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Abstract The current agricultural system is confronted with the challenge of 
excessive reliance on chemical-based fertilizers and pesticides. While these inputs 
have revolutionized agriculture, they also pose significant environmental risks. As a 
result, the utilization of agriculturally important microorganisms has become imper-
ative to ensure sustainable agriculture in an environmentally friendly manner. These 
microorganisms can serve as biofertilizers, offering a wide range of plant growth-
stimulating traits such as nitrogen fixation, nutrient solubilization, synthesis of 
siderophores and phytohormones, etc. By establishing symbiotic relationships, 
they enhance soil fertility, improve nutrient availability, and promote plant growth, 
thereby reducing the rely on synthetic fertilizers. Moreover, beneficial microorgan-
isms act as natural adversaries to pests, providing an alternative to chemical pesti-
cides. Microbes also enhance crop resilience to abiotic stresses such as drought and 
salinity through the production of stress-tolerant compounds, modulation of plant 
hormones, and improved nutrient uptake efficiency. Furthermore, they contribute to 
climate-smart agriculture by sequestering carbon in the soil, thereby mitigating 
greenhouse gas emissions. The use of microbial consortia further enhances plant
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growth, disease suppression, and stress tolerance. Additionally, microorganisms 
play an imperative role in biofortifying food crops, improving nutrient absorption, 
and addressing malnutrition. In summary, microorganisms offer diverse applications 
in sustainable agriculture, providing transformative solutions for crop-based food 
production.
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10.1 Introduction 

Sustainable agriculture has attracted a lot of attention recently as a way to meet the 
rising global food demand while reducing the negative environmental effects of 
traditional farming practices, which rely on chemical fertilizers and pesticides. In 
this context, the incorporation of microorganisms into agricultural systems has 
emerged as a promising and comprehensive strategy, in which agriculturally impor-
tant microbes can be used as biofertilizers and biopesticide agents and ensure 
eco-friendly agricultural practices [1, 2]. However, the intricate interplay among 
microorganisms, plants, and soil forms the basis of the microbial-plant-soil nexus, 
which is fundamental to sustainable agriculture. In order to fully explore the 
potential of agriculturally important microorganisms for sustainable crop produc-
tion, it is important to understand their mechanisms of action. These microorganisms 
possess diverse traits and functions that contribute to improved plant growth, 
improved nutrient availability, and improved soil health [3, 4]. By elucidating 
these mechanisms, targeted strategies can be developed to optimize their effective-
ness and application in agricultural systems. The utilization of microorganisms as 
biofertilizers is a noteworthy application in the realm of sustainable agriculture. 
Microorganisms possessing diverse plant growth-promoting characteristics, includ-
ing nitrogen fixation and phosphate solubilization, play a vital role in enhancing soil 
fertility and nutrient accessibility [5]. Biofertilizers facilitate nutrient uptake and 
augment crop productivity by creating symbiotic relationships with plants, thereby 
mitigating the need for synthetic fertilizers and their associated environmental 
hazards [6]. In addition, microorganisms have enormous potential as biocontrol 
agents in pest control. Beneficial microorganisms can act as natural enemies of 
pests, inhibiting their growth, reproduction, and pathogenicity [7]. This biological 
control approach offers an environmentally friendly alternative to chemical pesti-
cides and minimizes negative impacts on ecosystems and human health. The ability 
of crops to withstand abiotic stresses such as drought, salinity, and extreme temper-
atures is essential for ensuring sustainable agricultural production [8]. Various 
mechanisms have been identified through which microorganisms can enhance 
plant tolerance and adaptation to stress [3, 8, 9]. Some of the methods used to 
enhance plant growth and resilience include producing stress-tolerant compounds, 
modifying plant hormone levels, and enhancing nutrient uptake efficiency [10]. Inte-
grating these stress-tolerant microorganisms into agricultural practices offers



prospective options for maintaining crop yields in challenging environments. In 
addition, the application of microbial-based products shows potential for 
implementing climate-smart agricultural practices. Microbial organisms have the 
ability to sequester carbon within the soil, thereby decreasing the amount of green-
house gas especially carbon dioxide and serving as a means of climate change 
mitigation [11]. Microbial consortia, consisting of compatible microorganisms, 
have demonstrated increased synergistic impacts on plant growth and productivity. 
Microbial consortia are now an efficient way for improving crop growth, disease 
suppression, and stress tolerance in plants compared to single microbial inoculants, 
by utilizing the various functional properties of different microorganisms [12]. 
Microbial inoculants are also important for biofortifying food crops, which can 
help alleviate global malnutrition and enhance human health [13–15]. They have 
the potential to improve the absorption and availability of vital nutrients, including 
iron, zinc, and selenium, in crops [16]. This improvement enhances the nutritional 
quality of crops, addressing nutrient deficiencies in vulnerable populations. 
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This chapter sheds light on the diverse roles of microorganisms as key compo-
nents in sustainable agriculture and highlights their immense potential for various 
applications. Comprehensive understanding and effective use of microorganisms are 
critical to unlocking transformative and long-lasting solutions for sustainable plant-
based food production. 

