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Abstract The production of bioactive compounds through microbial sources has 
gained considerable attention in recent years. The use of microorganisms for pro-
ducing a wide range of complex molecules with different biological activities for 
various applications has become increasingly popular. Researchers have recognized 
a vast number of microorganisms as producers of bioactive compounds with indus-
trial applications. In addition, the use of microorganisms to produce bioactive 
compounds is considered to be an environmentally friendly and sustainable 
approach. However, finding the optimal conditions for producing these compounds 
remains a challenge, and exploring new niches with new microorganisms expands 
the possibility of discovering novel bioactive compounds. The chapter provides an 
overview of various applications of bioactive compounds, including food, cosme-
ceutical/cosmetic products, and environmental and agricultural applications. Over-
all, this chapter provides valuable insights into the recent advancements and trends in 
the microbial production of bioactive compounds and identifies the challenges and 
opportunities for future research in this field. 
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1.1 Introduction 

Throughout centuries, humans have harnessed the potential of bioactive compounds 
(BCs) to improve their lives [1]. The scientific community has thoroughly 
researched BCs, which are characterized by their ability to interact with living tissue
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and cause various biological effects and reactions. Although the exact definition of a 
BC may be unclear, its influence on biological systems is undeniable [2]. It is widely 
agreed among authors that these compounds have distinct advantageous qualities 
that differentiate them from detrimental compounds, like toxic or carcinogenic 
substances [3, 4].
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Recently, there has been a growing interest in using bioactive compounds for 
various applications, including food, pharmaceuticals, cosmetics, as well as envi-
ronmental and agricultural applications [3–7]. 

For instance, in the food industry, BCs serve as additives or can be utilized to 
create health-promoting products such as food supplements, nutraceuticals, and 
functional foods [3]. The pharmaceutical industry is researching BCs in order to 
discover new drugs and therapies, specifically new antibiotics that can combat 
resistant pathogens [4]. Additionally, BCs are being investigated for the treatment 
of other disorders such as genetic (cancer), neurological (Alzheimer or Parkinson 
disease), and metabolic (diabetes and obesity) [8]. 

As for the cosmetic sector, BCs can be used to formulate skin antiaging, hydrat-
ing, whitening, and brightening products. Also, the cosmetic industry is increasingly 
invested in finding new BCs that provide a range of skin benefits, including 
protection against UV radiation and treatment of various skin conditions 
[5, 9]. These compounds can be used in the formulation of various cosmetic products 
such as moisturizers, antiaging creams, and sunscreens. 

When it comes to environmental and agricultural applications, microorganisms 
have the potential to produce BCs for various applications, including bioremedia-
tion, biofertilizers, and biopesticides. Mainly, BCs are being explored for their 
potential to replace the use of agrochemicals. They can improve the growth, yield, 
and quality of crops while also reducing the impact on the environment and human 
health [7]. 

Certainly, BCs can come from either natural or synthetic sources. In this regard, 
the worldwide exigencies for natural products have been boosted during the last 
decade. Furthermore, naturally occurring biological compounds created through 
microbial cell factories are gaining popularity in both industrial and academic fields 
[4, 10]. A range of microorganisms, including bacteria, yeast, fungi, and algae, 
possess the ability to produce a wide assortment of BCs that exhibit diverse 
biological properties. These BCs have found utility across various industries as 
well (Fig. 1.1). 

The utilization of microbial-produced BCs can provide numerous benefits as 
compared to other natural sources. One of the major advantages is its higher 
efficiency, which enables the production of larger amounts of the desired complex 
molecules. Moreover, the microbial-produced BCs offer greater versatility in terms 
of the range of molecules that can be produced, making them a more versatile option 
for various applications. Additionally, the production process is easier to scale, 
ensuring more efficient and cost-effective production of the desired molecules. 
Additionally, microbial cell factories can be engineered to consume renewable 
resources, making them a more sustainable approach to obtaining BCs. Indeed, 
microbial production of BCs can face many bottlenecks in reaching a commercial



stage, such as low manufacturing yields, high processing costs, and challenging 
recovery methods. 
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Fig. 1.1 Applications of microbial bioactive compounds 

This chapter explores the current trend of including bioactive compounds in 
various industries and explains how microbial production of these compounds is 
being used in different sectors. 

