sugar and amino acids, both of which are signs of higher osmolytic activity 
[67]. Plants that have been colonised by endophytes are more tolerant to environ-
mental challenges such low water availability, high temperatures, and high salt 
concentrations [7]. A boost in antioxidant activity, as discovered by Chugh et al. 
[68], was determined to be the cause of accelerated seedling development in 
response to dryness. 

There was also evidence that endophyte colonisation under low-water conditions 
led to increases in biomass, proline concentrations, and relative water content 
[69, 70]. 

13.7 Drought Stress 

As an abiotic stressor, drought is particularly detrimental to plant development and 
output. Due to root water restriction or excessive transpiration, plants experience 
drought [71]. Most plant species, especially those adapted to temperate climes, 
experience diurnal water stress during the middle of the day, even when soil 
moisture levels are within normal range. Growth is stunted due to the temporary 
drought stress [72]. Drought causes an increase in reactive oxygen species genera-
tion, lower germination rates, and membrane disruption [73]. The principal causes of 
osmotic stress in plants were, in addition, prolonged periods of dryness and high



salinity. Cells are affected by osmotic stress, which dryness causes; ionic or 
ion-toxicity signs appear in high salinity [48]. The effects of drought stress, such 
as stunted growth and leaf senescence in the shoot system, are counteracted by 
osmotic stress, induced by salinity [74]. 
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Plants with symbiotic relationships (like rice, tomatoes, dune grass, and panic 
grass) produce greater biomass with less water. 

Endophyte-associated plants may be more resistant to drought because they 
accumulate more solutes in their tissues than noninfected plants. This could be the 
result of a slower transpiration rate, a thicker cuticle layer, or reduced leaf conduc-
tivity [75]. Changes in a plant’s structure, genetic make-up, and metabolic processes 
may all contribute to its resilience in the face of water stress. Yet, in response to 
water scarcity, plants primarily increase ABA production and/or decrease ABA 
breakdown [76]. It is often believed that ABA acts as a signal in drought-stricken 
plants, primarily regulating transpiration and stomatal closure to decrease water loss 
[77]. Some evidence also suggests that ABA helps plants develop more extensive 
root systems, which improves their capacity to take in water [78]. 

Full scan mass spectrometry was used to isolate ABA from Azospirillum 
brasilense Sp 245 cells that had been grown at a heightened rate due to chemical 
stimulation. Increased amounts of ABA were seen in Azospirillum brasilense Sp 
245-infected Arabidopsis thaliana seedlings, and the addition of sodium chloride to 
the growth medium increased the rate of bacterial ABA synthesis [79]. 

13.8 Salinity Stress 

Soil salinisation, caused by the build-up of water-soluble salts, is a problem for 
farmers all over the world and endangers ecosystem vitality, food supplies, and 
economic development. Initially, salt has a chilling effect on the distribution and 
metabolism of soil microorganisms and other creatures that make their home in the 
soil. It first reduces crop yields and then, in its later phases, completely wipes out the 
local flora, turning once-productive land into a barren wasteland [80, 81]. Soil is 
regarded to be saline if its electrical conductivity (EC) in the root zone is greater than 
4  dS  m–1 at 25 0 Celsius and an exchangeable sodium concentration of 15% (almost 
40 mMNaCl). Most plant yields are diminished by this degree of salinity. In the 
world, high salinity affects 20% of all crop land and 33% of irrigated agriculture 
[82]. By 2050, half of the world’s arable land would be affected by salinity, 
according to a 2017 assessment of the literature by Machado, Rui M.A., and 
Serralheiro, Ricardo P. They also found that salt accumulation degrade 10 million 
ha of agriculture land every year. This harm can be hastened by aggressive ground-
water use, a rise in the use of low-quality water in agriculture, and climate change.
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13.9 Effect of Soil Salinity on Plants 