10.2 The Microbial-Plant-Soil Nexus: A Holistic Approach 
to Sustainable Agriculture 

The microbial-plant-soil nexus embodies a comprehensive and scientifically sound 
tactic to achieving the goals of sustainable agriculture. It recognizes the complicated 
interactions between microorganisms, plants, and soil within agricultural ecosystems 
[17]. This approach highlights the use of beneficial microbes in augmenting plant 
growth, soil health, and promoting sustainable agricultural practices. Microorgan-
isms play a key and indispensable role in nutrient cycling, a fundamental process in 
agricultural systems [18]. They actively contribute in the decomposition of complex 
organic matter, breaking it down into simpler forms that can be readily absorbed by 
plants [19]. Moreover, microorganisms contribute to nitrogen fixation, converting 
atmospheric N into a biologically usable form for plants. Through these processes, 
microorganisms improve nutrient accessibility, thereby promoting plant growth and 
reducing the need for synthetic fertilizers [20]. Furthermore, microorganisms exert a 
profound influence on soil structure and health. They actively contribute to the 
formation of soil aggregates, which enhance soil structure, porosity, and water 
infiltration [21]. These improvements in soil structure, in turn, enhance soil fertility 
and nutrient retention capacity. Additionally, certain microbes possess plant growth-
promoting traits such as phytohormone production, nutrient solubilization, and 
facilitation of nutrient uptake by plants [2]. The microbial-plant-soil nexus also



plays a crucial role in disease suppression within agricultural systems. Beneficial 
microorganisms act as natural antagonists against plant pathogens by actively 
competing for resources, producing antimicrobial compounds, and inducing sys-
temic resistance in plants [22]. These activities effectively reduce the occurrence and 
severity of plant diseases. By harnessing biocontrol agents derived from microor-
ganisms, farmers can minimize the use of chemical pesticides, which can have 
detrimental effects on the environment and human health [7]. Various strategies 
can be implemented to fully harness the potential of the microbial-plant-soil nexus. 
One such strategy involves the application of microbial biofertilizers, which contain 
beneficial microorganisms that enhance nutrient availability and promote plant 
growth [2]. These biofertilizers can be applied to seeds, roots, or soil to establish 
thriving and beneficial microbial communities, ultimately enhancing overall crop 
productivity. Furthermore, biopesticides derived from microorganisms offer an 
environmentally friendly alternative for pest control. Microbial-based biopesticides, 
such as Bacillus thuringiensis (Bt) and entomopathogenic fungi, specifically target 
pests while minimizing harm to nontarget organisms and reducing the risk of pest 
resistance development [23]. Integrating the microbial-plant-soil nexus into sustain-
able agricultural systems necessitates the adoption of soil management practices that 
support microbial activity [17]. This includes minimizing soil disturbance, 
maintaining soil organic matter through cover cropping and crop rotation, and 
reducing the use of chemical inputs that can disrupt microbial communities. By 
implementing these practices, farmers can foster a healthy and productive microbial 
ecosystem within the soil. 
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10.3 Understanding the Mechanisms of Action 
of Agriculturally Important Microorganisms 

Agriculturally important microorganisms show imperative contribution in 
augmenting plant growth through diverse arrays of mechanisms. These microorgan-
isms exert both direct and indirect influences on plant growth and development. 
Directly, they facilitate plant growth via phytostimulation and bio-fertilization. On 
the contrary, in the indirect way, they function as “bio-pesticides” or “biocontrol” 
agents [24]. The direct mechanisms employed by agriculturally important microor-
ganisms encompass the facilitation of nutrient uptake and enhancement of nutrient 
availability. They possess the capacity to fix nitrogen [25], solubilize phosphorus 
and other essential mineral nutrients [26], and mineralize organic compounds 
[24]. Moreover, these microorganisms produce phytohormones such as “IAA,” 
“ethylene,”  “cytokinins,” and “gibberellins,” which elicit plant growth responses 
[27]. The production of siderophores, which facilitate iron uptake, can be regarded as 
both a direct and indirect mechanism [28]. In addition to their direct effects, 
agriculturally important microorganisms exhibit indirect mechanisms that contribute 
to the promotion of plant growth. These encompass the production of antibiotics and



hydrolytic enzymes, which help in combating plant pathogens and supporting plant 
health [29]. They also have the capability to induce systemic resistance in plants, 
thereby enhancing defense mechanisms against pathogens [8]. Furthermore, these 
microorganisms secrete exopolysaccharides (EPS), which foster soil aggregation 
and improve soil structure, ultimately benefiting plant growth [30]. 

10 Prolific Microbial Agents as Key Products for Sustainable Agriculture 185

The multifaceted activities of agriculturally important microorganisms establish 
them as precious contributors to plant growth and development. By harnessing these 
beneficial interactions, these microorganisms present promising prospects for pro-
moting sustainable agriculture and ensuring ecological balance. 

