
Thomas Johansson
Daniel Smith-Tone (Eds.)

LN
CS

 1
41

54 Post-Quantum
Cryptography
14th International Workshop, PQCrypto 2023
College Park, MD, USA, August 16–18, 2023
Proceedings

Lecture Notes in Computer Science 14154
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Thomas Johansson · Daniel Smith-Tone
Editors

Post-Quantum
Cryptography
14th International Workshop, PQCrypto 2023
College Park, MD, USA, August 16–18, 2023
Proceedings

Editors
Thomas Johansson
Lund University
Lund, Sweden

Daniel Smith-Tone
National Institute of Standards
and Technology
Gaithersburg, MD, USA

University of Louisville
Louisville, KY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-40002-5 ISBN 978-3-031-40003-2 (eBook)
https://doi.org/10.1007/978-3-031-40003-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-40003-2

Preface

PQCrypto 2023, the 14th International Conference on Post-QuantumCryptography, was
held at the University ofMaryland, College Park, Maryland, USA on the dates of August
16–18, 2023. The PQCrypto conference series provides a venue for the communication
of research results on cryptography under the assumption that large-scale quantum com-
puters are available to adversaries. Since its inception, the conference focus has grown
to serve not only academic and theoretical work in post-quantum cryptography, but also
applied and technical work, further developing the science and advancing the practical
aspects of implementation and deployment of post-quantum cryptographic schemes.

Continuing in the same model as its previous iterations, PQCrypto 2023 utilized a
two-stage submission process in which authors registered their papers one week before
the final submission deadline. The conference received 55 submissions. Other than
papers that were withdrawn by the authors, every paper was reviewed in a single-blind
process by at least three Program Committee members. The Committee then engaged
in an intensive discussion phase, conducted online. Through this process, the Program
Committee selected a total of 25 papers for inclusion in the technical program and for
publication in these proceedings. The diverse array of accepted articles found in these
proceedings discuss multiple research areas within the scope of the conference, includ-
ing code-based cryptography, group-action-based cryptography, isogeny-based cryp-
tography, lattice-based cryptography, multivariate cryptography, quantum algorithms,
quantum cryptanalysis, quantum random oracle model (QROM) proofs, post-quantum
protocols, and side-channel cryptanalysis and countermeasures.

In addition to the 25 contributed presentations, the program was highlighted by
four invited lectures on topics of significant contemporary relevance. These talks were
delivered by Thibauld Feneuil, CryptoExperts and Sorbonne Université, France (on
“MPC-in-the-head” digital signature schemes), Sophie Schmieg, Google, USA (on the
transition and deployment issues of post-quantum cryptography), Jean-Pierre Tillich,
INRIA, France (on code-based cryptography), and Benjamin Wesolowski, ENS-Lyon,
France (on isogeny-based cryptography).

The success of this iteration of PQCrypto was due to the efforts of many individuals
and organizations. We are indebted to everyone who contributed to make PQCrypto
2023 a success. We owe thanks to the many scientists, engineers, and authors who
submitted their work (of notably high average quality) to our conference. We would like
to thank all 49 members of the Program Committee and the 21 external reviewers whose
commitment and labor-intensive efforts in evaluating and discussing the submissions
allowed us to compile a technical program of such high quality.

We thank our organizers and hosts, the Joint Center for Quantum Information and
Computer Science and the University of Maryland Institute for Advanced Computer
Studies. The organizers wish to express a special thanks to the following industry
sponsors:

vi Preface

– Silver Sponsor

• Amazon Web Services, Inc.

– Bronze Sponsors

• Cisco Systems, Inc.
• Isara Corporation
• PQSecure Technologies, LLC
• PQShield, Ltd.
• SandboxAQ

We would like to thank Rene Peralta for organizing student travel stipends, Kelly
Hedgepeth for arranging travel itineraries for the invited speakers, and Andrea Svejda
for her help in setting up our conference management. We would also like to express, on
behalf of the entire community, how very indebted we are to Yi-Kai Liu, whose efforts in
organizing themeeting--- coordinating with sponsors, managing the conference website,
overseeing local preparations, arranging publicity, etc.— allowed PQCrypto to return to
the superior format of an in-person event. We also wish to express our gratitude to the
team at Springer for handling the publication of these conference proceedings.

August 2023 Thomas Johansson
Daniel Smith-Tone

Organization

General Chair

Yi-Kai Liu Joint Center for Quantum Information and
Computer Science, USA and University of
Maryland Institute for Advanced Computer
Studies, USA and National Institute of
Standards and Technology, USA

Program Committee Chairs

Thomas Johansson Lund University, Sweden
Daniel Smith-Tone National Institute of Standards and Technology,

USA and University of Louisville, USA

Program Committee

Magali Bardet University of Rouen Normandy, France
Daniel J. Bernstein University of Illinois at Chicago, USA and Ruhr

University Bochum, Germany and Academia
Sinica, Taiwan

Olivier Blazy École Polytechnique, France
Daniel Cabarcas Universidad Nacional de Colombia, Colombia
Ryann Cartor Clemson University, USA
André Chailloux Inria, France
Anupam Chattopadhyay NTU Singapore, Singapore
Chen-Mou Cheng BTQ, Taiwan
Jung Hee Cheon Seoul National University, South Korea
Jan-Pieter D’Anvers KU Leuven, Belgium
Jintai Ding Tsinghua University, China
Scott Fluhrer Cisco Systems, USA
Philippe Gaborit University of Limoges, France
Tommaso Gagliardoni Kudelski Security, Switzerland
Qian Guo Lund University, Sweden
Tim Güneysu Ruhr University Bochum, DFKI, Germany
Andreas Hülsing Eindhoven University of Technology,

The Netherlands

viii Organization

David Jao University of Waterloo, Canada
John Kelsey National Institute of Standards and Technology,

USA and KU Leuven, Belgium
Howon Kim Pusan National University, South Korea
Jon-Lark Kim Sogang University, South Korea
Kwangjo Kim Korea Advanced Institute of Science and

Technology, South Korea
Elena Kirshanova TII, UAE
Tanja Lange Eindhoven University of Technology,

The Netherlands and Academia Sinica, Taiwan
Changmin Lee KIAS, South Korea
Christian Majenz Technical University of Denmark, Denmark
Dustin Moody National Institute of Standards and Technology,

USA
Michele Mosca University of Waterloo and Perimeter Inst.,

Canada
Ray Perlner NIST, USA
Thomas Pöppelmann Infineon, Germany
Thomas Prest PQShield Ltd., UK
Angela Robinson National Institute of Standards and Technology,

USA
Palash Sarkar ISI, India
Nicolas Sendrier Inria, France
Jae Hong Seo Hanyang University, South Korea
Benjamin Smith Inria, France
Yongsoo Song Seoul National University, South Korea
Damien Stehlé CryptoLab, France
Rainer Steinwandt University of Alabama in Huntsville, USA
Tsuyoshi Takagi University of Tokyo, Japan
Atsushi Takayasu University of Tokyo, Japan
Jean-Pierre Tillich Inria, France
Keita Xagawa NTT, Japan
Bo-Yin Yang Academia Sinica, Taiwan
Yang Yu Université de Rennes, CNRS, IRISA, France
Yu Yu Shanghai Jiao Tong University, China
Aaram Yun Ewha Womans University, South Korea

Organization ix

Additional Reviewers

Francois Arnault
Anubhab Baksi
Maxime Bros
Wonhee Cho
Heewon Chung
Reo Eriguchi
Anirban Ghatak
Jai Hyun Park
Minsik Kang
Jiseung Kim
Markus Krausz

Georg Land
Jeeun Lee
Hyunbum Lee
Charles Meyer-Hilfiger
Tomoki Moriya
Kirill Morozov
Kaushik Nath
Hiroshi Onuki
Jan Richter-Brockmann
Olivier Ruatta

Contents

Code-Based Cryptography

An Extension of Overbeck’s Attack with an Application to Cryptanalysis
of Twisted Gabidulin-Based Schemes . 3

Alain Couvreur and Ilaria Zappatore

Cryptanalysis of Rank-Metric Schemes Based on Distorted Gabidulin
Codes . 38

Pierre Briaud and Pierre Loidreau

A High-Performance Hardware Implementation of the LESS Digital
Signature Scheme . 57

Luke Beckwith, Robert Wallace, Kamyar Mohajerani, and Kris Gaj

Wave Parameter Selection . 91
Nicolas Sendrier

Group-Action-Based Cryptography

SPDH-Sign: Towards Efficient, Post-quantum Group-Based Signatures 113
Christopher Battarbee, Delaram Kahrobaei, Ludovic Perret,
and Siamak F. Shahandashti

Isogeny-Based Cryptography

A Tightly Secure Identity-Based Signature Scheme from Isogenies 141
Jiawei Chen, Hyungrok Jo, Shingo Sato, and Junji Shikata

Lattice-Based Cryptography

New NTRU Records with Improved Lattice Bases . 167
Elena Kirshanova, Alexander May, and Julian Nowakowski

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 196
Karim Eldefrawy, Nicholas Genise, and Nathan Manohar

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 225
André Chailloux and Johanna Loyer

xii Contents

NTRU in Quaternion Algebras of Bounded Discriminant . 256
Cong Ling and Andrew Mendelsohn

Do Not Bound to a Single Position: Near-Optimal Multi-positional
Mismatch Attacks Against Kyber and Saber . 291

Qian Guo and Erik Mårtensson

NTWE: A Natural Combination of NTRU and LWE . 321
Joel Gärtner

Multivariate Cryptography

Fast Enumeration Algorithm for Multivariate Polynomials over General
Finite Fields . 357

Hiroki Furue and Tsuyoshi Takagi

DME: A Full Encryption, Signature and KEM Multivariate Public Key
Cryptosystem . 379

Ignacio Luengo, Martín Avendaño, and Pilar Coscojuela

Quantum Algorithms, Cryptanalysis and Models

On the Quantum Security of HAWK . 405
Serge Fehr and Yu-Hsuan Huang

Non-Observable Quantum Random Oracle Model . 417
Navid Alamati, Varun Maram, and Daniel Masny

Characterizing the qIND-qCPA (In)security of the CBC, CFB, OFB
and CTR Modes of Operation . 445

Tristan Nemoz, Zoé Amblard, and Aurélien Dupin

Breaking the Quadratic Barrier: Quantum Cryptanalysis of Milenage,
Telecommunications’ Cryptographic Backbone . 476

Vincent Quentin Ulitzsch and Jean-Pierre Seifert

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 505
Maxime Remaud, André Schrottenloher, and Jean-Pierre Tillich

Post-Quantum Protocols

Post-Quantum Signatures in DNSSEC via Request-Based Fragmentation 535
Jason Goertzen and Douglas Stebila

Contents xiii

Hash-Based Direct Anonymous Attestation . 565
Liqun Chen, Changyu Dong, Nada El Kassem,
Christopher J. P. Newton, and Yalan Wang

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 601
Sonja Bruckner, Sebastian Ramacher, and Christoph Striecks

Side-Channel Cryptanalysis and Countermeasures

WrapQ: Side-Channel Secure Key Management for Post-quantum
Cryptography . 637

Markku-Juhani O. Saarinen

Faulting Winternitz One-Time Signatures to Forge LMS, XMSS,
or SPHINCS+ Signatures . 658

Alexander Wagner, Vera Wesselkamp, Felix Oberhansl, Marc Schink,
and Emanuele Strieder

Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium
in Hardware . 688

Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Güneysu

Author Index . 713

Code-Based Cryptography

An Extension of Overbeck’s Attack
with an Application to Cryptanalysis
of Twisted Gabidulin-Based Schemes

Alain Couvreur1,2(B) and Ilaria Zappatore3

1 Inria, Saclay, France
alain.couvreur@inria.fr

2 LIX, CNRS UMR 7161, École Polytechnique, Institut Polytechnique de Paris,
1 rue Honoré d’Estienne d’Orves, 91120 Palaiseau Cedex, France

3 XLIM, CNRS UMR 7252, Université de Limoges, 123, avenue Albert Thomas,
87060 Limoges Cedex, France

ilaria.zappatore@unilim.fr

Abstract. In this article, we discuss the decoding of Gabidulin and
related codes from a cryptographic point of view, and we observe that
these codes can be decoded solely from the knowledge of a generator
matrix. We then extend and revisit Gibson and Overbeck attacks on the
generalized GPT encryption scheme (instantiated with the Gabidulin
code) for different ranks of the distortion matrix. We apply our attack
to the case of an instantiation with twisted Gabidulin codes.

Keywords: Code-based cryptography · rank metric codes · Gabidulin
codes · Overbeck’s attack · twisted Gabidulin codes

Introduction

The most promising post-quantum alternatives to RSA and elliptic curve cryp-
tography are based on error–correction based paradigms. The metric which quan-
tifies the amount of noise, can be either Euclidean (lattice–based cryptogra-
phy), Hamming (code–based cryptography) or the rank metric. The latter has
been much less investigated than the first two. However, it offers an interesting
range of primitives with rather short keys [1–3]. In addition, the Gabidulin code
family benefits from a decoder that corrects any error up to a fixed threshold.
This makes it possible to design schemes with a zero failure rate, such as RQC
[1]. Although no rank–based submission was selected for standardization, NIST
encouraged the community to continue the research efforts in the design and
security of rank–metric based primitives.

The authors are funded by the French Agence Nationale de la Recherche through the
France 2023 ANR project ANR-22-PETQ-0008 PQ-TLS and the ANR-21-CE39-0009-
BARRACUDA.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 3–37, 2023.
https://doi.org/10.1007/978-3-031-40003-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_1

4 A. Couvreur and I. Zappatore

Historically, the first primitive based on rank metric was proposed by Gabidu-
lin, Paramonov and Tretjakov [22]. It was a McEliece–like scheme where the
structure of a Gabidulin code is hidden. This scheme was first attacked in
exponential time by Gibson [26,27]. Then, Gabidulin and Ourivski proposed
an improvement of the system that was resistant to Gibson’s attack [21,38].
Later, Overbeck [39,40] proposed a polynomial time attack which breaks both
GPT and its improvements. Gabidulin et al. then introduced several variants of
the GPT based on a different column scrambler P , so that some entries of P −1

can be in Fqm [17,20,46]. However, in [37] the authors proved that for all of the
aforementioned versions, the shape of the public key is in fact unchanged and
remains subject to Overbeck–type attacks.

The natural approach to circumvent Overbeck’s attack is to replace the
Gabidulin codes with another family equipped with an efficient decoding algo-
rithm. However, only a few such families exist. On the one hand, there are the
LRPC codes [23] which lead to the ROLLO scheme [2]. On the other hand,
one can in a way deteriorate the structure of the Gabidulin codes, at the cost
of a loss of efficiency of the decoder. Loidreau [34] proposed to encrypt with a
Gabidulin code perturbed by some Fqm–linear operation. This proposal was sub-
ject to polynomial–time attacks for the smallest parameters [11,25,41], while, for
larger parameters, it remains secure so far. In another direction, Puchinger et al.
[43] proposed to replace Gabidulin codes with twisted Gabidulin codes. However
their proposal was only partial, since they could not provide an efficient decoder
correcting up to half the minimum distance.

Our Contributions. The contribution we make in this article is threefold.
First, we discuss the decoding of Gabidulin codes and twisted Gabidulin

codes. Using the result of [8], we explain how to correct errors for such codes
without always being able to correct up to half of the minimum distance. From
a cryptographic point of view, we highlight an important observation: if in Ham-
ming metric, decoding Reed–Solomon codes requires the knowledge of the eval-
uation sequence, in the rank metric, Gabidulin codes can be decoded solely
from the knowledge of a generator matrix. This observation extends to twisted
Gabidulin codes as soon as the decoding radius is below a certain threshold.

Second, we revisit the Overbeck’s attack and propose an extension. Specif-
ically, from a public code Cpub, the original Overbeck’s attack is based on the
computation of Λi(Cpub) = Cpub +C q

pub + · · · +C qi

pub. For the attack to succeed,
a trade–off on the parameter i must be satisfied. On the one hand, i must be
large enough to rule out the random part (called distortion matrix) in Cpub used
to mask the hidden code. On the other hand, i must be small enough so that
Λi(Cpub) does not to fill in the ambient space. In the this article, we propose an
extension of the Overbeck’s attack that limits our goal to the smallest possible i,
namely i = 1. This relaxation is based on calculations on a certain automorphism
algebra of the code Λ1(Cpub) and extends the range of the attack.

Third, we investigate in depth the behavior of twisted Gabidulin codes with
respect to the Λi operator.

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 5

The aforementioned contributions lead to an attack on a variant of GPT pro-
posed by Puchinger, Renner and Wachter–Zeh [43]. In this variant, the authors
used two techniques to resist Overbeck’s attack. First, they mask the code with
a distortion matrix of very low rank. Second, they replace Gabidulin codes with
twisted Gabidulin codes. The authors chose twisted Gabidulin codes C so that
for any positive i, the code Λi(C) may never have co-dimension 1 (see [43,
Theorem 6]). In this article, we prove that the latter property is not a strong
enough security assessment for twisted Gabidulin codes and that the aforemen-
tioned contributions lead directly to an attack on the Puchinger et al.’s variant
of GPT.

Outline of the Article. The article is organized as follows. Section 1 introduces
some basic notations used in this paper, as well as Gabidulin codes, their twisted
version and the GPT cryptosystem. In Sect. 2 we first discuss the decoding of
Gabidulin codes and propose an algorithm (Algorithm 1), which does not need to
know the evaluation sequence. We then explain how to decode twisted Gabidulin
codes, under a certain decoding radius. In Sect. 3, we revisit the Overbeck’s
attack on the GPT scheme instantiated with Gabidulin codes and we make
some remarks on the structure of the generator matrix of the code obtained by
applying the q-sum operator to the public key. In Sect. 4, we propose an extension
of the Overbeck’s attack to the GPT scheme instantiated with either Gabidulin
or twisted Gabidulin codes. Finally, in Sect. 5 we examine the behavior of the
q-sum operator applied to the public key of the GPT system instantiated with
twisted Gabidulin codes. We then show that we can exploit the structure of its
generator matrix to break the corresponding scheme using either the Overbeck’s
attack, or more generally, its previously proposed extension.

1 Prerequisites

In this section we introduce the basic notions we will use throughout the paper,
starting with the notations used. Then, we briefly introduce the Gabidulin codes
and their twisted version, and finally the GPT cryptosystem.

1.1 Notation

Let q be a prime power, Fq be a finite field of order q, and Fqm be the extension
field of Fq of degree m. In this article, vectors are represented by lowercase bold
letters: a, b,x, and matrices by uppercase bold letters M ,G,H . We also denote
the space of m × n matrices with entries in a general field K, by Mm,n(K). In
the square case, i.e. m = n, we simplify the notation by writing Mn(K), and we
denote by GLn(K) the group of n × n invertible matrices.

6 A. Couvreur and I. Zappatore

1.2 Rank Metric Codes

Given x = (x1, . . . , xn) a vector in F
n
qm , we can define its support as,

Supp(x) def= Span
Fq

{x1, . . . , xn}

and
rankq(x) def= dim(Supp(x)).

The rank distance (briefly distance) of two vectors x,y ∈ F
n
qm is

d(x,y) def= rankq(x − y).

A rank metric code C of length n and dimension k is an Fqm-vector subspace of
F

n
qm . Its minimum distance is defined as,

dmin(C) def= min
x∈C \{0}

{rankq(x)}.

By choosing an Fq-basis B of Fqm , any codeword c ∈ C can be written as a
matrix MB(c) ∈ Mm,n(Fq) by representing any element ci ∈ Fqm as a column
vector whose entries are its coefficients in the basis B. With this point of view,
one can introduce a second notion of support which is less considered in the
literature but will be useful in the sequel.

Definition 1. The row support RowSupp(c) of a vector c ∈ F
n
qm is the row span

of the m × n matrix MB(c).

Note that the row support of a vector is an intrinsic notion that does not
depend on the choice of the basis B. Moreover, as for the support, the rank of a
vector equals its row support.

Remark 1. One could have defined rank metric codes as spaces of matrices
endowed with the same rank metric. Such a framework is more general than
ours since a matrix subspace of Mm,n(Fq) is not Fqm–linear in general. But
considering such rank metric codes would be useless in what follows.

Two codes C ,D ⊆ F
n
qm are said to be right equivalent if there exists P ∈

GLn(Fq) such that for any c ∈ C , cP ∈ D . We denote this as “CP = D”. We
emphasize that P should have its entries in Fq and not in Fqm . In this way, the
map x �→ xP is rank–preserving, i.e. is an isometry with respect to the rank
metric.

Finally, the dual C⊥ of a code C ∈ F
n
qm is the orthogonal of C with respect

to the canonical inner product in Fqm ,
{

Fqm × Fqm −→ Fqm

(x,y) �−→ ∑n
i=1 xiyi.

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 7

We frequently apply the component-wise Frobenius map to vectors and codes:,
given c = (c1, . . . , cn) ∈ F

n
qm and 0 � i � m − 1, we denote

c[i]
def= (cqi

1 , . . . , cqi

n).

Given an [n, k] code C ⊂ F
n
qm , we write

C [i] def= {c[i] | c ∈ C }.

We also define the (i-th) q-sum of C as,

Λi(C) def= C + C [1] + · · · + C [i].

We notice that if G ∈ Mk,n(Fqm) is a generator matrix of C , the matrix
⎛
⎜⎜⎜⎝

G

G[1]

...
G[i]

⎞
⎟⎟⎟⎠ ∈ M(i+1)k,n(Fqm) (1)

is a generator of the q-sum of C , i.e. Λi(C). By abuse of notation we sometimes
denote the matrix of (1) as Λi(G).

1.3 Gabidulin Codes

q-polynomials were first introduced in [36]. They are defined as Fqm-linear com-
binations of the monomials X,Xq,Xq2

, . . . , Xqi

, . . . respectively denoted by
X,X [1],X [2], . . . , X [i], . . . Formally, a nonzero q-polynomial F is defined as,

F =
d∑

i=0

fiX
[i]

assuming that fd �= 0. The integer d is called q–degree of F and we denote it
degq f . We equip the space of q–polynomial with a non-commutative algebra
structure, where the multiplication law is the composition of polynomials. In
particular, the product law is given by the following relations extended by Fqm–
linearity:

∀i, j ∈ N, ∀a ∈ Fqm , X [i]X [j] = X [i+j] and X [i]a = aqi

X [i].

Any q–polynomial F induces an Fq–endomorphism Fqm → Fqm and the rank of
F will be defined as the rank of its induced endomorphism.

Denote by L the ring of all q–polynomial and by L<e the Fqm–linear space
of q–polynomials of q–degree less than e, namely:

L<e def= {f ∈ L | degq f < e}.

8 A. Couvreur and I. Zappatore

Given two positive integers k, n, with k < n � m and g ∈ F
n
qm of rankq(g) = n,

the Gabidulin code of length n and dimension k is defined as

Gk(g) def= {(F (g1), . . . , F (gn)) | F ∈ L<k}.

A generator matrix of this code is a Moore matrix (see for instance [28, § 1.3]),
i.e. a matrix of the form

Mk(g) def=

⎛
⎜⎜⎜⎝

g
g[1]

...
g[k−1]

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g1 g2 . . . gn

gq
1 gq

2 . . . gq
n

...
... . . .

...
gqk−1

1 gqk−1

2 . . . gqk−1

n

⎞
⎟⎟⎟⎠ . (2)

Gabidulin codes are Maximum Rank Distance (MRD) codes, i.e. their min-
imum distance is dmin (Gk(g)) = n − k + 1 and they benefit from a decoding
algorithm correcting up to half the minimum distance (see [33]).

We now recall the following classical lemmas, that will be useful in the rest
of the paper.

Lemma 1. Let Gk(g) be a Gabidulin code and T ∈ GLn(Fq). Then Mk(g)T is
a generator matrix of the Gabidulin code Gk(gT).

In short, a right–equivalent code to a Gabidulin code is a Gabidulin code
with another evaluation sequence.

Lemma 2 ([18, Theorem 7]). The dual of the Gabidulin code Gk(g) is the
Gabidulin code Gn−k(y[−n+k+1]), where y is a nonzero vector in Gn−1(g)⊥.

1.4 Twisted Gabidulin Codes

Twisted Gabidulin codes were first introduced in [48] and contain a broad family
of MRD codes that are not equivalent to Gabidulin codes. The construction of
these codes was then generalized in [42,43]. We consider the q–polynomials of
the form

F =
k−1∑
i=0

fiX
[i] +

�∑
j=1

ηjfhj
X [k−1+tj], (3)

where the fi’a are in Fqm , � � n−k, h ∈ {0, . . . , k−1}�, t ∈ {1, . . . , n−k}� (with
distinct ti) and η ∈ (F∗

qm)�. We denote by Ln,k
t,h,η the space of all q–polynomials

of the form (3) with parameters h, t,η. Now, given a vector g ∈ F
n
qm , with

rankq(g) = n, the [g, t,h,η]-twisted Gabidulin code of length n, dimension k, �
twists, hook vector h, twist vector t and evaluation sequence g is defined as

Cg ,t,h,η [n, k] def= {(F (g1), . . . , F (gn)) | F ∈ Ln,k
t,h,η}.

We observe that in [48], Sheekey introduced a simplified version of these codes
with just one twist, i.e. n = m, � = 1,h = (0), t = (1).

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 9

Assumption 1. Throughout this paper, according to [43], we consider a
[g, t,h,η]-twisted Gabidulin code with � twists, and with the following param-
eters,

– ti
def
= (i + 1)(δ + 1), where δ

def
= n−k−�

�+1 ,
– 0 < h1 < h2 < . . . < h� < k − 1 and |hi − hi−1| > 1.

for any i, 1 � i � �.

This choice is particularly relevant because it allows us to quantify the dimension
of the q-sum operator applied to these codes (see Proposition 2).

We now observe that in general, a generator matrix of a Cg ,t,h,η [n, k] is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g
g[1]

...
g[h1−1]

g[h1] + η1g
[k−1+t1]

g[h1+1]

...
g[h�−1]

g[h�] + η�g
[k−1+t�]

g[h�+1]

...
g[k−1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The decoding of twisted Gabidulin codes such as their additive variants has
recently been studied in [29–32,44,45]. However, in [45] there were proposed
some algorithms which allow to decode twisted Gabidulin codes with only one
twist and t = (1), for some special choices of parameters. They manage to correct
up to 	n−k−1

2
 errors. But their decoding up to half of the minimum distance
remains an open problem.

To the best of our knowledge, the decoding of twisted Gabidulin codes with
multiple twists, or one twist with t1 > 1 has not been studied in the literature.
We address this point in Sect. 2 for decoding radii that remain below half the
minimum distance.

1.5 GPT System and Variants

The GPT cryptosystem was introduced in 1991 by Gabidulin, Paramonov and
Tretjakov [22]. This system is a rank-metric variant of the classical McEliece
cryptosystem [35], in which the Goppa codes are replaced by Gabidulin codes.
The first version of GPT was first broken by Gibson in [26]. Gabidulin proposed
a new version in [19], which was later attacked again by Gibson in [27].

In this work we present the generalized version of GPT proposed by Gabidulin
and Ourivski in [21,38].

10 A. Couvreur and I. Zappatore

– Key Generation. Let,
• Gk(g) an [n, k]-Gabidulin code with generator matrix Gsec (as in (2));
• S a random invertible matrix in Mk(Fqm),
• X a random matrix in Mk,λ(Fqm) of fixed rank 1 � s � λ, called distor-

tion matrix,
• P a random matrix in GLn+λ(Fq), called column scrambler.

The secret key is the triple,
(S,Gsec,P)

and the public key is,
Gpub

def= S(X | Gsec)P , (5)

where (X | Gsec) ∈ Mk,n+λ(Fqm) denotes the matrix whose columns are the
concatenations of those of X and of Gsec. We denote Cpub the linear code
with Gpub as generator matrix.

– Encryption. To encode a plaintext m ∈ F
k
qm , choose a random vector e ∈

F
n+λ
qm of rankq(e) = t, where t = 	n−k

2
 and compute the ciphertext as,

c
def= mGpub + e.

– Decryption. Apply the chosen decoding algorithm for Gabidulin codes to the
last n components of the vector,

cP −1 = mS[X|Gsec] + eP −1.

Since P ∈ GLn+λ(Fq), then rankq(eP −1) = t and in particular, the rank
(over Fq) of the last n rows of this matrix is at most t. So, the decoder com-
putes mS, and by inverting S, the initial message can be finally encrypted.

The description of the secret key as the triple (S,Gsec,P) is not the most
relevant one when it comes to instantiating the scheme with Gabidulin or twisted
Gabidulin codes. In particular, once we know the secret code Csec of the generator
matrix Gsec and the scrambling matrix, we are able to decode. So, the knowledge
of S is not relevant. Thus, in the following, we assume that Gpub as

Gpub = (X | Gsec)P . (6)

Remark 2. The previous scheme is instantiated with Gabidulin codes but can
actually be instantiated with any code family equipped with a decoder that
corrects up to t errors.

Remark 3. The original GPT scheme [22] did not involve the distortion matrix
X as it is. The seminal proposal was to use either a random generator matrix
G of a Gabidulin code or a matrix G + X0, where X0 had low rank. The
latter version required to reduce the weight of the error term in the encryption
process. In the following, we no longer consider this masking technique. The use
of a distortion matrix with a column scrambler appeared only ten years later
with the works of Ourivski and Gabidulin [21,38].

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 11

2 On the Decoding of Gabidulin Codes and Their Twists

In this section, we discuss further the decoding of Gabidulin and twisted
Gabidulin codes. We show that, although decoding twisted Gabidulin codes up
to half the minimum distance remains an open problem, their decoding up to a
smaller radius is possible, using the same decoder as for Gabidulin codes. This
approach was developed in [8] and is related to that of Gaborit, Ruatta and
Schrek in [24, § V–VI].

We begin by examining the decoding of Gabidulin codes.

2.1 An Important Remark on the Decoder of Gabidulin Codes

It is well–known that the Gabidulin codes have a decoder that corrects up to
half the minimum distance (see for instance [33]). This algorithm is analogous
to the Welch–Berlekamp algorithm for Reed–Solomon codes. An important fact
from a cryptographic point of view is that, given a Reed–Solomon code

RS(k) def= {(f(x1), . . . , f(xn)) | f ∈ Fq[X], deg f < k} ,

where x = (x1, . . . , xn) ∈ F
n
q has distinct entries, the knowledge of the vector x is

necessary to run the decoding algorithm. However, given a Gabidulin code Gk(g),
it is possible to decode without knowing g. Indeed, given as input y = c + e

where c ∈ Gk(g) and rankq(e) � t
def= n−k

2 , the decoding algorithm first consists
in finding a q–polynomial P (x) of degree at most t which vanishes at the entries
of e. This can be done by solving the Fqm–linear system

P (y) def= (P (y1), . . . , P (yn)) ∈ Gk+t(g) (7)

whose unknowns are the coefficients of P ∈ L�t. Next, the code Gk+t(g) can
be computed by simply knowing a generator matrix of Gk(g), thanks to the
following well–known statement.

Proposition 1 ([40, Lem. 5.1]). Let g ∈ F
n
qm , with rankq(g) = n and Gk(g)

an [n, k] Gabidulin code. Then,

Λi(Gk(g)) = Gk+i(g).

In particular,
dim(Λi(Gk(g))) = min{n, k + i}.

Next, for any P satisfying (7), we have P (y) = P (c)+P (e). By construction,
P (c) ∈ Λt(Gk(g)) = Gk+t(g) and hence, P (e) ∈ Gk+t(g). Moreover, we have
rankq(P (e)) � rankq(e) � t, while Λt(Gk(g)) = Gk+t(g) has minimum distance
n−k−t+1. Therefore, for t � n−k

2 , which entails t < n−k−t+1, we should have
P (e) = 0 for any P satisfying (7). Thus, the kernel of P contains the support
of e and the knowledge of the support of the error allows to solve the decoding
problem by solving a linear system. See for instance [24, § IV.a], [4, § III.A].

12 A. Couvreur and I. Zappatore

Algorithm 1: Decoding algorithm of Gabidulin codes without knowing
the evaluation sequence
Input: A Gabidulin code C represented by a generator matrix G, an integer t

and a vector y ∈ F
n
qm

Output: A vector c ∈ C such that rankq(y − c) � t if exists and ‘?’ otherwise.

1 Compute P ∈ L�t \ {0} such that P (y) ∈ Λt(C)
2 Compute (if exists) e ∈ Fqm such that Supp(e) ⊆ ker(P) and y − e ∈ C
3 if e exists then
4 Return y − e

5 else
6 Return ‘?’

Algorithm 1 summarizes the previous discussion. Note that, with the knowl-
edge of the evaluation sequence g, the algorithm could be terminated by per-
forming an Euclidean division or using the Extended Euclidean Algorithm in
the non-commutative ring L instead of using [24, § IV.a], [4, § III.A].

The key observation here is the following: decoding a Gabidulin code
Gk(g) is possible without knowing the vector g.

Remark 4. In GPT original public key encryption scheme [22] the public code
is a Gabidulin code with no distortion matrix. In this situation, the previous
discussion shows that this proposal is immediately broken without trying to
compute a description (i.e. an evaluation sequence) of the public code.

2.2 Decoding Twisted Gabidulin Codes

If some twisted Gabidulin codes are proven to be MRD without being equivalent
to Gabidulin codes, the question of decoding them up to half the minimum
distance remains open. For twisted Reed–Solomon codes, the Hamming metric
analogues introduced in [7], it is shown in [6] how they can be decoded up to half
the minimum distance at the cost of an exhaustive search on the terms associated
with the twists. Thus, the decoding complexity of a twisted Reed–Solomon code
with � twists is O(q�) times the complexity of the decoding of a Reed–Solomon
code. This can be transposed to twisted Gabidulin codes but the cost overhead
is O(qm�) times the cost of decoding a Gabidulin code, which is exponential in
m and so in the code length n (since n � m).

Although one does not know how to efficiently decode twisted Gabidulin
codes up to half the minimum distance, one can apply the Algorithm 1 to them.
Given y = c + e, where c is a codeword of a twisted Gabidulin code C and
rankq(e) � t for some t we will discuss later, compute P ∈ L�t such that

P (y) def= (P (y1), . . . , P (yn)) ∈ Λt(C). (8)

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 13

Such a solution P satisfies P (e) ∈ Λt(C). The difference with the Gabidulin
case is that we do not have an a priori lower bound on the minimum distance
of Λt(C). However we have the following result.

Proposition 2 ([43, Theorem 4]). Given a twisted Gabidulin code
Cg ,t,h,η [n, k] (where parameters are chosen according to Assumption 1), then

∀i � 0, dim(Λi(Cg ,t,h,η [n, k])) = min{k + i + �(i + 1), n}.

Proposition 2 entails that for a twisted Gabidulin code C with � twists, we
have

dimFqm Λt(C) � k − 1 + (t + 1)(� + 1). (9)

Now, denote by E the 1-dimensional code generated by e and let us consider the
dimension of Λt(E). Since Λt(E) is the image of L�t by the map Q �→ Q(e), we
have

dimFqm (Λt(E)) = dimFqm (L�t) − dimFqm {Q ∈ L�t | Q(e) = 0}.

First, dim(L�t) = t + 1. Second, recall that there exists a unique monic q–
polynomial P of q–degree rankq(e) such that P (e) = 0. Therefore,

{Q ∈ L�t | Q(e) = 0} = {F ◦ P | F ∈ L�t−rankq(e)}
and the latter space has dimension t − rankq(e) + 1 � 1. Putting all together,
we deduce that

dimFqm (Λt(E)) � t.

We claim that if
dimFqm Λt(C) + t � n, (10)

the spaces Λt(C) and Λt(E) are very likely to have a zero intersection. The
validity of this claim are given in Sect. 2.3. This would entail that for any P ∈ L�t

satisfying (8), we have P (e) = 0. Therefore, from (9) and (10) we can conclude
that if,

t � n − k − �

� + 2
·

then we can decode twisted Gabidulin codes as classical Gabidulin codes: form
the kernel of P , we get the error support and finally the error itself is deduced
using [24, § IV.a], [4, § III.A]. This decoding radius is rather pessimistic since
the dimension of Λt(C) may be much smaller depending on the way the twists
are chosen. Therefore, the above bound is what we can expect in the worst case.

2.3 Discussion About the Claim

Suppose that the error e is obtained as follows: draw a uniformly random sub-
space V ⊆ F

n
q of dimension t and then draw a uniformly random vector e among

the vector with row support contained in V . One can easily prove that all the
elements of Λt(e) have their row support contained in V .

14 A. Couvreur and I. Zappatore

Therefore, the intersection Λt(E)∩Λt(C) consists in elements of Λt(C) whose
row support is in V . So, consider the subcode ShV (Λt(C)) called shortening of
Λt(C) defined as the subcode of Λt(C) of vectors whose row support is contained
in V . This space can be obtained as follows. Consider a basis (v1, . . . ,vn−t) of
the dual V ⊥ ⊆ F

n
q of V for the canonical inner product. Then, ShV (Λt(C)) is

the kernel of the map
{

Λt(C) −→ F
n−t
qm

c �−→ (c · v�
1 , . . . , c · v�

n−t).

Remark 5. Note that in the above equation, c and the vi’s have different nature,
c has entries in Fqm while the vi’s have their entries in Fq.

Finally, since V is uniformly random, and dimΛt(C) � n− t, it is likely that
the above map is injective and hence its kernel ShV (Λt(C)) is likely to be zero.
Since the latter kernel contains Λt(E)∩Λt(C), we conclude that this intersection
is likely to be zero.

2.4 A Remark on the Code that is Actually Decoded

To conclude, let us notice an important fact for the sections to follow. The
previously described decoder may decode a slightly larger code than C defined
below.

Definition 2. Let C ⊆ F
n
qm be a code and s be a positive integer. We denote by

C
s
the largest code C ′ containing C such that Λs(C) = Λs(C ′).

It is easy to check that, the aforementioned decoder actually decodes C
t
and

not only C .

Remark 6. It can be proved that for a random code C with dimension k < n
s ,

then C = C
s

with a high probability. It ca also be proved that a Gabidulin code
C of dimension k satisfies C

i
= C for any i < n − k.

Remark 7. An alternative definition of C
s

is given by.

C
s def=

s⋂
j=0

(Λs(C))[−j]

3 Revisiting Overbeck’s Attack

In this section we revisit the Overbeck’s attack of GPT instantiated with
Gabidulin codes to introduce the extension presented in Sect. 4, which will allow
us to break [43].

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 15

3.1 A Distinguisher

The core of the Overbeck’s attack consists in the application of the q-sum opera-
tor, which allows to distinguish Gabidulin codes from random ones. In particular,
the following proposition observes the behavior of random codes w.r.t. the i-th
q-sum operator.

Proposition 3 ([10, Prop. 1]). If C ⊂ F
n
qm is a k-dimensional random code,

then for any 0 < i < k,

dim(Λi(C)) � min{n, (i + 1)k}.

Moreover, for any a � 0, we have

Prob(dim(Λi(C)) � min{n, (i + 1)k} − a) = O(q−ma).

Gabidulin codes have a significantly different behavior with respect to the
q–sum compared to random codes (see Proposition 1). In fact, we observe that
if i < n − k,

dim(Λi(Gk(g))) = k + i < (i + 1)k = dim(Λi(C)),

where Gk(g) is a n-Gabidulin code of dimension k, and C is a random code, and
we know from the previous proposition that the last equality is true with high
probability.

In the Overbeck’s attack, the operator Λi(·) is used for two related reasons.

1. It provides a distinguisher on the public key based on the peculiar behavior of
Gabidulin codes with respect to Λi(·). This permits to rule out the distortion
matrix [40] and to recover a decomposition of the form (6), in order to decrypt
any ciphertext computed with this public key.

2. Once we have discarded the distortion matrix, we have access to the secret
Gabidulin code and we can recover its hidden structure, i.e. an evaluation
sequence.

We observe that the second step is not necessary since, using Algorithm 1,
one can directly decode any message, without knowing the evaluation sequence.
Thus, in the sequel, we focus on the first step.

3.2 The Structure of Λi(Gpub)

Let i be a positive integer and Gpub = (X | Gsec)P a public key as in (6).
Recall that, in the present section, we suppose that Gsec is a generator matrix
of a Gabidulin code. Observe that, since P ∈ GLn+λ(Fq), we have P [i] = P
and hence,

Λi(Gpub) = (Λi(X) | Λi(Gsec))P . (11)

16 A. Couvreur and I. Zappatore

We now assume that i < n−k and we focus on the matrix (Λi(X) | Λi(Gsec)).
If we denote the distortion matrix X according to its rows, i.e.

X =

⎛
⎜⎜⎜⎝

x0

x1

...
xk−1

⎞
⎟⎟⎟⎠ ,

where xj ∈ F
λ
qm for any 0 � j � k − 1, then

(Λi(X) | Λi(Gsec)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 g
x1 g[1]

...
...

xk−1 g[k−1]

...
...

x
[i]
0 g[i]

x
[i]
1 g[i+1]

...
...

x
[i]
k−1 g[k−1+i]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, after performing some row elimination, we finally get
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 g
x1 g[1]

...
...

xk−1 g[k−1]

...
...

x
[i]
k−1 g[k−1+i]

...
...

x
[i]
0 − x

[i−1]
1 0

x
[i]
1 − x

[i−1]
2 0

...
...

x
[i]
k−2 − x

[i−1]
k−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, we have the following.

Lemma 3. Let i < n − k. Then, up to row elimination,

(Λi(X) | Λi(Gsec)) =
(

X ′ Mk+i(g)
Λi−1(X ′′) 0

)
, (12)

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 17

where,

X ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

...
xk−1

x
[1]
k−1
...

x
[i]
k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and X ′′ = X
[1]
{0,...,k−2} − X{1,...,k−1}.

In detail, X
[1]
{0,...,k−2} is the submatrix of X [1] composed by its first k − 1 rows

and X{1,...,k−1} is the submatrix of X composed by its rows starting from the
second one.

We now observe that the row space of X ′′, denoted RowSp
Fqm (X ′′), is con-

tained in the sum of the row spaces of X and X [1], which is RowSp
Fqm (Λ1(X))

and so rank(X ′′) � min{2s, λ}, where we recall that s = rank(X).
More generally, RowSp

Fqm (Λi−1(X ′′)) ⊆ RowSp
Fqm (Λi(X)) for any i � 1.

And rank(Λi−1(X ′′)) � min{(i + 1)s, λ}.

3.3 Overbeck’s Attack

The attack consists in finding an i < n − k, for which rank(Λi−1(X ′′)) = λ. In
this case,

dim(Λi(Gpub)) = k + i + λ

and the dimension of the dual is

dim(Λi(Gpub)⊥) = n − k − i.

So, the code Λi(Gpub) admits a parity check of this form

(0 | Hi)(P −1)�, (13)

where Hi is a parity check matrix of Λi(Gk(g)) = Gk+i(g).
After finding such an i, we can easily find a valid column scrambler T ∈

GLn+λ(Fq), which will allow us to attack the system (see Theorem 2 ([40,
Thm 5.3])).

Therefore, the crucial part of the Overbeck’s attack consists in find-
ing (if there exists) a positive integer i, for which dim(Λi−1(X ′′)) = λ
and Λi(Csec) �= F

n
qm or equivalently dim(Λi(Cpub)) = dim(Λi(Csec)) + λ.

Remark 8. If for i = n − k − 1, we have dim(Λn−k−1(Cpub))⊥ = 1, then
we can perform the attack quite straightforwardly. Indeed, in this case there
exists v ∈ F

n
qm which spans the entire dual. Many papers in the literature

describe the attack just for this choice i, claiming that we can perform it only
if dim(Λn−k−1(Cpub))⊥ = 1. We stress out that this is not the only possible
choice for i: one only needs an i < n−k for which Λi(Cpub)⊥ has the structure
(13).

18 A. Couvreur and I. Zappatore

Description of the Attack. We now briefly detail the procedure of the attack
(partially presented in the proof of [40, Thm. 5.3]).

We know that Λi(Cpub) admits a parity check matrix Hpub (for simplicity,
we omit the dependency on i) of the form (13). Thus, we look for some T ∈
GLn+λ(Fq) for which

HpubT
� = (0 | H ′) (14)

The matrix T is not unique. Furthermore, the following statement taken from
[40, Thm 5.3] asserts that every invertible T satisfying (14) is suitable to com-
plete the attack. For the sake of completeness, we give the proof of this result.

Theorem 2 ([40, Thm 5.3]). If there exists a positive integer i < n − k for
which the dimension of Λi(Gpub)⊥ is n − k − i and if we denote by Hpub a
generator matrix of this dual, then any T ∈ GLn+λ(Fq) such that

HpubT
� = (0 | H ′)

for some H ′ ∈ Mn−k−i,n(Fqm) is a valid column scrambler, i.e. there exists
Z ∈ Mk,λ(Fqm) and g� ∈ F

n
qm of rank n, such that

Gpub = S(Z | Mk(g�))T ,

where Mk(g�) denotes the Moore matrix with generator vector g� (see (2)).

Proof. Since dim(Λi(Gpub)⊥) = n − k − i, then this dual admits a generator
matrix of the form (13). Now, consider T ∈ GLn+λ(Fq) such that

(0 | Hi)(P −1)�T � = (0 | H ′) (15)

for some H ′ ∈ Mn−k−i,n(Fqm). Denote,

TP −1 =
(

A B
C D

)

where A ∈ Mλ(Fq), B ∈ Mλ,n(Fq), C ∈ Mn,λ(Fq) and D ∈ Mn(Fq). From
(15), we have that

HiB
� = 0 =⇒ B = 0.

Since PT −1 is invertible, this entails in particular that A ∈ GLλ(Fq) and D ∈
GLn(Fq). Then, we have that

(TP −1)−1 = PT −1 =
(

A−1 0
−D−1CA−1 D−1

)

and so we get,

GpubT
−1 = S(X | Mk(g))PT −1 = S(Z | G′)

for some matrix Z, where G′ is a generator matrix of Gk(g)D−1, which also
equals Gk(gD−1) since D is nonsingular with entries in Fq (see Lemma 1). ��

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 19

In order find such a T , we compute the space of the matrices T ∈ Mn+λ(Fq)
such that the λ leftmost columns of HpubT

� are zero. Then, we need to extract
a nonsingular matrix from this solution space. This last step can be done by
picking random elements in this space until we find a nonsingular matrix.

Once such a column scrambler T is computed, we can compute cT −1 and
remove the leftmost λ entries. By Theorem 2, each of these T ’s is a valid column
scrambler and it suffices to apply the Gabidulin codes decoder to the former
vector to recover the plaintext. Recall that, from Sect. 2.1, the decoder works
independently on the knowledge of g.

3.4 Analyzing the Dimension of Λi(Cpub) for Small i’s

In this section we study what happens if we apply the q-sum operator to the
public key for small i’s, namely i = 1. In particular, we will see that in this
case we can always attack the system by applying either strategies described in
Sect. 4 or the classical Overbeck attack.

First, we recall that, by Lemma 3, the matrix (Λ1(X) | Λ1(G)) (see (12))
can be transformed into a matrix(

X ′ Mk+1(g)
X ′′ 0

)
(16)

In this case, rank(X ′′) � min{2s, λ}, where s = rank(X). We now introduce
the following useful lemma.

Lemma 4. If k � 4s + 1, then, up to row multiplications,

[Λ1(X) | Λ1(G)] =
(

0 Mk+1(g)
X ′′ 0

)
(17)

with a high probability.

Proof. We need to prove that RowSp
Fqm (X ′) ⊆ RowSp

Fqm (X ′′). We first
claim that RowSp

Fqm (X ′′) = RowSp
Fqm (Λ1(X)) with a high probability. We

consider the submatrix of X ′′ in M� k−1
2 	,λ(Fqm) obtained by selecting alter-

nate rows of X ′′. This is a uniformly random matrix in M� k−1
2 	,λ(Fqm). By the

assumption k−1
2 � 2s, it has rank equal to min{2s, λ} = rank(Λ1(X)) with

a high probability (by Proposition 3). Thus, rank(X ′′) � rank(Λ1(X)) with
a high probability and so the claim follows. The result derives from remarking
that RowSp

Fqm (X ′) ⊆ RowSp
Fqm (Λ1(X)). ��

We remark that if rank(X) = s � λ/2, then rank(X ′′) = λ with high probabil-
ity and so we can apply straightforwardly the Overbeck’s attack (Sect. 3). One
could then think that it suffices to take a sufficiently small s in order to repair
the system. In the following section we show that thanks to the structure of the
matrix (17), we can construct an attack, which is an extension of the Overbeck’s
one, which allows us to break the system independently from the rank of the
distortion matrix, even for the twisted Gabidulin GPT scheme.

20 A. Couvreur and I. Zappatore

Remark 9. The condition k � 4s + 1 required in Lemma 4, yields a range of
parameters for which we can assert the validity of the result. Nevertheless, it is
probably highly conservative and one could expect result to hold for smaller k
or equivalently larger s.

3.5 Puchinger, Renner and Wachter–Zeh Variant of GPT

In [43], the authors use simultaneously two distinct techniques in order to resist
to Overbeck’s attack:

1. they impose the distortion matrix to have a low rank (e.g. s = 1 or 2),
2. they replace Gabidulin codes by twisted ones (with parameters specified in

Assumption 1).

The rationale behind the use of twisted Gabidulin codes is that, one step of
Overbeck’s attack consists in obtaining Λn−k−1(Csec) where Csec is the hidden
Gabidulin code. Then the dual Λn−k−1(C) has dimension 1 and immediately
provides the evaluation sequence. Based on this observation, the authors select
parameters for twisted Gabidulin codes such that none of the Λi(Csec)’s for i > 0
may have codimension 1 (see [43, Thm. 6]).

Table 1. Parameters from [43]

q k n m � λ s

2 18 26 104 2 6 1

2 21 33 132 2 8 1

2 32 48 192 2 12 2

As mentioned in Remark 8, the choice of computing Λn−k−1(Csec) is only
technical and can be circumvented in many different ways. In fact, once the
distortion matrix X is discarded, we can access to Csec and, using the discussion
in Sect. 2.2, just knowing this code is generally enough to decode. However,
their approach presents another difficulty for the attacker if one wants to apply
Overbeck’s attack. Indeed, the proposed parameters consider a distortion matrix
of low rank, e.g. s = 1 or 2 (see Table 1). Then, to get for Λi(Cpub) a generator
matrix of the form (17) with Λi−1(X ′′) of full rank, one needs i to be large,
while the dimensions of the Λi(Csec) increase faster than for a Gabidulin code.
Thus, for some parameters it is possible that the computation of the successive
Λi(Cpub) provide successive codes with generator matrices of the form (17), so
that Λi(Csec) becomes the full code F

n
qm before Λi−1(X ′′) reaches the full rank

λ. The core of our extension in Sect. 4 is the observation that there is no need
for X ′′ to have full rank to break the scheme.

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 21

Example 1. According to the Table 1, suppose that n = 26, k = 18, λ = 6 and
s = 1. Then, for X ′′ to have full rank λ = 6, while X has rank 1, we need
to compute Λ6(Cpub). But since the secret code has dimension 18 and it is a
twisted Gabidulin code, we deduce that dim Λ6(Csec) � 26 and, since n = 26,
this code is nothing else than F

26
qm . Thus, for such parameters, we cannot apply

the Overbeck’s attack. In fact, even if instantiated with a Gabidulin code, the
Overbeck’s attack would fail for such parameters.

4 An Extension of Overbeck’s Attack

As explained earlier, Overbeck’s technique consists in applying the q–sum oper-
ator Λi to the public code, for an i such that the public code has a generator
matrix of the form (

Iλ 0
0 Λi(Gsec)

)
P , (18)

where Λi(Csec) �= F
n
qm . This entails that the dual code has a generator matrix of

the form
(0 | H) (P −1)

�
, (19)

where H� is a parity–check matrix of Λi(Csec). Then, a valid column scrambler
can be computed by solving a linear system. The point of this section is to
prove that one can relax the constraint on i and only expect Λi(Gpub) to have
a generator matrix “splitting in two blocks”, i.e.

(
Y 0
0 Λi(Gsec)

)
P , (20)

without requiring Y to have full rank λ.
Note that the above-described setting is precisely what happens to Λ1(Gpub)

when s = rank(X) < λ/2, see Sect. 3.4, Example 1 or Sect. 5.3.

Example 2. Back to Example 1, for such parameters, even instantiated with
a Gabidulin code, the Overbeck’s attack fails because there is not any i > 0
which gives a matrix of the shape (18). However, under some assumptions on
the parameters of the code, it is likely that Λ1(Gpub) has a generator matrix of
the shape (20). See for instance Lemmas 4 and 6.

4.1 Sketch of the Attack

Now, let us explain how to find the hidden splitting structure (20) without any
knowledge of the scrambling matrix P . Assume that Λi(Cpub) has a generator
matrix of the form (

Y 0
0 Gi

)
P , (21)

where Y is a matrix with λ columns, Gi is a generator matrix of Λi(Csec) and
Csec is the hidden code of dimension k. The code Csec could be either a Gabidulin

22 A. Couvreur and I. Zappatore

code in the case of classical GPT or a twisted Gabidulin code (see respectively
Sect. 1.5 and the beginning of Sect. 5).

The idea consists in computing the right stabilizer algebra of Λi(Cpub):

Stabright(Λi(Cpub))
def= {M ∈ Mn+λ(Fq) | Λi(Cpub)M ⊆ Λi(Cpub)}.

This algebra can be computed by solving a linear system (see Sect. 4.2). It turns
out that it contains two peculiar matrices, namely:

E1 = P −1

(
Iλ 0
0 0

)
P and E2 = P −1

(
0 0
0 In

)
P . (22)

The core of the attack consists in computing these two matrices, or more pre-
cisely conjugates of these matrices, and then consider the code CpubE2 which
is somehow right equivalent to Csec. In particular, the right multiplication by
E2 will annihilate the distortion matrix X. Let us now present the approach in
more detail.

4.2 Some Algebraic Preliminaries

Split and Indecomposable Codes. The first crucial notion is that of split or
decomposable codes.

Definition 3. A code C ⊆ F
n
qm of dimension k is said to split if it has a gen-

erator matrix of the form (
G1 0
0 G2

)
Q,

for some matrices G1 ∈ Ma,b(Fqm),G2 ∈ Mk−a,n−b(Fqm) and Q ∈ GLn(Fq).
If no such block–wise decomposition exists, then the code is said to be indecom-
posable.

Remark 10. Considering the code as a space of matrices, being split means that
the code is the direct sum of two subcodes whose row supports (i.e. the sum
of the row spaces of their elements) are in direct sum. This is the rank metric
counterpart of Hamming codes which are the direct sum of two subcodes with
disjoint Hamming supports. Note that this property is very rare and corresponds
to somehow very degenerated codes.

Stabilizer Algebras and Conductors. We now define the notions that we
will use throughout this section. Stabilizers are useful invariants of codes, also
called idealizers in the literature. Conductors, are used for instance in [12] and
have often been used in cryptanalysis of schemes based on algebraic Hamming
metric codes, for instance [5,13,14].

Definition 4. Let C ⊆ F
n1
qm and D ⊆ F

n2
qm be two Fqm–linear codes of respective

length n1, n2. The conductor of C into D is defined as:

Cond(C ,D)
def
= {A ∈ Mn1,n2(Fq) | ∀c ∈ C , cA ∈ D .}

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 23

It is an Fq–vector subspace of Mn1,n2(Fq). Moreover, when C = D , then the
conductor is an algebra which is usually called right stabilizer or right idealizer
of C and denoted

Stabright(C)
def
= Cond(C ,C) = {A ∈ Mn1(Fq) | ∀c ∈ C , cA ∈ C } .

Relation to Our Problem. The first important point is that almost any
code of length n + λ has a trivial right stabilizer, i.e. a stabilizer of the form
{αIn+λ | α ∈ Fq}. However, the stabilizer of Λi(Cpub) is non trivial, since it
contains the matrices (22).

The second point is that Stabright(Λi(Cpub)) can be computed by solving a
linear system. In general, given a parity–check matrix H for C , the elements of
Stabright(C) are nothing but the solutions M ∈ Mn+λ(Fq) of the system

GMH� = 0. (23)

Idempotents and Decomposition of the Identity. The matrices E1 and E2

of (22) are idempotents of the right stabilizer algebra of Λi(Cpub), i.e. elements
satisfying E2

1 = E1 and E2
2 = E2. In addition, they provide what is usually

called a decomposition of the identity with orthogonal idempotents. The general
definition is given below.

Definition 5. In a matrix algebra A ⊆ Mn(Fq), a tuple E1, . . . ,Er of nonzero
idempotents are said to be a decomposition of the identity into orthogonal idem-
potents if they satisfy,

∀1 � i, j � r, EiEj = 0 and E1 + · · · + Er = I.

Such a decomposition is said to be minimal if none of the Ei’s can be written as
a sum of two nonzero orthogonal idempotents.

Proposition 4. A code C ⊆ F
n
qm is split if and only if Stabright(C) has a non-

trivial decomposition of the identity into orthogonal idempotents.

Proof. Suppose that Stabright(C) contains such a decomposition of the identity
into orthogonal idempotents I = E1+· · ·+Er. Since the Ei’s commute pairwise
and are diagonalizable (indeed, being idempotent, they all cancelled by the split
polynomial X2 − X), they are simultaneously diagonalizable. Thus, there exists
Q ∈ GLn(Fq) such that

E1 = Q−1

⎛
⎜⎝

In1 (0)
. . .

(0) (0)

⎞
⎟⎠ Q, . . . , Er = Q−1

⎛
⎜⎝

(0) (0)
. . .

(0) Inr

⎞
⎟⎠ Q,

for some positive integers n1, . . . , nr such that n1 + · · · + nr = n.

24 A. Couvreur and I. Zappatore

The code C ′ = CQ has the matrices

E′
1 =

⎛
⎜⎝

In1 (0)
. . .

(0) (0)

⎞
⎟⎠ , . . . , E′

r =

⎛
⎜⎝

(0) (0)
. . .

(0) Inr

⎞
⎟⎠ (24)

in its right stabilizer algebra, and one can easily check that C ′ = C ′E′
1 ⊕ · · · ⊕

C ′E′
r, leading to a block–wise generator matrix of C ′. Thus, C has a generator

matrix of the form ⎛
⎜⎝

G1 (0)
. . .

(0) Gr

⎞
⎟⎠ Q−1. (25)

Conversely, if C has a generator matrix as in (25), one can easily deduce a
decomposition of the identity in Stabright(C) into the idempotents (24). ��

In particular, a code is indecomposable if and only if its right stabilizer
algebra has no nontrivial idempotent. Such an algebra is said to be local.

A crucial aspect of minimal decompositions of the identity is the following,
sometimes referred to as the Krull–Schmidt Theorem.

Theorem 3 ([15, Thm. 3.4.1]). Let A ⊆ Mn(Fq) be a matrix algebra and
E1, . . . ,Er and F 1, . . . , F s be two minimal decompositions of the identity into
orthogonal idempotents. Then, r = s and there exists A ∈ A× such that, after
possibly re-indexing the F i’s, we have F i = AEiA

−1, for any i ∈ {1, . . . , s}.
In short: a minimal decomposition of the identity into idempotents is unique

up to conjugation.

Algorithmic Aspects. Given a matrix algebra, a decomposition of the identity
into minimal idempotents can be efficiently computed using Friedl and Ronyái’s
algorithms [16,47]. Such a calculation is presented in the case of stabilizer alge-
bras of codes in [12]. Further, in Sect. 4.5, we present the calculation in a simple
case which turns out to be the generic situation for our cryptanalysis.

4.3 Description of Our Extension of Overbeck’s Attack

The attack summarizes as follows. Recall that the public code Cpub has a gen-
erator matrix

Gpub = (X | Gsec)P .

Step 1. Compute i so that the code Λi(Cpub) splits as in (21), i.e. has the shape
(

Y 0
0 Gi

)
P (26)

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 25

where Gi is a generator matrix of Λi(Csec) and P the column scrambler. In
the sequel, we suppose that Λi(Csec) is indecomposable. This assumption
is discussed further in Sect. 4.5.

Step 2. Compute Stabright(Λi(Cpub)). We know that this algebra contains the
matrices

E1 = P −1

(
Iλ 0
0 0

)
P and E2 = P −1

(
0 0
0 In

)
P . (27)

Next, using the algorithms described in [12,16,47], compute a minimal decom-
position of the identity of Stabright(Λi(Cpub)) into orthogonal idempotents. The
following statement relates any such minimal decomposition to the matrices E1

and E2 in (27).

Lemma 5. Assume that λ < n. Under the assumption that Λi(Csec) is an
indecomposable code, any minimal decomposition of the identity into orthogo-
nal idempotents in Λi(Cpub) contains a unique element F of rank n. Moreover,
there exists A ∈ Stabright(Λi(Cpub))× such that F = A−1E2A where E2 is the
matrix introduced in (27).

Proof. Consider the pair E1,E2 introduced in (27). The matrix E2 has rank n
and projects the code Λi(Cpub) onto the code with generator matrix (0 Gi)P ,
where Gi is a generator matrix of Λi(Csec). Since Λi(Cpub) is supposed to be
indecomposable, E2 cannot split into E2 = E21 + E22 such that E21E22 =
E22E21 = 0, since this would contradict the indecomposability of Λi(Csec).
Next, either E1,E2 is a minimal decomposition or, E1 splits into a sum of
orthogonal idempotents (if the code with generator matrix Y splits). In the
latter situation, one deduces a minimal decomposition of the identity of the
form E11, . . . ,E1r,E2. Now, Theorem 3, permits to conclude that any other
minimal decomposition is conjugate to the previous one and hence contains a
unique element of rank n which is conjugate with E2. ��

Step 3. Once we have computed a minimal decomposition of the identity into
minimal idempotents, according to Lemma 5 and Theorem 3, we have computed
F ∈ Stabright(Λi(Cpub)) of rank n satisfying F = A−1E2A for some unknown
matrix A ∈ Stabright(Λi(Cpub))×.

Proposition 5. The code, CpubF is contained in the code with generator matrix
(
0 | G

i

sec

)
PA,

where G
i

sec is a generator matrix of the code C
i

sec introduced in Definition 2.

Before proving the previous statement, let us discuss it quickly. The result
may seem disappointing since, even if we discarded the distortion matrix, we do
not recover exactly the secret code. However,

26 A. Couvreur and I. Zappatore

1. the approach is relevant for small i’s, and if i � t, where t is the rank of the
error term in the encryption process, then, the algorithm described in Sect. 2.2
decodes C

t

sec (and hence C
i

sec since it is contained in C
t

sec) as efficiently as
Csec itself.

2. In Sect. 4.5, we provide some heuristic claiming that, most of the time, CpubF
is nothing but the code with generator matrix

(0 | Gsec) PA.

Proof (of Proposition 5). Recall that F = A−1E2A for some matrix A ∈
Stabright(Λi(Cpub)). Then, since A is invertible, we deduce that Λi(Cpub)A−1 =
Λi(Cpub). Therefore,

Λi(Cpub)F = Λi(Cpub)E2A.

From (26) and (27), the code Λi(Cpub)E2 has a generator matrix of the form
(0 | Gi)P and hence the code Λi(Cpub)F has a generator matrix

(0 | Gi)PA. (28)

Next, the code Cpub is contained in Λi(Cpub) but also in Λi(Cpub)
i
. Moreover,

according to Remark 7, we have

Cpub ⊆ C
i

pub =
i⋂

j=0

(Λi(Cpub))
[−j]

.

Since both P and A have their entries in Fq, they commute with the operations
of raising to any q–th power and we deduce that

CpubF ⊆ Λi(Cpub)
i
F .

Then, from (28), we deduce that CpubF is contained in the code with generator
matrix (

0 | G
i

sec

)
PA.

��

Step 5. With the previous results at hand, given a ciphertext y = mGpub + e
with rank(e) � t, we can compute

yF = mGpubF + eF .

Then, we remove its λ leftmost entries. Since F has its entries in Fq, rank(eF) �
rank(e). Next, mGpubF with the λ leftmost entries removed is a codeword in

Λi(Csec)
i
which can be decoded using the algorithm introduced in 2.2. This yields

the plaintext m.

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 27

Algorithm 2: Summary of the attack
Input: Gpub, a ciphertext y and the rank of the error term t
Output: A pair (me) ∈ F

k
qm × F

n
qm such that rank(e) = t and y = mGpub + e

or ‘?’ if fails

1 Compute a generator matrix of Λi(Cpub) for the least i for which the code
splits.

2 if no such i exists then
3 Return ‘?’

4 Compute a minimal decomposition of the identity of Stabright(Λi(C)) and
extract its unique term F of rank n.

5 if no such F exists then
6 Return ‘?’

7 Compute yF and apply to it the decoder described in 2.2.
8 return the output m of the decoder (possibly ‘?’ if the decoder fails).

4.4 Summary of the Attack

According to the description in Sect. 4.3, the attack is now summarized in Algo-
rithm 2 below.

4.5 Discussions and Simplifications

For the attack presented in Algorithm 2 to work, several assumptions are made.
Here we discuss these assumptions and their rationale. We also point out that in
our specific case, the algebra Stabright(Λi(Cpub)) will be very specific. This may
permit to avoid to consider the difficult cases of Friedl Ronyái’s algorithms.

Indecomposability of Λi (Csec). An important assumption for the attack to
succeed is that Λi(Csec) does not split. Note first that in the classical GPT case,
Csec is a Gabidulin code. And so, this always holds as soon as i < n − k.

This is a consequence of the following statement and the fact that if Csec is
a Gabidulin code, and so for any i > 0, also Λi(Csec) is a Gabidulin code. Thus,
according to the following statement it is indecomposable.

Proposition 6. An MRD code C � Fqm never splits.

Proof. Let C ⊆ F
n
qm be an MRD code of dimension k. Suppose it splits into a

direct sum of two codes C1,C2 of respective lengths n1, n2 and dimensions k1, k2.
Then, C1 has codewords of rank weight n1 − k1 + 1 and C2 has words of weight
n2 − k2 + 1. Such words are also words of C and, since C is MRD, we have

n1 − k1 + 1 � n − k + 1
n2 − k2 + 1 � n − k + 1

Summing up these two inequalities and using the fact that n1 + n2 = n and
k1 + k2 = k, we get a contradiction. ��

28 A. Couvreur and I. Zappatore

In the general case of twisted Gabidulin codes the situation is more com-
plicated. However, twisted Gabidulin codes are contained in Gabidulin codes of
larger dimensions, hence so are their images by the Λi operator. It seems very
unlikely that a Gabidulin code could contain large subcodes that split.

On the Structure of StabrightΛi (Cpub). A crucial step of the attack is the
computation of a decomposition of the identity of Stabright(Λi(Cpub)) into a
sum of orthogonal idempotents. For this, we referred to Friedl Ronyái [16,47].
Actually, our setting is rather specific and the structure of this stabilizer algebra
is pretty well understood. Let us start with a proposition.

Proposition 7. Let C be an Fqm–linear code of length n + λ and dimension K
with a generator matrix of the shape (21), i.e.

(
G1 0
0 G2

)
,

with G1 ∈ Mk1,λ(Fqm) for some integer k1 and G2 ∈ Mk2,n(Fqm) for some
integer k2 so that k1 + k2 = K. Denote by C1 and C2 the codes with respective
generator matrices G1 and G2. Then any M ∈ Stabright(C) has the shape

M =
(

A B
C D

)
,

where A ∈ Stabright(C1), B ∈ Cond(C2,C1), C ∈ Cond(C1,C2) and D ∈
Stabright(C2). ��
Proof. Let c1 ∈ C1, then (c1 0) ∈ C and by definition of M , (c1 0)M =
(c1A c1B) ∈ C . By definition of C , we have c1A ∈ C1 and c1B ∈ C2. Since the
previous assertions hold for any c1 ∈ C1, then we deduce that A ∈ Stabright(C1)
and B ∈ Cond(C1,C2).

The result for C,D is obtained in the same way by considering (0 c2)M for
c2 ∈ C2. ��

Consequently considering the generator matrix (26) of Λi(Cpub), elements of
Stabright(Λi(Cpub)) have the shape

(
A B
C D

)
, (29)

where A ∈ Stabright(CY) (CY being the code with generator matrix Y), B ∈
Cond(Λi(Csec),CY), C ∈ Cond(CY , Λi(Csec)) and D ∈ Stabright(Λi(Csec)).

Here again, we claim that is very likely that the stabilizer algebras of CY and
Λi(Cpub) are trivial, i.e. contain only scalar multiples of the identity matrix and
that the conductors Cond(CY , Λi(Csec)) and Stabright(Λi(Csec)) are zero. This
claim is discussed further in Sect. 4.7.

In such a situation, we have:

Stabright(Λi(Cpub)) =
{

P −1

(
aIλ 0
0 bIn

)
P

∣∣∣∣ a, b ∈ Fq

}
. (30)

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 29

Hence this algebra has dimension 2 and the calculation of the matrix

P −1

(
0 0
0 In

)
P (31)

can be performed as follows.

1. First extract a singular matrix of Stabright(Λi(Cpub)). For that, take U ,V a
basis of Stabright(Λi(Cpub)). If V is singular we are done. Otherwise, compute
a root of the univariate polynomial det(U + XV). This yields a singular
element R of Stabright(Λi(Cpub)) corresponding either to a = 0 or b = 0 in
the description (30).

2. Next, rescale R as νR in order to get an idempotent element. If the obtained
idempotent has rank n set F = νR, otherwise (it will have rank λ), set
F = In+λ − νR.

The obtained matrix F is nothing but the target matrix in (31). Therefore,
one can even skip the proof of Proposition 5 and observe that the code CpubF
will be exactly the code with generator matrix

(0 | Gsec) P .

4.6 Complexity

Considering the previous simple case which remains very likely, we analyze the
cost of the various computation steps.

– The computation of Λi(Cpub) can be done by iterating i successive Gaussian
eliminations (we assume that raising an element of Fqm to the q–th power
can be done for free, for instance by representing Fqm with a normal basis).
Thus, a cost O(inω) operations in Fqm and hence O(im2nω) operations in Fq.
Here, ω denotes the usual exponent for the cost of the product of two n × n
matrices.

– The computation of Stabright(Λi(Cpub)) is done by solving the linear system
(23). The system has n2 unknowns in Fq and ki(n − ki) = O(n2) equations
in Fqm and hence O(mn2) equations in Fq. This yields a cost of O(mn2ω)
operations in Fq (see [9, Thm. 8.6] for the complexity of the resolution of a
non square linear system).

In the aforementioned simple case, the remaining operations are negligible com-
pared to the calculation of the stabilizer algebra, which turns out to be the
bottleneck of the calculation. This overall cost is hence in

O(mn2ω) operations in Fq.

4.7 Discussion About the Claims on Conductors and Stabilizers

Back to the description (29) of the elements of Stabright(Λi(Cpub)). Let us discuss
the validity of the claim.

30 A. Couvreur and I. Zappatore

Conductors are Likely to be Zero. Let C ∈ Cond(CY , Λi(Csec)), then the
code CY C is a subcode of Λi(Csec) and one proves easily that any element of
CY C has a row support contained in the row space of C. Since C ∈ Mλ,n(Fq), its
rank is at most equal to λ and hence the code CY C has a row space contained in
a space of dimension � λ. It seems unlikely that the code Λt(Csec) contains such
a space. In particular, this cannot happen if the minimum distance of Λi(Csec)
exceeds λ.

Now, consider B ∈ Cond(Λi(Csec),CY). Suppose first that B has full rank.
Since dim(Λi(Csec)) � λ, the code Λi(Csec)B is likely to be equal to F

λ
qm and

hence cannot be contained in CY , a contradiction. If B has not full rank, then,
the code Λi(Csec)B is likely to be equal to the subspace of F

λ
qm of all the vectors

whose row support is in the row space of B and we can assume that CY has no
such subspace. Indeed, if it did, it would entail that C⊥

Y (and hence Λi(Cpub)⊥

too) would have a parity-check matrix of the form (0 | H ′)(P −1)� as in (19).
Details are left to the reader.

Stabilizers are Likely Restrict to Scalar Matrices. For CY , this code is
close to be random and random codes have trivial stabilizer algebras with a high
probability.

For Λi(Csec) the right stabilizer algebra might be a larger one. Indeed, regard-
ing the proof of Proposition 2 (see [43, Thm. 4]) we can see that Λt(C) is a code
generated by the evaluations of q-monomials and such a code, when n = m has
a right stabilizer algebra equal to a matrix representation of Fqm . This is a con-
sequence of the fact that an Fqm–space spanned by q–monomials is Fqm–linear
on the left but also on the right. Thus, Stabright(Λi(Csec)) might be such a larger
algebra. In this situation, the calculation of a decomposition of the identity into
orthogonal idempotents is slightly more complicated but remains definitely pos-
sible in polynomial time using Friedl Ronyái algorithms.

5 Don’t Twist Again

In this section we first show that, even for twisted Gabidulin codes, the appli-
cation of the q-sum operator allows to distinguish them from random codes. It
is therefore possible to apply the attack described in Sect. 4 to the GPT cryp-
tosystem instantiated with these codes. In the first part of this section we discuss
the behaviour of raw twisted Gabidulin codes with respect to the operator Λi or
equivalently, how the use of Λi allows to distinguish them from random codes.
In the second part, we focus on q-operator applied to the corresponding public
key and we will prove that even in this case, we have a generator matrix with a
structure similar to (16) and that the corresponding codes split. This allows us
to apply the results of Sect. 4.

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 31

5.1 A Distinguisher

First, recall Propositions 2 and 3 about the dimension of the q-sum operator
applied respectively to twisted Gabidulin codes and to random codes. In par-
ticular, recall that if C is a random code, dim(Λi(C)) = (i + 1)k with high
probability. Then, we remark that, if i < n−k−�

�+1

dim(Λi(Cg ,t,h,η [n, k])) = k + i + �(i + 1) < (i + 1)k = dim(Λi(C)) (32)
⇐⇒ i > �/(k − � − 1), (33)

where Cg ,t,h,η [n, k] is a twisted Gabidulin code (see Sect. 1.4).
Thus, the inequality i > �/(k−�−1) is satisfied by any positive i, if k > 2�+1.

We notice that this is often the case if we consider a small number of twists as
in Table 1. This means that, even if the dimension of the q-sum applied to these
codes is greater than that of the q-sum of a Gabidulin code, we can however still
distinguish them for random codes.

Thus, this distinguisher can be exploited to construct an attack against the
GPT cryptosystem instantiated with twisted Gabidulin codes, instead of classical
ones.

5.2 The Structure of Λi(GT pub)

From now on, we consider the GPT cryptosystem instantiated with a twisted
Gabidulin code Cg ,t,h,η [n, k] with the parameters defined in Assumption 1. We
denote by GTpub the corresponding public key, obtained as (5) by just replacing
Gsec with a generator matrix GT (of the form (4)) of the code Cg ,t,h,η [n, k] and
by GTpub the linear code which has GTpub as generator matrix. Again, as for
the Gabidulin codes scheme, we can discard the matrix S.

We now apply the q-sum operator to GTpub, and as (11), we get

Λi(GTpub) = [Λi(X)|Λi(GT)]P ,

where P ∈ GLn+λ(Fq) is the column scrambler.
Let i < n−�−k

l+1 and write X (as in Sect. 3.2) according to its rows.

32 A. Couvreur and I. Zappatore

Now, for simplicity we consider that � = 1, η1 = 1 and i = 1. Recall that the
structure of GT is given in (4). Then, we have

(Λ1(X) | Λ1(GT)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 g

x1 g[1]

...
...

xh1 g[h1] + g[k−1+t1]

...
...

xk−1 g[k−1]

x
[1]
0 g[1]

x
[1]
1 g[2]

...
...

x
[1]
h1−1 g[h1]

x
[1]
h1

g[h1+1] + g[k+t1]

...
...

x
[1]
k−2 g[k−1]

x
[1]
k−1 g[k]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 g

x1 g[1]

...
...

xh1−1 g[h1−1]

x
[1]
h1−1 g[h1]

xh1+1 g[h1+1]

...
...

xk−1 g[k−1]

x
[1]
k−1 g[k]

x
[1]
0 g[1]

x
[1]
1 g[2]

...
...

x
[1]
h1−2 g[h1−1]

xh1 g[h1] + g[k−1+t1]

x
[1]
h1

g[h1+1] + g[k+t1]

x
[1]
h1+1 g[h1+2]

...
...

x
[1]
k−2 g[k−1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the second matrix is obtained by permuting the rows of the first one.
We now observe that the first block of the second matrix can be rewritten as
[X̃ ′|Mk+1(g)] and so, after performing row elimination, we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̃ ′ Mk+1(g)
xh1 − x

[1]
h1−1 g[k−1+t1]

x
[1]
h1

− xh1+1 g[k+t1]

x
[1]
0 − x1 0

x
[1]
1 − x2 0

...
...

x
[1]
h1−2 − xh1−1 0

x
[1]
h1+1 − xh1+2 0

...
...

x
[1]
k−2 − xk−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, we have the following result.

Lemma 6. Let i < n−�−k
�+1 . Then, up to row elimination

(Λi(X) | Λi(GT)) =
(

Y Λi(GT)
X̃ 0

)
(34)

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 33

where,

X̃ =

⎧⎨
⎩

(
X ′′

T

) ∈ Mk−1−2�(Fqm) if i = 1(
Λi−1(X ′′

T)
X ′′′

)
∈ Mi(k−1−2�)+(i−1)�(Fqm) if i > 1

Y ∈ Mk+i+�(i+1),λ(Fqm) and the matrix X ′′
T is defined as,

X ′′
T = X

[1]
{0,...,k−2}\{hi−1,hi|1�i��} − X{1,...,k−1}\{hi,hi+1|1�i��}, (35)

where X
[1]
{0,...,k−2}\{hi−1,hi|1�i��} is a submatrix of X [1] composed by the first

k − 1 rows except all the (hi − 1)-th, hi-th rows and X{1,...,k−1}\{hi,hi+1|1�i��}
is a submatrix of X determined by all the rows, starting from the second one,
except the hi-th, hi + 1-th ones. Finally, X ′′′ ∈ Mi−1,λ(Fqm).

Proof. Using the same elimination techniques as before, we can extend the proof
to the case � > 1, η ∈ (Fqm \ {0})� and i > 1. ��

Even in this case, we show that it suffices to consider i = 1 to attack the
corresponding GPT scheme.

5.3 Attacking the System for Small i’s

We now consider i = 1. Then by Lemma 6, (Λi(X) | Λi(GT)) can be transformed
into (

Y Λ1(GT)
X ′′

T 0

)

As in Sect. 3.4 (see Lemma 4), under some assumptions on the parameters, we
can split the previous matrix into two blocks.

Lemma 7. If k � 4s + 2� + 1, then, with a high probability,
(

0 Λ1(GT)
X ′′

T 0

)
(36)

up to row eliminations.

Proof. The proof is analogous to the proof of Lemma 4. First we prove that
RowSp

Fqm (X ′′
T) = RowSp

Fqm (Λ1(X)) with a high probability. Again, we con-
sider the submatrix of X ′′

T in M� k−1−2�
2 	(Fqm) obtained by alternatively selecting

rows of X ′′
T . This matrix is uniformly random and by Proposition 3, if k−1−2�

2 �
2s (which is true by assumption), it has rank equal to the rank of Λ1(X) with
a high probability. Thus the equality RowSp

Fqm (X ′′
T) = RowSp

Fqm (Λ1(X))
holds.

The result follows by noting that RowSp
Fqm (Y) ⊆ RowSp

Fqm (Λ1(X)). ��
Therefore we can apply the attack of Sect. 4 in order to break the corresponding
GPT cryptosystem.

34 A. Couvreur and I. Zappatore

Remark 11. Notice that, if rank(X) = s � λ/2, then rank(XT) = λ with high
probability and we can apply the Overbeck’s attack to this scheme. In fact, in
this case (as in Sect. 3.3), dim(Λ1(GTpub)⊥) = n − k − 1 − 2�, and so the code
Λ1(GTpub) admits a parity check matrix whose first λ columns are 0. We can
then compute a valid column scrambler and attack the system.

More generally, we can apply this attack to any i < n−�−k
�+1 for which

rank(X̃) = λ,

where X̃ is defined in Lemma 6.

Conclusion

In this paper, we present new observations on the decoding of Gabidulin codes.
These allow us to introduce a decoder for twisted Gabidulin codes up to a certain
threshold, which may be less than half of the minimum distance.

We then propose an extension of the Overbeck’s attack on GPT-like systems
instantiated on Gabidulin or related codes such as twisted Gabidulin codes.
This attack is efficient as soon as the secret code Λi(Csec) has a small dimension
compared to the dimension of Λi(C), where C is a random code. One of the
interesting things about our approach is that it succeeds even when the distortion
matrix has a low rank, which might cause the Overbeck’s attack fails. Our attack
extension allows to break the proposal of [43].

References

1. Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). Second Round submission
to NIST Post-Quantum Cryptography call (2020). https://pqc-rqc.org

2. Aragon, N., et al.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER).
Second round submission to the NIST post-quantum cryptography call (2019).
https://pqc-rollo.org

3. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 25

4. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving
the rank syndrome decoding problem. In: 2018 IEEE International Symposium on
Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2421–2425.
IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437464

5. Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–
118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 4

6. Beelen, P., Bossert, M., Puchinger, S., Rosenkilde, J.: Structural properties of
twisted Reed-Solomon codes with applications to cryptography. In: 2018 IEEE
International Symposium on Information Theory (ISIT), pp. 946–950 (2018).
https://doi.org/10.1109/ISIT.2018.8437923

https://pqc-rqc.org
https://pqc-rollo.org
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1007/978-3-030-03326-2_4
https://doi.org/10.1109/ISIT.2018.8437923

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 35

7. Beelen, P., Puchinger, S., Rosenkilde né Nielsen, J.: Twisted Reed-Solomon codes.
In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 336–
340 (2017). https://doi.org/10.1109/ISIT.2017.8006545

8. Bombar, M., Couvreur, A.: Decoding supercodes of Gabidulin codes and applica-
tions to cryptanalysis. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-81293-5 1

9. Bostan, A., et al.: Algorithmes Efficaces en Calcul Formel. Frédéric Chyzak (auto-
édit.), Palaiseau (2017). https://hal.archives-ouvertes.fr/AECF/

10. Coggia, D., Couvreur, A.: On the security of a Loidreau’s rank metric code based
encryption scheme. In: Workshop on Coding Theory and Cryptography, WCC
2019, Saint-Jacut-de-la-Mer, France (2019)

11. Coggia, D., Couvreur, A.: On the security of a Loidreau’s rank metric code based
encryption scheme. Des. Codes Cryptogr. 88, 1941–1957 (2020)

12. Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code equivalence
problems in rank metric (2020). https://hal.archives-ouvertes.fr/hal-02997801.
Working paper or preprint

13. Couvreur, A., Márquez-Corbella, I., Pellikaan, R.: Cryptanalysis of McEliece cryp-
tosystem based on algebraic geometry codes and their subcodes. IEEE Trans.
Inform. Theory 63(8), 5404–5418 (2017)

14. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. IEEE Trans. Inform. Theory 63(1), 404–427 (2017)

15. Drodz, Y.A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer, Heidelberg
(1994). Original Russian edition published by: Publisher of Kiev State University,
Kiev 1980, Translated by V. Dlab

16. Friedl, K., Rónyai, L.: Polynomial time solutions of some problems of compu-
tational algebra. In: Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC 1985, pp. 153–162. Association for Computing
Machinery, New York (1985). https://doi.org/10.1145/22145.22162

17. Gabidulin, E., Rashwan, H., Honary, B.: On improving security of GPT cryptosys-
tems. In: Proceedings of the IEEE International Symposium Information Theory
- ISIT, pp. 1110–1114. IEEE (2009)

18. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

19. Gabidulin, E.M.: Public-key cryptosystems based on linear codes over large alpha-
bets: efficiency and weakness. In: Farrell, P.G. (ed.) 4th IMA Conference on Cryp-
tography and Coding, the Institute of Mathematics and its Applications, pp. 17–31
(1993)

20. Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosys-
tem. Des. Codes Cryptogr. 48(2), 171–177 (2008)

21. Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. Elec-
tron. Notes Discret. Math. 6, 168–177 (2001). https://doi.org/10.1016/S1571-
0653(04)00168-4

22. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

23. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and
their application to cryptography. In: Proceedings of the Workshop on Coding and
Cryptography WCC 2013, Bergen, Norway (2013). www.selmer.uib.no/WCC2013/
pdfs/Gaborit.pdf

https://doi.org/10.1109/ISIT.2017.8006545
https://doi.org/10.1007/978-3-030-81293-5_1
https://doi.org/10.1007/978-3-030-81293-5_1
https://hal.archives-ouvertes.fr/AECF/
https://hal.archives-ouvertes.fr/hal-02997801
https://doi.org/10.1145/22145.22162
https://doi.org/10.1016/S1571-0653(04)00168-4
https://doi.org/10.1016/S1571-0653(04)00168-4
https://doi.org/10.1007/3-540-46416-6_41
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf

36 A. Couvreur and I. Zappatore

24. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inform. Theory 62(2), 1006–1019 (2016)

25. Ghatak, A.: Extending Coggia-Couvreur attack on Loidreau’s rank-metric cryp-
tosystem. Des. Codes Cryptogr. 90, 215–238 (2022)

26. Gibson, K.: Severely denting the Gabidulin version of the McEliece public key
cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)

27. Gibson, K.: The security of the Gabidulin public key cryptosystem. In: Maurer,
U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 19

28. Goss, D.: Basic Structures of Function Field Arithmetic, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 35. Springer, Berlin (1996)

29. Kadir, W.K., Li, C.: On decoding additive generalized twisted Gabidulin codes.
Cryptogr. Commun. 12(5), 987–1009 (2020). https://doi.org/10.1007/s12095-020-
00449-9

30. Kadir, W.K., Li, C., Zullo, F.: On interpolation-based decoding of a class of max-
imum rank distance codes (2021). https://arxiv.org/abs/2105.03115

31. Li, C.: Interpolation-based decoding of nonlinear maximum rank distance codes.
In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2054–
2058 (2019). https://doi.org/10.1109/ISIT.2019.8849472

32. Li, C., Kadir, W.K.: On decoding additive generalized twisted Gabidulin codes. In:
Proceedings of the International Workshop on Coding and Cryptography, WCC
2019 (2019)

33. Loidreau, P.: A Welch–Berlekamp like algorithm for decoding Gabidulin codes. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg
(2006). https://doi.org/10.1007/11779360 4

34. Loidreau, P.: Designing a rank metric based McEliece cryptosystem. In: Sendrier,
N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12929-2 11

35. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–
116. Jet Propulsion Lab (1978). dSN Progress Report 44

36. Ore, Ø.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584
(1933)

37. Otmani, A., Talé-Kalachi, H., Ndjeya, S.: Improved cryptanalysis of rank metric
schemes based on Gabidulin codes. CoRR abs/1602.08549 (2016). http://arxiv.
org/abs/1602.08549

38. Ourivski, A.V., Gabidulin, E.M.: Column scrambler for the GPT cryptosystem.
Discret. Appl. Math. 128(1), 207–221 (2003). International Workshop on Coding
and Cryptography (WCC 2001)

39. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vau-
denay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554868 5

40. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptol. 21(2), 280–301 (2008)

41. Pham, B., Loidreau, P.: An analysis of Coggia-Couvreur attack on Loidreau’s
rank-metric public-key encryption scheme in the general case. In: Twelfth Inter-
national Workshop on Coding and Cryptography, WCC 2022 (2022). https://
www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/
WCC 2022 paper 38.pdf

https://doi.org/10.1007/3-540-68339-9_19
https://doi.org/10.1007/s12095-020-00449-9
https://doi.org/10.1007/s12095-020-00449-9
https://arxiv.org/abs/2105.03115
https://doi.org/10.1109/ISIT.2019.8849472
https://doi.org/10.1007/11779360_4
https://doi.org/10.1007/978-3-642-12929-2_11
http://arxiv.org/abs/1602.08549
http://arxiv.org/abs/1602.08549
https://doi.org/10.1007/11554868_5
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_38.pdf
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_38.pdf
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_38.pdf

An Extension of Overbeck’s Attack with an Application to Cryptanalysis 37

42. Puchinger, S., Rosenkilde né Nielsen, J., Sheekey, J.: Further generalisations of
twisted Gabidulin codes. In: Workshop on Coding Theory and Cryptography, WCC
2017 (2017). https://arxiv.org/abs/1703.08093

43. Puchinger, S., Renner, J., Wachter-Zeh, A.: Twisted Gabidulin codes in the GPT
cryptosystem (2018). http://arxiv.org/abs/1806.10055

44. Randrianarisoa, T.: A decoding algorithm for rank metric codes. Preprint (2017).
https://arxiv.org/abs/1712.07060

45. Randrianarisoa, T., Rosenthal, J.: A decoding algorithm for twisted Gabidulin
codes. In: 2017 IEEE International Symposium on Information Theory, pp. 2771–
2774 (2017). https://doi.org/10.1109/ISIT.2017.8007034

46. Rashwan, H., Gabidulin, E., Honary, B.: Security of the GPT cryptosystem and
its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)

47. Rónyai, L.: Computing the structure of finite algebras. J. Symb. Comput. 9(3),
355–373 (1990)

48. Sheekey, J.: A new family of linear maximum rank distance codes. Adv. Math.
Commun. 10(3), 475–488 (2016)

https://arxiv.org/abs/1703.08093
http://arxiv.org/abs/1806.10055
https://arxiv.org/abs/1712.07060
https://doi.org/10.1109/ISIT.2017.8007034

Cryptanalysis of Rank-Metric Schemes
Based on Distorted Gabidulin Codes

Pierre Briaud1,2(B) and Pierre Loidreau3

1 Sorbonne Universités, UPMC Univ Paris 06, Paris, France
2 Inria, Team COSMIQ, Paris, France

pierre.briaud@inria.fr
3 DGA and IRMAR, Univ. Rennes, Rennes, France

pierre.loidreau@univ-rennes.fr

Abstract. In this work, we introduce a new attack for the Loidreau
scheme [PQCrypto 2017] and its more recent variant LowMS. This attack
is based on a constrained linear system for which we provide two solving
approaches:

– the first one is an enumeration algorithm inspired from combinato-
rial attacks on the Rank Decoding (RD) Problem. While the attack
technique remains very simple, it allows us to obtain the best known
structural attack on the parameters of these two schemes.

– the second one is to rewrite it as a bilinear system over Fq. Even if
Gröbner basis techniques on this second system seem infeasible, we
provide a detailed analysis of the first degree fall polynomials which
arise when applying such algorithms.

1 Introduction

The idea of building rank-metric cryptography relying on Gabidulin codes is
over 30 years old. It dates back to the seminal GPT scheme [15]. The initial goal
of Gabidulin was to use the properties of the rank metric in order to propose
a scheme with a public-key size one order of magnitude smaller than that of
the original McEliece cryptosystem [20]. However, this proposal and following
variants have suffered structural attacks [22] tending to show that masking these
codes is difficult.

The Loidreau cryptosystem introduced in [19] is based on a different type
of masking. Along with the LowMS variant [1], it is arguably one of the few
reparations which resists cryptanalysis for well-chosen parameters.

On the one hand, this scheme offers nice features compared to other modern
PKEs and especially to those proposed at the NIST post-quantum standardiza-
tion process. First, decryption is deterministic. Second, regarding performance,
the key is between one and two orders of magnitude smaller than that of non-
structured Hamming-based cryptosystems. It even favorably compares with that
of PKEs based on unstructured lattices. Similarly, the ciphertext is small com-
pared to that of unstructured lattice proposals and it compares favourably with
that of structured lattices.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 38–56, 2023.
https://doi.org/10.1007/978-3-031-40003-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_2

Cryptanalysis of Rank-Metric Schemes 39

On the other hand, its security analysis is not yet sufficiently stabilized. This
is mainly due to the new type of masking, which calls for assessing the difficulty
of distinguishing the public code from a random one. This code is a Gabidulin
code distorted with a non-singular matrix with coefficients in a small-dimensional
secret subspace of Fqm . A conjecture was made in [19] concerning the complexity
of solving the problem, for parameters not impacted by the Coggia-Couvreur
attack.

Contributions. First, we improve upon the enumeration approach of Loidreau
presented as an extended abstract at the WCC 2022 conference. We adapt tech-
niques from combinatorial attacks on RD [2] showing that it is more efficient to
enumerate over vector spaces of larger dimension than that of the original secret
subspace. This allows us to obtain the best complexity for this type of technique.

Second, we propose an algebraic approach to find a distinguisher by modeling
the original problem as a bilinear system over Fq. Even if the solving by Gröbner
bases does not seem promising from our experiments, we manage to analyze
precisely the first steps of the computation. In particular, we show that there
exist degree falls of the same nature as in [4,6] due to the specific structure of
the system.

2 Preliminaries on the Rank Metric

Rank-metric cryptography relies on codes which are Fqm-linear, where Fqm is an
extension of degree m over Fq. In this context, the rank (or weight) of a vector
a = (a1, . . . , an) ∈ F

n
qm denoted by Rk(a) is the dimension of the Fq-subspace of

Fqm generated by the components of a, i.e.,

Rk(a)
def
= dim〈a1, . . . , an〉Fq

.

Gabidulin codes were first constructed by Delsarte as extremal object in Bose-
Mesner algebra [10]. Some years later, Gabidulin presented an algebraic theory
as well as a polynomial-time decoding algorithm [14]. These codes can be viewed
as analogues of Reed-Solomon codes in the rank metric, where polynomials are
replaced by linearized polynomials.

Notation 1 In the whole paper, we will denote by (ai,j)1≤i≤nr,1≤j≤nc
the nr×nc

matrix whose entry in row i and column j is equal to ai,j for i ∈ {1..nr} and
j ∈ {1..nc} or simply (ai,j) when the sizes are already clear from the context.

Definition 1 For integers k ≤ n ≤ m, let g = (g1, . . . , gm) ∈ F
n
qm such that

Rk(g) = n. The k-dimensional Gabidulin code with support vector g, denoted
Gk(g), is the Fqm-linear code generated by the matrix (g[i−1]

j)1≤i≤k,1≤j≤n, where

[i]
def
= qi.

Finally, the following proposition shows that the dual of a Gabidulin code is a
Gabidulin code.

40 P. Briaud and P. Loidreau

Proposition 1 ([14]) Let Gk(g) ⊂ F
n
qm , then there exists h ∈ F

n
qm of rank n

such that Gn−k(h) = Gk(g)⊥ for the usual scalar product in Fqm

3 Loidreau Cryptosystem

The Loidreau scheme was introduced in [19] with q = 2 but it can be declined
for any prime power q. For positive integers m, n and an Fq-vector space A, let
Mm,n(A) be the vector space of matrices of size m×n with entries in A and let
GLn(Fqm) be the group of non-singular matrices of size n with entries in Fqm .

3.1 Description of the Scheme

The parameters are integers k ≤ n ≤ m related to the underlying Gabidulin
code as well as λ ∈ N related to the masking. The value of λ is chosen such that
λ < �(n − k)/2� for correctness and λ ≥ 3 to avoid the polynomial attack of
[8]. The three standard building blocks of a public encryption scheme are the
following:

KeyGen(1ν)

1. Construct G ⊂ F
n
qm a k-dimensional Gabidulin code.

2. Pick G ∈ Mk,n(Fqm) random in the set of full-rank generator matrices for
G. A usual way to do it is to choose a matrix under canonical form, say the
one given by Definition 1 and then multiply on the left by a randomly chosen
matrix in GLk(Fqm).

3. Pick V ⊂ Fqm a random λ-dimensional Fq-subspace of Fqm .
4. Pick P a random element in GLn(Fqm) ∩ Mn,n(V).
5. return Gpub = GP−1 and sk = (G,P).

Let p ∈ F
k
qm be the plaintext to be encrypted.

Encrypt(p,Gpub)

1. Pick e ∈ F
n
qm such that Rk(e) ≤ �(n − k)/2λ�.

2. return c = pGpub + e.

Decrypt(c,sk)

– return Decode(cP,G), where Decode(∗,G) stands for any decoding algo-
rithm for a Gabidulin code with generator matrix G decoding up to the
error-correcting capability �(n − k)/2�.

Cryptanalysis of Rank-Metric Schemes 41

3.2 Security

Let Cpub ⊂ F
n
qm be the Fqm-linear code of dimension k generated by the public

matrix Gpub. The IND-CPA security of the scheme is related to the difficulty of
solving the two following problems:

– Distinguish the code Cpub from a random Fqm -linear code with the same
parameters.

– Solve a generic instance of the Rank Decoding problem whose parameters are
(m,n, k, t

def
= �(n − k)/(2λ)�).

In addition to these assumptions, note that LowMS also relies on the Rank
Support Learning problem [16].

We address the hardness of the first problem which is used in both [1,19].
We even go further since we provide an attack enabling to decrypt. For these
schemes, our work also shows that the Gabidulin code itself can be considered as
a parameter (meaning that G generating G is public) without security loss. This
leads to a simplification of the key-generation procedure that can be rewritten
as

KeyGen()

1. Pick V ⊂ Fqm a random λ-dimensional Fq-subspace of Fqm .
2. Pick P randomly in GLn(Fqm) ∩ Mn,n(V).
3. return Gpub = pk = GP−1 and sk = P.

4 A Constrained Linear System for Decryption

In this section, we introduce a constrained linear system (Proposition 3) whose
solution allows to devise a polynomial time decryption algorithm for the public
code Cpub. Note that this trivially implies that one has designe a distinguisher
for the public code. The issue of solving this system will be addressed in the
next sections in two different ways.

Let r
def
= n − k. In the following, we overline with a hat data known to

an attacker. For instance, let ̂Hpub ∈ Mr,n(Fqm) an arbitrary parity-check
matrix for Cpub and for α ∈ Fqm a normal element, let ̂Hnorm be the matrix
(α[i+j−2])1≤i≤r,1≤j≤m. Note that

̂A def
= {α[i], i = 0, . . . , m − 1}

is a basis of Fqm over Fq. From Proposition 1, there exists a vector h ∈ F
n
qm such

that H
def
=

⎛

⎜

⎝

h[0]

...
h[r−1]

⎞

⎟

⎠ ∈ Mr,n(Fqm) is a parity-check matrix for the Gabidulin

42 P. Briaud and P. Loidreau

code G. Then, it is easy to see that there exists a unique S ∈ GLr(Fqm) such
that

S ̂Hpub = HPt. (1)

We indeed have HPtGt
pub = HPt(Pt)−1Gt = HGt = 0, so that HPt is a

parity-check matrix for Cpub. Finally, any parity-check matrix and, a fortiori,
̂Hpub, is obtained with a basis transformation induced by a non-singular matrix
over Fqm . Another straightforward proposition is

Proposition 2 Let H be a parity check matrix for G under canonical form.
There exists a q-ary matrix M ∈ Mm,n(Fq) of rank n such that

H = ̂HnormM.

Proof. Let h = (h1, . . . , hn) be the first row of H. We consider the matrix M
whose i-th column corresponds to the m-dimensional q-ary vector formed by
the coordinates of hi in the basis ̂A, for 1 ≤ i ≤ n. By construction we have
H = ̂HnormM and moreover h1, . . . , hn are linearly independent over Fq by
construction of Gabidulin codes. This shows that M has full rank.

Now Eq. (1) can be rewritten as

S ̂Hpub = ̂HnormT, (2)

where the matrix T
def
= MPt is full rank in Vm×n since M is a q-ary matrix of

full rank n and since P ∈ GLn(V). Finally, the following proposition shows that
any solution to the constrained linear system described by (2) indeed yields a
polynomial-time decryption algorithm.

Proposition 3 Let r = n−k and let ̂Hpub be a parity-check matrix for Cpub. Let
α ∈ Fqm be a normal element and let ̂Hnorm be the matrix (α[i+j−2])1≤i≤r,1≤j≤m.
From the knowledge of any non-singular matrix V ∈ Mr×r(Fqm) and W ∈
Mm×n(W) of rank n such that

V ̂Hpub = ̂HnormW (3)

and where W is Fq-vector subspace of Fqm of dimension ≤ λ, it is possible to
decrypt any ciphertext in polynomial time.

Proof. Recall that a ciphertext is c = p · Gpub + e ∈ F
n
qm , where Rk(e) =

�(n − k)/(2λ)�. Thus ̂Hpubct = ̂Hpubet and

V ̂Hpubet = ̂Hnorm Wet
︸︷︷︸

e′t

.

Since W has dimension ≤ λ, this implies that and Rk(e′) ≤ λRk(e) ≤ �(n −
k)/2�. Therefore by decoding in the public Gabidulin code with parity-check
matrix ̂Hnorm, one recovers e′t = Wet. Since W has rank n ≤ m, e �→ Wte is
one-to-one and e can be uniquely recovered. The vector p such that p · Gpub =
c − e can also be uniquely recovered. ��

Cryptanalysis of Rank-Metric Schemes 43

To conclude this section, note that a first naive solving approach would be to
enumerate all solutions (V,W) ∈ Mr×r(Fqm) × Mm×n(Fqm) to (3) and to
test if they satisfy the constraint, i.e., the W matrix has its entries in a small
dimensional Fq-vector subspace of Fqm . Even if one takes into account the fact
that there may be multiple possibilities, this effort lies beyond the capacities of
any computer even for moderate parameters. Indeed, a first difficulty is that the
solution space to (3) is an Fqm-vector space of dimension at least r2 + (m − r)n
without the imposed condition.

5 Combinatorial Approach

A first idea to take advantage of this extra information is to enumerate candi-
date bases μ ∈ F

λ
qm for the secret vector space V. Any such candidate is then

completed into a basis of Fqm in which we express the coefficients of V and W
in order to write down the linear system (3) over Fq. We assume that each entry
in W belongs to the Fq-vector space spanned by μ and thus we introduce only
λmn unknowns over Fq instead of m2n for this matrix. Since we typically have
rmn � λmn + mr2, this initial guess can be tested by solving the resulting
linear equations over Fq to check if they have a non-zero solution. As is usual
for this type of approach, the total cost contains two factors:

– an exponential one coming from enumerating the bases;
– a polynomial one which corresponds to the linear system solving over Fq.

Proposed Algorithm. We can in fact obtain a better exponential factor by
relying on the same techniques as used in combinatorial attacks on the Rank
Decoding problem [2,17,21]. The rationale is that it is enough to know (a basis
for) a γ-dimensional vector space U which contains V for γ ≥ λ to apply the same
algorithm, provided that γ is not too large. The advantage is that it is always
easier to find such a U than to guess a basis of V directly, the extreme case being
γ = m for which we succeed with probability 1. Here, we even note that a vector
space U which contains an arbitrary multiple xV for x ∈ F

∗
qm instead of simply

V is enough for our purposes. This is because any pair (xV , xW) is a solution to
the constrained linear system. The following Proposition 4 gives the condition
on γ for our attack to succeed.

Proposition 4 Assume that γ ≥ λ ∈ N is such that

rn ≥ γn + r2. (4)

If ν ∈ F
γ
qm is a basis for a vector space U which contains a multiple xV for

x ∈ F
∗
qm , the linear system over Fq derived from (3) by writing the coefficients

of the secret matrix W in the basis ν is expected to have a solution space of
dimension 1. If ν does not correspond to such a basis, this linear system will not
have a non-zero solution with overwhelming probability.

From this proposition, we can then use the same algorithm as sketched at the
beginning of Sect. 5 with γ instead of λ provided that γ ≤ r(1 − r/n).

44 P. Briaud and P. Loidreau

Estimated Cost. The exponential factor of this approach is given by the inverse
of the probability that a fixed subspace U of dimension γ contains a subspace
of the form xV for some x ∈ F

∗
qm . According to [2, B.], it can be estimated by

qm−λ(m−γ) = q−(λ−1)m+λγ . We assume that the optimal complexity corresponds
to the optimal exponential factor and thus we consider the highest possible value
for γ. By Eq. (4), this leads to choose γ

def
= �r(1 − r/n)�.

The linear system solving step can be performed by applying Gaussian elim-
ination on a matrix of size rnm × (γn + r2)m over Fq. The corresponding cost
in Fq-operations can be estimated by O((γn + r2)m)ω), where ω is the linear
algebra constant. However, checking that a linear system is consistent does not
require to compute a row echelon form. We can actually apply the Wiedemann
algorithm [9], which may offer an advantage since the input matrix is sparse.
Indeed, equations have weight m(r+γ) but they contain m(r2+γn) � m(r+γ)
unknowns. In particular, we lower bound the complexity of linear algebra by
considering the cost of computing the kernel of a sparse square matrix of size
m(γn + r2) corresponding to the number of unknowns with a number of non-
zero coefficients roughly equal to m2(r+γ)(γn+r2). An estimation of this lower
bound is

m3(r + γ)(γn + r2)2 > m3r5

q-ary operations. Recalling that r = n − k and by introducing the code rate
R

def
= k/n, a lower bound of the overall complexity of this precise attack is then

given by
WSpec Inf = m3(n − k)5q(λ−1)m−λ�n(1−R)R�. (5)

Application to Some Parameters. Finally, we instantiate our bound with the
parameters of the WCC 2022 abstract and the ones of LowMS [1]. We believe
that the comparison is fair since they have been obtained from the content
the abstract. In Table 1, column Lower bound contains the value of the binary
logarithm of the cost of Eq. (5). Our results always improve the cost of the best
structural attack. If it becomes below the one of attacks on RD, this might lead
to re-evaluate parameters in [1,19].

Table 1. Cost estimate on former parameters.

(m, n, k, λ) Security Source Lower bound Former

(128, 128, 20, 3) 128 WCC 2022 263 311

(128, 128, 44, 3) 128 WCC 2022 225 308

(59, 50, 25, 3) 128 LowMS 123 158

(67, 66, 33, 4) 128 LowMS 180 244

(83, 74, 37, 3) 192 LowMS 157 211

(79, 78, 39, 4) 192 LowMS 206 282

Cryptanalysis of Rank-Metric Schemes 45

Note however that we do not claim that the lower bound is on all possible
algorithms which would solve the same problem. The lower bound in our case
only deals with the linear algebra part when using Wiedemann’s algorithm. It
is a lower bound relatively to the state of the art of research in this field.

6 A Bilinear System

Instead of guessing a basis for V or for a vector space which contains it as
in Sect. 5, our second approach consists in solving a bilinear system over Fq

(System 1). These former quantities attached to V still appear in the system
as an unknown block of variables but we will not fix them in the first place.

Let ̂B denote an arbitrary basis of Fqm over Fq. For an element a ∈ Fqm , we
consider �a the m-dimensional vector of its coordinates over ̂B, so that ̂B�a = a.
For μ ∈ Fqm , we also define Mμ ∈ Mm×m(Fq) the matrix of the multiplication
by μ in the basis ̂B. This matrix is such that

∀a, b ∈ Fqm , b = μa, then �b = Mμ�a.

The claimed bilinear system is as follows:

System 1 Let ̂Hpub = (̂hij) and let ̂Hnorm = (α[i+j−2]). We consider the bilin-
ear system over Fq in the non-zero unknowns �viu, b

(�)
ij and linearly independent

�μ� ∈ F
m
q , whose equations are given by

∀
{

i ∈ {1..r}
j ∈ {1..n} ,

r
∑

u=1

M
̂huj

�viu =
m,λ
∑

u=1,�=1

b
(�)
uj Mα[i+u−2] �μ�. (6)

System 1 contains mrn affine equations over Fq. The linear parts involve mr2

variables �viu while the bilinear parts involve λmn + λm variables b
(�)
uj and �μ�

respectively. Proposition 5 states that the solutions to this system are actually
equivalent to the ones of the constrained linear equations (3).

Proposition 5 Let ˜V = (vij) ∈ Mr×r(Fqm) and ˜W = (wij) ∈ Mm×n(Fqm)
which satisfy the constrained linear equations (3) and let W a1 λ-dimensional
subspace of Fqm which contains the entries of ˜W. Let (μ1, . . . , μλ) ∈ F

λ
qm be a

basis for W and

wij
def
=

λ
∑

�=1

b
(�)
ij μ� (7)

be the unique decomposision of wij in this basis. Then �viu ∈ F
m
q , b

(�)
ij and �μ�

are a solution to System 1. Conversely, any solution �viu, b
(�)
ij , �μ� to System 1

gives a pair of matrices ˜V = (vij), ˜W = (wij) solution to the constrained linear
equations (3), where wij is defined by Eq. (7).

1 Concretely, “the”.

46 P. Briaud and P. Loidreau

If (V ,W) stands for the genuine couple of matrices which is implicit from the

description of the scheme, we have already mentioned that any (˜V , ˜W)
def
=

(xV , xW) for x ∈ F
∗
qm allows to decrypt. Concretely, to reduce the number of

solutions to System 1, we will thus:

– fix μ1 to 1 and choose a basis ̂B such that b̂1 = 1;
– target a basis in systematic form, i.e.,

(1, μ2, . . . , μλ)T
def
=

⎛

⎝

01×(m−λ)

Iλ

R′

⎞

⎠ ̂BT, (8)

where R′ ∈ M(λ−1)×(m−λ)(Fq). We cannot always guarantee to have a solu-
tion in this way but the success probability is constant.

Note that similar strategies to fix variables had already been suggested in pre-
vious works, see for instance [7, §3.4] or [21, §3.1].

Solving by Gröbner Bases. To solve System 1, one may be tempted to use
Gröbner basis techniques [11–13]. However, our practical experiments for this
method were not conclusive. A reason is that there is a great imbalance between
the two blocks of variables �μ� and b

(�)
ij since (λ − 1)(m − λ) � mnλ. This also

explains why it was quite natural in Sect. 5 to proceed by enumeration on the
smallest block �μ� (corresponding to an unknown basis for V) in order to obtain
linear equations.

7 Tools to Analyze System 1

Even if the Gröbner basis approach seems infeasible, this section gives some back-
ground to partially explain the early steps of such an algorithm. More specifically,
in Sect. 8, we will characterize the first degree fall polynomials (see Definition 2)
which arise in the computation.

Gröbner basis solvers [11–13] had already been analyzed by [13] in the con-
text of generic bilinear systems. However, in our case, we need to use the fact
that System 1 admits a much stronger structure than being merely bilinear.
It turns out that its analysis is much closer to the one performed in [4,23] on
bilinear modelings of MinRank and of the Rank Decoding problem. Indeed, a
common feature in such systems is that the equations can be viewed as the
entries of a matrix M = AXY , where A is a matrix of scalars and where X
and Y are matrices of unknowns x and y respectively. It is easy to see that our
equations exhibit a similar shape. Using the notation from System 1, we can
indeed write each column wj = (w1,j , . . . , wm,j) ∈ F

m
qm of the unknown W as

wT
j = Cj(μ1, . . . , μλ)T = CjR ̂BT, where Cj

def
= (b(�)i,j)1≤i≤m,1≤�≤λ and where

the rows of R ∈ Mλ×m(Fq) are the �μ�’s for 1 ≤ � ≤ λ. We then obtain

Cryptanalysis of Rank-Metric Schemes 47

System 0 For j ∈ {1..n}, let ̂hj ∈ F
r
qm denote the j-th column in ̂Hpub. There

are r bilinear equations in the entries of ˜V , R and Cj from the equality

˜V ̂hj

T
= ̂HnormCjR ̂BT. (9)

By considering all columns, we obtain an affine bilinear system with

– rn equations over Fqm .
– r2 unknowns vij over Fqm and λmn + λm unknowns over Fq.

Note that System 1 captures exactly the same information as the system over
Fq obtained from System 0 by taking as unknowns the �viu’s instead of the vij ’s
and then by projecting over the base field. We may adopt the latter for the
theoretical analysis since it is more convenient.

7.1 Algebraic Background

Let us start with some necessary facts on Gröbner bases techniques applied to
bilinear systems.

Syzygies and Degree Falls. For a polynomial sequence F = (f1, . . . , fM),
a syzygy is a polynomial combination

∑M
i=1 gifi = 0. Its degree is defined by

maxM
i=1 (deg(gifi)). In our systems, recall that any polynomial is of the form fi =

bi + li where bi is bilinear and li is linear. In particular, a syzygy
∑M

i=1 gibi = 0 of
degree d for (b1, . . . , bM) typically yields an equation

∑m
i=1 gifi =

∑M
i=1 gili = 0

of degree d − 1 in the ideal. This is a particular case of

Definition 2 (Degree fall polynomial) A degree fall polynomial for a
sequence F = (f1, . . . , fM) is a non-zero polynomial combination

∑M
i=1 gifi

whose degree δ is strictly less than d
def
= maxM

i=1 (deg(gifi)). We may also refer
to it as a degree fall from degree d to degree δ.

Such an equation will be meaningful if and only if it is not a linear combination
between previously considered equations of degree ≤ d−1. Some actually prefer
to include this extra constraint already in Definition 2. Degree fall polynomials
for affine systems play a similar role to that of syzygies for homogeneous equa-
tions. Their study is thus instrumental to understand the complexity of solving
such affine equations.

Bilinear Systems [13]. Let B = (b1, . . . , bM) ⊂ F[x,y] be the homogeneous
bilinear sequence in two blocks of variables x and y over a field F which contains
the degree 2 parts of an affine bilinear sequence F . As we have just said, degree
fall polynomials for F are directly related to syzygies for B. Let us now consider
the Jacobian matrices which are defined by

Jacx(S)
def
=

(

∂bi

∂xj

)

1≤i≤M, 1≤j≤nx

48 P. Briaud and P. Loidreau

and

Jacy (S)
def
=

(

∂bi

∂yj

)

1≤i≤M, 1≤j≤ny

.

Their entries are linear forms in F[y] and F[x] respectively. The study of these
Jacobians is motivated by the following Lemma 1, which states that generic
syzygies for S are provided by vectors in the left kernel of these matrices.

Lemma 1 Let S def
= (b1, . . . , bM) ⊂ F[x,y] be a homogeneous bilinear sequence

and let G def
= (g1, . . . , gM) ⊂ F[y]M be a polynomial sequence. We have

∑M
i=1 gibi = 0 if and only if G belongs to the left kernel of Jacx(S).

Proof. Let G = (g1, . . . , gM) be an arbitrary polynomial sequence. Since we have

GJacx(S)xT =
∑M

i=1 gibi,

we obtain a syzygy from any kernel vector of Jacx(S). The converse statement
is only valid for G ⊂ F[y]M . For such a vector of polynomials, the product by
Jacx(S) is still a row vector of elements in F[y]. The only possibility for it to be
0 when multiplied by xT is that it is already 0, i.e., G ∈ ker (Jacx(S)). ��
The following Lemma 2 gives kernel vectors for these Jacobian matrices regard-
less of their structure.

Lemma 2 (Lemma 3.1 in [13]) Let M ∈ MM×t(F[y]) be a matrix whose
entries are linear forms with t < M . Let

V J
def
= (. . . , 0

︸︷︷︸

j /∈J

, . . . , (−1)�+1|M |J\j�,∗
︸ ︷︷ ︸

j=j�

, . . .),

where J = {j1 < · · · < jt+1} ⊂ {1..M}. These vectors are such that V JM = 0.

Generically, the vectors V J generate the left kernel of such a matrix M , see
for instance [13, Conjecture 4.1]. Also, for a bilinear random S, the entries of
the matrix Jacx(S) are random linear forms in F[y]. Lemma 2 was thus used
in [13] to have a complete description of its left kernel. Based on this result,
they show that the degree of regularity of a generic bilinear system is such that
dreg ≤ min(nx + 1, ny + 1).

However, the bilinear equations relevant to us are not generic and we will
have to analyze the structure of the Jacobians.

A Useful Lemma. Consider a matrix equation M = AXY ∈ Mp×n(F[x,y])
as in the beginning of this section, where A ∈ Mp×m(F) is a matrix of scalars
and where X ∈ Mm×r(F[x]) and Y ∈ Mr×n(F[y]) are matrices of unknowns x
and y respectively. Let us define the row vector

(

M{1},∗ . . . M{m},∗
)

formed by

the concatenation of the rows of M and similarly col(M)
def
= row(MT). Then

we have the following lemma

Cryptanalysis of Rank-Metric Schemes 49

Lemma 3 The Jacobian matrix of a system AXY = 0p×n with respect to the
x variables is given by

Jacrow(X) (row(AXY)) = A ⊗ Y T ∈ Mnp×mr(F[y]),

Jaccol(X) (col(AXY)) = Y T ⊗ A ∈ Mnp×mr(F[y]).

Proof. See [4, Lemma 1]. ��

7.2 Understanding the Projection Over Fq

In addition to the matrix product structure, another particularity comes from
the extension field. Indeed, recall that System 1 can be seen as the projection
over Fq of System 0 whose equations have coefficients in Fqm but where the
variables involved in the bilinear parts belong to Fq. In that respect, this system
is obtained in the exact same manner as in [3,4,6] which aim at solving the Rank
Decoding Problem and the Rank Support Learning Problem.

In the case of [3,4,6], the analysis of the full system over Fq can be boiled
down to the one of the initial system over Fqm . On our side, however, the situation
is less simple. For instance, it is not sufficient to analyze System 0 to understand
the computation on System 1 over Fq. This might be due to the following simple
fact: by choosing ̂B = A = {1, α[1], . . . , α[m−1]} to express System 0, we actually
recover the first row of ̂Hnorm. This gives another interesting property which was
not present in [3,4,6].

As explained after the definition of System 0, projecting this system yields
equations over Fq which generate the same system as System 1. Let us denote
by {b1, . . . , bm} the set of m equations over Fq obtained by projecting the bilinear
part b of an equation of System 0. Also, let us extend the Frobenius map to
polynomials by reducing modulo the field equations of the small field since all
variables belong to Fq, namely b[�]

def
= bq�

mod 〈xq
i − xi〉i. For a matrix M =

(mij) over Fqm (or over a polynomial ring with base field Fqm), we also denote

by M [�] the matrix
(

m
[�]
ij

)

. Finally, in our analysis, we will use the fact that the

algebraic properties2 of both sequences (b1, . . . , bm) and (b, . . . , b[m−1]) are the
same. In particular, it will be relevant to consider the following System 2 which
is equivalent to System 1.

System 2 For j ∈ {1..n}, let ̂hj ∈ F
r
qm denote the j-th column in ̂Hpub. For any

0 ≤ � ≤ m − 1, we consider the r equations obtained by applying the Frobenius �
times on Eq. (9). They are given by

V [�]

(

̂

hj
[�]

)T

= ̂H[�]
normCjR

(

̂B[�]
)T

. (10)

2 Syzygies, etc.

50 P. Briaud and P. Loidreau

We stress that System 2 has essentially a theoretical value. In particular, it
would not be suitable to solve it by using naive Gröbner basis algorithms since
the equations have very high degree in the vi,j variables.

8 Degree Fall Polynomials from Jacobians

This final section aims at studying the Jacobians associated to the bilinear parts
of our equations. We will show in Lemma 4 and Lemma 5 that their kernels
provide two types syzygies in degree λ + 2, hence degree fall polynomials of
degree λ+1 for the original affine equations. Moreover, our experiments suggest
that these are the only ones at this degree and that these are the first, i.e., no
one appear at a lower degree.

Interestingly enough, we do not need to wait the degree λ+2 step of a Gröbner
basis algorithm on System 0 or System 1 for a graded order to obtain these
polynomials. They can indeed be pre-computed as maximal minors of public
matrices of linear forms. In that respect, the situation is quite similar to the
one of algebraic attacks on the Rank Decoding problem [4–6,21]. For instance,
the so-called MaxMinors equations introduced in [4] were originally obtained as
degree fall polynomials for the former bilinear modeling of Ourivski-Johansson
[21] but they can also be computed directly.

For the sake of simplicity, we give the results for the non-specialized version
of our systems. They can be easily adapted if we fix μ1 to 1 and if we choose a
matrix R in systematic form as presented above.

8.1 Jacobian with Respect to the R Variables

We start from the Jacobian matrices with respect to the block of R variables.
We will see that their structure is similar to the one encountered in [4, §5.1]. As
in their work, we also observed that all degree falls over Fq from these matrices
were obtained by projecting over Fq degree fall polynomials whose coefficients
are in Fqm . This means that we can focus on System 0 rather than on System
1 for this part of the analysis, the situation being different in Sect. 8.2.

If we restrict ourselves to the bilinear parts in System 0, a direct application
of Lemma 3 for 1 ≤ j ≤ n with X

def
= R, A

def
= ̂HnormCj and Y

def
= ̂BT yields

Jacrow(R)(row(̂HnormCjR ̂BT)) = ̂HnormCj ⊗ ̂B. (11)

The full system can also be viewed as the following matrix product

(

In ⊗ ̂Hnorm

)

⎛

⎜

⎝

C1

...
Cn

⎞

⎟

⎠ R ̂BT,

Cryptanalysis of Rank-Metric Schemes 51

and thus we obtain in the same manner

Jacrow(R)

⎛

⎜

⎝

(

In ⊗ ̂Hnorm

)

⎛

⎜

⎝

C1

...
Cn

⎞

⎟

⎠ R ̂BT

⎞

⎟

⎠

=

⎛

⎜

⎝

̂HnormC1

...
̂HnormCn

⎞

⎟

⎠ ⊗ ̂B. (12)

Recall from Lemma 1 that the kernel of such Jacobians provides syzygies for
the bilinear parts whose coefficients are polynomials in the Cj variables. In our
case, we can obtain

Lemma 4 In System 0, there are at least
(

nr
λ+1

)

degree falls from degree λ + 2
to λ + 1. Indeed, some of them are already given by the maximal minors of the
matrix

M def
=

⎛

⎜

⎜

⎝

˜V ̂h1

T
̂HnormC1

...
˜V ̂hn

T
̂HnormCn

⎞

⎟

⎟

⎠

. (13)

Among these equations, we may find in particular the maximal minors of the
matrix

Mj
def
= M{1+r(j−1)..rj},∗ =

(

˜V ̂hj

T
̂HnormCj

)

, (14)

for 1 ≤ j ≤ n.

Even before giving the proof of Lemma 4, it is easy to see from Eq. (9) that all
Mj matrices are not full-rank (a fortiori, M) if and only if (˜V ,C1, . . . ,Cn) are
components of a solution to System 0.

Proof. (Analogous to [4]). We do the proof for a single matrix Mj . Using Eq.
(11), it is sufficient to look at the left kernel of ̂HnormCj . We then compute the
kernel vectors V J of Lemma 2 for this matrix of linear forms, namely

V J
def
=

⎛

⎜

⎜

⎜

⎝

0
︸︷︷︸

j /∈J

, . . . , (−1)�+1
∣

∣

∣

̂HnormCj

∣

∣

∣

J\{j},∗
︸ ︷︷ ︸

j=j�∈J

, . . .

⎞

⎟

⎟

⎟

⎠

, #J = λ + 1, J ⊂ {1..r}.

The degree falls are then obtained by multiplying these vectors by the linear

parts of the equations, i.e. (V J) · ˜V ̂hj

T
. Finally, the latter actually coincides

with the maximal minor |Mj |J,∗ using Laplace expansion along the first column.
The reasoning is similar for M if we replace Eq. (11) by Eq. (12). ��

52 P. Briaud and P. Loidreau

Bilinear Structure. The degree fall polynomials given by Lemma 4 have degree
λ+1. Moreover, Laplace expansion along the first column of M in Eq. (13) shows
that these equations are bilinear in the entries of ˜V (which belong to Fqm) and
in the maximal minors of the matrix

D
def
=

⎛

⎜

⎝

C1

...
Cn

⎞

⎟

⎠ ,

whose coefficients are in Fq. Similarly, the maximal minors of Mj are simply
bilinear in the entries of ˜V and in the

(

m
λ

)

maximal minors of Cj . Such a
structure had already been encountered in the bilinear systems of [5,6] to attack
the Rank Decoding Problem and MinRank. In particular, note that the newly
introduced bilinear modeling of [5] ([5, Modeling 4]) has exactly the same shape
as it involves a block of linear variables over the extension field Fqm and a block
of minor variables over Fq.

Projection Over Fq . In System 1, we observed m
(

nr
λ+1

)

(linearly independent)
degree falls from degree λ + 2 to degree λ + 1 which involve these variables3 in
our experiments. Clearly, they should coincide with the projection over Fq of
the degree fall polynomials described in Lemma 4 for System 0. To project the
equations, note that we also have to express the entries of ˜V over Fq. This yields
r2m variables �viu and thus r2m

(

mn
λ

)

degree 2 monomials among these degree
fall polynomials (but only r2m

(

m
λ

)

if we restrict ourselves to one matrix Cj).

8.2 Jacobian with Respect to the Cj Variables

Contrary to the systems of [4–6] to solve the Rank Decoding Problem, a speci-
ficity of System 1 is that the Jacobian with respect to the other block of vari-
ables also yields degree fall polynomials of low degree, for instance λ + 1. One
cannot grasp them by studying System 0 only.

Absence of Degree Falls for System 0. First, let us explain why we do
not expect degree fall polynomials of small degree coming from this Jacobian
for System 0. Note that the set S of bilinear parts of the equations from this
system can be written as S def

= ∪n
j=1Sj , where the polynomials in Sj are defined

as the entries of the matrix ̂HnormCjR ̂BT at the right hand side of Eq. (9).
The R ̂BT part being independent of j, we already obtain Jacrow(C j) (row(Sj)) =
Jacrow(C 1) (row(S1)) for any j and thus

Jacrow(C) (row(S)) = In ⊗ Jacrow(C 1) (row(S1)) .

Then, to compute Jacrow(C 1) (row(S1)), we apply Lemma 3 once again this time

with X
def
= ̂Hnorm, A

def
= C1 and Y

def
= R ̂BT. This yields

Jacrow(C 1) (row(S1)) = ̂Hnorm ⊗ ̂BRT. (15)

3 Section 8.2 will give another type of degree falls in the same degree.

Cryptanalysis of Rank-Metric Schemes 53

This matrix is of size r × mλ and its entries are linear forms in the R variables.
However, we cannot apply Lemma 2 since r < mλ. We expect a trivial left kernel
for this matrix.

Additional Degree Falls for System 1. We analyze the situation over Fq

by studying the System 2 introduced in Sect. 7.2, which contains the same
information as System 1. From now on we fix ̂B = A. As in the previous
section, we can clearly reason in a similar way for all indexes 1 ≤ j ≤ n. For
1 ≤ j ≤ n and 0 ≤ � ≤ m − 1, let us consider Eq. (10) and for 1 ≤ u ≤ r, let us
denote by gu,�,j the bilinear polynomial

gu,�,j
def
=

(

̂H[�]
norm

)

u,∗
CjR

(

A[�]
)T

=
(

A[�+u−1]
)

CjR
(

A[�]
)T

.

We also keep track of the corresponding linear part Lu,�,j
def
= V [�]

u,∗

(

̂

hj
[�]

)T

, so

that the whole equation reads gu,�,j − Lu,�,j = 0. We then group the equations

according to the value of v
def
= u+�−1 mod m. We obtain the following equality,

where all � indexes are modulo m,

(

L1,v,j L2,v−1,j . . . Lr,v−r+1,j

)

=
(

g1,v,j . . . gr,v−r+1,j

)

̂

hj
[�]

(

V [�]
)T

= A[v]CjR

(

(

A[v]
)T ...

(

A[v−r+1]
)T

)

= A[v]CjR
(

̂H[v]
inv

)T

,

and where

̂Hinv
def
=

⎛

⎝

A
. . .

A−[r−1]

⎞

⎠ ∈ Mm,r(Fqm).

Using Lemma 3, we then compute the Jacobian matrix of these equations with

respect to the Cj variables with A
def
= A[v], X

def
= Cj and Y

def
= R

(

̂H[v]
inv

)T

.
This gives

Jacrow(C j)

(

g1,�1,j . . . gr,�r,j

)

= A[v] ⊗ ̂H[v]
invRT.

We can continue as above to obtain Lemma 5, whose proof is analogous to the
one of Lemma 4.

Lemma 5 For any fixed column hj in Hpub, for 0 ≤ � ≤ m − 1 and for a
modulus 0 ≤ v ≤ m − 1, there are

(

r
λ+1

)

degree falls from degree λ + 2 to λ + 1
which are given by the maximal minors of the matrix

Nj,�,v
def
=

⎛

⎜

⎝

̂

hj
[�]

(

V [�]
)T

R
(

̂H[v]
inv

)T

⎞

⎟

⎠ , (16)

54 P. Briaud and P. Loidreau

where

̂Hinv
def
=

⎛

⎝

A
. . .

A−[r−1]

⎞

⎠ .

By gathering the equations for all columns hj in Hpub, all indexes � and all
moduli v, we obtain a system of nm2

(

r
λ+1

)

polynomials of degree λ+1. Similarly
to the above, these polynomials have a bilinear structure: they are bilinear in
the entries of the V [�]’s and in the maximal minors rT of R. Coming back to the
System 1 over Fq that we want to solve, this will correspond to an extra set of
nm2

(

r
λ+1

)

polynomials of degree λ + 1 which are produced in degree λ + 2 by
the computation. They can also be seen as an affine bilinear system involving
mr2

(

m
λ

)

quadratic monomials.

8.3 Approach Based on Degree Fall Polynomials

Instead of simply solving the original bilinear system, our results suggest another
method by focusing on a system of degree fall polynomials of degree λ + 1. It
would consist of the one given by Lemma 4, Lemma 5 or a subset of such equa-
tions. As we have just seen, this approach would benefit from the compactness of
these polynomials since they have a specific bilinear structure. Its analysis is left
for future work, including the study of linear dependencies and the possibility
of using hybrid techniques.

In the case of the Rank Decoding Problem, solving the system given by the
MaxMinors equations [6] lead to a significant improvement compared to attacks
based on Ourivski-Johansson [4,21]. In our case, however, the same will not
necessarily hold. First, the ratio between equations and variables in Lemma 4
or Lemma 5 seems less favorable than in [6]. Second, our experiments suggest
that the degree falls polynomials in degree λ + 2 do not mark the end of the
computation on the original system in general, whereas it was often the case for
the Rank Decoding Problem [4,18].

9 Conclusion

In the paper we presented two different approaches to distinguish a public-key
from random.

The combinatorial approach seems to have reached its limits as is the case for
the problem of decoding in rank metric and we do not expect significant gain (say
non-polynomial improvements on the complexity) from further improvements,
except if there is a major theoretical breakthrough, but who would probably also
extend to the problem of decoding in rank metric.

Concerning the algebraic approach, it is more difficult to ascertain that no
significant improvements are to be expected. Namely, as is the case for solving
non-linear system, a smarter approach to rewrite the system could lead to major
improvements. Anyway it is certainly an interesting field of research to obtain a
finer analysis of system solving.

Cryptanalysis of Rank-Metric Schemes 55

References

1. Aragon, N., Dyseryn, V., Gaborit, P., Loidreau, P., Renner, J., Wachter-Zeh, A.:
LowMS: a new rank metric code-based KEM without ideal structure. Cryptology
ePrint Archive, Paper 2022/1596 (2022). https://eprint.iacr.org/2022/1596

2. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving
the rank syndrome decoding problem. In: 2018 IEEE International Symposium on
Information Theory (ISIT 2018), Vail, CO, USA, 17–22 June 2018, pp. 2421–2425.
IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437464

3. Bardet, Magali, Briaud, Pierre: An algebraic approach to the rank support learning
problem. In: Cheon, Jung Hee, Tillich, Jean-Pierre. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 442–462. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81293-5 23

4. Bardet, M., et al.: An algebraic attack on rank metric code-based cryptosystems.
In: Canteaut, Anne, Ishai, Yuval (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp.
64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 3

5. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.P.: Revisiting algebraic
attacks on MinRank and on the rank decoding problem. Cryptology ePrint Archive,
Paper 2022/1031 (2022). https://eprint.iacr.org/2022/1031

6. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding
and MinRank problems. In: Moriai, Shiho, Wang, Huaxiong (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 17

7. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding prob-
lem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996.
LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0034862

8. Coggia, D., Couvreur, A.: On the security of a Loidreau rank metric code based
encryption scheme. Des. Codes Crypt. 88(9), 1941–1957 (2020). https://doi.org/
10.1007/s10623-020-00781-4

9. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62, 333–350 (1994)

10. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory.
J. Comb. Theory Ser. A 25(3), 226–241 (1978)

11. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero: F5. In: Proceedings ISSAC 2002, pp. 75–83. ACM Press (2002)

13. Faugère, J.C., Safey El Din, M., Spacodecrenlehauer, P.J.: Gröbner bases of biho-
mogeneous ideals generated by polynomials of bidegree (1,1): algorithms and com-
plexity. J. Symbolic Comput. 46(4), 406–437 (2011)

14. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

15. Gabidulin, E.. M.., Paramonov, A.. V.., Tretjakov, O.. V..: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, Donald W.. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

16. Gaborit, Philippe, Hauteville, Adrien, Phan, Duong Hieu, Tillich, Jean-Pierre.:
Identity-based encryption from codes with rank metric. In: Katz, Jonathan,
Shacham, Hovav (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 7

https://eprint.iacr.org/2022/1596
https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1007/978-3-030-81293-5_23
https://doi.org/10.1007/978-3-030-81293-5_23
https://doi.org/10.1007/978-3-030-45727-3_3
https://eprint.iacr.org/2022/1031
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/BFb0034862
https://doi.org/10.1007/BFb0034862
https://doi.org/10.1007/s10623-020-00781-4
https://doi.org/10.1007/s10623-020-00781-4
https://doi.org/10.1007/3-540-46416-6_41
https://doi.org/10.1007/978-3-319-63697-9_7

56 P. Briaud and P. Loidreau

17. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

18. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. Talk at
the Special Semester on Gröbner Bases - Workshop D1, pp. 1–19 (2006). https://
ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf

19. Loidreau, Pierre: A new rank metric codes based encryption scheme. In: Lange,
Tanja, Takagi, Tsuyoshi (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 1

20. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–
116. Jet Propulsion Lab (1978). dSN Progress Report 44

21. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank met-
ric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002).
https://doi.org/10.1023/A:1020369320078

22. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vau-
denay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554868 5

23. Verbel, Javier, Baena, John, Cabarcas, Daniel, Perlner, Ray, Smith-Tone, Daniel:
On the complexity of “superdetermined” minrank instances. In: Ding, Jintai, Stein-
wandt, Rainer (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 10

https://ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf
https://ricamwww.ricam.oeaw.ac.at/specsem/srs/groeb/download/Levy.pdf
https://doi.org/10.1007/978-3-319-59879-6_1
https://doi.org/10.1023/A:1020369320078
https://doi.org/10.1007/11554868_5
https://doi.org/10.1007/978-3-030-25510-7_10

A High-Performance Hardware
Implementation of the LESS Digital

Signature Scheme

Luke Beckwith1,2(B), Robert Wallace1, Kamyar Mohajerani1, and Kris Gaj1

1 George Mason University, Fairfax, VA 22030, USA
{lbeckwit,rwalla,mmohajer,kgaj}@gmu.edu

2 PQSecure Technologies, Boca Raton, FL 33431, USA
luke.beckwith@pqsecurity.com

Abstract. In 2022, NIST selected the first set of four post-quantum
cryptography schemes for near-term standardization. Three of them -
CRYSTALS-Kyber, CRYSTALS-Dilithium, and FALCON - belong to
the lattice-based family and one - SPHINCS+ - to the hash-based fam-
ily. NIST has also announced an “on-ramp” for new digital signature
candidates to add greater diversity to the suite of new standards. One
promising set of schemes - a subfamily of code-based cryptography - is
based on the linear code equivalence problem. This well-studied problem
can be used to design flexible and efficient digital signature schemes. One
of these schemes, LESS, was submitted to the NIST standardization pro-
cess in June 2023. In this work, we present a high-performance hardware
implementation of LESS targeting Xilinx FPGAs. The obtained results
are compared with those for the state-of-the-art hardware implementa-
tions of CRYSTALS-Dilithium, SPHINCS+, and FALCON.

Keywords: Code-Based Cryptography · Post-Quantum
Cryptography · Hardware Acceleration · FPGA · Digital Signatures

1 Introduction

The first set of post-quantum cryptography schemes was selected for standard-
ization by NIST in 2022 [3]. These algorithms are intended to replace current
public key standards, such as RSA and Elliptic Curve Cryptosystems, which
are vulnerable to quantum attacks through the use of Shor’s algorithm [28].
These new standards are built upon computationally hard problems that are
secure against classical and quantum computing attacks. Three of the new stan-
dards are lattice-based algorithms: CRYSTALS-Kyber, CRYSTALS-Dilithium,
and FALCON. The fourth, SPHINCS+, is a hash-based algorithm. CRYSTALS-
Dilithium, FALCON, and SPHINCS+ are all digital signature schemes, while
CRYSTALS-Kyber is a Key Encapsulation Mechanism (KEM). The primary rec-
ommendations from NIST and the NSA for most applications are CRYSTALS-
Kyber and CRYSTALS-Dilithium due to their relatively small key sizes and high
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 57–90, 2023.
https://doi.org/10.1007/978-3-031-40003-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_3

58 L. Beckwith et al.

performance [3,23]. FALCON is well suited for applications that require small
signatures and fast verification but has complex and slow key generation and
signing. Compared to the other selected algorithms, SPHINCS+ has lower per-
formance and larger signatures. However, it has a mature security basis making
it a more conservative option [3].

NIST intends to standardize additional algorithms to diversify the suite of
new standards. This intent includes algorithms optimized for specific types of
applications and algorithms of different cryptographic families. There are cur-
rently three code-based KEMs that have advanced to the fourth round for fur-
ther evaluation, and NIST announced an “on-ramp” for new digital signature
candidates with the submission deadline on June 1, 2023.

One of these new digital signature algorithms is LESS [8], a code-based dig-
ital signature scheme. Unlike many previous code-based algorithms, which are
based on the Syndrome Decoding Problem (SDP), LESS builds its security on
the difficulty of determining the linear isometry between two codes [12]. This
security basis allows the use of smaller parameters than those typically required
for algorithms based on SDP, enabling more practical key and signature sizes.

In this work, we present a high-performance hardware implementation of
the LESS digital signature scheme. Our hardware architecture implements all
base parameter sets and provides substantial improvements over the software
implementation. The hardware implementation is also protected against timing
attacks as all operations are constant-time with respect to the secret values. The
implementation is publicly available at github.com/GMUCERG/LESS.

2 Previous Work

Since LESS is built using a different framework than previous code-based digital
signature schemes, there are no existing hardware implementations we can make
a direct comparison to. However, there are at least partial implementations of
all the algorithms selected for standardization.

The NIST-selected digital signature algorithms have received varying lev-
els of implementation work. CRYSTALS-Dilithium has received the most
effort with several high-performance and lightweight hardware implementa-
tions [10,11,17,21,32]. A unified hardware design for CRYSTALS-Dilithium
and Saber was presented in [1]. A similar work on a unified implementation
of CRYSTALS-Kyber and CRYSTALS-Dilithium was presented in [2]. Addi-
tionally, software/hardware co-designs of CRYSTALS-Dilithium were reported
in [20,22,33,34]. Of particular relevance to this paper is the pure hardware imple-
mentation by Zhao et al. [32], which is the highest performance implementation
reported thus far. SPHINCS+ has one full implementation which targets high
performance [4]. FALCON has received considerably less effort, with the only
hardware implementation reported thus far being the implementation of the
verification operation [11]. Additionally, a software/hardware co-design of the
verification operation of FALCON was reported in [20].

Hardware implementations of Gaussian elimination over GF (p), performing
an operation similar to that of the Row Reduced Echelon Form unit described

https://github.com/GMUCERG/LESS

Hardware Implementation of the LESS Digital Signature Scheme 59

in this paper, were reported in [18,19]. Additionally, hardware implementations
of Gaussian elimination over a different class of fields, GF (2m), were reported
in [6,7,13,15,25–27,29–31].

None of the previously reported designs can be easily adapted for the imple-
mentation of the LESS signature scheme. The major differences stem from the
use of a) much larger matrix dimensions, which prevent the use of systolic array
architectures, b) different field, which affects the complexity of addition, sub-
traction, multiplication, and inversion, and c) different expected output - the
row reduced echelon form, rather than the (unreduced) row echelon form, also
known as the upper triangular matrix.

3 Background

3.1 Generator, Permutation, and Monomial Matrices

As this work discusses the code-based cryptosystem LESS, there are several
important concepts from coding theory that must be defined.

A fundamental object in coding theory is the generator matrix. A generator
matrix G ∈ F

k×n defines an [n, k]-code by the operation c = mG, where m ∈ F
k

is the message and c ∈ F
n is the corresponding codeword. The same code can also

be defined using the parity check matrix H ∈ F
(n−k)×n. The parity check matrix

can be used to check if a given vector c is a codeword by verifying that HcT = 0.
The generator matrix is said to be in standard form if the k leftmost columns

are the identity matrix, that is if G = (Ik|M) with M ∈ F
(k−n)×n. If G is

in standard form, the corresponding parity matrix can be expressed as H =
[−MT |In−k]. If the generator is in standard form, the first k entries of any code
word will simply be the message itself. Thus, the code is said to be systematic
in its first k positions.

For applications that use the functionality of the code, it is beneficial to repre-
sent the generator matrix in its standard form because it enables easy derivation
of the parity check matrix. For LESS, however, we are only concerned with deter-
mining if two matrices produce equivalent codes. That is, is there an invertible
matrix S ∈ GLk(q) for G,G′ ∈ F

k×n such that G = SG. Thus, converting to
any unique representation of a code is sufficient. The standard form representa-
tion is unique and thus would work for this purpose, but it is not required. The
Reduced Row Echelon Form (RREF) is also a unique representation.

RREF is an extension of Row Echelon Form (REF), which is defined as
follows: a matrix is in row echelon form if the following properties hold: (1) All
rows consisting of only zeroes are at the bottom of the matrix, (2) the leading
entry of every non-zero row is to the right of the leading entry of every row
above it. That is, they form a staircase pattern. A matrix is then in RREF if it
meets all the requirements of REF, all of the leading entries of non-zero rows are
1, and each column containing a leading 1 has zeros in all of its other entries.
Pseudocode for converting a matrix to RREF is provided in Algorithm 1.

Other important concepts for LESS are permutation and monomial matrices.
A permutation matrix is a square binary matrix that has exactly one entry of 1

60 L. Beckwith et al.

in each row and each column and 0s elsewhere. A monomial matrix is a matrix
with the same non-zero pattern as a permutation matrix. However, unlike a
permutation matrix, where the non-zero entry must be 1, in a monomial matrix,
the non-zero entry can be any non-zero value in F ∗

q .

Algorithm 1: Converting a k × n matrix to Reduced Row Echelon Form
(RREF)
Input: Matrix G ∈ Z

k×n
q

Output: Matrix G ∈ Z
k×n
q

1 for row_id_to_reduce ∈ [0, k − 1] do
2 valid_pivot ← 0
3 for col_id ∈ [row_id_to_reduce, n − 1] do
4 for row_id ∈[row_id_to_reduce, k − 1] do
5 if (G[row_id][col_id] > 0) and (valid_pivot == 0) then
6 pivot_row_id ← row_id
7 pivot_col_id ← col_id
8 valid_pivot ← 1

9 swap_row(G[row_id_to_reduce], G[pivot_row_id])
10 m ← G[row_id_to_reduce][pivot_col_id]−1 mod q
11 for col_id ∈ [0, n − 1] do
12 G[row_id_to_reduce][col_id] ← m · G[row_id_to_reduce][col_id]

mod q

13 for row_id ∈ [0, k − 1] do
14 if row_id �= row_id_to_reduce then
15 m ← G[row_id][pivot_col_id]
16 for col_id ∈ [pivot_col_id, n − 1] do
17 tmp ← m · G[row_id_to_reduce][col_id] mod q
18 G[row_id][col_id] ← G[row_id][col_id]− tmp mod q

3.2 LESS

LESS is a code-based digital signature scheme based on the difficulty of the Lin-
ear Equivalence Problem (LEP). LESS was first introduced by Biasse et al. [12]
and was later expanded upon by Barenghi et al. [9] and Persichetti [24]. This
work focuses on the most recent version of the scheme that was submitted to
the NIST standardization process [8]. The linear equivalence problem can be
defined as follows: given two generator matrices G,G′ ∈ F

k×n
q which generate

codes C,C′, determine if the two corresponding codes are linearly equivalent.
That is, does there exist matrices S ∈ GLk(q) and P ∈ Mn such that G′ = SGP .

The digital signature scheme is created by first defining a sigma protocol
using the linear equivalence problem and then converting it to a non-interactive
signature using the Fiat-Shamir transformation [16]. In the sigma protocol, there
are two users involved: the prover, who is attempting to prove they know the

Hardware Implementation of the LESS Digital Signature Scheme 61

Table 1. Parameter sets for LESS and resulting data sizes.

NIST Cat. Parameter Set Code Params Prot. Params pk (KiB) sig (KiB)
n k q t ω s

1 LESS-1b 252 126 127 247 30 2 13.7 8.4
LESS-1i 244 20 4 41.1 6.1
LESS-1s 198 17 8 95.9 5.2

3 LESS-3b 400 200 127 759 33 2 34.5 18.4
LESS-3s 895 26 3 68.9 14.1

5 LESS-5b 548 274 127 1352 40 2 64.6 32.5
LESS-5s 907 37 3 129.0 26.1

secret corresponding to a public key, and a verifier, who is trying to confirm
the identity of the prover. The private key is a monomial matrix Q ∈ Mn, and
the public key is G1 = RREF (G0Q), where G0 is a publicly available gener-
ator matrix. The prover first generates a commitment by sampling a random
monomial Q̃ and calculating G̃ = RREF (G0Q̃). They then hash G̃ and send
the hash to the verifier as the commitment. The verifier then responds with a
single-bit challenge. If the challenge is 0, then the prover responds with Q̃, and
the verifier checks the response by checking that the hash of G0 multiplied by
the response equals the commitment. If the challenge is 1, the prover responds
with Q−1Q̃, and the verifier checks the response by verifying that the product of
G1 and the response matches the commitment. Note that this holds true because
G1Q

−1Q̃ = G0QQ−1Q̃ = G0Q̃, which matches the commitment.
With each round of the protocol, an imposter has a 1

2 chance of deceiving
the verifier by guessing what the challenge will be. The difficulty of deceiving
the verifier can be increased by repeating the protocol multiple times or by
creating additional pairs of public and private matrices. LESS takes advantage of
both approaches. This protocol can be converted into a digital signature scheme
by having the prover pre-compute numerous commitments and then using an
agreed-upon function to self-generate an unpredictable challenge. In the case
of LESS, this is accomplished by hashing the commitment matrices with the
message appended and using a variant of the Fisher-Yates shuffle to generate a
challenge with a fixed number of non-zero entries.

The parameters for the version of LESS this work implements are described
in Table 1. Parameters are provided for three security levels corresponding to the
NIST-defined security levels 1, 3, and 5. There are multiple parameter sets for
each security level. They aim for different optimization metrics. The balanced
parameter sets, denoted by “b”, seek to minimize the combined size of the public
key and signature. The small parameter sets, denoted by “s”, aim to minimize
the signature size. Level 1 also has an intermediate parameter set, denoted by “i”.
The first three parameters relate to the codes used in LESS: n and k define the
dimensions of the generator matrices, and q is the modulus of the coefficients. The

62 L. Beckwith et al.

following three relate to the LESS protocol: t defines the number of challenges,
i.e., how many rounds of the sigma protocol are simulated. The number of non-
zero challenges is defined by ω, and the number of pairs in the key is defined
by s.

The short parameter sets reduce the signature size by increasing the number
of pairs in the key. This means fewer iterations of the protocol are required to
reach the security threshold, and consequently, the number of responses in the
signature is smaller. However, this comes at the cost of larger keys.

The descriptions of key generation, signing, and verification for LESS are
provided in Algorithms 2, 3, and 4. In a key generation, the user generates s
key pairs. The first pair is simply the public parameter G0 and the identity
matrix. All following pairs are generated by sampling a random Qi and calculat-
ing Gi = RREF (G0Qi). Note that Qi is assumed to be inverted when sampled,
so for the calculation of the public key, we must invert the monomial before
multiplication. This assumption removes the need for inverting the monomial
in signature generation. The seeds used to sample the secret monomials are all
derived from a single input seed seedsk. The calculated matrices are serialized
to minimize their size in the public key.

Algorithm 2: LESS-Keygen() [8]
Input: None

Output: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}λ is
employed to derive Q−1

i . The first entry of the private key Q0 = In is
not stored.
pk = (seed0,G1, . . . ,Gs−1): public key, where Gi ∈ F

k×n
q is stored as

the non-pivot columns and their positions via the CompressRREF

subroutine.

Data: CSPRNG(seed, SRREF): Samples a generator matrix in RREF from the
output of SHAKE using the provided seed.
CSPRNG(seed,Mn): Samples a monomial matrix from the output of
SHAKE using the provided seed.
RREF(G): Converts input generator into RREF.
CompressRREF(Gi): Encodes pivot locations and non-pivot columns
of generator matrix in RREF.

1 G0 ← CSPRNG(pk[0], SRREF)
2 for i ← 1 to s − 1 do
3 sk[i] $←− {0, 1}λ

4 Q ← CSPRNG(sk[i],Mn)
5 Qi ← Q−1

6 Gi ← RREF(G0Qi)
7 pk[i] ← CompressRREF(Gi)

8 return (sk, pk)

Hardware Implementation of the LESS Digital Signature Scheme 63

In a slightly simplified approach to signing, first t commitments are generated
by sampling random monomials Q̃i and calculating G̃i = RREF (G0Q̃i). All the
commit matrices are then encoded and hashed with the message to generate the
challenge seed d. The challenge seed is then used to seed the XOF function from
which the challenge is parsed. For the zero challenges, the seed used to sample
the corresponding monomial serves as the response. For the non-zero challenges,
Q−1

xi
Qi is the response. The signatures are composed of the challenge seed and

all responses.
An optimization can be performed that significantly reduces the size of the

signatures. Instead of transmitting the entire monomial for the non-zero chal-
lenges, we can instead transmit only the columns corresponding to the pivot
columns of the result. This reduces the transmission overhead of these monomi-
als by a factor of two. However, to recover from the missing information of the
monomial, additional processing is required after the RREF operation. The non-
pivot columns are lexicographically minimized and sorted to remove the impact
of the scaling and permutation operations of the monomial multiplication. These
operations are combined into a single function called PrepareDigestInput. For
further details, we refer to the LESS specification [8].

Another optimization is used for the seeds of the challenge monomials. Rather
than defining the seeds using simple expansion of a root seed by an XOF, the
seeds are defined as the leaves of a binary tree derived from the root seed. So,
the seeds are generated by recursively hashing an input seed until the required
number of leaves is reached. Then the signature size can be reduced by sending
the tree nodes needed to recreate the target leaves rather than sending the leaves
themselves.

In verification, the challenge seed is first expanded into the challenge in the
same manner as in signing, and the leaves of the seed tree are regenerated from
the path. For all responses t, the monomial is decoded or resampled and mul-
tiplied by the corresponding generator matrix. When the monomial is sampled
from a seed, we use the same PrepareDigestInput algorithm to regenerate the
commitment. When the monomial is decoded from the response, we use the
standard RREF operation and minimize and sort the non-pivot columns of the
result. All the generator matrices are then hashed, and the result is compared
with the challenge seed in the signature. If they match, the signature is accepted.

4 Hardware Architecture

In this section, we discuss the design of our implementation of LESS. We begin
with a brief description of the top-level architecture before discussing the details
of the submodules and operation schedule. The datapath of packed matrices and
seeds is W = 64. For all parameter sets, n > q. So for portions of the design
that transmit data of both width �log2(n)� and �log2(q)�, we use a width of
�log2(n)�.

64 L. Beckwith et al.

Algorithm 3: LESS-Sign(sk,msg, pk) [8]
Input: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}λ is employed

to derive Q−1
i . The first entry of the private key which is the identity

matrix Q0 = I is not stored.
pk[0] = seed0: first element of the public key employed to derive G0 in
RREF at runtime
msg: message to be signed, as a sequence of bits

Output: σ = (rsp1, . . . , rspt,d): signature composed by a salt salt, ω ZKID
protocol responses rspi, 0 ≤ i < t, the seed-tree path treepath and a
digest d

Data: CSPRNG(seed, St,ω): Samples the fixed weight challenge from the
output of SHAKE.
PrepareDigestInput(G, ˜Q): Calculates the RREF of G˜Q and returns
the lexicographically sorted and minimized values of the non-pivot
columns of the result as well as the corresponding entries of the
monomial.
SeedTreeLeaves(seed, salt): Generates seed tree using SHAKE.
SeedTreePaths(seed, (x0, . . . , xt−1)): Calculates nodes of path for the
target leaves of the seed tree.
CompressMonomAction(QQ): Encodes the relevant permutation and
coefficients of the monomial matrix.

1 G0 ← CSPRNG(pk[0], SRREF)

2 rootSeed
$←− {0, 1}λ

3 salt
$←− {0, 1}λ

4 (seed[0], . . . , seed[t − 1]) ← SeedTreeLeaves(rootSeed, salt)
5 for i ← 0 to t − 1 do
6 ˜Qi ← CSPRNG(seed[i],Mn)

7 (Vi,Qi) ← PrepareDigestInput(G0, ˜Qi)

8 d ← Hash(V0|| . . . ||Vt−1||msg||salt)
9 (x0, . . . , xt−1) ← CSPRNG(d, St,ω)

10 treepath ← SeedTreePaths(rootSeed, (x0, . . . , xt−1))
11 j ← 0
12 for i ← 0 to t − 1 do
13 if xi �= 0 then
14 Q ← sk[xi]

15 rspj ← CompressMonomAction(QQi)

16 j ← j + 1

17 return (salt, treepath, rsp0, . . . , rspω−1,d)

4.1 Top Level Architecture

The top-level datapath of the hardware architecture is shown in Fig. 1. The
hardware modules implementing all the operations of LESS are partitioned into
five major submodules: the seed generator, monomial arithmetic unit, generator

Hardware Implementation of the LESS Digital Signature Scheme 65

Algorithm 4: LESS-Verify(pk, σ,msg) [8]
Input: pk = (G0, . . . ,Gs−1): public key, where Gi ∈ F

k×n
q

σ = (salt, treepath, rsp0, . . . , rspω−1,d): signature composed by a salt
salt, omega ZKID protocol responses rspi, 0 ≤ i < t, the seed-tree path
treepath and a digest d
msg: message to be signed, as a sequence of bits

Output: Boolean value indicating whether the signature is valid

Data: RebuildSeedTreeLeaves(treepath, (x0, . . . , xt−1), salt): Regenerates
the target leaves of the seed tree using the path nodes.
ExpandToMonomAction(rsp): Decodes the encoded coefficients and
permutation values from the monomial.
LexMin(v): lexicographically minimizes the input vector.
LexSortColumns(V): lexicographically sorts the set of the input
vectors.

1 G0 ← CSPRNG(pk[0], SRREF)
2 (x0, . . . , xt−1) ← CSPRNG(d, St,ω)
3 (seed[0], . . . , seed[t − 1]) ←

RebuildSeedTreeLeaves(treepath, (x0, . . . , xt−1), salt)

4 for i ← 0 to t − 1 do
5 if xi = 0 then
6 ˜Qi ← CSPRNG(seed[i],Mn)

7 (Vi,Qi) ← PrepareDigestInput(G0, ˜Qi)

8 else
9 Qi ← ExpandToMonomAction(rspi)

10 Gi ← pk[xi]

11 Gi ← GiQi

12 [I Vi] ← RREF(Gi) // Vi = [v0 v1 · · · vn−k−1]
13 for j ← 0 to (n − k) − 1 do
14 vj ← LexMin(vj)
15 Vi ← LexSortColumns(Vi)

16 d′ ← Hash(V0|| . . . ||Vt−1||msg||salt)
17 if (d = d′) then
18 return true
19 return false

arithmetic unit, RREF unit, and challenge generator. The seed generator is
responsible for expanding the input seeds into the seeds used for sampling of
monomial and generator matrices. This includes the simple expansions of the
secret key seed as well as all seed tree operations. The monomial arithmetic
unit performs the sampling, inversion, multiplication, encoding, and decoding
of monomial matrices. It receives input from the seed generator when sampling
and transfers the monomial matrices to the generator module as needed. The
generator module performs the generator-monomial multiplication, encoding, as

66 L. Beckwith et al.

Fig. 1. Top-Level Block Diagram of LESS Hardware Architecture.

well as lexicographic sorting. The RREF unit converts the matrix multiplication
result into RREF. The challenge parser hashes the commitment matrices and
uses the result to generate the challenge.

During most operations, only a single generator matrix needs to be stored
throughout the entire operation. For example, during key generation and sign-
ing, only G0 needs to be used multiple times. All other generator matrices are
immediately hashed or unloaded from the accelerator. The exception is verifi-
cation, where all public keys may be required to check the authenticity of the
signature. For the balanced parameter sets, which only uses two generator matri-
ces, this does not cause any issues. However, for the short parameter sets, there
are eight matrices in the public key. Due to the large size of these matrices, this
requires a significant amount of memory resources. To address this limitation,
we assume that the system that is connected to the accelerator holds the full
public key. The accelerator requests the generator matrices as they are needed
during verification.

4.2 Submodule Design

Seed Generator. All operations of LESS require the generation of various
seeds for the sampling of monomial and generator matrices. The architecture of
this module can be seen in Fig. 2. The SHA-3 module used is a publicly available
implementation [14]. During key generation, the generation of seeds is done by
expanding the λ-bit seed into s − 1 λ-bit seeds using the XOF. The SHA-3
module is configured to run the appropriate variant of SHAKE. The core ingests
the input seed and produces the appropriate number of output bits which are
stored back in memory. These seeds can then be used to initialize the XOF for
sampling as needed.

Hardware Implementation of the LESS Digital Signature Scheme 67

During signature generation and verification, the seed tree operations are also
utilized. This includes the generation of the seed tree by recursively hashing the
root seed, generation of the path nodes needed for the signature, and recreation of
the relevant leaves using the path nodes. The seed tree operation is implemented
in a straightforward manner using breadth-first traversal of the tree and hashing
the current node into two child nodes until the required number of leaves is
generated. The seed path generation is performed in two steps. During the first
step, the tree is traversed from the leaves up, and a flag is set for each seed
to indicate whether or not it is in the path of the target seeds. For the leaves
themselves, they are considered target seeds if they are not part of the non-zero
challenges. For the node seeds, they are included if both of their children are
included. Once the flags of all seeds are set, the tree is traversed again, and
seeds are included in the path if their flag is set but their parent node is not.
The entire seed tree is kept in memory after the initial generation, so no hashing
is required during this operation. During the regeneration of the leaves, the first
step from path generation is repeated. For the second step, the tree is traversed
in the same manner, but once a seed that is in the path is reached, it is hashed
to generate its child nodes.

All of these operations can be performed using a very simple datapath shown
in Fig. 2. The controller is responsible for tracking the current location during
tree traversal and setting the flgi signal, which is used to set the flag for each
seed as needed during the seed tree operations.

All operations performed by the seed generator are constant time with respect
to the sensitive data. Hashing requires a constant number of cycles. Thus seed
expansion does not leak any information. The generation and usage of the seed
tree path are non-constant time, but the variation of the latency depends on the
public challenge, not the secret seeds.

Fig. 2. Top-level Diagram of Seed Generator Submodule

68 L. Beckwith et al.

Fig. 3. Top-level Diagram of Monomial Submodule

Monomial Arithmetic. The top-level architecture of the monomial arithmetic
unit is shown in Fig. 3. This section of the hardware consists of two memories
and five submodules related to the monomial matrices.

Monomial sampling is required in key generation for the creation of the secret
key and in signing for the generation of the ephemeral secrets used to create
the commitments. The hardware architecture implementing monomial sampling
is shown in Fig. 4. The monomial is represented as two lists, one representing
the scalar values and one representing the permutation. The scalar values are
generated using rejection sampling on �logq(q)� bits of pseudorandom input at
a time. Samples are accepted if they are in the range [0, q − 2] and then are
incremented by one to shift them into the range [1, q − 1]. Since the latency
of monomial sampling is negligible in comparison to the latency of the RREF
operation, only one sample is processed per cycle. The permutation coefficients
are generated using a simple shuffling algorithm. The shuffler module contains a
N ×�log2(n)� RAM module, which is initialized to hold the array [0, 1, ..., n−1].
This array is then shuffled using n random samples in the range [0, n − 1].

Monomial encoding is a straightforward serialization of the permutation and
scalar values. This is accomplished using a variable-rate bus width converter,
which can receive input at a rate of �log2(n)� or �log2(q)� and produces an
output of length W . Figure 5 shows the architecture of this module. The decoding
module follows a similar architecture with the modification that the input is W
bits and the output can optionally be N × �log2(n)� or N × �log2(q)� bits.

Monomial inversion involves element-wise inversion of the scalar values of
the monomial as well as calculation of the inverse permutation. The architecture
implementing this operation is shown in Fig. 6. The inverse permutation b of
permutation a can be calculated by bai

= i. This can be accomplished by using
the input permutation as the address of a memory while writing values sequen-
tially from 0, ..., n − 1. In the hardware module shown, the input permutation
is used as the address input when writing the sequential values coming from a
counter. After the entire permutation is loaded in, the RAM will contain the

Hardware Implementation of the LESS Digital Signature Scheme 69

Fig. 4. Monomial Sampler Block Diagram

Fig. 5. Monomial Encoder Block Diagram

inverse permutation, which can be read out sequentially using the counter to
drive the address input. Since the modulus is small, inversion of the coefficient
values can be done inexpensively using a Look-Up-Table one coefficient at a
time. The ordering of the coefficients must also be adjusted to match the new
permutation so the coefficients are written into RAM in the same manner as the
permutation.

Monomial multiplication involves combinations of both the permutations and
the scalar values of the two input monomials. The resulting permutation is calcu-
lated by reading the permutation of the left operand with the permutation of the
right operand. In the hardware architecture shown in Fig. 7, this is accomplished
by first writing the left operand’s permutation into a RAM and then unloading
using the right operand’s permutation as the address. The scalar values are cal-
culated by first applying the right operand’s permutation to the scalar values
of the left-operand and then multiplying coefficient-wise with the left operand’s
coefficients. This is accomplished in the hardware by writing the left operand’s
scalar values into memory and then using the right operand’s permutation to
drive the address when performing the multiplication.

The monomial operations are also constant time with respect to the sensi-
tive data. Monomial inversion, multiplication, encoding, and decoding are all
constant time operations, as their latency depends only on the dimension of the

70 L. Beckwith et al.

Fig. 6. Monomial Inverter Block Diagram

Fig. 7. Monomial Multiplier Block Diagram

matrices and not on the values within them. Monomial sampling is not strictly
constant time as it uses rejection sampling. However, the difference in latency
caused by rejection does not leak any information about the value of the accepted
samples. Thus it is not vulnerable to timing attacks.

Generator Arithmetic. The generator arithmetic module, shown in Fig. 8, has
three primary functions: 1) preparing the generator for processing by decoding
a matrix from the public key or sampling it from a seed, 2) performing the
monomial multiplication while loading the generator into the RREF module,
and 3) performing the post-processing of sorting and encoding the non-pivot
columns after RREF.

Generator encoding and decoding is similar to monomial encoding in that it is
a straightforward serialization of elements, one being a set of n bits representing
whether each column is a pivot or not and the other being the �log2(q)� bit
coefficients. The list of pivot locations is serialized first at the beginning of the
encoded string. Then the coefficients of the non-pivot columns are serialized
row-wise.

Hardware Implementation of the LESS Digital Signature Scheme 71

Fig. 8. Top-level Diagram of Generator Submodule

The monomial multiplication is performed when loading the matrix into the
RREF module. An entire row can be accessed from memory at once. The per-
mutation is applied using several k × 1 multiplexers to read the row coefficients
using the monomial permutation. The selected row coefficients are then scaled
by the monomial coefficients before they are loaded into the RREF module.

During the lexicographic sorting operation, the matrix must be sorted
column-wise. However, the operations of RREF and encoding are performed
row-wise. Therefore we have a module which transposes the matrix when it is
received from the RREF module. The columns are then sorted using an imple-
mentation of merge sort. During this operation, the entire column is accessible
from the memories, so the comparison operation can be performed in a single
cycle. Since merge sort requires additional memory overhead during processing,
both memories are used during the sorting process. The sorted columns are then
transposed back before encoding of the columns.

All operations performed by the generator arithmetic module are secure
against timing attacks. The latencies of decoding, monomial multiplication, and
transposition are determined by the dimension of the matrix and always take the
exact same number of cycles. The expansion of the generator is a public opera-
tion. Merge sort was selected as the approach for sorting the columns because of
its excellent performance in hardware and because it is very straightforward to

72 L. Beckwith et al.

Fig. 9. Top-level Diagram of Challenge Generator Submodule

implement in constant time. Each of the log2(k) layer involves exactly k read,
write, and comparison operations. Since these operations always require the same
amount of time, the entire operation is constant time.

Challenge Generator. The challenge generator module, shown in Fig. 9, is
responsible for hashing the commitment matrices and parsing the signature ele-
ment d into the fixed-weight challenge. The challenge is parsed by first sampling
the values of the ω non-zero entries. When s is two, this stage can be skipped
since 1 is the only possible value. These samples are written into the top ω entries
of a t entry memory. They are then randomly permuted using a variant of the
Fisher-Yates shuffle. A counter p is initialized to t − ω, and then samples are
repeatedly generated in the range [0, p−1] using rejection sampling to determine
where to shuffle the value at index p. This is repeated until all ω samples have
been shuffled into the challenge. Since the parsing of the challenge is a public
operation, it is not a target for timing attacks.

RREF. The RREF operation converts a matrix to row reduced echelon form.
The typical complexity of this operation on a k × n matrix is O(nk2), where all
k rows must be reduced, and each reduction requires all k × n elements to be
operated on.

The reduction of a matrix to RREF is described in Algorithm 1. Four major
steps of the algorithm can be identified. They are: (1) pivot search, (2) row swap,
(3) rescaling a pivot row, and (4) reduce other rows. These steps are repeated
k times, once for every row, so that all rows of the matrix are fully reduced.
The first step is identifying a pivot element. The pivot of a row is the leftmost
non-zero element such that after the reduction of the matrix, the pivot will be

Hardware Implementation of the LESS Digital Signature Scheme 73

Fig. 10. RREF Example: n = 7, k = 3, q = 7

1, and all elements below it, in the same column, will be 0. The pivot search
step is described in lines 2–8 of Algorithm 1. After finding the pivot (which is
not guaranteed to be in the row to reduce), a row swap is performed so the row
to reduce always contains the pivot. Next, the pivot row is rescaled so that the
pivot element is 1. This is achieved by multiplying the entire row by a multiplier
equal to the inverse of the pivot element modulo q. This operation is described
in lines 11–12 of Algorithm 1. Finally, all other rows are reduced so that the
elements in the same column as the pivot, above and below, are set to 0. This
operation is described in lines 13–18 of the Algorithm 1.

There are several features of this algorithm that can be taken advantage of
for optimization. When performing an arithmetic operation on a row, such as
rescaling a pivot row or reducing a non-pivot row, there is no sequential depen-
dence between elements. Arithmetic operations can be performed on all elements
of a row at the same time. This parallelism reduces the time complexity of the
algorithm to O(k2) and creates an O(n) area cost in hardware. Additionally,
the rows involved in the pivot search are always bounded by the row to reduce
and k. This means that each time a pivot search is performed, the pivot row will
always be between the row to reduce and k, and the search will require less time,
each iteration, at a constant rate. Also, the current iteration’s reduce other row’s
results are the elements that are searched during the pivot search in the next

74 L. Beckwith et al.

row to reduce. Cycles can be saved by searching for the next pivot while per-
forming reduce other rows operation of the current row to reduce. Finally, once
the rescale pivot row step has been completed, all operations being performed
in the reduce other rows step are row-independent. This means that any row
can be reduced in any order, creating an independent series of operations that
can be pipelined to increase the hardware frequency, while maintaining a high
throughput. Combining these observations about the pivot search and reduce
other rows, the reduce other rows operation can be performed on rows in the
pivot search area so that the next pivot will always be found before the next
iteration of row reducing begins, masking the time spent searching for a pivot.

The small scale example provided in Fig. 10 identifies the key features of the
RREF operation. Step A. starts with identifying the first pivot, where the search
area is the entire matrix. After finding the pivot, the pivot row is swapped so
that it is in the same position as the row to reduce, this swap takes place in
step C. The pivot row is rescaled in step D, and in step E, all other rows are
reduced. The pivot search area in step E includes one less column and row than
the area in step A. The search also overlaps with the reduction of other rows.
Once all of the other rows are reduced, the search is also completed and the
pivot is identified by step F. From here, the process is repeated until all k pivots
have be identified and their rows reduced.

Fig. 11. RREF Top-Level Block Diagram

Hardware Implementation of the LESS Digital Signature Scheme 75

The hardware implementation of RREF aims to take advantage of each of
the identified characteristics. The top-level module is split into three main parts:
column memory unit, pivot search, and row arithmetic. The top level block
diagram is presented in Fig. 11. Each part operates on an entire row of the input
matrix at once. The pivot search unit is designed to search only rows that are
within the search area for a specific row to reduce. This feature is in line with the
row arithmetic unit’s write back, so the search for the pivot of the next row to
reduce occurs during the operations on the current row to reduce. The column
memory unit provides separate read and write ports to enable pipelining of the
rescale arithmetic which supports its highly parallel nature.

The column memory unit provides a wide interface to enable reading/writing
to an entire row in a memory single access. The block diagram for the column
memory unit is presented in Fig. 12. It is built up of n simple dual-port RAMs
with synchronous read operating in parallel. Additionally, when addressing the
memory, an address translation table is used. The table is built of a true dual-
port RAM to enable the swapping of rows without needing to access the entire
memory. A separate translation table is required for both the read and write
ports of the column memory unit so the pipelined accesses do not need to target
the same row. Any access to this memory unit will require two cycles, one for
the address translation and another for the data access.

Fig. 12. RREF Column Memory Unit Block Diagram

76 L. Beckwith et al.

Fig. 13. RREF Pivot Search Block Diagram

The pivot search circuit, presented in Fig. 13, guarantees the results of the
pivot search in a deterministic number of cycles, independent of the location
of the pivot. This is achieved by requiring the entire matrix to be searched
before revealing the result, guaranteeing a constant number of clock cycles spent
searching, independent of any input data. The pivot of a specific row to reduce
is the first non-zero element in a row, greater than or equal to the row to reduce,
in the leftmost column, greater than or equal to the row to reduce. To identify
the pivot, as the row id changes between the row to reduce and k − 1, the
corresponding data is checked to be non-zero using n comparators operating in
parallel. If a comparator determines that its corresponding column element is
non-zero, then it will set a flag and record the row id in its own register. At
this point, that specific columns pivot has been determined for a row to reduce,
meaning that there are now n registers holding the row id of the first non-zero
element in a column and a flag to identify if the column contains a non-zero
element. An n-bit priority encoder is used on all n flag bits to determine the
leftmost column that contains a pivot. These flags are masked so that only a
column id greater than or equal to the row to reduce is identified. The encoded
column id is then used to read from the corresponding register to identify the

Hardware Implementation of the LESS Digital Signature Scheme 77

Fig. 14. RREF Pivot Search Example

row id of the pivot element in that column. By the time all k rows have been
iterated over, the circuit will have determined the pivot row id and pivot column
id for the corresponding row id to reduce. There is a three-cycle latency for the
results of the pivot search to be accessible by the rest of the module to support
a higher frequency. This latency will be masked away by the top-level pipeline.

An example of the pivot search circuit in operation, with n = 4, is pro-
vided in Fig. 14. After the start_search signal is set, the valid pivot flip-flops
(vld_pivot[i]) are cleared. This action initializes the circuit to begin a search. If
the data in a column within the search area is non-zero, then the corresponding
pivot register will store the index of the first (lowest-index) row containing a
non-zero element. Each valid pivot flip-flop will store a value indicating whether
there exists at least one non-zero element in the search area of a given column.
The priority encoder uses the flags of each column and a mask, driven by the
shift register, to identify the lowest column id with a valid pivot. The mask,
stored in shift_reg, makes it possible to shrink the search area when iterating

78 L. Beckwith et al.

over subsequent values of the row_id_to_reduce. Once the pivot_column_id
is determined, the row id from the corresponding pivot register is routed to
the output register, pivot_row_id, of the pivot search circuit. The valid sig-
nal of the priority encoder is used to determine if a valid pivot was found in
the current iteration of the algorithm. The search area of the next iteration of
row_id_to_reduce is smaller than the previous one. It does not include row 0
and column 0. The start_search signal is asserted again to clear the valid pivot
flip-flops corresponding to the columns located inside of the search area. In the
iteration when row_id is 1, columns 1 and 2 contain zeros, this causes the cor-
responding pivot registers and valid pivot flip-flops to not be updated. When a
non-zero value occurs in a column and row within the search area, and the valid
pivot flag is not already set, then the row index is captured, and the valid pivot
flag is raised. If the pivot search circuit cannot find a pivot, the RREF controller
will halt operation and signal that an error has occurred. In the context of LESS
key generation, signing, and verifying, all input matrices to the RREF operation
are guaranteed to have an RREF.

Fig. 15. RREF Row Arithmetic Block Diagram

Hardware Implementation of the LESS Digital Signature Scheme 79

The row arithmetic circuit, shown in Fig. 15, is used to perform multipli-
cation, subtraction, and reduction modulo q of all elements in a row. It can
be controlled to switch between rescaling a pivot row and reducing other rows.
The circuit contains n arithmetic units to operate on an entire row in parallel.
To support higher clock frequencies, the circuit takes advantage of the parallel
nature of the rescaling operation by implementing several pipeline registers. The
arithmetic pipeline has 5 stages: pivot element select, scale factor select, two
stages of multiply and reduce, and conditional subtract. The pivot row must be
rescaled before the reduction of other rows can begin. The bypass of the last
row of registers and the feedback loop allow starting the reduction of other rows
a couple of cycles earlier than the when the rescaled pivot row is written back
to memory. The pipeline bypass consistently occurs independent of input data,
so this circuit will always complete its operation in a constant number of clock
cycles.

The RREF order of operations is demonstrated in Fig. 16. While data is being
loaded into the RREF internal memory, the first pivot search occurs. Once all
rows of the matrix are loaded in, then the RREF pipeline begins by performing
a swap, if no swap is required, the clock cycle is spent swapping in place. The
rescale pivot row and reduce other rows operations follow, while performing the
next pivot search during the reduce other rows. These operations repeat until
the matrix is fully reduced.

Fig. 16. RREF Operation Scheduling

80 L. Beckwith et al.

All loops within the RREF algorithm described in Algorithm 1 are bounded
by constants and do not exit early due to any results. This enables a fixed latency
to perform all operations of RREF. Additionally, memory access also has a fixed
latency, regardless of the data. Therefore the RREF operation is completed in
constant time, regardless of the input matrix. The required cycles to perform
the operation, for any parameter set, not including loading the input matrix and
unloading the output matrix, can be represented by k2 + 3k + 58.

4.3 Operation Scheduling

The schedule of operations used to perform the algorithms of LESS is described
in Figs. 17, 18, and 19. The figures provide insight into the order of operations and
which of them can be performed in parallel, but the duration of the operations
is not to scale. In the key generation, the operation begins with the module
receiving the secret key seed and the parameter generator matrix G0. The seed
is expanded into s − 1 seeds which are used to sample the secret key monomial
matrices. The inversion of the first monomial matrix is performed in parallel with
the sampling of the generator matrix. Then the generator matrix is multiplied
by the monomial matrix before being written loading into the RREF module.
The RREF operation is then started, and the next monomial is sampled and
inverted in parallel with the operation. Once RREF completes, the resulting
generator matrix is encoded and unloaded from the hardware. This loop of RREF
is repeated in parallel with monomial sampling until all generator matrices for
the public key are calculated.

The first stage of signing is similar to key generation, except that the resulting
generator matrices are hashed instead of unloaded. Before the hashing, these non-
pivot columns are transposed, sorted, and then encoded. The sorting, encoding,
and hashing are performed in parallel with the RREF operation. Once t generator
matrices are calculated and hashed, the message is ingested to the hash function
to generate the challenge seed. The challenge seed is then used to parse the
challenge itself. There are t monomial matrices sampled during the commitments.
However, only ω are needed for the response. Since ω is much smaller than t
and monomial sampling is a computationally inexpensive operation, it is more
efficient to resample these needed matrices. The resampling is performed, and
then the results are multiplied together and encoded as a part of the signature.
After all the non-zero responses are calculated, the seed generator generates the
path needed for the regeneration of the zero-response seeds.

Verification begins by first reconstructing the challenge from the signature
and decoding the monomial matrices. The responses must be processed sequen-
tially in order to successfully recreate the challenge seed. Thus, for each response,
if the challenge value is zero, then the monomial is resampled from the response
seed. If it is nonzero, the decoded monomial is used. Once the response mono-
mial is prepared, the public key generator matrix corresponding to the challenge
value is decoded and multiplied with the monomial before being loaded into
the RREF module. The post-processing is performed in the same manner as in
signing. The next monomial and generator matrix are prepared in parallel with

Hardware Implementation of the LESS Digital Signature Scheme 81

Fig. 17. Operation Scheduling for LESS Key Generation

82 L. Beckwith et al.

Fig. 18. Operation Scheduling for LESS Sign

Hardware Implementation of the LESS Digital Signature Scheme 83

Fig. 19. Operation Scheduling for LESS Verify

84 L. Beckwith et al.

Table 2. RREF Implementation Results on Artix-7

k n q Frequency
(MHz)

LUTs
(×103)

FFs
(×103)

BRAM
(36 Kbit)

Cycles
(×103)

126 252 127 200 27.1 26.8 26.5 16.3
200 400 127 167 40.3 43.5 41 40.7
274 548 127 143 58.8 61.2 56.5 75.9

the RREF operation. The result is encoded and ingested into the hash function.
After all generator matrices and the message are hashed, the resulting hash is
compared with the challenge seed. If they match, the signature is accepted. If
not, it is rejected.

5 Results

Hardware performance and area results are reported for Artix-7 FPGA. The
device used for generating timing and area results was XC7A200TFBG484-3.
Xilinx Vivado 2022.2 was used for synthesis and implementation. Performance
cycle counts were determined using simulation. All hardware implementations
included for comparison also reported their area and timing for Artix-7 FPGA.

The implementation results for the RREF unit are listed in Table 2. The area
and operating frequency results are dependent on n. A large n will result in a
greater area, due to more parallel elements, along with a slower clock frequency,
due to large multiplexers. The RREF operation in hardware is executed in con-
stant time, where the number of clock cycles is uniquely dependent on the size
of k.

The implementation results for the entire LESS scheme are provided in
Tables 3 and 4. The maximum frequency of the LESS module is limited by the
critical path of the RREF unit, which is dependent on the size of the generator
matrix. Thus the lower parameter sets have a higher maximum frequency. The
RREF module consumes the majority of resources and takes up the most signif-
icant portion of the latency. Approximately 50%–56% of the LUTs of the design
are used in the RREF module, and approximately 80% of the cycles in sign and
verification are spent in the RREF module. Due to the computational intensity
of RREF, all other modules were able to be optimized for the low area.

With respect to area consumption, most of the change in resource consump-
tion is related to the size of the generator matrices. In particular, the resources
of RREF and generator modules scale linearly with the size of these matrices.
This is because the RREF and sorting modules always perform their operations
on an entire row or column in a single cycle, so the number of processing ele-
ments within these modules scales with n and k. The memory also scales directly
with the dimension of the matrices. The LUT and FF resources of the remaining
modules are mostly independent with respect to the size of the matrices, but the
memories within these modules do increase for the larger matrices.

Hardware Implementation of the LESS Digital Signature Scheme 85

Table 3. Comparison of Hardware Area for Relevant PQC Implementations. TW refers
to this work.

Algorithm Implementer Platform Parameter
Set

Frequency LUTs
(×103)

FFs
(×103)

DSP BRAM
(36 Kbit)

LESS TW Artix-7 L1-{b,i,s} 200 54.8 39.9 0 59.5
L3-{b,s} 167 76.7 57.9 0 102.5
L5-{b,s} 143 104.3 76.7 0 167.5

FALCON Beckwith et al. Artix-7 L1 142 14.5 7.3 4 2
L5 13.9 6.7 4 2

Dilithium Zhao et al. Artix-7 L2 96.9 30 10.4 10 11
L3
L5

SPHINCS+ Amiet et al. Artix-7 128s-simple 250 & 500 48.2 72.5 0 11.5
128s-robust 49.1 73.1 0 15.5
128f-simple 48.0 72.5 1 11.5
128f-robust 48.9 73.0 1 15.5
192s-simple 48.7 72.5 0 17
192s-robust 50.1 74.5 0 22.5
192f-simple 48.4 73.5 1 17
192f-robust 47.2 74.3 1 22.5
256s-simple 51.1 74.6 1 22.5
256s-robust 50.1 75.7 1 30
256f-simple 51.0 74.5 1 22.5
256f-robust 50.3 75.7 1 30

Table 4. Performance Results for Relevant PQC Implementations on Artix-7. TW
refers to this work.