1.2 Recent Trends Toward Bioactive Compounds 
Incorporation into the Market 

It has been estimated that the market for bioactive ingredients on a global scale has 
reached an impressive size of USD $45.5 billion in the year 2022. The projections 
indicate that this market will continue to grow at a compound annual growth rate 
(CAGR) of 7.42% from 2022 to 2028, culminating in a forecasted value of USD 
$69.9 billion by the year 2028 [11]. The fact that there is a growing demand for 
bioactive ingredients in different industries and their potential to drive innovation 
and progress is evidenced by this growth. According to the report, the largest 
segment was food supplements, but personal care and animal nutrition were also 
included. The report also covered natural BCs extracted from plants. 

Regarding the market of microbial products, according to recent projections, the 
microbial products industry is expected to experience a notable CAGR of 7.6% 
between 2022 and 2027. This growth is predicted to increase the market’s overall 
value from its current standing of $231.5 billion to $334.2 billion [12]. These 
numbers indicate significant advancements in this industry and suggest a promising



future for microbial products. It is worth noting that consumers’ increasing aware-
ness of healthy lifestyle choices and their growing demand for products made with 
natural ingredients are the driving forces behind the growth of both markets. It is 
crucial to consider these factors when analyzing the market’s expansion. On the 
other hand, the time required to obtain regulatory approval, such as from the FDA, 
may limit the growth of the microbial BCs market due to high processing costs. 
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Fig. 1.2 Recent trends for microbial production of bioactive compounds 

In this regard, the latest trends in microbial-produced compounds aim to enhance 
process efficiency, improve product quality, reduce costs, and find new sources and 
compounds. In addition, due to the environmental crisis, both industry and academia 
have suggested bioprocesses that follow the ideals of cleaner production and a 
circular economy. 

Recent trends in microbial-produced compounds depend on the process stage, 
whether upstream or downstream, as well as the research and development stage. 
Therefore, efforts can be targeted toward identifying new molecules and sources, 
optimizing processes, scaling up production, and developing environmentally 
friendly recovery methods (Fig. 1.2). 

For example, synthetic biology, metabolic engineering, high-throughput screen-
ing, and a multi-omics approach have contributed to advancing the development of 
new microbial cell factories, improving the efficiency of existing ones, and engi-
neering microorganisms to achieve specific objectives [13]. On the other hand, 
within the processing and scale-up trends, the utilization of process analytical 
technologies has enabled the application of bioprocess control and optimization 
strategies to achieve maximum yields and consistency [14, 15]. Artificial intelli-
gence and machine learning are most certainly concepts that have emerged in 
industrial microbiology to improve the efficiency, consistency, and quality of 
bioprocesses while reducing the time and cost of developing new bioprocesses 
[16, 17]. 

Regarding developing sustainable processes, two main trends are followed, a 
biorefinery approach for the upstream and a design of a green recovery method for
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the downstream. In this sense, waste valorization allows converting waste materials 
into BCs, thus improving economic viability while reducing the amount of waste 
that ends up contaminating the environment [18, 19]. Meanwhile, green recovery 
methods enable isolating BCs while reducing the utilization of organic solvents and 
improving the energy efficiency of the recovery process [20]. 
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Further sections will describe the applications of microbial BCs within distinct 
sectors and purposes, as shown in Fig. 1.1. 

1.3 Food Applications and Health Benefits 

The extraction and use of secondary BCs in food is a practice that dates back 
centuries. In ancient Asia, mold-fermented rice was utilized as both a food and 
traditional medicine [21]. Today, microbial BCs are employed in a variety of food 
applications, including preservation, color, flavor, texture, and nutritional enhance-
ment, as outlined in Table 1.1. 