The production of agricultural crops, especially vegetable crops, which have a low 
tolerance sensitivity to soil saline, is drastically reduced due to soil salinity 
(Table 13.1). In general, Compared to field crops, vegetable crops offer a better 
yield per acre under irrigated conditions. Vegetable crops needed higher total water 
application rates and more frequent irrigation than other agronomic crops. Despite 
the need for more fertilisers and irrigation, vegetable crop production still takes place 
in dry and semi-arid regions where rainfall is scarce and temperatures are high. It’s 
common knowledge that vegetables are an excellent source of many different 
vitamins and minerals, as well as dietary fibre. Salty soil possess a challenges for 
plants as it hinders their metabolic function, making it difficult for them to thrive. 
Effects on reproductive development, such as the lengthening of stamen filaments,

Table 13.1 Soil salinity (ECe) tolerance in different crops 

Soil 
threshold 
(dSm-1 ) 
ECe 

Tolerant Barley Grain Yield 8.0 Maas and Grattan [83] 

Tolerant Canola/Rape seed Seed yield 9.7 Francois [84, 85] 

Tolerant Cotton Seed cotton 
yield 

7.7 Maas and Grattan [83] 

Tolerant Rye Grain yield 11.4 Maas and Grattan [83] 

Moderately 
tolerant 

Sorghum Grain yield 6.8 Maas and Grattan [83] 

Moderately 
tolerant 

Wheat Grain yield 6.0 Maas and Grattan [83] 

Moderately 
tolerant 

Sunflower Seed yield 4.8 Francois [86] 

Moderately 
tolerant 

Red beet Storage root 4.0 Machado and Serralheiro 
[87] 

Moderately 
sensitive 

Onion seed Seed yield 1.0 Mangal et al. [88] 

Moderately 
sensitive 

Eggplant Fruit yield 1.1 Machado and Serralheiro 
[87] 

Moderately 
sensitive 

Garlic Bulb yield 3.9 Francois [84, 85] 

Moderately 
sensitive 

Potato Tuber yield 1.7 Machado and Serralheiro 
[87] 

Sensitive Mung been Seed yield 1.8 Minhas [89] 

Sensitive Onion bulb Bulb yield 1.2 Maas and Grattan [83] 

Sensitive Rice Gran Yield 3.0 Venkateswarlu et al. [90] 

Sensitive Spinach Top fresh 
weight 

2.0 Machado and Serralheiro 
[87] 

ECe—electrical conductivity (EC) of saturated paste extract of soil



the suppression of microsporogenesis, the aborting of ovules, the senescence of 
fertilised embryos, and the enhancement of cell death in different tissues, can be 
mediated by high concentrations of K+ , which in turn affect mitosis and meiosis of 
nucleic acid. When K+ is replaced by Na+ in these processes, soil salinity causes ion 
toxicity. Protein conformational changes are also produced by Cl– and Na+ . Loss of 
turgor, cellular dehydration, and cell death can all result from the osmotic stress 
caused by high soil salt levels. Metabolic imbalance, brought on by osmotic stress 
and ion toxicity, results in oxidative stress. As salts are also nutrients for plants, too 
much salt in the soil can disrupt the plant’s nutritional balance or prevent it from 
absorbing key minerals (nitrogen, phosphorus, potassium, iron, and zinc). Salinity 
decreases photosynthesis by lowering photosystem II capability, chlorophyll con-
tent, leaf area, and stomatal conductance in photosynthesis.
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Growth is stunted as a result of the high salinity [91]. In addition, cyclin-
dependent kinase activity is decreased because of the post translational inhibition 
that occurs during periods of high salt [92]. 