Design Algorithm Details Performance Results
Algorithm Implementer Parameter

Set
Public Key
(KB)

Signature
(KB)

Frequency Keygen Sign Verify
Cycles
(×103)

Latency
(μs)

Cycles
(×103)

Latency
(μs)

Cycles
(×103)

Latency
(μs)

LESS TW L1-b 13.7 8.4 200 29.1 145.3 5,204.6 26,023.0 5,156.2 25,780.9
L1-i 41.1 6.1 77.5 387.7 5,126.4 25,631.8 5,093.2 25,465.8
L1-s 95.9 5.2 174.5 872.5 4,166.1 20,830.6 4,137.2 20,685.9
L3-b 34.5 18.4 167 72.1 432.8 39,237.4 235,424.4 39,146.0 234,875.7
L3-s 68.9 14.1 132.8 796.7 46,216.7 277,300.0 46,142.8 276,856.9
L5-b 64.6 32.5 143 134.4 941.1 129,885.6 909,199.5 129,726.1 908,082.6
L5-s 129 26.1 247.9 1,735.5 87,161.5 610,130.3 87,013.8 609,096.4

FALCON Beckwith et al. L1 0.897 0.666 142 N/A N/A N/A N/A 2.4 16.8
L5 1.79 1.28 142 4.7 32.8

Dilithium Zhao et al. L2 1.31 2.4 96.9 4.1 41 28.1 281 4.4 44
L3 1.95 3.3 5.9 59 44.7 447 6.2 62
L5 2.59 4.6 8.8 88 49.0 490 9.0 90

SPHINCS+ Amiet et al. 128s-simple 0.032 7.9 250 & 500 N/A N/A N/A 12,400 N/A 70
128s-robust 0.032 7.9 21,100 110
128f-simple 0.032 17.1 1,010 160
128f-robust 0.032 17.1 1,640 230
192s-simple 0.048 16.3 21,400 100
192s-robust 0.048 16.3 38,300 150
192f-simple 0.048 35.7 1,170 190
192f-robust 0.048 35.7 2,120 310
256s-simple 0.064 29.8 19,300 140
256s-robust 0.064 29.8 36,100 200
256f-simple 0.064 49.9 2,520 210
256f-robust 0.064 49.9 4,680 340

86 L. Beckwith et al.

Table 5. Performance Comparison with AVX2 Implementation

Parameter
Set

Platform Frequency Keygen Sign Verify
Latency
(μs)

HW
Speedup

Latency
(μs)

HW
Speedup

Latency
(μs)

HW
Speedup

L1-b Artix-7 200 MHz 145.3 ×1.5 26,023.0 ×2.5 25,780.9 ×2.5
L1-i 387.7 ×1.4 25,631.8 ×2.7 25,465.8 ×2.7
L1-s 872.5 ×1.4 20,830.6 ×2.6 20,685.9 ×2.6
L3-b 167 MHz 432.8 ×1.4 235,424.4 ×2.5 234,875.7 ×2.5
L3-s 796.7 ×1.4 277,300.0 ×2.5 276,856.9 ×2.5
L5-b 143 MHz 941.1 ×1.4 909,199.5 ×2.6 908,082.6 ×2.6
L5-s 1,735.5 ×1.3 610,130.3 ×2.5 609,096.4 ×2.5
L1-b Software

(AVX2)
3.9 GHz 222.7 64,653.9 68,500.4

L1-i 557.5 68,689.0 68,689.0
L1-s 1,185.8 54,835.1 54,835.1
L3-b 610.7 584,660.7 584,660.7
L3-s 1,099.8 683,915.5 683,915.5
L5-b 1,306.4 2,348,707.0 2,348,707.0
L5-s 2,333.3 1,547,110.1 1,547,110.1

5.1 Software Comparison

Table 5 provides a comparison between our hardware accelerator running on
Artix-7 and the optimized AVX2 implementation running on an AMD Ryzen
5 5600G desktop CPU. The software was compiled with GCC 12.2 with -O3
-march=native -mtune=native optimization flags and the measurements were
taken with hyperthreading and frequency-scaling (Turbo Core) disabled. The
CPU was running at 3.9GHz, which is 19.5 − 27.3× faster than the hardware.

Despite this significant difference in clock frequency, the hardware outper-
forms the software for all parameter sets. The key generation operation is 1.4×
faster in hardware. Signing and verification are both 2.5× faster. The perfor-
mance could be increased further through the use of a higher-end FPGA, which
can enable high clock frequencies, or through implementation as an ASIC.

5.2 Comparison with Other Digital Signature Schemes

In Tables 3 and 4, we provide comparisons with the best high-performance hard-
ware architectures for CRYSTALS-Dilithium, FALCON, and SPHINCS+.

When comparing both performance and area, the two lattice-based algo-
rithms CRYSTALS-Dilithium and FALCON both outperform the implementa-
tion of LESS. Both algorithms require significantly fewer resources, with the
exception of DSPs, and have significantly lower latency. The DSP usage is
required in these algorithms for modular multiplication because the moduli are
too large to effectively perform in LUTs without a significant increase in the
critical path of the design, whereas the small modulus of LESS allows for mul-
tiplication to be implemented using LUTs.

Hardware Implementation of the LESS Digital Signature Scheme 87

A more relevant comparison is with SPHINCS+, which is the only non-lattice-
based signature scheme selected by NIST for standardization to date. Both algo-
rithms provide parameter sets optimizing for different metrics. For SPHINCS+,
the “s” and “f” notations correspond to “smaller signature but slower signing”
and “faster signing but larger signature”, respectively. The “simple” parameter
set has higher performance but a less conservative security argument than the
“robust” parameter set [5].

When comparing the parameter sets for LESS and SPHINCS+, we can
observe that the signature size of LESS varies from 30%–106%, 39%–112%,
and 52%–109% of the size of SPHINCS+’s signatures for security levels 1, 3,
and 5, respectively. Both algorithms have multiple parameter sets with differ-
ent trade-offs for the signature size. The small signature parameter set of LESS
always has a smaller signature size then that of SPHINCS+, but the public key
is significantly larger. The latency for SPHINCS+ is lower for all levels except
when comparing SPHINC+ 128s-robust to LESS L1-s, in which LESS is slightly
shorter.

The area of the LESS design is comparable to SPHINCS+ for most parameter
sets. LESS uses similar LUTs at level 1 to all levels of SPHINCS+, slightly more
at level 2, and substantially more at level 3. The flip-flop utilization of LESS is
less or very similar to all parameter sets of SPHINCS+. The BRAM utilization
is much larger for LESS than SPHINCS+ due to the optimization of RREF
operating on an entire row of the matrix.

6 Conclusions

This work presents a high-performance hardware implementation of LESS, a
recently-proposed code-based digital signature scheme, which was submitted to
the NIST post-quantum cryptography standardization process. A key component
is a constant-time, highly parallel unit implementing conversion of an arbitrary
k ×n matrix over GF (p) to the reduced row echelon form. This conversion is by
far the most computationally intensive operation of LESS. The hardware imple-
mentation running on Artix-7 FPGA outperforms optimized software running
on a modern desktop CPU by factors ranging between 1.3 and 2.7 depending
on a variant and security level. The entire hardware implementation of LESS is
resistant to timing attacks.

Acknowledgments. This work has been partially supported by the National Science
Foundation under Grant No.: CNS-1801512 and by the US Department of Commerce
(NIST) under Grant No.: 70NANB18H218.

References

1. Aikata, et al.: A unified cryptoprocessor for lattice-based signature and key-
exchange. IEEE Trans. Comput. 1–13 (2022). https://doi.org/10.1109/TC.2022.
3215064

https://doi.org/10.1109/TC.2022.3215064
https://doi.org/10.1109/TC.2022.3215064

88 L. Beckwith et al.

2. Aikata, A., Mert, A.C., Imran, M., Pagliarini, S., Roy, S.S.: KaLi: a crystal for
post-quantum security using Kyber and Dilithium. IEEE Trans. Circuits Syst. I
Regul. Pap. 70(2), 747–758 (2023). https://doi.org/10.1109/TCSI.2022.3219555

3. Alagic, G., et al.: Status Report on the Third Round of the NIST Post-Quantum
Cryptography Standardization Process. National Institute of Standards and Tech-
nology Interagency or Internal Report NIST IR 8413-upd1, National Institute of
Standards and Technology (2022). https://doi.org/10.6028/NIST.IR.8413-upd1

4. Amiet, D., Leuenberger, L., Curiger, A., Zbinden, P.: FPGA-based SPHINCS+
implementations: mind the glitch. In: 2020 23rd Euromicro Conference on Digital
System Design (DSD), Kranj, Slovenia, pp. 229–237. IEEE (2020). https://doi.
org/10.1109/DSD51259.2020.00046

5. Aumasson, J.P., et al.: SPHINCS+ Specification v3.1 (2022). https://sphincs.org/
data/sphincs+-r3.1-specification.pdf

6. Balasubramanian, S., Carter, H.W., Bogdanov, A., Rupp, A., Ding, J.: Fast mul-
tivariate signature generation in hardware: the case of Rainbow. In: 16th Interna-
tional Symposium on Field-Programmable Custom Computing Machines, FCCM
2008, pp. 25–30 (2008)

7. Balasubramanian, S.R.: A parallel hardware architecture for fast signature gener-
ation of Rainbow. Master’s thesis, University of Cincinnati, Cincinnati, OH (2007)

8. Baldi, M., et al.: LESS: Linear Equivalence Signature Scheme. https://www.less-
project.com/

9. Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning sig-
natures from the code equivalence problem. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23–43. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5_2

10. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implemen-
tation of CRYSTALS-Dilithium. In: 2021 International Conference on Field-
Programmable Technology (ICFPT), Auckland, New Zealand, pp. 1–10. IEEE
(2021). https://doi.org/10.1109/ICFPT52863.2021.9609917

11. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation
of lattice-based digital signatures (2022). https://eprint.iacr.org/2022/217

12. Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based
signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT
2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-51938-4_3

13. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3_4

14. CERG: SHAKE. https://github.com/GMUCERG/SHAKE
15. Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST round 1

Rainbow signature scheme. In: 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), Cancun, Mexico, pp. 1–8. IEEE (2018).
https://doi.org/10.1109/RECONFIG.2018.8641734

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

17. Gupta, N., Jati, A., Chattopadhyay, A., Jha, G.: Lightweight hardware accelerator
for post-quantum digital signature CRYSTALS-Dilithium. IEEE Trans. Circuits
Syst. I: Regular Pap. 1–10 (2023). https://doi.org/10.1109/TCSI.2023.3274599

https://doi.org/10.1109/TCSI.2022.3219555
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://www.less-project.com/
https://www.less-project.com/
https://doi.org/10.1007/978-3-030-81293-5_2
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://eprint.iacr.org/2022/217
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-540-85053-3_4
https://github.com/GMUCERG/SHAKE
https://doi.org/10.1109/RECONFIG.2018.8641734
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/TCSI.2023.3274599

Hardware Implementation of the LESS Digital Signature Scheme 89

18. Hochet, B., Quinton, P., Robert, Y.: Systolic solution of linear systems over
GF(p) with partial pivoting. In: 1987 IEEE 8th Symposium on Computer Arith-
metic (ARITH), Como, Italy, pp. 161–168. IEEE (1987). https://doi.org/10.1109/
ARITH.1987.6158700

19. Hochet, B., Quinton, P., Robert, Y.: Systolic Gaussian elimination over GF(p) with
partial pivoting. IEEE Trans. Comput. 38(9), 1321–1324 (1989). https://doi.org/
10.1109/12.29471

20. Karl, P., Schupp, J., Fritzmann, T., Sigl, G.: Post-quantum signatures on RISC-V
with hardware acceleration. ACM Trans. Embed. Comput. Syst. (2023). https://
doi.org/10.1145/3579092

21. Land, G., Sasdrich, P., Güneysu, T.: A hard crystal - implementing Dilithium on
reconfigurable hardware. In: Grosso, V., Püppelmann, T. (eds.) CARDIS 2021.
LNCS, vol. 13173, pp. 210–230. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-97348-3_12

22. Nannipieri, P., Di Matteo, S., Zulberti, L., Albicocchi, F., Saponara, S., Fanucci,
L.: A RISC-V post quantum cryptography instruction set extension for number
theoretic transform to speed-up CRYSTALS algorithms. IEEE Access 9, 150798–
150808 (2021). https://doi.org/10.1109/ACCESS.2021.3126208

23. NSA: Cybersecurity Advisory Announcing the Commercial National Security Algo-
rithm Suite 2.0 (2022). https://media.defense.gov/2022/Sep/07/2003071834/-1/-
1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

24. Persichetti, E.: LESS: Digital Signatures from Linear Code Equivalence (2023).
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-
timeline/pqc-seminars

25. Preucil, T.: Implementation of the signature scheme Rainbow on SoC FPGA. Mas-
ter’s thesis, Uppsala University, Uppsala, Sweden (2022). http://urn.kb.se/resolve?
urn=urn:nbn:se:uu:diva-484811

26. Preucil, T., Socha, P., Novotny, M.: Implementation of the Rainbow signature
scheme on SoC FPGA. In: 2022 25th Euromicro Conference on Digital System
Design (DSD), Maspalomas, Spain, pp. 513–519. IEEE (2022). https://doi.org/10.
1109/DSD57027.2022.00074

27. Rupp, A., Eisenbarth, T., Bogdanov, A., Grieb, O.: Hardware SLE solvers: efficient
building blocks for cryptographic and cryptanalytic applications. Integration 44(4),
290–304 (2011). https://doi.org/10.1016/j.vlsi.2010.09.001

28. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, NM, USA, pp. 124–134. IEEE Computer Society Press (1994). https://
doi.org/10.1109/SFCS.1994.365700

29. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementa-
tion of Rainbow signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS,
vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25405-5_15

30. Yi, H., Li, W.: Small FPGA implementations for solving systems of linear equations
in finite fields. In: 2015 6th IEEE International Conference on Software Engineering
and Service Science (ICSESS), Beijing, China, pp. 561–564. IEEE (2015). https://
doi.org/10.1109/ICSESS.2015.7339120

31. Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multi-
variate signature generations on FPGAs. EURASIP J. Wirel. Commun. Netw.
2018(1), 1–9 (2018). https://doi.org/10.1186/s13638-018-1117-2

https://doi.org/10.1109/ARITH.1987.6158700
https://doi.org/10.1109/ARITH.1987.6158700
https://doi.org/10.1109/12.29471
https://doi.org/10.1109/12.29471
https://doi.org/10.1145/3579092
https://doi.org/10.1145/3579092
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1109/ACCESS.2021.3126208
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-484811
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-484811
https://doi.org/10.1109/DSD57027.2022.00074
https://doi.org/10.1109/DSD57027.2022.00074
https://doi.org/10.1016/j.vlsi.2010.09.001
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-642-25405-5_15
https://doi.org/10.1007/978-3-642-25405-5_15
https://doi.org/10.1109/ICSESS.2015.7339120
https://doi.org/10.1109/ICSESS.2015.7339120
https://doi.org/10.1186/s13638-018-1117-2

90 L. Beckwith et al.

32. Zhao, C., et al.: A compact and high-performance hardware architecture for
CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
270–295 (2021). https://doi.org/10.46586/tches.v2022.i1.270-295

33. Zhao, Y., Xie, R., Xin, G., Han, J.: A high-performance domain-specific processor
with matrix extension of RISC-V for module-LWE applications. IEEE Trans. Cir-
cuits Syst. I Regul. Pap. 69(7), 2871–2884 (2022). https://doi.org/10.1109/TCSI.
2022.3162593

34. Zhou, Z., He, D., Liu, Z., Luo, M., Choo, K.K.R.: A software/hardware co-design
of CRYSTALS-Dilithium signature scheme. ACM Trans. Reconfigurable Technol.
Syst. 14(2), 11:1–11:21 (2021). https://doi.org/10.1145/3447812

https://doi.org/10.46586/tches.v2022.i1.270-295
https://doi.org/10.1109/TCSI.2022.3162593
https://doi.org/10.1109/TCSI.2022.3162593
https://doi.org/10.1145/3447812

Wave Parameter Selection

Nicolas Sendrier(B)

Inria, Paris, France
nicolas.sendrier@inria.fr

Abstract. Wave is a provably EUF-CMA (existential unforgeability
under adaptive chosen message attacks) digital signature scheme based
on codes [15]. It is a hash-and-sign primitive and its security is built
according to a GPV-like framework [19] under two assumptions related
to coding theory: (i) the hardness of finding a word of prescribed Ham-
ming weight and prescribed syndrome, and (ii) the pseudo-randomness
of ternary generalized (U |U + V) codes. Forgery attacks (i)—or message
attacks—consist in solving the ternary decoding problem for large weight
[7], while, to the best of our knowledge, key attacks (ii) will try to exhibit
words that are characteristic of (U |U +V) codes, which are called type-U
or type-V codewords in the present paper. In the current state-of-the-art,
the best known attacks both reduce to various flavours of Information
Set Decoding (ISD) algorithms for different regime of parameters. In this
paper we give estimates for the complexities of the best known ISD vari-
ants for those regimes. Maximizing the computational effort, thus the
security, for both attacks lead to conflicting constraints on the param-
eters. We provide here a methodology to derive optimal trade-offs for
selecting parameters for the Wave signature scheme achieving a given
security. We apply this methodology to the current state-of-the-art and
propose some effective parameters for Wave. For λ = 128 bits of classical
security, the signature is 737 bytes long, scaling linearly with the secu-
rity, and the public key size is 3.6 Mbytes, scaling quadratically with the
security.

1 Introduction

The signature scheme Wave is built from a family of trapdoor one-way preim-
age sampleable function [15]. It is a hash-and-sign digital signature scheme and,
in contrast with [12], it easily scales with the security parameter. It is prov-
ably EUF-CMA under code-based hardness assumptions, namely the hardness
of decoding and the indistinguishability of generalized ternary (U |U +V) codes.
The scheme enjoys some very attractive features: (1) very short signatures, less
than 1 kbyte for 128 bits of security, and (2) fast verification, less than 1 mil-
lisecond [2]. The main drawback is a very large public key, of several megabytes.

This work has been partially supported by the French Agence Nationale de la Recherche
through the France 2030 program under grant agreement No. ANR-22-PETQ-0008 PQ-
TLS.
Project-Team COSMIQ, Inria de Paris, 2 rue Simone Iff, 75012 Paris.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 91–110, 2023.
https://doi.org/10.1007/978-3-031-40003-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_4

92 N. Sendrier

In this paper we explore the best known attacks on the Wave signature
scheme and provide some practical parameters based on the current state-of-the-
art, as well as a methodology to adjust those parameters to any target security
or if the state-of-the-art evolves. There are two ways to attack the Wave scheme:

1. Message attacks, or forgery attacks, which consist in solving a generic decod-
ing problem. Those problems are for ternary codes and for large weights, and
the best solver [7] uses information set decoding (ISD) [27] combined with
Wagner’s generalized birthday algorithm (GBA) [31].

2. Structural attacks, or key attacks, which consist in defeating the indistin-
guishability assumption. To the best of our knowledge, the most efficient way
to achieve that is to exhibit codewords in the public code (i.e. the code
deriving from the public key) that have an expectedly low, or high, weight.
Such codewords are likely to be among the, so-called, type-U or type-V code-
words, and are susceptible to reveal information about the hidden (U |U +V)
structure. In practice, those key attacks boil down to finding codewords of
specified weight in a generic code, for which the best solvers again derive from
ISD.

We will observe that the two classes of attacks above provide conflicting con-
straints on the system parameters, and the choice of secure parameters derives
from a trade-off between those constraints.

Related Works. Code-based digital signatures first appeared in [30]: the Stern
authentication protocol using the Fiat-Shamir transform [17]. The first hash-
and-sign signature based on codes was proposed in [12] but does not scale very
well, making it unpractical. There have been improvements to Stern’s scheme, [1]
using cyclic codes and a 5-pass protocol, and more recently [16] using the MPC-
in-the-head paradigm [20]. The latter allows schemes with signatures shorter
than the latter, around 10 kbytes or a bit less. Those techniques have relatively
larger signature sizes compared to Wave, but much smaller public keys. Let us
also mention the LESS scheme [4] with similar characteristic but a security based
on the hardness of code equivalence rather than the hardness of decoding.

The paper is organized as follows. We first recall in Sect. 2 basic information
about codes and hard problems, the definition of (U |U +V) codes and their main
properties, and a description of the Wave signature scheme. Then in Sect. 3 we
give a framework to estimate the cost of ISD in the q-ary case, adapted from
existing literature, presenting the variants that are relevant for the study of
Wave’s security. Finally, in Sect. 4, we provide estimates for the computational
cost of the best known attacks and a methodology to derive practical parameters
for the Wave digital signature scheme.

2 Preliminaries

Many statements in this section are often admitted as coding theory folklore.
We point out [14] to the reader for a precise and rigorous presentation of some
of those statements.

Wave Parameter Selection 93

Notation

Fq The q-ary finite field

x ∈ Fn
q x = (x0, . . . , xn)0≤i<n ∈ Fn

q , vectors generally use bold letters

|x| Hamming weight of x ∈ Fn
q , |x| = |{i, 0 ≤ i < n | xi �= 0}|

Eq;n,t Eq;n,t = {e ∈ Fn
q , |e| = t}

x � y Component-wise product x � y = (xiyj)0≤i<n, x,y ∈ Fn
q

—

M ∈ Fr×n
q (Mi,j)0≤i<r,0≤j<n, r × n matrix over Fq

〈M〉 The vector space spanned by the rows of matrix M

A matrix M ∈ Fr×n
q is in systematic form if its writes as

M = (Id | R) where Id is the r × r identity matrix

Reduced row echelon form

A matrix in Fr×n
q is in reduced row echelon form if its r leftmost

independent columns form an identity matrix

x � M Row-wise star product x � M = (xjMi,j)0≤i<r,0≤j<n ∈ Fr×n
q ,

x ∈ Fn
q , M = Fr×n

q

—

Sn Group of permutations of {0, . . . , n − 1}
xπ xπ = (xπ(i))i≤0<n, x ∈ Fn

q , π ∈ Sn

Mπ Mπ = (Mi,π(j))0≤i<r,0≤j<n, M ∈ Fr×n
q , π ∈ Sn

X π X π = {xπ | x ∈ X}, X ⊂ Fn
q , π ∈ Sn

2.1 Error Correcting Code

A q-ary linear [n, k] code C is a k-dimensional subspace of Fn
q . A generator matrix

G ∈ Fk×n
q of C is such that 〈G〉 = C and a parity check matrix H ∈ F(n−k)×n

q

of C is such that 〈H〉⊥ = C, i.e.

C = {xG | x ∈ Fk
q } and C = {y ∈ Fn

q | yHᵀ = 0}.

For any y ∈ Fn
q the quantity yHᵀ is called the syndrome of y (relatively to

H). The dual code of C is C⊥ = 〈H〉, the orthogonal of C.

Weight Distribution. When the code C is chosen uniformly at random, the
expected number of its codewords of weight i is asymptotically [14]:

Wi(C) = E [|{c ∈ C | |c| = i}|] =

(
n
i

)
(q − 1)i

qn−k
.

The actual number of codewords of a specific weight might differ for structured
codes. If this difference is measurable, this could be used to distinguish a given
code C from random.

94 N. Sendrier

2.2 Decoding Problem

The decoding problem over Fq is defined as follows:

Problem 1 (Decoding Problem – DP(q;n, k, t)). A finite field Fq and three inte-
gers n, k, t such that n > k > 0 and 0 ≤ t ≤ n.
Instance: (H, s) ∈ F(n−k)×n

q × Fn−k
q

Solution: e ∈ Fn
q such that |e| = t and eHᵀ = s.

We denote Dec(q;H, s, t) an instance of the above problem and also, for conve-
nience, the set of its solutions.

The problem DP(q;n, k, t) is hard if solving Dec(q;H, s, t) is hard on average
with H uniformly distributed in F(n−k)×n

q and s = xHᵀ with x uniformly dis-
tributed in Eq;n,t, the set of words of weight t. When the cardinality of Eq;n,t is
(sufficiently) larger than qn−k, this is the same as having s uniformly distributed
Fn−k

q , see for instance [14, Section 2.5].
In practice, when k/n and t/n are positive constants, the best known algo-

rithms have an average complexity exponential in n when t < q−1
q (n − k) or

t > k + q−1
q (n − k) and polynomial in n when q−1

q (n − k) ≤ t ≤ k + q−1
q (n − k).

Codeword Finding. Finding codewords of given weight correspond to
instances of DP with a zero syndrome s. This problem is also hard and, in
practice and in the general case, solvers are the same as for DP.

Decoding One Out of Many. The variant of the decoding problem with
multiple instances is relevant for the security of code-based signature schemes.
This problem was considered in the binary case in [21,28].

Problem 2 (DOOM Problem – DPN (q;n, k, t)). A finite Fq field and three inte-
gers n, k, t such that n > k > 0 and 0 ≤ t ≤ n. A number N > 0 of instances.
Instance: (H, s1, . . . , sN) ∈ F(n−k)×n

q × (
Fn−k

q

)N

Solution: e ∈ Fn
q such that |e| = t and eHᵀ ⊂ {s1, . . . , sN}.

By extension, we denote DP∞(q;n, k, t) the unlimited DOOM problem in which
the solver is free to decide the value of N . If we denote WFN the average com-
putational effort for solving DPN (q;n, k, t), we have WFN ≥ max(N, WF1/N)
and it follows that WF∞ ≥ √

WF1. The unlimited DOOM problem cannot be
easy if the corresponding Decoding Problem is hard.

2.3 Generalized Ternary (U |U + V) Code

We consider integers n, k, kU , kV with n even such that n > k > 0, k = kU +kV ,
0 < kU < n/2, and 0 < kV < n/2. Let a, b, c, d denote vectors in Fn/2

3 such
that

∀i, 0 ≤ i < n/2,

{
aici
= 0
aidi − bici
= 0 . (1)

Wave Parameter Selection 95

Let HU ∈ F(n
2 −kU)×n

2
3 and HV ∈ F(n

2 −kV)×n
2

3 denote parity check matrices of the
ternary linear codes U and V of length n/2 and dimension respectively kU and
kV . The generalized ternary (U |U +V) code C associated to (HU ,HV ,a,b, c,d)
admits the following parity check matrix

H =
(

d � HU −b � HU

−c � HV a � HV

)
∈ F(n−k)×n

3 . (2)

Dual Code. If C is a generalized ternary (U |U + V) code C associated to
(HU ,HV ,a,b, c,d), then its dual is also a generalized (U |U+V) code, associated
to (GV ,GU ,−c,d,a,−b) where GV and GU are generator matrices of V and
U , that is, equivalently, parity check matrices of the dual codes V ⊥ and U⊥.

Decoder for Large Weights. A probabilistic decoding procedure for C is
described in [15]:

ΦC,w : Fn−k
3 −→ Fn

3

s �−→ e such that eHᵀ = s, |e| = w.
(3)

It makes use of the (U |U + V) structure and runs in polynomial time for some
weight w > k + 2

3 (n − k) such that the decoding problem DP(3;n, k, w) is hard.

2.4 The Wave Signature Scheme

1. Main parameters: code-length n, dimension k, error weight w,
2. Public Key: Hpub ∈ F(n−k)×n

3 ,
3. Signature: e ∈ Fn

3 such that |e| = w and eHᵀ
pub = Hash(Message) ∈ F(n−k)

3 .

The matrix Hpub is the reduced row echelon form of the parity check matrix of
a generalized ternary (U |U + V) code C of length n and dimension k, randomly
permuted by π ∈ Sn. The secret key is a decoding procedure, Ψ : Fn−k

3 →
Fn
3 , to solve Dec(Hpub, s, w) which easily derives from ΦC,w, see (3), and the

permutation π. It involves the parameters kU , kV for the (U |U + V) structure,
see Sect. 2.3, and g, called the gap, which is used by the decoder. We will refer
to the integers (kU , kV , g) as the secondary parameters, they are public but are
only used for signing.

4. The secondary parameters (kU , kV , g) verify

kU = g +
3
2
w − n, kV = k − kU and 0 ≤ g ≤ λ

log2 3
(4)

where λ is the security parameter1.

1 e.g. λ = 128 corresponds to a scheme about as secure as AES-128.

96 N. Sendrier

An additional condition is required to build a secure signature scheme: essentially
the distribution of Ψ(s), or equivalently of ΦC,w(s), must be uniform over E3;n,w

when the input s is uniformly distributed over Fn−k
3 . This involves a choice of

internal distributions and possibly some rejection sampling. It is shown in [15]
that with a gap g = λ/ log2 3 it is possible to implement the decoder so that
the statistical distance between the distribution of its output and the uniform
distribution over E3;n,w do not exceed 2−λ.

Depending on the adversarial model and on the security assumptions, the
value of the gap g might be lower than λ/ log2 3 without reducing the compu-
tational security. We will consider various scenarios for the value of g ranging
from 0 to λ/ log2 3 and examine how they impact the scheme parameters. This
is discussed further in Sect. 4.3.

Wave Security Reduction. With the above notations, and assuming that the
decoder’s output is properly distributed, the Wave signature scheme is EUF-
CMA secure under the following assumptions:

1. The unlimited DOOM problem DP∞(3;n, k, w) is hard.
2. Permuted generalized ternary (U |U + V) codes of parameters (n, kU , kV) are

computationally indistinguishable from random.

2.5 Weight Distribution and (U |U + V)-Specific Codewords

Let C denote a ternary generalized (U |U + V) code, presumably used as an
instance of Wave, associated to (HU ,HV ,a,b, c,d). We examine below how its
weight distribution differs from that of a random code. We denote U and V
the codes of respective parity check matrices HU and HV . We call respectively
type-U and type-V codewords, the elements of the following subcodes of C

U(C) = {(a � u, c � u) | u ∈ U} ,

V(C) = {(b � v,d � v) | v ∈ V } .

We refer to u and v above as the component words. Except for the contribution of
the type-U and type-V codewords, the weight distribution of C is as for a random
ternary linear [n, k] code, see [13] for precise statements. We partition type-U
and type-V codewords according to the Hamming weight of their component
words and define

U(C, j) = {(a � u, c � u) | u ∈ U, |u| = j} ,

V(C, j) = {(b � v,d � v) | v ∈ V, |v| = j} ,

whose respective expected cardinalities are

E [|U(C, j)|] = Wj(U) =

(
n/2
j

)
2j

3n/2−kU
and E [|V(C, j)|] = Wj(V) =

(
n/2
j

)
2j

3n/2−kV
.

Wave Parameter Selection 97

The words of U(C, j) all have a Hamming weight t = 2j while the words of
V(C, j) have a Hamming weight j ≤ t ≤ 2j depending on the intersection of
the component word support with the supports of b and d. If (a,b, c,d) are
uniformly distributed with the condition (1), then, on average, three quarters of
the bi and di are non zero. So the typical weight of a word of V(C, j) is t = 3j/2.

Codewords of type-U or type-V are very few, less than 3kU + 3kV among
3k = 3kU+kV codewords. However, for a particular weight t, it may happen that
most codewords of weight t of type-U or type-V . For typical Wave parameters
it may happen, see Fig. 1, that, either for small or for large values of t, type-U
codewords dominate. We also observe in Fig. 1 that the type-V codewords never
dominate, regardless of the weight. This also holds for other possible choices of
code parameters kU , kV for Wave.

Fig. 1. (Expected) Number of codewords of weight t in C (black), of type-U (blue),

or type-V (red), for Wave parameters kU = 0.693 · n

2
, kV = 0.307 · n

2
, k =

n

2
and

w = 0.894 · n (Color figure online)

Example: Lets consider words of weight t = 0.209 · n in a ternary (U |U + V)
code C of length n, dimension k = 0.5 · n, and kU = 0.693 · n

2 (the vertical line
in Fig. 1). We expect to find 20.231·n words of weight t/2 in a random ternary
linear [n/2, kU] code (the blue curve) and “only” 20.156·n in a random ternary
linear [n, k] code (the black curve). From [13], the weight of codewords which
are not of type-U or type-V is distributed as for a random code, so, if one can
somehow sample a (random) word of weight t = 0.209 · n in C as above, it will
almost certainly be a type-U codeword.

98 N. Sendrier

3 q-ary Information Set Decoding (ISD)

Information Set Decoding was first introduced by Prange in 1962 [27] and is
one of the main algorithmic techniques to solve the decoding problem. It was
later improved in many ways, in particular: birthday paradox [29], representation
technique in [23], nearest neighbors in [24]. The current state-of-the-art in the
binary case is [5,6,9]. Variants using the Generalized Birthday Algorithm [31]
(GBA) are also of interest. GBA was first used for decoding in [11], and for some
regime of parameters it can be efficiently used within ISD. This is the case in
particular for the decoding of large weights in the non binary case [7].

Few contributions are available in the q-ary case, let us mention [7,8,26]. The
interested reader may also refer to [14, Ch. 3] for a comprehensive survey of ISD
for any alphabet size. In general the analysis is very similar to the binary case,
we briefly revisit that below. Note that, as remarked in [26], there is a factor√

q − 1 to be gained that derives from the linearity of the problem: the identity
e0H

ᵀ
0 = s0 remains true up to a non-zero factor, and this can be used to speed-

up the search. We will ignore this in the sequel as we only consider complexity
up to a polynomial factor.

3.1 An ISD Framework

We will describe and analyze several ISD variants that fit in the framework
described in [18]. This is the case of most known variants, with the notable
exception of the latest and best known asymptotic variants [5,6,9]. Those vari-
ants have not been generalized yet to the non-binary case, and moreover they
are not considered as practical. This could change in the future.

The ISD framework we consider here is described as follows. For a choice of
parameters 0 ≤ � ≤ n − k and 0 ≤ p ≤ t, solve Dec(H0, s0, t) by repeating:

1. Pick a permutation σ uniformly in Sn and compute (H,H′, s, s′) ∈ F�×(k+�)
q ×

F(n−k−�)×(k+�)
q × F�

q × Fn−k−�
q such that for some non singular matrix U ∈

F(n−k)×(n−k)
q ,

UHσ
0 =

(
Idn−k−� H′

0 H

)
= Usᵀ

0 =
(

s′ᵀ

sᵀ

)
. (5)

2. Use a SubISD routine to compute Eisd ⊂ E = {e ∈ Eq;k+�,p, |e| = p, eHᵀ = s}.
3. For all e ∈ Eisd, check e0 = (e, s′ − eH′ᵀ).

Variants of ISD differ in the SubISD routine used at the second step. Every e0
of weight t at step 3 is a valid solution, the algorithm may either exit there, or
continue until a prescribed number of iterations is executed. ISD algorithms are
probabilistic and the successive iterations are independent. We will view the sets
E and Eisd of step 2 as random variables. For convenience, we denote

F =
{

(e, s′ − eH′ᵀ)σ−1
, e ∈ E

}
and Fisd =

{
(e, s′ − eH′ᵀ)σ−1

, e ∈ Eisd

}
⊂ F .

Wave Parameter Selection 99

The first set F above has, a priori, the same size as E and is the maximal
search space for a particular iteration. If x belongs to Dec(H0, s0, t), then the
permutation σ is “good for x” if x ∈ F . The second set Fisd is possibly smaller
than F and is the effective search space for a particular iteration and a particular
SubISD routine, generally Fisd is close to F .

Let A denote a variant of ISD, we define the following three quantities

1. For all x ∈ Fn
q such that xHᵀ

0 = s0, we define the probability

π�,p(x) = Pr (x ∈ F) =

(
n−k−�
|x|−p

)(
k+�

p

)

(
n
|x|

) , π�,p(i) =

(
n−k−�

i−p

)(
k+�

p

)

(
n
i

) .

As it only depends of the weight of x we overload the notation and define
π�,p(|x|) = π�,p(x). This quantity is the same for all ISD variants. It is in
fact the probability that the permutation σ drawn at step 1 properly splits
the support of x with exactly p non-zero coordinates in the k + � rightmost
coordinates after permutation.

2. For a given SubISD routine at step 2, we define the decimation factor as

μA =
E[|Eisd|]
E[|E|] ≤ 1.

This is the proportion of solutions of the decoding problem Dec(H, s, p) that
are discovered on average by the SubISD routine at step 2. The decimation
factor is also equal to E[|Fisd|]/E[|F|] and this quantity is independent of the
target weight t.

3. The average cost of one iteration is denoted CA. It is also independent of the
target weight t.

For every particular instance A of the ISD framework, that is for every choice
of (�, p) and of the SubISD routine, the computational cost can be estimated,
depending on the task that A should solve (single or multiple targets, see below).
The cost will next be minimized over all choices of (�, p) and possibly other
parameters of the SubISD routine.

Single Solution. For any x ∈ Dec(H0, s0, t), the probability to discover that
particular solution in a particular iteration is

P = Pr(x ∈ Fisd) = μA · Pr(x ∈ F) = μA · π�,p(t)

so we expect to make 1/P iterations to find x and the expected computational
effort is

WFA(n, k, t, 1) =
CA

μA · π�,p(t)
(6)

up to a constant factor.

100 N. Sendrier

Multiple Solutions. Let X denote a subset of cardinality N of all solutions
of Dec(H0, s0, t). The probability to discover an element of X in a particular
iteration is

PA(t,N) = Pr(X ∩ Fisd
= ∅) ≤ 1 −
∏

x∈X
(1 − Pr(x ∈ Fisd
= ∅)) (7)

≤ 1 − (1 − μA · π�,p(t))N

≤ min(1, N · μA · π�,p(t))

so the expected computational effort to find an element of X is

WFA(n, k, t,N) =
CA

PA(t,N)
≥ CA

min(1, N · μA · π�,p(t))
. (8)

The inequality (7) derives from the union bound. The equality holds when the
events “x ∈ F” are all independent. In some situation, for instance if X is a set
of type-U codewords as in Sect. 2.5, the actual probability might be smaller and
the actual computational effort larger.

Effective Workfactor. The workfactor formula (6) or (8) depends on the
parameters p and �, and possibly other parameters stemming from the sub-
routine used in the variant. The effective workfactor corresponds to the choice
of parameters that will minimize the formula. The corresponding optimization
problem can be difficult and has to be solved for each particular problem, that
is for given values of n, k, t, and N .

3.2 ISD-MMT

The generalization of the MMT algorithm [23] to the q-ary case is relatively
straightforward. We briefly sketch the algorithm and its analysis in the q-ary
case, the interested reader may wish to check the relevant literature for a more
comprehensive presentation.

We consider the framework of the previous section. After permuting the
coordinates and computing a partial Gaussian elimination as in (5), we consider
the routine of step 2, which attempts to recover all, or as many as possible,
elements of the search space E =

{
e ∈ Fk+�

q , |e| = p, eHᵀ = s
}

.
We denote L =

(
k+�

p

)
(q −1)p and L0 =

(
(k+�)/2

p/4

)
(q −1)p/4. We call syndrome

of y ∈ Fk+�
q the quantity yHᵀ. An additional parameter �2, 0 ≤ �2 ≤ � is

introduced. The routine runs as follows:

1. Build 4 lists of size L0 of words in Fk+�
q of weight p/4

2. Merge the above lists pairwise to obtain 2 lists of size L2
0/q�2 of words in Fk+�

q

of weight p/2 with a prescribed value on �2 coordinates of their syndromes
3. Merge the above 2 lists to obtain a list of size L4

0/q�+�2 of words in Fk+�
q

of weight p with a prescribed value on the other � − �2 coordinates of their
syndromes

Wave Parameter Selection 101

The cost of this procedure is, up to a constant factor, the maximum of all the
above list sizes. The optimal choice of �2 is such that q�2 = L/L4

0 and L0 is
usually negligible for parameters of interest.

Using the fact that
(
k+�
p/2

)
(q − 1)p/2 = Ω(

√
p) · L2

0, the iteration cost becomes

CMMT =
(
k+�

p

)
(q − 1)p · max

(
1

(
k+�
p/2

)
(q − 1)p/2

,
1
q�

)

which is minimal when the two terms in the max are equal. Finally the charac-
teristic quantities of ISD-MMT are

CMMT =
(
k+�

p

)
(q − 1)pq−� and μMMT = 1 with q� =

(
k+�
p/2

)
(q − 1)p/2 (9)

up to a polynomial factor.

3.3 ISD-GBA

Wagner’s Generalized Birthday Algorithm (GBA) [31] can be used as SubISD
routine. Again, we only briefly sketch the algorithm, the interested reader may
refer to [7,25] for more details. The GBA of order a builds a binary tree, with
2a leaves. Lists attached to siblings are merged and attached to the parent node.
The list attached to the root is returned.

1. At level a: build 2a lists of L words of weight p/2a in Fk+�
q

2. At level i, 0 ≤ i < a: merge pairwise the 2i+1 lists of level i + 1 to obtain
2i lists of L words of weight p/2i in Fk+�

q with a prescribed value on �/a
coordinates of their syndromes

3. At level 0: output the final list of L words of weight p with a prescribed
syndrome

With the constraint that L = q�/a and L2a ≤ (
k+�

p

)
(q−1)p. In practice, a should

be an integer ≥ 2, but the algorithm can be smoothed, see [7,18], and we may
consider the real value a such that

q�/a =
((

k + �

p

)
(q − 1)p

) 1
2a

. (10)

Even though this value of a does not correspond to an actual GBA tree as above,
it provides meaningful bounds. Putting everything together, the characteristic
quantities of GBA are the following:

CGBA = (2a+1 − 1) · q�/a and μGBA =
q

a+1
a �

(
k+�

p

)
(q − 1)p

(11)

up to a polynomial factor.

102 N. Sendrier

The DOOM Variant. The DOOM problem, Problem 2, is relevant in the case
of the security against forgery of a signature scheme, as the adversary can build
any number of messages and be happy to sign only one of them.

The best known way to exploit multiple instance with GBA is to fill one of
the 2a lists of level a with target syndromes. The characteristic quantities of
GBA-DOOM verify (11), but instead of (10) the optimal order a will be such
that

q�/a =
((

k + �

p

)
(q − 1)p

) 1
2a−1

. (12)

4 Best Known Attacks on Wave

We consider an instance of Wave of main parameters (n,w, k), public key Hpub ∈
F(n−k)×n
3 , and secondary parameters (kU , kV , g). The public code is Cpub = Cπ =

〈Hpub〉⊥ where π is a secret permutation and C is a generalized (U |U +V) code.
The type-U and type-V codewords of C, denoted U(C) and V(C), are defined in
Sect. 2.5. To ease the statements we will also call type-U and type-V codewords
the elements of Cpub which belong to U(C)π and V(C)π respectively.

– Forgery Attack. Without knowledge about the secret, the adversary is
reduced to solve DP∞(3;n, k, w) on average. The target weight w is large,
close to the block length n. In this regime, the best known attack is Informa-
tion Set Decoding using the Generalized Birthday Algorithm as subroutine,
see [7].

– Key Attack. The best known method for recovering the secret key, or at least
distinguishing the public key from a random matrix, will consist in exhibiting
a type-U codeword in Cpub or in C⊥

pub.

4.1 Forgery Attack

This problem was addressed in [7]. We want to solve the unlimited DOOM
problem DP∞(3;n, k, w) when w is close to n. The workfactor is (larger than)

CGBA

min(1, N · μGBA · π�,p(w))

with N =
(

n
w

)
2w/3n−k the expected number of solutions, CGBA and μGBA

defined in (11), minimized over all choices of �, p, a such that (12).

Optimization. It is optimal to choose p = k+� in this regime, this was already
remarked in [7]. We also notice that the workfactor is minimal when the success
probability of an iteration is constant (i.e. one or a small number of iterations
is enough). This happens, asymptotically, when N · μGBA · π�,p(t) = 1. Finally,
the minimal workfactor is WFGBA = q�/a when � and a verify

3�/a = 2(k+�)/(2a−1) =
3n−k−�

(
n−k−�
w−k−�

)
2w−k−�

.

Wave Parameter Selection 103

4.2 Key Attack

The key attack we consider here consists in searching a type-U or a type-V
codeword in either the public [n, k] code Cpub or its dual. This is done by applying
a generic decoding technique (e.g. ISD and variants) for a target error weight t
and the zero syndrome.

Limiting the Codeword Search:

– We will not consider type-V codewords. In fact, for all Wave parameters of
interest, the situation is similar to what we observe in Fig. 1, the type-V
codewords (red curve) are always dominated by the type-U codewords. So it
will always be easier to find a type-U .

– We will not consider type-U codewords of high weight. We observe in Fig. 1
that, for large weights, the blue curve of type-U codewords is above the
expected number of codewords of that weight, in black. This phenomenon
even amplifies when the code rate k decrease. Even though, those words are
always harder to find in practice.

Note that to be thorough, the designer must check the above cases a posteriori,
which can easily be done when the parameters are known. The purpose of the
above limitation is to reduce the parameters selection to a trade-off between the
forgery attack of Sect. 4.1 and the search of type-U codewords of small weight.

Finding type-U Codewords of Small Weight. This search will consist in
finding a word of weight t, to be determined, in the code Cpub or C⊥

pub. The
adversary wins if it was able to obtain at least one type-U codeword of such
weight. That is:

– either search a type-U codeword in Cpub, one among NU (t) =
(
n/2
t/2

)
2

t
2 /3

n
2 −kU ;

– or search a type-U codeword in C⊥
pub, one among NV (t) =

(
n/2
t/2

)
2

t
2 /3kV .

The workfactor is minimized over those two cases and over all possible even
values of t. The corresponding computational effort when the generic decoding
algorithm is ISD-MMT [23] is

min
(

min
t,�

(WFMMT(n, k, t,NU (t))) ,min
t,�

(WFMMT(n, n − k, t,NV (t)))
)

(13)

whose value derives from (8) and (9). The optimization parameters p and � are
related when the optimum is reached in ISD-MMT, see (9), here we write p as
a function of �, and � is used to minimize the expression.

Remark: the optimal value of t, that is the weight for which it is easiest to
find a type-U codeword, is a non trivial trade-off. For instance for (k/n,w/n) =
(0.5, 0.894) and kU = 0.693n/2, the easiest target weight is not, as one could
expect, the Gilbert-Varshamov distance (t/n = 0.081 where the blue curve meets
the horizontal axis in Fig. 1) but is much larger (t/n = 0.209 shown by the small
vertical black line in Fig. 1).

104 N. Sendrier

4.3 Wave Parameter Selection

We consider here asymptotic estimates. Relative parameters are considered, e.g.
k/n, w/n. . . , and polynomial factors are not considered. Our purpose is to find
the good proportion between the scheme parameters, main and secondary. As
the security scales linearly with code-length n, the target security is obtained as
a final step by scaling n.

1. Let λ be the target (classical) security or the “number of security bits”, e.g.
λ = 128.
We want that all attacks against the scheme require a computational effort
at least equal to 2λ.

2. Select the main parameters (k,w).
(guidelines: 0.35 ≤ k/n ≤ 0.7 and 0.85 ≤ w/n ≤ 0.95)
The forgery attack requires a computational effort

WFGBA(n, k, w) ≥ 2c·n

where c only depends on k/n and w/n.
We may now relate the code-length and the security as we want to reach
c · n = λ where λ is the “number of (classical) security bits”.

3. The secondary parameters (kU , kV) derive from the main ones:

kU = g +
3
2
w − n and kV = k − kU .

4. The gap g is used in [15] to unconditionally ensure a uniformity condition
needed to formally reach the EUF-CMA security, its value is g = λ/ log2 3 =
0.631c ·n for “λ bits of (classical) security”. Using g = 0 is probably safe but,
at the moment, would require an additional heuristic assumption. We will
favor an intermediate value g = 0.315 c · n and admit that it corresponds to
an adversary limited to 2λ/2 queries to a signing oracle, e.g. a scheme with
128 bits of security with an adversary allowed to at most 264 queries to a
signing oracle, corresponding to a gap g ≈ 40.

5. The corresponding computational effort for the key attack derives from (13)
and Sect. 4.2. If we denote WFkey this quantity, the corresponding asymptotic
exponent is c′ = 1

n log2(WFkey) which only depends of the relative value k/n
and kU/n. Finally kU is related to w and to the gap g.

Example: In Fig. 2, we consider k/n = 0.5. The asymptotic exponent is given
for forgery attack, the increasing curve in black, and for the key attack, the
decreasing curves in dotted red, solid blue, dashed green, corresponding to var-
ious choices for the gap. The optimal choice will correspond to the curves inter-
sections whose numerical values are given in Table 1.

We observe that, even though the gap does not change the order of mag-
nitude, it has a significant impact on the system parameters. In the sequel we
will consider the “half gap” scenario, corresponding to g = 40 when the target
security is λ = 128.

Wave Parameter Selection 105

Fig. 2. Security Exponent for Best Known Forgery Attacks (black) and Key Attacks
(blue) vs. Error Weight for a Code Rate k = 0.5 (Color figure online)

Table 1. Wave Parameters vs. Gap for k = 0.5

asymptotic parameters Wave parameters, λ=128

w/n c n k w kU kV g

no gap 0.89665 0.0162184 7904 3952 7077 2763 1183 0

half gap 0.89412 0.0150016 8532 4266 7629 2951 1315 40

full gap 0.89193 0.0139887 9150 4575 8161 3132 1443 81

4.4 Sizes

The public key can be provided in systematic form, so its size is equal to
k(n−k) log2 3 bits. The signature is a ternary vector e of length n and weight w.
As explained in [2, §2.5], when the public key is in systematic form, it is enough
to provide the last k coordinates of e. Moreover those coordinates can be com-
pressed to a size k ·h3(w/n) bits, where h3(x) = −x log2 x−(1−x) log2(1−x)+x
is the ternary entropy function.

For a security level λ = 128 and the intermediate gap g = 40 we give in
Table 2 Wave parameters for a code rate between 0.38 and 0.70. We also give in
Fig. 3 the signature length and the public key size for the same range of code

106 N. Sendrier

rates. We observe that if k/n decrease below 0.43 or increases above 0.66 then
both the signature length and the key size increase. So the effective range for the
code rate is rather narrow. In practice k = 0.5 seems to offer a rather good trade-
off, the signature length is very close the minimum, 737 bytes for a minimum of
723 bytes, while the public key has a size of 3.6 MB, not much larger than the
minimal 3.04 MB.

Table 2. Wave parameters for (λ, g) = 128, 40

k/n n k w kU kV signature length (bytes) key size (MB)

0.38 10464 3976 8918 2953 1023 724 5.11

0.41 9792 4015 8454 2928 1087 723 4.60

0.44 9262 4075 8095 2920 1155 724 4.19

0.47 8846 4158 7822 2927 1231 729 3.86

0.50 8526 4263 7623 2949 1314 737 3.60

0.53 8318 4409 7516 2995 1414 751 3.41

0.56 8184 4583 7469 3059 1524 768 3.27

0.59 8124 4793 7485 3143 1650 791 3.16

0.62 8136 5044 7564 3249 1795 818 3.09

0.65 8226 5347 7713 3383 1964 852 3.05

0.68 8402 5713 7942 3550 2163 894 3.04

0.70 8574 6002 8146 3685 2317 928 3.06

4.5 Scaling Security

All parameters scale linearly with the security. The signature length also scales
linearly, the key size however is quadratic. So Table 2 can be used to deduce
parameters offering a higher security level, e.g. λ ∈ {192, 256}. This scaling will
also increase the gap while in some situations, for instance in the NIST call for
postquantum primitives, some capabilities of the adversary are limited regardless
of the target security. Let us assume then that the adversary is limited to 264

calls to a signing oracle and we want to reach security levels 192 or 256. It is
possible to do slightly better than just scaling Table 2 (Table 3)

Wave Parameter Selection 107

Fig. 3. Signature Length and Public Key Size vs. Code Rate for a Security λ = 128
and a Gap g = 40

Table 3. Scaling Wave Parameters with a Gap g = 40

λ g n k w kU kV signature length key size

128 40 8526 4263 7623 2949 1314 737 bytes 3.60 MB

192 40 12476 6238 11165 4311 1927 1076 bytes 7.71 MB

256 40 16424 8212 14705 5673 2539 1416 bytes 13.36 MB

4.6 Quantum Security

All attacks that are involved in the parameter selection process derive from ISD.
So far quantum speedup of ISD variants [3,10,22] never managed to reduce the
security exponent by more than a factor 2 and thus, from Sect. 4.5, scaling the
scheme to resist to quantum cryptanalysis will be straightforward.

5 Conclusion

Wave is the first scalable hash-and-sign signature scheme based on codes. It
enjoys short signature and fast verification, whereas signing time is average,
hundreds of milliseconds, and the public key large, several megabytes.

We propose here some practical parameters for the scheme, based on the
current knowledge of the underlying hard problems. Our proposed methodology
would easily adapt to any evolution of the best known solvers for those problems.

108 N. Sendrier

Note that all known attacks eventually require the use of solvers for the
generic decoding problem, and even though those solvers are used in unusual
regime of parameters, the generic decoding problem has been studied for more
than half a century without any significant improvement. For instance, decoding
at the Gilbert-Varshamov distance at rate 0.5, i.e. t = 0.11 ·n errors in a binary
code of length n and dimension n/2, features a security exponent of 0.12 with
Prange algorithm [27] which only reduces to about 0.09 with today’s best known
solver [5]. In other words, after sixty years, any code-based scheme corresponding
to this regime of parameters, as for the instance the Stern authentication scheme
[30] and related signatures, as [16] for instance, need an increase of only 25%
of its block size to maintain the same security. Very few problems in public key
cryptography can claim such a stability for the computational cost of their best
known attacks.

References

1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification
scheme with reduced communication. In: Proceedings of IEEE Information Theory
Workshop- ITW 2011, pp. 648–652. IEEE (2011)

2. Banegas, G., Debris-Alazard, T., Nedeljković, M., Smith, B.: Wavelet: code-based
postquantum signatures with fast verification on microcontrollers. Cryptology
ePrint Archive, Report 2021/1432 (2021). https://ia.cr/2021/1432

3. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

4. Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based
signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT
2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-51938-4 3

5. Both, L., May, A.: Optimizing BJMM with nearest neighbors: full decoding in
22/21n and McEliece security. In: WCC Workshop on Coding and Cryptography
(2017). http://wcc2017.suai.ru/Proceedings WCC2017.zip

6. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 2

7. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome
decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5 18

8. Canto Torres, R.: Asymptotic analysis of ISD algorithms for the q−ary case. In:
Proceedings of the Tenth International Workshop on Coding and Cryptography
WCC 2017 (2017). http://wcc2017.suai.ru/Proceedings WCC2017.zip

9. Carrier, K., Debris-Alazard, T., Meyer-Hilfiger, C., Tillich, J.: Statistical decoding
2.0: reducing decoding to LPN. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022.
LNCS, vol. 13794, pp. 477–507. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22972-5 17

https://ia.cr/2021/1432
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
http://wcc2017.suai.ru/Proceedings_WCC2017.zip
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-38471-5_18
http://wcc2017.suai.ru/Proceedings_WCC2017.zip
https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-031-22972-5_17

Wave Parameter Selection 109

10. Chailloux, A., Debris-Alazard, T., Etinski, S.: Classical and quantum algorithms
for generic syndrome decoding problems and applications to the lee metric. In:
Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 44–
62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5 3

11. Coron, J.S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash func-
tion. IACR Cryptology ePrint Archive, Report 2004/013 (2004). http://eprint.iacr.
org/

12. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 10

13. Debris-Alazard, T.: Cryptographie fondée sur les codes : nouvelles approches pour
constructions et preuves ; contribution en cryptanalyse. Theses, Sorbonne Univer-
sité (2019). https://tel.archives-ouvertes.fr/tel-02424234

14. Debris-Alazard, T.: Code-based cryptography: Lecture notes. arXiv:2304.03541
(2023)

15. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-
way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 2

16. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022, vol. 13508, pp. 541–572. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15979-4 19

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 6

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206. ACM (2008)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC 2007, pp. 21–
30. ACM (2007). https://doi.org/10.1145/1250790.1250794

21. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems
based on the general decoding problem. IEEE Trans. Inform. Theory 48(10), 2669–
2678 (2002)

22. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

23. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

24. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

25. Minder, L., Sinclair, A.: The extended k-tree algorithm. In: Mathieu, C. (ed.)
Proceedings of SODA 2009, pp. 586–595. SIAM (2009)

https://doi.org/10.1007/978-3-030-81293-5_3
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/3-540-45682-1_10
https://tel.archives-ouvertes.fr/tel-02424234
http://arxiv.org/abs/2304.03541
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9

110 N. Sendrier

26. Peters, C.: Information-set decoding for linear codes over Fq. In: Sendrier, N. (ed.)
PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12929-2 7

27. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

28. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25405-5 4

29. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

30. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

31. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Group-Action-Based Cryptography

SPDH-Sign: Towards Efficient,
Post-quantum Group-Based Signatures

Christopher Battarbee1(B), Delaram Kahrobaei1,2,3,4, Ludovic Perret5,
and Siamak F. Shahandashti1

1 Department of Computer Science, University of York, York, UK
kit.battarbee@york.ac.uk

2 Departments of Computer Science and Mathematics, Queens College, City
University of New York, New York, USA

3 Initiative for the Theoretical Sciences, Graduate Center,
City University of New York, New York, USA

4 Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, New York, USA

5 Sorbonne University, CNRS, LIP6, PolSys, Paris, France

Abstract. In this paper, we present a new diverse class of post-quantum
group-based Digital Signature Schemes (DSS). The approach is signif-
icantly different from previous examples of group-based digital signa-
tures and adopts the framework of group action-based cryptography:
we show that each finite group defines a group action relative to the
semidirect product of the group by its automorphism group, and give
security bounds on the resulting signature scheme in terms of the group-
theoretic computational problem known as the Semidirect Discrete Log-
arithm Problem (SDLP). Crucially, we make progress towards being able
to efficiently compute the novel group action, and give an example of a
parameterised family of groups for which the group action can be com-
puted for any parameters, thereby negating the need for expensive offline
computation or inclusion of redundancy required in other schemes of this
type.

Keywords: Group-based Signature · Post-quantum Signature · Group
Action Based Cryptography · Post-quantum Group-based
Cryptography

Introduction

Since the advent of Shor’s algorithm and related quantum cryptanalysis, it has
been a major concern to search for quantum-resistant alternatives to traditional
public-key cryptosystems. The resultant field of study is known today as Post-
Quantum Cryptography (PQC), and has received significant attention since the
announcement of the NIST standardisation.

One of the goals of PQC is to develop a quantum-resistant Digital Signature
Scheme (DSS), a widely applicable class of cryptographic scheme providing cer-
tain authenticity guarantees. Following multiple rounds of analysis, NIST have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 113–138, 2023.
https://doi.org/10.1007/978-3-031-40003-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_5

114 C. Battarbee et al.

selected three such schemes for standardisation, two of which are based on the
popular algebraic notion of a lattice. Nevertheless, stressing the importance of
diversity amongst the post-quantum roster, a call for efficient DSS proposals not
based on lattices was issued in 2022 [30]. A potential source of post-quantum hard
computational problems come from group-based cryptography; for a comprehen-
sive survey of the field including examples of DSSs, see the work of Kahrobaei
et al. in [18,19].

Recall that a finite commutative group action consists of a finite abelian
group G, a finite set X, and a function mapping pairs in G×X into G. Another
promising framework for PQC has its origins in the so-called Hard Homoge-
nous Spaces of Couveignes1 [10]: one considers a family of group actions for
which all the ‘reasonable’ operations - for example, evaluating the group action
function, and sampling uniformly from the group - can be done efficiently, but
a natural analogue of the discrete logarithm problem called the Vectorisation
Problem is computationally difficult. Given such a group action, one can exploit
the commutativity of the group operation to construct a generalisation of the
Diffie-Hellman Key Exchange protocol based on the difficulty of the Vectorisa-
tion Problem, which is believed to be post-quantum hard.

As well as this analogue of Diffie-Hellman, the group action framework is
used to construct an interactive proof of identity, which is effectively a standard
three-pass identification scheme. In his doctoral thesis [36], Stolbunov uses this
identification scheme to obtain a signature scheme by applying the standard Fiat-
Shamir heuristic; we will here follow the convention of referring to this scheme
as the CRS2 Digital Signature Scheme (CRS-DSS). In order to specify a practical
signature scheme it remains to specify a group action: very roughly, CRS-DSS uses
the celebrated example, coming from the theory of isogenous elliptic curves, of
a finite abelian group called the ‘class group’ acting on a set of elliptic curves.

CRS-DSS did not recieve much attention for a number of years, for two key
reasons: first, it was demonstrated that the scheme admits an attack of quan-
tum subexponential complexity [7] (in fact, this attack applies to all group-action
based cryptography). This might in itself be tolerable; much more troubling is
that the original version of CRS-DSS is unacceptably slow. There has, however,
been a resurgence of interest in schemes similar to CRS-DSS following the dis-
covery in [6] of a much faster isogeny-based group action; on the other hand,
the computation of the class group is in general thought to be computationally
difficult. In fact this is quite a significant problem: without random sampling the
security proofs, which rely on group elements hiding secrets to have the appropri-
ate distribution, break down. Two approaches to solving this problem have been
suggested: in [12], one uses the ‘Fiat-Shamir with aborts’ technique developed by
Lyubashevsky [22], at the cost of rendering the scheme considerably less space
efficient; in [3], a state-of-the-art computation of a class group is performed and
the resulting group action is used as the platform for CRS-DSS. However, it is
important to note that here the computation of a class group is performed, and

1 Similar notions were arrived at independently by Rostovstev and Stolbunov [34,35].
2 Couveignes, Rostovstev and Stolbunov.

SPDHSign 115

so one is restricted in terms of tweaking parameters. In particular, the introduc-
tion of new parameters would require another extremely expensive offline class
group computation.

A potential third solution is to dispense with the isogeny-based group action
altogether, and search for different examples of group actions for which com-
puting the appropriate group - and therefore uniform sampling - is efficient.
Historically speaking, there has not been much research in this direction since
non-trivial examples of cryptographically interesting group actions have not been
available - though this work is predated by a general framework for actions by
semigroups in [27], and an example semigroup action arising from semirings in
[24]. In this paper we make an important step in the search for efficient group
actions; in particular we show that every finite group gives rise to a group action
on which CRS-DSS-type signatures can be constructed, and that the respective
group is cyclic and has order dividing a known quantity. These group actions
arise from the group-theoretic notion of the semidirect product, and were first
studied in the context of a generalisation of Diffie-Hellman [15] - note, however,
that it was not known at the time that the proposed framework was an example
of a group action. Indeed, the link was only discovered rather recently [2], and
prompted the isogeny-style renaming of the key exchange in [15] as Semidirect
Product Diffie-Hellman, or SPDH (to be pronounced ‘spud’). With this in mind,
in this paper we propose a hypothetical family of digital signature schemes which
we christen SPDH-Sign.

It is important to note that we do not provide concrete security parameters,
nor do we claim a security improvement over similar schemes: instead, the paper
has two key contributions. First, we notify the community of a promising step
towards efficient, scalable sampling in cryptographic group actions: our Theo-
rem 4 shows that for each group action we construct there is quite a severe
restriction on the possible sizes of the cyclic group acting. Since sampling from
a cyclic group is trivial if we know its order, we have provided a large class of
candidate group actions for which sampling is efficient. As such we also carry
out the standard methodology of defining a resulting signature scheme, and give
a security proof in the random oracle model that bounds the security of the
signature scheme in terms of our central algorithmic problem in more explicit
terms than comparable proofs.

The second key contribution is the proposal of a specific group as an example
of a group in which one can efficiently sample in the resulting group action whilst
maintaining resistance to related (but not known equivalent) cryptanalysis. Here
we see an example of our Theorem 4 in action - the size of the crucial parameter
needed for efficient sampling can be one of only 12 values, and we can check the
validity of each of these values in logarithmic time.

Related Work

The following is a short note to emphasise the novelty of our contribution with
respect to related areas of the literature.

116 C. Battarbee et al.

The idea of defining cryptography based on the action of a semigroup on a
set, and the resulting “semigroup action problem” (SAP), is proposed in Chris
Monico’s thesis [27], and is referenced by Han and Zhuang in their recent paper
[16]. Certainly this idea of a semigroup action predates our establishment of
a cryptographically relevant group action arising from topics in group theory.
We therefore clarify that our contribution is not the novel proposal of a group
action of this type, but the explicit connection between cryptographic group
actions and the problems arising from semidirect product key exchange, which
originally appears in [15].

In [16], SAP and the semidirect product key exchange are mentioned in the
same breath in the introduction. This, however, does not constitute the explicit
connection of the problem originally appearing in the discussion of semidirect
product key exchange and cryptographic group actions - where this connec-
tion is one of the claimed novel aspects of our paper - but a list of problems
related to the semigroup DLP. Moreover, none of the semidirect product key
exchange-adjacent literature we are aware of mentions SAP, including propos-
als of semidirect product key exchange [15,20,31,32] and cryptanalysis of the
semidirect product key exchange authored by Monico himself [25,26]. Accord-
ingly, we believe that establishing the connection between semidirect product
key exchange and group-action based cryptography is a novel contribution to
the area.

1 Preliminaries

1.1 The Semidirect Product

The term ‘semidirect’ product refers, generally speaking, to a rather deep family
of notions describing the structure of one group with respect to two other groups.
For our purposes we are interested in a rather specific case of the semidirect
product, defined as follows:

Definition 1. Let G be a finite group and Aut(G) its automorphism group.
Suppose that the set G ×Aut(G) is endowed with the following operation:

(g, φ)(g′, φ′) = (φ′(g)g′, φ′φ)

where the multiplication is that of the underlying group G, and the automorphism
φ′φ is the automorphism obtained by first applying φ, and then φ′. We denote
this group G ⋉Aut(G).

A few facts about this construction are standard.

Proposition 1. Let G be a finite group and Φ ≤ Aut(G) (where Φ can be any
subgroup, including Aut(G) itself). One has the following:

1. G ⋉ Φ is a finite group of size |G||Φ|
2. Let (g, φ) ∈G ⋉ Φ. One has

(g, φ)−1 = (φ−1(g−1), φ−1)

SPDHSign 117

1.2 Proofs of Knowledge and Identification Schemes

Roughly speaking, the idea of the Fiat-Shamir class of signatures is as follows: we
interactively convince an ‘honest’ party that we possess a certain secret. We can
then transform this interactive paradigm to a non-interactive digital signature
scheme by applying the Fiat-Shamir transform. A primary motivation for this
approach is that the resulting signature scheme inherits its security at rather
low cost from security properties of the underlying interactive scheme - as such,
it is necessary for us now to review some of these security notions.

First, let us define exactly what we mean by these interactive proof of knowl-
edge protocols. The idea of communicating a ‘secret’ is neatly captured by the
notion of a binary relation; that is, for two sets W and S, consider a set R⊂W×S.
Given a pair (w, s) ∈R, we say s is the statement and w is the witness. In gen-
eral, for a given statement a party called the ‘prover’ wishes to demonstrate their
knowledge of a valid witness (that is, given s we wish to prove that we possess a
w such that (w, s) ∈R) to a party called the verifier. Of course, one can do this
trivially by simply revealing the witness, so we add the crucial requirement that
no information about the witness is revealed.

We refer more or less to this idea when discussing identification schemes,
with the caveat that the prover should be able to compute an arbitrary pair of
the binary relation. If the prover cannot generate an arbitrary pair of the binary
relation, and instead is to demonstrate his knowledge of some given element of
the binary relation, we have instead a ‘zero-knowledge proof’. A notable class of
zero-knowledge proofs are the so-called ‘sigma protocols’. One can always turn
a zero-knowledge proof into an identification scheme by providing the prover
with an algorithm capable of generating an arbitrary pair of the binary relation;
our definition of identification schemes in fact refers only to those arrived at by
transforming a sigma protocol into an identification scheme.

Notice that the idea of a binary relation serves as a neat generalisation of
the usual notion of a public and private key pair. The algorithm used by the
identification scheme to generate binary relation instances is therefore denoted
by KeyGen, and produces a pair (sk, pk). We also require, in some sense to be
made precise later, that recovering an appropriate witness from a statement is
computationally difficult.

Definition 2 (Identification Scheme). Let R ⊂ S × P be a binary relation.
An identification scheme is a triple of algorithms (KeyGen, P, V), where

– KeyGen takes as input a security parameter n and generates a pair (sk, pk)∈R,
publishes pk, and passes sk to P

– P is an interactive algorithm initialised with a pair (sk, pk) ∈R
– V is an interactive algorithm initialised with a statement pk ∈ P. After the

interaction, V outputs a decision ‘Accept’ or ‘Reject’.

The interaction of P and V runs as follows:

1. P generates a random ‘commitment’ I from the space of all possible commit-
ments I and sends it to V

118 C. Battarbee et al.

2. Upon receipt of I, V chooses a ‘challenge’ c from the space of all possible
challenges C at random and sends it to P

3. P responds with a ‘response’ p
4. V calculates an ‘Accept’ or ‘Reject’ response as a function of (I, c, p) and the

statement pk.

The interaction of P and V is depicted in Fig. 1.

Fig. 1. An identification scheme.

Definition 3. Let (KeyGen, P, V) be an identification scheme. The triple (I, c, p)
of exchanged values between P and V is called a ‘transcript’; if a prover (resp.
verifier) generates I, p (resp c) with the algorithm P (resp. V), they are called
‘honest’. An identification scheme is ‘complete’ if a transcript generated by two
honest parties is always accepted by the verifier.

Turning our attention to the security of identification protocols, let us define
the framework we wish to work with. As we will see later, it suffices for signature
security to only consider identification schemes for which we have an honest
verifier - in other words, it suffices to consider only a cheating prover. Let us do
so in the form of the following attack games, which are [4, Attack Game 18.1]
and [4, Attack Game 18.2] respectively.

Definition 4 (Direct Attack Game). Let ID = (KeyGen, P, V) be an identi-
fication scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary interacts with the challenger who generates responses with V.

At the end, the challenger outputs ‘Accept/Reject’ as a function of the gen-
erated transcript and pk; the adversary wins the game if V outputs ‘Accept’.

The Direct Attack game is depicted in Fig. 2. We denote the advantage of the
adversary in this game with ID as the challenger by dir-adv(A,ID).

SPDHSign 119

Fig. 2. The direct attack game.

Definition 5 (Eavesdropping Attack). Let ID = (KeyGen, P, V) be an iden-
tification scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary enters into an ‘eavesdropping’ phase, whereby they can request

honestly-generated transcripts from a transcript oracle T possessing the same
(sk, pk) pair generated in the previous step.

3. The adversary interacts with the challenger who generates responses with V.
At the end, the challenger outputs ‘Accept/Reject’ as a function of the gen-
erated transcript and pk; the adversary wins the game if V outputs ‘Accept’.

The Eavesdropping Attack game is depicted in Fig. 3. We denote the advantage
of the adversary in this game with ID as the challenger by eav-adv(A,ID).

Fig. 3. The eavesdropping attack game.

120 C. Battarbee et al.

In practice, given a concrete identification scheme it is possible to bound the
advantage of an adversary in these games provided one can prove the following
two properties hold for the identification scheme:

Definition 6. Let (KeyGen, P, V) be an identification scheme.

– The scheme has ‘special soundness’ if two transcripts with the same com-
mitment and different challenges allow recovery of the witness sk; that is, if
(I, c, p), (I, c∗, p∗) are two transcripts generated with (sk, pk)←KeyGen, there
is an efficient algorithm taking these transcripts as input that returns sk.

– The scheme has ‘special honest verifier zero knowledge’ if, given a statement
pk and a challenge c, there is an efficient algorithm to generate a passing
transcript (I∗, c, p∗) with the same distribution as a legitimately generated
transcript.

Before moving on there is one final security notion to explore. Notice that if
the underlying binary relation of an identification scheme is such that one can
easily recover a valid witness from the public statement, an adversary can easily
succeed in either of the above games simply by honestly generating the proof
p with the appropriate value of sk. We have loosely discussed the notion that
recovering a witness should therefore be difficult; it is nevertheless so far not clear
how precisely this difficulty is accounted for. In fact, there are a number of ways
to get round this. For our purposes, and in our application of the Fiat-Shamir
transform, we will invoke the system outlined in [4, Section 19.6]. The idea is
basically thus: provided the properties in Definition 6 hold, it is possible to set
up the security proof such that all the difficulty of recovering a witness is ‘priced
in’ to the key generation algorithm. Again, we will need a precise definition to
make this rigorous later on: the following is [4, Attack Game 19.2]

Definition 7 (Inversion Attack Game). Let KeyGen be a key generation
algorithm for a binary relation R ⊂ S × P and A be an adversary. Consider
the following game:

1. A pair (sk, pk) is generated by running KeyGen, and the value pk is passed to
the adversary A.

2. A outputs some ŝk ∈ S. The adversary wins if (ŝk, pk) ∈R.

We denote the advantage of the adversary in this game with kg as the challenger
by inv-adv(A,kg).

1.3 Signature Schemes

Recall that a ‘signature scheme’ is a triple of algorithms (KeyGen, Sg, Vf),
where KeyGen() outputs a private-public key pair (sk, pk) upon input of a secu-
rity parameter. For some space of messages M, Sg takes as input sk and some
m ∈M, producing a ‘signature’ σ. Vf takes as input pk and a pair (m,σ), and
outputs either ‘Accept’ or ‘Reject’. We have the obvious correctness requirement

SPDHSign 121

that for a key pair (sk, pk) generated by KeyGen we can expect, for any m ∈M,
that one has

Vf(pk, (m, Sg(sk,m))) =Accept

The security of a signature scheme is defined with respect to the following
attack game, which is [4, Attack Game 13.1] (but is widely available).

Definition 8 (Chosen Message Attack). Let S = (KeyGen, Sg, Vf) be a
signature scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary enters into an ‘querying’ phase, whereby they can obtain signa-

tures σi=Sg(sk,mi) from the challenger, for the adversary’s choice of message
mi. The total number of messages queried is denoted Q.

3. The adversary submits their attempted forgery - a message-signature pair
(m∗, σ∗) - to the challenger. The challenger outputs Vf(pk, (m∗, σ∗)); the
adversary wins if this output is ‘Accept’.

The Chosen Message Attack game is depicted in Fig. 4. We denote the advantage
of the adversary in this game with S as the challenger by cma-adv(A,S).

Fig. 4. The chosen message attack game.

A signature scheme S for which cma-adv(A,S) is bounded favourably3 from
above for any efficient adversary A is sometimes called euf-cma secure, or ‘exis-
tentially unforgeable under chosen message attacks’.

It remains to briefly define the well-known notion of the Fiat-Shamir trans-
form, initially presented in [14]:

Definition 9 (Fiat-Shamir). Let ID = (KeyGen, P, V) be an identity scheme
with commitment space I and C. We define a signature scheme FS(ID) =
(KeyGen, Sg, Vf) on the message space M given access to a public function
H ∶M × I → C:
3 ‘Favourably’ here usually means as a negligible function of a security parameter.

122 C. Battarbee et al.

1. KeyGen is exactly the key generation algorithm of ID and outputs a pair
(sk, pk), where pk is made public

2. Sg takes as input m ∈M and the key pair (pk, sk) and outputs a signature
(σ1, σ2):

I ←P((sk, pk))
c ← H(m, I)
p ←P((I, c), (sk, pk))
(σ1, σ2) ← (I, p)
return (σ1, σ2)

3. Vf takes as input a message-signature pair (m, (σ1, σ2)) and outputs a decision
d, which is ‘Accept’ or ‘Reject’:

c ← H(I, σ1)
d ←V((σ1, c, σ2), pk)
return d

Intuitively, we can see that Sg is simulating an interactive protocol non-
interactively with a call to the function H; in order to inherit the security
properties of the identification scheme, this function H should have randomly
distributed outputs on fresh queries and should be computationally binding -
that is, it should be difficult to find a value I ′

≠ I such that H(m, I) =H(m, I ′);
and given a commitment c ∈ C it should be difficult to find a message m and
commitment I ∈ I such that H(m, I) = c. On the other hand, for correctness
we need H to be deterministic on previously queried inputs. Such a function is
modelled by a hash function under the random oracle model: in this model, it
was famously demonstrated in [1] that a relatively modest security notion for
the underlying identification scheme gives strong security proofs for the resulting
signature scheme. In our own security proof we use the slightly more textbook
exposition presented in [4].

2 A Novel Connection to a Group Action

Our first task is to demonstrate the existence of the claimed group action, for
any finite group. A very similar structure was outlined in [2] - with the important
distinction that semigroups are insisted upon. Indeed, it turns out that allowing
invertibility changes the structure in a way that we shall outline below.

Definition 10. Let G be a finite group, and Φ≤Aut(G). Fix some (g, φ)∈G⋉Φ.
For any x∈Z, the function sg,φ ∶Z → G is defined as the group element such that

(g, φ)x
= (sg,φ(x), φx)

The group action of interest arises from the study of the set {sg,φ(i) ∶ i ∈ Z}.
Certainly 1 ∈ {sg,φ(i) ∶ i ∈ Z}, since there is some n ∈ N such that (sg,φ(n), φn) =
(g, φ)n

= (1, id), but one cannot immediately deduce that this is the smallest

SPDHSign 123

integer for which sg,φ is 1. Indeed, even if the order n of (g, φ) is the smallest
integer such that sg,φ(n)=1, we are not necessarily guaranteed that every integer
up to n is mapped to a distinct elements of G by sg,φ. Before resolving these
questions let us introduce some terminology.

Definition 11. Let G be a finite group, and Φ≤Aut(G). Fix some (g, φ)∈G⋉Φ.
The set

Xg,φ ∶ ={sg,φ(i) ∶ i ∈ Z}
is called the cycle of (g, φ), and its size is called the period of (g, φ).

In the interest of brevity we will also assume henceforth that by (g, φ) we
mean some pair occurring in a semidirect product group as described above. For
any such pair (g, φ), note that Xg,φ is not necessarily closed under the group
operation - we can, nevertheless, implement addition in the argument of sg,φ as
follows:

Theorem 1. Let i, j ∈ Z and suppose (g, φ) ∈ G ⋉ Φ in the usual way. One has
that

φj(sg,φ(i))sg,φ(j) = sg,φ(i + j)

Proof. Following the definitions one has

(sg,φ(i + j), φi+j) = (g, φ)i+j

= (g, φ)i(g, φ)j

= (sg,φ(i), φi)(sg,φ(j), φj)

= (φj(sg,φ(i))sg,φ(j), φi+j) ��

Put another way, we can use integers to map Xg,φ to itself. This idea is
sufficiently important to earn its own notation:

Definition 12. Let i ∈ Z. The function ∗ ∶ Z × Xg,φ → Xg,φ is given by

i ∗ sg,φ(j) ∶ =φj(sg,φ(i))sg,φ(j)

We have seen that i ∗ sg,φ(j) = sg,φ(i + j); accordingly, we pronounce the ∗
symbol as ‘step’. An immediate consequence is the presence of some degree of
‘looping’ behaviour; that is, supposing sg,φ(n) = 1 for some n ∈ Z, one has

sg,φ(n + 1) = 1 ∗ sg,φ(n) = 1 ∗ 1
= φ(1)sg,φ(1)
= sg,φ(1)

Generalising this idea we get a more complete picture of the structure of the
cycle.

Theorem 2. Let G be a finite group and Φ≤Aut(G) an automorphism subgroup.
Fix (g, φ) ∈ G ⋉ Aut(G), and let n be the smallest positive integer for which
sg,φ(n) = 1. One has that |Xg,φ| = n, and

Xg,φ = {1, g, ..., sg,φ(n−1)}

124 C. Battarbee et al.

Proof. First, let us demonstrate that the values 1 = sg,φ(0), sg,φ(1), ..., sg,φ(n−1)
are all distinct. Suppose to the contrary that there exists 0≤ i< j ≤n−1 such that
sg,φ(i) = sg,φ(j); then some positive k < n must be such that i + k = j. In other
words:

i ∗ sg,φ(k) = sg,φ(j) ⇒ φi(sg,φ(k))sg,φ(i) = sg,φ(j)

⇒ φi(sg,φ(k)) = 1
⇒ sg,φ(k) = 1

which is a contradiction, since k < n. It remains to show that every integer is
mapped by sg,φ to one of these n distinct values - but this is trivial, since we
can write any integer i as kn + j for some integer k and 0 ≤ j < n. It follows that

sg,φ(i) = sg,φ(j)

where sg,φ(j) is one of the n distinct values. ��
It follows that we can write i ∗ sg,φ(j) = sg,φ(i + j mod n). In fact, the latter

part of the above argument demonstrates something slightly stronger: not only
is every integer mapped to one of n distinct values by sg,φ, but every member
of a distinct residue class modulo n is mapped to the same distinct value. It is
this basic idea that gives us our group action.

Theorem 3. Let G be a finite group and Φ ≤ Aut(G). Fix a pair (g, φ) ∈ G ⋉
Aut(G), and let n be the smallest positive integer such that sg,φ(n) = 1. Define
the function as

⊛∶ Zn × Xg,φ → Xg,φ

[i]n ⊛ sg,φ(j) = i ∗ sg,φ(j)

The tuple (Zn,Xg,φ,⊛) is a free, transitive group action.

Proof. First, let us see that ⊛ is well-defined. Suppose i≅j mod n, then i=j+kn
for some k ∈ Z. For some arbitrary Xg,φ, say sg,φ(l) for 0 ≤ l < n, one has

i ∗ sg,φ(l) = (j + kn) ∗ sg,φ(l)
= j ∗ sg,φ(l + kn)
= j ∗ sg,φ(l)

We also need to verify that the claimed tuple is indeed a group action. In order
to check that the identity in Zn fixes each Xg,φ, by the well-definedness just
demonstrated, it suffices to check that 0∗sg,φ(l)=sg,φ(l) for each 0≤ l<n - which
indeed is the case. For the compatibility of the action with modular addition,
note that for 0 ≤ i, j, k < n−1 one has

[k]n ⊛ ([j]n ⊛ sg,φ(i)) = [k]n ⊛ sg,φ(i + j mod n)
= sg,φ(i + j + k mod n)
= [j + k]n ⊛ sg,φ(i)

SPDHSign 125

as required. It remains to check that the action is free and transitive. First,
suppose [i]n ∈ Zn fixes each sg,φ(j) ∈ Xg,φ. By the above we can assume without
loss of generality that 0 ≤ i < n−1, and we have φj(sg,φ(i))sg,φ(j) = sg,φ(j). It
follows that sg,φ(i) = 1, so we must have i = 0 as required. For transitivity, for
any pair sg,φ(i), sg,φ(j) we have [j−i]n ⊛ sg,φ(i) = sg,φ(j), and we are done. ��

Recalling that the set Xg,φ and the period n are a function of the pair (g, φ),
we have actually shown the existence of a large family of group actions. Never-
theless, we have only really shown the existence of the crucial parameter n - it
is not necessarily clear how this value should be calculated. With this in mind
let us conclude the section with a step in this direction:

Theorem 4. Fix a pair (g, φ) ∈G ⋉ Aut(G). Let n be the smallest integer such
that sg,φ(n) = 1, then n divides the order of the pair (g, φ) as a group element in
G ⋉Aut(G).

Proof. Suppose m = ord((g, φ)). Certainly sg,φ(m) = 1, and by definition one has
m ≥ n. We can therefore write m = kn + l, for k ∈ N and 0 ≤ l < n. It is not too
difficult to verify that sg,φ(x) = φx−1(g)...φ(g)g for any x ∈ N. It follows that

sg,φ(m) = φkn(sg,φ(l))φ(k−1)n(sg,φ(n))...φn(sg,φ(n))sg,φ(n)

Since sg,φ(m) = sg,φ(n) = 1, we must have sg,φ(l) = 1. But l <n and so l = 0 by the
minimality of n, which in turn implies that n|m as required. ��

2.1 Semidirect Discrete Logarithm Problem

Given a group G and a pair (g, φ) ∈G⋉Aut(G), observe that as a consequence of
Theorem 1 and Definition 12, for any two integers i, j ∈ N we have that sg,φ(i +
j) = j ∗ sg,φ(i) = i ∗ sg,φ(j). A Diffie-Hellman style key exchange immediately
follows4; indeed, a key exchange based on this idea first appears in [15], and is
known as Semidirect Product Key Exchange. In the same way that the security of
Diffie-Hellman key exchange is related to the security of the Discrete Logarithm
Problem, to understand the security of Semidirect Product Key Exchange we
should like to study the difficulty of the following task:

Definition 13 (Semidirect Discrete Logarithm Problem). Let G be a
finite group, and let (g, φ) ∈ G × Aut(G). Suppose, for some x ∈ N, that one
is given (g, φ), sg,φ(x); the Semidirect Discrete Logarithm Problem (SDLP) with
respect to (g, φ) is to recover the integer x.

The complexity of SDLP is relatively well understood, in large part due to
the connection with group actions highlighted above. We will see later on that
the security game advantages for our identification and signature schemes can
4 Historically speaking, the key exchange predates the more abstract treatment in this

paper.

126 C. Battarbee et al.

be bounded in terms of the advantage of an adversary in solving SDLP; indeed,
for the SDLP attack game defined in the obvious way, we write the advantage
of an adversary sdlp-adv(A,(g, φ)).

Before we move on to study the signature schemes resulting from each group
action we note that the convention in the area is to restrict a finite group G to
be a finite, non-abelian group G. This was in part to preclude a trivial attack
on the related key exchange for a specific choice of φ - nevertheless, throughout
the rest of the paper we adopt this convention.

3 SPDH-Sign

3.1 An Identification Scheme

Recall that our strategy is to set up an honest-verifier identification scheme,
to which we can apply the well-known Fiat-Shamir heuristic and obtain strong
security guarantees in the ROM. The central idea of this identification scheme
is as follows: suppose we wish to prove knowledge of some secret Zn element,
say [s]n. We can select an arbitrary element of Xg,φ, say X0, and publish the
pair X0,X1 ∶ =[s]n ⊛X0. An honest party wishing to verify our knowledge of the
secret [s]n might invite us to commit to some group element [t]n, for [t]n sampled
uniformly at random from Zn. We can do this by sending the element I=[t]n⊛X0 -
note that as a consequence of the free and transitive properties, [t]n is the unique
group element such that I = [t]n⊛X0. However, with our knowledge of the secret
[s]n and the commitment [t]n, we can calculate the element [p]n = [t−s]n such
that [p]n ⊛ X1 = I, where this equation holds by the group action axioms: one
has [t−s]n ⊛ ([s]n ⊛X0) = [t]n ⊛X0 = I.

Fig. 5. Paths to the commitment.

Interpreted graph-theoretically (as depicted in Fig. 5), an honest verifier can
ask to see one of two paths to the commitment value. Consider a dishonest
party attempting to convince the verifier that they possess the secret [s]n. In
attempting to impersonate the honest prover, our dishonest party can generate
their own value of [t]n, and so can certainly provide the correct path in one of
the two scenarios. Assuming, however, that recovering the appropriate group
element is difficult, without knowledge of the secret [s]n this party succeeds in
their deception with low probability.

This intuition gives us the following non-rigorous argument of security in the
framework described in Sect. 1.2. First, recall that we are in the honest verifier
scenario, and so a challenge bit c will be 0 with probability 1/2, in which case a

SPDHSign 127

cheating prover succeeds with probability 1. Supposing that ε is the probability of
successfully recovering the value [t−s]n, it follows that a cheating prover succeeds
with probability (1+ε)/2 - that is, with probability larger than 1/2. We can quite
easily counter this by requiring that N instances are run at the same time. In
this case, if N zeroes are selected the prover wins with probability 1 by revealing
their dishonestly generated values of [t]n - otherwise, they are required to recover
at least 1 value of [t−s]n. Assuming for simplicity that the probability of doing
so remains consistent regardless of the number of times such a value is to be
recovered, since the honest verifier selects their challenges uniformly at random
the cheating prover succeeds with probability

1
2N
+

2N−1∑

i=1

ε

2N
=

1
2N
+ ε

2N
−1

2N

which tends to ε as N →�.
The actual proof of security operates within the security games defined in the

preliminaries. As a step towards this formalisation, we need to specify the binary
relation our identification scheme is based on. Choose some finite non-abelian
group G: given a fixed pair (g, φ) ∈G×Aut(G) we are interested, by Theorem 3,
in a subset R of Zn,Xg,φ, where n is the smallest integer such that sg,φ(n) = 1.
In fact, legislating for N parallel executions of the proof of knowledge, to each
tuple (X1, ...,XN) is associated a binary relation

R ⊂ ZN
n × X N

g,φ

where (([s1]n, ..., [sN]n), (Y1, ..., YN)) ∈ R exactly when (Y1, ..., YN) = ([s1]n ∗
X1, ..., [sN]n ∗XN).

With all this in mind let us define our identification scheme. The more rig-
orous presentation should not distract from the intuition that we describe N
parallel executions of the game in Fig. 5.

Protocol 1. Let G be a finite non-abelian group and (g, φ)∈G⋉Aut(G). Suppose
also that n ∈ N is the smallest integer such that sg,φ(n) = 1. The identification
scheme SPDH-IDg,φ(N) is a triple of algorithms

(KeyGeng,φ, Pg,φ, Vg,φ)

such that

1. KeyGeng,φ takes as input some N ∈ N.

(X1, ...,XN) ← X N
g,φ

([s1]n, ..., [sN]n) ← Z
N
n

(Y1, ..., YN) ← ([s1]n ⊛X1, ..., [sN]n ⊛XN)
KeyGeng,φ outputs the public key ((X1, ...,XN), (Y1, ..., YN)) and passes the
secret key ([s1]n, ..., [sN]n) to the prover Pg,φ. The public key and the value
of N used is published.

2. Pg,φ and Vg,φ are interactive algorithms that work as depicted in Fig. 6:

128 C. Battarbee et al.

Fig. 6. SPDH-ID

Security. In this section we demonstrate that SPDH-ID is secure against eaves-
dropping attacks in the following sense: the advantage of an adversary in the
eavesdropping attack game can be bounded by that of the adversary in the
SDLP game. First, let us check that the desirable properties of an identification
scheme hold:

Theorem 5. SPDH-ID has the following properties:

1. Completeness
2. Special soundness
3. Special honest-verifier zero knowledge.

SPDHSign 129

Proof. Note that in order to prove each of these properties on the N -tuples
comprising the transcripts generated by SPDH-ID, we need to prove that the
properties hold for each component of the tuple; but since each component is
independent of all the others, it suffices to demonstrate the stated properties for
a single arbitrary component. In other words, we show that the stated properties
hold when N = 1, and the general case immediately follows.

1. If b = 0 then [p]n = [t]n, and trivially we are done. If b = 1 then [p]n = [t−s]n;
doing the bookkeeping we get that

[p]n ⊛ S1 = [p]n ⊛ ([s]n ⊛ S0)
= ([t−s]n[s]n) ⊛ S0

= ([s]n ⊛ S0) = I

2. Two passing transcripts with the same commitment are (I, 0, [t]n) and
(I, 1, [t−s]n). Labelling the two responses xp1 , xp2 , we recover the secret as
(xp2)−1(xp1).

3. It suffices to show that one can produce passing transcripts with the same
distribution as legitimate transcripts, but without knowledge of [s]n. We have
already discussed how to produce these transcripts; if a simulator samples [t]n
uniformly at random, then the transcript ([t]n ⊛ Sb, b, [t]n) is valid regardless
of the value of b. Moreover, if b = 0, trivially the transcripts have the same
distribution; if b=1, since [s]n is fixed and [t]n is sampled uniformly at random,
the distribution of a legitimate passing transcript is also uniformly random. ��

We are now ready to bound on the security of our identification scheme.

Theorem 6. Let G be a finite abelian group and let (g, φ) ∈ G ⋉ Aut(G). For
some N ∈ N, consider the identification scheme SPDH-IDg,φ(N) and an efficient
adversary A. There exists an efficient adversary B with A as a subroutine, such
that with ε= sdlp-adv(B, (g, φ)), we have

eav-adv(A, SPDH-IDg,φ(N)) ≤
√

ε +
1

2N

Proof. This is just a straightforward application of two results in [4]. By [4,
Theorem 19.14], since SPDH-IDg,φ(N) has honest verifier zero knowledge, there
exists an efficient adversary B′ with A as a subroutine such that

eav-adv(A, SPDH-IDg,φ(N)) = dir-adv(B′, SPDH-IDg,φ(N))

Moreover, let
δ = inv-adv(B′, KeyGeng,φ)

130 C. Battarbee et al.

Since SPDH-IDg,φ(N) has special soundness, [4, Theorem 19.13] gives

dir-adv(B, SPDH-IDg,φ(N)) ≤
√

δ +
1
M

where M is the size of the challenge space. It is easy to see that M=2N ; it remains
to relate the quantities ε and δ. We do so eschewing some of the detail since
the argument is straightforward; note that by definition of the binary relation
underpinning KeyGeng,φ, we can think of the inversion attack game as a security
game in which one solves N independent SDLP instances in parallel. Call the
advantage in this game N-sdlp-adv(B′, (g, φ)), and suppose an adversary B in
the standard SDLP attack game runs B′ as an adversary. B can simply provide
B′ with N copies of its challenge SDLP instance, and succeeds whenever B′ does.
It follows that δ ≤ ε, and we are done. ��

3.2 A Digital Signature Scheme

It remains now to apply the Fiat-Shamir transform to our identification scheme.
Doing so yields the signature scheme claimed in the title of this paper.

Protocol 2 (SPDH-Sign). Let G be a finite non-abelian group and let (g, φ) ∈
G × Aut(G) be such that n is the smallest integer for which sg,φ(n)=1. For
any N ∈ N and message space M, suppose we are provided a hash function
H ∶ X N

g,φ ×M → {0, 1}N . We define the signature scheme

SPDH-Signg,φ(N) = (KeyGen, Sg, Vf)

as in Fig. 7.

It is easy to see that given the identification scheme SPDH-IDg,φ(N), the
signature scheme SPDH-Signg,φ(N) is exactly FS(SPDH-IDg,φ(N)). Before we
can use this fact to prove the security of the signature, we require that the hash
function gives outputs distributed at ‘random’, in some sense. This is accounted
for by the ‘Random Oracle Model’: every time we wish to compute the hash
function H, we suppose that an oracle function of the appropriate dimension
selected at random is queried. Any party can query the random oracle at any
time, and the number of these queries is kept track of. We also note that we
do not in this paper account for the quantum-accessible random oracle model
required for post-quantum security - equivalent security proofs in the quantum-
accessible random oracle model are provided, for example, in [3].

With this heuristic in place we can prove the security of our signature scheme
relative to SDLP with a simple application of [4, Theorem 19.15] and its corol-
laries:

Theorem 7. Let G be a finite non-abelian group; (g, φ) ∈ G ⋉ Aut(G); and n ∈
N be the smallest integer such that sg,φ(n) = 1. Consider the chosen message
attack game in the random oracle model, where Qs is the number of signing
queries made and Qro is the number of random oracle queries. For any efficient

SPDHSign 131

Fig. 7. SPDH-Sign

adversary A and N ∈ N, there exists an efficient adversary B running A as a
subroutine such that the signature scheme SPDH-Signg,φ(N) has

δ ≤
Qs

n
(Qs +Qro + 1) +

Qro

2N
+

√
(Qro + 1)sdlp-adv(B, (g, φ))

where δ = cma-advro(SPDH-Signg,φ(N),A) is the advantage of the signature
scheme in the random oracle model version of the chosen message attack game.

Proof. Applying [4, Theorem 19.15] and [4, Equation 19.21], since the underly-
ing identification scheme has honest verifier zero knowledge there is an efficient
adversary B′ running A as a subroutine such that

δ ≤ γQs(Qs +Qro + 1) +
Qro

|C| +
√

(Qro + 1)inv-adv(B, KeyGeng,φ)

where γ is the probability that a given commitment value appears in a tran-
script, and KeyGeng,φ is the key generation algorithm of the underlying identi-
fication scheme. Since choosing a random group element corresponds to choos-
ing a random element of Xg,φ, each commitment value in Xg,φ has probability
1/|Xg,φ|=1/n of being selected. We have already seen in the proof of Theorem 6
that the advantage of an adversary in the inversion attack game against this key
generation algorithm is bounded by the advantage in an SDLP attack game, and
the result follows. ��

132 C. Battarbee et al.

The above theorem provides a concrete estimate on the advantage of an
adversary in the chosen message attack game; nevertheless, a plain English
rephrasing is a useful reflection on these results. Essentially, we now know that
the euf-cma security of our signature scheme is reliant on the integer n corre-
sponding to the pair (g, φ), the size of N , and the difficulty of SDLP relative
to the pair (g, φ). We can discount the reliance on N , which can be ‘artificially’
inflated as we please; note also that we can intuitively expect the size of n and
the difficulty of SDLP for (g, φ) to be at least somewhat correlated, since a
small value of n trivially renders the associated SDLP instance easy by brute
force. In essence, then, we have shown that we can expect the signature scheme
corresponding to (g, φ) to be secure provided the associated SDLP instance is
difficult.

4 On the Difficulty of SDLP

For any finite non-abelian group G, we have shown the existence of signature
scheme for any pair (g, φ) ∈G × Aut(G). It is now clear from Theorem 7 that if
the signature is defined with respect to a pair (g, φ), SDLP with respect to (g, φ)
should be difficult. In this section we discuss sensible choices of G with respect
to this criterion.

As alluded to in the title of this paper we are interested in post-quantum
hard instances of SDLP; that is, if an instance of SDLP has a known reduction
to a quantum-vulnerable problem we should consider it to be easy.

There are three key strategies in the literature for addressing SDLP. Two of
them, at face value, appear to solve a problem instead related to SDLP: let us
explore the gap between the problems below.

4.1 Dihedral Hidden Subgroup Problem

It should first be noted that, as with all group action-based cryptography, the
Dihredral Hidden Subgroup Problem will be highly relevant. Indeed, we can
bound the complexity of SDLP above by appealing to Kuperberg’s celebrated
quantum algorithm for the Abelian Hidden Shift Problem [21], defined as follows:

Definition 14. Let A be an abelian group and S be a set. Consider two injective
functions f, g ∶A → S such that for some h∈A, we have f(a)=g(a+h) for all a∈A.
We say that the functions f, g ‘hide’ h, and the Abelian Hidden Shift Problem is
to recover h via queries to f, g.

Adapting an argument seen throughout the literature, but first codified in
its modern sense in [7], gives us the following result.

Theorem 8. Let G be a finite non-abelian group and let (g, φ) ∈ G ⋉ Aut(G);
and n ∈N be the smallest integer such that sg,φ(n) = 1. Given (g, φ) and a group
element sg,φ(x), there is a quantum algorithm that recovers x in time 2O(

√
log n).

SPDHSign 133

Proof. If the relevant abelian group has size n we have the claimed complexity
for an abelian hidden shift problem by [21, Proposition 6.1]. It suffices to show
that one can solve SDLP provided one can solve the abelian hidden shift problem
- the argument goes as follows. Define f, g ∶ Zn → Xg,φ by

f([z]n) = [z]n ⊛ sg,φ(x) g([z]n) = [z]n ⊛ sg,φ(1)

We have for all [z]n ∈ Zn that

f([z]n) = [z]n ⊛ sg,φ(x)
= [z]n ⊛ ([x−1]n ⊛ sg,φ(1))
= ([z]n + [x−1]n) ⊛ sg,φ(1)
= g([z]n + [x−1]n) ⊛ sg,φ(1)

so f and g hide [x−1]n, from which x ∈ N can be recovered trivially. ��
A small amount of detail is suppressed in the above proof: namely, that we

have tacitly assumed knowledge of the quantity n. Since the best algorithm for
the abelian hidden shift problem is quantum anyway, we need not be reticent to
compute n with a quantum algorithm - and since the function sg,φ is periodic
in n, certainly such Shor-like techniques are available, such as [8, Algorithm 5].
On the other hand, the ability to compute n efficiently and classically is both
desirable and addressed later in this paper.

4.2 Semidirect Computational Diffie-Hellman

The other major body of work related to the analysis of SDLP addresses the
following related problem:

Definition 15 (Semidirect Computational Diffie-Hellman). Let G be a
finite abelian group, and let (g, φ) ∈G ⋉Aut(G). Let x, y ∈N and suppose we are
given the data (g, φ), sg,φ(x) and sg,φ(y). The Semidirect Computational Diffie-
Hellman problem (SCDH) is to compute the value sg,φ(x + y).

Recall our discussion of Semidirect Product Key Exchange in Sect. 2.1. Notice
that SCDH is, similarly to the role of the classic CDH, precisely the problem
of key recovery in Semidirect Product Key Exchange, and moreover that the
relationship between SCDH and SDLP is not immediately obvious. Of course,
one can solve SCDH if one can solve SDLP, but the converse does not follow a
priori.

There are two general approaches for solving SCDH:

The Dimension Attack. The general form of this argument appears in [29]; we
prefer the slightly more purpose-built exposition of [33]. The idea is basically
that if our group G can be embedded as a multiplicative subgroup of a finite-
dimensional algebra over a field, and if the automorphism φ can be extended to
preserve addition on this algebra, we can solve SCDH for some pair (g, φ) using
Gaussian elimination.

134 C. Battarbee et al.

The Telescoping Attack. In [5], it is noticed that 1∗ sg,φ(x)=φx(g)sg,φ(x). Since
we know sg,φ(x) we can calculate 1 ∗ sg,φ(x) and solve for φx(g). In some cases
- notably, in the additive structure given in [31] - this suffices for recovery of
sg,φ(x + y).

We comment that a method of efficiently converting an SCDH solver to an
SDLP solver is not currently known. On the other hand, a recent result of Mont-
gomery and Zhandry [28] shows that a computational problem underpinning
SDLP and a computational problem underpinning SCDH5 are (surprisingly)
quantum equivalent. We therefore cautiously conjecture that there exists some
efficient quantum method of converting an SCDH solver to an SDLP solver.

5 A Candidate Group

We propose the following group of order p3, where p is an odd prime, for use
with SPDH-Sign.

Definition 16. Let p be an odd prime. The group Gp is defined by

Gp =

{(
a b
0 1

)
∶ a, b ∈ Zp2 , a ≡ 1 mod p

}

As discussed in [9], this group is one of two non-abelian groups of order p3

for an odd prime up to isomorphism. It has presentation

Gp = 〈x, y ∶ yp
= 1, [x, y] = xp

= ∶z ∈ Z(Gp), zp
= 1〉

as described in [23]; moreover, its automorphism group is known and has size
(p−1)p3 by [11, Theorem 3.1].

With respect to the various matters discussed in this paper, we briefly present
the advantages of employing such a group.

Sampling. Recall that our security proof for SPDH-Sign relied heavily on the
underlying identification scheme being honest-verifier zero knowledge, which in
turn relied on the ‘fake’ transcripts to have the same distribution as honestly
generated transcripts. For a pair (g, φ), it is therefore important to be able to
sample uniformly at random from the group Zn, where n is the smallest integer
for which sg,φ(n) = 1 - in our case, to do so it clearly suffices to compute n.

Here we recall Theorem 4, which tells us basically that, thinking of (g, φ) as
a member of the semidirect product group G ⋉Aut(G), n must divide the order
of (g, φ). We therefore have the following

Theorem 9. Let (g, φ) ∈Gp × Aut(Gp), where p is an odd prime. Suppose n is
the smallest integer for which sg,φ(n) = 1. Then

n ∈ {p, p2, p3, p4, p5, p6, (p−1), p(p−1), p2(p−1), p3(p−1), p4(p−1), p5(p−1)}
5 More precisely, the Vectorisation and Parallelisation problems of Couveignes [10],

respectively.

SPDHSign 135

Proof. By Theorem 4 we know that n|ord((g, φ)), and it is standard that

ord((g, φ)) | |Gp ⋉Aut(G)|.
We know from the discussion at the outset of this section that |Gp| = p3 and
|Aut(Gp)| = p3(p−1). It follows that n|p3p3(p−1). Since p is prime, and assuming
that (g, φ) is not the identity, the claimed set is a complete list of divisors of
p6(p−1) - excluding p6(p−1) itself, since this would imply Gp ⋉Aut(Gp) is cyclic.

It follows that for an arbitrary pair (g, φ) in Gp⋉Aut(Gp), in order to compute
the smallest n for which sg,φ(n) = 1, and therefore the group Zn, one has to
compute sg,φ(i) for at most 12 values of i. Moreover, by square-and-multiply
each such computation requires O(log p) applications of the group operation
in the semidirect product group. In other words, we can compute a complete
description of Zn efficiently.

SDLP. By Theorem 8 and Theorem 9 we know SDLP in Gp ⋉Aut(Gp) has time

complexity at most 2O(
√

log poly(p)
= 2O(

√
log p). Taking the security parameter to

be the length of an input, we can represent a pair (g, φ) ∈ Gp ⋉ Aut(Gp) with
a bitstring of length O(log p2) = O(log p). Asymptotically, then, with k as the
security parameter we estimate the time complexity of the main quantum attack
on SDLP as 2O(

√
k). On the other hand, in order to derive a concrete estimate

for specific security parameters - say, those required by NIST - one would have
to check the associated constants much more carefully. Although this is outside
the scope of this paper, we refer the reader to [6, Section 7.2 ‘Subexponential
vs Practical’] for an idea of type of spirited research carried out in pursuit of
a satisfactory resolution to deriving concrete security estimates - one should
note, however, that this exposition deals with specific artefacts of the isogeny
framework.

The Dimension Attack. Supposing an efficient method of converting an SCDH
solver to an SDLP solver can be found, one solves SDLP efficiently provided one
can efficiently embed Gp in an algebra over a field. However, as argued in [20], the
following result of Janusz [17] limits the effectiveness of such an approach: the
smallest dimension of an algebra over a field in which a p-group with an element
of order pn can be embedded is 1+pn−1. In our case, certainly Gp has an element
of order p2, and so since the attack relies on Gaussian elimination we expect the
dimension attack for Gp to have complexity polynomial in (p+1)3 =O(p3). Since
the Gp elements can be represented by a bitstring of order 4 log p2 = 8 log p, with
k the security parameter the dimension attack runs in time O(23k/8).

The Telescoping Attack. In general, the explicit method of deducing sg,φ(x + y)
from sg,φ(y) and φx(g) relies on the group G being the abelian group of a matrix
alegbra over a field under addition. In particular, an extension outside of this
linear context is not known - we would expect, however, that such an extension
would rely on equation solving techniques available only in an algebra over a
field, rather than over a ring, and therefore that arguments on the efficiency of
a representation discussed above would also apply.

136 C. Battarbee et al.

Efficiency. Multiplication in Gp consists of 8 multiplication operations and 4
addition operations in Zp2 , for a total of O(8 log p2)=O(log p) operations. Assum-
ing that applying an automorphism φ has about the same complexity as multipli-
cation6. It follows by standard square-and-multiply techniques that calculating
sg,φ and evaluating the group action is very roughly of complexity O((log p)2).

The signatures are also rather short, consisting of N elements of Xg,φ and N
elements of Zn. Since Xg,φ ⊂Gp we can represent Xg,φ elements as bitstrings of
length 4 log(p2)= 8 log p; and since n= pi(p−1)j for some 1≤ i≤ 5 and 0≤ j ≤ 1, Zn

elements can be represented by bitstrings of length log pi(p−1)j . It follows that
we get signatures of length

N((8 + i) log p + j log(p−1))

6 Conclusion

We have given a constructive proof that a few elementary definitions give rise to
a free, transitive group action; such a group action naturally gives rise to an iden-
tification scheme and a signature scheme. Moreover, well-known tools allow us to
phrase the security of this signature scheme in terms of the semidirect discrete
logarithm problem, which is itself a special case of Couveignes’ Vectorisation
Problem.

Our main contributions are as follows: firstly, the generality of the construc-
tion gives an unusually diverse family of signature schemes - indeed, a signature
scheme of the SPDH-Sign type is defined for each finite group. Much further
study on the relative merits of different choices of finite non-abelian group in
different use cases is required to fully realise the potential of this diversity.

Second, our Theorem 4 essentially gives us information about how to compute
the group in our group action. In Theorem 9, we saw one particular case where
the result was enough to completely describe how to efficiently compute the
group, thereby yielding an example of a group-action based key exchange in
which efficient sampling is possible from the whole group, without appealing to
techniques inducing additional overhead, most notably the ‘Fiat-Shamir with
aborts’ technique of Lyubashevsky.

The paper notably does not address concrete security estimates or recom-
mend parameter sizes for a signature scheme. In order to do so we would need to
carefully check the constants in the asymptotic security estimates - we consider
the scale of this task, along with that of providing an implementation of the
scheme, as sufficient to merit a separate paper.

At a late stage of the preparation of this manuscript the authors were made
aware of work in [13] discussing the security of group action-induced computa-
tional problems, particularly in a quantum sense. The arguments therein should
be addressed when discussing the difficulty of SDLP in subsequent work.

Acknowledgements. We would like to thank the anonymous reviewers who provided
useful feedback on this manuscript.

6 This is indeed the case if the automorphism is inner.

SPDHSign 137

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Battarbee, C., Kahrobaei, D., Perret, L., Shahandashti, S.F.: A subexpo-
nential quantum algorithm for the semdirect discrete logarithm problem. In:
4th PQC NIST Conference 2022, pp. 1–27 (2022). https://csrc.nist.gov/csrc/
media/Events/2022/fourth-pqc-standardizationconference/documents/papers/a-
subexpoenential-quantum-algorithm-pqc2022.pdf

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

4. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
5. Brown, D., Koblitz, N., Legrow, J.: Cryptanalysis of ‘MAKE’. J. Math. Cryptol.

16(1), 98–102 (2022)
6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient

post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

7. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

8. Childs, A.M., Van Dam, W.: Quantum algorithms for algebraic problems. Rev.
Mod. Phys. 82(1), 1 (2010)

9. Conrad, K.: Groups of Order p3. https://kconrad.math.uconn.edu/blurbs/
grouptheory/groupsp3.pdf

10. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive (2006).
https://eprint.iacr.org/2006/291.pdf

11. Curran, M.J.: The automorphism group of a nonsplit metacyclic p-group. Arch.
Math. 90, 483–489 (2008)

12. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

13. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Generic models for group actions. Cryptology ePrint Archive (2023). https://
eprint.iacr.org/2022/1230

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

15. Habeeb, M., Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange
using semidirect product of (semi)groups. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 475–486. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 30

16. Han, J., Zhuang, J.: DLP in semigroups: algorithms and lower bounds. J. Math.
Cryptol. 16(1), 278–288 (2022)

17. Janusz, G.J.: Faithful representations of p-Groups at characteristic p. Represent.
Theory Finite Groups Relat. Top. 21, 89 (1971)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardizationconference/documents/papers/a-subexpoenential-quantum-algorithm-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardizationconference/documents/papers/a-subexpoenential-quantum-algorithm-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardizationconference/documents/papers/a-subexpoenential-quantum-algorithm-pqc2022.pdf
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
https://eprint.iacr.org/2006/291.pdf
https://doi.org/10.1007/978-3-030-17659-4_26
https://eprint.iacr.org/2022/1230
https://eprint.iacr.org/2022/1230
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38980-1_30

138 C. Battarbee et al.

18. Kahrobaei, D., Flores, R., Noce, M.: Group-based cryptography in the quantum
era. Not. Am. Math. Soc. 70(5), 752–763 (2023)

19. Kahrobaei, D., Flores, R., Noce, M., Habeeb, M., Battarbee, C.: Applications of
Group Theory in Cryptography: Post-quantum Group-based Cryptography. The
Mathematical Surveys and Monographs Series of the American Mathematical Soci-
ety (2023, forthcoming)

20. Kahrobaei, D., Shpilrain, V.: Using semidirect product of (semi)groups in public
key cryptography. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016.
LNCS, vol. 9709, pp. 132–141. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40189-8 14

21. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

22. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

23. Mahalanobis, A.: The MOR cryptosystem and extra-special p-groups. J. Discret.
Math. Sci. Cryptogr. 18, 201–208 (2015)

24. Maze, G., Monico, C., Rosenthal, J.: Public key cryptography based on semigroup
actions. arXiv preprint cs/0501017 (2005). SPDHSign 27

25. Monico, C.: Remarks on MOBS and cryptosystems using semidirect products.
arXiv preprint arXiv:2109.11426 (2021)

26. Monico, C., Mahalanobis, A.: A remark on MAKE–a matrix action key exchange.
arXiv preprint arXiv:2012.00283 (2020)

27. Monico, C.J.: Semirings and semigroup actions in public-key cryptography. Uni-
versity of Notre Dame (2002)

28. Montgomery, H., Zhandry, M.: Full quantum equivalence of group action DLog
and CDH, and more. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS,
vol. 13791, pp. 3–32. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22963-3 1 ISBN 978-3-031-22962-6

29. Myasnikov, A., Roman’kov, V.: A linear decomposition attack. Groups Complex.
Cryptol. 7(1), 81–94 (2015)

30. PQC Standardization Process: Announcing Four Candidates to be Standardized,
Plus Fourth Round Candidates. https://csrc.nist.gov/News/2022/pqc-candidates-
to-be-standardized-and-round-4#newcall

31. Rahman, N., Shpilrain, V.: MAKE: a matrix action key exchange. J. Math. Cryp-
tol. 16(1), 64–72 (2022)

32. Rahman, N., Shpilrain, V.: MOBS: matrices over bit strings public key exchange
(2021). https://eprint.iacr.org/2021/560

33. Roman’kov, V.: Linear decomposition attack on public key exchange protocols
using semidirect products of (semi) groups arXiv preprint arXiv:1501.01152 (2015)

34. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive (2006). https://eprint.iacr.org/2006/145

35. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

36. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis (2012).
https://doi.org/10.13140/RG.2.2.20826.44488

https://doi.org/10.1007/978-3-319-40189-8_14
https://doi.org/10.1007/978-3-319-40189-8_14
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
http://arxiv.org/abs/2109.11426
http://arxiv.org/abs/2012.00283
https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1007/978-3-031-22963-3_1
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4#newcall
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4#newcall
https://eprint.iacr.org/2021/560
http://arxiv.org/abs/1501.01152
https://eprint.iacr.org/2006/145
https://doi.org/10.13140/RG.2.2.20826.44488

Isogeny-Based Cryptography

A Tightly Secure Identity-Based
Signature Scheme from Isogenies

Jiawei Chen1(B), Hyungrok Jo2, Shingo Sato2, and Junji Shikata1,2

1 Graduate School of Environment and Information Sciences, Yokohama National
University, Yokohama, Japan

chen-jiawei-hm@ynu.jp, shikata-junji-rb@ynu.ac.jp
2 Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan

{jo-hyungrok-xz,sato-shingo-zk}@ynu.ac.jp

Abstract. We present a tightly secure identity-based signature (IBS)
scheme based on the supersingular isogeny problems. Although Shaw
and Dutta proposed an isogeny-based IBS scheme with provable secu-
rity, the security reduction is non-tight. For an IBS scheme with concrete
security, the tightness of its security reduction affects the key size and
signature size. Hence, it is reasonable to focus on a tight security proof
for an isogeny-based IBS scheme.

In this paper, we propose an isogeny-based IBS scheme based on the
lossy CSI-FiSh signature scheme and give a tight security reduction for
this scheme. While the existing isogeny-based IBS has the square-root
advantage loss in the security proof, the security proof for our IBS scheme
avoids such advantage loss, due to the properties of lossy CSI-FiSh. More-
over, we show that the user key size and signature size of our scheme are
better than those sizes of existing isogeny-based IBS schemes, under suit-
able parameter settings.

Keywords: Identity-based signature · Isogeny-based cryptography ·
Post-quantum cryptography

1 Introduction

Post-Quantum Cryptography (PQC, for short) is a next-generation crypto-
graphic system that differs from widely used cryptographic systems based on
the hardness of integer factorization problems, and is globally popularized and
used. It is based on various mathematically hard problems that are resistant
to attacks by Shor’s quantum algorithm [37] and has been actively researched
by many researchers. Isogeny-based cryptography is one of the promising candi-
dates for PQC, along with lattice-based cryptography, code-based cryptography,
multivariate-based cryptography, and hash-based cryptography. The National
Institute of Standards and Technology (NIST) is currently working to standard-
ize practical post-quantum cryptography systems that offer sufficient security
and practicality, with the aim of promoting and using these next-generation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 141–163, 2023.
https://doi.org/10.1007/978-3-031-40003-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_6

142 J. Chen et al.

cryptographic systems in the near future. In July 2022, NIST released the results
of its third round of selection [29], with CRYSTALS-Kyber being chosen for the
KEM category and CRYSTALS-Dilithium, Falcon, and SPHINCS+ selected for
the signature category. In the KEM category, SIKE based on the hardness of the
supersingular isogeny problem, along with BIKE, Classic McEliece, and HQC,
made it to the fourth round. However, in September 2022, SIKE was unfor-
tunately excluded from the candidates due to several known attacks [9,28,33].
As the fundamental computational hardness problem in isogeny-based crypto-
graphic systems remains unsolved, cryptographic systems like CSIDH [10] and
SQI-Sign [15] that do not rely on auxiliary point information in their basic struc-
ture or have a different cryptographic construction than SIDH, continue to be
considered secure.

Recently, there have been several new isogeny-based cryptographic systems
that are considered resistant to attacks on SIDH, such as primeSIDH [27] and
M(D)-SIDH [20]. Additionally, Dartois et al. [14] have proposed an improved
signature scheme called SQI-SignHD, which utilizes the algorithmic break-
through underlying the attack [33] on SIDH. By representing isogenies of arbi-
trary degrees as components of a higher dimensional isogeny, SQI-SignHD pro-
vides more efficiency compared to its predecessor. Thus, the field of isogeny-
based cryptography is continuously evolving with the development of new and
improved systems.

Meanwhile, isogeny-based cryptographic system have often been considered
less practical compared to other cryptographic systems, resulting in a limited
number of proposals for advanced functional isogeny-based encryption schemes
[6,31,36]. However, when it comes to the essential perspective of identity-based
cryptography, isogeny-based cryptographic systems can have advantages in con-
structing identity-based schemes due to their compact key size compared to
other post-quantum cryptography candidates. In particular, for identity-based
cryptosystems, it can be advantageous when a user joins a network. The Key
Generation Center (KGC) issues the master key and user key based on the
user’s identity (e.g., e-mail, social security number, credit card number, smart
card, MAC address, IO/EO, etc.) and is not involved in the subsequent process.

Identity-Based Signatures from the CSIDH Setting. Shamir [35] sug-
gested the first identity-based signature schemes, which are signature schemes
with the public key of a user as his/her identity. Instead of conducting the role
of Public Key Infrastructures (PKI), a trusted KGC issues the corresponding
secret key. CSIibs, proposed by Peng et al. [31], is the first identity-based signa-
ture scheme based on the supersingular isogeny assumption. However, Shaw and
Dutta [36] pointed out a flaw in the main structure of CSIibs and proposed a new
identity-based signature scheme based on supersingular isogeny assumption that
includes the forward secrecy feature to address the issue. Both Peng et al. and
Shaw and Dutta’s identity-based signature schemes are based on CSIDH and use
SeaSign [19] and CSI-FiSh [7] as their ID protocols. In addition, there is a generic
construction starting from two signature schemes (e.g., see [3,24,26]). Thus, it

A Tightly Secure Identity-Based Signature Scheme from Isogenies 143

is possible to obtain an isogeny-based IBS scheme by applying an isogeny-based
signature scheme to this generic construction.

CSI-FiSh and Lossy CSI-FiSh. Isogeny-based cryptography was initially pro-
posed by Couveignes [12] and by Rostovtsev and Stolbunov [34]. These proposals
are known to be weakened by the quantum attack of Childs, Jao and Soukarev
[11] against their based hardness assumptions on isogeny between ordinary ellip-
tic curves. Instead of ordinary elliptic curves, Jao and De Feo [23] and Castryck
et al. [10] proposed the Diffie-Hellman key exchanges using supersingular elliptic
curves. As mentioned above, SIDH was broken by mainly Castryck and Decru [9]
and subsequently Robert [28], Maino and Martindale [33]. These attacks do not
apply to CSIDH-based schemes as SeaSign [19], CSI-FiSh [7], CSI-RAShi [5],
Sashimi [13] and CSI-SharK [2]. Kaafarani et al. [17] proposed the lossy version
of CSI-FiSh to achieve a tight reduction. The efficiency of the CSIDH-based
schemes mainly depends on the precomputation of the related class-group struc-
ture which is restrained by a specific set of CSIDH parameters by the time
being, named CSIDH-512. However, there are some controversies over the real
post-quantum security level of CSIDH-512 [8]. Hence for expected post-quantum
security, we may need a larger class group. Recently, De Feo et al. [18] proposed
SCALLOP based on group action of isogenies of oriented supersingular curves
where a larger class group structure can be easily computed. Since this is a recent
result, and more analysis for SCALLOP is needed, we utilize the lossy CSI-FiSh
as the underlying signature scheme in this paper instead.

Our Contributions. We suggest the identity-based signature (IBS) scheme
from isogenies with tight security.

The existing isogeny-based IBS scheme with provable security is the CSI-
FiSh-based scheme proposed by Shaw and Dutta [36]. However, their scheme
does not achieve tight security. This one is constructed by applying their pro-
posed identity-based identification scheme to the Fiat-Shamir transformation.
In order to prove the security of this IBS, it is necessary to employ the fork-
ing lemma and adaptive re-programming of random oracles [4,32]. Because of
this, the security reduction for the existing one is not tight. For the similar IBS
schemes based on other hardness assumptions [3], one can remedy the security
loss by using the larger parameters. However, CSI-FiSh is based on a GAIP
(Group Action Inverse Problem) defined for only 128-bit security with CSIDH-
512 parameters. As of now, no other parameter sets have been computed to yield
suitable algebraic structure for CSI-FiSh. Hence, we cannot claim any level of
security for the IBS proposed by Shaw and Dutta [36] when a 128-bit security
level is desired.

In order to construct an isogeny-based IBS scheme with tight security, our
proposed scheme is based on lossy CSI-FiSh [17] which is a lossy identification
scheme based on CSI-FiSh. Due to the result of [1], it is known that we can
construct a signature scheme with tight security by applying a lossy identification
scheme to the Fiat-Shamir transformation. Hence, it is reasonable to utilize lossy
CSI-FiSh in order to construct a tightly secure IBS scheme.

144 J. Chen et al.

Table 1. Comparison of Isogeny-based IBS schemes

Scheme MPK-size (bit) USK-size (bit) Signature-size

(bit)

Security bound

SD [36] S0�log p� T1S1S1δ�log N�
+S1δ

T1S1�log p�
+T1T2�log N�
+T2δ′

√
q · ε + negl

PW [26]+ [30] S0�log p� 4S0�log p� +(T1 +

S0)�log N� +δ

4S0�log p�
+3T1�log N�
+3δ

2S0 · ε + negl

Our Scheme (2S0 + 2)�log p� T1S1�log N� +S1δ T1S1�log p�
+T1T2�log N�
+T2δ′

S0 · ε + negl

MPK and USK denote the master public key and user’s secret key respectively. SD is the

isogeny-based IBS scheme proposed in [36], and PW is the IBS scheme constructed by

applying the isogeny-based signature scheme [30] to the generic construction of [26]. We

assume that the above IBS schemes use supersingular curves over Fp. N is an odd order

of an ideal cyclic group. ε is the maximum probability of breaking the underlying com-

putational problem (i.e., the GAIP or D-CSIDH assumtpion). q is the maximum number

of queries issued to (random) oracles. negl is a negligible function in a security param-

eter. S0, S1 are parameters of the corresponding computational assumptions. T1, T2 are

the numbers of parallel executions of the underlying (lossy) identification scheme. For

128-bit security, δ = T1�log (S0 + 1)� and δ′ = T1�log (S1 + 1)�.

Technical Overview. Although the construction of our proposed IBS is similar
to that of the existing IBS [36], the security proof for ours is not obvious. To
prove the security for a signature scheme constructed from a lossy identifica-
tion scheme, we employ the following properties required to that identification
scheme: Indistinguishability of keys and lossy soundness. A lossy identification
scheme has two key generation algorithms: The ordinary (public-secret) key gen-
eration and lossy key generation which produces a (public) lossy key which is
impossible to distinguish from a real public key. When a generated public key
is lossy (called lossy mode), lossy soundness ensures that generating a valid
response to a random challenge is statistically impossible after producing a
commitment. When proving the security for a signature scheme from a lossy
identification scheme, we replace a real public key with a lossy key by utilizing
the standard hybrid argument (i.e., the sequence-of-games approach). However,
we cannot employ lossy soundness in the straightforward way, when proving the
security for our IBS scheme. This is because regarding IBSs, there is no notion
corresponding to the lossy mode. Since an IBS scheme does not generate any
public-secret key pair, we cannot employ the proof approach of [1].

In order to resolve this, we utilize the proof technique similar to the technique
used for a tight security reduction of a DDH-based IBS scheme [21]. Regarding
our proposed scheme, the key derivation algorithm produces a signature on an
identity as a user secret key, and the signing algorithm generates a signature on
an identity-message pair. These signatures are generated by using (a variant of)
a lossy CSI-FiSh-based signature scheme. Informally, to prove the security, we
simulate those signatures (i.e., those user secret key and signature on an identity
and a message) without using a secret key of lossy CSI-FiSh. This is possible by

A Tightly Secure Identity-Based Signature Scheme from Isogenies 145

utilizing a property of lossy CSI-FiSh and the sequence-of-games proof approach.
Namely, we can replace real signatures with signatures generated in a lossy mode-
like way, via tight security reductions. Hence, it is possible to give a tight security
proof for our IBS scheme, by employing properties of lossy CSI-FiSh.
Comparison. We present a comparison of different isogeny-based IBS schemes
based on key-size, signature-size, and security bound in Table 1. For our com-
parison, we consider a direct construction of [36] and a scheme obtained by
applying a tightly secure isogeny-based signature scheme [30] to the generic con-
struction [26] of IBS. Our proposed scheme has a significantly tighter security
proof than the direct construction of SD [36], with equivalent USK-size and
Signature-size. Therefore, our scheme has improved concrete security compared
to SD. When compared to the scheme of PW [26]+ [30], our security bound is
asymptotically equivalent, and we need to compare the concrete USK-size and
Signature-size of PW and ours.

Table 2 presents the USK-size and Signature-size of our isogeny-based IBS
scheme, obtained from the optimized parameter setting in Peng et al.’s [31], and
from the parameter values derived using the correlation analysis method in Shaw
and Dutta’s [36], both providing 128-bit security level. Our results show that,
for the large parameter S1 = 216 −1, the USK-size and Signature-size of PW are
smaller than those of our scheme, as our scheme’s USK-size and Signature-size
grow linearly with S1 (see Table 1). On the other hand, under smaller parameter
settings with S1 ≤ 28 − 1, our scheme outperforms PW and provides a more
compact user key and signature.

Remark 1. For the security parameter λ, (T0, T1, S0, S1) needs to satisfy the
following two inequalities, due to the parameter setting of [31]:

T1�log S0 + 1� ≥ λ,

T1T2�log S1 + 1� ≥ λ.

Hence, for the sake of efficiency, when given fixed S0 and S1, we first choose T1

as small as possible such that T1 satisfies the first inequality above and then
choose T2 as small as possible such that T2 satisfies the second inequality above.

Remark 2. Since the direct construction of SD is based on the CSIDH-512
parameters and its security reduction is loose, there are no known parameters
for SD to achieve 128-bit security. Hence we only give a comparison between
PW and our scheme in Table 2.

Remark 3. In Table 2, our scheme achieves EUF-ID-CMA-MK security while the
scheme of PW satisfies stronger security, owing to the result of [26].

In summary, our proposed scheme achieves a better key-size and signature-
size than the existing one under suitable parameter settings, while providing a
similar level of security as PW. Therefore, we can claim that our scheme achieves
an optimal balance between security and efficiency. However, it is important to
note that decreasing S1 in our scheme leads to an increase the execution time of

146 J. Chen et al.

the user key and signature generation algorithms. Thus, our proposed scheme can
be seen as an isogeny-based IBS scheme with a compact user key and signature,
provided that suitable parameters are chosen.

Table 2. A comparison of USK-size and signature-size for 128-bit security parameters

(T1, T2, S0, S1) PW [26]+ [30] Our Scheme

USK Signature USK Signature

(16, 3, 255, 7) 74.0 KB 66.9 KB 3.7 KB 8.7 KB

(16, 2, 255, 15) 74.0 KB 66.9 KB 8.0 KB 16.4 KB

(8, 2, 65535, 255) 18.9 MB 16.8 MB 69.9 KB 131.1 KB

(8, 1, 65535, 65535) 18.9 MB 16.8 MB 18.0 MB 33.6 MB

This paper is organized as follows. In Sect. 2, we give the preliminaries for
the CSIDH setting, lossy identification schemes, identity-based signatures and
hardness assumptions. In Sect. 3, we describe the construction of the lossy CSI-
FiSh by [17]. In Sect. 4, we suggest the tightly secure identity-based signature
from the lossy CSI-FiSh.

2 Preliminaries

2.1 Elliptic Curve and Ideal Class Group

We give some notations and preliminaries for using the CSIDH setting, which is
based on [10,17,38]. Let E be an elliptic curve over a finite field Fp with a prime
p ≥ 5, and OE denote the point at infinity on E. Let E and E′ be the two elliptic
curves over Fp. It is called an isogeny ϕ between E and E′ if ϕ : E → E′ is a
non-constant morphism satisfying ϕ(0E) = 0E′ . A separable isogeny (it induces a
separable extension of function fields) having {0E} as kernel is an isomorphism;
an isogeny having the same domain and range is an endomorphism.

Ideal Class Group. The set of all endomorphisms of an elliptic curve E,
together with the zero map, form a ring under pointwise addition and com-
position. Such a ring is called the endomorphism ring of E and it is denoted
by End(E). If End(E) is an order in a quaternion algebra, the curve is said to
be supersingular, if otherwise it is said to be ordinary. The restriction Endp(E)
to the endomorphisms defined over Fp forms a subring, which is isomorphic to
an order in the quadratic field K = Q(

√−p). An order is a subring of Q(
√−p)

which is also a finitely-generated Z-module containing a basis of K as a Q-vector
space. The set Z[

√−p] = {m + n
√−p | m,n ∈ Z} satisfies the above three

conditions, and we will denote it by O. We then consider the set E��p(O, π)
containing all supersingular curves E defined over Fp - modulo isomorphisms
defined over Fp - such that there exists an isomorphism between O and Endp(E)

A Tightly Secure Identity-Based Signature Scheme from Isogenies 147

mapping
√−p ∈ O into the Frobenius endomorphism (x, y) 	→ (xp, yp). Each

isomorphism class in E��p(O, π) can be uniquely represented by a single element
of Fp if p ≥ 5 is a prime such that p ≡ 3 (mod 8).

A fractional ideal a of O is a finitely generated O-submodule of K. When a is
contained in O, it is said to be integral ; when a = αO for some α ∈ K, it is said to
be principal ; when there exists a fractional ideal b such that ab = O, it is called
invertible. The set of invertible fractional ideals of O forms an abelian group
under ideal multiplication. Its quotient by the subgroup composed by principal
fractional ideals is a finite group called ideal class group of O, usually denoted
by C�(O), which cardinality is the class number of O.

The ideal class group C�(O) acts freely and transitively on the set E��p(O, π)
via a group action, which denote by �.

� : C�(O) × E��p(O, π) → E��p(O, π)
(a, E) 	→ a � E.

For convenience, we use representatives instead of equivalence classes to
denote elements of C�(O) and E��p(O, π). When p is of the form 4�1�2 · · · �s − 1,
where �1, . . . , �s are small odd primes, a special integral ideal J�i ⊂ O corre-
sponds to each prime �i. These ideals allow an efficient computation of the group
action. In particular, the action of J�i on a curve E ∈ E��p(O, π) is determined
by an isogeny having as kernel the unique rational �i-torsion subgroup of E.

The CSIDH Setting [10]. The general variant of the CSIDH key-exchange
scheme relies on the heuristic assumption that the equivalence classes of certain
ideals generate the entire ideal class group C�(O). Castryck et al. proposed a
non-interactive key exchange with using of supersingular elliptic curves over Fp

with p ≡ 3 (mod 8). The scheme starts with the curve E0 : y2 = x3 + x and
its C�(O)-orbit, which contains all supersingular Montgomery curves EA : y2 =
x3 + Ax2 + x over Fp, where the Fp-isomorphism class is uniquely determined
by A. The small public key size is achieved using a single Fp-element A to check
for supersingularity.

Throughout this paper, we use the following notation: For a positive integer
n, let [n] = {1, 2, . . . , n}. For n values x1, . . . , xn, let (xi)i∈[n] = (x1, . . . , xn).
For a function f : N → R, f is negligible in λ if f(λ) = o(λ−c) for any constant
c > 0 and sufficiently large λ ∈ N. Then, we write f(λ) = negl(λ). A probability
is an overwhelming probability if it is 1 − negl(λ). “Probabilistic polynomial-
time” is abbreviated as PPT. For a positive integer λ, let poly(λ) be a universal
polynomial of λ.

2.2 Lossy Identification Schemes

Following [1,17], we describe the definition of lossy identification schemes.

Definition 1 (Lossy Identification Scheme). A lossy identification scheme
for a relation R ⊆ X × Y consists of five polynomial-time algorithms (IGen,

148 J. Chen et al.

LossyIGen,P = (P1,P2),V): Let ComSet, ChSet, and ResSet be the commitment
space, the challenge space, and the response space, respectively.

Key Generation. The randomized algorithm IGen takes as input a security
parameter 1λ and outputs a statement-witness pair (X,W) ∈ R.

Lossy Key Generation. The randomized algorithm LossyIGen takes as input a
security parameter 1λ and outputs a statement Xlos ∈ X .

Prover. The prover protocol P is split into two randomized algorithms (P1,P2):
– The randomized algorithm P1 takes as input a statement-witness pair

(X,W) and outputs a commitment com ∈ ComSet.
– The randomized or deterministic algorithm P2 takes as input a statement-

witness pair (X,W) ∈ R, a commitment com ∈ ComSet, and a challenge
ch ∈ ChSet, and it outputs a response resp ∈ ResSet.

Verifier. The deterministic algorithm V takes as input a statement X, a commit-
ment com ∈ ComSet, a challenge ch ∈ ChSet, and a response resp ∈ ResSet,
and it outputs 1 (accept) or 0 (reject).

In addition, following [1], we describe the transcript generation pro-
tocol TransLossyIDX,W for a lossy identification scheme (IGen, LossyIGen,P =
(P1,P2),V). For every (X,W) ← IGen(λ), TransLossyIDX,W () generates a transcript
(com, ch, resp) ∈ ComSet × ChSet × ResSet ∪ {(⊥,⊥,⊥)}, in the following way:

1. Compute com ← P1(X,W).
2. Choose ch

$← ChSet.
3. Compute resp ← P2((X,W), com, ch).
4. If resp = ⊥, set (com, ch) ← (⊥,⊥).
5. Output (com, ch, resp).

The required properties for a lossy identification scheme are as follows:

Definition 2. A lossy identification scheme LossyID = (IGen, LossyIGen,P =
(P1,P2),V) is required to satisfy the following properties:

Completeness. For every (X,W) ← IGen(1λ), it holds that

Pr
[
V(X, com, ch, resp) = 1

∣∣∣∣ com ← P1(X,W); ch $← ChSet;
resp ← P2(X,W, com, ch)

]
= 1.

Honest-Verifier Zero-Knowledge. For every (X,W) ← IGen(1λ), there exists
a PPT simulator Sim which, on input a statement X, outputs transcripts
{(com, ch, resp)} whose distributions are statistically indistinguishable from
those of the transcripts generated by TransLossyIDX,W,λ .

Indistinguishability of Lossy Statements. For any PPT adversary A against
IDS, its advantage

Advind-stmt
IDS,A (λ) := |Pr[A(X) = 1 | (X,W) ← IGen(1λ)]

− Pr[A(Xlos) = 1 | Xlos ← LossyIGen(1λ)]|
is negligible in λ.

A Tightly Secure Identity-Based Signature Scheme from Isogenies 149

Lossy Soundness. LossyID satisfies εlos-lossy soundness if for any unbounded
adversary A against LossyID, its advantage

Advlos-imp-pa
LossyID,A (λ) = Pr[Exptlos-imp-pa

LossyID,A (λ) = 1]

is less than εlos, where Exptlos-imp-pa
LossyID,A (λ) is the following experiment:

1. A challenger generates Xlos ← LossyIGen(1λ) and gives Xlos to the adver-
sary A.

2. A submits a commitment com ∈ ComSet to the challenger. The challenger
returns a challenge ch

$← ChSet.
3. A outputs a response resp ∈ ResSet.

The challenger returns b ← V(Xlos, com, ch, resp).

2.3 Identity-Based Signatures

Following [22,39], we describe the syntax and a security definition for identity-
based signatures (IBSs), as follows:

Definition 3 (IBS). An IBS scheme consists of polynomial-time algorithms
(Setup,KeyDer,Sign,Vrfy): For a security parameter λ, let ID = ID(λ) be the
identity space, let M = M(λ) be the message space, and let USK = USK(λ) be
the user secret key space.

Setup. The randomized algorithm Setup takes as input a security parameter 1λ

and outputs a master public key mpk and a master secret key msk.
Key Derivation. The randomized algorithm KeyDer takes as input a master

public key mpk, a master secret key msk, and an identity id, and it outputs a
user secret key uskid ∈ USK.

Signing. The randomized or deterministic algorithm Sign takes as input a master
public key mpk, a user secret key uskid ∈ USK, and a message m ∈ M, and
it outputs a signature σ.

Verification. The deterministic algorithm Vrfy takes as input a master public
key mpk, an identity id ∈ ID, a message m ∈ M, and a signature σ, and it
outputs 1 (accept) or 0 (reject).

We require an IBS scheme to be correct, as follows:

Definition 4. An IBS scheme (Setup,KeyDer,Sign,Vrfy) is correct, if for every
(mpk,msk) ← Setup(1λ), every id ∈ ID, and every m ∈ M, it holds that
Vrfy(mpk, id,m, σ) = 1, where uskid ← KeyDer(mpk,msk, id) and σ ← Sign(mpk,
uskid,m).

As a security notion of IBSs, we describe the definition of existential unforge-
ability against chosen identity and chosen message attacks under the multi-key
setting (called EUF-ID-CMA-MK security) [39].

Definition 5 (EUF-ID-CMA-MK security). An IBS scheme IBS = (Setup,
KeyDer,Sign,Vrfy) is EUF-ID-CMA-MK secure, if for any PPT adversary A
against IBS, its advantage Adveuf-id-cma

IBS,A (λ) := Pr[Expteuf-id-cma
IBS,A (λ) = 1] is negli-

gible in λ, where the experiment Expteuf-id-cma
IBS,A (λ) is defined as follows:

150 J. Chen et al.

Setup. The challenger generates (mpk,msk) ← Setup(1λ) and sets the four lists
Lid ← ∅, L̂id ← ∅, Luskid ← ∅, and Lm ← ∅. It gives mpk to the adversary A.

Queries. A is given access to the following oracles:
– Key derivation oracle OKeyDer: On input a key derivation query id ∈ ID,

OKeyDer outputs ⊥ if id ∈ L̂id. Then, it checks whether (id, ·) ∈ Luskid .
If (id, uskid) ∈ Luskid for some uskid ∈ USK, it returns uskid. Otherwise,
it returns uskid ← KeyDer(mpk,msk, id) and sets the two lists Luskid ←
Luskid ∪ {(id, uskid)}, Lid ← Lid ∪ {id}.

– Signing oracle OSign: On input a signing-query (id,m) ∈ ID × M, OSign

sets Lm ← Lm ∪ {(id,m)} and checks whether (id, uskid) ∈ Luskid :
• If (id, uskid) ∈ Luskid for some uskid ∈ USK,
it returns σ ← Sign(mpk, uskid,m).

• If there does not exist (id, uskid) ∈ Luskid such that uskid ∈ USK,
it computes uskid ← KeyDer(mpk,msk, id), sets Luskid ← Luskid ∪
{(id, uskid)}, L̂id ← L̂id ∪ {id}, and returns σ ← Sign(mpk, uskid,m).

Output. A outputs a forgery (id∗,m∗, σ∗). The challenger outputs 1 if id∗ /∈
Lid ∧ (id∗,m∗) /∈ Lm ∧ Vrfy(mpk, id∗,m∗, σ∗) = 1, and 0 otherwise.

2.4 Hardness Assumptions

We describe the definitions of the computational assumptions related to our
IBS scheme’s security: The decisional CSIDH and fixed-curve multi-decisional
CSIDH assumptions.

Following [17], we describe the decisional CSIDH (D-CSIDH) and fixed-curve
multi-decisional CSIDH (FCMD-CSIDH) assumptions, as follows:

Definition 6 (Decisional CSIDH Assumption). Given the set E��p(O, π)
and the ideal class group C�(O), the decisional CSIDH (D-CSIDH) problem is to
distinguish between the following distributions:

– (E,H, a � E, a � H), where the supersingular elliptic curves E and H are
sampled uniformly from E��p(O, π), and a is sampled uniformly from C�(O),

– (E,H,E′,H ′), where E,H,E′,H ′ are supersingular elliptic curves sampled
uniformly from E��p(O, π).

We say that the D-CSIDH assumption holds if for any PPT algorithm A, its
advantage AdvD-CSIDH

A (λ) is negligible in λ, where AdvD-CSIDH
A (λ) is the advantage

of A distinguishing the above two distributions.

Definition 7 (Fixed-Curve Multi-Decisional CSIDH Assumption). Let
S be a positive integer. Given the ideal class group C�(O) and the set E��p(O, π),
the fixed-curve multi-decisional CSIDH (FCMD-CSIDH) problem with S is to
distinguish the following distributions:

– (E,H, (ai�E, ai�H)i∈[S]), where the supersingular elliptic curves E and H are
sampled uniformly from E��p(O, π), and for i ∈ [S], ai are sampled uniformly
from C�(O),

A Tightly Secure Identity-Based Signature Scheme from Isogenies 151

– (E,H, (E′
i,H

′
i)i∈[S]), where E,H,E′

i,H
′
i for i ∈ [S] are supersingular elliptic

curves sampled from E��p(O, π) uniformly at random.

We say that the FCMD-CSIDH assumption with parameter S holds if for
any PPT algorithm A, its advantage AdvFCMD-CSIDH

A,S (λ) is negligible in λ, where
AdvFCMD-CSIDH

A,S (λ) is the advantage of A distinguishing the above two distribu-
tions.

From a result of [17], the following relationship between the above two
assumptions was shown:

Lemma 1 D-CSIDH to FCMD-CSIDH ([17]). Let S be a positive integer.
If there exists any PPT algorithm A solving the FCMD-CSIDH problem with
parameter S, then there exists a PPT algorithm B solving the D-CSIDH problem
such that

AdvFCMD-CSIDH
A,S (λ) ≤ S · AdvD-CSIDH

B (λ).

3 The Lossy CFI-FiSh Scheme

In this section, we first recall the construction of the lossy CFI-FiSh identification
scheme [17].

3.1 The Lossy CFI-FiSh

The lossy CFI-FiSh identification scheme (IGen, LossyIGen,P1,P2,V) is con-
structed as follows:

The following system parameter of the lossy CSI-FiSh is set: Assume the
ideal class group C�(O) is cyclic with a known order N and generator g.
Let E0 be the base curve defined by y2 = x3 + x. Let X be a finite set of
pairs ((E(0)

1 , E
(0)
2), (E(1)

1 , E
(1)
2)) where E

(0)
1 , E

(0)
2 , E

(1)
1 , E

(1)
2 are being run over

E��p(O, π). Here, Y = ZN is the set of witnesses. Consider the relation

R := {(((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)), a) ∈ X×Y | E

(1)
1 = ga�E

(0)
1 , E

(1)
2 = ga�E

(0)
2 },

where ((E(0)
1 , E

(0)
2), (E(1)

1 , E
(1)
2)) ∈ X is a statement, and a ∈ Y is a witness.

– The IGen algorithm samples a, b, c ∈ ZN uniformly at random and outputs
a pair (X,W) ∈ R where X = ((E(0)

1 = gb � E0, E
(0)
2 = gc � E0), (E

(1)
1 =

ga � E
(0)
1 , E

(1)
2 = ga � E

(0)
2)) and W = a

– The LossyIGen algorithm chooses a, a′, b, c ∈ ZN uniformly at random and
outputs a lossy statement Xls = ((E(0)

1 = gb � E0, E
(0)
2 = gc � E0), (E

(1)
1 =

ga � E
(0)
1 , E

(1)
2 = ga′

� E
(0)
2))

152 J. Chen et al.

– The P1 algorithm takes (X,W) as input and generates a uniformly random
r ∈ ZN . This algorithm outputs the commitment com = (F1 = gr �E

(0)
1 , F2 =

gr � E
(0)
2).

– The P2 algorithm, on input ((X,W), com, ch) where ch ∈ {0, 1}, outputs the
response resp = r if ch = 0, else resp = r − a.

– The V algorithm given (X, com, ch, resp) accepts if the following equations
hold (Fig. 1):

{
gresp � E

(0)
1 = F1, g

resp � E
(0)
2 = F2, if ch = 0

gresp � E
(1)
1 = F1, g

resp � E
(1)
2 = F2, if ch = 1

Fig. 1. The base lossy CFI-FiSh identification scheme in [17]

From results of [17], the following proposition was proved:

Proposition 1 ([17]). The above lossy identification scheme LossyIDbase satis-
fies completeness and honest-verifier zero-knowledge property.

– LossyIDbase satisfies indistinguishability of lossy statements if the D-CSIDH
assumption holds. In particular, we have Advind-stmt

A,LossyIDbase(λ) = AdvD-CSIDH
B (λ),

where A is a PPT algorithm against LossyIDbase, and B is a PPT algorithm
against the D-CSIDH problem.

– LossyIDbase satisfies εlos-lossy soundness for εlos = 1/(2N), where N = |C�(O)|.
The above lossy identification scheme has only one-bit challenge. To improve

the security, we need to execute the base lossy identification scheme in par-
allel rounds. To decrease the signature size of the resulting Fiat-Shamir sig-
nature scheme, a method in [19] is applied which need to satisfy the size of
public key. The concrete construction is as follows: As the security parame-
ter, let X = {(E(0)

1 , E
(0)
2), (E(1)

1 , E
(1)
2), · · · , (E(S)

1 , E
(S)
2) | E

(j)
i ∈ E��p(O)}, Y =

{a1, a2, · · · , aS |ai ∈ ZN}. E0 is defined the same as the base lossy CFI-FiSh.

A Tightly Secure Identity-Based Signature Scheme from Isogenies 153

– The algorithm IGen takes {ai}i∈[S], b, c ∈ ZN and outputs a pair (X,W) ∈ R
where X = ((E(0)

1 = gb � E0, E
(0)
2 = gc � E0), (E

(1)
1 = ga1 � E

(0)
1 , E

(i)
2 =

ga1 � E
(0)
2), · · · , (E(S)

1 = gaS � E
(0)
1 , E

(S)
2 = gaS ∗ E

(0)
2)) and W = {a}i

– The algorithm LossyIGen takes a1, a2, · · · , aS , a′
1, a

′
2, · · · , a′

S , b, c ∈ ZN and
outputs a lossy statement Xls = ((E(0)

1 = gb � E0, E
(0)
2 = gc � E0), (E

(1)
1 =

ga1 � E
(0)
1 , E

(1)
2 = ga′

1 � E
(0)
2), · · · , (E(S)

1 = gaS � E
(0)
1 , E

(S)
2 = ga′

S � E
(0)
2))

– P1 takes the output (X,W) of the algorithm IGen and then generates t random
ri ∈ ZN . The output of P1 is the commitment com = (F (i)

1 = gr �E
(0)
1 , F

(i)
2 =

gr � E
(0)
2)

– P2 takes ((X,W), com, ch) where ch = b1||b2|| · · · ||bt, each bi ∈ {0, 1, · · · , S}
and outputs the response resp = resp1||resp2|| · · · ||respt, respi = ri if bi = 0,
else respi = ri − ai.

– The algorithm V takes (X, com, ch, resp) and accepts if the following equa-
tions hold {

grespi � E
(0)
1 = F1, g

respi � E
(0)
2 = F2, if bi = 0

gresp � E
(1)
1 = F1, g

resp � E
(1)
2 = F2, if bi �= 0

4 Tightly Secure IBS from Lossy CSI-FiSh

4.1 Construction

In this section, we describe our proposed IBS scheme with tight security. This
scheme is based on the lossy CSI-FiSh scheme and IBS scheme in [36]. Informally,
our IBS is described as follows:

– The master public key mpk and the master secret key msk are a public key
(E(i)

1 , E
(i)
2)i∈{0,...,S0} and a secret key (ai)i∈[S0] of the lossy CSI-FiSh scheme,

respectively.
– When generating a user’s secret key uskid, a lossy CSI-FiSh’s signature

(F (i,j)
1 , F

(i,j)
2 , respi,j)i∈[T1],j∈[S1] on id is generated by using msk. Then, this

signature corresponds to uskid in our scheme.
– The Sign algorithm on input uskid and a message m generates a signature on

(id,m), which consists of the commitment (F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] and a new

lossy CSI-FiSh’s signature (ĉhi,j , r̂espi,j)i∈[T1],j∈[T2] computed by using uskid.
– The Vrfy algorithm checks the validity-check of the given signature on (id,m),

by following the verification algorithm of the lossy CSI-FiSh scheme.

Concretely, our proposed IBS scheme IBSLCSI-FiSh = (Setup,
KeyDer,Sign,Vrfy) is constructed as follows: As the system parameter of
IBSLCSI-FiSh, let E0 be the base curve, let T1, T2, S0 = 2η0 − 1, S1 = 2η1 − 1

154 J. Chen et al.

be positive integers, where η0, η1 are positive integers, and T1 < S0, T2 < S1.
Let H : {0, 1}∗ → {0, . . . , S0}T1S1 and Ĥ : {0, 1}∗ → {0, . . . , S1}T1T2 be random
oracles. ID = {0, 1}∗ and M = {0, 1}∗ are the identity space and the message
space, respectively.

– (mpk,msk) ← Setup(1λ):
1. Choose b

$← ZN and c
$← ZN .

2. Compute E
(0)
1 = gb � E0 and E

(0)
2 = gc � E0.

3. For i ∈ {1, . . . , S0}, choose ai
$← ZN and compute E

(i)
1 = gai � E

(0)
1 ,

E
(i)
2 = gai � E

(0)
2 .

4. Output mpk = ((E(0)
1 , E

(0)
2), (E(i)

1 , E
(i)
2)i∈[S0]) and msk = {b, c, (a1, . . . ,

aS0)}.
– uskid ← KeyDer(mpk,msk, id):

1. Parse ((E(0)
1 , E

(0)
2), (E(i)

1 , E
(i)
2)i∈[S0]) and msk = (a1, . . . , aS0).

2. Let a0 ← 0.
3. For i ∈ [T1] and j ∈ [S1], choose ri,j

$← ZN and compute F
(i,j)
1 =

gri,j � E
(0)
1 , F

(i,j)
2 = gri,j � E

(0)
2 .

4. Compute (chi)i∈[T1S1] = H((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] ‖ id).

5. For i ∈ [T1] and j ∈ [S1], compute respi,j = ri,j − achi
.

6. Output uskid = (id, (F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

– σ ← Sign(mpk, uskid,m):
1. Parse mpk = ((E(0)

1 , E
(0)
2), (E(i)

1 , E
(i)
2)i∈[S0]) and

uskid = (id, (F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

2. For i ∈ [T1], set respi,0 = 0.
3. Compute (chi)i∈[T1S1] = H((F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] ‖ id).

4. For i ∈ [T1] and j ∈ [T2], choose r̂i,j
$← ZN and compute F̂

(i,j)
1 = gr̂i,j �

E
(chi)
1 , F̂

(i,j)
2 = gr̂i,j � E

(chi)
2 .

5. Compute (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂ (i,j)
1 , F̂

(i,j)
2)i∈[T1],j∈[T2] ‖ id ‖ m).

6. For i ∈ [T1] and j ∈ [T2], compute r̂espi,j = r̂i,j − resp
i,̂chi,j

.

7. Output σ = ((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2],

(r̂espi,j)i∈[T1],j∈[T2]).
– 1/0 ← Vrfy(mpk, id,m, σ):

1. Parse mpk = ((E(0)
1 , E

(0)
2), (E(i)

1 , E
(i)
2)i∈[S0]) and

σ = ((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2]).

2. Compute (chi)i∈[T1S1] = H((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] ‖ id).

3. For i ∈ [T1] and j ∈ [T2], compute
• F̂

(i,j)′
1 = gr̂espi,j �E

(chi)
1 and F̂

(i,j)′
2 = gr̂espi,j �E

(chi)
2 if ĉhi,j = 0, and

• F̂
(i,j)′
1 = gr̂espi,j �F

(i,̂chi,j)
1 and F̂

(i,j)′
2 = gr̂espi,j �F

(i,̂chi,j)
2 if ĉhi,j > 0.

4. Output 1 if (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂ (i,j)′
1 , F̂

(i,j)′
2)i∈[T1],j∈[T2] ‖ id ‖ m),

and 0 otherwise.

We show the correctness of our scheme IBSLCSI-FiSh, as follows:

A Tightly Secure Identity-Based Signature Scheme from Isogenies 155

Proposition 2. The IBS scheme IBSLCSI-FiSh is correct.

Proof. Let mpk = ((E(0)
1 , E

(0)
2), (E(i)

1 , E
(i)
2)i∈[S0]) and msk = (a1, . . . , aS0),

where (mpk,msk) ← Setup(1λ). For an identity id ∈ ID and a message
m ∈ M, let uskid = (id, (F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]) ←

KeyDer(mpk,msk, id) and let σ = ((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2],

(r̂espi,j)i∈[T1],j∈[T2]) ← Sign(mpk, uskid,m).
Then, we show that the verification algorithm Vrfy accepts the valid message-

signature pair (m, σ) on id.
In the case ĉhi,j = 0, for (i, j) ∈ [T1] × [T2] and k ∈ {1, 2}, we have

F̂
(i,j)′
k = gr̂espi,j � E

(chi)
k

= g
r̂i,j−resp

i,̂chi,j � E
(chi)
k

= gr̂i,j−respi,0 � E
(chi)
k

= gr̂i,j � E
(chi)
k = F̂

(i,j)
k .

In the case ĉhi,j > 0, we have the following for (i, j) ∈ [T1] × [T2] and
k ∈ {1, 2}:

F̂
(i,j)′
k = gr̂espi,j � F

(i,̂chi,j)
k

= g
r̂i,j−resp

i,̂chi,j � (g
r
i,̂chi,j � E

(0)
k)

= g
r̂i,j−(r

i,̂chi,j
−achi

)
� (g

r
i,̂chi,j � E

(0)
k)

= gr̂i,j � (gachi � E
(0)
k)

= gr̂i,j � E
(chi)
k = F̂

(i,j)
k .

From the above, we obtain the following equation:

(ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂ (i,j)
1 , F̂

(i,j)
2)i∈[T1],j∈[T2] ‖ id ‖ m)

= Ĥ((F̂ (i,j)′
1 , F̂

(i,j)′
2)i∈[T1],j∈[T2] ‖ id ‖ m).

Therefore, if a signature σ on an identity-message pair (id,m) is generated cor-
rectly, the Vrfy algorithm accepts this signature. The proof is completed. ��

4.2 Security Analysis

The following theorem shows the security of our proposed IBS scheme
IBSLCSI-FiSh:

Theorem 1. If the FCMD-CSIDH assumption with parameter S0 holds, then the
IBS scheme IBSLCSI-FiSh is EUF-ID-CMA-MK secure in the random oracle model.

156 J. Chen et al.

Proof. Let A be a PPT adversary against the EUF-ID-CMA-MK security of
IBSLCSI-FiSh. Let qs, qk, qh, and qĥ be the maximum numbers of queries issued
to OSign, OKeyDer, H, and Ĥ, respectively. Let σ∗ = ((F (i,j)∗

1 , F
(i,j)∗
2)i∈[T1],j∈[S1],

(ĉh
∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]) be the signature generated by A in the

Output phase.
In order to prove Theorem 1, we consider a sequence of the security games

Game0,Game1,Game2,Game3. For i ∈ {0, 1, 2, 3}, let Wi be the event that the
experiment outputs 1 in Gamei.

Game0: This game is the same as the ordinary EUF-ID-CMA-MK security game.
Then, we have Adveuf-id-cma

IBSLCSI-FiSh,A(λ) = Pr[W0].

Game1: This game is the same as Game0 except that the key-derivation oracle
OKeyDer generates a user secret key uskid for id ∈ ID, as follows:

1. For i ∈ [T1S1], choose chi
$← {0, . . . , S0}.

2. For i ∈ [T1], set respi,0 = 0.
3. For i ∈ [T1] and j ∈ [S1], choose respi,j

$← ZN .
4. For i ∈ [T1] and j ∈ [S1], compute F

(i,j)
1 = grespi,j � E

(chi)
1 and F

(i,j)
2 =

grespi,j � E
(chi)
2 .

5. Program (chi)i∈[T1S1] = H((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] ‖ id) if the hash value of

((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] ‖ id) is not defined. Otherwise abort.

6. Let uskid = (id, (F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

First, we show that the OKeyDer oracle is correctly simulated in Game1 unless
the aborting event occurs. Let σ = ((F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2],

(r̂espi,j)i∈[T1],j∈[T2]) ← Sign(mpk, uskid,m) be a signature generated in Game1.
We analyze the output of the Vrfy algorithm. In the case ĉhi,j = 0, Vrfy computes
the following for (i, j) ∈ [T1] × [T2] and k ∈ {1, 2}:

F̂
(i,j)′
k = gr̂espi,j � E

(chi)
k = g

r̂i,j−resp
i,̂chi,j � E

(chi)
k

= gr̂i,j−respi,0 � E
(chi)
k = gr̂i,j � E

(chi)
k = F̂

(i,j)
k .

In the case ĉhi,j > 0, for (i, j) ∈ [T1] × [T2] and k ∈ {1, 2}, Vrfy computes the
following for a valid signature:

F̂
(i,j)′
k = gr̂espi,j � F

(i,̂chi,j)
k

= g
r̂i,j−resp

i,̂chi,j � (g
resp

i,̂chi,j � E
(chi)
k)

= gr̂i,j � E
(chi)
k = F̂

(i,j)
k .

The second equation holds because for any ĉhi,j = j̃ > 0, the OKeyDer oracle sets

F
(i,j̃)
k = grespi,j̃ � E

(chi)
k .

A Tightly Secure Identity-Based Signature Scheme from Isogenies 157

We next estimate the upper bound of the probability that the OKeyDer oracle
aborts, that is, the probability that ((F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] ‖ id) has been

queried to H when defining H((F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] ‖ id).

As the worst-case scenario, qh +1 queries are issued to H at the beginning of
the experiment. Then, the probability that OKeyDer aborts for the i-th query is at
most (i+ qh)/N . In addition, the total number of queries issued to H is at most
qs + qk, since OSign and OKeyDer call H at most qs and qk times, respectively. The
probability of guessing a collision of H each time is at most (qs +qk +qh +1)/N .
Hence, the probability of aborting Game1 is at most (qs +qk)(qs +qk +qh +1)/N
over all (qs + qk) extraction queries, and we have |Pr[W0] − Pr[W1]| ≤ (qs +
qk)(qs + qk + qh + 1)/N .

Game2: This game is the same as Game1 except that the signing oracle OSign

generates a signature σ on (id,m), as follows:

1. Parse uskid = (id, (F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

2. Compute
(chi)i∈[T1S1] = H((F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] ‖ id).

3. For i ∈ [T1] and j ∈ [T2], choose ĉhi,j
$← {0, . . . , S1} and r̂espi,j

$← ZN .
4. For i ∈ [T1] and j ∈ [T2], compute

– F̂
(i,j)
1 = gr̂espi,j � E

(chi)
1 and F̂

(i,j)
2 = gr̂espi,j � E

(chi)
2 if ĉhi,j = 0, and

– F̂
(i,j)
1 = gr̂espi,j � F

(i,̂chi,j)
1 and F̂

(i,j)
2 = gr̂espi,j � F

(i,̂chi,j)
2 if ĉhi,j > 0.

5. Program (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂ (i,j)
1 , F̂

(i,j)
2)i∈[T1],j∈[T2] ‖ id ‖ m) if the hash

value of ((F̂ (i,j)
1 , F̂

(i,j)
2)i∈[T1],j∈[T2] ‖ id ‖ m) has not been defined. Otherwise

abort.
6. Let σ = ((F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2]).

We show that Game1 and Game2 are identical unless the aborting event
occurs. All signatures generated by OSign in Game2 are valid, because OSign com-
putes

– F̂
(i,j)
1 = gr̂espi,j � E

(chi)
1 and F̂

(i,j)
2 = gr̂espi,j � E

(chi)
2 if ĉhi,j = 0, and

– F̂
(i,j)
1 = gr̂espi,j � F

(i,̂chi,j)
1 and F̂

(i,j)
2 = gr̂espi,j � F

(i,̂chi,j)
2 if ĉhi,j > 0.

That is, the Vrfy algorithm always accepts a signature generated by OSign since
Vrfy computes the values above in the same way as OSign. Then, the distributions
of F̂

(i,j)
1 and F̂

(i,j)
2 are uniform, since r̂espi,j and ĉhi are uniformly random

(where i ∈ [T1] and j ∈ [T2]). Hence, as long as the aborting event does not
occur, Game2 is identical to Game1.

In the same way as the proof of the indistinguishability between Game0 and
Game1, the probability of aborting is at most (qs + qk)(qs + qk + qĥ + 1)/N .
Therefore, we obtain |Pr[W1] − Pr[W2]| ≤ (qs + qk)(qs + qk + qĥ + 1)/N .

Game3: This game is the same as Game2 except that the challenger generates
E

(i)
1 = gai � E

(0)
1 and E

(i)
2 = ga′

i � E
(0)
2 for i ∈ [S0] instead of E

(i)
1 = gai � E

(0)
1

and E
(i)
2 = gai � E

(0)
2 , when generating a master public key and a master secret

key.

158 J. Chen et al.

It is possible to show the indistinguishability between Game2 and Game3, by
constructing a PPT reduction algorithm solving the FCMD-CSIDH problem. In
both Game2 and Game3, the OKeyDer and OSign oracles can be simulated without
msk. Thus, it is possible to set the given FCMD-CSIDH instance as mpk. Then,
if the given values are valid FCMD-CSIDH instances, Game2 can be simulated. If
those values are random FCMD-CSIDH instances, Game3 is also simulated. Hence,
by using A, we can construct a PPT algorithm B solving the FCMD-CSIDH
problem such that |Pr[W2] − Pr[W3]| ≤ AdvFCMD-CSIDH

B,S0
(λ), in the straightforward

way.
We show that the winning probability in Game3 is negligible. In order to do

this, we consider the following two events:

– [Reuse]: A outputs a valid forgery (id∗,m∗, σ∗) by reusing some value of
(F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] generated by OSign. Namely, it holds that

(F (i,j)∗
1 , F

(i,j)∗
2)i∈[T1],j∈[S1] = (F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1]

for σ∗ = ((F (i,j)∗
1 , F

(i,j)∗
2)i∈[T1],j∈[S1], (ĉh

∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]).

– [¬Reuse]: A outputs a valid forgery (id∗,m∗, σ∗) without reusing any value of
(F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] generated by OSign given (id∗,m∗). Namely, it holds

that (F (i,j)∗
1 , F

(i,j)∗
2)i∈[T1],j∈[S1] �= (F (i,j)

1 , F
(i,j)
2)i∈[T1],j∈[S1] for any value of

(F (i,j)
1 , F

(i,j)
2)i∈[T1],j∈[S1] generated by OSign.

We first estimate the upper bound of the probability Pr[W3 ∧ ¬Reuse]. In
order to do this, for the generated public key mpk = ((E(0)

1 , E
(0)
2), (E(i)

1 = gai �

E
(0)
1 , E

(i)
2 = ga′

i � E
(0)
2)i∈[S0]), we define Xbad as the subset of X (the statement

set of lossy CSI-FiSh) which satisfies the following condition for all distinct i, j ∈
[S0]: ai �= a′

i ∧ aj − ai �= a′
j − a′

i. Then, for each (ai, a
′
i) ∈ (ZN)2 (i ∈ [S0]), there

are at most N(N − i) pairs satisfying this condition. Hence, |Xbad| = NS0+2(N −
1) · · · (N − S0) holds, and we have Pr[mpk ∈ Xbad] = (N − 1) · · · (N − S0)/NS0 .

We estimate the upper bound of the winning probability in the case where
the event [¬Reuse ∧ mpk ∈ Xbad] occurs. Let σ∗ = ((F (i,j)∗

1 , F
(i,j)∗
2)i∈[T1],j∈[S1],

(ĉh
∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]) be the signature generated by A. Note

that
H((F (i,j)∗

1 , F
(i,j)∗
2)i∈[T1],j∈[S1] ‖ id∗) = (ch∗

i)i∈[T1S1]

and
Ĥ((F̂ (i,j)∗

1 , F̂
(i,j)∗
2)i∈[T1],j∈[T2] ‖ id∗ ‖ m∗) = (ĉh

∗
i,j)i∈[T1],j∈[T2]

are defined, due to the definition of Game3. We consider the case ĉhi,j = 0 and
assume that there exist two hash values (ch∗

i)i∈[T1S1] and (chi)i∈[T1S1] such that
the corresponding values (r̂esp∗

i,j)i∈[T1],j∈[T2] and (r̂espi,j)i∈[T1],j∈[T2] satisfy the

A Tightly Secure Identity-Based Signature Scheme from Isogenies 159

condition of Vrfy. Then, we have
{

F̂
(i,j)∗
1 = gr̂esp∗

i,j � E
(ch∗

i)
1 , F̂

(i,j)∗
2 = gr̂esp∗

i,j � E
(ch∗

i)
2 ,

F̂
(i,j)∗
1 = gr̂espi,j � E

(chi)
1 , F̂

(i,j)∗
2 = gr̂espi,j � E

(chi)
2 ,

⇔ E
(ch∗

i)
1 = gr̂espi,j−r̂esp∗

i,j � E
(chi)
1 , E

(ch∗
i)

2 = gr̂espi,j−r̂esp∗
i,j � E

(chi)
2 .

This contradicts the condition of Xbad. We consider the case ĉh
∗
i,j > 0 and assume

that there exist the two hash values (ch∗
i)i∈[T1S1] and (chi)i∈[T1S1] such that the

corresponding values

((resp∗
i,j)i∈[T1].j∈[S1], (r̂esp

∗
i,j)i∈[T1],j∈[T2])

and
((respi,j)i∈[T1].j∈[S1], (r̂espi,j)i∈[T1],j∈[T2])

satisfy the acceptance condition of Vrfy. Due to the change of Game1, we have
{

F̂
(i,j)∗
1 = gr̂esp∗

i,j � F
(i,̂ch

∗
i,j)∗

1 , F̂
(i,j)∗
2 = gr̂esp∗

i,j � F
(i,̂ch

∗
i,j)∗

2 ,

F̂
(i,j)∗
1 = gr̂espi,j � F

(i,̂chi,j)
1 , F̂

(i,j)∗
2 = gr̂espi,j � F

(i,̂chi,j)
2 .

⇔
{

F̂
(i,j)∗
1 = gr̂esp∗

i,j+resp∗
i,j � E

(ch∗
i)

1 , F̂
(i,j)∗
2 = gr̂esp∗

i,j+resp∗
i,j � E

(ch∗
i)

2 ,

F̂
(i,j)∗
1 = gr̂espi,j+respi,j � E

(chi)
1 , F̂

(i,j)∗
2 = gr̂espi,j+respi,j � E

(chi)
2 .

⇔
{

E
(ch∗

i)
1 = g(r̂espi,j+respi,j)−(r̂esp∗

i,j+resp∗
i,j) � E

(chi)
1 ,

E
(ch∗

i)
2 = g(r̂espi,j+respi,j)−(r̂esp∗

i,j+resp∗
i,j) � E

(chi)
2 .

This also contradicts the condition of Xbad. Hence, there exists at most one
(ch∗

i)i∈[T1S1] that satisfies the condition of Vrfy, and we have Pr[W3 | ¬Reuse ∧
mpk ∈ Xbad] ≤ 1/(S0 + 1)T1S1 . Therefore, we obtain

Pr[W3 ∧ ¬Reuse] = Pr[W3 ∧ ¬Reuse ∧ mpk ∈ Xbad] + Pr[W3 ∧ ¬Reuse ∧ mpk /∈ Xbad]

≤ Pr[W3 | ¬Reuse ∧ mpk ∈ Xbad] · Pr[mpk ∈ Xbad] + Pr[mpk /∈ Xbad]

≤ 1

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0

+

(
1 − (N − 1) · · · (N − S0)

NS0

)
.

Next, we estimate the upper bound of the probability Pr[W3 ∧ Reuse]. Let
σ∗ = ((F (i,j)∗

1 , F
(i,j)∗
2)i∈[T1],j∈[S1], (ĉh

∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]) be the

signature on (id∗,m∗), which is generated by A. If ĉh
∗
i,j = 0, we have

F̂
(i,j)∗
1 = gr̂esp∗

i,j � E
(ch∗

i)
1 , F̂

(i,j)∗
2 = gr̂esp∗

i,j � E
(ch∗

i)
2 .

Thus, mpk ∈ Xbad always holds since ach∗
i

�= a′
ch∗

i
in Game3.

If ĉh
∗
i,j > 0, it is shown that there exists at most one (ch∗

i)i∈[T1S1] which
satisfies the winning condition, in the same way as the case [W3 ∧ ¬Reuse].

160 J. Chen et al.

Hence, it holds that

Pr[W3 ∧ Reuse] = Pr[W3 ∧ Reuse ∧ mpk ∈ Xbad] + Pr[W3 ∧ Reuse ∧ mpk /∈ Xbad]
≤ Pr[W3 | Reuse ∧ mpk ∈ Xbad] · Pr[mpk ∈ Xbad]

≤ 1
(S0 + 1)T1S1

· (N − 1) · · · (N − S0)
NS0

.

Therefore, we have

Pr[W3] = Pr[W3 ∧ Reuse] + Pr[W3 ∧ ¬Reuse]

≤ 2
(S0 + 1)T1S1

· (N − 1) · · · (N − S0)
NS0

+
(

1 − (N − 1) · · · (N − S0)
NS0

)
.

From the discussion above, the inequality

Adveuf-id-cma
IBSLCSI-FiSh,A(λ) ≤

2∑
i=0

|Pr[Wi] − Pr[Wi+1]| + Pr[W3]

≤ AdvFCMD-CSIDH
B,S0

(λ) +
(qs + qk)(2qs + 2qk + qh + qĥ + 2)

N

+
2

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0

+
(

1 − (N − 1) · · · (N − S0)
NS0

)

is obtained. ��
Finally, we have the following result due to Lemma 1 and Theorem 1:

Corollary 1. If the D-CSIDH assumption holds, then the IBS scheme
IBSLCSI-FiSh is EUF-ID-CMA-MK secure in the random oracle model. Concretely,
for a PPT adversary A against the EUF-ID-CMA-MK security of IBSLCSI-FiSh,
then there exists a PPT algorithm B against the D-CSIDH problem such that

Adveuf-id-cma
IBSLCSI-FiSh,A(λ) ≤ S0 · AdvD-CSIDH

B (λ) +
(qs + qk)(2qs + 2qk + qh + qĥ + 2)

N

+
2

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0

+
(

1 − (N − 1) · · · (N − S0)
NS0

)
,

where qs, qk, qh, and qĥ are the maximum numbers of queries to OSign, OKeyDer,
H, and Ĥ, respectively.

Therefore, we have given a tight security proof for the proposed IBS scheme.

A Tightly Secure Identity-Based Signature Scheme from Isogenies 161

5 Conclusion

In this paper, we have proposed an identity-based signature scheme based on
the lossy CSI-FiSh and proved a tight security reduction for this scheme. Fur-
thermore, we have showed that our scheme has more compact user keys and
signatures than existing suitable schemes by choosing appropriate parameters.
We leave the construction of IBS based on other isogeny-based hard problems,
e.g. Endomorphism Ring Problem [15,16,25] for future works.

Acknowledgements. This research was in part conducted under a contract of
“Research and development on new generation cryptography for secure wireless com-
munication services” among “Research and Development for Expansion of Radio Wave
Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and
Communications, Japan. This work was in part supported by JSPS KAKENHI Grant
Number JP22H03590. The authors would like to thank the anonymous reviewers for
their helpful comments.

References

1. Abdalla, M., Fouque, P., Lyubashevsky, V., Tibouchi, M.: Tightly secure signatures
from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016)

2. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with
sharing-friendly keys. Cryptology ePrint Archive (2022)

3. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. J. Cryptol. 22(1), 1–61 (2009)

4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS, pp. 390–399. ACM (2006)

5. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: distributed key
generation for CSIDH. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 257–276. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81293-5 14

6. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

7. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

8. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

9. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive (2022)

10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

162 J. Chen et al.

11. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

12. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive (2006)
13. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce

an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

14. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions
in cryptography. Cryptology ePrint Archive (2023)

15. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

16. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

17. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

18. Feo, L.D., et al.: SCALLOP: scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V.
(eds.) PKC 2023. LNCS, vol. 13940, pp. 345–375. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-31368-4 13

19. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

20. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH
attacks by masking information. Cryptology ePrint Archive (2023)

21. Fukumitsu, M., Hasegawa, S.: A Galindo-Garcia-like identity-based signature with
tight security reduction, revisited. In: CANDAR, pp. 92–98. IEEE Computer Soci-
ety (2018)

22. Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature
scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–
148. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2 9

23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

24. Kiltz, E., Neven, G.: Identity-based signatures. In: Identity-Based Cryptography,
Cryptology and Information Security Series, vol. 2, pp. 31–44. IOS Press (2009)

25. Kohel, D.R.: Endomorphism Rings of Elliptic Curves over Finite Fields. University
of California, Berkeley (1996)

26. Lee, Y., Park, J.H., Lee, K., Lee, D.H.: Tight security for the generic construction
of identity-based signature (in the multi-instance setting). Theoret. Comput. Sci.
847, 122–133 (2020)

27. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 3–35.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4 1

28. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive (2022)

https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-642-02384-2_9
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-031-22966-4_1

A Tightly Secure Identity-Based Signature Scheme from Isogenies 163

29. NIST: National Institute of Standards and Technology Interagency (2022). https://
doi.org/10.6028/NIST.IR.8413

30. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and
more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol.
13178, pp. 347–378. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
97131-1 12

31. Peng, C., Chen, J., Zhou, L., Choo, K.R., He, D.: CsiIBS: a post-quantum identity-
based signature scheme based on isogenies. J. Inf. Secur. Appl. 54, 102504 (2020)

32. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

33. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive (2022)
34. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-

tology ePrint Archive (2006)
35. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

36. Shaw, S., Dutta, R.: Identification scheme and forward-secure signature in identity-
based setting from isogenies. In: Huang, Q., Yu, Yu. (eds.) ProvSec 2021. LNCS,
vol. 13059, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-90402-9 17

37. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

38. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, Cham
(2009). https://doi.org/10.1007/978-0-387-09494-6

39. Zhang, X., Liu, S., Gu, D., Liu, J.K.: A generic construction of tightly secure
signatures in the multi-user setting. Theor. Comput. Sci. 775, 32–52 (2019)

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-030-90402-9_17
https://doi.org/10.1007/978-3-030-90402-9_17
https://doi.org/10.1007/978-0-387-09494-6

Lattice-Based Cryptography

New NTRU Records with Improved
Lattice Bases

Elena Kirshanova1,3(B) , Alexander May2(B) , and Julian Nowakowski2(B)

1 Technology Innovation Institute, Abu Dhabi, UAE
elenakirshanova@gmail.com

2 Ruhr-University Bochum, Bochum, Germany
{alex.may,julian.nowakowski}@rub.de

3 I.Kant Baltic Federal University, Kaliningrad, Russia

Abstract. The original NTRU cryptosystem from 1998 can be consid-
ered the starting point of the great success story of lattice-based cryp-
tography. Modern NTRU versions like NTRU-HPS and NTRU-HRSS are
round-3 finalists in NIST’s selection process, and also Crystals-Kyber
and especially Falcon are heavily influenced by NTRU.

Coppersmith and Shamir proposed to attack NTRU via lattice basis
reduction, and variations of the Coppersmith-Shamir lattice have been
successfully applied to solve official NTRU challenges by Security Inno-
vations, Inc. up to dimension n = 173.

In our work, we provide the tools to attack modern NTRU versions,
both by the design of a proper lattice basis, as well as by tuning the mod-
ern BKZ with lattice sieving algorithm from the G6K library to NTRU
needs.

Let n be prime, Φn := (Xn − 1)/(X − 1), and let Zq[X]/(Φn) be the
cyclotomic ring. As opposed to the common belief, we show that switch-
ing from the Coppersmith-Shamir lattice to a basis for the cyclotomic
ring provides benefits. To this end, we slightly enhance the LWE with
Hints framework by Dachman-Soled, Ducas, Gong, Rossi with the con-
cept of projections against almost-parallel hints.

Using our new lattice bases, we set the first cryptanalysis land-
marks for NTRU-HPS with n ∈ [101, 171] and for NTRU-HRSS with
n ∈ [101, 211]. As a numerical example, we break our largest HPS-171
instance using the cyclotomic ring basis within 83 core days, whereas the
Coppersmith-Shamir basis requires 172 core days.

We also break one more official NTRU challenges by Security Innova-
tion, Inc., originally worth 1000$, in dimension n = 181 in 20 core years.
Our experiments run up to BKZ blocksizes beyond 100, a regime that
has not been reached in analyzing cryptosystems so far.

Keywords: NTRU · Cryptanalysis · BKZ · Sieving

1 Introduction

Lattice-based cryptography has evolved as the most favourable candidate
for building efficient post-quantum cryptosystems, because lattices seem to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 167–195, 2023.
https://doi.org/10.1007/978-3-031-40003-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_7&domain=pdf
https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675
https://orcid.org/0000-0003-3066-0133
https://doi.org/10.1007/978-3-031-40003-2_7

168 E. Kirshanova et al.

provide sufficiently hard problems in reasonable dimensions. This is in contrast to
coding-based cryptography [ABB+20,MAB+21,ABC+20] that usually requires
significantly larger dimensions. However, when compared to code-based schemes,
precisely estimating the security of lattice-based schemes is much more difficult,
since the behavior of lattice reduction algorithms is not yet fully understood.
Their analysis remains a tricky business that heavily relies on experimental data
that sharpens the accuracy of lattice estimators.

The NTRU cryptosystem [HPS98] from 1998 can be considered a blueprint
for most efficient lattice-based constructions [BDK+18,FHK+18]. Therefore, it
may not come as a surprise that NTRU received a significant amount of crypt-
analytic attention, both from the theoretical side as well as from experimental
evaluations.

Lattice Attacks in Theory. NTRU is defined over the convolution polynomial
ring Zq[X]/(Xn −1). An NTRU secret key consists of two small norm polynomi-
als f, g ∈ Zq[X]/(Xn − 1), f being invertible, with corresponding NTRU public
key h = f−1g. In 1997, Coppersmith and Shamir [CS97] already showed how to
use h for defining a basis for a 2n-dimensional lattice LCS. Let f ,g denote the
coefficient vectors of f, g. Then (f ,g) ∈ LCS, and (f ,g) is presumably a shortest
(non-zero) vector in LCS.

The lattice LCS does not only contain (f ,g), but also n rotations of (f ,g).
Observe that Xif · h = Xig for all 0 ≤ i < n. By construction, the coefficient
vectors of Xif,Xig are also contained in LCS. Since we work modulo Xn − 1,
a multiplication by Xi simply defines a cyclic rotation of the coefficient vector
by i positions, and therefore all coefficient vectors have identical norm. These
rotations were first used in May, Silverman [MS01] to speed up lattice basis
reduction by dimension reduction. However, recently [DDGR20] showed that
lattice reduction already benefits internally from the presence of many short
rotations (i.e., it benefits even without dimension reduction).