Lactic acid bacteria (LAB) are a group of bacteria that produce lactic acid as a 
metabolic product [23]. They are commonly used as starter cultures in the production 
of fermented foods such as yogurt, cheese, and sauerkraut. Additionally, LAB 
strains can produce antimicrobial compounds that can serve as natural preservatives 
in various food products. Juodeikiene et al. [28] employed the extracellular metab-
olites present in the supernatant broth fermented by LAB to wash off mycotoxins 
and spores from wheat grains before malting, preventing the undesirable growth of 
other microorganisms or off-flavors. LAB are recognized not only as an essential 
group of microorganisms for the dairy industry but also for their catabolic and 
anabolic metabolism and the benefits that they bring to other fields in the food

Table 1.1 Applications of bioactive compounds in food and health industry 

Bioactive 
compound 

Lactobacillus 
rhamnosus B103 

Lactic acid Texture and flavor modification in dairy 
products, meat products preservation. 

[22, 23] 

Pichia pastoris α-Amylases Starch liquefaction, saccharification, maltose 
syrup production. 

[24] 

Talaromyces 
leycettanus 
JCM12802 

Glucoamylases Starch saccharification, production of high 
fructose and glucose syrups. 

[25] 

Saccharomyces 
cerevisiae 

Glucans Noncaloric food thickener, fat substitute, 
emulsifier, foam stabilizer, source of dietary 
fiber. 

[26] 

Rhodobacter 
sphaeroides 
HY01 

CoQ10 Food supplement, energy boosting, 
antioxidant. 

[27]



industry [22]. Regarding this, the BCs obtained from LAB can be produced either by 
degradation or synthesis.
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LAB have the ability to degrade polysaccharides, providing unique flavors and 
odors to sourdough, as well as proteins and amino acids, effectively hydrolyzing 
proteins present in milk and other non-nutritive and harmful substances such as 
phytic acid or undesirable peptides. Conversely, LAB also produce essential sec-
ondary BCs with a significant impact on the food industry, including lactic acid and 
other organic acids, bacteriocin, vitamins, extracellular polysaccharides, gamma-
aminobutyric acid, flavor substances, and antioxidant substances [29]. 

Filamentous fungi can serve as natural producers of food colorants, with an 
incredible variety of pigments such as carotenoids, melanins, flavins, phenazines, 
quinones, monascins, atrorosins, violacein, and indigo [30]. To date, Monascus sp. is 
one of the most extensively studied filamentous fungi, with over 50 different 
pigments examined. However, Monascus-like pigments have also been reported in 
species of Talaromyces and Penicillium [31]. Similarly, microbial pigments can also 
be produced by bacteria. Unlike other microorganism-produced pigments, bacterial 
pigments have the advantages of a short life cycle and ease of genetic modification. 
Nevertheless, it is important to note that most bacterial pigments are still in the 
research and development stage, unlike those produced by fungi. 

Enzymes play a crucial role in the food industry, as they can catalyze a wide range 
of reactions and processes that are important for food production and processing. 
Raveendran et al. [32] explained the most relevant enzymes and their application, 
including α-amylase, glucoamylases, proteases, lactase, lipases, phospholipases, 
esterases, lipoxygenases, cellulases, xylanases, pectinases, glucose oxidase, laccase, 
catalase, and peroxidase. 

Some of the applications of these enzymes are as follows: α-amylase is capable of 
hydrolyzing glycosidic bonds, resulting in the production of short-chain dextrins. It 
has a wide range of uses in the baking industry for flavor enhancement, starch 
liquefaction, brewing, etc. 

The major microorganisms used for the industrial production of α-amylase are 
Bacillus amyloliquefaciens, Bacillus stearothermophilus, or  Bacillus licheniformis 
[33]. Glucoamylases hydrolyze polysaccharide starch, releasing β-glucose. They 
have major applications in the production of high glucose and fructose syrups, 
bread quality improvement, and beer production. Glucoamylases are primarily 
produced by Aspergillus niger, Aspergillus awamori, and Rhizopus oryzae. 