10.4 Microbial Agents as Biofertilizers for Improving Crop 
Productivity 

Biofertilizers, classified as organic fertilizers, consist of microbial strains possessing 
plant growth-promoting characteristics. The excessive use of chemical-based fertil-
izers in recent years has raised concerns about their detrimental effects on the 
environment. Consequently, there is a growing public interest in adopting 
eco-friendly strategies. Utilizing biofertilizers is revolutionizing agricultural prac-
tices by providing an environmentally sustainable approach and reducing depen-
dence on agrochemicals. This transformation hinges upon the careful selection of 
microbial strains to ensure optimal results. Microbial strains, including bacteria, 
fungi, and mycorrhizae such as “Bacillus,”  “Rhizobium,”  “Lactobacillus,” ‘Azoto-
bacter,”  “Pseudomonas,”  “photosynthetic bacteria,”  “Trichoderma sp., “Glomus 
sp.,”  “Gigaspora sp.,”  “Pezizella sp.,” and “yeasts” exhibit a wide range of capa-
bilities, such as nitrogen fixation, solubilization of phosphate, zinc, iron, and potas-
sium, as well as the production of phytohormones and cellulolytic enzymes [2, 31– 
33]. These strains are primarily utilized as biofertilizers [2, 33]. Through the 
processes of nitrogen fixation, phosphate, potassium, and zinc solubilization, secre-
tion of plant growth-regulating substances like hormones and vitamins and facilita-
tion of organic matter biodegradation, biofertilizers play a crucial role in augmenting 
the plant growth and also contribute in maintaining soil health [2, 34]. Biofertilizers 
are widely acknowledged as microbial inoculants that effectively enhance nutrient 
availability in the soil, addressing the multifaceted challenges stemming from 
intensive chemical fertilizer usage [35]. In addition to their role in facilitating 
nutrient uptake by plants, biofertilizers exert a significant influence on various 
vital plant physiological processes, including the augmentation of water absorption 
and the promotion of photosynthetic rates [36]. Extensive research has documented 
the capacity of biofertilizers to enhance both abiotic and biotic stress tolerance in 
plants [8, 37]). Moreover, they play a pivotal role in the bioremediation of pesticides, 
contributing to the mitigation of their environmental impact [38–40]. Functioning as 
effective biocontrollers and biofertilizers exhibit noteworthy antagonistic properties 
against a diverse range of soil-borne plant pathogens, encompassing Rhizoctonia



root rot, chill wilt, Pythium root rot, mung bean root rot, and parasitic nematodes 
[2, 41]. Advancements in bioformulation technologies are imperative for the suc-
cessful commercialization of proficient microbial strains that possess biocontrol and 
plant growth-promoting capabilities. Several essential characteristics define an 
exemplary biofertilizer: (1) it must demonstrate environmental friendliness; (2) the 
microbial strains employed in its formulation must be nonpathogenic; (3) it should 
provide crops with high-quality nutrients; and (4) it should exhibit an extended shelf 
life [2, 42]. The meticulous selection of microorganisms possessing desirable traits 
stands as a pivotal factor in biofertilizer production. A comprehensive understanding 
of the interactions between microorganisms, crops, and the environment is vital to 
enhance crop growth [2, 43]. Microbes utilized in bioformulations undergo rigorous 
testing under in situ and in vivo conditions to ascertain the preservation of desired 
properties and the attainment of desired outcomes [44]. Furthermore, the chosen 
microbes for biofertilizer formulation should exhibit genetic stability, target specific 
crops, maintain synchrony with the native microbial population, and demonstrate 
survivability even in the absence of a host [5, 45]. The development of biofertilizers 
has traditionally focused on single microbial strains, but recent research emphasizes 
the advantages of employing multiple strains in the form of microbial consortia. 
These consortia act synergistically through diverse mechanisms, resulting in height-
ened effectiveness for crop enhancement [46, 47]. The process of biofertilizer 
development is intricate and requires rigorous assessments to meet stringent quality 
standards. Ensuring the viability of microorganisms is of paramount importance, 
enabling them to sustain soil fertility even after extended periods of storage 
[2, 48]. Biofertilizers can be formulated as dried powder, granules, or liquid, 
utilizing different carrier materials to support microbial growth and facilitate effi-
cient delivery [49]. Liquid biofertilizers, in particular, can incorporate specialized 
cell protectants to extend their shelf life and require lower application dosages 
compared to other formulations [50]. The selection of an appropriate carrier material 
is a critical consideration, as it plays a significant role in preserving cell viability 
during storage and transportation [51]. The ideal carrier material should be nontoxic, 
possess high moisture absorption and water retention capacities, have a prolonged 
shelf life, and be easily processable [52]. Encapsulation of the inoculants with the 
carrier material ensures convenient handling, efficacy, and long-term storage 
capabilities [53]. 
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The evaluation of biofertilizer efficacy can vary based on crop specificity. 
Various strategies can be employed, including seed treatment and soil application, 
for the utilization of specific biofertilizers [54]. In the context of paddy cultivation, 
seedling treatment with biofertilizers emerges as the preferred approach [55]. Fol-
lowing the application of biofertilizers to the soil, seeds, or roots, microorganisms 
establish colonization in the vicinity of the roots, thereby promoting growth in the 
targeted crop [56]. The root exudates excreted by plants facilitate the proficient 
colonization of microorganisms within the rhizosphere, optimizing their establish-
ment and function [45].
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10.5 Microbes as Biocontrol Agents and Their Potential 
for Pest Management 