13.10 Salinity Stress Alleviation by Microbial Endophytes 

Over 20% of farmable soil is at risk from salt right now, and experts predict that by 
2050, half of all prime farmland will be under salinity stress. Plant-associated 
microorganisms use a wide variety of metabolic and genetic methods to better 
adapt to abiotic and biotic stress. Endophytic bacteria not only react to root-secreted 
signal molecules but also produce their own signalling molecules, all of which have 
positive impacts on plant health, such as enhanced root growth, resistance or 
tolerance to biotic and abiotic challenges, and general plant health [9]. Endophytic 
fungi Yarrowia lipolytica controlled the production of proline in salt stressed maize 
plant [93]. In another study, Abdelaziz et al. [94] observed that endophytic fungi 
Piriformospora indica caused considerable reduction in shoot proline content in 
Solanum lycopersicum under salinity stress. Piriformospora indica also responsible 
for significant increase in shoot proline in Trichoderma harzianum salt stressed plant 
[95]. 

13.11 Primary Benefits of Endophytes in Reducing 
the Negative Effects of Salinity on Plants 

13.11.1 Plant Antioxidant Status 

Numerous organisms in the microbial world exhibit comparable responses to oxi-
dative stress. That ROS production in plants is mediated by endophytic fungus 
which was discovered by Hamilton and colleagues in 2012 [96]. Previous research



has established a connection between the suppression of antioxidant enzymes and 
salt tolerance in plants [97]. There are many enzymes in the body that can neutralise 
reactive oxygen species, including superoxide dismutases (SOD), glutathione reduc-
tases (GR), dehydroascorbate reductases (DHAR), catalases (CAT), ascorbate or 
thiol-dependent peroxidases (APX), and mono-dehydroascorbate reductases 
(MDHAR) [98]. APX, SOD, and CAT are all direct or indirect participants in the 
detoxification of reactive oxygen species (ROS). In a 500 mmol NaCl solution, the 
nonsymbiotic plant Leymus mollis (dune grass) shrivels, dries out within in 7 days, 
and dies after 14 days [99]. After being exposed to 500 mmol NaCl, Fusarium 
culmorum-infected plants became active for 14 days. Barley’s salt tolerance is 
improved by the endophyte Piriformospora indica ulmus, which also increases the 
grain’s antioxidant levels [100]. 
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13.11.2 ACC Deaminase 

ACC deaminase, produced by endophytic bacteria, is essential to plant growth and 
stress tolerance but useless to the bacteria [101]. ACC deaminase breaks ACC 
(1-aminocyclopropane-1-carboxylate) into 2-oxobutanoate and ammonia, lowering 
ethylene levels and blocking plant ethylene signalling [102]. Ethylene’s fundamental 
involvement in bacterial colonisation of plant tissues affects seed germination and 
plant responses to various stresses [103]. 

Over production of ethylene in plants as a response to stress can be harmful to 
their health and growth [104]. The ACC deaminase enzyme does more than just help 
plants deal with stress; it also encourages the colonisation of the plant by microor-
ganisms known as endophytes. Silencing the ACC deaminase gene in Burkholderia 
phytofirmans PsJN may prevent a bacterial infection that causes canola seedlings to 
fail to develop strong roots [105]. Branch invasion by endophytic bacteria has been 
observed in prior investigations of cut flowers and blocking ACC deaminase helped 
keep flowers from getting old too quickly [106]. 

13.11.3 Phytohormone Production 

Endophytes produce auxins, most notably indole-3-acetic acid (IAA) that can 
significantly increase plant growth [107]. Auxins, which counteract the effects of 
ethylene, are crucial for root growth and development. Endophytic regulation of 
auxin production in halophytic plants, thus, has the potential to be an important 
technique for granting salt resistance. There were two groups of bacteria that were 
found to produce IAA: (i) salinity-tolerant rhizobacteria (Halomonas sp., 
Arthrobacter sp., Pseudomonas mendocina, Bacillus pumilus, and Nitrinicolalacis 
aponensis) and (ii) microorganisms such as Serratia, Bacillus, Vibrio, 
Brevundimonas, and Oceanobacillus [108–110]. There were ABA, gibberellins,



and IAA generated by the halophytic Prosopis strombulifera [111]. Plants produce 
more of the growth hormone abscisic acid (ABA) when they are under stress. 
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ABA is primarily responsible for regulating water balance and osmotic stress 
tolerance in plants [112]. Wheat plants that were grown in salty soil benefited from 
the presence of IAA-producing rhizobacteria [108]. It is unknown if mycorrhizal or 
endophytic root fungus get salt tolerance from phytohormones [113]. 