Proteases are hydrolytic enzymes that release peptides and amino acids from 
proteins. They are commonly used for meat tenderization, coagulation of milk, 
brewing, etc. An important producer of this enzyme due to its low pH tolerance is 
Aspergillus usamii [34]. Lactase is principally used in dairy products to reduce 
lactose intolerance but is also used as a prebiotic food ingredient. Lactase for 
industrial use is principally obtained from bacteria like Bifidobacterium infantis 
CCRC 14633, B. longum CCRC 15708, B. longum CCRC15708, and Lactobacillus 
spp. [35]. For a better understanding of enzyme usage in the food industry, please 
refer to the work of Raveendran et al. [32].
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In addition to enzymes, polysaccharides produced by microbes are also used as 
food additives to improve the texture of foods. For instance, xanthan gum produced 
by bacteria such as Xanthomonas campestris is used as a thickening agent in foods 
like salad dressings and sauces [36]. Other examples of microbial polysaccharides, 
their producers, and applications are glucans from Saccharomyces cerevisiae, which 
can be used as a noncaloric food thickener, gellan from Pseudomonas elodea, which 
is used as a gelling agent, levan from Alcaligenes viscosus, which has prebiotic and 
hypocholesterolemic effects, and emulsan from Acinetobacter caloaceticus, which is 
used as an emulsifying agent [37]. 

Likewise, microbial BCs are increasingly being recognized for their beneficial 
properties, which make them attractive for nutritional enhancement and the devel-
opment of functional foods. These compounds possess various properties such as 
antioxidants, immune system enhancers, and enzymes that aid in digestion. Carot-
enoids, for example, are microbial BCs that have been shown to scavenge free 
radicals and prevent oxidative damage to cells [38], making them potential candi-
dates for preventing chronic diseases such as cancer, diabetes, and cardiovascular 
disease. 

One microbial BC that has gained significant attention in recent years is CoQ10. 
CoQ10, also known as ubiquinone, is an essential compound that plays a crucial role 
in the production of ATP, the main energy source for cells. It also acts as an 
antioxidant, protecting cells from damage caused by free radicals [39]. Although 
CoQ10 can be found in small amounts in some foods, it can also be produced by 
microorganisms. 

Food supplement products containing CoQ10 produced by microorganisms are 
available in various forms, such as capsules, tablets, and soft gels. These supple-
ments are marketed as an aid in supporting heart health and improving energy levels. 
CoQ10 produced by microorganisms has also been added to certain foods, such as 
beverages, yogurt, and energy bars, to increase their nutritional value. Researchers 
have explored the potential of purple non-sulfur bacteria (PNSB), a photosynthetic 
bacterium, for the production of CoQ10. He et al. [40] explained the development 
and future prospects of CoQ10 production by PNSB. They discussed the possibility 
of using nontoxic wastewater effluent as a nutrient source for the production of BCs 
by PNSB, specifically CoQ10. They also explained the bioreactor configuration and 
important factors that influence the production of CoQ10, such as light, oxygen, and 
C/N source and ratio. To compensate for the cost of production in their analysis, they 
must produce 1.4 g/L of biomass and 49.65 mg/g of CoQ10 content. In addition, 
Zhang et al. [27] demonstrated that a strategy of phosphate limitation along with 
glucose-fed batch fermentation with the industrial strain Rhodobacter sphaeroides 
HY01 was a positive strategy for CoQ10 production. 

Further research is needed to explore the full potential of microbial BCs in food 
applications and their impact on human health.
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1.4 Potential Use in Cosmeceutical/Cosmetic Products 

Cosmeceutical is a term used to describe a range of products that combine cosmetic 
and pharmaceutical properties. That is, it describes products that serve cosmetic 
purposes but also contain active ingredients that may have medicinal or drug-like 
effects on skin health. These products have become increasingly popular in the 
marketplace in recent years. The cosmetic industry has shown considerable interest 
in microbial BCs because of their natural, safe, and effective properties. Addition-
ally, the use of BCs in pharmaceutical/cosmetic fields is of major interest due to their 
high demand, low required quantity, and high sale price [42]. However, the utiliza-
tion of BCs entails a rigorous purification and refinement process [43], which may 
potentially lead to higher processing costs. As previously mentioned, the cost of pure 
isolated BCs may be too high and could outweigh any benefits. The BCs and their 
different applications in the cosmeceutical and cosmetic industries are summarized 
in Table 1.2. 

BCs can be utilized as physical agents in cosmetic formulations in order to 
enhance the stability, thickness, and overall gel-like texture of a diverse array of 
cosmetic products [52]. For instance, cosmetic products can use microbially pro-
duced biosurfactants for diverse functions, including acting as detergents, creating 
foam, and emulsifying [53]. 