Moreover, the n rotations of (f ,g) define an n-dimensional sublattice Lf,g ⊂
LCS. Kirchner and Fouque [KF17] observed that for sufficiently large q, called
the overstretched NTRU regime, lattice basis reduction finds a basis for Lf,g

significantly earlier than predicted by the analysis for secret key recovery (SKR)
of (f ,g) in LCS. Since Lf,g contains n exceptionally small vectors, we call Lf,g a
dense sublattice of LCS, and the detection of a basis of Lf,g when reducing LCS a
dense sublattice discovery (DSD). Ducas and van Woerden [DvW21] showed that
the overstretched regime, for which DSD happens early, requires q = Ω(n2.484).

NTRU with Hints. By design, NTRU parameters may fulfill further rela-
tions. E.g., for correctness of decryption most NTRU variants require g(1) = 0,
or equivalently 〈g,1n〉 = 0. In the framework of [DDGR20] such a secret key
relation is called a perfect hint. [DDGR20] provide a method for reducing the
lattice dimension by 1 for every perfect hint.

For some parameter settings, we have h(1) = 0 implying the relation
〈h,1n〉 = 0. This implies that the short vector v = (1n,0n) is contained in

New NTRU Records with Improved Lattice Bases 169

the Coppersmith-Shamir lattice LCS. Although v is very short, it is useless for a
cryptanalyst. [DDGR20] provide a method to project a lattice basis against such
useless vectors, thereby removing them from the lattice. [DDGR20] call this a
short vector hint.

This projection also reduces the lattice dimension by 1, but may come at the
cost of decreasing the lattice determinant, since a projection usually decreases
vector lengths. Thus, it is not clear whether a projection against a useless lattice
vector decreases the run time for finding a secret key in a lattice.

Lattice Attacks in Practice. There has been reasonable cryptanalytic effort
for breaking instantiations of the original NTRU cryptosystem. This was fur-
ther encouraged by Security Innovation, Inc. by publishing 11 challenges in
dimensions 107 ≤ n ≤ 211 with a prize money of 1000$ each [Incb]. These chal-
lenges stimulated the development of new attack techniques and their efficient
implementations, such as Howgrave-Graham’s lattice-hybrid technique [How07]
that lead to the break of two challenges in dimension n ∈ {107, 113}. With
Bounded Distance Decoding of Liu, Nguyen [LN13] five more challenges with
n ∈ {131, 139, 149, 163, 173} were solved by Ducas, Nguyen [Inca].

In their experiments, Ducas and Nguyen used BKZ 2.0 lattice reduction with
extreme pruning [GNR10,CN11]. In the meantime, there has been significant
progress in computing shortest vectors in theory via sieving [NV08,MV10,Duc18]
and also in its practical G6K implementation [ADH+19,DSvW21] as a subrou-
tine in BKZ reduction. This algorithmic improvement has however not led to
improved NTRU cryptanalysis, though.

Moreover, modern NTRU versions such as the NIST round-3 finalists NTRU-
HRS and NTRU-HPSS [HRSS17,CDH+19] have not yet experienced extensive
practical cryptanalysis.

1.1 Our Results

Cyclotomic Ring. The polynomial Xn − 1 factors into Xn − 1 =
∏

d|n Φd,
where Φd denotes the d-th cyclotomic polynomial. Gentry [Gen01] showed that
in the case of composite n, where Xn−1 has many divisors, attacks on NTRU can
improve significantly, when switching from the Coppersmith-Shamir lattice to a
lattice defined over some ring Zq[X]/(p), where p | (Xn −1) and 1 � deg p � n.

As a countermeasure against Gentry’s attack, modern NTRU variants use
prime n. In that case Xn − 1 has only the two divisors Φ1 = X − 1 and

Φn =
Xn − 1
X − 1

= Xn−1 + Xn−2 + . . . + X + 1.

Both Φ1 and Φn have either too small or too large degree to successfully mount
Gentry’s attack.

Nevertheless, as an attacker, one still might be temped to work over the
so-called cyclotomic ring Zq[X]/(Φn). Since Φn has degree n − 1, a canonical
lattice for the cyclotomic ring analogous to the Coppersmith-Shamir lattice LCS

170 E. Kirshanova et al.

has dimension only 2(n − 1), thereby saving two dimensions over LCS. However,
the rotations of (f ,g) modulo Φn have in general norm larger than (f ,g) itself.
Therefore, [DDGR20] conclude that the effect of saving two dimensions is likely
outweighed by the increase in norm.

To avoid this issue, we define a new 2(n − 2)-dimensional lattice that retains
the norm of all cyclic rotations. To this end, we take a closer look at the arith-
metic of the cyclotomic ring Zq[X]/(Φn) and additionally introduce the following
new concept of lattice hints, enriching the hint methodology of [DDGR20].

Almost-Parallel Hint. Assume that we are looking for a short secret lat-
tice vector (f ,g) in a lattice L, and we know another vector v (not necessarily
in L) almost parallel to (f ,g). Then we may project (f ,g) against v, thereby
eliminating the (long) component of (f ,g) parallel to v, and leaving the (short)
component of (f ,g) orthogonal to v. As a result, our short lattice vector (f ,g) is
projected into an even shorter lattice vector, making the projection potentially
easier to find by lattice reduction algorithms.

HPS, HRSS Results. Using our techniques, we define different lattice bases
for NTRU-HPS and NTRU-HRSS, for Zq[X]/(Xn − 1) and the cyclotomic ring
Zq[X]/(Φn). Additionally, we include lattice hints by the design criteria of HPS
and HRSS. We experimentally show that our lattice basis for the cyclotomic
ring that retains rotation norms via an almost-parallel hint performs signifi-
cantly better than the standard basis for LCS. That is, we require smaller BKZ
blocksizes to achieve secret key recovery (SKR), or if we are in the overstretched
regime, for dense sublattice discovery (DSD).

Our smaller blocksizes result in a significant runtime decrease, e.g., we break
HPS-161 with our cyclotomic lattice in 15 core days instead of 39 core days
for LCS, and HPS-171 in 83 core days instead of 172 core days. For HRSS the
savings over LCS are even larger. As an example, we solved HRSS-161 with our
cyclotomic lattice in 4 core hours versus 20 core hours for LCS.

181-Challenge. Using our techniques, we are also able to solve an unbroken
NTRU Challenge proposed by Security Innovation, Inc [Incb] with n = 181,
thereby improving upon the previous n = 173 record of Ducas, Nguyen.

G6K Implementation. For the first time we apply the BKZ with sieving
implementation G6K for NTRU cryptanalysis. We measure complexity by the
minimal BKZ blocksize β that is required to achieve SKR or DSD. The current
turnover point, where BKZ with sieving is superior to enumeration lies around
β = 65 – for our implementations and our parallel hardware. In our experiments,
we go beyond β = 100, a regime where sieving is clearly favourable, and that has
not been reached so far for attacks on real-world lattice schemes. For NTRU-
HPS we provide the first cryptanalysis landmarks in the range 101 ≤ n ≤ 171
using ring modulus q = 512. For NTRU-HRSS we use the recommended larger
moduli q = 2048 and q = 4096, which in turn allow us to break instances even
in the range 101 ≤ n ≤ 211.

New NTRU Records with Improved Lattice Bases 171

1.2 Future Work

Existent estimators for NTRU [DDGR20,DvW21] consider the Coppersmith-
Shamir lattice LCS. It appears to be difficult to translate these estimators to our
new lattices. In particular, the Fatigue estimator from [DvW21] crucially relies
on the circulant structure of Lf,g, which is not preserved in our new lattices. We
leave the estimates for our lattices and comparison with the existent ones for
future work.

1.3 Organization of Our Paper

In Sect. 2 we provide some basic lattice facts and recall lattice estimates. Section 3
defines NTRU-HPS and NTRU-HRSS, as submitted to the NIST PQC com-
petition [CDH+19]. In Sect. 4, we generalize the LWE with a hint framework
of [DDGR20] and introduce our new concept of almost-parallel hints. Using the
results of Sect. 4, we describe in Sect. 5 how to properly design a lattice basis over
the cyclotomic ring for attacking NTRU-HPS and NTRU-HRSS, and we discuss
its benefits over the Coppersmith-Shamir lattice in detail. Finally, in Sect. 6 we
provide an extensive overview of our experimental results and discuss potential
implications for the security of NTRU-HPS and NTRU-HRSS. We end in Sect. 7
with the details of our new record computation for n = 181.

The implementation accompanying our work, including a detailed documen-
tation, can be found at https://github.com/ElenaKirshanova/ntru with sieving.

2 Preliminaries

2.1 Notations

We denote by Zn the ring of integers modulo n and by Z
∗
n its group of units.

Lower case bold letters represent (row-)vectors. Upper case bold letters repre-
sent matrices. We denote by In the n × n identity matrix. The n-dimensional
all-zero and all-one vectors are denoted by 0n and 1n, respectively. For a poly-
nomial p ∈ Z[X], we denote by p its coefficients vector. Conversely, for a vec-
tor v = (v0, v1, . . . , vn) ∈ Z

n+1, we denote by v the corresponding polynomial
v =

∑n
i=0 viX

i. If a polynomial has coefficients in {0, 1,−1}, we call the poly-
nomial and its coefficient vector ternary.

The Euclidean norm and the Euclidean inner product are denoted by ‖·‖ and
〈·, ·〉, respectively. For a vector w ∈ R

n, we denote by w⊥ ⊆ R
n the subspace

orthogonal to w. We call w⊥ the orthogonal complement of w.
For v ∈ R

n we denote by πw(v) ∈ w⊥ the orthogonal projection of v onto
w⊥,

πw(v) := v − 〈v, w〉
‖w‖2 w. (1)

We call the projection πw onto w⊥ a projection against w.

https://github.com/ElenaKirshanova/ntru_with_sieving

172 E. Kirshanova et al.

2.2 Lattices

For B ∈ Q
n×m, we define L(B) as the lattice generated by the rows of B:

L(B) := {xB | x ∈ Z
n},

keeping our notation consistent with commonly used implementations of lattice-
reduction algorithms. If the rows of B are linearly independent, we call B a basis
matrix of L(B). The number of rows in a basis matrix is called the dimension
of a lattice, denoted dimL(B). The determinant of a lattice L with basis matrix
B is defined as

det L := det
√
BBT .

Both the dimension and the determinant do not depend on the basis choice.
Let b1, . . . ,bn denote the rows of a basis matrix B. Hadamard’s inequality

states

det L(B) ≤
n∏

i=1

‖bi‖.

The dual of a lattice L = L(B) is defined as

L∗ := {v ∈ span(B) | ∀w ∈ L : 〈v, w〉 ∈ Z} .

A vector v ∈ L is called primitive with respect to some lattice L, if it is not a
multiple of a lattice vector, i.e., for every integer k ≥ 2 it holds that 1

kv /∈ L.
A lattice L ⊂ Z

n is called q-ary, if it contains qZn.

2.3 Lattice Reduction

Every lattice of dimension at least two has infinitely many bases. In many appli-
cations (such as cryptanalysis), one wants to compute a good basis of a lattice,
i.e., a basis consisting of short and almost orthogonal vectors.

The LLL lattice reduction algorithm [LLL82] computes in polynomial time
a relatively good basis, whose shortest vector is exponentially (in the lattice
dimension) longer than a shortest lattice vector. Its generalization, the BKZ algo-
rithm [Sch87,CN11,AWHT16] provides a trade-off between runtime and basis
quality.

The most important parameter of BKZ is the so-called blocksize β. The
BKZ algorithm computes shortest vectors in projected sub-lattices of dimen-
sion β. This dominates the runtime of BKZ. The security of lattice-based cryp-
tosystems is therefore usually measured in the required blocksize β to find a
shortest vector. There are two main approaches to find a shortest vector: enu-
meration algorithms [Kan83,ABF+20] implemented in [dt21a], and sieving algo-
rithms [AKS01,NV08] implemented in [dt21b]. Sieving algorithms find a shortest
vector in time and memory 2O(n), while enumeration requires 2O(n log n) time and
only poly(n) memory. Experiments with publicly available implementations of
sieving and enumeration suggest [ADH+19] that sieving algorithms are superior
to enumeration starting from dimension ≈65.

New NTRU Records with Improved Lattice Bases 173

Estimating the required β for a given lattice is an active area of research.
The NTRU Fatigue estimator [DvW21] provides the most accurate estimates
for NTRU lattices. It is based on the probabilistic simulation method introduced
in [DDGR20], which in turn is a refinement of the so-called 2016 estimate or
GSA intersect method introduced in [ADPS16].

As the name suggests, this method is based on the geometric series assump-
tion (GSA) [Sch03], which states that in a random lattice the Gram-Schmidt
norms of the vectors of a BKZ-reduced basis decay geometrically. Intuitively,
the 2016 estimate states, if a lattice L contains a sufficiently short vector s,
then for sufficiently large β, the GSA cannot hold. Hence, in that case the BKZ
behaves differently than on a random lattice and therefore likely recovers s.

More precisely, the 2016 estimate states that BKZ with blocksize β recovers
a short vector s in a d-dimensional lattice L, provided that

√
β/d‖s‖ < δ2β−d−1

β · det(L)1/d,

where

δβ ≈
(

β

2πe
(πβ)1/β

)1/(2(β−1))

.

We refer the reader to the survey by Albrecht and Ducas [AD21] for further
details.

A straight-forward calculation shows that for ‖s‖ := γ
√

d det (L)1/d with
0 < γ < 1, the 2016 estimate predicts

β =
d log(d)

log(d) − 2 log(γ)
+ o(d). (2)

Hence, if ‖s‖ is very close to the so-called Minkowski bound of
√

d det (L)1/d,
then the 2016 estimate predicts β ≈ d. Conversely, if ‖s‖ is significantly smaller
than

√
d det (L)1/d, then the estimate predicts β � d. As a consequence, it gets

the easier for BKZ to find a shortest vector s in L, the smaller the dimension d,
the larger the determinant detL, and the shorter s.

3 NTRU

In this section, we recall the definition of the NTRU cryptosystem, as defined in
the submission to the NIST PQC competition [CDH+19], as well as the NTRU
challenges published by Security Innovation, Inc [Incb].

3.1 NIST Submission

Let n be a prime number, where the order of both 2 and 3 in Z
∗
n is n − 1. We

denote the set of all such primes by N . The primes n ∈ N with n ≤ 1000 are
exactly the elements of the following set

N≤1000 := {5, 19, 29, 53, 101, 139, 149, 163, 173, 197,

211, 269, 293, 317, 379, 389, 461, 509, 557,

653, 677, 701, 773, 797, 821, 859, 907, 941}.

174 E. Kirshanova et al.

The NTRU specification [CDH+19] defines

Φn :=
Xn − 1
X − 1

= Xn−1 + Xn−2 + . . . + X + 1,

T :=

{
n−2∑

i=0

viX
i | vi ∈ {−1, 0, 1}

}

,

T+ :=

{
n−2∑

i=0

viX
i ∈ T |

∑

i

vivi+1 ≥ 0

}

,

T (ω) :=

{
n−2∑

i=0

viX
i ∈ T | vi = +1 for ω

2 coefficients vi,
vi = −1 for ω

2 coefficients vi

}

, (3)

where ω is an even positive integer. Notice, since n is prime, Φn is the n-th
cyclotomic polynomial.

An NTRU private key is a tuple (n, q, f, g), where n ∈ N , q ∈ N is a power of
two and f, g ∈ Z[X] are polynomials with small coefficients. The corresponding
public key is a tuple (n, q, h), where

h := 3gfq mod (q,Xn − 1) (4)

and
fq := f−1 mod (q, Φn). (5)

If f is sampled from (a subset of) T \ {0}, then the following lemma shows that
fq is well-defined.

Lemma 3.1. Let n ∈ N , f ∈ T \ {0} and let q ∈ N be a power of two. Then f
is invertible in Zq[X]/(Φn).

Proof. By definition of N , the order of 2 in Z
∗
n is n − 1. This implies that the

n-th cyclotomic polynomial Φn is irreducible over Z2. (This easily follows from
the fact that the subgroup {2i mod n | i ∈ Z} ⊆ Z

∗
n is isomorphic to the Galois

group of the field extension Z2 ⊂ Z2(ζn), where ζn denotes a formal primitive
n-th root of unity.) Hence, Z2[X]/(Φn) is a finite field. Since f ∈ T and f �= 0,
it follows that f �≡ 0 mod (2, Φn). Therefore, f is invertible in Z2[X]/(Φn) and
consequently also in Zq[X]/(Φn). ��
The NTRU submission defines two different variants of the scheme, called
NTRU-HPS and NTRU-HRSS. The variants use slightly different sample spaces
for f and g, and have different constraints on q.

NTRU-HPS. In the HPS variant, the modulus q may be set to any power of
2. The polynomials f and g are sampled from the following two sets

Lf,HPS := T ,

Lg,HPS := T (ω), (6)

where ω := min{q/8 − 2, 2�n/3�}. The specification recommends to either use
q = 2048 and n ∈ {509, 677} or q = 4096 and n = 821. (The former imposes
ω = 254, the latter ω = 510).

New NTRU Records with Improved Lattice Bases 175

NTRU-HRSS. In the HRSS variant, the modulus q is

q := 2�7/2+log2(n)�. (7)

The polynomials f, g are sampled from the following two sets

Lf,HRSS := T+,

Lg,HRSS := (X − 1) · T+. (8)

The specification recommends to set n = 701. (This imposes q = 8192).

The NTRU Key Equation. From the definitions of Lg,HPS and Lg,HRSS it
follows that in both NTRU-HPS and NTRU-HRSS g(1) = 0 and by Eq. (4)
consequently also h(1) ≡ 0 mod q. Hence, from the Chinese remainder theorem

Zq[X]/(Xn − 1) � Zq[X]/(Φn) × Zq[X]/(X − 1)

it follows that in both variants the keys satisfy the NTRU key equation

fh ≡ 3g mod (q,Xn − 1). (9)

3.2 NTRU Challenges

When compared to the NTRU variants submitted to NIST PQC competition, the
NTRU challenges by Security Innovation, Inc. use a quite different key format.
Let n ∈ N and define

TCh.(di) :=

{
n−1∑

i=0

viX
i

∣
∣
∣
∣

vi = +1 for di-many vi,
vi = −1 for di-many vi

}

(10)

for some parameter di ∈ N.1

The sample spaces for the secret polynomials f and g are defined as follows

Lf,Ch.(d1, d2, d3) := {f1f2 + f3 mod Xn − 1| fi ∈ TCh.(di)} , (11)

Lg,Ch.(dg) :=

{
n−1∑

i=0

giX
i

∣
∣
∣
∣

gi = +1 for (dg + 1)-many gi,
gi = −1 for dg-many gi

}

, (12)

where d1, d2, d3, dg ∈ N are some positive integers.
The public polynomial h is defined via the equation

(1 + 3f)h ≡ g mod (q,Xn − 1),

where q is a power of two.
Security Innovation, Inc. published 27 different challenges. 11 of the chal-

lenges used to be worth 1000$ each, the other 16 challenges used to be worth
5000$ each. The concrete parameters for all 1000$ challenges are given in Table 1.
1 As opposed to the set T (ω), defined in Eq. (3), the elements of TCh.(di) are of degree

at most n − 1, instead of n − 2. In addition, they have 2di non-zero coefficients,
instead of ω.

176 E. Kirshanova et al.

Table 1. Parameters of the 1000$ NTRU challenges.

n q d1 d2 d3 dg Solved by

107 512 4 4 4 36 Howgrave-Graham

113 1024 5 4 3 38 Howgrave-Graham

131 1024 5 4 4 44 Ducas, Nguyen

139 1024 5 5 3 46 Ducas, Nguyen

149 1024 5 5 3 50 Ducas, Nguyen

163 1024 5 5 4 54 Ducas, Nguyen

173 1024 6 5 4 58 Ducas, Nguyen

181 1024 6 5 4 60 This work

191 1024 6 5 4 64 –

199 1024 6 5 6 66 –

211 1024 6 6 4 70 –

4 Lattice Reduction with a Hint

When attacking a cryptographic lattice L, one often knows some side information
about the secret short vector s ∈ L. Dachman-Soled, Ducas, Gong and Rossi
(DDGR) introduced in [DDGR20] a framework for integrating such hints into L
to improve the performance of lattice reduction algorithms. In this section, we
recall two types of hints and additionally introduce a new type of hint.

Perfect Hints. Suppose we know a vector v, which is orthogonal to the secret
vector s, i.e.,

〈s,v〉 = 0.

This type of hint is called a perfect hint.
Instead of searching for s in L, we can then search in the sub-lattice L ∩v⊥.

As shown by DDGR, this may make reducing the lattice a bit easier, since it
decreases the dimension by one and additionally may increase the determinant
(assuming that v is not too far from being primitive with respect to the dual):

Lemma 4.1 (Generalization of Lemma 12 in [DDGR20]). Let L be a
lattice and let v ∈ L∗. Let k ∈ N such that 1

kv is primitive with respect to L∗.
Then L ∩ v⊥ is a lattice of dimension dim L − 1. Its determinant is given by

det(L ∩ v⊥) =
‖v‖
k

· det L.

Worth noting, if k is significantly larger than ‖v‖, incorporating a perfect hint
may actually be counterproductive for lattice reduction algorithms, as the disad-
vantage of having a smaller determinant then may outweigh the benefit of losing
one dimension. DDGR heuristically assume that k always equals 1. However, in
Sect. 5.3 we show that this is not the case for typical NTRU lattices.

New NTRU Records with Improved Lattice Bases 177

Given a basis B for L, DDGR suggest the following polynomial time algo-
rithm to compute a basis for the sub-lattice L ∩ v⊥.

1. Compute the dual basis D of B. (Recall that D is given by D = (B+)T , where
·+ and ·T denote the Moore-Penrose pseudoinverse and transpose, respec-
tively.)

2. Compute D⊥ := πv(D), where πv is applied row-wise to D.
3. Apply the LLL algorithm to D⊥ to eliminate linear dependencies. Then delete

the first (all-zero) row.
4. Output the dual of the resulting matrix.

Short Vector Hints. Many cryptographic lattices contain short-ish vectors
that neither reveal the secret key, nor help the decryption. For instance, in
some NTRU variants, the lattices contain the all-one vector. Even though this
vector is very short, it cannot be used for decryption. Futhermore, almost all
cryptographic lattices are q-ary for some small q ∈ N and thus contain the rather
short q-vectors (0, . . . , 0, q, 0, . . . , 0).

It can be sometimes beneficial for lattice reduction algorithms to remove
these vectors from the lattice, i.e., to project the lattice onto their orthogonal
complement. DDGR call this a short vector hint.

The benefit of projecting a lattice L against v ∈ L is that the dimension
decreases by one. However, as the following lemma shows, at the same time the
determinant shrinks by a factor of ‖v‖. A short vector hint is therefore always
a trade-off between decreased dimension and decreased determinant.

Lemma 4.2 (Fact 14 in [DDGR20]). Let L be a lattice and let v ∈ L be
primitive with respect to L. Then

det(πv(L)) = det(L)/‖v‖.

In contrast to a perfect hint, where the constraint on v being primitive is a
potential disadvantage, this is not the case for a short vector hint: if v is not
primitive, i.e., if there exists k ≥ 2, such that 1

kv is a primitive vector of L, then
projecting actually shrinks the determinant by less than a ‖v‖-factor, since in
that case we have

det(πv(L)) = det(π 1
kv(L)) = k · det(L)

‖v‖ >
det(L)
‖v‖ .

A potential drawback from projecting against v is a loss of information. While
s is contained in L, the projection πv(L) only contains πv(s), from which one
has to recover s.

Almost-Parallel Hints (New). In our attacks, the secret vector s is sometimes
almost parallel to some known vector v (not necessarily included in our lattice),
i.e., it has a decomposition into

s = cv + s′,

178 E. Kirshanova et al.

for some vector s′ significantly shorter than s, and some scalar c. We call this
an almost-parallel hint.

Projecting the lattice against v makes the secret target vector s significantly
shorter:

‖πv(s)‖ = ‖πv(s′)‖ ≤ ‖s′‖.

In addition, by integrating an almost-parallel hint, we also decrease the dimen-
sion of L by one.2

As with a short vector hint, using an almost-parallel hint also comes with a
disadvantage: both types of hints decrease the determinant. In fact, the following
straight-forward generalization of Lemma 4.2 shows, in contrast to a short vector
hint, where the determinant only shrinks by a ‖v‖-factor, an almost-parallel
may shrink way more significantly (assuming that only large multiples of v are
contained in L):

Lemma 4.3. Let L be lattice and let v be a vector. If there exists λ ∈ R such
that λv is a primitive lattice vector of L, then

det(πv(L)) = det(L)/(λ‖v‖).

Notice that for an integral vector v ∈ Z
n\0n and a q-ary lattice L we shrink, how-

ever, at most by a q‖v‖-factor, because in that case there exists λ ∈ {1, 2, . . . , q},
such that λv is primitive.

As in the case of short vector hints we potentially lose information with pro-
jecting against v, since L contains s, whereas πv(L) only contains πv(s). How-
ever, in our applications of almost-parallel hints we are always able to efficiently
recover s from its projection πv(s).

5 Choosing Lattices for NTRU-HPS and NTRU-HRSS

5.1 The Coppersmith-Shamir Lattice

Let (n, q, h) be an NTRU-HPS or NTRU-HRSS public key with corresponding
secret key (n, q, f, g). The most straight-forward approach for attacking NTRU
is to consider the following lattice

LCS := {(v,w) ∈ Z
2n | vh ≡ 3w mod (q,Xn − 1)},

which was first introduced by Coppersmith and Shamir (CS) in [CS97]. A basis
matrix for LCS is given by

BCS :=
(
In H
0 qIn

)

, (13)

2 We assume that a multiple of v is included in L. For an integral vector v and a
q-ary lattice L, this certainly is the case, since qv ∈ L. If L contains no multiple of
v, then πv(L) might not be a lattice.

New NTRU Records with Improved Lattice Bases 179

where for i = 0, . . . , n − 1, the (i + 1)-st row of H ∈ Z
n×n is defined as the

coefficient vector of
3−1Xih mod (q,Xn − 1).

By Eq. (9), LCS contains the vector (f ,g) ∈ Z
2n corresponding to the secret

polynomials f and g. Since f and g have very small coefficients, (f ,g) likely is a
shortest vector in LCS. Hence, we can compute the secret key by running lattice
reduction on BCS.

Presence of Many Short Vectors. A remarkable property of LCS is that
the lattice not only contains the short vector (f ,g), but also all rotations of the
secret key, i.e., the coefficient vectors corresponding to Xif and Xig for every
i ∈ {0, 1, ..., n − 1}. It is well known that the rotations also serve as valid secret
keys.

Notice that the rotations have the same norm as (f ,g), since multiplication
by X in Zq[X]/(Xn − 1) simply corresponds to a rotation of the coefficients.
As discussed in [DDGR20, Section 6.3], the presence of these many short vectors
makes finding the secret key a bit easier than it would be in a lattice containing
(up to sign) only one short vector. Intuitively this is caused by the fact that the
probability of BKZ finding at least one of the short vectors is higher than the
probability of finding one fixed short vector.

Dense Sublattice. The rotations of the secret key generate an n-dimensional
sub-lattice Lf,g ⊂ LCS. This sub-lattice is unusually dense for a sublattice of
LCS, i.e., its determinant is much smaller than what we would expect from a
random lattice: using Hadamard’s inequality, we find that the determinant is
upper bounded by

det Lf,g ≤ ‖(f ,g)‖n.

As shown in [KF17] and refined in [DvW21], if q is sufficiently large, the presence
of such a dense sub-lattice violates a prediction on the behavior of sublattices
based on the GSA and thus forces BKZ to behave differently on LCS, than it
would on a random lattice. Indeed, it turns out that we can recover the secret
key in that case using significantly smaller blocksizes.

According to the 2016 estimate, secret key recovery (SKR) normally would
happen at blocksize β = Θ̃(n/ ln q). However, as shown in [KF17, Theorem 9],
if q is large, BKZ recovers at significantly smaller blocksize β = Θ̃(n/ ln2 q) a
basis Bf,g for Lf,g – from which one easily obtains the secret key. (This event is
called dense sub-lattice discovery (DSD).) For instance, instead of running BKZ
on the 2n-dimensional lattice LCS, one then may run it on the n-dimensional
sub-lattice Lf,g, which is significantly easier.

NTRU parameters, that have this property, are called overstretched. Ducas
and van Woerden [DvW21, Claim 3.5] showed that NTRU variants with
‖(f ,g)‖ = O(n1/2) (such as HPS and HRSS) become overstretched when
q = Ω(n2.484). As shown in [DvW21, Section 5.3], the asymptotic bound already
holds for reasonably small values of n.

180 E. Kirshanova et al.

5.2 The Cyclotomic Lattice and the Projected Cyclotomic Lattice

The NTRU key equation holds not only over the convolution polynomial ring
Zq[X]/(Xn − 1), but also over the cyclotomic polynomial ring Zq[X]/(Φn).
Instead of working with the CS lattice, one might therefore be tempted to work
with the following lattice

LΦ := {(v,w) ∈ Z
2(n−1) | vh ≡ 3w mod (q, Φn)},

which we call the cyclotomic lattice. Analogously to the CS lattice, one can easily
compute a basis matrix for LΦ as

BΦ :=
(
In−1 HΦ

0 qIn−1

)

, (14)

where for i = 0, . . . , n − 2, the (i + 1)-st row of HΦ is defined as the coefficient
vector of

3−1Xih mod (q, Φn).

Since the cyclotomic lattice has dimension only 2(n−1) instead of 2n, one might
hope that reducing it may be a bit easier than reducing the CS lattice.

Dachman-Soled, Ducas, Gong and Rossi [DDGR20, Section 6.3], however,
doubt whether using LΦ really is beneficial. They argue, since multiplication by
X in Z[X]/(Φn) does not correspond to a simple rotation of the coefficients (as
it does in Z[X]/(Xn − 1)), the length of the vectors corresponding to Xif , Xig
may be increased “significantly” in LΦ. Accordingly, LΦ will contain fewer short
secret key vectors than LCS and recovering them should therefore probably be
harder.

This issue, however, can easily be fixed. To this end, let us take a closer look
at the arithmetic in Z[X]/(Φn).

Lemma 5.1. Let p =
∑

i piX
i be a polynomial of degree at most n − 2. For

every k ∈ {0, 1, . . . , n − 1} it holds that

Xkp ≡
k−2∑

i=0

pi+n−kXi +
n−2∑

i=k

pi−kXi −
n−2∑

i=0

pn−k−1X
i mod Φn. (15)

Furthermore, for every k ∈ N it holds that

Xkp ≡ X(k mod n)p mod Φn. (16)

Proof. From Xn − 1 = Φn(X − 1) ≡ 0 mod Φn it follows that

Xn ≡ 1 mod Φn. (17)

Notice that this already proves Eq. (16).
Writing Φn = Xn−1 + Xn−2 + . . . X + 1, we obtain

Xn−1 ≡ −(Xn−2 + Xn−3 + . . . X + 1) mod Φn. (18)

New NTRU Records with Improved Lattice Bases 181

To prove Eq. (15), we now simply apply Eqs. (17) and (18) to the following
identity:

Xkp =
n−2∑

i=k

pi−kXi + pn−k−1X
n−1 +

k−2∑

i=0

pi+n−kXn+i.

��
From Lemma 5.1 it follows that the arithmetic in Z[X]/(Φn) is actually quite

similar to that in Z[X]/(Xn − 1). First, in both rings multiplication by X is n-
periodic. Second, while in Z[X]/(Φn) a multiplication by X does not perfectly
correspond to a rotation of the coefficients, one might still view it as a rotation
with an extra step: in Z[X]/(Xn − 1), we have the following identity3

Xkp =
k−2∑

i=0

pi+n−kXi +
n−1∑

i=k

pi−kXi mod Xn − 1. (19)

Comparing Eq. (19) with Eq. (15), we find that in Z[X]/(Φn) the coefficients
first get rotated exactly as they would in Z[X]/(Xn − 1), but then the lead-
ing coefficient pn−k−1 gets removed and is instead subtracted from all other
coefficients.

Let us illustrate with an example. Consider the polynomial

p := 1 + X2 − X3.

The coefficient vectors of X0p, . . . ,X4p modulo X5 − 1 are

(1, 0, 1,−1, 0),
(0, 1, 0, 1,−1),
(−1, 0, 1, 0, 1),
(1,−1, 0, 1, 0).

The coefficient vectors modulo Φ5 on the other hand are

(1, 0, 1,−1) − 0 · (1, 1, 1, 1) = (1, 0, 1,−1),
(0, 1, 0, 1) − (−1) · (1, 1, 1, 1) = (1, 2, 1, 2),

(−1, 0, 1, 0) − 1 · (1, 1, 1, 1) = (−2,−1, 0,−1),
(1,−1, 0, 1) − 0 · (1, 1, 1, 1) = (1,−1, 0, 1),
(0, 1,−1, 0) − 1 · (1, 1, 1, 1) = (−1, 0,−2,−1).

Hence, the rotations of p modulo Φn are the sum of a short vector and a multiple
of 1n−1, i.e., the rotations are almost parallel to 1n−1.

This suggests to incorporate two almost-parallel hints to LΦ, i.e., to work
with the following lattice, which we call the projected cyclotomic lattice

LΦ,⊥ := {(π1n−1(v), π1n−1(w)) ∈ Z
2(n−1) | vh ≡ 3w mod (q, Φn)}

= π(0n−1,1n−1)

(
π(1n−1,0n−1) (LΦ)

)
.

3 Notice that there is no monomial of degree k−1 in Eq. (19), since p has no monomial
of degree n − 1.

182 E. Kirshanova et al.

Remark 5.2. Since π1n−1(·) maps into 1
n−1 · Zn−1, one may want to work in

practice with the scaled lattice (n − 1) · LΦ,⊥ to avoid a non-integral basis.

Remark 5.3. We can easily recover the secret f from its projection π1n−1(f),
by simply brute-forcing the inner product 〈f ,1n−1〉 (which is a small integer
between −(n − 1) and n − 1) and then obtain f via Eq. (1).

Remark 5.4. Interestingly, Coppersmith and Shamir similarly suggest to project
the vectors in their lattice LCS orthogonally against 1n – although for a com-
pletely different reason: they showed that any vector v, which is almost parallel
to 1n (i.e., for which π1n(v) is short), already serves as a valid NTRU private key.
If LCS contains (besides the rotations of the secret key) additional such vectors,
then BKZ has an increased success probability for finding a secret key on the
projected variant of the CS lattice. However, in practice, we never encountered
such vectors.

As opposed to the (non-projected) cyclotomic lattice, the projected cyclo-
tomic lattice still contains many short vectors. In addition, it has a smaller
dimension than both LCS and LΦ. Indeed, it has dimension only 2n − 4: we lose
two dimensions by working modulo Φn, and two more dimensions by projecting.
(The latter follows from the fact that the q-ary lattice LΦ contains the vectors
q(1n−1,0n−1) and q(0n−1,1n−1), see also the discussion on almost-parallel hints
in Sect. 4).

We may therefore hope that attacks using the projected cyclotomic lattice
outperform the other two lattices.

It should be noted, however, that LΦ,⊥ has the smallest determinant out of
our three lattices.

Theorem 5.5. The determinant of LΦ,⊥ equals

detLΦ,⊥ =
qn−3

n − 1
.

Proof. Let d := n − 1. We define a polynomial

v :=

(

(3−1 mod q) · h ·
n−2∑

i=0

Xi

)

mod Φn. (20)

Notice that the coefficient vector v ∈ Z
d of v is the sum over the rows of the

matrix HΦ in Eq. (14). Hence, by Eq. (14) we have the following equivalence for
any s ∈ Z:

s(1d,0d) ∈ LΦ ⇐⇒ sv ∈ qZd ⇐⇒ s

q
v ∈ Z

d. (21)

Using this equivalence we now compute the smallest integer s > 0, that satisfies
s(1d,0d) ∈ LΦ.

From Eqs. (20), (4) and (5), it follows that

v ≡ 3−1 · h ·
n−2∑

i=0

Xi ≡ g · f−1 ·
n−2∑

i=0

Xi mod (q, Φn).

New NTRU Records with Improved Lattice Bases 183

By Lemma 3.1, both g and
∑n−2

i=0 Xi are invertible in the ring Zq[X]/(Φn).4 As
f−1 is obviously also invertible, v is invertible as well. In particular, it follows
that at least one coefficient of v is odd. (Since q is a power of 2, polynomials with
only even coefficients are not invertible in Zq[X]/(Φn).) Combing this observation
with Eq. (21), it follows that the smallest s > 0, satisfying s(1d,0d) ∈ LΦ, is
s = q.

This shows that q(1d,0d) is primitive with respect to LΦ. Together with
Lemma 4.3 this yields

det
(
π(1d,0d)(LΦ)

)
=

det LΦ

‖q(1d,0d)‖ =
qn−2

√
d

. (22)

Let us now compute the smallest integer t > 0, satisfying t(0d,1d) ∈
π(1d,0d)(LΦ).

From Eq. (14) it follows that π(1d,0d)(LΦ) is generated by the following matrix

Bπ :=
(

π1d(Id) HΦ

0 qId

)

, (23)

where π1d is applied row-wise to Id. Let (w1,w2) ∈ Z
2d, such that

(w1,w2) · Bπ = t(0d,1d) (24)

for the smallest possible integer t > 0. Using Eq. (23), we conclude that

w1 ∈ ker π1d ∩ Z
d = Z · 1d.

Hence, there exists m ∈ Z, such that w1 = m · 1d. This implies that w1 is the
coefficient vector of m ·

∑n−2
i=0 Xi. Using Eq. (24) it follows that

(

m ·
n−2∑

i=0

Xi

)

·
(
3−1 · h

)
≡ t ·

n−2∑

i=0

Xi mod (q, Φn).

By Lemma 3.1, the ternary polynomial
∑n−2

i=0 Xi is invertible, so we may divide
it from the above congruence and obtain

m · 3−1 · h ≡ t mod (q, Φn). (25)

Multiplying the polynomial 3−1 ·h by an integer m can result in another integer
t, if and only if t is congruent to 0 modulo q. Hence, the smallest t > 0, for which
Eq. (25) can hold is t = q.

By definition of m, this implies that the smallest t > 0, satisfying t(0d,1d) ∈
π(1d,0d)(LΦ), is t = q. Hence, q(0d,1d) is primitive with respect to π(1d,0d)(LΦ).

4 Even though g is not a ternary polynomial in NTRU-HRSS, Lemma 3.1 still implies
that g is invertible, since g is the product of two ternary (and therefore invertible)
polynomials, see Eq. (8).

184 E. Kirshanova et al.

Now applying Lemma 4.3 and using Eq. (22), we finish the proof:

detLΦ,⊥ = det
(
π(0d,1d)

(
π(1d,0d) (LΦ)

))

=
det

(
π(1d,0d)(LΦ)

)

‖q(0d,1d)‖ =
qn−3

n − 1
.

��
Recall that by Eq. (2), the required BKZ blocksize does not directly depend

on the determinant of the lattice, but on its root-determinant. Since we have

(det LCS)1/(2n) =
√

q,

and by Theorem 5.5

(det LΦ,⊥)1/(2(n−2)) =
1

((n − 1)q)1/(2n−4)

√
q,

the root-determinants only differ by a factor 1
((n−1)q)1/(2n−4) , which rapidly con-

verges to 1. Thus, the decrease in determinant should not significantly effect the
required blocksize, and instead should be outweighed by the decrease in secret’s
norm and lattice dimension. Our experimental results in Sect. 6 confirm that this
is the case.

5.3 Further Improvement by Exploiting Design Choices

For correctness of decryption, it is necessary in both NTRU-HPS and NTRU-
HRSS that 1 is a root of g. HPS ensures this property by simply distributing
1’s and -1’s evenly among the coefficients of g, see Eq. (6). HRSS, on the other
hand, defines g as a product of X − 1 and a ternary polynomial, see Eq. (8). We
can exploit these properties by incorporating them into our lattices.

NTRU-HRSS. Since the secret polynomial g is the product of X − 1 and a
ternary polynomial, the coefficient vector g

X−1 is significantly shorter than the
coefficient vector of g. Instead of searching for a short vector (v,w) with

vh ≡ 3w mod (q, Φn),

we should therefore rather search for (v,w′) with

vh ≡ 3(X − 1)w′ mod (q, Φn),

To do so, we simply replace the matrix HΦ in Eq. (14) by a matrix H′
Φ, where

for i = 0, . . . , n − 2, the (i + 1)-st row of H′
Φ is defined as the coefficient vector

of
3−1(X − 1)−1Xih mod (q, Φn).

Notice that by Lemma 3.1, X − 1 is indeed invertible in Zq[X]/(Φn).
Interestingly, we cannot as easily apply this trick when working modulo Xn−

1, since X − 1 is not invertible modulo Xn − 1. In fact, we fail to see how to
explicitly compute a basis for the lattice

LHRSS := {(v,w) ∈ Z
2n | vh ≡ 3(X − 1)w mod (q,Xn − 1)}. (26)

New NTRU Records with Improved Lattice Bases 185

NTRU-HPS. Even though g is also divisible by X−1 in NTRU-HPS, we should
not divide that factor out here, because the resulting polynomial would not have
as small coefficients. We can nevertheless still incorporate the fact g(1) = 0 to
our lattice, by instead interpreting it as a perfect hint.

Geometrically, the equation g(1) = 0 is equivalent to the fact that the coef-
ficient vector of g is orthogonal to the all-one vector. Hence, instead of working
directly with the CS lattice or the projected cyclotomic lattice, we may first
intersect them with (0n,1n)⊥ or (0n−1,1n−1)⊥, respectively, i.e., we may work
with the following lattices

LCS,∩ := LCS ∩ (0n,1n)⊥,

LΦ,⊥,∩ := π(1n−1,0n−1)

(
π(0n−1,1n−1)

(
LΦ ∩ (0n−1,1n−1)⊥))

.

We would like to point out that Dachman-Soled, Ducas, Gong and
Rossi [DDGR20, Section 6.3] also suggest to incorporate the fact g(1) = 0 as
a perfect hint for NTRU-HPS. Worth noting, they claim that, according to
Lemma 4.1 (respectively Lemma 12 in their work), this increases the determi-
nant of the CS lattice by a factor of

√
n. This claim, however, is not correct. It

would be correct if the vector (0n,1n) was primitive with respect to the dual of
LCS. This is, however, not the case:

Theorem 5.6. The vector (0n,1n) is not primitive with respect to the dual of
LCS, but 1

q (0n,1n) is.

Proof. Since g(1) = 0, it follows from Eq. (4) that h(1) ≡ 0 mod q. This implies
that the sum over all coefficients of h is a multiple of q. Hence, for every row
Hi of H, as defined in Eq. (13), the inner product between 1

q1
n and Hi is an

integer. Clearly, the inner product between 1
q1

n and a row of qIn is also an
integer (namely 1).

Combing these two observations with Eq. (13), it follows that for every vector
v ∈ LCS the inner product 〈 1q (0n,1n),v〉 is an integer. Hence, 1

q (0n,1n) lies in
the dual of LCS.

To finish the proof, it remains to show that for any k ≥ 2, the vector
1
kq (0n,1n) is not included in L∗

CS. This easily follows from the fact that for any
such k, the inner product between 1

kq (0n,1n) and the q-vector (0n, q,0n−1) ∈
LCS equals 1

k and thus is non-integral. ��

According to Lemma 4.1 and Theorem 5.6, the hint g(1) = 0 does not increase
the determinant by a factor of

√
n, but decreases it by a factor of

√
n/q.

6 Experimental Results for HRSS and HPS

We implemented all the lattices described in Sect. 5. The source code is available
at https://github.com/ElenaKirshanova/ntru with sieving.

https://github.com/ElenaKirshanova/ntru_with_sieving

186 E. Kirshanova et al.

We provide an interface to generate NTRU-HPS and NTRU-HRSS keys as
specified in the documentation [CDH+19]. Our interface also allows to input
explicit public parameters n, q, h, instead of generating random instances, e.g.
in order to solve the challenges from [Incb].

Our implementation supports the following types of lattices: the
Coppersmith-Shamir lattice LCS, the cyclotomic lattice LΦ, the projected cyclo-
tomic lattice LΦ,⊥ as well as the lattices LCS,∩ and LΦ,⊥,∩. Upon receiving the
type of the NTRU lattice together with the parameters n, q (and optionally
h), our implementation constructs the corresponding basis and starts lattice
reduction.

We use progressive BKZ [AWHT16] that internally calls either enumeration
from the FPyLLL library [dt21a] (with the default pruning strategies [GNR10]
for enumeration), or sieving from the G6K library [ADH+19]. Choosing which
SVP oracle to use is left to the user. In our experiments, for BKZ blocksizes
higher than 65, we use sieving. For smaller blocksizes we run enumeration.5

For each BKZ tour, we check either of the two events: dense sublattice discov-
ery (DSD) or secret key recovery (SKR). In case of DSD, we extract the dense
sublattice, which is half of the dimension of the original lattice, and continue
with progressive BKZ on this smaller lattice until we find the NTRU secret key.

In all our experiments we use an AMD EPYC 7763 with 1 TB of RAM,
as well as an AMD EPYC 7742 processor with 2 TB of RAM. Each EPYC is
equipped with 128 physical cores that with parallelization give 256 threads. This
number of cores was mostly used to run multiple parallel experiments.

6.1 NTRU-HRSS

Unlike in most other NTRU variants, the parameter q cannot be chosen freely in
NTRU-HRSS. Instead, it is fixed to q = 2�7/2+log2(n)�, as specified in Eq. (7). For
medium sized values of n, this formula sets q to a value significantly larger than
n. For instance, for 91 ≤ n ≤ 181, it sets q = 2048. (In contrast, for NTRU-HPS
such a large q is recommended for n ∈ {509, 677}.) As a consequence, NTRU-
HRSS parameters with medium sized n lie in the overstretched regime. Indeed,
according to the NTRU Fatigue estimator, all NTRU-HRSS parameters with
n < 261 are overstretched.

We would like to stress that all HRSS parameters, that we can currently
attack in a reasonable amount of time, are therefore overstretched. The rec-
ommended parameters n = 701 and q = 8192, on the other hand, are not
overstretched.

We ran experiments from n = 101 up to n = 211 for NTRU-HRSS. Note
that only n = 101, 211 are elements of N , as defined in Sect. 3, but we are not
exploiting any structure for speeding up lattice reduction for n /∈ N .

5 In [ADH+19], the crossover point between enumeration and sieving was observed at
dimension 70. However, we gain additional speed-up from parallelized sieving.

New NTRU Records with Improved Lattice Bases 187

As expected, in 100% of our experiments the DSD event occurred, confirming
that NTRU-HRSS with medium sized n indeed is overstretched. Once the DSD
event was detected at blocksize β, the SKR event followed within the next 5
blocksizes, i.e., at blocksize at most β + 5. In larger dimensions n ≥ 151, the
SKR event usually happened even in the next progressive BKZ call. In some
experiments, DSD and SKR events happened at the exact same block size.6

Observed Speedup from LΦ,⊥. In our experiments, we tried all different
types of lattices that our implementation supports. Out of all lattices, the Cop-
persmith-Shamir lattice LCS performs worst, whereas the projected cyclotomic
lattice LΦ,⊥ performs best. In the left half of Fig. 1, we plot the required average
blocksize β for DSD on LCS and on LΦ,⊥ for 101 ≤ n ≤ 171. The exact numbers
are given in Table 2. As the figure and table show, LΦ,⊥ performs significantly
better than LCS.

Changing to the cyclotomic ring and using almost-parallel hints therefore
is indeed beneficial for lattice reduction algorithms. As expected, the benefits
are not outweighed by decreasing the determinant from qn to qn−3/(n − 1), see
Theorem 5.5.

101 111 121 131 141 151 161 171
0

10

20

30

40

50

60

70

80

90

Average blocksize β

DSD LCS

DSD LΦ,⊥

181 191 201 211
0

10

20

30

40

50

60

70

80

90

n

Fig. 1. Comparison between LCS and LΦ,⊥ in the overstretched regime of NTRU-HRSS
with q = 2048 (left) and q = 4096 (right). Averaged over 32 keys each for every n ≤ 171.
For n = 191, 201, the average is taken over 20 experiments. For n = 211, the blocksize
is averaged over 5 experiments.
6 When DSD and SKR happen at the same blocksize, we are still in the overstretched

regime. We are in the non-overstretched regime only if SKR happens before DSD.

188 E. Kirshanova et al.

For n ≥ 183, we ran experiments only on the superior lattice LΦ,⊥. The
results are shown in the right half of Fig. 1. Comparing both halves of Fig. 1, the
reader may notice that for n = 161 and n = 183 we require roughly the same
blocksize β ≈ 51. This is due to the increase in q, caused by Eq. (7): for n ≥ 182,
we switch from q = 2048 to q = 4096.

Table 2. Average required blocksizes for NTRU-HRSS, as per Fig. 1

n 101 111 121 131 141 151 161 171

βΦ,⊥ 2.4 3.3 6.3 9.8 14.7 35.1 51.7 64.5

βCS 2.9 4.0 6.9 11.8 20.7 45.6 60.5 72.3

6.2 NTRU-HPS

In contrast to our NTRU-HRSS experiments, we used for NTRU-HPS a signif-
icantly smaller modulus q = 512 to ensure that we are far off from the over-
stretched regime. As one might expect, this decrease in q results in significantly
larger required BKZ blocksizes. For instance, with NTRU-HPS we require for
n = 131 a blocksize of β ≈ 57 for SKR, whereas with NTRU-HRSS we require
only β ≈ 10 for DSD. Therefore, we cannot provide results for n as large as in
NTRU-HRSS (n = 211), but only up to n = 171.

Nevertheless, our NTRU-HPS computations can still be considered new
records in the field of practical NTRU cryptanalysis: The former NTRU record
computation by Ducas and Nguyen [Inca] were in similar dimension n = 173, but
with a larger modulus of q = 1024, and therefore (presumably) required smaller
blocksizes than our computations. We go up to blocksizes β > 100, a regime that
to the best of our knowledge has not been reached in practical cryptanalysis so
far.

As with NTRU-HRSS, we also ran our experiments on NTRU-HPS with
all different types of lattices, that are available in our implementation. The
Coppersmith-Shamir lattice LCS again performed worst, whereas the projected
cyclotomic lattice LΦ,⊥,∩ (with additional integrated hints, see Sect. 5.3) per-
formed best.

New NTRU Records with Improved Lattice Bases 189

Fig. 2. Required blocksize for the secret key recovery on NTRU-HPS with q = 512.
Averaged over 32 keys each for every n.

Observed Speedup from LΦ,⊥,∩. In Fig. 2, we plot the average required β for
LCS and LΦ,⊥,∩. In contrast to NTRU-HRSS, the gap between the two lattices
here is not as large. (See Sect. 6.3 for an explanation.)

Table 3. Average required blocksizes for NTRU-HPS, as per Fig. 2

n 101 111 121 131 141 151 161 171

βCS 10.9 18.7 41.1 58.0 69.6 81.9 90.7 100.6

βΦ,⊥,∩ 10.4 17.3 38.9 56.8 67.8 79.9 89.4 99.2

In Table 3, we provide all averaged blocksizes βCS and βΦ,⊥,∩ required for
SKR in LCS and LΦ,⊥,∩, respectively. While the differences in blocksizes may
seem rather small, we note that the difference in runtimes is still significant in
practice. For instance, in our n = 171 experiment, LCS required on average 172
core days, whereas LΦ,⊥,∩ took on average only 83 core days.

As expected, and similarly as in NTRU-HRSS, the benefits of reducing the
dimension thus outweigh the disadvantage of a decreased determinant also in
NTRU-HPS.

190 E. Kirshanova et al.

6.3 Comparison Between HRSS and HPS, and Implications

Let us now explain why the gap between β’s is significantly larger for HRSS
than it is for HPS.

Recall that we decrease the dimension in HRSS by 4 (by switching to the
projected cyclotomic lattice) and in HPS by 5 (by additionally integrating one
perfect hint). In both variants, we decrease the root determinant only by a
negligible amount. With respect to dimension and determinant, both lattices
are thus very similar.

The main difference between our lattices for HRSS and HPS is that LCS

contains for HRSS the polynomial g that is a multiple of (X − 1) and ternary
polynomial, see Eq. (8). As proposed in Sect. 5.3, in the construction of LΦ,⊥ we
divide out (X − 1). This reduces g’s norm by roughly a

√
2-factor. Hence, for

HRSS we not only decrease the dimension of the lattice, but also decrease the
norm of the shortest vectors – which results in a larger gap between β’s.

We note that in the HRSS specification [CDH+19] the authors analyzed the
lattice LHRSS as defined in Eq. (26). Although [CDH+19] does not explicitly
provide a basis for LHRSS – and constructing one might actually be hard – LHRSS

was nevertheless used in [CDH+19] to conservatively estimate HRSS security.
(In other words, the authors of [CDH+19] already anticipated our improvement
in lattice basis construction.) Since the (X − 1) factor is already divided out in
LHRSS, the gap in β’s thus do not imply a security loss for HRSS.

7 New NTRU Record: n = 181

7.1 Choosing a Lattice for the NTRU Challenges

Due to the different key format in the NTRU challenges, the lattices introduced
in Sect. 5 are not the best choice for attacking the challenges. While in NTRU-
HPS and NTRU-HRSS the keys satisfy the equation

fh ≡ 3g,

in the NTRU challenges they satisfy

(1 + 3f)h ≡ g. (27)

Hence, for the challenges, it is likely not the optimal strategy to search for a
short vector (v,w) satisfying

vh ≡ w,

since such a vector would be significantly longer than the coefficient vector (f ,g).
As a better strategy, Ducas and Nguyen interpreted Eq. (27) in their record

computations as an instance of the bounded distance decoding problem (BDD).
They constructed a variant of the CS lattice, namely

LDN := {(v,w) ∈ Z
2n | 3vh ≡ w mod (q,Xn − 1)}, (28)

New NTRU Records with Improved Lattice Bases 191

and then searched for a lattice vector (v,w) ∈ LDN, close to the (non-lattice)
vector (0n,h). With this strategy one likely finds the vector (f ,g − h) ∈ LDN,
since it is close to (0n,h).

We choose to follow a different strategy based on the framework of lattice
reduction with hints. Instead of interpreting Eq. (27) as a BDD instance, we
choose to interpret it as an almost-parallel hint. The equation implies that LDN

contains with (f ,g − h) a vector almost parallel to (0n,h). This suggests to
project LDN orthogonally against (0n,h) and then search for

π(0n,h)

(
(f ,g − h)

)
= (f , πh(g)). (29)

as a shortest vector.
We can further improve this lattice, by additionally incorporating a perfect

hint. From Eq. (11) we know that f satisfies f(1) = 0, since f is composed out
of three polynomials f1, f2, f3, which all satisfy fi(1) = 0 (see Eq. (10)). Hence,
we have 〈f ,1n〉 = 0. Thus, to improve the attack we may intersect LDN with
(1n,0n)⊥.

Remark 7.1. Similarly as with the projected cyclotomic lattice, one may want
to work with the scaled lattice ‖h‖2 · π(0,h)

(
(LDN ∩ (1n,0n)⊥)

)
in practice to

avoid a non-integral basis (see also Remark 5.2).

Remark 7.2. Here we do not have to worry, whether we can efficiently invert
the projection against (0,h), since the left half of the secret still contains the
(non-projected) vector f , see Eq. (29).

On Further Possible Improvements. As in Sect. 3.1, we could theoretically
further improve our lattice, by working over the cyclotomic ring Zq[X]/(Φn) and
incorporating the two almost parallel hints of (1n−1,0n−1) and (0n−1,1n−1).
However, in that case we would already project our lattice against three vectors
in total. This would make the denominators of the coefficients of our lattice
vectors very large (or equivalently it would require scaling the lattice by a large
factor). To avoid issues of numerical stability in practice, we therefore choose to
not include these improvements.

One might ask, whether we can use special properties of g to further improve
our lattice (since we have only used the structure of f and the almost-parallel
hint of (0,h) so far).

From Eq. (12) it follows that g(1) = 1 or, equivalently,

〈g,1n〉 = 1.

Theoretically, we could also incorporate such a non-homogeneous type of perfect
hint into our lattice by using the framework of [DDGR20]. However, for that we
would first have to embed our NTRU problem into a non-homogeneous LWE
problem, see [DDGR20, Sect. 4.1]. This would increase the lattice dimension by
one and therefore negate the effect of introducing the perfect hint 〈f ,1n〉 = 0.

192 E. Kirshanova et al.

As an alternative, one may try to obtain a short vector hint from the structure
of g: Applying f(1) = 0 and g(1) = 1 to Eq. (27), it follows that

h(1) = 1 mod q. (30)

Combining this with the fact that for every polynomial p ∈ Zq[X]/(Xn − 1) it
holds that7

(Xn−1 + . . . + X + 1) · p ≡
(
Xn−1 + . . . + X + 1

)
p(1), (31)

we obtain

(Xn−1 + Xn−2 . . . + X + 1) · h ≡ Xn−1 + Xn−2 . . . + X + 1.

Hence, by Eq. (28), the lattice LDN contains the short vector (1n,3n).
One might be tempted to incorporate this fact as a short vector hint. Unfor-

tunately, we have, however, already removed the vector (1n,3n) from our lattice,
because we intersected it with (1n,0n)⊥.

Interestingly, both the perfect hint 〈f ,1n〉 = 0 and the short vector hint
(1n,3n) therefore decrease the dimension by one by removing (1n,3n) from the
lattice. The following theorem shows, however, that the perfect hint is superior:

Theorem 7.3. The determinants of the lattices π(1n,3n) (LDN) and LDN ∩
(1n,0n)⊥ are given by

det
(
LDN ∩ (1n,0n)⊥)

=
√

nqn, (32)

and
det

(
π(1n,3n) (LDN)

)
=

qn

√
10n

. (33)

Proof. Since LDN ⊂ Z
2n is an integer lattice, the vector (1n,3n) ∈ LDN clearly

is primitive with respect to LDN. Hence, Eq. (33) immediately follows from
Lemma 4.2.

To prove Eq. (32), it suffices to show that (1n,0n) is primitive with respect to
the dual L∗

DN, see Lemma 4.1. This, in turn, easily follows from the fact that for
every integer k ≥ 2 the inner product between 1

k (1n,0n) and the lattice vector
(1,0n−1, 3h) ∈ LDN (see Eq. (28)) equals 1

k and thus is not integral. ��

7.2 Record Computation Details

The idea of incorporating almost-parallel hints enables us to establish a new
record for the NTRU challenges from [Incb]. The former record holders are Ducas
and Nguyen [Inca] who managed to solve NTRU with n = 173. We went up one
challenge further and solved NTRU for n = 181 with q = 1024. These parameters
do not lie in the overstretched regime. To solve the challenge, we implemented
7 Equation (31) easily follows from the Chinese Remainder Theorem.

New NTRU Records with Improved Lattice Bases 193

the approach described above. That is, we run BKZ on the lattice LDN from
Eq. (28) intersected with (1n,0n)⊥ and projected orthogonally against (0n,h).
The shortest vector of the form (f, g) was found at blocksize β = 109 after
20 core years of computations. The solution is posted at https://github.com/
ElenaKirshanova/ntru with sieving.

Acknowledgments. Elena Kirshanova is supported by the Russian Science Founda-
tion grant N 22-41-04411, https://rscf.ru/project/22-41-04411/. Alexander May and
Julian Nowakowski are funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – grant 465120249. Alexander May is additionally supported by
grant 390781972.

References

[ABB+20] Aragon, N., et al.: BIKE: bit flipping key encapsulation (2020). https://
bikesuite.org/files/v5.0/BIKE Spec.2022.10.10.1.pdf

[ABC+20] Albrecht, M.R., et al.: Classic McEliece: conservative code-based cryptog-
raphy (2020). https://classic.mceliece.org/nist/mceliece-20201010.pdf

[ABF+20] Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen,
W.: Faster enumeration-based lattice reduction: root Hermite fac-
tor k1/(2k) Time kk/8+o(k). In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 7

[AD21] Albrecht, M.R., Ducas, L.: Lattice attacks on NTRU and LWE: a history
of refinements, pp. 15–40 (2021)

[ADH+19] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 25

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: 25th USENIX Security Symposium, pp. 327–
343 (2016)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: STOC 2001, pp. 601–610 (2001)

[AWHT16] Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 30

[BDK+18] Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. In: 2018 IEEE EuroS&P, pp. 353–367 (2018)

[CDH+19] Chen, C., et al.: PQC round-3 candidate: NTRU. technical report (2019).
https://ntru.org/f/ntru-20190330.pdf

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

[CS97] Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidel-
berg (1997). https://doi.org/10.1007/3-540-69053-0 5

https://github.com/ElenaKirshanova/ntru_with_sieving
https://github.com/ElenaKirshanova/ntru_with_sieving
https://rscf.ru/project/22-41-04411/.
https://bikesuite.org/files/v5.0/BIKE_Spec. 2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec. 2022.10.10.1.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-69053-0_5

194 E. Kirshanova et al.

[DDGR20] Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side infor-
mation: attacks and concrete security estimation. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 12

[DSvW21] Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on
GPUs, with tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12697, pp. 249–279. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6 9

[dt21a] The FPLLL development team. FPYLLL, a Python wraper for the FPLLL
lattice reduction library, Version: 0.5.7 (2021). https://github.com/fplll/
fpylll

[dt21b] The G6K development team. The general sieve kernel (G6K) (2021).
https://github.com/fplll/g6k

[Duc18] Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 5

[DvW21] Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is over-
stretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-92068-5 1

[FHK+18] Fouque, P.-A., et al.: FALCON: fast-Fourier lattice-based compact sig-
natures over NTRU (2018). https://www.di.ens.fr/∼prest/Publications/
falcon.pdf

[Gen01] Gentry, C.: Key recovery and message attacks on NTRU-composite. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 12

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 13

[How07] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74143-5 9

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[HRSS17] Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encap-
sulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 232–252. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 12

[Inca] NTRU Securty Innovation Inc. NTRU challenge - answers. https://web.
archive.org/web/20151229220714/https://www.securityinnovation.com/
uploads/ntru-challenge-parameter-sets-and-public-keys-answers.pdf

[Incb] NTRU Securty Innovation Inc. NTRU challenge parameter sets and
public keys. https://web.archive.org/web/20160310141551/https://www.
securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-
public-keys-new.pdf

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: STOC 1983 (1983)

https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-77886-6_9
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll
https://github.com/fplll/g6k
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://doi.org/10.1007/3-540-44987-6_12
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://web.archive.org/web/20151229220714/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-answers.pdf
https://web.archive.org/web/20151229220714/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-answers.pdf
https://web.archive.org/web/20151229220714/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-answers.pdf
https://web.archive.org/web/20160310141551/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-new.pdf
https://web.archive.org/web/20160310141551/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-new.pdf
https://web.archive.org/web/20160310141551/https://www.securityinnovation.com/uploads/ntru-challenge-parameter-sets-and-public-keys-new.pdf

New NTRU Records with Improved Lattice Bases 195

[KF17] Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 1

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ratio-
nal coefficients. Math. Ann. 261, 515–534 (1982)

[LN13] Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Daw-
son, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36095-4 19

[MAB+21] Melchor, C.A., et al.: Hamming quasi-cyclic (HQC) (2021). https://pqc-
hqc.org/doc/hqc-specification 2021-06-06.pdf

[MS01] May, A., Silverman, J.H.: Dimension reduction methods for convolution
modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146,
pp. 110–125. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44670-2 10

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA 2010, pp. 1468–1480 (2010)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

[Sch03] Schnorr, C.P.: Lattice reduction by random sampling and birthday meth-
ods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–
156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 14

https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-36095-4_19
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://doi.org/10.1007/3-540-44670-2_10
https://doi.org/10.1007/3-540-44670-2_10
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14

On the Hardness of Scheme-Switching
Between SIMD FHE Schemes

Karim Eldefrawy1, Nicholas Genise2(B), and Nathan Manohar3

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Duality Technologies, Maplewood, USA
ngenise@dualitytech.com

3 IBM T.J. Watson Research Center, Yorktown Heights, USA
nmanohar@ibm.com

Abstract. Fully homomorphic encryption (FHE) schemes are either
lightweight and can evaluate boolean circuits or are relatively heavy and
can evaluate arithmetic circuits on encrypted vectors, i.e., they perform
single instruction multiple data operations (SIMD). SIMD FHE schemes
can either perform exact modular arithmetic in the case of the Brakerski-
Gentry-Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV)
schemes or approximate arithmetic in the case of the Cheon-Kim-Kim-
Song (CKKS) scheme. While one can homomorphically switch between
BGV/BFV and CKKS using the computationally expensive bootstrap-
ping procedure, it is unknown how to switch between these schemes
without bootstrapping. Finding more efficient methods than bootstrap-
ping of converting between these schemes was stated as an open problem
by Halevi and Shoup, Eurocrypt 2015 [33,34].

In this work, we provide strong evidence that homomorphic switching
between BGV/BFV and CKKS is as hard as bootstrapping. In more
detail, if one could efficiently switch between these SIMD schemes, then
one could bootstrap these SIMD FHE schemes using a single call to
a homomorphic scheme-switching algorithm without applying homomor-
phic linear transformations. Thus, one cannot hope to obtain signifi-
cant improvements to homomorphic scheme-switching without also sig-
nificantly improving the state-of-the-art for bootstrapping.

We also explore the relative hardness of computing homomorphic com-
parison in these same SIMD FHE schemes as a secondary contribution.
We show that given a comparison algorithm, one can bootstrap these
schemes using a few calls to the comparison algorithm for typical param-
eter settings. While we focus on the comparison function in this work, the
overall approach to demonstrate relative hardness of computing specific
functions homomorphically extends beyond comparison to other useful
functions such as min/max or ReLU.

Keywords: Fully Homomorphic Encryption · Lattice-Based
Cryptography · Post-Quantum Cryptography

N. Manohar—This work was done while the second and third authors were at SRI
International.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 196–224, 2023.
https://doi.org/10.1007/978-3-031-40003-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_8

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 197

1 Introduction

Fully homomorphic encryption (FHE) enables a client to encrypt their data, send
it to a cloud server, and have the server compute any function on the client’s
encrypted data without knowledge of the decryption key. This client-server set-
ting for outsourcing computation is especially useful when the client has limited
computational capabilities, and the server has significantly more resources. FHE
was first proposed in 1978 by Rivest et al. [57], but it was not until Gentry’s
breakthrough in 2009 [26,27] that the cryptographic community saw a plausi-
ble, (truly) fully homomorphic1 encryption scheme. Gentry’s breakthrough in
2009 focused on schemes with limited homomorphic capabilities that also pos-
sessed a simple decryption circuit. Such schemes can homomorphically evaluate
their decryption circuits to re-encrypt, or “bootstrap”, their ciphertexts. Gen-
try showed that a fully homomorphic encryption scheme can be obtained from
any scheme that can homomorphically evaluate a NAND gate together with its
decryption circuit [27]. Further, Gentry based his scheme on ideal lattices since
decryption in lattice-based cryptosystems boils down to decoding noisy lattice
points back to the public lattice (linear operations followed by a rounding step).

FHE has gone through many iterations towards practicality since Gentry’s
breakthrough in 2009. Today, there are three main FHE cryptoschemes using
(ring) lattices: FHEW/TFHE [17,20] which encrypt one bit, or a scalar, at a time
and the BGV/BFV or CKKS schemes which pack (up to) thousands of plaintext
values into each ciphertext. The former, FHEW/TFHE, schemes are relatively
lightweight but can only perform one nonlinear boolean or small-number opera-
tions for each lightweight bootstrapping. On the other hand, the packed schemes,
BGV/BFV and CKKS, can perform thousands of arithmetic operations in par-
allel using ciphertext packing and also support computations between ciphertext
slots using the underlying field’s Galois automorphisms. After a fixed number
of multiplications (referred to as the “depth”), these schemes need to perform
a more expensive bootstrapping operation to increase the size of the cipher-
text modulus (and lower the relative noise level in the ciphertext in the case of
BGV/BFV).

In this work, we focus on the SIMD FHE schemes. BGV and BFV are schemes
which perform exact modular arithmetic modulo some prime power whereas
CKKS performs approximate arithmetic on fixed-point numbers. It is well-known
that homomorphic scheme-switching between BGV and BFV can be computed
efficiently by scalar multiplications [2]. However, it is not known how to efficiently
switch between CKKS and BGV/BFV without bootstrapping.

Given the differing plaintext spaces, switching between schemes can be use-
ful in a variety of applications. For example, say the majority of a computation
is done in CKKS until the underlying plaintext has lost a set number of preci-
sion bits. Then, one could homomorphically convert the CKKS ciphertexts into
1 Many schemes beforehand had limited homomorphic capabilities. They either had

ciphertexts grow exponentially with operations [3,23,54] or they had limited homo-
morphism [6,40]. See Chap. 3 of Gentry’s dissertation [26] for a survey of previous
schemes.

198 K. Eldefrawy et al.

BGV/BFV ciphertexts to continue the rest of the computation and avoid any
further loss in precision. Alternatively, a computation may consist of several
stages where some stages are required to be computed exactly and others can
be computed approximately. One could compute homomorphically using CKKS
for the approximate stages of the computation and use BGV/BFV for the exact
stages of the computation. This is a natural setting since CKKS is much more
efficient than BGV/BFV for performing real and complex arithmetic computa-
tions. Another setting is to develop a general cross-scheme bootstrapping tech-
nique where efficient homomorphic scheme-switching is the first step [34]. Then,
for example, an ASIC on a server for one scheme could be used for multiple FHE
schemes.

Recently, there has been a flurry of work in scheme-specific hardware acceler-
ation for SIMD schemes [1,22,24,58,59]. This gives a clear motivation for efficient
homomorphic scheme-switching since a server might have a specialized ASIC for
one scheme (CKKS) but has many ciphertext stored encrypted in another scheme
(BFV). Ideally, the server could homomorphically switch the ciphertexts into the
main scheme used in the ASIC without bootstrapping.

It is folklore that one can switch between schemes using bootstrapping. This
is done, essentially, by homomorphically evaluating the decryption circuit of
one scheme inside the other. Unfortunately, bootstrapping is computationally
expensive, and, thus, it is desirable to obtain more efficient methods of scheme-
switching. Finding scheme-switching between BGV/BFV and CKKS methods
without bootstrapping was explicitly stated as an open problem by Halevi and
Shoup Eurocrypt 2015 [33,34]. The recent library OpenFHE [4] and the recent
work [19] also both explicitly mention that scheme-switching between BGV/BFV
and CKKS as an open problem.

1.1 Our Results

We provide strong evidence that homomorphic scheme-switching between the
aforementioned SIMD FHE schemes is as hard as bootstrapping. In fact, we show
that a weak variant of homomorphic scheme-switching between these schemes
which ignores the differences in the plaintext encoding can bootstrap these SIMD
schemes in one call to such an algorithm without applying homomorphic linear
transformations. We model this homomorphic scheme-switcher as an oracle.

In more detail, both BGV/BFV and CKKS have ciphertexts of the form
ct = (c0, c1) ∈ R2

Q, where R := Z[X]/(XN + 1) is a cyclotomic ring of integers,
Q ∈ Z

+ is a ciphertext modulus, and RQ := R/(QR). Since converting between
BGV and BFV can be done by simply multiplying by a constant [2], we will focus
on BGV in this work, but the results hold for BFV as well. In both BGV and
CKKS, (homomorphic) decryption begins by computing (c0 + c1 · s(X)) mod Q
for a secret s(X) ∈ R. In BGV, this results in p·e(X)+m(X) ∈ R, where p is the
plaintext modulus. In CKKS, this gives Δm(X)+e(X) ∈ R for some scaling fac-
tor Δ. A weak scheme-switcher from BGV to CKKS takes as input a BGV cipher-
text (c0, c1) ∈ R2

Q where (c0 + c1 · s(X)) mod Q = pe(X) + m(X) and outputs a

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 199

CKKS ciphertext (c′
0, c

′
1) ∈ R2

Q′ where (c′
0+c′

1 ·s(X)) mod Q′ = Δm(X)+e′(X).
(A weak homomorphic scheme-switcher from CKKS to BGV is defined analo-
gously.) We refer to such a scheme-switcher as weak because it homomorphi-
cally switches schemes with respect to the same ring polynomial m(X) without
dealing with the fact that BGV and CKKS have different plaintext encodings.
Recall, in BGV, the plaintext polynomial m(X) ∈ Rp is related to (Zp)k or
(Fpr)k via a ring isomorphism [29], whereas in CKKS, the plaintext polyno-
mial Δm(X) + e(X) is embedded into C

N/2 via the canonical embedding [14].
Thus, in order to homomorphically switch between these schemes in practice,
one would also need to deal with the differences in plaintext encodings. This is
done by applying homomorphic linear transformations where the matrix is rep-
resented by plaintext polynomials [13,32]. However, we show this weaker variant
of homomorphic scheme-switching already implies an immediate bootstrapping
algorithm without applying homomorphic linear transformations. We model the
weak scheme-switchers as oracles OC↪→B and OB↪→C . Informally, we show the
following main results.

Theorem 1.1 (Informal). If there exists a weak homomorphic scheme-
switching algorithm from BGV to CKKS, OB↪→C , then there exists a CKKS
bootstrapping algorithm with the same time complexity plus the time to perform
one CKKS rescaling operation.

Theorem 1.2 (Informal). If there exists a weak homomorphic scheme-
switching algorithm from CKKS to BGV, OC↪→B, then there exists a BGV boot-
strapping algorithm with the same time complexity plus the time to perform one
BGV plaintext multiplication, one plaintext addition, and one modulus switching
operation.

As a secondary contribution, we also explore the relative hardness of com-
puting homomorphic comparison in these SIMD FHE schemes. Prior works [15,
16,39,46] focused on computing homomorphic comparison (and other related
functions such as max/min and ReLU) in these SIMD FHE schemes since these
functions are useful to compute for many machine-learning applications. Com-
puting comparisons in these SIMD schemes is difficult since comparison is not
easily expressible as a shallow arithmetic circuit. We model the homomorphic
comparison functionality as an oracle O≥ and show how to use several calls
to this oracle to bootstrap these SIMD FHE schemes. We focus on compari-
son in this work, but our approach extends to other related functions such as
max/min and ReLU. Unlike our primary contribution on the hardness of homo-
morphic scheme-switching, this secondary result is somewhat expected because
bootstrapping requires some form of digit extraction.

200 K. Eldefrawy et al.

1.2 Technical Overview

Fig. 1. Visualization of a weak scheme-switching oracle from BGV to CKKS. This pro-
cess is called weak because homomorphic scheme-switching using this oracle requires
us to call BGV’s slots-to-coefficient algorithm, a homomorphic linear transformation,
before we call the oracle and CKKS’s coefficient-to-slots algorithm, another homomor-
phic linear transformation, after we call the oracle. We show this “weak” process is
surprisingly powerful: it allows for bootstrapping CKKS ciphertexts without homo-
morphic linear transformations.

A simplified view of a weak scheme-switching oracle, OB↪→C , is shown in Fig. 1.
The main intuition is that any non-trivial bit-wise manipulations on an RLWE
encryption’s message/error polynomial’s coefficients are the most expensive
operations performed in bootstrapping. This is seen in BGV’s decryption circuit:
there is a linear operation on the ciphertext over RQ, d := c0 + c1 · s mod Q,
followed by some nonlinear rounding, d mod p. In essence, we show the homo-
morphic nonlinear rounding in either BGV or CKKS can be achieved by (homo-
morphically) moving around contiguous bits of the message/error polynomial’s
coefficients, weakly switching the plaintext encoding of the encrypted plaintext.
Hence, a weak converter is quite powerful in the FHE setting. We sketch the case
from BGV to CKKS using OB↪→C since it is simpler. Recall the main idea of boot-
strapping a CKKS ciphertext [13]: we have a CKKS ciphertext ct = (c0, c1) ∈ R2

q

which we implicitly treat as a ciphertext with respect to a larger ciphertext mod-
ulus Q > q with q | Q. That is, we view ct as a pair of elements in R2

Q. We need
to compute the y(X) �→ y(X) mod q function (where the mod is taken on all the
coefficients of y(X)) homomorphically on ct to obtain a ct′ ∈ R2

Q that decrypts
to approximately the same value as ct under the same secret key for some cipher-
text modulus Q′ > q. Observe that c0+c1 ·s(X) = Δm(X)+e(X)+I(X)q where
each coefficient of Δm(X) + e(X) is � q. Notice that bootstrapping in CKKS
reduces to clearing the high order bits of the plaintext polynomial’s coefficients
(the I(X)q term). Standard CKKS bootstrapping moves these coefficients to
the plaintext slots via discrete Fourier transform (DFT), computes the mod q
function via a polynomial approximation, and then moves the result back to the
coefficients.

However, there is a much more efficient algorithm for performing the y �→
y mod q function on a CKKS ciphertext’s coefficients given the oracle in Fig. 1.
If we simply treat the input CKKS ciphertext ct ∈ R2

Q as a BGV ciphertext
with plaintext modulus q, we observe that ct is a valid BGV encryption of

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 201

Δm(X) + e(X) with error I(X)q for some small integer polynomial I(X). The
oracle OB↪→C applied to this BGV encryption outputs a CKKS encryption of
Δ′(Δm(X) + e(X)) + e′(X) with ciphertext modulus Q′ � q and some other
error e′(X), noting that q > Δm(X). Therefore, we perform one CKKS rescaling
operation and return the result as the new bootstrapped ciphertext of CKKS
encrypting m(X). The CKKS to BGV case is similar.

1.3 Related Works

Switching between BGV/BFV and CKKS without bootstrapping was first men-
tioned as an open problem in the updated version of [33,34] as it pertains to a
potential cross-scheme bootstrapping technique.

The problem of switching between FHEW/TFHE and BGV/BFV and CKKS
is an orthogonal problem since once you apply homomorphic linear transfor-
mations on the latter, the rest is up to extracting the coefficients as sepa-
rate lightweight FHEW/TFHE ciphertexts. This was done explicitly in [8,52],
respectively called Chimera and Pegasus, and was partially done in the origi-
nal FHEW/TFHE works [17,20] while interfacing the homomorphic accumulator
and LWE Regev encryptions [55,56]. Chimera [8] and Pegasus [52] consider meth-
ods of scheme-switching between CKKS and TFHE via bootstrapping. Moreover,
Chimera [8] also considers scheme-switching from BFV to TFHE by bootstrap-
ping. Chimera handles the differing plaintext spaces by using the underlying
ring’s coefficient packing, similar to our approach. Kim et al. [43] take this idea
further and apply FHEW/TFHE techniques to packed schemes, BGV/BFV and
CKKS. Liu, Micciancio, and Polyakov [51] developed a high precision FHEW
functional bootstrapping with the CKKS-to-FHEW/TFHE application in mind,
building on Chillotti et al. [18].

Additionally, several works [15,16,39,46] have focused on methods of com-
puting comparison (and other related functions such as max/min and ReLU)
in these SIMD FHE schemes since these functions are useful to compute for
applications, but are not easily expressible as arithmetic circuits.

We note the security model likely changes when going from BGV/BFV to
CKKS, since the latter is an approximate FHE scheme [49], if the user publishes
decryption results. One must apply noise flooding when switching to CKKS in
applications where the noisy CKKS decryption value is publicly available or
published [50].

1.4 Organization

In Sect. 2, we cover the necessary background and preliminaries. Scheme-
switching oracles are defined in Sect. 3. We also show how to transform a weak
scheme-switching oracle, which works on coefficients, into a strong scheme-
switching oracle, which inputs a packed BGV (resp. CKKS) ciphertext and out-
puts a packed CKKS (resp. BGV) ciphertext, in this section. In Sect. 4, we give
the main results of our paper in Theorems 4.1 and 4.2. In Sect. 5, we show how

202 K. Eldefrawy et al.

one can bootstrap BGV and CKKS with a few calls to comparison oracles. We
conclude in Sect. 6.

2 Preliminaries

We denote the integers as Z, the rationals as Q, the reals as R, and the complex
numbers as C. For polynomials or vectors of real numbers, we use the notation
�v� to denote coefficient-wise rounding to the integers. For an integer z, we
denote its balanced remainder modulo q as [z]q ∈ [−q/2, q/2) and its p-digit
decomposition as z =

∑
i z〈i〉pi where z〈i〉 ∈ [−p/2, p/2). We denote an integer

z’s k-through-j middle digits as z〈j, . . . , k〉 =
∑j

i=k z〈i〉pi for k < j. Throughout
the paper, we use power of two cyclotomic rings2 (fields), R := Z[X]/(XN + 1)
(F := Q[X]/(XN + 1)) is the cyclotomic ring (field) of order 2N , where N
is a power of two. We often view these rings in their coefficient embedding.
That is, a(X) =

∑N−1
i=0 aiX

i ∈ R embeds as a(X) ↔ (a0, . . . , aN−1) ∈ Z
N

and the analogous embedding for the cyclotomic field. We denote the �∞ norm
of a polynomial in a(X) =

∑N−1
i=0 aiX

i ∈ R as ‖a‖∞ = maxi |ai|. Any two
polynomials f, g ∈ R satisfy ‖fg‖∞ ≤ N‖f‖∞‖g‖∞. This worst-case bound
is rarely met when the polynomials are distributed as in FHE ciphertexts and
‖fg‖∞ ≤ 2

√
N‖f‖∞‖g‖∞ is often seen in practice with high probability [31].

2.1 RLWE SIMD Schemes

Here we discuss the main SIMD schemes used in practice: CKKS [14], BGV [10],
and BFV [9,21]. These schemes are RLWE-based crypto-systems [53] and use
ciphertext packing [29,60], which allows a ciphertext to hold up to thousands
of plaintext scalars for common parameters. Even though BGV and BFV can
encrypt elements from an extension field of Zp, we focus on the case where
they encrypt scalar elements for simplicity. BGV/BFV and CKKS differ greatly
in their plaintext spaces even with this simplification. The former have each
plaintext scalar in Zp, and the latter has each in R (or even C) via fixed-point
approximations. Since we can always switch between BFV and BGV with the
same plaintext spaces cheaply with scalar multiplications [2,44], we will often
focus on BGV in this work, but our results also apply for BFV.

Let R := Z[X]/(XN + 1) be the 2N -th cyclotomic ring for N a power of two
and let RQ := R/QR be the ciphertext space where Q is a positive integer. When
sampling ring elements, we refer to them by their coefficient representations in
the appropriate space (i.e. ZN ,ZN

Q ,ZN
p). We will work with residue classes in the

balanced representation (so elements of ZQ are represented by [−Q/2, Q/2) ∩ Z).

BGV. A BGV encryption is defined as follows.

2 All of our results apply to arbitrary cyclotomic fields. See [36] for the full details of
BGV in general cyclotomics.

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 203

Definition 2.1. Fix a ciphertext modulus Q, a plaintext modulus p (typically
a prime power), and a ring dimension N . Further, p and Q must be coprime
integers. A BGV encryption of m ∈ Rp for a secret s ∈ R with small norm, and a
noise distribution χ, is a pair of ring elements ct = (c0, c1) ∈ R2

Q where c0 = as+
pe+m, c1 = −a, and e ← χ. To decrypt, one computes (c0 +c1s mod Q) mod p.
For correctness of decryption, we require that ‖pe + m‖∞ < Q/2. We denote
the set of BGV ciphertexts that decrypt to m, under some fixed s and χ, as
BGVs(m)p,Q ⊂ R2

Q.

Note that we leave χ unspecified since the error distribution is affected by
homomorphic operations. The appropriate χ for a particular ciphertext will be
clear from context.

BFV. A BFV encryption is defined as follows.

Definition 2.2. Fix a ciphertext modulus Q, a plaintext modulus p (typically
a prime power), and a ring dimension N . A BFV encryption of m ∈ Rp for
a secret s ∈ R with small norm, and a noise distribution χ, is a pair of ring
elements ct = (c0, c1) ∈ R2

Q where c0 = as + �Δm� + e, for Δ = Q
p ∈ Q,

c1 = −a, and e ← χ. To decrypt, one computes

m′ = �(c0 + c1s mod Q)/Δ� .

For correctness of decryption, we require that ‖e‖∞ < Q/(2p)−1/2 = (Δ−1)/2.

See [44] for more details on BFV, its optimized version, and its relation to
BGV.

A key noise management operation in BGV is modulus-switching, defined
as follows. Note, we focus on the case where the moduli, Q and Q′, satisfy
Q = DQ′, as all feasible BGV implementations include a chain of ciphertext
moduli satisfying this divisibility requirement, e.g., HELib [36].

Definition 2.3 ([10,29]). Let ct ∈ BGVs(m)p,Q be a BGV ciphertext and Q =
Q′D be a positive integer coprime with p, and Q mod p = Q′ mod p = 1. Then,
the BGV modulus-switching operation is

ct′ ← �(Q′/Q) · (ct + δ)�p ∈ R2
Q′ ,

where δ = p · ([−c0/p]D, [−c1/p]D) ∈ R2 and �Q′

Q z�p maps an integer z ∈
[−Q/2, Q/2) to the nearest integer, z′, in [−Q′/2, Q′/2) such that z′ ≡ z mod p.
We write ct′ ← BGV.ModSwitch(ct)Q → Q′ ∈ BGVs(m)p,Q′ as shorthand for BGV
modulus-switching.

Modulus-switching is the main noise-management technique used in BGV
besides bootstrapping. The following lemma states its effect on ciphertext noise
precisely.

Lemma 2.1 ([10,29]). If ct ∈ BGVs(m)p,Q is a BGV ciphertext satisfying

‖c0 + c1s mod Q‖∞ ≤ Q

2
− pD(1 + N‖s‖∞)

2
,

204 K. Eldefrawy et al.

then ct′ ← BGV.ModSwitch(ct)Q → Q′ ∈ BGVs(m)p,Q′ is a BGV ciphertext with
error norm ‖e′‖∞ at most ‖e‖∞/D+(1+N‖s‖∞)/2, where Q′D = Q and e ∈ R
is the error for the input ciphertext ct.

CKKS Scheme. A CKKS encryption with respect to a scaling parameter Δ ∈ Z

is defined as follows.

Definition 2.4. Fix a ciphertext modulus Q, Δ ∈ Z
+, and a ring dimension

N . A CKKS encryption of m ∈ R with scaling factor Δ ∈ Z
+ is a pair of ring

elements ct = (c0, c1) ∈ R2
Q where c0 = as + e + Δm, c1 = −a. To decrypt, one

computes �(c0 + c1s mod Q)/Δ�. For correctness of decryption, we require that
‖Δm + e‖∞ < Q/2. We denote the set of CKKS ciphertexts, under some fixed
s and χ, as CKKSs(m)Δ,Q ⊂ R2

Q.

The flexibility in choosing Δ, together with ciphertext packing, allows CKKS
encryption to encrypt fixed-point approximations of numbers. Next, we describe
the analogous noise-management technique in CKKS to BGV’s modulus switch-
ing.

Definition 2.5 ([14]). Given a CKKS ciphertext ct ∈ CKKSs(m)Δ,Q with a
ciphertext modulus Q = Q′D, CKKS rescaling is the following operation:

ct′ ← �(Q′/Q) · ct� ∈ R2
Q′ ,

where multiplication is done over Q. We use CKKS.Rescale(ct)Q → Q′ as short-
hand for the above operation.

Rescaling and modulus switching are the nearly same operation, but the
rounding factor in BGV has entries as large as ±p/2 wheres the rounding factor
in CKKS has smaller entries in [±1/2]. Next, we give the change in ciphertext
noise under the infinity metric of the coefficients.

Lemma 2.2 ([14]). Let ct ∈ CKKSs(m)Δ,Q be a CKKS ciphertext satisfying

‖c0 + c1s mod Q‖∞ ≤ Q/2 − D(N‖s‖∞ + 1)/2

and let Q = Q′D. Then, the operation, ct′ ← CKKS.Rescale(ct)Q → Q′ ∈ R2
Q′ , is

a CKKS encryption, ct′ ∈ CKKSs(m)Δ/D,Q′ . Furthermore, if the error term e
in ct = (as + Δm + e,−a) has norm ‖e‖∞, then ct′ has an error norm ‖e′‖∞
with norm at most ‖e‖∞/D + (N‖s‖∞ + 1)/2.

It is easy to see that if ct satisfies

‖c0 + c1s mod Q‖∞ ≤ Q/2 − D(N‖s‖∞ + 1)/2,

then you can always decrypt after rescaling. The same holds true for BGV
modulus-switching if the input ciphertext satisfies

‖c0 + c1s mod Q‖∞ ≤ Q/2 − pD(N‖s‖∞ + 1)/2.

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 205

Homomorphic Operations. Adding and multiplying ciphertexts in BGV
and CKKS are given by the following simple operations: if ct = (c0, c1) ∈
BGVs(m)p,Q and ct′ = (c′

0, c
′
1) ∈ BGVs(m′)p,Q, then addition over R2

Q (ct + ct′)
gives a ciphertext in BGVs(m + m′)p,Q. We can multiply a BGV (CKKS)
ciphertext by a plaintext polynomial α ∈ Rp (α ∈ R) by simply returning
ct ← α · ct ∈ R2

Q. It is easy to see how this increases the noise from ‖e‖∞ to
‖α‖∞‖e‖∞. Multiplying BGV or CKKS ciphertexts is given by (d0, d1, d2) =
(c0c′

0, c0c
′
1 + c′

0c1, c1c
′
1) ∈ R3

Q. In BGV, we get the following:

(c0 + c1s)(c′
0 + c′

1s) = c0c
′
0 + s(c0c′

1 + c′
0c1) + s2c1c

′
1

= p(pee′ + em′ + e′m) + mm′

= mm′ mod p.

We have the following analogous equations for multiplying two CKKS cipher-
texts:

(c0 + c1s)(c′
0 + c′

1s) = c0c
′
0 + s(c0c′

1 + c′
0c1) + s2c1c

′
1

= Δ2 mm′ + (Δme′ + Δm′e + ee′).

Therefore, we “re-linearize” the ciphertext after multiplication with a key-
switching operation to get a ciphertext represented with two polynomials again
in RQ encrypting mm′. For simplicity, we use the Gentry-Halevi-Smart method
[30] for relinearization: The relinearization key is an RLWE encryption of
s2 under the original key s under a larger modulus, Q′ = PQ where Q is
the largest modulus allowed for ciphertexts. That is, the evaluation key is
evk := (−as+Ps2 +pe, a) ∈ R2

P ·Q. Then, we relinearize (d0, d1, d2) by returning

(d0, d1) + BGV.ModSwitch(d2 · evk)PQ → Q.

For CKKS, we have the same operations but the evaluation key does not have
its RLWE error scaled by p: evk := (−as + Ps2 + e, a) ∈ R2

PQ.
See [10,14,29] for the full details of the BGV and CKKS schemes.

2.2 Useful Lemmas

Here we list some useful lemmas used throughout the paper. First, we list a core
lemma to the state of the art in BGV bootstrapping’s digit extraction procedure.
We list the case simplified to the plaintext space being a prime p �= 2.

Lemma 2.3 ([34]). Let p > 1, r ≥ 1, and q̃ = pr + 1 be integers with p being
an odd prime. Let z be an integer such that |z/q| + |[z]q| < (q − 1)/2. Then,

[z]q = z〈0〉 − z〈r〉 mod p.

Next, we list a lemma which summarizes the complexity to perform homo-
morphic digit extraction in BFV and BGV. Digit extraction is a crucial step in
these schemes’ state-of-the-art bootstrapping algorithms.

206 K. Eldefrawy et al.

Lemma 2.4 ([12]). Let p be prime, v < e be positive integers, u be an integer
input modulo pe with digits

u = u〈e − 1, . . . , 0〉 =
e−1∑

i=0

uip
i.

Then, there is an algorithm with
√

2pev multiplications and arithmetic depth
v log p + log e which returns

u〈e − 1, . . . , v〉 =
e−1∑

i=v

u〈i〉pi.

2.3 Bootstrapping Circuits for BGV and CKKS

Here we describe the state of the art in BGV (BFV) and CKKS bootstrapping.
The linear portion of the RLWE decryption function is c0 + c1s mod q for both
BGV and CKKS. However, BGV further performs a modulo p operation, for
plaintext p coprime to q, so

m = (c0 + c1s mod q) mod p = (m + pe) mod p.

CKKS takes a ciphertext at the lowest level, (c0, c1) ∈ R2
q just like BGV, but

implicitly treats the ciphertext as a high level ciphertext in R2
Q. Then,

c0 + c1s mod q = Δm + e + Iq

for some small polynomial I = I(X) ∈ R. Therefore, the majority of CKKS
bootstrapping is spent computing the y �→ y mod q homomorphically.

Both CKKS and BGV use plaintext packing which enables SIMD arithmetic.
CKKS packing is given by the canonical embedding modulo complex conjuga-
tion: a(X) ∈ R can be represented by (a(δ), a(δi1), . . . , a(δiN/2−1)) ∈ C

N/2 where
δ is a complex root of XN+1 and i1, . . . , iN/2−1 are representatives of Z∗

2N /{±1}.
BGV ciphertext packing is given by the analogous representation modulo p:
(a(ζk1), a(ζk2), . . . , a(ζkj)) ∈ F

j
pd where ζ ∈ Zp is a root of XN + 1 mod p, d

is the order of p in Z
∗
2N , and {ζkj } are coset representatives of Z

∗
2N /〈p〉 [36].

Switching between coefficient reprensetation and these evaluation representa-
tions is done by linear transformations over C and Zp, respectively. Both can
be performed homomorphically on a ciphertext, where the former is approxi-
mate. These linear transformations are a key step in bootstrapping and can be
evaluated with constant multiplicative depth [13,32].

BGV. In more detail, BGV bootstrapping is given by:

1. Modulus-switch to a special ciphertext modulus of the form q̃ = pr + 1 [34].
2. Perform a homomorphic inner-product with an encrypted version of the secret

key at the highest level (also called the bootstrapping hint). Here, the input
ciphertext is treated as a plaintext to the bootstrapping hint.

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 207

3. Unpack the ciphertext with a homomorphic linear transformation (constant
depth, but time-intensive). This moves the ciphertext coefficients to the
ciphertext slots. Depending on parameters, these values may require multiple
ciphertexts.

4. Homomorphically compute the function x �→ (x mod q̃) mod p via the state-
of-the-art digit extraction polynomials [12].

5. Repack the ciphertext with the inverse of the homomorphic linear transforma-
tion from the second step above with respect to the smaller, original plaintext
modulus p.

See [25] for more details and the state of the art in BGV and BFV bootstrapping.

CKKS. For CKKS, we perform the following:

1. Treat the ciphertext as a larger modulus ciphertext (Q � q).
2. Unpack the ciphertext with a homomorphic linear transformation. This moves

the coefficients into the plaintext slots. If the ciphertext is fully packed, this
will need to output 2 ciphertexts to store the N coefficients. If ≤ N/4 slots
are used, then we can fit all the coefficients in the slots of a single ciphertext.
See [13] for more details. This step is referred to as CoeffsToSlots.

3. Compute an approximation of the y �→ y mod q homomorphically [11,13,38,
41,42,47,48].

4. Re-pack the ciphertext with a homomorphic linear transformation. This step
is referred to as SlotsToCoeffs.

Another optimization in CKKS bootstrapping was recently given in [5] where
they treat bootstrapping as a black box and bootstrap twice in order to reduce
the error induced strictly from bootstrapping. Recently, [45] showed how to
save a few ciphertext levels in the overall CKKS bootstrapping procedure by
computing the EvalRound function homomorphically instead of EvalMod.

3 Homomorphic Scheme-Switching

In this section, we define variants of scheme-switching oracles. First, we define
weak scheme-switching oracles. A weak scheme-switching oracle takes a CKKS
(resp. BGV) ciphertext encrypting a ring polynomial m(X) and outputs a BGV
(resp. CKKS) ciphertext encrypting the same ring polynomial m(X). We call
the scheme-switching oracles weak because they fix the encrypted message in
its coefficient form, instead of the evaluation representation (slots), and do not
handle the fact that BGV and CKKS have different message encodings. In other
words, we would still have to call the CKKS (resp. BGV) slots-to-coefficients
function before calling the oracle and re-pack the BGV ciphertext homomorphi-
cally after calling the oracle. Next, we define strong scheme-switching oracles
which switch packed ciphertexts. We conclude with showing how to transform a
weak oracle into a strong oracle with homomorphic linear transformations.

208 K. Eldefrawy et al.

3.1 Weak Scheme-Switching Oracles

Here we define two weak scheme-switching oracles needed for our main result:
one that takes a BGV ciphertext encrypting some message polynomial m(X) and
outputs a CKKS ciphertext for m(X) (with respect to some scaling factor Δ) and
another which takes a CKKS ciphertext encrypting some message polynomial
m(X) (with respect to some scaling factor Δ) and outputs a BGV ciphertext
encrypting m(X). Ideally, these oracles are black boxes parameterized by BGV
and CKKS parameters which have the same functionality as decrypting a BGV
(resp. CKKS) ciphertext and re-encrypting the message polynomial in CKKS
(resp. BGV) without direct access to the secret key.

Regarding noise and ciphertext moduli, these oracles potentially lower the
quality (i.e., the noise magnitude to modulus ratio) of the ciphertexts they con-
vert, just as a real FHE computation would. We have the oracles take as input a
ciphertext with noise from an error distribution χin and return a ciphertext with
noise from an error distribution χ. Note that an oracle returning a ciphertext
with a smaller modulus and the same noise magnitude as the input is analo-
gous to an oracle returning a ciphertext with the same ciphertext modulus but
with a larger noise magnitude since we can always modulus-switch or rescale the
oracle’s output without the secret key.

First, we define the weak scheme-switching oracle from BGV to CKKS:

Definition 3.1. Let OB↪→C(ctin; p,Δ,Q,Q′, χin, χ) denote the BGV-to-CKKS
oracle that takes as input a BGV ciphertext ctin = (c0, c1) encrypting some
m, i.e., c0 + c1s mod Q = m + pe for error distributed as e ∼ χin, and is
parameterized by a BGV plaintext modulus p ∈ Z

+, a CKKS scaling factor
Δ, an input ciphertext modulus Q, an output ciphertext modulus Q′, an input
noise distribution χin, and an output noise distribution χ, potentially a random-
ized function of χin, χ = f(χin). The oracle returns a CKKS encryption of m,
ctout = (c′

0, c
′
1) ∈ R2

Q′ , i.e., c′
0 + c′

1s mod Q′ = Δm+eχ, for a potentially smaller
modulus Q′ ≤ Q and an error eχ, where eχ = f(e), under the same secret key
as the input ciphertext.

Observe that since we allow f to be a randomized function in the above
definition, Definition 3.1 captures instantiations of the oracle where χ is inde-
pendent of χin, and f simply ignores the input noise distribution χin. However,
by defining the oracle in this manner, we also capture situations where χ is
dependent on χin, which is also possible depending on the oracle instantiation.
The other scheme-switching oracles in this paper are defined analogously for the
same reason.

Next, we define the analogous oracle for switching from CKKS to BGV.

Definition 3.2. Let OC↪→B(ctin;Δ, p,Q,Q′, χin, χ) denote the CKKS-to-BGV
oracle that takes as input a CKKS ciphertext ctin = (c0, c1) ∈ R2

Q encrypting
some m, i.e., c0+c1s mod Q = Δm+e for error distributed as e ∼ χin, a CKKS
scaling factor Δ, and is parameterized by a BGV plaintext modulus p ∈ Z

+, an
input ciphertext modulus Q, an output ciphertext modulus Q′, an input noise

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 209

distribution χin, and an output noise distribution χ, potentially a randomized
function of χin, χ = f(χin). The oracle returns a BGV encryption of m, ctout =
(c′

0, c
′
1) ∈ R2

Q′ where c′
0 + c′

1s mod Q′ = m + peχ, for a potentially smaller
modulus Q′ ≤ Q and an error eχ, where eχ = f(e), under the same secret key
as the input ciphertext.

Observe that in order to preserve m(X), the oracles must be called with
appropriate parameters. For example, when calling OB↪→C , if ‖eχ‖∞ > Δ, then
the least significant bits of m(X) will be destroyed by the error (we would only
have an approximation of m(X)). This is commonplace in CKKS encryption and
why CKKS is often referred to as an “approximate” FHE scheme. When calling
OC↪→B , the returned ciphertext is a BGV encryption of m(X) mod p. Thus, the
higher-order bits of the coefficients of m(X) will be lost if their magnitude is
larger than p/2.

3.2 Strong Scheme-Switching Oracles

Here we discuss strong scheme-switching oracles, which take packed ciphertexts
as input and return a packed ciphertext in another SIMD scheme. First, we
define strong scheme-switching oracles. Then, we show how to transform a weak
scheme-switching oracle into a strong one via homomorphic linear transforma-
tions.

Recall the BGV plaintext encoding in its simplest form, where p is a prime
with p = 1 mod 2N . Here, the RLWE plaintext space is Zp[X]/(XN + 1), and
XN + 1 splits modulo p. This means that Zp[X]/(XN + 1) ∼= Z

N
p by evaluating

a polynomial at the primitive roots of unity modulo p via the discrete Fourier
transform (DFT) over the field. Let D denote this matrix. Then, given an input
vector v ∈ Z

N
p , one packs it into a polynomial by treating it as the evaluation of

some polynomial over the roots of unity and recovers the polynomial by taking
the inverse modulo p: m(X) := D−1v. In general, the cyclotomic polynomial
might not split modulo p, but it will factor into degree k polynomials. Then, the
plaintext space is F�

pk where N = k · �, and the packing is similar. See Appendix
C of [29] or [36] for the full details. Given a vector v ∈ Z

N
p , we denote the BGV

encoding algorithm as m(X) = encodeBGV(v) with m(X) ∈ Rp. The inverse is
denoted by v = decodeBGV(m(X)).

CKKS packing is done analogously but with the primitive complex roots of
unity. Here, the roots of XN + 1 over C are all N primitive roots of unity of
order 2N . Evaluating a polynomial at all of these roots leads to an element in
the conjugate space H = {z = (zj)j∈Z

∗
2N

: zj = z−j} ⊂ C
N where one half

of the vector z is the conjugate of the other half and Z
∗
2N denotes the unit

group of Z2N . Call this map τ . CKKS encoding only uses one half of these
vectors by projecting down to C

N/2. Call this projection π. CKKS encoding
is the inverse of this process: given a vector v ∈ C

N/2, take the inverse DFT
corresponding to the projected portion of the symmetric space H. Since this
only gives us an element in R[X]/(XN + 1), CKKS encoding scales and rounds
this element to R = Z[X]/(XN + 1). This is done in the canonical embedding

210 K. Eldefrawy et al.

space H by scaling up by some scaling factor Δ and rounding to the ring R:
m(X) = �τ−1(Δπ−1(v))� where the projection π is invertible on the image of
H. Further, we often write the scaled CKKS message as Δm(X) by linearity
and since we can add the rounding error into the RLWE error. Representing
the message as Δm(X) helps gauge the number of bits left for homomorphic
operations, roughly log(Q) − log(Δ) for small m. Given a vector v ∈ C

N/2, we
denote the CKKS encoding algorithm as m(X) = encodeCKKS(v,Δ), m(X) ∈ R.
The (lossy) inverse is denoted by v′ = decodeCKKS(m(X),Δ).

Given a BGV or CKKS ciphertext encrypting a packed polynomial, one can
homomorphically rotate the slots by performing a field automorphism σ to the
ciphertext. For example, if ct = (c0, c1) ∈ R2

Q is a BGV ciphertext encrypting
m(X) = encodeBGV(v), then (σi(c0), σi(c1)) encrypts

m′(X) = σi(m) = encodeBGV((vi, vi+1, . . . , vN−1−i mod N))

under the secret key σi(s). That is, σi is the Galois automorphism that cycli-
cally shifts the vector by i positions. We then key-switch back to a ciphertext
encrypted under s using an operation similar to relinearization.(Relinearization
is a special case of key-switching).

Now consider a strong homomorphic scheme-switching algorithm. Given a
BGV ciphertext (as+pe+m,−a) where m = m(X) = encodeBGV(v) encodes N
elements in Zp, the goal is to switch to either one or two packed CKKS cipher-
texts encrypting the elements of v. We say potentially two ciphertexts since we
expect applications to use BGV for exact multiplication before overflow modulo
p and the spaces C and F

2
p are incompatible in terms of arithmetic operations.

For simplicity, assume we want to pack them into one CKKS ciphertext. Then,
given (as + pe + m,−a), the output is a ciphertext (a′s + e′ + Δm′,−a′) where
m′ = m′(X) = encodeCKKS(v,Δ). This yields the following definitions.

We denote �(y) and �(y) as the respective real and imaginary part of a
complex number, y ∈ C, and �(y),�(y) as the function applied component-wise
to a vector y ∈ C

m. We define the strong scheme-switching oracles below:

Definition 3.3. Let Ostrong
B↪→C(ctin; p,Δ,Q,Q′, χin, χ) denote the strong BGV-to-

CKKS oracle that takes as input a BGV ciphertext ctin = (c0, c1) encrypting
some m, i.e., c0 + c1s mod Q = m+pe for m = m(X) = encodeBGV(v), v ∈ Z

N
p

with error distributed as e ∼ χin, and is parameterized by a BGV plaintext modu-
lus p ∈ Z

+, a CKKS scaling factor Δ, an input ciphertext modulus Q, an output
ciphertext modulus Q′, an input noise distribution χin, and an output noise distri-
bution χ, potentially a randomized function of χin, χ = f(χin). The oracle returns
a CKKS encryption of m, ctout = (c′

0, c
′
1) ∈ R2

Q′ , i.e., c′
0+c′

1s mod Q′ = Δm′+eχ

where m′ = encodeCKKS(v,Δ)/Δ, for a potentially smaller modulus Q′ ≤ Q and
an error eχ, where eχ = f(e), under the same secret key as the input ciphertext.

Definition 3.4. Let Ostrong
C↪→B(ctin;Δ, p,Q,Q′, χin, χ) denote the CKKS-to-BGV

oracle that takes as input a CKKS ciphertext ctin = (c0, c1) ∈ R2
Q

encrypting some m, i.e., c0 + c1s mod Q = Δm + e for m = m(X) =

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 211

encodeCKKS(v,Δ)/Δ, v ∈ C
N/2 with error distributed as e ∼ χin, a CKKS scal-

ing factor Δ, and is parameterized by a a BGV plaintext modulus p ∈ Z
+, an

input ciphertext modulus Q, an output ciphertext modulus Q′, an input noise
distribution χin, and an output noise distribution χ, potentially a randomized
function of χin, χ = f(χin). The oracle returns a BGV encryption of m, i.e.,
ctout = (c′

0, c
′
1) ∈ R2

Q′ where c′
0+c′

1s mod Q′ = m′+peχ with m′ = encodeBGV(v′)
where v′ = (�(v),�(v)), for a potentially smaller modulus Q′ ≤ Q and an error
eχ, where eχ = f(e), under the same secret key as the input ciphertext.

Next, we show how to take a weak scheme-switcher and transform it into
a strong scheme-switcher using homomorphic linear transformations. We will
use the following two lemmas on homomorphically encoding and decoding in
CKKS and BGV. The following algorithms/lemmas are given in terms of minimal
plaintext-ciphertext depth for simplicity. Note, homomorphically applying the
BGV and CKKS encoding/decoding algorithms can be done with homomorphic
linear transformations where the matrix is stored as plaintexts polynomials. In
the case of CKKS, this is an approximate linear transformation due to the CKKS
encoding function. We summarize this in Lemmas 3.1 and 3.2 below.

Lemma 3.1 ([32]). Given a BGV ciphertext ct = (c0, c1) ∈ R2
Q, c0 + c1s =

m + pe for m(X) = encodeBGV(v), v ∈ Z
N
p , together with its public evaluation

key evk, one can homomorphically transform ct into a BGV ciphertext ct′, under
the same secret key, encrypting v in the coefficients of m′(X), in a plaintext-
ciphertext multiplicative depth one circuit and N/2 ciphertext rotations.

Lemma 3.2 (Algorithm 1 in [13]). Given a CKKS ciphertext ct = (c0, c1) ∈
R2

Q, c0 + c1s = Δm + e for m(X) = encodeCKKS(v,Δ)/Δ, v ∈ C
N/2, together

with its public evaluation key evk, one can homomorphically transform ct into
a CKKS ciphertext ct′ ∈ R2

Q′ , under the same secret key, encrypting v in the
coefficients of m′(X), in a plaintext-ciphertext multiplicative depth one circuit
and N/2 ciphertext rotations. The resulting ciphertext modulus Q′ ≤ Q depends
on the precision to which this approximate computation is performed, which a
more precise computation resulting in ct′ having a smaller Q′.

See Chen et al. [11] or Han et al. [37] for a faster algorithm for homomorphic
encoding and decoding using an FFT-like algorithm with a deeper circuit. Fur-
ther efficiency optimizations can be found in [7]. The algorithms in Lemmas 3.1
and 3.2 encode each linear transformation’s matrix by N (resp., N/2) diagonals
as plaintext polynomials and apply the matrix-vector multiplication homomor-
phically. See [13,32] for more details.

If the input ciphertext in Lemma 3.1 (resp., Lemma 3.2) has distribution χin,
then denote the output distribution as TB(χin) (resp., TC(χin)). In practice, the
noise growth from applying the homomorphic linear transformations is relatively
small, but the homomorphic computation involved is time-intensive.

212 K. Eldefrawy et al.

We now show how to take a weak scheme-switching oracle and turn it into a
strong scheme-switching oracle at the cost of two levels of plaintext-ciphertext
multiplicative depth.

Theorem 3.1. Given a weak scheme-switching oracle from BGV to CKKS,
OB↪→C(ctin; p,Δ,Q,Q′, TB(χin), χ), there exists a strong scheme-switching oracle
from BGV to CKKS, Ostrong

B↪→C(ctin; p,Δ,Q,Q′′, χin, TC(χ)), where Q′′ is related to
Q′ by the instantiation of Lemma 3.2.

Proof. Let ct′′ = (c′′
0 , c′′

1) ∈ R2
Q be a BGV ciphertext where c′′

0 + c′′
1s = m′′ + pe′′

and m′′ = m′′(X) = encodeBGV(v) for some vector v ∈ Z
N
p . Let χ′′ denote the

input error’s distribution, e′′ ∼ χ′′. Compute the following:

1. Run the algorithm in Lemma 3.1 to get a ciphertext ct′ = (c′
0, c

′
1) where

c′
0 + c′

1s = m′ + pe′ encrypts v as the coefficients in m′: m′(X) = v0 + v1X +
· · · + vN−1X

N−1. Denote the error distribution of ct′ by TB(χ′′).
2. Call the weak scheme-switching oracle on ct′,

ĉt ← OB↪→C(ct′; p,Δ,Q,Q′, TB(χ′′), χ),

to get ĉt = (ĉ0, ĉ1) ∈ R2
Q′ where ĉ0 + ĉ1s = Δm′ + ê.

3. Let v′ ∈ C
N/2 denote v’s entries stored as a complex vector. Run the algo-

rithm in Lemma 3.2 to get ct = (c0, c1) ∈ R2
Q′′ where c0 + c1s = Δm + e and

m = m(X) = encodeCKKS(v′,Δ)/Δ. The error distribution of e is TC(χ).

�

Theorem 3.2. Given a weak scheme-switching oracle from CKKS to BGV,
OC↪→B(ctin;Δ, p,Q′, Q′′, TC(χin), χ), there exists a strong scheme-switching ora-
cle from CKKS to BGV, Ostrong

C↪→B(ctin;Δ, p,Q,Q′′, χin, TB(χ)), where Q′ is related
to Q by the instantiation of Lemma 3.2.

Proof. The proof is analogous to that of Theorem 3.1. �

4 Bootstrapping via a Weak Scheme-Switching Oracle

In this section, we show our main results that one can bootstrap a BGV (resp.,
CKKS) ciphertext using a single call to a weak scheme-switching oracle without
computing homomorphic linear transformations. Recall that since BFV cipher-
texts can be simply converted to BGV ciphertexts via scalar multiplication [2],
our result for BGV also applies to BFV.

We show two directions:

1. Using a BGV to CKKS weak scheme-switching oracle, one can bootstrap a
CKKS ciphertext using one oracle query and

2. Using a CKKS to BGV weak scheme-switching oracle, one can bootstrap a
BGV ciphertext using one oracle query.

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 213

To bootstrap a CKKS ciphertext, we only need to perform one CKKS rescaling
in addition to the oracle call. To bootstrap a BGV ciphertext, we only need
to perform a homomorphic inner product and one BGV modulus-switching in
addition to the oracle call. Thus, we provide powerful evidence that scheme-
switching is at least as hard as bootstrapping and improvements to scheme-
switching should lead to improvements to bootstrapping.

4.1 Bootstrapping in CKKSfrom a BGV-to-CKKS Oracle

We begin by showing that a weak BGV-to-CKKS scheme-switching oracle allows
one to bootstrap a CKKS ciphertext immediately. As mentioned above, this
allows the user to bootstrap a CKKS ciphertext without the costly coefficients-
to-slots homomorphic linear transformation or its inverse. In the reduction, we
are calling OB↪→C with a BGV plaintext modulus equal to the input ciphertext
modulus q. We emphasize that treating the lowest level ciphertext modulus as
a plaintext modulus is common in BGV bootstrapping. See [28,34] for more
details.

Theorem 4.1. Fix some CKKS parameters: R = Z[X]/(XN + 1), Δ,Δin posi-
tive integers, and q � Q′′ ≤ Q′ ≤ Q as ciphertext moduli with q | ΔQ′′ = Q′ | Q.
Let the ciphertext ct ∈ CKKSs(m)Δin,q be the input. Then, the existence of a BGV
to CKKS weak scheme-switching oracle, OB↪→C(· ; q,Δ,Q,Q′, χ′, χ), implies the
existence of a CKKS bootstrapping algorithm where the time to bootstrap is the
time complexity of the oracle plus the time complexity to rescale from Q′ to Q′/Δ,
and the output ciphertext has noise at most ‖e‖∞ + ‖eχ‖∞

Δ + (N‖s‖∞ + 1)/2,
where e is the error term of ct and eχ is the error term in the output of OB↪→C .

Proof. Let ct = (c0, c1) ∈ R2
q be the input ciphertext in CKKSs(m)Δin,q. That is,

the ciphertext satisfies c0 + c1s mod q = Δinm+e. By embedding c0, c1 into RQ,
it follows that this new ciphertext with modulus Q satisfies c0 + c1s mod Q =
Δinm + e + I(X)q where I(X) is an integer polynomial that depends on the
Hamming weight and norm of the secret key, s ∈ R. Note that I(X) · q �
Q for common parameter settings. Then, the reduction simply calls the weak
scheme-switching oracle with BGV plaintext p = q, where χ′ is the implicit
error distribution of viewing ct as a BGV ciphertext in the above manner.

Let
ct(1) = OB↪→C(ct; q,Δ,Q,Q′, χ′, χ).

Notice that ct(1) ∈ R2
Q′ satisfies

c
(1)
0 + c

(1)
1 s mod Q′ = Δ(Δinm + e) + eχ

where eχ ∼ χ. Therefore, we simply call the CKKS rescale function and return
the result ct(2) ←CKKS.Rescale(ct(1),Δ). The output ct(2) ∈ R2

Q′′ , Q′′ = Q′/Δ,

now satisfies c
(2)
0 + c

(2)
1 s mod Q′′ = Δinm + e′′ with ‖e′′‖∞ ≤ ‖e‖∞ + ‖eχ‖∞

Δ +
(N‖s‖∞ +1)/2 by the rescaling lemma, Lemma 2.2. An illustration of the proof
is given in Fig. 2. �

214 K. Eldefrawy et al.

4.2 Bootstrapping in BGVfrom a CKKS-to-BGV Oracle

In this subsection, we show how to use a weak CKKS-to-BGV scheme-switching
oracle to bootstrap a BGV ciphertext. At a high level, bootstrapping a BGV
ciphertext consists of linear operations and then digit extraction. The digit
extraction step involves taking a BGV encryption of a message z with plain-
text modulus pr+1 and computing a BGV encryption of the message z〈r〉 with
plaintext modulus p, where z〈r〉 is the rth digit in the base-p decomposition of
z. By viewing the BGV encryption of z as a CKKS encryption with Δ = pr,
the CKKS-to-BGV oracle will output a BGV encryption of z〈r〉 with plaintext
modulus p.

Theorem 4.2 below uses the same bootstrapping hint as the state-of-the-
art BGV bootstrapping algorithm. That is, if we wish to refresh a cipher-
text ct = (c0, c1) ∈ BGVs(m)p,q to a larger modulus Q, we first modulus-
switch to a smaller modulus of a special form, q̃ = pr + 1, yielding a cipher-
text in BGVs(m)p,q̃. Then, we use a bootstrapping hint, an encryption of the
secret key under the target ciphertext modulus and a larger plaintext modulus
BGVs(s)pr+1,Q, to get the encrypted inner product in the larger ciphertext space
BGVs(c0 + c1s)pr+1,Q. This is done by treating the ciphertext in BGVs(m)p,q̃ as
plaintext to the bootstrapping hint in BGVs(s)pr+1,Q. See Halevi and Shoup’s
2015 paper, [34], for the full details.

Theorem 4.2. Fix some BGV parameters: R = Z[X]/(XN + 1), p a prime,
and q̃ = pr + 1 � Q′ ≤ Q are ciphertext moduli. Let ct ∈ BGVs(m)p,q̃ be the
input ciphertext and let hint = (h0, h1) ∈ BGVs(s)pr+1,Q be a bootstrapping hint
where s ∈ R is ct’s secret key. Then, the existence of a CKKS to BGV weak
scheme-switching oracle, OC↪→B(· ;Δ, p,Q,Q′, χ′, χ), implies the existence of a
BGV bootstrapping algorithm with time complexity that of the oracle plus the
time complexity to modulus-switch from Q to Q′ and the time complexity to per-
form a homomorphic inner product between ct and hint, where ct’s polynomials
are treated as plaintext to the hint. The output ciphertext has noise as most
Q′

Q q̃2‖ehint‖∞ + (1 + N‖s‖∞)/2 + eχ, where ehint is the noise of hint and eχ is
the noise of the output of OC↪→B.

Proof. Let ct = (c0, c1) ∈ BGVs(m)p,q̃ be the input ciphertext and hint =
(h0, h1) ∈ BGVs(s)pr+1,Q be the bootstrapping hint for ct’s secret key, s ∈ R.
The reduction is as follows.

1. First, perform the homomorphic inner product to get an encryption of z =
〈ct, (1, s)〉:

ct(1) = c1 · hint + (c0, 0) ∈ BGVs(z)pr+1,Q.

2. Next, call the oracle on the resulting ciphertext with Δ = pr, where χ′ is the
implicit error distribution of ct(1) when viewed as a CKKS ciphertext:

ct(2) ← OC↪→B(ct(1); pr, p,Q,Q′, χ′, χ).

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 215

3. View ct(1) as a ciphertext with plaintext modulus p and mod switch to Q′,
ct(3) ←BGV.ModReduce(ct(1), Q,Q′), and return the difference

ctout = ct(2) − ct(3) mod Q′ ∈ BGVs(m)p,Q′ .

Correctness is as follows. Recall, the operation (z mod q̃) mod p is z〈0〉 − z〈r〉
mod p by Lemma 2.3. The oracle treats the input ct as a CKKS ciphertext where
the least significant digit is in the r-th position (the lower digits are considered
as part of the error). Then, we treat ct(1) as implicitly encrypting z〈0〉 modulo
p, and the result follows.

To analyze the error associated with ctout, let ehint denote the error associated
with the ciphertext hint. It follows that ‖e(1)‖∞ ≤ q̃‖ehint‖∞. ct(2) has associated
error eχ given by the oracle and plaintext modulus p. By Lemma 2.1, ‖e(3)‖∞ ≤
Q′

Q q̃2‖ehint‖∞+(1+N‖s‖∞)/2. Note that the correctness condition for Lemma 2.1
holds since q̃2‖ehint‖∞ � Q/2 for reasonable parameters. Thus,

‖eout‖∞ ≤ Q′

Q
q̃2‖ehint‖∞ + (1 + N‖s‖∞)/2 + eχ.

�

We note that the above proofs adapt easily to the case where the BGV
plaintext modulus is a power of p. See Fig. 2 and Fig. 3 for pictorial illustrations
representing the reductions in Theorem 4.1 and Theorem 4.2.

4.3 Switching Between Schemes Using Bootstrapping

Here, for completeness, we briefly sketch how to switch between schemes using
bootstrapping. The main idea is that a coefficient-packed BFV ciphertext can
be seen as an “exhausted” coefficient-packed CKKS ciphertext and vice versa.
If we have an algorithm that bootstraps a coefficient-packed CKKS ciphertext,
which is easily obtained from a SIMD-packed CKKS bootstrapping algorithm
via homomorphic linear transformations [35], then we can treat a coefficient-
packed BFV ciphertext as a CKKS ciphertext and bootstrap using the afore-
mentioned algorithm. The output will be a CKKS ciphertext with the inputted
BFV ciphertext’s message as its plaintext polynomial. The other direction is
analogous. We can treat a coefficient-packed CKKS ciphertext as a coefficient-
packed BFV ciphertext and use a BFV bootstrapping algorithm to convert the
inputted ciphertext to a BFV ciphertext. Lastly, we can convert between BGV
and BFV cheaply with a scalar multiplication [2]. This shows how to convert
between BGV/BFV and CKKS with bootstrapping.

216 K. Eldefrawy et al.

Fig. 2. CKKS bootstrapping using a BGV to CKKS weak scheme-switching oracle. Our
input is a CKKS ciphertext with small modulus q. We call the weak scheme-switching
oracle on the input ciphertext with BGV plaintext modulus equal to the input CKKS
ciphertext modulus.

5 Bootstrapping via a Comparison Oracle

The SIMD FHE schemes discussed in this work are capable of natively evaluating
arithmetic circuits homomorphically in a SIMD fashion over an encrypted vector
of plaintext values. However, there are various functions, such as comparison,
that are useful to compute for applications, but are not easily expressible as an
arithmetic circuit. Several prior works [15,16,39,46] have focused on methods of
computing comparison (and other related functions such as max/min and ReLU)
in these SIMD FHE schemes.

In this section, we explore the relative hardness of homomorphically evalu-
ating the comparison function in these SIMD FHE schemes by showing how to
bootstrap in these schemes using several calls to a comparison oracle. In particu-
lar, we show how to bootstrap packed CKKS ciphertexts and thinly packed BGV
ciphertexts. At a high level, our comparison oracles (one for CKKS and one for
BGV) will take as input a ciphertext ct encrypting a vector of plaintext values
(m1, . . . ,mt) and a value α and output a new ciphertext ct′ that encrypts the
value 1 in its i-th slot if mi ≥ α and 0 otherwise. We observe that a comparison
oracle only outputs the encryption of a single bit in each slot and, thus, it is
much weaker than the scheme-switching oracles in Sect. 3. In particular, we will
have to make several calls to the comparison oracle in order to bootstrap (as

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 217

Fig. 3. BGV bootstrapping using a CKKS to BGV weak scheme-switching oracle.

opposed to only a single call to the weak scheme-switching oracles in Sect. 4).
Moreover, we will also have to apply the homomorphic linear transformations
CoeffsToSlots and SlotsToCoeffs in order to bootstrap, which was not required
previously when using the weak scheme-switching oracles. While we focus on
comparison in this section, our approach also extends to related functions such
as max/min and ReLU.

To see how a comparison oracle could be used to bootstrap, we will sketch the
intuition for the CKKS case as it is slightly simpler than the BGV case. Recall
that CKKS bootstrapping begins by taking a ciphertext ct ∈ R2

q and viewing it
as a ciphertext with respect to the largest modulus Q. Viewed this way, ct now
decrypts to Δm+e+I(X)q, and thus, we now need to homomorphically compute
the mod q function on the coefficients of the encrypted polynomial. If we call the
CoeffsToSlots homomorphic linear transform, we can put the coefficients of this
polynomial in the ciphertext slots. Let K denote an upper bound on ‖I‖∞. Then,
using log K calls to a comparison oracle, we can homomorphically compute the
mod q function to remove the Iq term. This is done by clearing one bit of I at
a time starting from the most significant bit by comparing to an appropriate

218 K. Eldefrawy et al.

power of 2 and subtracting the two ciphertexts. Once we have homomorphically
computed the mod q function, we apply the SlotsToCoeffs homomorphic linear
transform to finish bootstrapping.

5.1 Comparison Oracles

Here, we define the comparison oracles rigorously in the same manner as in
Sect. 3. The oracles’ inputs are a ciphertext ct ∈ R2

Q and a scalar α. For CKKS,
the comparison oracle is parameterized by input and output scaling factors Δ,Δ′,
input and output ciphertext moduli Q,Q′, and output error distribution χ. For
BGV, the comparison oracle is parameterized by the plaintext modulus p, input
and output ciphertext moduli Q,Q′, and output error distribution χ. We omit
the input error distribution χin from the parameters of these oracles as it is clear
from context. Recall from Sect. 3 that the output error distribution χ is related
to χin via a randomized function f that is determined by the instantiation of the
oracle.

Definition 5.1 (CKKS Comparison Oracle). Let O≥(ct, α;Δ,Δ′, Q,Q′, χ)
denote the CKKS comparison oracle that takes as input a ciphertext ct ∈
CKKSs(m)Δ,Q ⊂ R2

Q that decrypts to Δm + e = v and returns ct′ ∈
CKKSs(m′)Δ′,Q′ ⊂ R2

Q′ . The output ciphertext ct′ = (c′
0, c

′
1) satisfies c′

0 +
c′
1s mod Q′ = Δ′m′ + eχ = v′ where v′ is a polynomial with Sloti(v′) ≈ Δ′

if Sloti(v) ≥ Δ · α and Sloti(v′) ≈ 0 otherwise and eχ ∼ χ. The error in the
approximation of each Sloti(v′) is determined by the error polynomial eχ’s con-
tribution to the ith slot.

Definition 5.2 (BGV Comparison Oracle). Let O≥(ct, α; p,Q,Q′, χ)
denote the BGV comparison oracle that takes as input a ciphertext ct ∈
BGVs(m)p,Q ⊂ R2

Q and returns ct′ ∈ BGVs(m′)p,Q′ ⊂ R2
Q′ . The output cipher-

text ct′ = (c′
0, c

′
1) satisfies c′

0 + c′
1s mod Q′ = m′ + peχ where m′ is a polynomial

with Sloti(m′) = 1 if Sloti(m) ≥ α and Sloti(m′) = 0 otherwise and eχ ∼ χ.

5.2 Bootstrapping in CKKS from Comparisons

We first show how to bootstrap a CKKS ciphertext using a CKKS comparison
oracle. For ease of exposition, we will focus on the case where the ciphertext
moduli and scaling factors are powers of two. We show the following theorem.

Theorem 5.1. Let R, Q, Δ be CKKS parameters. Let ct = (c0, c1) ∈ R2
q be a

CKKS ciphertext such that c0 + c1s = Δm + e + I(X)q over the ring R with
‖I(X)‖∞ ≤ K. Then assuming the existence of a list of CKKS comparison
oracles O≥ from Definition 5.1, with parameters

O≥(ct′i−1,K/2i; q,K/2i−1 · q,Qi−1, Qi, χ)

satisfying Qi | Qi−1 for i = 1 to log K, there is a CKKS bootstrapping algo-
rithm that makes log2 K calls to the oracles together with the CoeffsToSlots and
SlotsToCoeffs homomorphic linear transformations for CKKS bootstrapping.

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 219

Proof. Let ct = (c0, c1) ∈ R2
q be the input ciphertext in CKKSs(m)Δ,q. That is,

the ciphertext satisfies c0 + c1s mod q = Δm + e. By embedding c0, c1 into RQ,
it follows that this new ciphertext with modulus Q satisfies c0 + c1s mod Q =
Δm + e + I(X)q where I(X) is an integer polynomial that depends on the
Hamming weight and norm of the secret key, s ∈ R. Note that I(X) · q � Q for
commonly used parameter settings. Let K be an upper bound on the magnitude
of a coefficient of I(X). WLOG, assume that K is a power of 2. First, we run
the CoeffsToSlots step of the CKKS bootstrapping procedure (see Sect. 2.3) to
obtain a ciphertext ct′ ∈ R2

Q′ that encrypts the coefficients of Δm + e + I(X)q
in its slots. Note that if ct was a fully packed ciphertext, this would require
two ciphertexts to store all the coefficients. For simplicity, we will assume that
ct is not fully packed so that the coefficients can all be encrypted in a single
ciphertext ct′.

Each coefficient of I(X) can be expressed as
∑log K−1

i=0 2i · Ii with Ii ∈ {0, 1}.
Let ct′ = ct′0. For i = 1 to log K, call

O≥(ct′i−1,K/2i; q,K/2i−1 · q,Qi−1, Qi, χ)

to obtain cti with ciphertext modulus Qi. Then, mod down ct′i−1 to modulus Qi

to obtain ct′′i−1. Set ct′i = ct′′i−1 − cti.
Observe that ct′log K is a ciphertext with modulus Qlog K that has the coef-

ficients of Δm + elog K in its slots. Call SlotsToCoeffs to obtain a bootstrapped
ciphertext. �

5.3 Bootstrapping in BGV from Comparisons

We now show how to bootstrap a BGV ciphertext using a BGV comparison
oracle. We show the following theorem.

Theorem 5.2. Let R, q, p be BGV parameters and let ct ∈ BGVs(m)p,q be
an input ciphertext. Then, the existence of oracles O≥(ct, α; pr+1, Qi−1, Qi, χ),
for Qi � q, pr+1 < q, implies the existence of a BGV bootstrapping algorithm
that makes �log p� − 1 calls to the oracles and also computes a homomorphic
inner product and the homomorphic linear transformations CoeffsToSlots and
SlotsToCoeffs for BGV bootstrapping.

Proof. First, we calculate the homomorphic inner product with standard tech-
niques: The input is a BGV ciphertext ct ∈ BGVs(m)p,q, and we switch to the
modulus q̃ = pr + 1,

ct′ ← ModSwitch(ct, q̃).

Using the bootstrapping hint, hint ∈ BGVs(s)Q,pr+1 , calculate the homomorphic
inner product

ct′′ = c′
1 · hint + (c′

0, 0) ∈ BGVs(z)pr+1,Q.

Now we have a BGV ciphertext in BGVs(z)Q,pr+1 , and we can call the homomor-
phic linear transformation CoeffsToSlots to move these coefficients to the slots
modulo pr+1. Call this ciphertext ct0. Notice that in each slot, we want to next

220 K. Eldefrawy et al.

extract the largest p-digit in z = prz〈r〉 + pr−1(lowerdigits). Let k = �log2 p�.
Now we use the oracle to extract

z〈r〉 =
K−1∑

i=0

2izr
i ,

for zr
i ∈ {0, 1}, bit-by-bit.

Initialize ctsum ← (0, 0). For i = 1, . . . , k − 1, let

ct′i ← O≥(cti−1, p
r · 2k−i; pr+1, Qi−1, Qi, χ)

and let cti = ModSwitch(cti−1, Qi) − (pr2k−i) · ct′i and ctsum ← 2k−i · ct′i +
ModSwitch(ct′i, Qi). Finally, ctsum is an encryption of z〈r〉 modulo p so we com-
pute the ciphertext

ModSwitch(ctk−1, Qk−1) − ctsum

and then call the homomorphic linear transformation SlotsToCoeffs to move the
slots modulo p to the coefficients and return the resulting ciphertext.

Correctness follows from Lemma 2.3.

6 Conclusion

In this work, we provide strong evidence that homomorphic scheme-switching
between the BGV/BFV and CKKS SIMD FHE schemes is as hard as bootstrap-
ping. We achieve this by showing how to bootstrap both BGV/BFV and CKKS
ciphertexts with a single call to such an algorithm (in fact, only a weak scheme-
switching algorithm that does not convert the differences in packings between
the schemes) without having to perform homomorphic linear transformations. In
addition, we show how homomorphic comparisons are analogously powerful by
bootstrapping with a few calls to a SIMD comparison algorithm. The fact that
we can bootstrap with one call to a weak scheme-switching oracle is surprising
since weak scheme-switching appears much simpler than bootstrapping.

References

1. Agrawal, R., et al.: FAB: an FPGA-based accelerator for bootstrappable fully
homomorphic encryption. In: HPCA, pp. 882–895. IEEE (2023)

2. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 1

3. Armknecht, F., Sadeghi, A.: A new approach for algebraically homomorphic
encryption. IACR Cryptol. ePrint Arch., p. 422 (2008)

4. Badawi, A.A., et al.: OpenFHE: open-source fully homomorphic encryption library.
Cryptology ePrint Archive, Paper 2022/915 (2022). https://eprint.iacr.org/2022/
915

https://doi.org/10.1007/978-3-642-40041-4_1
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 221

5. Bae, Y., Cheon, J.H., Cho, W., Kim, J., Kim, T.: Meta-BTS: bootstrapping preci-
sion beyond the limit. Cryptology ePrint Archive, Paper 2022/1167 (2022). https://
eprint.iacr.org/2022/1167. To Appear in CCS 2022

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

7. Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.-P.: Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In: Can-
teaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 587–
617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 21

8. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining ring-
LWE-based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1), 316–
338 (2020)

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

11. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 2

12. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 12

13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

15. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods with
optimal complexity. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 221–256. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64834-3 8

16. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 415–445. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34621-8 15

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

18. Chillotti, I., Ligier, D., Orfila, J.-B., Tap, S.: Improved programmable bootstrap-
ping with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 670–699. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92078-4 23

https://eprint.iacr.org/2022/1167
https://eprint.iacr.org/2022/1167
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-34621-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-030-92078-4_23

222 K. Eldefrawy et al.

19. Drucker, N., Moshkowich, G., Pelleg, T., Shaul, H.: BLEACH: cleaning errors in
discrete computations over CKKS. Cryptology ePrint Archive, Paper 2022/1298
(2022). https://eprint.iacr.org/2022/1298

20. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., p. 144 (2012)

22. Feldmann, A., et al.: F1: a fast and programmable accelerator for fully homomor-
phic encryption (extended version). CoRR abs/2109.05371 (2021)

23. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! (1994)
24. Geelen, R., et al.: BASALISC: flexible asynchronous hardware accelerator for fully

homomorphic encryption. IACR Cryptol. ePrint Arch., p. 657 (2022)
25. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV revisited. IACR

Cryptol. ePrint Arch., p. 1363 (2022)
26. Gentry, C.: A fully homomorphic encryption scheme. Diss. Stanford University

(2009)
27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–

178. ACM (2009)
28. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic

encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

29. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

30. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

31. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

32. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

33. Halevi, S., Shoup, V.: Bootstrapping for HElib. IACR Cryptol. ePrint Arch., p.
873 (2014)

34. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

35. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 4

36. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryp-
tion library. IACR Cryptol. ePrint Arch., p. 1481 (2020)

37. Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete Fourier trans-
forms and FHE bootstrapping. IEEE Access 7, 57361–57370 (2019)

https://eprint.iacr.org/2022/1298
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-96884-1_4

On the Hardness of Scheme-Switching Between SIMD FHE Schemes 223

38. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 16

39. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and
BFV. Proc. Priv. Enhancing Technol. 2021(3), 246–264 (2021). https://doi.org/
10.2478/popets-2021-0046

40. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

41. Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for
bootstrapping of approximate HE. Cryptology ePrint Archive, Report 2020/1355
(2020). https://eprint.iacr.org/2020/1355

42. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate HE. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 491–520. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06944-4 17

43. Kim, A., et al.: General bootstrapping approach for rlwe-based homomorphic
encryption. IACR Cryptol. ePrint Arch., p. 691 (2021)

44. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes
for finite fields. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol.
13092, pp. 608–639. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4 21

45. Kim, S., Park, M., Kim, J., Kim, T., Min, C.: EvalRound algorithm in CKKS
bootstrapping. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol.
13792, pp. 161–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22966-4 6, https://eprint.iacr.org/2022/1256

46. Lee, E., Lee, J.W., Kim, Y.S., No, J.S.: Optimization of homomorphic comparison
algorithm on RNS-CKKS scheme. Cryptology ePrint Archive, Paper 2021/1215
(2021). https://eprint.iacr.org/2021/1215

47. Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., No, J.-S.: High-precision bootstrap-
ping of RNS-CKKS homomorphic encryption using optimal minimax polynomial
approximation and inverse sine function. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 618–647. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 22

48. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision boot-
strapping for approximate homomorphic encryption by error variance minimiza-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol.
13275, pp. 551–580. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
06944-4 19

49. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 648–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77870-5 23

50. Li, B., Micciancio, D., Schultz, M., Sorrell, J.: Securing approximate homomorphic
encryption using differential privacy. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022. LNCS, vol. 13507, pp. 560–589. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15802-5 20

51. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evaluation
using FHEW/TFHE bootstrapping. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT
2022. LNCS, vol. 13792, pp. 130–160. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22966-4 5

https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.1007/978-3-540-70936-7_31
https://eprint.iacr.org/2020/1355
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-031-22966-4_6
https://doi.org/10.1007/978-3-031-22966-4_6
https://eprint.iacr.org/2022/1256
https://eprint.iacr.org/2021/1215
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-031-15802-5_20
https://doi.org/10.1007/978-3-031-15802-5_20
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-031-22966-4_5

224 K. Eldefrawy et al.

52. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial and
non-polynomial evaluations in homomorphic encryption. In: IEEE Symposium on
Security and Privacy, pp. 1057–1073. IEEE (2021)

53. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

54. Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with
d-operand multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
138–154. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 8

55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

56. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

57. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

58. Samardzic, N., et al.: F1: a fast and programmable accelerator for fully homomor-
phic encryption. In: MICRO, pp. 238–252. ACM (2021)

59. Samardzic, N., et al.: CraterLake: a hardware accelerator for efficient unbounded
computation on encrypted data. In: ISCA, pp. 173–187. ACM (2022)

60. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-14623-7_8
https://doi.org/10.1007/978-3-642-14623-7_8

Classical and Quantum 3 and 4-Sieves
to Solve SVP with Low Memory

André Chailloux(B) and Johanna Loyer(B)

Inria Paris, EPI COSMIQ, Paris, France
andre.chailloux@inria.fr, johanna.loyer@gmail.com

Abstract. The Shortest Vector Problem (SVP) is at the foundation
of lattice-based cryptography. The fastest known method to solve SVP
in dimension d is by lattice sieving, which runs in time 2td+o(d) with
2md+o(d) memory for constants t, m ∈ Θ(1). Searching reduced vectors in
the sieve is a problem reduced to the configuration problem, i.e. searching
k vectors satisfying given constraints on their pairwise scalar products.

In this work, we present a framework for k-sieve algorithms: we filter
the input list of lattice vectors using a code structure modified from
[Bec+16] to get lists centred around k codewords summing to the null-
vector. Then, we solve a simpler instance of the configuration problem in
the k filtered lists. Based on this framework, we describe classical sieves
for k = 3 and 4 that introduce new time-memory trade-offs. We also use
the k-Lists algorithm [Kir+19] inside our framework, and this improves
the time for k = 3 and gives new trade-offs for k = 4.

Keywords: Shortest Vector Problem (SVP) · Lattice sieving ·
Locality-sensitive filtering (LSF) · Configuration problem

1 Introduction

The Shortest Vector Problem (SVP) is a central problem in lattice-based cryp-
tography. For a given d-dimensional lattice, SVP asks to find a shortest non-zero
vector in the lattice. This problem admits a variety of derived problems such as
SIS, LWE and their modular or ring versions, on which several of the (believed to
be) quantum-resistant cryptographic protocols rely, such as Dilithium [Duc+19]
and Kyber [Bos+18] both winners of the NIST standardization process. It is
therefore crucial to estimate the hardness of these constructions both in classi-
cal and quantum models.

There are two main families of algorithms for SVP: those based on enumera-
tion [FP85,Kan83,Poh81] and those based on sieving [NV08,MV10]. The former
does not have good asymptotic running but requires a small amount of memory
and has good performances in practice. The latter has much better asymptotic
running time - especially with heuristics that improve the analysis of these algo-
rithms - but requires a very large amount of memory, sometimes as much as

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 225–255, 2023.
https://doi.org/10.1007/978-3-031-40003-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_9&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_9

226 A. Chailloux and J. Loyer

the running time. Despite these strong memory requirements, the current best
algorithms for SVP in practice are based on sieving methods1

The rough idea of sieving algorithms is the following: we start from a list of
lattice points of large norm and sum them in order to find shorter lattice points,
and repeat until we find a short vector. However, the number of points we have
to start with is very large, which explains the large memory requirements. For
example, in 2-sieve algorithms, where we start from a list of N points and build
shorter points by summing pairs, we need to take N = 20.2075d+o(d) in order to
be able to build enough shorter lattice points.

Reducing this memory requirement makes the attack more materially practi-
cal, and a way to do it is by the k-sieve introduced in [BLS16] and then improved
by [HK17,HKL18,Kir+19]. The idea is to sum k lattice points instead of pairs
at each sieving step in order to find shorter ones. This decreases the number
N of lattice points that we need at each step to find the same number N of
shorter lattice points. However, this will drastically increase the time to perform
the sieving step. For instance, a naive exhaustive search of each k-tuple takes
time O(Nk), and the fact that N is smaller does not outweigh this increased
exponent, see Table 1.

Table 1. N is the number of points needed for k-sieving. Nk is the running time of a
naive exhaustive search for k-sieving.

k 2 3 4 5 6
log2(N)

d
0.2075 0.1887 0.1724 0.1587 0.1473

log2(Nk)

d
0.4150 0.5661 0.6896 0.7935 0.8838

There are two main ideas that significantly improve the complexity of k-sieving
algorithms:

– For 2-sieving, perform locality-sensitive filtering (LSF). The idea is to regroup
lattice points into filters for which pairs are more likely to be reducible than
random pairs. The most efficient known way to perform LSF for 2-sieve is
to construct a code that behaves as a random code but which is efficiently
decodable. In [Bec+16], the authors use a random product code to achieve
this. Then, filters will correspond to all lattice points which will be close to a
given code point.

– For k > 2, one can replace the reducibility constraint ‖�x 1 + · · · + �xk‖ ≤ R
(starting from vectors of norm R) with constraints of the form 〈�x i|�x j〉 ≤ Ci,j

for some well-chosen Ci,j . This is known as the configuration problem. The
main advantage is that we now only have constraints on pairs of points instead
of k-tuples and we can use much more efficient algorithms, including the LSF
idea presented above.

1 See https://www.latticechallenge.org/svp-challenge/.

https://www.latticechallenge.org/svp-challenge/

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 227

Fig. 1. A1 + A2 + A3 = �0 with 〈Ai|Aj〉 = − 1
2

for i �= j.

In this work, we add an extra idea that gives better time-memory trade-offs
for 3-sieve and 4-sieve algorithms, both in the classical and quantum regimes,
and introduce the notion of LSF tailored for k-sieving. In previous algorithms,
we first start from a configuration problem and then use LSF only on pairs of
points. Here, we first use LSF in a way to construct many lists of lattice points
L1, . . . , Lk such that k-tuples (�x 1, . . . , �xk) ∈ L1 × · · · × Lk are more likely to
reduce than random k-tuples.

We illustrate briefly this idea with an example: in 3-sieve algorithms, we
look for triplets of lattice points (�x 1, �x 2, �x 3) each of norm R such that ‖�x 1 +
�x 2 + �x 3‖ ≤ R. Instead of directly translating this condition into a configuration
problem, we first perform a filtering step as follows: consider a list-decodable code
that contains many triples of words A1,A2,A3 such that A1 + A2 + A3 = �0 (see
Fig. 1). If we consider lists of lattice points L1, L2, L3 such that each Li contains
lattice points close to Ai, then triplets of points (�x 1, �x 2, �x 3) ∈ L1 × L2 × L3 of
norm R are more likely to satisfy ‖�x 1 + �x 2 + �x 3‖ ≤ R than random triplets. We
then use known algorithms on configuration search on these triplets of lists to
find reducible triplets.

We summarize our contributions below.

– We show how to extend the construction of random product codes of [Bec+16]
as a means of performing LSF tailored for k-sieving. Our code will also be
efficiently decodable and the set of codewords can be partitioned into sets
{A1, . . . ,Ak} each of size k such that A1 + · · · + Ak = �0.

– We analyze classical and quantum algorithms for 3 and 4-sieving using this
k-sieve tailored filtering, and get improved time-memory trade-offs for these
algorithms.

We first analyze our results for classical algorithms (see Fig. 2). For the 3-
sieve, our algorithm performs better in the minimal memory regime. In the main
text, we also present other time-memory trade-offs. However, when we do not
restrict memory, we obtain the same running time 20.3041d+o(d) as in [HKL18]
and our method does not give improvements here. For 4-sieve algorithms, the

228 A. Chailloux and J. Loyer

Fig. 2. Time T = 2td+o(d) for classical algorithms as a function of available memory
2md+o(d) = 2M .

situation is a little different. We use a different algorithm than the ones studied
in previous work. We essentially combine sequentially two 2-sieve algorithms.
However, we first perform our tailored LSF on 4-tuples of points to speed up
this process. As Fig. 2 shows, this algorithm does not perform well in the mini-
mal memory regime (M = 20.1723d+o(d)) but then works much better for slightly
larger memories, outperforming our 3-sieve algorithm and also the best previ-
ously known running time for 4-sieve, which used more memory.

We must notice however that it is hard to make direct comparisons with
previous work in the classical setting as those are mainly done for Gauss-sieve
and we present results for NV-sieve which has better time-memory trade-offs
asymptotically. However, our results do show that tailored LSF significantly
improves the algorithms we study, and we leave it as future work to extend this
idea to the Gauss sieve.

Fig. 3. Time T = 2td+o(d) for quantum 3 and 4-sieves algorithms as a function of
available memory 2md+o(d) = 2M .

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 229

In the quantum setting (see Fig. 3), we use the same algorithms as in [Kir+19]
so the comparison can be made more directly. Our algorithm uses our tailored
filtering and then applies Algorithm 4.1 of [Kir+19], which is not the best algo-
rithm for the configuration problem for low values of k. What we show is that
this algorithm benefits from this prefiltering. The results should be compared
with the state-of-the-art Algorithm B.2 of [Kir+19]. However, only the extrem-
ities of the trade-offs of their algorithm were given, represented by triangles on
the graphs of Fig. 3. For k = 3 in the minimal memory regime M = 20.1887d+o(d),
we achieve time T = 20.3098d+o(d) improving the time T = 20.3266d+o(d) of Algo-
rithm B.2 in [Kir+19]. For k = 4, our algorithm does not work well for the lowest
memory regime but gives a new interesting time-memory trade-off.

Notice that as in previous algorithms cited here, our quantum algorithms
require quantumly accessible classical memory (QRACM) and poly(d) qubits.

Outline of the Article. Sect. 2 introduces the helpful preliminaries on quantum
computing and lattice sieving. Section 3 presents the new code structure for the
filtering step tailored for k-sieving. Then, we present a framework to solve SVP
by sieving in Sect. 4, and describe some instances within this framework in the
classical model in Sect. 5 and in the quantum model in Sect. 6.

2 Preliminaries

Notations. We designate the elements of R
d as vectors as well as points. The

norm considered in this work is Euclidean and is denoted by ‖ · ‖. We denote
by Sd−1 = {�x ∈ R

d : ‖�x‖ = 1} the d-dimensional unit sphere. For two
vectors �x 1, �x 2 ∈ R

d, 〈�x 1|�x 2〉 denotes their scalar product and θ(�x 1, �x 2) =
arccos(〈�x1|�x2〉

‖�x1‖‖�x2‖) denotes their angle. We use the notation ˜O to denote running

times T = ˜O (

2cd
)

, which ignores sub-exponential factors in d.

2.1 Quantum Computing

QRAM Model. The Quantum Random Access Memory (QRAM) is an operation
added to the quantum circuit model. We consider here only quantum-accessible
classical memory (sometimes denoted as QRACM in the literature). Consider
N classical registers x1, ..., xN ∈ {0, 1}d stored in memory. A QRAM operation
consists of applying the following unitary

UQRAM : |i〉 |y〉 → |i〉 |xi ⊕ y〉 .

This work relies on the QRAM model, meaning that the above unitary can be
constructed efficiently. In particular, we assume that given list L there exists an
efficient quantum circuit for 1√

|L|
∑

i |i〉 |0〉 → 1√
|L|

∑

i |i〉 |L[i]〉. With a QRAM

access to L, this can be done by applying Hadamard gates to state |0〉 to create
a superposition over all indices, and then by querying L[i] for each i in the
superposition.

230 A. Chailloux and J. Loyer

Proposition 1 (Grover’s algorithm [Gro96]). We are given QRAM access
to a list L = {x1, ...x�}. We consider a function f : L → {0, 1}, associated to its
unitary Of : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉, such that there are t elements xi ∈ L said
”marked” verifying f(xi) = 1. The value t is not necessarily known. There exists
a quantum algorithm, called Grover’s algorithm, that returns a marked element
with probability greater than 1/2 using O(

√|L|/t) calls to Of . Classically, this
problem cannot be solved with a better average complexity than Θ(|L|/t) queries
in the black box model.

Proposition 2 (Quantum Amplitude amplification [Bra+02]). Let A be
an algorithm without measurements that finds a solution x ∈ L such that
f(x) = 1 with a success probability p. Quantum amplitude amplification returns
a solution with probability 1/2 using O(1/

√
p) calls to Of .

Moreover, one can make the success probability of these algorithms go expo-
nentially close to 1 by repeating them k times:

Proposition 3. Grover’s algorithm (resp. Quantum Amplitude Amplification)
described above can have a success of 1− 2−η with O(η

√|L|/t) (resp. O(η/
√

p))
calls to Of .

2.2 Lattice Sieving

Definition 1 (Lattice). Given a basis B = (�b1, ...�bm) ∈ R
d of lin-

early independent vectors, the lattice generated by B is defined as L(B) =
{

∑m
i=1 zi

�bi, zi ∈ Z

}

. For simplicity, we work with lattices of full rank, i.e. d = m.

Definition 2 (Shortest Vector Problem). Given a basis B, the Shortest
Vector Problem (SVP) asks to find a shortest non-zero vector of L(B). By
Minkowski’s theorem, the Euclidean norm of a shortest vector of L(B) is upper-
bounded by

√
d · det(B)1/d.

Sieving Algorithms. The sieving algorithms, introduced by [NV08], are a class
of heuristic algorithms that solves SVP. Given a list of lattice vectors of norm
at most R and a reducing factor γ < 1, a sieving step will return a list of lattice
vectors of norm at most γ. To obtain these reduced vectors, it computes all the
differences between pairs of vectors of the input list and fills the output list with
those which are of norm at most γ. Then, it iteratively builds lists of shorter
lattice vectors by applying this sieve step. The first list of lattice vectors can be
sampled with Klein’s algorithm [Kle00] for example. Because the norms of the
list vectors reduce with a factor by γ < 1 at each sieve step, the output list will
hopefully contain a non-zero shortest lattice vector after a polynomial number
of iterations.

We present here two simplifications of notation. First, we will only consider
the case R = 1. Indeed, all the algorithms we consider will be independent of
R. Also, in practice, we have γ ≈ 1 (typically γ = 1 − 1

poly(d)). For simplicity of

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 231

Algorithm 1. NV-sieve step
Require: List L of N lattice vectors of norm at most 1, a reducing factor γ < 1.
Ensure: List Lout of N lattice vectors of norm at most γ.

for (�x 1, �x 2) ∈ L do
if ‖�x 1 − �x 2‖ ≤ γ then add �x 1 − �x 2 to Lout

return Lout

Algorithm 2. Solve SVP by the sieving method
Require: basis B of a lattice L, a reducing factor γ < 1.
Ensure: a shortest vector of L (probably)

L ← generate N lattice vectors of norm at most 1 using Klein’s algorithm on B
while L does not contain a short vector do

L ← Sieve-step(L, γ) � Any sieve step algorithm.

return min(L)

notations, we will fix γ = 1 which doesn’t change the overall analysis of these
algorithms.

There is also another family of sieving algorithms called Gauss-sieve. These
have worse asymptotic time-memory trade-offs so we don’t analyze them in this
work since we are interested in the best asymptotic time-memory trade-offs.
However, they are usually faster in practice and it is an interesting follow-up to
look at how our new ideas for sieving apply in this setting.

The sieving algorithms stand under the following heuristic.

Heuristic 1. Lattice points behave like uniform points.

Notice that uniform vectors of norm at most 1 are with a high probability
of norm close to 1. So we will consider that the lattice vectors are lying on
the sphere Sd−1. The relevance of this heuristic has been studied in [NV08]. It
becomes invalid when the vectors become short, but in this case, we can assume
we have solved SVP. In practice, the faster algorithms to solve SVP rely on this
heuristic.

Tuple-Sieve and k-List Algorithms. The NV-sieve described above can be gen-
eralized to the k-sieve.

Definition 3 (Approximate k-Lists problem). Given k lists L1..., Lk of
equal exponential (in d) size N and whose elements are i.i.d. uniformly cho-
sen vectors from Sd−1, the approximate k-List problem is to find N k-tuples
(�x1, . . . , �xk) ∈ L1 × · · · × Lk satisfying ‖�x1 + · · · + �xk‖ ≤ 1.

Volume of Spherical Cap / Hypercone Filter. We define the spherical cap of
center �s and angle α as follows:

H�s,α := {�x ∈ Sd−1 | θ(�x , �s) ≤ α}.

232 A. Chailloux and J. Loyer

In order to compute the complexity of sieving algorithms, we will need the
following value.

Proposition 4 ([Bec+16], Lemma 2.1) For an angle α ∈ [0, π/2] and a vector
�v ∈ Sd−1, the ratio of the volume of a spherical cap H�v ,α to the volume of the
sphere Sd−1 is

V(α) := poly(d) · sind(α).

2.3 Configurations

In the approximate k-list problem, we have the condition ‖�x 1 + · · · + �xk‖ ≤ 1.
Notice that we can rewrite

‖�x 1 + · · · + �xk‖2 =
k

∑

i=1

‖�x i‖2 + 2
k

∑

i,j �=i

〈�x i|�x j〉.

This means that the condition on ‖�x 1 + · · · + �xk‖ can be verified if some con-
straints on the 〈�x i|�x j〉 are verified. This motivates the following definition:

Definition 4 (Configuration) The configuration C of k points �x1, . . . , �xk ∈
Sd−1 is the Gram matrix of the �xi’s, i.e. Ci,j = 〈�xi|�xj〉.

A configuration is said balanced when for i �= j, Ci,j = −1/k and Ci,i = 1. In
this case, the tuple points will form together the summits of a regular polyhedron
inscribed in the sphere.

For I ⊂ [k], we denote by C[I] the |I| × |I| submatrix of C obtained by
restricting C to the rows and columned whose indexes are in I.

Definition 5 (Configuration problem) Let k ∈ N and ε > 0. Suppose we are
given a target configuration C ∈ R

k×k. Given lists L1, . . . , Lk all of exponential
(in d) size |L| whose elements are i.i.d. uniform from Sd−1, the configuration
problem consists of finding a 1 − o(1) fraction of all solutions, where a solution
is a k-tuple (�x1, . . . , �xk) with �xi ∈ Li such that 〈�xi|�xj〉 ≤ Ci,j for all i, j.

[HK17] showed that the approximate k-Lists problem (Definition 3) can be
reduced to the configuration problem.

Proposition 5 ([HK17]). The probability that a k-tuple of i.i.d. uniformly ran-
dom points on Sd−1 satisfies a given configuration C ∈ R

k×k is det(C)d/2.

After a sieving step on a list L, we want to get |L|k · det(C)d/2 k-tuples
satisfying the chosen configuration C, so that they are reducing k-tuples. We
need this number of solutions to be equal to |L|. So we can deduce the required
size of L, in function of the target configuration:

|L| = ˜O
(

(

1
det(C)

)
d

2(k−1)
)

. (1)

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 233

For a fixed k, the minimum value of |L| is reached when the configuration
C is balanced. In particular, for a balanced configuration with k = 2 we require
(4/3)d/2 = 20.2075d+o(d) points ; for k = 3, (27/16)d/4 = 20.1887d+o(d) points and
for k = 4, (256/125)d/6 = 20.1724d+o(d) points. See Table 1 for the other values of
k. We see that this value decreases with k, and that is the main interest of the
k-sieve: to reduce the minimum memory we require to solve SVP. Considering
non-balanced configurations leads to not reaching the lower bound for memory,
but it can allow decreasing time by adding a little memory. This is useful to get
better time-memory trade-offs.

Proposition 6 (Size of the filtered lists Li(xj) given Ci,j [Kir+19]). We
are given a configuration C ∈ R

k×k and lists L1, . . . Lk ⊂ Sd−1 each of size |Lj |.
For �x1, . . . , �xi ∈ Sd−1, we denote

Lj(�x1, . . . , �xi) := {�xj ∈ Lj : 〈�x1|�xj〉 ≤ C1,j , . . . , 〈�xi|�xj〉 ≤ Ci,j}.

Then, for a i-tuple �x1, . . . , �xi satisfying the configuration C[1 . . . i], the
expected size of Lj(�x1, . . . , �xj) is

E(|Lj(�x1, . . . , �xi)|) = |Lj | ·
(

det(C[1, . . . , i, j])
det(C[1, . . . , i])

)d/2

.

And in particular,

E(|Lj(�x i)|) = |Lj | · (

1 − C2
i,j

)d/2
.

3 Code Structure and Filtering

3.1 Locality Sensitive Filtering

Random Product Code (RPC). We assume d = m ·b, for m = O(polylog(d)) and
a block size b. The vectors in R

d will be identified with tuples of m vectors in
R

b. A random product code C of parameters [d,m,B] on subsets of Rd and of
size Bm is defined as a code of the form

C = Q · (C1 × C2 × · · · × Cm)

where Q is a uniformly random rotation over R
d and the subcodes C1, . . . ,Cm

are sets of B vectors, sampled uniformly and independently random over the
sphere

√

1/m · Sb−1, so that codewords are points of the sphere Sd−1. We can
have a full description of C by storing mB points corresponding to the codewords
of C1, . . . ,Cm and by storing the rotation Q. When the context is clear, C will
correspond to the description of the code or to the set of codewords.

The code points of C behave like random points of the sphere Sd−1. This
was argued in [Bec+16], see for instance Lemma 5.1 and Appendix C therein.
Random product codes can be easily decoded in some parameter range, as the
following proposition shows.

234 A. Chailloux and J. Loyer

Proposition 7 ([Bec+16]). Let C be a random product code of parameters
(d,m,B) with m = log(d) and Bm = NO(1). For any �x ∈ Sd−1 and angle
α, one can compute H�x,α ∩ C in time No(1) · |H�x,α ∩ C|, where H�x,α is defined in
Proposition 4.

Definition 6 (Hypercone filter). Given a center Aj
i ∈ Sd−1 and an angle

α, the filter fAj
i ,α is the set of all points in Sd−1 of angle at most α with Aj

i .

Random Product Codes are useful tools to search reducing pairs of lattice
vectors in a sieving step (Algorithm 1). Indeed, given a list of lattice vectors on
Sd−1 and a Random Product Code C, we can efficiently compute for a given vec-
tor all its nearest codewords. In this way, we construct lists that contain vectors
from the input list close to the codewords. Each codeword is considered the cen-
ter of a filter. Then, we can search in the same filter two vectors �x 1, �x 2 such that
�x 1−�x 2 is reduced. By adding Locality Sensitive Filtering using Random Product
Codes [Bec+16,Laa16] in a sieving step, this provides the actual best algorithms
to solve SVP. The sieve with LSF reaches time 20.292d+o(d) in the classical model
[Bec+16], in time 20.257d+o(d) in the quantum model [CL21,Hei21,Bon+22].

However, a k-sieve structure for k > 2 searches k-tuples such that �x 1+· · ·+�xk

is reduced. Then, searching within one unique filter does not permit to quickly
find a solution without having to check a lot of non-reducing elements. So we
will slightly modify the construction of the random product code in order to
take into account a configuration.

k-Random Product Code. In order to describe our k-Random Product Code
construction, we start with the case k = 3. Instead of constructing fully random
codes C1, . . . ,Cm, we will construct random codes Ci which have the following
property:

∀A1 ∈ Ci,∃A2,A3 ∈ Ci st. A1 + A2 + A3 = �0.

More formally, we assume d = m · b, for m = O(polylog(d)) and a block size
b. The vectors in R

d will be identified with tuples of m vectors in R
b. A random

product code with triangles C of parameters [d,m,B] on subsets of Rd and of
size Bm is defined as a code of the form

C = Q · (C1 × C2 × · · · × Cm)

where Q is a uniformly random rotation over R
d and the subcodes C1, . . . ,Cm

are each constructed as follows:

1. Sample B/3 random vectors A1
1, . . . ,A

B/3
1 sampled uniformly at random over

the sphere
√

1/m · Sb−1.
2. For each i ∈ [B/3], pick a random vector Aj

2 sampled uniformly at random
over the sphere

√

1/m · Sb−1 with the condition that 〈Aj
1|Aj

2〉 = − 1
2m .

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 235

3. For each i ∈ [B/3], let Aj
3 be the unique point on the sphere

√

1/m · Sb−1 st.
Aj

1 + Aj
2 + Aj

3 = �0.
The code C is then the set of points {A1

1,A
1
2,A

1
3, . . . ,A

B/3
1 ,AB/3

2 ,AB/3
3 }.

Notice that Aj
3 = −(Aj

1 + Aj
2) is of the correct norm 1√

m
. Indeed,

‖Aj
3‖2 = ‖ − (Aj

1 + Aj
2)‖2 = ‖Aj

1‖2 + ‖Aj
2‖2 + 2〈Aj

2|Aj
1〉 =

2
m

− 2
2m

=
1
m

.

We can generalize this construction for any constant k to get a k-RPC of
codewords {Aj

i}i∈[k],j∈[B/3] such that

∀A1 ∈ Ci,∃A2, . . .Ak ∈ Ci st.
k

∑

i=1

Ai = �0.

1. Sample B/k random vectors A1
1, . . . ,A

B/k
1 sampled uniformly at random over

the sphere
√

1/m · Sb−1.
2. For each j ∈ [B/k], pick a random vector Aj

2 sampled uniformly at random
over the sphere

√

1/m · Sb−1 with the condition that 〈Aj
1|Aj

2〉 = − 1
(k−1)m .

Then, for i ∈ [|2, k − 1|], pick random vectors Aj
i such that for each previous

i′ ∈ [i], 〈Aj
i |Aj

i′〉 = − 1
(k−1)m .

3. For each j ∈ [B/k], let Aj
k be the unique point on the sphere

√

1/m · Sb−1

such that
∑k

i=1 A
j
i = �0. The code C is then the set of points {Aj

i}i∈[k],j∈[B/3].

As before, we can check that Aj
k = −∑k−1

j=1 A
j
i is of the correct norm 1√

m
:

‖Aj
k‖2 =

k−1
∑

j=1

‖Aj
i‖2 +

k−1
∑

i=1

k−1
∑

i′=1
i′ �=i

〈Aj
i |Aj

i′〉

=
k − 1

m
+ (k − 1)(k − 2) · −1

(k − 1)m
=

k − 1
m

− k − 2
m

=
1
m

.

For each j ∈ [B/k], we actually take 〈Aj
i |Aj

i′〉 = −1/(k−1) for i �= i′, because
this balanced configuration optimizes the number of k-tuples whose vectors are
respectively close to the centers Aj

i (See Proposition 5).

Proposition 8. Let C be a random product code with triangles of parameters
[d,m,B] with m = log(d) and Bm = NO(1). For any �x ∈ Sd−1 and angle α, one
can compute H�x,α ∩ C in time No(1) · |H�x,α ∩ C|.
Proof. The decoding algorithm of Proposition 7 presented in [Bec+16] uses only
the product structure of the code and not how the codes C1, . . . ,Cm are con-
structed. The same algorithm will therefore also efficiently decode random prod-
uct codes with triangles. ��
Definition 7 (Tuple-filter). Let C be a k-RPC with codewords (Aj

i) for i ∈ [k]
and j ∈ [|C| /k] such that ∀j ∈ [|C|/k],

∑k
i=1 A

j
i = �0. Given angle α, we call a

tuple-filter (fα,Aj
1
, . . . , fα,Aj

k
), with fα,Aj

i
filters (see Definition 6).

236 A. Chailloux and J. Loyer

3.2 Residual Vectors in Filter

Proposition 9 ([HKL18], Lemma 3). We are given vectors i.i.d. uniformly
random over Sd−1 and a filter of center A and angle α. Then the vectors of
angle at most α with A are i.i.d. uniformly random over the border of the filter.
Their residual vectors are i.i.d. uniformly random over the (d-1)-dimensional
sphere {�y ∈ R

d : ‖�y‖ = 1, θ(�y,Ai) = α}.
Then for a random �x ∈ Sd−1 of angle α with a center of filter A, we can

write for some �y ⊥ A,
�x = cos(α)A + sin(α)�y.

We call �y the residual vector of �x on the filter of center A and angle α.

We are given a list L of lattice vectors assumed to be i.i.d. uniformly random
over Sd−1. We choose an angle α and sample a k-RPC C having 1/V(α) code-
words. Going through the �x ’s in the list L, we decode �x to its nearest unique
codeword A ∈ C. This step, called prefiltering, separates L into disjoint sublists,
each one of size N · V(α). We focus on only one chosen tuple of filters of cen-
ters A1, . . . ,Ak respectively associated to the lists L1, . . . , Lk. By Proposition 9,
with high probability the angle between any �x ∈ Li and Ai is α.

While filling the list Li with the �x , we fill in parallel a list Ri with their
residual vectors �y in the filter of center Ai. Note that the points in Li are
i.i.d. uniformly random over the (d-1)-dimensional sphere {�y ∈ R

d : ‖�y‖ =
1, θ(�y ,Ai) = α}. See Fig. 4 for illustration.

Fig. 4. List vectors �x i ∈ Li in their filters of centers Ai and their respective residual
vectors �y i ∈ Ri, where for i �= j, 〈Ai|Aj〉 = − 1

2
.

Proposition 10. Using the above notations for the lists Li’s and Ri’s, a k-
tuple �x1, . . . , �xk ∈ L1×· · ·×Lk is reducing iff. their residual vectors �y1, . . . , �yk ∈
R1 × · · · × Rk satisfy

∑

1�i<j�k

〈�yi|�yj〉 � 1 − k cos2(α)
2 sin2(α)

:= Ik(α). (2)

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 237

Proof. By Proposition 9, we can consider that for i �= j, 〈Ai|�y j〉 = 0. And for
i �= j, �x i ∈ Li and �x j ∈ Lj , we obtain:

〈�x i|�x j〉 = cos2(α)〈Ai|Aj〉 + sin2(α)〈�y i|�y j〉.
Then we have

∥

∥

∥

∥

∥

k
∑

i=1

�x i

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

k
∑

i=1

sin(α)�y i

∥

∥

∥

∥

∥

2

= k sin2(α) + 2 sin2(α)

⎛

⎝

∑

1�i<j�k

〈�y i|�y j〉
⎞

⎠ . (3)

In the case the tuple (�x 1, . . . , �xk) is reducing, we have
∥

∥

∥

∑k
i=1 �x i

∥

∥

∥

2

� 1,
hence the wanted result. Notice also that we can translate the norm condi-
tion

∥

∥

∥

∑k
i=1 �x i

∥

∥

∥

2

� 1 directly into a norm condition of the residual vectors
∥

∥

∥

∑k
i=1 �y i

∥

∥

∥

2

� 1
sin2(α)

. ��

Lemma 1. Let be a configuration C ∈ R
k×k and an angle α. If a k-tuple

�x1, . . . , �xk satisfies C then their residual vectors �y1, . . . , �yk on a filter of angle α
satisfies the configuration C ′(α) with for i �= j,

C ′
i,j(α) = − 1

sin2(α)

(

Ci,j +
cos2(α)
k − 1

)

Proof. As written in the previous proof, for i �= j we have 〈�x i|�x j〉 =
cos2(α)〈Ai|Aj〉+sin2(α)〈�y i|�y j〉. The configuration C gives constraints over the
�x i’s, and C ′(α) over the �y i’s ; and 〈Ai|Aj〉 is fixed at −1/(k − 1). ��

If we consider a balanced configuration C for the �x i’s, then we have for i �= j,
Ci,j = −1/k all equal. For residual vectors on a filter of angle α, this also implies
C ′

i,j(α) all equal for i �= j. There are C ′
i,j at number

∑k−1
i=1 i = k · (k − 1)/2.

Thus for i �= j we will have C ′
i,j(α) = 2

k·(k−1) · Ik(α), with Ik(α) as defined in
Proposition 10.

4 Framework

The idea behind the framework of our sieving algorithms is the following:

1. Prefilter the list vectors,
2. Search all reduced tuples within each filter,
3. Repeat steps 1. and 2. until all the reduced points are found.

Parameters. The algorithm takes into its input an angle α, and a configuration
C ∈ R

k×k that defines constraints over the lattice vectors. We will discuss later
how to choose them optimally. From α and C, we can compute the configuration
C ′(α) over the residual vectors on filters of angle α using Lemma 1. From C, we
also know the number of vectors we require to achieve the sieve step, which gives
by Proposition 5 the minimum memory requirement |L| = ˜O(det(C)− d

2(k−1)).

238 A. Chailloux and J. Loyer

Algorithm 3. Framework for our new k-sieves
Require: List L of lattice vectors of norm at most R ; reducing factor γ < 1.

Parameters: k ∈ N ; angle α ∈ (0, π/2] ; target configuration C.
Ensure: List Lout of lattice vectors of norm at most γR.

Lout = ∅
while |Lout| < |L| do � NbRepα,C repeats

Sample a k-RPC code C having k · 1/V(α) codewords
Lj

i = ∅ for i ∈ [k], j ∈ [|C|/k]
for each �x ∈ L do

Aj
i ← Decode(�x ,C) � Algorithm from Proposition 7.

�y ← 1/ sin(α) · (
�x − cos(α)Aj

i

)
� Residual vector of �x in the filter of center Aj

i

Lj
i ← Lj

i ∪ {�x} ; Rj
i ← Rj

i ∪ {�y}
for each tuple-filter numbered j ∈ [|C|/k] do

Sol�y ← FindAllSolutionsWithinFilter
(
(Rj

i)i, C
′(α)

)
� Find all (�y i)i ∈ Rj

1 ×
· · · × Rj

k satisfying C′(α)

SolΣ�x ←
{∑k

i=1 �x i : (�y i)i ∈ Sol�y

}
� �x i ∈ Lj

i and �y i ∈ Rj
i share the same

index in their respective lists
Lout ← Lout ∪ SolΣ�x

return Lout

1. Prefiltering. We start by sampling a k-RPC C (Defined in Part 3.1) of size
k · 1/V(α). Its codewords are denoted (Aj

i)i,j for i ∈ [k] and j ∈ [|C|/k] (we
suppose these values are integers by simplicity). For a fixed j ∈ [|C|/k] and for
i1 �= i2 ∈ [k] we have 〈Aj

i1
|Aj

i2
〉 = − 1

k−1 , that implies
∑k

i=1 A
j
i = �0.

Once the code is sampled, we can start the so-called prefiltering step. For
each vector �x ∈ L, we efficiently compute its nearest codeword in C using the
algorithm from Proposition 8. If it returns center Aj

i , then we add �x to its
associated list Lj

i . We also compute �x ’s residual vector �y = 1/ sin(α) · (

�x −
cos(α)Aj

i

)

(by Proposition 9) and we add it to list Rj
i . Given a residual vector

in Rj
i , we will be able to recover its corresponding vector in Lj

i by just looking
at the same index.

There are tuple-filters (Aj
i)i∈[k] at number

NbFilters := |C|/k = O
(

1
V(α)

)

. (4)

As we compute the nearest filter in amortized time O(1) for each vector in
L, the prefiltering step takes times |L|.

2. Find All Solutions Within a Tuple-Filter. We started with a list L and we
wanted to solve a configuration problem, and after the prefiltering step, we can
consider easier instances of the configuration problem on the sublists of L. The
subroutine FindAllSolutionsWithinFilter solves one of these instances at a
time, and we run it over each of the 1/V(α) tuple-filters.

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 239

Let’s fix some j ∈ [|C|/k] and consider the instance of configuration problem
on the k lists (Rj

i)i with configuration C ′(α). The subroutine then has to find
all the k-tuples within Rj

1 × · · · × Rj
k that satisfies the configuration C ′(α). As

we focus on only one filter at a time, in the following we will no longer write the
j in exponent to lighten the notations.

The number of solutions the subroutine has to return is given by the following
lemma.

Lemma 2. With the same notations as before and for fixed j ∈ [|C|/k], the
expected number of tuples in the tuple-filter associated with the lists R1×· · ·×Rk

satisfying configuration C ′(α) is on average

|Solf | = O
(

|R1|k · det(C ′(α))d/2
)

= O
(

|L|kV(α)k · det (C ′(α))d/2
)

.

Proof. There are |R1|k tuples in R1×...×Rk as the lists are all of same size |R1| =
|L| · V(α). Any tuple (�y1, ..., �yk) from this set has probability det(C ′(α))d/2

to satisfy configuration C ′(α). Hence the expected number of tuples satisfying
C ′(α). ��

Any subroutine with these inputs and outputs may suit the framework. For
example, in the case k = 2, [CL21] describes a 2-sieve under this framework,
where the subroutine uses quantum random walks to find the reducing pairs of
vectors. We denote the time complexity of the subroutine FindAllSolution-
sWithinFilter with parameters α and C by T (FASC′(α)).

3. Number of repeats. After searching all the solutions within every tuple-filters,
we expect to find the following number of solutions:

|Solall| = |L|k · det(C)d/2. (5)

To complete the sieve step, we require to find |L| reduced lattice vectors. Thus
steps 1. and 2. have to be repeated until enough solutions have been found. The
missed solutions are the ones such that a part of the solution is in one tuple-filter
and the rest is in another. By doing a new prefiltering, it changes the partitions
of the sphere, and this allows to find some of these missing solutions.

Lemma 3. The number of repetitions in the while loop is

NbRepα,C = O
(

max
{

1,
|Solall|

|Solf | · NbFilters

})

= O
⎛

⎝max

⎧

⎨

⎩

1,
|L1|k det(C)d/2

|L1|kVk(α) det (C ′(α))d/2 · 1
V(α)

⎫

⎬

⎭

⎞

⎠

= O
(

max

{

1,
det(C)d/2

Vk−1(α) det (C ′(α))d/2

})

.

240 A. Chailloux and J. Loyer

The overall time complexity of an algorithm based on this framework is given
in the following theorem.

Theorem 2. Let α ∈ (0, π/2] be an angle and a configuration C ∈ R
k×k,

and C ′(α) the configuration on the residual vectors (See Lemma 1). Given
an algorithm that solves the configuration problem C ′(α) for k lists in time
T (FASC′(α)), Algorithm 3 solves SVP in time

T (k-sieve) := NbRepα,C ·
(

|L| + NbFiltersα · T (FASC′(α))
)

where NbRepα,C is given by Lemma 3 and NbFiltersα = O(1
V(α)) by Eq. 4.

The above theorem is the main technical contribution of our work. The main
novelty is the angle α which can be freely chosen. Taking an angle α = π/2
means that we do not perform any tailored LSF.

Optimization of the Parameters. So the Ci,j ’s are parameters to optimize to
get the minimal overall time of the k-sieve, and they obey to the constraints on
memory and reduceness of the tuples. We also require that the inner algorithm
for solving the configuration problem with C ′(α) uses at most memory M . There
is as well the prefiltering angle α ∈ (0, π/2] that has to be optimized. In the next
sections, we will present algorithms that fit in the framework 3 and for each one
we will specify the optimal values for C and α we have obtained by numerical
optimization. The code is available on https://github.com/johanna-loyer/3-4-
sieve.

5 Classical Sieving

We present here our 3-sieve and 4-sieve classical algorithms. In both cases, we
use Theorem 2 so the only thing to explicit is the inner algorithm running in
time T (FASC′(α)) as well as the parameters C and α. Actually, in both cases,
the inner algorithm will use a classical 2-sieve algorithm so we first give formulas
for the configuration problem with k = 2.

5.1 Classical 2-Sieve

We present here the best-known algorithm for classical 2-sieve. While these are
known results, we will need this analysis for our 3-sieve and 4-sieve algorithms.
We can actually derive the best-known algorithms (in terms of asymptotic time
and memory) from our framework.

Proposition 11. Take k = 2, lists L1, L2 of random points of norm 1 with

|L1| = |L2|, a target configuration C =
(

1 C12

C12 1

)

. Let α st. V(α) = 1
|L1| .

https://github.com/johanna-loyer/3-4-sieve
https://github.com/johanna-loyer/3-4-sieve

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 241

Algorithm 3 with parameter α constructs a list Lout of pairs of points (�x1, �x2)
with (�x1, �x2) ∈ L1 × L2 st. 〈�x1|�x2〉 ≤ C12, in time T using memory M st.

|Lout| = O
(

|L1|2 det(C)d/2
)

= O
(

|L1|2
(

1 − C2
12

)d/2
)

T = O
(

|L1|2 det(C)d/2

det (C ′(α))d/2

)

= O
(

|L1|2 (1 − C2
12)

d/2

(1 − C ′
12(α)2)d/2

)

.

M = O (max{|L1|, |Lout|})

where recall that C ′
12(α) = 1

sin2(α)
· (

C12 + cos2(α)
)

. Notice that |Lout| corre-
sponds asymptotically to all the pairs (�x1, �x2) ∈ L1 × L2 st. 〈�x1|�x2〉 ≤ C12 so we
find here asymptotically all solutions.

Proof. We use Theorem 2 with k = 2 and some parameter α to get

T = O
(

NbRepα,C12 ·
(

|L1| +
1

V(α)
T (FASC′

12(α))
))

. (6)

Recall that here, FASC′
12(α) computes the running time of finding all solution

pairs with inner product smaller than C ′
12(α) when starting with lists of size

|R1| = |L1|V(α). We perform an exhaustive search on the pairs of points to find
all solutions so

T (FASC′
12(α)) = O (

max{1, |L1|2V2(α)})

.

We take α st. V(α) = 1
|L1| so Eq. 6 becomes T = O (NbRepα,C12 · |L1|) . Finally,

from Lemma 3, we have

NbRepα,C12 = O
(

max

{

1,
det(C)d/2

V k−1(α) det (C ′(α))d/2

})

= |L1| det(C)d/2

det (C ′(α))d/2
,

which allows us to conclude that

T = O
(

|L1|2 det(C)d/2

det (C ′(α))d/2

)

.

��
As a special case, we can take |L1| = |L2| = 20.2075d, C12 = −1/3 which gives
Lout = |L1|, T = 20.292d and M = |L1| which is the best-known algorithm
asymptotically.

5.2 Classical 3-Sieve

So we now consider the case of k = 3. Our inner algorithms will construct the
following intermediate lists:

242 A. Chailloux and J. Loyer

1. Construct L12 = {(�x 1, �x 2) ∈ L1×L2 : 〈�x 1|�x 2〉 ≤ C12} and L13 = {(�x 1, �x 3) ∈
L1 × L3 : 〈�x 1|�x 3〉 ≤ C23}.

2. For each �x 1 ∈ L1, let L12(�x 1) = {�x 2 ∈ L2 : (�x 1, �x 2) ∈ L12} and L13(�x 1) =
{�x 3 ∈ L3 : (�x 1, �x 3) ∈ L13}.

3. For each �x 1 ∈ L1, compute L123(�x 1) = {(�x 2, �x 3) ∈ L12(�x 1) × L13(�x 1) :
〈�x 2|�x 3〉 ≤ C23}. For each �x 1 ∈ L1, triples (�x 1, �x 2, �x 3) are solution when
(�x 2, �x 3) ∈ L123(�x 1).

Now that we defined all intermediate lists, we can write the algorithm we use
for solving the inner configuration problem with k = 3.

Algorithm 4. FindAllSolutionsWithinFilter classical 3-sieve
Require: lists L1, L2, L3 of vectors i.i.d. in Sd−1 with |L1| = |L2| = |L3| ; target

configuration C ∈ R
3×3.