13.11.4 Nitrogen Fixation 

Endophytes help their host plants in many ways, including by preventing disease, 
creating beneficial hormones, increasing the availability of nutrients, and fixing 
nitrogen. These mechanisms also contribute to endophytes’ buffering effect when 
the host plant is exposed to unfavourable ecological conditions [113]. Nitrogen 
could be fixed by a wide range of root endophytes (e.g., Azoarcus spp., Acetobacter 
diazotrophicus, and Herbaspirillum spp.). Host plant fitness is increased through 
nitrogen fixation, especially in low-nitrogen conditions. In cases when only a little 
amount of fixed nitrogen is found in a single species, it is important to determine if 
this nitrogen is meant to meet the needs of the microbes in the soil or those of the host 
plants. Poplar trees’ endophytic bacteria Paenibacillus P22 contributed to the host 
plant’s total nitrogen pool and triggered metabolic shifts [114]. 

13.11.5 Compatible Solutes 

Osmotic pressure results from the accumulation of Na+ and Cl– ions in the vacuole of 
a plant cell. To counteract this force, organelles and the cytoplasm must collect (even 
at high concentrations) organic solutes that are metabolically compatible. Most 
commonly found sugars, amino acids, and amino acids are glycine betaine, proline, 
and proline [115]. 

Increased salt tolerance in plants colonised by endophytes has been examined, 
and proline amino acid has been of particular interest because it has been 
hypothesised that organic solute accumulation is a critical mechanism for halophytic 
plants to offset osmotic pressure [116]. Proline accumulation appears to be an 
outcome rather than a cause of salt tolerance, despite contradictory findings about 
the role of mycorrhizal fungus [117]. 

Betaines and carbohydrates can also control osmosis. Elevated sugar and betaine 
levels in mycorrhizal plants have been linked to a potential involvement in salt 
tolerance [118]. Pseudomonas pseudoalcaligenes is an endophyte that increased 
rice’s salt tolerance by encouraging the formation of glycine betaine-like molecules 
[119].
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13.11.6 Temperature Stress 

High temperatures have a lethal effect on plants because they cause the proteins 
inside the cells to get denaturised and agglomerate, ultimately killing the plants. 
Metabolism slows down as a result of low temperatures because of their effect on 
enzyme activity, macromolecule interactions, protein structure alterations, and mod-
ulation of membrane characteristics [120]. 

Extreme heat is rarely reported, despite its negative effects, which are frequently 
linked to a lack of water. The bacterium Burkholderia phytofirmans increases cold 
hardiness in plants [121]. Due to Curvularia protuberata and its thermal endurance 
mycovirus Curvularia (CThTV), the grass Dichanthelium lanuginosum was able to 
live in Yellowstone National Park, where soil temperatures ranged from 38 °C to  
65 °C [122]. 

Wheat’s endurance to high temperatures has been improved by the presence of 
fungal endophytes, which has led to higher crop yields and improved germination 
rates in following generations [123]. 

Endophyte composition may be affected by a variety of environmental factors, 
including but not limited to temperature, humidity, and latitude. Lower annual 
precipitation and higher latitudes favour Paenibacillus strains in sweet root 
(Osmorhiza depauperata) endophytes, while greater annual precipitation and 
lower latitudes favour Sinorhizobium meliloti and Agrobacterium tumefaciens [124]. 

Ascorbate and glutathione are oxidised to reduced forms, and lipid peroxidation 
is reduced in endophyte-colonised plants, which makes them more resistant to 
temperature and salt stress, as found by Matsouri et al. [125]. By increasing its 
resistance to cold, endophytes increase a plant’s chance of survival. Accumulated 
phenolic compounds, proline, and starch are downregulated, and cellular damage 
and photosynthetic activity are elevated in response to cold stress. 