Moreover, BCs are versatile and can be used in various ways in the cosmetic 
industry, such as reducing skin aging, brightening the skin, protecting it from UV

Table 1.2 Applications of bioactive compounds in cosmeceutical/cosmetic industry 

Bioactive 
compound 

Amorphotheca 
resinae 

Melanin Sunscreen, UV protection, antioxidant, 
antiproliferative effect. 

[44] 

Serratia 
marcescens 

Prodiogiosin Dye, antimicrobial, antiparasitic, anti-
cancer, immunosuppressive effect, 
sunscreen. 

[45] 

Nostoc sp., 
LLC-10, Nostoc 
sp., CAQ-15 

Phycobiliproteins Dye, cosmetic colorant, antioxidant. [46] 

Chromobacterium 
violaceum 

Violacein Dye, cosmetic colorant, UV and visible 
light protection. 

[47] 

Aspergillus oryzae Kojic acid Skin lightening, UV protection, collagen 
production. 

[48] 

Desmodesmus sp. Mycosporine-
like amino acids 
(MAAs) 

UV protection, sunscreen, antioxidant, 
anti-inflammatory, antiaging, wound 
healing. 

[49] 

Aureobasidium 
pullulans 

Pullulan Drug carrier, hydrogels and films for skin 
hydration, photoprotective, skin whiten-
ing, antiaging, sunscreen. 

[50] 

Streptococcus 
zooepidemicus 

Hyaluronic acid Skin moisturizing, sunscreen, dermal 
fillers, haircare products, nails products. 

[51]



radiation, and treating different skin problems. Specifically, compounds such as 
microbial pigments have numerous applications in the cosmetic industry due to 
their ability to impart color but also their beneficial properties, including sunscreen, 
antioxidants, antiaging agents, and skin lighteners [54]. Some of these pigments 
include carotenoids, a liposoluble organic pigment that absorbs light energy, thereby 
helping to prevent sunburn and photoaging. Melanin has antimicrobial, 
photoprotection, antioxidant, and thermoregulation activities [55]. Phycobiliproteins 
are colored proteins with antioxidant activity and exhibit red, blue, and green colors 
[56]. Prodiogiosin is a red pigment with immunosuppressant and anticancer activ-
ities, as well as antimicrobial and antimalarial activities [21]. Indigoidine is a water-
soluble blue pigment that provides resistance to oxidative stress, and Violacein is a 
dark-blue pigment that possibly provides protection against UV and visible radia-
tion, as well as antimicrobial effects [57]. The potential of pigments produced by 
Talaromyces australis and Penicillium murcianum as a functional cosmetic ingre-
dient was attributed to their antioxidant properties [58]. The authors suggested using 
ionic gelation for encapsulation as a means to make handling dry powder easier. The 
method of recovery for microbial pigments holds significant importance due to their 
comparatively lower stability as compared to synthetic pigments [31]. Furthermore, 
current trends suggest sustainable and eco-friendly recovery techniques. In this 
regard, innovative technologies such as ultrasound and alternative solvents such as 
deep eutectic solvents are being studied [59].
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For skin whitening and brightening, kojic acid is a promising compound derived 
from Aspergillus oryzae fermentation [48]. It acts as a natural skin-lightening agent 
that can help lighten dark spots and brighten the skin by filtering ultraviolet rays, 
thereby preventing sunburn damage. Kojic acid also inhibits tyrosinase, an enzyme 
involved in melanin production, making it an effective approach to reducing 
hyperpigmentation. In addition to its skin-related activities, kojic acid has been 
found to have antibacterial and antimicrobial properties, making it a potential 
ingredient for use as a preservative. It also possesses antioxidant activity. Further-
more, kojic acid exhibits a slight anti-inflammatory effect, expanding its range of 
potential applications [60]. Apart from its cosmetic applications, kojic acid can be 
used for collagen production, in dental care products, and as a treatment for skin 
disorders such as melasma and other related diseases [61]. 