Pest management plays a pivotal role in modern agriculture and ecosystem preser-
vation. However, traditional methods of pest control relying on chemical pesticides 
have proven to be environmentally harmful, posing risks to ecosystems, human 
health, and nontarget organisms [57–59]. Consequently, there is a growing interest 
in developing sustainable and eco-friendly alternatives for pest management. 
Microbes, including bacteria, fungi, viruses, and nematodes, have emerged as 
promising biocontrol agents due to their effective pest control capabilities while 
minimizing the negative impacts associated with conventional approaches [60]. For 
over a century, the study of microbes and their role in the health of living beings has 
been widely recognized. In modern agriculture, microbes have gained prominence as 
natural pesticides when combined with hybrid seeds, high-yield varieties, and 
regular irrigation, making them a leading trend in the agricultural sector 
[61]. Researchers are exploring sustainable methods to safeguard crops from insects 
and pathogens while enhancing soil health by harnessing the power of beneficial 
microorganisms. These microorganisms serve as natural biocontrol agents, 
inhibiting the growth of harmful pests and diseases while promoting plant growth 
and development [62, 63]. Among the bacteria used in agriculture, Bacillus 
thuringiensis (Bt) has long been employed due to its insecticidal proteins, making 
it a valuable and environmentally friendly biopesticide. Recent studies have 
suggested its potential use as a biofertilizer to enhance plant growth and its applica-
tion in the development of transgenic plants (Liliana [64, 65]). Pseudomonas 
chlororaphis isolates are also utilized as biopesticides, providing protection to plants 
against a wide range of microbial pathogens, insects, and nematodes 
[66]. Entomopathogenic fungi (EPF) offer an environmentally sustainable approach 
to biocontrol against insect pests [67]. With over 700 species identified from 
approximately 90 different genera, these fungi have the ability to infect and induce 
disease in insects under favorable conditions [67]. Notable strains include Beauveria 
bassiana, Metarhizium anisopliae, Hirsutella, Isaria, Lecanicillium, and Beauveria 
[68, 69]. These fungi produce spores that attach to the pest’s cuticle, penetrate it, and 
ultimately lead to the pest’s demise. Fungal biocontrol agents are particularly 
effective against pests such as aphids, whiteflies, and thrips, and they offer a lower 
risk of developing resistance compared to chemical pesticides [67]. Insect-specific 
viruses, such as nucleopolyhedroviruses and granuloviruses, have shown great 
potential as biocontrol agents. These viruses selectively infect and eliminate their 
host insects [70, 71]. Microbial biocontrol agents provide numerous benefits for pest 
management. They demonstrate precise targeting, effectively controlling pests while 
minimizing harm to beneficial organisms. Moreover, these agents are environmen-
tally friendly and pose no toxicity risks to humans. They also have the advantage of 
rapid degradation, reducing the potential for persistent residues in soil, water, and 
food [60]. Furthermore, their utilization supports sustainability and organic farming



practices by decreasing reliance on synthetic pesticides. They can be seamlessly 
integrated into pest management programs, complementing other control methods. 
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10.6 Microbial Role in Enhancing Crop Resilience 
to Abiotic Stresses 

Abiotic stress has emerged as a significant global concern, causing substantial 
agricultural losses on a widespread scale [72]. It encompasses the detrimental effects 
of nonliving environmental factors that impose stress on various species. These 
factors comprise extreme light conditions (both high and low), radiation (UV-B and 
UV-A), temperature fluctuations (both high and low), water-related challenges 
(drought, flooding, and submergence), chemical influences (heavy metals and pH), 
salinity resulting from excessive Na + levels, deficiency or excess of essential 
nutrients, gaseous pollutants (such as ozone and sulfur dioxide), mechanical factors, 
and other less common stressors [73]. These stressors can manifest individually or in 
combination. In agricultural settings, crops and plants regularly encounter stress due 
to a complex interplay of these factors, resulting in distinct effects [72, 74]. The 
accumulation of heavy metals in plants has detrimental consequences for their 
growth, photosynthetic activity, and crop yield [75]. Salinity stress disrupts various 
physiological processes, including seed germination, seedling establishment, vege-
tative growth, ionic toxicity, osmotic pressure, and oxidative damage [76– 
78]. Drought stress adversely affects key components of photosynthesis, such as 
photosystem-I and photosystem-II, and impairs the functionality of enzymes like 
ascorbate peroxidase, glutathione reductase, and superoxide dismutase [79]. Cold 
stress induces cell and tissue dehydration, crystallization of cellular water, reduced 
membrane conductivity, increased leakage of reactive electrolytes, decreased 
weight, and lower relative water content, ultimately leading to poor crop yield 
[80]. Plants require a unique response tailored to their environmental conditions to 
adapt to specific abiotic stress conditions. Recent research indicates that each abiotic 
stress situation necessitates a precise, personalized plant response, and the interac-
tion of two or more stress factors may require a distinct response [72]. When two or 
more stresses occur simultaneously, an opposing response may be required. For 
instance, a common field scenario involves the combination of heat and drought 
stress. Under heat stress conditions, plants open stomata to cool the leaves through 
transpiration. However, when heat stress is combined with drought stress, plants are 
unable to open stomata, resulting in higher leaf temperatures [81]. Microbes employ 
various biochemical and molecular mechanisms to mitigate the adverse impacts of 
different abiotic stresses on plant growth and development [82]. 

Plants receive protection against abiotic stressors through various mechanisms 
employed by microorganisms. These include the synthesis of phytohormones, 
osmolytes, and exopolysaccharides (EPS), as well as the activity of 1--
aminocyclopropane-1-carboxylate (ACC) deaminase and the induction of