Endophytes have a protective effect on wheat development during drought stress 
due to their positive effect on metabolic balance [70]. 

13.11.7 Heavy Metal Stress 

Heavy metal toxicity is a major abiotic stressor that is responsible for the loss of 
anywhere from 25% to 80% of many types of farmed crops. Because of toxicity from 
manganese and aluminium and a lack of potassium, magnesium, phosphorus, and 
calcium in acidic soils, agricultural output and soil fertility are negatively affected 
[126]. Exposure to heavy metals significantly slows a plant’s root system and is also 
toxic to plant tissue [126]. Heavy metal toxicity in acidic soils is problematic because 
it interferes with several vital physiological and biochemical processes, such as 
nutrition intake, protein and nitrogen metabolism, photosynthesis, and respiration 
[127]. 

It is well known that the availability of cations to plants is affected by the 
immobilisation and mobilisation of metal cations by bacterial endophytes [128]. 
Higher activity of the antioxidant enzymes was found in Cd-stressed soil when the



dark septate endophyte (DSE) Exophiala pisciphila was combined with the root of 
Zea mays [129]. In 2016, Wang et al. DSE-inoculated plants subjected to high 
amounts of Cd showed upregulation of genes related in Cd detoxification, transport, 
and absorption, while ZIP was downregulated. Plant ethylene levels are affected by 
heavy metal tolerance, and Gigaspora and Pseudomonas can directly affect ethylene 
levels by varying the amount of 1-aminocyclopropane-1-carboxylate (ACC) [130]. 
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13.11.8 Nutrient Stress 

For growth, development, and reproduction, plants need mineral nutrients, light, 
water, and carbon. Examples of abiotic conditions that can cause damage to plants 
include hunger and nutrient deficits [131]. 

Endophytes provide their hosts with both micro and macronutrients. 
Amino acids can be synthesised by plants, thanks to nitrogen-fixing bacteria that 

can metabolise plant root exudates. Growth-promoting gibberellins (GAs), phos-
phate solubilisation, cytokinins, indole-3-acetic acid (IAA), and siderophore synthe-
sis, as well as important vitamins, are all produced by endophytes and used by the 
host plant [119]. The solubilisation of phosphate in wheat and rice was found to be 
enhanced by gibberellic acid generated by Pseudomonas sp., according to research 
by Choi et al. [132]. Zinc uptake in wheat plants can be improved using either 
Azotobacter chroococcum or Piriformospora indica [133]. 

Endophytes have been shown to aid in the biological breakdown of dead host 
plants. Endophytes colonise plants at first and then they actively work against 
saprophytic bacteria, speeding up the degradation of plant matter [134–138]). 
Another study showed that all endophytes can break down lignin, cellulose, and 
hemicelluloses, which help nutrient cycling [17]. 

13.12 Role of Microbial Metabolites in Stress Mitigation 
of Plants 

When plants are attacked by the different microbial species belonging to different 
microbiomes, i.e. rhizosphere microbiome, epiphytic microbiome, endophytic 
microbiome, seed microbiome, core microbiome, etc., they show differential 
responses which alter their resistance mechanism against the stresses prevailing. 
Interaction of microbial metabolites to the plant system leads to the synthesis of 
different important secondary metabolites, e.g. phenolics, alkaloids, steroids, and 
flavonoids which are positively correlated with stress resistance in plants [137]. Gen-
erally, it is observed that microbe induced production of secondary metabolites that 
helps in abiotic stress mitigation [138]. Reactive oxygen species level was found to 
be reduced in crop plants like wheat, soy bean, and peanut due to the activity of 
metabolites released from different strains of Pseudomonas spp. reported by Shaik 
et al. [139], Kang et al. [140], and Sharma et al. [141]. In another study, by Ghosh