Marine microorganisms, particularly certain strains of cyanobacteria, are capable 
of producing mycosporine-like amino acids (MAAs), which can absorb UV radia-
tion and are suitable for use in sunscreens and other skincare products [62]. These 
naturally occurring compounds provide a safe and effective alternative to synthetic 
UV filters. Microbial carotenoids have also been beneficial for applications to 
prevent skin damage caused by excessive exposure to ultraviolet radiation 
[63]. The authors developed nanoemulsions with butiri oil and microbial carotenoids 
to provide protection against UV rays. 

Furthermore, microbial BCs show promise in treating various skin conditions. 
For instance, Aureobasidium pullulans, a fungus that produces pullulan, a natural 
polysaccharide [64], has demonstrated the ability to improve skin hydration and 
elasticity and to soothe irritated skin. Hyaluronic acid (HA) is a linear polysaccharide



that has become a trend in the cosmetic and cosmeceutical industry. It is widely used 
due to its water-retention activity, which promotes and maintains skin hydration, 
making it an excellent ingredient for skin care products [65]. Furthermore, HA has 
applications beyond esthetics, as it has been proven to be an excellent ingredient for 
the development of hydrogels to treat xerosis [66]. 
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As previously mentioned, the use of BCs in cosmeceutical products requires 
highly purified compounds, which can increase production costs. Utilizing waste 
materials to extract fermentable sugars or to create a fermentation medium is a viable 
method to reduce costs. This strategy can effectively improve the efficiency of 
production while also contributing to sustainability efforts. For example, pullulan 
can be produced by Aureobasidium pullulans using soybean meal hydrolysate [41], 
beta-carotene can be obtained by Rhodotorula glutinis using orange and grape 
wastes [67], and cashew apple juice-based media can be used to produce hyaluronic 
acid [65]. Furthermore, the incorporation of metabolic pathways into genetically 
modified strains, such as lignocellulose degradation, has been discussed as a poten-
tial opportunity to employ low-cost natural substrates for BCs biosynthesis [68]. 

The demand for natural and sustainable cosmetic products is increasing, and as a 
result, the cosmetic industry is expected to use more microbial bioactive compounds 
in the future. 

1.5 Environment and Agricultural Applications 

One of the current trends in industrial activities is to mitigate the environmental 
impact caused by the resources required, such as water, energy, and greenhouse gas 
emissions [69]. Table 1.3 displays various applications of BCs in the environment 
and agricultural industries. 

The main concerns regarding environmental damage are related to heavy metals, 
petroleum hydrocarbons, synthetic dyes, and the disposal of effluents into land, air, 
and water bodies [69, 78, 79]. The environmental application of microbial BCs is 
within the bioremediation field. Bioremediation is a well-established process that 
involves the use of natural agents to eliminate hazardous pollutants from the 
environment [70]. Among these agents, microbial bioactive compounds have gained 
significant attention due to their ability to positively impact the growth and activity 
of microorganisms involved in biodegradation processes. 

Microbial bioactive compounds exert their influence through various mecha-
nisms, including stimulating the growth and activity of indigenous microorganisms 
and inhibiting the growth of harmful microorganisms. Within the strategies 
employed to mitigate environmental pollution, microbial platforms have shown 
the potential to remove contaminants from soil and water effluents [78, 79]. 

Regarding heavy metal removal, the most commonly cited mechanisms are 
bioleaching, biosorption, biomineralization, intracellular accumulation, and redox 
reactions [80]. In line with the proposed focus of this chapter, emphasis should be



placed on the principle of the bioleaching mechanism, which involves the excretion 
of organic acids or polymeric substances that cause mineral dissolution [80, 81]. 
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Table 1.3 Applications of bioactive compounds in the environment and agricultural industry 

Microorganism Bioactive compound Activity/Application References 

Phanerochaete 
chrysosporium 
CDBB 686 

Lignin peroxidase, 
manganese peroxi-
dase, lacase 

Biodegradation of synthetic dyes [70] 

Trametes 
versicolor 

Laccase Biodegradation of bisphenol A [71] 

Aspergillus 
melleus 

Lipase Biodegradation of poly 
(ɛ-caprolactone) 

[72] 

Acinetobacter 
beijerinckii 

Phytohormones Enhance soybean plant growth and 
heavy metal resistance. 