stress-responsive genes (Upadhayay et al., 2023). Plant-associated microorganisms, 
such as endophytes, arbuscular mycorrhizal fungi, and plant growth-promoting 
rhizobacteria [82], have been recognized for their ability to enhance crop yield and 
improve stress tolerance. Plant growth-promoting rhizobacteria (PGPR) play a vital 
role in this regard by producing phytohormones like indole-3-acetic acid (IAA), 
cytokinins, and abscisic acid. They also produce antioxidants such as superoxide 
dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), 
and glutathione reductase (GR). Additionally, PGPR possess the enzyme ACC 
deaminase, which aids in the degradation of the ethylene precursor ACC, thereby 
helping to alleviate the adverse effects of abiotic stress and induce systemic tolerance 
[83, 84]. The presence of PGPR with ACC deaminase enzyme enables the regulation 
of ethylene production by converting ACC into alpha-ketobutyrate and ammonia, 
providing relief from stress [85]. AMF colonization has shown increased tolerance to 
water stress by enabling hyphae to reach water sources inaccessible to non-colonized 
plants via soil pores that are inaccessible to root hairs. Khalvati et al. [86] demon-
strated water transport to the roots under drought conditions. Kavroulakis et al. [87] 
observed tolerance to water stress in Solanum lycopersicum cv ACE 55 by Fusarium 
solani, resulting in increased net CO2 assimilation rate, enhanced antioxidant activ-
ity, and stomatal conductance. Mathur et al. [88] demonstrated drought resistance in 
Triticum aestivum through the colonization of Rhizophagus intraradices and 
Funneliformis spp., leading to increased relative water content, chlorophyll content, 
and restoration of electron transport in PS-II. Bacillus sp. and Enterobacter 
sp. provide drought tolerance in Triticum aestivum and Zea mays through the 
production of indole-3-acetic acid and salicylic acid [89]. Funneliformis mosseae 
enhances tolerance to low temperatures in Solanum melongena L. by improving 
photochemical reactions, activating the antioxidant defense system, accumulating 
protective molecules, and reducing membrane damage [90]. Rhizoglomus 
intraradices enhances salinity tolerance in Pisum sativum by improving nutrient 
uptake and promoting the accumulation of compatible osmolytes [91]. Kocuria 
rhizophila regulates plant hormones like abscisic acid and indole-3-acetic acid and 
improves nutrient acquisition, thereby providing salinity tolerance in Zea mays 
[92]. Table 10.1 illustrates the use of a various microbial strains to successfully 
mitigate a variety of stressors faced by plants. 
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10.7 Microbial Products and Soil Carbon Sequestration: 
A Pathway to Climate-Smart Agriculture 

Climate change is a crucial global issue that has garnered significant attention from 
the scientific community worldwide. The primary driver behind climate change is 
human activities, which have contributed to a steady increase in global temperatures. 
Since the late nineteenth century, the Earth’s average surface temperature has risen 
by approximately 0.9 °C, largely attributed to the substantial surge in carbon dioxide



Microorganism Plant Stress mitigation References

(CO2) emissions resulting from human-induced activities [99]. The period of indus-
trialization, which commenced in the 1750s, witnessed a rapid and substantial rise in 
atmospheric CO2 concentration from 277 to 400 parts per million (ppm) 
[99, 100]. Since around 1920, fossil fuel combustion has become the dominant 
contributor to CO2 emissions, disrupting the natural carbon cycle and necessitating 
the implementation of carbon sequestration measures [99, 101]. Carbon sequestra-
tion refers to the process of capturing and storing atmospheric CO2 in the soil over 
an extended period. This method is predominantly achieved by incorporating crop 
residues and organic matter into the soil [102]. Additionally, indirect sequestration 
can occur through chemical reactions that transform CO2 into inorganic compounds 
like “calcium carbonate (CaCO3)” or “magnesium carbonates (MgCO3)” 
[99, 103]. On the other hand, direct sequestration involves the fixation of CO2 
into plant biomass through photosynthesis [104]. Various natural elements function
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Table 10.1 Microbial-mediated approaches for mitigating abiotic stress in plants 

Type of 
stress 

Bacillus 
megaterium PB50 

Rice Drought 
stress 

Improved growth under osmotic 
stress, protected from physical 
stress by stomatal closure 

Arun et al. 
[93] 

Arthrobacter 
woluwensis 
(AK1) 

Soybean Salinity 
stress 

Salt-tolerant gene GmST1 is 
expressed with 42.85% 
expression 

Khan et al. 
[13, 14] 

Bacillus 
megaterium and 
Pantoea 
agglomerans 

Vigna 
radiata 

Drought 
and alumi-
num stress 

The consortium decreased Al 
uptake and increased abiotic stress 
tolerance 

Silambarasan 
et al. [94] 

Compost + PGPR Tomato Drought 
stress 

Enhancement in the plant growth, 
accumulation of osmolytes and 
minerals, decrease patterns in 
activity of antioxidant enzymes 

Tahiri et al. 
[95] 

Enterobacter clo-
acae PM23 

Maize Salinity 
stress 

Augmentation in radial scaveng-
ing capacity, relative water con-
tent, soluble sugar, phenolic 
content, flavonoid content, and 
accumulation of osmolytes (gly-
cine betaine, proline, etc.) 