and co-workers [142] also observed amelioration of osmotic stresses in Arabidopsis 
thaliana by exopolysaccharides released from Bacillus spp., whereas Liu et al. [143], 
Balsanelli et al. [144], and Mahmood et al. [145] found mitigation of salt stress by 
IAA, SmR1, and exopolysaccharides released from Klebsiella oxytoca Rs-5, 
Herbaspirillum seropedicae, and  Enterobacter cloacae P6, respectively. Adjust-
ment in production of metabolites for the sake of adaptation to the changing 
environment is also observed [146], in addition to the enhancement in uptake of 
plant nutrients, and the formation of soil humus [147]. However, it is also reported 
by Burkhead et al. [148], Haas and Defago [149], and Sankari et al. [150] that biotic 
stress can be mitigated by microbial species. The adverse impact of stem rot of 
chickpea, foot rot of tomato, early blight of tomato, head blight of wheat, and black 
scurf of potato were observed to be minimised by phenylpropanoid, harzianic acid, 
siderophores, bacillomycin D, and surfactin by Sathya et al. [151], Manganiello et al. 
[152], Verma et al. [153], Gu et al. [154], and Kong et al. [155], respectively. Some 
microbial metabolites which are useful in plant stress mitigation are given in 
Table 13.2. 
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Table 13.2 Metabolites from different endophytes 

S. No. Microbe Metabolite Stress Reference 

1 Azospirillum 
spp. 

IAA/IBA Inhibition of uptake of nutri-
ents like nitrogen and 
phosphorus 

Malhotra and 
Srivastava 
[156] 

2 Pseudomonas 
putida 

Pyoverdine Fusarium wilt Hass and 
Defago [149] 

3 Pseudomonas 
fluorescence 

Proline Salinity stress in Vicia faba Metwali et al. 
[157] 

4 Bacillus subtilis Surfactin Damping off of cole crops Kong et al. 
[155] 

5 Trichoderma 
koningii 

Koninginin C Take all disease of wheat Vinale et al. 
[158] 

6 Azospirillum 
brasilense 

Cadaverine Osmotic stress in rice Cassan et al. 
[159] 

7 Pseudomonas 
aeruginosa 

Glycine betaine Drought stress in Vigna 
radiata 

Sarma et al. 
[160] 

8 Rhizopus 
arrhizus 

Raphorin Fe deficiency in solanaceous 
crops 

Shenker et al. 
[161] 

9 Streptomyces 
acidiscabies 

Coelichelin Nickel stress in Vigna 
unguiculata 

Sathya et al. 
[151] 

10 Azotobacter 
chroococcum 

Exopolysaccharide Environmental stress in Vicia 
faba 

El-Ghany and 
Attia [162] 

11 Sphingomonas 
sp. 

Gibberellic acid Salinity stress in Tomato Halo et al. 
[163] 

12 Streptomyces 
platensis 

Phenylethyl 
alcohol 

Seedling blight of rice Wan et al. 
[164] 

13 Bradyrhizobium 
sp. 

Nitrogenase Water stress in Cowpea Fugyeuredi 
et al. [165]
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13.13 Conclusions 

Considering the role of microbes, it can be possible to make a holistic approach 
which can mitigate the different types of stress in association with other mechanism 
of mitigation, i.e. avoidance and escape mechanism, genotypic tolerance mecha-
nism, etc. Ultimately, these mechanisms will result in a sustainable and eco-friendly 
mitigation of the prevailing stress and also make possible the adaptation of crop 
plants to the changing environment. However, this approach is emerging as a 
revolution in sustainable development, and it still requires thorough study of mech-
anism of release and action of the secondary metabolite and the signalling crosstalk 
in plant-microbiome interactions to make it more effective and reliable. The focus 
should also be given to understand the genetic controls on plant secondary metab-
olites and their adjustment according to the changing microbiomes and environmen-
tal conditions. 
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