[73] 

Fusarium 
oxysporum 

Gibberellic acid Improve tomato growth and physio-
logical parameters under salt stress 

[74] 

Paenibacillus 
polymyxa 
KM2501–1 

Volatile organic 
compounds 

Biocontrol of M. incognita showing 
nematicidal, fumigant, and chemo-
tactic activity 

[75] 

Streptomyces 
hydrogenans 
DH16 

Indole acetic acid Positive impact on the growth of pea 
seedlings 

[76] 

Penicillium 
oxalicum 

Sanxiapeptin 
(Aminoacids) 

Antimicrobial agent [77] 

Organic acids such as citric acid, lactic acid, gluconic acid, and oxalic acid are 
produced in microbial metabolism and interact with surface metal ions to form 
soluble metal complexes and chelate ions [82]. Bioleaching has been applied in 
the recovery of metal ions such as, Pb, Ni, Cu, Zn, Al, Ca, P, and Cd from mine 
tailings, electronic waste, and soil [81–85]. 

On the other hand, cell wall components of microorganisms have been exploited 
as bioactive compounds for the biosorption of synthetic dyes or chemical oxygen 
demand (COD) removal in textile and food industry effluents. Yeast cells of 
Saccharomyces cerevisiae, Pichia pastoris, and Yaworria lipolytica have shown 
the potential to remove red, green, blue, and orange colorants [69, 86]. Efficient 
COD removal of <50% has been reported in palm oil mill effluent [87], brewery 
wastewater [88], as well as tannery effluent [89]. 

Enzymes obtained from microbes or crude enzymatic extracts have been found to 
be effective for bioremediation [90]. The specific enzyme required for the process 
depends on the type of pollutant. For example, oxidoreductases can neutralize 
pollutants that contain free radicals, while hydrolases can assist in the decomposition 
of organic compounds [91]. 

Sosa-Martínez et al. [70] demonstrated the possibility of using the crude enzy-
matic extract produced by Phanerochaete chrysosporium CDBB 686 using only 
agro-industrial waste as a substrate to treat and degrade synthetic pigments in a 
simulated wastewater system. This approach effectively degraded and lowered the 
toxicity of the frequently used industrial pigment, methyl green. Even though



enzymes are effective in breaking down contaminants, their use in bioremediation 
remains challenging due to the high costs associated with producing and purifying 
these biomolecules. Yet, enzymatic processes have significant implications for the 
management of environmental pollutants, and their potential use in various indus-
tries deserves further exploration. 
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The textile industry provides another example of the potential application of 
microbial BCs as a substitute for synthetic pigments, thus reducing the industry’s 
impact on the environment. Venil et al. [92] demonstrated the feasibility of using 
fungal pigments due to their color stability, even withstanding temperature and pH 
variations when applied to textile fabric. Pigments produced by Talaromyces 
amestolkiae were also used to color latex gloves, replacing synthetic pigments that 
may cause allergies or generate wastewater effluents [93]. Microalgal by-products 
have also been studied for their potential application in various industrial fields. 
Kumar et al. [43] elaborated on the utilization of microalgae for the production of 
oils that can be efficiently converted into energy. This innovative approach offers a 
sustainable and eco-friendly alternative to conventional fossil fuel-based energy 
production methods. 

On the other hand, the utilization of microbial BCs for agricultural applications is 
an emerging field that holds great promise in addressing various agricultural chal-
lenges. As mentioned in the introduction, BCs are compounds that can have a 
positive impact on living organisms, including plants. These compounds have 
shown to be effective in increasing plant growth and improving crop quality, 
representing a promising, safer, and more sustainable alternative to agrochemicals. 

Fungi, bacteria, and yeast produce metabolites that have a synergic effect on 
plants to improve growth cycles and crop yields with the minimum environmental 
harm [94, 95]. In this respect, some mechanisms for promoting plant growth are the 
solubilization of phosphorous, the production of phytohormones, and the fixation of 
nitrogen [96]. 