Ali et al. [96] 

S. putrefaciens 
and 
C. dubliniensis 

Pearl 
millet 

Drought 
stress 

Increase in relative water content, 
improvement in the level of pro-
line accumulation, enhancement 
in the expression level of genes 
related to phytohormone biosyn-
thesis, and drought-responsive 
transcription factors 

Manjunatha 
et al. [97] 

L. fusiformis and 
L. sphaericus 

Maize Cold 
stress 

Increase in level of osmolytes, 
phytohormones, and phenolics, 
improvement in the activity of 
antioxidant enzymes 

Jha and 
Mohamed 
[98]



as either carbon sources or sinks, depending on their capacity to absorb or release 
carbon. “Organic matter decomposition,” “respiration and digestion activities,” 
“volcanoes,” and “water bodies” serve as natural carbon sources [105], while forests, 
photosynthesis, Earth’s crust, soil, oceans, and freshwater bodies act as carbon sinks 
[99, 106]. Maintaining a balanced carbon cycle necessitates a proportional release of 
carbon from sources and sinks [107]. Carbon sequestration is influenced by a 
multitude of factors. These factors include the rate of production and decomposition 
of soil organic matter, the composition of the parent material, the position of the 
landscape, temperature and precipitation patterns, the presence of living organisms, 
and various management practices [99, 108]. Among these factors, SOM plays a 
significant role in modifying soil carbon stocks, thereby affecting the potential for 
soil sequestration [109]. Numerous processes contribute to the release and transport 
of SOM within the soil, influencing its physical, chemical, and biological character-
istics, and ultimately impacting the potential for carbon sequestration [108]. The 
microbes found in rhizospheric soil, specifically known as “plant growth-promoting 
rhizobacteria” or “PGPR,” have the capability to enhance soil microbial functioning, 
creating a positive contribution to global climate change. PGPR constitutes a 
significant portion of the overall microbial community and plays a crucial role in 
carbon sequestration [110]. The mechanisms by which PGPR mitigate climate 
change and sequester carbon involve multiple pathways [99]. PGPR plays a vital 
role in nutrient cycles, including those of “C” and “N” [111]. They exert improve-
ment in the production of “glomalin” in the rhizospheric milieu by promoting 
mycorrhizal colonization [112]. Glomalin acts as an important reservoir of C and 
N in the soil [113]. Moreover, PGPR has the ability to directly enhance plant growth 
and allocate more C to plant biomass, thereby facilitating effective carbon recycling 
[99]. Additionally, research has shown that PGPR affects soil quality by regulating 
the amount of C in micro- and macroaggregates [112]. Soil microbial activities are 
directly or indirectly influenced by elevated temperature and carbon dioxide levels. 
High-temperature conditions enhance microbial activities, creating a positive feed-
back loop for climate change. Similarly, low moisture conditions can have compa-
rable effects [114]. The maintenance of ecosystem C aggregation relies on achieving 
a balance between plant productivity and heterotrophic respiration, which is accom-
plished through the decomposition of SOM [99, 115].
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Several studies have extensively documented the beneficial impacts of elevated 
CO2 levels on plant growth, as well as the increased input of photosynthetic C into 
soils [116]. These increased carbon inputs can promote microbial growth, leading to 
an increase in soil microbial communities under elevated CO2 [117]. Consequently, 
this may accelerate soil organic matter decomposition, potentially resulting in net 
carbon losses in the soil. Elevated carbon dioxide levels also stimulate rhizosphere 
priming effects, enhancing the decomposition of soil organic matter through micro-
bial activity [118, 119]. The enzymatic activity of PGPR facilitates the decomposi-
tion of soil organic matter [120]. Moisture levels play a vital role in shaping the 
activities of microbial communities involved in climate change processes. In differ-
ent soil environments, microbial activity tends to increase under conditions of 
drought and water stress. This response is primarily attributed to the decrease in



water levels and the introduction of O2 into previously oxygen-depleted soils 
[99]. Peatlands and wetlands are recognized as crucial reservoirs that store substan-
tial amounts of C in terrestrial ecosystems [99, 121]. Consequently, the heightened 
degradation of resilient and stable organic matter under dry conditions can have 
significant implications for the global C cycle dynamics [122]. 
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10.8 Microbial Consortia: An Effective Way for Plant 
Growth 

The rhizosphere, a thriving area of soil, is teeming with a variety of different 
microorganisms. These subterranean microbes interact in complex ways both with 
each other and with plant roots, mutually benefiting plant growth. Plant signalling 
molecules such as root exudates play a crucial role and shape the rich spectrum of 
microbial diversity in this zone. The plant growth-promoting rhizomicrobes are a 
selected group of rhizosphere inhabitants that contribute to plant development 
through an impressive repertoire of mechanisms [12, 123]. From phosphate solubi-
lization to nitrogen fixation to the production of plant growth hormones and antimi-
crobial compounds, these PGPRs serve as excellent substitutes for chemical inputs 
that often upset the delicate balance of soil biological and chemical properties. While 
biofertilizers typically feature a single microbial strain, pioneering research shows 
that the application of co-inoculation or consortium biofertilizers containing two or 
more microbial strains consistently produce more profound benefits for plant growth 
[12, 124]. Numerous scientific studies have advocated the utilization of microbial 
consortia as a promising approach to enhance plant growth, health, and survival, 
both under challenging environmental conditions and in natural settings [46, 47, 
125, 126]. These consortia have been observed to stimulate plant roots, inducing the 
secretion of increased amounts of amino acids, growth regulators, and sugars. 
Moreover, they enhance the plant roots’ ability to efficiently utilize minerals and 
other constituents present in the rhizosphere [46, 47, 124, 126]. This symbiotic 
interaction contributes to improved nitrogen fixation, thereby enabling plants to 
adapt to changes in environmental conditions more effectively [126]. Within the 
framework of field experiments, the inoculation of rice crops with a consortium 
comprising three distinct bacterial strains, namely, “Burkholderia ubonensis 
(la3c3),”  “Burkholderia vietnamiensis (la1a4),” and “Citrobacter bitternis 
(p9a3m),” showed noteworthy improvement in both grain yield and quality and 
also reduced the use of nitrogen fertilizer by up to 25% [127]. In the study conducted 
by Kumar et al. [38–40], the tetra combination of A. chlorophenolicus, 
B. megaterium, Enterobacter sp., and P. aeruginosa exhibited significant improve-
ments in plant height, grain yield, and straw yield for wheat under both greenhouse 
and field conditions. The application of a talc-based formulation including a con-
sortium consisting of K. pneumoniae, Erwinia sp., and P. nitritireducens showed an 
extraordinary per-plant cumin seed yield (0.42 g). This notable formulation not only 
elevated essential agronomic parameters such as plant height, dry weight, and