Ensure: list Lout of all 3-tuples in L1 × L2 × L3 satisfying configuration C.
Lout := ∅.
construct L12 and L13 using a 2-sieve algorithm with angle parameter α′, from which
you can recover lists L12(�x 1) and L13(�x 1)
for each �x 1 ∈ L1:

compute L123(�x 1) using a 2-sieve algorithm with angle parameter α′′

for each (�x 2, �x 3) ∈ L123(�x 1), do Lout := Lout ∪ {(�x 1, �x 2, �x 3)}.
return Lout

Complexity of Algorithm 4. Construction of the Lists L12 and L13. As a
direct consequence of Proposition 11, we have:

Lemma 4. Let T12 (resp. T13) be the time to compute L12 (resp. L13). Let α
such that |L1| = 1/V(α). We have

T12 = O
(

|L1|2
(

1 − C2
12

)d/2

(1 − C ′
12(α)2)d/2

)

T13 = O
(

|L1|2
(

1 − C2
13

)d/2

(1 − C ′
13(α)2)d/2

)

Construction of the Lists L23(�x 1). For a fixed �x 1, notice that the lists L2(�x 1) and
L3(�x 1) do not contain points uniformly distributed on the sphere since they have
an inner-product constraint with �x 1 so we cannot apply Proposition 11 directly.
Fix �x 1 ∈ L1 and let �x 2 ∈ L2 and �x 3 ∈ L3. For simplicity of calculations, we
consider the case where 〈�x 1|�x 2〉 = C12, 〈�x 1|�x 3〉 = C13 and 〈�x 2|�x 3〉 = C23. This
approximation is justified from Heuristic 1. So we write

�x 2 = C12�x 1 +
√

1 − C2
12�y2 ; �x 3 = C13�x 1 +

√

1 − C2
13�y3 (7)

where �y2, �y3 are orthogonal to �x 1. Also, if �x 2 (resp. �x 3) is a random vector
satisfying 〈�x 1|�x 2〉 = C12 (resp. 〈�x 1|�x 3〉 = C13) then �y2 (resp. �y3) is a random
unit vectors. Let Y23 := 〈�y2|�y3〉. We have

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 243

〈�x 2|�x 3〉 = C12C13 +
√

1 − C2
12

√

1 − C2
13Y23

which implies

Y23 =
C23 − C12C13

√

1 − C2
12

√

1 − C2
13

.

We can now use Proposition 11 to give the running time of computing R23(�x 1),

which gives the running time T23(�x 1) of computing L23(�x 3). Let Y =
(

1 Y23

Y23 1

)

and let α” st. V(α′) = 1
|L2(�x1)| . We have

T23(�x 1) = O (NbRepα′,Y · |L2(�x 1)|) .

Now, let T23 be the running of computing all the lists L23(�x 1) since the number
of �x 1 is |L1|, we have

T23 = |L1|T23(�x 1) = O (|L1|NbRepα′,Y · |L2(�x 1)|) (8)

= |L1||L2(�x 1)|2
(

1 − Y 2
23

)d/2

(1 − Y ′
23(α′)2)d/2

(9)

with Y ′
23(α) = 1

sin2(α)

(

Y23 + cos2(α′)
)

. Putting everything together, we have the
following

Proposition 12. Let |L1| a list size and C a 3 × 3 configuration matrix with
negative non-diagonal entries. Let |L2(�x1)| = |L1|(1−C2

12)
d/2. Let α′ st. V(α′) =

1
|L2(�x1)| . Algorithm 4 solves FASc

3(|L1|, C) in time T12 + T13 + T23 with

T12 = T23 = O
(

|L1|2(1 − C2
12)

d/2
)

T123 = |L1||L2(�x1)|2
(

1 − Y 2
23

)d/2

(1 − Y ′
23(α′)2)d/2

where

Y23 =
1

√

1 − C2
12

√

1 − C2
13

· (C23 + C12C13)

Y ′
23(α) =

1
sin2(α)

(

Y23 + cos2(α′)
)

.

Let |L12| = |L1|2
(

1 − C2
12

)d/2. This algorithm uses memory M =
max{|L1|, |L12|}.

Complexity of the Classical 3-Sieve. The above was the analysis of the clas-
sical 3-sieve after the first filtering. We now apply Theorem 2 with k = 3 in order
to obtain the running of our classical 3-sieve algorithm within our framework.

244 A. Chailloux and J. Loyer

Theorem 3. There is a classical algorithm with parameter α that solves the
3-sieve problem for a configuration C and lists of size |L| that runs in time T
and that uses memory M with

T = O
(

NbRepα,C ·
(

|L| +
1

V(α)
· T (FASc

3 (|L1|, C ′(α)))
))

,

and
M = max{|L|, |L1|, |L12|, |L123|}.

where |L1| = |L| · V(α), |L12|, |L123| can be taken from Proposition 6 and
FASc

3(|L1|, C) = T12 + T13 + T123 where each T12, T13, T123 can be taken from
Proposition 12.

Proposition 13. There exists a classical algorithm for SV P using 3-sieve that
runs in time 20.338d+o(d) and uses memory 20.1887d+o(d).

Proof. Take the above proposition with a configuration matrix C st. C12 =
C13 = C23 = − 1

3 , α = 1.2954rad and |L| = 20.1887d. We apply Proposition 3;
We write C ′

12(α) = C ′
13(α) = C ′

23(α) ≈ −0.32 and |L1| = |L| · V(α) = 20.133d.
We have, (omitting o(d) factors in the exponent)

NbRepα,C = 20.070d ;
1

V(α)
= 20.055d ; T (FASc

3(|L1|, C ′)) = 20.213d

Putting everything together, we indeed have a running time of 20.070d · 20.055d ·
20.213d = 20.338d. The memory M = max{|L|, |Lout|, |Lint|} where Lint is the
intermediate list used in FASc

3(|L1|, C ′(α)). We have

|Lint| = |L1|2
(

1 − C ′
12(α)2

)d/2
= 20.1887d.

This implies that the memory used is M = 20.1887d. ��

Space-Time Trade-Off. We also extend this algorithm where we fix the available
memory to something more than the minimal memory 20.1887d. We present here
a list of points that we obtain, showing the general behaviour of our algorithm
(Table 2):

Table 2. Time complexity of our classical 3-sieving algorithm for a fixed memory
constraint. α is the optimal angle used in the first prefiltering. Also see Fig. 2a for a
plot corresponding to this algorithm.

1
d
log2(Memory) 0.1887 0.19 0.2 0.2075 0.22 0.24 0.26 0.272 0.286

1
d
log2(Time) 0.338 0.334 0.328 0.325 0.320 0.313 0.307 0.304 0.304

α (rad) 1.2954 1.305 1.329 1.346 1.366 1.408 1.470 π/2 π/2

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 245

5.3 Classical 4-Sieve

We now consider the case k = 4. For our inner algorithms, we start with 4 lists
L1, L2, L3, L4. There are actually several strategies of merging the lists. Here we
choose to perform the following merges:

1. Construct L12 = {(�x 1, �x 2) ∈ L1×L2 : 〈�x 1|�x 2〉 ≤ C12} and L34 = {(�x 3, �x 4) ∈
L3 × L4 : 〈�x 3|�x 4〉 ≤ C34}.

2. Construct L1234 = {((�x 1, �x 2), (�x 3, �x 4)) ∈ L12 × L34 : (�x 1, �x 2, �x 3, �x 4)
satisfies configuration C}.

Using these lists, we consider the following algorithm:

Algorithm 5. FindAllSolutionsWithinFilter classical 4-sieve
Require: lists L1, L2, L3, L4 of vectors i.i.d. in Sd−1 with |L1| = |L2| = |L3| = |L4| ;

target configuration C ∈ R
4×4 with C12 = C34 and C13 = C14 = C23 = C24.

Ensure: list Lout of all 4-tuples (�x 1, �x 2, �x 3, �x 4) ∈ L1 × L2 × L3 × L4 satisfying con-
figuration C.
Construct L12 and L34 using our classical 2-sieve algorithm.
Start from L12 and L34 and use our classical 2-sieve algorithm to compute L1234.
return L1234.

We then use the above algorithm as the FindAllSolutionsWithinFilter
subroutine in Algorithm 3 to describe our entire algorithm for 4-sieve. The algo-
rithm presented here is usually inefficient in memory because the lists L12 and
L13 are large. However, thanks to our initial α-filtering, we start from smaller
lists L1, L2, L3, L4 so the intermediate lists will be small as well.

Complexity of Algorithm 5.

Lemma 5. Let T12 be the time to compute L12 (which is also the time to
compute L34 by symmetry). Let α st. V(α) = 1

|L1| . Then

T12 = O
(

|L1|2
(

1 − C2
12

)d/2

(1 − C ′
12(α)2)d/2

)

This comes directly from the analysis of our simplified 2-sieve algorithm. The
size of the intermediate lists L12 and L34 is then

|L12| = |L1|2 · (

1 − C2
12

)d/2
(10)

We now look at the time to compute L1234. Elements of L12 are of squared
norm R2 = 2 + 2C12, using ‖�x 1 + �x 2‖2 = ‖�x 1‖2 + ‖�x 2‖2 + 2〈�x 1|�x 2〉. We write

Lemma 6. Let �z12 ∈ L12 and �z34 ≤ L34. If Angle(�z12,�z34) =
arccos

(

sin2(α)
2R′2 − 1

)

then ‖�z12 +�z34‖2 ≤ sin2(α).

246 A. Chailloux and J. Loyer

Proof. We write

‖�z 12 + �z 34‖2 = ‖�z 12‖2 + ‖�z 34‖2 + 2〈�z 12|�z 34〉

By taking 〈�z 12|�z 34〉 = R2(r2
0

2R2 − 1), we obtain indeed ‖�z 12 + �z 34‖2 ≤ r20. ��
Lemma 7. Let T1234 be the time to compute L1234. Let Y = r0

4+4C12
− 1. Let

α′ st. V(α′) = 1
|L12| . We have

T1234 = O
(

|L12|2
(

1 − Y 2
)d/2

(1 − Y ′(α′)2)d/2

)

,

with Y ′(α′) = 1
sin2(α)

(

T + cos2(α′)
)

.

By combining the above 2 propositions, we have

Theorem 4. Algorithm 5 runs in time T = 2T12 + T1234 where T12 and T1234

can be taken respectively from Lemma 5 and Lemma 7.

To conclude, we can plug this theorem again in Theorem 2 to get our
results. Recall that we work with 4-tuples of residual vectors after an ini-
tial α-filtering so we look for 4-tuples of residual points (�y1, �y2, �y3, �y4) st.
‖�y1 + �y2 + �y3 + �y4‖ ≤ 1

sin(α) (see Eq. 3). This means we take r0 = 1
sin(α) .

Regarding memory requirements, we have that the memory M of our algorithm
satisfies M = max{|L1|, |L12|, |L1234|}.

This algorithm gives smooth time-memory trade-off to the points where the
memory is 20.0275d and the time is 20.292d, corresponding precisely to the com-
plexity of the 2-sieve algorithm (and indeed corresponds to the case where our
4-sieve algorithm performs independently two 2-sieve algorithms). When look-
ing at the minimal memory setting, so M = 20.1724d, this algorithm performs
poorly, as the time is 20.418d. However, when looking at intermediate memory
requirements, there are some ranges when the algorithm performs quite well.
For example, when taking M = 20.1887d, this algorithm performs better than
the 3-sieve classical algorithm we presented before. We put below a list of values
of interest. As in the previous case, the less memory we are allowed, the more
it is interesting to perform a tailored prefiltering step. We put below a list of
values and the corresponding angle α used in the prefiltering step (Table 3).

Table 3. Time complexity of our classical 4-sieving algorithm for a fixed memory
constraint. α is the optimal angle used in the prefiltering. Also see Fig. 2b for a plot
corresponding to this algorithm.

log2(Memory)/d 0.1724 0.175 0.18 0.1887 0.193 0.198 0.203 0.2075

log2(Time)/d 0.418 0.380 0.352 0.324 0.315 0.306 0.298 0.2925

α (rad) 1.278 1.315 1.350 1.401 1.425 1.457 1.494 π/2

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 247

6 Quantum Sieving

We now study how our framework impacts quantum algorithms. In the quantum
setting, Theorem 2 also applied and once again, we only need to describe the
running time and amount of memory used for the inner configuration problem.

The input lists Li are stored classically and are assumed to be quantumly
accessible, i.e. for any given list L, we can efficiently construct the uniform
superposition over all its elements |ψL〉 := 1√

|L|
∑

� |�〉 |L[�]〉. In the following,

we will not necessarily write the first register for simplicity2.

6.1 Quantum 3-Sieve

For the FindAllSolutionsWithinFilter quantum subroutine in case k = 3, we
start with classical lists L1, L2, L3 that are quantumly accessible. The algorithm
outputs a list containing all triples in L1 × L2 × L3 satisfying a given target
configuration C.

To find one solution, our algorithm constructs a uniform quantum superpo-
sition over all triples, and then applies two Grover’s algorithms in order to get
a ”filtered” quantum superposition. This whole process is then repeated inside
an amplitude amplification to get a superposition over the solutions, that we
measure, and we repeat this whole process until we have found all the solutions.

As a reminder (See Proposition 6), given a configuration C, we use the fol-
lowing notation: for i, j ∈ [k], i �= j and �y j ∈ Lj ,

Li(�y j) := {�y i ∈ Li : 〈�y i|�y j〉 ≤ Ci,j}.

Algorithm 6. FindAllSolutionsWithinFilter quantum 3-sieve
Require: lists L1, L2, L3 of vectors i.i.d. in Sd−1 with |L1| = |L2| = |L3| ; a target

configuration C ∈ R
3×3.

Ensure: list Lout containing all 3-triples in L1 × L2 × L3 satisfying configuration C.
Lout := ∅
while |Lout| < |Sol| do

Construct state |ψL1〉 |ψL2〉 |ψL3〉
Apply Grover on the second register to get state |ψL1〉 ∣

∣ψL2(�y1)

〉 |ψL3〉
Apply Grover on the third register to get state |ψL1〉 ∣

∣ψL2(�y1)

〉 ∣
∣ψL3(�y1)

〉

Apply Amplitude Amplification to get state |ψSol〉, the uniform superposition of
all solutions

Take a measurement and get some (�y1, �y2, �y3)
if (�y1, �y2, �y3) satisfies configuration C then add it to Lout

return Lout

2 This simplification was already done in [Kir+19]. At no point do we use the fact
that we do not have the first register, this is just for simplicity of notations.

248 A. Chailloux and J. Loyer

Complexity of Algorithm 6. We first analyse the complexity to find one
solution during one single iteration from the while-loop.

Initialization. We assume that lists L1, L2 and L3 of i.i.d. random points are
classically stored and quantumly accessible. So the state |ψL1〉 |ψL2〉 |ψL3〉 can
be constructed efficiently.

Grover on the Second Register. The algorithm then applies Grover’s algorithm
on the second register such that the two first registers become

|ψL1〉
∣

∣ψL2(�y1)

〉

=
1

√|L1|
1

√|L2(�y1)|
∑

�y1∈L1

∑

�y2∈L2(�y1)

|�y1〉 |�y2〉 .

It only keeps in the quantum superposition the elements �y2 ∈ L2 such that
〈�y1|�y2〉 ≤ C12 for each superposed �y1 from the first register. So the state ends
up with a quantum superposition of all pairs in L1 × L2 eligible to form the
beginning of a triple-solution. This application of Grover’s algorithm takes time
T2 =

√

|L2|
|L2(�y1)| = (1 − C12)−d/4 by Proposition 6.

Grover on the Third Register. Similarly, we also apply Grover’s algorithm on
the third register to get the state |ψL1〉

∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1)

〉

equal to

1
√|L1|

1
√|L2(�y1)|

1
√|L3(�y1)|

∑

�y1∈L1

∑

�y2∈L2(�y1)

∑

�y3∈L3(�y1)

|�y1〉 |�y2〉 |�y3〉

in time T3 =
√

|L3|
|L3(�y1)| = (1 − C13)−d/4. The sizes |L2(�y1)| and |L3(�y1)| do

not depend on the choice of �y1, that is why we can write their corresponding
normalizing factors before the sum over the �y1’s.

Amplitude Amplification. The goal is now to construct a uniform quan-
tum superposition over all elements of the set of solutions Sol :=
{(�y1, �y2, �y3) ∈ L1 × L2 × L3 satisfying C}, by applying a quantum amplitude
amplification. Let A be unitary that maps |0〉 |0〉 |0〉 to the state
|ψL1〉

∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1)

〉

constructed so far.

Lemma 8. The operation A : |0〉 |0〉 |0〉 → |ψL1〉
∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1)

〉

is repeated
TAA times inside the amplitude amplification to construct state |ψSol〉 (with prob-
ability 1 − o(1)), where

TAA = O
(

√

|L1|/|Sol| ·
√

|L2(�y1)|
√

|L3(�y1)|
)

= O
(

√

|L3
i |/|Sol| · (1 − C12)d/4(1 − C13)d/4

)

.

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 249

Proof. Performing a measurement of state |ψL1〉
∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1)

〉

gives a
triplet solution (�y1, �y2, �y3) with some probability p, we are going to specify.
There are |L1| possible �y1 and |Sol| ”good” ones belonging to a solution, so
the probability of measuring a good �y1 is |Sol|/|L1|. Then given a �y1, a pair
(�y2, �y3) ∈ L2(�y1)×L3(�y1) forms the solution together with �y1 with probability

1
|L2(�y1)|

1
|L3(�y1)| .

Finally, the probability to measure a solution is thus p = |Sol|/|L1| ·
1

L2(�y1)
1

L3(�y1)
. By Theorem 3, the number of iterations of amplitude amplification

is O (

1/
√

p
)

, hence the top line. The bottom line is obtained by expressing the
sizes of L2(�y1) and L3(�y1) using Proposition 6. ��

Subroutine Complexity.

Proposition 14 (FindAllSolutionsWithinFilter quantum 3-sieve). Let
|L1| a list size and C a 3 × 3 configuration matrix with negative non-diagonal
entries. Algorithm 6 solves FASq

3(|L1|, C) in time |Sol| · (T2 + T3) · TAA where

|Sol| = |L1|3 · det(C)d/2

T2 = (1 − C12)−d/4 ; T3 = (1 − C13)−d/4

TAA = O
(

√

|L3
i |/|Sol| · (1 − C12)d/4(1 − C13)d/4

)

After simplification, the time complexity of Algorithm 6 can be written

T (FASq
3(|L1|, C)) =

√

|Li|3 · |Sol| ·
(

(1 − C2
12)

d/2 + (1 − C2
13)

d/2
)

.

This algorithm uses classical memory |L1| and quantum memory poly(d)
qubits.

Complexity of the Quantum 3-Sieve. The above was the analysis of the
algorithm we use as the subroutine FindAllSolutionsWithinFilter in Algo-
rithm 3 for quantum 3-sieve. The lists given in input of Algorithm 6 are then
the lists of residual vectors R1, R2, R3, which are of size |R1| = |L1| = |L| · V(α)
; and it return residual vectors that satisfy the target configuration C ′(α). Using
Theorem 2 in the case k = 3, we recover the overall time complexity of our
quantum 3-sieve algorithm.

Theorem 5. There is a quantum algorithm with parameter α that solves the
3-sieve problem for a configuration C ∈ R

3×3 and lists of size |L|, that runs in
time

T = O
(

NbRepα,C

(

|L| +
1

V(α)
· T (FASq

3(|L1|, C ′(α)))
))

where |L1| = |L| · V(α) and T (FASq
3(|L1|, C ′(α))) given by Proposition 14. This

algorithm uses quantum-accessible classical memory M = |L| and quantum mem-
ory poly(d).

250 A. Chailloux and J. Loyer

Minimal Memory Parameters.

Proposition 15. There is a quantum algorithm that solves SVP in dimension
d using 3-sieve that runs in time T = 20.3098d+o(d), quantum-accessible classical
memory M = 20.1887d+o(d) and poly(d) quantum memory.

Proof. We take a balanced configuration C with C12 = C13 = C23 = −1/3,
α = 1.2343rad and |L| = 20.1887d = M . We apply Proposition 5: We write
C ′

12(α) = C ′
13(α) = C ′

23(α) ≈ −0.31 and |L1| = |L| · V(α) = 20.1055d. We have

NbRepα,C = 20.1055d ;
1

V(α)
= 20.0832d ; T (FASq

3(|L1|, C ′)) = 20.1210d.

Putting everything together, we indeed have a running time of 20.1055d ·
20.0832d · 20.1210d = 20.3098d. ��

Space-Time Trade-Offs. We also extend this algorithm where we fix the available
memory to something more than the minimal memory 20.1887d (Table 4).

Table 4. Time complexity of our quantum 3-sieving algorithm for a fixed memory
constraint. α is the optimal angle used in the prefiltering. Also see Fig. 3a for a plot
corresponding to this algorithm.

log2(Memory)/d 0.1887 0.189 0.190 0.1907

log2(Time)/d 0.3098 0.3073 0.3056 0.3053

α (rad) 1.2346 1.2341 1.2336 1.2331

6.2 Quantum 4-Sieve

This algorithm and its analysis are very similar to Algorithm 6. As previously,
we first analyse the complexity to find one solution during one single iteration
from the while-loop.

Complexity of Algorithm 7.

Initialization. Lists Li for i = 1, 2, 3, 4 are assumed stored classically and quan-
tumly accessible, so we can construct the state |ψL1〉 |ψL2〉 |ψL3〉 |ψL4〉.

Grover Over the Second Register. The algorithm applies Grover’s algorithm over
the second register such that the two first registers become

|ψL1〉
∣

∣ψL2(�y1)

〉

=
1

√|L1|
1

√|L2(�y1)|
∑

�y1∈L1

∑

�y2∈L2(�y1)

|�y1〉 |�y2〉 ,

which takes time
√

|L2|
|L2(�y1)| = (1 − C2

12)
−d/4.

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 251

Algorithm 7. FindAllSolutionsWithinFilter quantum 4-sieve
Require: lists L1, L2, L3, L4 of vectors i.i.d. in Sd−1 with |L1| = |L2| = |L3| = |L4| ;

a target configuration C ∈ R
4×4.

Ensure: list Lout containing all 4-triples in L1 ×L2 ×L3 ×L4 satisfying configuration
C.
Lout := ∅
while |Lout| < |Sol| do

Construct |ψL1〉 |ψL2〉 |ψL3〉 |ψL4〉
Apply Grover on the second register to get state |ψL1〉 ∣

∣ψL2(�y1)

〉 |ψL3〉 |ψL4〉
Apply Grover on the third register to get state |ψL1〉 ∣

∣ψL2(�y1)

〉 ∣
∣ψL3(�y1,�y2)

〉 |ψL4〉
Apply Grover on the fourth register to get state:

|ψL1〉 ∣
∣ψL2(�y1)

〉 ∣
∣ψL3(�y1,�y2)

〉 ∣
∣ψL4(�y1,�y2)

〉

Apply Amplitude Amplification to get state |ψSol〉, the uniform superposition of
all solutions

Take a measurement and get some (�y1, �y2, �y3, �y4)
if (�y1, �y2, �y3, �y4) satisfies configuration C then add it to Lout

return Lout

Grover Over the Third Register. Another Grover’s algorithm is then performed
over the third register |ψL3〉 such that it becomes the quantum superposition
over all elements of L3(�y1, �y2), for �y1 ∈ L1 and �y2 ∈ L2(�y1) being elements
in quantum superposition in the two first registers. Let Z = |L1| · |L2(�y1)| ·
|L3(�y1, �y2)|. The three first registers then become the state

|ψL1〉
∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1,�y2)

〉

=
1√
Z

∑

�y1∈L1

∑

�y2∈L2(�y1)

∑

�y3∈L3(�y1,�y2)

|�y1〉 |�y2〉 |�y3〉 .

Performing this Grover’s algorithm takes time T3 =
√

|L3|
|L3(�y1,�y2)| . Propo-

sition 6 gives |L3(�y1, �y2)| = |L3| ·
(

det(C[1,2,3])
det(C[1,2])

)d/2

. Note that these nota-
tions for partial configurations are given in Definition 4. So we can rewrite

T3 =
(

det(C[1,2,3])
det(C[1,2])

)−d/4

.

Grover Over the Fourth Register. Analogously to what was done over the third
register, we perform Grover’s algorithm over the fourth one |ψL4〉. For Z ′ =
|L1| · |L2(�y1)| · |L3(�y1, �y2)| · |L4(�y1, �y2)|, this operation allows to construct the
state |ψL1〉

∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1,�y2)

〉 ∣

∣ψL4(�y1,�y2)

〉

equal to

1√
Z ′

∑

�y1∈L1

∑

�y2∈L2(�y1)

∑

�y3∈L3(�y1,�y2)

∑

�y4∈L4(�y1,�y2)

|�y1〉 |�y2〉 |�y3〉 |�y4〉 ,

in time T4 =
(

det(C[1,2,4])
det(C[1,2])

)−d/4

.

252 A. Chailloux and J. Loyer

Amplitude Amplification. We then want to construct a uniform quantum super-
position over all elements of the set of solutions Sol := {(�y1, �y2, �y3, �y4) ∈
L1 × L2 × L3 × L4 satisfying C}, by applying a quantum amplitude amplifi-
cation.

Lemma 9. The operation |0〉 |0〉 |0〉 |0〉 → |ψL1〉
∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1,�y2)

〉 ∣

∣ψL4(�y1,�y2)

〉

is repeated TAA times inside the amplitude amplification to construct state |ψSol〉
(with probability 1 − o(1)), where

TAA =

√

|L1|
|Sol|

√

|L2(�y1)|
√

|L3(�y1, �y2)|
√

|L4(�y1, �y2)|

=
|Li|2

√|Sol| · (1 − C2
12)

d/4 ·
(

det(C[1, 2, 3])
det(C[1, 2])

)d/4

·
(

det(C[1, 2, 4])
det(C[1, 2])

)d/4

where notation C[I] with a set of indexes I was introduced in Definition 4.

Proof. The reasoning is the same as for the proof of Lemma 8. Perform-
ing a measurement of state |ψL1〉

∣

∣ψL2(�y1)

〉 ∣

∣ψL3(�y1,�y2)

〉 ∣

∣ψL4(�y1,�y2)

〉

gives a 4-
tuple solution (�y1, �y2, �y3, �y4) with some probability p, we are going to spec-
ify. The probability of measuring a good �y1 is |Sol|/|L1|. Then given a �y1,
a triple (�y2, �y3, �y4) forms the solution together with �y1 with probability
1/(|L2(�y1)| · |L3(�y1, �y2)| · |L4(�y1, �y2)|).

Finally, the probability of success to measure a solution is thus p = |Sol|
|L1| ·

1/ (|L2(�y1)| · |L3(�y1, �y2)| · |L4(�y1, �y2)|). By Theorem 3, the number of iterations
of amplitude amplification is O (

1/
√

p
)

, hence the top line. The bottom line is
obtained by expressing the sizes of L2(�y1), L3(�y1, �y2) and L4(�y1, �y2) using
Proposition 6. ��

Measurement gives a 4-tuple (�y1, �y2, �y3, �y4) solution to the configuration
problem. We need to repeat this whole process until we find all the solutions at
number |Sol|.

Notice that the same operations are performed over L3 and over L4, which
implies that an optimal configuration will necessarily respect the symmetry
C13 = C14 and C23 = C24.

In the end, this subroutine FindAllSolutionsWithinFilter runs in time

T (FASq
4) = |Sol| · (T2 + T3 + T4) · TAA,

and this leads to the following theorem.

Proposition 16. Given lists L1, L2, L3, L4 ⊂ Sd−1 of same size |Li| with i.i.d.
uniformly random vectors, and a configuration C ∈ R

4×4 with C13 = C14 and
C23 = C24, there exists an algorithm that finds all the |Sol| 4-tuples in L1×L2×
L3 × L4 satisfying configuration C in time

T (FASq
4) = |Li|2

√

|Sol|
(

(

1
1 − C2

12

)d/2

+
(

det(C[1, 2, 3])
1 − C2

12

)d/4
)

.

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 253

Complexity of the Quantum 4-Sieve. The above was the analysis of the
quantum 4-sieve after the prefiltering. We use this algorithm as the subroutine
in our framework for k = 4. Using Theorem 2 in this case, we recover the overall
time complexity of our quantum 4-sieve algorithm.

Theorem 6. There is a quantum algorithm with parameter α that solves the
3-sieve problem for a configuration C and lists of size |L| that runs in time T
with

T = O
(

NbRepα,C

(

|L| +
1

V(α)
T (FASq

4(|L1|, C ′(α)))
))

and uses quantum-accessible classical memory M = |L| and quantum memory
poly(d), and where |L1| = |L| · V(α) and T (FASq

4(|L1|, C ′(α))) given by Propo-
sition 16.

Minimal Memory Parameters.

Proposition 17. There is a quantum algorithm that solves SVP in dimension
d using 4-sieve that runs in time T = 20.3276d+o(d) using quantum-accessible
classical memory M = 20.1724d+o(d) and quantum memory poly(d).

Proof. We take a balanced configuration C with Ci,j = −1/4 for i �= j, α ≈
1.3131rad and |L| = 20.1724d = M . We apply Theorem 6: We write C ′

i,j ≈ −0.244
for i �= j and |L1| = |L| · V(α) = 20.124d. We have

NbRepα,C = 20.1069d ;
1

V(α)
= 20.0484d ; T (FASq

4(|L1|, C ′)) = 20.1722d.

Putting everything together, we indeed have a running time of 20.1069d ·20.0484d ·
20.1722d = 20.3276d. ��

Time-Optimizing Parameters.

Proposition 18. There exists an algorithm that solves SVP in dimension d
in time T = 20.3120d+o(d) using quantum-accessible classical memory M =
20.1813d+o(d) and quantum memory poly(d).

Proof. We take a configuration C with C12 ≈ −0.3859, C13 = C14 ≈ −0.2294,
C23 = C24 ≈ −0.2297 and C34 ≈ −0.1998. We take α ≈ 1.313rad and |L| =
20.1813d = M . We apply Proposition 6: We write C ′

12 ≈ −0.3859, C ′
13 = C ′

14 ≈
−0.2210, C ′

23 = C ′
24 ≈ −0.2215 and C ′

34 ≈ −0.1892. We set |L1| = |L| · V(α) =
20.1259d. We have

NbRepα,C = 20.1254d ;
1

V(α)
= 20.0554d ; FASq

4(|L1|, C ′) = 20.1312d.

Putting everything together, we indeed have a running time of 20.1254d ·20.0554d ·
20.1312d = 20.3120d (Table 5). ��

254 A. Chailloux and J. Loyer

Table 5. Time complexity of our quantum 4-sieving algorithm for a fixed memory
constraint. For the prefiltering, we have an optimal α ≈ 1.3131rad. Also see Fig. 3b for
a plot corresponding to this algorithm.

log2(Memory)/d 0.1724 0.175 0.180 0.1813

log2(Time)/d 0.3276 0.3153 0.3127 0.3120

Code Used for Our Results. All our results have been obtained using Sage-
Math and the code is available on https://github.com/johanna-loyer/3-4-sieve.

References

[Bec+16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceedings of
the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (2016)

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput.
Math. 19, 146–162 (2016)

[Bon+22] Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many
collisions via reusable quantum walks (2022)

[Bos+18] Bos, J., et al.:. CRYSTALS-Kyber: a CCA-secure module-lattice-based
KEM. IEEE (2018)

[Bra+02] Brassard, G., Hoeyer, P., Mosca, M., Tapp, A.: Quantum amplitude ampli-
fication and estimation. In: Quantum Computation and Quantum Infor-
mation: A Millennium, vol. 305, pp. 53–74 (2002)

[CL21] Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp.
63–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-
5 3

[Duc+19] Ducas, L.: Crystals-dilithium, algorithm specifications and supporting doc-
umentation. NIST (2019)

[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short
length in a lattice. Math. Comput. 44(170), 463–471 (1985)

[Gro96] Grover, L.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the 28th Annual ACM Symposium on the Theory of
Computing STOC, pp. 212–219 (1996)

[Hei21] Heiser, M.: Improved quantum hypercone locality sensitive filtering in lat-
tice sieving. preprint (2021)

[HK17] Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -
list problem in Euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 16–40. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54365-8 2

[HKL18] Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time–memory
trade-offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC
2018. LNCS, vol. 10769, pp. 407–436. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76578-5 14

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: Proceedings of the 15th Symposium on the Theory of
Computing (STOC), ACM Press, pp. 99–108 (1983)

https://github.com/johanna-loyer/3-4-sieve
https://doi.org/10.1007/978-3-030-92068-5_3
https://doi.org/10.1007/978-3-030-92068-5_3
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14

Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory 255

[Kir+19] Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quan-
tum algorithms for the approximate k -list problem and their application
to lattice sieving. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 521–551. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34578-5 19

[Kle00] Klein, P.: Finding the closest lattice vector when it’s unusually close.
SODA, pp. 937–941 (2000)

[Laa16] Laarhoven, T.: Search problems in cryptography, from fingerprinting to
lattice sieving (2016)

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. SODA, pp. 1468–1480 (2010)

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Crypt. 2, 181–207 (2008)

[Poh81] Pohst, M.E.: On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications. ACM SIGSAM
Bull. 15(1), 37–44 (1981)

https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-34578-5_19

NTRU in Quaternion Algebras
of Bounded Discriminant

Cong Ling and Andrew Mendelsohn(B)

Department of EEE, Imperial College London, London SW7 2AZ, UK
{c.ling,andrew.mendelsohn18}@imperial.ac.uk

Abstract. The NTRU assumption provides one of the most prominent
problems on which to base post-quantum cryptography. Because of the
efficiency and security of NTRU-style schemes, structured variants have
been proposed, using modules. In this work, we create a structured form
of NTRU using lattices obtained from orders in cyclic division algebras
of index 2, that is, from quaternion algebras. We present a public-key
encryption scheme, and show that its public keys are statistically close
to uniform. We then prove IND-CPA security of a variant of our scheme
when the discriminant of the quaternion algebra is not too large, assum-
ing the hardness of Learning with Errors in cyclic division algebras.

Keywords: post-quantum cryptography · NTRU · quaternion algebras

1 Introduction

NTRU schemes provide one of the most efficient post-quantum cryptographic
frameworks. While attacks such as lattice reduction can be used, known attacks
are ineffective against NTRU with well-chosen parameters. This absence of deci-
sive attacks against well-chosen parameters over a long period of time has led
NTRU to have a prominent place in the geography of post-quantum cryptogra-
phy. This is illustrated by two NTRU-based schemes reaching the third round
of NIST’s post-quantum standardization effort [13,19]. Moreover, partial secu-
rity reductions for NTRU have been given in [18,46], lending further weight to
NTRU as a platform for cryptography.

The NTRU problem can be formulated as follows: if f and g are ‘short’
ring elements, and h := g · f−1, find (f, g) from h mod q, for some modulus
q ∈ Z. Typical choices of rings are polynomial rings of the form Z[x]/(xp − 1),
Z[x]/(x2k

+ 1), and Z[x]/(xp − x − 1) [9,19,24]. These enjoy fast algorithms
for multiplication and low storage requirements. Moreover, a simple public-key
encryption scheme can be based on the hardness of the NTRU problem.

The cryptanalytic history of NTRU is lengthy, beginning with lattice reduc-
tion attacks [17] and including meet-in-the-middle attacks [27], hybrid attacks
[25], attacks based on decryption failures [26], and subfield attacks [2]. These
often exploit particular design choices of specific NTRU schemes (such as a
choice of ternary secrets, or an ‘overstretched’ choice of modulus, or the use of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 256–290, 2023.
https://doi.org/10.1007/978-3-031-40003-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_10

NTRU in Quaternion Algebras of Bounded Discriminant 257

rings with many subrings), and hence these weak(er) instances or parameters
can be avoided by careful design. As a result, after 25 years of cryptanalysis, the
NTRU assumption remains a trusted basis for cryptography.

The reliability and speed of NTRU has also prompted work exploring alter-
natively structured variants of NTRU [15,16]. Whereas NTRU uses multipli-
cation of elements in polynomial rings, these constructions use operations in
modules over polynomial rings, and aim to instantiate efficient and compact
NTRU schemes while enabling greater flexibility with parameter choices. How-
ever, neither of [15,16] give a full proof of security: in [16], it is shown that
module NTRU public keys are (asymptotically) close to uniform, if the modulus
factors into only two prime ideals in the ring - yet the scheme uses primes which
completely split in the ring; and the authors of [15] give no such proof.

Our Contributions. In this work we study the NTRU problem in the context
of quaternion algebras over number fields. In particular, we define NTRU in
cyclic division algebras (CDAs) when the ring of scalars (the ‘center’) of the
algebra is a cyclotomic field with power of two conductor. We call this NTRU
variant ‘CNTRU’. The dimension of these algebras over their center is a square,
d2, and the positive square-root of this dimension, d, is called the index of the
algebra. When the index is 1, the CDA is equal to its center, and so in our case is
a cyclotomic field; when the index is 2, the CDA is called a quaternion algebra.
These quaternion algebras enjoy particularly nice properties (see e.g. [56]) and
the proof of our main result on the uniformity of our NTRU public keys appears
to fail when d > 2. This is because when d = 2 and the center is a cyclotomic
field of power-of-two conductor, the number of roots of unity in the CDAs used
equals the dimension of certain lattices L concerned, so letting λi denote the ith
successive minimum of a lattice L, we have λ1(L) = λ[L:Z](L) and can make use
of results such as Lemma 3; when d > 2, we can no longer apply such lemmas.

The specific algebras in which we consider our NTRU variant are constructed
as follows: let m be a prime power, K = Q(ζm) be a cyclotomic field of conductor
m, and M = Q(ζ�m), for some prime � such that � ≡ 1 mod m and � �≡ 1 mod pm
for any prime divisor p of m. Then M/K is cyclic Galois, with Galois group
generated by (say) σ. Let L be the intermediate field fixed by σ2; this can be
written explicitly as L = Q(ζm,

√
�) when m is a power of two. Set u to be an

element such that u2 = ζm and ux = θ(x)u for all x ∈ L, where Gal(L/K) = 〈θ〉.
Then A = (L/K, θ, ζm) = L + uL is a quaternion algebra. We define Λ :=
OL + uOL and Λq := Λ/qΛ for some prime q. We denote the units of Λq by Λ×

q ,
and the center of Λ by Z(Λ). We then prove, for these quaternion algebras,

Theroem 4. Let ε > 0, q be a completely split prime, p ∈ Z(Λ×
q), and σ ≥

4n3/2 4
√

�
√

2 ln(32nq)q
1
2+2ε. Let yi ∈ Λq and zi = −yip

−1 mod q for i = 1, 2, and
D×

σ,zi
denote DΛ,σ restricted by rejection to Λ×

q + zi. Then when d = 2,

Δ

(
y1 + pD×

σ,z1

y2 + pD×
σ,z2

mod q, U
(
Λ×

q

))
≤ 222nq−8nε.

258 C. Ling and A. Mendelsohn

To achieve this, we prove a number of new results on q-ary lattices obtained
from orders in CDAs (of a particular form). These results can be stated for any
d ≥ 1, but we restrict them to the case of interest, d = 2.

We then proceed to study algorithms to encrypt and decrypt messages based
on the NTRU problem in these quaternion algebras. We prove that if there is
an efficient indistinguishability-under-chosen-plaintext attack (IND-CPA) algo-
rithm for CNTRU, there is an algorithm with non-negligible advantage for deci-
sion CLWE [21], a structured form of learning with errors (LWE) in CDAs. The
uniformity of CNTRU public keys (over invertible elements) forms a crucial part
of the proof of this result. Moreover, this connection is in part a motivation for
the particular CDAs we define NTRU over: the existence of a security proof
for CLWE in these particular algebras linking SIVP on lattices obtained from
ideals of Λ to CLWE allows us to link SIVP and NTRU, too (it should be noted
that the reduction from SIVP to CLWE holds for a (slightly) restricted space of
secrets). We obtain

Lemma 1. Let n ≥ 8 be a power of 2, d = 2, � ≤ Cn, and q ≥ 8n a prime
such that xn + 1 splits completely modulo q. Let δ > 0, p ∈ Z

(
Λ×

q

)
and σ ≥

2n3/2 4
√

�
√

ln(32nq)q
1
2+2ε satisfy the conditions of Lemma 18 and Theorem 4. If

there exists an IND-CPA attack algorithm A against CNTRU, running in time
T with advantage δ, then there exists an algorithm to solve decision-CLWE×

HNF

that runs in time T ′ = T + O(poly(n)) with success probability δ′ = δ − q−Ω(n).

Note the condition � ≤ Cn for a constant C: we impose a bound on � in order
to allow for a precise statement on the correctness of the decryption algorithm
(see Lemma 18). This is necessary because of the form of L. Consider the square
of field element 1+

√
�; this is an element of small �2-norm when using 1,

√
� as a

basis of L/K, but its square, 1+ �+2
√

�, may potentially be large indeed, if � is
large. This constraint amounts to a bound on the discriminant of the quaternion
algebra, which has discriminant which we bound by (n

√
�)4n (Lemma 2); when

� ≤ Cn, this becomes a function solely in n = [K : Q].
In practice, we have not found this imposition difficult to satisfy for small

values of C. The interested reader is directed to [21, §3.4] and Appendix B of
this paper for further discussion on parameter selection.

We also sketch a KEM and a signature scheme based on NTRU in CDAs in
the appendix, to give examples of greater functionality from CNTRU (Table 1).

Table 1. Comparison of Cyclotomic NTRU Variants

Cyclotomic NTRU [57] ModFalcon [16] This work

Ambient space Q(ζn), any n Q(ζ2r)2 A = L ⊕ uL, L = Q(ζ2r ,
√

�)

Z-Dimension ϕ(n) 2r 2r+1

Recommended q q ≡ 1 mod n q ≡ 1 mod 2r q completely split in L

Provably secure q q ≡ 1 mod n q ≡ 3 mod 8 q completely split in L

NTRU in Quaternion Algebras of Bounded Discriminant 259

Previous Work. There have been many algebraic variants of NTRU proposed
over the years: in CTRU [20], the usual polynomials were replaced with elements
from the ring F2[T][X]/(Xn − 1); this was later subjected to a polynomial-time
attack in [33], which also introduced NTRU over the Gaussian Integers. This
idea was expanded by [41] and [51], which introduced NTRU over the Eisenstein
integers (ETRU) and the ring of integers of Q(

√
−7) (KTRU) respectively. More

details on ETRU can be found in [40] and [29]. A version of NTRU using ideal
lattices can be found in [30], an attempt to secure CTRU can be found in [4],
and an attempt to further secure ETRU can be found in [5].

There have also been more exotic attempts to improve NTRU: some of these
include non-commutative variants such as [6,35,53,54]; NTRU over group rings
in [58]; non-associative schemes in [34] and [52]; and a variant with different
invertibility conditions in [7]. A useful comparison of some of these schemes can
be found in [47]. An overview of NTRU can be found in [50].

Despite this flood of NTRU variants, we note that few of them generalise
NTRU, in the sense that they do not offer a broader framework from which the
traditional form of NTRU can emerge; rather, they simply replace the underlying
ring, or make other subtle amendments. Two papers [15,16] do develop general
(module) versions of NTRU; these are compared to the construction featured
in this paper below. Finally, we note recent works [10,18,46] which provide
reductions between various (module) NTRU problems, and also module LWE.

Paper Organization. In the next section we state the mathematical back-
ground necessary for the rest of the paper. In Sect. 3 we introduce NTRU, in
Sect. 4 CDAs, and combine these in Sect. 5. We then begin the mathematical
work of the paper: Sect. 6 is dedicated to q-ary lattices obtained from CDAs,
Sect. 7 to the CNTRU key generation algorithm, Sect. 8 to proving IND-CPA
security of CNTRU (subject to the CLWE assumption). In the appendix we
give possible parameters and sketch a KEM and signature scheme.

2 Preliminaries

Lattices. An n-dimensional lattice is a discrete additive subgroup of R
n. One

can consider a lattice L to be the set of integer linear combinations of a set of
vectors B = {b1, . . . ,bk} that are linearly independent, for some k ≤ n, written
L(B) =

{∑k
i=1 zibi : zi ∈ Z

}
. All lattices in this work will have k = n.

Definition 1. Let L be a lattice, and R
n be endowed with inner product 〈·, ·〉.

Then the set L∗ = {v ∈ R
n : 〈L, v〉 ⊂ Z} is called the dual lattice of L.

260 C. Ling and A. Mendelsohn

Recall λi(L), the ‘ith successive minimum of L’, is the minimum length of a
set of i linearly independent vectors in L, where the length of a set of vectors
{x1, . . . ,xn} is maxi (‖xi‖), for some norm ‖ · ‖.

Discrete Gaussians. For vector space V ⊂ R
n equipped with (Euclidean)

norm ‖ · ‖, c ∈ V , and r > 0, we define the Gaussian function ρr,c : V → (0, 1]
by ρr,c(x) = exp

(
−π‖x − c‖/r2

)
. If c = 0, we write ρr.

The spherical Gaussian distribution Dr over R
n outputs a vector v with

probability proportional to ρr(v), and an elliptical Gaussian Dr can be sampled
as follows: fix a basis b1, . . . ,bn of R

n, and a vector r = (r1, . . . , rn). Sample
xi ← Dri

(independently for i �= j) and output
∑n

i=1 xibi.
The discrete Gaussian distribution DL,r,c , defined over a lattice L, outputs

x with probability ρr,c (x)
ρr,c (L) for each x ∈ L.

The smoothing parameter, defined below, will be used throughout this work:

Definition 2. Let L be a lattice and ε > 0. Then the smoothing parameter
ηε(L) of L is the smallest r > 0 such that ρ1/r (L∗ \ {0}) ≤ ε.

We will use the following bounds on the smoothing parameter:

Lemma 2 [44, Lemma 3.5]. For any full-rank lattice L ⊆ R
n and ε ∈ (0, 1), we

have ηε(L) ≤
√

ln(2n(1 + 1/ε))/π · 1
λ∞
1 (L∗) .

Lemma 3 [37, Lemma 3.3]. For any full-rank lattice L ⊆ R
n and ε ∈ (0, 1), we

have ηε(L) ≤
√

ln(2n(1 + 1/ε))/π · λn(L).

The statistical distance between distributions D,D′ over a discrete set S is
denoted Δ(D,D′) = 1

2

∑
x∈S |D(x) − D′(x)|. We also need the following lem-

mas:

Lemma 4 [37, Lemma 4.1]. For a lattice L over R
n, ε > 0, r ≥ ηε(L), and x ∈

R
n, the statistical distance between (Dr + x) mod L and the uniform distribution

modulo L is bounded above by ε/2. Equivalently, ρr(L + x) ∈
[

1−ε
1+ε , 1

]
· ρr(L)

Lemma 5 [14, Theorem 1]. For any positive definite Σ, vector c, lattice coset
A := Λ + a ⊂ c + span(Σ), and injective linear transformation T, we have

T
(
DA,

√
Σ,c

)
= DTA,T

√
Σ,Tc .

Lemma 6 [37, Lemma 4.4]. For any full-rank lattice L ⊆ R
n, c ∈ R

n, δ ∈ (0, 1)
and σ ≥ ηδ(L), we have Prb←↩DL,σ,c [‖b‖ ≥ σ

√
n] ≤ 1+δ

1−δ 2−n.

NTRU in Quaternion Algebras of Bounded Discriminant 261

Number Fields. A number field is a finite field-extension of Q. We will be
especially interested in cyclotomic fields, Q(ζn), where ζn is such that the small-
est integer m such that ζm

n = 1 is m = n. In this setting the degree [Q(ζn) :
Q] = ϕ(n), where ϕ is the totient function. We recall that ϕ(pr) = pr−1(p − 1).

A degree-n number field K is Galois over Q if the set of K-automorphisms fix-
ing Q pointwise, Gal(K/Q), forms a group. The automorphisms σi ∈ Gal(K/Q)
extend to embeddings σi : K ↪→ C. Using these embeddings, we embed K ↪→ C

n

via σK : x �→ (σ1(x), ..., σn(x)). Defining a space H = {x ∈ C
n : xi = xn−ifor i ∈

[n]}, we have σK(K) ⊂ H, and R
n ∼= H as an inner product space. Thus the

image of any discrete additive subgroup of K under σK can be considered a
lattice. The map σK is called the canonical embedding. These definitions extend
straightforwardly to a finite extension of number fields L/K.

An alternative way to embed a Galois number field into R
n is to write K =

Q(α) for some element α and writing x = x1α+...+xnαn for x ∈ K,xi ∈ Q. The
element x can then be mapped to (x1, ..., xn) ∈ R

n. This is called the coefficient
embedding of x, denoted coeff(x).

Any Galois number field K contains a subring called the ring of integers
of the field, which consists of the field elements which are the root of a monic
polynomial with integral coefficients. We denote this subring OK . For any ideal I
of OK , we define the dual ideal I∨ = {x ∈ K : TK/Q(xI) ⊂ Z}. Here TK/Q(·) =∑

σ∈Gal(K/Q) σ(·).

Bases of Real Quadratic Extensions of Cyclotomics. We consider an
extension L/K, where K = Q(ζ2r), L = K(

√
�) = Q(ζ2r ,

√
�) and gcd(2, �) = 1.

With n = [K : Q] and m = 2r, ϕ(m) = n. Define the powerful basis of L/Q as

−→p = (1, ζm, ..., ζn−1
m ,

√
�, ζm

√
�, ..., ζn−1

m

√
�).

We obtain a matrix from this by applying the canonical embedding to each entry:

σL(−→p) = (σL(1), σL(ζm), ..., σL(ζn−1
m), σL(

√
�), σL(ζm

√
�), ..., σL(ζn−1

m

√
�)).

This is a 2n × 2n matrix. To find the singular values of this matrix, we compute
σL(−→p)∗σL(−→p). This is diagonal with two blocks: the top left n × n diagonal
entries are all equal to m, and the bottom right n × n to m�. The eigenvalues
of a diagonal matrix are its non-zero entries, so the singular values of σL(−→p)
are

√
[L : Q],

√
[L : Q]�. Denoting the largest singular value by s1(−→p) and the

smallest by s2n(−→p), we have s1(−→p) =
√

[L : Q]�, s2n(−→p) =
√

[L : Q]. Since

σL(x) = σL(−→p) · coeff(x),

for x ∈ L, we find ‖σL(x)‖ ≤ s1(−→p)‖x‖−→p , where ‖ · ‖−→p is the norm obtained by
writing x in the −→p basis and taking the coefficient embedding. Conversely,

‖x‖−→p ≤ 1
s2n(−→p)

‖σL(x)‖ =
1

√
[L : Q]

‖σL(x)‖.

262 C. Ling and A. Mendelsohn

The si(−→p) can in practice be taken to be polynomial in n, if desired. We will be
interested in the above for integral elements x ∈ OL, which has powerful basis

(1, ζm, ..., ζn−1
m ,

1 +
√

�

2
, ζm

1 +
√

�

2
, ..., ζn−1

m

1 +
√

�

2
),

when � ≡ 1 mod 4. Upon computing the singular values of σ(−→p), we find that

Proposition 1. Let n = 2r−1, � ≡ 1 mod 2r a prime, and L = Q(ζ2r ,
√

�).
Then, using the powerful basis of OL, we have

s1(−→p) =
√

n

2

√
� + 5 +

√
�2 − 6� + 25 & s2n(−→p) =

√
n

2

√
� + 5 −

√
�2 − 6� + 25

Proof. The symmetric matrix σ(−→p)∗σ(−→p) has a block form: the top left block
is [L : Q] · I2r−1 , where I2r−1 is the 2r−1 × 2r−1 identity matrix, the lower right
block is 2r−2 · (� + 1), and the top right and lower left blocks are 2r−1 · I2r−1 .
The eigenvalues of this matrix are λi = 2r−2 · �+5±√

�2−6�+25
2 . So the singular

values are si(−→p) =
√

2r−2 · �+5±√
�2−6�+25
2 =

√
n

2

√
� + 5 ±

√
�2 − 6� + 25. ��

If
−→
d is the dual of −→p , we obtain s1(

−→
d) = 1

s2n(−→p)
, s2n(

−→
d) = 1

s1(
−→p)

. We will
use bounds in terms of this ‘decoding basis’; in particular, for x ∈ O∨

L,

‖x‖−→
d

≤ 1

s2n(
−→
d)

‖σL(x)‖ =
√

n

2

√
� + 5 +

√
�2 − 6� + 25‖σL(x)‖.

When � is bounded by some integer multiple of n, say � ≤ Cn for C ≥ 2, we can
use the bound s1(−→p) < 2Cn, when n ≥ 4.

Discretisation. We will need the following distribution:

Definition 3. [39] Denote by Bern the Bernoulli distribution and let a ∈ R.
The univariate Reduction distribution Red(a) = Bern(�a� − a) − (�a� − a) is
defined

Red(a) :=

{
1 + a − �a�, with probability �a� − a,

a − �a�, with probability 1 + a − �a�.

A random variable R = (R1, · · · , Rn)T ∈ R
n has a multivariate Reduction

distribution R ∼ Red(a) on R
n for parameter a = (a1, · · · , an)T if Rj ∼ Red (aj)

for j = 1, · · · , n are independent univariate Reduction random variables.

Definition 4. Let L = L(B) be an n-dimensional lattice under the canonical
embedding. For c ∈ H, the coordinatewise randomized rounding (CRR) discreti-
sation �X�B

L+c of random variable X to L + c is defined by

�X�B
L+c = X + B Red

(
B−1(c − X)

)
.

NTRU in Quaternion Algebras of Bounded Discriminant 263

Extend this to Hd by applying the discretisation in each coordinate. The
discretisation variable on H is 0-subgaussian:

Definition 5. For any δ ≥ 0, a multivariate random variable X on R
n (resp.

H) is δ-subgaussian with standard parameter b ≥ 0 if

E
(
e〈t,X〉

)
≤ eδe

1
2 b2‖t‖2

, for all t ∈ R
n (resp. t ∈ H).

Extend this to Hd by saying a multivariate random variable Z on Hd is δ-
subgaussian with standard parameter b ≥ 0 if Z is δ-subgaussian with standard
parameter b ≥ 0 in each H-coordinate (Hd ∼= R

nd2
as R-vector spaces). Formally,

Definition 6. A multivariate random variable Z on Hd is δ-subgaussian with
standard parameter b ≥ 0 if

E
(
e〈t,Z〉

)
≤ eδe

1
2 b2‖t‖2

, for all t ∈ Hd

Definition 7. A random variable Z on R
n (or H) is noncentral subgaussian

with noncentrality ‖E(Z)‖ ≥ 0 and deviation d ≥ 0 if the centered random
variable Z0 = Z − E(Z) is 0-subgaussian with standard parameter d.

We will need the following lemmas:

Lemma 7. [38] Suppose that B is a column basis matrix for a lattice in H with
largest singular value s1(B) and Z is an independent noncentral subgaussian ran-
dom variable with deviation dZ . The CRR discretisation of Z, �Z�B

Λ+c is noncen-

tral subgaussian with noncentrality ‖E(Z)‖ and deviation
(
d2
Z +

(
1
2

)2
s1(B)2

) 1
2
.

When L = Q(ζn,
√

�) for n a power of two, gcd(n, �) = 1, this becomes

Lemma 8. Suppose that B is a column basis matrix for a lattice in Hd with
largest singular value s1(B) and Z is an independent noncentral subgaussian ran-
dom variable with deviation dZ . The CRR discretisation of Z to �Z�B

Λ+c is non-

central subgaussian with noncentrality ‖E(Z)‖ and deviation
(
d2
Z + 1

2s1(B)2
) 1

2 .

Proof. As in [38, Theorem 2], but with an extra factor of
√

2 from taking the
matrix norm of the basis. ��

3 NTRU

We begin by defining the problem underlying schemes based on NTRU.

264 C. Ling and A. Mendelsohn

The NTRU Assumption

Definition 8 (NTRU instances). Let R be a ring and q ∈ Z≥2 a modulus. An
instance of NTRU is an element h ∈ Rq such that h · f = g mod qR for some
pair of non-zero elements (f, g) ∈ R.

We are interested in the following problem, based off NTRU instances:

Definition 9 (The NTRU problem). Let R and q be as above, and ε > 0. Let D
be a distribution over instances of NTRU. The NTRU problem is, given h ← D,
to find non-zero (f, g) such that h · f = g mod qR and ‖f‖, ‖g‖ ≤

√
q

ε .

The hardness of the NTRU problem varies significantly, depending on ε.

Connection to Lattices. The solutions over R to the defining equation hf ≡
g mod q form a lattice, denoted

Lh,q = {(x, y) ∈ R2 : hx − y ≡ 0 mod q}.

The sum of two solutions to the defining equation is again a solution, and one
can also observe that for any z ∈ R and (f, g) ∈ Lh,q, z(f, g) satisfies zhf −zg ≡
z(hf −g) ≡ 0 mod q. Thus Lh,q is a R-module of rank 2, and the NTRU problem
can be rephrased as a shortest vector problem in the NTRU lattice Lh,q.

Encryption Scheme. The NTRU encryption scheme, as in [24], runs as fol-
lows:

KeyGen: Let Sf , Sg, Sφ, and SM be sets of polynomials in R = Z[x]/(t(x))
for some degree-N polynomial t(x). Let q � p ∈ Z be coprime. Select f from
Sf and g from Sg, such that f is invertible modulo both q and p. Compute
h = g ·f−1 mod q; this polynomial h is the public key, and (f, g) the private key.
Encryption: Suppose the message is M , taken from SM . Then to encrypt M ,
select φ from Sφ and compute c = pφ · h + M mod q. This is the ciphertext.
Decryption: To decrypt c, first compute a = f · c mod q. Then compute f−1 ·
a mod p, to recover M mod p. This decryption holds provided the coefficients
of a lie in the correct interval. Otherwise, there is a small chance of decryption
failure. Parameters can be chosen to eliminate the chance of decryption failure.
Correctness: Observe that

a = f · c mod q = f · (pφ · h + M) mod q = pφ · g + f · M mod q,

so that finally f−1 · a mod p = f−1 · (pφg + f · M) mod p = f−1 · (fM) mod p =
M mod p, provided that when we reduce a modulo q (taking the coefficients
between −q

2 and q
2), we obtain simply the polynomial a.

NTRU in Quaternion Algebras of Bounded Discriminant 265

Further Discussion of NTRU. There are a variety of parameter choices
currently used to instantiate NTRU. In the paper initially proposing the NTRU
problem [24], the ring R = Z[x]/

(
xN − 1

)
was used, with N prime (and the

authors recommended using Sophie Germain primes). Of the two final round
NTRU-based schemes in NIST’s post-quantum standardization process, NTRU
[13] samples f and g from Z[x]/(t(x)) with t(x) = Φn(x), where n is prime and
Φn(x) is the nth cyclotomic polynomial. This is contrasted by NTRU Prime [9],
which uses t(x) = xp − x − 1 for some prime p (not to be confused with the
modulus of the previous section), such that Zq[x]/(xp − x − 1) is a field.

We also note here that f and g are often chosen to be binary or ternary poly-
nomials (i.e. coefficients are in {0, 1}, {−1, 0, 1} respectively), which increases
efficiency, but which has been subjected to meet-in-the-middle attacks [25].

Structured Forms of NTRU. Two papers have proposed structured forms
of NTRU using modules [15,16]. The authors construct NTRU modules of the
following form, where R = OK for a number field K:

Lh,q = {(f, g)T ∈ Rd+1 : 〈f,h〉 − g ≡ 0 mod q}.

Here g is a ring element and f is an d-dimensional vector over R, and embedding
the lattice (via either coefficients or ring embeddings) yields lattices in R

(d+1)n,
where dimZ(R) = n. Multiple samples can be taken and written in the following
form, where we have chosen d samples to obtain square matrices for convenience
of expression (note squareness of the matrices involved is not required):

Lh,q = {(F,g)T ∈ Rd×(d+1) : Fh − g ≡ 0 mod q}.

These are more general objects than those considered in this work. However,
the authors of [16] are able to prove uniformity of their NTRU public keys
only for certain prime moduli, those splitting into two prime ideals in R (those
congruent to 3 modulo 8), which are usually not the primes used in practice -
and their recommended parameters are completely split primes and a module
rank of 2, over a power-of-two cyclotomic field. They prove:

Theorem 1 (Theorem A.1, [16]). Let K be a cyclotomic number field of
degree d and maximal order R. Let n ≥ m ≥ 1. Let q be a prime integer
which factors as qR = p1p2, where the pi’s have algebraic norm qd/2. For
s ≥ 2dqm/(n+m)+2/(d(n+m)), we have:

Δ
(
Es, U

(
Rn×m

q

))
≤ 2−Ω(d),

where Es is the distribution of F−1G mod q, for F, G with entries chosen accord-
ing to discrete Gaussians.

In contrast, restricting ourselves to more structured modules, we obtain a
full proof of uniformity of our public keys, for completely split primes in rank 2.
Our modules are obtained from cyclic division algebras.

266 C. Ling and A. Mendelsohn

4 Cyclic Division Algebras

In this section we define the cyclic algebras we will use to generalise NTRU.

Definition 10. Let K/Q be a number field of degree n, and L/K be a Galois
extension of degree d with cyclic Galois group, i.e. Gal(L/K) = 〈θ〉 for some
automorphism θ. Consider the direct sum

d−1⊕

i=0

uiL = L ⊕ uL ⊕ u2L ⊕ ... ⊕ ud−1L,

subject to the relations ud = γ ∈ OK , and x · u = u · θ(x), for all x ∈ L.
We denote this direct sum A = (L/K, θ, γ), which is a cyclic algebra.

Definition 11. A cyclic algebra A = (L/K, θ, γ) is a division algebra if for every
element a ∈ A, there exists an inverse element a−1 ∈ A such that a · a−1 = 1.

In order to ensure that our algebras are division, we will need to ensure they
meet the following condition, known as the non-norm condition:

Lemma 9. [1] Let A = (L/K, θ, γ) be a CDA. Then A is a division algebra if
and only if γ is a non-norm element, i.e. �x ∈ L : NL/K(x) = γ.

The construction of non-norm elements is therefore crucial in finding division
algebras. In [21], much discussion was given to finding such elements - we recap
this below, after the following definitions.

In NTRU, polynomials are often sampled from subrings of fields. We now
define the corresponding mathematical object within cyclic algebras from which
it is suitable to sample elements.

Definition 12. A Z-order, O, in A = (L/K, θ, γ) is a finitely generated Z-
module such that O · Q = A and O is a subring of A with the same identity
element as A. Note O · Q = {

∑m
i=1 aiqi : ai ∈ O, qi ∈ Q,m ∈ Z≥1}.

Definition 13. Define the natural order to be the order of the form

Λ =
d−1⊕

i=0

uiOL = OL ⊕ uOL ⊕ u2OL ⊕ ... ⊕ ud−1OL,

where OL denotes the ring of integers of L.

Given a prime q ∈ Z, we can take the quotient of Λ to obtain

Λq = Λ/qΛ =
d−1⊕

i=0

ui
(
OL/qOL

)

= OL/qOL ⊕ u
(
OL/qOL

)
⊕ u2

(
OL/qOL

)
⊕ ... ⊕ ud−1

(
OL/qOL

)
.

NTRU in Quaternion Algebras of Bounded Discriminant 267

When R = Z[x]/Φn(x), R is the ring of integers of the nth cyclotomic field,
say L; then Rq = OL/qOL. So Λq can be seen as a tuple of elements of Rq,
equipped with a noncommutative multiplication induced by multiplication by u.

Fixing the L-basis of A, {ui}i≥0, we can express an element as the linear map
φ(x) given by left multiplication on the ui. For example, if x = ⊕d−1

i=0 uixi ∈ A,

φ(x) =

⎛

⎜⎜
⎝

x0 γθ(xd−1) . . . γθd−1(x1)
x1 θ(x0) . . . γθd−1(x2)
.

xd−1 θ(xd−2) . . . θd−1(x0)

⎞

⎟⎟
⎠ .

This is called the left regular representation.
If we denote the n embeddings K ↪→ C by α, we can extend these to embed-

dings of L (which, in an abuse of notation, we also denote by α). It can be seen
that all the nd embeddings of L are obtained from the set {α ◦ θi}α,i. So we
may form a vector in R

nd2
from x by concatenating the vectorized images of the

α(φ(x)) for all α ∈ Emb(K). Then the image of any discrete additive subgroup
of A is mapped to a lattice in R

nd2
. Finally, we define two norms on A: we set

‖x‖p
p =

∑
α∈Emb(K)

∑
i,j |α(φ(x)i,j)|p, and ‖x‖∞ = maxα,i,j |α(φ(x)i,j)|, where

φ(x)i,j denotes the i, jth entry of φ(x). We may use ‖ · ‖ to denote ‖ · ‖2.
Let Tr(·) be the map Tr(x) = TK/Q ◦ trace(φ(x)), for x ∈ A. This map is

symmetric and additive. The dual of an ideal I is the set

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.

We also define a multiplicative norm on ideals. Let I be an integral ideal of a
maximal order O; then NA/Q(I) := |O/I|.

We now outline the construction of CDAs using cyclotomic fields as in [21].
Let m = pr be a prime power, K = Q(ζm) and M = Q(ζ�m), for a prime �
such that � ≡ 1 mod m and � �≡ 1 mod pm. Then M/K is cyclic Galois, with
Galois group generated by (say) θ. Let L be the intermediate field fixed by θd.
It can be verified that ζm is not the norm of any element of L, so (L/K, θ, ζm)
is a division algebra. Moreover, Λ is maximal with respect to inclusion in A.
Security reductions for LWE in these algebras were given; here we investigate
the properties of NTRU implemented in such an algebra.

In the case d = 2, L is the compositum of K and the unique quadratic
subfield of Q(ζ�), which is Q(

√
�). Thus L = Q(ζm,

√
�) and Λ = OL + uOL. We

now prove an upper bound on the discriminant of Λ:

Definition 14. disc(Λ/Z) :=
{

det (Tr (xixj))
nd2

i,j=1 | (x1, . . . , xnd2) ∈ Λnd2
}

.

It was proved in [55, Lemma 2.9] that disc (Λ/OK) = disc(L/K)dγd(d−1).
Since in our case γ is a root of unity, this simplifies to disc (Λ/OK) = disc(L/K)d.

Proposition 2. Let L = Q(ζ2r ,
√

�), r ≥ 2, � ≡ 1 mod 2r, and K = Q(ζ2r).
Then

disc(Λ/Z) ≤ (n
√

l)4n.

268 C. Ling and A. Mendelsohn

Proof. Since uiOL and ujOL are orthogonal with respect to the trace form,
except when i + j ≡ 0 mod 2, we have

det (Tr (uxkux�))
2n
k,�=1 = det

(
u2 Tr (xkx�)

)2n

k,�=1
= γnd det (Tr (xkx�))

2n
k,�=1

= det (Tr (xkx�))
2n
k,�=1 = disc(L/Q),

for some xi ∈ OL, since γ = ζn.
It now suffices to prove that disc(L/Q) ≤ (n

√
�)2n. Since L is the compositum

of K = Q(ζ2r) and Q(
√

�), we can apply a general formula on the discriminants
of composita (e.g. [36, ex. 23(c)]) to obtain

disc(L/Q) = disc(K/Q)2 disc(Q(
√

�)/Q)n.

We combine disc(K/Q) ≤ nn with disc(Q(
√

�)/Q) = � for the result. ��

Proposition 3 [8, Proposition 2.5]. Let Λ be as above and I ⊂ Λ be an integral
ideal. Then

Vol(I) = NA/Q(I)
√

disc(Λ/Z).

We will use the following bound on the shortest vector of a Λ-ideal lattice
under the canonical embedding, with repect to a p-norm, λp

1(L):

Proposition 4 (cf. [45, Lemma 6.1]). Let I be an ideal of Λ. Then

λp
1(I) ≤ (nd2)1/pNA/Q(I)1/nd2

disc(Λ/Z)1/2nd2
.

Proof. Since ‖x‖p ≤
(
nd2

) 1
p ‖x‖∞, we bound ‖x‖∞. Recall A ↪→ Hd ⊂ (Rr1 ×

C
2r2)d, with r1 + 2r2 = nd. Set C = {x ∈ Hd : ‖x‖∞ ≤ 1} and note V ol(C) =

2nd2 (π
2

)r2d. Then if βnd2
>
(

2
π

)r2d
NA/Q(I)

√
disc(Λ/Z), we have

Vol(βC) = βnd2
Vol(C) >

(
2
π

)r2d

NA/Q(I)
√

disc(Λ/Z)2nd2
(π

2

)r2d

= NA/Q(I)
√

disc(Λ/Z)2nd2
= Vol(I)2nd2

.

By Minkowski’s theorem, βC contains a lattice point from I, so λ∞
1 (I) ≤ β. ��

This implies that in the �2-norm, λ1(Λ) ≤ (nd2)1/2(n
√

�)1/2 = dn 4
√

�.

Proposition 5. Let Λ ⊂ A = (L/K, θ, γ) where |γ| = 1, [L : K] = d and
[K : Q] = n. Then, for x = ⊕d−1

i=0 uixi ∈ Λ, I an ideal of Λ,

‖x‖p ≥ [A : Q]1/p ·

⎛

⎝
∏

0≤i<d

|NL/Q(xi)|

⎞

⎠

1/[A:Q]

.

When I = JΛ for some OK-ideal J and Ī := I ∩ OL, then

λp
1(I) ≥ [A : Q]1/p ·

∣∣NL/Q

(
Ī
)∣∣d/[A:Q]

, and λ∞
1 (I) ≥

(
NL/Q(Ī)

)1/nd
.

NTRU in Quaternion Algebras of Bounded Discriminant 269

Proof. See Appendix A. ��

Mapping Between Bases of A. Let d = 2, so A embeds into H2. Similarly
as above, consider the block-diagonal matrix with each block equal to σ(−→p), for
−→p the powerful basis of L. Now, since Λ = OL + uOL, and OL = Z[ζ2r , 1+

√
�

2],
Σ(Λ) = (σL(Λ0), σL(Λ1)), a matrix acting on a vector to map it to a coefficient
embedding representation, should act on the first and second coordinates σL(Λi)

in the desired way. Thus the required transformation is VΛ =
(

σ(−→p) 0
0 σ(−→p)

)
.

Note if σ(−→p) is invertible, so is VΛ. We similarly extend
−→
d to Λ. We can then

obtain bounds for norms defined over these bases: for x ∈ Λ with d = 2 we
obtain

‖x‖
σ(

−→
d)

≤
√

2s1(−→p)‖x‖.

Note that when d = 1, K = L and A = K. This is the fact that will enable us
to generalise NTRU schemes which sample elements from Z[x]/(Φ2r (x)), using
algebras of the form A = (L/Q(ζ2r), θ, ζn); when d = 1, we will recover the
familiar families of polynomials in certain spaces, generalising NTRU, ETRU
and others. If one uses CDAs over fields K where K is some other popular
choice of field for NTRU, one obtains generalisations of those schemes too.

CLWE and Its Security. Below, we link the hardness of NTRU in CDAs
to that of LWE in CDAs. Here we introduce CLWE, and begin by defining a
distribution on the error distributions used to establish the hardness of CLWE:

Definition 15. Define the distributions Σα as the set of Gaussian distributions
Σ over

⊕d−1
i=0 uiLR with Gaussian marginal distribution in the (i, j)th coordi-

nate with parameter ri,j ≤ α. The error distribution Υα on the family of error
distributions is sampled from by choosing Σ ∈ Σα and adding it to Dr, where
each ri := α

((
n · d2

)1/4 · √
yi

)
for y1, . . . , yn·d2 sampled from Γ(2, 1).

Then the CLWE distribution, and decision CLWE problem, are as follows:

Definition 16. Let L/K be a Galois extension of number fields with [L : K] = d
and [K : Q] = n, with Gal(L/K) cyclic, generated by θ. Let A := (L/K, θ, γ) be
the resulting cyclic K-algebra with element u such that ud = γ ∈ OK and γ sat-
isfying the non-norm condition. Let Λ be the natural order of A. For an error dis-
tribution ψ over

⊕d−1
i=0 uiLR, q ≥ 2, and secret s ∈ Λ∨

q , a sample from the CLWE
distribution Πq,s,ψ is obtained by sampling a ← Λq uniformly at random, e ← ψ,

and outputting (a, b) = (a, (a · s)/q + e mod Λ∨) ∈
(
Λq,

⊕d−1
i=0 uiLR

)
/Λ∨.

Let Υ be as above and UΛ the uniform distribution on
(
Λq,

(⊕d−1
i=0 uiLR

)
/Λ∨

)
.

Then the decision CLWE problem, DCLWEq,Υ , is on input a collection of inde-
pendent samples from Πq,s,ψ for a random choice of (s, ψ) ← U

(
Λ∨

q

)
×Υ or from

UΛ, to decide which is the case (with non-negligible advantage).

270 C. Ling and A. Mendelsohn

Recall the following security reductions for CLWE, from [21]:

Theorem 2. Let A be a cyclic division algebra over a number field L with center
K and natural, maximal order Λ with |γ| = 1. Let α = α(n) ∈ (0, 1) and
q = q(n) ≥ 2, unramified in L, be parameters such that α · q ≥ ω(

√
log(nd2)).

Then, there is a polynomial-time quantum reduction from A-SIV Pξ to search
CLWEq,Σα

for any
√

8Nd · ξ = (ω(
√

dn)/α).

Theorem 3. Let Λ be the natural order of a cyclic algebra A = (L/K, θ, γ), q ∈
poly(n), and assume that α · q ≥ ηε (Λ∨) for a negligible ε = ε(n). Then, there
is a probabilistic reduction from search CLWE q,Σα,G for any pairwise different
G ⊂ Λ∨

q to decision CLWEq, Υα which runs in time polynomial in n.

These reductions combine to ground the security of decision CLWE on SIVP
over ideal lattices in CDAs. Thus if we connect the security of NTRU to that
of CLWE, we will have connected the security of NTRU to SIVP. However, we
require a particular variant of CLWE to which to reduce NTRU. Here we recall
the variant of RLWE used in [48]. Let s ∈ Rq and ψ be a distribution over Rq.
Define A×

s as the distribution obtained by sampling (a, as + e) with (a, e) ←
U(R×

q) × ψ, where R×
q is the set of invertible elements of Rq. When q = Ω(n),

the probability of a uniform element of Rq being invertible is non-negligible,
so RLWE is hard even when As,ψ and U(Rq × Rq) are replaced by A×

s,ψ and
U(R×

q × Rq) respectively. Denote this variant by RLWE×.
It is known that s can be chosen from the same distribution as e without

losing security (see [3]). The authors of [48] call the variant of RLWE when the
secret and error are both chosen from the error distribution RLWE×

HNF. To see
this, let algorithm A be able to solve RLWE×

HNF. One can transform samples
((ai, bi))i into samples

((
a−1
1 ai, bi − a−1

1 b1ai

))
i
, where inversion is performed in

R×
q . This transformation mapsA×

s,ψ to A×
−e1,ψ, and U

(
R×

q × Rq

)
to itself. Note

that bi − a−1
1 b1ai = ais + ei − a−1

1 (a1s + e1)ai = ais + ei − ais − a−1
1 e1ai =

−a−1
1 aie1 + ei.
We can define CLWE× analogously: let s ∈ Λq, e ← χ, and a ← U(Λ×

q).
Output (a, as + e) ∈ Λ×

q × ⊕d−1
i=0 uiLR, and call the distribution obtained A×

q,s,χ.
We can take s from the same distribution as the error to obtain CLWE×

HNF ; to
see the transformation as in the RLWE case, transform CLWE× samples into
CLWE×

HNF samples via the transformation (ai, bi) �→ (aia
−1
1 , bi − aia

−1
1 b1).

5 NTRU in CDAs

In the following, we follow the method outlined in [24] to implement NTRU in
CDAs. After demonstrating that the basic form of NTRU adapts easily to our
context, we will go on to discuss the tweaks, improvements, and modifications
that have arisen in the literature, and how they can be brought into CDAs. For
convenience, we refer to NTRU in a cyclic division algebra as CNTRU.

NTRU in Quaternion Algebras of Bounded Discriminant 271

NTRU Instances in CDAs.

Definition 17 (CNTRU instances). Let A = (L/K, θ, γ) be an algebra as con-
structed above, and Λ the natural order. Let q ∈ Z≥2. An instance of CNTRU
is an element h ∈ Λq such that f · h = g mod qΛ for non-zero pair (f, g) ∈ Λ.

We define the NTRU problem for CDAs, based off CNTRU instances:

Definition 18 (The CNTRU problem). Let Λ and q be as above, and ε > 0. Let
D be a distribution over instances of CNTRU. The CNTRU problem is, given
h ← D, to find non-zero (f, g) such that f · h = g mod qΛ and ‖f‖, ‖g‖ ≤

√
q

ε .

NTRU Lattices from CDAs. We now consider the lattices generated by
CNTRU instances. These lattices are a generalization of [16] and [15]’s lattices:
take a private key (f, g) ∈ Λ2 and public key h = f−1g mod qΛ. Observe that
the pair (f, g) satisfies

fh − g = 0 mod qΛ, (1)

so in the same way as NTRU, the set S = {(f, g) ∈ Λ2 : fh−g = 0 mod qΛ} ⊂ Λ2

is a left Λ-module (i.e. S is additively closed and closed under multiplication from

Λ on the left). We can write a generator matrix for this Λ-module as
(

−h 1
q 0

)

where the columns generate the module over Λ2. By fixing a basis {ui}i, we can

then rewrite this matrix to obtain one with entries in OL,
(

−H Id

qId 0

)
where

H =

⎛

⎜
⎜
⎝

h0 γθ(hd−1) γθ2(hd−2) . . . γθd−1(h1)
h1 θ(h0) γθ2(hd−1) . . . γθd−1(h2)
.

hd−1 θ(hd−2) θ2(hd−3) . . . θd−1(h0)

⎞

⎟
⎟
⎠ .

Note that in the module NTRU examples referenced above, the element h defines
a vector over a field, so appears in just one column of the corresponding matrix,
whereas one sample of CNTRU for [L : K] = d results in h mod q defining an
NTRU-style matrix with d columns determined by h, as can be seen. This is
(loosely) equivalent to d samples of module NTRU.

To make the comparison explicit, recall that module forms of NTRU rely on
lattices of the form

Lh,q = {(F,g) ∈ Rd×(d+1) : Fh − g ≡ 0 mod q}.

In this case, one can see that these R-modules have a similar form to the CNTRU
modules defined above as

Lh,q = {(f, g)T ∈ Λ2 : fh − g ≡ 0 mod q},

when ring multiplication is expanded in matrix-vector form using the regular
representation of Λ:

Lh,q = {(f,g)T ∈ O2d×1
L : φ(f)h − g ≡ 0 mod q}.

272 C. Ling and A. Mendelsohn

Thus we expect the hardness of NTRU problems in CDAs to lie between that
of NTRU over rings and NTRU over modules. Moreover, because of the ring
structure of Λ, one could use algorithms such as [11] to follow the analysis of
[21] and gain (asymptotic) efficiency over standard forms of module NTRU.
Finally, we note that the storage required for a CNTRU private key is much less
than the module case (for multiple samples), because of the structure of φ(f) as
compared with that of F , using the above notation. In particular, one only has
to store the first column of φ(f), as opposed to the entire matrix.

NTRU-Based PKE. To develop encryption based on the CNTRU problem, we
proceed as in [24]. Take the following setup: let A = (L/K, θ, γ) be a CDA, and
Λ ⊂ A the natural order, assumed to be maximal. Let K = Q(ζ2r), [K : Q] = n,
and [L : K] = d. Then Λ = OL ⊕ uOL ⊕ ... ⊕ ud−1OL. Denote by Sf , Sg, Sφ,
and SM sets of elements of Λ. Select p, q ∈ Z such that gcd(p, q) = 1 and p � q.

Key creation: Select f from Sf , and g from Sg. Furthermore, ensure that f
has inverses in Λq and in Λp. Set (pk, sk) := (h, (f, g)) where

h := f−1 · g mod qΛ.

Encryption: Select a message M from SM and φ from Sφ. Then use the public
key, h, to form the element

c := ph · φ + M mod qΛ.

Decryption: To decrypt c, compute a := f · c mod qΛ, then f−1 · a mod pΛ.

Correctness. Note that

a = f · c mod q = f · (ph · φ + M) mod q = fph · φ + f · M mod q

= pf · (f−1 · g) · φ + f · M mod q = pgφ + f · M mod q,

since f · f−1 ≡ 1 mod q. Then

f−1 · a mod p = f−1(pg · φ) + f−1(f · M) = p(f−1gφ) + (f−1 · f) · M mod p

= (f−1 · f) · M mod p = M mod p.

Remark: This is basically the same as NTRU, but we have to be careful about
the order we multiply elements, because of noncommutativity.

Observe that when d = 1, we are in the usual set up for NTRU. We could
choose the sets Sf , Sg etc. to be analogous to the ring case, if for example we
wanted f and g to be ternary.

Note that the original NTRU scheme doesn’t meet the IND-CPA security
condition (though [46] gives partial reductions for search and decision NTRU
problems). Below we will state an adaptation to the above scheme, and mirror
the security guarantee of [48].

NTRU in Quaternion Algebras of Bounded Discriminant 273

6 Results on q-Ary Lattices

In this section we prove a regularity lemma on q-ary lattices obtained from the
natural order of our family of CDAs.

Uniformity of the NTRU Public Key Distribution. We ultimately aim
to demonstrate near-uniformity of the CNTRU public key distribution, focusing
on the case d = 2. Almost all of the argument below holds for arbitrary d, but
one step restricts us to d = 2; we leave the removal of this restriction as a topic
of future research. We prove our result for completely split primes, but note that
the proof can be adapted for any prime which is unramified in L.

Let Λ be the natural order of a CDA as above, where [K : Q] = n and
[L : K] = d. Let q ∈ Z be prime, such that q is unramified in OL. Then:

Lemma 10 [43, Proposition 4]. Suppose that I = q is a prime in OK , such that
qOL = Q1Q2 · · ·Qg in L, with γ �= 0 mod q. Then the only proper two-sided ideal
of Λ containing I is IΛ = ⊕d−1

j=0ujqOL.

Since in our case Λ is a maximal order, ideals uniquely factorize into products of
prime ideals and prime ideals are maximal. By the above lemma all unramified
two-sided ideals of Λ factor into a product of ideals of the form qΛ, where q lies
in K. Thus any two-sided unramified ideal can be expressed as I =

∏
i∈S qiΛ, for

some indexing set S. In the following, we will consider the ideals lying above qΛ,
where q splits completely L: these have the form I =

∏
i∈S qiΛ where qOK =∏n

i qi and S ⊂ {1, ..., n}. We now define the following module lattices:

Definition 19. Let q ≥ 2 be a prime completely split in OL. Let I be an ideal of
Λ of the form I =

∏
i∈S qiΛ containing qΛ, and IS be an ideal of Λq of the form

IS =
∏

i∈S qiΛ/qΛ for some S ⊂ {1, ..., n}. Let m ≥ 2 and a = (a1, ..., am) ∈ Λm
q .

a⊥(IS) := {(t1, ..., tm) ∈ Im :
∑

i

tiai ≡ 0 mod q}, and

L(a, IS) := {(t1, ..., tm) ∈ (Λ∨)m : ti ≡ ais mod qI∨ for some s ∈ Λ∨,∀i}.

Lemma 11. a⊥(IS) = q(L(a, IS))∨, and L(a, IS) = q
(
a⊥(IS)

)∨.

Proof. To show a⊥(IS) ⊂ q(L(a, IS))∨, we show that any t = (t1, ..., tm) ∈
a⊥(IS) has Tr(t · z) ≡ 0 mod q for any z ∈ L(a, IS))∨. Write zi = ais +
qz′

i, for s ∈ Λ∨ and z′
i ∈ I∨. Then Tr(t · z) = Tr(

∑
i tizi) =

∑
i Tr(tizi) =∑

i Tr(tiais) + Tr(q · tiz
′
i) = Tr(

∑
i(tiai)s) + qTr(tiz′

i) ∈ qZ.
To show the reverse containment, let x ∈ L(a, IS))∨. We show

∑
i qxiai ≡

0 mod q and qxi ∈ I. Note q · (I∨)m ∈ L(a, IS))∨. Set vi to be an element
of L(a, IS))∨ with zeroes everywhere except for the ith entry, which is qs′ for
s′ ∈ I∨. Then Tr(x · vi) = Tr(q · xis

′) ∈ Z, so qxi ∈ I. Moreover, for all
t ∈ L(a, IS)), we have Tr(x · t) ∈ Z. Writing ti = ais + qt′i where t′i ∈ I∨, we
obtain Tr(x · t) =

∑
i Tr(xiais + qxit

′
i) = Tr((

∑
i xiai)s) +

∑
i Tr(qxit

′
i) ∈ Z,

and hence we have Tr((
∑

i xiai)s) ∈ Z. So
∑

i xiai ∈ Λ, as required. ��

274 C. Ling and A. Mendelsohn

We now lower bound the shortest vector in L(a, IS)), probabilistically. Recall
the construction of our algebras: K = Q(ζ2r) with [K : Q] = n, M = Q(ζ2r·�)
for a prime � congruent to 1 mod 2r, and L is intermediate of degree 2 over K.

Lemma 12. Let S ⊂ {1, ..., n}, m ≥ 2, d = 2, and ε > 0. Then λ∞
1 (L(a, IS))) ≥

B := qβ/(n
√

�), where β = (1 − |S|
n)(3

4 − 1
m) − ε, except with probability at most

2(1+10m)nq−4mnε, where a ← U(Λ×
q)m.

Proof. Set P = Pra←U((Λ×
q))m

[
L(a, IS) contains t �= 0 : ‖t‖∞ < qβ/nd

]
. To

bound this, consider P (t, s) := Pra←U((Λ×
q)m) [ti ≡ ais mod qI∨,∀i]. This,

because t ∈ (Λ∨)m lies in L(a, IS) iff ti ≡ ais mod qI∨ for some s ∈ Λ∨. Since
the ai are sampled independently, we can rewrite this as P (t, s) =

∏m
i Pi(ti, s),

where Pi(ti, s) := Prai←U(Λ×
q) [ti ≡ ais mod qI∨]. So we obtain

P ≤
∑

t ∈ (I∨)m :
0 < ‖ti‖∞ < B ∀i

∑

s∈Λ∨/qI∨

m∏

i

Pi(ti, s).

Now, since I =
∏

i∈S qiΛ, we have I−1 =
∏

i∈S q−1
i Λ, and qI∨ = qI−1Λ∨ =

(
∏n

i=1 qiΛ)(
∏

i∈S q−1
i Λ)Λ∨ =

∏
i∈S′ qiΛ

∨, where S′ = {1, ..., n} \S. By the CRT
I∨/qI∨ ∼= I∨/qi1Λ

∨ × ...×I∨/qi|S′|Λ∨, for a subsequence ij ∈ S′, j = 1, ..., |S′|.
We claim that if Pi(ti, s) �= 0 there exists a subset S′′ ⊂ S′ such that ti and

s ∈
∏

i∈S′′ qiΛ
∨ and ti, s �∈ qjΛ

∨ for any j ∈ S′ \ S′′. If this weren’t the case,
there would exist j ∈ S′ such that s ≡ 0 mod qjΛ

∨ and t �≡ 0 mod qjΛ
∨, or vice

versa. But in either scenario Pi(ti, s) = 0, because ai ∈ Λ×
q . So such a S′′ exists.

If j ∈ S′′, ti ≡ ais ≡ 0 mod qjΛ
∨ for all ai ∈ Λ×

q . Alternatively, if j ∈ S′ \S′′,
ti ≡ ais �≡ 0 mod qjΛ

∨, so there is a unique such ai ∈ Λ×
q satisfying the equation.

Finally, for j ∈ S, there is no constraint on the ai. So for a fixed set size |S′′| = d′,
the number of possible ai ∈ Λ×

q satisfying ti ≡ ais mod qI∨ is

(
d−1∏

i=0

(qd − qi)

)n−(|S′|−|S′′|)

=

(
d−1∏

i=0

(qd − qi)

)n+d′−|S′|

,

and so

Pi(ti, s) =

(
d−1∏

i=0

(qd − qi)

)n+d′−|S′|

/

(
d−1∏

i=0

(qd − qi)

)n

=

(
d−1∏

i=0

(qd − qi)

)d′−|S′|

,

since Λ/qiΛ ∼= Md(Fq), so Λq
∼=
∏n

i=1 Md(Fq) and |Λ×
q | =

∏n
i=1 |Gld(Fq)|.

We can now rewrite P as follows, where h =
∏

i∈S′′ qiΛ
∨:

P ≤
∑

0≤d′≤|S′|

∑

S′′ ⊂ S′

|S′′| = d′

∑

t ∈ (I∨)m : ti ∈ h
0 < ‖ti‖∞ < B ∀i

∑

s∈Λ∨/qI∨∩h

m∏

i

(
d−1∏

i=0

(qd − qi)

)d′−|S′|

.

NTRU in Quaternion Algebras of Bounded Discriminant 275

The rest of the analysis divides into two cases, depending on the size of d′. In the
first case, we consider d′ ≥ βn. Define N(B, d′) := #{t ∈ I∨ : ‖t‖∞ < B and t ∈
h}. Observe that ‖t‖∞ = maxα,i,j |α((φ(t))i,j)| ≥ λ∞

1 (h) ≥ NL/Q(h̄)1/nd, because
t ∈ h, where h̄ = h ∩ L. Observe that h̄ =

∏
i∈S′′ qiΛ

∨ ∩ L =
∏

i∈S′′ qiO∨
L, so

NL/Q(h̄)1/nd = NL/Q(
∏

i∈S′′
qiO∨

L)1/nd = NL/Q(
∏

i∈S′′
qiOL)1/ndNL/Q(O∨

L)1/nd

≥ q
dd′
nd

n
√

�
=

q
d′
n

n
√

�
≥ qβ

n
√

�
= B,

where we used NL/Q(O∨
L) = disc(L)−1, and the bound disc(L) ≤ (n2�)n (this

bound holds for d = 2). Thus N(B, d′) = 0 if d′ ≥ βn.
The second case is d′ < βn. Set B(l, c) = {x ∈ Hd : ‖x − c‖∞ < l}. One

can interpret N(B, d′) as the number of points of σA(h) in B(B,0). Set λ :=
λ∞

1 (h)/2. So B(λ,v2) ∩ B(λ,v2) = ∅ for any distinct v1,v2 ∈ h. Moreover, if
v ∈ B(B,0), it holds that B(λ,v) ⊆ B(B + λ,0). We can then say that

N(B, d′) ≤ V ol(B(B + λ,0))
V ol(B(B, λ,0))

=
(2(λ + B))nd2

2λnd2 = (
B

λ
+ 1)nd2

≤
((

qβ

n
√

s

)
/

(
λ∞

1 (h)
2

)
+ 1

)nd2

≤ (2qβ− d′
n + 1)nd2 ≤ 22nd2

qnd2β−d′d2
.

As we have h/qI∨ =
∏

i∈S′′ qiΛ
∨/∏

i∈S′ qiΛ
∨ ∼=

∏
i∈S′′ qiΛ/

∏
i∈S′ qiΛ

∼= Λ/
∏

i∈S′\S′′ qiΛ, then |h/qI∨| = |Λ/
∏

i∈S′\S′′ qiΛ| =
∏|S′\S′′|

i=1 |Md(Fq)| =

qd2(|S′|−d′). Then

P ≤
∑

0≤d′≤βn

∑

S′′ ⊂ S′

|S′′| = d′

∑

t ∈ (I∨)m : ti ∈ h
0 < ‖ti‖∞ < B ∀i

∑

s∈Λ∨/qI∨∩h

m∏

i

(
d−1∏

i=0

(qd − qi)

)d′−|S′|

≤ maxd′<βn
qd2(|S′|−d′)N(B, d′)m2|S′|

(
∏d−1

i=0 (qd − qi))m(|S|−d′)
≤ 2n(1+dm+2d2m)q−d2nmε,

for ε = (1 − |S|
n)(d+1

2d − 1
m) − β, using |Gld(Fq)| > q

d(d+1)
2 /2d. ��

In the above proof we used disc(L) ≤ (n
√

�)2n, where � is the prime used to
construct L. This only holds for our construction of L when d = 2. The above
result can be proven for more values of d, but because of the restriction in place
on a theorem below, we specialise to d = 2. We now prove a regularity result.

Lemma 13. Let q be completely split in L, d = 2, m ≥ 2, δ ∈ (0, 1/2), ε > 0,

S ⊂ {1, ..., n}, c ∈ Λm, and t ← DΛm,σ,c for σ ≥ n
√

�√
π

√
ln(8mn(1 + 1/δ))q−β,

where ε = (1− |S|
n)(3

4 − 1
m)−β. For all but a fraction less than 2n(1+10m)q−4nmε

of a ∈ (Λ×
q)m,

276 C. Ling and A. Mendelsohn

Δ
(
t mod a⊥(IS), U

(
Λm/a⊥(IS)

))
≤ 2δ.

Proof. A direct combination of Lemmas 2, 4, 11, and 12. ��

7 An NTRU Key Generation Algorithm

In [48] and [49], the authors published work improving the hardness guarantees
of NTRU. They tweak the original version of NTRU, adding an error term
that allows them to demonstrate IND-CPA security, assuming the hardness of a
variant of RLWE. Here we adapt their work to our setting, following [57].

The Revised CNTRU Scheme. Recall DΛ,σ samples over L2
R

to enable us
to sample elements of Λq, and p ∈ Λ×

q . We will sample the elements s, e from
the same distribution, χ = �Dξq�Λ∨ , where �·�Λ∨ is the CRR discretisation,

ξ = α
(

2nk
log(4nk)

) 1
4

, αq ≥ ω(
√

log 4n), and k = O(1).

KeyGen: Sample f ′ ← DΛ,σ and let f = p · f ′ + 1; if f mod q /∈ Λ×
q , resample.

Sample g ← DΛ,σ; if g mod q /∈ Λ×
q , resample.

Return secret key sk = (f, g) and public key pk = h = f−1pg ∈ Λ×
q .

Encryption: Given m ∈ Λ∨
p , sample s, e ←↩ χ and return c = hs+pe+m ∈ Λ∨

q .
Decryption: Given ciphertext c and secret key f , compute c′ = f · c ∈ Λq and
return c′ mod p.
Correctness: c′ = fc = f(hs + pe + m) = fhs + fpe + fm = pgs + fpe + fm.
If the coefficients of pgs+fpe+fm are small enough, reduction modulo q leaves
the coefficients unchanged, and c′ mod p = m mod p.

Recall that in an order of a CDA, if p is a central element, reduction by p works
as usual; if p �∈ Z(Λ), then we understand (p) = ΛpΛ.

We want to prove that if there is an IND-CPA attack on CNTRU, then
a variant of CLWE can be broken. The following holds for the algebras used
in CLWE, namely when K = Q(ζ2r), n = [K : Q] and L is a finite cyclic
extension of K of degree 2. We now show there is a high probability of selecting
an appropriate value f for the public key.

Lemma 14 [21, Lemma 17]. For a fixed d, the proportion of invertible elements
of Md(Fq) is at least (1 − 1

q)d.

Lemma 15. Let d = 2, 0 < ε < 1
2 , r ≥ 2n 4

√
l
√

ln 8n(1+1/ε)
π · q 1

n , p ∈ Λ×
q , DΛ,r a

discrete Gaussian sampling Λ and q ∈ Z a prime that splits completely in K, i.e.
qOK =

∏[K:Q]
i=1 pi. Then Prf ′←Dr

[(pf ′ + 1 mod qΛ) �∈ Λ×
q] ≤ n

(
2
q − 1

q2 + 2ε
)
.

Proof. We bound Prf ′←Dr
[(pf ′ + 1 mod piΛ) �∈ Λ/piΛ

×]. Since r is sufficiently
large, pf ′ +1 mod piΛ is statistically close to the uniform distribution. Thus the

NTRU in Quaternion Algebras of Bounded Discriminant 277

probability that pf ′ + 1 is not invertible in Λ/piΛ is 1 minus the proportion of
invertible elements in Λ/piΛ ∼= Md(Fq) plus 2ε. Note Md(Fq) has size |Md(Fq)| =
qd2

and the set of invertible elements in Ri has size |GLd(q)| =
∏d−1

i=0

(
qd − qi

)
.

By Lemma 14, this proportion is at least (1− 1
q)d, so with d = 2 we lower bound

the probability with 1−(1− 1
q)2. The CRT and a union bound implies the result.

Regarding r, since when d = 2 and K is a cyclotomic field with power of 2
conductor, the number of roots of unity in Λ is equal to [A : Q] and hence since
piΛ is a Λ-ideal, λnd2(piΛ) = λ1(piΛ). We then apply Lemma 3 and compute
ηε(piΛ) ≤

√
ln(2nd2(1 + 1/ε))/π ·λnd2(piΛ) =

√
ln(2nd2(1 + 1/ε))/π ·λ1(piΛ) ≤√

ln(2nd2(1 + 1/ε))/π · 2n 4
√

lq1/n =
√

ln(8n(1 + 1/ε))/π · 2n 4
√

lq1/n. ��

If q ≥ n + 1, then (1 − 1
q)nd ≥

(
(1 − 1

n+1)n
)d

≥ e−d and the proportion of
invertible elements in Λq is non-negligible. We now show that with high likelihood
the elements f and g used to construct the public key will not be too large.

Lemma 16. Let n ≥ 8 be a power of 2 such that xn +1 splits completely modulo
q ≥ 8n. Let A = (L/K, θ, γ) with K = Q(ζn), [L : K] = 2, δ > 0, and σ ≥
2n 4

√
l
√

2 ln(24n)
π · q1/n. The secret key polynomials f, g returned by the cyclic-

NTRU algorithm satisfy, with probability ≥ 1 − 24−4n,

‖f‖ ≤
√

2(1 + σ‖p‖∞
√

2n) and ‖g‖ ≤ 2σ
√

n.

Proof. When d = 2, λnd2(Λ) = λ1(Λ) ≤ d
√

n · (disc(Λ))
1

2nd2 ≤ 2n 4
√

l. If we set

δ = 1
3n−1 , then Lemma 3 implies ηδ(Λ) ≤

√
2 ln(24n)

π · 2n 4
√

l. We can then use

Lemma 6 to obtain Prx←↩DΛ,σ
(‖x‖ ≥ d

√
nσ) ≤ 3n

3n−22−nd2
. Then

Prg←DΛ,σ

(
‖g‖ ≥ d

√
nσ | g ∈ Λ×

q

)
=

Prg←DΛ,σ

(
‖g‖ ≥ d

√
nσ and g ∈ Λ×

q

)

Prg←DΛ,σ

(
g ∈ Λ×

q

)

≤
Prg←DΛ,σ

(‖g‖ ≥ d
√

nσ)
Prg←DΛ,σ

(
g ∈ Λ×

q

)

≤ 3n

3n − 2
· 2−4n ·

(
1/1 − n

(
2
q

− 1
q2

+ 2ε

))

≤ 2−4n · 16 ≤ 24−4n.

This applies to both f ′ and g, so we have ‖f ′‖ , ‖g‖ ≤ 2
√

nσ with probability at
least 1 − 24−4n. Finally, observe ‖f‖ = ‖pf ′ + 1‖ ≤ ‖pf ′‖ + ‖1‖ ≤ ‖p‖∞‖f ′‖ +√

2 ≤ ‖p‖∞σ2
√

n +
√

2 =
√

2(1 + σ‖p‖∞
√

2n) with probability ≥ 1 − 24−4n. ��

We now show near-uniformity of the required distribution, to ensure our
NTRU public keys are statistically close to the uniform distribution over Λ×

q .

278 C. Ling and A. Mendelsohn

Theorem 4. Let ε > 0, q be a completely split prime, p ∈ Z(Λ×
q), and σ ≥

4n3/2 4
√

�
√

2 ln(32nq)q
1
2+2ε. Let yi ∈ Λq and zi = −yip

−1 mod q for i = 1, 2, and
D×

σ,zi
denote DΛ,σ restricted by rejection to Λ×

q + zi. Then when d = 2,

Δ

(
y1 + pD×

σ,z1

y2 + pD×
σ,z2

mod q, U
(
Λ×

q

)
)

≤ 222nq−8nε.

Proof. Let Pa := Prfi←D×
σ,zi

,i=1,2

[
(y1 + pf1) · (y2 + pf2)−1 = a

]
, where a ∈ Λ×

q .

We aim to show that |Pa − 1
|Λ×

q | | < ε′, for some small ε′ > 0, except for an

exponentially small fraction of the a ∈ Λ×
q .

Let a = (a1, a2) ← U((Λ×
q)2). When zi = −p−1yi mod q, (y1 + pf1) · (y2 +

pf2)−1 = −a−1
1 a2 mod q is equivalent to a1f1+a2f2 = p−1(−a1y1−a2y2) mod q,

and so to a1f1 + a2f2 = a1z1 + a2z2 mod q. Since −a−1
1 a2 ∈ Λ×

q is uniform,

P−a−1
1 a2 = Pa := Prfi←D×

σ,zi
,i=1,2[a1f1 + a2f2 = a1z1 + a2z2 mod q],

if a ∈ (Λ×
q)2. One can see that the set of solutions to a1f1 + a2f2 = a1z1 +

a2z2 mod q in Λ, taken from D×
σ,zi

, i = 1, 2, is z + a⊥×, where a⊥× = a⊥ ∩
(Λ×

q ∩ qΛ)2, and a⊥ = a⊥(Λq). We can then write

Pa =
DΛ2,σ(z + a⊥×)

DΛ,σ(z1 + Λ×
q + qΛ) · DΛ,σ(z2 + Λ×

q + qΛ)
.

Now, let t ∈ a⊥. Then t1a1 + t2 +a2 ≡ 0 mod q implies that t2 = −t1
a1
a2

and the
ti lie in a shared ideal of Λq. Denote this ideal by IS . Then

a⊥× = a⊥ \ ∪S⊂{1,...,n}a⊥(IS) and Λ×
q + qΛ = Λ \ ∪S⊂{1,...,n}\∅(IS + qΛ).

Applying an inclusion-exclusion argument, we get two expressions to analyse:

DΛ2,σ(z + a⊥×) =
∑

S⊂{1,...,n}
(−1)|S|DΛ2,σ(z + a⊥(IS)), and (2)

DΛ,σ(zi + Λ×
q + qΛ) =

∑

S⊂{1,...,n}
(−1)|S|DΛ,σ(zi + IS + qΛ). (3)

We deal with (2) first, with two cases. If |S| ≤ εn, use Lemma 13 with m = 2 and
δ = q−nd2−�εn�d2

. Note that qΛ2 ⊂ a⊥(IS) ⊂ Λ2, so |Λ2/a⊥(IS)| = qd2(n−|S|).
Then for all except a fraction less than 2n(1+4d2+2d)q−2d2nε of a ∈ (Λ×

q)2,
∣∣∣∣∣
DΛ2,σ(z + a⊥(IS)) − qd2(n−|S|)

q2nd2

∣∣∣∣∣
=
∣∣∣DΛ2,σ(z + a⊥(IS)) − q−nd2−d2 S|

∣∣∣ ≤ 2δ.

NTRU in Quaternion Algebras of Bounded Discriminant 279

In the second case, when |S| > εn, one can choose a subset S′′ ⊂ S′ such
that |S′′| = �εn�. Then a⊥(IS) ⊂ a⊥(IS′), so DΛ2,σ(z + a⊥(IS)) ≤ DΛ2,σ(z +
a⊥(IS′)), so DΛ2,σ(z + a⊥(IS)) ≤ 2δ + q−nd2−d2�εn�. We can now say that

∣∣∣
∣DΛ2,σ(z + a⊥×) − 2n(d−1)

|Λ×
q |

|Λq|2

∣∣∣
∣

≤

∣∣∣∣
∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ2,σ(z + a⊥(IS)) − 2n(d−1)

(
(qd2 − 1)n

2n(d−1)q2nd2

)∣∣∣∣
∣∣

≤

∣∣∣∣
∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ2,σ(z + a⊥(IS)) − (qd2 − 1)n

q2nd2

∣∣∣∣
∣∣

≤

∣∣∣∣∣
∣

∑

S⊂{1,...,n}
(−1)|S|DΛ2,σ(z + a⊥(IS)) −

n∑

k=0

(−1)k

(
n

k

)
qd2(−n−k)

∣∣∣∣∣
∣

≤

∣∣∣∣∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ2,σ(z + a⊥(IS)) −

n∑

S⊂{1,...,n}
(−1)|S|q−d2(n+|S|)

∣∣∣∣∣∣

≤

∣
∣∣∣∣∣

∑

S⊂{1,...,n}
(−1)|S|

(
DΛ2,σ(z + a⊥(IS)) − q−d2(n+|S|)

)
∣
∣∣∣∣∣

≤ 2n(2δ + 2q−d2(n+�εn�)) ≤ 2n+1(δ + q−d2(n+�εn�)),

except for a fraction of a ∈ (Λ×
q)2 less than 2n(2+2d+4d2)q−2d2nε. Writing

DΛ2,σ(z + a⊥×) = (1 + δ0)2n(d−1)
|Λ×

q |
|Λq|2

,

we find that |δ0| ≤ |Λq|2
|Λ×

q | 2
−n(d−1)2n+1(δ + q−d2(n+�εn�))

≤ 2ndqnd2
2−n(d−1)2n+1(δ + q−d2(n+�εn�)) = 22n+2q−d2�εn�.

Moving on to (3), begin by observing that

det(IS + qΛ) = NA/Q(I)
√

disc(Λ) = q|S|√disc(Λ).

Moreover, λnd(IS + qΛ) = λ1(IS + qΛ) ≤ d
√

n · det(IS + qΛ)1/nd2
= d

√
n ·

q|S|/nd2
disc(Λ)1/2nd2

. When d = 2 and n is a power of two, we in fact have
λnd2(IS + qΛ) ≤ d

√
n · q|S|/nd2

disc(Λ)1/2nd2
. Since disc(Λ/Z) ≤ (n

√
�)4n, we

obtain λnd2(IS + qΛ) ≤ d
√

nq|S|/nd2√
n 4
√

� = nd 4
√

�q|S|/nd2
. Then Lemma 3

implies that ηδ(IS + qΛ) ≤
√

ln(2nd2(1 + 1/δ))/πλnd2(IS + qΛ), so we find
ηδ(IS + qΛ) ≤

√
ln(2nd2(1 + 1/δ))/πnd 4

√
�q|S|/nd2

. Since σ is larger than this
quantity for |S| ≤ n/2 and δ = q−nd2/2, we can apply Lemma 4 to obtain
|DΛ,σ(zi + IS + qΛ) − 1

|Λ/I| | = |DΛ,σ(zi + IS + qΛ) − 1
qd2|S| | ≤ 2δ. If |S| > n/2,

280 C. Ling and A. Mendelsohn

we can pick a subset S′ ⊂ S such that |S′| ≤ n/2, and then DΛ,σ(zi +IS +qΛ) ≤
DΛ,σ(zi + IS′ + qΛ) ≤ 2δ + q−nd2/2. We now justify a claim, before proceeding
with the rest of the proof:

Claim. For d ≥ 2 and q ≥ 5, we have
∏d

i=1(q
i − 1) ≥ (q

d(d+1)
2 − 1)/2

d−1
2 .

To see this, induct on d. When d = 2, the claim simplifies to the statement
(q − 1)(q2 − 1) > (q3 − 1)/

√
2, which is true iff the polynomial (

√
2 − 1)q3 −√

2q2 −
√

2q + (1 +
√

2) > 0, which is true when q ≥ 5. Suppose the claim is
true for d = k − 1 ≥ 2, and consider

∏k
i=1(q

i − 1). By induction,
∏k−1

i=1 (qi − 1) ≥
(q

k(k−1)
2 − 1)/2

k−2
2 , and we can write

k∏

i=1

(qi − 1) ≥ (q
k(k−1)

2 − 1)(qk − 1)/2
k−2
2 = (q

k(k+1)
2 − q

k(k−1)
2 − qk + 1)/2

k−2
2 .

Then the claim is true if

(q
k(k+1)

2 − q
k(k−1)

2 − qk + 1)/2
k−2
2 > (q

k(k+1)
2 − 1)/2

k−1
2 ,

i.e. (
√

2−1)q
k(k+1)

2 −
√

2q
k(k−1)

2 −
√

2qk +
√

2+1 > 0, which holds if q ≥ 5, k ≥ 2.
The claim implies that 2

n(d−1)
2 |Λ×

q |/(qd2 − 1)n > 1, for appropriate d and q,
which we will use below. Resuming the proof, we have

∣
∣∣∣DΛ,σ(zi + Λ×

q + qΛ) − 2
n(d−1)

2
|Λ×

q |
|Λq|

∣
∣∣∣

≤

∣
∣∣∣∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ,σ(zi + IS + qΛ) − (qd2 − 1)n

qnd2

∣
∣∣∣∣∣

=

∣∣
∣∣∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ,σ(zi + IS + qΛ) −

n∑

k=0

(−1)k

(
n

k

)
q−d2k

∣∣
∣∣∣∣

=

∣∣∣
∣∣∣

∑

S⊂{1,...,n}
(−1)|S|DΛ,σ(zi + IS + qΛ) −

∑

S⊂{1,...,n}
(−1)|S|q−d2 S|

∣∣∣
∣∣∣

=

∣∣∣
∣∣∣

∑

S⊂{1,...,n}
(−1)|S|

(
DΛ,σ(zi + IS + qΛ) − q−d2 S|

)
∣∣∣
∣∣∣

≤ 2n(2δ + 2q−nd2/2) = 2n+1(δ + q−nd2/2);

writing DΛ,σ(zi + Λ×
q + qΛ) = (1 + δi)2

n(d−1)
2

|Λ×
q |

|Λq| , for ε < 1
2 we get the required

bounds on the δi since |δi| ≤ 2
−n(d−1)

2
|Λq|
|Λ×

q |2
n+1(δ + q−nd2/2) ≤ 2

n(d+3)
2 +2q−nd2/2.

NTRU in Quaternion Algebras of Bounded Discriminant 281

Finally, we obtain that since Pa =
DΛ2,σ(z+a⊥×)

DΛ,σ(z1+Λ×
q +qΛ)·DΛ,σ(z2+Λ×

q +qΛ)
,

∣∣∣
∣Pa − 1

|Λ×
q |

∣∣∣
∣ =

∣∣∣
∣

DΛ2,σ(z + a⊥×)
DΛ,σ(z1 + Λ×

q + qΛ) · DΛ,σ(z2 + Λ×
q + qΛ)

− 1
|Λ×

q |

∣∣∣
∣

=

∣∣∣∣
∣∣

(1 + δ0)2n(d−1) |Λ×
q |

|Λq|2

(1 + δ1)2
n(d−1)

2
|Λ×

q |
|Λq| (1 + δ2)2

n(d−1)
2

|Λ×
q |

|Λq|
− 1

|Λ×
q |

∣∣∣∣
∣∣

=
∣∣∣
∣

(1 + δ0)
(1 + δ1)(1 + δ2)|Λ×

q |
− 1

|Λ×
q |

∣∣∣
∣ ,

and since the δi tend to 0, we obtain the result. ��

8 A Provably Secure NTRU-Based Scheme

In this section we provide a proof of IND-CPA security, subject to the hardness
of LWE in CDAs, for the revised CNTRU scheme. Recall the definition of IND-
CPA security:

Definition 20. [31] Let Π = (Gen, Enc, Dec) be a PKE scheme, and A be
an adversary. Say Π is indistinguishable under chosen-plaintext attack if a ppt.
adversary in the following experiment PubKA,Π(n) has negligible advantage:

1. Gen is run to obtain keys (pk, sk).
2. Adversary A is given pk, and outputs a pair of equal-length messages m0,m1

in the message space.
3. A uniform bit b ∈ {0, 1} is chosen, and then a ciphertext c ← Encpk (mb) is

computed and given to A. We call c the challenge ciphertext.
4. A outputs a bit b′. The output of the experiment is 1 if b′ = b, and 0 otherwise.

If b′ = b we say that A succeeds.

That is, Pr [PubKA,Π(n) = 1] ≤ 1
2 + neg(n).

Security Analysis. We first obtain a bound on the infinity norm of a discretised
Gaussian sample under the canonical embedding with the following lemma:

Lemma 17. Assume that ξ = α
(

ndk
log(nd2k)

) 1
4

, χ = �Dξq�Λ∨ , αq ≥ ω(
√

log nd2)

and k = O(1). Set δ = ω
(√

nd log nd2 · α2q2
)

and B the decoding basis of Λ∨.

Then for any t ∈ Hd, Prx←↩χ

(
|〈t,x〉| > δ‖t‖2

)
≤ (nd2)−ω(

√
nd log nd2)‖t‖2

.

Proof. A Gaussian random variable x ←↩ Dqξ of mean 0 and standard deviation
qξ√
2π

has a noncentral subgaussian discretisation �x� with noncentrality 0 and

deviation
(

q2ξ2

2π + 1
2s1(B)2

) 1
2

by Lemma 8. The definition of subgaussian gives

E
(
e〈t,�x�〉

)
≤ e

1
2

(
q2ξ2

2π + 1
2 s1(B)2

)
‖t‖2

,

282 C. Ling and A. Mendelsohn

for any t ∈ Hd. A Chernoff bound then implies

Pr
(
|〈t, �x�〉| > δ‖t‖2

)
= Pr

(
e|〈t,�x�〉| > eδ‖t‖2

)

≤ 2e
1
2

(
q2ξ2

2π + 1
2 s1(B)2

)
‖t‖2−δ‖t‖2

.

s1(B) ≤ 1, so 1
2

(
q2ξ2

2π + 1
2s1(B)2

)
‖t‖2 = Ω

(
α2q2

√
nd log(nd2)− 1

2 · ‖t‖2
)
. Thus

Pr
(
|〈t, �x�〉| > δ‖t‖2

)
≤ (nd2)−ω(

√
nd log nd2)‖t‖2

. ��
The above lemma gives an estimate for ‖x‖∞ with x ←↩ χ = �Dq·ξ�:

Pre←�χ� (‖e‖∞ > δ) ≤ (nd2)−δ, (4)

where δ = ω(
√

nd log nd2α2q2) and αq ≥ ω(
√

log nd2). In the following, we
make our assumption that � ≤ Cn for some constant C ≥ 2; in this case, when
C1 and C2 are bounds such that ‖ · ‖c ≤ C1‖ · ‖ and ‖ · ‖ ≤ C2‖ · ‖c, we have
C1 =

√
2s1(−→p) < 2

√
2Cn, so C1 = O(n), and C2 =

√
2s1(

−→
d) < 1.

Lemma 18. Let n ≥ 8 be a power of 2, q ≥ 8n split completely in L, � ≤ Cn,

σ ≥ 2n 4
√

l
√

2 ln(24n)
π q1/n. The decryption algorithm outputs m with probability

1 − (4n)−ω(
√

2n log 4n) over s, e, f, g if ω
(
2
√

2n2
√

log 4nα2q2
)
σ‖p‖2

∞ ≤ q/2.

Proof. Notice that f ·h ·s = p ·g ·s mod qΛ∨, we have fc = pgs+pfe+fmmod
qΛ∨ ∈ Λ∨. If ‖pgs + pfe + fm‖c

∞ < q
2 , then we have fc has the representation

of the form pgs+pfe+fm in Λ∨
q . Hence, we have m = (fc mod qΛ∨) mod pΛ∨.

It thus suffices to upper bound the probability that ‖pgs + pfe + fm‖c
∞ ≥ q

2 .
Note that ‖fc‖c

∞ ≤ ‖fc‖c ≤ C1‖fc‖ = C1‖pgs + pfe + fm‖ ≤ C1(‖pgs‖+
‖pfe‖ + ‖fm‖). By the choice of σ and Lemma 16, with probability larger than
1 − 24−nd2

, ‖f‖ ≤
√

d(1 + σ‖p‖∞
√

nd) and ‖g‖ ≤ √
ndσ. Combining with (4),

‖pfe‖ + ‖pgs‖ ≤
√

d(1 + σ‖p‖∞
√

nd)‖p‖∞‖e‖∞ +
√

ndσ‖p‖∞‖s‖∞

≤ 2σ
√

nd‖p‖2
∞‖e‖∞ +

√
ndσ‖p‖∞‖s‖∞ ≤ ω(nd3/2

√
log nd2α2q2)σ‖p‖2

∞

with probability 1−(nd2)−ω(
√

nd log nd2). Since m ∈ Λ∨/pΛ∨, by reducing modulo
the pσ(d)i, write m =

∑nd2

i=1 εipσ(d)i with εi ∈
(
− 1

2 , 1
2

]
. We have

‖m‖ =

∥∥∥∥∥
∥

nd2
∑

i=1

εipσ(d)i

∥∥∥∥∥
∥

≤ ‖p‖∞

∥∥∥∥∥
∥

nd2
∑

i=1

εiσ(d)i

∥∥∥∥∥
∥

≤ ‖p‖∞

√
nd

2
C2,

so ‖fm‖ ≤ ‖f‖‖m‖ ≤
√

d(1 + σ‖p‖∞
√

nd) · ‖p‖∞
√

nd
2 C2 ≤ 2σ

√
nd‖p‖∞ ·

‖p‖∞
√

nd
2 C2 ≤ nd2σ‖p‖2

∞C2 with probability ≥ 1 − 24−n. All together, we have

‖fc‖c
∞ ≤ C1

(
ω(nd3/2

√
log nd2α2q2)σ‖p‖2

∞ + nd2σ‖p‖2
∞C2

)

≤ ω
(
n2d3/2

√
log nd2 · α2q2

)
σ‖p‖2

∞

with probability 1 − (nd2)−ω(
√

nd log nd2), since C2 ≤ 1 and C1 = O(n). ��

NTRU in Quaternion Algebras of Bounded Discriminant 283

We now attempt a proof of IND-CPA security. Recall the CLWE variant we will
use: let s, e ← χ, and a ← U(Λ×

q). Here χ is the CRR discretisation of the usual
CLWE distribution to Λ∨

q ; [21] gave a reduction from CLWE to this variant.
Output (a, as + e) ∈ Λ×

q × Λ∨
q , and call this distribution A×

q,s,χ. Define the usual
search and decision problems over this distribution to obtain CLWE×

HNF .

Lemma 19. Let n ≥ 8 be a power of 2, d = 2, � ≤ Cn, and q ≥ 8n a prime
such that xn + 1 splits completely modulo q. Let δ > 0, p ∈ Z

(
Λ×

q

)
and σ ≥

2n3/2 4
√

�
√

ln(32nq)q
1
2+2ε satisfy the conditions of Lemma 18 and Theorem 4. If

there exists an IND-CPA attack algorithm A against CNTRU, running in time
T with advantage δ, then there exists an algorithm to solve decision-CLWE×

HNF

that runs in time T ′ = T + O(poly(n)) with success probability δ′ = δ − q−Ω(n).

Note that if p ∈ Z
×
q , the algorithm runs in time T ′ = T + O(n).

Proof. The proof runs similarly to [48, Lemma 13], [57, Lemma 16]. We construct
an algorithm B against CLWE×

HNF as follows: let O be an oracle that samples
from one of U(Λ×

q × Λ∨
q) and A×

s,χ for some previously chosen s ←↩ χ. B begins
by obtaining a sample (h′, c′) from Λ×

q ×Λ∨
q using O. Then B runs A with public

key h = p · h′ ∈ Λq. When A outputs messages m0,m1 ∈ Λ∨
p , then B samples

b ←↩ U({0, 1}), computes ciphertext c = p · c′ + mb, and sends c to A. Finally, A
submits a guess b′ for b, and if b′ = b, B outputs 1. Else, B outputs 0.

Since h′ is uniformly random in Λ×
q and p is invertible mod q, so is h. Thus

the public key given to A is within statistical distance q−Ω(n) of the public key
distribution in the genuine attack, by Theorem 4. Moreover, since c′ = h · s + e
with s, e ←↩ χ, the c given to A has the right distribution as in the IND-CPA
attack. Overall, if O outputs samples from A×

s,χ, then A succeeds and B returns
1 with probability ≥ 1/2 + δ − q−Ω(n). If O outputs samples from U(Λ×

q × Λ∨
q),

then since p ∈ Λ×
q , p · c′ and hence c is uniformly random in Λ∨

q and independent
of b. Thus B outputs 1 with probability 1/2, and has the claimed advantage. ��

If K = Q(ζ2r), 2r−1 = n ≥ 8, L = Q(ζ2r ,
√

�) for prime � : � ≡ 1 mod 2r,
� ≤ Cn for some C ≥ 2, q ≥ 8n a prime q split completely in L, α ∈ (0, 1):

αq ≥ ω(
√

log 4n), ξ = α
(

2nk
log(4nk)

) 1
4

with k = O(1), ε ∈
(
0, 1

2

)
, p ∈ Λ×

q , σ ≥
2n3/2 4

√
�
√

ln(32nq)q
1
2+2ε and ω

(
2
√

2n2
√

log 4nα2q2
)
σ‖p‖2

∞ ≤ q/2, the security
reduction to CLWE from ideal lattice problems holds, and CNTRU connects
with SIVP (note that the CLWE reduction is valid for a restricted secret space).

9 Conclusion

In this work we have defined a general form of NTRU, and shown that for certain
parameters the NTRU instances obtained are indistinguishable from samples
chosen uniformly at random. We have given the cryptographic application of a
public-key encryption scheme, and shown that an IND-CPA attack on the PKE
scheme implies an efficient attack on decision CLWE. Along the way we have
proved new results on q-ary lattices obtained from natural orders of CDAs.

284 C. Ling and A. Mendelsohn

Future work includes selecting parameters for the signature scheme and the
KEM and implementing these schemes. Further cryptanalysis is required to bet-
ter understand the security of CNTRU. It would also be desirable to see if
one could lift the constraint ‘d = 2’, and obtain results for higher degrees. As
explained in the introduction, the methods of this work are constrained to degree-
two extensions of power-of-two cyclotomic fields, and we do not currently know
how to remove this restriction.

A Proofs

Proof. (of Proposition 5). We have

‖x‖p
p =

∑

α∈Emb(K)

∑

1≤i,j<d

|α((φ(x))i,j)|p ≥ d2
∑

α∈Emb(K)

⎛

⎝
∏

i,j

|α((φ(x))i,j)|p
⎞

⎠

1/d2

≥ d2[K : Q]

⎛

⎜
⎝

∏

α∈Emb(K)

⎛

⎝
∏

0≤i<d

|α(NL/K(xi))|p
⎞

⎠

1/d2⎞

⎟
⎠

1/[K:Q]

= [A : Q]

⎛

⎝
∏

0≤i<d

|NL/Q(xi)|

⎞

⎠

p/[A:Q]

, and if x ∈ I,

‖x‖p
p ≥ [A : Q]

⎛

⎝
∏

0≤i<d

|NL/Q(xi)|

⎞

⎠

p/[A:Q]

= [A : Q]

∣
∣∣∣∣∣
NL/Q

⎛

⎝
∏

0≤i<d

xi

⎞

⎠

∣
∣∣∣∣∣

p/[A:Q]

By assumption, the coefficients xi lie in the ideal JOL. Thus xi ∈ Ī := I ∩
OL for i = 0, ..., d − 1, and so

∏
0≤i<d xi ∈ Īd, and hence ‖x‖p

p ≥ [A : Q] ·
∣∣NL/Q

(
Ī
)∣∣dp/[A:Q]

. Finally, to see λ∞
1 (I) ≥

(
NL/Q(Ī)

)1/nd,
‖x‖∞ = sup

i,j,α
|α(φ(x)i,j)| ≥

∏
i,j,α |α((φ(x))i,j)|1/nd2

= NL/Q(
∏

0≤i<d

xi)1/nd2
. ��

B Choosing Parameters and Number Fields

In this section, we give a brief overview of some parameters choices for NTRU,
focusing on n and q, before giving possible parameters for CDAs. We note that
many suggested parameters (including ours) are not chosen according to security
proofs, but rather take into account considerations such as speed and efficiency.
We note the analysis of [12], and [32] for LWE, and welcome similar analysis for
provably secure NTRU variants and CNTRU.

NTRU in Quaternion Algebras of Bounded Discriminant 285

Parameters for NTRU in Previous Works. NTRU [24] uses convolution
rings Z[x]/(xN −1) with N prime, which are not ring of integers of algebraic num-
ber fields. This is the same as in [23,28]; since CDAs are constructed from fields,
the parameters used here do not adapt straightforwardly to our setting. This
situation is mirrored in the NTRU finalist in NIST’s post-quantum standardis-
ation process, [13]. The authors use the rings Q(x)/(x − 1)Φn(x) with prime n,
which are not fields. In this case, the polynomials ‘Φn(x)’ are cyclotomic, hence
xn − 1 = (x − 1)Φn(x); and (x − 1)Φn(x) is plainly not irreducible.

However, the authors of [48,49] replace xn − 1 by xn +1, for power-of-two n.
These are the 2nth cyclotomic polynomials, which are amenable to generalisation
by CDAs. Since n is a power of two, natural choices are n = 512 or n = 1024.
They also recommend p = 3 or p = 2. As for q, if αq > n0.75, the decryption
algorithm recovers m with probability 1 − nω(1). For the security proof to hold,
one needs q ≡ 1 mod 2n. So in the context of CDAs, one could choose n = 256,
q = 7681, or n = 512, q = 12289, if working with the same framework as [49].

Falcon [19] uses n = 512 for NIST Level I, and n = 1024 for NIST Level V,
where n is the degree of the cyclotomic ring. They use q = 12289. ModFalcon
[16] uses a rank two module over a power of two cyclotomic of degree 512, and
also sets q = 12289. In contrast, ModNTRU [15] uses a rank three module over
a power of two cyclotomic of degree 512, but uses q = 219, instead of prime q.

Parameters for NTRU in CDAs. We follow the module NTRU instances in
using power of two cyclotomics. Although there has been some concern raised
over the large number of subfields and automorphisms attached to these objects
[42], there has not yet been an efficient attack against the NTRU problem
exploiting these features (for non-‘overstretched’ parameters). We recommend
using algebras of dimension approximately 1000 over Q. Following the construc-
tion detailed above: A = (L/Q(ζn), θ, ζn) with K ⊂ L ⊂ M = Q(ζ�n) for
� ≡ 1 mod n, � �≡ 1 mod pn for any prime p | n. Take q to be a prime completely
split in L, not too large to avoid attacks exploiting ‘overstretched’ parameters.
Example parameters might be n = 1024, d = 2, � = 12289, and q = 13313.

As for choosing the sets Sf and so on, one can take these to be binary
or ternary with set weights for efficiency, as some other NTRU schemes do, if
desired. We leave the precise analysis of choices of such sets as future work.

C Sketched Cryptographic Functionality

KEM. Here we outline an CNTRU-based KEM. We follow the structure of
the KEM in [13] closely. Denote the CNTRU key generation, encryption, and
decryption algorithms by KeyGen, Encrypt, and Decrypt respectively.

KeyGenKEM

1. (pk′, sk′) = (h, (f, g, h)) ← KeyGen(seed)
2. s ←$ {0, 1}nd2

3. return (pk, sk) = (pk′, (sk′, s)) = (h, (f, g, h, s))

286 C. Ling and A. Mendelsohn

Below, H1(·) and H2(·) are hash functions. Correctness is straightforward.

Encapsulate(h)
1. (r,m) ← Lr × Lm

2. c ← Encrypt(h, (r,m))
3. k1 ← H1(r,m)
4. return (c, k1)

Decapsulate((f, g, h, s) , c)
1. (r,m) ← Decrypt (sk, c)
2. k1 ← H1(r,m), k2 ← H2(s, c)
3. if (r,m) �=⊥ return k1

4. else return k2

Signatures. We now give a signature scheme for CNTRU, based on pqN-
TRUSign [22]. Below are the key generation, signing, and verification algorithms.
As usual, we fix coprime integers p and q with q � p. In [22], ternary polyno-
mials are used, though we note this is not essential for the correctness of the
scheme. Let T denote elements of Λ with ternary coefficients, i.e. T = {f =
⊕d−1

i=0 uifi ∈ Λ : fi is ternary}. Moreover, let R = {h = ⊕d−1
i=0 uihi : ‖hi‖∞ ≤

q/2, i = 0, ..., d − 1} and S = {g = ⊕d−1
i=0 gi ∈ Λ : ‖gi‖∞ ≤ p/2, i = 0, ..., d − 1}.

KeyGenSign

1. F ← T and set f = pF .
2. If f �∈ Λ×

q , resample F .
3. g ← S.
4. If g �∈ Λ×

q , resample g.
5. h := f−1g mod q.
6. (pk, sk) = (h, (f, g)).

Like pqNTRUSign, we require a function H which takes a public key h and a
message μ to be signed, and outputs a pair of elements with bounded norm,
that is H : R × {0, 1}∗ → S × S. The values Bs and Bt are bounds that can be
changed to vary the security level and efficiency of the protocol.

Sign(μ): input (pk, sk, μ) = (h, (f, g), μ)
1. (sp, tp) = H(h, μ).
2. r ← Λ : ‖r‖∞ ≤

⌊
q
2p + 1

2

⌋
, i = 0, ..., d − 1.

3. (s0, t0) := (sp + pr, s0h mod q).
4. a := (tp − t0)g−1 mod p.
5. If ‖af‖∞ > Bs or ‖ag‖∞ > Bt or ‖s‖∞ > q

2 − Bs or ‖t‖∞ > q
2 − Bt, restart.

6. (s, t) := (s0, t0) + (af, ag).
7. Output σ = (s, t, μ).

The signing algorithm is nearly identical to that of pqNTRUSign. We do, how-
ever, have to be careful about how we multiply a and f, g. For correctness to
hold, we use the pair (af, ag) in our algorithm, whereas in [22] one can use
(fa, ga) or (af, ag). This is because the NTRU lattice is an OL-bimodule in the
commutative case, whereas CNTRU lattices are only left Λ-modules.

NTRU in Quaternion Algebras of Bounded Discriminant 287

Verify(σ): input (h, σ) = (h, (s, t, μ))
1. (sp, tp) ← H(h, μ).
2. Check (sp, tp) ≡ (s, t) mod p.
3. Check t ≡ sh mod q.
4. Check ‖s‖∞ ≤ q

2 − Bs and ‖t‖∞ ≤ q
2 − Bt.

5. If all checks succeed, output Valid.

It is straightforward to show correctness for this scheme, for well chosen Bs, Bt.
We do not analyse the above schemes in detail; we include them to demon-

strate that such functionality is obtainable from NTRU in noncommutative rings.

References

1. Albert, A.: Structure of Algebras, AMS colloquium publications, vol. 24. American
Mathematical Society, Providence (1939)

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

4. Atani, R., Atani, S., Karbasi, A.: NETRU: a noncommutative and secure variant
of CTRU cryptosystem. ISC Int. J. Inf. Sec. 10, 45–53 (2018)

5. Atani, R., Atani, S., Karbasi, A.: A provably secure variant of ETRU based on
extended ideal lattices over direct product of Dedekind domains. JCS 5, 13–34
(2018). https://doi.org/10.22108/jcs.2018.106856.0

6. Bagheri, K., Sadeghi, M.-R., Panario, D.: A non-commutative cryptosystem based
on quaternion algebras. Des. Codes Crypt. 86(10), 2345–2377 (2017). https://doi.
org/10.1007/s10623-017-0451-4

7. Banks, W.D., Shparlinski, I.E.: A variant of NTRU with non-invertible polynomi-
als. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp.
62–70. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-2 6

8. Bayer-Fluckiger, E., Cerri, J.P., Chaubert, J.: Euclidean minima and central divi-
sion algebras. Int. J. Number Theory 5(07), 1155–1168 (2009). https://doi.org/10.
1142/S1793042109002614

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

10. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, A.: Entropic hardness of
module-LWE from module-NTRU. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT
2022. LNCS, vol. 13774, pp. 78–99. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22912-1 4

11. Caruso, X., Borgne, J.L.: Fast multiplication for skew polynomials. In: ISSAC 2017,
pp. 77–84. Association for Computing Machinery (2017). https://doi.org/10.1145/
3087604.3087617

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.22108/jcs.2018.106856.0
https://doi.org/10.1007/s10623-017-0451-4
https://doi.org/10.1007/s10623-017-0451-4
https://doi.org/10.1007/3-540-36231-2_6
https://doi.org/10.1142/S1793042109002614
https://doi.org/10.1142/S1793042109002614
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-031-22912-1_4
https://doi.org/10.1007/978-3-031-22912-1_4
https://doi.org/10.1145/3087604.3087617
https://doi.org/10.1145/3087604.3087617

288 C. Ling and A. Mendelsohn

12. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II:
practical issues in cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016.
LNCS, vol. 10311, pp. 21–55. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-61273-7 3

13. Chen, C., et al.: NTRU: algorithm specifications and supporting documentation
(2019). https://ntru.org/f/ntru-20190330.pdf

14. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices
and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34618-8 1

15. Cheon, J.H., Kim, D., Kim, T., Son, Y.: A new trapdoor over module-NTRU
lattice and its application to id-based encryption. Cryptol. ePrint Archive, Rpt.
2019/1468 (2019). https://eprint.iacr.org/2019/1468

16. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices, pp. 853–866. ASIA CCS
2020, Assoc. for Computing Machinery (2020). https://doi.org/10.1145/3320269.
3384758

17. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 5

18. Felderhoff, J., Pellet-Mary, A., Stehlé, D.: On module unique-SVP and NTRU. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13793, pp. 709–740.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22969-5 24

19. Fouque, P.A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over
NTRU. https://falcon-sign.info/falcon.pdf

20. Gaborit, P., Ohler, J., Solé, P.: CTRU, a polynomial analogue of NTRU. Technical
report RR-4621, INRIA (2002). https://inria.hal.science/inria-00071964

21. Grover, C., Mendelsohn, A., Ling, C., Vehkalahti, R.: Non-commutative ring learn-
ing with errors from cyclic algebras. J. of Cryptology 35(3), 22 (2022). https://
doi.org/10.1007/s00145-022-09430-6

22. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Transcript
secure signatures based on modular lattices. In: Mosca, M. (ed.) PQCrypto 2014.
LNCS, vol. 8772, pp. 142–159. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11659-4 9

23. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52153-4 1

24. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

25. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 9

26. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

27. Howgrave-Graham, N., Silverman, J., Whyte, W.: A meet-in-the-middle attack on
an NTRU private key. Technical report, NTRU Cryptosystems (2003)

https://doi.org/10.1007/978-3-319-61273-7_3
https://doi.org/10.1007/978-3-319-61273-7_3
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://eprint.iacr.org/2019/1468
https://doi.org/10.1145/3320269.3384758
https://doi.org/10.1145/3320269.3384758
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-031-22969-5_24
https://falcon-sign.info/falcon.pdf
https://inria.hal.science/inria-00071964
https://doi.org/10.1007/s00145-022-09430-6
https://doi.org/10.1007/s00145-022-09430-6
https://doi.org/10.1007/978-3-319-11659-4_9
https://doi.org/10.1007/978-3-319-11659-4_9
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14

NTRU in Quaternion Algebras of Bounded Discriminant 289

28. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30574-3 10

29. Jarvis, K.: NTRU over the Eisenstein Integers. Master’s thesis (2011). https://
ruor.uottawa.ca/handle/10393/19862

30. Karbasi, A.H., Atani, R.: ILTRU: an NTRU-like public key cryptosystem over ideal
lattices. Cryptology ePrint Archive, p. 549 (2015)

31. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman
& Hall/CRC, Boca Raton (2014)

32. Koblitz, N., Samajder, S., Sarkar, P., Singha, S.: Concrete analysis of approximate
ideal-SIVP to decision ring-LWE reduction. Adv. Math. Commun. (2022). https://
doi.org/10.3934/amc.2022082

33. Kouzmenko, R.: Generalizations of the NTRU cryptosystem. Ph.D. thesis (2005)
34. Malekian, E., Zakerolhosseini, A.: OTRU: a non-associative and high speed public

key cryptosystem. In: CADS 15, pp. 83–90 (2010). https://doi.org/10.1109/CADS.
2010.5623536

35. Malekian, E., Zakerolhosseini, A., Mashatan, A.: QTRU: quaternionic version of
the NTRU public-key cryptosystem. ISC Int. J. Inf. Secur. 3, 29–42 (2011). https://
doi.org/10.22042/isecure.2015.3.1.3

36. Marcus, D.A.: Number Fields. U, Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-90233-3

37. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: FOCS 2004. SIAM Journal on Computing, vol. 37, pp. 372–381
(2004). https://doi.org/10.1109/FOCS.2004.72

38. Murphy, S., Player, R.: δ-subgaussian random variables in cryptography. In: Jang-
Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 251–268. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 14

39. Murphy, S., Player, R.: Discretisation and product distributions in ring-LWE. J.
Math. Cryptol. 15(1), 45–59 (2021). https://doi.org/10.1515/jmc-2020-0073

40. Jarvis, K., Nevins, M.: ETRU: NTRU over the Eisenstein integers. Des. Codes
Crypt. 74(1), 219–242 (2013). https://doi.org/10.1007/s10623-013-9850-3

41. Nevins, M., KarimianPour, C., Miri, A.: NTRU in rings beyond Z. Des. Codes
Crypt. 56, 65–78 (2009). https://doi.org/10.1007/s10623-009-9342-7

42. NTRU prime risk-management team: Risks of lattice KEMs (2021). https://
ntruprime.cr.yp.to/warnings.html

43. Oggier, F., Sethuraman, B.A.: Quotients of orders in cyclic algebras and space-time
codes. AMC 7(4), 441–461 (2013). https://doi.org/10.3934/amc.2013.7.441

44. Peikert, C.: Limits on the hardness of lattice problems in �p norms. In: CCC 2007,
pp. 333–346 (2007). https://doi.org/10.1109/CCC.2007.12

45. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. STOC 2007, pp. 478–487. Association for Computing Machin-
ery (2007). https://doi.org/10.1145/1250790.1250860

46. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–35. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 1

47. Singh, S., Padhye, S.: Generalisations of NTRU cryptosystem. SCN 9(18), 6315–
6334 (2016). https://doi.org/10.1002/sec.1693

48. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-30574-3_10
https://ruor.uottawa.ca/handle/10393/19862
https://ruor.uottawa.ca/handle/10393/19862
https://doi.org/10.3934/amc.2022082
https://doi.org/10.3934/amc.2022082
https://doi.org/10.1109/CADS.2010.5623536
https://doi.org/10.1109/CADS.2010.5623536
https://doi.org/10.22042/isecure.2015.3.1.3
https://doi.org/10.22042/isecure.2015.3.1.3
https://doi.org/10.1007/978-3-319-90233-3
https://doi.org/10.1007/978-3-319-90233-3
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-030-21548-4_14
https://doi.org/10.1515/jmc-2020-0073
https://doi.org/10.1007/s10623-013-9850-3
https://doi.org/10.1007/s10623-009-9342-7
https://ntruprime.cr.yp.to/warnings.html
https://ntruprime.cr.yp.to/warnings.html
https://doi.org/10.3934/amc.2013.7.441
https://doi.org/10.1109/CCC.2007.12
https://doi.org/10.1145/1250790.1250860
https://doi.org/10.1007/978-3-030-92062-3_1
https://doi.org/10.1002/sec.1693
https://doi.org/10.1007/978-3-642-20465-4_4

290 C. Ling and A. Mendelsohn

49. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as stan-
dard worst-case problems over ideal lattices. Cryptology ePrint Archive (2013).
https://eprint.iacr.org/2013/004

50. Steinfeld, R.: NTRU cryptosystem: Recent developments and emerging mathemati-
cal problems in finite polynomial rings. In: Niederreiter, H., Ostafe, A., Panario, D.,
Winterhof, A. (eds.) Algebraic Curves and Finite Fields, pp. 179–212. De Gruyter
(2014). https://doi.org/10.1515/9783110317916.179

51. Thakur, K., Tripathi, B.: KTRU: NTRU over the Kleinian integers. J. Int. Acad.
Phys. Sci. 20(03), 177–183 (2016)

52. Thakur, K., Tripathi, B.P.: STRU: a non alternative and multidimensional public
key cryptosystem. GJPAM 13, 1447–1464 (2017). http://www.ripublication.com/
Volume/gjpamv13n5.htm

53. Truman, K.: Analysis and extension of non-commutative NTRU. Ph.D. thesis
(2007). https://drum.lib.umd.edu/handle/1903/7344

54. Vats, N.: NNRU, a noncommutative analogue of NTRU. CoRR abs/0902.1891
(2009). http://arxiv.org/abs/0902.1891

55. Vehkalahti, R., Hollanti, C., Lahtonen, J., Ranto, K.: On the densest MIMO lattices
from cyclic division algebras. IEEE Trans. Inf. Theory 55(8), 3751–3780 (2009).
https://doi.org/10.1109/TIT.2009.2023713

56. Voight, J.: Quaternion Algebras. Graduate Texts in Mathematics, Springer, Cham
(2021)

57. Wang, Y., Wang, M.: Provably secure NTRUEncrypt over any cyclotomic field.
In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 391–417.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 18

58. Yasuda, T., Anada, H., Sakurai, K.: Application of NTRU using group rings to
partial decryption technique. In: Yung, M., Zhang, J., Yang, Z. (eds.) INTRUST
2015. LNCS, vol. 9565, pp. 203–213. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31550-8 13

https://eprint.iacr.org/2013/004
https://doi.org/10.1515/9783110317916.179
http://www.ripublication.com/Volume/gjpamv13n5.htm
http://www.ripublication.com/Volume/gjpamv13n5.htm
https://drum.lib.umd.edu/handle/1903/7344
http://arxiv.org/abs/0902.1891
https://doi.org/10.1109/TIT.2009.2023713
https://doi.org/10.1007/978-3-030-10970-7_18
https://doi.org/10.1007/978-3-319-31550-8_13
https://doi.org/10.1007/978-3-319-31550-8_13

Do Not Bound to a Single Position:
Near-Optimal Multi-positional Mismatch

Attacks Against Kyber and Saber

Qian Guo1 and Erik Mårtensson1,2(B)

1 Department of Electrical and Information Technology, Lund University, Lund,
Sweden

{qian.guo,erik.martensson}@eit.lth.se
2 Selmer Center, Department of Informatics, University of Bergen, Bergen, Norway

erik.martensson@uib.no

Abstract. The ephemeral-key setting of a lattice-based Key Encapsu-
lation Mechanism (KEM) scheme assumes critical importance when con-
sidering certain advanced functionalities, such as forward secrecy. Acci-
dental reuse of the ephemeral key may compromise the scheme’s security
and thus underscores the need for examining its keypair-reuse resilience.
Keypair-reuse attacks include key mismatch attacks as a special case.

In this paper, we propose new key mismatch attacks against Kyber
and Saber, NIST’s selected scheme to be standardized for encryption and
one of the finalists in the third round of the NIST process, respectively.
Our novel idea is to recover partial information of multiple secret entries
in each mismatch oracle call. These multi-positional attacks greatly
reduce the expected number of oracle calls needed to fully recover the
secret key. They also have significance in side-channel analysis.

Regarding lower bounds, our new attacks falsify the Huffman bounds
proposed in [Qin et al. ASIACRYPT 2021], where a one-positional mis-
match adversary is assumed. Our new attacks can be bounded by the
Shannon bounds, i.e., the entropy of the distribution generating each
secret coefficient times the number of secret coefficients. The proposed
attacks are »near-optimal« since their query complexities are close to
the Shannon bounds.

Keywords: Lattice-based cryptography · Mismatch attacks · LWE ·
LWR · Kyber · Saber

1 Introduction

Post-quantum cryptography (PQC) has become essential due to the rapid
advances in building quantum computers. Researchers in post-quantum cryp-
tography investigate new cryptographic primitives that resist attacks (e.g.
Shor’s algorithm [44]) from large-scale quantum computers. There are five
main branches in post-quantum cryptography, lattice-based, code-based, multi-
variate-based, isogeny-based, and symmetric-based cryptography. Lattice-based
cryptography [3,42] is arguably the most promising of them all.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 291–320, 2023.
https://doi.org/10.1007/978-3-031-40003-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_11

292 Q. Guo and E. Mårtensson

In 2016, NIST (National Institute of Standards and Technology, U.S. Depart-
ment of Commerce) started a standardization process [1], referred to as the
NIST PQC project, to solicit new quantum-resistant public-key cryptographic
standards. Recently the fourth round began and for the Public Key Encryp-
tion (PKE)/Key Encapsulation Mechanism (KEM) category the Learning With
Errors (LWE)-based KEM Kyber [43] has been chosen as the primitive to be
standardized. Other than Kyber the third round included two more lattice-
based PKE/KEM finalists, the Learning With Rounding (LWR)-based KEM
Saber [16], as well as NTRU [12]. The last finalist in the third round was the
code-based KEM Classic McEliece [4].

NIST has established five security levels, ranging from NIST-I to NIST-V,
based on the computational effort required to search for a key on a block cipher
or to search for a collision on a hash function. For instance, the NIST-I param-
eter set is expected to withstand any attack that requires less computational
resources than a key search on AES128. A similar design philosophy guides
most PKE/KEM candidates in the NIST PQC project, i.e., using a Chosen
Plaintext Attack (CPA) secure encryption primitive as their core and achiev-
ing Chosen Ciphertext Attack (CCA) security with a transform like Fujisaki-
Okamoto (FO) [22]. The CCA-secure version of the scheme offers keypair reuse
resilience, allowing a pair of keys to be used repeatedly. Conversely, the core
CPA secure construction can stand alone in the ephemeral-key setting, which
is attractive because the CCA transform is costly. The ephemeral-key setting
is critical for transport layer network protocols that require advanced security
functionalities such as forward secrecy.

In the call-for-proposal [2], NIST listed keypair-reuse resilience for ephemeral-
only encryption/key establishment as one of the additional desirable security
properties. In a keypair-reuse attack, a keypair of ephemeral-only (a.k.a. CPA-
secure) encryption/KEM is reused multiple times. Such reuses may come from
implementation errors made by software developers. It is important to under-
stand the capability of the adversary who exploits such keypair reuses.

The focal point of this paper is a specific type of keypair-reuse attacks called
mismatch attacks [19]. In a mismatch attack, one communicating party’s public
key is reused. The adversary impersonates the other party and recovers the secret
key by repeatedly checking whether the two shared keys match. There is a long
list of known mismatch attacks on lattice-based KEMs, e.g. [6,7,24,36–38]. We
mainly target the LWE/LWR-based KEMs Kyber and Saber, since Kyber is
the selected proposal for standardization and Saber is another important third
round finalist which is similar to Kyber.

The main problem related to mismatch attacks in the NIST PQC project is
evaluating the candidate’s key reuse resilience, i.e., how many key reuses can be
tolerated before the full secret key is recovered. Mismatch attacks are not only
significant when evaluating key reuse resilience, but also in side-channel and
fault analysis, because the mismatch attack oracle can be used to implement
certain types of chosen-ciphertext side-channel attacks [18,26,38,41,46] and a
fault-injection attack [47]. The authors in [38] proposed a generic method of

Do Not Bound to a Single Position 293

transforming the problem of finding optimal mismatch attacks to finding an
optimal binary recovery tree (BRT), and obtained the optimal BRT and the
corresponding lower bounds by Huffman coding.

However, the lower bounds in [38] are derived under the assumption that
the adversary only can recover partial information of one secret entry in each
mismatch oracle call. Their bounds could be invalid for general adversaries
who can recover partial secret information related to multiple positions in each
call, since the one-dimensional Huffman coding bound cannot bound multi-
dimensional/multi-positional attacks. However, it is challenging to design a better
attacking strategy to constructively beat the lower bound proposed in [38].

1.1 Related Work

Chosen Ciphertext attacks (CCA) on CPA secure schemes can be traced back to
Bleichenbacher’s attacks on the RSA PKCS#1 [11]. In 1999, Hall, Goldberg, and
Schneier [29] proposed the reaction attack model that checks if the decryption is
successful or not. This model is a weaker model than the CCA model, and the
reaction attacks of [29] can be used to recover messages for code-based schemes
like McEliece [33] and private keys for early lattice-based schemes such as the
Ajtai-Dwork [3] and the GGH [23] cryptosystems. Hoffstein and Silverman [31]
extended these attacks to NTRU [30].

These attacks are thwarted by using CCA transforms, such as the famous
Fujisaki-Okamoto (FO) transform [22]. Numerous works [10,15,17,20,25,27,28]
in lattice-based and code-based cryptography demonstrate that the CCA pro-
tection can fail if the decryption error rate is not sufficiently small.

In 2016, Fluhrer [21] initiated key-reuse attacks against lattice-based encryp-
tion. Later, Ding, Fluhrer, and Saraswathy [19] extended the attacks to lattice-
based key exchange and proposed a key mismatch attack. Similar attacks can
be applied to many lattice-based KEMs and the query complexities are further
improved in [7,8,24,32,36,37].

Regarding the lower bounds on the average number of queries needed to
recover the full secret key in a mismatch attack, in EUROCRYPT 2019, Băetu
et al. [6] proved that this number should be larger than the Shannon entropy of
the secret distribution. This lower bound is referred to as the Shannon bound
in this paper. In ASIACRYPT 2021, Qin et al. [38] proposed sharper lower
bounds from Huffman coding theory for CPA-secure lattice-based KEMs and
also presented improved constructive results with query complexities close to
the proposed Huffman coding lower bounds.

1.2 Contributions

In this paper, we propose novel mismatch attacks against Kyber and Saber that
beat the Huffman coding lower bounds proposed in [38], i.e., we falsify their lower
bounds by providing better constructive results. Our techniques include novel

294 Q. Guo and E. Mårtensson

Table 1. Sample complexity of the new attack v.s. lower bounds.

Shannon
Bound(b1)

Lower Bound
(b2) from [38]

Previous Best (npb) New Attack(nna)

npb

from [38]
npb/b1 npb/b2 nna nna/b1 nna/b2

Kyber512 1195 1216 1312 1.098 1.079 1205 1.008 0.991
Kyber768 1560 1632 1776 1.138 1.088 1588 1.018 0.973
Kyber1024 2079 2176 2368 1.139 1.088 2118 1.019 0.973
LightSaber 1386 1412 1460 1.053 1.033 1410 1.017 0.998
Saber 1954 1986 2091 1.071 1.053 1985 1.015 0.999
FireSaber 2389 2432 2624 1.098 1.079 2411 1.009 0.991

attacking strategies that can recover partial information about multiple coeffi-
cients of the secret key in each query. We name the new attacks multi-positional
mismatch attacks. The main contributions of the paper are the following.

1. We first study two-positional attacks on Kyber and Saber. We propose new
methods to split the two-dimensional plane for two secret coefficients and
decide from the mismatch oracle call which part the two coefficients belong
to. We propose various splitting approaches and transform the problem of
finding the most efficient splits into an optimization problem. For Kyber512,
Kyber768, Kyber1024, and FireSaber we search for the best two-positional
attacks manually. When the possible pairs of secret coefficients are too large,
e.g. in the cases of LightSaber and Saber, we design a greedy algorithm
to automatically solve the optimization problem. This greedy approach is
extended to attacking more than two positions at a time.
In Table 1 we present the new query complexities, which are compared with
the Shannon bounds and the one-dimensional Huffman bounds proposed
in [38]. Regarding the constructive side, the new attacks significantly improve
the query complexities, e.g., reducing 107 queries for Kyber512 and 250 for
Kyber1024, compared to the attacks in [38]. Regarding the theoretical bounds,
our new methods beat the lower bounds in [38] for all the parameter sets of
Kyber and Saber. The new attacks are “near-optimal” since their query com-
plexities are close to the Shannon bound. For instance, for Kyber512, the
constructive result is only larger than the Shannon bound by 10 queries (or
by a factor of 0.8%). Thus, the room for further improvement is small.

2. We further employ the lattice estimator, a new version of the widely-used
LWE estimator [5] to roughly estimate the query complexity when a cer-
tain amount (e.g., 260) of post-processing with lattice reduction is allowed.
Our new multi-positional mismatch attacks also improve the query complex-
ity in this scenario. Though it has been remarked in [38] that the derived
lower bounds are invalid when post-processing is allowed, we present the first
quantitative analysis of mismatch attacks with post-processing.

Do Not Bound to a Single Position 295

3. Last, our new multi-positional mismatch attacks can improve the efficiency
of some side-channel attacks on CCA-secure implementations of Kyber and
Saber. The reason is that these attacks require building an oracle from side-
channel leakages, similar to some extent to a mismatch oracle. The new attack
may also be applied to improve the fault-injection attack in [47]. We present
discussions on the potential extensions, though side-channel attacks and fault-
injection attacks are not the focus of our paper.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we present the necessary
background including the CPA-secure versions of Kyber and Saber, the model
of mismatch attacks and Huffman coding. In Sect. 3, we present the state-of-
the-art mismatch attacks on Kyber and Saber proposed in [38]. We present our
multi-positional attacks, that constructively beat the lower bounds from [38],
in Sect. 4. This is followed by more discussions about using post-processing to
further reduce the query complexity and the connection to side-channel and
fault-injection analysis in Sect. 5. We conclude this paper and present possible
future works in Sect. 6.

2 Background

In this section, we introduce CPA-secure instantiations of the KEMs Kyber and
Saber. Note that in the official documents of Kyber and Saber, the CPA-secure
versions are limited to ephemeral keys, but this constraint may be ignored in
practice. We thus create these CPA-secure instantiations to assess their key reuse
resilience. Our notations and terminology are similar to the ones in [38].

– Let H(·) be a hash function and x||y be the concatenation of two strings x
and y.

– The symbol ←$ denotes sampling from a distribution.
– Let Atr denote the transpose of the matrix A.
– The distribution Bη is the central binomial distribution whose output is com-

puted as
∑η

i=1(ai − bi), where ai and bi are independently and uniformly
randomly sampled from {0, 1}.

2.1 CPA-Secure Version of Kyber

Kyber [43] is the KEM proposal of CRYSTALS (Cryptographic Suite for Alge-
braic Lattices), based on the Module Learning with Errors (MLWE) problem. In
the fourth round NIST has selected Kyber as their scheme for PKE/KEM. Fol-
lowing the work of [38], we describe a potential instantiation of the CPA-secure
Kyber KEM in Fig. 1 by invoking the functions of Kyber.CPAPKE from [43].

Let Rq be the polynomial ring Zq[x]/(xn + 1), where q = 3329 and n = 256,
and let ◦ (+ or −) be the corresponding multiplication (addition or subtraction)

296 Q. Guo and E. Mårtensson

Fig. 1. The CPA-secure version of Kyber.

in the ring. Let l denote the rank of the module, which is set to be 2, 3, and 4,
for the three different versions, Kyber512, Kyber768, and Kyber 1024. Alice and
Bob generate a matrix a from a public seed by calling a pseudorandom function.
As shown in Fig. 1, round-3 Kyber employs two central binomial distributions
Bη and Bη′ . The designers pick (η, η′) = (3, 2) for Kyber512, and (η, η′) = (2, 2)
for Kyber768 and Kyber1024. The Compressq(x, p) function transforms x from
module q to module p by

Compressq(x, p) = �x · p/q� mod +p,

where r′ = r mod +p represents the unique element r′ in the range −p
2 < r′ ≤ p

2
such that r′ ≡ r (mod p). We also define the inverse function

Decompressq(x, p) = �x · q/p�.
If the first input to the function Compressq(x, p) (or Decompressq(x, p)) is a
vector/polynomial, then we call the function coefficient-wise.

2.2 CPA-Secure Version of Saber

Saber [16], whose security is based on the hardness of the Module Learning
with Rounding Problem (MLWR), was a finalist candidate in the third round of
the NIST PQC project. Similar to the CPA-secure version of the Kyber KEM,
in Fig. 2 we present a possible instantiation of a CPA-secure Saber KEM by
invoking the functions of Saber.PKE from [16].

We use the same notations as in Sect. 2.1, e.g. Rq denotes the polynomial
ring Zq[x]/(xn + 1), where n = 256 and the rank of the module l is set to be 2

Do Not Bound to a Single Position 297

Fig. 2. The CPA-secure version of Saber.

for LightSaber, 3 for Saber, and 4 for FireSaber. The matrix a is also generated
from a public seed. The secret coefficients are generated from the central binomial
distribution Bη, where η is 5 for LightSaber, 4 for Saber, and 3 for FireSaber,
respectively. Saber chooses three positive integers q, p, and T as powers of 2,
i.e., q = 2εq , p = 2εp , and T = 2εT , respectively. In round-3 Saber, εq = 13 and
εp = 10. The exponent εT is set to be 3 for LightSaber, 4 for Saber, and 6 for
FireSaber, respectively.

We denote the bitwise right shift operation by � and apply it to polynomials
and matrices by calling it coefficient-wise. Saber also introduces two constant
polynomials h1 ∈ Rq and h2 ∈ Rq with all coefficients set to 2εq−εp−1 and
2εp−2 − 2εp−εT −1 + 2εq−εp−1, respectively, and one constant vector h ∈ Rl×1

q

with each polynomial set to h1.

2.3 The Threat Model – Mismatch Attack Model

In this work, we focus on the key mismatch threat model against an ephemeral-
only KEM which reuses the keypair. We assume that Alice reuses her keypair
(sA,PA) and the adversary Eve impersonates Bob to recover Alice’s secret key
sA by communicating with Alice. We can build an oracle to simulate the decap-
sulation of Alice with input including the pair (PB , c) chosen by Eve and the
corresponding shared key KB . Here we denote c1, c2 by c for Kyber. The oracle
denoted O calls Alice’s decapsulation function and obtains the shared key KA. It
outputs 1 if the shared keys KA = KB and 0 otherwise. The aim of a mismatch
attack is to recover Alice’s key by selecting the chosen pairs of the form (PB , c)
and iteratively querying the oracle O.

298 Q. Guo and E. Mårtensson

2.4 Huffman Coding

Huffman coding refers to an algorithm that finds an efficient binary code used
for lossless data compression. Given a symbol-by-symbol encoding of strings
with independent and identically distributed symbols from a known distribution,
Huffman coding creates an optimal code. Huffman coding works by iteratively
building a binary tree from the bottom up by merging the two least probable
symbols into a new symbol. Basic (one-dimensional) Huffman coding can be
generalized to n dimensions and improved by considering each possible n-tuple
of symbols from an alphabet as a new symbol and applying Huffman coding to
these n-tuples. We refer the reader to a book on information theory (e.g., [13])
for more details.

3 One-Positional Mismatch Attacks

In a mismatch attack, Eve impersonates Bob and wants to recover Alice’s secret
key sA. As we can see in Fig. 1 and 2, given the pair (PB , c), the keys KA and
KB match if and only if Alice’s computed m′ matches Eve’s chosen m. Thus,
for each query of the oracle Eve sets her parameters m and (PB , c) such that
the output of the oracle teaches her something about sA.

Previous works on mismatch attacks recover one position at a time. Let us
explain in some detail how Eve retrieves one position at a time in these works
and let us first focus on position 0. Let si denote the value of sA on index i, when
the subscript A is implied. Eve creates the message m = [1, 0, . . . , 0]. She sets
her parameters (PB , c) such that Alice’s received message m′ is 0 by design on
all positions except for the position 0, whose value depends on the secret value
s0. By observing the output of the oracle, Eve learns some information about
s0. Repeating the process, Eve learns the exact value of s0 and then continues
the process to learn the other si values.

3.1 Kyber

Let us now describe the attack in some more detail, for Kyber10241. Eve lets
PB = [� q

32�, 0, . . . , 0]. She calculates c1 = Compressq(PB , 2dPB) and sets
c2 = [h, 0, . . . , 0], where h is a parameter designed to extract different infor-
mation about the secret, depending on the context. Alice calculates uA =
Decompressq(c1, 2

dPB) = PB and vA = Decompressq(c2, 2
dvB) = [� q

32h�,
0, . . . , 0]. Next, Alice calculates

m′[0] =Compressq((vA − strAuA)[0], 2) (1)

=Compressq(vA[0] − (strAuA)[0], 2) (2)

=
⌈
2
q

(⌈ q

32
h
⌋

− sA[0]
⌈ q

32

⌋)⌋

mod 2. (3)

1 To attack other versions of Kyber you just alter the attack parameters slightly.

Do Not Bound to a Single Position 299

Table 2. m′[0] as a function of s0 for different values of h for Kyber1024.

h s0

−2 −1 0 1 2

7 1 0 0 0 0
8 1 1 0 0 0
9 1 1 1 0 0
10 1 1 1 1 0
22 0 1 1 1 1
23 0 0 1 1 1
24 0 0 0 1 1
25 0 0 0 0 1

The value of m′[0] depends on h and s0 according to Table 2. Each query
gives us partial information about s0. Notice that we are not able to split the
values of s0 into all possible two subsets of values. All the possible combinations
split the values into two adjacent intervals. Attempts at making any other type
of split fail. Modifying the mismatch attack to allow for other splits with respect
to s0 leads to a situation where m′[i] is not always equal to 0 for i
= 0.

Let us show why Alice’s received message is equal to 0 by construction on all
positions with non-zero index. Since vA[i] = 0, for index i
= 0, Alice computes

m′[i] =Compressq((vA − strAuA)[i], 2) (4)

=Compressq(vA[i] − (strAuA)[i], 2) (5)

=
⌈
2
q

(
−sA[i]

⌈ q

32

⌋)⌋

mod 2. (6)

The expression within the outer rounding function is bounded in absolute
value by 2/3329 · 2 · 105 = 0.126 . . . < 1/2. Hence the value is always equal to 0
when rounded to the nearest integer and thus m′[i] = 0, for i
= 0.

To modify the mismatch attack to recover si, where 1 ≤ i ≤ n, we instead
let PB be equal to 0 on all positions, except for PB [n − i] = −� q

32�.
As Kyber is based on module-LWE, Pb and s consist of l blocks, where

each block has size n. The multiplication of them consists of a scalar product
of two vectors with l polynomials each. Thus, to retrieve positions n to 2n − 1,
we just shift the index of PB by n positions. That is, we let all positions in
PB be equal to 0, except that PB [n] = � q

32�, to retrieve sn. To retrieve the
value sn+i, for 0 < i < n, we let all positions of PB be equal to 0, except that
PB [2n− i] = −� q

32�. To retrieve another block we just continue shifting another
n positions and so on.

In Fig. 3 we illustrate the mismatch attacks from [38] on the different versions
of Kyber.

300 Q. Guo and E. Mårtensson

Table 3. m′[0] as a function of s0 for different values of h and k for FireSaber.

h k s0

−3 −2 −1 0 1 2 3

15 5 1 0 0 0 0 0 0
15 7 1 1 0 0 0 0 0
15 13 1 1 1 0 0 0 0
16 4 1 1 1 1 0 0 0
16 2 1 1 1 1 1 0 0
17 7 1 1 1 1 1 1 0
47 5 0 1 1 1 1 1 1
47 7 0 0 1 1 1 1 1
47 13 0 0 0 1 1 1 1
48 4 0 0 0 0 1 1 1
48 2 0 0 0 0 0 1 1
49 7 0 0 0 0 0 0 1

3.2 Saber

A mismatch attack on Saber works similarly to a mismatch attack on Kyber.
Let c be equal to 0 on all positions, except that c[0] = h. Let H denote 2εp−2 −
2εp−εT −1+2εq−εp−1. Finally, let PB be equal to 0 on all positions except PB [0] =
k. For the first index i = 0 we get

m′[0] = ((k(si mod p) + H − 2εp−εT h) mod p) � (εp − 1). (7)

For the indices i
= 0 we get

m′[i] = ((k(si mod p) + H) mod p) � (εp − 1). (8)

If we make k small enough, then we make sure that m′[i] = 0 for all possible
values of si. Table 3 shows parameters achieving different splits of m′[0], while
making sure that m′[i] = 0, for all i
= 0, for FireSaber2.

Note that the parameters differ a bit from the ones in [38]. We pick the
minimal values of k that achieve each possible split. This allows our multi-
positional attacks in Sect. 4 to use as many positions at the same time as possible.

To retrieve positions si, for 1 ≤ i ≤ n − 1, we make the adjustment that c is
equal to 0 on all positions, except that c[n − i] = −k, where k refers to a value
used to achieve a specific split to retrieve the value s0 for an implied value of h.

Just like Kyber, Saber is based on module-LWE and the mismatch attack
retrieves the secret values in blocks of size n. Just like for Kyber, we shift the
non-zero indices of PB by n positions to retrieve each new block of secret values.

In Fig. 3 we illustrate the mismatch attacks from [38] on the different versions
of Saber.
2 To attack other versions of Saber you just alter the attack parameters slightly.

Do Not Bound to a Single Position 301

Table 4. Lower limits for key mismatch attacks on Kyber and Saber.

Scheme s Range Unknowns Entropy
Per
Position

Shannon
Bound

Huffman
Bound

Kyber512 [−3, 3] 512 2.3334 1195 1216
Kyber768 [−2, 2] 768 2.0306 1560 1632
Kyber1024 [−2, 2] 1024 2.0306 2079 2176
LightSaber [−5, 5] 512 2.7064 1386 1412
Saber [−4, 4] 768 2.5442 1954 1986
FireSaber [−3, 3] 1024 2.3334 2389 2432

3.3 The Lower Bounds from [38]

An obvious lower bound on the attack is the Shannon bound. In a pure mismatch
attack, the number of queries cannot be lower than the entropy of the secret.
As each position in the secret vector is independent of the other positions, the
entropy is equal to the number of positions times the entropy of each position,
leading to the Shannon bounds of Table 4.

Regarding their mismatch attacks the authors of [38] write “For simplicity, we
assume the adversary recovers Alice’s secret key sA one coefficient block by one
coefficient block.” For Kyber and Saber, this means recovering one coefficient at
a time. Under this restriction, the authors show that Huffman coding is optimal
and leads to another lower bound for a pure mismatch attack. In our concrete
setting, since not every possible splitting of the secret values into two subsets is
possible using our available types of queries, there is no guarantee that we can
reach the performance of the Huffman code in practice.

3.4 The Practical Mismatch Attacks from [38]

Figure 3 illustrates and summarizes the practical mismatch attacks on Kyber
and Saber from [38]. The blue/red/green/yellow/brown/orange lines correspond
to the 1st/2nd/3rd/4th/5th/6th splits respectively.

All the attacks on both Kyber and Saber follow the same strategy. Start
with a query that splits the possibilities for the secret value si into two halves as
equally probable as possible. Then no matter on which half of the secret values
we end up, each of the remaining queries decides whether the si is equal to the
remaining most probable value or any of the other values3.

There are two interesting ways of viewing these mismatch attacks, which we
generalize to higher dimensions in Sect. 4.4.

Partly, the attacks correspond to first making as even of a split as possible,
and then for the remaining part of the attack making splits that correspond to
3 The fact that all the mismatch attacks on Kyber and Saber follow this approach is

due to the distribution of the si values. For another distribution, such as the uniform
distribution, this would of course not be a sensible strategy.

302 Q. Guo and E. Mårtensson

Fig. 3. Illustrations of the mismatch attacks on all versions of Kyber and Saber
from [38]. Starting from the bottom of the figure and moving upwards the illustrations
cover Kyber768/Kyber1024, Kyber512/FireSaber, Saber, and LightSaber, respectively.

Huffman coding4. In Sect. 4.4 we apply a similar strategy where we start with
a couple of roughly even splits of the secret values and then apply steps that
are identical to/close to Huffman coding. This approach is applied manually for
attacks on all versions of Kyber and on FireSaber.

Another perspective on these mismatch attacks is that they are all greedy
attacks. Each split for each attack is the split that divides up the remaining
secret values into two as equally probable halves as possible. This approach is
generalized in Sect. 4.4 for our attacks on Saber and LightSaber, systems where
creating attacks by hand is tedious due to the si values taking a wider range of
values.

3.5 On the Performance of the Mismatch Attacks from [38]

In Table 5 we list the expected number of queries used for the practical mismatch
attacks from [38]. Notice that there are small deviations between our table and
Table 6 of [38]. This is due to us avoiding premature rounding. Notice that for
all deviations, our corrected values are closer to the experimental results of [38].

For Kyber and Saber we can argue that their approach is optimal given their
restrictions.

1. By testing all parameter settings we find for both Kyber and Saber that the
only possible splits divide the secret values into two adjacent intervals.

2. For the initial split it should be optimal to split the secret values as evenly
as possible, that is, split into one interval of positive values, one interval of
negative values, and put the value 0 in whichever of the two intervals.

3. For all versions of both Kyber and Saber, their approach after the initial split
is identical to Huffman coding, which is optimal, given the restrictions.

4 For all the attacks, after the initial split, the remaining splits correspond to Huffman
coding for their respective half of the secret values. The possibility of this depends
on the distribution of the si values. This is not possible for all secret distributions.

Do Not Bound to a Single Position 303

Table 5. Practical mismatch attacks compared to the Huffman bounds.

Scheme s Range Unknowns Queries Per
Position

Total
Queries

Huffman
Bound

Kyber512 [−3, 3] 512 2.5625 1312 1216
Kyber768 [−2, 2] 768 2.3125 1776 1632
Kyber1024 [−2, 2] 1024 2.3125 2368 2176
LightSaber [−5, 5] 512 2.8515 1460 1412
Saber [−4, 4] 768 2.7226 2091 1986
FireSaber [−3, 3] 1024 2.5625 2624 2432

4 Multi-positional Mismatch Attacks

The main idea of this paper is to remove the constraint of recovering only one
coefficient at a time. Let us begin by explaining how our idea works with two
positions at a time and first explain it for Kyber.

4.1 Two-Positional Mismatch Attacks on Kyber

To start with we will show how to obtain s0 and s128 (for the setting where sA

consists of blocks of size 256, which covers all versions of Kyber and Saber) and
then later explain how to generalize this approach to obtain the other values of
sA. Let us focus on Kyber10245. Eve lets m have the value 0 on all positions,
except that m[0] = 1 and/or m[128] = 1. Let PB be 0 on all positions except
that PB [0] = b1 · � q

32� and PB [128] = b2� q
32�, where b1, b2 ∈ {−1, 0, 1}. Also, let

c2 be 0 on all positions, except that c2[0] = h1� q
32� and c2[128] = h2� q

32�. Next,
we calculate m′[0] and m′[128]. We get

m′[0] =Compressq(vA[0] − (strAuA)[0], 2) (9)

=
⌈
2
q

(⌈ q

32
h1

⌋
−

(
sA[0]b1

⌈ q

32

⌋
− sA[128]b2

⌈ q

32

⌋))⌋

mod 2 (10)

and

m′[128] =Compressq(vA[128] − (strAuA)[128], 2) (11)

=
⌈
2
q

(⌈ q

32
h2

⌋
−

(
sA[0]b2

⌈ q

32

⌋
+ sA[128]b1

⌈ q

32

⌋))⌋

mod 2. (12)

For an integer i, with 1 ≤ i ≤ 127 we get

m′[i] =Compressq(−(strAuA)[i], 2) (13)

=
⌈
2
q

(
−

(
sA[i]b1

⌈ q

32

⌋
− sA[128 + i]b2

⌈ q

32

⌋))⌋

mod 2 (14)

5 To attack other versions of Kyber you just alter the parameters of the attack slightly.

304 Q. Guo and E. Mårtensson

and

m′[128 + i] =Compressq(−(strAuA)[128 + i], 2) (15)

=
⌈
2
q

(
−

(
sA[i]b2

⌈ q

32

⌋
+ sA[128 + i]b1

⌈ q

32

⌋))⌋

mod 2. (16)

For both of the latter two positions the expression within the outer rounding
function is bounded in absolute value by 2/3329 · 2 · 2 · 105 = 0.252 . . . < 1/2.
Hence these values are always equal to 0 when rounded to the nearest integer
and thus m′[i] = 0, for i
= 0, 128.

To retrieve the positions si and s128+i, where 1 ≤ i ≤ 127, we can for example
make the following adjustments. Let m be equal to 0 on all positions except that
m[i] = 1 and/or m[128 + i] = 1. Also, let c2 be 0 on all positions, except that
c2[i] = h1� q

32� and c2[128 + i] = h2� q
32�.

Next, we will interpret our two-positional approach. We organize the possible
pairs of values s0, s128 in a two-dimensional grid. Let m′

i denote m′[i]. For each
cell we write the value of m′

0, m′
128 or m′ = m′

0&m′
128, depending on whether

only m[0] = 1, only m[128] = 1 or if m[0] = m[128] = 1. Here of course the value
of the bits depends in general on s0, s128 and the chosen parameters b1, b2, h1, h2.

Planar Cuts. The most obvious split that can be achieved is the one where
we cut with respect to only one of the variables. These planar cuts are achieved
by letting m[0] = 1, m[128] = 0 and h2 = 0. Two examples of such splits are
shown in Fig. 4. To achieve a vertical split we let b2 = 0 and b1 = 1. In Fig. 4a,
specifically we let h1 = 9. To achieve a horizontal split we let b1 = 0, b2 = −1. In
Fig. 4b specifically we let h1 = 24. Horizontal and vertical splits are already the
ones achieved in the mismatch attacks from [38], explained in detail in Sect. 3. In
and of themselves, these two types of splits do not add anything to the mismatch
attacks compared to previous work, but they are useful in combination with the
other methods from this section.

Rectangular Cuts. We can also simultaneously cut horizontally and vertically.
This allows us to cut out any rectangle of values, where at least one corner of the
rectangle is at one of the corners of the grid. To do this we let m[0] = m[128] = 1.
We let b1 = 1 and b2 = 0. In Fig. 5 we let h1 = 24 and h2 = 9. The figure shows
m′

0, m′
128 and m′ = m′

0&m′
128 respectively. In other words, the vertical cut, the

horizontal cut, and the resulting rectangular cut respectively.

Triangular Cuts. Our next type of split is a triangular cut, originating from
any of the 4 corners of the grid. Here we let m[0] = 1, m[128] = 1 and h2 = 0.
See Fig. 6 for two examples of this type of cut. In Fig. 6a we let h1 = 10, b1 = 1
and b2 = −1. In Fig. 6b we let b1 = b2 = 1 and h1 = 24.

Do Not Bound to a Single Position 305

Fig. 4. Two examples of planar splits of the secret values.

Fig. 5. The cuts with respect to m′
0, m′

128 and the rectangular cut as their intersection.

Intersections of Two Triangular Cuts. Finally, by letting m[0] = m[128] =
1 and b1, b2
= 0, we create the intersection of two perpendicular triangular cuts.
Notice that we are not able to create the intersection of all possible pairs of
triangular cuts. The sign change and flip of b1 and b2 in (9) compared to (11)
means that the two triangular cuts cannot originate from the same corner or
from opposite corners. See Fig. 7 for an example of this type of cut. Here we let
b1 = b2 = 1, h1 = 24 and h2 = 10.

306 Q. Guo and E. Mårtensson

Fig. 6. Two examples of triangular cuts.

Fig. 7. The cuts with respect to m′
0, m′

128 and their intersection.

4.2 Two-Positional Mismatch Attacks on Saber

Two-positional mismatch attacks on Saber work similarly to the corresponding
attacks on Kyber. We will briefly cover how to modify the parameters to make
the attacks work to retrieve the values s0 and s128. The modifications used to
recover the rest of the positions are analogous to the modifications covered in
Sect. 4.1. Let PB be equal to 0 on all positions, except that PB [0] = k1 and
PB [128] = k2. Let c be equal to 0 on all positions, except that c[0] = h1 and
c[128] = h2. For the index 0, we get

m′[0] = ((k1(s0 mod p)−k2(s128 mod p)+H−2εp−εT h1) mod p) � (εp−1).
(17)

For the index 128 we get

m′[128] = ((k1(s128 mod p) + k2(s0 mod p) + H − 2εp−εT h1) mod p) � (εp − 1).
(18)

Do Not Bound to a Single Position 307

Now, for an integer i, where 1 ≤ i ≤ 127 we get

m′[i] = ((k1(si mod p) − k2(s128+i mod p) + H) mod p) � (εp − 1), (19)

and

m′[128 + i] = ((k2(si mod p) + k1(s128+i mod p) + H) mod p) � (εp − 1).
(20)

For small values of k1 and k2 the expressions in (19) and (20) are equal to
0 for all secrets sA. Combining k1 and k2 with suitable values of h1, h2 we split
the values in (17) and (18) correctly as a function of the values of s0 and s128.

Just like in the one-dimensional setting, all the splits that we have introduced
for Kyber can also be done for Saber. Thus, when designing our mismatch attacks
in Sect. 4.4 we only need to consider the distribution of sA.

4.3 Hyperrectangular Cuts

It is possible to generalize the idea of [38] in other ways. Instead of making
planar cuts in one dimension at a time, we can make planar cuts with respect to
an arbitrary number of positions at a time. Let us explain the idea for Kyber.
Let I ⊂ {0, 1, . . . , n−1} be the set of indices that we want to make planar splits
with respect to. Let m[i] = 1, for i ∈ I, and m[i] = 0, for i
∈ I. Let PB be
equal to 0 on all positions except that PB [0] = � q

32�. Let c2[i] = 0, for i
∈ I and
c2[i] = hi, for i ∈ I. Here hi are the parameters deciding the precise planar cut
with respect to each dimension. For i ∈ I we now get

m′[i] =Compressq(vA[i] − (strAuA)[i], 2) (21)

=
⌈
2
q

(⌈ q

32
hi

⌋
− sA[i]

⌈ q

32

⌋)⌋

mod 2. (22)

For other indices we get

m′[i] =Compressq(vA[i] − (strAuA)[i], 2) (23)

=
⌈
2
q

(
−sA[i]

⌈ q

32

⌋)⌋

mod 2, (24)

which simplifies to 0 as explained above. The idea works similarly for the Saber
schemes, except the values of m′[i] are evaluated according to (7) for i ∈ I (with
the index 0 replaced by i) and (8) for i
∈ I.

It is of course possible to create a lot of other cuts in higher dimensions. We
briefly discuss the potential of these cuts in Sect. 5.1.

308 Q. Guo and E. Mårtensson

4.4 The Optimization Problem

Now we have introduced a set of cuts in the multi-positional setting and are ready
to apply them to some schemes. In two dimensions, the optimization problem
we now want to solve is, given our available planar, rectangular, triangular, and
intersecting triangular splits, how do we come up with a splitting strategy, given
the distribution of sA, that minimizes the expected number of splits?

First, we will cover our attacks on all versions of Kyber and on FireSaber
in detail. Then we will show how we devised a greedy algorithm to develop an
attack on Saber and LightSaber.

Kyber1024 and Kyber768. In Kyber768 and Kyber1024 the si values are
centered binomially distributed with η = 2. The probabilities of the possible
value pairs (s0, s128) are according to Fig. 8.

The figure also shows the first four queries of the mismatch attack. For exam-
ple, on the first query, represented by the blue lines, we learn whether the secret
pair is among the nine positions in the lower left part or whether it is among
the other sixteen positions. Depending on which is the case, the second query
we make corresponds to either of the red splits and so on. The figure shows the
first four queries.

Figure 9 then shows the next three queries. The positions that are filled in
black are the positions that are found in less than or equal to four queries. Within
seven queries the secret pair is guaranteed to be found. Notice for both figures
that we do not always specify exactly which split we use. Given that the values of
the secret pair are limited to a certain area, we only specify how the split works
within that area. Given the lack of restrictions on the split’s behavior outside of
this area, most splits are not uniquely determined.

The overall strategy for choosing which splits to make is the following. Start
by making a few splits that roughly divide up the possible secret pairs into
equally probable blocks. Then make queries that perform identically/close to
Huffman coding. This roughly generalizes the strategy of the mismatch attack
on Kyber768/Kyber1024 in one dimension, as discussed in Sect. 3.4.

The number of queries needed to find all the different secret value pairs is
found in Fig. 10. Using these figures together, we calculate the expected number
of queries to recover two positions as 1059/256 ≈ 4.1367. This corresponds to
roughly 2.0684 queries per position. We compare this query complexity against
other algorithms and some boundaries in Sect. 4.5.

Do Not Bound to a Single Position 309

Fig. 8. The first part of the two-positional mismatch attack against
Kyber768/Kyber1024. All the probabilities are multiplied by 256 for readability.
The blue, red, green and yellow splits correspond to the first, second, third and fourth
queries respectively. (Color figure online)

Kyber512 and FireSaber. In Kyber512 and FireSaber the values si are cen-
tered binomially distributed with η = 3. Thus, the probabilities of the possible
value pairs (s0, s128) are according to Fig. 11. This figure also illustrates the first
four queries of the mismatch attack. The remaining six queries are covered in
Fig. 12. Just like for Kyber1024/Kyber768, the strategy is to start by making a
couple of roughly even splits followed by using (close to) Huffman coding in lat-
ter queries. Also for these schemes, the strategy roughly mimics and generalizes
the strategy of the mismatch attack on Kyber512/FireSaber in one dimension,
as discussed in Sect. 3.4.

The number of queries needed to find all the different secret value pairs is
found in Fig. 13. Using these figures together, we calculate the expected number
of queries to recover two positions as 19285/4096 ≈ 4.70825. This corresponds to
roughly 2.3541 queries per position. We compare this performance against other
algorithms and some boundaries in Sect. 4.5.