One of the primary mechanisms by which BCs enhance plant growth is by 
producing phytohormones. Phytohormones are plant hormones that control specific 
cellular processes, promoting plant growth and development. While plants do not 
possess secretion glands, hormones can be located in various sections of the plant 
and transferred to another location [96, 97]. Nonetheless, fungi are capable of 
producing some phytohormones that help in the improvement of root and leaf 
growth [96, 98]. For instance, two of the main hormones produced by microorgan-
isms (Aspergillus sp., Lasiodiplodia theobromae, Gibberella fujikuroi, Bacillus sp.) 
are gibberellic acid and jasmonic acid [98, 99]. Gibberellic acid has been found to 
increase thermotolerance, growth, biochemical attributes, and yield in various crops, 
such as tomatoes, lettuce, and chickpeas [100–102]. Such studies have shown that 
the application of gibberellic acid results in higher crop yields and better crop 
quality, making it a promising alternative to conventional agrochemicals. Jasmonic 
acid, on the other hand, has been found to reduce abiotic stress in wheat, cotton, and 
chickpea plants [103–105]. 

Furthermore, the production of microbial metabolites is feasible and sustainable 
due to the utilization of inexpensive substrates [106]. For example, lactic acid



bacteria can synthesize B-group vitamins, which can be used to stimulate the growth 
of several fruits and vegetables as well as obtain a biofortified food crop for human 
consumption [95]. 

1 Microbial Production of Bioactive Compounds: Recent Advancements and Trends 13

Microbial BCs have also been proven effective as biocontrol agents. Juveniles of 
Meloidogyne incognita were effectively controlled by the nematicidal activity of 
volatile organic compounds synthesized by P. polymyxa KM2501–1 [75] To  find a 
comprehensive list of fungal biological controls for plant defense, refer to the 
detailed information review by Sikandar et al. [107]. 

As more research is conducted in this field, we can expect to see more sustainable 
and environmentally friendly agricultural practices that rely on microorganisms. 

1.6 Concluding Remarks: Challenges and Opportunities 

The microbial production of bioactive compounds has gained a lot of attention in 
recent years due to its potential to provide sustainable alternatives to traditional 
chemical synthesis methods. However, several challenges need to be addressed to 
enable the widespread adoption of microbial production technologies. 

One of the primary challenges is optimizing the production yield and scaling up 
production to meet commercial demand. Microbial processes’ yields can be affected 
by various factors, including microbial strain, cultivation conditions, and down-
stream processing. Moreover, the production of bioactive compounds on a large 
scale might require significant investment for process control, which can be a barrier 
to entry for small- and medium-sized enterprises. 

Another challenge is ensuring the purity and quality of the bioactive compounds 
produced by microorganisms. Obtaining regulatory approval, particularly from the 
FDA, can be time consuming and costly, hindering the growth of the microbial BCs 
market. 

If there are unwanted compounds or microorganisms present, it can damage the 
effectiveness and safety of the final product, which may also hinder their approval. 
Also, this makes it inappropriate for use in pharmaceuticals, nutraceuticals, food, 
and other areas. It is of utmost importance to enforce strict quality control measures 
and analytical methods in order to guarantee the safety and purity of bioactive 
compounds. 

Although there are challenges, the current trends in microbial-produced com-
pounds present numerous opportunities for creating new bioactive compounds. One 
such opportunity is using genetic engineering techniques to modify microbial 
strains, which can produce compounds that would be difficult or impossible to 
synthesize through chemical means. 

Moreover, microbial production is an environmentally friendly approach to 
synthesizing bioactive compounds. This innovative method enables the reduction 
of harmful solvent use and carbon emissions while promoting a circular bioeconomy 
through using renewable feedstocks for microbial fermentation. By using waste 
streams as feedstock, microbial production technologies can help reduce the amount



of organic waste sent to landfills and contribute to developing a more sustainable and 
efficient system. In this sense, the development and adoption of microbial produc-
tion technologies can contribute to the transition to a more sustainable and circular 
economy, which is essential to address the environmental, social, and economic 
challenges of our time. 
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In conclusion, the microbial production of bioactive compounds offers significant 
opportunities for developing sustainable and innovative solutions to address various 
challenges in food, pharmaceutical, cosmetic, agriculture, and other industries. 
However, continuing research and development will require overcoming the chal-
lenges associated with microbial production, such as optimizing yield, maintaining 
quality and purity, and scaling up production. 
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