100 seed weight but also resulted in a substantial enhancement in the overall yield, 
indicating a promising role of bacterial consortium in cumin cultivation [128]. A 
consortium comprising Erwinia sp. (nitrogen fixer), C. arthrosphaerae (phosphorus 
solubilizer), and P. gessardii (potassium solubilizer) enhanced growth and physio-
logical parameters, including root/shoot length and biomass, chlorophyll, caroten-
oids, phenolics, flavonoids, and soluble sugar content in barley crops compared to 
the untreated control [129]. Tyagi et al. [130] showed that a tri-inoculant formulation 
(“Serendipita indica,” ‘Rhizophagus intraradices,” and “Azotobacter 
chroococcum”) increased root and shoot length, fresh and dry weight, membrane 
electrolyte leakage, chlorophyll content, relative water content, and antioxidant 
enzyme activities (POX) significantly increased, CAT, PPO, SOD) in maize plants 
under drought conditions compared to the uninoculated control. The study by 
Kapadia et al. [131] showed that a microbial consortium consisting of Bacillus sp., 
Delftia sp., Enterobacter sp., and Achromobacter sp. significantly increased growth 
and mineral uptake of salt stressed tomatoes. The consortium treatment resulted in 
increased leaf, shoot and root dry weight, leaf count, shoot length, root length, 
secondary roots, and improved chlorophyll content compared to the control group, 
ultimately helping the plants to thrive in a saline environment. 
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10.9 Contribution of Microorganisms in Biofortification 
of Food Crops 

To address the needs of an expanding world population, it is crucial to implement 
strategies that optimize biomass productivity. “Green revolution” has contributed a 
lot in terms of giving to higher crop yields. But a specific type of micronutrient 
deficiency, known as “hidden hunger,” affects nearly half of the global population, 
leading to malnutrition [132]. In addition to macronutrients (N, P, K) and calories, 
essential micronutrients such as zinc, iron, selenium, etc. are vital for human health 
[15, 16]. The widespread presence of micronutrient deficiencies in low- and middle-
income countries has a significant impact on human health [16, 133]. The lack of 
micronutrients poses a significant health burden, especially in regions with inade-
quate access to proper nutrition. According to the “United Nations System Standing 
Committee on Nutrition (UNSSCN, [134]),” more than 50% of child mortality cases 
are directly or indirectly attributed to micronutrient deficiencies, which also contrib-
ute to major risk factors for maternal mortality [16]. Micronutrients such as iron (Fe), 
zinc (Zn), and selenium (Se) are essential for vital biological processes and must be 
obtained through the diet [13–15]. Inadequate intake of these micronutrients can lead 
to various health problems and increase the risk of developing several diseases 
[15, 16, 135]. 

Crop biofortification offers a promising solution to these challenges by enhancing 
the nutrient content of staple foods, particularly targeting low-income households 
that struggle to afford a diverse diet. Traditional approaches such as plant breeding, 
agronomic strategies, and genetic engineering have been employed for
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biofortification, but their effectiveness has been inconsistent, and they are laborious 
and costlier approaches [136]. In recent years, the utilization of naturally occurring 
soil microorganisms, specifically plant growth-promoting microbes like bacteria and 
mycorrhizal fungi, has emerged as a viable approach for crop biofortification ([3, 4, 
45, 55] and 2022d). The interactions between plants and these microbes play a 
pivotal role in improving soil nutrition and facilitating the movement of 
micronutrients to different plant parts through processes such as solubilization, 
mobilization, and translocation of micronutrients [15, 16]. Microorganisms employ 
diverse strategies to enhance micronutrient uptake in plants, including the produc-
tion of siderophores and other chelating substances, secretion of organic acids, 
proton extrusion, modification of root morphology and anatomy, reduction of anti-
nutritional factors like phytic acid in food grains, secretion of phenolics and related 
compounds, and production of phytohormones as signaling molecules [3, 4, 16, 25, 
45, 137]. The exploration of these potential plant growth-promoting (PGP) bacteria 
offers an alternative to chemical crop protection agents while also promoting 
environmental health and sustainability [13, 14, 138]. This makes them highly 
suitable for extensive use in organic agriculture. Several microorganisms have 
been identified and listed in Table 10.2 for their application in crop biofortification. 
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Table 10.2 Microbial-assisted biofortification of various crops 

Micronutrient 
(s) 

Zinc-solubilizing bacterial strains Zinc Wheat Ali et al. 
[139] 

Enterobacter sp. EG16 Selenium Pak choi (Brassica 
rapa ssp. chinensis) 

Yuan et al. 
[140] 

Exiguobacterium sp. S17 Selenium Brassica juncea 
(Indian mustard) 

Marfetán 
et al. [141] 

Consortium of Bacillus subtilis, Bacillus 
aryabhattai, and Paenibacillus polymyxa 

Zinc and iron Maize Ahmad 
et al. [142] 

Pseudomonas protegens Zinc Wheat Singh et al. 
[3] 

Three strains of Bacillus subtilis + soil 
applied iron 

Iron Groundnut Sarwar 
et al. [143] 

Bacillus altitudinis WR10 Iron Wheat Sun et al. 
[144] 

Consortium (Rhizobium + plant growth-
promoting rhizobacteria) 

Iron Lentil (Lens 
esculenta) 

Kumar 
et al. [38– 
40] 

Bacillus altitudinis Zinc Chickpea (Cicer 
arietinum L.) 