The Automatic Greedy Approach. For Saber and LightSaber the num-
ber of possible pairs of secret values is too large to make manual optimization
practical. To get a decent attack against these two schemes we make an auto-
matic search for a solution instead. In two dimensions we apply a greedy attack,
where the algorithm in each step chooses the query that splits the remaining
positions as evenly as possible. It turns out that the algorithm performs better
when only using planar and rectangular splits, compared to when adding tri-
angular/triangular intersection splits. Using the latter types of splits makes the
algorithm choose a worse local optimum.

310 Q. Guo and E. Mårtensson

Fig. 9. The second part of the two-positional mismatch attack against
Kyber768/Kyber1024. All the probabilities are multiplied by 256 for readability.
The brown, orange and pink splits correspond to the fifth, sixth and seventh queries
respectively. The positions that are filled in black correspond to the value pairs that
are found after less than or equal to four queries. The curved path between the lower
right and the upper right areas signals that these positions correspond to the same
block after four queries. (Color figure online)

Fig. 10. The number of queries needed to find the secret pair (s0, s128) for the different
values of this pair for the two-positional mismatch attack on Kyber768/Kyber1024.

Do Not Bound to a Single Position 311

Fig. 11. The first part of the two-positional mismatch attack against
Kyber512/FireSaber. All the probabilities are multiplied by 4096 for readability.
The blue, red, green and yellow splits correspond to the first, second, third and fourth
queries respectively. The green diagonal split decides whether the secret is (0, 0) or
any of the values in the upper left block. The yellow diagonal split decides whether
the secret is (0, −1) or (−1, 0). (Color figure online)

We generalize this attack to three dimensions, where we allow for any types of
cuboid splits (the hyperrectangular splits in three dimensions). This corresponds
to letting |I| ≤ 3 in Sect. 4.3. The performance of the attack in two and three
dimensions is shown in Table 6.

Table 6. The performance of the greedy mismatch attacks in two and three dimensions
on all versions of Kyber and Saber, measured in expected number of queries per secret
position.

Kyber512 Kyber768 Kyber1024 LightSaber Saber FireSaber

Two Dimensions 2.4561 2.0820 2.0820 2.7643 2.6256 2.4561
Three Dimensions 2.3771 2.0837 2.0837 2.7540 2.5839 2.3771

All the mismatch attacks in [38] on Kyber and Saber are hyperrectangu-
lar, greedy attacks in one dimension, making this type of greedy approach a
pretty natural generalization. Perhaps not surprisingly, the greedy hyperrectan-
gular attack mostly performs better in three dimensions than in two, and always

312 Q. Guo and E. Mårtensson

Fig. 12. The two-positional mismatch attack against Kyber512/FireSaber. The queries
after the first four queries. The blue, red, green, yellow, brown and orange splits corre-
spond to the fifth, sixth, seventh, eighth, ninth and tenth queries respectively. All the
probabilities are multiplied by 4096 for readability. The green split inside the box to
the lower right decides whether the secret pair is (2, −2) or any of the other remaining
values of the area. The brown split that crosses the curved lines decides whether the
secret is (−1, −3) or (1, −3). (Color figure online)

better in two than in one. In three dimensions the attack performs slightly better
than/slightly worse than the Huffman bound in one dimension, see Table 7 and
Sect. 4.5 for a comparison of this approach to other algorithms and limits.

Notice that this is essentially the most obvious type of automatic attack.
There is room for all sorts of improvements here, which we discuss in Sect. 5.1.

Do Not Bound to a Single Position 313

Fig. 13. The number of queries needed to find the secret pair (s0, s128) for the different
values of this pair for the two-positional mismatch attack on Kyber512/FireSaber.

4.5 Comparisons

In Table 7 we compare our mismatch attacks against the previous state-of-the-
art, previous lower bounds and new lower bounds. Our Result 1 refers to manual
optimization in two dimensions. Our Result 2 refers to the best greedy attack
from Sect. 4.4 for the different schemes6. The values in bold are the new state-
of-the-art values. When performing two-positional attacks, the lower limit is
Huffman coding in two dimensions. When performing three-positional attacks,
the lower limit is Huffman coding in three dimensions. The performance of Huff-
man coding in one, two and three dimensions respectively is called Huffman
Bound 1, 2 and 3 respectively. Finally, the Shannon Bound refers to the entropy
of the secret, which is the theoretically best performance that you can achieve
with a pure mismatch attack.

6 Notice that for the greedy attacks in three dimensions the performance is marginally
worse than the number of positions times the performance from Table 6. The secret
is retrieved in blocks of 256 positions at a time. After finding 3 · 84 = 252 positions
using the three-positional attack, the remaining 4 positions of the block have to be
retrieved using two-positional steps, which are slightly worse for most schemes.

314 Q. Guo and E. Mårtensson

Table 7. Our results in expected number of queries to fully recover the secret compared
to various bounds and previous practical attacks.

Kyber512 Kyber768 Kyber1024 LightSaber Saber FireSaber

Previous Best [38] 1312 1776 2368 1460 2091 2624
Huffman Bound 1 1216 1632 2176 1412 1986 2432
Our Result 1 1205.3 1588.5 2118 – – 2410.6
Our Result 2 1217.7 1599 2132 1410.2 1984.9 2435.4
Huffman Bound 2 1202.1 1575 2100 1395.9 1970.0 2404.3
Huffman Bound 3 1199.9 1569.8 2093.0 1391.7 1962.3 2399.7
Shannon Bound 1195 1560 2079 1386 1954 2389

Unlike the one-dimensional situation analyzed in Sect. 3.5, we do not claim
that our strategy is optimal given our restrictions. Both developing an optimal
strategy, and showing that a strategy is optimal, are much harder in our setting.

However, we can say that our results are fairly close to optimal. For all the
schemes our attacks are much closer in performance to the Shannon bound than
to [38]. We have thus made most of the possible improvements that can be made.

For all versions of Kyber and for FireSaber, we are very close to the Huffman
bound in two dimensions, showing that there is very little room for improvement.
Our greedy attacks against Saber and LightSaber are not optimal in our given
context, but can still only be improved a little bit, as they both perform fairly
close to the Huffman bound in three dimensions.

It should also be noted that due to not all imaginable splits being accessible
in practice, even the optimal strategy performs worse than the Huffman bounds
for the respective dimension, making our results even closer to optimal.

In Sect. 5.1 we discuss how improving our attacks probably makes it possible
to reach the Shannon bound. In Sect. 5.2 we discuss how we can beat the Shannon
bound by using post-processing.

5 Discussions

5.1 Room for Further Improvements

For the two-positional splits of Kyber, by letting b1 = 2, b2 = 1, vice versa or
changing signs of one of the variables, we can create yet other cuts7. Similar
extensions apply for Saber. These extensions create even more possible splits in
two dimensions.

The hyperrectangular cuts from Sect. 4.3 only generalize the planar and rect-
angular splits. Of course, a lot of other splits are also possible in higher dimen-
sions. Even limited to only hyperrectangular splits in higher dimensions our

7 Notice that we cannot increase the values of b1 and b2 too much, because then the
other indices of (13) are not guaranteed to be equal to 0.

Do Not Bound to a Single Position 315

fairly simple greedy attack can of course be improved with smarter approaches
and/or by increasing the number of dimensions.

Thus, we conjecture that getting (arbitrarily close) to the Shannon bound
is possible, because of the numerous potential improvements. Meanwhile, we
emphasize that our current results are already close to the bound.

5.2 Post-processing with Lattice Reduction

Previous literature on mismatch attacks focuses on the number of queries needed
to fully recover the secret s. However, the adversary also has access to LWE
samples. Not taking advantage of this information in an attack is clearly sub-
optimal. While [38] states “Secondly, what we talk about is recovering the full
key, but obviously the recovery of the partial key also leaks information about
the key, significantly decreasing the bit-security.”, they did not study this hybrid
approach in detail8.

In principle, the optimal hybrid mismatch attack with post-processing
chooses, given a limited number of queries, among all possible mismatch strate-
gies, the strategy that minimizes the complexity of the post-processing. A paper
that studied solving the LWE and NTRU problem with hints about the secret
more generally is [14]. In our setting it is most likely optimal to find the exact
value of as many positions as possible and, if the final few queries are not enough
to completely know the final positions being queried, use the partial information
we have on these positions.

We plot the relationship between the allowed number of queries using the best
mismatch attack from Table 7 and the post-processing complexity in Fig. 14, for
all versions of Kyber and Saber. We use the primal_bdd(·) function in the new
Lattice-Estimator9 [5] to estimate the cost of solving the corresponding LWE
instance. Without post-processing, the right-most vertical line shows the query
complexity of the current best two-positional attack and the second (dotted)
vertical line to the right shows the Shannon lower bound. We can see that the
two lines are fairly close, so our new attack is near-optimal in the information-
theoretical sense. We also see that the query complexity can be highly reduced
by using post-processing. For instance, the query complexity is reduced by a
factor 2 for Kyber512, when the allowed post-processing cost is 280.

8 Notice however that recently and independently of us, recovering the secret key using
partial information from a mismatch attack was studied in [34]. Post-processing in
a very similar setting was also concurrently studied in [40].

9 https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator

316 Q. Guo and E. Mårtensson

Fig. 14. The post-processing complexity in log2(·) vs. the number of queries. The two
horizontal lines represent the post-processing complexity of 280 (upper) and 260 (lower),
respectively. The right-most vertical line shows the current best multi-positional attack
without post-processing and the second (dotted) vertical line shows the Shannon bound
for the attacks without post-processing.

5.3 Relation to Side-Channel and Fault-Injection Attacks

Similar to the one-positional mismatch attacks proposed in [38], our multi-
positional version can improve the query (or trace) complexity of PC-oracle-
based chosen-ciphertext side-channel attacks on CCA-secure implementations
of Kyber and Saber. The method of generating the chosen ciphertexts is the
same as the approach of selecting ciphertexts described in Sect. 4. The improve-
ment factor over the side-channel attack in [38] is close to that of our new
mismatch attack (see Table 1) over its one-positional counterpart in [38]. Two
recent papers [39,45] proposed improved side-channel attacks recovering multi-
ple bits of information from the FO transform of one trace. We leave the problem
of improving these two new attacks with our new idea to future research since
side-channel attacks are not the focal point of the paper. The new attacks may
also be applied to improve the fault-injection attack proposed in [47].

Do Not Bound to a Single Position 317

6 Conclusions and Future Work

In this paper, we have proposed novel multi-positional key mismatch attacks on
Kyber and Saber, significantly improving the state-of-the-art mismatch attacks
of [38]. Our new attacks even beat the lower bounds proposed in [38], and they are
near-optimal since the query complexities are close to the Shannon bound. The
new attacks can be applied to improve the efficiency of certain chosen-ciphertext
side-channel attacks against Kyber and Saber and may also have significance in
fault-injection attacks.

The new idea of targeting multiple secret coefficients simultaneously can be
generalized to other lattice-based KEMs. This translation is probably straightfor-
ward for other LWE/LWR-based KEMs such as FrodoKEM [35], but might also
be applicable to KEMs based on NTRU. e.g., NTRU [12] and NTRU prime [9].

We have also estimated how much the mismatch attacks can be improved
by using post-processing, showing that we can clearly beat the Shannon bounds
with this approach when having access to moderate computational resources.

As we conjecture in our paper, by improving the greedy algorithm and
increasing the dimensions, it is likely possible to come arbitrarily close to the
Shannon bound for all versions of Kyber and Saber. One interesting topic is to
apply more advanced automatic tools, such as mixed integer linear programming
(MILP) or constraint programming, to search for better mismatch attacks. On
the other hand, our results are near-optimal, so the room for improvement is
small in practice.

Acknowledgment. We would like to thank the anonymous reviewers of this paper.
We would also like to thank Jonathan Sönnerup, whose excessive solution of an infor-
mation theory course’s project inspired some of the techniques of this paper. QG was
funded by the Swedish Research Council (grant numbers 2019-04166 and 2021-04602),
the Swedish Civil Contingencies Agency (grant number 2020-11632), the Swedish
Foundation for Strategic Research (Grant No. RIT17-0005) and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. EM was funded by the project “Kvantesikker Kryptografi”
from the National Security Authority of Norway.

References

1. NIST Post-Quantum Cryptography Standardization. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization. Accessed 24 Sept 2018

2. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryp-
tography Standardization Process. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.
Accessed 18 Feb 2021

3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC 1997, pp. 284–293. Association for Computing
Machinery, New York (1997). https://doi.org/10.1145/258533.258604

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1145/258533.258604

318 Q. Guo and E. Mårtensson

4. Albrecht, M.R., et al.: Classic McEliece. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

6. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3_26

7. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_14

8. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_12

9. Bernstein, D.J., et al.: NTRU prime. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

10. Bindel, N., Schanck, J.M.: Decryption failure is more likely after success. In: Ding,
J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 206–225. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_12

11. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

12. Chen, C., et al.: NTRU. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions

13. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience (2006)

14. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1_12

15. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_19

16. D’Anvers, J.P., et al.: SABER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

17. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3_1

18. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks
on error correcting codes in post-quantum schemes. Cryptology ePrint Archive,
Report 2019/292 (2019). https://eprint.iacr.org/2019/292

19. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-319-89339-6_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1007/BFb0055716
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-17259-6_19
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-45727-3_1
https://eprint.iacr.org/2019/292

Do Not Bound to a Single Position 319

vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3_27

20. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A
reaction attack on the QC-LDPC McEliece cryptosystem. In: Lange, T., Takagi,
T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 51–68. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59879-6_4

21. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.org/2016/
085

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

23. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

24. Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse
situation. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol.
12579, pp. 549–569. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65411-5_27

25. Guo, Q., Johansson, T.: A new decryption failure attack against HQC. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 353–382. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_12

26. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1_13

27. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6_29

28. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5_4

29. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0_2

30. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

31. Hoffstein, J., Silverman, J.H.: Protecting NTRU against chosen ciphertext and
reaction attacks. NTRU Cryptosystems Technical Report 16 (2000)

32. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2
PQC. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 208–227. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4_11

33. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The
deep space network progress report 42-44, Jet Propulsion Laboratory, California

https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-59879-6_4
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-030-65411-5_27
https://doi.org/10.1007/978-3-030-65411-5_27
https://doi.org/10.1007/978-3-030-64837-4_12
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-57808-4_11

320 Q. Guo and E. Mårtensson

Institute of Technology (1978). https://ipnpr.jpl.nasa.gov/progress_report2/42-
44/44N.PDF

34. Mi, R., Jiang, H., Zhang, Z.: Lattice reduction meets key-mismatch: new misuse
attack on lattice-based NIST candidate KEMs. Cryptology ePrint Archive, Paper
2022/1064 (2022). https://eprint.iacr.org/2022/1064

35. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

36. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope with
fewer queries. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 505–
524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_26

37. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29962-0_24

38. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic approach
and analysis of key mismatch attacks on lattice-based NIST candidate KEMs. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 92–121.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_4

39. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on LWE-based KEMs-parallel PC oracle
attacks on Kyber KEM and beyond. Cryptology ePrint Archive (2022)

40. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on LWE-based KEMs - parallel PC oracle
attacks on Kyber KEM and beyond. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2023, 418–446 (2023)

41. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR TCHES 2020(3), 307–335
(2020). https://tches.iacr.org/index.php/TCHES/article/view/8592

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005)

43. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

44. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994)

45. Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-
valued plaintext-checking side-channel attacks on post-quantum KEMs. Cryptol-
ogy ePrint Archive (2022)

46. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse
of re-encryption: a generic power/EM analysis on post-quantum KEMs. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 296–322 (2022). https://doi.org/
10.46586/tches.v2022.i1.296-322

47. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-injection
attacks against NIST’s post-quantum cryptography round 3 KEM candidates. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 33–61.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_2

https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2022/1064
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-55304-3_26
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-92068-5_4
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.1007/978-3-030-92075-3_2

NTWE: A Natural Combination
of NTRU and LWE

Joel Gärtner(B)

KTH Royal Institute of Technology, Stockholm, Sweden
jgartner@kth.se

Abstract. Lattice-based cryptosystems are some of the primary post-
quantum secure alternatives to the asymmetric cryptography that is used
today. These lattice-based cryptosystems typically rely on the hardness
of some version of either the NTRU or the LWE problem. In this paper,
we present the NTWE problem, a natural combination of the NTRU and
LWE problems, and construct a new lattice-based cryptosystem based
on the hardness of the NTWE problem.

As with the NTRU and LWE problems, the NTWE problem naturally
corresponds to a problem in a q-ary lattice. This allows the hardness of
the NTWE problem to be estimated in the same way as it is estimated for
the LWE and NTRU problems. We parametrize our cryptosystem from
such a hardness estimate and the resulting scheme has performance that
is competitive with that of typical lattice-based schemes.

In some sense, our NTWE-based cryptosystem can be seen as a less
structured and more compact version of a cryptosystem based on the
module-NTRU problem. Thus, parameters for our cryptosystem can be
selected with the flexibility of a module-LWE-based scheme, while other
properties of our system are more similar to those in an NTRU-based
system.

Keywords: Lattice-based cryptography · Post-quantum
cryptography · Public Key Encryption · NTRU · Learning With Errors

1 Introduction

The NIST standardization process for post-quantum cryptography has already
resulted in four algorithms being selected for standardization. Three of these
selected algorithms are lattice-based and the security of these schemes rely on
the hardness of versions of either the LWE or the NTRU problem. The origins
of the NTRU and LWE problems are quite different, but the concrete hardness
of these problems is currently estimated in very similar ways.

NTRU was introduced more than 25 years ago as a ring-based public key
cryptosystem [14]. The security of this system is based on the hardness of the
NTRU problem which, with somewhat different parameters than those first pro-
posed, has remained hard to solve in practice. While not originally stated as
a lattice-based cryptosystem, an NTRU instance can easily be interpreted as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 321–353, 2023.
https://doi.org/10.1007/978-3-031-40003-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_12

322 J. Gärtner

an instance a special type of structured lattice problem and the concrete secu-
rity of current NTRU-based cryptosystems is typically estimated based on how
efficiently this structured lattice problem can be solved.

The LWE problem is even more closely related to lattice problems. It was
introduced in 2005 by Regev together with a quantum reduction from a worst-
case lattice problem [22]. As such, the asymptotic security of LWE-based cryp-
tosystems can be guaranteed as long as there exists instances of this lattice
problem that are hard to solve with a quantum computer. This reduction does,
however, say very little about the concrete security of typically considered para-
metrizations of LWE-based cryptosystems [5,13]. Instead, LWE-based cryptosys-
tems are usually parametrized in the same way as NTRU-based systems, based
on a concrete hardness estimate for the natural lattice problem that corresponds
to an LWE instance.

There are several different structured versions of the LWE problem, with the
most prominent being the ring- and module-LWE problems. Especially the ring-
LWE problem is very similar to the NTRU problem, as it essentially corresponds
to an inhomogeneous version of the NTRU problem. The module-LWE problem
can be seen as a somewhat less structured version of the ring-LWE problem and
is thus also quite similar to the NTRU problem.

While there are results that relate the hardness of versions of the LWE prob-
lem to the hardness of versions of the NTRU problem [20,26,27], these results
do not directly relate the security of concrete parametrizations of currently pro-
posed cryptosystems. As such, given similar parametrization of an NTRU-based
and an LWE-based cryptosystem, we can not directly determine if one of these
schemes is more secure than the other. Although the security of both types of
systems are based on similar assumptions, there is a possibility that an attack
lowers the concrete security of schemes based on one of the assumptions, without
directly impacting schemes based on the other assumption.

Thus, lattice-based cryptography is primarily based on the hardness of two
similar, yet different problems. The worst-case to average-case reduction which
were the reason for the introduction of the LWE problem does not support the
concrete security of typical LWE-based cryptosystems. Furthermore, the under-
standing of lattice algorithms have improved significantly since the introduction
of the NTRU system. Therefore, it is interesting to investigate what alternative
problems we can base the security of similar cryptosystems on, and if this would
allow any improvements compared to the schemes that are considered today.

1.1 Our Contribution

In this paper, we introduce and investigate the NTWE problem and create an
NTWE-based cryptosystem. The NTWE problem can be seen as a natural com-
bination of the NTRU and module-LWE problems. It is easily seen that as long
as either the NTRU problem or the module-LWE problem is hard, then so is the
NTWE problem.

We can thus parametrize our NTWE-based cryptosystem so that it is secure
as long as either the corresponding NTRU- or LWE-based cryptosystem is secure.

NTWE: A Natural Combination of NTRU and LWE 323

As the NTRU and LWE problem are quite similar, one would typically not con-
sider using a system that relies on an module-LWE-based and an NTRU-based
cryptosystem in parallel. However, this type of parametrization of our NTWE-
based cryptosystem is both more efficient and compact than simply combining
an NTRU-based and a module-LWE-based cryptosystem and is therefore more
interesting.

While we can guarantee that the NTWE problem is no easier than versions
of the NTRU and the LWE problems, it actually seems to be significantly harder
than the problems that we provably can relate it to. Similarly to the module-
LWE problem, we consider a module version of the NTWE problem. A simple
reduction shows that the rank k NTWE problem is no easier than the rank k
module-LWE problem. However, we believe that the rank k NTWE problem is
essentially as hard as a rank k + 1 module-LWE problem.

Similarly to the LWE and NTRU problems, the NTWE problem naturally
corresponds to a lattice problem in a q-ary lattice. The lattice problem for the
rank k NTWE problem is very similar to the lattice problem for the rank k + 1
module-LWE problem. This motivates our concrete hardness estimate for the
rank k NTWE problem. Furthermore, we are able to show that a more structured
version of the NTWE problem is at least as hard as the rank k + 1 module-NTRU
problem, providing further motivation for our hardness estimate.

New hardness assumptions must be thoroughly analyzed before significant
confidence can be placed in the security of cryptosystems that rely on them.
However, any assumptions similar to the ones used today can be more easily
trusted. As the NTWE problem naturally corresponds to a lattice problem, it
directly benefits from analysis of similar lattice problems. Furthermore, due to
the similarities between the rank k NTWE problem and the NTRU and LWE
problems in rank k + 1 modules, we believe that any improved algorithms for
the NTWE problem would also result in increased understanding of these other
problems.

We furthermore provide concrete parametrizations of our NTWE-based
cryptosystem. This includes parametrizations similar to the different paramet-
rizations of CRYSTALS-Kyber [25], henceforth referred to only as Kyber. These
parametrizations have essentially the same sized public-key and ciphertext as in
the parametrizations of Kyber that target the same security level.

A large reason for the relatively small ciphertexts in Kyber is a method
for ciphertext compression. This consists of discarding many of the bits of the
ciphertext, allowing significantly smaller ciphertexts at the cost of somewhat
larger decryption failure probability. In our scheme, we do not perform any such
ciphertext compression but we still have a ciphertext size that is comparable
to that of Kyber. Thus, compared to an LWE-based scheme without ciphertext
compression, our scheme actually has significantly smaller ciphertexts.

There are multiple reasons to want to avoid ciphertext compression, one of
which may be patent reasons. Although the method for ciphertext compres-
sion that is used in Kyber has not been patented, other versions of ciphertext
compression seem to be protected by a patent. However, to which extent this
patent actually covers the different methods for ciphertext compression that is

324 J. Gärtner

performed in LWE-based schemes has not been entirely clear. This may be a
reason to prefer our scheme where no such ciphertext compression is performed.

Another benefit of not having to use ciphertext compression is that it may
allow more compact schemes that include a zero-knowledge proof that the cipher-
text is correctly formed. Such a zero-knowledge proof seems to be incompatible
with ciphertext compression, and such a scheme would therefore have to use
uncompressed ciphertexts. Therefore, for these types of applications, the cipher-
texts from our cryptosystem would be significantly smaller than the ciphertexts
in a comparable LWE-based system. This advantage was one of the primary
advantages of NTRU-based systems compared to LWE-based systems mentioned
by Lyubashevsky and Seiler in a paper [18] developing a more efficient version
of NTRU.

An advantage of our scheme compared to NTRU is its increased flexibility in
allowing module versions of the problem. While module versions of the NTRU
problem have been considered [8], this module-NTRU problem does not seem to
be suitable for public key encryption. The size of the public key in such a module-
NTRU-based encryption scheme would grow with the square of the module rank.
This would result in a significantly larger public key than in a module-LWE based
scheme, where the size of the public key depends linearly on the module rank.
We can thus consider our NTWE-based cryptosystem as a more compact version
of a cryptosystem based on the module-NTRU problem. Furthermore, whereas
the NTRU problem is significantly easier in an overstretched parameter regime,
it does not seem like there is such an overstretched parameter regime for the
NTWE problem.

Another potential benefit of our NTWE-based cryptosystem compared to a
system based on module-LWE is its resistance against dual lattice attacks. The
two main attacks against LWE-based schemes are the primal and dual lattice
attacks. Recent results have indicated that the dual attack may be more effi-
cient against concrete cryptosystem parameters [12,19]. Although these results
have been questioned [9], increased resistance against these dual attacks is still
preferable.

While it is possible to perform a dual attack against the NTWE problem, a
primal lattice attack against the NTWE problem seems to be significantly more
efficient for the parameters that we consider in this paper. However, the dual
attack against NTWE does seem to be more efficient than the primal attack
against some parametrizations of this problem. Thus, the dual attack should
still be considered when investigating the concrete hardness of specific NTWE
instances.

For efficiency, we parametrize our cryptosystem using a ring R and modulos q
that enable using the Number Theoretic Transform (NTT) to efficiently multiply
ring elements. Similar to an NTRU-based system, we require computing inverses
of a ring element f in both Rq and Rp, for an integer q and a small integer p,
which we fix to be 2. While the inverse in Rq is efficiently computable by using
the NTT, the inverse in R2 is less efficient to compute. However, this primarily
impacts the performance of key generation, and if the same public-key is used
multiple times, this cost may be considered insignificant.

NTWE: A Natural Combination of NTRU and LWE 325

To improve the efficiency of key generation, we may select f from a distri-
bution such that the inverse in R2 is trivial, but such that the elements of f are
a factor 2 larger. This trick results in schemes that are more efficient than the
corresponding module-LWE-based schemes but with a larger decryption failure
probability. If not using this trick to ensure that the inverse of f in R2 is trivial,
the resulting scheme actually has a lower decryption failure probability than a
corresponding module-LWE-based scheme. Thus, compared to a corresponding
module-LWE-based system, our NTWE-based cryptosystem is either more effi-
cient with a larger decryption failure probability or less efficient with a smaller
decryption failure probability.

1.2 Paper Outline

We begin the paper with some background in Sect. 2. Next, in Sect. 3, we intro-
duce the NTWE problem and describe its relation to the LWE and NTRU
problems.

In Sect. 4, we consider the concrete hardness of the natural lattice problems
that correspond to the NTWE problem. For reference, we also briefly explain
how lattice algorithms are used to solve the NTRU and LWE problems.

Next, in Sect. 5 we present our NTWE-based cryptosystem and compare it
to NTRU-based and module-LWE-based cryptosystems and in Sect. 6 present
some concrete parametrizations of this cryptosystem.

Finally, in Sect. 7, we have some final remarks, including a note regarding how
investigating the concrete hardness of the NTWE problem could be interesting
also due to implications for the LWE and NTRU problems.

2 Background

2.1 Notation

We denote real matrices by bold upper case letters A,B and real vectors by
bold lower case letters s,e. Vectors and matrices over a number field are denoted
similarly, but with the letters overlined A, s.

We denote probability distributions by calligraphic letters U or by Greek
letters ψ. In particular, we denote the uniform probability distribution over a
set S by U(S).

For an arbitrary distribution ψ over a ring R, we let ψ∗ be the same dis-
tribution restricted to the invertible elements of R. Rejection sampling from ψ,
rejecting all non-invertible elements, allows sampling from this distribution. For
the rings relevant in this work, only a small portion of the elements are not
invertible.

2.2 Lattices

A lattice L is a discrete subgroup of Rd. A lattice can always be described by a
basis B ∈ R

d×k for k ≤ d with L = L(B) = {Bx : x ∈ Z
k}. The determinant

of a lattice L is given by
√

det(BTB) for an arbitrary basis B of L.

326 J. Gärtner

We denote the length of the shortest non-zero vector in a lattice L by λ1(L).
For a random d dimensional lattice, we expect the so called Gaussian Heuristic
to hold. This heuristic predicts that the number of lattice points in a ball of
volume V is V/det(L), which corresponds to estimating that

λ1 ≈ gh(L) =

√
d

2πe
det(L)1/d. (1)

The Gaussian Heuristic is often assumed to approximately hold even in some
lattices that are not sampled uniformly at random, such as in q-ary lattices.

2.3 Algebraic Number Theory

A number field K is a finite-degree field extension of the rational numbers Q. This
corresponds to K = Q(ζ), the rational numbers adjoined with some element ζ
that satisfies f(ζ) = 0 for some irreducible polynomial f ∈ Q[x]. This polynomial
is called the minimal polynomial of ζ and the degree of the number field K is the
degree of this polynomial. In this work, n denotes the degree of number fields
where applicable.

The ring of integers OK for a number field K is the set of algebraic integers in
K, meaning that it is the elements in K that are a root of some monic polynomial
in Z[x]. For the concrete number fields we are considering in this paper, the ring
of integers for the number field K = Q(ζ) is always equal to Z(ζ), but this
is not the case in general. In particular, we only consider rings isomorphic to
Z[X]/(Xn + 1) for n = 2� where � is some integer. These are the rings of integers
of power of two cyclotomic fields.

As we only consider rings of integers of power of two cyclotomic fields, a
coefficient representation of elements in OK is suitable. As such, we represent an
element v ∈ OK by the vector v ∈ Z

n containing the coefficients of its natural
representative in Z[X]/(Xn + 1). We let the norm ‖v‖ be given by the �2 norm
of the coefficient vector, which we extend to modules Ok

K in the natural way. For
an element v in Rk, we also consider a corresponding matrix in Z

kn×n, given by
the coefficient vectors of vXi for every integer i with 0 ≤ i < n.

2.4 LWE and NTRU

The version of the Learning With Errors (LWE) problem considered in this work
is defined in terms of a module-LWE distribution, as defined below.

Definition 1 (Module-LWE distribution). Let q be a prime and R the ring
of integers for a number field K. For s ∈ Rk

q and ψ some distribution on Rq,
a sample from the module-LWE distribution As,ψ is given by (a, b = a · s + e),
where a ← U(Rk

q) and e ← ψ.

In the original definition of module- and ring-LWE distributions and prob-
lems, the secrets have elements in the dual ideal R∨

q and the error distribution

NTWE: A Natural Combination of NTRU and LWE 327

has a continuous support. However, using secret elements in Rq is equivalent
when R is the ring of integers of a power of two cyclotomic number field [17].
Furthermore, it is easily seen that the problem with a discretized error distribu-
tion is no easier than the original problem with a continuous distribution.

The version of the LWE problem that is relevant in this work is the normal-
form decision module-LWE problem, as defined next.

Definition 2 (Normal form decision module-LWE problem). Let q be a
prime, R the ring of integers for a number field K and ψ be some distribution
on Rq. Then, the normal form decision module-LWE problem is to distinguish
samples from As,ψ from uniformly random in Rk

q × Rq when s is a vector with
elements sampled from ψ.

We also use the following definition of a decision version of the NTRU prob-
lem, where multiple samples are provided from a distribution. The NTRU prob-
lem is not typically considered in terms of such a distribution from which it is
possible to get multiple samples. However, this multi-sample problem has been
considered previously [20,21] and does not seem to be significantly easier than
the traditional, single sample, NTRU problem.

Our definition is for a module-version of the NTRU problem and a more
traditional NTRU problem is recovered with module rank k = 1. The same
module-NTRU problem, limited to at most k samples, is also considered in [8]
as the basis for their scheme for public key encryption.

Definition 3 (Decision module-NTRU problem). Let k be some integer,
q be some prime, R be the ring of integers for some number field K and ψ be
some distribution on Rq. Let F ∈ Rk×k

q have elements sampled from ψ and
assume that F is invertible. Then, the rank k decision module-NTRU problem
is to distinguish samples of the form h = g · F−1 ∈ Rk

q from uniformly random
in Rk

q where g ← ψk.

2.5 Lattice Reduction

In practice, the most efficient algorithm for finding relatively short vectors in a
lattice is the lattice reduction algorithm BKZ [23,24]. BKZ works by iteratively
improving the lattice basis by solving SVP instances in projected sublattices of
dimension β.

The effectiveness of BKZ is often estimated through its Hermite factor δβ ,
with BKZ finding a vector of length δd

β det(L)1/d in a d-dimensional lattice L.
The specific value of this factor depends on the blocksize β BKZ is used with.
A typical estimate is that

δβ =
(

β

2πe
(πβ)1/β

) 1
2(β−1)

(2)

which is heuristically proven to be the asymptotic performance of BKZ on ran-
dom lattices [7].

328 J. Gärtner

In NTRU and LWE lattices, the secret vectors are significantly shorter than
the shortest vector is expected to be in a random lattice. This enables BKZ to
recover secret vectors faster than a simple estimate based on δβ predicts. Instead,
when estimating the hardness of these problems, one often considers the so called
2016 estimate [1,2] that predicts that BKZ with block size β finds an unusually
short vector v in a d-dimensional lattice L if

√
β · ‖v‖√

d
≤ δ2β−d−1

β det(L)1/d. (3)

A conservative estimate for the cost of using BKZ with block size β is the core
SVP hardness, as introduced in [2]. This estimates that running BKZ with block-
size β is no more expensive than solving a single SVP instance in dimension β. We
further estimate the hardness of SVP in dimension β based on the performance
of known algorithms.

For our parametrizations, we consider the performance of the best known
classical algorithm for solving SVP, ignoring its memory requirements and subex-
ponential factors in its running time. This performance is given by a heuristic
algorithm [3] with complexity

√
3/2

β ≈ 20.292β for lattice dimension β. We rep-
resent the core SVP hardness by the logarithm of this, and thus given by 0.292β.

There are quantum algorithms that solve SVP more efficiently than this clas-
sical algorithm. However, these algorithms improve attacks against lattice-based
cryptosystems less than Grover’s quantum search algorithm improves attacks
against symmetric primitives with comparable classical security. As such, when
comparing the security of a lattice-based cryptosystem with the security of a
symmetric primitive, the performance of current quantum attacks does not have
to be considered. In this work, we therefore do not consider these quantum lattice
algorithms, but we still claim that our system is post-quantum secure.

3 The NTWE Problem

The NTWE problem combines the NTRU and LWE problems in a natural way.
Similarly to the NTRU problem, an instance of the NTWE problem is of the
form h = gf−1 where g ← ψ1 and f ← ψ2. However, unlike standard NTRU
instances, we do not use similar distributions for ψ1 and ψ2, nor do we expect
g to be a small element. Instead, we let the distribution ψ1 be a module-LWE
distribution and samples from this distribution are thus expected to be hard to
distinguish from uniformly random.

A more formal definition of this problem follows, where we, similarly to the
definition of the LWE problem, consider it in terms of an NTWE distribution.
As with the module-LWE problem, we primarily consider the problem with the
rank k some small integer, while the degree n of the underlying ring is fixed to
some power of two, such as 256.

Definition 4 (NTWE distribution W(s, f, ψ)). Let q be a prime, k be an
integer, n be some power of 2, R = Z[X]/(Xn + 1) and ψ be some distribution

NTWE: A Natural Combination of NTRU and LWE 329

on Rq. Furthermore, let s be a vector in Rk
q and f be an invertible element in

Rq. A sample from the NTWE distribution W(s, f, ψ) is given by

(a, b = (a · s + e)f−1) ∈ Rk
q × Rq

where a ← U(Rk
q) and e ← ψ.

We consider an average case distribution of problem instances where the
secret vector s and secret element f are sampled from the error distribution ψ.
This is similar to the normal-form module-LWE problem. The definition of the
search and decision versions of this average-case problem follows.

Definition 5 (Decision NTWE problem (DNTWE(ψ, h))). Let ψ be some
distribution on Rq and let h be some integer. An instance of the DNTWE(ψ, h)
problem is given by an unknown distribution D that is either uniformly random
or the W(s, f, ψ) distribution for some s ← ψk and f ← ψ∗. The DNTWE(ψ, h)
problem is to determine which is the case when given at most h samples from
the unknown distribution.

For the search version of the NTWE problem, the actual secrets s and f used
to generate the NTWE distribution need not be recovered. Instead it suffices to
recover sXi and fXi for some i as these alternative solutions would generate
the same NTWE distribution as the actual secrets. Furthermore, for the rings
R and error distributions ψ we consider, all of these solutions are equally likely
to be sampled as secrets for the problem instance.

Definition 6 (Search NTWE problem SNTWE(ψ, h)). Let ψ be some dis-
tribution on Rq and h be some integer. An instance of the SNTWE(ψ, h) problem
is to recover sXi and fXi, for some i, when given at most h samples from the
W(s, f, ψ) distribution, where s ← ψk and f ← ψ∗.

3.1 Relation to Other Problems

It is easily seen that an instance of the search/decision NTWE problem is at
least as hard as an instance of the search/decision rank k module-LWE problem.
This relation is formalized in the following lemma:

Lemma 1. Assume that there is an algorithm W that is able to solve the
(search/decision) NTWE problem with advantage ε. Then, using W once, with
a negligible amount of additional computations, provides a solution to the cor-
responding (search/decision) normal form rank k module-LWE problem with
advantage ε.

Proof. Given an algorithm that solves the NTWE problem, we can easily solve
the corresponding module-LWE problem. This is accomplished by sampling f ←
ψ∗ and transforming samples from the input distribution in the module-LWE
problem instance into (a, bf−1).

330 J. Gärtner

If the input samples are from a module-LWE distribution, the transformed
samples are from an NTWE distribution. With these samples as input, an algo-
rithm that solves the search NTWE problem recovers sXi and fXi for some
i. As f is known, this allows recovering s and solving the search module-LWE
problem.

If instead the input samples are from an uniformly random distribution, the
transformed samples are also from a uniformly random distribution. As such,
using an algorithm that solves the decision NTWE problem a single time provides
a solution to the decision module-LWE problem with the same advantage. �	

It is also easily seen that the NTWE problem is no easier than a similarly
parametrized version of the rank 1 module-NTRU problem.

Lemma 2. Assume that there is an algorithm W that, when given h samples
from the input distribution, is able to solve the (search/decision) NTWE problem
with advantage ε. Then, using W once, with a negligible amount of additional
computations, provides a solution to a rank 1 (search/decision) NTRU problem
with advantage ε. This is accomplished by using h + k samples from the input
distribution in the given instance of the NTRU problem.

Proof. Let h = gf−1 be h+k samples from the input distribution for the NTRU
problem. By splitting h as (sf−1,ef−1) ∈ Rk

q × Rh
q and letting A ← U(Rh×k

q),
we can calculate (As+e)f−1. If the input is an NTRU distribution, this directly
corresponds to h samples from an NTWE distribution. If instead the input is
uniformly random, then so are the resulting h samples.

As such, any algorithm that solves the DNTWE(ψ, h) problem can be used
to solve the decision NTRU problem by using h + k NTRU samples. Similarly,
any algorithm that solves the SNTWE(ψ, h) problem can be used to solve the
search NTRU problem by using h + k NTRU samples. �	

Lemma 2 ensures that the NTWE problem in rank k modules is at least
as hard as the rank 1 NTRU problem with multiple samples. We do, however,
expect something significantly stronger to hold, namely that the rank k NTWE
problem is at least as hard as the rank k + 1 module-NTRU problem. Lemma 3
below provides motivation for such a statement, as it shows that if we can solve
a special version of the rank k NTWE problem, then we can also solve the
rank k + 1 module-NTRU problem.

This special version of the NTWE problem differs from an ordinary NTWE
problem by using an a that is not sampled uniformly at random and instead
from some other distribution. The specific distribution for which a is sampled
from in these special NTWE instances is directly given by a rank k + 1 module-
NTRU instance. As we do not have a good definition for this distribution besides
for how it appears in the proof, we only define it as a part of the proof.

Although it is possible that the NTWE problem where a is non-uniform is
a harder problem than NTWE with uniformly random a, we have no reason to
expect this to be the case. Instead, it seems more natural to assume the opposite,
that samples with uniformly random a are harder to distinguish from uniformly

NTWE: A Natural Combination of NTRU and LWE 331

random than those with a from some other distribution. As such, we consider
this lemma to be a strong argument for why the concrete hardness of the rank k
NTWE problem should be comparable to that of rank k + 1 module-NTRU.
However, it should be noted that this lemma does not actually prove that the
rank k NTWE problem, as we defined it, is at least as hard as a rank k + 1
NTRU problem.

Lemma 3. Assume that there is an algorithm W that solves a decision version
of the NTWE problem where a is not uniformly random and instead sampled
from a special distribution, defined in the proof. If W achieves an advantage ε,
then, using W once, with a negligible amount of additional computation, provides
a solution to the decision rank k + 1 module-NTRU problem with advantage ε.
This is accomplished by using h module-NTRU samples.

Proof. We claim that a sample from a rank k + 1 module-NTRU instance
h = gF

−1
corresponds to a sample from a rank k NTWE instance with a special

structure on a. The a for this sample is the negation of the first k elements of
h, while the b part of the NTWE sample is the final element of h.

To see this, we write e−hF = 0 with e = g and split h into (−a, b). Next, we
rename the k×(k+1) dimensional submatrix of F that we multiply with a to S,
while the remaining k+1 dimensional row we call f . Thus, aS−bf+e = 0, which
corresponds to a sample from k + 1 different NTWE instance. These samples
share the same a and have the same resulting b, but each NTWE instance uses
different secrets s, f and errors e. This is seen by considering a single element,
which is given by as − bf + e = 0, or equivalently (as + e)f−1 = b, if f is
invertible.

Additional samples from the NTRU distribution also result in NTWE sam-
ples with the same s and f , but with different a and e. Furthermore, note that
f, e and the elements in s are sampled from ψ, as expected for the NTWE
instance.

The distribution of a in this constructed NTWE distribution is not uniformly
random and instead given by the first k elements from a sample of the NTRU
distribution. As such, each NTRU sample corresponds to a sample from an
NTWE instance where the A matrix is generated with rows given by samples
from an NTRU distribution. Furthermore, in this NTWE instance, the secrets
s and f are part of the matrix F used to define the NTRU distribution used to
generate the A matrix.

If instead given a sample from a uniformly random distribution, splitting the
sample into −a and b obviously results in a and b that are uniformly random.
Thus, if we are able to distinguish this special NTWE instance from uniformly
random, then we are also able to distinguish a rank k + 1 module-NTRU instance
from uniformly random. �	

4 The NTWE Lattice Problems

Both the NTRU problem and the module-LWE problem can be solved by con-
sidering the naturally corresponding lattice problems. Currently, this approach

332 J. Gärtner

leads to the best performing algorithms for solving these problems, and we recall
the techniques used below. We expect that the NTWE problem similarly is best
solved by considering lattice problems that naturally correspond to the NTWE
problem. For context, we begin by briefly introducing the lattice problems for
the NTRU and LWE lattice problems. We then present these NTWE lattice
problems in Subsect. 4.3 below and compare them to the corresponding NTRU
and LWE lattice problems.

We can not guarantee that there are no other, more efficient, attacks against
the NTWE problem than the ones we consider here. However, its similarity
to the LWE and NTRU problems motivates us to focus on attacks similar to
the best performing attacks against these problems. In particular, we base the
parametrizations of our cryptosystem on our assumption that these proposed
lattice attacks against the NTWE problem actually are optimal. This is similar
to how systems based on the hardness of the LWE or NTRU problems are
typically parametrized.

In some sense, the NTWE lattice is a mix between an NTRU lattice and
a module-LWE lattice. We therefore believe that it is likely that any improved
attacks against the NTWE problem would improve our understanding of the
NTRU and LWE problems. In particular, we believe that a specialized attack
against the NTWE problem would likely have interesting implications for both
the NTRU and LWE problem. Such an attack would serve as an indication that
the LWE and NTRU problems are hard, but mixing them results in an easier
problem.

4.1 NTRU Problem

In the module-NTRU problem, the input is a matrix H ∈ Rh×k
q . In the search

version of the problem, the task is to recover G ∈ Rh×k
q , F ∈ Rk×k

q such that

GF
−1

= H and such that all elements in G and F are small. To state this
as a lattice problem, we consider the integer matrices F ∈ Z

kn×kn and G,H ∈
Z

hn×kn corresponding to F ,G,H. Then, it can be seen that the (h + k)n-
dimensional lattice spanned by the columns of

[
qI H
0 I

]

contains a dense kn-dimensional sublattice given by
[
qI H
0 I

] [

F

]
=

[
G
F

]

where
 represents the matrix corresponding to modular reduction. Using lattice
reduction methods, this dense sublattice can be found, which solves both the
search and decision NTRU problems.

Depending on the specific parametrization, the lattice reduction algorithms
may directly find vectors that directly corresponds to elements of F and G.

NTWE: A Natural Combination of NTRU and LWE 333

If the parameters are chosen in an overstretched regime, the lattice reduction
may first find other vectors in the dense sublattice [10]. In either case, finding
unusually short vectors in the lattice solves the decision NTRU problem and
quickly leads to an attack against NTRU-based cryptosystems.

4.2 Module-LWE Problem

The Module-LWE problem is typically solved by using lattice reduction algo-
rithms on one of two different types of lattices, corresponding to the dual and
primal lattice attacks.

A Module-LWE instance with h samples is given by a uniformly random A ∈
Rh×k

q and a vector b = As + e ∈ Rh
q , where the elements of e are sampled from

the error distribution ψ. In the normal form version of the problem, the elements
of the secret vector s are also sampled from ψ. The lattices corresponding to
this module-LWE instance are given by the integer matrices A ∈ Z

hn×kn and
B ∈ Z

hn×n corresponding to A and b.
In the primal attack, the relevant lattice is spanned by the columns of

⎡

⎣
qI A B
0 I 0
0 0 tI

⎤

⎦

where t is a constant typically chosen to be 1. Furthermore, one typically do
not consider this full (h + k + 1)n dimensional lattice, instead only considering
a single column b of the full matrix B, giving a (h+k)n+1 dimensional lattice.
Using lattice reduction, we can find the short lattice vector

⎡

⎣
e

−s
t

⎤

⎦ =

⎡

⎣
qI A b
0 I 0
0 0 t

⎤

⎦

⎡

⎣

−s
1

⎤

⎦

where
 gives the modular reductions and s and e are integer vectors representing
s and e respectively. This short vector directly solves both the decision and
search Module-LWE problems.

In the dual attack, the lattice given by

L⊥ = {(x,y) ∈ Z
(h+k)n : xA = y mod q}

is considered. The dual attack is based on using lattice reduction in order to
find short vectors in L⊥. Short vectors in L⊥ can be used to distinguish between
samples from a module-LWE instance and samples from a uniformly random
distribution, solving the decision module-LWE problem.

Given a short vector w in L⊥, the attack works by multiplying samples
b = As+ e with w, resulting in wb = y · s+x · e which is small if x,y, s and e
all are short. By using these short lattice vectors, samples from a module-LWE
distribution are thus transformed into small integers. Meanwhile, multiplying
a uniformly random b with such a short vector results in a uniformly random

334 J. Gärtner

integer in Zq. As such, short vectors in L⊥ multiplied with samples from a distri-
bution behave noticeably differently depending on if the distribution is uniformly
random or a module-LWE distribution. Therefore, finding short vectors in L⊥

provides a solution to the decision module-LWE problem.

4.3 NTWE Problem

We now present the natural lattices corresponding to the NTWE problem. These
lattices correspond to the lattices used during primal and dual lattice attacks
against the LWE problem. We therefore similarly denote our algorithms as the
primal and dual attacks against the NTWE problem. Finding short vectors in
these NTWE latices allows solving the NTWE problem.

Primal Attack. A primal attack against the NTWE problem uses the same
lattice construction as for the primal attack against the LWE problem. In a
rank k NTWE instance with h samples, we are given

(A, b = (A · s + e) · f−1) ∈ Rh×k
q × Rk

q

and are either supposed to distinguish these samples from uniformly random or
use the samples to recover s and f . As with the primal attack against the LWE
problem, this can be stated as finding a short vector in the lattice generated by
the columns of ⎡

⎣
qI A B
0 I 0
0 0 tI

⎤

⎦

where A ∈ Z
hn×kn,B ∈ Z

hn×n are the matrices corresponding to A and b
respectively, while t is some small constant. In the primal attack against the
module-LWE problem, it is sufficient to consider only a single column of the
matrix B. However, when solving the NTWE problem, the full matrix B must
be accounted for.

This NTWE lattice contains the (h + k + 1)n dimensional secret vector
⎡

⎣
e

−s
tf

⎤

⎦ =

⎡

⎣
qI A B
0 I 0
0 0 tI

⎤

⎦

⎡

⎣

−s
f

⎤

⎦

where
 gives the modular reduction while s and f are the integer vectors rep-
resenting s and f .

Using t = 1, with an error distribution that has standard deviation σ, the
secret vector is expected to have length approximately σ · √

(h + k + 1)n. By
the 2016 estimate, detailed in (3), we deem such a short lattice vector to be
recoverable by BKZ with block size β if

σ
√

β ≤ δ
2β−(h′+k+1)n−1
β qh′/(h′+k+1) (4)

NTWE: A Natural Combination of NTRU and LWE 335

for some h′ ≤ h such that h′n is an integer. Choosing h′ < h corresponds to
ignoring rows of A and B, which decreases both the lattice dimension and its
determinant and sometimes leads to a more efficient attack.

Although the NTWE lattice at first glance may seem similar to the lattice
given by a rank k module-LWE instance with the full B matrix, there are some
significant differences. The known basis for these lattices are of exactly the same
form and, when constructed using the same number of samples, the lattices
have the same determinant. However, in the rank k module-LWE lattice, the
target vectors are shorter than in the NTWE lattice. Furthermore, in the rank k
module-LWE lattice, each of the secret vectors is known to lie in a specific
(h+k)n+1 dimensional sublattice, which is not the case in the NTWE problem.
Due to these factors, we believe that the rank k NTWE problem is significantly
harder than the rank k module-LWE problem.

The lattice constructed in the primal attack against the rank k NTWE prob-
lem is also very similar to the lattice used in the primal attack against the
rank k + 1 module-LWE problem. Letting t = 1, and combining all but one
column of B with A into Ã ∈ Z

hn×((k+1)n−1), the lattice is given by
⎡

⎣
qI Ã b
0 I 0
0 0 1

⎤

⎦

where b is the remaining column of B. This lattice is one dimension smaller
than the corresponding lattice for a rank k + 1 module-LWE problem and the
Ã matrix is not generated in the same way. However, with the same number of
samples, the lattice determinant is the same as for the module-LWE lattice and
the target vectors are of essentially the same length.

In some sense, due to the similarities of the corresponding lattices, the NTWE
problem can be seen as a more structured version of the rank k + 1 module-
LWE problem, with part of the Ã matrix not sampled uniformly at random.
Furthermore, by standard estimates for hardness of lattice problems, the primal
attack against the rank k NTWE problem and against rank k + 1 module-
LWE should require approximately as much work. We therefore believe that the
concrete hardness of the rank k NTWE problem is comparable to that of the
rank k + 1 module-LWE problem.

In particular, we can compare the primal attack against NTWE to the primal
attack against Kyber [25]. Using the same notation as in our analysis of NTWE,
the primal attack against Kyber with module rank k + 1 is estimated to be
successful if

σ
√

β ≤ δ2β−(h′+k+1)n−2qh′/(h′+k+1+1/n).

Besides the term 1/n in the denominator of the exponent of q and a difference
of 1 in the exponent of δβ , this is the same as the condition given by (4) for the
primal attack against rank k NTWE.

Note also that, unlike in the lattice given by a module-LWE instance, in the
NTWE lattice there is not only a single short vector to be found. Instead the
NTWE lattice contains several short vectors that span a dense n dimensional

336 J. Gärtner

sublattice. The existence of such a dense sublattice seems to be the reason for
improved attacks against overstretched NTRU parameters [15].

In an NTRU lattice, there is a n-dimensional dense sublattice in a 2n-
dimensional lattice. Meanwhile, in the NTWE lattice there is an n-dimensional
dense sublattice in a (hn + kn + n)-dimensional lattice. Due to the differences
between the NTWE and NTRU lattices, we do not believe that the same type
of overstretched parameters is a risk with the NTWE problem. As such, we do
not believe that there are parameter choices for the NTWE problem such that
it is significantly easier to find the dense sublattice in this NTWE lattice than
it is to find the secret vector.

To motivate this belief, we note that an ordinary module-LWE lattice with
the full B matrix included also contains a dense sublattice in the same way as
the NTWE lattice. As such, if there is some parameter regime for the NTWE
problem where there is a behavior similar to overstretched NTRU, the same
behavior also applies to LWE instances. This limits the potential impact of an
overstretched parameter regime on the NTWE problem, unless there also exists
overstretched parameters for the LWE problem.

Finally, we note that the lattice for the primal attack against the NTWE
problem is very similar to the lattice used when attacking the NTRU problem.
With h = k + 1 and combining A and B into a (k + 1) × (k + 1) dimensional
matrix H, the basis matrix for this primal attack is given by

[
qI H
0 I

]

with H the integer matrix representing H. This lattice is of exactly the same
form as the lattice in a rank k + 1 module-NTRU instance, but with part of
H uniformly random instead of given by GF−1. As such, the natural primal
lattice for the rank k NTWE problem is essentially a less structured version of
the rank k + 1 module-NTRU lattice, as suggested by Lemma 3.

Dual Attack. A dual attack against the NTWE problem is performed in a
similar way to how the dual attack is performed against the LWE problem. By
using a short vector in the lattice

L⊥ = {(x,y) : xA = y mod q}

we are able to transform b from an NTWE distribution into what essentially
corresponds to an NTRU sample. This is the case as if w is a short vector in L⊥

and w is the corresponding vector in Rk then

w · b = w · (A · s + e) · f−1 = (y · s + x · e) · f−1 = gf−1

where g = y ·s+x ·e is a short element in Rq if w is short. As such, w ·b = gf−1

can be interpreted as an NTRU sample, although with different distributions for
g and f .

NTWE: A Natural Combination of NTRU and LWE 337

Note that, as we consider the norm of the coefficient vector, the norm of g is
dependent on the ring R. However, as we only consider the case where R is the
ring of integers of a power of two cyclotomic field, we are guaranteed that the
product s · y is a small element in Rq if both y and s are short.

In order for it to be reasonable to solve the constructed NTRU instance, we
require that the vector given by (g, f) is significantly shorter than the shortest
vector in a random q-ary 2n-dimensional lattice without the NTRU structure.
Such a lattice has determinant qn and, by the Gaussian Heuristic, is expected
to contain a vector of length

√
(qn)/(πe).

On the other hand, the lattice corresponding to the constructed NTRU
instance contains a short vector (g, f) where g = y · s + x · e is expected to
have length ‖(x, y)‖ · σ

√
(h + k)n. Furthermore, we have that f is of expected

length σ
√

n, and we can thus argue that in order for the constructed NTRU
instance to actually contain an unusually short vector, we have the requirement
that

σ2n
(
(h + k) ‖(x, y)‖2 + 1

)
≤ nq

πe

or equivalently

‖(x, y)‖ ≤
√

q

(h + k)πeσ2
− 1

h + k
.

We can improve this attack by rebalancing the NTRU lattice so that we
have to find a vector of length L = ‖(x, y)‖ · σ

√
2(h + k)n, corresponding to

(g, f · √
h + k ‖(x, y)‖). Although this vector is longer, the corresponding NTRU

lattice also has a determinant that is (
√

h + k ‖(x, y)‖)n times larger, meaning
that it is not expected to contain as short vectors. This leads to the requirement
that

2(h + k)nσ2 ‖(x, y)‖2 ≤ nq
√

h + k ‖(x, y)‖
πe

(5)

in order for the dual attack to succeed, which corresponds to a requirement that

σ2 ≥ q

2πe ‖(x,y)‖ √
h + k

for the problem to not be solvable by a given (x,y) in L⊥.
The lattice L⊥ is h + k dimensional and has determinant qk. As such, BKZ

with block-size β should be able to find a vector (x,y) of length δ
(h+k)n
β qk/(h+k)

in L⊥. This means that, for the problem to be hard to solve, we require that

σ2 ≥ qh/(h+k)

2πe · δ
(h+k)n
β · √

h + k
(6)

for every β that an adversary can afford to use as block-size.
While (5) is a necessary requirement for the constructed NTRU instance to

be solvable via lattice reduction, a bounded adversary may still not be able to
solve this NTRU instance. Therefore, we also estimate how short vectors can be
found in the resulting 2n-dimensional NTRU lattice.

338 J. Gärtner

In the resulting NTRU instance, there is an unusually short vector,
with expected length � = σ

√
2(h + k)n · δ

(h+k)n
β qk/(h+k). By the 2016 estimate,

detailed in (3), this vector is expected to be found by BKZ with block-size β in
the 2n-dimensional NTRU lattice with determinant (q�)n if

� ·
√

β/(2n) ≤ δ2β−2n−1
β

√
q�.

This gives that an adversary succeeds if

�β = σ
√

2(h + k)n · δ
(h+k)n
β · qk/(h+k) · β ≤ 2nqδ4β−4n−1

β

which corresponds to the requirement that

σ ≥ δ
4β−(4+h+k)n−1
β

qk/(h+k)
√

2n

β · √
h + k

(7)

in order for the problem to not be solvable by an adversary that is able to run
BKZ with block size β. However, this analysis is only applicable if the secret
vector actually is unusually short in the NTRU lattice, and thus, for hardness
of the NTWE problem, it is sufficient that either (6) or (7) is fulfilled.

It is not directly clear how this dual attack compares to the primal attack
against the NTWE problem or to attacks against the NTRU and LWE problems.
For the concrete parametrizations we present in Sect. 6, this approach for a dual-
lattice attack against the NTWE problem seems to be significantly less efficient
than the primal attack. However, for some other choices of parameters, this dual
attack seems to be more efficient than the primal attack. In particular, by our
estimates, the NTWE problem parametrized with h = k = 1 is often more
efficiently solved with this dual attack than with the primal attack.

5 Our Cryptosystem

The procedures for key generation, encryption and decryption in our crypto-
system are detailed in Algorithm 1. The system follows essentially the same idea
as the LWE-based Lindner-Peikert scheme [16] but with decryption requiring
using f in a similar way to how it is used in an NTRU based cryptosystem.

For encoding the message, we make use of a randomized rounding function
�·�R. For integers x, we let �x�R = x while �x + 1/2�R is sampled from U({x, x+
1}). For an element e ∈ R, we extend the definition to �e/2�R by considering
each coefficient of e separately.

For our cryptosystem, we only consider the case where R is the ring of integers
of a power of two cyclotomic field, but the system parametrized with other rings
R could potentially also be interesting to investigate.

To improve the efficiency of our scheme, we prefer rings R and modulos q
such that operations can be performed efficiently using the Number Theoretic
Transform (NTT). With such a parametrization, it is very efficient to compute
the inverse f−1 in Rq. However, computing the inverse in R2 is a less efficient

NTWE: A Natural Combination of NTRU and LWE 339

operation. If the public key is reused multiple times, this additional time for key
generation can be acceptable.

During decryption, a product with f−1
2 must be computed, which can not be

done efficiently by using the NTT. As such, this multiplication has a significant
impact on the decryption efficiency in our PKE. For our PKE scheme, a large
majority of the decryption time is spent on this multiplication. However, if some
version of the Fujisaki-Okamoto transform is used to construct an IND-CCA
secure KEM from this IND-CPA secure PKE, decryption in the resulting scheme
also performs encryption of a message. Therefore, in this KEM, although the
multiplication by f−1

2 still has a significant performance impact, it no longer
constitutes a large majority of the decryption time.

In our parametrizations, we consider two different versions of the error dis-
tribution ψf from which f is sampled. For both versions of ψf, samples from this
distribution, are always invertible in both R2 and Rq. A sample from the first
version of ψf is sampled from ψgen with rejection sampling ensuring that the
result is invertible in both R2 and Rq. In the second version, we let a sample be
given by f = 2f ′ + 1, with f ′ ← ψgen ensuring that f is the identity in R2. By
using rejection sampling, it is also ensured that samples from this version of ψf

are invertible in Rq.
Selecting f = 2f ′ + 1 ensures that f−1

2 = 1 and therefore no expensive
inverse has to be computed during key generation. Furthermore, this choice
of f ensures that multiplication with f−1

2 is trivial, resulting in more efficient
decryption. However, this comes at the cost of using a larger f , which results in
a larger failure probability for the scheme. As the structure of how f is sampled
is known, we can not argue that this larger f results in harder instances of the
corresponding lattice problem.

For implementations, the matrix A may be sampled from a pseudorandom
number generator. This allows a much more compact public key, as it only has
to include the seed used to derive A instead of the full A matrix. Using a short
seed to represent the public matrix A in this way is standard for LWE-based
cryptosystems and is for example used in Kyber [25].

5.1 Security

The security of our cryptosystem relies on the hardness of both the NTWE
problem and the module-LWE problem. Based on the assumed hardness of the
decision NTWE problem, the public key in our cryptosystem is indistinguish-
able from uniformly random. Meanwhile, assuming the hardness of the decision
module-LWE problem, the ciphertext completely masks the encrypted message.
This is similar to a typical NTRU-based cryptosystem, where the public key
is pseudorandomly generated as an NTRU instance, while the security of the
ciphertexts relies on the hardness of a problem that can be seen as a variant of
the ring-LWE problem.

In the following lemmas, we formalize how, assuming the computational hard-
ness of the NTWE and module-LWE problems, the security of our cryptosystem
is guaranteed. First we note that, assuming the hardness of the decision NTWE

340 J. Gärtner

problem, the public key of our cryptosystem is indistinguishable from uniformly
random.

Lemma 4. Let W be an algorithm that, with advantage ε, can distinguish the
public keys from our cryptosystem from uniformly random. Then, using W once
with a negligible amount of additional computations provides a solution to the
DNTWE(ψgen, h) problem with advantage ε.

Algorithm 1. Procedures for key generation, encryption and decryption for our
cryptosystem

procedure Key generation
A ← U(Rq)

h×k

s ← ψk
gen

e ← ψh
gen

f ← ψf

b =
(
A · s + e

) · f−1 ∈ Rh
q

Let f−1
2 be the inverse of f in R2

return (pk = (A, b), sk = (s, f, f−1
2))

end procedure
procedure Encryption((A, b) = pk, m ∈ R2)

s′ ← ψh
enc

e′ ← ψenc

e′′ ← ψk
enc

c1 = s′ · b + e′ + �mq/2�R � With m interpreted as element in R
c2 = s′ · A + e′′

return ct = (c1, c2) ∈ Rq × Rk
q

end procedure
procedure Decryption((s, f, f−1

2) = sk, (c1, c2) = ct)
Let v = c1 · f − c2 · s mod q
Interpret v as element in R with coefficients in [0, q)
Let u = �v · 2/q� interpreted as element in R2

return vf−1
2 ∈ R2

end procedure

Proof. The public key in our cryptosystem consists of h NTWE samples. Thus,
given h samples from an instance of the DNTWE(ψgen, h) problem, we can
consider these as a public key for our system. If the samples are from an NTWE
distribution, the public key is exactly distributed as for our actual cryptosystem.
Thus, using W with these samples as the public key gives an algorithm that,
with advantage ε, solves the DNTWE(ψgen, h) problem. �	

The next lemma shows that, assuming the hardness of the rank h module-
LWE problem, a version of our cryptosystem where a uniformly random public
key is used is IND-CPA secure.

Lemma 5. Assume that there is an adversary A that is able to achieve an
advantage ε against the IND-CPA security of a version of our cryptosystem

NTWE: A Natural Combination of NTRU and LWE 341

that uses uniformly random public keys. Then, using A once, with a negligible
amount of additional computations, provides a solution to the rank h decision
module-LWE problem with advantage ε.

Proof. In a version of our system where the public key is uniformly random,
the ciphertext is directly given by k + 1 samples from a rank h module-LWE
distribution. The public key in this case is given by the a part of these module-
LWE samples, while the ciphertext is constructed from the b part of the samples.

To encrypt the message encoded as m ∈ R2, the ciphertext is constructed
with c2 being the b part of k module-LWE samples. The corresponding a part
of the module-LWE samples are used as the A matrix for the public key. The a
part of the final module-LWE sample gives the b part of the public key for our
cryptosystem with uniformly random public key. Meanwhile, the c1 part of the
ciphertext is given by the b part of this final module-LWE sample plus �mq/2�R.
This exactly corresponds to the ciphertext that encrypts m in a version of our
cryptosystem that uses a uniformly random public key.

If instead given k + 1 samples from a uniformly random distribution, the
ciphertext constructed in this way is uniformly random. As such, using A against
these ciphertexts gives an advantage ε in distinguishing between the uniform
distribution and a module-LWE distribution. �	

Finally, combining these lemmas shows that, assuming the hardness of both
the NTWE problem and the rank h module-LWE problem, our cryptosystem is
IND-CPA secure.

Lemma 6. Assume that there is an adversary A that achieves an advantage 2ε
against the IND-CPA security of our cryptosystem. Then, using A once, with a
negligible amount of additional computations, provides a solution, with advan-
tage ε, to either a rank h module-LWE problem or the rank k DNTWE(ψgen, h)
problem.

Proof. An adversary A achieving advantage 2ε against the IND-CPA security
of our cryptosystem could be used in order to solve either the relevant decision
NTWE problem or the relevant decision ring-LWE problem with advantage ε.
This follows from a simple hybrid argument and using Lemmas 4 and 5.

If A has advantage at least ε against a version of our cryptosystem with
uniformly random public key, Lemma 5 provides an efficient algorithm for the
decision module-LWE problem.

Otherwise, A has advantage 2ε against our cryptosystem but advantage less
than ε against a version of our cryptosystem where the public key is uniformly
random. This provides an ε distinguisher between our cryptosystem and a version
of the system with uniformly random public key. Thus, by Lemma 4, we can use
A to solve the DNTWE(ψgen, h) problem with advantage ε. �	

Our scheme only claims to be IND-CPA secure and, as with LWE- and
NTRU-based schemes, it is vulnerable to a trivial chosen-ciphertext attack where
the decryption oracle is used with the target ciphertext plus some small noise.
Our PKE can, however, be used to construct an IND-CCA secure KEM by using

342 J. Gärtner

some variant of the Fujisaki-Okamoto transform [11]. This approach to achiev-
ing IND-CCA security is also used in many of the submissions to the NIST
post-quantum standardization process.

5.2 Correctness of Decryption

In the decryption algorithm, the value of v is given by

v = c1 · f − c2 · s
= ((s′ · (A · s + e)f−1 + e′) + �mq/2�R) · f − (s′ · A + e′′) · s
= s′ · e − e′′ · s + (�mq/2�R + e′) · f

and we want �v · 2/q� to equal mf , when both are interpreted as elements in
R2. This is the case if every coefficient of v is less than a distance q/4 from
the corresponding coefficient in (mq/2) · f and we therefore want to bound this
distance.

For adversarially chosen m, there can be quite a large difference between
�mq/2·f and (mq/2) · f , while the difference between �mq/2�R·f and (mq/2) · f
is unlikely to be very large. As the decryption failure probability relevant for
the Fujisaki-Okamoto transform is for a worst-case message, this difference in
decryption failure probability for an adversarially chosen message is important.

The worst-case message for the difference between �mq/2�R ·f and (mq/2) · f
is if rounding occurs for all coefficients. In this case, the difference is rf , where
each coefficient of r is sampled from U({−1/2, 1/2}). The decryption is correct
if each coefficient of

(r + e′)f − e′′ · s + s′ · e
is smaller than q/4.

As we consider power of two cyclotomic fields, the distribution of every coef-
ficient of the resulting product is the same. We can therefore consider the cor-
responding integer vectors and bound the probability that

q

4
< |s′ · e + (r + e′) · f − e′′ · s| .

To get a rough idea of the decryption failure probability of our system, we
consider the case where ψgen and ψenc are discrete Gaussian distributions with
standard deviations σgen and σenc respectively and where ψf = ψgen. Further-
more, we consider the case where we encrypt the all 0 message, meaning that
mq/2 = �mq/2�R and we therefore do not have to consider contribution of r.
This allows the following minor alteration of Lemma 3.1 from [16] to be used to
bound the decryption failure probability.

Lemma 7. The error probability per symbol (over the choice of secret key) when
decrypting the all 0 message, is bounded from above by any desired δ as long as

σgen · σenc ≤ q

8
√

2(h + k + 1) · n · ln(2/δ)

except for with a probability less than 2−n over the randomness in the ciphertext.

NTWE: A Natural Combination of NTRU and LWE 343

For a more precise bound on the failure probability applicable for the different
types of error distributions used in our concrete parametrizations, we numeri-
cally calculate the failure probability in the same way as done for the Kyber
submission [25], by estimating the actual probability distribution for the error
terms.

5.3 Comparison to Other Cryptosystems

In this section we compare the security, efficiency and compactness of our NTWE
based cryptosystem to that of corresponding NTRU and LWE-based systems.
For simplicity, these comparisons are between problems with the same ring R,
modulos q and error distributions. Because of this, the schemes we compare
do not necessarily have the same decryption error probability. For a compar-
ison which also accounts for the difference in decryption error probability, we
instead provide concrete parametrizations that are comparable to the different
parametrizations of Kyber in Sect. 6.2.

Security. We believe that the NTWE problem in rank k is essentially as hard
as the rank k + 1 module-LWE problem. This is motivated by the analysis in
Sect. 4 of algorithms that solve the NTWE and module-LWE lattice problems.
As such, based on our conjectured concrete hardness of the NTWE problem, our
cryptosystem parametrized with h = k + 1 should have security comparable to
that of a rank k+1 module-LWE-based system with the same error distributions.
For general h, we believe that our system should have security comparable to a
module-LWE-based system with a public key given by h samples from a rank k+1
module-LWE distribution with a ciphertext corresponding to k+2 samples from
a rank h module-LWE distribution.

Compared to a rank k + 1 module-LWE-based system, our system exposes
fewer module-LWE samples as part of the ciphertext. Whereas the ciphertext in
our system consists of k+1 module-LWE samples, the ciphertext in the module-
LWE-based system consists of k + 2 such samples. This could potentially be a
reason for our system to be more secure than the corresponding module-LWE-
based system. However, based on current understanding, this difference in the
number of available module-LWE samples should not significantly impact the
security of the system.

The public key in our system is a sample from an NTWE distribution while
the public key in an NTRU-based system is given by an instance of the NTRU
problem. As such, the security against key-recovery attacks in these systems is
based on the hardness of the search-NTWE problem and the search-NTRU prob-
lems respectively. Furthermore, we believe that the NTWE problem is essentially
as hard as the rank k +1 module-NTRU problem, as indicated by Lemma 3 and
analyzed in Sect. 4.

The ciphertext for our system with h = k + 1 is also very similar to the
ciphertext in a rank k + 1 module-NTRU-based cryptosystem. In the module-
NTRU-based cryptosystem, the ciphertext consists of k+1 noisy inner products

344 J. Gärtner

of public data with a secret vector. Similarly our system exposes k+1 such noisy
inner products. As such, we also believe the security of our cryptosystem to be
comparable to that of a rank k + 1 module-NTRU-based cryptosystem.

Module-NTRU-based cryptosystems are typically not considered due to their
large public keys. Therefore, a more fair comparison in the efficiency and com-
pactness of our system is to that of an NTRU-based system that uses a ring of
degree (k + 1)n. The natural lattice problem for this NTRU problem is essen-
tially the same as for the rank k+1 module-NTRU problem and based on current
understanding, the security of these systems should be essentially the same.

Efficiency. Besides calculation of inverses and an additional multiplication by
f−1, our cryptosystem performs the same operations as in a typical LWE-based
cryptosystem and should thus have similar efficiency. When using f = 2f ′ + 1,
all multiplications are efficiently computable in the NTT domain. Furthermore,
calculating the inverse f−1 in Rq is also efficient in the NTT domain, meaning
that these additional steps barely affect the performance of the scheme.

As we deem the rank k NTWE problem to be essentially as hard as a rank k+
1 module-LWE problem, for the same security level our system should actually
be more efficient than a comparable module-LWE-based system. Compared to a
rank k +1 module-LWE-based system, our cryptosystem does not need as much
uniformly random data for A. Furthermore, in our system, we perform fewer
additions and multiplications in key generation and encryption, and essentially
the same number of these operations during decryption.

With s and f combined, the key generation samples as much data from
error distributions as in the key generation of a rank k + 1 module-LWE-based
system with h samples in the public key. With f = 2f ′ + 1, we are guaranteed
that f−1

2 is trivial. However, we are not guaranteed that f is invertible in Rq

and may therefore have to sample multiple f ′ from ψgen. However, for the rings
we consider, the probability that f is not invertible is small enough that this
resampling has a negligible impact on the average running time of key generation.

Another reason our scheme can be more efficiently implemented than a
module-LWE-based scheme is that we do not perform any ciphertext compres-
sion. This allows the ciphertexts in our system to be transmitted in NTT-form,
decreasing the number of times we have to perform the transform and its inverse.
This results in a speed-up both during the encryption of messages and the
decryption of ciphertexts.

Compared to an NTRU-based scheme, it is easier to parametrize our scheme
with rings that support efficient operations by using the NTT. This is the case as
we may select a fixed base ring which supports efficient NTT operations and tar-
get different security levels by altering h and k. As module-NTRU-based systems
are typically not considered due to their large public keys, having an NTRU-
based system support efficient NTT operations imposes a restrictive condition
on the possible rings that can be used. It is possible to construct NTRU-based
systems that support NTT operations, as done in a paper by Lyubashevsky and
Seiler [18]. However, the NTRU-based submissions for public key-encryption and

NTWE: A Natural Combination of NTRU and LWE 345

key establishment in the third round of the NIST post-quantum standardization
process did not support efficient NTT operations [4,6].

Compared to an NTRU-based scheme that does not use NTT, our key gen-
eration should be significantly more efficient, at least if using an f that given by
2f ′ + 1. In this case, we have no expensive operations during key generation, as
f−1
2 is trivial while the inverse in Rq is efficiently computed by using the NTT.

Meanwhile, in an NTRU-based scheme that does not support the NTT, at least
one expensive inverse must be computed. However, when our system samples f
directly from ψgen, the inverse in f−1

2 must be computed. Therefore, this version
of our system has performance for key generation that is more similar to that of
an NTRU-based system.

It is harder to compare the performance of encryption and decryption for our
system to that of an NTRU-based system. By using the NTT, general multipli-
cations in our system are computed more efficiently than possible without using
the NTT. However, NTRU-based systems typically only consider multiplications
with certain classes of polynomials, which allows multiplications that have sim-
ilar efficiency to that of our scheme. Furthermore, if our scheme is used with
a seed for A instead of the full matrix in the public key, the full matrix must
be generated both during key generation and encryption. This can be a some-
what costly operation that is not necessary in an NTRU-based system, where
the public key is a single ring element.

Compactness. In a typical rank k + 1 module-LWE-based system, the cipher-
text consists of a heavily compressed ring element and a somewhat compressed
module element. In total, these are represented by using essentially as much
space as it takes to represent a single rank k+1 module element. The public-key
in such a system is k + 1 ring elements and a uniformly random matrix that is
typically represented by a small seed.

In our cryptosystem, the ciphertext consists of an uncompressed rank k mod-
ule element and an uncompressed ring element. This is represented in the same
amount of space as a single rank k + 1 module element, and our ciphertext size
is therefore essentially the same as for a comparable module-LWE-based system.
In our system, the public key consists of h ring elements and a uniformly ran-
dom matrix. Thus, by using h = k + 1 and representing the uniformly random
matrix by a small seed, our public key is of the same size as in the rank k + 1
module-LWE-based system.

In an NTRU-based system, both the public-key and the ciphertext consists
of a single ring element. Representing an element of a degree (k + 1)n ring
takes as much space as representing k + 1 elements from a degree n ring. Thus,
our cryptosystem has the same sized ciphertext as an NTRU-based system in
a ring of degree (k + 1)n. Furthermore, our system with h = k + 1 and with
A represented by a small seed has essentially the same sized public-key as this
NTRU-based system, with the only difference being this small seed that is used
to derive the A matrix.

346 J. Gärtner

6 Example Parametrizations

For our cryptosystem, described in Algorithm 1, we are able to choose ring R,
integer q and error distributions ψgen, ψenc, ψf relatively freely. To use Lemma 6
to argue for the security of our system, we require both that the relevant NTWE
instance is hard and that a rank h module-LWE problem is hard.

One way to parametrize our system is to use h = k and selecting ψgen and
ψenc differently. By balancing the standard deviation on ψgen and ψenc, we can
ensure that both problems seem to be equally hard to solve, and that the scheme
achieves an acceptable decryption failure probability. This results in paramet-
rizations that are similar to a rank k + 1 module-LWE-based scheme but where
only k module-LWE samples are included in the public key.

By instead using h = k + 1 and ψgen = ψenc, the resulting parametrizations
are more comparable to typical module-LWE-based schemes. We propose such
parametrizations that support NTT calculations, using the same ring R and
modulos q as in Kyber. This results in parametrizations with performance quite
similar to Kyber, but which should allow for more efficient implementations and
which do not have to use any ciphertext compression.

Another approach is to instantiate the system to only rely on the concrete
hardness of the NTRU and ring-LWE problems, as these problems have already
been thoroughly investigated. While there are relations between the NTRU and
ring-LWE problems [20,26,27], these do not directly show that specific instanti-
ations of a cryptosystem based on the NTRU problem or on some version of the
LWE problem is more secure than another. However, our cryptosystem para-
metrized like this is essentially guaranteed to remain secure as long as either the
corresponding NTRU- or module-LWE-based cryptosystem is secure.

For the concrete parametrization we propose, we let the A part of the public
key be derived from a 256 bit seed using some cryptographically secure pseudo-
random number generator. This significantly decreases the size of the public key
as this 32 byte seed is sufficient to represent the full A matrix in the public key.

We consider two different versions for the distribution ψf, corresponding
either directly to a sample from ψgen or from 2ψgen + 1, as described in Sect. 5.
The first version results in a less efficient key generation, as inverses in R2 must
be calculated, but with a smaller decryption failure probability δ. The second
version ensures that key generation is efficient, but results in a larger decryption
failure probability δ2. In the parametrizations in Tables 1 and 2, we present both
the decryption failure probabilities δ and δ2 for these different choices of ψf.

The decryption failure probabilities δ, δ2 and the core SVP security of the
presented parametrizations have been calculated using a modified version of the
script used to calculate the corresponding parameters for the Kyber specification.

6.1 Skewed Parameters

Here we consider parametrizations of the cryptosystem that use h = k, resulting
in a public key that is significantly smaller than the ciphertext. This results in a
system where the security of the public-key is based on the NTWE problem in

NTWE: A Natural Combination of NTRU and LWE 347

rank k while the message security is based on the hardness of the rank k module-
LWE problem. With the same error distribution, the rank k NTWE problem
seems to be significantly harder than the rank k module-LWE problem. For
these parametrizations, we therefore use error distributions with the standard
deviation for ψgen significantly smaller than the standard deviation for ψenc.

We use the same NTT friendly ring R = Z[X]/(X256+1) with q = 3329 as in
Kyber. The error distributions are discrete Gaussian distributions with standard
deviations σgen and σenc for key generation and encryption respectively. As we
use a ring with degree 256, each ciphertext encrypts a 256-bit message. These
parametrizations are detailed in Table 1.

A module-LWE based cryptosystem can also be parametrized with compa-
rable parameters. This is achieved by letting the public key consist of k samples
from a rank k + 1 module-LWE instance, while the ciphertext is given by sam-
ples from a rank k module-LWE instance. These skewed parametrizations of
a module-LWE-based cryptosystem are, however, not typically considered. We
also believe that other parametrizations of our NTWE-based cryptosystem are
more interesting than these that use h = k.

6.2 Parameters Similar to Kyber

In Table 2 we present parametrizations of our scheme that have been selected
to be similar to parametrizations of Kyber [25]. For comparison we also include
relevant information about the different Kyber parametrizations in Table 3.

As the NTWE problem is used for key generation in our scheme, our para-
metrizations use a k that is one rank smaller than the module rank used in
corresponding Kyber parametrizations, while still claiming that the problem is

Table 1. Some different parametrizations of our scheme with h = k. The table details
the size of the public-key (PK) and ciphertext (CT). It also details the estimated
Core SVP hardness, as described in Sect. 2.5, of the lattice problems underlying the
public-key and ciphertext respectively.

Version 512 1024

Core SVP PK 144 280

Core SVP CT 140 276

h = k 2 4

q 3329 3329

σgen 0.49 0.42

σenc 9.62 8.04

PK size (bytes) 800 1568

CT size (bytes) 1152 1920

δ < 2−300 < 2−300

δ2 2−201 2−272

348 J. Gärtner

essentially as hard. This allows our parametrizations to have essentially the same
public key and ciphertext size as the corresponding Kyber implementations, even
though our scheme does not include any ciphertext compression.

In comparison to Kyber, encryption for these parametrizations is more effi-
cient, as we use a smaller module-rank for an equivalent security level. Further-
more, if ψf is given by 2ψgen + 1, key generation in our scheme is also more
efficient than in Kyber, as we use a smaller module-rank and the inverse f−1 in
Rq is efficiently computable via the NTT.

We do not have an optimized implementation of our scheme and we have not
performed any extensive profiling in order to compare the performance of Kyber
and our scheme. However, we have implemented our scheme by modifying an
implementation of Kyber. With ψf given by 2ψgen + 1, the combination of key
generation, encryption and decryption runs in around 10% less time than for the
original Kyber implementation.

The decryption failure probability of our schemes with ψf directly given
by ψgen is somewhat smaller than for the corresponding Kyber parametrizations.
For our schemes, we recover a noisy version of the encoded message, with noise
corresponding to the sum of h + k + 1 = 2(k + 1) products of two small poly-
nomials. In the corresponding parametrization of Kyber, the noise is the sum of
2(k + 1) products of two small polynomials plus another small polynomial.

The contribution to the decryption failure probability of a single small poly-
nomial is typically small. However, the ciphertext compression performed in
Kyber increases the size of this small error polynomial, causing it to have a
significant impact on the decryption failure probability. This means that, for a
comparable decryption error probability, our scheme can be parametrized with a
larger standard deviation for the error distributions than in Kyber. This allows
us to parametrize our scheme to target somewhat higher security levels than in
Kyber, at least when using ψf directly given by ψgen.

The error distribution used in these parametrizations is a centered bino-
mial distribution Bk, as in Kyber. A sample from this distribution is given by∑k

i=1(xi − yi), where xi and yi are sampled from a Bernoulli distributed with
equal probability for 0 and 1. As we are able to achieve a smaller decryption
failure probability than in Kyber, we also include additional parametrizations
that use larger error distributions than the ones used in Kyber.

All of these parametrizations use the same ring as in Kyber, namely
R = Z[X]/(X256 + 1) and with the same modulos q = 3329. This allows efficient
NTT operations in Rq. Furthermore, as the ring has degree 256, each ciphertext
encrypts a 256-bit message.

NTWE: A Natural Combination of NTRU and LWE 349

Table 2. Parametrizations of our scheme comparable to Kyber. The table details the
size of the public-key (PK) and ciphertext (CT). It also details the estimated Core SVP
hardness, as described in Sect. 2.5, of the lattice problems underlying the public-key
and ciphertext respectively.

Version 512-3 512-4 768-2 768-3 1024

Core SVP PK 118 123 182 193 256

Core SVP CT 118 124 183 191 253

k 1 1 2 2 3

m 2 2 3 3 4

ψ = ψenc = ψgen B3 B4 B2 B3 B2

PK size (bytes) 800 800 1184 1184 1568

CT size (bytes) 768 768 1152 1152 1536

δ 2−190 2−108 2−291 2−131 2−224

δ2 2−102 2−58 2−182 2−82 2−153

Table 3. Core SVP security estimate, sizes and decryption failure probability for the
different Kyber parametrizations for comparison. All parametrizations of Kyber use
modules over Z[X]/(X256 + 1) with q = 3329.

Version Kyber512 Kyber768 Kyber1024

Core SVP 118 183 256

Module Rank 2 3 4

PK size (bytes) 800 1184 1568

CT size (bytes) 768 1088 1568

δ 2−139 2−164 2−174

6.3 Parameters Combining NTRU and LWE

A conservative approach for parametrizing our cryptosystem is to use k = h = 1
and only rely on the hardness given by Lemmas 1 and 2. Although we believe
this to be overly conservative, the resulting cryptosystem serves as an efficient
hybrid between cryptosystems based on the NTRU and ring-LWE problems.
This scheme should be secure if either the corresponding NTRU-based or ring-
LWE-based cryptosystem is secure.

Our resulting system has the same public key size as the corresponding ring-
LWE-based system. As we use a small seed to represent the A matrix, the public
key is also only 32-bytes larger than for the corresponding NTRU-based systems.
Meanwhile, the ciphertexts in this system are as large as in the corresponding
ring-LWE-based system without ciphertext compression.

As an example, we can choose a parametrization similar to one of the para-
metrizations of the New Hope [2] system. Thus, we use the ring Z[X]/(X1024+1)
and q = 12289 which allow efficient computations via the NTT. Using the same

350 J. Gärtner

error distribution, we can argue that our system should be at least as secure as
New Hope, while it also should be at least as secure as a corresponding NTRU-
based cryptosystem.

As we do not perform any ciphertext compression, this scheme has signifi-
cantly larger ciphertexts than New Hope. Furthermore, if we sample f so that
f−1
2 is trivial, the resulting scheme has significantly larger failure probability than

the New Hope scheme. If we instead sample f directly from ψgen, the resulting
scheme has significantly less efficient key generation than the New Hope scheme.
As such, this scheme does not really compare favorably to New Hope by itself.

Compared to a system where NTRU and a ring-LWE-based system are used
in parallel, our scheme does however have several advantages. Our scheme is more
efficient than a combination of a ring-LWE-based and an NTRU-based crypto-
system. Furthermore, our scheme also has significantly smaller public key than
that of a combined NTRU-based and ring-LWE-based scheme. The ciphertext
is the same size as in a ring-LWE-based system without ciphertext compression,
which is smaller than the size of the combined ciphertexts of an NTRU-based
system and the New Hope cryptosystem.

For this parametrization of our NTWE-based cryptosystem, the ciphertext is
computed in essentially the same way as in the New Hope cryptosystem. Neither
the addition of multiplying the public key with f−1 nor the differences regarding
ciphertext compression are expected to have any negative effect on the security
of our NTWE-based cryptosystem. We can therefore more or less guarantee the
IND-CPA security of our system if the New Hope system is secure.

Compared to the corresponding NTRU-based system, there are some differ-
ences which could impact the security. In particular, Lemma 2 only guarantees
the hardness of the NTWE problem if the NTRU problem with multiple sam-
ples is hard. However, for the security of a typical NTRU-based cryptosystem,
it is sufficient that the single sample NTRU problem is hard. However, we do
not believe this difference to have any significant effect on the security of the
system.

Furthermore, the ciphertext in an NTRU-based cryptosystem is a single noisy
inner product while our ciphertext consists of two such products. Based on cur-
rent understanding, the number of such noisy products, corresponding to ring-
LWE samples, should not significantly impact how hard the products are to dis-
tinguish from uniformly random. As such, based on our current understanding,
our system parametrized in this way is IND-CPA secure if New Hope is IND-CPA
secure or if the corresponding NTRU-based system is IND-CPA secure.

7 Final Remarks

Based on our concrete hardness estimates for the NTWE problem, we
parametrize our NTWE-based cryptosystem to have performance that is compet-
itive to that of highly efficient module-LWE-based schemes. While the concrete
hardness of the NTWE problem has not been analyzed before, we argue that
its similarity to the NTRU and LWE problems provides some confidence in the
security of these parametrizations.

NTWE: A Natural Combination of NTRU and LWE 351

As with the NTRU and LWE problems, the NTWE problem also naturally
corresponds to a problem in a q-ary lattice. This NTWE lattice can be seen
as a mix between an LWE lattice and a NTRU lattice, which motivates our
belief in the hardness of the NTWE problem. We furthermore believe that any
improved algorithms against the NTWE problem are likely to have interesting
consequences for the NTRU and LWE problems as well. One possibility is that
any such algorithm is directly applicable to the NTRU and LWE problems, which
is of obvious interest. However, a specialized algorithm that is only applicable
to the NTWE problem would also be interesting, in some sense indicating that
the NTRU and LWE problems are hard, but a mix between them is easier than
we expect.

Although not as suitable for a public-key cryptosystem, a generalization of
the NTWE problem seems to even better capture this mix between the NTRU
and LWE problems. An instance from this generalized problem is given by
(A,B = (AS + E)F

−1
) for F ← (ψt×t)∗, A ← U(Rh×k

q), S ← ψk×t and
E ← ψk×t. With k = 0, this is exactly a rank t module-NTRU instance while
the problem with t = 1 is a rank k NTWE instance. By instead considering
the problem with n = 1 and t = 1, this problem is essentially the same as an
unstructured LWE problem with secret dimension k.

The natural lattice for all of these instances is spanned by the columns of
⎡

⎣
qI A B
0 I 0
0 0 I

⎤

⎦

where A,B are the integer matrix corresponding to A and B. In this full class
of problems, the solution is given by a short vector in this lattice, with the length
of the target vector only dependent on the lattice dimension. As such, by current
understanding, there should be no significant difference in how hard these lattice
problems are to solve if hn and (k + t)n are constant.

We believe that any algorithm against some version of this problem may
provide interesting insights for other versions of this problem. In particular, an
algorithm that is relevant against either the NTRU or the LWE problem, but
not the other, will be applicable to some versions of this generalized NTWE
problem. Investigating which versions such an algorithm is applicable to could
potentially give a better understanding of the limitations and possibilities of
such an algorithm. For example, it may be interesting to investigate how attacks
against overstretched NTRU parameters fare against this larger class of problems
and if such an attack can be used against versions of this problem that are more
similar to the LWE problem.

Acknowledgment. This research has been supported in part by the Swedish Armed
Forces and was conducted at KTH Center for Cyber Defense and Information Security
(CDIS). The author would like to thank Johan H̊astad and Martin Eker̊a for their
helpful feedback and comments.

352 J. Gärtner

References

1. Albrecht, M., Ducas, L.: Lattice attacks on NTRU and LWE: a history of refine-
ments. Cryptology ePrint Archive, Report 2021/799 (2021). https://eprint.iacr.
org/2021/799

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016: 25th USENIX
Security Symposium, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX
Association (2016)

3. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, USA, 10–
12 January 2016, pp. 10–24. ACM-SIAM (2016)

4. Bernstein, D.J., et al.: NTRU prime. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions

5. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness
II: practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360
(2016). https://eprint.iacr.org/2016/360

6. Chen, C., et al.: NTRU. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions

7. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Université Paris Diderot (2013). 2013PA077242

8. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices. In: Sun, H.-M., Shieh, S.-P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 2020: 15th ACM Symposium on Information,
Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020, pp.
853–866. ACM Press (2020)

9. Ducas, L., Pulles, L.: Does the dual-sieve attack on learning with errors even work?
Cryptology ePrint Archive, Report 2023/302 (2023). https://eprint.iacr.org/2023/
302

10. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 1

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

12. Guo, Q., Johansson, T.: Faster dual lattice attacks for solving LWE with applica-
tions to CRYSTALS. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13093, pp. 33–62. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92068-5 2

13. Gärtner, J.: Concrete security from worst-case to average-case lattice reductions.
Cryptology ePrint Archive, Paper 2023/947 (2023). https://eprint.iacr.org/2023/
947

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key crypto-
system. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

https://eprint.iacr.org/2021/799
https://eprint.iacr.org/2021/799
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2016/360
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2023/302
https://eprint.iacr.org/2023/302
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-92068-5_2
https://doi.org/10.1007/978-3-030-92068-5_2
https://eprint.iacr.org/2023/947
https://eprint.iacr.org/2023/947
https://doi.org/10.1007/BFb0054868

NTWE: A Natural Combination of NTRU and LWE 353

15. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

16. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Cryptology ePrint Archive, Report 2012/230 (2012). https://eprint.iacr.
org/2012/230

18. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019). https://tches.iacr.org/
index.php/TCHES/article/view/8293

19. MATZOV: Report on the security of LWE: improved dual lattice attack. Technical
report, MATZOV (2022)

20. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015). https://eprint.iacr.org/2015/939

21. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–35. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 1

22. Regev, O.: On lattices, learning with errors, random linear codes, and crypto-
graphy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on The-
ory of Computing, Baltimore, MA, USA, 22–24 May 2005, pp. 84–93. ACM Press
(2005)

23. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1), 181–199 (1994). https://
doi.org/10.1007/BF01581144

24. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53(2), 201–224 (1987)

25. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022

26. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

27. Wang, Y., Wang, M.: Provably secure NTRUEncrypt over any cyclotomic field.
In: Cid, C., Jacobson, M.J., Jr. (eds.) SAC 2018. LNSC, vol. 11349, pp. 391–417.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7 18

https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-19074-2_21
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://eprint.iacr.org/2015/939
https://doi.org/10.1007/978-3-030-92062-3_1
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-030-10970-7_18

Multivariate Cryptography

Fast Enumeration Algorithm
for Multivariate Polynomials
over General Finite Fields

Hiroki Furue(B) and Tsuyoshi Takagi

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
{furue-hiroki261,takagi}@g.ecc.u-tokyo.ac.jp

Abstract. The enumeration of all outputs of a given multivariate poly-
nomial is a fundamental mathematical problem and is incorporated in
some algebraic attacks on multivariate public key cryptosystems. For a
degree-d polynomial in n variables over the finite field with q elements,
solving the enumeration problem classically requires O

((
n+d

d

) · qn
)

oper-
ations. At CHES 2010, Bouillaguet et al. proposed a fast enumeration
algorithm over the binary field F2. Their proposed algorithm covers all
the inputs of a given polynomial following the order of Gray codes and
is completed by O(d · 2n) bit operations. However, to the best of our
knowledge, a result achieving the equivalent efficiency in general finite
fields is yet to be proposed.

In this study, we propose a novel algorithm that enumerates all the
outputs of a degree-d polynomial in n variables over Fq with a prime num-
ber q by O(d · qn) operations. The proposed algorithm is constructed by
using a lexicographic order instead of Gray codes to cover all the inputs.
This result can be seen as an extension of the result of Bouillaguet et al.
to general finite fields and is almost optimal in terms of time complex-
ity. We can naturally apply the proposed algorithm to the case where q
is a prime power. Notably, our enumeration algorithm differs from the
algorithm by Bouillaguet et al. even in the case of q = 2.

Keywords: multivariate polynomial · finite fields · enumeration
algorithm · exhaustive search · MQ problem · MPKC

1 Introduction

Currently used public key cryptosystems such as RSA and ECC can be broken
in polynomial time by Shor’s algorithm [19] using a quantum computer. Thus,
the amount of research conducted on post-quantum cryptography (PQC), which
is secure against quantum computing attacks, has been accelerating. Indeed, the
U.S. National Institute for Standards and Technology (NIST) has initiated a
PQC standardization project [18]. Among various PQC candidates, multivari-
ate public key cryptosystem (MPKC) is one of the main categories. MPKCs
are cryptosystems constructed based on the difficulty of solving a system of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 357–378, 2023.
https://doi.org/10.1007/978-3-031-40003-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_13

358 H. Furue and T. Takagi

multivariate quadratic polynomial equations over a finite field (the multivariate
quadratic (MQ) problem). The MQ problem is proven to be NP-complete [14]
and is thus likely to be secure against quantum computers.

The security of MPKCs is strongly dependent on the difficulty of solving
some algebraic problems in addition to the MQ problem. Especially, there have
been proposed many key recovery attacks on MPKCs solving the MinRank prob-
lem [2,5,15,20,21], which finds one low-rank matrix from linear combinations of
given matrices. An enumeration problem is also one of the algebraic problems
relevant to the security of MPKCs. The enumeration problem is defined over
the finite field Fq with a prime power q as follows: Given a single-degree-d poly-
nomial f in Fq[x1, . . . , xn], evaluate f over all the points in F

n
q (to find all the

zeros of f). Indeed, there exist many algebraic attacks partly using enumera-
tion algorithms, such as the hybrid approach [1,11], Crossbred algorithm [16],
claw finding attack [4], and polynomial XL [13]. Therefore, improving the com-
plexity of solving the enumeration problem directly improves the complexity of
some algebraic attacks on MPKCs and strongly affects the security of MPKCs.
In the rest of this paper, we focus on the theoretical asymptotic complexity of
algorithms for solving the enumeration problems.

Fast Exhaustive Search over F2. At CHES 2010, Bouillaguet et al. [9] pro-
posed a fast enumeration algorithm in F2 and a way of solving non-linear systems
using this enumeration algorithm. Given a single-degree-d polynomial in n vari-
ables over F2, their enumeration algorithm requires O(d ·2n) bit operations. This
complexity is smaller than that of the classical exhaustive search O

((
n
d

) · 2n
)
.

In their algorithms, all the inputs are covered in the order of Gray codes. Here,
Gray codes are orderings of the elements of Fn

2 such that two consecutive ele-
ments differ in only one bit. For consecutive two elements x0 and x1 in the order
of Gray codes, which only differs in the k-th bit, their enumeration algorithm
computes the output f(x1) as follows using the derivative ∂kf with respect to
the k-th variable

f(x1) = f(x0) + ∂kf(x0),

where + denotes addition in the binary field. By using this method recursively,
outputs can be updated by O (d) bit operations. Efficient implementations of
their proposed algorithms are given in [8,10].

Our study aims to extend the results of Bouillaguet et al. to general finite
fields. In [9], their enumeration algorithm uses one property of polynomials over
F2 such that derivatives ∂kf do not include the variable xk because polynomials
over F2 are represented as a sum of monomials where the exponent of each vari-
able is at most one (due to x2

i = xi). Such a property does not hold over general
finite fields, and this renders naturally extending the results of Bouillaguet et
al. to general finite fields difficult. In [22], the authors proposed a practical enu-
meration algorithm in F3 with the Gray code order, but their algorithm requires
more than O(d) operations for each input.

Our Contributions. We propose a novel efficient enumeration algorithm over
general finite fields Fq with a prime number q. Given a single-degree-d polyno-
mial in n variables over Fq, the proposed algorithm enumerates all the outputs of

Fast Enumeration Algorithm for Multivariate Polynomials 359

the given polynomial by O (d · qn) operations after an initialization phase with
O

((
n+d

d

)2)
operations. This result achieves efficiency comparable to the enu-

meration algorithm proposed by Bouillaguet et al. Furthermore, we also show
a method of applying the proposed algorithm to the case of Fpr with a prime
number p and a positive integer r in Remark 3.

From a theoretical point of view, the main difference between the proposed
enumeration algorithm and one of Bouillaguet et al. is the order to cover all the
inputs F

n
q . The proposed algorithm uses a lexicographic order instead of Gray

codes. For example, in the case of q = 3 and n = 2, all the inputs are ordered
as follows: (0, 0) → (0, 1) → (0, 2) → (1, 0) → (1, 1) → (1, 2) → (2, 0) → (2, 1) →
(2, 2). However, unlike the algorithm proposed by Bouillaguet et al., we de not
compute all the outputs by adding some derivatives into the output to the last
input. In the proposed algorithm, if an input has the form (x1, . . . , xk, 0, . . . , 0)
with xk �= 0, then the output to (x1, . . . , xk, 0, . . . , 0) is computed as follows:

f(x1, . . . , xk, 0, . . . , 0) =
f(x1, . . . , xk − 1, 0, . . . , 0) + ∂kf(x1, . . . , xk − 1, 0, . . . , 0).

The proposed algorithm following this rule covers all the inputs by a branching
structure, unlike the algorithm proposed by Bouillaguet et al. (See Fig. 1 in
Subsect. 4.2.) We then can achieve the time complexity limited to a small value
as that proposed by Bouillaguet et al. Note that our enumeration algorithm
differs from the algorithm proposed by Bouillaguet et al. even in the case of
q = 2.

From a practical point of view, as we mentioned above, our enumeration
algorithm can revise the complexity of attacks including the enumeration part,
such as the claw finding attack, Crossbred, and polynomial XL, in finite fields
with odd characteristics. This has an impact on MPKCs since some multivariate-
based signature schemes in finite fields with odd characteristics have been pro-
posed recently [3,12]. Furthermore, by using the method proposed in [9], our
enumeration algorithm can be applied to solve systems of polynomial equations,
and its complexity is estimated as O

(
d2 · log n · qn

)
. (See Remark 4.)

We finally discuss the optimality of the proposed enumeration algorithm in
terms of time complexity. A lower bound of the complexity of the exhaustive
search is conjectured to be O (qn) because outputs have to be computed qn

times for all the inputs in F
n
q . Therefore, in the case of d � n, the proposed

enumeration algorithm with O (d · qn) operations can be considered to be almost
optimal in terms of time complexity.

Organizations. Section 2 reviews a classical enumeration algorithm and its
complexity. After describing the enumeration algorithm proposed by Bouillaguet
et al. in Sect. 3, the proposed algorithm is detailed in Sect. 4. Finally, Sect. 5
presents the conclusion, which summarizes the key points and suggests possible
future directions.

360 H. Furue and T. Takagi

2 Classical Approach

Let q be a prime power, and n and d be positive integers. This section deals
with the enumeration problem on a polynomial f ∈ Fq[x1, . . . , xn] with degree
d. The conventional method to solve the enumeration problem is to evaluate the
given polynomial f at all the points of Fn

q . This section explains the conventional
approach and its complexity.

Given a polynomial f in n variables with degree d, f can be decomposed as
follows:

f(x1, . . . , xn) = x1 · f1(x1, . . . , xn) + f2(x2, . . . , xn), (2.1)

where the degrees of f1(x1, . . . , xn) and f2(x2, . . . , xn) are at most d − 1 and
d, respectively. Then, the output f(x1, . . . , xn) can be obtained by evaluating
f1(x1, . . . , xn) and f2(x2, . . . , xn). Therefore, the enumeration problem in n vari-
ables with degree d can be reduced to the problem in n variables with degree
d− 1 and the problem in n− 1 variables with degree d. From the discussion, the
following theorem can be explained for evaluating complexity.

Lemma 1. Let f be a polynomial in n variables with degree d over Fq. Denoting
by T (n, d) an upper bound of the number of additions and multiplications over
Fq for the evaluation of f for any input with the aforementioned approach, we
have

T (n, d) = 2 ·
((

n+d
d

) − 1
)

. (2.2)

Proof. The aforementioned statement can be proved by induction. We have
T (n, 0) = 0 and T (0, d) = 0, which satisfy the aforementioned statement. We
assume that, for n, d ≥ 1, T (n, d − 1) and T (n − 1, d) satisfy Eq. (2.2). Since
we have T (n, d) = T (n, d − 1) + T (n − 1, d) + 2 from Eq. (2.1), the following
equation can be obtained:

T (n, d) = 2 ·
((

n+d−1
d−1

) − 1
)

+ 2 ·
((

n−1+d
d

) − 1
)

+ 2

= 2 ·
((

n+d−1
d−1

)
+

(
n+d−1

d

) − 1
)

= 2 ·
((

n+d
d

) − 1
)

.

Thus, we confirmed T (n, d) satisfies Eq. (2.2), and the aforementioned statement
holds for any n and d. ��

From this lemma, the time complexity of the evaluation of f at each point
of Fn

q is given as O
((

n+d
d

))
. Therefore, the complexity of the classical approach

to the enumeration problem is given as follows:

O
((

n+d
d

) · qn
)

.

Fast Enumeration Algorithm for Multivariate Polynomials 361

3 Enumeration Algorithm of Bouillaguet et al.

This section describes an enumeration algorithm over the binary field proposed
by Bouillaguet et al. [9]. After presenting some notations, we describe their
enumeration algorithm in Subsect. 3.2. We change some notations from [9] for
readability and consistency with the description of the proposed algorithm in
Sect. 4.

3.1 Notations

We here give some notations about the vector space over the binary field, Gray
codes, and Derivatives. These Gray codes and derivatives play crucial roles in
their enumeration algorithm given in Subsect. 3.2.

Binary Vector. For the n-dimensional vector space F
n
2 over the binary field, the

indices are allocated from 1 to n from the most left bit to the most right bit
such as (x1, . . . , xn). For a vector a ∈ F

n
2 and two integers 0 ≤ i ≤ 2n − 1 and

1 ≤ k ≤ n, we use the following notations:

– i(2): an n-dimensional vector over F2 representing i in base-2
– ek: the k-th canonical basis vector in F

n
2

– a � k (resp. a
 k): the binary left (resp. right) shift of a vector a by k bits.
– ρ(a) (resp. σ(a)): the index of the most left (resp. right) nonzero bit of a (If

a = 0, then ρ(a) = σ(a) = 0.)

Gray Codes. The Gray code is an ordering of the binary vector space such
that two successive values differ in only one bit. For the vector space F

n
2 , several

orderings satisfy the aforementioned condition. However, in this study, we defined
the Gray code GC(i) for 0 ≤ i ≤ 2n − 1 uniquely as follows:

GC(i) = i(2) + (i(2)
 1). (3.1)

Then, it can be easily confirmed that GC(i) and GC(i+1) differ in only one bit.

Derivatives. Finally, for an integer 1 ≤ k ≤ n, F2 derivative ∂kf is defined as
follows:

∂kf(x) = f(x + ek) + f(x).

We can easily confirm that if the degree of f is d, then that of ∂kf is at most
d − 1. For a ∈ Z≥0, ∂a

kf denotes the a-th derivative of f with respect to xk, and
for a = (a1, . . . , an) ∈ Z

n
≥0, ∂af = ∂a1

1 ◦ · · · ◦ ∂an
n f .

362 H. Furue and T. Takagi

3.2 Enumeration Algorithm

This subsection recalls an enumeration algorithm proposed in [9]. The input f
is a polynomial in F2[x1, . . . , xn] with degree d.

First, a method of storing some information through the enumeration is given.
For any a = (a1, . . . , an) ∈ Z

n
≥0 with |a| =

∑n
i=1 ai ≤ d, D[a] contains the

information of the derivative ∂af . Here, a is restricted by |a| ≤ d because ∂af = 0
for any a with |a| > d. In their enumeration algorithm, three values can be read
from D[a]: D[a].x ∈ F

n
2 , D[a].y ∈ F2, and D[a].i ∈ Z≥0. These invariants satisfy

relationships that D[a].y = ∂af(D[a].x) and D[a].i is used to update D[a].x.
The enumeration algorithm is composed of three functions: INIT, MAIN, and

NEXT. The main function MAIN first performs INIT and sets the initial values
of each derivative. After the initialization phase, MAIN derives the outputs of f
from D and uses NEXT to update D at each point. See Algorithm 1, 2, and 3
for details.

The main idea of this algorithm is to update the input x of f following Gray
codes and obtain f(x + ei) by adding a derivative ∂if(x) into f(x). Such a
construction is feasible because two successive values differ in only one bit in
the Gray code order. In the following, we show a way of evaluating ∂if for some
inputs to update f . From the definition of the Gray code in Eq. (3.1), we have
the following equation:

GC(i + 1) = GC(i) + eσ((i+1)(2)).

From this equation, GC(i + 1) is equal to GC(i) + ek in the case where i =
j ·2n−k+1 +2n−k −1 with 0 ≤ j ≤ 2k−1 −1. Namely, the enumeration algorithm
requires the output of ∂kf at each point

(
j · 2n−k+1 + 2n−k − 1

)
(2)

for 0 ≤ j ≤
2k−1 − 1. The following lemma can be easily derived from Lemma 3 in [9]

Lemma 2. For 0 ≤ j ≤ 2k−1 − 1,

GC
(
j · 2n−k+1 + 2n−k − 1

)
=

{
GC(2n−k − 1) + (GC(j) � (n − k + 1)) (j is even)
GC(2n−k − 1) + (GC(j) � (n − k + 1)) + ek (j is odd) .

From this lemma, the first (k − 1) bits of GC
(
j · 2n−k+1 + 2n−k − 1

)
for 0 ≤

j ≤ 2k−1 − 1 behaves like Gray codes in (k − 1) variables, and the last (n −
k) bits of them are constants. The k-th bit of GC

(
j · 2n−k+1 + 2n−k − 1

)
is

determined by the parity of j. However, the k-th bit does not affect the value
of ∂kf

(
GC

(
j · 2n−k+1 + 2n−k − 1

))
because we have ∂kf(x + ek) = ∂kf(x) for

any x. Therefore, ∂kf
(
GC

(
j · 2n−k+1 + 2n−k − 1

))
for 0 ≤ j ≤ 2k−1 − 1 can

be enumerated in the order of Gray codes in the first (k − 1) variables. By
applying this reduction recursively, the enumeration in the Gray code order can
be realized for any ∂af with |a| ≤ d.

Following Theorem 1 in [9], the time and space complexities of the enumer-
ation algorithm of Bouillaguet et al. are estimated as follows:

Fast Enumeration Algorithm for Multivariate Polynomials 363

Algorithm 1. MAIN(f)
1: D ← INIT(D, f,0,0)
2: for i = 0, . . . , 2n − 1 do
3: “f (D[0].x) = D[0].y”
4: D ← NEXT(D,0)
5: end for

Algorithm 2. INIT(D, f,a,x0)
1: D[a].i ← 0
2: D[a].x ← x0

3: D[a].y ← f(x0)
4: if |a| < d then
5: k0 ← ρ(a) (k0 ← n + 1 if a = 0.)
6: for k = 1, . . . , k0 − 1 do
7: D ← INIT(D, ∂kf,a + ek,x0 + ek+1) (en+1 = 0)
8: end for
9: end if

10: return D

Algorithm 3. NEXT(D,a)
1: D[a].i ← D[a].i + 1
2: k ← ρ(a) + σ((D[a].i)(2)) − n − 1
3: D[a].x ← D[a].x + ek

4: D[a].y ← D[a].y + D[a + ek].y
5: if |a| < d − 1 then
6: D ← NEXT(D,a + ek)
7: end if
8: return D

Theorem 1. All the zeros of a single polynomial f in n variables with degree
d over the binary field can be found in essentially O (d · 2n) bit operations,
using O

(
nd

)
bits memory, after an initialization phase of negligible complex-

ity O
(
n2d

)
.

Remark 1 (Case of Fq with a prime number q �= 2). It is critical to consider the
extension of the enumeration algorithm in Subsect. 3.2 to general finite fields
Fq with a prime number q �= 2. Indeed, there exist Gray codes over Fq called q-
array Gray codes, and derivatives are feasible over Fq. However, the enumeration
algorithm of Bouillaguet et al. cannot be simply extended to Fq.

Subsection 3.2 reveals that some outputs of ∂kf required to enumerate f
can be enumerated in the order of Gray codes. A similar result as Lemma 2
holds in Fq with q �= 2. However, it does not hold that ∂kf(x+ ek) = ∂kf(x) in
Fq, and thus, some required outputs of ∂kf cannot be enumerated using Gray
codes in the first (k−1) variables. Therefore, applying the proposed enumeration
recursively for a polynomial in Fq is difficult.

364 H. Furue and T. Takagi

4 Our Proposed Algorithms

This section proposes a novel efficient enumeration algorithm on a degree-d poly-
nomial f ∈ Fq[x1, . . . , xn] with a prime number q. This section is organized
as follows: Subsect. 4.1 prepares some notations. Subsection 4.2 explains the
order used in the proposed algorithm instead of Gray codes. Subsection 4.3
introduces the data structure used in the proposed algorithm. Subsection 4.4
prepares a function to classify the inputs used in the main algorithm. Subsec-
tion 4.5 describes the details of the proposed algorithm. Subsection 4.6 discusses
the time and space complexities.

4.1 Notations

This subsection gives some notations for the proposed enumeration algorithm
over Fq as in Subsect. 3.1 for the enumeration algorithm of Bouillaguet et al.

For the n-dimensional vector space over the finite field Fq, the indices are
allocated from 1 to n from the most left bit to the most right bit as described
in Sect. 3. For a vector a ∈ F

n
q and two integers 0 ≤ i ≤ qn − 1 and 1 ≤ k ≤ n,

we use the following notations

– ek: the k-th canonical basis vector in F
n
q

– ρ(a): the index of the most left nonzero bit of a (If a = 0, then ρ(a) = n.)

Furthermore, derivatives over Fq are defined as follows: For an integer 1 ≤
k ≤ n, the Fq derivative ∂kf(x) for x ∈ F

n
q is

∂kf(x) = f(x + ek) − f(x).

For example, given f(x1, x2) = 2x2
1 + x1x2 + x1 + 2 ∈ F3[x1, x2], it holds

∂1f(x1, x2) = x1 + x2. As in the case of F2, if the degree of f is d, then that of
∂kf is at most d − 1. For a ∈ Z≥0, ∂a

kf denotes the a-th derivative of f with
respect to xk, and for a = (a1, . . . , an) ∈ Z

n
≥0, ∂af = ∂a1

1 ◦ · · · ◦ ∂an
n f .

4.2 Enumeration Order

We here introduce the order in all inputs F
n
q used to enumerate a given polyno-

mial in the proposed algorithm. The enumeration of Bouillaguet et al. computes
all the outputs of a polynomial consecutively in the order of Gray codes. On the
other hand, the proposed algorithm follows a different order from Gray codes, a
lexicographic order.

The proposed algorithm enumerates all the inputs in F
n
q following the a

lexicographic order starting from (0, . . . , 0) to (q − 1, . . . , q − 1) as follows:

(0, . . . , 0) → (0, . . . , 0, 1) → · · · → (0, . . . , 0, q − 1) →
(0, . . . , 0, 1, 0) → · · · → (0, . . . , 0, 1, q − 1) →

...
(q − 1, . . . , q − 1, 0) → · · · → (q − 1, . . . , q − 1).

Fast Enumeration Algorithm for Multivariate Polynomials 365

We then compute all the outputs in this order as follows: We first prepare f(0)
as an initial point. For any input with the form of (x1, . . . , xk, 0, . . . , 0) with
xk �= 0, the output is computed by

f(x1, . . . , xk, 0, . . . , 0) =
f(x1, . . . , xk − 1, 0, . . . , 0) + ∂kf(x1, . . . , xk − 1, 0, . . . , 0),

(4.1)

using derivatives ∂kf . If we have the value of ∂kf(x1, . . . , xk − 1, 0, . . . , 0), then
this computation is clearly feasible since the value of f(x1, . . . , xk −1, 0, . . . , 0) is
computed before the computation of f(x1, . . . , xk, 0, . . . , 0) in the lexicographic
order. In the rest of this paper, we call by a lexicographic order the order given
above including the way of computation with derivatives like Eq. (4.1).

We also use the lexicographic order to enumerate each derivative ∂af with
a ∈ Z

n
≥0. More specifically, we update ∂af as follows:

∂af(x1, . . . , xk, 0, . . . , 0) =

∂af(x1, . . . , xk − 1, 0, . . . , 0) + ∂a+ekf(x1, . . . , xk − 1, 0, . . . , 0),
(4.2)

as in Eq. (4.1) for any input (x1, . . . , xk, 0, . . . , 0) ∈ Aa with xk �= 0. To realize
the enumeration of f , it is not necessary to evaluate ∂af at all the inputs in
F

n
q . Indeed, in the example on f ∈ F3[x1, x2], ∂1f and ∂2f are only evaluated at

(0, 0), (1, 0) and (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), respectively. (See Fig. 1.)
For any a = (a1, . . . , an) ∈ Z

n
≥0 with |a| ≤ d satisfying a1, . . . , aα−1 = 0 and

aα �= 0, we then can define the subset Aa ⊆ F
n
q composed by elements at which

the proposed algorithm evaluates ∂af as follows:

Aa = {(x1, . . . , xα, 0, . . . , 0) | x1, . . . , xα−1 ∈ Fq, xα ∈ {0, . . . , q−aα−1}}. (4.3)

Lemma 3. For a given function f in n variables with degree d over Fq, our
enumeration described in Eq. (4.2) requires outputs of ∂af at Aa for any a ∈ Z

n
≥0

with |a| ≤ d.

Proof. First, we can clearly confirm the following two points:

– For any a ∈ Z
n
≥0, Aa can be covered by the lexicographic order.

– A0 = F
n
q .

The first point means that for any (x1, . . . , xk, 0, . . . , 0) ∈ Aa with xk �= 0, we
have (x1, . . . , xk − 1, 0, . . . , 0) ∈ Aa from the definition of Aa in Eq. (4.3). The
second point satisfies our purpose of evaluating f at all the inputs in F

n
q . We then

can confirm that to obtain the outputs of ∂af on Aa where a = (a1, . . . , an) ∈
Z

n
≥0 with |a| < d satisfying a1, . . . , aα−1 = 0 and aα �= 0, our enumeration in the

lexicographic order requires the outputs of ∂a+ekf on Aa+ek
for any 1 ≤ k ≤ α

from Eq. (4.2). Note that outputs of ∂a+ekf with 1 ≤ k ≤ α are used only to
update ∂af . From these discussions, we can confirm the correctness of the above
statement. ��

366 H. Furue and T. Takagi

Fig. 1. The order of our proposed enumeration on a polynomial f ∈ F3[x1, x2] with
degree 2.

We finally prepare some subsets of Aa to realize our enumeration in the
lexicographic order. For any a = (a1, . . . , an) ∈ Z

n
≥0 with |a| ≤ d satisfying

a1, . . . , aα−1 = 0 and aα �= 0, we define subsets Ba
1 , . . . , Ba

α of Aa as follows:

Ba
1 = {(x1, 0, . . . , 0) | x1 ∈ Fq},

Ba
i = {(x1, . . . , xi, 0, . . . , 0) | x1, . . . , xi−1 ∈ Fq, xi �= 0}. (2 ≤ i ≤ α − 1), (4.4)

Ba
α = {(x1, . . . , xα, 0, . . . , 0) | x1, . . . , xα−1 ∈ Fq, xα ∈ {1, . . . , q − aα − 1}}.

We then have Ba
i ∩ Ba

j = φ if i �= j and Ba
1 ∪ · · · ∪ Ba

α = Aa. In the proposed
algorithm given in Subsect. 4.5 below, outputs for inputs in each Ba

i are stored
separately to realize the branching structure due to the lexicographic order. (See
Fig. 1.)

Remark 2. This remark shows the difference of our lexicographic order and Gray
codes used in the enumeration algorithm of Bouillaguet et al. for a polynomial
over the binary field F2. Figure 2 shows the difference of enumerating all the
outputs f ∈ F2 in two variables. As displayed in Fig. 2, our enumeration order
computes f(0, 1) and f(1, 0) by adding derivatives into f(0, 0) and computes
f(1, 1) from f(1, 0). By contrast, the enumeration of Bouillaguet et al. computes
all the outputs in the order f(0, 1), f(0, 1), f(0, 1), f(0, 1) successively. These
examples indicate that the enumeration order and Gray codes are definitely
different even in the case of the binary field.

4.3 Data Structure

Our proposed algorithm uses a different way of holding some data from the
enumeration algorithm of Bouillaguet et al. For any a = (a1, . . . , an) ∈ Z

n
≥0 with

|a| ≤ d, D[a] corresponding to the derivative ∂af stores the following values

– α (= ρ(a)): the index of the most left nonzero elements of a (If a = 0, then
α = n.),

Fast Enumeration Algorithm for Multivariate Polynomials 367

Fig. 2. Comparison of the order to cover all the outputs of f ∈ F2[x1, x2] in our
enumeration order and Gray codes

– y1, . . . , yα ∈ Fq: an output of ∂af for an input as an element of each
Ba

1 , . . . , Ba
α,

– i ∈ {1, . . . , α}: the index that indicates that the input is an element of Ba
i ,

– t = (t1, . . . , tn) ∈ {0, . . . , n − 1}n, u = (u1, . . . , un) ∈ {0, . . . , q − 1}n: two
vectors used in the classification of elements of Aa into the subsets Ba

1 , . . . , Ba
α.

Compared with the data structure used in the enumeration by Bouillaguet et al.,
we add some data to realize the enumeration in the lexicographic order given
in Subsect. 4.2. Note that these additional data only provide a small cost of
memory complexity as discussed in Subsect. 4.6 below.

4.4 Successive Classification of Inputs

We here prepare a subroutine CLASS used in the main algorithm described in
Subsect. 4.5 below. This CLASS classifies given elements of Aa into the subsets
Ba

1 , . . . , Ba
α defined in Eq. (4.4) successively in the lexicographic order in constant

time. This computation is mainly equivalent to the successive computation of
the index of the most right nonzero bit for vectors in F

n−1
q in the lexicographic

order due to the definition of Ba
1 , . . . , Ba

α. The following algorithm is constructed
by revising an algorithm for Gray codes proposed in [6].

We first describe a way of successively computing the index of the lowest
nonzero bit for vectors in F

n−1
q using a stack as the data structure. A stack is

an abstract data type with two main operations as follows: push which adds
an element to the collection and pop which removes the most recently added
element. For a stack and u1, . . . , un−1 ∈ {0, . . . , q−1}, the computation is realized
as follows: The stack initially contains 1, . . . , n− 1 with the n− 1 on top and we
set u1 = · · · = un−1 = 0. Next, the top element i is popped off and added into
the sequence of the index to be found. If ai < q−2, then the elements i, . . . , n−1
are pushed onto the stack and we increase ui by one. If ai = q − 2, then the
elements i+1, . . . , n−1 are pushed onto the stack and we set ui = 0. Comparing
this algorithm with the algorithm proposed in [6], we introduce u1, . . . , un−1 to
represent the structure of the base-q positional system.

In the above algorithm, the stack can be replaced by an array t1, . . . , tn ∈
{0, . . . , n − 1}. For this array, tj denotes the element below j on the stack if j is
on the stack, tj is set as j − 1 if j is not on the stack, and tn points to the top

368 H. Furue and T. Takagi

Algorithm 4. CLASS (a = (a1, . . . , an), α, (t1, . . . , tn), (u1, . . . , un))
1: if un < q − aα − 1 then
2: i ← n
3: un ← un + 1
4: else
5: i ← tn

6: if α + i − n = 0 then
7: return 0, (t1, . . . , tn), (u1, . . . , un)
8: end if
9: un ← 0

10: tn ← n − 1
11: if ui < q − 2 then
12: ui ← ui + 1
13: else
14: ti+1 ← ti

15: ti ← i − 1
16: ui ← 0
17: end if
18: end if
19: return α + i − n, (t1, . . . , tn), (u1, . . . , un)

element of the stack. By following these rules, the way of updating the stack is
changed as follows: If ui < q − 2, then we set tn = n − 1. On the other hand,
in the case of ui = q − 2, we set tn = n − 1, ti+1 = ti, and ti = i − 1 since i is
removed from the top and i + 1, . . . , n − 1 are pushed onto the top.

Then, our classification algorithm is constructed by combining the above
algorithm with t1, . . . , tn and u1, . . . , un−1 and one counter un ∈ {0, . . . , q − 1}
to represent the structure of Aa. In Aa, only the D[a].α-th bit is carried up by
q −aD[a].α from the definition, and un represents the value of this D[a].α-th bit.
In the case where un = q − aD[a].α − 1, we carry up the D[a].α-th bit, that is,
we update t1, . . . , tn and u1, . . . , un−1 and set un = 0. By contrast, in the case
where un < q − aD[a].α − 1, we increase un by one and output D[a].α as the
index of Ba

1 , . . . , Ba
D[a].α.

Finally, we describe our classification algorithm CLASS. After two arrays
t1, . . . , tn and u1, . . . , un are initially set as (0, 1, . . . , n−1) and (0, . . . , 0), respec-
tively, following the above discussion, these arrays are updated each time through
CLASS. Other than these arrays, a = (a1, . . . , an) and α following the notation
in Subsect. 4.3 are included in the inputs. The outputs are given as the clas-
sification index of Ba

i and the updated two arrays. (See Algorithm 4 for more
details.)

4.5 Our Enumeration Algorithm

This subsection describes the proposed efficient enumeration algorithm over
finite fields Fq. As in the enumeration of Bouillaguet et al. in Subsect. 3.2, the
proposed enumeration algorithm is composed of three functions, namely MAIN,

Fast Enumeration Algorithm for Multivariate Polynomials 369

INIT, and NEXT. In the following, we will describe these three algorithms. See
Algorithm 5, 6, and 7 for more details.

Algorithm 5. MAIN(f)
1: D ← INIT(D, f,0)
2: for x ∈ F

n
q (in the lexicographic order) do

3: “f (x) = D[0].yD[0].i”
4: D ← NEXT(D,0)
5: end for

Algorithm 6. INIT(D, f,a)
1: D[a].α ← ρ(a)
2: D[a].t ← (0, 1, . . . , n − 1)
3: D[a].u ← (0, . . . , 0)
4: D[a].i ← 1
5: if |a| < d then
6: D[a].y1 ← f(0)
7: for k = 1, . . . , α do
8: D ← INIT(D, ∂kf,a + ek)
9: end for

10: else
11: D[a].y1, . . . , yα ← f(0)
12: end if
13: return D

Algorithm 7. NEXT(D,a = (a1, . . . , an))
1: D[a].i, D[a].t, D[a].u ← CLASS(a, D[a].α, D[a].t, D[a].u)
2: if |a| < d and D[a].i �= 0 then
3: i′ ← D[a + e(D[a].i)].i
4: D[a].y(D[a].i) ← D[a].yi′ + D[a + e(D[a].i)].yi′

5: D ← NEXT(D,a + e(D[a].i))
6: end if
7: return D

MAIN. From Algorithm 1, our main algorithm differs in the following two points:
First, we cover all the inputs in F

n
q in the lexicographic order. Second, from the

definition, D[0] holds n outputs y1, . . . , yn and we select one output from them as
an output of f . The value D[0].i indicates that yD[0].i is updated in the preceding
NEXT as an output for an input x. Thus, we take yD[0].i as an output in line 3.

INIT. As in Algorithm 2, the function INIT sets initial values for D[a]. Line 1
sets α following the aforementioned definition. Line 2–3 set initial values for two
arrays t and u according to the description in Subsect. 4.4. Because 0 ∈ Ba

1 , we
set i = 1 and store f(0) in y1. If |a| = d, then we store f(0) in y1, . . . , yα for
convenience. In the case where |a| < d, the function proceeds to ∂1f, . . . , ∂αf
in line 8, because, for any element of Aa, the last n − α values are always zeros
from the definition in (4.3).

370 H. Furue and T. Takagi

NEXT. First, we show the basic strategy of the function NEXT. For any a,
we shift over an input x in Aa following the lexicographic order and store an
output for the input in one of y1, . . . , yα following the definition of Ba

1 , . . . , Ba
α.

In NEXT, every time updating outputs of ∂af using ∂a+ekf as in Eq. (4.2) by
NEXT(D,a), we call NEXT(D,a+ek) and update outputs of ∂a+ekf . By doing
so, we always have the following: When we try to add ∂a+ekf(x) into ∂af(x) for
the update of ∂af , the output ∂a+ekf(x) for x is the value updated in the last
NEXT(D,a+ek). This is because every Aa is covered following the same order.

We then show a practical way of realizing the update like Eq. (4.2). The
update requires two indices i and i′ that denote

(x1, . . . , xi, 0, . . . , 0) ∈ Ba
i , (x1, . . . , xi − 1, 0, . . . , 0) ∈ Ba

i′ .

If we have these two values, then the update is realized as follows:

D[a].yi ← D[a].yi′ + D[a + ek].yi′ .

From the definition, this i is represented as D[a].i. Furthermore, from the above
discussion, this i′ is equal to the index i of D[a + ek] in the last time updating.

We finally explain the construction of Algorithm 7. We first determine the
index D[a].i by using the classification algorithm CLASS described in Sub-
sect. 4.4. In line 2–5, we update D[a].y(D[a].i), and the correctness of this part
directly follows the aforementioned discussion. If |a| = d, we do not update
D[a].y(D[a].i) in line 2–5, because ∂af is constant. However, even in this case, we
compute D[a].i for the correctness of NEXT(D,a′) with |a′| = d − 1.

4.6 Complexity

This subsection considers the time and space complexities of the initial part and
the enumeration part of the proposed algorithm in Subsect. 4.5.

Theorem 2. For a single polynomial f in n variables of degree d over Fq with
a prime number q, the enumeration algorithm proposed in Subsect. 4.5 can be
performed in O (d · qn) operations after an initialization phase of negligible com-
plexity O

((
n+d

d

)2)
using O

(
log (q · n) · n · (

n+d
d

))
bits memory.

Proof. We first consider the time complexity of INIT. The computation of deriva-
tives ∂kf in line 8 is clearly dominant in terms of the time complexity. This means
that the time complexity of INIT is estimated as that of computing ∂af for any
a ∈ Z

n
≥0 with |a| ≤ d. We here estimate that the number of a satisfying the

condition of |a| ≤ d is
(
n+d

d

)
and the number of operations required to compute

derivatives is at most O
((

n+d
d

))
. Therefore, the time complexity of the initial

phase is given as O
((

n+d
d

)2)
over Fq.

We then estimate the time complexity of the enumeration part. The func-
tion NEXT can be performed in constant time excluding the recursive part in

Fast Enumeration Algorithm for Multivariate Polynomials 371

line 5, since the function CLASS is clearly completed by constant operations
from Algorithm 4. Therefore, the time complexity of NEXT(D,0) is given as
O(d), and that of the enumeration part is estimated by O(d · qn).

Finally, the space complexity of the proposed algorithm is discussed. Through
the whole algorithm, for each a, D[a] consumes O (log (q · n) · n) bit memory
from the description in Subsect. 4.3. Therefore, the space complexity consumed
by D is given as O

(
log (q · n) · n · (

n+d
d

))
. Other than memory consumption

by D, we consider the space of derivatives ∂af consumed in INIT. From the
description of Algorithm 6, we prepare the memory that can store polynomials
of degree d to degree 0 simultaneously. The size of this memory is estimated as
follows:

log2 q ·
((

n+d
d

)
+ · · · +

(
n+1
1

)
+ 1

)
= O

(
log q · (n+d

d

))
,

when n → ∞. In conclusion, the space complexity of the proposed enumeration
algorithm is given as O

(
log (q · n) · n · (n+d

d

))
. ��

The comparison between these complexities and those of the enumeration
algorithm of Bouillaguet et al. reveals that the proposed enumeration algorithm
is as efficient as that of Bouillaguet et al. at the expense of a small amount
(O(n log n)) of memory consumption.

Remark 3 (Case of q = pr). In this paper, we only discuss the case in which the
number q of elements of the finite field is a prime number. This remark explains
a method to apply the enumeration algorithm to the case of q = pr with a prime
number p and a positive integer r.

One polynomial in n variables over Fpr can be clearly regarded as r poly-
nomials in n · r variables over Fp (i.e., if θ1, . . . , θr are basis of Fpr over Fp,
for each variable xi over Fpr , we set r variables x

(i)
1 , . . . , x

(i)
r over Fp satisfying

xi =
∑r

j=1 x
(i)
j θj). After performing this transformation, our enumeration algo-

rithm can be applied to each one of the resulting r polynomials over Fp. Then,
the time complexity is given as O (r · d · pr·n) = O (r · d · qn), whereas the space
complexity is given as O

(
r · log (p · n · r) · n · r · (n·r+d

d

))
.

Remark 4 (Application to solving polynomial equations). By using the method
proposed in [9], our enumeration algorithm can be applied to solve systems of
polynomial equations, and its complexity is estimated as O

(
d2 · log n · qn

)
. (See

Appendix A.) Unfortunately, this is not the theoretically best algorithm for
solving multivariate non-linear systems, since Lokshtanov et al. [17] proposed
an algorithm over general finite fields with the time complexity O

(
qn·(1−ε)

)
,

where ε > 0. However, our method of solving non-linear systems would be more
practical than the algorithm proposed by Lokshtanov et al. due to our simple
structure as in the FES algorithm proposed by Bouillaguet et al. [9]. We leave
optimizing our implementation as our future work.

372 H. Furue and T. Takagi

5 Conclusion

This paper proposes a novel enumeration algorithm over finite fields Fq with a
prime number q. Given a single-degree-d polynomial in n variables over Fq, the
proposed algorithm evaluates the given function at all the inputs with the time
complexity O (d · qn). The proposed enumeration algorithm is constructed by
using a lexicographic order instead of Gray codes used in the enumeration algo-
rithm by Bouillaguet et al. over F2. Compared with the enumeration algorithm
by Bouillaguet et al., the proposed method achieves the equivalent efficiency
with a small cost of memory consumption. Note that this small cost of the mem-
ory complexity is caused by our brunching structure of enumeration due to our
lexicographic order. Furthermore, the proposed algorithm can be easily applied
to the case where q is a prime power.

This paper discusses only the theoretical side, and thus one of our future
works is to realize an efficient implementation of the proposed algorithm.

Acknowledgement. This work was supported by JST CREST Grant Number
JPMJCR2113, Japan, and JSPS KAKENHI Grant Number JP22KJ0554, Japan.

A Application to Solving Polynomial Equations

In this section, we consider finding common zeros of m polynomials f1, . . . , fm

in n variables with degree d. This section first recalls a way of applying the
enumeration algorithm of Bouillaguet et al. described in Subsect. 3.2, and shows
that our enumeration algorithm in Subsect. 4.5 is also applicable. We here only
consider the case of n = m case, because if n > m, then n − m variables can be
specified, and if n < m, then we can focus on n equations as they should have a
constant number of solutions.

We here roughly describe the way of applying an enumeration algorithm to
find common zeros of f1, . . . , fn proposed in [9]. Let Zi be the set of common
zeros of f1, . . . , fi, and then it is clear that Zn is the set of the solutions of the
system. For an integer 1 ≤ k ≤ n, the proposed algorithm is described as follows:

(1) Find Zk using the enumeration algorithm on each f1, . . . , fk.
(2) Compute Zk+1, . . . , Zn one by one by substituting each value of Zi for fi+1.

The enumeration algorithm in Sect. 4 can be clearly applied to find common
zeros of f1, . . . , fn over Fq in a similar manner. In the following, we estimate the
time complexity of solving a system. As estimated in [9], the time complexity
of the first step is estimated by O (k · d · qn) from the statement of Theorem 2.
Furthermore, because the expected cardinality of Zi is qn−i, the time complexity
of the second step is given as

∑n−1
i=k

(
n+d

d

) · qn−i ≈ O
((

n+d
d

) · qn−k
)

due to the
complexity of the classical evaluation described in Sect. 2. Therefore, the optimal
k minimizing the complexity is given by solving k · d · qn =

(
n+d

d

) · qn−k, and k
is estimated by d log n when n → ∞. By substituting k = d log n in k · d · qn, the
whole complexity of solving a polynomial system is given as O

(
d2 · log n · qn

)

over Fq.

Fast Enumeration Algorithm for Multivariate Polynomials 373

B Toy Example of Our Enumeration

We give an example of the behavior of the proposed enumeration algorithm on
a concrete function. We take f = x2

1 + x1x2 + x2 + 2 ∈ F3[x1, x2] with degree
d = 2 as an input. Then, derivatives of f are computed as follows:

∂1f = 2x1 + x2 + 1,

∂2f = x1 + 1,

∂2
1f = 2,

∂1∂2f = 1,

∂2
2f = 0.

From these derivatives, for any a ∈ Z≥0 with |a| ≤ d = 2, D is obtained as
follows after INIT(D, f,0,0) in line 1 of Algorithm 5:

D[(0, 0)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (2, ·) , 1) ,

D[(1, 0)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (1, ·) , 1) ,

D[(2, 0)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 2, 1) ,

D[(1, 1)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 1, 1) ,

D[(0, 2)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (0, 0) , 1) .

Note that, for the case of a = (0, 0) and (0, 1), D[a].y2 is not determined in
INIT(D, f,0,0). In the following, we show how D is updated for each x in line
2–5 of Algorithm 5 after the aforementioned initialization phase. We here omit
D[a].α because this value is not changed through the algorithm. We also omit
values stored in D[(2, 0)], D[(1, 1)], and D[(0, 2)] because D[a].i with |a| = 2
does not change from 1 in this case due to the relationship of q and d. Here, D
is updated as follows:

x = (0, 1),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 1) , (2, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 1) , (1, 1) , 2) ,

x = (0, 2),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 2) , (2, 1) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (2, 1) , 1) ,

x = (1, 0),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (0, 1) , 1) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (2, 1) , 1) ,

374 H. Furue and T. Takagi

x = (1, 1),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 1) , (0, 2) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 1) , (2, 2) , 2) ,

x = (1, 2),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 2) , (0, 1) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 2) , 1) ,

x = (2, 0),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 1) , 1) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 2) , 1) ,

x = (2, 1),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 2) ,

x = (2, 2),
D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 2) , (0, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 0) .

Then, by seeing D[(0, 0)].
(
yD[(0,0)].i

)
for each x ∈ F

2
3, one can confirm that the

proposed algorithm enumerates the outputs of f correctly as follows:

x (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

f(x) 2 0 1 0 2 1 0 0 0

C Magma Code

We here provides a code of the proposed enumeration algorithm in Magma [7].
Note that this implementation is not an optimized one.

Listing 1.1. Magma code for the proposed algorithm

1 //q: the number of elements of the finite field
2 //n: the number of variables
3 //f: a given polynomial
4 //d: the degree of f
5

Fast Enumeration Algorithm for Multivariate Polynomials 375

6 // Given a polynomial f and an index k,
7 // compute the k-th derivative of f.
8 function deriv(f,k)
9 P<[x]>:=Parent(f);

10 n:=#x;
11 Hom := hom<P->P|[x[i]: i in [1..k-1]] cat [x[k]+1] cat [x[i]:

i in [k+1..n]]>;
12 ff:=Hom(f)-f;
13 return ff;
14 end function;
15

16 // Given a vector a representing the derivative \partial^a f and the
degree d,

17 // compute the index of data structures corresponding to the
derivatives of a.

18 function accD(a,d)
19 n:=#a;
20 b:=0;
21 c:=0;
22 for i in [1..n] do
23 b:=b+ &+([Binomial((n-i)+(d-c-j),(d-c-j)):j in [0..a[i

]-1]] cat [0]);
24 c:=c+a[i];
25 end for;
26 if c gt d then
27 return 0;
28 end if;
29 return b+1;
30 end function;
31

32 // Given a vector a,
33 // output the index of the most left nonzero bit of a.
34 function bit_a(a)
35 n:=#a;
36 for i in [1..n] do
37 if a[i] ne 0 then
38 return i;
39 end if;
40 end for;
41 return n;
42 end function;
43

44 //a: a vector representing the derivative \partial^a f
45 //D: outputs y_1,...y_\alpha for any a
46 //aa: \alpha=\rho(a) for any a
47 //ii: indices D[a].i for any a
48 //tt: vectors D[a].t for any a
49 //uu: vectors D[a].u for any a
50

51 function CLASS(q,n,d,a,aa,tt,uu)
52 k:=accD(a,d);
53 if uu[k][n] lt q-a[aa[k]]-1 then
54 i:=n;
55 uu[k][n]:=uu[k][n]+1;
56 else

376 H. Furue and T. Takagi

57 i:=tt[k][n];
58 if aa[k]+i-n eq 0 then
59 return 0, tt, uu;
60 end if;
61 uu[k][n]:=0;
62 tt[k][n]:=n-1;
63 if uu[k][i] lt q-2 then
64 uu[k][i]:=uu[k][i]+1;
65 else
66 tt[k][i+1]:=tt[k][i];
67 tt[k][i]:=i-1;
68 uu[k][i]:=0;
69 end if;
70 end if;
71 return aa[k]+i-n, tt, uu;
72 end function;
73

74 function INIT(f,a,D,d,aa)
75 P<[x]>:=Parent(f);
76 n:=#x;
77 aa[accD(a,d)]:=bit_a(a);
78 if &+[a[i]:i in [1..n]] lt d then
79 D[accD(a,d)][1]:=Evaluate(f,[0: i in [1..n]]);
80 for k in [1..aa[accD(a,d)]] do
81 ab:=a;
82 ab[k]:=ab[k]+1;
83 D,aa:=INIT(deriv(f,k),ab,D,d,aa);
84 end for;
85 else
86 DD:=Evaluate(f,[0: i in [1..n]]);
87 for i in [1..aa[accD(a,d)]] do
88 D[accD(a,d)][i]:=DD;
89 end for;
90 end if;
91 return D,aa;
92 end function;
93

94 function NEXT(q,n,d,D,a,aa,ii,tt,uu)
95 ii[accD(a,d)],tt,uu:=CLASS(q,n,d,a,aa,tt,uu);
96 if &+[a[i]:i in [1..n]] lt d and ii[accD(a,d)] ne 0 then
97 a1:=a;
98 a1[ii[accD(a,d)]]:=a1[ii[accD(a,d)]]+1;
99 i1:=ii[accD(a1,d)];

100 D[accD(a,d)][ii[accD(a,d)]]:=D[accD(a,d)][i1]+D[accD(a1,d)
][i1];

101 D,ii,tt,uu:=NEXT(q,n,d,D,a1,aa,ii,tt,uu);
102 end if;
103 return D,ii,tt,uu;
104 end function;
105

106 function MAIN(q,n,d,f)
107 P:=Parent(f);
108 K:=BaseRing(P);
109 D:=ZeroMatrix(K,Binomial(n+d,d),n);
110 aa:=[0:i in [1..Binomial(n+d,d)]];

Fast Enumeration Algorithm for Multivariate Polynomials 377

111 ii:=[1:i in [1..Binomial(n+d,d)]];
112 tt:=[[0..n-1]:i in [1..Binomial(n+d,d)]];
113 uu:=[[0: i in [1..n]]:i in [1..Binomial(n+d,d)]];
114 D,aa:=INIT(f,[0:i in [1..n]],D,d,aa);
115 solution:=[];
116 for i in [0..q^n-1] do
117 Append(~solution,D[accD([0:i in [1..n]],d)][ii[accD([0:i in

[1..n]],d)]]);
118 D,ii,tt,uu:=NEXT(q,n,d,D,[0:i in [1..n]],aa,ii,tt,uu);
119 end for;
120 return solution;
121 end function;

References

1. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3, 177–197 (2009)

2. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

3. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4 17

4. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO specification
(2023). https://pqmayo.org/assets/specs/mayo.pdf

5. Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006). https://doi.
org/10.1007/11832072 23

6. Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary
reflected Gray code and its applications. Commun. ACM 19(9), 517–521 (1976)

7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997)

8. Bouillaguet, C.: Boolean polynomial evaluation for the masses. Cryptology ePrint
Archive, Paper 2022/1412 (2022). https://eprint.iacr.org/2022/1412

9. Bouillaguet, C., et al.: Fast exhaustive search for polynomial systems in F2. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 14

10. Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Fast
exhaustive search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.,
Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–222. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43414-7 11

11. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

12. Furue, H., Ikematsu, Y., Kiyomura, Y., Takagi, T.: A new variant of unbalanced oil
and vinegar using quotient ring: QR-UOV. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13093, pp. 187–217. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92068-5 7

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-99277-4_17
https://pqmayo.org/assets/specs/mayo.pdf
https://doi.org/10.1007/11832072_23
https://doi.org/10.1007/11832072_23
https://eprint.iacr.org/2022/1412
https://doi.org/10.1007/978-3-642-15031-9_14
https://doi.org/10.1007/978-3-662-43414-7_11
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-030-92068-5_7
https://doi.org/10.1007/978-3-030-92068-5_7

378 H. Furue and T. Takagi

13. Furue, H., Kudo, M.: Polynomial XL: a variant of the XL algorithm using Macaulay
matrices over polynomial rings. Cryptology ePrint Archive, Paper 2021/1609
(2021). https://eprint.iacr.org/2021/1609

14. Garey, M.-R., Johnson, D.-S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

15. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 4

16. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J. (eds.) NuTMiC 2017. LNCS,
vol. 10737, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76620-1 1

17. Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R.R., Yu, H.: Beating brute
force for systems of polynomial equations over finite fields. In: SODA 2017, pp.
2190–2202. SIAM (2017)

18. NIST: Post-quantum cryptography CSRC. https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization

19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

20. Tao, C., Petzoldt, A., Ding, J.: Efficient key recovery for all HFE signature variants.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 70–93.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 4

21. Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the complex-
ity of “superdetermined” Minrank instances. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 10

22. Yang, B.-Y., Wang, W.-J., Yang, S.-Y., Miou, C.-S., Cheng, C.-M.: Fast exhaustive
search for polynomial systems over F3. Cryptology ePrint Archive, Paper 2023/731
(2023). https://eprint.iacr.org/2023/731

https://eprint.iacr.org/2021/1609
https://doi.org/10.1007/3-540-44448-3_4
https://doi.org/10.1007/978-3-319-76620-1_1
https://doi.org/10.1007/978-3-319-76620-1_1
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-030-84242-0_4
https://doi.org/10.1007/978-3-030-25510-7_10
https://doi.org/10.1007/978-3-030-25510-7_10
https://eprint.iacr.org/2023/731

DME: A Full Encryption, Signature
and KEM Multivariate Public Key

Cryptosystem

Ignacio Luengo(B), Mart́ın Avendaño, and Pilar Coscojuela

Department of Algebra, Geometry and Topology, Faculty of Mathematics,
Universidad Complutense de Madrid, Madrid, Spain

{iluengo,mavend01,picoscoj}@ucm.es

Abstract. Multivariate public key cryptography is one of the most stud-
ied techniques used in post-quantum cryptography [21,24,28]. In [22] we
introduced a new multivariate scheme DME that is based in the compo-
sition of linear and non linear maps as many other multivariate schemes,
the main difference with other schemes is that the nonlinear components
have very high degree and it can be used for KEM and signature. In this
paper we present a new version of DME [23] that is simpler than the orig-
inal in the sense that it uses only two fields Fq and Fq2 instead of three.
The new design allows us to increase the number of exponentials to 3,
4 or more and it gives more resistance to decomposition attacks [18,35]
while keeping a moderate number of monomials in the public key. With
this setup the composition of exponentials and linear maps gives a deter-
ministic trapdoor one way permutation which can be used for KEM and
signature when combined with the standard padding OAEP and PSS
[2,3] whose security is well understood.

In the paper we describe the setup of the scheme, the most important
part of it is the Configuration Matrices (CM) and the algorithm for the
reduction of monomials. We give a preliminary security analysis of the
resistance against Gröbner basis, Weil descent and structural attacks but
more research on the security of DME is needed. We describe also the
CM that we have implemented with three and four rounds, 8 variables
and q = 264. We provide the SUPERCOP timings of DME-OAEP and
DME-PSS00 for them and a comparison with NIST finalists. For NIST
security level 5 the size of our ciphertext and signature is only 64 bytes.

1 Introduction

Multivariate Public Key Cryptography (MPKC) is one of the most studied tech-
niques used post-quantum cryptography, they are based on the problem of solv-
ing systems of nonlinear equations. Since the paper of Imai-Matsumoto [24],
many MPKC schemes have been proposed [14,28,29] and they has been exten-
sively studied and attacked for more than 30 years [5,6,10,21,27,33]. In most
of the schemes the public key consist in quadratic polynomials obtained as a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 379–402, 2023.
https://doi.org/10.1007/978-3-031-40003-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_14

380 I. Luengo et al.

composition of linear and non linear maps but cubic and other low degree poly-
nomials has also been used. Different extension of fields has been used as well of
the use of several round that combine linear and non linear maps.

There has been many direct attacks on MPKC using Gröbner basis and
other methods to solve the polynomials system as well as structural attacks. As
a consequence of such attacks many variants has been proposed for signatures
(UOV, HFEv-, Rainbow, GeMSS, etc.) and 9 of them MPKC where present in
the first round of the NIST competition. For the structural attacks the most
powerful used the MinRank [4] and it has been useful against some of the NIST
candidates [6].

For encryption and KEM there has been also interesting proposals such as
ZHFE [30], the quadratic and cubic Simple Matrix Scheme [15] and l-Invertible
Cycles [12], but only 3 where presented to NIST competition

The main new idea in [22] is to use birational exponential maps as non linear
component which produces polynomials of very high degree. Birational maps
where also used in [12,31] in a setup that gives low degree polynomials. In [22],
we used two exponential maps, one over Fq2 and one over Fq3 . DME with those
parameters was broken in [1], but this attack do not work as it is if we change
Fq3 by Fq4 . W. Beullens suggested in the NIST PQC-Forum mail list to apply
the decomposition algorithm of [18] and [35] to the polynomials over F2 obtained
from the public key of DME by Weil descent. As we explain in the PQC-Forum
mail list [26], the algorithm work if certain linear subspace in the vector space of
cubic polynomials are equal (see [35] Thm. 5), but this equality does not hold for
the polynomials obtained from the DME. Nevertheless we decided to increase
the degree of the polynomials obtained by Weil descent and this is the main
reason to increase the number of rounds in this new version of DME.

We also simplify the structure of DME by using only two fields Fq by Fq2

which allows us control the number of monomials more efficiently. In fact the
number of monomials can be up to double exponential on the number of rounds
r namely if all the rows of the Ei have two non zero entries then each component
has 22

r

monomials. We can reduce the number of monomials by imposing some
linear conditions on the exponents ei of the entries of the exponents matrices
αi = 2ei in such a way that some of the monomials become equal and the
coefficient of the repeated monomial is a sum of several terms, giving us some
defense against the structural cryptanalysis. The algorithm for the reduction of
monomials is explained in Sect. 5.2 and also an efficient algorithm to compute
the final polynomials of the public key using Kronecker product of matrices.

The final polynomials over Fq of the public key F are obtained as a composi-
tion of linear and exponential maps that gives a trapdoor permutation in a subset
of (Fq2 \{0})n/2. In the version we present here we use also affine translations in
the linear part that can produce failure of decryption with a probability around
1/q2, see Proposition 43 for details. On the other hand, it is always possible to
avoid the failure of verification of public signature (see Remark 44).

In Sect. 5, we explain the set up of DME, starting with the configuration
matrices CM that is a list of r “skeleton” matrices E∗

i obtained from the

DME: A Full Encryption, Signature and KEM MPKC 381

exponential Ei by changing the non zero entries by 1. The configuration matri-
ces CM = [E∗

1 , . . . E∗
r] determine the number of monomials of the public key

F and the degree of the the polynomials over F2 obtained from the public key
of DME by Weil descent. The configuration matrices CM determine also the
linear conditions on the monomial reduction algorithm but the final number of
monomials can only be determine when one computes F .

Section 6 is devoted to the security analysis of DME, starting with the well
known upper bound of the complexity of computing a Gröbner basis of the ideal

I = 〈f1(x) − y1, . . . , fn(x) − yn, x2e

1 − x1, . . . , x
2e

n − xn〉
where F (x) = y. Let sd(I) be the solving degree of I [8,13], we can safely
assume that 2e ≤ sd(I), and the bound in the (2) give good security margin,
for instance if q = 264 it would take O(21024) operations to solve the equations.
The problem is that we do not know if the security estimate is accurate or
not for this kind of ideals and further research is needed. The same is true for
the determination of the complexity of a Weil descent attack. For instance for
q = 264 and CM2 we have d = 8 and a precise estimation of the solving degree
is needed. For instance if sd((Ĩ)) = 16 then (2) gives a complexity of O(2237).

For the structural cryptanalysis we try to invert F directly by starting with
the inverse of the last linear map Lr. In order to do so we describe in the para-
graph after Algorithm 3.1 how to obtain homogeneous equations on the unknown
entries of L−1

rk that will give us a solution up to a multiplicative constant λk.
For instance, if we have n = 8 and q = 264, we have a choice of O(2256) vectors
(λ1, λ2, λ3, λ4). Of course those are the first step on the structural cryptanalysis
of the DME and more analysis is needed. For instance, how one can get the
coefficients the polynomials on the previous round or which matrices give equiv-
alent keys [34]. Given the high degrees of the polynomials in the public key it is
not clear how MinRank or differential methods that are very successful versus
quadratic schemes (see [4,20,30,32]) can be used against DME, but given the
good performance and the small size signature/ciphertext of DME it is worth to
continue the research on the security of DME.

As we said above, one of the main strengths of the DME is the very small size
of the signatures. In addition to that, the implementation is very competitive
with respect to running times with the other schemes that have been proposed
for the first NIST call. We included a section with accurate timings, as measured
by SUPERCOP, and a comparison with the cryptosystems selected initially for
signature and KEM. At the level of security 5, DME takes almost the same time
to sign than dilithium2, but one third of the time to verify.

2 Mathematical Description of DME

We present in this paper a new version of the multivariate public key cryp-
tosystem DME based on the composition of linear and exponential maps that
allow the polynomials of the public key to be of a very high degree. The main
components of the DME cryptosystem are exponential maps FA : Kn → Kn

382 I. Luengo et al.

associated to matrices A = (aij) ∈ Mn×n(Z), where K is a finite field, whose
precise definition is given by the following formula:

FA(x1, . . . , xn) = (xa11
1 · . . . · xa1n

n , . . . , xan1
1 · . . . · xann

n). (1)

The following two facts are extremely useful and easy to verify:

a) If A,B ∈ Mn×n(Z) and C = B · A, then FC = FB ◦ FA.
b) If det(A) = ±1, then the inverse matrix A−1 has integer entries, FA is invert-

ible on (Fq \ {0})n, and its inverse is given by FA−1 .

The monomial maps are extensively used in Algebraic Geometry and produce
birational maps. In Projective Geometry they are also called Cremona transfor-
mations. In [12] these transformations are used to produce a multivariate public
key cryptosystem.

If det(A) �= ±1, the monomial map is not birational, for instance it is not
difficult to prove using the Smith normal form the following fact that we will
not use:

Proposition 21. Let FA : Kn → Kn be a monomial map as (1), where K
is an algebraically closed field of characteristic zero. Then the monomial map
FA has geometric degree d := |det(A)| on (K \ {0})n, that is, for a generic
x ∈ (K \ {0})n, the fiber F−1

A (x) has d preimages.

Let q = pe be a prime power and Fq denote a finite field of q elements. It
is not necessary to consider exponents greater than q − 2 since xq−1 = 1 for all
x ∈ Fq \ {0}. We take A ∈ Mn×n(Zq−1) and then we have:

Theorem 22. Let A ∈ Mn×n(Zq−1) and FA : Fn
q → F

n
q be the corresponding

monomial map. If gcd(det(A), q − 1) = 1, and we set b := det(A)−1 ∈ Zq−1 and
B := bAdj(A), then A−1 = B ∈ Mn×n(Zq−1) and FA : (Fq \{0})n → (Fq \{0})n

is bijective with inverse FA−1 .

Proof. The proof is immediate since, as we mentioned above, we can reduce the
exponents modulo q − 1. By construction, we have b det(A) = 1 + λ(q − 1), so
AB = b det(A)In ≡ In (mod q − 1) and xAB = xIn = x.

The exponential maps FA can be used to build a multivariate PKC in the
standard way by putting powers of q in the non-zero entries of the matrix A.
For instance, if each row has 2 non zero entries qaij , then after composition with
two linear maps at both ends, one gets a quadratic public key, if we allow 3 non
zero entries, we get cubic polynomials, and so on. We made extensive computer
tests leading to the conclusion that those systems are not safe against Gröbner
basis attack for reasonable key size.

In order to make an scheme stronger against algebraic cryptanalysis we take
q = 2e and allow the non-zero entries of A to be powers of 2 that are not powers
of q. This choice produces final polynomials with degree up to q − 1 in each
variable. The kernel of our scheme is a composition of r exponentials with n
variables and r + 1 linear maps, that we denote by DME-(r, n, 2e). We have

DME: A Full Encryption, Signature and KEM MPKC 383

successfully built DME-(r, n, 2e) schemes with n = 6, 8 and 3 ≤ r ≤ 6. For
simplicity, we take r = 4 and n = 8 in the following description of the DME.

The DME-(4, 8, 2e) cryptosystem works with plain texts and cypher texts in
F
8
q with q = 2e. Let u2+au+b ∈ Fq[u] be an irreducible polynomial, consider the

field extension Fq2 = Fq[u]/〈u2 +au+ b〉 of degree two over Fq. Let φ : F2
q → Fq2

be the bijection defined by (x, y)
→ x + yū and let φ̄ : F8
q → (Fq2)4 be the map

(x1, . . . , x8)
→ (φ(x1, x2), φ(x3, x4), φ(x5, x6), φ(x7, x8)). The values of e, a, b are
fixed during the set up of the system.

The DME-(4, 8, 2e) cryptosystem combines 5 linear+affine maps L0, . . . , L4 :
F
8
q → F

8
q with 4 exponential maps FE1 , . . . , FE4 : (Fq2)4 → (Fq2)4. More pre-

cisely, the encryption map

F = Ψ(L0, . . . , L4, E1, . . . , E4) : F8
q → F

8
q

is given by the composition

F
8
q F

8
q (Fq2)4 (Fq2)4

F
8
q F

8
q (Fq2)4 (Fq2)4

F
8
q F

8
q (Fq2)4 (Fq2)4

F
8
q F

8
q (Fq2)4 (Fq2)4

F
8
q F

8
q

L0 φ̄ FE1

φ̄−1

L1 φ̄ FE2

φ̄−1

L2 φ̄ FE3

φ̄−1

L3 φ̄ FE4

φ̄−1

L4

of the linear+affine and exponential maps interleaved with the bijections φ̄
and φ̄−1.

Each linear+affine map Li is made up of four linear maps Li1, . . . , Li4 : F2
q →

F
2
q and four translation vectors ai1, . . . , ai4 ∈ F

2
q, so that

Li(x1, . . . , x8) = (Li1(x1, x2)+ai1, Li2(x3, x4)+ai2, Li3(x5, x6)+ai3, Li4(x7, x8)+ai4).

The matrices of the blocks Li1, . . . , Li4 are Ai1, . . . , Ai4 ∈ F
2×2
q , respectively.

If we like to avoid failures of decryption we should use translations in only
one intermediate step 1 ≤ i0 < 4 and set aij = 0 for all i �= i0, more technical
details about this will be given in Sect. 4.

384 I. Luengo et al.

The exponential maps FEi
: (Fq2)4 → (Fq2)4 are defined by

(y1, y2, y3, y4)
→ FEi
(y1, y2, y3, y4)

where Ei = (αi,k)1≤k≤16 is a 4×4 matrix with coefficients in [0, q2 −1]. It is not
necessary to consider exponents greater than q2−1 since xq2

= x for all x ∈ Fq2 .
The linear+affine maps Li : F8

q → F
8
q are invertible if and only if each of the

four 2 × 2 blocks Li1, Li2, Li3, Li4 have non-zero determinant. In this case, the
inverse of Li is

L−1
i (x1, . . . , x8) = (L−1

i1 (x1, x2) − L−1
i1 ai1, . . . , L

−1
i4 (x7, x8) − L−1

i4 ai4),

i.e. L−1
i is also a linear+affine map.

The exponential maps FEi
: (Fq2)4 → (Fq2)4 are not invertible in general.

However, their restrictions to the torus ̂FEi
: (F∗

q2)4 → (F∗
q2)4 are invertible if

and only if
gcd(det(Ei), q2 − 1) = 1.

The inverse of ̂FEi
is also an exponential map ̂FE−1

i
: (F∗

q2)4 → (F∗
q2)4, given

by the inverse of the matrix Ei modulo q2 − 1. This matrix has coefficients
in [0, q2 − 2]. Using the same matrix, we extend ̂FE−1

i
to an exponential map

FE−1
i

: (Fq2)4 → (Fq2)4.
The private key consists of the coefficients of the linear+affine maps

L0, . . . , L4 and exponential maps FE1 , . . . , FE4 . That information is enough to
apply all those maps in reverse, that is, to being able to decrypt. The public key
is the polynomial representation of the composition of the maps,

F (x1, . . . , x8) = (F4,1, F4,2, F4,3, F4,4, F4,5, F4,6, F4,7, F4,8).

3 Computing the Public Key F

3.1 Computing the Monomials of F

If x = (x1, . . . , x8) ∈ F
8
q are the initial coordinates, then the composition of all

the maps allow us to compute the components of F (x) as polynomials F4,j ∈
Fq[x1, . . . , x8]. In order to keep the number of monomials small, we choose the
matrices Ei with the following properties:

1. The entries of Ei are powers of 2.
2. Each row of Ei has one or two non zero entries.
3. If we define di = 1

det(Ei)
mod q2 − 1, then we have that di has a big binary

weight for some 1 < i ≤ 4.

DME: A Full Encryption, Signature and KEM MPKC 385

The inverse map F−1 is also composition of 4 exponentials so if the number
of monomials of F−1 is not very big, one can get the polynomial components of
F−1 by interpolation, provided enough number of pairs (x, F (x)). To avoid this
attack we take some i such that di has a big binary weight to ensure that the
inverse E−1

i has entries with big binary weight that will produce a big number
of monomial of the inverse F−1 above a given security level.

It is possible to get the monomials of the Fi without computing the compo-
sition of all the maps. It is easy to verify that after exponential Ei plus φ̄−1 the
8 resulting polynomials

Fi,1, Fi,2, Fi,3, Fi,4, Fi,5, Fi,6, Fi,7, Fi,8

verify that Fi,2k−1, Fi,2k and Fi,2k−1 + ū.Fi,2k share the same monomials Mik

unless some coefficient vanish and also the same happens after we apply Li.
Let M = [m1, . . . ms] a list of monomials and α a power of 2, we define

Mα = [mα
1 , . . . , mα

s]. If M = [m1, . . . , ms] and N = [n1, . . . , nt] are lists of
monomials, we define

Mα ⊗ Nβ = [mα
i · nβ

j , 1 ≤ i ≤ s, 1 ≤ j ≤ t],

that is, Mα⊗Nβ is the Kronecker tensor product of Mα and Nβ as row matrices.
It is easy to verify that Mα

ij ⊗ Mβ
ik is the list of monomials of the polynomial

(Fi,2j−1 + ū.Fi,2j)α · (Fi,2k−1 + ū.Fi,2k)β

since the exponents α and β are powers of 2.
Let M01 = [x1, x2],M02 = [x3, x4],M03 = [x5, x6],M04 = [x7, x8]. We use the

following notation for the entries of each matrix Ei: we call αi,2k−1 the first non
zero entry of the row k and αi,2k the second non zero entry. If there is only one
non zero entry, we just set αi,2k = 0.

We reduce the list of monomials when some of them are repeated. Let us
define an operation Rm(M) on a list of monomials M that removes all duplicates,
keeping only the first appearance of each monomial in the list and erasing the
rest. The following algorithm, called MON, shows how to compute the lists of
monomials of the Frj .

The size of the lists Mri can be up to double exponential on the number of
rounds r for instance if all the rows of the Ei have two non zero entries then
card(Mri) = 22

r

. We can reduce the size of the list of monomials by imposing
some linear condition on the exponents ei,j of αi,j (αi,j = 2ei,j), in such a way
that some of the monomials become equal and the coefficient of the repeated
monomial is a sum of several terms, which will give us a defense against the
structural cryptanalysis. In fact, we need to take care of the following:

After the last exponential the final polynomials are obtained by computing
F

αi,2k−1

(r−1)k1
· F

αi,2k

(r−1)k2
. Let F

αi,2k−1

(r−1)k1
=

∑

Bimi and F
αi,2k

(r−1)k2
=

∑

Cjnj . Then,

F
αi,2k−1

(r−1)k1
· F

αi,2k

(r−1)k2
=

(
∑

Bimi

)

·
(
∑

Cjnj

)

=
∑

BiCjminj =
∑

Hijminj .

386 I. Luengo et al.

Algorithm 3.1. MON, compute the monomials in the public-key polynomials.
Input: (E1, . . . , Er)
Output: (Mr1, Mr2, Mr3, Mr4)
1: for i = 0 to r − 1 do
2: for k = 1 to 4 do
3: M(i+1)k = M

αi,2k−1
ik1

⊗ M
αi,2k
ik2

, where Mik2 = [1] if αi,2k = 0
4: M(i+1)k = Rm(M(i+1)k)
5: if a(i+1)k �= 0 then
6: append 1 to the list M(i+1)k

7: end if
8: end for
9: end for

Thus, we have Hij = BiCj , it is clear now that the coefficients Hij ∈ Fq2

satisfy HijHkl = HilHkj , which will be called quadratic relations (QR) from now
on. Since the coefficients of final polynomials F1, . . . F8 are obtained applying
φ̄−1 and Lr, we can use the QR to compute equations for the coefficients of the
components of inverse of L−1

r . Given that the QR are homogeneous (of degree
two), one can solve those equations to find L−1

r and Lr up to a constant.
In order to eliminate the QR among the Hij , the strategy is to force many

coincidences among the final monomials, that is, if Hij is a sum =
∑

BkCl it
will by more difficult to get the quadratic relations or any polynomial relations
among the Hij . The implicit equations on the Hij are obtained by computing
the equations of the image of the map Q = (Qij), defined by Hij = Qij(B,C) =
∑

BkCl, that is by eliminating the B1 and Cj from the system 〈Hij − ∑

BkCl〉

Q : Fq2 [Bk, Cl] −→ Fq2 [Hij]

For instance, for the second component of Example 1 there are no QR, the
source has 24 variables and the target 48.

Assume that we are at the step i of the algorithm MON and we are computing
the list M(i+1)k. We can force a reduction of the monomials only if there are two
non zero entries 2ei,2k−1 and 2ei,2k in the corresponding row of the matrix Ei, so
we’ll have to compute M(i+1)k = M

αi,2k−1
ik1

⊗M
αi,2k
ik2

. Now, we take a variable that
is in both lists with exponent a power of 2, which for simplicity we’ll assume it is
x1. More precisely, the monomial x2l1

1 · m1, where l1 = l1(ej,l : 1 ≤ j ≤ i − 1) is
a linear form and m1 is a monomial in the other variables would appear in Mik1 ,
and x2l2

1 · m2 in the list Mik2 . By the method that the lists are constructed (x1

and x2 play exactly the same role), we would also have the monomials x2l1
2 · m1

and x2l2
2 · m2 in the lists Mik1 and Mik2 , respectively.

Now, when we compute M
αi,2k−1
ik1

, the exponent of x1 in the first monomial
is 2l1+ei,2k−1 and in the other list is 2l2+ei,2k . We can force that 2l1+ei,2k−1 =
2l2+ei,2k if we substitute ei,2k by ei,2k−1+ l1− l2 and then the monomials in both
lists became

x2
1
l1+ei,2k−1 · m2

1
ei,2k−1

, x2
2
l1+ei,2k−1 · m2

1
ei,2k−1

DME: A Full Encryption, Signature and KEM MPKC 387

in the first list, and

x2
1
l1+ei,2k−1 · m2

2
ei,2k−1+l1−l2

, x2
2
l1+ei,2k−1 · m2

2
ei,2k−1+l1−l2

in the second.
When the tensor product of both lists is computed, we get that two of the

four monomials are equal:

x2
1

l1+ei,j2k−1 · m2
1

ei,j2k−1 · x2
2

ei,j2k−1+l1−l2 · m2
2

ei,j2k−1+l1−l2

= x2
2

l1+ei,j2k−1 · m2
1

ei,2k−1j · x2
1

l1+ei,j2k−1 · m2
2

ei,j2k−1+l1−l2
.

If there are other variables repeated in both lists that have different exponents
after the change ei,2k = ei,2k−1 + l1 − l2, we can repeat the same procedure of
imposing a linear condition, but in this case the linear equations involves terms
ejk with j ≤ i − 1. In general, each linear condition will produce the reduction
of many monomials, but the actual number depends of the structure of the
matrices Ei and it is not possible to give a general formula for the final number
of monomials of F . We call this algorithm RED, the input is the set {Ei}. Next,
we present an example of the procedure.

Example 1: For this example, we take q = 2e, n = 6 and following matrices
over Zq2−1:

E1 =

⎛

⎝

α1,1 0 α1,2

α1,3 α1,4 0
0 0 α1,5

⎞

⎠ , E2 =

⎛

⎝

α2,1 α2,2 0
0 α2,3 α2,4

α2,5 0 α2,6

⎞

⎠ , E3 =

⎛

⎝

α3,1 0 α3,2

α3,3 α3,4 0
0 α3,5 α3,6

⎞

⎠ .

As usual, αi,j = 2ei,j and ei,j ≤ e − 1. If the ei,j are generic, the lists of
monomials after the first exponential (M11,M12,M13) have size (22, 22, 2), after
the second exponential the lists (M21,M22,M23) have size (24, 23, 23), and after
the third one the final lists (M31,M32,M33) have size (27, 27, 26). We can apply
the method in this section and find 7 independent linear conditions on the ei,j

as follows: after E1, the lists (M11,M12,M13) have size (22, 22, 2), after E2, we
observe that the list M21 comes from tensoring M11 and M13, which have x1

and x6 in common, so the linear condition e2,2 = e1,1 + e2,1 − e1,3 reduces the
number of monomials to 12. For M21 there are no common variables and for M23

we get the condition e2,4 = −e2,5 + e2,6 − e1,1 + e1,3 + e2,3, that gives (12, 23, 6)
monomials. Finally, after E3, the lists have size (72, 96, 48). For the list M31

we get the condition e3,2 = e3,1 + e2,1 − e2,5 that reduces the size of M31 to
32. For the list M32 we get the condition e3,4 = e3,3 + e1,1 + e2,1 − e1,3 + e2,3

that reduces the size of M32 to 36. There is another independent linear equation
−e1,2 + e1,5 − e1,3 − e2,3 + e2,4 that reduce the size of M32 to 36. For the list M33

we get the condition e3,6 = e3,5 − e1,1 + e1,3 − e2,5 + e2,3 that reduce the size of
M33 to 24.

388 I. Luengo et al.

By making the above linear changes in the exponents of the Ei, new matrices
E′

i and lists that have (32, 36, 24) monomials appear, where one can verify that
there are no quadratic relations among the coefficients Hij . using a Computer
Algebra System system one can compute binomial relations of the type

∏

(Hij)−
∏

(Hkl) up to some degree. In this example we check with Maple that there are
no binomial relations up to degree 10.

With this scheme three determinants det(E′
i) are a power of 2 and then

the inverse F−1 can have a small number of monomials. If we do not use the
last linear relation we get M33 with 48 monomials, and there are many QR
which eventually will allow us to compute the last component the matrix L3. A
priori, this is not a problem for the security of the schema because the other two
components of L3 can not be obtained.

By checking the final lists of monomials, we can observe and interesting
structure, if we make the changes of variables in S1, S2 and S3:

S1 =

[

x2e1,1+e1,1+e2,1

1 = y11, x
2e1,1+e1,1+e2,1

2 = y12, x
2e1,4+e1,1+e2,1−e1,3+e3,1

3 = y13,

x2e1,4+e1,1+e2,1−e1,3+e3,1

4 = y14, x
2e1,2+e2,1+e3,1

5 = y15, x
2e1,2+e2,1+e3,1

6 = y16

]

S2 =

⎡
⎣ x2

e1,1+e2,1+e3,3
1 = y21, x

2
ee1,1+e2,1+e3,3

2 = y22, x
2
e1,4+e1,1+e2,1−e1,3+e3,3

3 = y23,

x2
e1,4+e1,1+e2,1−e1,3+e3,3

4 = y24, x
2
e1,2+e2,1+e3,3

5 = y24, x
2
e1,2+e2,1+e3,3

6 = y26

⎤
⎦

S3 =

⎡
⎢⎣

x
2e1,3+e2,3+e3,5
1 = y31, x

2e1,3+e2,3+e3,5
2 = y32, x

2e1,4+e2,3+e3,5
3 = y33,

x
2e1,4+e2,3+e3,5
4 = y34, x

2e1,2−e1,1+e1,3+e2,3+e3,5
5 = y35, x

2e1,2−e1,1+e1,3+e2,3+e3,5
6 = y36

⎤
⎥⎦

we get polynomials Fi = Fi(y) ∈ Fq[y11, . . . y36] of low degree 6 or 7. There-
fore, using S1, S2, S3 and Fi(y) instead of Fi(x) as public key will make faster
encryption for DME-KEM and faster signature verification for DME-SIGN.

3.2 Computing the Coefficients of the Public Key F

Once the list of monomials of the Fr,j is obtained, one gets the coefficient of
each group of polynomials by evaluating the polynomials Fr,1, ..., Fr,8. The set of
pairs (c, Fr,j(c)) should be big enough to guarantee that the corresponding linear
equations are independent. That is, if Qk = [q1...qd] and Fr,j =

∑d
i=1 frjiqi(x),

we take vectors c1, . . . , cR such that the linear equations on the coefficients frij

in Fk(ce) =
∑

frjiqi(ce) are independent and can be solved to get the coefficients
of the polynomials Fr,1, . . . , Fr,8.

To compute the polynomials Fr,k faster we can use the same idea used to
compute the lists of monomials of the polynomial (Fi,2j−1 + ūFi,2j)α(Fi,2k−1 +
ūFi,2k)β , i.e. Mα

ij ⊗ Mβ
ik. Let sij be the size of the list Mij . Now, regard Mij as

a 1 × sij matrix, which by abuse of notation, we will still write it as Mij . We
denote by Cij the sij × 2 matrix of the coefficients of the polynomials Fi,2j−1

and Fi,2j on the monomials of Mij , as shown in the following formula:

DME: A Full Encryption, Signature and KEM MPKC 389

Cij =

⎡

⎢

⎢

⎢

⎣

cij
11 cij

12

cij
21 cij

22
...

...
cij
sij1

cij
sij2

⎤

⎥

⎥

⎥

⎦

Now we have that Fi,2j−1 + ūFi,2j = Mij · Cij · (1, ū)t.
If α = 2b, then (Fi,2j−1 + ūFi,2j)α = Mα

ij · Cα
ij · (1, ūα)t.

Applying the mixed-product property of the Kronecker product we get:

(Fi,2j−1 + ūFi,2j)α · (Fi,2k−1 + ūFi,2k)β

= (Mα
ij · Cα

ij · (1, ūα)t) ⊗ (Mβ
ik · Cβ

ik · (1, ūβ)t)

= (Mα
ij ⊗ Mβ

ik) · (Cα
ij ⊗ Cβ

ik) · (1, ūβ , ūα, ūα+β)t

Let’s call Uαβ the 4 × 2 matrix defined by

(1, ūβ , ūα, ūα+β)t = Uαβ · (1, ū)t.

Then, we have the following result:

Lemma 31. The matrix of coefficients of (Fi,2j−1+ūFi,2j)α ·(Fi,2k−1+ūFi,2k)β

with respect of the monomials Mα
ij ⊗ Mβ

ik is (Cα
ij ⊗ Cβ

ik) · Uαβ.

Now, we can compute the coefficients of the Fr,j with algorithms similar to
Rm and MON. Given the matrices of coefficients (M,C) of a component we
define Rc(C) the matrix coefficient obtained by adding of the coefficient of a the
same monomial in the case that is repeated in the monomial list M .

4 DME as a Trapdoor One Way Permutation

Let’s assume that the public key is

F = Ψ(L0, . . . , L4, E1, . . . , E4) : F8
q → F

8
q.

By construction, F is a composition of bijections of (Fq2 \ {0})4 and if there is
no affine translations ai,j = 0 for all i we have:

Remark 41. Let U = φ̄−1((Fq2 \ {0})4) ⊂ F
8
q then F : U → U is a bijection.

If we add an affine translation only in the step i0, then given x0 ∈ U the
translation ai0,j can produce a 0 in the step i0, which in turn will give F (x) �∈ U,
so F can not be inverted at F (x). On the other hand, if F (x) ∈ U, then F is
invertible at F (x), that is, we have:

390 I. Luengo et al.

Algorithm 3.2. COE, compute the coefficients of the public-key polynomials.
Input: (E1, . . . , Er, L0 . . . Lr)
Output: (Cr1, Cr2, Cr3, Cr4)
1: M01 ← [x1, x2], M02 ← [x3, x4], M03 ← [x5, x6], M04 ← [x7, x8]
2: C01 ← A01, . . . , C04 ← A04

3: for i = 0 to r − 1 do
4: for k = 1 to 4 do
5: if αi,2k �= 0 then
6: C(i+1)k =

(
C

αi,2k−1
ik1

⊗ C
αi,2k
ik2

) · Uαi,2k−1,αi,2k

7: else
8: C(i+1)k = C

αi,2k−1
ik1

· (1, ūα)
9: end if

10: C(i+1)k = Rc(C(i+1)k)
11: C(i+1)k = L(i+1)k · C(i+1)k + a(i+1),k

12: end for
13: end for

Theorem 42. Let F be a public key map such that there is only one step 1 ≤
i0 < r with non-zero affine components then F is invertible at F (x) if F (x) ∈ U.
In other words,

F : U ∩ F−1(U) → U ∩ F (U)

is a bijection.

Proof. Let x and y0 = (y0
1 , y

0
2 , y

0
3 , y

0
4) = φ̄(L0(x)) ∈ (Fq2 \ {0})4.

By construction, all the successive maps of which F is made up are bijections
in (Fq2 \{0})4 or U until we get the linear map Li0 . If we have that Li0(x

i0) ∈ U,
this property is preserved by the rest of the maps, so F (x) ∈ U.

On the contrary, if Li0(x
i0) �∈ U, then there exist a k such that

Li0k(xi0,2k−1, xi0,2k) + ai0,k = (0, 0). As det(Ei) �= 0, there is a non-zero entry
αi0k in the k-th column, yαik = 0 and Fi0+1(x) �∈ U this property is preserved
by the rest of the maps because there are no more translations, hence F (x) �∈ U.

In this case, it is clear that there are some x such that F (x) �∈ U and therefore
F (U) �⊂ U. This means that there will be messages that, after padding, x ∈ U

but can not be signed. By the same argument above, those messages can be
detected because F−1(x) �∈ U and the message can be signed by changing the
padding. ��

In the case that there are affine translations in more than one step then
it can be failure of decryption even if F (x) ∈ U. In Example 1, if we take
a11 �= 0, a21 �= 0, a22 �= 0 and the rest of the aij are zero, after L1 we may have
(x1

1, x
1
2) = (0, 0) and E1(y0) can not be inverted but as a21 �= 0 and a22 �= 0 then

we may have x2 ∈ U and F (x) ∈ U, but clearly F is not invertible at F (x). One
can check that if we take a13 �= 0 and a21 �= 0 then F has the property that if
F (x) ∈ U then F−1(F (x)) = x, but the converse of this statement is not true
because the matrices E−1

i have all the entries different from zero.

DME: A Full Encryption, Signature and KEM MPKC 391

Proposition 43. There is a Zariski open set V ⊂ (Fq2 \{0})4 such that F : V →
F (V) is a bijection and the probability of x /∈ V is less than b/q2 for small b.

Proof. As we has seen in Thm 42 F (x) fails to have an unique inverse if at some
step his image is not in (Fq2 \ {0})4. It is clear that condition can be expressed
in a finite number of equations Gi(x) and if W = V (Gi) is its set of zeros then
V = (Fq2)4 \ W. ��

If we have non zero affine translations only at one level 1 < i0 ≤ r − 1, then
F : U ∩ F−1(U) → U ∩ F (U) is a bijection and we can take V = U ∩ F−1(U) .
In this case given a message m, we add some padding to get x ∈ U. If F (x) =
pad(m) �∈ U there is a failure of decryption then we change the padding and try
again. If there are non zero affine translations at more that one level then the
failure of decryption can not be detected.

Remark 44. For the signature it is always possible to avoid the failure of the
signature verification. As the owner of the private key has the linear and non
linear components of F it is possible to check at each step if the image is in
(Fq2 \ {0})4. If is not the case one start again with a new padding until get one
signature F−1(pad(m)) that can be verified.

In this paper, we are mainly interested into find out the performance and
security of the DME and we will not elaborate more about padding. For padding,
we use the standards OAEP [2] for PKE and KEM and PSS00 [3] for signature,
and we will denote by DME-OAEP and DME-PSS the corresponding cryptosys-
tem.

5 Set up of the DME

5.1 The Configuration Matrices

We define a Configuration Matrices (CM) as a list of r matrices for the
exponentials where the non zero entries are substituted by 1. We denote such
matrices by E∗

i . Let CM = [E∗
r , . . . E∗

1] be a configuration. Then, it is easy to
get the number of monomials of the each component of F from CM if there are
no repeated monomials, just compute E∗ = E∗

r · · · E∗
1 and let tk be the sum of

the entries in the k − th row of E∗, in which case the number of monomials of
the components F2k−1, F2k is 2tk . In the Example 1 we have

E∗ = E∗
3 · E∗

2 · E∗
1 =

⎛

⎝

3 1 3
3 2 2
2 1 3

⎞

⎠

and the corresponding number of monomials is (27, 27, 26). The algorithm RED
reduce number of monomials to (32, 36, 24). Please notice that the output of
algorithm RED depend only in the configuration CM, we will denote it by
RED(CM).

392 I. Luengo et al.

Another example is the configuration CM2 that we study in the next section
and we implemented with q = 264. The matrices of CM2 are:

E∗
1 =

⎛

⎜

⎜

⎝

1 1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

⎞

⎟

⎟

⎠

, E∗
2 =

⎛

⎜

⎜

⎝

1 1 0 0
0 1 0 0
1 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

, E∗
3 =

⎛

⎜

⎜

⎝

1 0 0 1
1 1 0 0
0 0 1 1
0 1 1 0

⎞

⎟

⎟

⎠

, E∗
4 =

⎛

⎜

⎜

⎝

1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1

⎞

⎟

⎟

⎠

E∗ = E∗
4 · E∗

3 · E∗
2 · E∗

1 =

⎛

⎜

⎜

⎝

5 2 1 1
4 2 1 2
5 2 0 1
3 2 1 3

⎞

⎟

⎟

⎠

and the number of monomials is (29, 29, 28, 29). After imposing 8 linear conditions
we reduce the number of monomials to (72, 90, 36, 96) and there are no QR.

When we consider in 6.3 a possible attack of the DME by Weil descent, the
tk give also the degree of the components F2k−1, F2k when we express them as
polynomials over F2. In fact one of the main reason to use 4 or more exponentials
is to increase the values in the list (t1, t2, t3, t4).

5.2 Reduction of the Number of Monomials

Given a CM, it is straightforward to use the algorithm RED(CM) in Sect. 3 to
reduce drastically the number of monomials of the Fi, in fact the linear relations
depends only on CM and they are easy to compute. It is more complicate to
get the maximal reduction and simultaneously to produce a determinant det(Ei)
with a big binary weight so that E−1

i yields a large number of monomials. Never-
theless, it is possible to get a few CM that verify that condition. Remember that
the algorithm produce some linear condition on the exponents of the matrices
that allow us to eliminate some parameters and find new matrices with exponents
in the remainder parameters.

An important point for the security of the DME is that the final monomials
depend on fewer parameters than the final matrices, this fact implies that given
the monomials the public key F , we can deduce the parameters involved in the
public key and the rest of free parameters will produce a big list of matrices
with the same exponents as F . In Example 1, there are initially 17 parameters
that reduce to 12 after the reduction of monomials and examining the lists of
exponents that appear in (F, S1, S2, S3) we can verify that the exponents of F
depend only on 6 parameters as follows:

We make a list EX with the second exponent of the monomials in xi in the
lists {S1, S2, S3},

[e1,1 + e2,1 + e3,1, e1,4 + e1,1 + e2,1 − e1,3 + e3,1, e1,2 + e2,1 + e3,1, e1,1 + e2,1 + e3,3,

e1,4 + e1,1 + e2,1 − e1,3 + e3,3, e1,2 + e2,1 + e3,3, e3,3 + e2,3 + e3,5,

e1,4 + e2,3 + e3,5, e1,2 − e1,1 + e1,3 + e2,3 + e3,5]

DME: A Full Encryption, Signature and KEM MPKC 393

The 9 linear forms of EX define a linear map H : Z12
q2−1 → Z

9
q2−1 that has

rank 6. That is given the Public Key there are 12 − 6 = 6 free parameter in the
matrices of CM that produce the given PK because fixing (F, S1, S2, S3) we fix
a vector h0 of the image of H and its anti image H−1(h0) is an affine space of
dimension 6. As the 6 remaining parameters verify that 1 < eij ≤ q2−1, given the
exponents of the public key and the base field F2e , there are 26(log2(e)+1) matrices
that can produce those exponents. Let denote by l the number of remaining
parameters that produces the above algorithm.

The above computation depends only on the configuration CM we can pro-
duce and algorithm that will gives the matrices with the free parameters with
input CM and the monomials of (F, S1, S2, S3), but we are mainly interested
in the number of the remaining free parameters, Let denote by l this number,
we get after the reduction of monomials 2l(log2(e)+1) matrices that get the same
monomials for F , and different sets of matrices will give different coefficients of
the public key.

For the configuration CM1 in Sect. 7, we have initially 23 parameters and the
reduction of exponent left 16 free parameters. Now the final exponents depend
only on 8 parameters, that means that given the monomials of the public key
there are 28(log2(e)+1) sets of matrices that produce the same monomials. This
means that for q = 264, there are 256 sets of matrices for a given public key.

For the configuration CM2 in Sect. 7 we start with 28 parameters ei,j corre-
sponding to the non zero entries in CM2 and we impose 8 linear conditions to
get (72, 90, 36, 96) monomials. We fix F, in order to determine the monomials in
F we need to give values to 8 of the remaining parameters that is after we fix
F there are 12 free parameters. For instance if q = 264 the given F there are
212(log2(e)+1) = 284 set of matrices from CM that give the same exponents as F.

6 Security of the DME

6.1 Gröbner Basis

To determine the resistance of a CM to the Gröbner basis attack, we have to
estimate the complexity of computing the Gröbner basis of the ideal

I = 〈f1(x) − y1, . . . , fn(x) − yn, x2e

1 − x1, . . . , x
2e

n − xn〉

where F (x) = y. Let sd(I) be the solving degree of I, i.e. the the highest
degree of polynomials involved in the computation of the Gröbner basis. The
complexity of computing the Gröbner basis using a algorithm like F4/F5 is
bounded from above by

O

(

(

n + sd(I)
n

)ω
)

(2)

(see [8,13,17]) where ω is the exponent in the complexity of matrix multiplica-
tion. It is easy to see that this upper bound is well above O(2256), since sd(I)
is bounded below be degree of the initial basis I , x2e

n − xn ∈ I and a typical

394 I. Luengo et al.

monomial of F has from 4 to 8 variables we can force the degree of I to be
bounded below by 2e. Now if we take a CM with 8 variables (2) is bounded
below by 216e. If we use q = 264 then the complexity is bounded by O(21024).

We can safely assume that 2e ≤ sd(I), the problem is that we do not know if
the bound (2) is accurate or not for the Gröbner basis computation of this kind
of ideals. In order to make an experimental testing of the above bound, we used
Magma [7] in a cluster with several fat nodes with 512 Gb of RAM each. After
an extensive series of computations, Magma can find the Gröbner basis only for
q = 23 and or q = 24. For q = 25 Magma exhausted the 512GB of RAM of our
server before the end of the computation. Here are the conclusions that we get
from our experiments.

– Given a CM, the time of computing the Gröbner basis depends mainly on
the exponents of F , but not of the actual matrices that give F .

– The initial basis I can be considered sparse because it has a low number of
monomials by rapport to the degree but the intermediate computations of
Magma show that the number of monomials can be very big.

– The upper bound (2) seems to be accurate, but further research is needed to
confirm this fact.

Of course those conclusions can not be extrapolated for higher q. If any one
can try to verify those conclusion for e ≥ 5 we can provide them the basis for
different CM.

We can use the special form of the monomials that allow to substitute F (x)
by F (y11, . . .) as described in Example 1, but this will give a greater complex-
ity because we will have much more variables but the degree will not decrease
much. Let’s explain this in the Example 1. We have now that F̄ has 18 variables
{y11, . . . , y36}. If we examine the relations among the xi and the yjk given by the
lists S1, S2, S3 we find, for instance, x2e3,1+e1,1+e2,1

1 = y21, x
2e1,3+e2,3+e3,3

1 = y31,
so we would get a relation y31 = y2a

21 for some a ≤ q and we would end with a
basis Ī such that sd(Ī) ≥ 2e as before.

6.2 Weil Descent

Taking a base of Fq over F2, namely B = {v1, . . . , ve}, we can express the
polynomial of F as polynomials F̃ in ne variables over F2. It is easy to verify
that before the reduction of monomials, the degrees of the components of F̃ are
(t1 . . . t4). In fact the raise of the binary degree of the public key was one of
the reasons to use more than two exponentials on the DME in order to avoid a
decomposition attack as in [18]. As we explain in [26] the algorithm in [18] do not
work (see also Thm. 5 in [35]). For binary polynomial of degree higher that four
there is also an descomposition algorithms whose complexity can be controlled
taking the degree high enough. For instance for q = 264 and the degree ti = 8
theorem 4.2 of [19] gives a complexity O(2D) with D > 243.

The reduction of monomials can produce also a reduction of the degrees of
F̃ and it is not possible to determine a priory the degrees of the F̃ . One has to

DME: A Full Encryption, Signature and KEM MPKC 395

examine the list of monomials after the reduction and compute the degrees. For
instance, in Example 1 the degrees are reduced from (7, 7, 6) to (5, 6, 6) . For
CM2 in Sect. 7 the degrees of F̃ are reduced from (9, 9, 8, 9) to (7, 8, 6, 7).

If q = 264 and the degree after Weil descent is d = 8 we will have O(256)
monomial of degree up to 8. Our experiments suggest that the solving degree
will be greater than 8 but more precise estimation of the solving degree are
needed. For instance if sd((̃I)) = 16 then (2) gives a complexity of O(2237). It is
also interesting to use the Weil descend over different intermediate fields and to
compute the complexity of solving the corresponding equations.

6.3 Estimation of the Number of Monomials of the Inverse

As we mentioned earlier we set that 1/det(Ai) has a big binary weight to get a
number of monomials of the inverse big enough. Next we will do a more precise
estimation of this number of monomial. Lets denote by Ci the matrix obtained
from A−1

i changing the non zero entries by 1. If the entries of A−1
i were powers of

two, then the number of monomials of F−1 is (s1, s2, s3, s4) where si is the sum
of entries of de row i of C∗ = C∗

1 · · · C∗
r but now each entry in A−1

i is multiplied
by 1/det(Ai) or −1/det(Ai). Let bi the binary weight of 1/det(Ai) mod q2 − 1
then 128−bi is the binary weight of −1/det(Ai) mod q2−1. We can impose that
bi ≤ 128 − bi and then bi is a lower bound for the binary weight of each entry
of A−1

i . It is easy to verify that the number of monomial is bounded below be
(s1bi, s2bi, s3bi, s4bi). If the CM has two matrices Ai, Aj with determinant not
a power of 2 then one get the bound (s1bibj , s2bibj , s3bibj , s4bibj).

For the configuration CM1 with 3 exponentials only A3 has determinant not
a power of 2. The computation of C∗ gives

C∗ = C∗
1 · C∗

2 · C∗
3 =

⎛

⎜

⎜

⎝

3 3 3 3
6 6 6 6
7 7 7 7
6 6 6 6

⎞

⎟

⎟

⎠

This means that each polynomial has at least 212b3 monomials. If we take
b3 = 10 they have at least 2120 monomials that gives a complexity of 120w ≥ 256
bits.

For the configuration CM2 with 4 exponentials A3 has determinant not a
power of 2. The computation of C∗ gives

C∗ = C∗
1 · C∗

2 · C∗
3 · C∗

4 =

⎛

⎜

⎜

⎝

1 4 4 4
3 9 9 9
4 12 12 12
9 9 9 9

⎞

⎟

⎟

⎠

This means that each polynomial has at least 213b3 monomials. If we take
b3 = 9 they have at least 2117 monomials that gives a complexity of 117w ≥ 256
bits .

396 I. Luengo et al.

6.4 Structural Cryptanalysis

We can try to invert F directly by starting with the inverse of the last linear
map Lr. As we explained in Sect. 3, for each linear map Lrk we can use the the
relations Hij = Qij(B,C) =

∑

BkCl, to get homogeneous implicit equations for
the Hij that will give us homogeneous equations for the unknown entries of the
matrices L−1

rk and the translations ark by using that

Bi = Bi1 + ūBi2 = L−1
rk (Di) − (ark1 + ūark2)

where Di = Di1+ūDi2 are the known coefficients of the corresponding monomial
of the public key. It is not clear what is the complexity of the Gröbner basis
computation for eliminate the Bk, Cl from the equations Hij = Qij(B,C) but
the number of variables is high, for instance for the last component of CM2 we
have 96 + 36 = 132 variables.

We can give an upper bound of the cost using linear algebra as follows. Let
n1 the the number of variables Hij , that is, the size of the corresponding list
Mrk and let n2 be the number of variables Bk, Cl. Let Pd(Hij) a homogeneous
polynomial of degree d, by making the substitution Q2d(B,C) = Pd(Qij) we get
a polynomial of degree 2d , Q2d(B,C) in the variables Bk and Cl Taking the
coefficients of P2(Hij) =

∑

cijHij as variables , the coefficients of Q2d(B,C) are
linear forms on the cij and we can impose the condition Q2d(B,C) = 0 by solving
the corresponding linear equations. Let HM(n, d) =

(

n+d−1
d

)

be the number of
monomials of degree d in n variables. In our situation HM(n1, d) < HM(n2, 2d)
for small d, but we can get HM(n1, d) > HM(n2, 2d) taking d big enough and
the implicit equations on Hij can be obtained by solving those linear equations.
As the implicit equations that we get are homogeneous, for each k ≤ 4 we
would have a solution for the matrix L−1

rk and the ark that is defined up to a
multiplicative constant λk ∈ Fq, and given (λ1, . . . , λ4) ∈ Fq \ {0} we can find
the inverse of the L3k and a3k.

7 Implementation and Timings

For test the timing we implemented two configuration matrices CM1 for DME-
(3, 8, 264) and CM2 for DME-(4, 8, 264) for KEM (with OAEP as padding) and
for SIGN (with PSS00 as padding) For the implementation, we used the special
instructions that modern Intel processors have to perform arithmetic in finite
fields, which gives th algorithm an impressive boost in performance. In all the
cases, when a hash function was needed, we used the NIST approved standard
SHA-2 function.

The matrices for CM1 with DME-(3, 8, 264) are the following:

E∗
1 =

⎛

⎜

⎜

⎝

1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎞

⎟

⎟

⎠

, E∗
2 =

⎛

⎜

⎜

⎝

1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

⎞

⎟

⎟

⎠

, E∗
3 =

⎛

⎜

⎜

⎝

1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 1

⎞

⎟

⎟

⎠

DME: A Full Encryption, Signature and KEM MPKC 397

E∗ = E∗
3 · E∗

2 · E∗
1 =

⎛

⎜

⎜

⎝

4 1 1 1
4 2 1 0
4 2 0 1
4 1 0 2

⎞

⎟

⎟

⎠

The number of monomials of F before reduction is (27, 27, 27, 27) and the
binary degree (7, 7, 7, 7). As we explain in Sect. 5.2 and in Example 1 in more
detail, given the CM, the linear equations that reduce the monomials are deter-
mined by matrices of the CM. The only alternative is if we use all the linear
equations for the reduction or we use all but one in order to ensure that det(Ei)
is not 0 or a power of 2. For this CM in particular, we get 9 linear equations,
one for each row from the E2 and E3. By substituting the 9 equations one get
(40, 30, 30, 30), but then det(E3) = 0 which is not valid. For this reason we drop
the linear equation coming from the first row of E3 and we get (72, 30, 30, 30).
The equations that we obtain with the algorithm RED are

e1,3 = e1,1,

e2,2 = e2,1,

e2,4 = e1,1 + e2,3 − e1,5,

e2,6 = e1,1 + e2,5 − e1,7,

e2,8 = e1,5 + e2,7 − e1,7,

e3,4 = e2,1 + e3,3 − e2,5,

e3,6 = e2,3 + e3,5 − e2,5,

e3,8 = e1,1 − e1,5 + e2,3 + e3,7 − e2,7

The equation that we do not use is e3,2 = e1,1 − e1,5 + e2,1 + e3,1 − e2,7. As
in Example 1, we can make a change to the variables yij , which in this case are
given by:

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
2e3,1+e1,1+e2,1
1 = y11, x

2e3,2+e1,5+e2,7
1 = y12, x

2e3,1+e1,1+e2,1
2 = y13, x

2e3,2+e1,5+e2,7
2 = y14,

x
2e1,2+e2,1+e3,1
3 = y15, x

2e1,2+e2,11+e3,1
4 = y16, x

2e1,4+e2,1+e3,1
5 = y17, x

2e1,4+e2,1+e3,1
6 = y18,

x
2e1,6+e2,7+e3,2
7 = y19, x

2e1,6+e2,7+e3,2
8 = y1,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2 =

[

x2e1,1+e2,1+e3,3

1 = y21, x
2e1,1+e2,1+e3,3

2 = y22, x
2e1,2+e2,1+e3,3

3 = y23,

x2e1,2+e2,1+e3,3

3 = y24, x
2e1,4+e2,11+e3,3

5 = y25, x
2e1,4+e2,11+e3,3

6 = y26

]

S3 =

[

x2e1,1+e2,1+e3,3

1 = y31, x
2e1,1+e2,1+e3,3

2 = y32, x
2e1,2+e2,1+e3,3

3 = y33,

x2e1,2+e2,1+e3,3

4 = y34, x
2e1,4+e2,1+e3,3

5 = y35, x
2e1,4+e2,1+e3,3

6 = y36

]

S4 =

⎡
⎢⎣

x
2e1,1+e2,3+e3,7
1 = y41, x

2e1,1+e2,3+e3,7
2 = y42, x

2e1,2+e2,3+e3,7
3 = y43,

x
2e1,2+e2,3+e3,7
4 = y44, x

2e1,6+e1,1+e2,3−e1,5+e3,7
7 = y45, x

2e1,6+e,11+e2,3−e1,5+e3,7
8 = y46

⎤
⎥⎦

398 I. Luengo et al.

With this changes the degrees of F̄ aree (5, 8, 7, 7) and the binary degrees of
F̃ after Weil descent are (7, 6, 6, 6). The translations are in the first component of
the third linear map, yielding (78, 36, 30, 30) monomials. The length of the secret
key is 542 bytes, the length of the public key is 2739 bytes, and a ciphertext takes
64 bytes.

We take n = 8 and q = 264, we have a choice of O(2256) vectors (λ1, λ2, λ3, λ4)
that are enough for the NIST level 5.

The matrices for CM2 with DME-(4, 8, 264) are the following:

E∗
1 =

⎛

⎜

⎜

⎝

1 1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

⎞

⎟

⎟

⎠

, E∗
2 =

⎛

⎜

⎜

⎝

1 1 0 0
0 1 0 0
1 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

, E∗
3 =

⎛

⎜

⎜

⎝

1 0 0 1
1 1 0 0
0 0 1 1
0 1 1 0

⎞

⎟

⎟

⎠

, E∗
4 =

⎛

⎜

⎜

⎝

1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1

⎞

⎟

⎟

⎠

,

E∗ = E∗
4 · E∗

3 · E∗
2 · E∗

1 =

⎛

⎜

⎜

⎝

5 2 1 1
4 2 1 2
5 2 0 1
3 2 1 3

⎞

⎟

⎟

⎠

The number of monomial of F before reductions is (29, 29, 28, 29).
After imposing 8 linear conditions we reduce the number of monomials to
(72, 90, 36, 96) and there are no QR. The equations that we obtain by method
in Sect. 3 are:

e2,2 = e1,1 + e2,1 − e1,3,

e3,4 = e1,1 − e1,3 + e2,1 − e2,3 + e3,3,

e3,6 = e1,7 − e1,6 + e2,6 − e2,7 + e3,5,

e3,8 = e1,3 − e1,1 + e2,3 − e2,5 + e3,7,

e4,2 = e3,1 − e3,4 + e4,1,

e4,4 = e2,1 − e2,5 + e3,3 − e3,5 + e4,3,

e4,6 = e1,1 − e1,3 + e2,1 − e2,3 + e3,3 − e3,7 + e4,5,

e4,8 = e1,1 − e1,3 + e2,5 − e2,5 + e3,5 − e3,7 + e4,7

As in the previous 3 round case one can make changes the to get the poly-
nomials F̄ (yij) and after those changes the degrees of F̄ are (9, 9, 8, 9) and the
binary degrees of F̃ after Weil descent are (7, 8, 6, 7). Now we have a choice of
O(2256) vectors (λ1, λ2, λ3, λ4) that are enough for the NIST level 5.

The translations are in the first component of the fourth linear map, yielding
(80, 90, 36, 96) monomials. The length of the secret key is 675 bytes, the length
of the public key is 4843 bytes, and a ciphertext takes 64 bytes.

The timings of DME-KEM have also been measured with SuperCop, to allow
a fair comparison with other schemes. The DME implementation has been opti-
mized for processors with the special clmul operation (carry-less multiplication)

DME: A Full Encryption, Signature and KEM MPKC 399

Fig. 1. Timings for DME-SIGN (100 byte messages) and DME-KEM

Fig. 2. Timings for DME-SIGN (100 byte messages) and DME-KEM

that gives a considerable speed-up in the arithmetic over finite fields of charac-
teristic two. Currently, we are using a naive algorithm for computing inverses in
Fq based on the binary exponentiation algorithm and the relation a−1 = aq−2.
Any optimization here would translate in further improvements in the timings
(Figs. 1, 2, 3 and 4).

Fig. 3. Average CPU cycles for KEM as measured by SuperCop on an Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz

400 I. Luengo et al.

Fig. 4. Average CPU cycles for SIGN as measured by SuperCop on an Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz (message length = 93 bytes)

References

1. Avendaño, M., Marco, M.: A structural attack to the DME-(3,2, q) cryptosystem.
Finite Fields Their Appl. 71, 101810 (2021)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

3. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

4. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding
and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64837-4 17

5. Bettale, L., Faugere, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Des. Codes Crypt. 69(1), 1–52 (2013)

6. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997)

8. Gorla, E., Caminata, A.: Solving degree, last fall degree, and related invariants
(with A. Caminata). J. Symb. Comput. 114, 322–335 (2023)

9. Casanova, A., Faugere, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: GeMSS: a great multivariate short signature. NIST CSRC (2020). https://www-
polsys.lip6.fr/Links/NIST/GeMSS-specification-round2.pdf

10. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

11. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturba-
tion. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 22

12. Ding, J., Wolf, C., Yang, B.-Y.: �-invertible cycles for Multivariate Quadratic
(MQ) public key cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71677-8 18

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-77870-5_13
https://www-polsys.lip6.fr/Links/NIST/GeMSS-specification-round2.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS-specification-round2.pdf
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-540-24632-9_22
https://doi.org/10.1007/978-3-540-71677-8_18
https://doi.org/10.1007/978-3-540-71677-8_18

DME: A Full Encryption, Signature and KEM MPKC 401

13. Ding, J., Schmidt, D.: Solving degree and degree of regularity for polynomial sys-
tems over a finite fields. In: Fischlin, M., Katzenbeisser, S. (eds.) Number The-
ory and Cryptography. LNCS, vol. 8260, pp. 34–49. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42001-6 4

14. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. NIST
CSRC (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-
3-submissions

15. Ding, J., Petzoldt, A., Wang, L.: The cubic simple matrix encryption scheme. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 76–87. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 5

16. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 1

17. Faugere, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139, 61–88 (1999)

18. Faugere, J.C., Perret, L.: An efficient algorithm for decomposing multivariate poly-
nomials and its applications to cryptography. J. Symb. Comput. 44, 1676–1689
(2009)

19. Faugère, J.-C., Perret, L.: High order derivatives and decomposition of multivariate
polynomials. In: Proceedings of ISSAC, pp. 207–214. ACM press (2009)

20. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 20

21. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

22. Luengo, I.: DME a public key, signature and KEM system based on dou-
ble exponentiation with matrix exponents. https://csrc.nist.gov/CSRC/media/
Presentations/DME/images-media/dme-April2018.pdf

23. I. Luengo, M. Avendaño : DME: a full encryption, signature and KEM multivariate
public key cryptosystem. IACR preprint 2022/1538 (2022)

24. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

25. Mohamed, M.S.E., Ding, J., Buchmann, J.: Towards algebraic cryptanalysis of
HFE challenge 2. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M. (eds.) ISA
2011. CCIS, vol. 200, pp. 123–131. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23141-4 12

26. NIST PQC Forum official comment. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/official-comments/DME-
official-comment.pdf

27. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 20

28. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

https://doi.org/10.1007/978-3-642-42001-6_4
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-11659-4_5
https://doi.org/10.1007/978-3-540-74143-5_1
https://doi.org/10.1007/11426639_20
https://doi.org/10.1007/3-540-48405-1_2
https://csrc.nist.gov/CSRC/media/Presentations/DME/images-media/dme-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/DME/images-media/dme-April2018.pdf
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/978-3-642-23141-4_12
https://doi.org/10.1007/978-3-642-23141-4_12
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DME-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DME-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DME-official-comment.pdf
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4

402 I. Luengo et al.

29. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

30. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 14

31. Shamir, A.: Efficient signature schemes based on birational permutations. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 1

32. Smith-Tone, D.: On the differential security of multivariate public key cryp-
tosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 130–142.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 9

33. Tao, C., Petzoldt, A., Ding, J.: Efficient key recovery for All HFE signature vari-
ants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
70–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 4

34. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
J. Math. Cryptol. 4(4), 375–415 (2011)

35. Zhao, S., Feng, R., Gao, X.: On functional decomposition of multivariate poly-
nomials with differentiation and homogenization. J. Syst. Sci. Complexity 25(2),
329–347 (2012)

https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-11659-4_14
https://doi.org/10.1007/3-540-48329-2_1
https://doi.org/10.1007/978-3-642-25405-5_9
https://doi.org/10.1007/978-3-030-84242-0_4

Quantum Algorithms, Cryptanalysis
and Models

On the Quantum Security of HAWK

Serge Fehr1,2(B) and Yu-Hsuan Huang1(B)

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
serge.fehr@cwi.nl, yhh@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract. In this paper, we prove the quantum security of the signature
scheme HAWK, proposed by Ducas, Postlethwaite, Pulles and van Woer-
den (ASIACRYPT 2022). More precisely, we reduce its strong unforge-
ability in the quantum random oracle model (QROM) to the hardness
of the one-more SVP problem, which is the computational problem on
which also the classical security analysis of HAWK relies. Our security
proof deals with the quantum aspects in a rather black-box way, making
it accessible also to non-quantum-experts.

Keywords: quantum security · HAWK · digital signature · random
oracle model

1 Introduction

Background. The discovery of Shor’s algorithm has rendered most of the cur-
rently deployed public-key cryptosystems vulnerable to quantum attacks. As of
2016, the US National Institute of Standards and Technology (NIST) initiated
the standardization process for post-quantum cryptography in the scope of key-
encapsulation mechanism (KEM) and signature schemes. In 2022, the 3rd round
winners were announced, but the process is still ongoing with the alternative
KEM candidates and with a new call for signature schemes (see below). The
selected signature schemes consist of Falcon [7] and Dilithium [4], which are
lattice-based, and of SPHINCS+ [1], which is hash-based. For the sake of diver-
sity, NIST has launched a new standardization process with a call for additional
post-quantum signatures.

In 2022, [6] introduced a new cryptographic framework based on the lattice-
isomorphism problem (LIP). The framework can be used to build various post-
quantum cryptographic schemes, including KEMs and signatures. One particu-
larly interesting scheme is the signature scheme HAWK, proposed in [5]. It uses
the simple lattice Z

2n, endowed with the (module) structure of cyclotomic ring
Z[x]/(xn +1) for competitiveness. Due to this choice, the discrete Gaussian sam-
pling (DGS), which is often the efficiency bottleneck, becomes much simpler and
efficient. Indeed, by [5, Table 1], HAWK generally outperforms Falcon, which is
considered to be one of the most efficient post-quantum signature schemes. It is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 405–416, 2023.
https://doi.org/10.1007/978-3-031-40003-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_15

406 S. Fehr and Y.-H. Huang

an “open secret” that HAWK will be submitted to the new NIST standardization
process mentioned above.

The classical security of HAWK has been analyzed and rigorously proven
(in the random oracle model), via a security reduction to the considered — and
believed-to-be (quantum) hard — one-more SVP problem [5]. Especially in the
light of being a candidate in the new NIST post-quantum competition, the quan-
tum security of HAWK is of particular interest.

As is common for security proofs in the random oracle model, the classical
security proof for HAWK from [5] does not carry over to the quantum setting,
where the attacker can make quantum superposition queries to the random ora-
cle. Also, HAWK does not follow a standard construction design, for which one
could apply an off-the-shelf quantum-security result (like [3,9]). As a matter
of fact, HAWK follows some non-standard randomized variant of the hash-and-
sign paradigm, where first the hash h := H(m, r) of the to-be-signed message
m and some randomness r is computed, where r is then part of the signature
sig = (r, s), and the other part s is then sampled according to some distribution,
which depends on the public key and on h, and that can be efficiently sampled
if and (as far as we know) only if the secret key is given. The verification works
by checking if some specific deterministic function of s and H(m, r) satisfies
some property (namely, is a non-zero short vector). Previous quantum analyses
of generic hash-and-sign signature schemes, including the randomized variants
considered in [2,10], which rely on preimage samplable functions, do not apply
to HAWK (independent of whether one considers classical or quantum attacks).
Thus, an explicit quantum security proof for HAWK is necessary to establish
provable quantum security.

Contribution. In this work, we analyze the quantum security of HAWK in
the random oracle model. In particular, we prove strong unforgeability against
chosen-message attacks in the quantum random oracle model (QROM), where
the quantum attacker is given superposition access to the random oracle. Our
proof is in the form of a security reduction to the (same) one-more SVP problem,
with an explicit security loss. Our result positively confirms that the claimed
quantum security of HAWK lies on a firm theoretical foundation.

Our quantum security proof for HAWK recycles some elements of the classical
proof from [5], but requires some new elements to deal with the quantum aspect.
For example, we invoke the adaptive reprogramming technique from [8] as well
as the optimality of Grover for preimage search. Our proof is rather modular,
and from our quantum security proof one can easily extract a variant of the
classical security proof as well (with a slightly improved bound compared to the
original classical proof in [5]), simply by replacing the adaptive reprogramming
and the preimage search parts by their classical counterparts. In particular, our
quantum security proof is meant to be accessible to a large extent also to non-
quantum-experts.

On the Quantum Security of HAWK 407

2 Preliminary

2.1 Setting up the Stage

Let R be the cyclotomic ring R = Z[x]/(xn +1), which is isomorphic to Z
n as a

Z-module; later on, n will be restricted to be an integer power of 2. Furthermore,
we fix the obvious inclusion map R/2R ↪→ R, and thus consider the reduction
mod 2 as a map R → R/2R ⊂ R.

In order to abstract away the technical details of the property sym-break from
[5], we consider the function 〈 · 〉 : R2 → R2 defined by

v =
(

v1
v2

)
�→ 〈v〉 :=

{
−v if sym − break(v1) = 1,
v otherwise,

where, as defined in [5], sym-break(v1) = 1 if and only if v1 �= 0 with the first
nonzero coefficient being positive. It is convenient to think of 〈v〉 as a represen-
tation of the equivalence class {v,−v}, with the representation being unique if
v1 �= 0. Indeed, what will be relevant is that

〈v〉 = 〈−v〉 ∈ {v,−v} ∀ v �∈ {0} × R , (1)

while 〈v〉 = v for v ∈ {0} × R.
Let B ∈ GL2(R) be an invertible 2 × 2 matrix over R, and let Q = B∗B.

Looking ahead, B will form the secret key and Q the public key in HAWK. Such
a Hermitian matrix Q induces the norm ‖v‖Q := tr (v∗Qv) /n. As the name
suggests, this is a norm in the Z-module R2, meaning ‖u + v‖Q ≤ ‖u‖Q +‖v‖Q,
‖av‖Q = |a| ‖v‖Q and ‖v‖Q = 0 ⇒ v = 0 for all u, v ∈ R and a ∈ Z.

For every σ > 0 and h ∈ R2/2R2 ⊂ R2, consider the following Q-dependent
distributions D

B

σ , D̃
B

σ [h] and D̃
B

σ . They can be efficiently sampled if the matrix
B is known, which motivates the superscript-B notation.

Definition 1. For every σ > 0 and Q = B∗B as specified above, define

– D
B

σ : the discrete (σ-deviated) Gaussian distribution under Q-norm centered
at 0 and supported at R2.

– D̃
B

σ [h]: the discrete (σ-deviated) Gaussian distribution under Q-norm cen-
tered at 0 and supported at h + 2R2 ⊂ R2.

– D̃
B

σ : with a random choice of h ← R2/2R2, sampling D′
σ [h].

Note that for every h ∈ R2/2R2 ⊂ R2 we have

v mod 2 = h ∀ v ∈ supp
(
D̃

B

σ [h]
)

= h + 2R2 . (2)

Furthermore, by Lemma 9 in the full version of [5], for every ε > 0 and
σ ≥ ηε(Zn), the statistical distance

δ
(
D

B

2σ, D̃
B

2σ

)
≤ ε/(1 − ε) , (3)

408 S. Fehr and Y.-H. Huang

where ηε(·) is as defined in [5, Definition 3]. This also implies that the distri-
bution of h := v mod 2 for v ← D

B

2σ is close to uniformly random in R2/2R2,
with statistical distance at most ε/(1− ε). Furthermore, as a direct consequence
of [5, Lemma 3], the guessing probability of v mod 2 for v ← D

B

2σ is bounded by

guess(v mod 2) := max
h◦∈R2/2R2

Pr[v mod 2 = h◦] ≤ 2−2n · 1 + ε

1 − ε
. (4)

2.2 Geometric Units

Define the set of geometric units as μK := {x1, . . . , x2n} ⊆ R. The following
Lemma 1 is recycled from the proof of Lemma 10 in the full version of [5], and
will be useful in later analysis.

Lemma 1. Let n be a power of 2, ε > 0, σ ≥ ηε(Zn), and h◦ ∈ R2/2R2.
Consider v ← D2σ and set h := v mod 2. Then

Pr
[∃ α ∈ μK \ {±1} : 1

2 (h + αv) ∈ R2
] ≤ 2−n · 1 + ε

1 − ε
, and (5)

Pr
[∃ α ∈ μK : 1

2 (h◦ + αv) ∈ R2
] ≤ n · 2−2n · 1 + ε

1 − ε
. (6)

Proof. For (5), note that 1
2 (h + αv) ∈ R2 implies that h + αv ∈ 2R2, and thus

αv ≡ h ≡ v (mod 2). Furthermore, any α ∈ μK \ {±1} satisfies α ≡ xi (mod 2)
for some 1 ≤ i < n, and so we have xiv ≡ v (mod 2) and thus by repeated
application

xkiv = x(k−1)ixiv ≡ x(k−1)iv = · · · ≡ v (mod 2) (7)

for any positive integer k. Furthermore, exploiting that, by the choice of n as
a power of 2, n/2 must be a multiple of gcd(i, n) and thus can be written as
n/2 = ki + �n (where one may choose k to be positive), and using that xn ≡ 1
(mod 2), we obtain that

xn/2v ≡ v (mod 2) .

Thus, we conclude (5) by

Pr
[∃ α ∈ μK \ {±1} : 1

2 (h + αv) ∈ R2
]

≤ Pr
[
xn/2v ≡ v (mod 2)

]

≤ guess(v mod 2) · #
{

v◦ ∈ R2/2R2
∣∣∣ xn/2v◦ ≡ v◦ (mod 2)

}

≤ 2−2n · 1 + ε

1 − ε
· 2n

≤ 2−n · 1 + ε

1 − ε
,

where we exploited (4).
Similarly, for (6), note that 1

2 (h◦+αv) ∈ R2 implies that v ≡ α−1h◦ (mod 2),
and furthermore #{α−1h◦ mod 2 | α ∈ μK} ≤ n. Together with (4), we conclude
the claimed bound (6). ��

On the Quantum Security of HAWK 409

2.3 Adaptive Reprogramming Lemma

The following reprogramming lemma adapts from [8, Theorem 1], with a simpler
proof. Intuitively, it states that, if the location x of a reprogramming is hard to
guess prior to when it is taking place, then such a reprogramming is hard to
notice.

Lemma 2 (Slight modification of [8, Theorem 1]). Let H : X → Y be
a random oracle, ε > 0 and Ω be a family of distributions on X where every
D ∈ Ω is with guessing probability guess(D) := maxx◦ Prx←D [x = x◦] ≤ ε.
Define the reprogramming oracle Reprob for b ∈ {0, 1} that, on input (a suitable
representation of) D ∈ Ω, works as below:
Repro0(D)
1: x ← D
2: y := H(x)
3: return (x, y)

Repro1(D)
1: x ← D
2: H(x) := y ← Y
3: return (x, y)

Suppose AReprob,H for b ∈ {0, 1} makes at most qR queries to the reprogramming
oracle Reprob, and at most qH quantum queries to H before the last reprogram-
ming query. Then,

∣∣Pr
[
1 ← ARepro0,H

] − Pr
[
1 ← ARepro1,H

]∣∣ ≤ 2qR

√
(qH + qR) · ε .

The intuition is quite simple: A can notice whether H(x) gets reprogrammed
or not only if it has queried x beforehand, which is unlikely the case since it is
chosen with high entropy. The compressed oracle technique allows to make this
line of reasoning rigorous, even when the queries to H are quantum: Before every
Repro query we measure the compressed oracle to check whether x has been
queried, we argue that the measurement outcome is “no” with overwhelming
probability due to the high entropy in x, we conclude that the measurement
caused little disturbance due to the gentle measurement lemma, and we observe
that in case of a “no” outcome there is no difference between Repro0 and Repro1.

The full proof is based on the compressed oracle technique, but is rather
standard. We refer readers to Appendix A for a detailed proof.

3 Brief Recap on HAWK and the One-More SVP

In the scope of HAWK, we take it as understood that the degree n of the cyclo-
tomic ring R is a power of 2. Let H : X → R2/2R2 ⊆ R2 be a hash function,
modelled as a random oracle, and let the parameters σpk, σsign, σver, saltlen be
as specified in Lemma 10 in the full version of [5]. In particular, it holds that
σsign ≥ ηε(Zn) for some negligible ε > 0. We write Gen for the (σpk-dependent)
key generation procedure specified in [5], producing a public-secret key pair
(Q,B) with B ∈ GL2(R) and Q = B∗B

The signing SignB and verification VrfyQ of HAWK works as follows.

Remark 1. We take it as understood that VrfyQ implicitly checks that the sig-
nature sig = (r, s) is well-formed, i.e. r ∈ {0, 1}saltlen and s ∈ R2.

410 S. Fehr and Y.-H. Huang

Fig. 1. SignB and VrfyQ of HAWK

Remark 2. The description in Fig. 1 matches the specification of HAWK (see [5,
Algorithm 2 and Algorithm 3]) up to some small changes in the presentation
(only). In particular, v as specified above coincides with 1

2B
−1x in the original

specification of HAWK, and our definition of s := 1
2 (h + 〈v〉) captures that s :=

1
2h∓B−1x, where the choice of the sign depends on sym-break(h1−2s2). Finally,
the check v = 〈v〉 and v �∈ {0} × R is equivalent to checking sym-break(h1 − 2s1)
as in the specification of HAWK.

Remark 3. Here we only concerns the uncompressed version of HAWK, while in
practice an additional layer of compression is deployed for optimization. Nev-
ertheless, it suffices to analyze the security of uncompressed HAWK because,
according to [5, Section 3.2], the security of compressed HAWK follows immedi-
ately after.

Below, we describe the one-more SVP problem, as considered in [5], which
considers an oracle algorithm A that makes at most qS queries to the distribution
D

B

2σsign
. We stress that when considering A to be a quantum algorithm, the queries

to the oracle/distribution D
B

2σsign
are restricted to be classical.

Definition 2. Consider the one-more SVP game GomSVP
A , defined as follows:

1: (Q,B) ← Gen

2: v∗ ← AD
B

2σsign (Q) // Write v1, . . . , vq′
S
for the responses given by D

B

2σsign
.

3: return 1 if and only if 0 < ‖v∗‖Q ≤ 2σver

√
2n and

v∗ �∈ {α · vi | (i, α) ∈ [q′
S] × μK} . (8)

The advantage advomSVP
A of winning the one-more SVP game is then defined as

advomSVP
A := Pr

[
1 ← GomSVP

A
]
.

4 Quantum Security of HAWK

4.1 Warming Up: NMA Security

As a warm up, let A be an NMA attacker against HAWK, which on input the
public key Q outputs a message-forgery pair (m∗, sig∗) with sig∗ = (r∗, s∗) ∈

On the Quantum Security of HAWK 411

{0, 1}saltlen × R2. Furthermore, consider the algorithm E that on input such a
message-forgery pair (m∗, sig∗) computes

h∗ := H(m∗, r∗) and v∗ := 2s∗ − h∗ (9)

and outputs v∗. Then VrfyQ(m∗, sig∗) = 1 only if 0 < ‖v∗‖Q ≤ 2σver ·
√

2n by the
definition of VrfyQ. Thus, if A succeeds in forging a signature then B := E ◦ A
succeeds in finding a non-zero short vector. Formally,

advNMA
A := Pr

[
VrfyQ(m∗, sig∗) = 1

∣∣∣∣ (Q,B) ← Gen
(m∗, sig∗) ← A(Q)

]
≤ advomSVP

B .

We note that the above reasoning holds in the plain model with H being an
arbitrary hash function, as well as in the random oracle model.

Remark 4. The reduction algorithm B here from NMA to one-more SVP does
not make any query to D

B

2σsign
.

4.2 Full CMA Quantum Security

Consider a CMA attacker ASignB,H(Q) against HAWK in the random oracle
model, which on input the public key Q makes at most qH queries to the random
oracle H and at most qS queries to the signing oracle SignB, and eventually
outputs a message-forgery pair (m∗, sig∗) with sig∗ = (r∗, s∗) ∈ {0, 1}saltlen×R2.
Without loss of generality, we assume A makes exactly qH , qS queries to H,SignB

respectively.1 The goal is to turn A into an algorithm B that solves the one-more-
SVP problem.

Theorem 1 (Quantum Security of HAWK). Let HAWK be as specified in
Sect. 3, and let ASignB,H(Q) be a chosen-message attack making at most qS

queries to SignB and at most qH quantum queries to H respectively. Then there

exists an algorithm BD
B

2σsign making qS queries to solve one-more SVP, with run-
ning time TIME(B) ≈ TIME(A) + Overhead(qS , qH) consisting of an additional

overhead Overhead(qS , qH) of simulating qH , qS queries to H and SimD
B

2σsign

(specified in Fig. 2), such that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1 − ε
+ 2qS

√
qH + qS · 2−saltlen/2

+ qS

(
2−n + (qS − 1) · n · 2−2n

) · 1 + ε

1 − ε
+ O

(
q2H · n · qS/22n

)
,

where the CMA advantage is defined as below:

advsUF-CMA
A := Pr

[
VrfyQ(m∗, sig∗) = 1

∀i ∈ [qS] : (m
∗, r∗) �= (mi, sigi)

∣∣∣∣∣
(Q,B) ← Gen

(m∗, sig∗) ← ASignB,H(Q)

]
,

with (mi, sigi) in the probability being the transcript produced at the ith signing
query.
1 Otherwise, we let A make dummy queries to H and SignB respectively, with the

dummy queries to SignB being on messages different from m∗, so that they do not
affect the freshness of a forgery.

412 S. Fehr and Y.-H. Huang

Simulating the Signing Queries. First, we show that we can replace the
signing oracle Sign by a particular simulator Sim that does not (explicitly) hold
the secret key B, but instead has access to the Q-dependent distribution D

B

2σsign
,

and that can reprogram the random oracle H; see Fig. 2 (right) below. Towards
this goal, we also consider the oracle TransB as specified in Fig. 2 (left), and we
show that

ASignB,H(Q) ≈ ATransQ,H(Q) ≈ ASim
D

B
2σsign ,H(Q) .

We have used subscript Q,B to indicate that the oracle’s execution depends on
the keys, but for later convenience, we may also omit those subscripts based on
the relevance of the context.

Fig. 2. Oracles TransB and Sim
D

B

2σsign

Note that, the only difference between Sign and Trans, is that the for-
mer computes h := H(m, r) while the latter replaces it with reprogramming
H(m, r) := h ← R2/2R2 for a freshly chosen h. It follows therefore directly
from Lemma 2, with ε = 2−saltlen and qR = qS , that

Pr
[
1 ← VrfyH ◦ ASign,H

]
− Pr

[
1 ← VrfyH ◦ ATrans,H

]
≤ 2qS

√
qH + qS/2

saltlen/2 ,

(10)
where it is understood that the verification VrfyH is performed using the possibly
reprogrammed H. Furthermore, by the closeness of the distributions D

B

2σsign
and

D̃
B

2σsign
(see Lemma 3 for the detailed reasoning), replacing the calls to Trans

one-by-one by calls to Sim, one obtains

Pr
[
1 ← VrfyH ◦ ATrans,H

]
− Pr

[
1 ← VrfyH ◦ ASim,H

]
≤ qS · ε

1 − ε
.

We thus conclude that the validity of a forgery is preserved when replacing the
signing oracle Sign by Sim, up to the sum of the two above probabilities.

Furthermore, the freshness of a forgery is also preserved, in that we can
assume without loss of generality that A never outputs a forgery (m∗, sig∗) that
matches the response of a signing query.

Lemma 3. Let ε > 0 and σsign ≥ ηε(Zn). Then the respective distributions of
(r, h, s, v) in an execution of Sim and of Trans have statistical distance at most
ε/(1 − ε).

On the Quantum Security of HAWK 413

Proof. First, we note that in Trans, right after the choice of v ← D̃
B

2σsign
[h] in

line 3, we can redefine H(m, r) := h := v mod 2 with no effect, since v mod 2 = h

for v ← D̃
B

2σsign
[h] by (2). But now, the only difference between Trans and Sim

is that in the former v is sampled by D̃
B

2σsign
and in the latter by D

B

2σsign
. The

claim thus follows from (3). ��

Extracting a Fresh Short Vector. Slightly abusing notation, we now consider

the algorithm BD
B

2σsign := EH ◦ASim
D

B
2σsign ,H where, as before, E computes h∗ and

v∗ as in (9) and outputs v∗, and where we take it as understood that the random
oracle H is simulated by B. As in the NMA case, it follows that if ASim,H succeeds
in producing a valid forgery then B’s output v∗ is a short non-zero vector, i.e.,
0 < ‖v∗‖Q ≤ 2σver · √

2n. It remains to show that v∗ is fresh as well.
To show that this holds (almost with certainty), we assume that (m∗, sig∗)

is a valid and fresh forgery (where the latter is without loss of generality), yet
v∗ = αvj for some (j, α) ∈ [qS]×μK, and we show that this implies an event that
has negligible probability. For this purpose, let mi, ri, hi, si, vi be the transcripts
m, r, h, s, v produced at the ith query to Sim, and let sig∗ = (r∗, s∗) be the
signature output by B. We distinguish between the following two cases.

Case (m∗, r∗) = (mi, ri) for some i ∈ [qS], where we consider i to be maximal
such that the equality holds.2 Then h∗ = hi, and so

R2 � s∗ =
1
2
(h∗ + v∗) =

1
2
(hi + αvj) .

However, if i �= j then for any fixed choice of hi, the probability over the choice
of vj of there being an α ∈ μK as above, is at most n · 2−2n · 1+ε

1−ε by (6). On the
other hand, if i = j then we get that

R2 � s∗ =
1
2
(h∗ + v∗) =

1
2
(hi + αvi) .

Furthermore, α �= ±1 then; indeed, otherwise, 〈vi〉 = 〈v∗〉 = v∗, where the second
equality holds by the validity of sig∗ and the first follows from {0}×R �� v∗ = ±vi

and (1), and so s∗ = 1
2 (hi + 〈vi〉) = si which contradicts the freshness of sig∗.

However, the probability over the choice of vi of there being an α ∈ μK \ {±1}
as above, is at most 2−n · 1+ε

1−ε by (5).
In case (m∗, r∗) �= (mi, ri) for every i ∈ [qS], we must have that

R2 � s∗ =
1
2
(h∗ + v∗) =

1
2
(h∗ + αvj) ,

and so H(m∗, r∗) = h∗ = αvj mod 2; furthermore, H has not been repro-
grammed throughout the execution at the location (m∗, r∗). Hence

Hinit(m∗, r∗) = H(m∗, r∗) ∈ {αvj mod 2 | (j, α) ∈ [qS] × μK} =: S , (11)

2 If i is not the largest, it can be (m∗, r∗) = (mi, ri) yet h∗ �= hi because h∗ is
computed via the possibly reprogramed H.

414 S. Fehr and Y.-H. Huang

where Hinit is the initial H before being reprogrammed. Thus, parsing ASim,H

as CHinit , which runs the calls to Sim (for arbitrary but fixed samples v1, . . . , vqS

of D
B

2σsign
) and the reprogramming of H internally, we obtain a preimage-finding

algorithm that finds a preimage under Hinit of an element in S, making qH queries
to Hinit. Given that #S ≤ n · qS , such an algorithm can succeed with probability
at most O

(
q2H · n · qS/22n

)
via the standard preimage finding bound.

Collecting all the different error terms, we obtain that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1 − ε
+ 2qS

√
qH + qS · 2−saltlen/2

+ qS

(
2−n + (qS − 1) · n · 2−2n

) · 1 + ε

1 − ε
+ O

(
q2H · n · qS/22n

)
,

which concludes Theorem 1.

4.3 Classical Security

As our proof is modular, one may substitute certain part of the proof of Theo-
rem 1 to obtain better bounds when considering the attacker A that only makes
classical queries to H.

In (10) where the closeness between Sign and Trans, one with and one without
reprogramming, is argued, we may substitute the advantage by

Pr
[
1 ← VrfyH ◦ ASign,H

]
− Pr

[
1 ← VrfyH ◦ ATrans,H

]
≤ 2qS(qH + qS)/2saltlen .

Moreover, to control the event (11) of finding a preimage of at most n · qS

elements, there is a better classical bound as well:

Pr [Hinit(m∗, r∗) ∈ S] ≤ (qH + 1) · n · qS/22n .

Putting things together, we obtain the classical security of HAWK as follows.

Theorem 2 (Classical Security of HAWK). Let HAWK be as specified in
Sect. 3, and let ASignB,H(Q) be a chosen-message attack making at most qS

queries to SignB and at most qH classical queries to H respectively. Then there

exists an algorithm BD
B

2σsign making qS queries to solve one-more SVP, with run-
ning time TIME(B) ≈ TIME(A) + Overhead(qS , qH) consisting of an additional
overhead Overhead(qS , qH) of respectively simulating qH , qS queries to H and

SimD
B

2σsign (specified in Fig. 2), such that

advsUF-CMA
A ≤ advomSVP

B +
qSε

1 − ε
+ 2qS(qH + qS)/2saltlen

+ qS

(
2−n + (qS − 1) · n · 2−2n

) · 1 + ε

1 − ε
+ (qH + 1) · n · qS/22n .

Acknowledgement. The authors thank Jelle Don and Eamonn W. Postlethwaite,
Ludo N. Pulles for their useful discussions. Yu-Hsuan Huang is supported by the Dutch
Research Agenda (NWA) project HAPKIDO (Project No. NWA.1215.18.002), which
is financed by the Dutch Research Council (NWO).

On the Quantum Security of HAWK 415

A More Proofs

Proof of Lemma 2. Without loss of generality, assume A makes exactly qR queries
to the reprogramming oracle Reprob by doing additional dummy queries if oth-
erwise. Define a sequence of hybrid games Gi that replaces the first i reprogram-
ming queries of ARepro1,H to querying Repro0, where by definition G0 and GqR

run as ARepro1,H and ARepro0,H respectively.
It suffices to show the closeness Gi ≈ Gi+1 for every 0 ≤ i < qR, where we refer

to the only query that differs as the crucial query. For the sake of analysis, we
consider the random oracle H to be (perfectly) simulated via compressed oracle
in a designated database register D, which, within the crucial query before y :=
H(x) or H(x) := y ← Y, is decompressed and measured in the computational
basis to obtain the oracle H to be used later.

Define G′,G′′ to respectively run as Gi,Gi+1 except additionally doing a binary
measurement {M0,M1} where M1 :=

∑
D(x)=⊥ |D〉 〈D|D right after x ← D being

sampled but before y := H(x) or H(x) := y ← Y, and abort if the outcome does
not match M1. G′ and G′′ behaves identically because on non-abort, the database
register D collapses into |⊥〉D(x), for which the reprogramming H(x) := y ← Y
do not affect the decompressed-and-measured distribution of D(x). The closeness
of G′ ≈ Gi and G′′ ≈ Gi+1 follows from the gentle-measurement lemma, together
with the fact that there has been at most qH + qR queries of interaction with
H prior to the crucial query, so Pr [G′ aborts] = Pr [G′′ aborts] ≤ (qH + qR)ε.
This concludes the proof, which can be summarized by the following chain of
closeness

Gi

√
(qH+qR)ε

≈ G′ 0≈ G′′
√

(qH+qR)ε

≈ Gi+1 .

��

References

1. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

2. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

3. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

4. Ducas, L., et al.: CRYSTALS-dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptographic Hardw. Embed. Syst. 2018, 238–268 (2018)

5. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module LIP
makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22972-5 3

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3

416 S. Fehr and Y.-H. Huang

6. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 643–673. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07082-2 23

7. Fouque, P.A., et al.: Falcon: fast-Fourier lattice-based compact signatures over
NTRU. Submission NIST’s Post-quantum Cryptography Stand. Process 36(5), 1–
75 (2018)

8. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogram-
ming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92062-3 22

9. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

10. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. Int. J. Quantum Inf. 13(04), 1550014 (2015)

https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-26951-7_12

Non-Observable Quantum Random
Oracle Model

Navid Alamati1, Varun Maram2(B), and Daniel Masny3

1 VISA Research, Palo Alto, USA
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

vmaram@inf.ethz.ch
3 Meta Research, Menlo Park, USA

Abstract. The random oracle model (ROM), introduced by Bellare and
Rogaway (CCS 1993), enables a formal security proof for many (efficient)
cryptographic primitives and protocols, and has been quite impactful in
practice. However, the security model also relies on some very strong and
non-standard assumptions on how an adversary interacts with a crypto-
graphic hash function, which might be unrealistic in a real world setting
and thus could lead one to question the validity of the security analysis.
For example, the ROM allows adaptively programming the hash function
or observing the hash evaluations that an adversary makes.

We introduce a substantially weaker variant of the random oracle
model in the post-quantum setting, which we call the non-observable
quantum random oracle model (NO QROM). Our model uses weaker
heuristics than the quantum random oracle model by Boneh et. al. (Asi-
acrypt 2011) or the non-observable random oracle model proposed by
Ananth and Bhaskar (ProvSec 2013). At the same time, we show that
our model is a viable option for establishing the post-quantum security of
many cryptographic schemes by proving the security of important prim-
itives such as extractable non-malleable commitments, digital signatures
and chosen-ciphertext secure public-key encryption in the NO QROM.

Keywords: quantum random oracle model · non-observability ·
extractable non-malleable commitments · digital signatures · CCA
security

1 Introduction

The random oracle model (ROM), introduced by Bellare and Rogaway [5], is
an influential tool to argue the heuristic security of advanced cryptographic
primitives such as existentially-unforgeable (EUF-CMA secure) digital signa-
ture schemes and chosen-ciphertext secure (CCA-secure) public-key encryption
(PKE). In the ROM, a hash function is modeled as a random function, i.e. with

V. Maram—Parts of work done while the author was an intern at VISA Research.
D. Masny—Parts of work done while the author was at VISA Research.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 417–444, 2023.
https://doi.org/10.1007/978-3-031-40003-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_16

418 N. Alamati et al.

a random truth table. This paradigm has turned out to be very useful in con-
structing very efficient and practically relevant cryptographic schemes [18,21,34].
Constructions that establish similar results without using ROs are typically very
inefficient and thus seem to have less practical relevance [11,33].

Nevertheless, the model has a negative side in that there are signature and
PKE schemes that are secure in the ROM but become insecure when the random
oracle is replaced with any concrete hash function [12]. Therefore, we need to
treat security arguments in the ROM with caution. Despite this weakness of the
ROM, many results also require strong properties of the ROM: for example, the
model allows security arguments to “program” the random oracle or to observe
the queries made to the oracle by an adversary. These seem to be rather strong
assumptions, or in other words, seem to significantly limit the class of adversaries
against which security holds. Therefore, there have been proposals to weaken the
ROM to non-programmability [20] or non-observability [3]. In this paper, we will
be focusing on the latter aspect.

Specifically, the non-observable ROM (NO ROM) [3] has received less atten-
tion (at least compared to its non-programmable counterpart [20]) and there are
almost no non-trivial positive results known in the model. For example, Ananth
and Bhaskar [3] have proposed a secure extractable commitment scheme in the
NO ROM but unfortunately it is much less efficient when compared to stan-
dard commitment schemes in the plain ROM. Hence, this raises the following
question:

Does security of cryptographic primitives, such as extractable commitment
schemes, in the NO ROM necessarily come with a significant loss in efficiency?

A different line of research arose with the rising threat of quantum com-
puters, which extended the ROM to the quantum ROM (QROM) [8]. In the
QROM, an adversary is allowed to make superposition queries to a quantum
random oracle (QRO). This models the ability of a quantum algorithm to eval-
uate a hash function over an input in superposition. It was also shown that the
QROM is a strictly weaker model than the ROM [37], in the sense that we make
strictly weaker assumptions with respect to an adversary in the former. At the
same time, many security proofs in the ROM have been adapted to hold in the
QROM with respect to important cryptographic primitives such as digital signa-
tures [15,16,29] and CCA-secure PKE schemes [23,25,35,41]. However, similar
to our discussion of the ROM above, most of these security proofs in the QROM
crucially rely on a strong property of the model: namely, that one can observe –
or more precisely, measure – the quantum queries made by an adversary to the
random oracle. This raises another pressing question.

Can we prove security of cryptographic primitives, such as digital signatures
and CCA-secure PKE schemes, in the QROM without relying on

measuring/observing queries?

Non-Observable Quantum Random Oracle Model 419

1.1 Our Contributions

In this paper, we make significant progress towards answering the above ques-
tions by obtaining the following results.

New Model: “NO QROM”. We first introduce a new post-quantum secu-
rity model which we call the non-observable quantum random oracle model (NO
QROM). Essentially, the model is a weakened version of the NO ROM of [3], in
terms of the heuristics used, which also accounts for quantum adversaries. In the
original NO ROM, the random oracle is modeled with a Turing machine that can
have a state which could be, for example, a list of random elements and the first
query would be answered with the first element in the list. However, such a state
is inherently incompatible with queries over superpositions. We therefore adapt
the NO ROM to the quantum setting via NO QROM which allows superposition
queries as in the QROM, while at the same time, forbids observing/measuring
adversarial queries in the security proofs as in the NO ROM. The NO QROM
therefore relies on weaker assumptions than the NO ROM and the QROM. In
other words, security proofs in the NO QROM also hold in both the NO ROM
and the QROM.

Efficient Extractable Commitments. Regarding the first question above on
whether security of basic cryptographic primitives such as extractable commit-
ments in the NO ROM is inherently tied with a loss in efficiency, we answer it
in the negative. In fact, we go one step further and answer the same question in
the weaker NO QROM; as mentioned previously, our results hold in the classical
NO ROM as well.

Specifically, the previous extractable commitment scheme in the NO ROM
[3] has some significant drawbacks. Namely, to commit to a message of size
|m| it requires a commitment of size 2ω(log κ) · |m| using |m| hash evaluations
for security parameter κ. Furthermore, their security proof does not seem to
translate to the quantum setting. That is, in their corresponding reduction, the
outcome of a random oracle query solely depends on how many queries have
been made before. But it is unclear how this strategy could translate to queries
in quantum superposition, where multiple queries could be made in parallel.

In our work, by leveraging well-known techniques from the QROM setting
[6,38,39], we show that the standard “textbook” commitment scheme H(r,m)
is in fact extractable in the NO QROM and significantly more efficient. It is
computationally binding for a length |m| + 2ω(log κ) with perfect extraction.
We achieve a length of |m| + ω(log κ) for a computationally binding, extractable
commitment scheme1 under the drawback that the extractor has either at most
an inverse polynomial (in κ) success probability or runs in superpolynomial time.

1 |m|+ ω(log κ) is optimal for a statistically binding commitment since for every mes-
sage, there need to be at least 2ω(log κ) many commitments to not violate hiding and
each of these commitments is a commitment to a unique message.

420 N. Alamati et al.

Additionally, as mentioned in [10], H(r,m) is also a non-malleable commit-
ment [14] in the ROM. We show that H(r,m) is also non-malleable in the NO
QROM whenever H(r,m) is statistically binding as required by the notion of non-
malleability with respect to commitments [14,32]. However, intuitively H(r,m)
also seems non-malleable in the computationally binding setting. Hence, we make
this intuition concrete by first weakening the definition of [14,32] by a slight
adaptation and then showing that H(r,m) is non-malleable with respect to our
slightly weaker definition whenever the commitment is computationally binding.
Furthermore, we give bounds on the commitment length for the commitment
being statistically binding and show how this could be significantly improved
using a NO QRO that is a permutation.

EUF-CMA Secure Signatures. We now consider our second question above
on the NO QROM security of advanced cryptographic primitives such as digital
signatures and CCA-secure PKE schemes. Focusing on the former primitive, in
the classical setting, a well-known class of ROM digital signatures called full-
domain hash (FDH) signature schemes [5] is known to be secure in the NO
ROM [3]. However, in the quantum setting, their security proof breaks down if
the adversary is also allowed to query the random oracle in a quantum superpo-
sition. One of the reasons is the inherent incompatibility of maintaining a state
with respect to a random oracle in a quantum setting, as mentioned previously.
Another reason is that, at a high level, the previous proof strategy [3] crucially
relies on working with a polynomial number of inputs/outputs of the random
oracle. But in the quantum setting, an adversary’s random oracle query can be
a superposition over exponentially many inputs.

Fortunately, Zhandry [39] overcame the above barrier using a novel technique
related to indistinguishability of quantum random oracles, and subsequently
proved the security of FDH signatures in the QROM. In this work, we adapt
Zhandry’s proof in the context of “non-observability” to show that the FDH
signatures are also secure in the weaker NO QROM. In other words, our result
shows that we don’t need the full “machinery” of QROM – i.e., observability
– to prove the post-quantum security of FDH signatures, and that relying on
weaker heuristics is sufficient.

However one caveat is that there are no known instantiations of FDH sig-
natures from concrete post-quantum assumptions. Fortunately, Boneh et. al. [8]
identified a broader class of ROM signature schemes whose security can be shown
in the QROM setting. To be specific, such a class of signatures have their classical
ROM security proofs following a general structure known as history-free reduc-
tions [8]; roughly speaking, such reductions answer adversarial random oracle
queries independently of the history of previous queries. And it was shown in [8]
that history-free reductions lift ROM security of the corresponding signatures to
QROM security. More importantly, the above class of “history-free signatures”
include schemes with concrete post-quantum instantiations (in contrast to FDH
signatures) – e.g., the lattice-based GPV signatures [22]. In our work, we extend
the lifting theorem of [8] to show that such history-free signatures are in-fact

Non-Observable Quantum Random Oracle Model 421

secure in the NO QROM. Put differently, we explicitly establish that weaker
heuristics are sufficient to prove post-quantum security of the above broad class
of signatures with history-free reductions.

Hinting PRGs and CCA-Secure Encryption. We show that any CPA
secure PKE can be transformed into a CCA secure PKE in the NO QROM.
More specifically, we first provide a simple and efficient construction of a special
cryptographic primitive in the NO QROM called a hinting pseudorandom gen-
erator (PRG). This primitive was introduced by Koppula and Waters [27], and
was mainly used to boost not only the “CPA-to-CCA” security of PKE, but also
more advanced encryption systems such as attribute-based encryption and one-
sided predicate encryption schemes. Therefore, we obtain the above CCA-secure
encryption systems also in the NO QROM.

By proving the security of widely used cryptographic primitives in NO
QROM, we establish the NO QROM paradigm as a viable option for analyzing
the post-quantum security of cryptographic schemes with the advantage that
it uses a weaker heuristic than the ROM, QROM and NO ROM. Nevertheless,
we emphasize that the NO QROM does not resolve the uninstantiability of the
ROM [12] since in their result, they do not rely on observing oracle queries.

1.2 Related Work

Regarding post-quantum security of extractable commitment schemes, Don et.
al. recently made significant progress with respect to online-extractability in the
QROM [17]; however, their techniques rely on measuring the adversarial random
oracle queries. In another recent work, Bitansky, Lin, and Shmueli [7] proposed
a log∗(κ) round non-malleable commitment based on the quantum hardness of
LWE and quantum fully homomorphic encryption. Furthermore, they construct
non-malleable commitments with polynomial rounds from post-quantum obliv-
ious transfer or post-quantum one-way functions. Their constructions are the
first non-malleable commitments secure against quantum attacks in the stan-
dard model. Since our construction is unconditionally secure in the NO QROM,
our non malleable commitments are also secure against quantum attacks. At the
same time our commitment is non-interactive.

Lombardi et. al. [30] observe that in many natural applications of extractable
commitments in the context of post-quantum secure zero knowledge protocols,
we require an additional property of the extractable commitments wherein the
extractor E (cf. Definition 10) must also simulate the adversary A’s view, in
addition to extracting the message m from A’s commitment c; the authors use
the term “state-preserving” extractable commitments for such enhanced commit-
ments, and proceed to give constructions in the standard model. We note that
our analysis of the standard hash-based commitment H(r,m) in the NO QROM
(Theorems 1 and 2) also imply this stronger “state-preserving” extractability
notion because of the simple fact that there is no rewinding of the adversary A
in the online setting we consider.

422 N. Alamati et al.

In this work, we consider both statistical and computational binding proper-
ties for commitments. However when it comes to the latter property, Unruh [36]
argues that the “classical” definition of computational binding of commitments
(cf. Definition 3) in the post-quantum setting is inadequate – at-least in the
context of constructing post-quantum zero knowledge protocols. He proceeds to
give a more satisfactory definition for computationally binding commitments in
the quantum setting called “collapse-binding”, and then provides simple con-
structions in the plain QROM. Specifically, he shows a black-box construction of
collapse-binding commitments from so-called “collapsing” hash-functions, and
later shows that quantum random oracles are indeed collapsing. Unruh essen-
tially bases his latter result on a related result of Zhandry [40] which shows that
quantum random oracles are collision-resistant. Given than Zhandry’s analysis
does not use the observability nor the adaptive-programmability features of the
QROM, we expect one can extend Unruh’s results to construct collapse-binding
commitments in the weaker NO QROM heuristic – especially given their impor-
tance in post-quantum zero knowledge applications.

Recently, Zhandry [42] argued that there is little theoretical justification for
preferring the NO ROM of Ananth and Bhaskar [3] over the standard ROM. The
reason is that certain “ROM failures” also apply to the NO ROM. Specifically,
for any concrete hash function H, there exists a cryptographic scheme with a
(NO) ROM security proof such that instantiating the random oracle with H will
make the scheme insecure (Zhandry termed them “Type 2 failures” [42]). And
it’s not hard to see that the example scheme used by Zhandry to exhibit the
above failure – namely, the Encrypt-with-Hash transform of [4] – can also be
used to exhibit a similar failure in our NO QROM.

However, when it comes to the specific cryptographic schemes that we con-
sider in this paper: namely, hash-based extractable commitments, full domain
hash signatures, hinting pseudorandom generators and CCA-secure encryption
systems, it is not so clear if these schemes fall under the above failure with respect
to the NO QROM. Yet our security analysis of these schemes is still going to be
heuristic at the end of the day. But the main goal of this paper, as already out-
lined previously, is to weaken such heuristics – while not completely eliminating
them. Unfortunately at the current state of art, we still need heuristics in order
to not lose the efficiency nor a formal (even though heuristic) security analysis
of widely adopted cryptographic schemes.

2 Preliminaries

κ denotes the security parameter. For a positive integer k, we write [k] =
{1, . . . , k}. For n ∈ N, we use 0n to denote the zero string of length n. For
finite set X, we write x ← X to denote that x is uniformly at random sampled
from X; also |X| denotes the cardinality of X. For a set element x ∈ X and an
operation + that might not be defined over X, we define x + 0∗ as x. For an
algorithm A and oracle O, we use AO to denote A with oracle access to O.
“ppt” stands for probabilistic polynomial time.

Non-Observable Quantum Random Oracle Model 423

2.1 Quantum Random Oracle Model (QROM)

(We refer the reader to [31] for the basics of quantum computation and infor-
mation.) In the QROM, we model hash functions as ideal functionalities called
random oracles, which can be quantumly accessible. Namely, an adversary is
allowed to query a random oracle H : {0, 1}n → {0, 1}� on an arbitrary quan-
tum superposition of inputs, where we use the mapping |x〉 |y〉 �→ |x〉 |y ⊕ H(x)〉
with input register x ∈ {0, 1}n and output register y ∈ {0, 1}�. Refer to [8] for a
more detailed description of the model.

Now the following lemma describes the collision-resistance of such quantum
random oracles.

Lemma 1 ([40, Theorem 3.1]). There is a universal constant C such that the
following holds. Let H : {0, 1}n → {0, 1}� be a random oracle. If an unbounded
algorithm A makes a query to H at most q times, then

Pr[H(x) = H(x′)] ≤ C(q + 1)3/2�,

where (x, x′) ← AH and x, x′ ∈ {0, 1}n with x 	= x′. Here the oracle accesses of
A to H can be quantum.

The next three lemmas describe techniques to simulate quantum random ora-
cles, which come in handy in security proofs. The first lemma uses 2q-wise inde-
pendent functions, the second uses so-called small-range distributions as defined
in [38], and the third uses so-called semi-constant distributions [39].

Lemma 2 ([39, Theorem 6.1]). Interpreting the set {0, 1}� as the finite field
F2� , let f : {0, 1}� → {0, 1}� be an oracle drawn uniformly at random from the
set of (2q − 1)-degree polynomials over F2� . Then the advantage any quantum
algorithm making at most q quantum queries to f has in distinguishing f from
a truly random oracle H : {0, 1}� → {0, 1}� is identically zero.

In general, if f̂ : {0, 1}n → {0, 1}� is an oracle implementing a 2q-wise
independent function, then it is perfectly indistinguishable from a uniformly
random oracle H : {0, 1}n → {0, 1}� w.r.t. a quantum algorithm making at
most q quantum oracle queries.

Definition 1 (Small-Range Distributions). An oracle with an η-range dis-
tribution (η
 2�) SRη : {0, 1}n → {0, 1}� is defined with the following output
distribution on image {0, 1}�:

– For each i ∈ [η], choose a uniformly random value yi ∈ {0, 1}�.
– For each x ∈ {0, 1}n, pick a uniformly random i ∈ [η] and set SRη(x) := yi.

We also define the range Iη associated to SRη as follows: Iη = {yi | i ∈ [η]}.
Lemma 3 ([38, Corollary 7.5]). The statistical distance of output distributions
of a quantum algorithm making q quantum queries either to SRη : {0, 1}n →
{0, 1}� or a random oracle H : {0, 1}n → {0, 1}� is bounded by f(q)/η, where
f(q) = π2(2q)3/6 < 14q3.

424 N. Alamati et al.

Definition 2 (Semi-Constant Distributions). An oracle with a λ-constant
distribution SCλ : {0, 1}n → {0, 1}� is defined with the following output distribu-
tion:

– First, fix a uniformly random value y ∈ {0, 1}�.
– For each x ∈ {0, 1}n, do:

– Set SCλ(x) := y with probability λ.
– Otherwise (with probability 1 − λ), set SCλ(x) to be a uniformly random
element in {0, 1}�.

Note that SC0 : {0, 1}n → {0, 1}� is just a uniformly random oracle.

Lemma 4 ([39, Corollary 4.3]). The statistical distance of output distributions
of a quantum algorithm making q quantum queries either to SCλ : {0, 1}n →
{0, 1}� or a random oracle (SC0 =)H : {0, 1}n → {0, 1}� is bounded by 8

3q4λ2.

The following lemma provides a generic reduction from a hiding-style prop-
erty (indistinguishability) to a one-wayness-style property (unpredictability) in
the (NO) QROM.

Lemma 5 ([2, Theorem 1, adapted]). Let H : {0, 1}n → {0, 1}� be a random
oracle, x̂ ← {0, 1}n be a uniformly random value and y be a random bitstring
which is independent of x̂. Then, for any function G : {0, 1}n → {0, 1}� satisfying
∀x ∈ {0, 1}n \{x̂}, G(x) = H(x) that might depend on (x̂, y), and any algorithm
A making at most q queries,

|Pr[AH(y) = 1] − Pr[AG(y) = 1]| ≤ 4

√
q(q + 1)

2n
.

2.2 Commitments

We recap the syntax and basic properties of commitments such as hiding, binding
and non-malleability.

Definition 3. A commitment scheme is a tuple of ppt algoritms (Com,Open)
and a message space M with the following syntax.

Com: Takes as input 1κ, m ∈ M and outputs a commitment c and an opening o.
Open: Takes as input a commitment c and an opening o and outputs a message

m ∈ M or ⊥, such that Open(Com(1κ,m)) = m.

Additionally, it suffices two properties, hiding and binding.

Hiding: For any ppt adversary A and any m0,m1 ∈ M,

|Pr[A(1κ, c0) = 1] − Pr[A(1κ, c1) = 1]| ≤ negl.

where (c0, o0) ← Com(1κ,m0) and (c1, o1) ← Com(1κ,m1).

Non-Observable Quantum Random Oracle Model 425

Binding: For any ppt adversary A,

Pr[Open(c, o0) = m0 ∧ Open(c, o1) = m1] ≤ negl,

where (c, o0, o1) ← A(1κ) and m0,m1 ∈ M with m0 	= m1.

We call it statistically hiding (binding) if hiding (binding) holds even for any
unbounded algorithm A and unbounded oracle algorithm AO that is allowed to
make an unbounded amount of queries to the oracle O.

Concurrent Non-Malleability. We follow the definition of non-malleable
commitments of Pass and Rosen [32] with the slight change that we include
the view of the man-in-the-middle adversary as input for the distinguisher simi-
lar to the definition of [28]. Notice that an adversary can include its view in the
input through committed messages. Further, for the sake of simplicity, we use
the weaker definition in which an adversary only receives a single commitment.
As shown by [32], this implies the stronger version in which he receives many
commitments. We recap the formal definition now.

Definition 4 (Concurrent Non-Malleability). Let the random variables
mim and sim be defined as follows.

mimA
com(z,m) : The man-in-the-middle adversary A receives a commitment c
to a message m and auxiliary input z. A then generates m commitments
c1, . . . , cm. For every i ∈ [m], mi is defined as the unique committed message
in ci or ⊥ if no such message exists. Since we consider statistically binding
commitments, there will be only one message except with negligible probability.
When there are more than one message or when ci = c, we define mi :=⊥.
The random variable entails the view of A and messages m1, . . . ,mm.

simS
com(z) : The simulator S receives an auxiliary input z and generates m com-
mitments c1, . . . , cm. As previously, for all i ∈ [m], we define mi as the unique
committed message in ci except if it is not unique or no such message exists.
In that case, it is defined as mi :=⊥. Further, S can set any mi :=⊥.

We call a commitment scheme ε-concurrent non-malleable with respect to com-
mitments if for any ppt adversary A there exists a ppt simulator S such that for
any ppt distinguisher D, message m ∈ M, polynomial m ∈ N and any polynomial
size auxiliary input z,

|Pr[D(mimA
com(z,m)) = 1] − Pr[D(simS

com(z) = 1)]| ≤ ε.

A commitment scheme that is non-malleable is also computationally hiding,
since otherwise an adversary could extract some information about m and a sim-
ulator which is independent of m could not simulate the view of such an adver-
sary. This would break non-malleability. Therefore, showing non-malleability is
sufficient for showing computationally hiding.

We extend Definition 4 to commitments that are not statistically bind-
ing. This allows to formalize that H(r,m) is still non-malleable in an intuitive
sense and it should be hard to change a commitment H(r,m) to a commitment
H(r,m′) for a related message m′.

426 N. Alamati et al.

Definition 5 (weak Concurrent Non-Malleability). We define the random
variables wmimA

com(z,m) and wsimS
com(z) as mimA

com(z,m) and simS
com(z) with the

difference that they include all messages mi,j for which there exists an opening
oi,j such that ci opens to mi,j.

We call a commitment scheme ε-weak-concurrent non-malleable with respect
to commitments if for any ppt adversary A there exists a ppt simulator S such
that for any ppt distinguisher D, message m ∈ M, polynomial m ∈ N and any
polynomial size auxiliary input z,

|Pr[D(wmimA
com(z,m)) = 1] − Pr[D(wsimS

com(z) = 1)]| ≤ ε.

Definition 5 is weaker than Definition 4 because it does not cover that an
adversary can generate a commitment to a related message by simply copying
the commitment. More specifically, a commitment c could be a commitment
for message m and m′. Clearly, these two messages are related messages in the
sense that given c = c(m′) = c(m), m cannot take every value in M unless the
commitment is statistically hiding. Thus, unless it is hiding, a simulator that
has no access to m could not simulate such a commitment. Definition 5 ignores
this issue since the distinguisher receives ⊥ instead of the committed messages
in c and therefore does not offer security for this case.

Nevertheless, just copying the commitment does not seem a significant attack
against the intuitive notion of malleability and by the computationally binding
property of the commitment, an adversary would not be able to open the com-
mitment to any other message m′. Due to this fact, we can use the same reasoning
that non-malleability with respect to commitments implies non-malleability with
respect to openings [13,19] to argue that weak non-malleability with respect to
commitments together with computational binding implies non-malleability with
respect to openings.

Random-Oracle Based Commitments. For commitment schemes whose
security properties rely on modeling their underlying hash functions as ran-
dom oracles, the corresponding security definitions of hiding, binding and non-
malleability above need to be modified accordingly in the QROM. Namely, we
additionally need to give the involved parties (i.e., adversaries, simulators and
distinguishers) quantum access to the random oracle(s) associated to the com-
mitment scheme.

2.3 Other Basic Cryptographic Primitives

Definition 6 (Pseudorandom Functions). A pseudorandom function (PRF)
is a function PRF : K × X → Y with K being the key-space, and X and Y
being the domain and range respectively. Additionally, PRF is said to be post-
quantum (resp., quantum) secure if no polynomial-time quantum adversary A
making classical (resp., quantum) queries can distinguish between a truly random
function and the function PRF(k, ·) for a random key k.

Non-Observable Quantum Random Oracle Model 427

More formally, for every such adversary A, we have

∣∣∣ Pr
k←K

[APRF(k,·)() = 1] − Pr
H←YX

[AH() = 1]
∣∣∣ ≤ negl.

Definition 7 (Signatures). A signature scheme is a tuple of ppt algorithms
(Gen,Sign,Ver) with the following syntax.

Gen: Takes as input 1κ and generates a public/secret key pair (pk, sk).
Sign: Takes as input the secret key sk and a message m and outputs a signature

σ on it.
Ver: Takes as input the public key pk, a message m and a signature σ, and

outputs acc or rej, such that Ver(pk,m,Sign(sk,m)) = acc.

To define security, we will use the standard chosen message attack (CMA) game:

– The challenger generates (pk, sk) ← Gen(1κ) and sends pk to adversary A.
– A can make signature queries on messages mi to which the challenger

responds with Sign(sk,mi).
– A produces a forgery candidate (m, σ).

A is said to win the game if m 	= mi for any i and Ver(pk,m, σ) = acc. The sig-
nature (Gen,Sign,Ver) is said to be (post-quantum2) existentially unforgeable,
a.k.a. (post-quantum) EUF-CMA secure, if for all (resp., quantum) ppt adver-
saries A, the winning probability in the above game is negligible in κ.

Definition 8 (Trapdoor Permutations). A trapdoor permutation (TDP) is
a tuple of ppt algorithms (Gen, f, f−1) where:

Gen: Takes as input 1κ and generates a public/secret key pair (pk, sk).
f: Takes as input the public key pk and an element x ∈ {0, 1}κ and returns

y ∈ {0, 1}κ such that f(pk, ·) is a bijection over {0, 1}κ.
f−1: Takes as input the secret key sk and an element y ∈ {0, 1}κ and returns

x ∈ {0, 1}κ such that f(pk, x) = y.

A TDP (Gen, f, f−1) is said to be (quantum) one-way if for any (resp., quan-
tum) ppt adversary A,

Pr[A(pk, f(pk, x)) = x] ≤ negl,

where (pk, sk) ← Gen(1κ), and x ← {0, 1}κ is chosen uniformly at random.

2 Note the distinction between “post-quantum” secure signatures and “quantum”
secure signatures; in the former security notion, the adversary can only make clas-
sical signature queries, whereas in the latter, the adversary can ask for signatures
of quantum superpositions of messages. This distinction also applies to encryption
schemes w.r.t. classical/quantum decryption queries. See [9] for the precise quantum
security definitions for signatures and encryption schemes.

428 N. Alamati et al.

3 The Non-Observable Quantum Random Oracle Model

We follow the outlines of the NO ROM of Ananth and Bhaskar [3] and make
some adaptations to allow for queries in superpositions. For the sake of simplic-
ity, we ignore that a random oracle could also be adaptively programmed during
a reduction.3 Further, we simply use a random function or random one-way per-
mutation [24] to describe the model rather than using a stateful Turing machine
as [3]. We remark that the quantum indistinguishability of random functions
and random one-way permutations has been implicitly shown in [40]. During
a security game, the reduction might replace this random function or random
one-way permutation with a different function that is indistinguishable for an
adversary with query access. Such a function might be for example a polynomial,
where the degree of the polynomial depends on the maximum amount of adver-
sarial queries. We allow this by adding a setup phase in which the oracle can
be programmed. In Fig. 1, we describe the setup and query phase. During the
query phase, an oracle algorithm can send its queries and receives a response.
In case of a one-way permutation, the oracle is not answering queries for the
inverse permutation which separates this model from an ideal cipher model.

Fig. 1. The figure shows two phases, during the setup phase a reduction can program
the quantum random oracle and might receive a polynomial size trapdoor information
td. During the query phase, the reduction and adversary can query the quantum ran-
dom oracle. The reduction cannot observe queries made by the adversary or measure
them. We omit the case of adaptive programming, in which the reduction can program
H during the query phase.

Following [8], a query can be a superposition over the domain of the oracle.
Upon receiving a query for quantum state |φ〉 :=

∑
αx,y|x, y〉 the oracle responds

with
∑

αx,y|x, y + H(x)〉. We remark that an adversary does not actually need

3 To the best of our knowledge it is unclear how useful an adaptive progammability of a
ROM is if queries cannot be observed. We are not aware of any protocol or primitive
in which adaptive programming is necessary during the reduction but observing the
adversarial random oracle queries is not.

Non-Observable Quantum Random Oracle Model 429

to send his quantum state. He can locally evaluate oracle H as long as he does
not violate the only black box access requirement of the model.

In the following, we will consider non-uniform adversaries. To provide security
against such adversaries we assume that H is rerandomized using a key or a
salt. Further, when working with the NO QROM, we can leverage the above
Lemmas 1, 2, 3, 4 and 5 since they do not require observing any query. This is
crucial to establish our results.

4 Extractable Non-Malleable Commitments in the NO
QROM

We revisit the definition of the standard hash-based commitment scheme.

Definition 9 (Standard Hash-based Commitment). Let � ∈ N, R be the
randomness space and M the message space. For hash functions H : R × M →
{0, 1}�, the standard hash-based commitment scheme is defined as follows.

Com(1κ,m): Sample r ← R. Compute and output c := H(r,m), o := (r,m).
Open(c, o): Parse o = (r,m) and output m if c = H(r,m) and otherwise output

⊥.

We now prove the computational and statistical binding properties, w.r.t. dif-
ferent parameters of the commitment schemes defined above.

Lemma 6 (Binding). The standard hash-based commitment (Definition 9)
is computationally (resp. statistically) binding, for � ≥ ω(log κ) (resp. � ≥
2 log |M| + 2 log |R| + ω(log κ)).

Proof. We start with computationally binding. An unbounded algorithm A mak-
ing at most q of quantum queries to the random oracle H breaking the binding
property would output a commitment c such that there exist two openings o0
and o1 with o0 	= o1. This implies that H(o0) = c = H(o1) and thus breaking
the collision-resistance of H. However from Lemma 1, the latter probability is
bounded by O(q3/2�) which is negligible for � ≥ ω(log κ).

We now consider the statistical binding property. The commitments are
determined by the randomness r and message m. Thus there are at most |M| · |R|
many commitments. Further, the commitments are uniformly random over 2�

due to the random oracles H. Therefore, the probability that there exists an
r0, r1, m0 and m1 such that it results in the same commitment is bounded by
|R|2·|M|2

2� which is negligible for � ≥ 2 log |M| + 2 log |R| + ω(log κ). ��
When we use random one-way permutations instead of random functions,

we get better bounds on � for the statistical binding case. Further, since ran-
dom one-way permutations are computationally indistinguishable from random
functions all other results such as extractability, hiding and non-malleability
still hold. When replacing the one-way permutation with a degree 2q − 1 poly-
nomial, we might lose statistically binding since there might be up to 2q − 1

430 N. Alamati et al.

preimages per image. Our extractor does this replacement and therefore unique
extractability requires � ≥ ω(log κ) to prevent collisions of the 2q − 1 preimages
with overwhelming probability.

Lemma 7 (Statistical Binding for Permutations). Let H be the hash func-
tion in Definition 9 and let H be defined as H(r,m) = P (r,m)||H ′(r,m) where
P is a one-way permutation and H ′ : R × M → {0, 1}�′

. Then, the standard
hashed-based commitment is statistically binding (for any �′ ∈ N).

Proof. The proof is almost identical to the proof of Lemma 6. The difference
is that we get a much better bound on preventing a collision than the birthday
bound due to the definition of a permutation which does not have such collisions.
Therefore, such a collision can only happen with respect to oracle H ′. However,
the image of P uniquely defines r,m and therefore we can ignore collisions in the
image of H ′. ��

We now consider extractability of the commitent scheme. We first adapt the
notion of extractability for a commitment scheme to the NO QROM described
in Sect. 3. We allow an extractor similar to a reduction to program H during
the setup phase. In this process, the extractor obtains a trapdoor information
td which allows him to extract the message from a commitment.

Definition 10 (Extractability in the NO QROM). We call a commitment
scheme online-extractable in the NO QROM if there exists a ppt algorithm E
which programs QRO H during the setup phase and might receive a polynomial
length trapdoor information td within the process. During the query phase, E
receives commitment c and outputs m, i.e. m ← E(td, c), such that there exists
an opening o with Open(c, o) = m. Otherwise, E outputs ⊥.

We now present two extraction techniques for the standard hash-based com-
mitment scheme in the NO QROM. Both techniques follow a similar approach.
Namely on a high-level, the corresponding extractor first simulates the QROs
using finite-field polynomials with a sufficiently large degree, thanks to Lemma 2,
and then uses an efficient root-finding algorithm over related polynomials to
compute valid openings for a given commitment – without observing the queries
made to the QROs. Nevertheless, the two techniques allow different parameter,
security and extraction probability trade-offs.

We start with showing perfect online-extractability in the NO QROM based
on finding roots of polynomials.

Theorem 1 (Extraction via Roots Finding). As per Definition 9, let H
be modeled as a QRO with the structure H(r,m) = H ′(r,m)||H ′′(r,m), where
H ′, H ′′ are QROs and H ′ : R × M → R × M whereas H ′′ : R × M → {0, 1}�′

with �′ = � − log |M| − log |R|. Then the standard hash-based commitment from
Definition 9 is perfectly online-extractable in the NO QROM.

Proof. We describe a ppt extractor E w.r.t. an adversary A which makes at
most q queries to the QROs. In the setup phase, E replaces the true random

Non-Observable Quantum Random Oracle Model 431

oracle H ′ with an oracle f evaluating a uniformly random polynomial of degree
2q − 1 over the finite field F2ν , where {0, 1}ν = R × M. From Lemma 2, the
oracle f is perfectly indistinguishable from the QRO H ′ in A’s view. E retains
the (polynomial sized) description of f as the trapdoor information td.

Upon receiving a commitment c = (c1, c2) = (H ′(r,m),H ′′(r,m)) from A in
the query phase, E first computes a set of roots S of the polynomial f(x) − c1.
This can be done efficiently using for example the algorithm in [6]. Since the
polynomial is of degree 2q − 1, there are at most 2q − 1 roots. For each of the
roots (r,m), E makes a classical query to H ′′ and checks whether H ′′(r,m) = c2.
If there exists such a root (r,m), E picks one of them and outputs m as the result
of its extraction, i.e. m ← E(td, c). Otherwise, E returns ⊥. It’s not hard to see
that on one hand, when E outputs m 	= ⊥, then there exists an opening o such
that Open(c, o) = m, namely o = (r,m) ∈ S. On the other hand, when E outputs
⊥, there exists no valid opening for c. ��

The first approach has the disadvantage, that extraction is only possible if the
commitment size at least matches the message plus randomness size. Our second
approach requires much less overhead for the commitment size. However, it has
the shortcoming that extraction needs superpolynomial space for a negligible
distinguishability advantage between the normal and the extraction mode.

In the second approach, the extractor simulates the QROs using small-range
distributions, as described in Lemma 3, and then (efficiently) iterates over the
small output space of the QROs in order to compute valid openings for a given
commitment – again while not observing any queries made to the QROs. For
this approach, we first define a “small range mode” which allows extraction.
In the small range mode, we replace oracle access to H with oracle access to
ĤE.η. ĤE.η is a very special oracle since it outputs the message m and masks
it with an element from the small range set SRη. More precisely, we denote the
oracle in extraction mode with parameter η with ĤE.η : R × M → {0, 1}� with
� ≥ log |M| + log η and for any r ∈ R, m ∈ M, ĤE,η(r,m) := SRη(r,m) + (m||0�′

),
where �′ := � − log |M|.
Lemma 8. Let ĤE,η be the oracle in extraction mode with parameter η and H
the oracle in the standard NO QROM mode. Then, for any unbounded distin-
guisher D making at most q queries,

|Pr[DH = 1] − Pr[DĤE,η = 1]| ≤ 14q3

η
.

Proof. Let H̃ : R × M → {0, 1}� defined as H̃(r,m) := H(r,m) + (m, 0�′
) for

all r ∈ R, m ∈ M, where H is the QRO. Due to the uniformity of H(r,m), the
oracles H and H̃ are identically distributed and therefore indistinguishable.

By Lemma 3, we can replace Ĥ with SRη and this can be distinguished at
most with probability 14q3

η . ��
Theorem 2 (Extraction via Small Range Distributions). Let H : R ×
M → {0, 1}� be modeled as a QRO and � ≥ log |M| + log η. Then the standard

432 N. Alamati et al.

hash-based commitment from Definition 9 is perfectly online-extractable in the
NO QROM extraction mode and E runs in time polynomial in η.

Proof. Our extractor E is defined as follows. During the setup phase, E sets up
the oracle such that it is in extraction mode, i.e. ĤE,η. E receives set Iη of SRη

as trapdoor information which has size at most η.
During the query phase, E receives a commitment c = (c1, c2) ∈ M×{0, 1}�′

.
For any element (m̃, x) ∈ Iη, E checks whether x = c2. If this is the case, E
outputs m = c1 − m̃. If no such x exists, E outputs ⊥.

Since |{0, 1}�′ | ≥ η = |SRη|, E extracts the correct message and only outputs
⊥ if c is not a valid commitment and therefore E is a correct extractor. ��

After establishing the (computational and statistical) binding and (perfect
online) extractability properties of the standard hash-based commitment scheme
in the NO QROM, we turn our attention towards proving their respective com-
putational hiding properties. As discussed in Sect. 2 above, it suffices to show
their non-malleability in the NO QROM instead because non-malleable commit-
ments are also computationally hiding. We prove that they are computationally
hiding in the settings when the schemes are statistically – respectively, compu-
tationally – binding by showing that they satisfy concurrent – respectively, weak
concurrent – non-malleability in the NO QROM.

Theorem 3 (Non-Malleability when Statistically Binding). Let the stan-
dard hash-based commitment from Definition 9 be set up such that it is statisti-
cally binding. Then, it is ε-concurrent non-malleable with respect to commitments
in the NO QROM for ε ≤ negl as long as log |R| ≥ ω(log κ).

Proof. We can use the approach to puncture the random oracle and make the
commitment to m independent of H and therefore uniform. Though there is
one subtlety in the definition of non-malleable commitments. After the adver-
sary sends his commitments, there is an exponential time routine that brute
forces the commitments to extract the unique message. After the puncturing, it
could happen that a commitment becomes invalid that was previously valid and
instead of outputting the actual message, the brute force routine forwards ⊥ to
the distinguisher. Clearly, a distinguisher could then easily distinguish the punc-
tured setting from the normal setting. Fortunately, in the standard hash-based
commitment, the puncturing only affects a single commitment since we puncture
H on point r,m which uniquely defines c. Further, if the adversary copies this
commitment, the brute force routine forwards ⊥ by default to the distinguisher
such that it does not help to distinguish the punctured setting from the normal
setting during the brute force routine.

We use a domain separation to define Hm̂ for message m̂ ∈ M such that for
all r ∈ R, Hm̂(r) := H(r, m̂). We sample r̂ ← R, ŷ ← {0, 1}� and define Ĝm̂ as
follows. Ĝm̂(r̂) := ŷ. For all other r ∈ R \ {r̂}, we set Ĝm̂(r) := Hm̂(r).

To prove non-malleability, we define the following simple simulator. The sim-
ulator samples a random string ŷ ← {0, 1}� and sends ŷ to A as commitment. A
then outputs commitments c1, . . . , cm. For any i ∈ [m] for which ci = ŷ, sim sets

Non-Observable Quantum Random Oracle Model 433

mi := ⊥. The random variable simS
com(z) is generated from the view of A and the

messages m1, . . . ,mm, where mi is either ⊥ or the unique message committed
in ci.

Afterwards, we use the puncturing technique to argue that the distinguisher
cannot distinguish between simS

com(z) and mimA
com(z, m̂). The reduction uses D

to distinguish between H̃m̂ = Hm̂ and H̃m̂ = Ĝm̂. During the setup, the reduction
programs H such that for a query r, m̂ it outputs H̃m̂(r). For all other messages
m ∈ M \ {m̂}, the reduction does not change H. Further, the reduction receives
trapdoor information ŷ. During the query phase, the reduction sends ŷ to A and
uses A’s view and commitments to define random variable X. If a commitment
ci = ŷ, it defines mi :=⊥.

When H̃m̂ = Ĝm̂, ŷ is a valid (and the only) commitment for m̂ with ran-
domness r̂. In this case, X = mimA

com(z, m̂). When H̃m̂ = Hm̂, ŷ is statistically
uniform and independent of m̂. Further, due to the fact that input r̂, m̂ to Ĥ
defines a unique commitment, the puncturing of point r̂ for Hm̂ does not affect
any commitment with m 	= m̂ or r 	= r̂. Therefore, during the exponential time
brute force routine, there is no message mi that is invalidated, i.e. set to ⊥, due
to the puncturing except messages derived from ŷ which are in any case set to
⊥. Thus, in this case X = simS

com(z). When D distinguishes mimA
com(z, m̂) from

simS
com(z) it implicitly distinguishes Hm̂ from Ĝm̂ which is bounded by 4q

√
2−κ

by Lemma 5, where q is the amount of NO QRO queries of D and A. ��
Theorem 4 (Weak Non-Malleability when Computationally Binding).
Let the standard hash-based commitment from Definition 9 be set up such that
it is computationally binding. Then it is ε-weak-concurrent non-malleable with
respect to commitments in the NO QROM for ε ≤ negl as long as log |R| ≥
ω(log κ) and |c| ≥ ω(log κ).

Proof. The proof follows essentially from the proof of Theorem 3 and we can use
exactly the same simulator. We outline the differences. ĉ received by A when
generating wmim might be a commitment that has valid openings for multiple
messages m̂1, . . . , m̂j . Though due to the definition of the experiment, m̂1, . . . , m̂j

are not contained in wmim and replaced with ⊥. The puncturing of ĉ again only
affects H(m̂, r̂) as previously. Though there is another subtlety when considering
the unbounded procedure that extracts the messages for the distinguisher. Using
a uniformly random ŷ instead of ĉ could lead to replacing a different set of
messages with ⊥ such that wmim and wsim are distinguishable. However, this
is only possible when collisions occur. Due to |c| ≥ ω(log κ) and Lemma 1, this
happens at most with probability q32−ω(log κ) which is negligible. ��

5 Signature Schemes in the NO QROM

In this section, we establish the post-quantum security of certain generic classes
of signatures in the NO QROM. First we consider signature schemes whose
proofs of security in the classical ROM involve so-called history-free reductions as
defined in [8]; examples of such schemes include the lattice-based GPV signatures

434 N. Alamati et al.

in [22] and Fiat-Shamir signatures analyzed in [26]. Then we shift our attention
to the well-known generic full domain hash (FDH) signatures of Bellare and
Rogaway [5] in the NO QROM.

5.1 Signatures with History-Free Reductions

Boneh et. al. [8] show that if the security proof of any signature scheme in the
classical ROM follows a specific structure known as a history-free reduction,
then the scheme is also provably secure in the QROM. On a high-level, in a
history-free reduction, the responses to an adversary’s random oracle queries are
determined independently of the responses to previous queries. A more formal
definition of a history-free reduction follows (taken from [8]):

Definition 11 (History-Free Reductions). A random oracle signature
scheme SH = (Gen,SignH ,VerH) has a history-free reduction from a hard prob-
lem P if the proof of security uses a classical ppt adversary A against SH to
construct a classical ppt algorithm B to solve problem P such that:

– B contains four classical algorithms: START, RANDHc , SIGNHc and
FINISHHc ; the latter three algorithms have access to a shared classical random
oracle Hc. These algorithms are used as follows:

• Given an instance x for problem P , B first runs START(x) to get (pk, st)
where pk is a public key of SH and st is some private state to be used
by B. Then B simulates the standard CMA security game (Definition 7)
w.r.t. SH by first forwarding pk to A.

• When A makes a classical RO query H(r), B responds with
RANDHc(r, st). Note here that RANDHc is only given the current query r
as input, and in particular, is unaware of previous queries and responses.

• When A makes a signature query SignH(sk,m), where sk is the secret key
corresponding to pk, B responds with SIGNHc(m, st).

• When A outputs a forgery candidate (m, σ), B outputs FINISHHc(m,
σ, st).

– There is an efficiently computable function INSTANCE(pk) which generates
an instance x for problem P such that START(x) = (pk, st) for some st. We
also need the following distribution of x to be negligible close to the original
distribution of x considered in problem P : first generate (pk, sk) ← Gen(1κ)
and compute x = INSTANCE(pk).

– Consider the classical oracle O(r) = RANDHc(r, st), for a fixed st. Define
the corresponding quantum oracle Oq which maps |r〉 |s〉 �→ |r〉 |s ⊕ O(r)〉.
We require Oq to be quantum computationally indistinguishable from a truly
random oracle.

– SIGNHc either generates a valid signature relative to the oracle O(r) =
RANDHc(r, st) with a distribution negligibly close to the correct signing algo-
rithm, or it aborts (hence making B abort as well). The probability that none
of A’s signature queries result in an abort is non-negligible.

Non-Observable Quantum Random Oracle Model 435

– If the output (m, σ) of A is a valid signature forgery w.r.t. the received public
key pk and oracle O(r) = RANDHc(r, st), then the output FINISHHc(m, σ, st)
of B solves the problem P w.r.t. instance x with non-negligible probability.

After defining history-free reductions for signature schemes, Boneh et. al.
prove a general lifting theorem from ROM security to QROM security for such
reductions [8, Theorem 1]. In the following, we extend their lifting theorem to
show that signature schemes with history-free reductions are in fact secure in
the weaker NO QROM heuristic.

Theorem 5. Let SH = (Gen,SignH ,VerH) be a random oracle signature scheme
with a history-free reduction from a problem P assumed to be hard for polynomial-
time quantum algorithms. Further assume that post-quantum one-way functions
exist. Then SH is post-quantum EUF-CMA secure when H is modelled in the
NO QROM.

The following proof essentially follows a similar strategy as the one by Boneh
et. al. for “history-free signatures” in the plain QROM [8, Theorem 1] (however
we provide a detailed sketch below for the sake of completeness). In addition, we
adapt their proof in our NO QROM framework when it comes to simulating the
responses to an adversary’s quantum random oracle queries in the reduction.

Proof (Sketch). As per Definition 11, recall that the history-free reduction for sig-
nature SH = (Gen,SignH ,VerH) above involves the classical algorithms START,
RAND, SIGN, FINISH and INSTANCE. Now towards a contradiction, assume
there is a quantum ppt adversary A that breaks the EUF-CMA security of SH

with non-negligible probability ε. The proof proceeds by a sequence of game-
hybrids. Namely, let G0 be the standard CMA game w.r.t. SH (cf. Definition 7).

Now let the game G1 be the following modification of G0: after the challenger
generates (pk, sk) ← Gen(1κ), it computes x = INSTANCE(pk) and (pk, st) ←
START(x). Then instead of using a truly random oracle to answer A’s quantum
queries to H, the challenger uses the quantum oracle Oq which maps |r〉 |s〉 �→
|r〉 ∣∣s ⊕ RANDHc(r, st)

〉
; here Hc is a truly random quantum oracle which is

not directly accessible to A. From Definition 11, we have Oq to be quantum
computationally indistinguishable from a truly random oracle. Hence, we have
the winning probability of A in G1 to be negligibly close to that in G0; in other
words, the probability is non-negligible like ε.

Let G2 be the following modification of G1: instead of generating (pk, sk) ←
Gen(1κ) and computing x = INSTANCE(pk), the challenger samples x from the
original instance distribution w.r.t. problem P ; it then uses the latter x to obtain
(pk, st) ← START(x) before forwarding pk to A. Furthermore, when A makes
a signature query on m, the challenger responds with SIGNHc(m, st). From the
property of INSTANCE in Definition 11, we have the distributions of x in games
G1 and G2 to be negligibly close. Also from the property of SIGNHc , we have
with a non-negligible probability that all of A’s signing queries are answered
successfully (i.e., without aborting) with the corresponding signatures having a
distribution negligibly close to the actual signatures in G1. Hence as argued in

436 N. Alamati et al.

the proof of [8, Theorem 1], it’s not hard to see that A’s winning probability in
G2 (i.e., probability of outputting a valid forgery) is non-negligible.

Finally let G3 be the following modification of G2: instead of using a truly ran-
dom quantum oracle for evaluating Hc internally, the challenger uses a quantum-
secure pseudorandom function PRF (cf. Definition 6). Specifically, the challenger
first samples a random PRF key k. Then it replaces Hc with the quantum oracle
|PRF(k, ·)〉 which maps |r〉 |s〉 �→ |r〉 |s ⊕ PRF(k, r)〉. Because of the quantum-
security of PRF, it’s not hard to see that the winning probabilities of A in games
G2 and G3 are negligibly close. Hence we have the latter probability to be non-
negligible as well. Also note that quantum-secure pseudorandom functions can
be constructed (in a black-box manner) from post-quantum one-way functions,
as shown by Zhandry [38].

After defining games G0 − G3 w.r.t. adversary A, we now construct a
polynomial-time quantum algorithm B that solves the underlying hard prob-
lem P in the NO QROM with non-negligible probability. Upon receiving an
instance x w.r.t. problem P , B computes (pk, st) ← START(x). Then in the
“setup phase” of the NO QROM (cf. Sect. 3), B samples a random PRF key k
and programs the quantum random oracle H as:

H(r) := RAND|PRF(k,·)〉(r, st),

as in game G3. B also forwards pk to A, and acts as the CMA-challenger in game
G3. Specifically in the “query phase” of the NO QROM:

– When A makes a signature query on message m, B responds with the value
SIGN|PRF(k,·)〉(m, st).

– When A returns a forgery candidate (m, σ), B outputs FINISH|PRF(k,·)〉(m,
σ, st).

It’s not hard to see that B perfectly simulates game G3 towards A, while
importantly, also executing a valid reduction in the NO QROM. Because note
that B never has to observe the quantum queries made by A to the random oracle
H after the setup phase (also the above two steps in query phase can be seen as
the “Interaction” in Fig. 1). Now since we have the winning probability of A in G3

to be non-negligible, we also have the probability of A returning a valid forgery
candidate (m, σ) to B in the above query phase to be non-negligible. So from
the property of the FINISH algorithm in Definition 11, we note that the output
FINISH|PRF(k,·)〉(m,σ, st) of B solves the problem P w.r.t. given instance x with
a non-negligible probability. This contradicts our starting assumption that P is
hard for polynomial-time quantum algorithms. Hence, we have that the above
signatures SH with history-free reductions are indeed EUF-CMA secure in the
NO QROM. ��

Following the results on history-free reductions in [8], quite a few works in
the literature started devising “history-free versions” of classical ROM security
proofs of important signature schemes in order to establish their post-quantum
security in the QROM. Examples of such schemes include the lattice-based GPV

Non-Observable Quantum Random Oracle Model 437

signatures of [22], as analyzed in [8], and Fiat-Shamir signatures as analyzed
in [26]. So a consequence of our lifting theorem (i.e., Theorem 5) above is that
these classes of signature schemes are also provably secure in the weaker NO
QROM. In other words, we explicitly establish that weaker heuristics – i.e.,
which do not require observing an adversary’s quantum random oracle queries
– are sufficient to prove post-quantum security of the above signature schemes.

5.2 FDH Based Signature Schemes

We first recall the definition of FDH signatures:

Definition 12 (FDH Signatures). Let F = (Gen, f, f−1) be a trapdoor permu-
tation, and a hash function H that maps messages to the co-domain of f. Let
SH = (Gen,SignH ,VerH) be a signature scheme where:

– SignH(sk,m) = f−1(sk,H(m))

– VerH(pk,m, σ) =

{
acc if f(pk, σ) = H(m)
rej otherwise

In the classical setting, Bellare and Rogaway [5] proved the EUF-CMA secu-
rity of FDH signatures in the classical ROM while relying on one-wayness of
the underlying TDP. At a high level, in their proof (via a reduction), the “TDP
adversary” B – who is supposed to find a pre-image for a given challenge y –
randomly guesses which of the random oracle queries the “signature adversary”
A will use to produce a forgery w.r.t. the FDH scheme. B then embeds y into the
response for this oracle query, and if both the guess is correct and A produces a
valid forgery, then B will be able to find a pre-image for y.

However, as observed by Zhandry [39], the above approach will not work in
the QROM setting because each of A’s random oracle queries might be a super-
position of exponentially many inputs; this makes it hard for B to meaning-
fully embed its challenge y into the oracle responses. Nevertheless, Zhandry [39]
was able to overcome this barrier by introducing a class of oracle distributions
called Semi-Constant Distributions (Definition 2) which allows for a specific
random value to be embedded into a small but significant fraction of oracle
inputs, while at the same time, ensuring that it is – in some sense – hard for a
quantum algorithm to distinguish between this semi-constant oracle and a uni-
formly random oracle (cf. Lemma 4). This allowed Zhandry to translate the above
embedding-based argument of Bellare and Rogaway to the quantum setting in
order to show the EUF-CMA security of FDH signatures in the plain QROM
based on one-wayness of the underlying TDP against quantum adversaries.4

However, upon a closer inspection of Zhandry’s proof, we note that nowhere
in the reduction is the “TDP adversary” B required to observe the “signature

4 Though this should be seen as a theoretical result until there is an instantiation of
such a quantum one-way trapdoor permutation.

438 N. Alamati et al.

adversary” A’s quantum queries to the random oracle. In other words, by adapt-
ing Zhandry’s proof in [39], the FDH signature scheme can be shown to be EUF-
CMA secure in the weaker heuristic model of NO QROM – while still relying on
the quantum one-wayness of the underlying TDP – wherein B would still have to
(non-adaptively) program the random oracle by replacing it with a semi-constant
oracle in the setup phase (see Sect. 3).

Theorem 6. Let F = (Gen, f, f−1) be a quantum one-way trapdoor permutation.
Then the corresponding FDH signature scheme SH = (Gen,SignH ,VerH) is post-
quantum EUF-CMA secure when H is modelled in the NO QROM.

The proof below mirrors the one given by Zhandry [39] for FDH signatures
in the plain QROM. Here we adapt his proof to fit within our NO QROM
framework, as described in Sect. 3.

Proof (Sketch). Towards a contradiction, assume there is a quantum ppt adver-
sary A that breaks the FDH signature scheme SH = (Gen,SignH ,VerH) with
non-negligible probability ε. The proof proceeds by a sequence of game-hybrids.
Let G0 be the standard CMA game w.r.t. SH (see Definition 7). Namely, the chal-
lenger generates the pair (pk, sk) ← Gen and sends pk to A. The adversary A can
make classical signature queries on messages mi to which the challenger responds
with SignH(sk,mi), and quantum hash queries to the random oracle H. A wins
if it produces a pair (m, σ) such that m 	= mi for any i and VerH(pk,m, σ) = acc.
Also suppose A makes qH hash queries and qS signature queries.

Let 0 ≤ λ ≤ 1 be a parameter to be chosen later, and let M be the message
space of SH . We now construct a subset X ⊆ M as follows: for each m ∈ M, put
m ∈ X with probability λ. Now let the game G1 be the same as G0 except that
we modify the winning conditions as follows: if A asks for a signature on message
mi ∈ X or if A attempts to forge the signature for a message m /∈ X , we abort G1

and A loses; other than this, the winning condition in G0 applies to G1 as well.
It is not hard to see that G1 does not abort with probability at-least λ(1−λqS).
Therefore, A wins G1 with probability at-least λ(1 − λqS)ε ≥ λε − qSλ2.

Let G2 be the same as G1 except that we reprogram the random oracle H
(only) on inputs in X as follows: fix a uniformly random value y in the co-
domain of f and set H(x) := y for all x ∈ X . We can see that the modified
H is now an oracle with a λ-constant distribution (cf. Definition 2). As argued
by Zhandry in [39, Claim 1]–using Lemma 4, among other things–we have that
the probability B wins in G2 is at-least (λε − p(qH , qS)λ2) for some polynomial
p(·, ·).

After defining the games G0 − G2 w.r.t. adversary A, we now construct a
quantum ppt adversary B that breaks the underlying TDP F = (Gen, f, f−1) in
the NO QROM as follows. B first samples a 2(qH + qS + 1)-wise independent
function O1(·) that maps M to the domain of f. Note that in the games G0 −G2,
at-most (qH + qS + 1) queries are made to the quantum oracle H (qH quantum
hash queries, qS classical queries via the signature queries SignH(sk,mi) and
one classical query for checking A’s forgery VerH(pk,m, σ)). From Lemma 2, we
have that O1(·) is perfectly indistinguishable from a uniformly random oracle

Non-Observable Quantum Random Oracle Model 439

mapping M to the domain of f in the view of A. Similarly, B simulates an oracle
O2 : M → {0, 1} such that for each m ∈ M O2(m) = 1 with probability λ as
follows (taken from [39, Section 6]): B approximates λ by a rational number a/b,
with b being a prime power, and constructs a 2(qH + qS + 1)-wise independent
function Ô2 with range {1, . . . , b}; it then constructs O2(·) as

O2(m) =

{
1 if Ô2(m) ≤ a

0 otherwise.

Finally, B on input (pk, y) – for which it is supposed to find a pre-image
w.r.t. F – proceeds in the “setup phase” of the NO QROM (cf. Section 3) by
programming the quantum random oracle H as:

H(m) =

{
y if O2(m) = 1
f(pk, O1(m)) otherwise.

B also sends pk to A, playing the role of challenger in the game G2.
In the “query phase”:

– When A makes a signature query on message mi, B computes O2(mi) and
aborts if the result is 1. Otherwise, B returns the response O1(mi).

– When A returns a forgery candidate (m, σ), B checks if O2(m) = 1 and
f(pk, σ) = y. If satisfied, B returns the pre-image σ. Otherwise, it aborts.

We have B perfectly simulating the game G2 towards A, while at the same
time, implementing a valid reduction in the NO QROM; note that B never has
to observe the quantum hash queries made by A to oracle H, and the above
two steps in the query phase can be seen as part of the “Interaction” in Fig. 1.
Hence, by applying a similar analysis as that in [39, Theorem 5.1], we have B’s
advantage in breaking the underlying TDP F to be at-least the non-negligible
quantity ε2

4p(qH ,qS) , when we set λ = ε
2p(qH ,qS) . This shows that SH is indeed

quantum EUF-CMA secure in the NO QROM, given that F is a quantum one-
way TDP. ��

6 Hinting PRGs in the NO QROM

In this section, we describe a simple and efficient construction of a special cryp-
tographic primitive in the NO QROM called hinting pseudorandom generator
(PRG). This primitive is useful towards constructing CCA-secure encryption
systems as will be detailed below. A hinting PRG is essentially a PRG with
a stronger security property. It takes an n bit input s ∈ {0, 1}n and outputs
(n+1) ·� bits y0, y1, . . . , yn (where each yi is an �-bit string) such that the follow-
ing two distributions (r0, (ri,0, ri,1)i∈[n]) are computationally indistinguishable
w.r.t. a uniformly random “seed” s: In the first distribution, r0 = y0, ri,si

= yi

and ri,1−si
is chosen uniformly from {0, 1}� (where si is the i-th bit of s) for

i ∈ [n]. In the second distribution, r0, ri,0 and ri,1 are all chosen uniformly at

440 N. Alamati et al.

random from {0, 1}� for i ∈ [n]. Note that in the first distribution, the rela-
tive “placement” of pseudorandom values yi (for i ∈ [n]) in the tuple (ri,0, ri,1)
depends on the i-th bit of seed s; hence in some sense, the values (ri,0, ri,1)i∈[n]

give away a “hint” about the seed.
More formally, hinting PRGs are defined as follows:

Definition 13 (Hinting PRGs). A hinting PRG is a deterministic
polynomial-time algorithm G with parameters n, �, such that G takes as input
1κ, an n bit string s, and outputs an (n+1) · � bit string y. Moreover, it satisfies
the following property for any ppt adversary A:

|Pr[A((y0
0 , (y

0
i,0, y

0
i,1)i∈[n])) = 1] − Pr[A((y1

0 , (y
1
i,0, y

1
i,1)i∈[n])) = 1]| ≤ negl.

where s = (s1, . . . , sn), y1
0, (y1

i,0, y
1
i,1)i∈[n] and (y0

i,1−si
)i∈[n] are uniformly dis-

tributed whereas (y0
0 , (y

0
1,s1

, y0
n,sn

)i∈[n]) is the output of G(1κ, s). In more detail,
s = (s1, . . . , sn) ← {0, 1}n, G(1κ, s) = (y0

0 , y
0
1,s1

, . . . , y0
n,sn

) – with each y0
i,si

∈
{0, 1}� – and y0

i,1−si
← {0, 1}� ∀i ∈ [n], y1

0 ← {0, 1}� and y1
i,b ← {0, 1}�

∀i ∈ [n], b ∈ {0, 1}.
Let G : {0, 1}n → {0, 1}(n+1)·� be a hash function, or alternatively, an extend-

able output function. Our main observation is that by modeling G as a random
oracle in the NO QROM, we get the above hinting property from G “for free”.
It’s worth noting that very recently, Alamati and Patranabis [1] also realize
hinting PRGs using a random oracle albeit in a classical setting.

Theorem 7. The extendable output function G : {0, 1}n → {0, 1}(n+1)·� when
modelled in the NO QROM behaves as a hinting PRG.

Proof. Consider any ppt adversary A that has quantum access to the random
oracle G in the setup phase (cf. Sect. 3) and gets as input y0 = (y0

0 , (y
0
i,0, y

0
i,1)i∈[n])

where for a uniformly random seed s = (s1, . . . , sn) ← {0, 1}n, we have G(s) =
(y0

0 , y
0
1,s1

, . . . , y0
n,sn

) – with each y0
i,si

∈ {0, 1}� – and y0
i,1−si

← {0, 1}� ∀i ∈ [n].
Now we replace G with another random oracle H : {0, 1}n → {0, 1}(n+1)·� in
the setup phase such that ∀x ∈ {0, 1}n \ {s}, H(x) = G(x) and H(s) = ŷ for a
uniformly random and independent ŷ ← {0, 1}(n+1)·�.

In the context of applying Lemma 5, it’s not hard to see that we have
Pr[AH(y0) = 1] = Pr[AG(y1) = 1], where y1 = (y1

0 , (y
1
i,0, y

1
i,1)i∈[n]) with the

uniformly random values y1
0 ← {0, 1}� and y1

i,b ← {0, 1}� ∀i ∈ [n], b ∈ {0, 1};
because in both cases, A’s inputs y0, y1 have the same (uniformly random) dis-
tribution and are independent w.r.t. the oracle outputs H(s), G(s) respectively.
Hence if the ppt adversary A makes at-most q quantum oracle queries, then from
Lemma 5 we have

|Pr[AH(y0) = 1] − Pr[AG(y0) = 1]|

= |Pr[AG(y1) = 1] − Pr[AG(y0) = 1]| ≤ 4

√
q(q + 1)

2n
= negl.

This satisfies the hinting property specified in Definition 13 in the NO QROM.
��

Non-Observable Quantum Random Oracle Model 441

CCA-Secure Encryption in the NO QROM. One of the main applications
of hinting PRGs is to construct CCA-secure PKE schemes, and more advanced
primitives such as CCA-secure attribute-based encryption (ABE) or CCA-secure
one-sided predicate encryption schemes, from their CPA-secure counterparts in
a black-box manner [27].

Hence, by replacing the hinting PRG in the black-box constructions of [27]
with a standard hash function/extendable output function – later modeled as a
random oracle – we obtain the above advanced CCA-secure encryption systems
in the NO QROM; we can follow the proof strategies used in [27] w.r.t. their
black-box constructions, in conjunction with Lemma 7 above, to prove CCA
security of our corresponding constructions in the NO QROM in a relatively
straightforward fashion. At the same time, we leave it as an open question to
obtain more efficient constructions of the above CCA-secure primitives in the
NO QROM.

References

1. Alamati, N., Patranabis, S.: Cryptographic primitives with hinting property. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 33–62.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3 2

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 10

3. Ananth, P., Bhaskar, R.: Non observability in the random oracle model. In: Susilo,
W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 86–103. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41227-1 5

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Dorothy, E.D., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V.. (eds.) ACM CCS 93, pp. 62–73. ACM Press (1993)

6. Rabin, M.O.: Probabilistic algorithms in finite fields. In: 22nd FOCS, pp. 394–398.
IEEE Computer Society Press (1981)

7. Bitansky, N., Lin, H., Shmueli, O.: Non-malleable commitments against quantum
attacks. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III.
LNCS, vol. 13277, pp. 519–550. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07082-2 19

8. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

9. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 21

https://doi.org/10.1007/978-3-031-22963-3_2
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-642-41227-1_5
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-031-07082-2_19
https://doi.org/10.1007/978-3-031-07082-2_19
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21

442 N. Alamati et al.

10. Brenner, H., Goyal, V., Richelson, S., Rosen, A., Vald, M.: Fast non-malleable
commitments. In: Ray, I., Li, N., Kruegel, C., (eds.) ACM CCS 2015, pp. 1048–
1057. ACM Press (2015)

11. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E., (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press (2019)

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press (1998)

13. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: 30th ACM STOC, pp. 141–150. ACM Press (1998)

14. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press (1991)

15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 13

16. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Efficient NIZKs and signatures from
commit-and-open protocols in the QROM. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 729–757. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15979-4 25

17. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum
random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022, Part III. LNCS, vol. 13277, pp. 677–706. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07082-2 24

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 26

20. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 18

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C., (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008)

23. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: decryption failures
and the Fujisaki-Okamoto transform. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT
2022, Part IV. LNCS, vol. 13794, pp. 414–443. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22972-5 15

24. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

25. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 96–125.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-031-15979-4_25
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-44598-6_26
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-319-96878-0_4

Non-Observable Quantum Random Oracle Model 443

26. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 18

27. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 671–700. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 23

28. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

29. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

30. Lombardi, A., Ma, F., Spooner, N.: Post-quantum zero knowledge, revisited or:
how to do quantum rewinding undetectably. In: 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, 31 October–3
November 2022, pp. 851–859. IEEE (2022)

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

32. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th FOCS, pp.
563–572. IEEE Computer Society Press (2005)

33. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learning
with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

34. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

35. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol.
9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5 8

36. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 497–527.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 18

37. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 568–597.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 20

38. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press (2012)

39. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

40. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7–8), 557–567 (2015)

https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

444 N. Alamati et al.

41. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 9

42. Zhandry, M.: Augmented Random Oracles. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 35–65. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15982-4 2

https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-031-15982-4_2

Characterizing the qIND-qCPA
(In)security of the CBC, CFB, OFB

and CTR Modes of Operation

Tristan Nemoz1,2,3(B), Zoé Amblard1, and Aurélien Dupin1

1 Thales SIX GTS, Gennevilliers, France
2 Télécom Paris, Palaiseau, France

3 EURECOM, Biot, France

nemoz@eurecom.fr

Abstract. We fully characterize the post-quantum security of the CBC,
CFB, OFB and CTR modes of operation by considering all the possi-
ble notions of qIND-qCPA security defined by Carstens, Ebrahimi, Tabia
and Unruh (TCC 2021), thus extending the work performed by Anand,
Targhi, Tabia and Unruh (PQCrypto 2016).

We show that the results obtained by Anand et al. for the qIND-
qCPA-P6 security of these modes carry on to the other IND-qCPA notions,
namely the qIND-qCPA-P10 and qIND-qCPA-P11 ones. We also show that
all of these modes are insecure according to all of the other notions,
regardless of the block cipher they are used with.

We also provide two general results concerning the insecurity of com-
monly used properties of block ciphers, namely those preserving the
length of their input and those using the XOR operation as a way to
randomize the encryption. Finally, we use these results to highlight the
need for new quantum semantic security notions.

Keywords: Post-quantum cryptography · Block ciphers · Modes of
operation · qIND-qCPA security

1 Introduction

1.1 Context and Results

While it is now common knowledge that traditional asymmetric cryptography
is threatened by quantum computers, notably due to Shor’s algorithm [14], the
security of the currently used symmetric primitives is still under consideration.
Some work in this field includes for instance finding polynomial attacks against
symmetric systems using Simon’s algorithm [10], evaluating the security of AES
in a quantum world [3,9] or defining quantum-aware security notions for cryp-
tosystems [2,5–8].

The security of the CBC, CFB, OFB and CTR modes of operations has been
traditionally assessed via the IND-CPA security notion. In this notion, the adver-
sary can issue learning requests and challenge requests. Learning requests are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 445–475, 2023.
https://doi.org/10.1007/978-3-031-40003-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_17&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_17

446 T. Nemoz et al.

answered by an oracle implementing the encryption function which security is
to be assessed. Challenge requests on the other hand are answered by an ora-
cle which nature depends on the “world” the game is taking place in. In the
“real” world, the challenge oracle behaves identically to the learning oracle. In
the “random” world however, the oracle first applies a permutation chosen at
random at the beginning of the game on the adversary’s queries. The goal of the
adversary is then to find out whether the game takes place in the real world or
the random one. A system is said to be IND-CPA secure if the optimal strategy
for such an adversary that runs in polynomial time provides low to no advantage
when compared to simply guessing at random.

This notion however, requires that both learning and challenge requests are
classical. Reasons for considering the security of cryptographic schemes when
using superposition queries have previously been given in the literature [1,2,7].
The most sensible one is the fact that quantum communication protocols may
arise from the upcoming advent of quantum computers. In such a situation where
end-users communicate using quantum states, the question of encryption applied
on superposed states and its associated security are to be considered. Another
reason is that the security proof of a scheme that is meant to be used classically
may use the security against quantum superposition of its internal schemes.

Boneh and Zhandry [2] showed that the immediate, natural translation of the
IND-CPA notion in a quantum world was not achievable. Thus, they instead pro-
posed the IND-qCPA notion, where learning queries are quantum, but challenge
ones are still classical. In the light of this new notion, Anand et al. [1] proved
the IND-qCPA (in)security of the aforementioned modes depending on whether
they were used with a standard-secure block cipher or a quantum-secure one.

In the years following Boneh and Zhandry’s IND-qCPA definition, some work
has been performed to try to define other security notions for a quantum
world where both learning and challenge requests are quantum [2,6,7,11]. These
notions essentially make use of different quantum oracles and different challenge
queries. Eventually, Carstens et al. [5] defined all possible remaining notions and
studied the implications between them. This resulted in 14 distinct equivalence
classes of qIND-qCPA notions. However, the relevance of these notions is still
discussed because of their novelty.

1.2 Our Contributions

In this paper, we extend Anand et al.’s work [1] by studying the security of the
CBC, CFB, OFB and CTR modes in all security notions defined by Carstens et
al. [5]. These results are summarized in Table 1. Furthermore, we show two gen-
eral results about the insecurity of two common practices. Firstly, we show that
a scheme preserving the length of its input is not qIND-qCPA-P8 secure, thus
generalizing a result from Gagliardoni et al. [7]. We also show that randomizing
an encryption using a public function such as the XOR one while giving the asso-
ciated randomness to the adversary makes the scheme qIND-qCPA-P5-insecure.
The way all these are proved questions the relevance of some qIND-qCPA notions
and highlights the need for equivalent quantum semantic security notions.

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 447

Table 1. Summary of our results. The ✓ symbol means that all denoted schemes are
secure in this notion. The ✗ symbol means that no denoted scheme is secure in this
notion. The ◆ symbol means that there is at least one scheme secure and one insecure
in this notion. The superscripts indicate either the article in which this result was first
proved, the theorem stating it or the security notion implying it.

CTR/OFB
with PRP/qPRP

CBC
with PRP

CBC
with qPRP

CFB
with PRP

CFB
with qPRP

P1 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P2 ✗ [6] ✗ P12 ✗ P12 ✗ [6] ✗ [6]

P3 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P4 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P5 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P6 ✓ [1] ◆ [1] ✓ [1] ◆ [1] ✓ [1]

P7 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P8 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P9 ✗ P13 ✗ P13 ✗ P13 ✗ P13 ✗ P13

P10 ✓ 6 ◆ P11 ✓ 9 ◆ P11 ✓ 9

P11 ✓ P6 ◆ 8 ✓ P6 ◆ 7 ✓ P6

P12 ✗ [5] ✗ [5] ✗ [5] ✗ [5] ✗ [5]

P13 ✗ 1 ✗ 3 ✗ 3 ✗ 2 ✗ 2

P14 ✓ [1] ✓ [1] ✓ [1] ✓ [1] ✓ [1]

IND-qCPA Security. We observe in Appendix A that the results found by
Anand et al. for the IND-qCPA using a standard oracle (qIND-qCPA-P6) security
notion carry on to the two other IND-qCPA notions, namely the one using an
erasing oracle (qIND-qCPA-P10) and the one using an embedding oracle (qIND-
qCPA-P11). In these notions, the adversary can perform their learning request
on a quantum oracle but is limited to classical challenge queries. In fact, the
proofs in these cases are adapted from the ones written in Anand et al.’s work [1]:
simulating a quantum oracle that implements a CTR or OFB mode using classical
queries remains possible; we use a variant of the One-way to Hiding Lemma to
show the security of CBC and CFB when used with a qPRP and we use the same
attack up to an extra step to show that these two modes may be insecure when
used with a PRP.

qIND-qCPA-P13 Insecurity. Furthermore, we show in Subsects. 3.1 to 3.3 that
these are the only security notions satisfied by these modes, since they are qIND-
qCPA-P13 insecure, no matter what the underlying block cipher is. As shown on
Fig. 1, the qIND-qCPA-P13 security notion is the weakest notion in which the
challenge request is quantum. Thus, proving the insecurity of these modes with
respect to this notion carry on to almost every other notion.

In the qIND-qCPA-P13 security notion, the adversary is allowed classical
learning queries and a single real-or-random challenge query performed on an

448 T. Nemoz et al.

embedding oracle. It means that the adversary’s challenge query undergoes the
following transformation:

∑

x

αx |x〉 →
∑

x

αx |x〉 ∣∣Enck
(
πb(x)

)
)
〉

with π being a random permutation. For the CFB, CTR and OFB modes of
operation, we prove this by showing that it is possible for the adversary to
disentangle the ciphertext register and the plaintext register in the real world,
while it is not possible to do so in the random world. Concerning CBC, we show
that for � � 3, with � being the number of blocks, the adversary is able to
separate the registers into two identical states in the real world, which is not
possible in the random world with overwhelming probability. They are thus able
to distinguish both cases using a SWAP test.

General Results and Relevance of the qIND-qCPA Notions. We show in
Subsect. 3.4 two general insecurity results.

Firstly, we show that the way the encryption is randomized must be secretly
kept in order for it to be qIND-qCPA-P5-secure. In particular, randomizing the
encryption by XORing the input with a random string r which is provided to the
adversary does not yield a qIND-qCPA-P5-secure scheme.

We then show that in order for a scheme to be qIND-qCPA-P8-secure, the
length of the ciphertexts must be higher than that of the plaintexts. In particular,
if the randomness is not part of the ciphertext and if the encryption function is
bijective, the resulting scheme can not be qIND-qCPA-P8-secure.

We show as an example how the construction provided by Carstens et al.
which is secured in all qIND-qCPA notions satisfies both these conditions. We
then use these results to exhibit the need for new quantum semantic security
notions.

1.3 Previous Work

Anand et al. [1] studied the security of the modes of operation under the stan-
dard IND-qCPA (qIND-qCPA-P6) security notion. Chevalier, Ebrahimi and Vu [6]
showed that the CFB, OFB and CTR modes of operation cannot achieve qIND-
qCPA-P2 security. This result was later improved by Carstens et al. [5] who
showed that CBC, CFB, OFB and CTR are not qIND-qCPA-P12 secure as long as
they use at least two blocks.

2 Prerequisites

2.1 Notations and Definitions

Notations. �a ; b� represents the set [a ; b] ∩ N. An adversary A having access
to an oracle O is denoted AO. For a given permutation π, we denote πa→b the
function which returns the bits of π from a to b inclusive, starting the indexing

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 449

at 0. The security parameter of a system is denoted λ. For an arbitrary string a
and a bit b, a · b is set to the all-zero string if b is equal to 0 and to a if b = 1.

The advantage of an adversary A in the experiment Exp using the symmetric
scheme S is defined as, accordingly to the definition given in [11]:

AdvexpA,S(λ) =
∣∣Pr

[
Exp0S(λ,A) = 1

] − Pr
[
Exp1S(λ,A) = 1

]∣∣

where Pr
[
Expb

S(λ,A) = 1
]

is the probability that A returns 1 if the bit they
have to guess is set to b. We define the real world to be the one where b = 0 and
the random world to be the one where b = 1. Note that while the real-or-random
notion we use has originally been introduced in [11], it was then named “real
or permutation”, and the convention for the real and random worlds was the
opposite of ours.

We denote H the Hadamard gate and X the NOT gate. If we want to name a
quantum register |ψ〉, we indicate its name as a subscript, like |ψ〉Name.

Modes of Operations. It is to be denoted that a key generation function is
supposed to be defined in order to properly define an encryption scheme. For
simplicity’s sake, we did not include it within the following definitions, since it
only consists in randomly choosing a key in {0, 1}λ.

Definition 1 (CBC mode, adapted from [1, Definition 6]). For a given
permutation Ek : {0, 1}n → {0, 1}n, we define the CBC scheme with the following
encryption and decryption functions:

EncCBCEk,�
: For a message m = m1 · · · m�, choose randomly c0 and return c0 along

with c = c1 · · · c� where, for i ∈ �1 ; ��, ci = Ek (mi ⊕ ci−1).
DecCBCEk,�

: For a ciphertext c = c1 · · · c� and being given c0, return m = m1 · · · m�

where, for i ∈ �1 ; ��, mi = E−1
k (ci) ⊕ ci−1.

Definition 2 (CFB mode, adapted from [1, Definition 7]). For a given func-
tion Ek : {0, 1}n → {0, 1}n, we define the CFB scheme with the following encryp-
tion and decryption functions:

EncCFBEk,�
: For a message m = m1 · · · m�, choose randomly c0 and return c0 along

with c = c1 · · · c� where, for i ∈ �1 ; ��, ci = mi ⊕ Ek (ci−1).
DecCFBEk,�

: For a ciphertext c = c1 · · · c� and being given c0, return m = m1 · · · m�

where, for i ∈ �1 ; ��, mi = Ek (ci−1) ⊕ ci.

Definition 3 (OFB mode, adapted from [1, Definition 8]). For a given
function Ek : {0, 1}n → {0, 1}n, we define the OFB scheme with the following
encryption and decryption functions:

EncOFB
Ek,�

: For a message m = m1 · · · m�, choose randomly c0 and return c0 along
with c = c1 · · · c� where t0 = Ek (c0) and, for i ∈ �1 ; ��, ci = ti ⊕ mi and
ti = Ek (ti−1).

450 T. Nemoz et al.

DecOFB
Ek,�

: For a ciphertext c = c1 · · · c� and being given c0, computes t0 = Ek (c0)
and return m = m1 · · · m� where, for i ∈ �1 ; ��, mi = ti ⊕ ci and ti =
Ek (ti−1).

Definition 4 (CTR mode, adapted from [1, Definition 9]). For a given
function Ek : {0, 1}n → {0, 1}n, we define the CTR scheme with the following
encryption and decryption functions:

EncCTREk,�
: For a message m = m1 · · · m�, choose randomly c0 and return c0 along

with c = c1 · · · c� where, for i ∈ �1 ; ��, ci = mi ⊕ Ek (c0 ⊕ i − 1).
DecCTREk,�

: For a ciphertext c = c1 · · · c� and being given c0, return m = m1 · · · m�

where, for i ∈ �1 ; ��, mi = ci ⊕ Ek (c0 ⊕ i − 1).

In these definitions, c0 ⊕ i − 1 represents the bitwise XOR between c0 and a fixed
n-bit representation of i − 1.

Some things are to be denoted with these definitions. First of all, in the litera-
ture, the initialization vector c0 is often returned as part of the ciphertext. Since
we want to apply these encryption schemes to quantum states, it is completely
equivalent to consider that the adversary classically knows c0 and receives the
remaining of the ciphertext as a quantum state.

Furthermore, it is important to note that the maximal � that such a mode
of operation accepts is assumed to be polynomial in λ. In all of our proofs, � is
assumed to be constant, that is we assume that the oracle only accepts queries
of size �, which covers the case where the oracle accepts queries of variable
length. Similarly, the block size, denoted n in the definitions, is also assumed to
be polynomial in λ. This assumption is justified by the fact that often, n = λ
holds. The same assumption is made in [1], since the authors claim that CBC
and CFB are qIND-qCPA-P6 secure when used with a qPRP by showing that the
adversary’s advantage is negligible with respect to n.

Security Notions

Definition 5 (Standard and quantum-secure pseudorandom permuta-
tion, adapted from [19, Definition 3.1]). A permutation πk depending on
a key k is a standard-secure (respectively quantum-secure) pseudorandom per-
mutation, which we denote PRP (respectively qPRP), if no polynomial quantum
adversary A making classical (respectively quantum) queries to both the permu-
tation and its inverse can distinguish between a truly random permutation and
πk for a randomly chosen k.

Since we will consider different types of oracles in the following, we ought to
be more precise about what a quantum query is in the previous definition. In
particular, since an erasing oracle and a standard oracle can’t simulate each
other, the precision seems to have to be made. However, Carstens et al. [5,
Lemma 6] showed that a permutation that is quantum-secure with standard
queries is also secure with erasing queries, and reciprocally.

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 451

qIND-qCPA Notions. Carstens et al. [5] defined 14 different equivalence classes for
qIND-qCPA notions. A notion is fully characterized by the oracle type on which
the adversary performs its learning queries, the one on which they perform their
challenge queries, the challenge type, like left-or-right or real-or-random, and the
number of challenge queries they are allowed to perform.

Oracle Types. Let f be the function implemented by the oracle the adversary
has access to. Note that it is sufficient to describe the behavior of an oracle
on the basis states to fully describe it. Four types of oracle are considered in
Carstens et al.’s work [5]:
Standard Oracle: On a basis state |x, y〉, the oracle returns |x, y ⊕ f(x)〉.
Embedding Oracle: On a basis state |x〉, the oracle prepares a state |0〉

as the output register and acts as a standard oracle, returning |x, f(x)〉.
Erasing Oracle: This oracle requires f to be injective. On a basis state |x〉,

it returns |f(x)〉.
Classical Oracle: This oracle only accepts classical queries.

It is important to note that the embedding oracle is the weakest of the three
quantum oracles, since it is possible to simulate such an oracle using either
one of the two others.

Challenge Type. Three challenge types are used in [5].
Real-Or-Random: On a challenge query, the oracle chooses a random per-

mutation π and applies πb to the plaintext register before encrypting it.
This means that for a standard or an embedding challenge query, the
oracle performs this mapping:

|x, y〉 → ∣∣x, y ⊕ Enck
(
πb(x)

)〉

while it performs this mapping for an erasing oracle:

|x〉 → ∣∣Enck
(
πb(x)

)〉
.

Note that such a permutation is chosen at random for each of the challenge
queries the adversary performs.

Two-Ciphertexts. A challenge query is made of two states. On a challenge
query on a standard or an embedding oracle, the oracle performs the
following mapping:

|x0, y0〉 |x1, y1〉 → |x0, y0 ⊕ Enck (xb)〉
∣∣x1, y1 ⊕ Enck

(
xb

)〉

while it performs the following mapping on an erasing oracle:

|x0〉 |x1〉 → |Enck (xb)〉
∣∣Enck

(
xb

)〉
.

One-Ciphertext. A challenge query is made of two states |ψ0〉 and |ψ1〉.
The oracle first measures

∣∣ψb

〉
and throws away the result. It then per-

forms the following mapping on a standard or an erasing oracle:

|x0, y0〉 |x1, y1〉 → |xb, yb ⊕ Enck (xb)〉
while it performs the following mapping on an erasing oracle:

|x0〉 |x1〉 → |Enck (xb)〉 .

452 T. Nemoz et al.

It is immediate to see that the notions using the two-ciphertexts return type
implies those with the one-ciphertext one when using the same number of
challenge queries and the same learning scheme, since more information is
given to the adversary. However, Carstens et al. [5] also showed that it just
happens that the same property is true concerning the one-ciphertext return
type and the real-or-random one. As such, the real-or-random return type is
the weakest among all three.

A high-level overview of the differences between the notions used in this work
is presented in Table 2.

Table 2. High-level overview of the different security notions considered in this work.
Note that these notions belong to equivalence classes, as per Carstens et al.’s work [5].
For instance, one might replace the classical learning oracle of the qIND-qCPA-P5 notion
by an Embedding one and still end up with a equivalent notion.

Notion Oracle Challenge

Learning Challenge Type Number of queries

qIND-qCPA-P5 Classical Embedding Real-or-random poly(λ)

qIND-qCPA-P8 Classical Erasing One-ciphertext 1

qIND-qCPA-P10 Erasing Classical One-ciphertext poly(λ)

qIND-qCPA-P11 Embedding Classical One-ciphertext poly(λ)

qIND-qCPA-P13 Classical Embedding Real-or-random 1

At the exception of the qIND-qCPA-P13 and IND-qCPA notions, every security
notion is used at most once in our work. Thus, for clarity’s sake, we define these
notions just before their associated proof of (in)security. The IND-qCPA notions
are put with the associated proofs in Appendix A and we define the qIND-qCPA-
P13 security notion here since it is widely used throughout this work.

Definition 6 (qIND-qCPA-P13 game, adapted from [5]). Let E be a cryp-
tographic scheme: E = (KGen,Enc,Dec). We denote by M the set of messages E
operates on, by CL-Enc the classical oracle implementing Enc and by EM-Enc the
embedding oracle implementing Enc. We say that E is qIND-qCPA-P13-secure if
no polynomial time quantum adversary A has an advantage larger than 1

2 + ε in
the following experiment, with ε being negligible with respect to λ.

Experiment qIND-qCPA-P13b
E(λ,A)

k ←$KGen
(
1λ

)

π ←$S|M|

(state, |ϕ〉) ←$ ACL−Enc(k,·)()

|ψ〉 ←$EM-Enc
(
k,

∣∣∣πb(ϕ)
〉)

b′ ←$ ACL−Enc(k,·)(|ϕ, ψ〉 , state)

return b′

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 453

Intuitively, this notion is the weakest one can come up with using a quantum
challenge request. Indeed, the classical learning queries greatly limits the power
of the adversary, and they are allowed a single challenge query on the weakest
quantum oracle, using the weakest return type. This intuition has been shown
by Carstens et al. [5] and is shown on Fig. 1.

Fig. 1. Relationships between qIND-qCPA notions, adapted from [5]. The IND-CPA
and qIND-qCPA-P6 (in)security of the CBC, CFB, OFB and CTR modes are known
from [1,17]. Thus, proving their qIND-qCPA-P13 insecurity and their qIND-qCPA-P11
insecurity or their qIND-qCPA-P10 security fully characterizes them.

Note that the qIND-qCPA-P6 (in)security of the CBC, CFB, OFB and CTR
modes of operation is known from [1], and that the IND-CPA security of these
modes is also known (see for example [17]). As such, these implications show
that in order to completely characterize the security of these modes, proving
their qIND-qCPA-P13 insecurity and their qIND-qCPA-P10 security or their qIND-
qCPA-P11 insecurity is sufficient.

2.2 Lemmas

Lemma 1. We consider the quantum state 1√
2m

∑
x |x〉 |f(x)〉 with f being a

function from {0, 1}m to {0, 1}n. Applying an H gate to the first register and
then measuring it returns |0〉 with probability 1

22m

∑
y

∣∣f−1(y)
∣∣2.

Proof. We first apply the H gate on the system, which puts it in the state:

1
2m

∑

x

∑

k

(−1)x·k |k〉 |f(x)〉 =
1

2m
|0〉

∑

x

|f(x)〉 +
1

2m

∑

x

∑

k �=0

(−1)x·k |k〉 |f(x)〉 .

(1)
The probability of measuring |0〉 is thus given by:

Pr [|0〉] =

∥∥∥∥∥
1

2m
|0〉

∑

x

|f(x)〉
∥∥∥∥∥

2

=
1

22m

∑

y

∣∣f−1(y)
∣∣2 . (2)

��

454 T. Nemoz et al.

2.3 IND-qCPA Security of CBC, CFB, CTR and OFB

In 2016, Anand et al. [1] characterized the security of the CBC, CFB, CTR and
OFB modes of operation. The notion they used is the IND-qCPA notion defined in
[2]. As its name suggests, in this notion the adversary is allowed to perform quan-
tum learning queries but is restricted to classical challenge queries. Arguably,
the term “IND-qCPA” is now ambiguous, for instance because of the different
quantum oracles that can be used to answer the quantum queries.

In this work, IND-qCPA refers to all the notions defined by Carstens et
al. [5] that can be identified using the previous description. This includes the
qIND-qCPA-P6 notion, which is the one defined in [2], and the qIND-qCPA-P10
and qIND-qCPA-P11 ones. The former uses an erasing oracle to answer learning
queries, while the latter uses an embedding one.

While these notions are not equivalent, their similarities allow us to reuse
almost identically the proofs proposed by Anand et al. to show the (in)security
of the CBC, CFB, CTR and OFB modes of operation with respect to the qIND-
qCPA-P6 security in the qIND-qCPA-P10 and qIND-qCPA-P11 cases. As such, we
put these proofs and the relevant definitions in Appendix A.

3 Our Results

3.1 qIND-qCPA-P13 Insecurity of CTR and OFB

In this section, we show that, according to Fig. 1, the only security notions that
CTR and OFB satisfy are the IND-qCPA ones by exhibiting an attack against
their qIND-qCPA-P13 security.

This proof only relies on the fact that in order to produce the ciphertext,
CTR and OFB perform a XOR between the message and a pseudorandom string
s. As such, our proof can also be applied to stream ciphers, and we will denote
m ⊕ s an encryption of the message m using such a scheme. Note however that
this proof assumes that the ciphertext can be written as x ⊕ s entirely. As such,
it doesn’t carry on to the GCM mode of operation which, though it uses the CTR
mode of operation, adds a tag at the end of the ciphertext.

Theorem 1 (Originally written in [12]). CTR and OFB are qIND-qCPA-P13
insecure, no matter what the underlying block cipher is.

Proof. A prepares the state |+〉 and performs their challenge query using it.
They thus receive: ⎧

⎨

⎩

∑
x

|x〉 |x ⊕ s〉 if b = 0
∑
x

|x〉 |π(x) ⊕ s〉 if b = 1
(3)

for a random permutation π. By performing an X gate on the second register
controlled by the first one, the state becomes:

⎧
⎨

⎩

∑
x

|x〉 |s〉 if b = 0
∑
x

|x〉 |x ⊕ π(x) ⊕ s〉 if b = 1
. (4)

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 455

Thus, if b = 0, the two registers are not entangled: applying an H gate on the
first register and measuring it yields |0〉 with certainty. If b = 1 however, such
a procedure yields |0〉 with negligible probability. We can apply Lemma 1 with
f = x 	→ x ⊕ π(x) ⊕ s to show this formally. The probability to measure |0〉 if
b = 1 is thus given by:

Pr [|0〉 | b = 1] =
1

22�n

∑

y

∣∣f−1(y)
∣∣2 . (5)

Since the sum is going through all possible y, it is completely equivalent to
redefine f to be x 	→ x ⊕ π(x).

We have, for a given y1:
∣∣f−1(y)

∣∣ =
∑

x

1π(x)=x⊕y (6)

thus: ∣∣f−1(y)
∣∣2 =

∑

x1

∑

x2

1[π(x1)=x1⊕y]∩[π(x2)=x2⊕y] (7)

thus:

E

[∣∣f−1(y)
∣∣2
]

=
∑

x1

∑

x2

Pr [[π (x1) = x1 ⊕ y] ∩ [π (x2) = x2 ⊕ y]] (8a)

=
∑

x1

Pr [π (x1) = x1 ⊕ y] +

∑

x1

∑

x2 �=x1

Pr [[π (x1) = x1 ⊕ y] ∩ [π (x2) = x2 ⊕ y]] .
(8b)

Since π is a random permutation, all the events in (π (x1) = x1 ⊕ y)x1
have the

same probability. As such:

E

[∣∣f−1(y)
∣∣2
]

= 1 +
1

2�n

∑

x1

∑

x2 �=x1

Pr [π (x2) = x2 ⊕ y |π (x1) = x1 ⊕ y] . (8c)

Similarly, since π is a random permutation, the events in (π (x2) = x2 ⊕ y)x2 �=x1

have all the same probability being given that π (x1) = x1 ⊕ y. Thus, we have:

E

[∣∣f−1(y)
∣∣2
]

= 2. (8d)

Finally, the probability of measuring |0〉 if b = 1 is given by:

Pr [|0〉 | b = 1] =
1

2�n−1
. (9)

All in all, the adversary’s advantage is given by:

Advqind-qcpa-p13A,CTR/OFB (λ) = 1 − 1
2�n−1

. (10)

In particular, it is not negligible with respect to λ. ��
1 The reasoning from Eq. 6 to Eq. 8d is a rewriting of a proof proposed by Iosif Pinelis.

456 T. Nemoz et al.

3.2 qIND-qCPA-P13 Insecurity of CFB

Similarly to the CTR and OFB modes, we show that an adversary can win
with non-negligible advantage in the qIND-qCPA-P13 security game of the CFB
mode, no matter what the underlying block cipher is. Along with its IND-qCPA
(in)security proven in Appendix A, this fully characterizes it, according to Fig. 1.

The qIND-qCPA-P13 insecurity of CFB, just like CTR and OFB, comes from
the fact that the adversary can disentangle the ciphertext register from the
plaintext register, which is not possible in the random world. The same strategy
as for these two modes can thus be used to distinguish both worlds.

Theorem 2 (Originally written in [12]). CFB is qIND-qCPA-P13 insecure,
no matter what the underlying block cipher is.

Proof. A prepares the following state, where each register is made of n qubits:

1√
2n

(
�−1⊗

k=1

|0〉
)

∑

x

|x〉 (11)

and performs their challenge query using it. They thus receive, ignoring the first
� − 1 registers which are not entangled with the others:

⎧
⎪⎪⎨

⎪⎪⎩

1√
2n

∑
x

|x〉
(

�−1⊗
i=1

∣∣Ei
k (c0)

〉) ∣∣x ⊕ E�
k (c0)

〉
if b = 0

1√
2n

∑
x

|x〉
�⊗

i=1

∣∣π(i−1)n→in−1(0 ‖ · · · ‖ 0 ‖ x) ⊕ Ek (ci−1(x))
〉

if b = 1
(12)

for a random permutation π, where c0 is a random constant function and where
we have defined:

ci(x) def= π(i−1)n→in−1(0 ‖ · · · ‖ 0 ‖ x) ⊕ Ek (ci−1(x)) . (13)

By performing an X gate on the second register controlled by the first one, the
state becomes:

⎧
⎪⎨

⎪⎩

1√
2n

∑
x

|x〉
(

�−1⊗
i=1

∣∣Ei
k (c0)

〉) ∣∣E�
k (c0)

〉
if b = 0

1√
2n

∑
x

|x〉 |fc0,π(x)〉 if b = 1
(14)

with fc0,π being defined as:

fc0,π(x) def= x 	→ c1(x) ‖ · · · ‖ c�−1(x) ‖ (x ⊕ c�(x)) . (15)

Thus, if b = 0, the two registers are not entangled: applying an H gate on the
first register and measuring it yields |0〉 with certainty. If b = 1 however, such a
procedure yields |0〉 with negligible probability. We can use Lemma 1 to prove
it. The probability to measure |0〉 if b = 1 is given by:

Pr [|0〉 | b = 1] =
1

22n

∑

y

∣∣f−1
c0,π(y)

∣∣2 . (16)

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 457

We have, for a given y2:
∣∣f−1

c0,π(y)
∣∣ =

∑

x

1fc0,π(x)=y (17)

thus: ∣∣f−1
c0,π(y)

∣∣2 =
∑

x1

∑

x2

1[fc0,π(x1)=y]∩[fc0,π(x2)=y] (18)

thus:

E

[∣∣f−1
c0,π(y)

∣∣2
]

=
∑

x1

∑

x2

Pr [[fc0,π (x1) = y] ∩ [fc0,π (x2) = y]] (19a)

=
∑

x1

Pr [fc0,π (x1) = y] +

∑

x1

∑

x2 �=x1

Pr [[fc0,π (x1) = y] ∩ [fc0,π (x2) = y]] .
(19b)

Since π is a random permutation, π(x) is uniformly random. As such, any bitslice
π(i−1)n→(in−1)(x) is also uniformly random. Note also that it is independent
from Ek (ci−1(x)), thus every ci(x) is uniformly random. This property does not
depend on its input, hence this remains true for x ⊕ c�(x). As a consequence,
fc0,π is uniformly random and we have:

E

[∣∣f−1
c0,π(y)

∣∣2
]

=
2n

2�n
+

1
2�n

∑

x1

∑

x2 �=x1

Pr [fc0,π (x2) = y | fc0,π (x1) = y] . (19c)

Since the value of fco,π (x1) is known, it means that π (x1) has been specified.
As such, π (x2) can be equal to any value except π (x1).

Note that the probability that we want to compute is the probability that
ci (x1) = ci (x2) for i ∈ �1 ; � − 1� and that c� (x1) ⊕ x1 = ci (x2) ⊕ x2. Using
the definition of ci, this is equivalent to computing the probability that π (x1)
and π (x2) have the same (� − 1)n first bits and that their last n bits XOR up to
x1 ⊕ x2. The probability of the first event is 2n−1

2�n , since we can freely choose
the last n bits of π (x2) as long as they are not equal to those of π (x1), and the
probability for the second event being given the first one is 1

2n−1 using the same
reasoning. All in all, we have:

E

[∣∣f−1
c0,π(y)

∣∣2
]

=
2n

2�n
+

1
2�n

∑

x1

∑

x2 �=x1

1
2�n − 1

=
2n

2�n
+

2n (2n − 1)
2�n (2�n − 1)

. (19d)

Thus, the probability of measuring |0〉 being given that b = 1 is given by:

Pr [|0〉 | b = 1] =
1

22n

∑

y

(
2n

2�n
+

2n (2n − 1)
2�n (2�n − 1)

)
=

1
2n

(
1 +

2n − 1
2�n − 1

)
. (20)

2 The reasoning from Eq. 17 to Eq. 19d is an adaptation of the aforementioned proof
proposed by Iosif Pinelis.

458 T. Nemoz et al.

Thus, A’s advantage is given by:

Advqind-qcpa-p13A,CFB (λ) = 1 − 1
2n

(
1 +

2n − 1
2�n − 1

)
. (21)

In particular, this advantage is not negligible with respect to λ. ��

3.3 qIND-qCPA-P13 Insecurity of CBC

Finally, we show that CBC is qIND-qCPA-P13 insecure, no matter what the
underlying block cipher is. Contrarily to the three other modes, it is not possible
to disentangle the ciphertext register from the plaintext one in this case. How-
ever, we show that an adversary is able to separate the answer to its challenge
query into two identical registers in the real world, while it isn’t possible in the
random one. Thus, performing a SWAP test allows to distinguish both cases.

Theorem 3. CBC is qIND-qCPA-P13 insecure if it uses more than 3 blocks, no
matter what the underlying block cipher is.

Proof. Let us assume for now that � can be written as � = 2L + 1 with L � 1.
A sends |+〉 as their unique challenge query. They thus receive, if b = 0:

1√
2�n

∑

x1,··· ,x�

|x1〉M1
· · · |x�〉M�

|Ek (x1 ⊕ c0)〉C1
|Ek (x2 ⊕ Ek (x1 ⊕ c0))〉C2

· · ·

(22)
Since they know c0, they can apply X gates accordingly on M1 to XOR it with
c0, thus creating the following state:

1√
2�n

∑

x1,··· ,x�

|x1〉M1
· · · |x�〉M�

|Ek (x1)〉C1
|Ek (x2 ⊕ Ek (x1))〉C2

· · · (23)

Note that this state doesn’t depend on c0 anymore. This is the state the adversary
would have had if c0 was nil. They now measure CL+1, thus getting the associated
value cL+1 and disturbing the superposition. Indeed, the following equation must
hold:

cL+1 = Ek (xL+1 ⊕ Ek (xL ⊕ Ek (· · · ⊕ Ek (x1) · · ·))) (24a)

⇐⇒ xL+1 = E−1
k (cL+1) ⊕ Ek (xL ⊕ Ek (· · · ⊕ Ek (x1) · · ·)) . (24b)

This equation shows that the value of the ML+1 register is now E−1
k (cL+1) ⊕

CL. Thus, performing an X gate on ML+1 controlled by CL sets the value of
ML+1 to E−1

k (cL+1). As such, it is no longer entangled with the other registers.
Furthermore, the ciphertext registers CL+2, · · · , C2L are only function of cL+1

and the plaintext registers ML+2, · · · ,M2L. Hence, the state is now separable
and can be written as:

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 459

(
1√
2Ln

∑

x1,··· ,xL

|x1, · · · , xL〉
∣∣∣EncCBCEk,L,0 (x1 ‖ · · · ‖ xL)

〉)
⊗

⎛

⎝ 1√
2Ln

∑

xL+2,··· ,x2L

|xL+2, · · · , x2L〉
∣∣∣EncCBCEk,L,cL+1

(xL+2 ‖ · · · ‖ x2L)
〉
⎞

⎠
(25)

where EncCBCEk,L,r is the encryption function using the CBC mode of operation with
Ek as its block cipher, operating on L blocks and using r as its initialization
vector. Note that for any set of messages (xi)i∈�L+2 ; 2L�, the following holds:

EncCBCEk,L,cL+1
(xL+2 ‖ · · · ‖ x2L) = EncCBCEk,L,0 ((xL+2 ⊕ cL+1) ‖ · · · ‖ x2L) . (26)

Since A knows cL+1 from the measurement of CL+1, they can apply X gates on
ML+2 to XOR it with cL+1, thus creating the state:

(
1√
2Ln

∑

x1,··· ,xL

|x1, · · · , xL〉
∣∣∣EncCBCEk,L,0 (x1 ‖ · · · ‖ xL)

〉)
⊗

⎛

⎝ 1√
2Ln

∑

xL+2,··· ,x2L

|xL+2, · · · , x2L〉
∣∣∣EncCBCEk,L,0 (xL+2 ‖ · · · ‖ x2L)

〉
⎞

⎠
(27)

=

(
1√
2Ln

∑

x

|x〉
∣∣∣EncCBCEk,L,0(x)

〉)
⊗

(
1√
2Ln

∑

x

|x〉
∣∣∣EncCBCEk,L,0(x)

〉)
. (28)

A now performs a SWAP test [4] on these two states, which is an algorithm that
runs in constant time, taking two quantum states |ϕ〉 and |ψ〉 and returning
|0〉 with probability 1

2 + 1
2 |〈ϕ |ψ〉 |2. Here, since these two states are identical,

performing a SWAP test on them will return |0〉 with probability 1.
Let us consider the case b = 1 now. The oracle A interacts with is depicted

on Fig. 2.

Fig. 2. The oracle the adversary interacts with in the random world in the qIND-qCPA-
P13 security game of CBC. Note that EncCBCEk,2L+1,c0 can be implemented as an erasing
oracle since it is bijective. π is a random permutation freshly chosen and implemented
as an embedding oracle.

Since π is freshly chosen and is implemented as an embedding oracle, we can
use [5, Corollary 11] to measure the input register before applying the embedding

460 T. Nemoz et al.

oracle implementing π. This corollary ensures that A can distinguish the previous
oracle from this new one with probability at most 1+C

2�n , with C being an universal
constant defined in [18, Theorem 3.1].

Upon measurement, the input register collapses to a random message x and
is then passed to the encryption oracle. The resulting state is:

|x1, · · · , x2L〉 |c1, · · · , c2L〉 (29a)

with ci being defined as:

∀i ∈ �1 ; 2L�, ci = Ek

(
πin→(i+1)n−1 (x1 ‖ x2L) ⊕ ci−1

)
(29b)

and with c0 being chosen uniformly at random. A firstly measures cL+1 and
performs a XOR operation between c0 and x1 and between cL+1 and xL+1. A
will thus perform the SWAP test between |x1 ⊕ c0, x2, · · · , xL〉|c1, · · · , cL〉 and
|xL+2 ⊕ cL+1, xL+3, · · · , x2L〉|cL+2, · · · , c2L〉. Since these two states are basis
states, they are either equal or orthogonal. If they are equal, the SWAP test
returns |0〉 with probability 1. If they are orthogonal, it returns |0〉 with proba-
bility 1

2 . Note that the following holds:

[∀i, xi = xL+i+1] =⇒ [∀i, ci = cL+i+1] . (30)

Thus, the probability that these two states are equal is the probability that
each xi is equal to xL+i+1, which happens with probability 1

2Ln . All in all, the
probability of measuring |0〉 on average is equal to:

Pr [|0〉] =
1

2Ln
+

1
2

(
1 − 1

2LN

)
=

1
2

+
1

2Ln+1
. (31)

Thus, the following holds about A’s advantage:

Advqind-qcpa-p13A,CBC (λ) � 1
2

− 1

2� �−1
2 �n+1

− 1 + C

2�n
. (32)

In particular, this advantage is not negligible with respect to λ. Note that if � is
even, the adversary can simply set the first plaintext register to |0〉. That way,
the first ciphertext register will be used as an initialization vector. A can thus
measure it and apply the same strategy as outlined above. ��

3.4 General Results and Discussion

The original idea of the IND-CPA security was intuitively to show that an adver-
sary does not even learn a bit of information by looking at the ciphertext. In
a quantum world, such a bit can represent quite abstract information, such as
the fact that the plaintext register can be disentangled with the corresponding
ciphertext register, as shown by Theorems 1 and 2. The fact that such strategies
can be applied to security notions gives rise to questioning their relevance. This

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 461

can be taken to the extreme, where commonly used practices kill the potential
security of a scheme with respect to some qIND-qCPA notions.

In this section, we prove two general insecurity results about schemes that
uses a public function to randomize their encryption (such as the XOR one for
instance) and those preserving the length of the messages they encrypt. The
former concerns the qIND-qCPA-P5 security notion, which we define below.

Definition 7 (qIND-qCPA-P5 game, adapted from [5]). Let E be a cryp-
tographic scheme: E = (KGen,Enc,Dec). We denote by M the set of messages
E operates on, by CL-Enc the classical oracle implementing Enc and by EM-Enc
the embedding oracle implementing Enc. We say that E is qIND-qCPA-P5-secure
if no polynomial time quantum adversary A has an advantage larger than 1

2 + ε
in the following experiment, with ε being negligible with respect to λ.

Experiment qIND-qCPA-P5b
E(λ,A)

k ←$KGen
(
1λ

)

π ←$S|M|

b′ ←$ ACL-Enc(k,·),EM-Enc(k,·)◦πb

()

return b′

Intuitively, the qIND-qCPA-P5 security experiment is very similar to the qIND-
qCPA-P13 one. In fact, the only difference between these two experiments is that
the adversary is allowed to perform multiple challenge queries instead of a single
one.

We show that when using a public function to randomize the encryption and
providing the adversary with the randomness used, an adversary can manage to
get states independent of the said function and randomness in the real world.
As such, they can create two identical states and perform a SWAP test on
them to measure |0〉 with probability 1. In the random world however, a fresh
permutation is applied on the input register beforehand, making the overlap
〈ϕ |ψ〉 exponentially small with high probability. The adversary can thus get an
advantage close to 1

2 by exploiting this method, which is what’s described in
Theorem 4 and its associated proof.

Theorem 4. Let Enc be a randomized encryption function from {0, 1}m×{0, 1}p

to {0, 1}n, with m being the message length and p being the randomness length.
If the randomness r is given to the adversary and if Enc can be written as:

Enc(x; r) = f(g(x; r))

with g being a public, efficient bijective function with respect to r, then there is
an adversary which has an advantage of 1

2 − 1
2m in the qIND-qCPA-P5 security

game of Enc.

462 T. Nemoz et al.

Proof. First of all, let us consider the case b = 0. On a challenge request, if A
sends |+〉, they will receive the following state:

1√
2m

∑

x

|x〉 |f(g(x; r))〉 . (33)

Since they know r, they can apply an erasing oracle implementing g(·; r) on the
first register to create the following state:

|ψ〉 =
1√
2m

∑

x

|g(x; r)〉 |f(g(x; r))〉 =
1√
2m

∑

x

|x〉 |f(x)〉 . (34)

Thus, they are able to create a state which is independent of the randomness
that is used. As such, they can perform two challenge requests using this method
to get |ψ〉 ⊗ |ψ〉. They can then perform a SWAP test using these two registers,
which will return |0〉 with probability 1.

Let us now consider the case b = 1. Using the same method, A will get the
state:

1
2m

(
∑

x0

|g (x0; r0)〉 |f (g (π0 (x0) ; r0))〉
)

⊗
(
∑

x1

|g (x1; r1)〉 |f (g (π1 (x1) ; r1))〉
)

(35)
and we show that the probability of measuring |0〉 using the same strategy is
close to 1

2 . In order to compute this probability, we need to compute the scalar
product of these two states. This scalar product is equal to:

1
2m

∑

x0,x1

〈g (x0; r0) , f (g (π0 (x0) ; r0)) |g (x1; r1) , f (g (π1 (x1) ; r1))〉 (36a)

=
1

2m

∑

x0

〈
f (g (π0 (x0) ; r0))

∣∣f
(
g
(
π1

(
g−1 (g (x0; r0) ; r1)

)
; r1

))〉
. (36b)

This scalar product is thus equal to k
2m , where k is the number of messages x0

such that the following equation is true:

f (g (π0 (x0) ; r0)) = f
(
g
(
π1

(
g−1 (g (x0; r0) ; r1)

)
; r1

))
. (37)

Since f has to be injective, the previous equation can be rewritten as:

g−1 (g (π0 (x0) ; r0) ; r1) = π1

(
g−1 (g (x0; r0) ; r1)

)
. (38)

We now consider k and π0 to be fixed and we ought to compute the number of
permutations π1 such that exactly k of these equations are satisfied.

Note that the number of permutations such that at least k of these equations

are satisfied is
(

2m

k

)
(2m − k)!

2m−k∑
i=0

(−1)i

i! . Thus, the probability that exactly k

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 463

of these equations are satisfied is 1
k!

2m−k∑
i=0

(−1)i

i! . It is thus possible to compute

the expected probability of measuring |0〉:

E [P[|0〉]] =
1
2

+
1

2m+1

2m−1∑

k=0

k2

k!

2m−k∑

i=0

(−1)i

i!
︸ ︷︷ ︸

2 for m�1

=
1
2

+
1

2m
. (39)

Thus, A’s advantage is equal to 1
2 − 1

2m . ��
We now show an insecurity result with respect to the qIND-qCPA-P8 security

notion, which we define below.

Definition 8 (qIND-qCPA-P8 game, adapted from [5]). Let E be a crypto-
graphic scheme: E = (KGen,Enc,Dec). We denote by CL-Enc the classical oracle
implementing Enc, by ER-Enc the erasing oracle implementing Enc and by M|ψ〉
the measurement in the computational basis of a given register |ψ〉. We say that
E is qIND-qCPA-P8-secure if no polynomial time quantum adversary A has an
advantage larger than 1

2 + ε in the following experiment, with ε being negligible
with respect to λ.

Experiment qIND-qCPA-P8b
E(λ,A)

k ←$KGen
(
1λ

)

(state, |ϕ0〉 , |ϕ1〉) ←$ ACL−Enc(k,·)()

M |ϕb〉
|ψ〉 ←$ER-Enc (k, |ϕb〉)
b′ ←$ ACL−Enc(k,·)(|ψ〉 , state)

return b′

We show that an adversary can get an advantage of 2−d in the qIND-qCPA-P8
security game of a cryptographic scheme, where d is the difference in bitlengths
between the ciphertexts and the plaintexts. In particular, an encryption scheme
preserving the length of its input can’t be qIND-qCPA-P8-secure. This generalizes
a result from Gagliardoni et al. [7], who showed this result for the qIND-qCPA-P1
security notion, which implies the qIND-qCPA-P8 one.

Theorem 5. Let Enc be a randomized encryption function from {0, 1}m×{0, 1}p

to {0, 1}n, with m being the message length and p being the randomness length.
There is an adversary which has an advantage of 2m

2n in the qIND-qCPA-P8 secu-
rity game of Enc.

Proof. A prepares the following states:

|+〉m =
1√
2m

∑

x

|x〉 (40a)

464 T. Nemoz et al.

and
|+〉m−1 |−〉 =

1√
2m

∑

x

(−1)x |x〉 (40b)

and performs their challenge query using them. They thus receive:

1√
2m

∑

x

(−1)b·x |Enc (x, r0)〉 (41)

They now apply an H gate on this state, which results in the following state:

1√
2m+n

∑

x

(−1)b·x ∑

y

(−1)y·Enc(x,r0) |y〉 (42a)

=
1√

2m+n

∑

x

(−1)b·x |0〉 +
1√

2m+n

∑

x

(−1)b·x ∑

y �=0

(−1)y·Enc(x,r0) |y〉 (42b)

A now measures this state. Note that the probability of measuring |0〉 is:

(
1√

2m+n

∑

x

(−1)b·x
)2

=

{
2m

2n if b = 0
0 otherwise

. (43)

The adversary can thus return b = 0 if they measure |0〉 and b = 1 otherwise. ��
Thus, these two theorems give two necessary conditions for a scheme to

be qIND-qCPA-P1 and qIND-qCPA-P2-secure, since both these notions imply
the qIND-qCPA-P5 one. Additionally, they give another necessary condition to
be qIND-qCPA-P1-secure, since this notion implies the qIND-qCPA-P8 one. The
security with respect to these two notions is important, since Carstens et al.
proved that being secure with respect to these two notions implied the security
with respect to any qIND-qCPA notion [5].

For instance, Carstens et al. showed that the following construction is both
qIND-qCPA-P1 and qIND-qCPA-P2-secure:

Enck (m; r; r′) = qPRPr (r′ ‖ m) ‖ PRPk(r).

Note that we can consider the second part of the ciphertext to be classically given
to the adversary. As such, the ciphertext is p bits longer than the plaintext, with
p being the bitlength of the randomness r′, which lower-bounds the advantage
of an adversary in the qIND-qCPA-P8 security game by 1

2p , using Theorem 5.
Furthermore, it is to be noted that the randomization of the encryption is not
done using a public function, which prevents Theorem 4 from breaking its qIND-
qCPA-P5, and as such its qIND-qCPA-P1 and qIND-qCPA-P2 security.

It is however important to consider what these results actually mean regard-
ing the security of the studied encryption scheme. For instance, one could argue
that in Theorems 1, 2 and 5, the adversary is able to win in the associated secu-
rity game without learning anything whatsoever about the encryption scheme,
which questions the relevance of the associated notions. While this adversary

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 465

did manage to win in these security games, it is not yet clear what does that
imply concerning the confidentiality of the plaintexts for instance.

In the classical setting, this problem is solved by the semantic security notion,
which is equivalent to the IND-CPA one. The intuition behind this notion is that
there is low to no difference for an algorithm to be provided with a ciphertext
or to be provided with no ciphertext at all. In the quantum setting however, a
single quantum semantic security notion has been defined, which is equivalent
to the qIND-qCPA-P1 security notion [7]. In order to fully understand what the
insecurity with respect to the qIND-qCPA-P5, qIND-qCPA-P8 or qIND-qCPA-P13
security notions means, it is necessary to define the equivalent quantum semantic
security notions. Such a task will not only provide a better understanding of these
notions and of their relations, but will also help in defining what standard should
be adopted to evaluate the quantum security of an encryption scheme.

4 Conclusion

In this paper, we have shown that the standard IND-qCPA security results proven
by Anand et al. [1] carry on to the erasing and embedding IND-qCPA notions
defined by Carstens et al. [5].

We have also shown however that CBC, CTR, OFB, CFB are qIND-qCPA-P13
insecure, no matter what the underlying block cipher is. Since all the security
notions but the IND-qCPA ones and the IND-CPA one imply the qIND-qCPA-P13
one, this fully characterizes the security of these modes.

Finally, we gave two general insecurity results on the schemes using a public
function to randomize their encryption and on those preserving the length of
their input. These two results give necessary conditions for a scheme to be secure
with respect to all qIND-qCPA notions and we used these to highlight the need
for new quantum semantic security notions.

A Adapting Anand et al.’s Work to the More General
IND-qCPA Notions

A.1 Definitions

Similarly to [1], we define last and droplast as the functions which return respec-
tively the last bit of their input and their input without their last bit.

We denote BCk the block cipher introduced by Anand et al. [1], which maps
x to:

{
Eh1(k) [droplast (x)] ‖ th2(k)(x) if last(x) = 0
Eh1(k) [droplast [x ⊕ (k ‖ 1)]] ‖ [

th2(k) [x ⊕ (k ‖ 1)] ⊕ 1
]

if last(x) = 1
(44)

with E being a PRP taking as inputs a key of length λ − 1 and a message of
length λ − 1 and returns a ciphertext of length λ − 1, t being a PRF taking as
input a key of size λ and a message of size λ and returns a single bit and with h1

466 T. Nemoz et al.

and h2 being two random oracles used to generate appropriate keys for E and t
from the master key k. Anand et al. showed that this block cipher is a PRP [1].

We also define the relevant security notions.

Definition 9 (qIND-qCPA-P10{11} game, adapted from [5]). Let E be a
cryptographic scheme: E = (KGen,Enc,Dec). We denote by M the set of mes-
sages E operates on, by CL-1ct-b-Enc the classical oracle implementing Enc in its
1-ciphertext version: it takes two inputs m0 and m1 and returns the encryption of
mb. We also denote ER{EM}-Enc the erasing {embedding} oracle implementing
Enc. We say that E is qIND-qCPA-P10{11}-secure if no polynomial time quan-
tum adversary A has an advantage larger than 1

2 +ε in the following experiment,
with ε being negligible with respect to λ.

Experiment qIND-qCPA-P10{11}b
E(λ,A)

k ←$KGen
(
1λ

)

b′ ←$ AER{EM}-Enc(k,·),CL-1ct-b-Enc(k,·)()

return b′

These notions simply mean that in the qIND-qCPA-P10 game, the adversary is
allowed to perform erasing queries on the encryption function, while it is only
permitted embedded queries in the qIND-qCPA-P11 one.

According to Fig. 1, we ought to show the insecurity of the CBC, CFB, OFB
and CTR modes in the qIND-qCPA-P11 notion or their security in the qIND-
qCPA-P10 one to fully characterize them.

A.2 Lemmas

Lemma 2 (Simon’s algorithm, adapted from [15]). Let s be a fixed n-bit
string. Being given n− 1 states that can be written as |x〉+ |x ⊕ s〉, it is possible
to recover s in polynomial time with probability at least 1

4 .

Lemma 3 (One-way to Hiding Lemma, originally written in [12]). Let
H : {0, 1}n → {0, 1}n be a random bijective function and A be an algorithm
making at most q requests to H using either a standard oracle or an erasing
one, taking as input two n-bit strings x and y and returning a single bit b.
We define an algorithm B taking inputs similar to those of A and behaving as
follows. B chooses i ∈ �1 ; q� uniformly at random and runs AH(x, y) until just
before the i-th query to H, at which point it measures the input register in the
computational basis and returns the result. If A makes less than i requests to H,
B returns ⊥ /∈ {0, 1}n.

For x being chosen uniformly at random, we define P 1
A to be the expected

probability that A returns 1 if its inputs are x and H(x). For y also being chosen
uniformly at random, we define P 2

A to be the expected probability that A returns
1 if its entries are x and y. Finally, we define PB to be the expected probability
that B returns x or H−1(y) if its inputs are x and y. Then:

∣∣P 1
A − P 2

A
∣∣ � 2q

√
PB. (45)

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 467

This lemma is a variant of the original One-way to Hiding Lemma introduced by
Unruh [16], the only differences being the function being bijective, the possibility
to use an erasing oracle and the natural redefinition of PB. As such, Unruh’s
original proof can almost be reused unmodified. Interested readers can find the
proof in the full version of this article [13].

A.3 IND-qCPA Security of CTR and OFB

In this section, we show that Anand et al.’s argument [1] to prove the qIND-qCPA-
P6 security of CTR and OFB can also be applied to prove its qIND-qCPA-P10
security.

Theorem 6 (Originally written in [12]). A system using a PRP in CTR or
OFB mode is qIND-qCPA-P10 secure.

Proof. We adapt the argument used by Anand et al.: a reduction R having
a classical access to the encryption function can perfectly simulate an erasing
oracle.

Indeed, without loss of generality, let us assume that the adversary has an
ancilla register and a query register, so that the sent state could be written as:

∑

x,y

αx,y |x, y〉 . (46)

The reduction queries for the encryption of 0 and receives s ⊕ 0 = s, since CTR
and OFB operate as stream ciphers. R can then apply X gates accordingly on
the register it received, effectively creating the state

∑

x,y

αx,y |x, y ⊕ s〉 (47)

which is exactly the state the adversary would have received, had they interacted
with an erasing oracle.

Thus, the qIND-qCPA-P10 security of CTR and OFB can be reduced to their
IND-CPA security, which they satisfy as long as they are used with a PRP. ��

A.4 Potential IND-qCPA Insecurity of CFB Used with a PRP

We now show that, similarly to Anand et al.’s results [1], there is a PRP which,
when used in CFB mode, yields an IND-qCPA insecure scheme. We use the same
block cipher as Anand et al. and performs the same attack up to one detail:
Anand et al. used the fact that the adversary is allowed to query a uniform
superposition on the last qubit so that it is not entangled with the other register.
Using an embedding oracle, we cannot use such a trick and are forced to explicitly
disentangle this last qubit with the remaining of the state.

Theorem 7 (Originally written in [12]). There is a PRP such that the sys-
tem using it as a block cipher in CFB mode is qIND-qCPA-P11 insecure.

468 T. Nemoz et al.

Proof. We use the same block cipher BCk as Anand et al. [1], as described in
Eq. 44. The adversary can prepare the state:

(
�−2⊗

i=1

|0〉
)

∑

x

|x〉 |0〉 (48)

and performs a learning request using it, thus receiving the state, omitting the
registers that are not entangled with the others:

∑

x

|x〉M

∣∣∣BC�−1
k (c0) ⊕ x

〉

C1

∣∣∣BCk

(
BC�−1

k (c0) ⊕ x
)〉

C2

. (49)

The adversary then performs an X gate on M controlled by C1, thus putting
it in the basis state

∣∣∣BC�−1
k (c0)

〉
, which disentangles it from the other registers.

Hence, the state can now be written as:
∑

x

∣∣∣BC�−1
k (c0) ⊕ x

〉

C1

∣∣∣BCk

(
BC�−1

k (c0) ⊕ x
)〉

C2

(50a)

=
∑

x

|x〉C1
|BCk (x)〉C2

(50b)

=
∑

x

|x〉C1
|droplast (BCk(x))〉C2,2

|last (BCk(x))〉C2,2
. (50c)

A then measures the C2,1 register and gets a value z, disturbing the superposi-
tion. Indeed, a message x still present in the superposition must satisfy:

z = Eh1(k) (droplast (x ⊕ [(k ‖ 1) · last(x)])) (51a)

⇐⇒ x ⊕ [(k ‖ 1) · last(x)] =

{
E−1

h1(k)
(z) ‖ 0

E−1
h1(k)

(z) ‖ 1
. (51b)

However, we know that for all Y , last(Y ⊕ [(k ‖ 1) · last(Y)]) = 0 holds. As such,
a valid message x must satisfy, denoting Z = E−1

h1(k)
(z) ‖ 0 for conciseness’ sake:

x ⊕ [(k ‖ 1) · last (x)] = Z (51c)

⇐⇒ x =

{
Z

Z ⊕ (k ‖ 1)
. (51d)

Thus, the resulting state is, omitting the now measured C2,1 register:

|Z〉C1

∣∣th2(k) (Z)
〉

C2,2
+ |Z ⊕ (k ‖ 1)〉C1

∣∣th2(k) (Z) ⊕ 1
〉

C2,2
. (52)

Finally, A can perform an X gate on C2,2 controlled by the last qubit of C1.
This results in the C2,2 register now being disentangled from C1, since it is now
in the basis state

∣∣th2(k) (Z)
〉
. Hence, the state the adversary is left with is:

|Z〉 + |Z ⊕ (k ‖ 1)〉 . (53)

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 469

The adversary is able to create such a state for each of their learning queries. In
particular, they can now make use of Lemma 2 to recover (k ‖ 1) and as such k.
They are now able to easily win in the qIND-qCPA-P11 game by performing a
classical challenge query. ��

A.5 Potential IND-qCPA Insecurity of CBC Used with a PRP

We now show a similar attack on the qIND-qCPA-P11 security of CBC used with
a PRP to the one used for CFB.

Theorem 8. There is a PRP such that the system using it as a block cipher in
CBC mode is qIND-qCPA-P11 insecure.

Proof. We use the same block cipher BCk as Anand et al. [1], as described in
Eq. 44. The adversary can prepare the state:

(
�−1⊗

i=1

|0〉
)

∑

x

|x〉 (54)

and performs a learning request using it, thus receiving the state, omitting the
registers that are not entangled with the others:

∑

x

|x〉M

∣∣∣BCk

(
BC�−1

k (c0) ⊕ x
)〉

C
. (55)

Note that A gets to know the value of BC�−1
k (c0) using the previous ciphertext

register, which is not entangled with the others. Thus, A can apply X gates on M
to XOR it with this value, thus creating the state written in Eq. 50b. From there,
they can apply the same method to recover k and win in the qIND-qCPA-P11
security game. ��

A.6 IND-qCPA Security of CBC and CFB Used with a qPRP

We show that Anand et al.’s proof [1] for showing that CBC and CFB are qIND-
qCPA-P6 secure when used with a qPRP can be adapted to show that they are
also qIND-qCPA-P10 secure. Similarly to their work, we perform the proof for
the qIND-qCPA-P10 security of CFB and point out the differences with the one
for CBC in brackets.

Theorem 9 (Originally written in [12]). A system using a qPRP in CFB
{CBC} mode is qIND-qCPA-P10 secure.

Proof. We adapt Anand et al.’s proof [1] to the qIND-qCPA-P10 security notion.
In particular, A is allowed to perform their learning queries on an erasing oracle.
We first show a very similar lemma to Anand et al.’s Lemma 6. ��

470 T. Nemoz et al.

Lemma 4 (Originally written in [12]). For a random permutation H, we
define Enci as the function that returns i + 1 blocks of randomness, including
the IV c0, and then behaves like a standard CFB {CBC} mode to compute the
other blocks using H as its underlying block cipher. We stress that for i = 0,
Enci is bijective, and as such can be implemented as an erasing oracle. Let b be
a random bit. For every adversary A performing at most q quantum encryption
queries, the following holds:

∣∣∣Pr
[
AEnc0

(
Enci (Mb)

)
= b

∣∣∣M0,M1 ← AEnc0
]

−

Pr
[
AEnc0

(
Enci+1 (Mb)

)
= b

∣∣∣M0,M1 ← AEnc0
]∣∣∣ � O

(√
�3q3

2n

)
.