Kushwaha 
et al. [145] 

Bacillus mojavensis + Bacillus cereus Iron Sorghum Mansani 
et al. [146] 

S. marcescens FA-4 Zinc Rice Shakeel 
et al. [147] 

Enterobacter sp. MN17 + Zn application Zinc Kabuli chickpea Ullah et al. 
[148]
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10.10 Challenges and Opportunities for Commercializing 
Microbial Products in Sustainable Agriculture 

Microbe-based products, including biofertilizers and biopesticides, hold significant 
potential for sustainable agriculture. However, several challenges hinder their wide 
acceptance and successful implementation. To address them effectively, it is crucial 
to understand the issues faced by microbial-based products. 

I. Limited awareness and understanding: One of the main obstacles faced by 
microbial-based products is the insufficient awareness and understanding 
among farmers, agronomists, and policy-makers regarding the advantages 
and appropriate utilization of these products. It is imperative to develop 
educational initiatives and outreach programs that effectively disseminate 
knowledge and enhance confidence in these innovative solutions. 

II. Regulatory hurdles: Regulatory frameworks for microbial products often lack 
clarity or exhibit regional variations, which present a challenge in their com-
mercialization. The lengthy and expensive registration processes further hinder 
manufacturers and limit market access. To overcome these obstacles, it is 
crucial to streamline regulations and establish clear guidelines that facilitate 
the smooth commercialization of microbial products. 

III. Product variability and efficacy: The effectiveness of microbial products can 
be influenced by factors such as environmental conditions, crop species, and 
management practices, leading to variability in their performance. Ensuring 
consistent product efficacy across diverse agricultural systems and improving 
product stability are crucial challenges that require attention. 

IV. Quality control and standardization: Maintaining product quality and stan-
dardization is critical to the successful commercialization of microbial prod-
ucts. The development of standardized production protocols, quality control 
measures, and certification programs will increase product reliability and 
consumer confidence. 

V. Limited scalability and production costs: Manufacturing microbial products 
faces the challenge of increasing production and achieving cost efficiencies. 
Efficient production processes, optimized fermentation techniques, and 
research into alternative microbial strains are required to overcome these 
obstacles. 

VI. Market acceptance and competitiveness: Microbial-based products compete 
with traditional agrochemicals that already dominate the market. It is crucial to 
convince farmers of the long-term benefits, cost-effectiveness, and environ-
mental benefits of microbial products in order to achieve market acceptance 
and encourage their widespread use. 

VII. Research and development gaps: Sustained research and development efforts 
are essential to identify and characterize novel microbial strains, refine formu-
lation methods, and gain a comprehensive understanding of the complex 
interactions between microbes, plants, and the environment. Bridging these 
knowledge gaps will encourage innovation and accelerate the development of 
more efficient and impactful microbial products.
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It is essential to encourage collaboration between researchers, industry stake-
holders, policy-makers, and farmers to resolve these challenges. This collaborative 
effort will facilitate the exchange of knowledge and spur innovation in the field of 
microbial products. Increased investments in research, capacity building, and infra-
structure are essential for accelerating the development of these products and driving 
advancements. In addition, public-private partnerships can play a crucial role in 
facilitating technology transfer, expanding market access, and providing regulatory 
support. By addressing these obstacles, we can unlock the maximum potential of 
microbial products and increase their adoption via sustainable agriculture. Utilizing 
the power of beneficial microorganisms provides numerous opportunities to improve 
agricultural productivity, reduce reliance on chemical additives, and promote envi-
ronmentally responsible agricultural practices. 

10.11 Conclusion and Future Prospects 

In conclusion, the integration of microorganisms into sustainable agriculture pre-
sents promising solutions for enhancing crop productivity, soil health, and environ-
mental sustainability. Microbes play pivotal roles as biofertilizers, biocontrol agents, 
and stress-tolerant enhancers, promoting eco-friendly practices and reducing reli-
ance on synthetic inputs. Their contributions to climate-smart agriculture, microbial 
consortia, and biofortification of food crops underscore their significance in achiev-
ing sustainable and resilient agricultural systems. Unlocking the potential of micro-
organisms holds tremendous prospects for advancing and transforming sustainable 
crop-based food production. 

Looking ahead, advanced microbial formulations offer exciting prospects for 
revolutionizing agricultural practices. The incorporation of nanotechnology into 
microbial formulations, e.g., nanobiofertilizers, can lead to improved nutrient deliv-
ery and controlled release systems, thus optimizing nutrient uptake by plants [9]. In 
addition, the development of encapsulated biofertilizers can protect microorganisms 
and ensure their viability and stability during storage and application. These formu-
lation advances have the potential to improve the efficiency and potency of microbial 
products, resulting in higher plant productivity and optimized resource utilization. 
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