(56)

Proof. For simplicity, we denote Enc = Enc0. We define:

ε(λ, n) def=
∣∣Pr

[AEnc
(
Enci (Mb)

)
= b

∣∣M0,M1 ← AEnc
] −

Pr
[AEnc

(
Enci+1 (Mb)

)
= b

∣∣M0,M1 ← AEnc
]∣∣ .

(57)

Similarly to Anand et al.’s proof [1], we also define:

Ẽnc
i
(M, c0, · · · , ci) = ĉ0 . . . ĉ� (58)

where ĉj = cj if j � i and ĉj = mj ⊕ H (ĉj−1) {H (mj ⊕ ĉj−1)} otherwise. We
thus have, for c0, . . . , ci+1 being uniformly random:

ε(λ, n) =
∣∣∣Pr

[
AEnc

(
Ẽnc

i
(Mb, c0, . . . , ci)

)
= b

∣∣M0,M1 ← AEnc
]

−

Pr
[
AEnc

(
Ẽnc

i+1
(Mb, c0, . . . , ci+1)

)
= b

∣∣M0,M1 ← AEnc
]∣∣∣ .

(59)

We can then replace ci and ci+1 by respectively x
{
x ⊕ mi+1

b

}
and y⊕mi+1

b {y},
where x and y are chosen uniformly at random, giving us the following value for
ε(λ, n):

∣∣∣Pr
[
AEnc

(
Ẽnc

i
(Mb, c0, . . . , ci−1, x)

)
= b

∣∣M0,M1 ← AEnc
]

−

Pr
[
AEnc

(
Ẽnc

i+1 (
Mb, c0, . . . , ci−1, x, y ⊕ mi+1

b

))
= b

∣∣M0,M1 ← AEnc
]∣∣∣ .
(60)

{∣∣∣Pr
[
AEnc

(
Ẽnc

i (
Mb, c0, . . . , ci−1, x ⊕ mi+1

b

))
= b

∣∣M0,M1 ← AEnc
]

−

Pr
[
AEnc

(
Ẽnc

i+1 (
Mb, c0, . . . , ci−1, x ⊕ mi+1

b , y
))

= b
∣∣M0,M1 ← AEnc

]∣∣∣
}

.

(60)

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 471

By definition of Ẽnc
i+1

, this is also equal to:
∣∣∣Pr

[
AEnc

(
Ẽnc

i+1 (
Mb, c0, . . . , ci−1, x,H(x) ⊕ mi+1

b

))
= b

∣∣M0,M1 ← AEnc
]

−

Pr
[
AEnc

(
Ẽnc

i+1 (
Mb, c0, . . . , ci−1, x, y ⊕ mi+1

b

))
= b

∣∣M0,M1 ← AEnc
]∣∣∣ .

(61)

{∣∣∣Pr
[
AEnc

(
Ẽnc

i+1
(Mb, c0, . . . , ci−1, x,H(x))

)
= b

∣∣M0,M1 ← AEnc
]

−

Pr
[
AEnc

(
Ẽnc

i+1 (
Mb, c0, . . . , ci−1, x, y ⊕ mi+1

b

))
= b

∣∣M0,M1 ← AEnc
]∣∣∣
}

.

(61)

Thus, similarly to Anand et al.’s proof, we can define the following adversary,
which can interact with a standard {erasing} oracle implementing H.

Adversary AH
O2H(x, y)

M0, M1 ← AEnc

b ← {0, 1}
c0, . . . , ci−1 ← {0, 1}n

ci = x
{

x ⊕ mi+1
b

}

ci+1 = y ⊕ mi+1
b {y}

for j in �j + 2 ; ��

cj = mj
b ⊕ H (cj−1)

{
H

(
mj

b ⊕ cj−1

)}

b′ ← AEnc (c0 · · · c�)

return b = b′

We now show that AO2H is able to answer A’s queries, since they are able to
implement an erasing oracle implementing H.

AO2H uses a standard oracle to create ck from ck−1 by simply feeding
ck−1 and mk to the standard oracle, which results in leaving the first regis-
ter unchanged and the second one in the state |mk ⊕ H (ck−1)〉, which is ck by
definition.

{AO2H uses an erasing oracle to create ck from ck−1 by applying an X gate
on mk controlled by ck−1, and then feeds this register to the erasing oracle,
resulting in the state |H (mk ⊕ ck−1)〉, which is ck by definition.}

We denote qO2H the number of queries to H that this adversary performs. For
each query that A performs to compute M0 and M1, AO2H performs � queries
to H. They will then perform � − i − 1 requests to H in order to compute the
ciphertext, and finally will answer A’s queries one more time. All in all, AO2H

performs at most (q+1)�−i−1 queries to H. Similarly to Anand et al.’s proof [1],
we respectively denote q1, q2 and q3 the number of queries performed by AO2H

before, during and after the challenge query. ε(λ, n) is then easily seen to be:

ε(λ, n) =
∣∣Pr

[AH
O2H(x,H(x)) = 1

] − Pr
[AH

O2H(x, y) = 1
]∣∣ (62)

472 T. Nemoz et al.

with x and y being chosen uniformly at random. This allows us to use the
O2H lemma. We thus consider the adversary B associated to AO2H as defined
in the lemma and denote the number of the query during which B measures
AO2H ’s input register by j and the associated probability by P j

B.

If j � q1: In this case, the challenge query hasn’t yet been performed by A. As
such, A does not know the arguments x and y using which AO2H has been
instantiated. Thus, its queries are independent from those parameters and we
have, by denoting (M = z) the event where B’s measure of AO2H ’s register
results in the string z:

P j
B =Pr

[
[B(x, y) = x] ∪ [B(x, y) = H−1(y)

] | j � q1
]

(63a)

�
2n−1∑

x′=0

Pr [M = x′ | j � q1, x
′ = x]

1
2n

+

2n−1∑

y′=0

Pr
[M = y′ ∣∣ j � q1, y

′ = H−1(y)
] 1

2n

(63b)

� 1
2n−1

. (63c)

If q1 < j � q1 + q2: In this case, the previous reasoning still applies to x, we
thus have:

P j
B � 1

2n
+

1
2n

2n−1∑

y′=0

Pr
[M = y′ ∣∣ q1 < j � q2, y

′ = H−1(y)
]
. (64)

In this case however, AO2H performs their queries with inputs depending on
y. Note that the first query done to H is y ⊕ mi+1

b . Since A does not know
y when performing their challenge query, y and mi+1

b are independent, which
means that y⊕mi+1

b is uniformly random, since y is uniformly random. Using
a similar reasoning, each other query on H can be written as mk

b ⊕ H (ck−1){
mk

b ⊕ ck−1

}
, with ck−1 being uniformly random and independent from mk

b .
Every string has thus the same probability to be measured, even being given
that y′ = H−1(y). This is thus similar to the previous case and we have:

P j
B � 1

2n−1
. (65)

If q1 + q2 < j: In this case, the query is performed after A has received the
challenge query. Note that we can use a similar reasoning to Anand et al.’s
one to argue that we can consider the queries as being classical. Indeed, as
described above, AO2H only applies permutation matrices on the state they
receive from A. We can thus move the measurement performed by B before
the first call to H to answer A’s query, which allows us to consider this query
classical.
Like the previous case, the queries performed on H can be written as mk

b ⊕
H (ck−1)

{
mk

b ⊕ ck−1

}
. For k = 1, it is obvious that this quantity is uniformly

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 473

random, since c0 is chosen independently of m1
b . We thus now only have to

show that for ck−1 being uniformly random, mk
b ⊕ H (ck−1)

{
mk

b ⊕ ck−1

}
is

also uniformly random. It is for this enough to show that A did not get to
know H (ck−1)

{
H

(
mk−1

b ⊕ cj−2

)}
. Since H is a random permutation queried

at most qO2H times, A got to know this value with probability at most qO2H

2n .
We can actually do better by arguing that this probability upper-bounds the
one that at least one of the queries to H isn’t uniformly random. In order
to upper-bound P j

B, we consider the trivial upper-bound in the case where
A learned at least one such value, which happens with probability at most
qO2H

2n , with 1. The other case is similar to the previous ones, which means
that B will return x or H−1(y) with probability 1

2n . We upper-bound the
probability of being in this case by the trivial upper-bound, that is 1. All in
all, the following holds:

P j
B � 1

2n
+

qO2H

2n
. (66)

Now, we can use the previous upper-bound for every j, which ensures that:

P j
B =

qO2H∑

j=1

P j
B

1
qO2H

� 1 + qO2H

2n
. (67)

Finally, we have, according to the O2H lemma:

ε(λ, n) � 2qO2H

√
1 + qO2H

2n
= O

(√
�3q3

2n

)
. (68)

��
We can now use this lemma to show the qIND-qCPA-P10 security of CFB {CBC}.
Since the underlying block cipher is a qPRP, we can replace it with a truly ran-
dom permutation H while only increasing A’s advantage by a negligible amount.
Using triangle inequality and the previous lemma, the following then holds:

∣∣Pr
[AEnc (Enc (Mb)) = b

∣∣M0,M1 ← AEnc
] −

Pr
[
AEnc

(
Enc� (Mb)

)
= b

∣∣M0,M1 ← AEnc
]∣∣∣

(69a)

�
�−1∑

i=0

[∣∣Pr
[AEnc (Enc (Mb)) = b

∣∣M0,M1 ← AEnc
] −

Pr
[
AEnc

(
Enc� (Mb)

)
= b

∣∣M0,M1 ← AEnc
]∣∣∣
] (69b)

� O
(√

�5q3

2n

)
. (69c)

Pr
[
AEnc

(
Enc� (Mb)

)
= b

∣∣M0,M1 ← AEnc
]

is easily seen to be equal to 1
2 , since

in this setup we returned to the adversary a uniformly random string that is inde-
pendent of their challenge query. This allows us to upper-bound A’s advantage:

474 T. Nemoz et al.

Advqind-qcpa-p13A,CFB (λ) � O
(√

�5q3

2n

)
+ negl(λ) (70)

where negl(λ) is A’s advantage in distinguishing the underlying block cipher
from a truly random permutation. � and n being polynomial in λ, this ensures
that A’s advantage is negligible with respect to λ. ��

References

1. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.)
PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29360-8 4

2. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

3. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019). https://doi.org/
10.13154/tosc.v2019.i2.55-93

4. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87(16) (2001). https://doi.org/10.1103/physrevlett.87.167902

5. Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: Relationships between quan-
tum IND-CPA notions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol.
13042, pp. 240–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90459-3 9

6. Chevalier, C., Ebrahimi, E., Vu, Q.H.: On security notions for encryption in a quan-
tum world. Cryptology ePrint Archive, Report 2020/237 (2020). https://eprint.
iacr.org/2020/237

7. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3 3

8. Gagliardoni, T., Krämer, J., Struck, P.: Quantum indistinguishability for public
key encryption. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS,
vol. 12841, pp. 463–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81293-5 24

9. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

10. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

11. Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum
superposition access to encryption and decryption oracles (2016)

12. Nemoz, T.: Cryptanalyse quantique d’algorithmes symétriques. Master’s thesis,
EURECOM (2021)

https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.1103/physrevlett.87.167902
https://doi.org/10.1007/978-3-030-90459-3_9
https://doi.org/10.1007/978-3-030-90459-3_9
https://eprint.iacr.org/2020/237
https://eprint.iacr.org/2020/237
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-030-81293-5_24
https://doi.org/10.1007/978-3-030-81293-5_24
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-662-53008-5_8

qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation 475

13. Nemoz, T., Amblard, Z., Dupin, A.: Characterizing the qIND-qCPA (in)security
of the CBC, CFB, OFB and CTR modes of operation. Cryptology ePrint Archive,
Report 2022/236 (2022). https://eprint.iacr.org/2022/236

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/s0097539795293172

15. Simon, D.R.: On the power of quantum computation. In: 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, USA, pp. 116–123. IEEE
Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365701

16. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

17. Wooding, M.: New proofs for old modes. Cryptology ePrint Archive, Report
2008/121 (2008). https://eprint.iacr.org/2008/121

18. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015). https://doi.org/10.26421/QIC15.7-8-2

19. Zhandry, M.: A note on quantum-secure PRPs. Cryptology ePrint Archive, Report
2016/1076 (2016). https://eprint.iacr.org/2016/1076

https://eprint.iacr.org/2022/236
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1007/978-3-642-55220-5_8
https://eprint.iacr.org/2008/121
https://doi.org/10.26421/QIC15.7-8-2
https://eprint.iacr.org/2016/1076

Breaking the Quadratic Barrier:
Quantum Cryptanalysis of Milenage,
Telecommunications’ Cryptographic

Backbone

Vincent Quentin Ulitzsch1(B) and Jean-Pierre Seifert1,2

1 Technische Universität Berlin – SECT, Berlin, Germany
vincent@sect.tu-berlin.de, jean-pierre.seifert@tu-berlin.de

2 Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

Abstract. The potential advent of large-scale quantum computers in
the near future poses a threat to contemporary cryptography. One ubiq-
uitous usage of cryptography is currently present in the vibrant field
of cellular networks. The cryptography of cellular networks is centered
around seven secret-key algorithms f1, . . . , f5, f

∗
1 , f

∗
5 , aggregated into an

authentication and key agreement algorithm set. Still, to the best of
our knowledge, these secret key algorithms have not yet been subject to
quantum cryptanalysis. Instead, many quantum security considerations
for telecommunication networks argue that the threat posed by quan-
tum computers is restricted to public-key cryptography. However, various
recent works have presented quantum attacks on secret key cryptography
that exploit quantum period finding to achieve more than a quadratic
speedup compared to the best known classical attacks. Motivated by this
quantum threat to symmetric cryptography, this paper presents a quan-
tum cryptanalysis for the Milenage algorithm set, the prevalent instanti-
ation of the seven secret-key f1, . . . , f5, f

∗
1 , f

∗
5 algorithms that underpin

cellular security. Building upon recent quantum cryptanalytic results, we
show attacks that go beyond a quadratic speedup. Concretely, we provide
quantum attack scenarios for all Milenage algorithms, including exponen-
tial speedups distinguishable by different quantum attack models. Our
results do not constitute a quantum break of the Milenage algorithms,
but they do show that Milenage suffers from structural weaknesses mak-
ing it susceptible to quantum attacks.

Keywords: Quantum cryptanalysis · Simon’s Algorithm · Quantum
Security · Milenage · Cellular network · AKA protocol · Post-quantum
cryptography

1 Introduction

Telecommunication operators are evidently expecting the advent of general pur-
pose quantum computers, as indicated by their funding of various research
projects investigating the new technologies’ potential [31]. As part of these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 476–504, 2023.
https://doi.org/10.1007/978-3-031-40003-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_18

Breaking the Quadratic Barrier 477

efforts, telecommunication standardization bodies also pay increasing attention
to post-quantum security in telecommunication networks. As a result, the sixth
generation of telecommunication networks (6G) is intended to be post-quantum
secure, and proposals for extensions of the fifth generation (5G) already integrate
quantum security considerations, cf. [13,27,38]. These security considerations are
often focused on the threat quantum computers pose to asymmetric cryptogra-
phy. To mitigate this threat, telecommunication protocols can replace the vul-
nerable cryptographic primitives with post-quantum secure cryptography, which
does not rely on the hardness of factoring or the discrete logarithm problem. The
National Institute of Standards and Technology (NIST), a standardization body,
leads an ongoing process to evaluate and standardize asymmetric post-quantum
primitives [28]. This process is now in its final stages, with four candidate
algorithms already selected for standardization and an ongoing fourth round to
analyze additional alternative constructions [29]. Multiple works have already
demonstrated how the now standardized post-quantum secure public key crypto-
graphic schemes can replace the (quantum) vulnerable public-key cryptography
in present telecommunication protocols [11,36].

In contrast to public key cryptography, quantum security considerations for
cellular networks often do not consider the aspect of quantum attacks against
symmetric cryptography. Instead, they assume symmetric cryptography to be
unaffected by quantum cryptananalysis, except for a quadratic speed-up of
exhaustive search due to Grover’s algorithm. Hence, so the argument goes,
increasing the key size of symmetric cryptography used in 6G to 256-bit would
provide sufficient protection against quantum adversaries [27,38].

In light of recent quantum cryptanalytic results however, this common belief
can no longer be assumed to be trivially true. Starting with the seminal works
of Kuwakado and Morii [23,24], various works have shown that quantum period
finding – through Simon’s algorithm [35] – can speed up attacks on symmetric-
key cryptography schemes beyond best known classical bounds [9,10,12,21,33].
The attacks demonstrate that, depending on the assumed attacker capabilities,
quantum computers can be used to either efficiently break certain symmetric-
key cryptography schemes or reduce the time needed to attack them. The dis-
tinguishing feature in the attacker capabilities for quantum cryptanalysis is the
kind of oracle access that is provided to the attacker, commonly referred to
as Q2 and Q1. In the Q2 setting, also called the quantum known plaintext
attack, the attacker can make superposition queries to an encryption oracle.
This model enables quantum attackers to significantly reduce the security of
classically secure symmetric ciphers. For example, in the Q2 setting, Simon’s
algorithm enables attackers to execute forgery attacks against an otherwise clas-
sically secure CBC-MACs in polynomial time [21]. However, due to its pow-
erful attacker model, the Q2 model remains of mainly theoretical interest. In
the Q1 model the attacker has access to a general purpose quantum computer,
but can only make classical queries to an encryption oracle. Attacks in this
model can be executed as soon as general-purpose quantum computers come
into existence. In the Q1 model, symmetric cryptography can be attacked as

478 V. Q. Ulitzsch and J.-P. Seifert

well. Bonnetain et al. [10] demonstrated Q1 attacks on symmetric cryptogra-
phy that improve upon the best-known classical bounds. Their attacks extend
quantum-cryptanalysis of symmetric ciphers that was rooted in the Q2 model,
i.e., relied on superposition queries to an encryption oracle. The cornerstone
of these attacks is the offline Simon’s algorithm [9], which combines quantum
search and quantum period finding to transfer the Q2 attacks to the Q1 model.

These results call for a careful re-evaluation of the truism that has guided
quantum security considerations for 6G so far. Doubling the key-size might
not be sufficient to ensure long-term security of telecommunication protocols.
Instead, symmetric-key cryptographic schemes used in telecommunications pro-
tocols must be evaluated towards their resilience against quantum enabled adver-
saries as well.

1.1 Contributions

We conduct such a quantum cryptanalysis for the Milenage algorithm set, a
set of symmetric-key cryptographic algorithms ubiquitously used in the cellular
world. The Milenage algorithm set’s main usage is the Authentication and Key
Agreement (AKA) protocol, used for authentication and session establishment
in cellular networks. All Milenage algorithms make use of the network authenti-
cation key K, a secret key shared between the subscriber (stored in his network
provider’s SIM card) and the network. The algorithm set consists of the functions
f1, . . . , f5, , f1∗, f5∗, and makes use of the AES block cipher.

In summary, when a user wants to authenticate to the network, the operator
generates a random challenge and calculates the output of one of the Milenage
algorithms, keyed with the network authentication key K. If the user, upon
receiving the challenge, replies with the correct response, thus demonstrating
knowledge of K, the authentication request is accepted. Other functions of the
Milenage algorithm set are used to calculate a Message Authentication Code
(MAC) or derive keys for later usage. Breaking the Milenage algorithm set would
therefore allow attackers to perform account takeover attacks. Thus, the security
of Milenage algorithms is crucial for the security of pervasive cellular networks in
general. As such, the algorithms underpin the security of the worldwide cellular
networks and provide a great starting point for the required quantum cryptanal-
ysis of symmetric ciphers.

In conducting the quantum cryptanalysis, we take a gentle approach that
can be followed by researchers who are not familiar with the internals of quan-
tum computing. First, in Sect. 3, we distill a quantum toolbox from the various
works on quantum cryptanalysis and quantum algorithms, i.e., a minimum set of
quantum algorithms and results about their complexity that have proven to be
useful in quantum cryptanalysis. For each algorithm in the toolbox, we explain
the requirements that an attacker needs to meet in order to use the respective
algorithm. For example, whether a quantum algorithm requires superposition
access or can also be executed with only classical oracle access to the encryp-
tion under attack. Once equipped with this quantum toolbox, no more detailed
understanding of quantum computing is required. The attacker then only needs

Breaking the Quadratic Barrier 479

to construct a function that meets the respective requirements, after which the
algorithms can be applied as a black-box.

Leveraging this minimum quantum toolbox, we develop multiple attacks on
the Milenage algorithm set inspired by various prior works. The quantum crypt-
analysis of Milenage is the main contribution of this paper and can be found in
Sect. 4. We analyze the Milenage set from several dimensions. In the two differ-
ent query models Q1 and Q2, considering different attacker goals such as full key
recovery or existential forgery and considering more powerful attacker models
such as the related key model. Our results show that the quantum toolbox can
be utilized to provide speedups over classical attacks in all dimensions, and even
leads to polynomial time attacks in the Q2 model. As a helpful overview, Table 1
summarizes the breadth of our results. The complexity analysis is additionally
parameterized by three circuit complexities. First, TQAES refers to the depth of a
quantum circuit computing an AES encryption, as presented for example in Ref.
[19]. Second, TAES refers to runtime-complexity of a classical circuit computing an
AES encryption. Finally, TO refers to the time required for an oracle query. We
find that a Q2 attacker can execute existential forgery attacks against Milenage
in polynomial time. It is an explicit design goal of Milenage to resist existential
forgery attacks of classical adversaries (the design document does not consider
a quantum adversary model) [4]. Less powerful adversaries are still able to sig-
nificantly speed up their attacks, albeit not to an extent that fully breaks the
algorithm set.

In summary, the attacks show that the Milenage algorithms exhibit a struc-
ture that can be exploited by quantum computers to obtain attacks that are
more efficient than Grover’s search. In the Q2 model, Milenage must be consid-
ered broken, as it is vulnerable to a polynomial-time existential forgery attack.
We emphasize that the Q2 attacks remain of mainly theoretical interest for
now, and do not imply that Milenage is broken once general purpose quantum
computers come into existence. Notably however, the Q2 attacker model encom-
passes all potential Q1 attacks. An absence of Q2 attacks would have implied an
absence of Q1 attacks as well. Given its vulnerability in the Q2 model, further Q1

attacks against Milenage cannot be ruled out. We encourage further quantum
cryptanalysis and security proofs for Milenage, and its alternative TUAK, based
on the Keccack-f -permutation [2], to lay the ground for post-quantum secure
cellular networks.

2 Background

2.1 Notation

Throughout this paper, we will make use of a block cipher encryption function
E, which takes as input an m-bit message, an n-bit key and returns an m-bit
output. We denote by EK [m] the encryption of bit-string m under block cipher
E with secret K. Similarly, if a function f takes as input a secret key k and
a message m, we denote by fk(m) the invocation of that function with k and

480 V. Q. Ulitzsch and J.-P. Seifert

T
a
b
le

1
.
S
u
m

m
a
ry

o
f
th

e
re

su
lt

s.
|K

|i
s

th
e

le
n
g
th

o
f
th

e
m

es
sa

g
e

a
u
th

en
ti

ca
ti

o
n

k
ey

,
|O

P
C
|i

s
th

e
le

n
g
th

o
f
th

e
O
P
c

b
it

st
ri

n
g

a
n
d
|M

|
is

th
e

b
lo

ck
le

n
g
th

o
f
th

e
u
n
d
er

ly
in

g
b
lo

ck
ci

p
h
er

.
In

th
e

ca
se

o
f
M

il
en

a
g
e,

|K
|=

|O
P
C
|=

|M
|=

1
2
8
.
F
o
r

a
ll

co
m

p
le

x
it
y

es
ti

m
a
te

s,
th

e
b
ig

-O
n
o
ta

ti
o
n

h
id

es
o
n
ly

a
v
er

y
sm

a
ll

m
u
lt

ip
li
ca

ti
v
e

co
n
st

a
n
t.

A
tt

a
ck

M
o
d
el

C
la

ss
ic

a
l
Q

u
er

ie
s

S
u
p
er

p
o
si

ti
o
n

Q
u
er

ie
s

C
ir

cu
it

D
ep

th
C

o
m

p
le

x
it
y

B
es

t
K

n
o
w

n
C

la
ss

ic
a
l
A

tt
a
ck

S
ec

G
ro

v
er

’s
a
tt

a
ck

fo
r

k
ey

re
co

v
er

y,
O

P
k
n
o
w

n

Q
1

O
(1

)
0

O
(2

|K
|/

2
·T

Q
A
E
S

)
O

(2
|K

| ·
T
A
E
S

)
S
ec

t.
4
.1

G
ro

v
er

’s
a
tt

a
ck

fo
r

k
ey

re
co

v
er

y,
O

P
u
n
k
n
o
w

n

Q
1

O
(1

)
0

O
(2

(|K
|+

|O
P
c
|)/

2
·T

Q
A
E
S

)
O

(2
|K

|+
|O

P
c
| ·

T
A
E
S

)
S
ec

t.
4
.1

K
ey

R
ec

o
v
er

y
f
2
,

O
P

u
n
k
n
o
w

n
Q

2
0

O
(|M

|)
Õ

((|M
|·

T
Q
A
E
S
)
·2

|K
|/

2
)

O

(
2

M 2
·T

O
+

2
|K

|+
|M

|
2

·T
A
E
S

)
S
ec

t.
4
.2

O
ffl

in
e

K
ey

R
ec

o
v
er

y
f
2
,
O

P
u
n
k
n
o
w

n
Q

1
O

(2
|M

|)
0

Õ

(
2

|M
| ·

T
O

+
(|M

|·
T
Q
A
E
S
)
·2

|K
|

2

)
O

(
2

M 2
·T

O
+

2
|K

|+
|M

|
2

·T
A
E
S

)
S
ec

t.
4
.2

E
x
is

te
n
ti

a
l
F
o
rg

er
y

f
1

Q
2

O
(1

)
O

(|M
|)

O
(|M

|·
T
O

)
O

(2
|M

|/
2
·T

O

)
S
ec

t.
4
.3

R
el

a
te

d
K

ey
A

tt
a
ck

f
1
,.
..
,f

5

Q
2

0
O

(|K
|+

|O
P
c
|)

Õ
((
|K

|+
|O

P
c
|)
·T

O
)

O
(S

·T
O

+
S
·T

A
E
S
)

w
h
er

e

S
=

2
|K

|+
|O

P
c

|
2

S
ec

t.
4
.4

O
ffl

in
e

R
el

a
te

d
K

ey

A
tt

a
ck

f
1
,.
..
,f

5

Q
1

O

(
2

|K
|+

|O
P
c

|
3

)
0

Õ
(S

·T
O

+
S
·T

Q
A
E
S
)

w
h
er

e

S
=

2
|K

|+
O

P
c

|
3

O
(S

·T
O

+
S
·T

A
E
S
)

w
h
er

e

S
=

2
|K

|+
|O

P
c

|
2

S
ec

t.
4
.4

Breaking the Quadratic Barrier 481

message m. For a bit-string x ∈ {0, 1}∗, we denote by |x| the length of the
bit-string. We write 0n to denote the bit-string of n zeros.

Additionally, we define the function rotr(x) and rot−1
r (x) which are the

results of cyclically rotating the 128-bit value x by r bit positions towards the
most significant or least significant bit, respectively. If x = x[0]||x[1]|| . . . x[127],
and y = rotr(x), then y = x[r]||x[r +1]|| . . . x[127]||x[0]||x[1]||x[r − 1]. Of course,
it holds that rotr(rot−1

r (x)) = x and rot−1
r (rotr(x)) = x.

To state complexities, we use the big-O notation, where we use O(f(n)) to
hide constant factors and Õ (f(n)) to hide polynomial factors.

2.2 The AKA Protocol and Milenage Algorithms

Cellular protocols base their security on seven secret-key cryptographic func-
tions, referred to as a authentication and key generation algorithm set. Upon
session establishment between the home network and the subscriber, these algo-
rithms are used to authenticate the subscriber to the network and derive keys
that are in turn used protect subsequent communication. To this end, telecom-
munication operators assign each subscriber a secret key, the network authen-
tication key, denoted as K. The operator provisions each subscriber’s SIM card
with their individual network authentication key. To authenticate itself to the
network, the subscriber then takes part in a challenge-response protocol, the
so-called AKA protocol. The use of the AKA protocol is mandated through
standardization bodies—all cellular networks follow this protocol.

The AKA protocol is built around a set of cryptographic functions f1, . . . , f5
and f1∗, f5∗, keyed with the network authentication key K. In summary, the pro-
tocol follows a challenge-response structure. The subscriber sends the telecom-
munication operator an authentication request, containing the subscriber’s iden-
tity. The operator then generates a random challenge RAND and uses one of
the provided cryptographic functions to calculate a corresponding response [5].
The operator then sends the challenge RAND to the subscriber’s device, which
derives the response using the same cryptographic function and sends the derived
response to the network. If the derived response and the expected response
match, the subscriber has successfully authenticated themselves to the oper-
ator. In addition, the cryptographic functions f1, . . . , f5∗ serve to a derive a
MAC and additional key material used for encryption and integrity protection
of subsequent messages as well as transferred user data. Figure 1 describes the
authentication towards the network as implemented in the 4th generation of
cellular networks (LTE), using the AKA protocol and the functions f1, . . . , f5.

The exact details of the AKA protocol are not required to understand the
present analysis—however, it is important to note that the results of the func-
tions f1 and f2 are sent in cleartext over the network upon authentication. The
AKA protocol itself has been subject to formal security analysis [5,15], proving
AKA’s security under the assumption that the function f1, . . . , f5 and f1∗, f5∗

are pseudorandom. The analysis resulted in improvement suggestions to harden
the protocol’s privacy guarantees. A more detailed protocol description is given
in Appendix B.

482 V. Q. Ulitzsch and J.-P. Seifert

Fig. 1. The Authentication and Key Agreement (AKA) protocol as used in Long-Term
Evolution (LTE). The user’s device, referred to as Mobile Station (MS), communicates
with the Base Station (BS) to authenticate towards the network. The BS forwards
the request to the Mobility Management Entity (MME), which in turn forwards it to
the Home Network (HN). The home network uses the function f1, . . . , f5 to calculate
session information and secret key material and forwards the necessary information
back to the Mobility Management Entity (MME).

Breaking the Quadratic Barrier 483

Note that if an attacker obtains a subscriber’s secret key K, the attacker can
impersonate the respective subscriber towards the home network. This amounts
to a complete account takeover. In addition, an attacker can derive all keys used
for encryption and integrity protection and thus eavesdrop on all communication
between the subscriber and the home network. Therefore, the security of cellular
networks is completely contingent on the security of the cryptographic functions
used in the AKA protocol.

The most commonly used set of functions for the AKA protocol is the Mile-
nage authentication and key generation algorithm set. The Milenage algorithm
set consists of five basis functions, h1, . . . , h5,1 whose outputs are mapped to
the seven required outputs for the functions f1, . . . , f5∗. Figure 2 describes the
Milenage algorithm set, standardized through the 3rd Generation Partnership
Project (3GPP) [3]. All five functions take as input the random 128-bit challenge
RAND, generated by the operator upon registration of the subscriber’s device
towards the network. The second to fifth basis function, h2, . . . , h5, take this
random challenge as an input and output:

hiK,OPc
(RAND) = EK [ci ⊕ rotri (OPc ⊕ EK [RAND ⊕ OPc])] ⊕ OPc,

where the function EK , also referred to as the kernel, is a block cipher with
block length of 128-bit.

The first basis function h1 takes as an additional input a 128 bit-string IN1,
that is composed of the concatenation of a sequence number SQN and a fixed
authentication management field AMF . The Sequence Number (SQN) acts as
sequential counter to prevent replay attacks. The Authentication Management
Field (AMF) specifies the type of authentication to be used and is usually fixed
[1]. The function h1 is then defined as:

h1K,OPc
(RAND, IN1) = EK [TEMP ⊕ rotr1(IN1 ⊕ OPc) ⊕ c1] ⊕ OPc,

where TEMP = EK [RAND ⊕ OPC].
The output of the basis functions is mapped to the seven required outputs

f1, . . . , f5∗ as follows. The first 64 bits of the h1 output are mapped to represent
the output of f1, the last 64 bits of h1’s output are used as the output of f1∗.
The output of h2 is split in the same vein, to obtain the outputs for f5 and
f2. The basis function h3, h4, h5 are used as-is for the output of f3, f4, f5∗. To
highlight this almost one-to-one relation between the basis functions and their
respective AKA counterparts and to support an intuitive understanding of the
implications of our attacks, we will simply refer to the basis function h1, . . . , h5
as the functions f1, . . . , f5 for the remainder of this paper. This is also done
to emphasize that vulnerabilities in the basis functions translate into immediate
insecurities of their respective AKA counterparts.

All functions in the Milenage algorithm use AES as the underlying block
cipher EK . The cipher is keyed with the network authentication key K, a 128-bit-
string shared between the operator and the subscriber. The bit-strings c1, . . . , c5

1 The standard denotes the basis functions as OUT1, . . . ,OUT5.

484 V. Q. Ulitzsch and J.-P. Seifert

Fig. 2. The Milenage algorithm set as standardized by 3GPP [3]. The outputs of the five
Milenage basis functions are mapped almost one-to-one to the seven required outputs.

and r1, . . . , r5 are public constants which are defined in the standard. Notably,
r2 = 0 and c1 = 0. As additional key material, the OPc bit-string is derived from
a (potentially secret) constant OP , defined by the operator. The operator pro-
vides the additional 128-bit string OP , which was intended to provide separation
between different operators [3]. The per-subscriber secret OPc is then derived
as OPc = EK [OP] ⊕ OP . Note that the OP -bit string is never used directly in
the Milenage algorithm set, only the derived value OPc. As such, it suffices to
store the OPc bit-string on a subscriber’s SIM card, without ever revealing the
operator constant OP .

There are no requirements on how the operators generate and manage the
OP -bit string. It is conceivable that each operator uses the same OP bit-string
for all handed-out SIM cards, but the operator could also rotate the OP for every
batch of produced SIM cards. Although the Milenage algorithm set is designed
to be secure even if the OP is public, in practice, operators do not reveal the

Breaking the Quadratic Barrier 485

value of OP . Instead of the OP , they store the OPc bit-string on the SIM card.
In the present analysis, we will show attacks for both the case when the OP
bit-string is known and when it is secret.

2.3 Classical Cryptanalysis of Milenage algorithms

The Milenage algorithm set was designed to fulfill the following security require-
ments, as specified in [4]:

1. Without knowledge of secret keys, the functions f1, f1*, f2, f3, f4, f5
and f5* should be practically indistinguishable from independent ran-
dom functions of their inputs (RAND——SQN——AMF) and RAND.
Examples: Knowledge of the values of one function on a fairly large
number of given inputs should not enable its values to be predicted on
other inputs [...]

2. It should be infeasible to determine any part of the secret key K, or the
operator variant configuration field, OP, by manipulation of the inputs
and examination of the outputs to the algorithm.

3. Events tending to violate criteria 1 and 2 should be regarded as insignif-
icant if they occur with probability approximately 2−128 or less (or
require approximately 2128 operations).

4. Events tending to violate criteria 1 and 2 should be examined if they
occur with probability approximately 2−64 (or require approximately
264 operations) to ensure that they do not have serious consequences.
Serious consequences would include recovery of a secret key, or ability
to emulate the algorithm on a large number of future inputs.

So far, no attack violating this criteria has been identified. Simplified versions
(not using the constant OPc) of the Milenage algorithm set have been proven
to be pseudorandom under the assumption that the kernel function EK is a
random permutation [4,16]. The proof gives rise to a lower bound of 264 queries
for attacks on the Milenage algorithms. This lower bound is tight, i.e., 264 queries
suffice to identify collisions between the functions f1 and f2 or in the function
f1 itself. Once identified, a collision allows an attacker to perform existential
forgery [4]. For a full key recovery however, no attacks that perform better than
exhaustive search are known. The brute-force attacks amount to a complexity
of O

(
2|K|) if the OP bit-string is known, and O

(
2|K|+|OPc|) if OP is unknown.

2.4 Quantum Computation

For a thorough introduction to quantum computing, we refer to the accessi-
ble exposition of [32]. Briefly, quantum computation can be described as fol-
lows. Quantum computation is usually modelled in the quantum circuit model.
A quantum circuit consists of a sequence of quantum gates, acting on logical
qubits. A qubit is encoded in the state of a system, which is described by a
vector in a 2-dimensional Hilbert space. This vector describes a complex lin-
ear superposition of two computational basis state vectors |0〉 and |1〉, i.e.,

486 V. Q. Ulitzsch and J.-P. Seifert

α0 |0〉 + α1 |1〉, where α0, α1 are called the complex amplitudes of the basis
states and adhere to the normalization constraint |α0|2 + |α1|2 = 1. An n-qubit
state |ψ〉 is described by the complex linear superposition over all 2n compu-
tational basis states |ψ〉 =

∑
x∈{0,1}n αx |x1, . . . , xn〉 , where again it must hold

that
∑

x |αx|2 = 1. Measuring a state |ψ〉 will output the label x with probability
|αx|2 and leave the system in state |x〉. Quantum gates that act on n qubits are
unitary operators U that transform a quantum state |ψ〉 into a quantum state
U |ψ〉.

Quantum Oracles and Quantum Complexity. When acting on a function
f : {0, 1}n → {0, 1}n, quantum computation requires some kind of oracle access
to this function. The oracle access is usually given through a unitary operator
Of , that performs the following calculation Of : |x〉⊗|y〉 → |x〉 |y ⊕ f(x)〉, where
x, y ∈ {0, 1}n and |x〉 , |y〉 are the corresponding quantum states.

There are multiple ways to measure the complexity of quantum algorithms.
We will focus here on two fundamental dimensions. The query complexity and
the time complexity. Query complexity measures the number of accesses to the
oracle Of , while time complexity is measured by the depth of the respective
quantum circuit consisting of elementary gate operators from a universal quan-
tum gate set, cf. [32]. We will use the terms time complexity and depth of a
quantum circuit interchangeably.

We note here that this model abstracts away constraints that arise when
actually implementing physical systems for quantum computation. For example,
instead of measuring just the depth of the circuit, it has been proposed to include
also the number of qubits (the width of the circuit) [20], to account for the fact
that ensuring coherence of idle qubits might be costly. Unless otherwise men-
tioned, our work will focus on the time and query complexity of the described
attacks. Accounting for other metrics would require to model the designed cir-
cuits in more detail, which we leave as future work.

2.5 Attacker Model

Almost all attacks described in this paper assume access to an encryption oracle
which can be queried with arbitrary plaintexts. This follows the security model of
a chosen plaintext attack. In quantum cryptanalysis, the attacker’s capabilities
are additionally determined by the kind of queries that are allowed to this oracle,
namely whether only classical or also superposition queries are allowed.

In more detail, let F = {fk : {0, 1}n → {0, 1}n}k∈{0,1}n be a family of
functions indexed by k and assume that for any given k, x ∈ {0, 1}n, there
exists a polynomial-time algorithm to compute fk(x). Intuitively, each function
fk defines encryption under key k. For a given function fk sampled from F , the
attacker is given oracle access to fk, denoted by Ofk . Following other quantum
cryptanalytic works [22,39], we will consider two quantum adversary models,
distinguished by the capabilities of their oracle access.

Breaking the Quadratic Barrier 487

In the standard security model, or Q1 model, the attacker can only make
classical queries to the function fk. In this case, the oracle Ofk is a classical
function Ofk : {0, 1}n �→ {0, 1}n.

In the quantum security model, or Q2 model, the attacker is allowed to query
the oracle in superposition. That is, the attacker can provide as input to the
oracle Ofk a superposition

∑
x,y λx,y |x〉 |y〉 and the oracle will return the output∑

x,y λx,y |x〉 |y ⊕ fk(x)〉. Note that quantum security implies standard security.
We stress that even in the Q1 model, the attacker can still guess the key

k and then construct (and access) a quantum circuit that, given any k, x ∈
{0, 1}n, efficiently evaluates fk(x). This quantum circuit can receive as input
any superposition of k and x. We will make use of this offline computation later
on.

Note that all Milenage functions f1, . . . , f5 can be viewed as a function family
F , where generating a random secret key k amounts to sampling a function from
the family F . The attacker is given access to an oracle Ofk , which evaluates a
function fk with a fixed key k, where k is not known by the attacker.

3 The Quantum Cryptanalysis Toolbox

In recent years, symmetric cryptography has received increasing scrutiny with
respect to resilience against quantum attacks. This quantum cryptanalysis of
symmetric cryptography has mostly uncovered new attacks in the Q2 model,
but also yielded more than quadratic speedups (over classical attacks) in the Q1

model [9,10,24]. Most of the cryptanalytic works present quantum algorithms
that equip quantum attackers with powerful attack primitives that can be used
as a black box. We follow this approach and present in this section a quantum
toolbox. I.e., a set of algorithms that facilitate cryptanalytic attacks on symmetric
key cryptography. To keep our work accessible to researchers outside of the
quantum community, we will hereafter use these algorithms only as a black box.

The quantum cryptanalysis presented in this paper is based on three algo-
rithms. Grover’s algorithm to speed up exhaustive search, Simon’s algorithm to
identify a hidden period, and the offline version of Simon’s algorithm, which
combines the two former algorithms to speed up attacks in the Q1 model. In
this section, we will briefly describe the intuition of the relevant algorithms, the
problems they solve, the requirements for their usage and their respective com-
plexity. For the remainder of this work, we will then use these algorithms as a
black box and focus our analysis on classical constructions that will then allow
us to employ quantum algorithms in a simple fashion.

3.1 Grover’s Algorithm: Fast Unstructured Search

In his seminal work, Grover [17] described an algorithm that achieves a quadratic
speedup when performing an unstructured, brute-force search. We state the main
result as relevant for this paper as follows, where we ignore small constants in
Grover’s time and query complexity and also the extremely high success proba-
bility for better readability.

488 V. Q. Ulitzsch and J.-P. Seifert

Theorem 1 (Grover’s Algorithm). Consider a function f : {0, 1}n →
{0, 1}, such that 2t inputs map to 1 and the rest maps to 0. Given quantum
oracle access to the function f , Grover’s algorithm finds a preimage of 1, i.e., a
k ∈ {0, 1}n satisfying f(k) = 1, in O

(√
2n/2t

)
time and oracle queries. If there

is exactly one preimage of 1, i.e. only one k such that f(k) = 1, then Grover’s
algorithm finds this k in O

(√
2n

)
time.

Intuitively, Grover’s algorithm “cooks” a solution k0, such that f(k0) = 1,
by constructing an equal superposition over all inputs in the domain of f and
repeating a sub-procedure that increases the amplitude of k0 while decreasing all
other amplitudes. For a detailed explanation, we refer the reader to the standard
literature [17,32]. Note that Grover’s algorithm requires quantum oracle access
to f .

In quantum cryptanalysis, Grover’s algorithm is typically used to speed up
the exhaustive search (bruteforce) of a key. To this end, an attacker can construct
a quantum circuit for a given cipher, e.g., AES. This circuit will take as input
a message and a key guess k∗ and will return the encryption of the message
under the key k∗. To then bruteforce the key for a fixed but unknown key k, the
attacker first captures enough plaintext-ciphertext pairs so that the secret key
is uniquely determined by those pairs. An attacker can then easily construct a
quantum circuit for a function f that, on input of a key guess k∗ returns 1 if k∗

is equal to the correct k and zero otherwise. The construction works as follows.
The quantum circuit encrypts the collected plaintexts under the key guess k∗

and compares the resulting ciphertexts with the captured ciphertexts. If they
match, f returns 1, otherwise f returns 0. Thus, an attacker can construct a
quantum cirucit for f and then leverage Grover’s algorithm to find the key k
with 2|k|/2 queries to the quantum circuit implementing f .

The effectiveness of Grover attacks are limited by two factors. First, the
search cannot be parallelized [6,14]. Second, by the complexity of the circuit
actually implementing the oracle f . For example, Jang et al. [19] present a circuit
for AES-128 encryption which results in a circuit depth of roughly 280 gates in
an end-to-end key recovery attack using Grover’s search. To the best of our
knowledge, this is the most efficient quantum circuit for AES presented so far.

3.2 Simon’s Algorithm: Quantum Period Finding

Simon’s algorithm can identify hidden period in a function f in polynomial
time, given quantum oracle access to this function. This powerful primitive has
been successfully used in various quantum attacks on symmetric cryptography
[9,21,25] and to show quantum separation, i.e., the existence of functions that
are learnable in the quantum setting, but not in the classical setting (under
standard cryptographic assumptions) [34]. Formally, Simon’s algorithm solves
the following problem:

Breaking the Quadratic Barrier 489

Definition 1 (Simon’s problem). Let f : {0, 1}n → {0, 1}n be a function that
is either injective, or there exists a single period s 	= 0n such that

∀x 	= x′ : f(x) = f(x′) ⇐⇒ x′ = x ⊕ s;

determine s.

Given quantum oracle access to f through an oracle Of , this problem can
be solved with O(n) quantum queries to f and O(n3) time using Simon’s algo-
rithm [35]. In summary, Simon’s algorithm relies on a quantum subroutine which
queries the function f with a superposition query and returns a random value
y, s.t. y ⊕ s = 0 or a random y if f is injective. After c ·n invocations of Simon’s
quantum subroutine (for a small constant c ≥ 1), we obtain n linear independent
vectors y1, . . . , yn, such that yi ⊕ s = 0. This gives rise to an equation system
and allows us to recover s via Gaussian elimination.

Note that for cryptanalytic purposes, where f represents some sort of cryp-
tographic construction, f does not necessarily fulfill the requirement of Simon’s
problem perfectly. Instead, there might be unwanted collisions in f . Kaplan et
al. [21] showed that Simon’s algorithm can still recover the period s efficiently,
provided that the probability of an unwanted collision is bounded away from 1.
They prove the following theorem.

Theorem 2 (Simon’s algorithm with approximate promise). Let f :
{0, 1}n → X be a function with period s. Define the probability of an unwanted
collision as

ε(f, s) = max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x ⊕ t)].

If ε(f, s) ≤ p0 < 1, then with c · n calls of the quantum subroutine, Simon’s
algorithm returns s with probability at least

1 −
(

2 ·
(

1 + p0
2

)c)n

.

Note that the theorem also holds for cases where the codomain of the function
is smaller than the domain, i.e., |X| < 2n. It follows from Theorem 2 that as
long as c ≥ 3/(1 − p0) the error probability decreases exponentially in n. Thus,
given a constant bound on p0 on the probability of unwanted collision for a
function f , we can recover that function’s period s with O(n) quantum queries
and polynomial time. Throughout this paper, we will make implicit use of a
related theorem. For almost all functions with large enough outputs (in terms of
bit length), the impact of unwanted collisions on the query cost is negligible, c.f.
[8]. This allows us to ignore the issue of unwanted collisions for the remainder of
this paper at all, since we will only deal with functions that have large enough
outputs.

490 V. Q. Ulitzsch and J.-P. Seifert

3.3 Offline Simon’s Algorithm: Attacks Without Superposition
Queries

In the Q1 model, superposition queries to an oracle Of are not possible. Instead,
the attacker can only query Of classically. Many quantum cryptanalytic attacks
on symmetric ciphers thus are not applicable in the Q1 setting, since the attacks
require superposition queries to the attacked cipher. However, even in the Q1

setting, quantum computers can speed up attacks. Indeed, Bonnetain et al. [9]
introduced a new algorithm, called the “Offline Simon’s Algorithm”, which lever-
ages structural properties of cryptographic schemes to execute quantum attacks
which are ways faster than their known classical counterparts [9,10]. The “Offline
Simon’s Algorithm” can be divided into two phases. An online phase, in which
the attacker makes classical queries to the oracle. The results of the classical
queries are then used to assemble a database of function inputs/outputs in super-
position. Once this database is established, an offline phase follows. In the offline
phase the attacker uses the database to run a quantum search and period finding
algorithms. The key idea of the offline Simon’s algorithm is that the database
can be reused throughout the whole offline phase, without any further additional
oracle queries. Reusing the database leads can be exploited to reduce query com-
plexity, speedup existing algorithms, or reduce memory requirements. [9].

In more detail, the offline Simon’s algorithm is applicable in the following
situation. Consider a function g : {0, 1}n → {0, 1}l to which an attacker has
only classical oracle access and a family of functions F = {fi : {0, 1}n →
{0, 1}l, i ∈ {0, 1}m}. Assume that given any (i, x) ∈ {0, 1}m×{0, 1}n, there exists
a polynomial-time quantum circuit to compute F (i, x) = fi(x). For example, g
might be an encryption oracle for an encryption under a fixed (and unknown)
key k with a cipher E, while the function F (i, x) is an encryption through the
cipher E under a key i that is provided as input to the circuit. Further assume
that there exists an i0 ∈ {0, 1}m such that fi0 ⊕ g has a hidden period, i.e.,
fi0(x) ⊕ g(x) = fi0(x ⊕ s) ⊕ g(x ⊕ s) for some s ∈ {0, 1}n.

The following result due to Bonnetain et al. [9] shows that in this setting,
the strategy described above can be used to achieve a substantial speed up over
classical algorithms when searching for the value i0 and the period s.

Theorem 3 (Asymmetric Search of a Period). Let F = {fi : {0, 1}n →
{0, 1}l, i ∈ {0, 1}m} be a family of functions, define F (i, ·) = fi(·) and let g
be a function g : {0, 1}n → {0, 1}l. Assume that we are given quantum oracle
access to F . Further, assume that there exists exactly one i0 ∈ {0, 1}m such that
fi0 ⊕ g has a hidden period, i.e., for all x ∈ {0, 1}n it holds that fi0(x) ⊕ g(x) =
fi0(x⊕s)⊕g(x⊕s) for some s. Moreover, let the probability of unwanted collisions
for all fi ⊕ g be bounded from above by 1/2, i.e.,

max
i∈{0,1}m\{i0}
t∈{0,1}n\{0n}

Prx[fi(x) ⊕ g(x) = fi(x ⊕ t) ⊕ g(x)] ≤ 1
2
.

Then, offline Simon’s algorithm can identify i0 with the following complexities:

Breaking the Quadratic Barrier 491

1. If we are given classical oracle access to g, then we can identify i0 with
extremely high success probability using O(2n) classical queries to g and addi-
tional computations with a time complexity of O((n3 + nTF) · 2m/2), where
TF is the time required to evaluate F once.

2. If we are given quantum oracle access to g, then we can identify i0 with
extremely high success probability, using O(n) quantum queries to g and addi-
tional computations with time complexity O((n3 + nTF) · 2m/2).

The offline version of Simon’s algorithm leverages Grover’s algorithm to
search for the i0 such that fi0 ⊕ g has a period, and uses Simon’s algorithm
as a sub-procedure in that search to verify that a given guess i∗ indeed results
in a period for the function fi∗ ⊕ g.

In the case where only classical access to g is provided, Bonnetain et al.
[9] first build up a database of all O(2n) input-outputs pairs of g to obtain a
superposition

|φg〉 =
c·n⊗

⎛

⎝
∑

x∈{0,1}n

|x〉 |g(x)〉
⎞

⎠ ,

where
⊗

is the usual tensor product, cf. [32]. This database can then be used to
run the above-mentioned combination of Grover and Simon without any addi-
tional classical or quantum queries to g. In the case where quantum access to
g is provided, this database can be built faster by querying g in superposition
directly. Note that once that i0 such that fi0 ⊕ g has a period s is identified, we
can recover the actual period s in polynomial time using Simon’s algorithm—
again reusing the g-database |φg〉.

Throughout this paper, we will make use of the fact that the offline Simon’s
algorithm is also applicable in a more generalized setting, where the attacker
combines the function g with a quantum circuit through means other than xoring
the results [8,9].

Theorem 4 (Generalized Offline Simon’s Algorithm). Consider a family
of functions Fi : {0, 1}n × {0, 1}l → {0, 1}l, indexed by i ∈ {0, 1}m. Let g be a
function g : {0, 1}n → {0, 1}l to which the attacker has classical or quantum
oracle access and pi : {0, 1}n → {0, 1}n be a permutation. Assume that for the
index value i0, the function Fi0(x, g(pi0(x))) has some period s. The Offline
Simon’s algorithm can identify i0 with extremely high success probability, with
the following complexities:

1. If we are given classical oracle access to g, then we can identify i0 using
O(2n) classical queries to g and additional computations with time complexity
O((n3 + nTF) · 2m/2), where TF is the time required to evaluate F once.

2. If we are given quantum oracle access to g, then we can identify i0 using
O(n) quantum queries to g and additional computations with time complexity
O((n3 + nTF) · 2m/2).

In the same vein as Simon’s algorithm, the offline Simon’s algorithm can
deal with unwanted collisions; again, for functions with large enough output the
impact of unwanted collisions can be neglected [8].

492 V. Q. Ulitzsch and J.-P. Seifert

4 Quantum Cryptanalysis of the Milenage Algorithms

The main idea of this paper is to leverage the above described quantum toolbox
to perform a quantum cryptanalysis of the Milenage algorithm set. To this end,
we extend existing attacks on symmetric ciphers to perform forgery attacks or
recover the secret key K and the bit-string OPc.

To describe the complexities of the presented attacks, we will consider three
parameters:

– the length of the secret key K,
– the length of the OPc bit-string, and
– the block length of the underlying block-cipher EK , which we denote by |M |.
Note that for the current Milenage configuration it holds that |K| = 128, |OPc| =
128 and |M | = 128. Quantum security considerations for 5G have proposed to
increase the key-size |K| to 256 bits [27,38]. With this we can summarize our
four different attacks as follows.

1. For reasons of (exposition) completeness, we include the trivial Grover attack
that results in a quadratic reduction of the query complexity of exhaustive
key search.

2. A quantum slide attack against the f2 function, which reduces the complex-
ity of recovering the secret key material in case the OP bit-string is not
known. If quantum superposition access to f2 is granted, the attacker can
acquire the OPc and the key K with only O(|M |) superposition queries and
Õ

(
2|K|/2 · TQAES

)
time. If the attacker is given only classical access to f2, then

we require O(2|M |) online classical queries, and the attack has a time com-
plexity of Õ

(
2|M | · TO + TQAES · 2

|K|
2

)
. To the best of our knowledge, recovering

the network authentication key K as well as the OPc bit-string via a classical
slide attack requires O

(
2

M
2

)
oracle quries and O

(
2|K|+ |M|

2

)
operations.

3. A quantum polynomial time existential forgery attack on the MAC func-
tion f1, assuming quantum superposition access to f1. Classical attacks that
achieve existential forgery on the f1 cipher require O(2|M |/2) operations and
queries.

4. A quantum related key attack against Milenage, which can recover the secret
key in polynomial time in the Q2 model, and in Õ

(
2(|K|+|OPc|)/3) time and

queries in the Q1 model.

4.1 The Grover Key Recovery for f1, . . . , f5

We first describe the most obvious attack on the Milenage algorithms, that gives
an upper bound on the complexity of quantum attacks. Note that the Milenage
algorithms only rely on AES encryption and the xor operation—both of these
operations can be fully simulated by a quantum computer [40]. We can thus use
Grover to execute the following attack:

Breaking the Quadratic Barrier 493

1. Using classical oracle access to one of the functions f1, . . . , f5, obtain enough
function input/outputs pairs (c1,m1), . . . , (cr,mr) to uniquely determine the
network authentication key K and—if required—the bitstring OPc.

2. Given these plaintext/ciphertext pairs, we can construct a quantum circuit
for the following function f : on input of a key guess K∗, OP ∗

C , return 1 if
K∗ = K and OP ∗

c = OPc and zero otherwise. This circuit can be constructed
as described in Sect. 3.1.

3. By this quantum circuit, we now have quantum oracle access to the function
f . This allows us to apply Grover’s algorithm to search for the key K and
the bit-string OPc.

With Theorem 1, the attack can recover the key with a circuit of depth
O

(
2|K|/2 · TQAES

)
or O

(
2

|K|+|OPc|
2 · TQAES

)
if the bit-string OPc is not known.

4.2 Quantum Slide Attacks Against f2

Bonnetain et al. [9] describe that the offline Simon algorithm can be used to
execute a quantum slide attack against a 2-round self-similar cipher. A self-
similar cipher builds upon a block cipher E to encrypt a message m, using two
keys k1, k2 in the following way:

iFX(m) = Ek2 [Ek2 [m ⊕ k1] ⊕ k1] ⊕ k1.

The attack described by Bonnetain et al. [9] yields a speedup compared to
classical attacks. This quantum slide attack can be adapted to work on the f2
function as well.

To this end, we first show how the f2 function can be transformed into
a 2-round self-similar cipher and then describe how the attack described by
Bonnetain et al. [9] can be applied to our construction. This leads to an attack
that reduces the additional security provided by the OPc bit-string, a value
which is unknown in practice.

In more detail, recall that function f2 is defined as

f2(m) = EK [rotr2(EK [m ⊕ OPC] ⊕ OPC) ⊕ c2] ⊕ OPc.

Now, the standard defines r2 as r2 = 0, which simplifies f2 to

f2(m) = EK [EK [m ⊕ OPC] ⊕ OPC ⊕ c2] ⊕ OPc

To transform f2 into a self-similar cipher, we define the function f ′
2, which

for each input m instead queries f2 for m ⊕ c2 and then xors the result with c2.
I.e.,

f2′(m) def= f2(m ⊕ c2) ⊕ c2

= EK [EK [m ⊕ c2 ⊕ OPC] ⊕ OPC ⊕ c2] ⊕ OPc ⊕ c2.

494 V. Q. Ulitzsch and J.-P. Seifert

Note that c2 is public. As a result, if the attacker has (quantum) oracle access
to f2, the attacker can easily construct a quantum circuit to also have (quantum)
oracle access f2′. Clearly, f2′ follows the description of a self-similar cipher, as
visualized in Fig. 3.

Fig. 3. The f2′ function, which now resembles an iterated FX cipher.

This enables us to execute the attack presented in [9], which we now describe
in the following. Define the functions pi, Fi, g as follows:

Fi((b, x), y) def=

{
y ⊕ x if b = 0
Ei(y) ⊕ x if b = 1

pi((b, x)) def=

{
Ei(x) if b = 0
x if b = 1

g(x) def= f2′(x).

We combine now the above functions into a function F ∗
i , indexed by i, which

will have the desired hidden period,

F ∗
i (b, x) def= Fi((b, x), g(pi(b, x))).

Note that for a given i, an attacker can easily construct an efficient quantum
circuit for Fi((b, x), y) and F ∗

i (b, x).
The function F ∗

k (b, x) = Fk((b, x), g(pk(b, x))) has a hidden period (1, OPc ⊕
c2), as shown in Appendix C. This is sufficient to apply the offline Simon’s
algorithm. Armed with Theorem 4 and the above definitions, we arrive at the
following complexities.

– In the Q2 setting, the attack requires O(|M |) superposition queries to f2 and
Õ

(
(|M | · TQAES) · 2|K|/2) time.

– In the Q1 setting, the attack requires more time and queries to prepare the
database of g’s input-output pairs. To this end, the attacker needs to query
f2′(x) for all possible 2|M | inputs. Once the database is prepared, the attacker
can recover the key K as well as the OPc bit-string via the offline Simon’s
algorithm. As such, the attack requires O(2|M |) online classical queries, and
has an additional time complexity of Õ

(
|M | · TQAES) · 2

|K|
2

)
. For the current

Milenage configuration, this results in c · 2128 superposition queries and alto-
gether c · (2128 · TO + TQAES · 264) operations for a small constant c. Note that

Breaking the Quadratic Barrier 495

while this is no improvement over the trivial Grover attack if |K| = 128, the
advantage of the quantum slide attack shows when increasing the AES key
length to 256 bit. Then, the quantum slide attack requires c ·(2128+2128 ·TQAES)
operations, while the Grover attack requires c · (2384/2) · TQAES = c · 2192 · TQAES

operations, for a small constant c.

To the best of our knowledge, the best classical attack against the f2
construction—when both the OP bit-string as well the network authentica-
tion key K are unknown—is a slide attack as well. The attacker guesses a key
i ∈ K and tries to find a collision in the function F ∗

i (b, x) to recover the period
(1, OPc ⊕ c2). The attack requires O

(
2

M
2

)
classical queries to the encryption

oracle and approximately O
(
2|K|+ |M|

2

)
time.

Therefore, the presented quantum slide attack reduces the additional security
provided by the OPc bit-string significantly.

4.3 Existential Forgery of f1

Our third attack is based on the seminal work of Kaplan et al. [21], who describe
a polynomial time existential forgery attack against a CBC-MAC construction
in the Q2 model. As a result, if superposition queries against the CBC-MAC
oracle are allowed, CBC-MACs must be considered insecure. The attack can be
extended to an attack that allows for polynomial time existential forgery against
the f1 function from the Milenage algorithm set. In the following, we provide
the details of our novel quantum attack.

In summary, the attack assumes superposition access to an oracle
Of1K,OPC

(x, y) = f1K,OPc
(x, y), invoking the function f1 on input (x, y) with

a fixed network authentication key K and fixed value OPc. Given this access,
the attacker can efficiently construct q +1 outputs of the function f1K,OPc

after
issuing a total of q quantum and classical queries to the function f1K,OPc

.
Before we provide the details of the attack, recall that the function f1 is

defined as

f1K,OPc
(RAND, IN1)

def= EK [EK [RAND ⊕ OPC] ⊕ rotr1(IN1 ⊕ OPc) ⊕ c1] ⊕ OPc.

Also, for the sake of brevity, we will set x = RAND, and y = IN1, where
x, y ∈ {0, 1}|M |. Then, the function f1 can be a bit “shortened” to

f1K,OPc
(x, y) = EK [EK [x ⊕ OPC] ⊕ rotr1(y ⊕ OPc) ⊕ c1] ⊕ OPc.

To now perform an existential forgery attack, pick two arbitrary bit-strings
α0, α1 ∈ {0, 1}|M | with α0 	= α1. We then define the following function f ′ :
{0, 1} × {0, 1}|M | → {0, 1}|M | by

f ′(b, y)
def= f1K,OPc

(αb, y)
= EK [EK [αb ⊕ OPC] ⊕ rotr1(y) ⊕ rotr1(OPc) ⊕ c1] ⊕ OPc.

496 V. Q. Ulitzsch and J.-P. Seifert

Clearly, if an attacker has access to a quantum oracle for f1K,OPC
, the

attacker can construct an efficient quantum circuit for f ′ as well. As shown
in Appendix D, the function f ′ has the hidden period (1, rot−1

r1 (α∗
0 ⊕α∗

1)), where
α∗
b = Ek[αb⊕OPc]. This hidden period can be recovered in polynomial time using

Simon’s algorithm. Once an attacker obtained the period (1, rot−1
r1 (α∗

0⊕α∗
1)), the

attacker can easily perform an existential forgery. Assume the attacker knows the
value t = f1K,OPc

(α0, x), where x ∈ {0, 1}|M |. Then he also knows the output
of the function call f1K,OPc

(α1, x⊕ rot−1
r (α∗

0 ⊕α∗
1)) = f1K,OPc

(α0, x) = t. Since
the f1 function is intended to be used as a MAC, this amounts to an existential
forgery attack.

The attacks proceeds then as follows.

1. Recover the hidden period (1, rot−1
r1 (α∗

0 ⊕ α∗
1)) using Simon’s algorithm. Let

q′ denote the number of quantum queries made through running Simon’s
algorithm.

2. Repeat the following steps q′ + 1 times:
(a) Pick an arbitrary bit-string y ∈ {0, 1}|M |.
(b) Query the function f1K,OPc

on input (α0, y) to obtain t = f1K,OPc
(α0, y).

(c) The same value t is also a value output/MAC tag for the input (α1, y ⊕
rot−1

r (α∗
0 ⊕ α∗

1))

This will produce a total of 2q′ + 2 tags after issuing only 2q′ + 1 queries.
Overall the attack has a query complexity of O(|M |) quantum queries to f1K,OPc

and O(|M |3) classical computation time. For the Milenage key lengths, this
translates to c · 128 quantum queries for a small constant c and a negligible
amount of computation.

Resistance against classical existential forgery attacks is a design goal of the
f1 function [4] – our quantum existential forgery attack demonstrates that this
resistance does not transfer to the quantum security setting.

4.4 Quantum Related Key Attacks Against f1, . . . , f5

Related key attacks, as introduced by Biham [7], consider attackers that can
request encryption under multiple related keys. The exact values of the keys are
unknown, but the way in which the keys are related is known to the attacker.
The attacks can be modelled through a related key oracle, which provides the
attacker access to encryption of a chosen-plaintext under related keys. Related
key attacks are of interest because they have practical implications, for example
when conducting fault-injection attacks. Recent works have shown that related
key attacks on block ciphers can be sped up through quantum computers, both
in the Q2 as well as the Q1 model. In the Q2 model, with quantum superposition
queries to the related key oracle, related key attacks can break any block cipher
in polynomial time [33]. Using the offline Simon algorithm, the attack from [33]
can be adapted to yield a super-quadratic speedup in the Q1 model as well. Both
attacks assume the following attacker model. For a given block-cipher E with
a fixed secret K, the attacker has access to a related key oracle OE,K defined
as follows. The oracle OEK

takes as input a bitmask L and a bit string x and
outputs EK⊕L(x).

Breaking the Quadratic Barrier 497

Considering this attacker model, classical related key attacks on an ideal
block cipher require at least 2n/2 operations, where n is the key length and the
bound is tight, cf. [37].

In this section, we will describe the attacks in detail and show how to apply
these attacks to the Milenage algorithm set, yielding a polynomial time attack
in the Q2 model, and a super-quadratic speedup over classical attacks in the
Q1 model. The described attacks can be mounted on all Milenage functions
f1, . . . , f5, regardless of whether the OP bit string is known or unknown. To
focus on an intuitive understanding, we will assume that the OP bitstring is
public and thus the functions f1, . . . , f5 take only the network authentication
K as key material. The analysis for the case when OP is unknown follows in an
analogue fashion.

In the following, we denote by f the Milenage function under attack. Then,
for a given function fK , we assume that the attacker has access to an OfK

that takes as input a bitmask L ∈ {0, 1}n and a bit string x ∈ {0, 1}n and
outputs fK⊕L(x), i.e., Ofk(L, x) = fK⊕L(x). In the Q2 model, the attacker has
superposition access to this oracle, while in the Q1 model, the attacker only has
classical access.

Quantum Related Key Attacks with Superposition Access. The quan-
tum related key attacks described by Roetteler and Steinwandt [33] can be trans-
ferred in a one-to-one fashion to attack the Milenage algorithm set in the attacker
model described above. Their attack works as follows.

Let c = (c1, . . . , cl) and m = (m1, . . . ,ml) be a set of output-inputs pairs
c = (fK(m1), . . . , fK(ml)) such that (c,m) uniquely determines K. Assume an
attacker has superposition access to a related key oracle for

OfK (s,m) = fK⊕s(m) = (fK⊕s(m1), . . . , fK⊕s(ml)).

Then, define the following mapping

f ′(s) def= {fK⊕s(m), fs(m)}.

Given quantum access to a related key oracle oracle OfK (s,m) for fK , one can
construct an efficient quantum circuit for f ′. To be efficiently encodable, f ′

outputs can be encoded as integers [33].
The mapping f ′ is two-to-one with period K, as shown below. Using Simon’s

algorithm, we can recover this period efficiently with only a linear number of
queries to the related key oracle.

To see why f ′ is 2-to-1 with period K, let s, s′ be two different bit-strings
such that f ′(s) = f ′(s′) and assume K 	= 0n. We consider two cases.

1. Assume fs(m) = fs′(m). As we choose the plaintexts m = (m1, . . . ,ml)
so that they uniquely determine the key, this would imply s = s′, which
contradicts our assumption.

2. Now let fs(m) 	= fs′(m). Thus, if f ′(s) = f ′(s′), then fK⊕s(m) = fs′(m).
The choice of plaintexts implies K ⊕ s = s′.

498 V. Q. Ulitzsch and J.-P. Seifert

Quantum Related Key Attacks Without Superposition Access. In
the Q1 setting, the attacker only has classical access to the related key ora-
cle OfK (s,m). However, leveraging the offline Simon’s algorithm, the attacker
can still achieve a super-quadratic speedup over classical attacks [9]. We now
show how to apply the offline Simon related key attack as stated by Bonnetain
et al. [9] to the Milenage algorithm set.

Intuitively, the attack works by dividing the key k and the bitmask l into
two parts, i.e., k = k1||k2, l = l1||l2 where l1, k1 ∈ {0, 1}|M |/3. We then query
the oracle OfK for each possible l1 and construct a quantum circuit F so that
Fk2(l) ⊕ g(l) has period k1, where g is a function derived from the related key
oracle. This allows us to employ the offline Simon algorithm.

Let l = l1||l2, where l1 ∈ {0, 1}|M |/3, l2 ∈ {0, 1}|M |·2/3 and define the follow-
ing function g : {0, 1}|M |/3 → {0, 1}l·|M | by

g(l1)
def= O(l1||0n 2

3) = f(k1||k2)⊕(l1||02/3·|M|)(m).

Moreover let F be a family of functions indexed by h so that

Fh(j) = fj||h(m).

Clearly F can be efficiently represented as a quantum circuit, while querying
g requires oracle access. The function Fk2(l)⊕ g(l) has period k1. Thus, we have
a family of functions F such that there exists a k2 so that fk2 ⊕ g has a hidden
period. This suffices to apply the offline Simon’s algorithm to recover the key
part k2. Once we obtain the k2, we can efficiently recover k1 as well.

Applying now Theorem 3, the attack requires O(2|K|/3) classical queries to
the related key oracle and a has a time complexity of Õ

(
2

|K|
3 · TQAES

)
. If the

OP bit-string is known, this translates to approximately 243 oracle queries and
encryption operations. If the OP bit-string is not known, then the attack requires
approximately 285.3 oracle queries and encryption operations.

To see why the function Fk2(l) ⊕ g(l) has period k1 note that

Fk2(l ⊕ k1) ⊕ g(l ⊕ k1) = fl⊕k1||k2(m) ⊕ f(k1⊕l⊕k1)||k2(m)
= fl⊕k1||k2(m) ⊕ fl||k2(m)
= g(l) ⊕ Fk2(l).

5 Discussion

The presented attacks expose a structural weakness in the Milenage algorithm
set, namely that it exhibits a structure that makes it susceptible to quantum
period finding attacks. The attacks do not imply the Milenage is broken once
general quantum computer come into existence, since the required superposition
oracle is not given to the attacker in Milenage’s typical use-cases.

However, they do show that Milenage cannot be considered secure in the
quantum security (Q2) setting. This result has merit in and of itself, as an

Breaking the Quadratic Barrier 499

absence of Q2 attacks would have implied an absence of Q1 attacks as well.
Further research is thus required to assess whether the vulnerability in the Q2

model transfers to further attacks in the Q1 model or security proofs for Milenage
can be established. For other ciphers, Q2 attacks have already been elevated to
the Q1 model [10]. In addition, the Q1 attacks we presented already improve on
best-known classical attacks, as well as the trivial Grover, “quantum bruteforce”
attack (depending on Milenage’s configuration). On the other hand, other works
have managed to established security proofs for FX-constructions in the Q1

model [18].
The 3GPP has also standardized an alternative instantiation of the secret key

functions f1, . . . , f5, the TUAK algorithm set [2]. The TUAK algorithm set is
based on the Keccak-f -permutation, which so far withstood quantum cryptanal-
ysis and seemingly does not exhibit the structural properties that enabled the
presented attacks. We thus conjecture it be secure against the “quantum period
finding” attacks presented in this paper. In addition, the TUAK algorithm set
was found to provide sufficient performance to be executed on a SIM card [26],
and thus poses a (great) alternative to the Milenage algorithm set.

6 Conclusion

Given that experts increasingly view large-scale quantum computers as likely
[30] and faced with the slow nature of standardization bodies, quantum security
considerations for cellular networks and infrastructure need to start now.

Bringing together research results from recent quantum cryptanalytic works
and synthesizing their results into a quantum toolbox, we took a step in this
direction. We present various novel attacks against the Milenage algorithm set.
Against the strongest (but purely theoretical) quantum adversary, Milenage must
be considered insecure. We see the following research directions as necessary to
ensure the security of telecommunication networks against quantum adversaries.

1. Symmetric cryptography that is used in telecommunication networks needs to
be subject to scrutiny, investigating the resilience against quantum-enabled
attacks. With the synthesized quantum toolbox, we hope to make this work
accessible to non-quantum experts in the research community as well. This
scrutiny should also encompass the investigation whether the results of our
attacks can be improved or proofs of security can be established.

2. It is necessary to clarify what security guarantees suffice and what kind of
quantum adversary models can be ignored in quantum security considerations
for cellular networks. The answer to this question can then guide the choice
for appropriate cryptographic algorithms.

Standardizing an algorithm which later turns out to be vulnerable to quantum
adversaries would be a disaster in a post-quantum world and should be prevented
under any circumstances. To this end, this work should serve as a starting point
to spark further investigations into the above-mentioned questions now, to ensure
a smooth transition into quantum-resistant telecommunication networks in the
future.

500 V. Q. Ulitzsch and J.-P. Seifert

Acknowledgements. The work described in this paper has been supported by the
Einstein Research Unit “Perspectives of a quantum digital transformation: Near-term
quantum computational devices and quantum processors” of the Berlin University
Alliance. The authors acknowledge the financial support by the Federal Ministry of
Education and Research of Germany in the programme of “Souverän. Digital. Ver-
netzt.” Joint project 6G-RIC, project identification number: 16KISK030. We would
like to thank Ryan Sweke and Xavier Bonnetain for their valuable input which greatly
improved the paper. We would like to thank Shinjo Park for his valuable input on
cellular network protocols.

A List of Abbreviations

3GPP Third Generation Partnership Project
AK Anomity Key
AKA Authentication and Key Agreement
AMF Authentication Management Field
SQN Sequence Number
MAC Message Authentication Code
HN Home Network
MME Mobility Management Entity
BS Base Station
MS Mobile Station
LTE Long-Term Evolution
EAP Extensible Authentication Protocol
3GPP 3rd Generation Partnership Project

B The AKA Protocol

The Milenage algorithm set’s main usage is the AKA protocol, used for authen-
tication and session establishment in cellular networks as well as other cellular
related applications, e.g., as a variant of the Extensible Authentication Protocol
(EAP), the EAP-AKA.

In summary, the LTE-AKA protocol is a challenge-response protocol that
allows the subscriber to authenticate themselves to the network. The AKA pro-
tocol also derives a session key KASME that is used for encryption and integrity
protection of communication at later points. The functions f1, . . . , f4 from the
Milenage algorithm set serve to derive a MAC, an expected response to a chal-
lenge, and the confidentiality and integrity keys (commonly denoted as CK and
IK), which are in turn used to derive session keys. The function f5 is used to
derive an Anomity Key (AK). The AK serves to mask the SQN, where the
purpose of the SQN itself is to prevent replay attacks.

The authentication procedure in the fifth generation (5G) of cellular networks
add various security and privacy enhancements to the LTE-AKA protocol, but
uses the functions f1, . . . , f5 in the same way. Given that the functions provide
authentication and serve as a basis for later encryption and integrity protection,
the security of cellular networks is completely contigent on the security of the
functions f1, . . . , f5.

Breaking the Quadratic Barrier 501

C Proof of the Hidden Period Required for the Quantum
Slide Attack

To see whyF ∗
k (b, x) = Fk((b, x), g(pk(b, x))) indeed has the hidden period

(1, OPc ⊕ c2), first observe that

f2′(EK(x ⊕ OP ∗
c)) ⊕ (x ⊕ OP ∗

c) = EK(f2′(x)) ⊕ x, (1)

where we write OP ∗
c = OPc ⊕ c2 for the sake of brevity. To see why Eq. 1 holds,

note that:

f2′(EK [x ⊕ OP ∗
c]) ⊕ (x ⊕ OP ∗

c)
= EK [EK [EK [x ⊕ OP ∗

c] ⊕ OP ∗
c] ⊕ OP ∗

c] ⊕ OP ∗
c ⊕ (x ⊕ OP ∗

c)
= EK [EK [EK [x ⊕ OP ∗

c] ⊕ OP ∗
c] ⊕ OP ∗

c] ⊕ x

and

EK(f2′(x)) ⊕ x

= EK [EK [EK [x ⊕ OP ∗
c] ⊕ OP ∗

c] ⊕ OP ∗
c] ⊕ x

= f2′(EK [x ⊕ OP ∗
c]) ⊕ (x ⊕ OP ∗

c).

Thus, it follows that F ∗
k (1, x) = F ∗

k (0, x ⊕ OPc ⊕ c2) because

F ∗
k (1, x) = Fk((1, x), g(pk(1, x)))

= Fk((1, x), g(x))
= Fk((1, x), f ′

2((x)))
= Ek(f ′

2(x)) ⊕ x

and

F ∗
k (0, x ⊕ OPc ⊕ c2)

= Fk((0, x ⊕ OP ∗
c), g(pk(0, x ⊕ OP ∗

c)))
= Fk((0, x ⊕ OP ∗

c), g(Ek(x ⊕ OP ∗
c)))

= f2′(Ek(x ⊕ OP ∗
c)) ⊕ x ⊕ OP ∗

c

= Ek(f2′(x)) ⊕ x,

where the last step follows from Eq. 1.

D Proof of the Hidden Period Required for the Existential
Forgery Attack

It remains to be shown that f ′ as defined in Sect. 4.3 indeed has the hidden
period (1, rot−1

r1 (α∗
0 ⊕ α∗

1)). To this end, we need to show that

f ′(0, y) = f ′(1, y ⊕ rot−1
r1 (Ek[α0 ⊕ OPc] ⊕ Ek[α1 ⊕ OPc])).

502 V. Q. Ulitzsch and J.-P. Seifert

First, observe that by linearity of rotation it holds that

f1K,OPc
(x, y)

= EK [EK [x ⊕ OPC] ⊕ rotr1(y ⊕ OPc) ⊕ c1] ⊕ OPc

= EK [EK [x ⊕ OPC] ⊕ rotr1(y) ⊕ rotr1(OPc) ⊕ c1] ⊕ OPc.

Thus, we have

f ′(0, y) = EK [α∗
0 ⊕ rotr1(y) ⊕ rotr1(OPc) ⊕ c1] ⊕ OPc,

and

f ′(1, y ⊕ rot−1
r (α∗

0 ⊕ α∗
1))

= EK [α∗
1 ⊕ rotr1(y ⊕ rot−1

r1 (α∗
0 ⊕ α∗

1)) ⊕ rotr1(OPc) ⊕ c1] ⊕
OPc

= EK [α∗
1 ⊕ rotr1(y) ⊕ rotr1(rot

−1
r1 (α∗

0 ⊕ α∗
1)) ⊕

rotr1(OPc) ⊕ c1] ⊕ OPc.

Now, using rotr1(rot
−1
r1 (x)) = x we can continue as

= EK [α∗
1 ⊕ rotr1(y) ⊕ α∗

0 ⊕ α∗
1 ⊕ rotr1(OPc) ⊕ c1] ⊕ OPc

= EK [rotr1(y) ⊕ α∗
0 ⊕ rotr1(OPc) ⊕ c1] ⊕ OPc

= f ′(0, y),

which indeed yields f ′(0, y) = f ′(1, y ⊕ rot−1
r (α∗

0 ⊕ α∗
1)).

References

1. 3GPP: ETSI TR 135 102. Technical Report (TR) 35.102, 3rd Generation Partner-
ship Project (3GPP) (2013). https://www.etsi.org/deliver/etsi ts/133100 133199/
133102/11.05.01 60/ts 133102v110501p.pdf,version11.5.1

2. 3GPP: ETSI TR 135 231. Technical Report (TR) 35.231, 3rd Generation Partner-
ship Project (3GPP) (2014). https://www.etsi.org/deliver/etsi ts/135200 135299/
135231/12.01.00 60/ts 135231v120100p.pdf,version12.1.0

3. 3GPP: ETSI TR 135 206. Technical Report (TR) 35.206, 3rd Generation Partner-
ship Project (3GPP) (2016). https://www.etsi.org/deliver/etsi ts/135200 135299/
135206/14.00.00 60/ts 135206v140000p.pdf,version14.0.0

4. 3GPP: ETSI TR 135 909. Technical Report (TR) 35.909, 3rd Generation Partner-
ship Project (3GPP) (2019). https://www.etsi.org/deliver/etsi tr/135900 135999/
135909/07.00.00 60/tr 135909v070000p.pdf,version15.0.0

5. Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic
analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39555-5 2

6. Aumasson, J.P.: Too much crypto. Cryptology ePrint Archive (2019)
7. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),

229–246 (1994). https://doi.org/10.1007/BF00203965

https://www.etsi.org/deliver/etsi_ts/133100_133199/133102/11.05.01_60/ts_133102v110501p.pdf, version 11.5.1
https://www.etsi.org/deliver/etsi_ts/133100_133199/133102/11.05.01_60/ts_133102v110501p.pdf, version 11.5.1
https://www.etsi.org/deliver/etsi_ts/135200_135299/135231/12.01.00_60/ts_135231v120100p.pdf, version 12.1.0
https://www.etsi.org/deliver/etsi_ts/135200_135299/135231/12.01.00_60/ts_135231v120100p.pdf, version 12.1.0
https://www.etsi.org/deliver/etsi_ts/135200_135299/135206/14.00.00_60/ts_135206v140000p.pdf, version 14.0.0
https://www.etsi.org/deliver/etsi_ts/135200_135299/135206/14.00.00_60/ts_135206v140000p.pdf, version 14.0.0
https://www.etsi.org/deliver/etsi_tr/135900_135999/135909/07.00.00_60/tr_135909v070000p.pdf, version 15.0.0
https://www.etsi.org/deliver/etsi_tr/135900_135999/135909/07.00.00_60/tr_135909v070000p.pdf, version 15.0.0
https://doi.org/10.1007/978-3-319-39555-5_2
https://doi.org/10.1007/978-3-319-39555-5_2
https://doi.org/10.1007/BF00203965

Breaking the Quadratic Barrier 503

8. Bonnetain, X.: Tight bounds for Simon’s algorithm. In: Longa, P., Ràfols, C. (eds.)
LATINCRYPT 2021. LNCS, vol. 12912, pp. 3–23. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88238-9 1

9. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher,
A.: Quantum attacks without superposition queries: the offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 20

10. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in
quantum attacks on symmetric schemes. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277, pp. 315–344.
Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-
031-07082-2 12

11. Damir, M.T., Meskanen, T., Ramezanian, S., Niemi, V.: A beyond-5G authentica-
tion and key agreement protocol. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar,
S. (eds.) Network and System Security, NSS 2022. Lecture Notes in Computer
Science, vol. 13787, pp. 249–264. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-23020-2 14

12. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers.
Des. Codes Crypt. 88(6), 1179–1203 (2020)

13. Fettweis, G.P., Boche, H.: On 6G and trustworthiness. Commun. ACM 65(4), 48–
49 (2022)

14. Fluhrer, S.: Reassessing Grover’s algorithm. Cryptology ePrint Archive (2017)
15. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA

protocol. Proc. Priv. Enhancing Technol. 2016(4), 255–275 (2016). https://doi.
org/10.1515/popets-2016-0039

16. Gilbert, H.: The security of “one-block-to-many” modes of operation. In: Johans-
son, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 376–395. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39887-5 27

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219 (1996)

18. Jaeger, J., Song, F., Tessaro, S.: Quantum key-length extension. In: Nissim, K.,
Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 209–239. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90459-3 8

19. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum
analysis of AES - lowering limit of quantum attack complexity (2022)

20. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 329–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 13

21. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

22. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differen-
tial and linear cryptanalysis. IACR Trans. Symmetric Cryptology 2016(1), 71–94
(2016). https://doi.org/10.13154/tosc.v2016.i1.71-94, https://tosc.iacr.org/index.
php/ToSC/article/view/536. ISSN 2519–173X

23. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: 2010 IEEE International Symposium on
Information Theory, pp. 2682–2685. IEEE (2010)

https://doi.org/10.1007/978-3-030-88238-9_1
https://doi.org/10.1007/978-3-030-88238-9_1
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/978-3-031-07082-2_12
https://doi.org/10.1007/978-3-031-07082-2_12
https://doi.org/10.1007/978-3-031-23020-2_14
https://doi.org/10.1007/978-3-031-23020-2_14
https://doi.org/10.1515/popets-2016-0039
https://doi.org/10.1515/popets-2016-0039
https://doi.org/10.1007/978-3-540-39887-5_27
https://doi.org/10.1007/978-3-030-90459-3_8
https://doi.org/10.1007/978-3-030-81652-0_13
https://doi.org/10.1007/978-3-030-81652-0_13
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.13154/tosc.v2016.i1.71-94
https://tosc.iacr.org/index.php/ToSC/article/view/536
https://tosc.iacr.org/index.php/ToSC/article/view/536

504 V. Q. Ulitzsch and J.-P. Seifert

24. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
2012 International Symposium on Information Theory and its Applications, pp.
312–316. IEEE (2012)

25. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

26. Mayes, K., Babbage, S., Maximov, A.: Performance evaluation of the new Tuak
mobile authentication algorithm. Proc. ICONS/EMBEDDED, 38–44 (2016)

27. Mitchell, C.J.: The impact of quantum computing on real-world security: a 5g case
study. Comput. Secur. 93, 101825 (2020)

28. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. Technical report, National Institute of Standards
and Technology (NIST), Washington, D.C. (2017). https://csrc.nist.gov/Projects/
post-quantum-cryptography/post-quantum-cryptography-standardization

29. NIST: Announcing four candidates to be standardized, plus fourth round
candidates (2022). https://csrc.nist.gov/News/2022/pqc-candidates-to-be-
standardized-and-round-4#fourth-round

30. Piani, M., Mosca, M.: Quantum threat timeline report 2021 (2021)
31. PlankQK: Plankqk: Konsortium (2022). https://planqk.stoneone.de/partner/
32. Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT

Press, Cambridge (2011)
33. Roetteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process.

Lett. 115(1), 40–44 (2015)
34. Servedio, R.A., Gortler, S.J.: Equivalences and separations between quantum and

classical learnability. SIAM J. Comput. 33(5), 1067–1092 (2004)
35. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),

1474–1483 (1997)
36. Ulitzsch, V.Q., Park, S., Marzougui, S., Seifert, J.P.: A post-quantum secure sub-

scription concealed identifier for 6G. In: Proceedings of the 15th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pp. 157–168 (2022)

37. Winternitz, R., Hellman, M.: Chosen-key attacks on a block cipher. Cryptologia
11(1), 16–20 (1987)

38. Yang, J., Johansson, T.: An overview of cryptographic primitives for possible use
in 5g and beyond. Sci. China Inf. Sci. 63(12), 1–22 (2020)

39. Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, pp. 679–687. IEEE
(2012)

40. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 697–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 24

https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://planqk.stoneone.de/partner/
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24

Time and Query Complexity Tradeoffs
for the Dihedral Coset Problem

Maxime Remaud1, André Schrottenloher2(B), and Jean-Pierre Tillich3

1 Inria and Eviden Quantum Lab, Paris, France
2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France

andre.schrottenloher@inria.fr
3 Inria, Paris, France

Abstract. The Dihedral Coset Problem (DCP) in ZN has been exten-
sively studied in quantum computing and post-quantum cryptography,
as for instance, the Learning with Errors problem reduces to it. While the
Ettinger-Høyer algorithm is known to solve the DCP in O (logN) queries,
it runs inefficiently in time O (N). The first time-efficient algorithm was
introduced (and later improved) by Kuperberg (SIAM J. Comput. 2005).
These algorithms run in a subexponential amount of time and queries
Õ

(
2
√

cDCP log N
)
, for some constant cDCP.

The sieving algorithms á la Kuperberg admit many trade-offs between
quantum and classical time, memory and queries. Some of these trade-offs
allow the attacker to reduce the number of queries if they are particu-
larly costly, which is notably the case in the post-quantum key-exchange
CSIDH. Such optimizations have already been studied, but they typically
fall into two categories: the resulting algorithm is either based on Regev’s
approach of reducing the DCP with quadratic queries to a subset-sum
instance, or on a re-optimization of Kuperberg’s sieve where the time
and queries are both subexponential.

In this paper, we introduce the first algorithm to improve in the lin-
ear queries regime over the Ettinger-Høyer algorithm. We then show that
we can in fact interpolate between this algorithm and Kuperberg’s sieve,
by using the latter in a pre-processing step to create several quantum
states, and solving a quantum subset-sum instance to recover the full
secret in one pass from the obtained states. This allows to interpolate
smoothly between the linear queries-exponential time complexity case
and the subexponential query and time complexity case, thus allowing
a fine tuning of the complexity taking into account the query cost. We
also give on our way a precise study of quantum subset-sum algorithms
in the non-asymptotic regime.

Keywords: Dihedral Hidden Subgroup Problem · Subset-sum ·
Dihedral Coset Problem · Quantum Algorithms

1 Introduction

Hidden Subgroup Problem. Let G be a known group and H be an unknown
subgroup of G. Finding H is a problem known as the Hidden Subgroup Problem
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 505–532, 2023.
https://doi.org/10.1007/978-3-031-40003-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_19

506 M. Remaud et al.

(HSP). To solve it, we can query a function f which satisfies a certain property
with respect to H:

Definition 1 (HSP). The hidden subgroup problem is defined as:

– Given: a function f : G → S that is constant and distinct on the left cosets
of an unknown subgroup H of a group G, S being a finite set,

– Find: (a generating set of) H.

Many problems used to construct primitives can be reduced to an HSP
instance, for example the Discrete Logarithm and Shortest Vector problems.
Shor’s algorithm [32], which solves the DLP and breaks the RSA cryptosys-
tem [31] in polynomial time, can actually be extended to solve the HSP for an
abelian group G. In the general case, it is well known that the problem requires
only a polynomial (in log2 |G|) number of queries to the function f [19]. However,
time-efficient quantum algorithms are only known for very specific instances,
including abelian groups, and it is widely admitted that the generic problem
remains difficult for quantum algorithms.

Dihedral Hidden Subgroup Problem (DHSP). While the HSP in an abelian group
is quantumly easy to solve, many post-quantum primitives are related to the HSP
in the dihedral group. In this case, even if the group is very close to be abelian
(it has namely an abelian subgroup of index 2) no polynomial-time algorithm is
known. This is the case of cryptosystems based on the Unique Shortest Vector
Problem (uSVP) in lattice-based cryptography (such as [1,29]) or on any problem
that can be reduced to the uSVP (because of a chain of reductions between several
problems [25,28,33]). More concretely, the security of several primitives reduces
to the DHSP. The most prominent example is the isogeny-based post-quantum
key-exchange CSIDH [11], which is similar to the Diffie-Hellman protocol [16]
except that it does not rely on the period-finding problem in an abelian group
(which is solvable in quantum polynomial time), but on the difficulty to invert
the group action. Several related constructions [3] such as the signature schemes
SeaSign [14,15] and CSI-FiSh [6] also rely on the same problem. It should be
noted that these isogeny-based cryptosystems are the only major contenders for
which the quantum attacker enjoys more than a quadratic speedup, as opposed to
the lattice- and hash-based finalists of the NIST post-quantum standardization
process [2,26].

As it has been shown in [9,12,27], a better understanding of the security of
CSIDH comes from a careful analysis of quantum DHSP algorithms. This is the
motivation of our work.

From the DHSP to the DCP. Solving the HSP for the dihedral group of order
2N is known to reduce to the specific case where the hidden subgroup is
{(0, 0), (s, 1)}, where s ∈ ZN , which can in turn be reduced to a problem known
as the Dihedral Coset Problem (see [18]).

Definition 2 (DCP). The dihedral coset problem is defined as:

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 507

– Given: an oracle outputting coset states of the form 1√
2
(|0〉 |x〉 + |1〉 |x + s〉)

for random x ∈ [[0, N]],
– Find: s ∈ [[0, N]]

While the Ettinger-Høyer algorithm [18] solves the DCP with a linear number
of queries (O (logN)), it runs in exponential time O (N). This algorithm basically
consists in measuring O (logN) coset states and then classically looking among
all possible values for the secret s the one that matches the best a statistical test.
It is possible to improve over this running time by reducing the resolution of the
DCP to a subset-sum problem, as described by [7,9], at the cost of squaring the
query complexity. Though it remains exponential, the time complexity becomes
Õ (N cSS), where cSS is a constant smaller than 1 that depends on the invoked
subset-sum subroutine.

In a seminal work [23], Kuperberg initiated a family of sieving algorithms
which reach subexponential time complexities (at the cost of a subexponential
query complexity). The idea here is to iterate a process of combining states to
build new ones with a stronger and stronger structure, until building a very
specific state that allows us to guess a bit of the secret when measured. The
first algorithm [23] requires subexponential quantum time and space, but it was
quickly followed by an algorithm of Regev [30] which requires only polynomial
space. Later, Kuperberg proposed his second algorithm [24], which generalized
Regev’s while improving its exponents, giving in the end a complexity in time
(classical and quantum) and classical space of Õ

(
2

√
2 log N

)
with a quantum

space of O (polylogN) and Õ
(
2

√
2 log N

)
queries, which is the state of the art so

far.

Our Contributions. Let n
def= �log2 N�. We first propose a new algorithm using a

linear number of queries. It is somewhat analogous to Regev’s algorithm where
instead of reducing the DCP to a classical subset-sum problem, it reduces the
DCP to a quantum subset-sum problem. In the first case, the algorithm makes
O (n) queries to find one bit of the secret, meaning it has to be iterated O (n)
times. With this new algorithm, which is inspired by [28,33], we only need O (1)
quantum subset-sum instances, i.e., O (n) queries, to find the whole secret.

Second, we present a simple and natural method of interpolation between
Kuperberg’s second algorithm (which is the state of the art) and the new algo-
rithm we mentioned above. It consists in using Kuperberg’s algorithm to more
or less preprocess the states given as input to our algorithm. The difficulty of
solving the inherent quantum subset-sum problem instance will depend on the
preprocessing step.

Finally, as a building block of our algorithms, we study quantum subset-sum
algorithms when the problem to solve is partially in superposition. We show
here that we can still improve over Grover’s search even under the constraint
of a polynomial quantum memory, using an exponential classical memory, with
or without quantum access. Specifically, we show that the QRACM-based algo-
rithm of [8] adapts to this case and reaches a complexity Õ

(
20.2356n

)
. Without

508 M. Remaud et al.

QRACM, we reach a quantum time Õ
(
20.4165n

)
using O

(
20.2334n

)
bits of clas-

sical memory, improving over a previous algorithm by Helm and May [21]. In
both cases, we also give non-asymptotic estimates of their complexity.

All together, we can summarize the complexity exponents of the different
algorithms for solving the DCP in Table 1, including the new one we propose.

Table 1. Costs of algorithms for finding the whole secret s.

Algorithm Queries Classical Time Quantum Time Classical Space

Kuperberg II
√
2n + 1

2
log n + 3

√
2n + 1

2
logn + 3

√
2n + 1

2
log n + 3

√
2n

Regev 3
2
logn + 3 0.283n + 1

2
logn + 3 3

2
logn + 3 0.283n

Ettinger-Hoyer logn + 6.5 n logn + 6.5 log n

Algorithm 4 w/ QRACM logn + 3 0.238n + 12 0.238n + 3
2
log n + 12 0.238n

Algorithm 4 w/o QRACM logn + 3 < 0.2324n 0.418n + 3
2
log n + 15.5 < 0.2324n

We propose two versions of our algorithm, one with QRACM and one
without, both using polynomial quantum space. Note that our algorithm with
QRACM outperforms other algorithms using a linear number of queries when
we look at the complexity in classical time + quantum time.

Impact on CSIDH. Although Kuperberg’s second algorithm is the one with
the best time complexity for solving the DCP, it is still interesting to look at
algorithms that only use a linear number of queries, since for example, CSIDH
cryptanalysis via the resolution of the DCP involves the use of a very expensive
oracle.

We give in Table 2 a few examples of complexity exponents for parameters
of CSIDH.

Table 2. Complexity exponents for some parameters of CSIDH. The quantum space
is polynomial in n.

Algorithm Queries Classical
Time

Quantum
Time

Classical
Space

CSIDH-512
(n = 256)

Regev 15 80 15 73

Algorithm 4 w/ QRACM 11 73 85 61

CSIDH-1024
(n = 512)

Regev 17 153 17 145

Algorithm 4 w/ QRACM 12 134 148 122

CSIDH-1792
(n = 896)

Regev 18 262 18 254

Algorithm 4 w/ QRACM 13 226 240 214

CSIDH-3072
(n = 1536)

Regev 19 443 19 435

Algorithm 4 w/ QRACM 14 378 394 366

CSIDH-4096
(n = 2048)

Regev 20 589 20 580

Algorithm 4 w/ QRACM 14 500 516 488

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 509

Organization of the Paper. In Sect. 2, we give some preliminaries on sieving
algorithms for the DCP, and subset-sum algorithms that we will use as black
boxes afterwards. In Sect. 3, we recall the reduction from the DCP to the subset-
sum problem, and introduce our new idea of using a quantum subset-sum solver.
Our interpolation between the sieving and subset-sum approaches is detailed
in Sect. 4. Finally, our contributions on quantum subset-sum algorithms, and
the details of the black boxes that we used throughout the paper, are provided
in Sect. 5.

2 Preliminaries

In this section, we cover the main principles of sieving algorithms for the DCP,
including Kuperberg’s and Regev’s algorithms [13,23,24,30]. We assume knowl-
edge of the quantum circuit model, i.e., the |·〉 notation of quantum states, and
basic quantum operations such as CNOT, Toffoli, the Quantum Fourier Trans-
form (QFT), etc.

We estimate the time complexity of a quantum algorithm in the quantum
circuit model, as a number of n-bit arithmetic operations. That is, instead of
counting precisely the quantum gates, we count the n-bit XORs, additions, sub-
tractions, comparisons, QFTs, depending on the complexity parameter n.

We work with different types of memory:

– quantum memory (i.e., qubits): some DCP algorithms (e.g., Kuperberg’s first
algorithm [23]) need to store many coset states, which creates a subexponen-
tial quantum memory requirement;

– classical memory with quantum random-access (QRACM): the QRACM (or
qRAM, QROM in some papers) is a specialized hardware which stores classi-
cal data and accesses this data in quantum superposition. That is, we assume
that given a classical memory of M bits y0, . . . , yM−1, the following unitary
operation:

|x〉 |i〉 Access�−−−−→ |x ⊕ yi〉 |i〉
can be implemented in time O (1). QRACM is a very common assumption

in quantum computing, and it appears in several works on the DCP [24,27]
but also on collision-finding [10] and subset-sum algorithms [8].

– classical memory without quantum random-access: the Access operation can
be implemented in M arithmetic operations using a sequential circuit. This
removes the QRACM assumption, and we fall back on the basic quantum
circuit model. Some algorithms using QRACM can be re-optimized in a non-
trivial way when memory access is costly, and this is the case of subset-
sum [21].

510 M. Remaud et al.

2.1 Phase Vectors and Kuperberg’s First Algorithm

We will consider in what follows that we have access to an oracle outputting
phase vectors denoted by |ψk〉 and defined as:

|ψk〉 def=
1√
2

(|0〉 + ωsk
N |1〉)

where ωN = exp(2ιπ/N), ι =
√−1, and k is a known uniformly distributed

random element of ZN . They are obtained from coset states (the input states of
the DCP) by applying a QFT on ZN on the first register and then measuring
this register, since we have

(QFTN ⊗ I)
(

1√
2
(|x〉 |0〉 + |x + s〉 |1〉)

)
=

1√
N

∑
k∈ZN

ωkx
N |k〉 |ψk〉 .

Finding s ∈ [[0, N−1]] from a collection of phase vectors |ψk〉 for known uniformly
distributed random k ∈ [[0, N − 1]] solves both the DCP and the DHSP.

Subexponential Algorithms. We will now give more details on the algorithms
solving the DCP in subexponential time. Until the end of this section, it can be
assumed that N = 2n for the sake of simplicity, but the algorithms discussed
here work for any value of N .

Kuperberg’s initial observation is that one can combine two phase vectors
|ψp〉 and |ψq〉 to construct a new phase vector. Indeed, we have:

|ψp, ψq〉 CNOT�−−−−→ 1√
2
(|ψp+q, 0〉 + ωyq

N |ψp−q, 1〉) .

A measurement of the second qubit will leave the first one either in the state
|ψp−q〉, or |ψp+q〉, depending on the bit measured. With probability 1/2, we get
|ψp−q〉. By noticing on the other hand that

∣∣ψN/2

〉
= H |lsb(s)〉 (lsb(s) being the

least significant bit of s), Kuperberg designed a quite simple algorithm which
groups the phase vectors according to their last non-zero bits. They are then
combined two by two using CNOT gates. Half of the time, the difference is
obtained, and it contains as many zeroes as there were bits in common. The
resulting phase vectors are regrouped and the process is reiterated. As proven
in [23], the target state

∣∣ψN/2

〉
is then obtained in subexponential time.

2.2 Regev’s Algorithm

Kuperberg’s first algorithm requires to store, at each time, a subexponential
number of phase vectors; thus, it has subexponential quantum memory com-
plexity. Regev [30] modified the combination routine to reduce the number of
qubits to polynomial, while keeping the time complexity subexponential.

The new routine combines m phase vectors for a well-chosen m (to minimize
the overall complexity).

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 511

Let B be some chosen, arbitrary value. We start with m phase vectors
|ψk1〉 , . . . , |ψkm

〉. We tensor the vectors, i.e., we obtain a sum:
⊗

i

|ψki
〉 =

∑
b∈{0,1}m

ω
s〈b,k〉
N |b〉

We compute �〈b,k〉/B into a new qubit register, and measure a value V . This
projects the state on the vectors b such that �〈b,k〉/B = V . We choose m
and the size of B such that on average two solutions b and b′ occur. The state
becomes proportional to:

|b〉 + ω
s(〈b,k〉−〈b′,k〉)
N |b′〉 .

Finally, we remap b,b′ to 0, 1 respectively. We have obtained a phase vector
|ψk〉 with a label k = 〈b,k〉 − 〈b′,k〉 ≤ B. Then, step by step, we can make the
labels decrease until we obtain the label 1. As remarked in [9], we can also obtain
any label whose value is invertible modulo N , by multiplying all initial labels
by their inverse, and applying normally the algorithm afterwards. In particular,
when N is odd, we can obtain all powers of two.

Regev [30] and later Childs, Jao and Soukharev [13] used this combination
routine to get an algorithm with Õ

(
2
√

2n log2 n
)

queries and O (n) quantum
memory.

2.3 Kuperberg’s Second Algorithm

Like the two previous ones, Kuperberg’s collimation sieve [24] is a hybrid quan-
tum/classical procedure starting from the initial phase vectors, where we need
to perform both quantum computations which create new vectors, and classical
computations which give their description. The difference is that phase vectors
are now multi-labeled:

|ψk1,...,k�
〉 = 1√

�

∑
i

ωski

N |i〉 .

In order to control these new phase vectors, we need to know the list of all their
labels. These lists will become of subexponential size, although the vector itself
requires only a polynomial amount of qubits. This is why the algorithm combines
a polynomial quantum memory with a subexponential classical memory.

The combination subroutine is similar to Regev’s, except that it does not
necessarily reduce the list of labels down to 2. Instead, the two phase vectors are
combined into a new one holding a similar number of labels, as shown in Algo-
rithm 1.

Originally, Kuperberg uses classical memory with quantum random-access
(QRACM), an approach later followed by Peikert [27]. However it only improves
the trade-offs with respect to the total quantum time, and it is not necessary
to reach the optimal complexity. Also, the collimation procedure presented here

512 M. Remaud et al.

Algorithm 1. Combination routine in the collimation sieve.

Input: |ψk1,...,k�〉, . . . ,
∣∣∣ψk′

1,...,k′
�′

〉
such that ∀i ≤ �, ∀j ≤ �′, ki < 2a, k′

j < 2a, the
lists of the labels
Output:

∣∣ψv1,...,v�′′
〉

such that ∀i, vi < 2a−r

1: Quantum: Tensor the vectors:
∑

i≤�,j≤�′ ω
s(ki+k′

j)

N |i〉 |j〉
2: Quantum: Compute the function i, j �→ �(ki + k′

j)/2
a−r	 into an ancilla register

3: Quantum: Measure the register, obtain a value V . The state collapses to:
∑

i,j|�(ki+k′
j)/2

a−r�=V

ω
s(ki+k′

j)

N |i〉 |j〉

4: Classical: Compute {(i, j)|�(ki + k′
j)/2

a−r	 = V }, of size �′′

5: Quantum: Apply to the state a transformation that maps the pairs (i, j) to [[0, �′′ −
1]].

6: Return the state and the vector of corresponding labels ki + k′
j .

is from later works such as [27], as it allows to easily deal with arbitrary group
orders.

Without QRACM, Steps 2 and 5 in Algorithm 1 require a time complexity
O (max(�, �′, �′′)). This is also the classical time complexity required by Step 4,
assuming that the lists of labels are sorted.

The Algorithm as a Merging Tree. Starting from a certain set of multi-labeled
phase vectors, we can identify them with the classical lists of their labels. The
combination step operates on these lists like a purely classical list-merging algo-
rithm, in which new lists of labels are formed from the pairs of labels satisfying a
certain condition. This algorithm can be represented as a merging tree in which
all nodes are lists of labels (resp. phase vectors).

On the classical side, Kuperberg’s algorithm is thus similar to Wagner’s gen-
eralized birthday algorithm [34], which is a binary merging tree of depth

√
n.

In Wagner’s algorithm, the goal is to impose stronger conditions at each level
which culminate in a full-zero sum. Here, the same conditions are imposed on the
labels in the phase vectors. A success in the list-merging routine is equivalent to
a success in the collimation routine (we obtain a phase vector with the wanted
label).

The query, time and memory complexities depend on the shape of the tree.
Even though the conditions are actually chosen at random at the measurement
step in Algorithm 1, we can consider them chosen at random before the combi-
nation to analyze the algorithm.

Example: Optimal Time. The optimal time complexity is obtained with a tree
with

√
2n levels. It starts with lists of size 2, i.e., two-labeled phase vectors.

At level i starting from the leaves, the lists have (expected) size 2i, and they
are merged pairwise into a list of size 2i+1. This means that we can eliminate
2i − (i + 1) = i − 1 bits. So we should use h levels, where:

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 513

1 + . . . + h − 1 = n =⇒ h �
√
2n .

Since each level of merging doubles the number of lists, there are in total 2
√
2n

leaves (hence queries). The (classical) cost of merging, over the whole tree, is
equal to the sum of all list sizes. It is also the (quantum) cost of the relabeling
operations:

∑
i 2

√
2n−i × 2i = O

(√
2n2

√
2n

)
.

To compute the memory complexity, one must note that it is not required
to store whole levels of the merging tree. Instead, we compute the lists (resp.
the phase vectors) depth-first, and store only one node of each level at most,
i.e.

√
2n phase vectors. For the same reason, the classical memory complexity is

O
(
2

√
2n

)
.

Precise Analysis. The analysis above is only performed on average, and in prac-
tice, there is a significant variance in the list sizes. More precise analyses were
performed in [12,27]. It follows from them that the list size after merging should
be considered smaller than the expected one by an “adjusting factor”

√
3/(2π).

Furthermore, the combination may create lists that are too large, which must
be discarded. The empirical analysis of Peikert [27] gives a factor (1− δ) of loss
at each level, with δ = 0.02.

The smaller factor in list sizes simply means that at level i, we will not exactly
eliminate i−1 bits, but i− c where c = log2

(
1 +

√
3
2π

)
� 0.76. (We can control

the interval size in Algorithm 1 very precisely.) Thus h is solution to:

h∑
i=1

(i − c) = n =⇒ h2

2
− ch = n =⇒ h � c +

√
2n + 4c2 .

Finally, the loss at each level induces a global multiplicative factor (1−δ)−h =
2− log2(1−δ)h � 20.029h on the complexity. Therefore, accounting for the adjusting
factor and discards, the query complexity of the sieve is:

21.029(0.76+
√
2n+2.30) (1)

and the quantum time complexity multiplies this by a factor 0.76+
√
2n + 2.30.

The difference with the exact 2
√
2n is not negligible, but not large either. At

n = 4608, the two exponents are respectively 99.6 and 96.

Obtaining All the Bits of the Solution. The analysis above applies if we want
to obtain a specific label, e.g., the label 1. Afterwards, the algorithm can be
repeated n times. For a generic N (not a power of 2), one typically produces
all labels which are powers of 2 and uses a QFT to directly recover the secret.
This is done for example in [9]. Peikert [27] proposed a more advanced method
to recover multiple bits of the secret with each phase vector.

514 M. Remaud et al.

Lemma 1. Let α > 0 and n be a positive integer. We have
n∑

i=1

2α
√

i = O
(√

n2α
√

n
)

.

Proof. When i is a perfect square, let say i = j2, we have that 2α
√

i = 2αj . Now
for any i between the two perfect squares (j − 1)2 and j2, we have the upper
bound 2α

√
i < 2αj . In order to use this, we rewrite the sum:

n∑
i=1

2α
√

i ≤
�√

n	−1∑
j=0

(j+1)2∑
k=j2+1

2α
√

k

≤
�√

n	−1∑
j=0

(j+1)2∑
k=j2+1

2α(j+1)

=
�√

n	−1∑
j=0

(2j + 1)2α(j+1)

Using the formula for geometric series, we obtain:
n∑

i=1

2α
√

i ≤ 2α+1 (2
α − 1)�√n�2α�√

n	 − 2α(2α�√
n	 − 1)

(2α − 1)2
+ 2α 2α�√

n	 − 1
2α − 1

=
2α

2α − 1

(
(2�√n� + 1)2α�√

n	 − 2α+1

2α − 1
(2α�√

n	 − 1) − 1
)

≤ 2α

2α − 1
(2�√n� + 1)2α�√

n	 .

which allows us to conclude the proof, α being fixed. ��

Obtaining Partially Collimated Labels. In this paper, we will consider the task
of obtaining labels which, instead of reaching a prescribed k, match k on a
certain number of bits only (we can say that the phase vectors are partially
collimated), let say i: this complexity is of order 2

√
2i. By Lemma 1, we can

obtain a sequence of i phase vectors collimated on 1, . . . , i bits with a query
complexity:

∑i
j=1 2

√
2j = O

(√
i2

√
2i

)
.

2.4 The Subset-Sum Problem

As we will see in Sect. 3, the DCP can be reduced to the Subset-sum problem;
this leads to the most query-efficient algorithms, and depending on the cost of
queries, to the best optimization for some instances.

Definition 3 (Subset-sum). A subset-sum instance is given by (v,k), v ∈
ZN ,k ∈ Z

m
N for some modulus N and integer m. The problem is to find a vector

(or all vectors) b ∈ {0, 1}m such that 〈b,k〉 = v mod N .

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 515

When m � n = �log2 N�, there is one solution on average. The instance is
said to be of density one. Heuristic classical and quantum algorithms based on
the representation technique [4,22] allow to solve it in exponential time in n.
In the following, we will use these algorithms as black boxes. We first need a
classical subset-sum solver.

Fact 1. We have a classical algorithm S C which, on input a subset-sum
instance (v,k) of density one, finds all solutions. It has a time complexity in
Õ (2ccSSn) where ccSS < 1.

Here, the parameter ccSS is the best asymptotic exponent that we can obtain
for classical subset-sum algorithms. If there are no constraints on the memory,
we can take ccSS = 0.283 which is the best value known at the moment [8].

In this paper, we will also need (quantum) algorithms solving a more difficult
problem, in which k is fixed, but the target v is in superposition. We will call
this type of algorithm a quantum subset-sum solver.

Fact 2. We have a quantum algorithm S Q which has a complexity cost in
Õ (2cqSSn) (where cqSS < 1), which, given an error bound ε, given a known (clas-
sical) k ∈ Z

m
N and on input a quantum v, maps:

|v〉 |b〉 �→ |v〉 ∣∣b ⊕ S Q(v)
〉

where, for a proportion at least 1 − ε of all v admitting a solution, S Q(v) is
selected u.a.r. from the solutions to the subset-sum problem, i.e., from the set
{b| 〈b,k〉 = v}.

Notice that in the way we implement the solver, we can only guarantee that
it succeeds on a large proportion of inputs (there remains some probability of
error). However, it depends on some precomputations that we can redo, to obtain
a heuristically independent solver which allows to reduce ε and/or to ensure that
we get more solutions.

Though we could implement the function S Q by running an available clas-
sical (or quantum) subset-sum algorithm, it would then require exponential
amounts of qubits. Using only poly(n) qubits, we know for sure that cqSS ≤ 0.5,
because we can use Grover’s algorithm to exhaustively search for a solution b.
This search uses poly(n) qubits only. In Sect. 5, we will show that we can reach
smaller values for cqSS, which differ depending on whether we allow QRACM or
not.

3 Reducing DCP To a Subset-Sum Problem

Recall that we note n = �log2 N�, where N is not necessarily a power of 2.
We will focus in this section on two algorithms to solve the DCP: the first one
(from Regev [30]) uses a classical subset-sum solver and the other (ours) uses a
quantum one.

516 M. Remaud et al.

Algorithm 2. Finding lsb(s) using a classical subset-sum solver S C

Require: |ψk1〉, . . . , |ψkn〉 with k
def
= (k1 . . . kn) ∈ Z

n
N .

Ensure: lsb(s).
1: Tensor the phase vectors and append a register on F

n−1
2

n⊗
i=1

|ψki〉 =
1√
2n

∑
b∈F

n
2

ω
s〈b,k〉
N |b〉

2: Compute the inner product of b and k in the ancillary register

1√
2n

∑
b∈F

n
2

ω
s〈b,k〉
N |b〉 ∣∣〈b,k〉 mod 2n−1〉

3: Measure the ancillary register � Z is a normalizing constant

1√
Z

∑
b∈F

n
2 :

〈b,k〉=z mod 2n−1

ω
s〈b,k〉
N |b〉 |z〉

4: Search for vectors bi such that 〈bi,k〉 = z mod 2n−1 using S C

5: Project the superposition onto a pair of solutions, e.g., (b1,b2)

1√
2

(
ω

s〈b1,k〉
N |b1〉 + ω

s〈b2,k〉
N |b2〉

)

6: Relabel the basis states to (|0〉 , |1〉), resulting in

ω
s〈b1,k〉
N√

2

(
|0〉 + ω

s〈b2−b1,k〉
N |1〉

)

7: Apply a Hadamard gate on the qubit, measure it and output the result.

3.1 Using a Classical Subset-Sum Solver

By reducing Regev’s algorithm to a single level, as described in [9], we can
directly produce lsb(s) from n phase vectors. This is detailed in Algorithm 2.

It can be proven that in Step 4, the number of solutions is quite small but
generally enough for our purpose. In Step 5, the solution vectors we want to
project our superposition on are marked in an ancillary register which is then
measured. Either we will get what we want, or we will end up with a superpo-
sition of the solution vectors that were not marked, in which case we start the
process again with two other solution vectors. For more details, we refer to the
extensive study of Regev’s algorithm by Childs, Jao and Soukharev [13].

The following lemma gives us the complexity of Algorithm 2, derived from
Regev’s algorithm.

Lemma 2 (Subsect. 3.3 [9]). There exists an algorithm which finds lsb(s) with
O (n) queries and quantum time and space. It has the same usage in classical
time and space as the subset-sum solver S C.

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 517

Algorithm 2 finds one bit of the secret. In order to retrieve the whole secret,
we will have to repeat this procedure n times. Thus, we get an algorithm using
a quadratic number of calls to the oracle, exponential classical time and space
because of the subset-sum solver, linear quantum space and quadratic quantum
time.

It turns out that we could solve the classical subset-sum problem on the
side with a quantum computer, leading to some tradeoffs described in [7]. But
we show hereafter that we can also build an algorithm which directly uses a
quantum subset-sum solver instead of having to measure the ancillary register
to get a classical instance of a subset-sum problem.

3.2 Using a Quantum Subset-Sum Solver

The main observation that led to the design of the algorithm we introduce here-
after is that on one hand, we would like to build the superposition

1√
N

∑
j∈ZN

ωsj
N |j〉 (2)

since applying the inverse QFT on ZN on it would directly give the secret s,
and on the other hand, we know that it would be possible, thanks to a quantum
subset-sum solver, to prepare the state

1√
Z(k)

∑
b∈F

m
2

ω
s〈b,k〉
N |〈b,k〉 mod N〉 (3)

where Z(k) is a normalizing constant depending on k. Indeed, preparing this
state is done by using Regev’s trick (see [28,33]), i.e.,

(i) by tensoring m phase vectors

1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |0n〉 ,

(ii) then computing the subset-sum in the second register to get the entangled
state

1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |〈b,k〉 mod N〉 ,

(iii) and finally disentangle it thanks to a quantum subset-sum algorithm which
from 〈b,k〉 mod N and k (which is classical) recovers b and subtracts it
from the first register to get the state we want.

As one can see, if we could take m = n and have an isomorphism between the
vectors b and the knapsack sums 〈b,k〉 mod N , the prepared state (3) would
be exactly the superposition (2).

518 M. Remaud et al.

Algorithm 3. Ideal algorithm
Require: A parameter m < n and phase vectors |ψki〉 for i ∈ [[1, m]].
Ensure: An element j ∈ ZN .
1: Tensor the m phase vectors and append a register on ZN

m⊗
i=1

|ψki〉 |0n〉 = 1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |0n〉

2: Compute the inner product of b and k in the ancillary register

1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |〈b,k〉 mod N〉

3: Uncompute b thanks to k and |〈b,k〉 mod N〉
1√
Z(k)

∑
b∈F

m
2

ω
s〈b,k〉
N |0m〉 |〈b,k〉 mod N〉

4: Apply the inverse QFT on ZN on the second register

1√
N

∑
j∈ZN

⎛
⎝ 1√

Z(k)

∑
b∈F

m
2

ω
(s−j)〈b,k〉
N

⎞
⎠ |0m〉 |j〉

5: Measure the state and output the resulting j.

However, there would be many cases in which multiple solutions to the subset-
sum problem exist. Thus we take m < n and define M

def= 2m < N . This is dif-
ferent from Algorithm 2, where such collisions are needed. We obtain Algorithm
3, which uses Regev’s trick with a quantum subset-sum solver in Step 3.

Despite M being smaller than N , some cases still yield multiple solutions, and
furthermore the subset-sum solver (as given by Fact 2) fails on some instances.
This is why we distinguish between Algorithm 3 in which we consider the quan-
tum subset-sum solver to be ideal (i.e., it finds back b from 〈b,k〉 and k with
certainty), and the algorithm that we actually build in practice: Algorithm 4.

The analysis of Algorithm 4 is related to the set of b on which the quantum
subset-sum solver succeeds: S Q(〈b,k〉) = b for a fixed k.

Notation 3. Let us denote by G (k) the set of b’s that are correctly found back
by S Q for a given k:

G (k)
def
= {b ∈ F

m
2 : S Q(〈b,k〉) = b}

and let G(k) be the size of the set G (k).

We apply in Step 4 a measurement in order to disentangle the superposition
we have, so we can apply an inverse QFT in the same natural way as in the ideal
algorithm. We show that the probability of success of the measurement (i.e., of

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 519

Algorithm 4. Finding s using a quantum subset-sum solver S Q

Require: A parameter m < n and phase vectors |ψki〉 for i ∈ [[1, m]].
Ensure: An element j ∈ ZN .
1: Tensor the phase vectors and append a register on ZN

m⊗
i=1

|ψki〉 |0n〉 = 1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |0n〉

2: Compute the inner product of b and k in the ancillary register

1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N |b〉 |〈b,k〉 mod N〉

3: Apply S Q to uncompute b

1√
M

∑
b∈F

m
2

ω
s〈b,k〉
N

∣∣∣b ⊕ S Q(〈b,k〉)
〉

|〈b,k〉 mod N〉

4: Measure the first register. If the result is not 0m, abort and restart with new coset
states. Otherwise, we obtain

1√
G(k)

∑
b∈G

ω
s〈b,k〉
N |0m〉 |〈b,k〉 mod N〉

5: Apply the inverse QFT on ZN on the second register

1√
N

∑
j∈ZN

(
1√

G(k)

∑
b∈G

ω
(s−j)〈b,k〉
N

)
|0m〉 |j〉

6: Measure the state and output the resulting j.

measuring 0) is good enough for our purpose when taking m close to n. We also
prove under the same assumption that the algorithm outputs the secret with
good probability. All in all, these two properties lead to our main result.

Theorem 4. There exists an algorithm which finds s using O (n) queries and
the same usage in time and space as the subset-sum solver S Q.

In order to analyze Algorithm 4 and prove Theorem 4, we will proceed in
two steps.

Step 1. The first step is to give a lower bound on Ek[G(k)]. This lower bound is
given by estimating the number of vectors which admit more than one possible
solution.

To arrive here, we first take a look at the normalization constant Z(k) and
we compute Ekk[Z(k)] (the average over all choices of k). This can be done by
simply looking at the measurement step in Algorithm 3.

520 M. Remaud et al.

Lemma 3. We have

Ekk[Z(k)] = M

(
1 +

M − 1
N

)
.

Proof. Fix k = (k1, · · · , km). For all j ∈ ZN , the measurement in Algorithm 3
returns j with probability:

Pideal [j|k] = 1
NZ(k)

∣∣∣∣∣∣
∑
b∈F

m
2

ω
(s−j)〈b,k〉
N

∣∣∣∣∣∣

2

=
1

NZ(k)

∣∣∣∣∣
m∏

i=1

(
1 + ω

(s−j)ki

N

)∣∣∣∣∣
2

=
1

NZ(k)

m∏
i=1

∣∣∣1 + ω
(s−j)ki

N

∣∣∣
2

=
1

NZ(k)

m∏
i=1

4 cos2
(

πki
s − j

N

)
=

M2

NZ(k)

m∏
i=1

cos2
(

πki
s − j

N

)
.

Furthermore, we have
∑

j∈ZN
Pideal [j|k] = 1, so we can write:

Z(k) =
M2

N

∑
j∈ZN

m∏
i=1

cos2
(

πki
s − j

N

)
(4)

It follows that

Ekk[Z(k)] =
M2

N

∑
j∈ZN

E

[
m∏

i=1

cos2
(

πki
s − j

N

)]

and since the ki are i.i.d., we have

Ekk[Z(k)] =
M2

N

⎛
⎝1 +

∑
j∈ZN \{s}

m∏
i=1

E

[
cos2

(
πki

s − j

N

)]⎞
⎠

=
M2

N

(
1 + (N − 1)

m∏
i=1

1
2

)
=

M

N
(N + M − 1) . �

Next, we give a relation between G(k) and Z(k).

Lemma 4. For any k:

G(k) ≥ (1 − ε) (2M − Z(k)) .

Proof. Fix k. Let B(j) be the set of vectors whose knapsack sum is j:

B(j) def= {b ∈ F
m
2 | 〈b,k〉 = j mod N}

and let C i be the set of vectors b that have i collisions:

C i
def= {b ∈ F

m
2 | #B(〈b,k〉) = i}.

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 521

We denote by Ci the size of the set C i.
If we take a closer look at Z(k), we have that

Z(k) =
∑

j∈ZN

∣∣∣∣∣∣
∑

b∈B(j)

ω
s〈b,k〉
N

∣∣∣∣∣∣

2

=
∑

j∈ZN

∣∣∣ωsj
N

∣∣∣
2

∣∣∣∣∣∣
∑

b∈B(j)

1

∣∣∣∣∣∣

2

=
∑

j∈ZN

∑
b∈B(j)

∑
b′∈B(j)

1 =
∑

j∈ZN

∑
b∈B(j)

∑
b′∈B(〈b,k〉)

1

=
∑

j∈ZN

∑
b∈B(j)

#B(〈b,k〉) =
∑
b∈F

m
2

#B(〈b,k〉)

=
∑
i≥1

∑
b∈F

m
2 : #B(〈b,k〉)=i

i =
∑
i≥1

iCi

Letting C>1 be the number of vectors b with at least one collision (i.e., for
which there exists b′ �= b such that they have the same knapsack sum), we have
C>1 =

∑
i>1 Ci. From

Z(k) =
∑
i≥1

iCi = C1 + 2
∑
i≥2

Ci +
∑
i≥3

(i − 2)Ci ,

it follows that we have the lower bound:

Z(k) ≥ C1 + 2C>1 .

Injecting twice the equation C1 = M − C>1 in this inequality and using the
trivial bound G(k) ≥ (1 − ε)C1, we conclude the proof. ��

From Lemma 3 and 4, we immediately deduce:

Lemma 5.
Ek[G(k)] ≥ (1 − ε)M

(
1 − M − 1

N

)
.

Step 2. The second step in our proof computes the probability of success of the
“real” algorithm by relating it to Ek[G(k)].

Lemma 6. Algorithm 4 outputs the secret s with probability≥(1−ε)M(N−M+1)
N2 .

Proof. We compute the probability of measuring j ∈ ZN at the end of Algorithm
4. In particular, we have for s

Preal [s|k] = 1
NG(k)

∣∣∣∣∣
∑
b∈G

ω0
N

∣∣∣∣∣
2

=
G(k)
N

We have by Lemma 5 that E [G(k)] ≥ (1− ε)M
(
1 − M−1

N

)
. We finish the proof

by observing that Preal [s] = E [Preal [s|k]] ≥ (1 − ε)M(N−M+1)
N2 . ��

522 M. Remaud et al.

Finally, we can prove Theorem 4.

Proof. Step 4 of Algorithm 4 succeeds with average probability E [G(k)]
M which is

greater than (1 − ε)N−M+1
N (by Lemma 5). The final measurement of the algo-

rithm outputs the secret with probability ≥ (1 − ε)M(N−M+1)
N2 (by Lemma 6).

We will thus have to repeat the algorithm an expected number smaller than
N3

(1−ε)2M(N−M+1)2 times. By letting m be equal to n − 1, we obtain that the
algorithm will have to be repeated less than 8/(1− ε)2 times. Thus, we can con-
clude that our algorithm needs O (n) queries and has complexity costs identical
to the ones of the subset-sum solver, since the subset-sum resolution is the only
exponential step of the algorithm. ��

4 Interpolation Algorithm

If we take a look at the ideal algorithm and consider that there is no collision,
we can see that we would like 2m to be as close to N as possible in order for the
sum

1√
M

∑
b∈F

m
2

ω
(s−j)〈b,k〉
N

to contain as many as possible elements of the sum
1√
N

∑
b∈F

n
2

ω
(s−j)〈b,k〉
N .

In the mean time, it is clear that the closest M gets to N , the more likely
collisions 〈b1,k〉 = 〈b2,k〉 for b1 �= b2 become. We thus have to find a compro-
mise on the value m or more interestingly play with the values ki used in the
algorithm, to avoid collisions and to simplify the resolution of the subset-sum
problem.

In fact, we can reduce the size of the subset-sum problem we have to solve by
pre-processing the states to get values of ki that will allow us to solve the subset-
sum problem on some bits by Gaussian elimination. Constructing these ki’s can
be achieved by Kuperberg’s second algorithm (or any improvement). Given a
threshold parameter t ∈ [[1,m]], we can consider the following configuration for
the ki to use as inputs in Algorithm 4 (dots represent unknown bits and the i-th
bit of the j-th row is the j-th bit of the binary expansion of ki):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · m − t m − t + 1 · · · n

k1 1 • · · · • • · · · •
k2 0 1

. . . • • · · · •
...

...
...

.
... · · · •

km−t 0 0 · · · 1 • · · · •
km−t+1 0 0 · · · 0 • · · · •
...

...
...

...
... · · · •

km 0 0 · · · 0 • · · · •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 523

In Algorithm 4, it turns out that we can keep a good probability of finding
the secret s by letting m be equal to n − 1 so that is what we will assume
afterwards.

To build phase vectors that satisfy the configuration in (5), we will approxi-
mately have to query the oracle

n−t∑
i=1

2
√

cDCPi + t2
√

cDCP(n−t)

leading to a query and time complexities of O
(
(
√

n − t + t)2
√

cDCP(n−t)
)

(by
Lemma 1), where cDCP is the constant of the algorithm used to construct the
states (cDCP = 2 for Kuperberg’s second algorithm). For the subset-sum problem,
solving it on the first n − t bits is easy (thanks to a Gaussian elimination), the
difficulty comes from the last t bits, leading to a complexity in O (2cqSSt) time,
where cqSS is the complexity exponent of the quantum subset-sum solver. This
parameter t can be used in a natural way to obtain an interpolation algorithm,
since it allows to obtain a tradeoff between the preparation of the states and
the resolution of the problem (which amounts to solving a quantum subset-sum
problem).

We can now give an interpolation algorithm derived from Algorithm 4. We
note that letting q be the query complexity exponent, it is possible to determine
t from n and the value q we can afford. Using Kuperberg’s second algorithm
(or any improvement) to compute suitable phase vectors as described before
and then giving them as inputs to Algorithm 4, we can retrieve the secret s as
described by Algorithm 5 with the complexities given by Sect. 5.

Algorithm 5. Interpolation algorithm (using a quantum SS solver)
Require: q such that 2q is the number of queries we are allowed to do.
Ensure: The secret s.
1: Use Kuperberg’s second algorithm (or any improvement) to create states |ψki〉 for

i ∈ [[1, m]] satisfying the configuration represented by Matrix (5), where t ≈ q
cSS

.
2: Apply Algorithm 4 on these m states to obtain a value j ∈ ZN .
3: Check if j is the secret. If not, return to Step 1. Otherwise, output j.

Theorem 5. Let t ∈ [[1,m]]. Algorithm 5 finds s with O
(
(
√

n − t + t)

2
√

cDCP(n−t)
)

queries in O
(
(
√

n − t + t)2
√

cDCP(n−t) + 2cqSSt
)

quantum time,

classical space O
(
2
√

cDCP(n−t) + 2cqSSt
)
and O (poly(n)) quantum space.

We notice that when t = m, the ki are kept random and we have to solve
the “full rank” subset-sum, matching with Algorithm 4. On the other side, when
t = 1, we fall back on Kuperberg’s second algorithm since we have in this case

524 M. Remaud et al.

to construct a collection of states divisible by all the successive powers of 2,
see Sect. 2.3. Finally, when 1 < t < m, we have new algorithms working for any
number of queries between O (n) and Õ

(
2

√
cDCPn

)
.

5 Quantum Subset-Sum Algorithms

In this section, we consider quantum algorithms solving the quantum subset-
sum problem introduced in Sect. 2.4. We give both asymptotic complexities and
numerical estimates.

Recall that we consider a subset-sum instance (v,k),k ∈ Z
m
N , where v is

in superposition, and k will remain fixed. The problem is to find b such that
〈b,k〉 = v mod N for a given (fixed) modulus N . For a given v, if there are many
solutions, we want to find one selected uniformly at random (under heuristics).
If we want all solutions, then we can run multiple instances of the solver (we will
have to redo the pre-computations that we define below). A given solver, defined
for a specific k, is expected to work only for some (large) proportion 1 − ε of v.
We can check whether the output is a solution or not and measure the obtained
bit to collapse on the cases of success.

5.1 Algorithms Based on Representations

The best algorithms to solve the subset-sum problem with density one are list-
merging algorithms using the representation technique [4,22]. The best asymp-
totic complexities (both classical and quantum) are given in [8]. We detail the
representation framework following the depiction given in [8]. To ease the descrip-
tion, we start with the case v = 0, i.e., the homogeneous case, and we will show
below how to extend it easily to v �= 0.

Guessed Weight. We assume that the solution b is of weight �m/2�. This is true
only with probability: pm := 2−m

(
m

�m/2	
)
= 1/poly(m). If not, we re-randomize

the subset-sum instance by multiplying b by a random invertible matrix. Thus
if we manage to solve an instance of weight �m/2�, the total complexity to
solve any instance will introduce a multiplicative factor 1

pm
that we will have to

estimate.

Distributions. We consider distributions of vectors having certain relative
weights: Dm[α] ⊆ {0, 1}m is the set of vectors having weight αm. The basic idea
of representations is to write the solution b as a sum of vectors of smaller relative
weights, e.g., b = b1+b2 where b1 ∈ Dm[α1],b2 ∈ Dm[α2] and α1+α2 = 1

2 . In
this paper, we consider only representations with coefficients 0 or 1. Extended
representations can be considered, using more coefficients (which have to can-
cel out each other). However, the advantage of using extended representations
becomes quickly insignificant in practice. It is also harder to compute the number
of representations, or the filtering probabilities that we define below.

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 525

Merging Tree. A subset-sum algorithm is defined by a merging tree. A node in
this tree is a list L[�, α, c], which represents a set of vectors drawn from {0, 1}m

under several conditions: 1. the size of the list is 2m�; 2. the vectors are sampled
u.a.r. from a prescribed distribution Dm[α]; 3. the vectors satisfy a modular
condition of cm bits. With v = 0, the following condition can be used: 〈e,k〉
mod N ∈ [−N/2cm;N/2cm] for some number c. More generally, the modular
conditions can be chosen arbitrarily, as long as they remain compatible with the
target v.

Once the tree structure is chosen, its parameters are optimized under several
constraints. First, the lists have a certain maximal size. A distribution Dm[α]
has size

(
m

αm

)
, which is asymptotically estimated as � 2h(α)m where h(x) :=

−x log2 x−(1−x) log2(1−x) is the Hamming entropy. This creates the constraint
� ≤ h(α) − c. Second, we expect the root list to contain the solution of the
problem, i.e., � = 0 (one element), α = 1

2 and c = 1. Finally, each non-leaf
list L has its parameters determined by its two children L1, L2. Indeed, it is
obtained via the merging-filtering operation which selects, among all pairs of
vectors (e1, e2) ∈ L1 × L2, the pairs such that: e1 + e2 satisfies the modular
condition (merging) and satisfies the weight condition (filtering). The parameters
are: {

α = α1 + α2 (increasing weights)
� = �1 + �2 − (c − min(c1, c2)) − pf(α1, α2)

(6)

Here, pf is the probability that two vectors chosen u.a.r. in their respective
distributions will not have colliding 1s.

Lemma 7 (Lemma 1 in [8]). Let e1, e2 be drawn u.a.r. from Dm[α1],Dm[α2]
with α1 + α2 ≤ 1. The probability that e1 + e2 ∈ Dm[α1 + α2] is equal to:

PF(α1, α2,m) :=
(

m − α1m

α2m

)
/

(
m

α2m

)
� 2mpf(α1,α2)

where pf(α1, α2) := h
(

1−α2
α1

)
α1 − h(α1).

Classical Computation of the Tree. To any correctly parameterized merging tree
corresponds a classical subset-sum algorithm that runs as follows: it creates the
leaf lists by sampling their distributions at random. It then builds the parent
lists by merging-filtering steps. The merging operation is efficient, since elements
can be ordered according to the modular condition to be satisfied.

Lemma 8 (Lemma 2 in [8]). Let L1, L2 be two sorted lists stored in classical
memory with random access. In log2, relatively to m, the parent list L can be built
in time: max(min(�1, �2), �1+�2−(c−min(c1, c2))) and in memory max(�1, �2, �).

Quantum Computation of the Tree. While the more advanced quantum subset-
sum algorithms use quantum walks [5,8,20], we want to focus here on algorithms
using few qubits, which at the moment, rely only on quantum merging with
Grover search. They replace the classical merging operation by the following.

526 M. Remaud et al.

Lemma 9 (Lemma 4 in [8]). Let L2 be a sorted list stored in QRACM. Assume
given a unitary U that produces, in time tL1 , a uniform superposition of elements
of L1. Then there exists a unitary U ′ that produces a uniform superposition of

elements of L, in time O

(
tL1√

pf(α1,α2)
max(

√
2cm/|L2|, 1)

)
.

Since the goal is only to sample u.a.r. from the root list, only half of the
lists in the tree need actually to be stored in QRACM. The others are sampled
using the unitary operators given by Lemma 9. In short, the obtained subset-
sum algorithm is a sequence of Grover searches which use existing lists stored in
memory to sample elements in new lists with more constraints.

Heuristics. The standard subset-sum heuristic assumes that the elements of all
lists in the tree (not only the leaf lists) behave as if they were uniformly sampled
from the set of vectors of right weight, satisfying the modular condition. This
heuristic ensures that the list sizes are very close to their average: for each L
obtained by merging and filtering L1[�1, α1, c1] and L2[�2, α2, c2], we have:

|L| � |L1||L2|
2m(c−min(c1,c2))PF(α1, α2,m)

,

where the approximation is exact down to a factor 2. This is true with over-
whelming probability for all lists of large expected size via Chernoff-Hoeffding
bounds, and even if the root list is of expected size 1, the probability that it
actually ends up empty is smaller than e−0.5 � 0.61.

5.2 From Asymptotic to Exact Optimizations

As the time and memory complexities of a subset-sum algorithm are determined
by its merging tree, we seek to select a tree which minimizes these parameters.
Given a certain subset-sum problem, we first select a tree shape. As an example,
the best subset-sum algorithm with low qubits (using QRACM) is the “quantum
HGJ” algorithm of [8], whose structure is reproduced in Fig. 1. At level 3, it
splits the vectors into two halves, and merges without filtering. While all lists
are obtained via quantum merging/filtering, the main computation is performed
after obtaining L3

1, L
2
1, L

1
1, where the main branch is explored using Grover’s

algorithm: we search through the lists L3
0, L

2
0L

1
0 without representing them in

memory. The quadratic speedup of Grover search makes the tree unbalanced,
which is reflected on the naming of its parameters in Fig. 1.

The asymptotic time complexity of the algorithms has the form Õ
(
2βm

)
,

and is the result of summing together the costs of all merging steps. Through
the approximation of binomial coefficients, the list sizes are approximated in
log2 and relatively to m. The parameters (relative weights, modular conditions
and sizes) are numerically optimized. The optimization of Fig. 1 in [8] yields the
complexity Õ

(
20.2356m

)
.

In this paper, we also perform non-asymptotic optimizations for a given m.
Since we use only {0, 1}-representations, the filtering probability is well known

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 527

Fig. 1. Quantum HGJ algorithm. Dotted lists are search spaces (they are not stored).
Bold lists are stored in QRACM. The first level uses a left-right split of vectors, without
filtering.

and has a simple expression (Lemma 7). Since the binomial coefficients can be
extended as functions of R

2, we can perform an exact numerical optimization
of list sizes for a given m. Afterwards, the numbers obtained are rounded, in
particular the weights of representations, and we take the point which gives us
the best results: smallest complexity and biggest average size for L0.

Example. Let us take n = log2 N = 256, m = n − 1 = 255, and the structure
of Fig. 1. We adapt the optimization code of [8] by taking the exact exponents
(not relative to n) and optimize numerically under the constraint |L0| = 22 (to
ensure that there are solutions). The asymptotic formula would give 20.2356n �
260.31. Numerical optimization gives us a time 263.81, but this admits non-integer
parameters and it is only the maximum between all steps. By rounding the
parameters well, we obtain Fig. 2.

To compute the quantum time complexity, we consider the list sizes to be
exact and use the formula of Lemma 9 without the O. The subtrees on the right
can be computed in 265.71 operations; the slight increase is due to the fact that
we take a sum of their respective terms and not a maximum. In the left branch,
we sample from L0 in 263.48 operations.

The actual time complexity is slightly bigger, due to the variation in list sizes,
and the constant complexity overhead (π/2) of Grover search. More importantly,
these operations require: • to recompute a sum, using m (controlled) additions
modulo N ; • to test membership in some distribution; • to sample from input
distributions Dn. The latter can be done using a circuit given in [17], which for
a weight k and n bits, has a gate count Õ (nk) and uses n+2�log(k+1)� qubits.
All of this boils down to m arithmetic operations or O

(
m2

)
quantum gates.

Finally, this sampler works only for a proportion 1
pm

= 2−5.33 of subset-sum
instances, so we need to re-randomize accordingly. After running the optimiza-
tion for 128 ≤ m ≤ 1024 and n = m + 1, we found that the subset-sum solver
would use approximately 20.238m+9.203 arithmetic operations, for a final list L0

528 M. Remaud et al.

Fig. 2. Optimization of Fig. 1 for m = 255. The size of the support is indicated by m′

and the weight by wt.

of size 2 on average. Under the subset-sum heuristic, we assume an indepen-
dence between all tuples of elements in the initial lists. Using Chernoff-Hoeffding
bounds the probability that the final list is empty is smaller than e−1 � 0.37.
To reduce it to a smaller constant ε, we may simply run multiple independent
instances of the solver. This increases the asymptotic complexity by a factor
O (− log ε).

5.3 Solving Subset-Sum in Superposition

We now show that we can reuse the structure of the QRACM-based subset-sum
algorithm of Fig. 1 to solve the problem in superposition over the target v, while
still keeping the number of qubits polynomial.

The basic idea is to reduce the problem with a given v �= 0 to v = 0:
〈k′,b〉 = 0 mod N , where k′ is a length m + 1 vector where we append −v
to k. We can then modify any existing tree-based subset-sum algorithm solving
this instance to force all vectors in the leftmost leaf list to have a 1 in the last
coordinate, and all vectors in the other leaves to have 0 in this coordinate. Then
only the lists in the left branch of the tree depend on v. The complexity is
unchanged.

Following the tree structure of Fig. 1, we create the lists L3
1, L

2
1, L

1
1 in a pre-

computation step. Then we define a quantum algorithm that outputs an element
in L0 (or a superposition of such elements), and we run this algorithm in super-
position over v.

Subset-Sum without QRACM. Helm and May [21] showed that quantum subset-
sum algorithms using a small classical memory (without quantum access) can
have better time-memory tradeoffs than classical ones. They obtained a time
Õ

(
20.428m

)
for a memory O

(
20.285m

)
, however their algorithm does not have an

unbalanced structure like ours.

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 529

Fig. 3. Asymptotic optimization of our quantum subset-sum algorithm without
QRACM. The lists on the right of the tree are constructed with classical computa-
tions, using classical RAM. The lists L2

1 and L1
1 are stored in classical memory without

random access.

We improve on this time-memory tradeoff by adapting the tree of Fig. 1 as
follows: we remove L3

0 and L3
1 and their parameters, and directly sample in

L2
0. Assuming that the lists L2

1 and L1
1 are precomputed classically, we sam-

ple from L0 with the same algorithm, except that it replaces each QRACM
access (in time 1) by a sequential memory access (in time |L2

1| and |L1
1| for

L2
1 and L1

1 respectively), i.e., a quantum circuit which encodes the elements of
the lists as a sequence of standard gates. The asymptotic optimization gives a
time Õ

(
20.4165m

)
with a memory O

(
20.2324m

)
. The parameters are displayed

in Fig. 3.
The difference between asymptotic and non-asymptotic optimization is bigger

here. For m = n − 1 = 127, with the constraint |L0| = 22, we obtain a time
260.01 > 2128×0.4165 = 253.31 and a memory 226.82 < 2128×0.2324 = 229.75. On top
of this, we must also take pm into account.

After running optimizations for n = 128 to 1024, we obtained a count of about
20.418m+12.851 blocks of m arithmetic operations (m2 quantum gates). The point
at which the algorithm starts improving over Grover search lies around n = 157.

Acknowledgments. This work has been partially supported by the French Agence
Nationale de la Recherche through the France 2030 program under grant agreement
No. ANR-22-PETQ-0008 PQ-TLS.

530 M. Remaud et al.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 284–293 (1997).
http://doi.acm.org/10.1145/258533.258604

2. Alagic, G., et al.: Status report on the third round of the nist post-quantum cryp-
tography standardization process (2022–07-05 04:07:00 2022). https://tsapps.nist.
gov/publication/get_pdf.cfm?pub_id=934458

3. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3_14

4. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

5. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_2

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_9

7. Bonnetain, X.: Improved low-qubit hidden shift algorithms (2019).
arXiv:1901.11428

8. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_22

9. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

10. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3_15

12. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low expo-
nents. J. Cryptogr. Eng. 12(3), 349–368 (2022)

13. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

14. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

15. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol.

http://doi.acm.org/10.1145/258533.258604
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934458
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-030-34578-5_9
http://arxiv.org/abs/1901.11428
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-17659-4_26

Time and Query Complexity Tradeoffs for the Dihedral Coset Problem 531

11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25510-7_15

16. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

17. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized
quantum implementation of ISD on scalable quantum resources. IACR Cryptology
ePrint Archive, p. 1608 (2021)

18. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden sub-
groups. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 478–487.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_45

19. Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of the hidden
subgroup problem is polynomial (2004). arXiv:quant-ph/0401083

20. Helm, A., May, A.: Subset sum quantumly in 1.17n. In: Jeffery, S. (ed.) TQC 2018.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 111, pp. 5:1–5:15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)

21. Helm, A., May, A.: The power of few qubits and collisions – subset sum below
Grover’s bound. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol.
12100, pp. 445–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44223-1_24

22. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

23. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.
1137/S0097539703436345

24. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

25. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8_34

26. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

27. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2_16

28. Regev, O.: Quantum computation and lattice problems. In: FOCS, pp. 520–529.
IEEE Computer Society (2002)

29. Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942
(2004)

30. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space (2004). arXiv:quant-ph/0406151

31. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

32. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134 (1994)

https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/3-540-49116-3_45
http://arxiv.org/abs/quant-ph/0401083
https://doi.org/10.1007/978-3-030-44223-1_24
https://doi.org/10.1007/978-3-030-44223-1_24
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-03356-8_34
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-030-45724-2_16
http://arxiv.org/abs/quant-ph/0406151

532 M. Remaud et al.

33. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7_36

34. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9_19

https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Post-Quantum Protocols

Post-Quantum Signatures in DNSSEC via
Request-Based Fragmentation

Jason Goertzen and Douglas Stebila(B)

University of Waterloo, Waterloo, ON, Canada
{jgoertze,dstebila}@uwaterloo.ca

Abstract. The Domain Name System Security Extensions (DNSSEC)
provide authentication of DNS responses using digital signatures. DNS
operates primarily over UDP, which leads to several constraints: notably,
DNS packets should be at most 1232 bytes long to avoid problems during
transmission. Larger DNS responses would either need to be fragmented
into several UDP responses or the request would need to be repeated over
TCP, neither of which is sufficiently reliable in today’s DNS ecosystem.
While RSA or elliptic curve digital signatures are sufficiently small to
avoid this problem, even for DNSSEC packets containing both a public
key and a signature, this problem is unavoidable when considering the
larger sizes of post-quantum schemes.

We propose ARRF, a method of fragmenting DNS resource records
at the application layer (rather than the transport layer) that is request-
based, meaning the initial response contains a truncated fragment and
then the requester sends follow-up requests for the remaining fragments.
Using request-based fragmentation avoids problems identified for sev-
eral previously proposed—and rejected—application-level DNS fragmen-
tation techniques. We implement our approach and evaluate its perfor-
mance in a simulated network when used for the three post-quantum
digital signature schemes selected by NIST for standardization (Falcon,
Dilithium, and SPHINCS+) at the 128-bit security level. Our experi-
ments show that our request-based fragmentation approach provides sub-
stantially lower resolution times compared to standard DNS over UDP
with TCP fallback, for all the tested post-quantum algorithms, and with
less data transmitted in the case of both Falcon and Dilithium. Fur-
thermore, our request-based fragmentation design can be implemented
relatively easily: our implementation is in fact a small daemon that can
sit in front of a DNS name server or resolver to fragment/reassemble
transparently. As well, our request-based application-level fragmentation
over UDP may avoid problems that arise on poorly configured network
devices with other approaches for handling large DNS responses.

Keywords: Domain Name System · DNSSEC · Post-quantum
cryptography

1 Introduction

The Domain Name System (DNS) is a mission critical service for the Inter-
net. DNS is responsible for translating human-readable domain names into
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 535–564, 2023.
https://doi.org/10.1007/978-3-031-40003-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_20&domain=pdf
http://orcid.org/0000-0001-9443-3170
https://doi.org/10.1007/978-3-031-40003-2_20

536 J. Goertzen and D. Stebila

machine-understandable IP addresses and is used by billions of devices daily.
Ensuring that these translations are correct and not forged is critical to prevent
users from being directed to malicious servers instead of their intended desti-
nation. The Domain Name System Security Extensions (DNSSEC) [23] provide
data integrity by using digital signatures. DNSSEC ensures that the received
DNS message is indeed from a server authorized to respond to the query, and
that the message has not been modified in transit.

Today’s DNSSEC uses digital signatures that rely on traditional security
assumptions such as factoring and discrete logarithms, which would not resist
attacks by a cryptographically relevant quantum computer. To continue to pro-
vide its intended security guarantees in the face of such threats, DNSSEC
must be updated to accommodate quantum-resistant algorithms. The post-
quantum cryptography standardization project of the United States National
Institute of Standards and Technology (NIST) announced in July 2022 [2] three
post-quantum digital signatures algorithms to be standardized: CRYSTALS-
Dilithium [16], Falcon [21], and SPHINCS+ [14]. All of these selected algorithms
have one thing in common: the amount of data transmission required in order
to perform a verification is substantially larger than their non-post-quantum
counterparts: both public keys and signatures. This increase in size can cause
substantial issues for pre-existing network protocols; DNS and DNSSEC are par-
ticularly sensitive to this issue.

Constraints on DNS and DNSSEC. There is an extremely large quantity of
DNS traffic, so DNSSEC must be sufficiently efficient to support this high vol-
ume, which leads to the need for highly performant signature verification and, to
a somewhat lesser extent, signature generation (signatures are often done offline
and then transferred to the servers). DNS relies primarily on UDP for communi-
cating between servers. UDP has the benefit of being very lightweight and data
efficient, however it has limitations that impact DNS: namely any UDP packet
that exceeds 1500 bytes must be fragmented. UDP fragmentation is fragile and
is generally not considered a reliable method for delivering large messages. With
this in mind, accounting for the size of IPv6 headers, it is recommended that the
DNS message sizes should not exceed 1232 bytes [7,19]. As we will note below,
for all three of the post-quantum signature algorithms selected by NIST, 1232
bytes is not enough to send both a public key and a signature, as is needed in
some parts of DNS.

Admittedly, this 1232 byte limit does not mean that large DNS message can-
not in principle be sent. When a DNS response exceeds 1232 bytes, a truncated
response is sent instead indicating to the requester that they should then switch
to using TCP instead of UDP. Unfortunately, a non-trivial number of name
servers are estimated to not support TCP communication, preventing them from
sending and receiving large DNS messages. A 2016 study [19,22] observes that
11% of DNS servers do not support DNS over TCP. A 2022 study by Mao, Rabi-
novich, and Schomp [17] finds that 4.8% of domains using ADNS fail sometimes
or always using DNS-over-TCP; the sample set in [17] is a set of “10.6 million
domains queried in a week through a resolution service operated by [a] major

Post-Quantum Signatures in DNSSEC 537

CDN”. They also have data indicating that this 4.8% of domains accounts for
a roughly proportionate (4.4%) of the overall query volume. (Interestingly, [17,
§4.5] also notes that the TCP-fallback-incapable resolvers happen to have above
average EDNS0 support, which bodes well for our solution which utilizes the
increased DNS message sizes that ENDS0 provides.)

There have been two proposed mechanisms to solve the large DNS message
issue [26,27], both of which ultimately failed at getting standardized for use.
Both mechanisms moved message fragmentation from the transport layer into
the application layer, thus removing concerns of UDP fragmentation fragility
and the lack of support of TCP. If a large DNS message needed to be sent, both
of these mechanisms would split the DNS message into chunks and send each
chunk one after the other. Fundamentally, both these mechanisms sent many,
potentially large, packets, in response to a single request. There were significant
concerns about the impacts these mechanisms would have. First, sending many,
potentially large, packets in response to a single request increases the risk and
impact of denial of server amplification attacks. Second, sending many UDP
packets in response to a single UDP request is an unusual behaviour, and some
networks are configured to only accept a single UDP response packet to a single
UDP request; the rest would trigger ICMP ‘destination unreachable’ packets,
leading to concerns about ICMP flooding (which could reduce the utility of
ICMP packets in debugging network issues).

Application level fragmentation is not the only solution presented for deliv-
ering large messages. Beernink presented in his thesis the idea of delivering large
DNSKEYs out-of-band from DNS. The idea is that when a large DNSKEY is
required, such as when using the now defunct round 3 candidate Rainbow [6],
for verification the requesting server would initiate a HTTP or FTP request to
fetch the large key.

Implications for Post-quantum DNSSEC. When considering which post-
quantum algorithms to standardize for DNSSEC, we must consider both the
algorithms’ operation performance as well as the sizes of its signatures and pub-
lic keys. Müller et al. [19] began this discussion by evaluating the NIST Round 3
candidates in the context of DNSSEC. They established several requirements for
a scheme to fulfil if it were to be used for DNSSEC signatures. As noted above,
fragmentation is a major concern for DNSSEC and the recommended maximum
DNS response size, including any signatures and public keys, should not exceed
1232 bytes. However, due to public keys not needing to be transmitted as often
as signatures, larger public keys may be acceptable. Müller et al. also noted the
requirement that a resolver should be able to validate at least 1000 signatures
per second. The final requirement noted by Müller et al. is that zones should be
able to sign 100 records per second.

Müller et al. identified three of the NIST Round 3 candidate algorithms that
had the potential to fulfill these requirements: Falcon-512 [21], Rainbow-Ia [6]
and RedGeMSS128 [5]. On first inspection it would appear that Falcon-512 is the
clear winner as it is the only scheme that completely meets the requirements set
above, however, both Rainbow-Ia and RedGeMSS128 have significantly smaller

538 J. Goertzen and D. Stebila

Table 1. Resolution times and data transfer sizes for standard DNS (over UDP using
TCP fallback) and parallel ARRF in one network scenario.

Algorithm Standard Parallel

DNS ARRF

Resolution time (ms) with 10ms latency

and 50 megabytes per second bandwidth

Falcon-512 82.11 61.96

Dilithium2 82.24 62.52

SPHINCS+-SHA256-128S 82.59 63.45

RSA 2048 with SHA256 41.50 —

ECDSA P256 47.78 —

Data transfer (bytes)

Falcon-512 3,112 2,557

Dilithium2 8,623 8,367

SPHINCS+-SHA256-128S 26,073 26,140

RSA 2048 with SHA256 1,081 —

ECDSA P256 504 —

signatures sizes which made them appealing: Falcon-512 has a signature size of
0.7kB whereas the other two schemes have signature sizes of 66 bytes and 35 bytes
respectively. The requirement that both Rainbow-Ia and RedGeMSS128 failed
was that their public keys are 158kB and 375kB respectively, versus Falcon-512’s
much smaller size of 0.9kB. (Since the 2020 study of Müller et al., both Rainbow
and GeMSS have succumbed to cryptanalysis that substantially undermines their
claimed security [3,4], and they were not selected by NIST to advance beyond
Round 3.) A conclusion of Müller et al. was that they expect that DNSSEC specifi-
cation changes will be required before quantum safe cryptography can be deployed
in order to support larger key sizes.

1.1 Our Contributions

Given the inherent conflict between the larger public key and signature sizes of
post-quantum algorithms and the practical 1232-byte limit on DNS packet size,
we revisit fragmentation in hopes of finding a practical way forward. In this work
we propose A Resource Record Fragmentation mechanism, or ARRF for short.
ARRF is a request-based lightweight DNS fragmentation solution which removes
the fragility of large DNS messages over UDP while being designed with back-
wards compatibility in mind. Similarly to previously proposed mechanisms, frag-
mentation is moved from the transport layer to the application layer, thus avoid-
ing the fragility of UDP fragmentation. Whereas previously proposed mechanisms
sent several response fragments for a single request, ARRF requires that frag-
ments of specific resource records be explicitly requested. In particular, for large

Post-Quantum Signatures in DNSSEC 539

responses, the first response packet is truncated but includes sufficient informa-
tion to allow the requester to make separate requests for each additional fragment,
either in sequential or in parallel (the latter of which we called “batched ARRF”).
Our fragmentation approach based on explicit requests for fragments improves
both backwards compatibility and addresses the concern over ICMP flooding.
ARRF is also designed in such a way that it can be implemented with low impact
on existing servers; in fact we were able to implement it as a transparent daemon
sitting in front of an ARRF-unaware requester and resolver at both ends of a DNS
lookup request, reducing the burden of deployment.

To evaluate our approach, we implemented the three post-quantum digital
signature algorithms selected by NIST – specifically, parameter sets Falcon-512,
Dilithium2, and SPHINCS+-SHA256-128S – in BIND using liboqs [28], as well
as a daemon implementing ARRF sitting in front of the requester and resolver,
transparently carrying out the ARRF fragmentation/reassembly. We were then
able to carry out a variety of experiments on a simulated network with different
latencies and bandwidth and different fragmentation sizes to evaluate the per-
formance of ARRF compared to DNS over UDP with TCP fallback, measuring
the total resolution time and the amount of data transmitted.

Detailed results across all the various scenarios can be found in Sect. 4. Table 1
shows the results for a low-latency (10ms) network scenario, when restricting
DNS messages to be at most 1232 bytes. In this scenario, ARRF in batched mode
(meaning with additional fragments requested in parallel) yields resolution times
of approximately 62–63ms for our three post-quantum algorithms, compared to
approximately 82ms when using standard DNS over UDP with TCP fallback.
ARRF is also more data efficient for Falcon-512 and Dilithium2, with the small
additional overhead on each ARRF fragment packet being outweighed by the
cost of falling back to TCP and retransmitting the first fragment.

In all our tested scenarios, we found that Falcon-512 performs better than
Dilithium2 due to Falcon-512’s smaller signatures, suggesting that Falcon-512
may be the most suitable option currently available to be standardized for
DNSSEC. We did however find that even with the improved performance of
post-quantum algorithms in ARRF compared to standard DNS over UDP with
TCP fallback, post-quantum algorithms incurred a performance penalty com-
pared to non-post-quantum algorithms currently in use with DNSSEC (RSA
and ECDSA) due to the unavoidable cost of transmitting more data. Overall,
we conclude that ARRF is a promising option for transitioning to post-quantum
DNSSEC: it has less performance degradation compared to standard DNS over
UDP with TCP fallback.

It remains to evaluate the backwards compatibility of ARRF in real-world
deployments, where there may be misconfigured network devices or poorly writ-
ten software that incorrectly handles unrecognized fields. We did design ARRF
to avoid some known problems by using EDNS(0) pseudo resource records and
using request-based fragmentation rather than responder fragmentation. Assess-
ing the success of this approach in real-world network scenarios is an important
next step.

540 J. Goertzen and D. Stebila

2 The Domain Name System

The Domain Name System is a distributed database primarily responsible
for translating human readable domain names to machine understandable IP
addresses. The DNS is broken up into zones, each responsible for a specific level
of granularity of the translation process. Each zone is contains various types of
resource records which correspond to labels. Resource records can be used to look
up IP addresses associated to domain names, name servers of a zone, as well as
many other types of data.

To assist with explaining how DNS translations are performed, we will sup-
pose there is a client which wants the IP address for example.com. The client will
generally send a query to a caching resolver to handle the rest of the translation
on behalf of the client. Assuming a resolver without cached data, it will then
query the root name servers for the name servers responsible for .com domain
names. Once the resolver receives a reply from the root name servers, it will then
query the name servers responsible for .com for the name servers responsible for
example.com. Finally, once the resolver learns of the name servers responsible
for example.com, it will query those servers for the IP address associated with
example.com, and finally receive and forward the response to the client. The
responses to each of the intermediate queries can be cached to reduce the reso-
lution time and reduce load on name servers.

The original design of DNS did not incorporate security measures. However,
over the years, security-focused DNS extensions have been designed and stan-
dardized. DNS-over-TLS [11], DNS-over-HTTPS [10], and DNS-over-QUIC [13]
focus on providing clients privacy when querying resolvers and are not used as
part of the recursive lookup that resolvers perform. DNSSEC, on the other hand,
provides data integrity to the resolver’s recursive lookup process and in practice
is rarely used between the client and resolver; DNSSEC will be the primary focus
of this work.

DNSSEC adds digital signatures to DNS to maintain data integrity. Resource
record labels are not required to be unique, so all resource records of a specified
type and a specified label are grouped together as a RRSet. These RRSets are
then signed by a specified digital signature algorithm, and the signature is stored
inside of an RRSIG resource record. The public key is published to the zone
inside of a DNSKEY resource record. There are generally two types of key pairs
generated: Zone Signing Keys (ZSK), and Key Signing Keys (KSK). The ZSKs
are responsible for signing and verifying the resources records in the zone, and
the KSKs are responsible for signing the ZSKs and are what allows the chain of
trust to be constructed.

As queries are made from the root servers to its children, and its children’s
children, eventually reaching the appropriate name server to answer the query,
a chain of trust is constructed. Each zone that is queried must have a digest of
the public KSK being used stored in a delegate signer (DS) record in its parent’s
zone, otherwise the public ZSK which is transmitted by the name server cannot
be trusted. The one zone which does not publish a DS record is the root zone,
due to its lack of parent. The public KSK of the root zone must be retrieved

Post-Quantum Signatures in DNSSEC 541

out-of-band from DNS; most modern operating systems have the root zone’s
public KSK pre-installed, removing the need for the user to fetch and configure
the key themselves.

DNS as original specified only allows for DNS messages of at most 512 bytes
over UDP, which quickly became too small to transport DNS messages, especially
with DNSSEC being deployed. Extension Mechanisms for DNS (EDNS(0)) [25]
introduced a way for resolvers to advertise the maximum sized UDP message
they can receive, with a theoretical maximum of 216 bytes. In reality, however,
UDP/IP fragmentation can pose a significant issue for reliable delivery and thus
the maximum recommended DNS message size over UDP is 1232 bytes [7].

3 Request-Based Fragmentation

As DNS is most reliable with limited size, single packets running over UDP, and
given that post-quantum digital signature schemes have public key and signature
sizes larger than can be accommodated in that limited size, something must
change in order to reliably support post-quantum cryptography in DNSSEC. In
a perfect world, we could simply send the larger DNS messages with little to
no concern of them arriving. However, UDP fragmentation can cause significant
problems for delivering large DNS message via UDP. The current solution to
solving this problem is falling back to TCP; however, a non-trivial number of
DNS name servers do not support TCP, and fallback to TCP can also incur a
performance penalty. We look to solve this problem by moving DNS message
fragmentation from UDP (transport layer) to DNS itself (application layer),
while addressing concerns raised to previously proposed mechanisms. In this
section we present our solution, A Resource Record Fragmentation mechanism,
or ARRF for short.

3.1 Resource Record Fragments

When a DNS message is too large to fit into the maximum advertised UDP size,
some of the message must be omitted while still containing meaningful infor-
mation to the requester. We introduce a new type of pseudo-resource record:
Resource Record Fragments (RRFRAGs). Like OPT [25], another pseudo-
resource record, RRFRAGs are not explicitly in DNS zones. Rather they are
created only when they are needed. RRFRAGs are designed similarly to the
OPT pseudo-resource record; they use the standard resource record wire format
but repurpose some of the fields. An RRFRAG contains the following fields:

– NAME: Must always be root (.) to reduce the amount of overhead required
to send a RRFRAG while respecting the generic resource record format.

– TYPE: Used to identify that this pseudo-resource record is an RRFRAG.
– RRID: Used to indicate the particular resource record that is being frag-

mented. Since labels do not necessarily have distinct resource records attached
to them, this allows a requester to be explicit in its request while not requiring

542 J. Goertzen and D. Stebila

Fig. 1. The mapping of the RRFRAG format onto the generic resource record format.

the responder to remember which particular resource record it fragmented.
The RRID of a particular resource record can be arbitrarily assigned, but
must not change.

– CURIDX: The current index in the byte array of the original resource record
which is being fragmented.

– FRAGSIZE: The total number of bytes contained in FRAGDATA plus two
bytes to account for the extra space needed for the RRSIZE field. FRAGSIZE
has two different meanings depending on the context. If the RRFRAG is part
of a query, then this indicates how large the responding server should make
this particular fragment. If the RRFRAG is part of a response, this field
indicates how much data was sent in this particular fragment.

– RRSIZE: The size of the original non-fragmented resource record. This is
used by the requester to determine how much data it still needs to request
from the responder in order to reassemble that particular resource record.

– FRAGDATA: The raw bytes of the fragment of the original resource record.
In queries this is always empty. In responses this will contain FRAGSIZE
bytes starting at CURIDX. It is possible for FRAGDATA to contain zero
bytes in responses, which we will elaborate on later.

Figure 1 depicts how an RRFRAG maps onto the generic resource record
format. Similar to a DNSKEY resource record where the extra fields required are
inside RDATA, an RRFRAG stores the RRSIZE alongside FRAGDATA inside
RDATA. This was done to handle the case where an implementation which does
not support ARRF blindly copies RDLENGTH, or in our case FRAGSIZE, bytes
into a buffer prior to branching based on resource record type.

3.2 Using RRFRAGs

When a DNS response is too large to fit in the maximum advertised UDP
size, RRFRAGs are used to split the data across multiple queries with each
response’s size below the advertised threshold. Resource records are replaced
with RRFRAGs in place. That is to say, that if a resource record being frag-
mented is in a particular section of the DNS message, the RRFRAG replacing

Post-Quantum Signatures in DNSSEC 543

the resource record will be inserted into the same section. This is essential so
that the original message format, once all resource records are assembled, will
remain intact. It is important to note that the OPT pseudo-resource record must
not be fragmented as it contains important meta data about the response, such
as the DNS cookie. DNS messages that contain RRFRAGs should send as much
data as they are able without surpassing the advertised threshold.

The initial response containing at least one RRFRAG can be considered a
“map” of the non-fragmented message. This map is used by the requester to
determine what the non-fragmented DNS message will look like upon reassem-
bly. The requester can now determine what fragments it is missing in order to
complete the original large DNS message, and can now send a new query for
the missing RRFRAGs. It is the responsibility of the requester to specify which
resource records it desires, how large the fragments should be, and where the
fragments start. This is done by adding a RRFRAG for each distinct RRID the
requester is requesting a fragment for in the query’s additional section. If the
response contains any non-RRFRAG resource records, it should store them until
it is possible to reassemble the entire DNS message.

When the responder sees a query containing a RRFRAG, it just has to con-
struct a standard DNS response by inserting the corresponding RRFRAGs into
the answers section. The Fragdata being sent is a simple copy of the bytes of
the desired resource record starting at CURIDX and ending at CURIDX +
FRAGSIZE. This request/response cycle continues until the requester is able to
reassemble the original large non-fragmented message. Note that, after receiv-
ing the initial response containing the map, nothing prevents the requester from
making the subsequent RRFRAG requests in parallel.

For backwards compatibility reasons, whenever a response is sent which con-
tains an RRFRAG, the truncated flag (TC) must be set in the DNS message
header.

If a requester asks for a fragment which cannot be constructed, such as an
RRID which does not map to a specific resource record, the responder should
respond with a return code of FORMERR to indicate that the query was mal-
formed.

3.3 Example Execution of ARRF

To better solidify how ARRF works, we will now work through an example DNS
query whose response is larger than the MTU. This example has had some details
abstracted away and should not be used in place of the above specification when
implementing ARRF. Figure 2 illustrates our example execution. This example
begins at the last stage of name resolution for the query “example.com”. We have
two parties: the resolver making the DNSSEC-enabled query for example.com.,
and the example.com. name server.

First the resolver makes a standard request for the A record and its associated
RRSIG. Upon receiving the request, the name server observes that the DNS
response is too large to fit within the confines of the MTU, and thus replaces
the large RRSIG with an RRFRAG. This RRFRAG will contain as much of

544 J. Goertzen and D. Stebila

Fig. 2. An example execution of ARRF

the original RRSIG as possible, and will inform the resolver how much of the
original RRSIG is missing. Once the resolver receives the DNS response, it will
copy both the entire A record as well as the RRFRAG and allocating enough
space for the rest of the missing record. The resolver will then send another
DNS query, but this time asking for an RRFRAG and sending its own RRFRAG
indicating the next range of data it needs. Once the name server receives the
RRFRAG query, it will use the RRFRAG in the additional section to determine
the starting position and size of the fragment of the original RRSIG is being
requested. The name server will construct a new DNS response containing the
rest of our missing RRSIG inside of an RRFRAG and send the new response
to the resolver. Finally the resolver will copy the newly received RRFRAG into
its state, reassemble the original RRSIG, and finally reconstruct the original
large DNS response. DNSSEC validation now takes place, and if verification is
successful the records are cached by the resolver.

3.4 Caching and DNSSEC Considerations

RRFRAGs themselves should never be cached. Once a DNS message is reassem-
bled, and its DNSSEC authenticaiton validated if appropriate, then non-
fragmented resource records may be cached. If RRFRAGs could be cached, this
would allow for malicious data to be accepted prior to validation. Caching com-
plete resource records as opposed to RRFRAGs also allows for intermediate
resolvers to send different fragment sizes than they originally received which
allows for more flexibility to handle varying advertised UDP sizes.

Post-Quantum Signatures in DNSSEC 545

4 Evaluation

In this section we evaluate the performance of post-quantum signature algo-
rithms in DNSSEC without and with our request-based fragmentation technique
ARRF.

4.1 Experiment Setup

Algorithms. The algorithms we selected for the experiment are level-1 (128-
bit-security) parameter sets of the three algorithms selected for standardization
by NIST at the end of round 3: Falcon-512, Dilithium2-AES, and SPHINCS+-
SHA256-128S (sometimes we abbreviate this to SPHINCS+ to save space).We
also include results for RSA 2048 with SHA256 and ECDSA P256 for the sake
of comparison.

Other post-quantum signature options include stateful hash-based signature
schemes XMSS and XMSSMT [12] and LMS [18], but we omit these from our
study as their sizes do not yield smaller communication sizes than the options we
do consider. The smallest XMSS or XMSSMT signatures start at 2,500 bytes. For
LMS, there are parameter sets with signatures between 1,616–1,936 for 215 to 225

signatures, but these are still not smaller than Falcon-512, even if one considers
DNS responses containing both a public key and signature (32+1616 = 1648 for
the smallest LMS, 897 + 690 = 1587 for Falcon-512). These types of signatures
would also require DNS zones to manage state which is difficult for online signing
DNS zones [8].

Adding Post-quantum Algorithms to BIND. We evaluate these algorithms both
using DNSSEC as defined today, as well as with ARRF. To perform this eval-
uation we used Internet Systems Consortium’s BIND9 9.17.9 [15] as our DNS
server software. We then added support for the three selected algorithms to
BIND9 using Open Quantum Safe’s liboqs 0.7.1 and OpenSSL 1.1.1l fork [1,28].
To construct a test network environment, we used Docker and Docker’s built in
networking as well as Linux’s ‘tc’ (traffic control) to simulate network bandwidth
and latency.

Daemon Implementing ARRF. Rather than implementing ARRF directly into
BIND9, we constructed a daemon which intercepts all incoming and outgoing
network traffic and implements ARRF transparently for both the resolver and
all name servers. We used libnetfilter-queue 1.0.3-1 to intercept packets.

We will now describe how the daemon behaves. When the machine acting as
the name server receives a DNS query, the daemon on the name server’s side will
modify the maximum advertised UDP message size to the maximum value of
65355 bytes.1 The daemon then sends the message to the DNS software, which
responds with a UDP message up to 65355 bytes. The daemon on the name

1 Modifications to BIND9 were required as the maximum DNS message size BIND9
supports is 4096.

546 J. Goertzen and D. Stebila

server side receives this response and copies the entire message into its state.
It outputs a response that is either the original message, if it fits within the
requester’s maximum UDP message size, or the first fragment if fragmentation
is required. Whenever a fragment is requested in the future the daemon will use
its state if possible rather than sending the request to the DNS software.

On the side of the DNS resolver, there is another copy of the daemon which
intercepts incoming DNS responses and processes them before passing them on
to the DNS resolver. When the resolver-side daemon receives a DNS response
containing an RRFRAG, the daemon will intercept the message. The daemon
will create a state for that individual transaction containing the metadata pro-
vided by the initial response’s map and copy any data included into the state.
The daemon will then execute ARRF and request the remaining fragments until
the entire message can be reconstructed, at which point in time the daemon
transparently sends the reconstructed message to the DNS resolver software.

DNS Network Design. We construct a simple DNS network consisting of a client,
a resolver, and a name server each running in their own Docker container on the
same machine. The name server zone contains 1000 ‘A’ records, each with a
unique label and signature. We query for each of these A records and measure
the total resolution time for each one. The zone also contains 1 ‘primer’ name
record. We first query for this primer resource record so that our resolver has the
DNSKEYs and NS records of our test domain, which means that we can evaluate
ARRF’s effect on an individual query. To model the worst case response size, we
disabled ‘minimal responses’, and as such each response will contain 1 question,
1 A record, 1 NS record, 1 SOA record, and 3 RRSIGs. We use ‘dig’ to issue
each query and measure the total resolution time of said query.

We evaluated using the following four network conditions:

– low bandwidth, low delay: 10ms of delay and 128 kilobytes per second band-
width;

– high bandwidth, low delay: 10ms of delay and 50 megabytes per second band-
width;

– moderate bandwidth, high delay: 100 ms of delay and 50 megabytes per sec-
ond bandwidth; and

– ideal network: no delay, unlimited bandwidth (the only cost being processing
the messages).

All experiments were run on a c5.2xlarge Amazon Web Services instance
which provides 8 cores of a 3 GHz Intel Xeon Platinum 8124M and 16 gigabytes
of RAM.

4.2 Algorithm Performance

To put the network results in context, it is important to understand the perfor-
mance of the verification function of each of the algorithms. We use the Open
Quantum Safe OpenSSL fork’s speed command to measure each algorithm’s

Post-Quantum Signatures in DNSSEC 547

Table 2. Algorithm runtime measured using OQS-OpenSSL Speed

Algorithm Sign (ms) Verify (ms)

Falcon-512 0.2810 0.0438

Dilithium2 0.0753 0.0268

SPHINCS+-SHA256-128S 373.1 1.36

RSA 2048 with SHA256 0.6019 0.0177

ECDSA P256 0.0219 0.0677

signing and verification performance and report the results in Table 2. These
results provide a baseline of the raw cryptography performance against which
later protocol-level results can be compared.

4.3 Post-quantum with Standard DNSSEC

In this section we measured how the post-quantum algorithms perform if they
are deployed in DNSSEC as it is currently specified, under two scenarios and
five different network conditions. We first measured how the algorithms would
perform with a maximum UDP size of 1232. For messages larger than 1232
bytes, the DNS servers will fall back to TCP. The second scenario is the exclu-
sive use of UDP for DNS communication, which provides an idealized view of
the best case performance we can achieve using a particular algorithm; in this
scenario, responses larger than the maximum advertised UDP message size will
be fragmented by the responder, resulting in multiple UDP packets being sent in
response to a single UDP packet request. Table 3 shows the average resolution
times with standard deviation for the various network conditions. RSA 2048
with SHA256 and ECDSA P256 only have results recorded for standard DNS as
the signatures of these algorithms are small enough to ensure they can fit in a
single DNS message without fragmentation.

One main take away from Table 3 is the near doubling of latency for post-
quantum algorithms using standard DNS (on connections with non-zero latency),
due to the extra round trips. The first section of the table also shows the impact
of restricted bandwidth on latency due to the larger signatures of post-quantum
algorithms.

4.4 Post-quantum with ARRF

In this section we evaluate how each of the algorithms perform when using two
different flavours of ARRF. First, we consider a “sequential” version. This version
sends a request, receives a response, then looks what it needs to request and sends
another request. This process is repeated until the entire message is received.
Next, we consider a “parallel” version where once the first response is received

548 J. Goertzen and D. Stebila

Table 3. Mean resolution times (and standard deviation) in milliseconds for DNS
without ARRF

Algorithm Standard DNS DNS using only UDP

10 ms of latency and 128 kilobytes per second bandwidth

Falcon-512 107.3 ± 1.786 61.52 ± 2241

Dilithium2 147.9 ± 1.478 102.0 ± 1.898

SPHINCS+ 275.4 ± 2.114 229.4 ± 2.040

RSA 2048 52.20 ± 1.242 —

ECDSA P256 47.78 ± 1.949 —

10 ms of latency and 50 megabytes per second bandwidth

Falcon-512 82.11 ± 2.331 40.56 ± 2.115

Dilithium2 82.24 ± 2.216 40.77 ± 2.251

SPHINCS+ 82.59 ± 2.096 41.16 ± 2.192

RSA 2048 41.50 ± 2.157 —

ECDSA P256 47.49 ± 1.919 —

100 ms of latency and 50 megabytes per second bandwidth

Falcon-512 802.1 ± 2.115 401.6 ± 1.991

Dilithium2 802.4 ± 2.032 401.5 ± 1.962

SPHINCS+ 802.5 ± 1.940 401.9 ± 2.021

RSA 2048 401.3 ± 2.022 —

ECDSA P256 401.2 ± 2.176 —

0 ms of latency and unlimited bandwidth

Falcon-512 2.480 ± 3.884 1.1222 ± 2.034

Dilithium2 2.282 ± 3.318 1.240 ± 2.156

SPHINCS+ 2.38 ± 3.500 1.176 ± 1.935

RSA 2048 1.672 ± 3.046 —

ECDSA P256 1.567 ± 2.711 —

the name server sends all of the requests for the remaining fragments at once,
essentially parallelizing the ARRF mechanism. We consider several scenarios
where the maximum DNS message size varies across all of the various network
conditions described above.

Our daemon implementation is a prototype; with that in mind, it is important
to understand the raw overhead that the daemon incurs. By setting the maximum
DNS message size to be larger than any response (say, 65355 bytes), we can see
how much of a cost we are paying just by having the proof of concept daemon
involved. We then also evaluate what we would expect most operators would
use as their maximum DNS message size of 1232 bytes. In order to see how
ARRF scales, we also provide some smaller maximum DNS message sizes of 512

Post-Quantum Signatures in DNSSEC 549

Table 4. Mean resolution times (with standard deviation) with ARRF using daemon
in sequential mode

Algorithm ARRF in sequential mode

Resolution times (ms) for each max. message size

65355 bytes 1232 bytes 512 bytes 256 bytes

10ms of latency and 128 kilobytes per second bandwidth

Falcon-512 62.61 ± 2.052 84.414 ± 1.451 148.5 ± 1.587 275.8 ± 1.738

Dilithium2 103.2 ± 1.753 231.7 ± 1.841 422.7 ± 2.409 803.9 ± 1.344

SPHINCS+ 230.7 ± 1.879 635.1 ± 2.088 1271 ± 1.963 2480 ± 1.916

10ms of latency and 50 megabytes per second bandwidth

Falcon-512 41.77 ± 2.135 62.07 ± 2.278 122.5 ± 2.197 243.0 ± 2.269

Dilithium2 41.91 ± 2.108 162.9 ± 2.240 343.8 ± 1.899 705.6 ± 2.379

SPHINCS+ 42.45 ± 2.160 424.7 ± 1.811 1028 ± 2.465 2173 ± 2.123

100 ms of latency and 50 megabytes per second bandwidth

Falcon-512 401.97 ± 2.060 601.1 ± 2.865 1203 ± 1.912 2404 ± 1.123

Dilithium2 402.1 ± 2.005 1604 ± 1.754 3405 ± 2.113 7008 ± 1.708

SPHINCS+ 402.7 ± 1.957 4207 ± 2.166 10210 ± 1.843 21620 ± 1.440

0 ms of latency and unlimited bandwidth

Falcon-512 1.644 ± 2.334 1.992 ± 2.594 2.172 ± 2.361 2.668 ± 2.606

Dilithium2 1.804 ± 2.641 2.344 ± 2.495 2.932 ± 2.184 4.176 ± 1.291

SPHINCS+ 1.992 ± 2.408 3.564 ± 1.460 5.692 ± 2.243 5.673 ± 2.389

(the minimum DNS message size that must be supported) and 256 bytes. Table 4
shows the measured mean resolution time in milliseconds for the daemon running
in sequential mode for the various network conditions measured, and Table 5
contains the results for the parallel daemon. Figures 3, 4, 5, and 6 illustrate
all measured resolution times for standard DNS and DNS using ARRF for all
network conditions.

4.5 Data Transmission

In order to understand the full implications of deploying ARRF, we must also
consider the amount of data transmitted compared to that of the DNS as it
is currently standardized. Table 6 shows the total number of bytes required
to transmit a complete DNS message signed with Falcon-512, Dilithium2, and
SPHINCS-SHA256-128S both with and without ARRF deployed.

4.6 Results

Resolution Times for Standard DNS without ARRF. When considering standard
DNS, RSA and ECDSA have the shortest resolution times with the best perform-
ing post-quantum algorithm being twice as slow across all network conditions.

550 J. Goertzen and D. Stebila

Table 5. Mean resolution times (with standard deviation) with ARRF using daemon
in parallel mode

Algorithm ARRF in parallel mode

Resolution times (ms) for each max. message size

65355 bytes 1232 bytes 512 bytes 256 bytes

10 ms of latency and 128 kilobytes per second bandwidth

Falcon-512 62.80 ± 2.161 84.68 ± 1.765 86.15 ± 2.296 89.50 ± 2.120

Dilithium2 103.1 ± 1.855 127.9 ± 1.551 132.9 ± 2.038 142.7 ± 2.024

SPHINCS+ 230.7 ± 1.908 262.9 ± 2.050 279.7 ± 1.720 311.6 ± 2.070

10 ms of latency and 50 megabytes per second bandwidth

Falcon-512 41.62 ± 2.060 61.96 ± 2.140 62.14 ± 2.343 62.16 ± 2.156

Dilithium2 41.02 ± 2.170 62.52 ± 2.240 62.96 ± 2.590 62.45 ± 2.590

SPHINCS+ 42.35 ± 2.164 63.45 ± 2.241 64.44 ± 1.865 66.808 ± 2.247

100 ms of latency and 50 megabytes per second bandwidth

Falcon-512 400.6 ± 1.965 601.1 ± 2.212 601.2 ± 2.208 601.7 ± 2.168

Dilithium2 400.9 ± 2.044 601.7 ± 2.271 601.7 ± 2.209 602.4 ± 1.947

SPHINCS+ 401.5 ± 2.145 602.4 ± 1.870 603.4 ± 1.638 605.5 ± 2.3638

0 ms of latency and unlimited bandwidth

Falcon-512 1.224 ± 2.428 1.471 ± 2.250 1.650 ± 2.310 1.769 ± 2.520

Dilithium2 1.185 ± 2.052 1.698 ± 2.365 1.875 ± 2.010 2.496 ± 1.871

SPHINCS+ 1.436 ± 2.143 2.406 ± 1.876 3.461 ± 1.618 5.673 ± 2.389

This is due to the response sizes being too large for a single UDP packet, causing
it to be truncated and thus effectively making the initial query a wasted trip.
The resolver must then fall back to the less performant TCP protocol to com-
plete the lookup. When standard DNS using only UDP (with name-server-based
fragmentation) is used, ECDSA and RSA only beat Falcon-512 and Dilithium2
when bandwidth was restricted to 128 kilobytes per second; this is likely due to
the verification functions of Falcon-512 and Dilithium2 being more efficient than
ECDSA and RSA.

Basic Overhead of ARRF Daemon. When considering the cases where the ARRF
daemon is running, but not actively fragmenting resource records, we see com-
parable performance to standard DNS using only UDP. When comparing the
post-quantum algorithms on standard DNS using only UDP versus the ARRF
daemon using a maximum message size of 65355 bytes, we see a minimal over-
head never exceeding 1.25 ms. Given that this is the overhead for our prototype
daemon running as a separate process, we conclude that ARRF itself has very
low overhead when fragmentation is not required.

Parallel Versus Sequential ARRF. When the ARRF daemon is fragmenting
resource records, we see that the parallel daemon has a performance improvement

Post-Quantum Signatures in DNSSEC 551

Table 6. Total data transmitted when performing a DNS lookup

Algorithm Bytes transmitted during DNS lookup

ARRF

Standard maximum message size

DNS 1232 512 256

bytes bytes bytes

Falcon-512 3,112 2,557 2,947 3,637

Dilithium2 8,623 8,367 9,402 11,322

SPHINCS+ 26,073 26,140 29,620 36,175

of approximately 20% over TCP for all algorithms and all maximum messages
sizes. This is due to the parallel nature of the parallel daemon effectively only
paying the latency cost once after receiving the initial response, whereas TCP has
a limited sized window restricting its parallelization, which causes the latency
cost to be paid more times compared to the unlimited parallelization of parallel
ARRF. The sequential daemon even outperforms TCP for Falcon-512 with a
maximum messages size of 1232 bytes across all tested network conditions. This
is due to the Falcon-512 signed response only requiring one additional round trip
to reassemble the message, whereas the TCP fallback needs to receive the entire
message from scratch (it cannot make use of the truncated response returned in
the UDP response).

The sequential daemon performs worse in all other cases and is greatly
affected by increased latency. This is due to the sequential daemon needing to
wait for each request to be fulfilled before requesting the next piece, and TCP
being able to achieve some parallelism due to its sliding window.

In the scenarios with latency and bandwidth restrictions, we see that, as
the maximum message size is reduced, parallel ARRF scales very nicely due to
parallelizing the requests, whereas sequential ARRF scales roughly by the factor
that the maximum message size is reduced by.

Post-quantum Versus Non-post-quantum. When comparing post-quantum to
non-post-quantum algorithms, Falcon-512 comes the closest to RSA and ECDSA
in all constrained network scenarios, but is still slower despite the efficient verifi-
cation function. Falcon-512 is affected primarily by bandwidth and is 60% slower
than RSA and 76% slower than ECDSA in the 128 kilobytes per second scenario
even when using parallel ARRF. If bandwidth is not a concern, then Falcon-512
performs better, but is still 49% slower than both RSA and ECDSA in both
scenarios with 50 megabytes per second bandwidth. Unsurprisingly, Dilithium2
and SPHINCS+-SHA256-128S perform far worse than Falcon-512 and the non-
post-quantum algorithms; roughly 1.5 and 3 times slower than Falcon-512 when
using parallel ARRF, and even worse when using sequential ARRF.

552 J. Goertzen and D. Stebila

Data Overhead. When DNS messages sizes are at the recommended size of 1232
bytes, we can see that ARRF actually uses less data to transmit a DNSSEC
response signed with Falcon-512 and Dilithium2. This is due to how DNS handles
switching to TCP, essentially causing the three-way TCP handshake to turn into
a five-way handshake, which we now explain. First the resolver sends a UDP
request to the name server. The name server then sends a response identical
to the request and marks the response as truncated. The resolver switches over
to TCP and performs the standard TCP three-way handshake. TCP also sends
an acknowledgement packet for each packet the requester receives, essentially
offsetting the fragment requests in ARRF. With these factors, combined with
UDP packet headers being 12 bytes smaller than those of TCP, ARRF allows
efficient communication for both Falcon-512 and Dilithium2.

However, TCP becomes more data efficient compared to ARRF once many
fragments are requested and sent, such as for SPHINCS+-SHA256-128S. Due
to maintaining backwards compatibility, ARRF must surround all requests and
responses inside of a DNS message and all fragments inside of an RRFRAG. TCP,
on the other hand, is a stream which only sends a single DNS message header and
sends the raw resource records themselves rather than sending the extra bytes
that RRFRRAGs require. As mentioned earlier TCP sends acknowledgement
packets for each TCP segment received (or cumulative acknowledgements after
some batch). These acknowledgements are smaller than a UDP packet containing
an ARRF request. The size difference depends on how many RRFRAGs are
being requested, but the most common ARRF request in our experiments was
60 bytes including UDP, IP, and DNS message headers, and the largest request
being 75 bytes, whereas TCP’s acknowledgement packets are 52 bytes in size.
If a DNS message is quite large, as is the case with SPHINCS+-SHA256-128S
signed messages, these small savings end up making up for wasting the initial
UDP request.

5 Discussion

Having seen the results of the experiments, we now discuss ARRF and consider
whether if it is a viable solution for sending large DNS message.

5.1 Performance

Parallel ARRF is by far the most performant solution for larger responses, beat-
ing out TCP fallback in all cases despite how many requests and responses are
required to transmit the original large DNS message. Sequential ARRF also
outperforms TCP in cases where messages are only slightly larger than what
can fit in a single UDP packet. However, parallel ARRF’s performance does
not come for free. On a busy resolver these parallel requests could eat up avail-
able bandwidth quite quickly and could potentially overwhelm middle boxes.
We hypothesize that a production-ready version of ARRF would have a max-
imum window size similar to TCP in an effort to reduce request flooding, and

Post-Quantum Signatures in DNSSEC 553

therefore performance would lie somewhere between the ideal version of parallel
ARRF and TCP. Despite there not being considerable differences between DNS
with only UDP and the ARRF daemon running but not fragmenting, there are
likely optimizations, such as multithreading, that can be made to the daemon.
If ARRF was integrated directly into DNS software, it would also increase effi-
ciency. We leave experimenting and evaluating these potential optimizations as
well as evaluating window sizes as future work.

5.2 Backwards Compatibility

As DNS is a distributed system managed by many different entities, in any
deployment there will be requesters and name servers which do not understand
ARRF. We now consider what happens in two such scenarios: when the requester
implements ARRF but the responder does not, and when the requester does not
implement ARRF but the responder does. We also discuss the impact ARRF
has on middle boxes.

Requester Implements ARRF but Responder Does Not. When a requester which
supports ARRF receives a response from a name server which does not support
ARRF, it will, as per the current DNS specifications, receive a truncated DNS
message with the TC flag set. It can then gracefully fallback to TCP and retry
the query, therefore maintaining backwards compatibility.

Requester does Not Implement ARRF but Responder Does. Since the requester
does not actually indicate its support of ARRF, it may appear at first glance
that ARRF may cause issues when the requester receives a response containing
an RRFRAG, as it will not be able to understand what an RRFRAG is, nor
what it should do with it. Fortunately, older resolvers ignore unknown resource
record types, so they will gracefully fallback to repeating the request over TCP
as they will see that the TC flag is set. This results in no additional round trips
compared to if ARRF was not being used.

Middle Box Support. By fragmenting at the DNS level, we should ensure that the
majority of middle boxes will not cause issues for ARRF. From a middle box’s
perspective (even one unaware of ARRF), all messages sent using ARRF look
like standard DNS messages which should not require any state to be properly
routed. However, if there exist middle boxes which look inside DNS messages and
view the types of the message’s resource records, the new RRFRAG type could
potentially cause those middle boxes to reject the message. Additional work
would be required to determine if there are middle boxes with that behaviour,
and how widespread they are.

5.3 Security Considerations

Denial of Service Attacks. ARRF is designed to not increase the scope of DoS
attacks. Since fragments must be explicitly requested, a querier can reject any

554 J. Goertzen and D. Stebila

fragments it is not expecting (unlike responder-based fragmenting). When com-
bined with DNS cookies, off-path attacks become infeasible. An adversary who is
on-path could modify the values in responses which contain RRFRAGs, which
could cause a querier to ask for fragments which do not exist. Middle boxes
could also inject malicious data into individual RRFRAG’s FRAGDATA fields.
If DNSSEC is used, then this will cause the validation to eventually fail. This is
acceptable as this validation failure, although denying service, is no worse than
DNS without ARRF deployed (where a middle box adversary simply modifies
the body or signature of a DNSSEC response). ARRF also limits the impact
of amplification DoS attacks as it restricts the response sizes and each response
needs a corresponding request. If a response arrives with the wrong id or DNS
cookie, it should be discarded.

DNS Cache Poisoning. Since RRFRAGs themselves should not be cached, DNS
cache poisoning is no more of a concern than it is in traditional DNS. If DNSSEC
is used, then DNS cache poisoning is not a concern assuming a secure algorithm
is used.

Memory Exhaustion Attacks. ARRF as specified is susceptible to memory
exhaustion attacks. Although DNS cookies make this less of a concern for off-
path adversaries, there is nothing stopping an on-path adversary from changing
the RRSIZE fields in the initial response. Since the requester uses this initial
response as a map without any validation thereof, an adversary could insert
many RRFRAGs advertising they are fragments of extremely large resource
records. The requester would likely then allocate enough memory to store the
intermediate state until reassembly is possible, and could only detect the attack
once trying to verify the signature. One potential solution to this would be to
use some heuristics to determine if a RRFRAG map makes sense. Based on what
the requester could expect to receive for a query of some form, the requester can
check to see if the response it actually received fits within those expectations.
For example, if the requester indicated that it only supported Falcon-512 signa-
tures, it can check that the advertised sizes of the fragments are no larger than
690 bytes. We leave this issue for future exploration.

Unreliable Networks. In this work we did not evaluate how ARRF performs
when UDP packets do not reach their destination. BIND9 uses a default timeout
of 800ms to determine whether it should try the request again or not, but it
is unclear if that timeout duration would make sense for ARRF or not. This
question must be answered before ARRF can be deployed and we leave this for
future work.

Downgrade Attacks. Heftrig, Shulman, and Waidner [9] observed that under
certain conditions some resolvers do not validate DNSSEC signatures when
DNS responses contain new algorithms, which could include the case when
post-quantum algorithms are deployed in DNSSEC. They recommend clearer
description of the preferred behaviour in the DNSSEC standards and that buggy
implementations be fixed.

Post-Quantum Signatures in DNSSEC 555

5.4 Comparing ARRF against Previous DNS Fragmentation
Proposals

ARRF is not the first attempt at a DNS-level fragmentation mechanism. Since
Sivaraman’s draft “DNS message fragments” [26] was not as developed as Addi-
tional Truncated Response (ATR) [27], we will be primarily focusing on ATR
in this section. ATR, Sivaraman’s draft, and ARRF, all rely on DNS-level frag-
mentation. The DNS servers are required to fragment messages and re-assemble
them rather than relying on the transport layer to handle message fragmentation
for them. All three mechanisms are transport layer agnostic and could therefore
be used on both UDP and TCP. It may seem unclear why someone would want
to run any of these mechanisms over TCP, however by doing so there is the
potential for sending DNS messages larger than the 64 kilobyte maximum. ATR
and Sivaraman’s draft could in theory allow resource records of 64 kilobytes
to be transmitted; whereas ARRF could allow for resource records of arbitrary
length. This is due to the difference in granularity of fragmentation that the three
mechanisms use. ATR and Sivaraman’s draft fragment the DNS message as a
whole, where as ARRF fragments individual resource records. Although there
are no resource records that require an increase to the maximum DNS message
size, and therefore maximum resource record size, it is not entirely unrealistic
to see this issue potentially arising.

Before being broken [4], the Rainbow [6] post-quantum signature scheme
was quite appealing due to its relatively small signature sizes; however it had
large public keys of 161600 bytes. Since DNSKEYS are sent much less frequently
than signatures, this might have been a reasonable trade off had Rainbow not
been broken. It is entirely possible that a new, secure post-quantum signature
scheme is created which has similar signature and public key sizes. (In fact, this
is specifically mentioned as a desirable design characteristic in NIST’s September
2022 call for additional post-quantum digital signature schemes [20].) In order to
fully support arbitrary-sized resource records, the resource record format would
need to be modified to support larger RDATA regions, and RRSIZE would need
to be updated to the proper integer width.

One of the major criticisms of ATR [27] was that, since the mechanism would
blindly send its additional message as part of its response, it would cause a flood
of ICMP ‘destination unreachable’ packets to be created by resolvers which did
not support ATR. Many implementations close their sockets immediately after
receiving a response, so by the time the additional message is received the socket
would no longer be accessible. This would make debugging considerably more
challenging and reduce the usefulness of ICMP messages as a whole. Another
issue arises with firewalls that have the policy of only receiving a single DNS
message per query, and thus compounding the ICMP flood issue. ARRF does not
suffer from these issues. Firstly, responses are only sent when they are explicitly
queried for. A DNS server implementing ARRF will never send an additional

556 J. Goertzen and D. Stebila

response blindly and will never send additional messages to resolvers that don’t
support ARRF as they will never ask for them. Similarly, all DNS messages
containing RRFrags will have an associated query and will therefore not get
dropped by firewalls implementing the above policy. As ARRF does not suffer
from either of those issues, there will not be a flood of ICMP packets that caused
so much concern.

ATR also requires a slight delay between the first message being sent and the
trailing messages being sent in order to maintain message ordering. Receiving
messages out of order is not an issue for ARRF as the requesting server will
know what to expect after receiving the first message containing the RRFRAG
map of the whole DNS message. All responses after the first one will have been
explicitly asked for and are not dependent on any other responses.

Where as ATR is quite lightweight, ARRF does have some additional trans-
portation costs. ATR costs a single round trip plus the delay required to maintain
message ordering, whereas ARRF has

⌈
Original response size
Maximum message size

⌉
round trips. With

the exception of the initial round trip, these round trips can be performed in
parallel, thus reducing the overall resolution time. ARRF also requires more data
to be sent, specifically as part of requesting the additional fragments. RRFRAGs
in requests are 15 bytes in size, and the number sent depends on the number of
resource records, how large they are, and how much data can fit in the maximum
message size.

Sivaraman’s draft [26] was built off of EDNS(0)’s OPT resource record requir-
ing three fragmentation related options support to be assigned by ICANN.
ARRF does not use the OPT pseudo-resource record and therefore does not
require any options to be defined by ICANN.

Finally both ARRF and ATR can be implemented as a daemon on the
resolver side without any changes required to the DNS software being used. This
would make deployment much simpler as it would not require a DNS operator
to update their resolver software and potentially have version incompatibilities.
The reassembly could be performed entirely transparently to the resolver.

6 Future Work

Although ARRF appears to be a viable solution to solving DNS message frag-
mentation and therefore opening the door for post-quantum DNSSEC, additional
work needs to be done. The backwards compatibility of ARRF needs to be fur-
ther explored and evaluated in real-world deployments, exploring if there are
middle boxes which cause ARRF to fail. ARRF as specified in this work is sus-
ceptible to memory exhaustion attacks and additional work needs to be done
to prevent these attacks. It is also likely that operators will want to limit the
number of concurrent requests when using parallel ARRF and therefore research
into selecting a reasonable limit must be done.

Post-Quantum Signatures in DNSSEC 557

In this work we provide a proof of concept daemon which transparently
implements ARRF. Directly integrating ARRF into DNS implementations may
uncover unexpected surprises.

Our experiments only considered the case of lossless packet delivery. In real-
ity, UDP packet delivery is not guaranteed, so research is needed on how ARRF
behaves in unreliable networks. Work also needs to be done to measure any
additional processing/memory overhead introduced by ARRF and whether that
overhead is reasonable.

Any future standardization of ARRF would depend both on ARRF itself
being evaluated by the Internet Engineering Task Force as well as appropriate
post-quantum algorithms being specified for use in DNSSEC.

Key material sizes are not the only challenges that we need to overcome if
we are to have a seamless transition to post-quantum DNSSEC. In particular,
one major open question is “how would a zone serve older resolvers which do not
support post-quantum cryptography?” In principle it is possible to have a zone
signed by multiple algorithms, however DNSSEC does not currently have the
notion of algorithm negotiation [24], so there is no way for a resolver to indicate
whether it wants a post-quantum algorithm or not. We leave these issues as open
questions, and encourage the DNSSEC community to begin discussions on these
topics sooner rather than later.

7 Conclusion

Post-quantum cryptography will inevitably need to be integrated into the
DNSSEC ecosystem, however it looks like it will not be as smooth of a transition
as we would like. Of our current options, Falcon-512 is by far the most perfor-
mant but even with parallel ARRF is still significantly slower than currently used
classical signing algorithms. There has been recent work on shrinking Falcon-512
signatures significantly which would improve its performance. Dilithium2 is per-
haps viable as an alternative option, but considering the DNSSEC community’s
previous stance of “we can avoid sending large message by shaping their contents
better (smaller signatures, less additional data)” [29], Dilithium2 may receive
significant resistance if proposed for use in DNSSEC. SPHINCS+-SHA256-128S
is by far the worst performing of the three NIST post-quantum selections due
to its slow verification and extremely large signatures which causes very large
resolution times.

Message sizes are not the only thing to consider when discussing which post-
quantum signing algorithm to standardize for DNSSEC, as the security of the
algorithms must also be considered. So far major attacks have been found against
several candidates fairly late in the NIST selection process. To make matters
worse, those algorithms were broken with traditional computers, therefore mak-
ing the attacks much more practical. Although the three selected algorithms are

558 J. Goertzen and D. Stebila

believed to be secure now, will they hold up to additional scrutiny? Only time
will tell. It is likely that using a hybrid of a classical signing scheme and post-
quantum scheme will be desirable for some time to ensure that the signatures
are at least as strong as what are currently standardized. This will come at a
further performance cost and also increase communication sizes, and we plan to
evaluate this additional cost in the future.

A final option is to wait for new post-quantum signature schemes to be
invented and hope that signature sizes become more reasonable. NIST has
requested additional post-quantum signature schemes be submitted for consid-
eration standardization [20]. However, waiting several years for a better scheme
to emerge is eating into the valuable time needed to prepare for securing DNS
against a quantum adversary. It is best that we plan for the worst case of sig-
natures sizes not improving, and be pleasantly surprised if such a scheme arises.
With that in mind, we recommend Falcon-512 as a suitable signature algorithm
for use in DNSSEC with ARRF as its delivery mechanism to achieve reasonable
resolution times.

Acknowledgments. We gratefully acknowledge helpful discussion with Roland van
Rijswijk-Deij, Andrew Fregly and Burt Kaliski, Sof́ıa Celi, and Michael Baentsch.
D.S. was supported by Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery grants RGPIN-2016-05146 and RGPIN-2022-0318, and a donation
from VeriSign, Inc.

Data Availibility Statement. The software implementing the daemon and experi-
ment is available at https://github.com/Martyrshot/ARRF-experiments/.

A Appendix – Performance Graphs

Figures 3, 4, 5, and 6 visualize the performance of ARRF in batched and sequen-
tial mode in various network scenarios and at different maximum UDP packet
sizes compared with standard DNS with TCP fallback or UDP only mode.

https://github.com/Martyrshot/ARRF-experiments/

Post-Quantum Signatures in DNSSEC 559

Fig. 3. Mean resolution times in milliseconds with 10 ms latency and 128 kilobytes per
second bandwidth

560 J. Goertzen and D. Stebila

Fig. 4. Mean resolution times in milliseconds with 10 ms latency and 50 megabytes
per second bandwidth

Post-Quantum Signatures in DNSSEC 561

Fig. 5. Mean resolution times in milliseconds with 10 ms latency and 50 megabytes
per second bandwidth

562 J. Goertzen and D. Stebila

Fig. 6. Mean resolution times in milliseconds with 0 ms latency and unlimited band-
width

References

1. The Open Quantum Safe project (2022). https://openquantumsafe.org
2. Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryp-

tography standardization process (2022). https://doi.org/10.6028/NIST.IR.8413
3. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-

daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

4. Beullens, W.: Breaking Rainbow takes a weekend on a laptop. Cryptology ePrint
Archive, Report 2022/214 (2022). https://eprint.iacr.org/2022/214

https://openquantumsafe.org
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1007/978-3-030-77870-5_13
https://eprint.iacr.org/2022/214

Post-Quantum Signatures in DNSSEC 563

5. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryck-
eghem, J.: GeMSS. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions

6. Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

7. DNS-Violations: DNS flag day 2020 (2020). https://dnsflagday.net/2020/
8. Fregly, A., van Rijswijk-Deij, R.: Stateful hash-based signatures for DNSSEC.

Internet-Draft draft-afrvrd-dnsop-stateful-hbs-for-dnssec-00, Internet Engineer-
ing Task Force, March 2022. https://datatracker.ietf.org/doc/draft-afrvrd-dnsop-
stateful-hbs-for-dnssec/00/

9. Heftrig, E., Shulman, H., Waidner, M.: Poster: the unintended consequences of
algorithm agility in DNSSEC, pp. 3363–3365. ACM (2022). https://doi.org/10.
1145/3548606.3563517

10. Hoffman, P.E., McManus, P.: DNS Queries over HTTPS (DoH). RFC 8484,
RFC Editor, October 2018. https://doi.org/10.17487/RFC8484, https://www.rfc-
editor.org/info/rfc8484

11. Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., Hoffman, P.E.: Specifica-
tion for DNS over Transport Layer Security (TLS). RFC 7858, RFC Editor, May
2016. https://doi.org/10.17487/RFC7858,https://www.rfc-editor.org/info/rfc7858

12. Huelsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS:
eXtended Merkle Signature Scheme. RFC 8391, RFC Editor, May 2018. https://
doi.org/10.17487/RFC8391, https://www.rfc-editor.org/info/rfc8391

13. Huitema, C., Dickinson, S., Mankin, A.: DNS over Dedicated QUIC Connections.
RFC 9250, RFC Editor, May 2022. https://doi.org/10.17487/RFC9250, https://
www.rfc-editor.org/info/rfc9250

14. Hulsing, A., et al.: SPHINCS+. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

15. Internet Systems Consortium: BIND 9 (2021). https://www.isc.org/bind
16. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National

Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

17. Mao, J., Rabinovich, M., Schomp, K.: Assessing support for DNS-over-TCP in the
wild. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds.) PAM 2022. LNCS, vol. 13210,
pp. 487–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98785-
5 22

18. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali Hash-Based Signatures. RFC
8554, RFC Editor, April 2019. https://doi.org/10.17487/RFC8554,https://www.
rfc-editor.org/info/rfc8554

19. Müller, M., de Jong, J., van Heesch, M., Overeinder, B., van Rijswijk-Deij, R.:
Retrofitting post-quantum cryptography in internet protocols: a case study of
DNSSEC. ACM SIGCOMM Comput. Commun. Rev. 50(4), 49–57 (2020)

20. National Institute of Standards and Technology: Call for additional digital signa-
ture schemes for the post-quantum cryptography standardization process, Septem-
ber 2022. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-
for-proposals-dig-sig-sept-2022.pdf

21. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://dnsflagday.net/2020/
https://datatracker.ietf.org/doc/draft-afrvrd-dnsop-stateful-hbs-for-dnssec/00/
https://datatracker.ietf.org/doc/draft-afrvrd-dnsop-stateful-hbs-for-dnssec/00/
https://doi.org/10.1145/3548606.3563517
https://doi.org/10.1145/3548606.3563517
https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc7858
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391
https://doi.org/10.17487/RFC9250
https://www.rfc-editor.org/info/rfc9250
https://www.rfc-editor.org/info/rfc9250
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.isc.org/bind
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-98785-5_22
https://doi.org/10.1007/978-3-030-98785-5_22
https://doi.org/10.17487/RFC8554
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc8554
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

564 J. Goertzen and D. Stebila

22. van Rijswijk, R.M., Jonker, M., Sperotto, A., Pras, A.: A high-performance, scal-
able infrastructure for large-scale active DNS measurements. IEEE J. Sel. Areas
Commun. 34(6), 1877–1888 (2016)

23. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Dns. RFC 4033, RFC
Editor. https://rfc-editor.org/rfc/rfc4033.txt

24. Shrishak, K., Shulman, H.: Negotiating PQC for DNSSEC. In: 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks -
Supplemental Volume (DSN-S), pp. 9–10 (2021). https://doi.org/10.1109/DSN-
S52858.2021.00015

25. da Silva Damas, J., Graff, M., Vixie, P.A.: Extension Mechanisms for DNS
(EDNS(0)). RFC 6891, April 2013. https://doi.org/10.17487/RFC6891, https://
www.rfc-editor.org/info/rfc6891

26. Sivaraman, M., Kerr, S., Song, L.: DNS message fragments, July 2015. https://
datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/

27. Song, L., Wang, S.: ATR: Additional Truncation Response for Large DNS
Response, March 2019. https://datatracker.ietf.org/doc/draft-song-atr-large-
resp/03/

28. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 2

29. Vixie, P.: Re: [dnsop] call for adoption: draft-song-atr-large-resp (2019). https://
mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/

https://rfc-editor.org/rfc/rfc4033.txt
https://doi.org/10.1109/DSN-S52858.2021.00015
https://doi.org/10.1109/DSN-S52858.2021.00015
https://doi.org/10.17487/RFC6891
https://www.rfc-editor.org/info/rfc6891
https://www.rfc-editor.org/info/rfc6891
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://doi.org/10.1007/978-3-319-69453-5_2
https://mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/
https://mailarchive.ietf.org/arch/msg/dnsop/JdhkwdWT2hGzIwfVx6CrX15KCfk/

Hash-Based Direct Anonymous
Attestation

Liqun Chen1(B) , Changyu Dong2 , Nada El Kassem1 ,
Christopher J. P. Newton1 , and Yalan Wang1

1 University of Surrey, Guildford, UK
liqun.chen@surrey.ac.uk

2 Guangzhou University, Guangzhou, China

Abstract. Direct Anonymous Attestation (DAA) was designed for the
Trusted Platform Module (TPM) and versions using RSA and ellip-
tic curve cryptography have been included in the TPM specifications
and in ISO/IEC standards. These standardised DAA schemes have their
security based on the factoring or discrete logarithm problems and are
therefore insecure against quantum attackers. Research into quantum-
resistant DAA has resulted in several lattice-based schemes. Now in this
paper, we propose the first post-quantum DAA scheme from symmet-
ric primitives. We make use of a hash-based signature scheme, which
is a slight modification of SPHINCS+, as a DAA credential. A DAA
signature, proving the possession of such a credential, is a multiparty
computation-based non-interactive zero-knowledge proof. The security
of our scheme is proved under the Universal Composability (UC) model.
While maintaining all the security properties required for a DAA scheme,
we try to make the TPM’s workload as low as possible. Our DAA scheme
can handle a large group size (up to 260 group members), which meets
the requirements of rapidly developing TPM applications.

Keywords: Hash-based signatures · Direct anonymous attestation

1 Introduction

Direct Anonymous Attestation (DAA) [7] is a group type of anonymous signature
scheme, which allows users in a group to sign messages such that the signatures
can be verified using a group public key, and the actual signers’ identities are
not revealed (beyond the fact that they belong to the group). Unlike group
signatures [21], DAA signatures are not traceable, there is no group tracer who
can find out which signer created a given signature. However, DAA has two
properties that aim to stop a malicious signer from abusing anonymity: rogue
key-based revocation and user-controlled linkability. These two properties were
designed for using DAA in a remote attestation service that allows a Trusted
Platform Module (TPM) to serve as a root of trust for attesting to the host
platform that it is embedded in. The first property guarantees that a TPM whose

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 565–600, 2023.
https://doi.org/10.1007/978-3-031-40003-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_21&domain=pdf
http://orcid.org/0000-0003-2680-4907
http://orcid.org/0000-0002-8625-0275
http://orcid.org/0000-0002-2827-6493
http://orcid.org/0000-0003-1262-2192
http://orcid.org/0000-0002-6963-7582
https://doi.org/10.1007/978-3-031-40003-2_21

566 L. Chen et al.

key has been revealed will not be allowed to make any attestation reports. The
second property allows a user to include a basename in the signature. If the same
basename is used for two signatures then they can be linked, even though the
anonymity of the signer is maintained. This property allows a verifier to build
a revocation list based on a link token which is a deterministic function of the
TPM’s key and a basename.

When using a TPM in a platform’s attestation service, the group signer’s role
is split into two with a principal signer (the TPM) and an assistant signer (the
host). They jointly create attestation reports on the state of the platform. These
reports include information on the boot sequence and the software running in
the host. These attestation reports convince a remote verifier that the computer
platform it is communicating with is running on top of the trusted computing
technology and using the correct software and hardware. Using DAA allows such
attestations to be made in a privacy-preserving manner. That is, the verifier can
check that an attestation report originates from a legitimate TPM, but it does
not learn the identity of the particular TPM that generated the DAA signature.

The first RSA-based DAA scheme was standardised as part of the Trusted
Computing Group’s TPM 1.2 specification [53] published in 2004. The TPM
specification was updated in 2014 and this newer TPM 2.0 specification [54] sup-
ports elliptic curve based DAA (EC-DAA) and an Intel variant called Enhanced
Privacy ID (EPID) [11]. All of these versions of DAA (RSA-DAA, EC-DAA and
EPID) have also been standardised by ISO/IEC as standard ISO/IEC 20008-
2 [42]. Since the first proposal of DAA, many extensions and works to improve
security and efficiency have been proposed [8–10,13,15,17,18,23,26–30,38,59].
Researchers have also paid attention to studying the security model and proofs
of DAA, e.g. [16,27,56,58].

As reported by the Trusted Computing Group (TCG), which is the industry
standards body that develops the TPM specifications, more than a billion devices
include TPM technology; in particular almost all enterprise PCs, many servers
and embedded systems make use of the TPM as trusted hardware anchors.

Authentication and attestation are important mechanisms used to protect
computer systems and with increasing attention and awareness being given to
privacy concerns, practical interest in DAA is growing. An anonymous attesta-
tion service is particularly important in automotive applications such as vehicle-
to-vehicle communication, where the tracking of drivers should be prevented but
the authenticity of the communication must also be guaranteed [39,57]. A DAA
protocol has also been integrated into the Fast IDentity Online (FIDO) authen-
tication framework [14]. Another DAA-based application is a privacy-enhancing
cloud service architecture to protect user’s data, using DAA to let users control
the extent of data sharing among their service accounts [55].

DAA schemes that are currently supported by the TPM are based on either
the factorization problem (for RSA-DAA) or the discrete logarithm problem (for
EC-DAA and EPID). Since the factorization and discrete logarithm problems
are known to be vulnerable to quantum computer attacks, all standardised DAA
schemes are not post-quantum secure, i.e. an adversary with a powerful quantum

Hash-Based Direct Anonymous Attestation 567

computer could break the TPM’s security and privacy. There is therefore a need
to update the standard DAA schemes to be quantum resistant. Many proposed
post-quantum cryptographic primitives are built on the top of code-, hash-,
lattice-, isogeny- and multivariate-based problems, and could possibly be used
as the basis for the development of post-quantum DAA schemes. Recently, El
Bansarkhani et al. [1], El Kassem et al. [34,35,44], Chen et al. [24], and Chen et
al. [22] proposed several post-quantum DAA schemes from lattice assumptions.
Due to their expensive storage and computational cost, research in lattice-based
DAA is still ongoing.

Among all post-quantum approaches, the symmetric key approach is consid-
ered as the most conservative approach. The security of symmetric primitives
is the most well-understood and easier to evaluate, hence it serves as a safety
net if the security of other approaches were endangered by newly discovered
threats. Symmetric primitives have been used to build several variants of anony-
mous signature schemes, such as group signatures [12,33,45,52,60,61], ring sig-
natures [36,45] and EPID [5]. However, due to the use of a single Merkle tree
for membership credentials in a group, these group signature and EPID schemes
can only handle a small group size, which is not suitable for TPM use.

Our Contribution. In this paper, we propose the first DAA scheme from sym-
metric primitives, which meets all the requirements on DAA, particularly:

– Signer splitting: To allow the DAA signer role to be split between a TPM
and its host, we introduce a novel approach to splitting an MPC-in-the-Head
scheme into two portions. The TPM keeps the key material secure and per-
forms a small part of the work. Most of the work necessary is done by the
host. The TPM and the host’s contributions work together seamlessly to form
a DAA signature.

– Support a large group size: our DAA scheme can support a large group size
(up to 260). To achieve this, we make use of a slightly modified SPHINCS+
signature rather than a Merkle signature as a group membership credential.

– Security proof: the security of the proposed DAA scheme is proved under the
Universal Composability (UC) model [16].

The remaining part of this paper is arranged as follows: Sect. 2 describes
relevant preliminaries, Sect. 3 presents the proposed DAA construction, Sects. 4
to 7 provide security notions and proofs, and finally Sect. 8 concludes this paper.

2 Preliminaries

2.1 Hash-Based Signatures

Digital signature schemes can be built exclusively using cryptographic hash func-
tions. In a hash-based signature scheme, a private key is composed of a series of
randomly generated strings, while the corresponding public key is obtained by
applying hash functions to the private key. Early hash-based signature schemes,
such as the Lamport scheme [47] and the Winternitz scheme [48], were one-time

568 L. Chen et al.

signatures (OTS), meaning that each key pair can only be used to sign a single
message. The Merkle signature scheme [48] is the first hash-based few-time sig-
natures (FTS). It generates several OTS key pairs and aggregates their public
keys using a Merkle tree. The root of the tree serves as the overall public key.
Every signature uses one OTS private key, and it is comprised of the correspond-
ing OTS and the Merkle tree authentication path for the OTS public key. As
a result, the verifier can authenticate the signature using only the Merkle tree
root. More recent FTS schemes, such as FORS [3], can be more efficient, as they
utilize a large set of secret random strings that can be obtained from a pseu-
dorandom function applied to the private key. Signatures are then generated by
selecting elements from the set based on the message to be signed. While each
signature discloses some secret strings in the set, the set size is large, and the
number of signatures can be controlled to make it infeasible to forge a signature
by mixing and matching secret strings from previously generated signatures.

All previously discussed multi-time signature schemes are characterized as
stateful, as the signer is required to maintain a state containing information
such as the number of signed messages and the keys utilized. In comparison,
SPHINCS+ [3] is a stateless hash-based signature scheme. It employs a hyper-
tree, i.e., a tree of trees, to organize OTS and FTS key pairs. Each SPHINCS+
signature constitutes a chain of signatures, with the initial signature Σ0 being
generated from the message, and each subsequent signature Σi being a signature
of the public key that verifies the preceding signature Σi−1. By using the root
public key, the authenticity of the signature chain can be verified. Although
SPHINCS+ also has an upper limit on the number of signatures that can be
generated per key pair, it can be set to an extremely large value (e.g. 260),
making it highly unlikely to reach this limit in practical scenarios. SPHINCS+
has been chosen as one of the three digital signature schemes by the National
Institute of Standards and Technology (NIST) to become a part of its post-
quantum cryptographic standard [49].

2.2 MPC-in-the-Head and Picnic-Style Signatures

This is a paradigm for zero-knowledge proofs introduced by Ishai et al. [40].
Roughly speaking, given a public value x, the prover needs to prove knowing
a witness w such that f(w) = x. To do so, the prover simulates, by itself, an
MPC (multi-party computation) protocol between m parties that realizes f ,
in which w is secretly shared as an input to the parties. After simulation, the
prover commits to the views and internal state of each individual party. Next,
the verifier challenges the prover to open a subset of these commitments, checks
them and decides whether to accept or not. If the MPC realizes f properly,
then obviously this protocol is complete, meaning a valid statement will always
be accepted. The protocol is also zero-knowledge because only the views and
internal states of a subset of the parties are available to the verifier, and by
the privacy guarantee of the underlying MPC protocol, no information about
w can be leaked. For soundness, if the prover tries to prove a false statement,
then the joint views of some of the parties must be inconsistent, and with some

Hash-Based Direct Anonymous Attestation 569

probability, the verifier can detect that. The soundness error of a single MPC
run can be high, but by repeating this process independently enough times, the
soundness error can be made negligible. The interactive ZK proofs can be made
non-interactive through techniques such as Fiat-Shamir transformation.

There are multiple frameworks for constructing MPC-in-the-head ZK proofs,
e.g., IKOS [40], ZKBoo [37], ZKB++ [20], KKW [45], Ligero++ [4], Limbo [51],
BBQ [50], Banquet [2], BN++ [43], Rainer [31] and AIMer [46]. They follow
the same paradigm, but are different in the underlying MPC protocols and have
different concrete/asymptotic efficiency. In this paper, to describe our scheme,
we do not need to touch the low level details, hence we will use MPC-in-the-head
(for Boolean circuits) in an abstract way. We will use the following syntax to
describe a ZK proof:

π = P{(public params); (witness)|relation to be proved}
For example, to prove the same key sk is used in two different instantiations of
a pseudorandom function F with different data inputs, we write:

π = P{(C1, P1), (C2, P2)); (sk)|C1 = F (sk, P1) ∧ C2 = F (sk, P2)}
MPC-in-the-head has been used to generate signature schemes from a sym-

metric key setting. As the first scheme is named Picnic [19,20,62], this type of
signature is called a Picnic-style signature, in which the secret signing key is
k and the public verification key is a pair (c, p), and the key pair satisfy the
equation c = E(k, p) where E is a block cipher, k is a secret key, and p and c are
respectively a plaintext and ciphertext block. Signing a message m essentially is
to generate a non-interactive MPC-in-the-head proof of knowing the private key:

π = P{(c, p)); (k)|c = E(k, p)}(m)

Note that this signature is based on the Fiat-Shamir transformation. The mes-
sage m is included as a part of the input for the challenge hash in the transfor-
mation. Again, to describe our scheme, we do not need to explain the details of
the E algorithm, and any secure Picnic-style signature scheme can be used.

2.3 DAA Concept

A DAA scheme involves the following players:

– An issuer manages the group membership, decides who can be a group
member, and issues group membership credentials.

– Group members create DAA signatures. Each member is formed by two
entities: the TPM serves as a principal signer and the host an assistant signer.

– Verifiers verify DAA signatures. A verifier also has two other roles: as a
linker to check whether two given signatures using the same basename were
created by the same signer or not; as a revocation authority to decide
whether a group member should be removed from the group based on the
verifier local revocation.

570 L. Chen et al.

A DAA scheme consists of the following algorithms/protocols:

– Init(n): In the initialization algorithm, the issuer takes a security parameter
n as the input, and outputs a master (group) key pair (mpk, msk). The
master public key mpk is made public and the master secret key msk is
stored privately by the issuer. In all other algorithms and protocols, we will
assume mpk along with the security parameter n as an implicit input for all
parties. The issuer also initializes its internal states.

– Join(msk): the joining protocol is an interactive protocol between the issuer
and the user (a TPM and its host) who wants to join the group. The issuer
has a private input msk and the user does not have input. At the end of the
protocol, the issuer outputs a decision: accept or reject. If reject, then
stop. If accept, the user obtains its signing key gsku = (sku, credu) where
sku is a secret key, and credu is a group membership credential. sku is chosen
and held by the TPM, and credu is generated by the issuer and is given to
the host. The issuer also updates its internal states.

– Sign(gsku, msg, bsn): the signing algorithm allows a TPM and its host to
produce a signature Σ on a message msg ∈ {0, 1}∗ using its signing key gsku.
If a basename bsn �=⊥, Σ will include a link token.

– Verify(msg, bsn,Σ,keyRL, linkRL): the verification algorithm allows a ver-
ifier to verify whether a signature Σ is a valid signature of msg/bsn and
whether the signing key has been listed on a rogue key list keyRL or whether
a link token in the signature has been listed on a link revocation list linkRL.

– Link(msg1, Σ1,msg1, Σ2, bsn): the linking algorithm allows a verifier to check
whether given two DAA signatures Σ1 and Σ2 with the same bsn value are
signed using the same gsku or not.

– Revocation the revocation algorithm allows a verifier to add a revealed signing
key in keyRL and to add a link token from a signature generated by a revoked
signer in linkRL.

A DAA scheme needs to satisfy multiple security requirements, including:

– Correctness covers three aspects: (1) an honest user can successfully join
the group, despite the existence of malicious users; (2) a signature generated
by an honest and not revoked group member should always be valid when
being verified; (3) user-controlled linkability, i.e., two valid signatures with
the same bsn values and signed under the same gsku should be linked to each
other.

– Anonymity means that a DAA signature does not reveal the identity of
its signer, i.e., an adversary cannot distinguish which one of the two honest
signers has signed a targeted message while both signers and the message are
at the adversary’s choice. Furthermore, given two signatures, w.r.t. two dif-
ferent basenames, the adversary cannot distinguish whether both signatures
were created by one honest signer or two different signers.

– Non-frameability means that even if the rest of the group, as well as the
issuer and the host of an honest TPM, are corrupted, they cannot falsely
attribute a signature to the TPM who did not produce it. This property

Hash-Based Direct Anonymous Attestation 571

covers three special cases: (1) no adversary can create a signature w.r.t. a
basename that links to another signature created by an honest TPM for the
same basename; (2) when the issuer and all TPMs are honest, no adversary
can provide a signature on a message msg w.r.t. a basename bsn when no
TPM signed this (msg, bsn) pair; (3) When the issuer is honest, an adversary
can only sign in the name of corrupt TPMs. More precisely, if n TPMs are
corrupt, the adversary can create at most n unlinkable signatures for the same
basename.

These requirements will be described in detail under the DAA UC model
in Sect. 6. Note that the host in a secure DAA scheme is trusted to correctly
execute the protocol and to maintain anonymity. This trust requirement is nec-
essary, as the host is a contributor to a DAA signature, so a malicious host is
able to not provide correct input or to break anonymity by demonstrating the
connection between a DAA signature and the corresponding TPM’s public key
and credential. We assume that the host represents the user so it is interested in
creating valid DAA signatures and maintaining user privacy. However, for non-
frameability, there is no requirement for the host to be trusted. Without the
TPM, the host can neither receive a DAA credential nor generate a DAA signa-
ture. Several types of TPM have been considered in applications: (1) concrete
hardware TPM, (2) integrated TPM, (3) firmware TPM, (4) virtual TPM, and
(5) software TPM. Although the TPM tamper-resistant property level decreases
from the highest case (1) to the lowest one (5), the trust requirements on the
host are the same.

3 Construction

3.1 F-SPHINCS+ and M-FORS

To construct a DAA scheme from symmetric primitives, the first design choice
is to select group membership credentials. A credential essentially is a signature
on the user’s keys generated by the issuer. Because we use only symmetric prim-
itives, the credential can be in the form of the following: (1) a Merkle signature;
(2) a SPHINCS+ style signature; (3) a Picnic-style signature. The first option
is ruled out because it cannot handle a large group size. The last option is also
ruled out because of practical considerations: we have to create a ZKP on that
another ZKP (i.e. the Picnic-style signature) is valid. Unfortunately, the circuit
for verifying a Picnic-style signature is too big, which results in prohibitively
high computation costs and large proof size. Therefore, we focused on utilizing
a SPHINCS+ style signature as the group credential.

In the above descriptions, we said “SPHINCS+ style” rather than
“SPHINCS+”. This is because SPHINCS+ is still too heavy when being veri-
fied in zero knowledge. The main problem comes from the WOTS+ signature
scheme. In WOTS+, verification involves verifying k blocks of d-bit strings.
When verified in the clear, each block requires at most 2d −1 hash operations to
verify and the exact number of hash operations required depends on the content

572 L. Chen et al.

of the block. However, in a zero-knowledge proof, we will have to hash each block
exactly 2d − 1 times then choose the right hash value in the chain blindly, to
ensure the verifier is oblivious about the content of the block. Hence in total,
(2d − 1) · k hashes are required to verify a WOTS+ signature. Plug in concrete
parameters, that means 510 hashes at 128-bit security, and 990 hashes at 256-
bit security. The circuit implementing the hash function typically has 103 AND
gates. So verifying one WOTS+ signature requires a circuit with over a million
AND gates and in total we need to verify h WOTS+ signatures, where h is at
least 7 in SPHINCS+.

To fix the problem, we propose a new variant of SPHINCS+ called F-
SPHINCS+. As depicted in Fig. 1, in F-SPHINCS+ we use a hyper-tree that
is a tree of M-FORS trees. The M-FORS signature scheme is depicted in Fig. 2.
Recall that FORS is a few-time signature scheme such that each key pair can be
used to sign up to q signatures. M-FORS, short for Merkle FORS, differs from
FORS in that, the public key is generated as the root of a Merkle tree. The leaf
nodes in this Merkle tree are the root nodes of Merkle trees that authenticate

Fig. 1. F-SPHINCS+ signatures.

Fig. 2. M-FORS signatures.

Hash-Based Direct Anonymous Attestation 573

each block of the hash value being signed. So with M-FORS, the hyper-tree in
F-SPHINCS+ is a q-ary tree such that the public key in a child node is signed
by the signing key in the parent node, and the signing key in the leaf node signs
the actual message hash. An F-SPHINCS+ signature then contains a list of h+1
signatures, where h is the height of the hyper-tree. The benefit of M-FORS over
XMSS that is used in the original SPHINCS+ scheme is the lower verification
cost. To verify a message hash that is k blocks of d-bit string, the cost is d·k+k−1
hash operations. This is much less than the (2d − 1) · k hashes for verifying a
WOTS+ signature. On the other hand, the signing time is more than that of
WOTS+. However, this is a lesser concern because in our case signing will be
done in the clear (while verification needs to be done with zero knowledge).

We now describe M-FORS and F-SPHINCS+. M-FORS consists of the algo-
rithms below. For readability and the page limitation, we abstract away certain
low-level details such as how the Merkle trees are built.

– keyGen(seed, n, d, k, aux): it takes as input a random seed seed, a security
parameter n, two positive integers d and k, and aux that is either an empty
string or some optional data. If seed is an empty string, an n-bit random
string will be chosen and assigned to it. Then a pseudorandom function
prf is used to expand seed into k lists (x(0), · · · ,x(k−1)), where each x(i)

contains 2d distinct n-bit pseudorandom strings. Then k + 1 Merkle trees
T = (mt0, · · · , mtk) are built. In particular, each of mt0, · · · , mtk−1 has 2d

leaf nodes. The jth leaf node in mti is the hash of x(i)
j . The leaf nodes of

mtk are r0, · · · , rk−1 that are the roots of (mt0, · · · , mtk−1). keyGen outputs
(pk, sk, param), such that the public key pk = rk where rk is the root of mtk,
the private key sk = seed, and the public parameters mp = (n, d, k, aux).

– sign(sk,MD,mp): to sign a message hash MD ∈ {0, 1}k·d, parse it into k
blocks, each block is interpreted as a d-bit unsigned integers (p0, · · · , pk−1).
Then for the i-th block pi, x(i) and mti (obtained by expanding sk) are used
to generate authpath(i), which is the authentication path of the pi-th leaf
node in the i-th Merkle tree. Then (x(i)

pi , authpath(i)) is put into the signa-
ture. The signature is a list of k pairs σ = {(x(0)

p0 , authpath(0)), · · · , (x(k−1)
pk−1 ,

authpath(k−1))}.
– recoverPK(σ,MD,mp): This algorithm outputs the public key recovered from

a signature σ and the message hash MD. First MD is parsed into k blocks
(p′

0, · · · , p′
k−1). Then for 0 ≤ i ≤ k − 1, σi = (xi, authpath(i)) and p′

i are
used to re-generate a Merkle tree root and get the value r′

i (p′
i is used to

determine the order of the siblings at each layer). Finally, r′
0, · · · , r′

k−1 are
used to compute mt′

k and its root r′
k is returned.

– verify(σ, pk,MD,mp): to verify a signature, call recoverPK(σ,MD,mp). If the
recovered public key is the same as pk, accept the signature, otherwise reject.

The hyper-tree nodes in F-SPHINCS+ are addressed by a pair (a, b) where
a is its layer and b is its index within the layer. The root node is at layer 0, and
the layer number of all other nodes is the layer number of its parent plus 1. All
nodes within a layer are viewed as an ordered list, and index each node in the

574 L. Chen et al.

list from left to right, starting from 0. F-SPHINCS+ consists of the following
algorithms:

– keyGen(n, q, h): This algorithm outputs (sk, pk, fp). It takes as input a secu-
rity parameter n, the degree of non-leaf nodes in the hyper-tree q, and
the height of the hyper-tree h. Then it chooses d, k that are the parame-
ters for the underlying M-FORS signature scheme. The public parameters
are fp = (n, q, h, d, k). It also chooses an n-bit random string as the pri-
vate key sk. It generates the M-FORS key pair for the root node by calling
genNode((0, 0), sk, fp), and set the public key pk to be the M-FORS public
key pk0,0.

– genNode(nodeAdr, sk, fp): This algorithm generates a node in the hyper-
tree given the address nodeAdr = (a, b). With the private key sk used as
a seed, the algorithm first generates a subseed with a pseudorandom func-
tion seeda,b = prf(seed, a||b), then it calls M-FORS key generation algorithm
M-FORS.keyGen (seeda,b, n, d, k, a||b). The output (pka,b, ska,b,mpa,b) is the
content of the node at (a, b).

– mHash(msg, gr):This algorithm produces message hash and the leaf node
index used in generating the F-SPHINCS+ signature. The input msg is
the message to be signed, gr is a random string. The algorithm produces
MD||idx ← H3(msg||gr), where H3 : {0, 1}∗ → {0, 1}d·k+(log2 q)·h is a public
hash function, MD is d ·k bit long and idx is interpreted as an (log2 q) ·h bit
long unsigned integer.

– sign(msg, sk, fp): This algorithm produces the F-SPHINCS+ signature as
a chain of M-FORS signature along the path from a leaf node to the root
node of the hyper-tree. It chooses an n-bit random string gr. Then obtain
MD||idx ← mHash(msg, gr). A leaf node at (h, idx) is then generated by
calling genNode((h, idx), sk, fp). The M-FORS signing key skh,idx is used to
sign MD and generate σ0. The parent node of (h, idx) is then generated by
calling genNode((h−1, b), sk, fp) where (h−1, b) is the address of the parent
node. Then the parent secret key skh−1,b is used to sign the child public key
pkh,idx, and the signature is σ1. Repeat the signing process until obtaining
σh that is signed by sk0,0 on pk1,b′ for some b′. The F-SPHINCS+ signature
is then Σ = (gr, (σ0, · · · , σh)).

– verify(msg,Σ, pk, fp): This algorithm verifies every M-FORS signature
chained up in Σ. Given Σ = (gr, (σ0, · · · , σh)), first compute MD||idx ←
H3(msg||gr). Then obtain pk0 ← recoverPK(σ0,MD,mp0), pk1 ←
recoverPK(σ1, pk0,mp1), repeat until pkh ← recoverPK(σh, pkh−1,mph). If
pk = pkh, accept the signature, otherwise reject.

Remark 1. In M-FORS algorithms, we use two tweakable hash functions [3]
H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ → {0, 1}d·k. Almost all hash operations
are done using H1. H2 is only used to map the k-th Merkle tree to the k · d-bit
M-FORS public key, so that when used in F-SPHINCS+ the public key is of
the right size to be signed by the parent node. If M-FORS is to be used as a
stand-alone signature scheme, these two hash functions can be the same.

Hash-Based Direct Anonymous Attestation 575

Remark 2. The tweakable hash functions follow Construction 7 for tweakable
hash functions in [3]. Namely, the hash of an input M is produced by calling a
hash function with additional input as H(P||ADD||M), where P is a public hash
key and ADD acts as the tweak. The tweak is the address where the hash operation
takes place within the hyper-tree, and it is a five part string a1||b1||v||a2||b2:
– (a1, b1), where 0 ≤ a1 ≤ h, 0 ≤ b1 ≤ 2a1 − 1, is the address of an hyper-tree

node. Within the node, an M-FORS key pair that is based on k + 1 Merkle
trees are stored.

– 0 ≤ v ≤ k is the index of a Merkle tree in the M-FORS key pair stored in the
hyper-tree node (a1, b1). When 0 ≤ v ≤ k − 1, the Merkle tree (of height d) is
used to sign the v-th block of the message; when v = k, the Merkle tree (of
height 	log2 k
) is used to accumulated the roots of all the previous Merkle
trees into the public key.

– (a2, b2) is the address of an Merkle tree node. When 0 ≤ v ≤ k−1, 0 ≤ a2 ≤ d
and 0 ≤ b2 ≤ 2a2 −1; When v = k, 0 ≤ a2 ≤ 	log2 k
−1 and 0 ≤ b2 ≤ 2a2 −1.

The security analysis of F-SPHINCS+ is given in Sect. 4.

3.2 The DAA Scheme

Overall, the DAA signature scheme is designed in this way: the issuer generates
an F-SPHINCS+ key pair as the group master key pair. When a user (including
a TPM and its host) joins the group, the TPM generates a secret signing key.
The issuer decides whether the user should be admitted into the group, if so a
group credential is generated as an F-SPHINCS+ signature on an entry token
(a commitment of the user’s signing key). The credential is accessible to the
host. When signing a message, the TPM and its host work together to produce
an MPC-in-the-head (MPCitH) non-interactive zero-knowledge (NIZK) proof to
show it possesses a group credential and the signature is generated on the hash
of the message and a random data string under the key authorized by the group
credential. We have created a novel approach that allows the TPM and its host
each to make a partial signature and a DAA signature is a combination of these
two. In particular, the TPM proves its possession of the signing key and the host
proves the credential. These two proofs are glued seamlessly in a zero-knowledge
manner. Verifying the DAA signature involves checking the NIZK proof so the
verifier is convinced of a group membership. Each DAA signature also includes
a link token, essentially it is a pseudorandom function output of a basename
bsn produced using the signing key as a secret. This link token will be used for
user-controlled linkability, key-based revocation and link-based revocation.

We now present the concrete construction of algorithms and protocols.

– Initialization Init(n): Given a security parameter n, the issuer does the
following: Choose the hyper-tree node degree q and the tree height h, the
values (d, k) for the underlying M-FORS scheme, a pseudorandom function
prf, three hash functions H1 : {0, 1}∗ → {0, 1}n, H2 : {0, 1}∗ → {0, 1}d·k,
H3 : {0, 1}∗ → {0, 1}d·k+(log2 q)·h, and a keyed pseudorandom function F :

576 L. Chen et al.

{0, 1}n×{0, 1}n → {0, 1}n; Run (sk, rpk, gp) ← F-SPHINCS+.keyGen(n, q, h),
where (rpk, sk) is the F-SPHINCS+ key pair, gp = (n, q, h, d, k) are the
hyper-tree parameters; Publish mpk = (gp, rpk, H1, H2, H3, F, prf) and
keep msk = sk private. The issuer provides a non-interactive zero-knowledge
(NIZK) proof πI to demonstrate that the key pair is generated correctly,
meaning that the secret and public keys are associated with each other.
This NIZK proof can be achieved by signing its own public key rpk using
F-SPHINCS+.sign, which is similar to the issuer creating a group membership
credential in the joining protocol described below. In addition, the issuer ini-
tializes a group list GL, and each verifier initializes two revocation lists: a
key revocation list keyRL and a link token revocation list linkRL. All these
lists are empty when initialized.

– DAA joining protocol Join(msk,mpk): The joining protocol is run between
a user (a TPM and its host) and the issuer. Note that this protocol involves
the authentication of the TPM by the issuer. The issuer has an authentic
copy of the TPM’s endorsement key, which is used to establish a secure and
authenticated channel between the TPM and the issuer. In the following
protocol description, it is assumed the existence of such a channel, and the
reader is recommended to find the detail regarding how to establish such a
channel from [25]. The protocol includes the following steps:

1. A unique session ID u is assigned to the user. For simplicity we can think
the session ID as a monotonically increasing counter, and each invocation
of the joining protocol will increase it by 1. Alternatively, the value u can
be computed from the TPM’s endorsement key, which is unique to the
TPM.

2. The TPM chooses a random secret key: sku
R← {0, 1}n as its signing key.

3. The host computes the group identifier gid = H1(rpk) and sends it to its
TPM.

4. The TPM then generates and returns its entry token etu = F (sku, gid)
together with the NIZK proof πu:

πu : P{(gp, gid, etu); (sku)|etu = F (sku, gid)}

5. The host then chooses a random string cr
R← {0, 1}n and computes a

commitment ct = H1(etu||cr). The host sends (u, ct) to the issuer to
request joining the group.

6. Upon receiving (u, ct), the issuer checks whether an entry with the same
u is in GL. If yes, rejects the user. Otherwise, if the issuer would like
to accept the user, the issuer chooses a random string gru

R← {0, 1}n

and sends it to the host, who responds by sending (etu, cr, πu) back.
The issuer verifies ct = H1(etu||cr) and the NIZK proof πu. If both
verifications pass, the issuer computes the group credential (gru,S) ←
F-SPHINCS+.sign(etu||gru,msk, gp); otherwise the issuer rejects the user.
The credential is sent to the TPM through the secure and authenticated
channel between the TPM and issuer and then forwarded it to the host.
The issuer adds (u, etu, gru,S) to GL.

Hash-Based Direct Anonymous Attestation 577

7. The user, if accepted by the issuer, sets its group membership secret key
gsku = (sku, gru, S). More specifically, the TPM will record sku and the
host will record the remaining values.

– DAA signature generation DSig(gsku,msg, bsn): To produce a DAA sig-
nature on a message msg and a basename bsn, the TPM and its host jointly
create a DAA signature using gsku = (sku, gru, S) as follows:

1. The host computes the link identifier lid = H1(bsn), the signature iden-
tifier sid = H1(msg||str), where str

R← {0, 1}n, and the group identifier
gid = H1(rpk), and sends these three identifier values to the TPM.

2. The TPM computes the group membership entry token etu = F (sku, gid),
the signature link token slt = F (sku, lid) and the signature signing token
sst = F (sku, sid) together with the NIZK proof πDT . The TPM then sends
sst and πDT back to the host.

πDT :P{(gp, sid, gid, lid, slt, hk, cetu); (sku, sst, etu)|
slt = F (sku, lid) ∧ sst = F (sku, sid) ∧ etu = F (sku, gid)
∧ hk = H1(sst) ∧ cetu = F (sst, etu)}

Note that πDT proves that these three tokens are computed under the same
sku and also provides a hook (hk, cetu), which allows the host to carry
on proving the group credential for etu.

3. The host then computes mtu||idx = H3(etu||gru) and com =
H1(sst||pkh|| · · · ||rpk)}, where pkh, · · · , rpk are the public keys for veri-
fying the signatures in S, from the layer h to layer 0 (the public key at the
layer 0 is rpk). Here H3(etu||gru) is used as F-SPHINCS+.mHash(etu, gru).
The host also computes an NIZK proof πDH :

πDH :P{(gp, rpk, slt, com, hk, cetu); (etu, sst, gru, S = {σh, · · · , σ0})|
hk = H1(sst) ∧ cetu = F (sst, etu) ∧ mtu||idx = H3(etu||gru)
∧ pkh = recoverPK(σh,mtu, (n, d, k, (h, idx)))

∧ pkh−1 = recoverPK(σh−1, pkh, (n, d, k, (h − 1, � idx

q
�))) ∧ · · ·

∧ rpk = recoverPK(σ0, pk1, (n, d, k, (0, 0)))
∧ com = H1(sst||pkh|| · · · ||rpk)}

4. The signature Σ = (str, slt, com, πD), where πD is the combination of
πDT and πDH , i.e., πD = (πDT , πDH). hk and cetu appearing in both πDT and
πDH play the role that glues these two MPCitH instances together. From
a verifier’s point of view, πD produces the following NIZK proof:

578 L. Chen et al.

πD :P{(gp, rpk, gid, sid, lid, slt, com);
(sku, etu, sst, gru, S = {σh, · · · , σ0})|
slt = F (sku, lid) ∧ sst = F (sku, sid) ∧ etu = F (sku, gid)
∧ mtu||idx = H3(etu||gru)
∧ pkh = recoverPK(σh,mtu, (n, d, k, (h, idx)))

∧ pkh−1 = recoverPK(σh−1, pkh, (n, d, k, (h − 1, � idx

q
�))) ∧ · · ·

∧ rpk = recoverPK(σ0, pk1, (n, d, k, (0, 0)))
∧ com = H1(sst||pkh|| · · · ||rpk)}

More details of πD will follow in Sect. 3.3.

– DAA signature verification DVf(msg, bsn, Σ, keyRL, linkRL) : Given
Σ = (str, slt, com, πD),msg, bsn, together with two revocation lists keyRL
and linkRL, the verifier first rejects Σ if (bsn, slt) ∈ linkRL. Otherwise,
the verifier recomputes lid = H1(bsn), and ∀sk∗

u ∈ keyRL computes slt∗ =
F (sk∗

u, lid). If any slt∗ = slt, rejects Σ. Otherwise, the verifier verifies πD.
Accept if the verification succeeds; otherwise reject.

– DAA link algorithm Link(Σ,Σ′) : Given two valid DAA signatures Σ =
(str, slt, com, πD) and Σ′ = (str′, slt′, com′, π′

D) associated with the same bsn,
the verifier checks if slt = slt′ holds. If so output linked, otherwise not linked.

– DAA revocation There are two cases to revoke the group membership of the
user u: (1) Given sku, a verifier adds it in keyRL1; (2) Given a pair (bsn, slt)
associated with a DAA signature signed by the user u to be revoked, a verifier
adds this pair in linkRL.

3.3 The Proof πD

The most important part in the DAA signature Σ = (str, slt, com, πD =
(πDT , πDH)) is the proof πD. In this section we dissect it to show the design rationale
and explain two changes we made to MPC-in-the-Head, which greatly improves
the efficiency and may be of independent interest.

As Σ is a signature of a message msg, the foremost thing πD needs to prove
is that the signer knows a group signing key gsku = (sku, gru, S) and it was
used to sign msg. Besides that, πD also needs to prove that gsku is authorized
by the issuer. To do that, in πD the following is done:

1. It proves that the same signing key sku is used to generate three values etu,
slt and sst, where etu is bound with the group root public key rpk (as it is
computed from gid = H1(rpk)), slt is bound with the base name bsn (as it
is computed from lid = H1(bsn)), and sst is bound with the message msg
and random string str (as it is computed from sid = H1(msg||str)). slt is
revealed in Σ, and etu and sst are hidden.

1 It is an open problem for creating a validation check on keyRL that doesn’t take
O(N) time, where N is the size of the list.

Hash-Based Direct Anonymous Attestation 579

2. It proves that two revealed values slt and com are produced using the same
sku. It binds com to sst (by using sst in computing com). The commitment
com also binds Σ to all public keys used to blindly verify the signatures in S.

3. It proves that mtu, which is computed from etu, is signed under a private key
in a leaf node of the hyper-tree generated by the group issuer. This is done by
verifying all the signatures in S such that mtu and σh produce the leaf public
key pkh, which in turn with σh−1 produces pkh−1, and so on until reaching
the root. The last public key produced is rpk which is published by the group
issuer. All public keys recovered in this process match those committed in the
commitment com.

The first challenge for implementing πD with MPCitH comes from splitting
the signer role into two parts, the principal signer TPM and the assistant signer
host, where the TPM holds sku and the host holds S. A straightforward choice
is to let the TPM and host be involved in the same MPCitH instance. This will
result in a large communication cost between these two entities. Our solution is
to split πD into two MPCinH instances, πDT and πDH , each is performed by one
entity. The difficulty now is how to glue these two instances together seamlessly
in a zero-knowledge manner. We let (sst, etu) serve as a hidden hook and hk =
H1(sst) and cetu = F (sst, etu) as a commitment of sst and etu. Both πDT and πDH

include the same MPCitH proofs of hk and cetu. The collision-resistance property
of the functions F and H1 guarantees that the same pair of (sst, etu) are in πDT

and πDH . The preimage resistance property of these two functions guarantees that
neither etu nor sst is revealed. The MPC instance of πDT is shown in MPCitH 1.

MPCitH 1: πDT – MPC instance for the TPM’s part of πD

Public: gp = (n, q, h, d, k), sid, gid, lid, slt
Private: �sku�
Output: slt′, hk, cetu

Check: slt′ = slt ∧ hk′ = hk ∧ cet′
u = cetu

1 slt′ = MPC_F(�sku�, lid);
2 �sst� = MPC_F(�sku�, sid);
3 �etu� = MPC_F(�sku�, gid);
4 hk′ = MPC_H1(�sst�);
5 cet′

u = MPC_F(�sst�, �etu�);

Let us first introduce the notation used in such an MPCitH algorithm: �x�
means that the value x is secret-shared when using an MPC algorithm, meaning
that it is known by the prover but not the verifier. MPC_X means the MPC
subroutine implementing the function X (e.g. MPC_F, MPC_H1, MPC_H2 and
MPC_H3 implement F , H1, H2 and H3). This notation will be used throughout
the paper. Based on [41], in an implementation MPC_F can be used as a building
block for the hash functions that we need.

In MPCitH 1, the TPM performs the MPC_F algorithm four times and
the MPC_H1 algorithm once when computing the signature link token slt =

580 L. Chen et al.

MPC_F(�sku�, lid), the signature signing token �sst� = MPC_F(�sku�, sid), the
entry token �etu� = MPC_F(�sku�, gid), the hash value hk = MPC_H1(�sst�),
and the connection entry token cetu = MPC_F(�sst�, �etu�). These five opera-
tions are performed in the same MPCinH knowledge-proof routine, where sku,
sst and etu are kept secret. The TPM outputs the proof along with slt′, hk,
and cetu. The proof demonstrates that the same sku value was used in steps 1)
- 3), and steps 4) and 5) are used to pass sst and etu to the host, which allows
the latter to carry on the MPCinH knowledge-proof πDH for the DAA credential
associated with etu. In an implementation this reduces to 5 calls to MPC_F.

The second challenge for implementing πD with MPCitH comes from the cost
of h + 1 M-FORS signature verifications required by the proof in πDH . Recall
that in an M-FORS signature (Sect. 3.1, also the example in Fig. 2), the message
hash to be signed is broken into k blocks, and each block is authenticated with
a Merkle-tree of height d. Then the k Merkle tree roots are organized into a
new Merkle tree whose root is the public key. Verifying the full signature means
to check whether the public key can be recovered from the message hash, the
secret strings corresponding to the hash blocks (x(i)

pi), and the hashes along the
Merkle tree authentication paths. In total, to verify a single M-FORS signature,
k ·(d+1)+(k−1) = kd+2k−1 hashes are needed, which is in the order of 102 for
a practical setting (with an extra factor of 2 if implementing with MPC_F). The
h+1 factor means that if implemented naively, the MPC used in πDH would need
to call thousands of times the sub-procedure that implements the hash function,
and the size of the circuit for the whole MPC can go easily above a million-gates.
Even worse, to reduce the soundness error, the same circuit needs to be executed
tens to hundreds of times in an MPCitH proof. Thus, a naive implementation of
πDH will result in a very large signature size and a high computational cost.

Fig. 3. M-FORS Patial Verification.

Our more efficient strategy for implementing πDH is: in MPCitH, rather than
repeating t times a MPC procedure in which the M-FORS signatures are fully
verified, we run t′ ≥ k MPC procedures in which the M-FORS signatures are

Hash-Based Direct Anonymous Attestation 581

partially verified, one block in each run (see the example of partial verification
in Fig. 3). More precisely, we extend the M-FORS with the following algorithms:

– partial-sig(σ,MD, i,mp): to extract a partial signature of the i-th block
of MD from σ = {(x0,authpath(0)), · · · , (xk−1,authpath(k−1))}. The
Merkle tree mtk can be recomputed from σ. The partial signature is ∂σ,i =
(xi,authpath(i), authpath(k,i)) where (xi,authpath(i)) is a copy of the i-
th pair in σ, and authpath(k,i) is the authentication path of ri (the root of
the i-th Merkle tree) in mtk.

– partial-rec(∂σ,i, pi, i,mp): This algorithm recovers the public key from ∂σ,i

and pi. Given ∂σ,i = (x,authpath,authpath′), first compute the Merkle
tree root ri from (x,authpath, pi), then compute the Merkle tree root pk
from (ri,authpath′, i). Output pk.

With partial-rec, only one path is used to recover the M-FORS public key instead
of k paths.

The MPC procedure for proving the v-th block in πDH is shown in MPCitH 2.
The first 2 steps of this algorithm are the same as steps 4) and 5) in MPCitH 1.
This duplication can glue the TPM part πDT and the host part πDH together.

MPCitH 2: πDH – MPC instance for the v-th block in the host’s part of πD

Public: gp = (n, q, h, d, k), rpk, com, v, hk, cetu

Private: �sst�, �etu�, �gru�, �∂σh,v�, · · · , �∂σ0,v�
Output: pk0, hk′, cet′

u, com′

Check: pk0 = rpk ∧ hk′ = hk ∧ cet′
u = cetu ∧ com′ = com

1 hk′ = MPC_H1(�sst�);
2 cet′

u = MPC_F(�sst�, �etu�);
3 �mtu�||�idx� = MPC_H3(�etu�||�gru�);
4 �M� = �mtu�;
5 �COM� = �sst�;
6 for l = h; l ≥ 0; l − − do
7 parse �M� into k blocks �p0�, · · · , �pk−1�, each block is d-bit;
8 �M� = MPC_pRec(�∂σl,v�, �pv�, �idx�, gp, l, v) ;
9 �COM� = MPC_H1(�COM�||�M�);

10 �idx� = ��idx/q��;
11 end
12 com′ = �COM�;
13 pk0 = Reveal(�M�);

The host uses partial signatures in the MPC. Recall that in the group signing
key gsku, a list S = {σh, · · · ,σ0} of h+1 signatures are stored, one for each layer
in the hyper-tree of F-SPHINCS+. The signer can extract a partial signature
for the v-th block from each signature, i.e. {∂σh,v, · · · , ∂σ0,v}. In Line 8, an
MPC subroutine MPC_pRec that implements partial-rec is used. This subroutine

582 L. Chen et al.

uses the input to compute the corresponding public key at the l-th layer in the
hyper-tree (stored in �M� and also appended to �COM�). After the last iteration,
�COM� is hashed and �M� is revealed. The results will be checked by the verifier
to see whether they match com and rpk. If so, the signer is likely to possess valid
partial signatures along the path from the idx-th leaf node to the root node in
the hyper-tree.

Why does this strategy make sense? In an MPCitH proof, the same procedure
is run multiple times. Each run has a soundness ε that a cheating prover can
get away without being detected. Thus t runs are needed so that εt is negligibly
small. In our case, the main cost of the MPC procedure comes from verifying all
the M-FORS signatures. The full verification requires every block of the message
digest or the child public key to be verified. Our observation is that if a prover
has to cheat, then it has to cheat in more than 1 blocks with a high probability.
If the prover has to cheat in n out of k blocks, then using partial verification
with t′, such that t′ · n/k ≥ t, ensures that the prover has to cheat in more
than t runs, and hence with a negligible success probability. As we analyzed, an
implementation with full signature verification requires t · (h+1) · (k ·d+2k −1)
calls to the MPC hash procedure. The partial verification based implementation,
on the other hand, requires only t′ · (h + 1) · (d + 1 + 	log k
) MPC hash calls.
The improvement is roughly tk

t′ times.
The soundness analysis of πD is given in Sect. 5.

4 Security Analysis of F-SPHINCS+

The standard security definition for digital signature schemes is existential
unforgeability under adaptive chosen-message attacks (EU-CMA). It can be
extended to few-time signature by limiting the adversary’s call to the sign
oracle to qs times where qs is the maximum number of signatures that the
few-time signature scheme is allowed to generate for each signing key. Let
SIG = (kg, sign, vf) be a qs-time signature scheme, Fig. 4 shows the qs-EU-
CMA game.

Fig. 4. qs-EU-CMA game.

Hash-Based Direct Anonymous Attestation 583

Definition 1 (qs-EU-CMA). Let SIG be a digital signature scheme. It is said
to be qs-EU-CMA secure, if for any adversary A, the following holds:

Succqs-EU-CMA
SIG (A(n)) = Pr

[
Expqs-EU-CMA

SIG,A (n) = 1
]

≤ negl(n)

Theorem 1. Following the definitions of SM-TCR (single function, multi-
target-collision resistance), SM-DSPR (single function, multi-target decisional
second-preimage resistance), TSR (target subset resilience), and ITSR (inter-
leaved target subset resilience) given in [3], for suitable parameters, n, d, k, h, q,
the F-SPHINCS+ signature is qh-EU-CMA secure if:

– H1 is SM-TCR and SM-DSPR secure;
– H2 is TSR secure with at most q queries;
– H3 is ITSR secure with at most qh queries;
– prf is a secure pseudorandom function.

Proof. To successfully forge an issuer’s signature on a message M chosen by the
adversary, there are the following mutually exclusive cases:

1 Let MD||idx = H3(M ||gr) for some gr. In the forged signature, all secret
strings corresponding to MD = p0|| · · · ||pk−1, i.e. {x(i)

pi }k−1
i=0 , are the same

as generated from leafidx’s secret key. This case consists of the following
sub-cases:
1.1 The adversary learns all secret strings from signatures obtained in the

query phase.
1.2 Some secret strings are not leaked from previous signatures, and for each

of them, the adversary either:
1.2.1 learns it by breaking the pseudorandom function that is used to

expand the secret key into xi;
1.2.2 or learns it by looking at their H1 hash values and find the pre-images.

2 Let MD||idx = H3(M ||gr) for some gr. In the forged signature, some secret
strings corresponding to MD = p0|| · · · ||pk−1, i.e. {x(i)

pi }k−1
i=0 , are NOT the

same as generated from leafidx’s secret key. Then let S be the list of h + 1
M-FORS signatures in the forged signature, we can find i such that when
verifying the i-th signature (0 ≤ i ≤ h), we obtain the same public key as
would be generated by the signer, but for all 0 ≤ j < i, we obtain a different
public key as would be generated by the signer. This means:
2.1 The adversary has found at least one second-preimages of H1 so that

some Merkle trees in the ith signature are computed with the second-
preimages. They end up having the same roots as the trees computed by
the issuer.

2.2 The adversary knows all secret strings corresponding to the public key
produced from verifying the (i−1)th signature. This public key is different
from the public key at the same location generated by the issuer. This
can be done by either:

584 L. Chen et al.

2.2.1 learning all from previous signature queries;
2.2.2 or breaking the pseudoranodm function;
2.2.3 or finding some pre-images of H1.

Given the above, we analyze the F-SPHINCS+ signature scheme through a
series of games:
Game 0: The original EU-CMA game in which the adversary needs to forge a
valid issuer’s signature after qs queries.
Game 1: Exactly as Game 0 except all output of prf are replaced by truly
random n-bit strings. We eliminate from the above list Case 1.2.1 and 2.2.2 by
this modification. Since each call to prf uses a secret key and a distinct value as
input, assuming prf is a pseudorandom function, we have:

|SuccGame0(A(n)) − SuccGame1(A(n))| ≤ negl(n)

Game 2: Game 2 differs from Game 1 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the ITSR security of H3. This
modification eliminates from the above list Case 1.1. The winning condition in
Fig. 4 is changed to:

– Return 1 iff ITSR(H3,M
∗) = 0 ∧ vf(pk,M∗, σ∗) = 1 ∧ M∗ �∈ {Mi}qh

i=1.

The predicate ITSR is defined as the following:

– Let M∗ be the message that the adversary chooses to generate the forgery on,
and gr∗ the random string used by the adversary to compute MD∗||idx∗ =
H3(M∗||gr∗).

– Parse MD∗ = p∗
0|| · · · ||p∗

k−1 where each p∗
j ∈ [0, 2d − 1]. From the above we

obtain a set C∗ = ((idx∗, 0, p∗
0), · · · , (idx∗, k − 1, p∗

k−1)).
– For each message queried in the query phase Mi (1 ≤ i ≤ qh), and gri

the random string, compute MDi||idxi = H3(Mi||gri) and obtain Ci =
((idxi, 0, pi,0), · · · , (idxi, k − 1, pi,k−1)).

– Return 1 iff C∗ ⊆ ⋃qh

i=1 Ci.

We can see that ITSR(H3,M
∗) = 0 iff the adversary can break the ITSR

security of H3. Hence, we have:

|SuccGame1(A(n)) − SuccGame2(A(n))| ≤ SuccITSR
H3,qh(A) ≤ negl(n)

Game 3: Game 3 differs from Game 2 in that we consider the adversary lost
if the forgery contains a second preimage for an input to H1 that was part of
a signature returned as a signing-query response. Here the second preimage can
be included explicitly in the signature, or implicitly observed when verifying the
signature. This eliminates from the above list Case 2.1. Then we have:

|SuccGame2(A(n)) − SuccGame3(A(n))| ≤ SuccSM−TCR
H1,q (A) ≤ negl(n)

Game 4: Game 4 differs from Game 3 in that we consider the adversary lost if
the adversary outputs a forgery by breaking the TSR security of H2, which allows

Hash-Based Direct Anonymous Attestation 585

the adversary to forge an intermediate signature in S, and then any signature
earlier in the chain. This eliminates from the above list Case 2.2.1. The winning
condition in Fig. 4 is changed to:

– Return 1 iff TSR(H2,M
∗) = 0 ∧ ITSR(H3,M

∗) = 0 ∧ vf(pk,M∗, σ∗) =
1 ∧ M∗ �∈ {Mi}qh

i=1.

The predicate TSR is defined as the following:

– The adversary chooses an intermediate node in the hyper-tree at address
(a, b), and two n-bit string L∗, R∗.

– For each signature obtained in the query phase, if Si includes a signature gen-
erated using the secret key in node (a, b) over the public key in one of its child
node, parse this public key into k blocks, each of d-bit pki = pi,0|| · · · ||pi,k−1,
and generate a set Ci = {(j, pi,j)}k−1

j=0 .
– Compute pk∗ = H2(aux||k||0||0||L∗||R∗), parse pk∗ into p∗

0|| · · · ||p∗
k−1, and

generate a set C∗ = {(j, p∗
j)}k−1

j=0 .
– Return 1 iff C∗ ⊆ ⋃q

i=1 Ci.

Note that each M-FORS public key is the root of a Merkle tree generated from
pseudorandom strings. Also for each intermediate node in a hyper-tree, it has
at most q children, hence no more than q signatures signed by the secret key in
this intermediate node can be obtained by the adversary. So TSR(H2,M

∗) = 0
iff the adversary can break the TSR security of H2. Hence, we have:

|SuccGame3(A(n)) − SuccGame4(A(n))| ≤ SuccTSR
H2,q(A) ≤ negl(n)

Now the cases in which the adversary can forge a signature are all eliminated
except Case 1.2.2 and 2.2.3, which requires the adversary to find a pre-image
of at least one hash value produced by H1. The success probability of finding a
pre-image is as analyzed in [3]:

SuccGame4(A) ≤ 3 · SuccSM−TCR
H1,p (A) + AdvSM−DSPR

H1,p (A) ≤ negl(n)

So overall, the advantage of the adversary is negligible.

TSR Security of H2. In any case, q signatures can be generated under the
secret key of a non-leaf node in the hyper-tree. Assuming the adversary knows
all of them, then for each block of the chosen pk∗, the probability of the secret
string has been leaked is 1 − (1 − 1

2d
)q, so all secret string have been leaked is

(1 − (1 − 1
2d
)q)k. For d = 16, q = 1024, k = 68, this probability is 2−468.87, if

k = 35, this probability is 2−210.39.

ITSR Security of H3. For a leaf node of the hyper-tree, it may have been used
to sign γ signatures out of the total qs signature queries. So the probability that
all secret string of a chosen message M being leaked through query is:

∑
γ

(1 − (1 − 1
2d

)γ)k
(

qs

γ

)
(1 − 1

qh
)qs−γ 1

qhγ

For d = 16, q = 1024, k = 68, h = 6, qs = 260, this probability is 2−407.32, if
k = 35, this probability is 2−208.95.

586 L. Chen et al.

5 Soundness Analysis of πD

In πD, k instances of MPC are run. In the ith instance, the partial verification
procedure is used to verify every M-FORS signature in S, but only the i-th
block of the hash value being signed. Out of the k blocks, the adversary may
have learned the secret strings correspond to λ1 blocks through queries, and
has to cheat in all the remaining k − λ1 blocks. For each MPC instance, the
verifier opens the views of a subset of the MPC parties and a cheat prover can
be detected with a probability 1−ε. Therefore, if using an MPC protocol without
pre-processing, then the soundness error is;

k∑
i=0

Pr[λ1 = i] · εk−i

If using an MPC protocol with pre-processing, then the adversary can also cheat
in the pre-processing phase. If the adversary cheats in λ2 (out of M) copies of
pre-processing data, and not being detected when checking the pre-processing
data (the probability is denoted as Succpre(λ2, k,M)), then it needs to cheat in
k − λ1 − λ2 MPC instances. The soundness error is:

k∑
i=0

Pr[λ1 = i]

(
k−λ1∑
λ2=0

Succpre(λ2, k,M) · εk−λ1−λ2

)

As a concrete example, let us consider a case in which we implement πD using
KKW [45]. Then we have:

Pr[λ1 = i] =
(

k

i

)
(1 − (1 − 2−d)q)i((1 − 2−d)q)k−i,

Succpre(λ2, k,M) =

(
M−λ2
M−k

)
(

M
M−k

) , ε =
1
N

In the above, d, k, q are the parameters for the M-FORS signature, M is the
number of pre-processing data generated, and N is the number of MPC parties.
When d = 16, k = 70, q = 1024,M = 1120, and N = 16, then the soundness
error is 2−257.769; when d = 16, k = 35, q = 1024,M = 560, and N = 16, then
the soundness error is 2−128.987.

6 UC Security Model for DAA

Security in the Universal Composability (UC) framework follows the simulation-
based paradigm, where a protocol is secure when it is as secure as an ideal
functionality that performs the desired tasks in a way that is secure by design.
In this framework, an environment E passes inputs and outputs to the protocol
parties. The network is controlled by an adversary A that may communicate

Hash-Based Direct Anonymous Attestation 587

freely with E . The framework includes an ideal world and a real world. In the ideal
world, the parties forward their inputs to the ideal functionality F , which then
(internally) performs the defined task and creates outputs that are forwarded to
E by the parties. A real-world protocol Π is said to securely realize a functionality
F , if the real world is indistinguishable from the ideal world, meaning that for
every adversary performing an attack in the real world, there is an ideal world
adversary (often called simulator) S that performs the same attack in the ideal
world. More precisely, a protocol Π is secure if for every adversary A, there
exists a simulator S such that no environment E can distinguish executing the
real world with Π and A, and executing the ideal world with F and S. Another
key point of UC, towards reducing the computational complexity of the specified
protocol, is the composition theorem: It guarantees composition with arbitrary
sets of parties and executed computational tasks. This ensures that UC-security
proofs, for any subroutine of F , are also transferred to the security model of the
entire protocol Π.

Fig. 5. UC security model for DAA

Now we employ the UC model for the security of our DAA protocol Π.
Figure 5 depicts the network topology of the real and ideal worlds. The endmost
goal is to prove the completeness and soundness of the DAA protocol by prov-
ing that an adversary cannot gain any significant advantage when monitoring
the operations and interacting tasks that take place in the real world; i.e., be
indistinguishable from the case where all the DAA internal phases are executed
in the ideal world. Security of our DAA protocol Π is captured by the fact
that every attack A mounted in the real world, S carries out in the ideal world.
Protocol security is implied since such attacks cannot be mounted in the ideal
world. We have then that the output E retrieved from the execution of Π in
the ideal world with S and from the execution of Π with the real-world entities
and A are indistinguishably distributed. This ensures that a real-world DAA

588 L. Chen et al.

protocol Π securely realizes all internal cryptographic tasks (e.g., JOIN, SIGN,
VERIFY, and LINK) if for any real-world adversary A that interacts with the
DAA players, running Π, there exists an ideal world simulator S that interacts
with the ideal functionality F , and the notional entities executing DAA protocol
so that no probabilistic polynomial time environment E can distinguish whether
it is interacting with the real world adversary A or the ideal world adversary S.

We follow the UC security model for DAA given by Camenisch et al. in [16],
where the ideal functionality F assumes static corruptions, i.e., the adversary
decides upfront which parties are corrupt and makes this information known to
the functionality. The UC framework allows us to focus the analysis on a single
protocol instance with a globally unique session identifier sid. F uses session
identifiers of the form sid = (I, sid′) for some issuer I and a unique string sid ′.

The ideal functionality F is further parametrized by a leakage function
l : {0, 1}∗ → {0, 1}∗, that models the information leakage occurred in the com-
munication between a host Hj and its TPM Mj . We define F by using two
“macros” to determine if a TPM’s signing key sku is consistent with the internal
functionality records or not. This is checked at several places in the functionality
and also depends on whether the sku belongs to an honest or corrupt TPM. The
first macro CheckTtdHonest is used when the functionality stores a new TPM
key sku that belongs to an honest TPM, and checks that none of the existing
valid signatures is identified as belonging to this TPM key. The second macro
CheckTtdCorrupt is used when storing a new sku that belongs to a corrupt TPM,
and checks that the new sku does not break the identifiability of signatures, i.e.,
it checks that there is no other known TPM key sk′

u, unequal to sku, such that
both keys are identified as the owner of a signature. Both functions output a bit
b where b = 1 indicates that the new sku is consistent with the stored informa-
tion, whereas b = 0 signals an invalid key. We also define the JOIN and SIGN
sub-sessions by jsid and ssid. In addition F maintains a group member list ML,
a key record list DomainKeys, a signature record list Signed, and a verification
result list VerResults.

We adopt two sub-functionalities introduced in [16] and they are available to
all parties. The first one is a certificate authority functionality Fca that allows
the issuer to register their public key. The second is the common reference string
functionality Fcrs, which is used to provide all entities with the system parame-
ters comprising the random seed to generate the commitments and the issuer’s
public key. Note that for the communication between the TPM and issuer (via
the host) in the join protocol we adopt the key binding protocol introduced in
[25] that provides a secure and authenticated channel between the TPM and the
issuer even in the presence of a corrupt host, therefore no need for the semi-
authenticated channel F∗

auth in our model. We now define the algorithms that
will be used inside the ideal functionality as follows:

– ukgen(n): A probabilistic algorithm that takes a security parameter n as input
and generates a key sku for a honest TPM.

– sign(sku,msg, bsn): A probabilistic algorithm used by a honest TPM; input is
a key sku, a message msg and a basename bsn, and output is a signature Σ.

Hash-Based Direct Anonymous Attestation 589

– verify(Σ,msg, bsn): A deterministic algorithm that is used in the VERIFY
interface. On input of a signature Σ, a message msg and a basename bsn, it
outputs f = 1 if the signature is valid, and f = 0 otherwise.

– link(Σ1,msg1, Σ2,msg2, bsn): A deterministic algorithm that is used in the
LINK interface. Given two signatures with the same bsn, it outputs 1 if both
Σ1 and Σ2 were generated by the same TPM, and outputs 0 otherwise.

– identify(sku, Σ,msg, bsn): A deterministic algorithm that is used to ensure
consistency with the ideal functionality F ’s internal records. It outputs 1 if a
key sku was used to produce a signature Σ, and outputs 0 otherwise.

We explain the interfaces of the ideal functionality F in the UC framework:
Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I,
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , ukgen, sign, verify, link, identify) from
S,

– Check that verify, link and identify are deterministic (i).
– Store (sid , ukgen, sign, verify, link, identify) and output (SETUPDONE, sid)

to I.

Join

3. Join Request. On input (JOIN, sid , jsid,Mj) from host Hj ,
– Create a join session record 〈jsid,Mj ,Hj , status〉 with status ← request .
– Output (JOINSTART, sid , jsid,Mj ,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S,
– Update the session record 〈jsid,Mj ,Hj , status〉 to status ← delivered .
– Output (JOINPROCEED, sid , jsid,Mj) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid) from I,
– Update the session record 〈jsid,Mj ,Hj , status〉 to status ← complete.
– Output (JOINCOMPLETE, sid , jsid) to S.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid, skj)
from S,

– Look up record 〈jsid,Mj ,Hj , status〉 with status = complete.
– Abort if I or Mj is honest and a record 〈Mj , ∗, ∗〉 ∈ ML already exists

(ii).
– If Mj and Hj are honest, set skj ← ⊥.
– Else, verify that the provided skj is eligible by checking

• CheckTtdHonest(skj) = 1 if Hj is corrupt (iii) and Mj is honest, or
• CheckTtdCorrupt(skj) = 1 if Mj is corrupt (iv).

– Insert 〈Mj ,Hj , skj〉 into ML and output (JOINED, sid , jsid) to Hj .

Sign

7. Sign Request. On input (SIGN, sid , ssid,Mj ,msg, bsn) from host Hj ,
– If I is honest and no entry 〈Mj ,Hj , ∗〉 exists in ML, abort.

590 L. Chen et al.

– Create a sign session record 〈ssid,Mj ,Hj ,msg, bsn, status〉 with
status ← request .

– Output (SIGNSTART, sid , ssid, l(msg, bsn),Mj ,Hj) to S.
8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S,

– Update the session record 〈ssid,Mj ,Hj ,msg, bsn, status〉 to status ←
delivered .

– Output (SIGNPROCEED, sid , ssid,msg, bsn) to Mj .
9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mj ,

– Look up record 〈ssid,Mj ,Hj ,msg, bsn, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, Σ) from S,
– If Mj and Hj are honest, ignore the adversary’s signature and internally

generate the signature for a fresh or established skj :
• If bsn �= ⊥, retrieve skj from 〈Mj , bsn, skj〉 ∈ DomainKeys for

(Mj , bsn). If no such skj exists or bsn = ⊥, set skj ← ukgen(). Check
CheckTtdHonest(skj) = 1 (v) and store 〈Mj , bsn, skj〉 in DomainKeys.

• Compute signature as Σ ← sign(skj ,msg, bsn) and check
verify(Σ,msg, bsn) = 1 (vi).

• Check identify(Σ,msg, bsn, skj) = 1 (vii) and check that there is no
M′

j �= Mj with key sk′
j registered in ML or DomainKeys such that

identify(Σ,msg, bsn, sk′
j) = 1 (viii).

– If Mj is honest, store 〈Σ,msg, bsn,Mj〉 in Signed.
– Output (SIGNATURE, sid , ssid,Σ) to Hj .

Verify

11. Verify. On input (VERIFY, sid ,msg, bsn,Σ,keyRL, linkRL) from some
party V,
– Retrieve all pairs (skj ,Mj) from 〈Mj , ∗, skj〉 ∈ ML and 〈Mj , ∗, skj〉 ∈
DomainKeys where identify(Σ,msg, bsn, skj) = 1. Set f ← 0 if at least
one of the following conditions holds:

• More than one key skj was found (ix).
• I is honest and no pair (skj ,Mj) was found (x).
• There is an honest Mj but no entry 〈∗,msg, bsn,Mj〉 ∈ Signed

exists (xi).
• There is a sk′

u ∈ keyRL where identify(Σ,msg, bsn, sk′
u) = 1 and

no pair (skj ,Mj) for an honest Mj was found, or there exists
(slt′,msg′, bsn′) ∈ linkRL such that identify(slt′,msg′, bsn′, skj) =
1. (xii).

– If f �= 0, set f ← verify(Σ,msg, bsn) (xiii).
– Add 〈Σ,msg, bsn,keyRL, linkRL, f〉 to VerResults, output

(VERIFIED, sid , f) to V.

Link

12. Link. On input (LINK, sid , Σ,msg,Σ′,msg′, bsn �= ⊥) from some party V,

Hash-Based Direct Anonymous Attestation 591

– Output ⊥ to V if at least one signature tuple (Σ,msg, bsn) or
(Σ′,msg′, bsn) is not valid (verified via the verify interface with
keyRL = ∅ and linkRL = ∅) (xiv).

– For each ski in ML and DomainKeys compute bi ← identify(Σ,msg,
bsn, ski) and b′

i ← identify(Σ′,msg′, bsn, ski) and do the following:
• Set f ← 0 if bi �= b′

i for some i (xv).
• Set f ← 1 if bi = b′

i = 1 for some i (xvi).
– If f is not defined yet, set f ← link(Σ,msg,Σ′,msg′, bsn).
– Output (LINK, sid , f) to V.

We highlight that our model catches all the security requirements discussed
in Sect. 2.3 (correctness, anonymity and non-frameability):

– The correctness of our scheme is guaranteed in our model. When an honest
signer (including both the TPM and Host) successfully creates a signature,
honest Verifiers will always accept this signature. This is due to the checks v,
vi, vii, and viii performed by F in the Sign interface.

– The anonymity in our scheme is also guaranteed by F due to the random
choice of skj that will be later used for the construction of DAA signatures
as part of the Sign interface. In the case of corrupt devices, the Simulator is
allowed to provide a signature that will convey the signer’s identity, as the
signing key can be extracted from the respective device key pair. This reflects
that the anonymity of the DAA signer is guaranteed if both the TPM and
the Host are honest.

– The non-frameability property guarantees that a signature created by an
adversary cannot be linked to a legitimate signature created by the target
device, this is due to the check ix in our model. CheckTtdHonest prevents
registering an honest skj in the Join interface that matches an existing sig-
nature so that conflicts can be avoided and signatures can always be traced
back to the original signer. This ensures that honest signers are not revoked
due to the identify algorithm being deterministic in our model. Consider an
adversary aiming to create a signature on a message that has not been signed
by an honest device, checks x and xi in the Verify interface ensure the scheme
unforgeability property, which dictates that it is computationally infeasible to
maliciously forge signatures.

7 UC Security Proof of the DAA Scheme

7.1 High-Level Description of Our Proof

We start with the real-world protocol execution in Game 1. In the next game, we
construct one entity C that runs the real-world protocol for all honest parties.
Then we split C into two pieces, an ideal functionality F and a simulator S that
simulates the real-world parties. Initially, we start with an “empty” functionality
F . With each game, we gradually change F and update S accordingly, moving
from the real world to the ideal world, and culminating in the full ideal func-
tionality F being realized as part of the ideal world, thus, proving our proposed

592 L. Chen et al.

security model presented in Sect. 6. The endmost goal of our proof is to prove the
indistinguishability between Game 1 and Game 16, i.e., between the complete
real world and the fully functional ideal world. This is done by proving that each
game is indistinguishable from the previous one. We use the “≈” sign to express
games indistinguishably between games.

The ideal functionality F is introduced in Game 3; at this stage F only for-
wards its inputs to the simulator S who simulates the real world. From Game 4
onward, F starts executing the setup interface on behalf of the Issuer. Moving on
to Game 5, F handles simple verification and identification checks without per-
forming any detailed checks at this stage; i.e., it only checks if the signer belongs
to a revocation list separately. In Games 6–8, F executes the Join interface while
performing checks to keep the consistency of registered keys. It also adds checks
that allow only the signers that have successfully been enrolled to create sig-
natures. Game 9 proves the anonymity of our protocol by letting F handle the
sign queries on behalf of honest signers. To do this, F creates signatures using
freshly generated random keys instead of running the signing algorithm using
the signer’s signing key. At the end of this game, we prove that by relying on the
ZKP constructions, an external environment will notice no change from previous
games where the real-world Sign algorithm was executed. Now moving to Games
10–16, we let F perform all other checks that are explained in Sect. 6.

7.2 The DAA Scheme Proof

Due to the limited space, we provide a sketch of the security proof of the proposed
DAA protocol, including a sequence of games based on the model of Camenish
et al. in [16]. A detailed proof will be given in the full paper. The proof in [16] is
constructed under the Discrete Logarithm (DL) and Decisional Diffie-Hellman
(DDH) assumptions and the unforgeability of the Camenisch-Lysyanskaya (CL)
signatures. Other DAA signatures such as [24,35] are proved based on lattice
hard problems, namely Ring-LWE and Ring-SIS, and the unforgeability is sup-
ported on the modified Boyen or Dilithium signature scheme [6,32]. In contrast
to the previous DAA schemes, our game indistinguishability is based on the per-
fect simulation of the MPCitH-based NIZK proofs, the soundness, completeness
and zero-knowledge properties of the proofs πI and πD, the unforgeability of
the F-SPHINCS+ signature scheme, and the security properties of the tweak-
able hash functions, H1, H2 and H3, and the pseudorandom function F . The
sequence of games is as follows:

Proof (sketch)
Game 1: (Real-World execution of the protocol): This is the start.
Game 2: (Introducing C): An entity C is introduced; C receives all inputs

from the parties and simulates the real-world protocol for them. This is equiva-
lent to Game 1.

Hash-Based Direct Anonymous Attestation 593

Game 3: (Reconstruction of C): We now split C into two parts, F and S,
where F behaves as an ideal functionality. F receives all the inputs and forwards
them to S, who simulates the real-world protocol for honest parties, and sends
the outputs to F . F then forwards the outputs to the environment E . This game
is simply Game 2 but with different structure, so Game 3 ≈ Game 2.

Game 4: (F handles the setup queries): F now behaves differently in
the setup interface and stores the algorithms for the issuer I. F also does checks
to ensure that the structure of sid is correct for an honest I, and aborts if not.
In case I is corrupt, S extracts the secret key for I and proceeds in the setup
interface on behalf of I. Clearly E will notice no change, so Game 4 ≈ Game 3.

Game 5: (F handles the verification and linking queries): F now
performs the verification and linking checks instead of forwarding them to S.
There are no protocol messages and the outputs are exactly as in the real-world
protocol. However, the only difference is that the verification algorithm used by
F does not contain a revocation check. F performs this check separately thus
the outcomes are equal, so Game 5 ≈ Game 4.

Game 6: (F handles the join queries): The join interface of F is now
changed, and F stores the joined member information in the Member List ML .
If I is honest, F stores the secret key sku, extracted from S, for corrupt TPM’s.
S always has enough information to simulate the real-world protocol except
when the issuer is the only honest party. In this case, S does not know who
initiated the join since the host does not authenticate towards the issuer in the
real world, so S can’t make a join query with F on a corrupt host’s behalf. Thus,
to deal with this case, F can safely choose any corrupt host and put it into ML,
the identities of hosts are only used to create signatures for platforms with an
honest TPM or honest host, so fully corrupted platforms do not matter. In the
only case, where the TPM has already been registered in ML, F may abort the
protocol, but I should have already tested this case before continuing with the
query JOINPROCEED, hence F will not abort. Thus in all cases, F and S can
interact to simulate the real-world protocol, so Game 6 ≈ Game 5.

Game 7: (F knows bsn and msg to be signed or l(msg, bsn)): F now no
longer informs S about the message and the basename that are being signed. If
the whole signer is honest, S can learn nothing about the message msg and the
basename bsn. Instead, S knows only the leakage l(msg, bsn). To simulate the
real world, S chooses a pair (msg′, bsn′) such that l(msg′, bsn′)=l(msg, bsn).
Therefore Game 7 ≈ Game 6.

Game 8: (F performs pre-sign checks): If I is honest, F only allows
the signer that has joined to sign. An honest host will always check whether it
has joined with its TPM in the real-world protocol, so no difference for honest
hosts. Also, an honest TPM only signs when it has joined with the host before.
In the case that an honest Mi performs a join protocol with a corrupt host Hj

and the honest issuer, the simulator S will make a join query with F , to ensure
that Mi and Hj are in ML. Therefore, Game 8 ≈ Game 7.

Game 9: (F handles the sign queries, i.e., simulating the TPM
without knowing its secret): In this game, F creates anonymous signatures

594 L. Chen et al.

for honest signers by running the algorithms defined in the setup interface. Let
us start by defining Game 9.k.k′, in this game F handles the first k′ signing
inputs of Mk, and subsequent inputs are then forwarded to S. For i < k, F
handles all the signing queries with Mi using algorithms. For i > k, F forwards
all signing queries with Mi to S who creates signatures as before. Now from the
definition of Game 9.k.k′, we note that Game 9.0.0 = Game 8. For increasing k′,
Game 9.k.k′ will be at some stage equal to Game 9.k+1.0, this is because there
can only be a polynomial number of signing queries to be processed. Therefore,
for large enough k and k′, F handles all the signing queries of all TPMs, and
Game 9 is indistinguishable from Game 9.k.k′. We want to prove now that
Game 9.k.k′+1 is indistinguishable from Game 9.k.k′. Suppose that there exists
an environment that can distinguish a signature of an honest party using sku

from a signature using a different sk′
u, then the environment can break the

pseudorandom property of the function F .
The first j ≤ k′ signing queries on behalf of Mk are forwarded by F to

S, which calls the real-world protocol. Now suppose that E is given tuples
Σ = (str, slt, com, πD) and it is challenged to decide if Σ = (str, slt, com, πD)
is calculated from uniform random r ← {0, 1}n or from a certified TPM secret
key sku. In the reduction, we have to be able to simulate the TPM without
knowing the secret sku. The issuer’s zero-knowledge proof πI for the correctness
of the master secret and public key pair allows the simulator S extracts the
master secret key. Furthermore, the zero-knowledge proof of the group member-
ship credential πD helps S extract the TPM’s secret key sku for corrupt TPM
and create signatures on behalf of the TPM as in the real world scenario. Let
r be a randomly sampled key from {0, 1}n that will be used to generate sig-
natures on behalf of honest TPMs rather than using the real TPM secret key
sku. Since the issuer’s secret key msk can be extracted from πI due to the
soundness of the proof πI and getting access to Fcrs, then a credential can be
created on et′u = F (r, gid) by running the signing algorithm of F-SPHINCS+,
sign(et′u,msk, gp). After getting a credential on et′u, slt and sst are calculated
as functions of r, i.e. slt = F (r, lid) and sst = F (r, sid). Then all other parts
of the signature follow exactly the same as the real-world protocol (i.e. when
using the TPM’s sku). The commitment com is calculated as our defined sign
algorithm and the proof πD can then be perfectly simulated using the random
secret r. Due to the zero-knowledge property of the proof πD and the pseudoran-
dom outputs of the function F , we argue that an external environment cannot
distinguish between 1) a signature generated using the TPM’s (sku, etu). 2) a
signature generated by a random (r, et′u). Therefore, Game 9 ≈ Game 8.

Game 10 (F performs key consistency checks): When storing a new
sku, F checks CheckTtdHonest(sku) = 1 or CheckTtdCorrupt(sku) = 1. We want
to show that these checks will always pass. In fact, valid signatures always satisfy
slt = F (sku, lid), etu = F (sku, gid), (gru,S) ← F-SPHINCS+.sign(etu,msk, gp)
and sst = F (sku, sid). By the soundness property of πD, there exists only
one secret sku satisfying the slt construction, and there exists one sst that
matches this signature by the soundness of the hk = MPC_H1(�sst�). Thus,

Hash-Based Direct Anonymous Attestation 595

CheckTtdCorrupt(sku) = 1 will always give the correct output. On the other
hand, the keys for honest TPMs are chosen uniformly at random from an expo-
nentially large group {0, 1}n, due to the large min-entropy of the uniform dis-
tribution the probability that sampling a selected sku is negligible for large
n with probability equal to 1/2n, thus with overwhelming probability, there
does not exist a signature already using the same sku, which implies that
CheckTtdHonest(sku) = 1 will always give the correct output. Hence, Game
10 ≈ Game 9.

Game 11: (F checks the correctness of the protocol): In this game F
checks that any honestly generated signature Σ = (str, slt, com, πD) is always
valid due to the completeness property of πD and the correctness of the F-
SPHINCS+ signature. A valid proof πD on the credential ensures that the
credential has the correct structure, follows the correct authentication path,
and always leads to the issuer’s public key rpk due to the soundness of πD

and the correctness of the F-SPHINCS+ signature. Second, F makes sure
identify(Σ,msg, bsn, sku) = 1, this is also achieved in the real-world protocol due
to the soundness of πD. F checks, using its internal records ML and DomainKeys
that honest users are not sharing the same secret key sku. If there exists a key
sk′

u �= sku in DomainKeys such that slt = F (sk′
u, lid) = F (sku, lid), then this

breaks the collision resistance property of the function F . Therefore Game 11 ≈
Game 10.

Game 12 (F checks that valid signatures are deterministic):
Add Check (ix) to ensure that there are no multiple sku values match-
ing to one signature. A signature Σ includes slt = F (sku, lid), com =
H1(F (sku, sid)||pkh|| · · · ||rpk) and πD. Due to the soundness of the function
F and the proof πD, and also due to the collision resistance and second-preimage
properties of H1, two different keys cannot create the same signature and two dif-
ferent signatures cannot share the same sku. Therefore a valid signature should
be identified to one sku only. Hence, Game 12 ≈ Game 11.

Game 13 (F checks the unforgeability of the credential): To prevent
accepting a signature that was not generated by using a group membership
credential issued by an honest issuer, F adds Check (x). A credential is an F-
SPHINCS+ signature on mtu||idx, using the tweakable hash functions H1, H2

and H3. Following the proof of Theorem 1 in Sect. 4, the F-SPHINCS+ signature
scheme is unforgeable due to the security properties of H1, H2 and H3, so this
check is always passed and Game 13 ≈ Game 12.

Game 14 (F checks the unforgeability of signatures): Check (xi) is
added to F to prevent an adversary from forging signatures using honest signer’s
credential key gsku = (sku, gru, S). As discussed before, a DAA signature Σ is
proof of the correct construction of slt, com and πD, which form a NIZK proof
of an F-SPHINCS+ signature associated with a single key sku. If the signature
is verified, due to the unforgeability of F-SPHINCS+, the binding property of
the commitment scheme used to generate com = H1(F (sku, sid)||pkh|| · · · ||rpk),
and the soundness of the function F used to compute slt and com, sku belonging
to an honest TPM must be involved. If the adversary uses a different key sk′

u to

596 L. Chen et al.

create this signature. Due to the soundness of πD analyzed in Sect. 5, the proof πD

cannot be simulated with overwhelming probability unless sk′
u = sku, so Game

14 ≈ Game 13.
Game 15 (F checks the correct revocation): Check (xii) is added to F

to ensure that an honest TPM with sku are not being revoked. If there exists
a matching revoked key sk∗

u (�= sku) ∈ keyRL such that slt = F (sk∗
u, lid) =

F (sku, lid), then this breaks the collision resistance property of the function F .
For the same reason, there does not exist (slt′,msg′, bsn′) ∈ linkRL such that
slt′ = F (sk′

u, lid′) = F (sku, lid′) and sk′
u �= sku. Therefore, our protocol ensures

the correct revocation. So Game 15 ≈ Game 14.
Game 16 (F checks the linkability): Checks (xv and xvi) of the ideal

functionality F that are related to link queries are now included. The output
of F based on these checks is still consistent with the output which the link
algorithm would give: If there is an sku that matches two signatures signed
under the same bsn, by the soundness of πD we have that the pseudonyms based
on the same sku must be equal, resulting in link outputting 1. If there is an sku

that matches one signature but not the other, by the soundness of πD we have
that the pseudonyms slt that are not generated using sku must also differ from
those generated by a different key sk′

u �= sku which results in link outputting 0.
Therefore, Game 16 ≈ Game 15. This concludes the proof.

8 Conclusion

This paper proposes the first DAA scheme from symmetric primitives and this
scheme has some interesting features. We make use of a modified SPHINCS+
signature as a group membership credential and use of a Picnic-style signature
to prove the possession of that credential. Our DAA scheme splits the signer role
between a TPM and its host and allows the TPM to have a much smaller work-
load than the host. This scheme can handle a large group size (up to 260), which
is suitable for rapidly increasing trusted computing applications. This research
topic is still in its early stage. Improving the performance of this DAA scheme
is challenging and it will be possible if either a more efficient stateless hash-
based signature scheme than F-SPHINCS+ or an efficient Picnic-style signature
scheme is developed.

Acknowledgments. We thank the European Union’s Horizon research and inno-
vation program for support under grant agreement numbers: 101069688 (CON-
NECT), 101070627 (REWIRE), 779391 (FutureTPM), 952697 (ASSURED), 101019645
(SECANT) and 101095634 (ENTRUST). These projects are funded by the UK gov-
ernment’s Horizon Europe guarantee and administered by UKRI. We also thank the
National Natural Science Foundation of China for support under grant agreement num-
bers: 62072132 and 62261160651. We would like to thank Qingju Wang and Scott
Fluhrer for helpful discussions. We also thank the anonymous reviewers from PQCrypto
for their valuable comments.

Hash-Based Direct Anonymous Attestation 597

References

1. Bansarkhani, R.E., Kaafarani, A.E.: Direct anonymous attestation from lattices.
IACR Cryptology ePrint Archive 2017, 1022 (2017)

2. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75245-3_11

3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: ACM CCS, pp. 2129–2146 (2019)

4. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.:
Ligero++: a new optimized sublinear IOP. In: ACM CCS, pp. 2025–2038 (2020)

5. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from sym-
metric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–
271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_13

6. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7_29

7. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS, pp. 132–145 (2004)

8. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68979-9_13

9. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. Int. J. Inf. Secur. 8, 315–300 (2009)

10. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
Trust 6101, 181–195 (2010)

11. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. IEEE Trans. Dependable Secur. Comput.
9(3), 345–360 (2012)

12. Buser, M., Liu, J.K., Steinfeld, R., Sakzad, A., Sun, S.-F.: DGM: a dynamic and
revocable group Merkle signature. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 194–214. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29959-0_10

13. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation.
In: IEEE S&P, pp. 901–920 (2017)

14. Camenisch, J., Drijvers, M., Edgington, A., Lehmann, T.A., Urian, R.: FIDO
ECDAA algorithm (2018). http://fidoalliance.org/specs/fido-v2.0-id-20180227/
fido-ecdaa-algorithm-v2.0-id-20180227.html

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3_1

16. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8_10

https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-12612-4_13
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-030-29959-0_10
https://doi.org/10.1007/978-3-030-29959-0_10
http://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
http://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-662-49387-8_10
https://doi.org/10.1007/978-3-662-49387-8_10

598 L. Chen et al.

17. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_15

18. Casey, M., Chen, L., Giannetsos, T., Newton, C., Sasse, R., Whitefield, J.: Direct
anonymous attestation in the wild. Presentation at Real World Crypto (2019).
https://rwc.iacr.org/2019/slides/DAA.pdf

19. Chase, M., et al.: The Picnic signature scheme design document (2020). https://
microsoft.github.io/Picnic/

20. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS, pp. 1825–1842 (2017)

21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6_22

22. Chen, L., Tu, T., Yu, K., Zhao, M., Wang, Y.: V-LDAA: a new lattice-based direct
anonymous attestation scheme for VANETs system. Secur. Commun. Netw. 2021,
1–13 (2021)

23. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_26

24. Chen, L., El Kassem, N., Lehmann, A., Lyubashevsky, V.: A framework for efficient
lattice-based DAA. In: Proceedings of the 1st ACM Workshop on Cyber-Security
Arms Race, pp. 23–34 (2019)

25. Chen, L., El Kassem, N., Newton, C.J.: How to bind a TPM’s attestation keys
with its endorsement key. Comput. J. bxad037 (2023)

26. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: ACM
CCS, pp. 37–48 (2013)

27. Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
156–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88733-
1_11

28. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12510-2_16

29. Chen, L., Urian, R.: DAA-A: direct anonymous attestation with attributes. In:
Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp.
228–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4_14

30. Dai, Y., Zhang, F., Zhao, C.A.: Fast hashing to G2 in direct anonymous attestation.
Cryptology ePrint Archive (2022/996)

31. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: ACM CCS,
pp. 843–857 (2022)

32. Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptographic Hardw. Embed. Syst. 238–268 (2018)

33. El Bansarkhani, R., Misoczki, R.: G-Merkle: a hash-based group signature scheme
from standard assumptions. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 441–463. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3_21

34. El Kassem, N.: Lattice-based direct anonymous attestation. Ph.D. thesis, Univer-
sity of Surrey (2020)

https://doi.org/10.1007/978-3-319-63697-9_15
https://rwc.iacr.org/2019/slides/DAA.pdf
https://microsoft.github.io/Picnic/
https://microsoft.github.io/Picnic/
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1007/978-3-540-88733-1_11
https://doi.org/10.1007/978-3-540-88733-1_11
https://doi.org/10.1007/978-3-642-12510-2_16
https://doi.org/10.1007/978-3-642-12510-2_16
https://doi.org/10.1007/978-3-319-22846-4_14
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-319-79063-3_21

Hash-Based Direct Anonymous Attestation 599

35. El Kassem, N., et al.: More efficient, provably-secure direct anonymous attestation
from lattices. Futur. Gener. Comput. Syst. 99, 425–458 (2019)

36. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8_13

37. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security, pp. 1069–1083 (2016)

38. Greveler, U., Justus, B., Loehr, D.: Direct anonymous attestation: enhancing cloud
service user privacy. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp.
577–587. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25106-
1_11

39. Hicks, C., Garcia, F.D.: A vehicular DAA scheme for unlinkable ECDSA
pseudonyms in V2X. In: EuroS&P, pp. 460–473 (2020)

40. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

41. ISO/IEC 10118-2:2010: Information technology - Security techniques - Hash-
functions - Part 2: Hash-functions using an n-bit block cipher. Standard, Inter-
national Organization for Standardization (2010)

42. ISO/IEC 20008-2: 2013: Information technology - Security techniques - Anony-
mous digital signatures - Part 2: Mechanisms using a group public key. Standard,
International Organization for Standardization (2013)

43. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. Cryptology ePrint Archive (2022/588)

44. Kassem, N.E., et al.: Lattice-based direct anonymous attestation (LDAA). Cryp-
tology ePrint Archive (2018/401)

45. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS, pp. 525–537 (2018)

46. Kim, S., et al.: AIM: symmetric primitive for shorter signatures with stronger
security. Cryptology ePrint Archive (2022/1387)

47. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report: SRI International Computer Science Laboratory (1979)

48. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0_21

49. NIST: NIST announces first four quantum resistant cryptographic algo-
rithms (2022). https://www.nist.gov/news-events/news/2022/07/nist-announces-
first-four-quantum-resistant-cryptographic-algorithms

50. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES
in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5_27

51. de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: efficient zero-knowledge
MPCitH-based arguments. In: ACM CCS, pp. 3022–3036 (2021)

52. Shafieinejad, M., Esfahani, N.N.: A scalable post-quantum hash-based group signa-
ture. Des. Codes Crypt. 89(5), 1061–1090 (2021). https://doi.org/10.1007/s10623-
021-00857-9

53. TCG: TPM 1.2 Main Specification. Rev 116, Trusted Computing Group (2011).
https://trustedcomputinggroup.org/resource/tpm-main-specification/

54. TCG: Trusted Platform Module 2.0 Library Specification. Rev 01.59, Trusted Com-
puting Group (2019). https://trustedcomputinggroup.org/resource/tpm-library-
specification/

https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-642-25106-1_11
https://doi.org/10.1007/978-3-642-25106-1_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/s10623-021-00857-9
https://doi.org/10.1007/s10623-021-00857-9
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

600 L. Chen et al.

55. Wang, H.Z., Huang, L.S.: An improved trusted cloud computing platform model
based on DAA and privacy CA scheme. In: 2010 International Conference on Com-
puter Application and System Modeling (ICCASM 2010), pp. 13–33 (2010)

56. Wesemeyer, S., Newton, C.J., Treharne, H., Chen, L., Sasse, R., Whitefield, J.:
Formal analysis and implementation of a TPM 2.0-based direct anonymous attes-
tation scheme. In: AsiaCCS, pp. 784–798 (2020)

57. Whitefield, J., Chen, L., Giannetsos, T., Schneider, S., Treharne, H.: Privacy-
enhanced capabilities for VANETs using direct anonymous attestation. In: IEEE
Vehicular Networking Conference (VNC), pp. 123–130 (2017)

58. Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wesemeyer, S.: A
symbolic analysis of ECC-based direct anonymous attestation. In: EuroS&P, pp.
127–141 (2019)

59. Yang, K., Chen, L., Zhang, Z., Newton, C.J.P., Yang, B., Xi, L.: Direct anonymous
attestation with optimal TPM signing efficiency. IEEE Trans. Inf. Forensics Secur.
16, 2260–2275 (2021). https://doi.org/10.1109/TIFS.2021.3051801

60. Yehia, M., AlTawy, R., Gulliver, T.A.: GMMT : a revocable group Merkle multi-
tree signature scheme. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS 2021.
LNCS, vol. 13099, pp. 136–157. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92548-2_8

61. Yehia, M., AlTawy, R., Gulliver, T.A.: Security analysis of DGM and GM group
signature schemes instantiated with XMSS-T. In: Yu, Yu., Yung, M. (eds.) Inscrypt
2021. LNCS, vol. 13007, pp. 61–81. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88323-2_4

62. Zaverucha, G.: The Picnic signature algorithm specification. Supporting Documen-
tation (2020). https://github.com/Microsoft/Picnic

https://doi.org/10.1109/TIFS.2021.3051801
https://doi.org/10.1007/978-3-030-92548-2_8
https://doi.org/10.1007/978-3-030-92548-2_8
https://doi.org/10.1007/978-3-030-88323-2_4
https://doi.org/10.1007/978-3-030-88323-2_4
https://github.com/Microsoft/Picnic

Muckle+: End-to-End Hybrid
Authenticated Key Exchanges

Sonja Bruckner1, Sebastian Ramacher2(B) , and Christoph Striecks2

1 University of Applied Sciences Upper Austria, Hagenberg, Austria
sonja.bruckner@scch.at

2 AIT Austrian Institute of Technology, Vienna, Austria
{sebastian.ramacher,christoph.striecks}@ait.ac.at

Abstract. End-to-end authenticity in public networks plays a signifi-
cant role. Namely, without authenticity, the adversary might be able to
retrieve even confidential information straight away by impersonating
others. Proposed solutions to establish an authenticated channel cover
pre-shared key-based, password-based, and certificate-based techniques.
To add confidentiality to an authenticated channel, authenticated key
exchange (AKE) protocols usually have one of the three solutions built
in. As an amplification, hybrid AKE (HAKE) approaches are getting
more popular nowadays and were presented in several flavors to incorpo-
rate classical, post-quantum, or quantum-key-distribution components.
The main benefit is redundancy, i.e., if some of the components fail,
the primitive still yields a confidential and authenticated channel. How-
ever, current HAKE instantiations either rely on pre-shared keys (which
yields inefficient end-to-end authenticity) or only support one or two of
the three above components (resulting in reduced redundancy and flexi-
bility).

In this work, we present an extension of a modular HAKE framework
due to Dowling, Brandt Hansen, and Paterson (PQCrypto’20) that does
not suffer from the above constraints. While their instantiation, dubbed
Muckle, requires pre-shared keys (and hence yields inefficient end-to-end
authenticity), our extended instantiation called Muckle+ utilizes post-
quantum digital signatures. While replacing pre-shared keys with digital
signatures is rather straightforward in general, this turned out to be sur-
prisingly non-trivial when applied to HAKE frameworks (resulting in
adapted proof techniques).

Keywords: end-to-end security · hybrid authenticated key exchange ·
post-quantum cryptography

1 Introduction

Authenticated key exchanges (AKEs) are an essential building block of our con-
nected world [7,32,58]. From user-to-user to server-to-server communication,

S. Bruckner—The work was conducted while the author was at AIT Austrian Institute
of Technology.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 601–633, 2023.
https://doi.org/10.1007/978-3-031-40003-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_22&domain=pdf
http://orcid.org/0000-0003-1957-3725
http://orcid.org/0000-0003-4724-8022
https://doi.org/10.1007/978-3-031-40003-2_22

602 S. Bruckner et al.

data exchanged between any two parties is expected to be confidential even in
the event of potentially active attacks on the communication channel. Ensur-
ing confidentiality between two parties first requires that one can distinguish
friend from foe. Specifically, if an adversary can impersonate a party in the sys-
tem, all confidentiality guarantees are void since in that case the communication
with the adversary is secured against outsiders, but the adversary itself may
gain access to all data. Therefore, authenticity is a necessary requirement for
achieving confidentiality on any level in any system and in the specific context
of communication we thus require end-to-end authenticity. That is, both parties
can directly verify the authenticity of the other party regardless of how many
untrusted network links are located between them.

For network protocols on public or untrusted networks, well-established pro-
tocols such as Transport Layer Security (TLS) [67], IPsec [50], QUIC [47], Wire-
Guard [34] employ various forms of an end-to-end AKE [7]; on the one hand to
authenticate the other peer and on the other hand to establish an ephemeral ses-
sion key to secure the communication channel. Depending on the concrete appli-
cation, AKE protocols offer certificate-based authentication, password-based
authentication, pre-shared key-based authentication whereas the secret keys are
exchanged often using an ephemeral Diffie-Hellman key exchange or – on a more
abstract level – with a key exchange using ephemeral key encapsulation mech-
anism (KEM) keys. Authentication in those protocols may be unilateral, e.g.,
only the initiator verifies the authenticity of the responder which is the default
deployment mode of TLS on the web as the authentication of users is managed
on the application layer, or mutual.

End-to-End Authentication Techniques. We will now discuss different
techniques to achieve authenticity for key-exchange protocols: in a key exchange
with pre-shared keys (PSK), both peers are required to agree on a secret key
off-channel. This key is then part of the key-exchange protocol (e.g., is used as
input in the key derivation function to derive the session keys) and only if the key
is known, the protocol can be completed successfully. As a folklore consequence,
networks with n peers necessitate the initial setup of O(n2) PSKs to uniquely
identify each peer. Otherwise, i.e., where 3 or more peers share the same PSK,
peers would be unable to distinguish one communication partner from the other.
Moreover, dynamically changing the network components becomes inefficient,
e.g., if a new peer is added to the network, fresh PSKs have to be distributed to
all other peers off-channel.

Password-based authenticated key exchanges [6,15] are of interest in a multi-
client, single-sever scenario where each client is uniquely identified using a (low-
entropy) password. Similar to the PSK approach, the password is an intrinsic
part of the exchange which cannot be completed without knowledge of the spe-
cific password. As the scenario we are considering is not a multi-client single-
server scenario and, more importantly, the password-based authentication is
related to a PSK authentication scenario, we will omit further discussions of
this type of key exchange.

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 603

Finally, with certificate-based protocols, peers have long-term public keys
(typically of a digital signature scheme) whereas certificate authorities ensure
the authenticity of these keys and establish a chain of trust. During a pro-
tocol run, peers are then required to sign certain messages to authenticate the
exchange. A prominent example of such a protocol is SIGMA [51] which serves as
a prototype for the key exchange deployed in IPsec [50], for example. Recently,
due to the bandwidth requirements of post-quantum signature schemes, vari-
ants with long-term KEM keys such as KEMTLS [70] are also gaining inter-
est as such variants are able to provide implicit server-to-client authentication.
In this protocol, instead of signing the handshake transcript, after establishing
an ephemeral secret, the client encapsulates another secret using the long-term
KEM key embedded in the server’s certificates. The server can only provide a
valid key confirmation message if it is able to decapsulate the ciphertext with
respect to the long-term key and thereby implicitly proves knowledge of the cor-
responding long-term secret key. This change in the protocol incurs the cost of an
additional message but KEMTLS benefits from reduced runtime and bandwidth
requirements.

While PSK key exchanges can be implemented solely from symmetric-key
primitives, managing the required keys is a complex task. As no key material
is available during system setup, those keys need to be securely exchanged via
trusted couriers, installed on devices in the fab, or other methods are required
to allow the keys be installed without relying on a yet unsecured communication
channel. This task becomes more complex as the network grows and infeasible
if parties have no trivial way to securely exchange the PSK.

Authenticated Key Exchanges Resilient Against Quantum Attacks.
End-to-end post-quantum AKE protocols have already been studied, e.g., most
prominently in the area of Transport Layer Security (TLS) [13,53,54,62,70].
Moreover, standardization efforts towards post-quantum (hybrid) key exchanges
are already in progress while NIST is expected to publish the first standards
on post-quantum key-exchange mechanisms and digital signatures soon.1 For
most practical use-cases that require security against cryptographically relevant
quantum computers, the post-quantum cryptography (PQC) paradigm seems to
be a strong fit, although some techniques are rather recent and severe attacks
are happening [11,19].

For highly secure use-cases, quantum-key distribution (QKD) [2,59] is gaining
quite some attention recently with an expected market growth of 12 billion USD
in 10 years.2 Moreover, the European initiative for a quantum communication
infrastructure named EuroQCI was recently established.3 The benefit of a QKD
system is that it guarantees information-theoretic security (ITS) compared to

1 https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-05.html, https://csrc.
nist.gov/projects/post-quantum-cryptography.

2 https://www.reuters.com/article/us-toshiba-cyber-idUSKBN2730KW.
3 https://digital-strategy.ec.europa.eu/en/policies/european-quantum-

communication-infrastructure-euroqci.

https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-05.html
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.reuters.com/article/us-toshiba-cyber-idUSKBN2730KW
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci

604 S. Bruckner et al.

conjectured computational security of post-quantum primitives. However, QKD
comes with significant limitations such as range and costly hardware.

To achieve ITS, QKD must use ITS authentication mechanisms [61] which
can be enforced by relying on PSK-based authentication methods. Noteworthy,
the PSKs for the individual QKD links are not enough to establish authenticity
for the full path through the network as they only ensure authenticity for one
link. Moreover, given the limited range of QKD link transmissions, all nodes
in between are turned into so-called trusted nodes [59]. With trusted nodes,
however, deployment in large-scale networks may become even more complex.4
Hence, practical end-to-end authenticity guarantees for the to-be-anticipated
QKD networks are still under investigation.

Since both, the PQC and QKD paradigms, have benefits and downsides, and
following the approach “Don’t put all your eggs in one basket,” we are interested
in how to achieve end-to-end authentication and confidentiality for key exchanges
with the best possible security guarantees against future threats. One promising
approach is using hybrid5 techniques.

Hybrid Authenticated Key Exchanges (with Forward and Post-Com-
promise Security). Hybrid AKE (HAKE) approaches are getting more pop-
ular nowadays and were presented in several flavors to incorporate classical (or,
non-quantum-safe), PQC, or QKD components [12,16,36,60]. The main benefit
is redundancy, i.e., if some of the components fail, the primitive still yields a
confidential and authenticated channel. Moreover, HAKE provides an approach
towards the transition of non-quantum-secure networks to quantum-secure ones.

Particularly interesting is the recently proposed HAKE framework with its
instantiation dubbed Muckle due to Dowling, Brandt Hansen, and Paterson [36].
Muckle combines secret keys obtained from a QKD network with session keys
obtained from a classical and post-quantum secure key encapsulation mecha-
nisms (KEMs). The combination of the keys is performed using a sequence of
pseudo-random function evaluations.

Importantly, Muckle inherits desirable advanced security guarantees which
are de-facto standard features nowadays for key exchanges, namely, forward and
post-compromise security. Forward security is an important security feature and
has a long body of literature in several domains such as interactive key-exchange
protocols (prominently in TLS 1.3, QUIC, & Double Ratcheting) [26,33,41,68],
public-key encryption [18,40], digital signatures [5,37], search on encrypted data
[14], 0-RTT key exchange [22,28,29,42], updatable cryptography [71], mobile

4 Interestingly, while some approaches even backed by patents (https://www.ipo.
gov.uk/p-ipsum/Case/PublicationNumber/GB2590064) claim to provide long-range
QKD networks without trusted nodes (i.e., establishing a secure channel between any
two nodes), a recent work [46] demonstrates that such claim cannot be met.

5 We are sticking to the term “hybrid” here as it was coined in prior work on AKEs [36]
in the meaning of combining classical (or, non-quantum-safe), QKD, and post-
quantum cryptographic primitives. Other works may use the term “quantum-safe”
to combine QKD and PQC primitives, or different terms.

https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064
https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 605

Cloud backups [27], proxy cryptography [30], new approaches to Tor [56], and
content-delivery networks [31], among others.

The main property of forward security is that it hedges against “store-now-
decrypt-later” attacks by evolving secret key material over epochs such that
access to older ciphertexts or signing capabilities is revoked after the key mate-
rial was updated. Nowadays, over 99% of Internet sites6 support some form of
forward security which is also due to the high recognition for such security feature
by large companies such as Apple, Google, Cloudflare, Meta, and Microsoft.

In the concrete hybrid key-exchange setting, forward security guarantees that
prior session keys cannot be retrieved even if the current session and long-term
keys leak. Moreover, even if all classic KEM key material is leaked (e.g., in
the event of a cryptographically relevant quantum computer), old session keys
stay safe due to the PQC and QKD guarantees. Moreover, if additionally all
post-quantum KEM keys should leak, an adversary cannot retrieve old sessions
keys due to the QKD guarantees. Conversely, if all QKD keys leak, the secu-
rity features of the post-quantum KEM component prevent an adversary from
retrieving old session keys. Moreover, post-compromise security guarantees that
future sessions are safe again (once an adversary does not compromise the sys-
tem anymore). Thereby, we strictly require that at least one of the classic, PQC,
or QKD components stays secure against a then-passive attacker.

The Muckle authentication, however, solely relies on the presence of pre-
shared keys. Consequently, Muckle inherits the key management problem of
PSKs in large-scale networks discussed above. In this work, we present an exten-
sion of the HAKE framework in [36] via an amplification of their Muckle scheme
with end-to-end authenticity and better efficiency (given that we can rely on
multi-path QKD) while no sacrifices on the security guarantees have to be made.

1.1 Contribution

Our contribution can be summarized as follows:

– We extend Muckle with a certificate-based authentication mechanism via dig-
ital signatures and dub it Muckle+. While replacing pre-shared keys with
digital signatures is rather straightforward in general, this turned out to
be surprisingly non-trivial when applied to HAKE frameworks (resulting
in adapted proof techniques). The benefits are that we avoid the usage of
PSKs (with its inherent quadratic blow-up to achieve end-to-end authen-
ticity) which results in more efficient end-to-end HAKE instantiation than
previously known. While gaining significant efficiency and flexibility with our
approach compared to Muckle, to retrieve the same security guarantees, we
need that the QKD keys are distributed via multi-path techniques.

– We implement the Muckle+ protocol and validated its functionality using
a small QKD network in the field. To the best of our knowledge, such a
proof-of-concept experiment for HAKEs is the first one with QKD hardware.

6 Due to Qualys SSL Labs, https://www.ssllabs.com/ssl-pulse/, accessed in June 2023.

https://www.ssllabs.com/ssl-pulse/

606 S. Bruckner et al.

Thereby, we can demonstrate the added authenticity guarantees that ensure
an end-to-end secure connection between the initiator and responder.

More on Muckle+ and the Differences to Muckle. The Muckle protocol
uses a hybrid approach combining classical, PQC, and QKD keys through the use
of a key derivation function. Muckle requires a classical and post-quantum KEM
as well as data from a QKD channel to create the final shared secret. Additionally,
the protocol relies on a secure pseudorandom function and a message authenti-
cation code (MAC). The latter is used in combination with a QKD pre-shared
key to ensure the authenticity of the key exchange. To avoid such pre-shared
keys for authentication, we carefully extend Muckle to allow certificate-based
authentication. Technically, we use digital signatures as a building block instead
of PSKs for authentication.

However, replacing PSKs with digital signatures in HAKE is not straightfor-
ward. Using PSKs yield an interesting cryptographic feature, namely, it guar-
antees that a sender and a receiver share a common secret key for end-to-end
authentication (leaving the quadratic blow-up in that case on the side for a
moment). Now, if digital signatures are used, we cannot build on such guarantee
anymore (as we are in the public-key setting).

The key observation in the HAKE realm is that in the latter case, we either
require a post-quantum KEM or we need multi-path approaches for the QKD
part to guarantee end-to-end authenticity again. As we want to allow the post-
quantum KEM components to fail (as in Muckle), we need that the QKD keys are
distributed using a multi-path approach (essentially, by distributing key compo-
nents via mutually disjoint paths from the initiator to the responder such that no
individual trusted node knows all of the key material depending on some bound
of colluding nodes). This is different to Muckle where Muckle only requires a
“single path” to distribute the QKD key. However, as Muckle+ shows its full
potential in larger-scale quantum-secure networks with many nodes, we assume
that multiple paths between initiators and responders are available.

Through this alteration, we achieve the desired security properties, i.e., we
are able to endure all security claims from original Muckle (in particular, forward
and post-compromise security) while avoiding PSKs, which we show by formally
proving our variant Muckle+ secure in the HAKE framework. Moreover, our
instantiation allows for an efficient approach to achieve end-to-end security which
we justify via an implementation.

Implementing Muckle+. The implementation of Muckle+ to demonstrate
its efficacy follows the typical structure of both a QKD security application in
the sense of the ETSI QKD GS standard documents (and in particular, ETSI
QKD GS 014 [38]) and an authenticated key exchange using application well-
understood from their use on the modern web. Thereby, the initiator of the
connection obtains a key ID and the corresponding key material from a QKD
device and transmits the key ID as part of the initial authenticated key exchange
message to the receiver.

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 607

By providing an interface the applications that follow the structure of
deployed authenticated key exchanges, we expect to reduce the required effort to
integrate the use of QKD keys into applications that are already using TLS [67],
QUIC [55], or similar protocols. Except for configuring the connection to the
local QKD end-point, no further configuration will be necessary to establish
secure channels with any service deployed on the QKD network.

On Further Directions to Achieve End-to-End HAKEs. We expect that
end-to-end HAKEs can be built using further directions. Notably, Schwabe,
Stebila and Wiggers proposed KEMTLS [70], a unilaterally authenticated key
exchange protocol where authentication of the responders is performed using a
long-term KEM key. The basic idea is, that after establishing an ephemeral key,
the initiator encapsulates a secret with respect to the responder’s long-term KEM
key. The responder can only produce the authentication tags for session authenti-
cation if it can decapsulate using its long term KEM key. Thereby, the responder
is implicitly authenticated via its knowledge of the corresponding private key.
We chose to build Muckle+ with digital signatures for end-to-end authentication
as a natural first step and leave extending Muckle+ with KEMTLS approaches
for future work.

1.2 Related Work

Authenticated key exchanges have a long history and are still a very active area
of research as they represent the core component of any protocol for secure com-
munication. Notably, Krawczyk’s Sign-and-MAC (SIGMA) protocols [51] serve
as a template for many of the protocols used in practice. The basic idea of
this template is to combine an ephemeral key exchange using key encapsula-
tion methods (KEMs) to exchange a fresh shared secret, a signature scheme for
authentication of the communication parties as well as a MAC to authenticate
the shared secret. Keys are derived using a pseudorandom function (PRF). One
execution then runs roughly as follows: the initiator produces a new ephemeral
KEM key and sends the public key to the responder. The responder then per-
forms the key encapsulation using the received public key, signs the produced
ciphertext together with the first message to authenticate itself, and derives a
shared secret to authenticate the session using the MAC. Ciphertext, authentica-
tion tag and signature are sent to the initiator. The initiator then decapsulates
the shared secret key, verifies the received signature as well as the authenti-
cation tag. In a mutual authentication setting, the initiator also authenticates
itself using the signature scheme, but the session is also always authenticated
by the initiator using the MAC. This information is sent to the responder for
verification. Afterwards, the two parties share an authenticated and fresh secret
key.

While SIGMA was originally proposed using Diffie-Hellman for the ephemeral
key exchange, presenting it in terms of KEMs allows us to consider it in a post-
quantum setting as we then can instantiate all build blocks using post-quantum

608 S. Bruckner et al.

secure schemes. It can also be extended with responder or initiator privacy fea-
tures [63,69,74], whereas the latter be observed in practice as part of the TLS
handshake. With the migration towards post-quantum secure protocols, work on
adapting and improving key exchange protocols based on the performance and
bandwidth characteristics of post-quantum secure key encapsulation mechanisms
and digital signature schemes has commenced [13,43,45,72], though.

In the area of QKD networks, proposals exist to address the trusted-node
problem with secret-sharing-based multipath protocols, e.g. [64,65], to exchange
the secret key. In a similar vein, multipath authentication protocols have been
proposed too, whereas those are built on the assumption that an adversary is
unable to compromise multiple nodes in the network. When considering network
topologies with many routes available for connecting any two nodes, it is there-
fore possible to split sensitive information into parts (e.g., via secret sharing)
and to send the shares via multiple paths instead of one.

For example, Rass and Schartner [66] introduced a MAC-based multipath
authentication protocol specifically for the application in quantum networks.
In the scenario they consider, two nodes wanting to communicate in a QKD
network may not necessarily establish pre-shared keys. There are however shared
QKD secrets between every node and each of its immediate neighbors. The
protocol uses those secrets in combination with a multipath approach to share
an authenticated message between the nodes and relies on the assumptions that
(a) keys created by two adjacent nodes via the QKD channel are secure, and (b)
every node shares a secret key with its neighboring nodes. While the protocol is
secure against k < n compromised paths when executed with n disjoint paths,
it does not fit into the typical notion of an authenticated key exchange and it
lacks end-to-end authenticity.

Finally, secure multipath key exchange (SMKEX) [24] utilizes two disjoint
paths to facilitate authentication and key exchange. The protocol is based on
a typical key exchange, but in addition the second channel is used to send a
random nonce that is authenticated using the secret key exchanged via the first
channel. SMKEX therefore ensures unilateral authenticity and computational
security against an active adversary as long as only one path is compromised.

2 Preliminaries

In this section, we briefly recall notions related to (hybrid) authenticated key
exchanges.

2.1 Cryptographic Primitives and Schemes

Definition 1 (PRF). Let F : S × D → R be a family of functions and let Γ
be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function as

AdvPRF
D,F (κ) =

∣
∣
∣Pr

[

s
R←− S : DF(s,·)(1κ) = 1

]

− Pr
[

f
R←− Γ : Df(·)(1κ) = 1

]∣
∣
∣ .

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 609

F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRF
D,F (κ) ≤ ε(κ).

A PRF F is a dual PRF [4], if G : D ×S → R defined as G(d, s) = F(s, d) is also
a PRF.

We recall the notion of message authentication codes as well as digital sig-
nature schemes, and the standard unforgeability notions below.

Definition 2 (Message Authentication Codes). A message authentication
code MAC is a triple (KGen,Sign,Ver) of PPT algorithms, which are defined as:

KGen(1κ): This algorithm takes a security parameter κ as input and outputs a
secret key sk.

Auth(sk,m): This algorithm takes a secret key sk ∈ K and a m ∈ M and outputs
an authentication tag τ .

Ver(sk,m, τ): This algorithm takes a secret key sk, a message m ∈ M and an
authentication tag τ as input and outputs a bit b ∈ {0, 1}.

A MAC is correct if for all κ ∈ N, for all sk ← KGen(1κ) and for all m ∈ M,
it holds that Pr [Ver(sk,m,Auth(sk,m)) = 1] = 1, where the probability is taken
over the random coins of KGen.

Definition 3 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of existential unforgeability under chosen message attacks
(EUF-CMA) as

Adveuf-cma
A,MAC (1

κ) = Pr
[

Expeuf-cma
A,MAC (1

κ) = 1
]

,

where the corresponding experiment is depicted in Experiment 1. If for all PPT
adversaries A there is a negligible function ε(·) such that Adveuf-cma

A,MAC (1
κ) ≤ ε(κ),

we say that MAC is EUF-CMA secure.

Definition 4 (Signature Scheme). A signature scheme Σ is a triple (KGen,
Sign,Ver) of PPT algorithms, which are defined as follows:

KGen(1κ): This algorithm takes a security parameter κ as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m): This algorithm takes a secret key sk and a message m ∈ M as input
and outputs a signature σ.

Ver(pk,m, σ): This algorithm takes a public key pk, a message m ∈ M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

For correctness, we require that for all κ ∈ N, for all (sk, pk) ← KGen(1κ) and
for all m ∈ M it holds that Pr [Ver(pk,m,Sign(sk,m)) = 1] = 1, where the
probability is taken over the random coins of KGen and Sign.

610 S. Bruckner et al.

Expeuf-cma
A,MAC(1

κ):

sk ← KGen(1κ), Q ← ∅
(m∗, τ∗) ← AAuth′,Ver′()

where oracle Auth′(m):
Q ← Q ∪ {m}
return Auth(sk, m)

where oracle Ver′(m, τ):
return Ver(sk, m, τ)

return 1, if Ver(sk, m∗, τ∗) = 1 ∧ m∗ /∈ Q, return 0, otherwise

Experiment 1: EUF-CMA security experiment for a MAC MAC.

Definition 5 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of existential unforgeability under chosen message attacks
(EUF-CMA) as

Adveuf-cma
A,Σ (1κ) = Pr

[

Expeuf-cma
A,Σ (1κ) = 1

]

,

where the corresponding experiment is depicted in Experiment 2. If for all PPT
adversaries A there is a negligible function ε(·) such that Adveuf-cma

A,Σ (1κ) ≤ ε(κ),
we say that Σ is EUF-CMA secure.

Expeuf-cma
A,Σ (1κ):

(sk, pk) ← KGen(1κ), Q ← ∅
(m∗, σ∗) ← ASign(pk)

where oracle Sign′(m):
Q ← Q ∪ {m}
return Sign(sk, m)

return 1, if Ver(pk, m∗, σ∗) = 1 ∧ m∗ /∈ Q, return 0, otherwise

Experiment 2: EUF-CMA security experiment for a digital signature scheme Σ.

We recall the notion of key-encapsulations mechanisms, and the standard
chosen-plaintext and chosen-ciphertext notions below.

Definition 6 A key-encapsulation mechanism (KEM) scheme KEM with key
space K consists of the three PPT algorithms (KGen,Enc,Dec):

KGen(1κ): This algorithm takes a security parameter κ as input and outputs
public and secret keys (pk, sk).

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 611

Expind-T
A,KEM(κ):

(sk, pk) ← KGen(1κ)

(c∗, K0) ← Enc(pk), K1
R←− K

Q ← ∅, b
R←− {0, 1}κ

b∗ ← AO(pk, c∗, Kb)

where O = {Dec′} if T = cca with oracle Dec′(c):
Q ← Q ∪ {c}
return Dec(sk, c)

return 1, if b = b∗ ∧ c∗ /∈ Q, return otherwise 0

Experiment 3: IND-T security experiments for KEM with T ∈ {cpa, cca}.

Enc(pk): This algorithm takes a public key pk as input, and outputs a ciphertext
c and key K.

Dec(sk, c): This algorithm takes a secret key sk and a ciphertext c as input, and
outputs K or {⊥}.

We call a KEM correct if for all κ ∈ N, for all (pk, sk) ← KGen(κ), for all
(c,K) ← Enc(pk), we have that Pr[Dec(sk, c) = K] = 1, where the probability is
taken over the random coins of KGen and Enc.

Definition 7. For a PPT adversary A, we define the advantage function in
the sense of indistinguishability under chosen-plaintext attacks (IND-CPA) and
indistinguishability under chosen-ciphertexts attacks (IND-CCA) as

Advind-cpa
A,KEM(1κ) =

∣
∣
∣
∣
Pr

[

Expind-cpa
A,KEM(1κ) = 1

]

− 1
2

∣
∣
∣
∣
, and

Advind-cca
A,KEM(1κ) =

∣
∣
∣
∣
Pr

[

Expind-cca
A,KEM(1κ) = 1

]

− 1
2

∣
∣
∣
∣

where the corresponding experiments are depicted in Experiment 3, respectively.
If for all PPT adversaries A there is a negligible function ε(·) such that

Advind-cpa
A,KEM(1κ) ≤ ε(κ) or Advind-cca

A,KEM(1κ) ≤ ε(κ),

then we say that KEM is IND-CPA or IND-CCA secure, respectively.

2.2 Hybrid Authenticated Key Exchange

We recall the hybrid authenticated key exchange (HAKE) security model due
to Dowling et al. [36] which already foresees the use of long-term post-quantum
digital signature keys. For a general treatment of authenticated key exchanges
(AKE), we refer the reader to [33,49].

612 S. Bruckner et al.

Execution Environment. We consider a set of nP parties P1, . . . , PnP
which are

able to run up to nS sessions of a key exchange protocol between them, where
each session may consist of nT different stages of the protocol. Each party Pi

has access to its long-term key pair (pki, ski) and to the public keys of all other
parties. Each session is described by a set of session parameters:

– ρ ∈ {init, resp}: The role (initiator or responder) of the party during the
current session.

– pid ∈ nP : The communication partner of the current session.
– stid ∈ nT : The current stage of the session.
– α ∈ {active, accept, reject,⊥}: The status of the session. Initialized with ⊥.
– mi[stid], i ∈ {s, r}: All messages sent (i = s) or received (i = r) by a session

up to the stage stid. Initialized with ⊥.
– k[stid]: All session keys created up to stage stid. Initialized with ⊥.
– exk[stid], x ∈ {q, c, s}: All ephemeral post-quantum (q), classical (c) or sym-

metric (s) secret keys created up to stage stid. Initialized with ⊥.
– pss[stid]: The per-session secret state (SecState) that is created during the

stage stid for the use in the next stage.
– st[stid]: Storage for other states used by the session in each stage.

We describe the protocol as a set of algorithms (f,KGenXY,KGenZS):

– f(κ, pki, ski, pskidi, pski, π,m) → (m′, π′): a probabilistic algorithm that rep-
resents an honest execution of the protocol. It takes a security parameter κ,
the long-term keys pki, ski, the session parameters π representing the current
state of the session and a message m and outputs a response m′ and the
updated session state π′.

– KGenXY (κ) → (pk, sk): a probabilistic asymmetric key-generation algorithm
that takes a security parameter κ and creates a public-key, secret-key pair
(pk, sk). X ∈ {E,L} determines whether the created key is an ephemeral (E)
or long-term (L) secret. Y ∈ {Q,C} determines whether the key is classical
(C) or post-quantum (Q).

– KGenZS(κ) → (psk, pskid): a probabilistic symmetric key-generation algo-
rithm that takes a security parameter κ and outputs symmetric keying mate-
rial (psk). Z ∈ {E,L} determines whether the created key is an ephemeral
(E) or long-term (L) secret.

For each party P1, . . . , PnP
, classical as well as post-quantum long-term keys

are created using the corresponding KGenXY algorithms. The challenger then
queries a uniformly random bit b ← {0, 1} that will determine the key returned
by the Test query. From this point on, the adversary may interact with the
challenger using the queries defined in the next section. At some point during the
execution of the protocol, the adversary A may issue the Test query and present
a guess for the value of b. If A guesses correctly and the session satisfies the
cleanness predicate, the adversary wins the key-indistinguishability experiment.

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 613

Adversarial Interaction. The HAKE framework defines a range of queries that
allow the attacker to interact with the communication:

– Create(i, j, role) → {(s),⊥}: Initializes a new session between party Pi with
role role and the partner Pj . If the session already exists, then the query
returns ⊥, otherwise the session (s) is returned.

– Send(i, s,m) → {m′,⊥}: Enables A to send messages to sessions and receive
the response m′ by running f for the session πs

i . Returns ⊥ if the session is
not active.

– Reveal(i, s, t): Provides A with the session keys corresponding to a session πs
i

if the session is in the accepted state. Otherwise, ⊥ is returned.
– Test(i, s, t) → {kb,⊥}: Provides A with the real (if b = 1) or random (b = 0)

session key for the key-indistinguishably experiment.
– CorruptXY (i) → {key,⊥}: Provides A with the long-term XY ∈

{SK,QK,CK} keys for Pi. If the key has been corrupted previously, then
⊥ is returned. Specifically:

• CorruptSK: Reveals the long-term symmetric secret (if available).
• CorruptQK: Reveals the post-quantum long-term key (if available).
• CorruptCK: Reveals the classical long-term key (if available).

– CompromiseXY (i, s, t) → {key,⊥}: Provides A with the ephemeral XY ∈
{QK,CK,SK,SS} keys created during the session πs

i prior to stage t. If the
ephemeral key has already been compromised, then ⊥ is returned. Specifically:

• CompromiseQK: Reveals the ephemeral post-quantum key.
• CompromiseCK: Reveals the ephemeral classical key.
• CompromiseSK: Reveals the ephemeral quantum key.
• CompromiseSS: Reveals the ephemeral per session state (SecState).

Matching Sessions. Furthermore, we recall the definitions of matching ses-
sions [57] and origin sessions [25] which covers that the two parties involved
in a session have the same view of their conversation.

Definition 8 (Matching sessions). We consider two sessions πs
i and πr

j in
stage t to be matching if all messages sent by the former session πs

i .ms[t] match
those received by the later πr

j .mr[t] and all messages sent by the later session
πr

j .ms[t] are received by the former πs
i .mr[t].

πs
i is considered to be prefix-matching with πr

j if πs
i .ms[t] = πr

j .mr[t]′ where
πr

j .mr[t] is truncated to the length of πs
i .ms[t] resulting in πr

j .mr[t]′.

Definition 9 (Origin sessions). We consider a session πs
i to have an origin

session with πr
j if πs

i matches πr
j or if πs

i prefix-matches πr
j .

Security. Dowling et al. [36] define key indistinguishability with respect to a
predicate clean. However, their predicate is specific to Muckle and, hence, we
therefore only give the security notion and postpone the discussion of the pred-
icate to Sect. 3.3.

614 S. Bruckner et al.

Definition 10. Let Π be a key-exchange protocol and nP , nS , nT ∈ N. For a
predicate clean and an adversary A, we define the advantage of A in the HAKE
key-indistinguishability game as

AdvHAKE,clean,A
Π,nP ,nS ,nT

(κ) =
∣
∣
∣Pr

[

ExpHAKE,clean,A
Π,nP ,nS ,nT

(κ) = 1
]∣
∣
∣ .

We say that Π is HAKE-secure if AdvHAKE,clean,A
Π,nP ,nS ,nT

(κ) is negligible in the security
parameter κ for all A.

3 Extending Muckle with Signature-Based
Authentication

In this section, we recap Muckle [36] and present our novel variant Muckle+.

3.1 Muckle

The Muckle protocol combines classical, PQC, and QKD keys through the use
of a key derivation function. More concretely, Muckle requires classical and post-
quantum key encapsulation mechanisms (KEMs) as well as data from a QKD
channel (i.e., a symmetric key kq) to create the final shared secret between
communication partners.

Muckle is a multi-stage protocol. While a Muckle instance is active between
two parties, a single stage is run repeatedly, creating a pair of session keys during
each execution. The communication that occurs during one stage of the protocol
is detailed in Fig. 1.

The Muckle key exchange requires a symmetric pre-shared key PSK and
unique party identifiers (implicit in �I and �R) to be distributed to the commu-
nication partners before the key exchange. The parties also have to set an initial
value for the session secret state SecState. To begin a new session, the initiator
uses the classical KEM KEMc and post-quantum KEM KEMpq to create a clas-
sical key pair (pkc, skc) and a post-quantum key pair (pkpq, skpq), respectively.
Both public keys are then combined with a header containing meta-data into the
message m0. The PRF F is applied over PSK and SecState to create a unique
value for the current session, which is then used as an input in another round of
the PRF with the value �I resulting in the message key mkeyI . The key mkeyI

is used as the MAC key to create a tag τ0 for the message m0. The message m0

and the tag τ0 are then sent to the responder.
Receiving the transmission, the responder will check the authenticity of the

message m0 by verifying the tag τ0 with its mkeyI (where mkeyI is derived
via PSK, shared SecState, and �I). If the verification succeeds, the responder
can now use the encapsulation functions of the KEMs to create the keys rkeyc

and rkeypq as well as the ciphertexts cc and cpq, respectively. The responder
proceeds to create a message m1 and a tag τ1 analogously to the initiator’s
MAC procedure, but using the ciphertexts instead of the public keys and the
responder value headerR.

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 615

Initiator Responder

PSK, headerI , SecState I R c pq, kq PSK, headerR, SecState I R c pq, kq

(pkc, skc) ← KEMc.KGen(1κ)
(pkpq, skpq) ← KEMpq.KGen(1κ)
m0 ← (headerI , pkc, pkpq)
mkeyI ← F(F(PSK, SecState) I) mkeyI ← F(F(PSK, SecState) I)

τ0 ← MAC.Auth(mkeyI , m0) MAC.Ver(mkeyI , m0, τ0)
?= 1

m0, τ0−−−−−−−−−−→ cc, rkeyc ← KEMc.Enc(pkc)
cpq, rkeypq ← KEMpq.Enc(pkpq)

m1 ← (headerR, cc, cpq)
mkeyR ← F(F(PSK, SecState) R) mkeyR ← F(F(PSK, SecState) R)

MAC.Ver(mkeyR, m1, τ1)
?= 1 τ1 ← MAC.Auth(mkeyR, m1)

rkeyc ← KEMc.Dec(skc, cc)
m1, τ1←−−−−−−−−−−

rkeypq ← KEMpq.Dec(skpq, cpq)
kc ← F(rkeyc c)

kpq ← F(rkeypq pq)

k0 ← F(kpq, m0 m1)
k1 ← F(kc, k0)
k2 ← F(kq, k1)

k3 ← F(SecState, k2)
SecState , kI , kR ← F(k3, m0 m1 ctr)

SecState ← SecState
ctr ← ctr + 1

Fig. 1. One stage of the Muckle protocol [36] with a classical KEM KEMc, a post-
quantum KEM KEMpq, a MAC MAC, and a PRF F whereas kq represents the sym-
metric key from the QKD component (provided out-of-band).

m1 and τ1 are then transmitted to the initiator, who can use them in the
KEM decapsulation function to get the keys rkeyc and rkeypq (after successful
verification of m1). From this point on, the initiator and responder share the
same information and proceed with the same steps.

First the both keys are entered into the PRF F together with labels �c and
�pq to create the further keys. Then the key schedule starts combining all the
keys into a final shared secret kI , kR and setting a new session state as well as
incrementing the session counter.

Muckle offers mutual authentication, forward security, and post-compromise
security. Post-compromise security is guaranteed under the condition that at
least one previous stage has been completed without the attacker compromising
all the ephemeral (classical, QKD, post-quantum and session secret) secrets, and
that the attacker has been only acting passively since then.

3.2 Extending Muckle with Signature-Based Authentication

In Table 1, we compare the security properties of the protocols we have dis-
cussed in the introduction and Muckle. From this comparison, we can conclude
that Muckle offers the most features and is therefore a suitable candidate for
realizing end-to-end secure hybrid authenticated key exchanges. However, the
protocol relies on PSKs for end-to-end authentication. As the other components
including the QKD-layer do not provide end-to-end authentication (cf. Sect. 3.1),

616 S. Bruckner et al.

Table 1. Comparison of the protocols in terms of provided security guarantees: KC
(key confirmation), PFS (perfect forward secrecy), PCS (post-compromise security).

protocol authentication KC PFS PCS

multipath MAC-based [66] initiator
SMKEX [24] responder ∗ ∗

post-quantum SIGMA [51] explicit mutual � �
KEMTLS [70] explicita responder/mutual �b � ?c

Muckle [36] explicit mutual � � �d

∗ not applicable (no long-term secret)
a implicit for client during mutual authentication
b only for responder authentication
c PCS is not explicitly shown
d under the conditions discussed in Sect. 3.1

Table 2. Values for the contexts used in the Muckle+ key schedule. The context inputs
follow the choices in the TLS 1.3 handshake [35].

Label Context Input Label Context Input

Hε “ ” H0 H(“ ”)
H1 H(m1‖m2) H2 H(m1‖ . . . ‖m3)

H3 H(m1‖ . . . ‖m4)

we extend Muckle to also offer mutual signature-based authentication. Through
this alteration, we preserve the desirable security whilst avoiding the issues asso-
ciated with PSKs (given that we can rely on multi-path QKD). We will from
now on refer to this new protocol as Muckle+.

Like Muckle, Muckle+ is a multi-stage protocol. One such stage is detailed
in Fig. 2. The basic structure of Muckle+ is very similar to the original Muckle
protocol. Up to the computation of the final chaining key, the PSK-based authen-
tication is replaced with signature-based authentication and the addition of two
random nonces nI and nR to avoid issues with the reuse of signatures. We note
that the modifications essentially correspond to changing to a SIGMA-style key
exchange with multiple KEMs and an additional ephemeral secret that is pro-
vided by the QKD link. We note that the correctness of the protocol follows
directly from the correctness of the employed primitives.

3.3 Security of Muckle+

Similar to Muckle, Muckle+ achieves the same security properties including
forward security, or, mostly called perfect forward secrecy (PFS) in the AKE
regime, and post-compromise security (PCS). In this section, we formally proof
this claim. The presented security analysis of the Muckle+ protocol is based
on the HAKE framework as introduced by Dowling et al. [36]. We will use the

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 617

Initiator Responder

skI , SecState skR, SecState

nI
R←− {0, 1}κ

pkc, skc ← KEMc.KGen()
pkpq, skpq ← KEMpq.KGen()

m1 : pkc, pkpq, nI−−−−−−−−−−−−−→ nR
R←− {0, 1}κ

cc, ssc ← KEMc.Enc(pkc)
cpq, sspq ← KEMpq.Enc(pkpq)

m2 : cc, cpq, nR←−−−−−−−−−−−−−
ssc ← KEMc.Dec(skc, cc)
sspq ← KEMpq.Dec(skpq, cpq)

kc ← F(ssc 0 H1)
kpq ← F(sspq 1 H1)

k0 ← F(kpq 2 H1)
k1 ← F(kc 3 k0)
k2 ← F(kq 4 k1)

k3 ← F(SecState 5 k2)

CHTS ← F(k3 7 H1)
SHTS ← F(k3 8 H1)
dHS ← F(k3 6 H0)
tkchs ← F(CHTS)
tkshs ← F(SHTS)

fkC ← F(9 Hε)
fkS ← F(9 Hε)

σR ← Σ.Sign(skR 13 H2)
τR ← MAC.Auth(fkS , H2)

Σ.Ver(pkR 13 H2)
?= 1

m3 : {certR, σR, τR}tkshs←−−−−−−−−−−−−−
MAC.Ver(fkS , H2, τR) ?= 1

MS ← F(dHS, 0)
CATS ← F(10 H2)
SATS ← F(11 H2)
SecState ← F(12 H2)

σI ← Σ.Sign(skI 14 H3)
τI ← MAC.Auth(fkC , H3)

m4 : {certI , σI , τI}tkchs−−−−−−−−−−−−−→ Σ.Ver(pkI 14 H3, σI)
?= 1

MAC.Ver(fkC , H3, τI)
?= 1

Fig. 2. One stage of the Muckle+ protocol. Messages m: {m1, . . .}k denote that m1, . . .
is encrypted with an authenticated encryption scheme using the secret key k. The
various contexts and labels are given in Tables 2 and 3.

definitions and notations use in the HAKE framework in this analysis unless
stated otherwise.

An adversary A has access all queries defined in the HAKE framework. As no
pre-shared key exists in the Muckle+ protocol, the query CorruptSK will return
⊥ if called. As multiple sessions keys are created in the new protocol, we specify
that the key to be guessed during the Test query is the master secret MS.

We define a new cleanness predicate cleanMuckle+ for our protocol that cap-
tures the same goals – post-compromise security and perfect forward secrecy –
but adapt it to match our setting. As our protocol does not require a long term
PSK, we can omit handling compromise of the PSK in our predicate. We however

618 S. Bruckner et al.

Table 3. Values for the labels used in the Muckle+ key schedule for domain separation.
Some of these labels are directly based on the corresponding labels in the TLS 1.3
handshake [35]. The concrete value of these labels is unimportant as long as they are
unique.

Label Label Input Label Label Input

�0 “derive k c” �1 “derive k pq”

�2 “first ck” �3 “second ck”

�4 “third ck” �5 “fourth ck”

�6 “derived” �7 “c hs traffic”

�8 “s hs traffic” �9 “finished”

�10 “c ap traffic” �11 “s ap traffic”

�12 “secstate” �13 “TLS 1.3, server CertificateVerify”

�14 “TLS 1.3, client CertificateVerify”

have to take care of long-term signature keys instead. Hence, we consider their
compromise in cleanMuckle+ as well. Overall, the goal of the cleanness predicate
is to handle the compromise of as many combinations as possible as long as one
set of keys – the post-quantum secure keys or the keys obtained from the QKD
link – stay secure.

More formally, we define the cleanness of a session as follows: A session πs
i

in stage t is considered clean under the predicate cleanMuckle+ if:

– Reveal(i, s, t) has not been issued for session πs
i .

– Reveal(j, r, t) has not been issued for all sessions πr
j matching πs

i at stage t.
– If πs

i has a matching session πr
j , at least one of the following conditions has

been met:
• No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued.
• No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued.
• No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t) have been issued with

πs
i matching πr

j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or
CompromiseSS(j, r, u) have been issued.

• No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued with
πs

i matching πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or

CompromiseSS(j, r, u) have been issued.
– If there exists no (j, r, t) ∈ [nP]× [nS]× [nT] such that πr

j is an origin session
of πs

i in stage t, then either CompromiseSK(i, j, t) and CompromiseSK(j, i, t) or
CorruptQK(i) and CorruptQK(j) have not been issues before πs

i .α[t] ← accept.
If there exists (j, r, t) ∈ [nP]× [nS]× [nT] such that πr

j is an origin session of
πs

i in stage t, then either CompromiseSK(i, j, t) and CompromiseSK(j, i, t) or
CorruptQK(i) and CorruptQK(j) have not been issued before πr

i .α[t] ← accept.

The first condition ensures, that the session key of the session used in the Test
query has not been revealed to the adversary through the use of the Reveal
query. Similarly, the second condition specifies that no session matching the test
session may have been targeted by a Reveal query either, as any matching session

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 619

will own the same session key as the test session. The third condition ensures
that at least one ephemeral secret is not compromised by A or that the secret
session state in the multi-stage setting. Finally, the forth case restricts access to
one of the long-term secrets for the first round without origin session to exclude
otherwise trivial impersonation attacks.

We note that similar to cleanMuckle, we can define classical and quantum
variants of the predicate to also reflect compromise of the classical keys. In
that case, cleancMuckle+ is extended to include the following two conditions for
matching sessions πs

i and πr
j :

– No CompromiseCK(i, s, t) or CompromiseCK(j, r, t) have been issued.
– No CompromiseCK(i, s, t′) or CompromiseCK(j, r, t′) have been issued with

πs
i matching πr

j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or
CompromiseSS(j, r, u) have been issued.

We will now proof that the proposed protocol is secure with the cleanness
predicate cleanMuckle+. In order to do so, we analyze the five cases corresponding
to the conditions that are necessary to fulfil the cleanMuckle+ predicate.

Theorem 1. The Muckle+ key exchange protocol is HAKE-secure with the
cleanness predicate cleanMuckle+ assuming that the PRF F is a dual PRF, the
MAC MAC is EUF-CMA secure, the KEMs KEMc and KEMpq are IND-CPA
secure and the signature scheme Σ is EUF-CMA secure. If the security of F ,
MAC, KEMpq and Σ or of QKD hold against a quantum adversary, then so does
the security of Muckle+.

Proof. We divide the proof into different cases where the query Test(i, s, t) has
been issued and prove them separately:

1. The session πs
i (where πs

i .ρ = init) has no origin session in stage t.
2. The session πs

i (where πs
i .ρ = resp) has no origin session in stage t.

3. The session πs
i in stage t has a matching session.

Similar to the proof of Muckle, we show the first and the third case. The second
case follows analogously to the first case.

Case 1: Test init session without origin session. In case 1, we show that A has
negligible chance of getting a session to reach the accept state if a CorruptQK
or a CompromiseSK query has been issued. If the session does not reach the
accept stage, the Test query will always return ⊥, preventing A from winning
the indistinguishability game. First we consider the case that no CorruptQK query
has been issue.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C1
Muckle+,nP ,nS ,nT

(κ) = Pr[S0]

Game 1: In Game 1, the parameters (i, s, t) for a session and its matching
session (j, r, t) are guessed. If a Test(i′, s′, t) query is issued for any session
πs′

i′ that is not the test session πs
i the game aborts.

Pr[S0] ≤ n2
P nSnT · Pr[S1]

620 S. Bruckner et al.

Game 2: Game 2 aborts, if the test session πs
i ever reaches the status reject.

As the Test query will always return ⊥ is the session reaches this status, the
advantage gained by A is 0.

Pr[S0] ≤ n2
P nSnT · Pr[S2]

Game 3: Game 3 aborts, if the session reaches the status accept.

Pr[S0] ≤ n2
P nSnT · Pr[S3]

We now bound the probability of A reaching the abort event. Assuming that the
session reaches the status accept, we construct an EUF-CMA adversary against
Σ. The challenge pk is used as the party’s public key. For all other sessions,
the signing oracle is used to produce the corresponding signatures. Now, if the
test session reaches accept stage, we output the signature σI as forgery on the
message �14‖H3. The signature verifies since accept stage was reached and has
not been queried to the signing oracle (except for collisions of the hash function
H). Hence, we obtain:

Pr[S0] ≤ n2
P nSnT ·

(

Adveuf-cma
Σ,A (κ)

)

The case that no CompromiseSK query has been issued before reaching the
accept stage, follows analogously to [36, Theorem 1, Case 1] and is not repeated
here.

Case 3: Test session with matching session. We will show that any adversary
A has a negligible chance of winning the key-indistinguishability game using a
sequence of games for each of the four cases. We denote with Si the event of
the adversary winning game i. Note that the proofs are the same regardless of
whether KEM ∈ {KEMc,KEMpq}, whereas security against a quantum adversary
can only be achieved for KEM = KEMpq. We split the proof into several subcases.

Subcase 1: No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued.
Subcase 1 shows, that if the attacker issues a Test query to a session that is
clean due to the secrecy of the ephemeral post-quantum key, he has a negligible
advantage in guessing the test bit. In this scenario all ephemeral secrets except
the post-quantum key as well as the long-term classical and post-quantum secrets
are known to the attacker.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C2
Muckle+,nP ,nS ,nT

(κ) = Pr[S0]

Games 1–7: Games 1 to 7 for Muckle are equivalent to the Games 1 to 7 of the
proof of case 3.1 as described in [36], resulting in the following advantage:

Pr[S0] ≤ n2
P n2

SnT ·
(

Advind-cpa
KEM,A(κ) + 2 · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 621

Game 8: In Game 8, the computation of the derived handshake secret dHS is
replaced by a uniformly random value. To achieve this, �6 is queried together
with the context input H0 and a PRF challenger is initialized for the compu-
tation. The output of the challenger is used to replace the dHS secret. As k3
is uniformly random by Game 7, this is a valid replacement. To distinguish
between the case where dHS ← F(k3, �6,H0) or dH

R←− {0, 1}κ the attacker
would have to break the prf security of PRF and thus has the following
advantage:

Pr[S0] ≤ n2
P n2

SnT ·
(

Advind-cpa
KEM,A(κ) + 3 · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Game 9: In Game 9, the derivation of the master secret MS is replaced by
a uniformly random value. A PRF challenger is initialised and its output
used to replace MS. Since dHS is already random by Game 8, this is a valid
substitution. To distinguish between the case, where MS ← F(dHS, 0) or
M

R←− {0, 1}κ, A would have to break the prf security of PRF which leafs
the attacker with the following advantage:

Pr[S0] ≤ n2
P n2

SnT ·
(

Advind-cpa
KEM,A(κ) + 4 · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Game 10: In Game 10, the application traffic secrets (CATS,SATS) and the
session state SecState are replaced by a uniformly random value. This is done
by initializing a PRF challenger for each computation and querying the labels
10, 11 and 12 as well as the context input H3 and replacing the corresponding
value with the output from the challenger. Since the master secret MS is
already random by Game 9, this is a valid substitution. For A to distinguish
between the case where CATS, SATS, SecState ← F(MS, �{10,11,12},H3) or

CATS, SATS, SecState
R←− {0, 1}F he would have to break the prf security

of PRF.
At this point the application traffic secrets and the session state are shown to
be uniformly random under the condition of case 2 and A has an advantage
of

Pr[S0] ≤ n2
P n2

SnT ·
(

Advind-cpa
KEM,A(κ) + 5 · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Subcase 2: No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued.
This case shows, that if the attacker issues a Test query to a session that is clean
due to the secrecy of the ephemeral quantum key, he has a negligible advantage
in guessing the test bit. In this scenario all ephemeral secrets except the quantum
key as well as the long-term classical and post-quantum secrets are known to
the attacker.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C3
Muckle+,nP ,nS ,nT

(κ) = Pr[S0]

622 S. Bruckner et al.

Games 1–3: Games 1 to 3 for Muckle are equivalent to Games 1 to 3 of the
proof of case 3.2 as described in [36], resulting in the following advantage:

Pr[S0] ≤ n2
P n2

SnT ·
(

Advprf
F,A(κ) + Advdual-prf

F,A (λ)
)

Games 4–6: Games 4 to 6 are equivalent to Games 8 to 10 in subcase 1, resulting
in the final advantage of

Pr[S0] ≤ n2
P n2

SnT ·
(

4 · Advprf
F,A(κ) + Advdual-prf

F,A (λ)
)

Subcase 3: No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t′) have been issued
with πs

i matching πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or

CompromiseSS(j, r, u) have been issued. This case shows, that if a previous session
has been completed cleanly under the predicate cleanMuckle+ and A has not
compromised the session state SecState since then, the attacker has a negligible
advantage in guessing the test bit of the current session.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C4
Muckle+,nP ,nS ,nT

(κ) = Pr[S0]

Game 1: In Game 1 the parameters (i, s, t) for a session and its matching session
(j, r, t), as well as the stage t′ are guessed. If A issues a Test(i′, s′, t) query for
any session πs′

i′ that is not the test session πs
i the game aborts.

Pr[S0] ≤ n2
P n2

Sn2
T

Games 2–10: Games 2 to 10 are equivalent to Games 2 to 10 in subcase 1.

Pr[S0] ≤ n2
P n2

Sn2
T ·

(

Advind-cpa
KEM,A(κ) + 5 · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

After Game 10 the session πs
i has been completed cleanly in stage t′. The fol-

lowing Games take place in each stage u and are therefore executed not once,
but u-times. To represent the worst case scenario where A has compromised
every stage after the first one, we replace the factor u by nT .

Game 11: In Game 11 the computation of k3 is replaced by a uniformly random
value. This is done by initializing a post-quantum PRF challenger with the
value k2 and replacing k3 with the output. As SecState is uniformly random
by Game 10, this is a valid substitution. To distinguish between the case of
k3 ← F(SecState, k2) or k3

R←− {0, 1}F the attacker would have to break the
prf security of the PRF resulting in the advantage:

Pr[S0] ≤ n2
P n2

Sn2
T ·

(

Advind-cpa
KEM,A(κ) + (5 + nT) · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Games 12–14: Games 12 to 14 are equivalent to Games 8 to 10 in case 2

Pr[S0] ≤ n2
P n2

Sn2
T ·

(

Advind-cpa
KEM,A(κ) + (5 + 4nT) · Advprf

F,A(λ) + 3 · Advdual-prf
F,A (λ)

)

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 623

Subcase 4: No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued
with πs

i matching πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or

CompromiseSS(j, r, u) have been issued. This case shows, that if a previous session
has been completed cleanly under the predicate cleanMuckle+ and A has not
compromised the session state SecState since then, the attacker has a negligible
advantage in guessing the test bit of the current session.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C5
Muckle+,np,ns,nt

(κ) = Pr[S0]

Game 1: In Game 1 the parameters (i, s, t) for a session and its matching session
(j, r, t), as well as the stage t′ are guessed. If A issues a Test query for any
session that is not the test session πs

i the game aborts.

Pr[S0] ≤ n2
P n2

Sn2
T · Pr[S1]

Games 2–6: Games 2 to 6 are equivalent to Games 2 to 6 in subcase 2

Pr[S0] ≤ n2
P n2

Sn2
T ·

(

4 · Advprf
F,A(κ) + Advdual-prf

F,A (λ)
)

After Game 6 the session πs
i has been completed cleanly in stage t′. The fol-

lowing Games take place in each stage u and are therefore executed not once,
but u-times. To represent the worst case scenario where A has compromised
every stage after the first one, we replace the factor u by nT .

Games 7–10: Games 7 to 10 are equivalent to Games 11 to 14 in subcase 3.

Pr[S0] ≤ n2
P n2

Sn2
T ·

(

(4 + 4nT) · Advprf
F,A(κ) + Advdual-prf

F,A (λ)
)

Finally, we obtain the following advantage.

Adv
HAKE,cleanMuckle+,A
Muckle+,nP ,nS ,nT

(κ) ≤
n2

P nSnT · Adveuf-cma
Σ,A (κ)+

n2
P n2

SnT ·
(

Advind-cpa
KEM,A(κ) + 9 · Advprf

F,A(λ) + 4 · Advdual-prf
F,A (λ)

)

+

n2
P n2

Sn2
T ·

(

Advind-cpa
KEM,A(κ) + (9 + 8nT) · Advprf

F,A(κ) + 4 · Advdual-prf
F,A (λ)

)

3.4 Instantiating Muckle+

Finally, we discuss some possible choices when instantiating the primitives used
in Muckle+. Especially in QKD networks providing high bandwidth communi-
cation, the sizes of ciphertexts and signatures might not be a limiting factor.
For the choice of signature schemes, we can thus consider candidates that are
built from hash functions such as XMSS [17,44] and SPHINCS+ [10] or block
ciphers such as Picnic [20,48] and its variant built from AES [3]. Considering
that in high bandwidth networks, the use of these symmetric primitives is per-
fectly valid to reduce the consumption of QKD keys, the use of these signature

624 S. Bruckner et al.

schemes does not require the addition of any new hardness assumptions to the
overall system. We however want to note this chance comes with an increased
runtime cost compared to KEM-based authentication as in KEMTLS.

We however want to note, that with the introduction of a signature-based
authentication mechanism, the question arises on how to authenticate the other
peer’s public key. Note though, that even if all public keys are shared a priori,
the complexity is reduced to n keys instead of O(n2) pre-shared keys. With
the introduction of a Public Key Infrastructure (PKI) such as PKIX [23], the
amount of pre-installed public keys that then serve as certificate authority (CA)
can be drastically reduced. In a setting with only one provider, this can be a
single CA. With more providers, various different scenarios can be considered
with one external CA or multiple CAs where, for example, each provider handles
the certification of the public keys used by their network components.

For QKD networks with trusted nodes, we note that all trusted nodes have
access to the QKD key. In the HAKE security model, we thus need to assume
that CompromiseSK has been queried and therefore the security of Muckle+
solely relies on the security of the KEM and signature scheme. To achieve fault
tolerance in such a setting, we can consider multipath QKD systems that apply
a typical secret-sharing-based approaches, e.g., [39,52]. Thereby, the QKD key is
shared on the initiator side and the shares are transported via mutually disjoint
paths in the QKD network to the receiver. Such an approach has been considered
to some extent in the literature specifically for QKD networks, e.g., to boost
throughput [73] and with semi-trusted and fully-trusted paths [21] to increase the
security of the network. The latter focuses specifically on the routing algorithms
without going into details on the method to share the keys. By applying the
techniques, e.g., from [52] to the QKD keys, and under the assumption that
at least one path is non-compromised or more specifically – similar to the non-
collusion in multiparty computation systems – that none of the nodes on disjunct
paths collude, the risk stemming from trusted nodes can be mitigated.

4 Implementation and Evaluation

In order to evaluate the performance of Muckle+ in practical application, we
implemented a prototype of the protocol. This prototype was implemented in
Python using bindings7 of liboqs [72] for the support of post-quantum primi-
tives and the cryptography8 module for all classically-secure schemes. As dis-
played Fig. 3, the Muckle+ protocol operates on the application layer. The quan-
tum key material is fetched by all endpoints by their respective key managements
services (KMS) that provide key material to applications via the interfaces from
ETSI GS QKD 014 [38].

7 https://github.com/open-quantum-safe/liboqs-python.
8 https://pypi.org/project/cryptography/.

https://github.com/open-quantum-safe/liboqs-python
https://pypi.org/project/cryptography/

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 625

Fig. 3. Architecture of a Muckle+ Implementation with a single intermediate node.

While the Muckle+ protocol allows for server-only, as well as mutual authen-
tication, we benchmarked the implementation with mutual authentication.
Authentication of both parties is achieved through the use of hybrid certifi-
cates containing both post-quantum and classical long term public keys. Certifi-
cates were signed with classical (EdDSA [9]) and post-quantum signatures. We
assumed a 2-tier certificate hierarchy to simulate a PKI hierarchy for Muckle+
reflecting current practice, e.g., similar to Let’s Encrypt [1].

Our Muckle+ implementation was set up using a small network with three
QKD links offering two mutually disjoint paths between endpoints. Initiator and
responder of the protocol were executed on a notebook running Windows 10
with an Intel i5 2.60GHz CPU and 8 GB of RAM. Several instantiations of the
protocol using different post-quantum KEMs and signature schemes were tested,
resulting in the execution times displayed in Fig. 4 for directly linked nodes. For
all executions of the protocol, the remaining primitives have been instantiated
with X25519 [8] as KEMc, HKDF-SHA2 as PRF and HMAC-SHA2 as MAC.

Figure 4 depicts the runtime of the initiator for various choices of signature
schemes and KEMs for the initiator.9 For the majority of the evaluated schemes,
the runtime for a single Muckle+ stage ranged from 0.4 to 1.6 s. An average
of ≈0.3 s of this runtime can be attributed to the retrieval of the QKD key.
Hence, we could demonstrate that the determining factor in the performance
of the Muckle+ protocol is the key rate of the QKD link as in the original
Muckle protocol. While the use of signature-based incurs an overhead compared
to Muckle, it is comparatively small in relation to the costs of accessing QKD
keys.

9 We observed no significant differences for the initiator and responder.

626 S. Bruckner et al.

Fig. 4. Execution time of a single Muckle+ stage with mutual authentication. Times
are in seconds.

An exception to the observation above is the small and robust SHA256 and
SHAKE variants of SPHINCS+ where the slower runtime is attributed to the
lack of support for the AVX2 instruction set in liboqs for SPHINCS+ on Win-
dows.10 Hence, we expect the performance of SPHINCS+ to be less of an issue
with the availability of optimized implementation on Windows.

In Fig. 5, the results of the same experiment with a multi-path setup are
depicted. The additional delay is caused by the intermediate nodes fetching
additional key material in a serial manner. The overall execution time of the
protocol is thus influenced by the slowest path which in our setup corresponds to
the longest path. Overall, we can thus conclude that the overhead of our end-to-
end secure protocol for hybrid networks is mainly influenced by the performance
of the key rate provided by the QKD network.

10 See https://github.com/open-quantum-safe/liboqs/issues/1476 for some back-
ground on this issue.

https://github.com/open-quantum-safe/liboqs/issues/1476

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 627

Fig. 5. Execution time of a single Muckle+ stage with mutual authentication in a
multi-path setting. Times are in seconds.

5 Conclusion and Outlook

With Muckle+, we extend the hybrid authenticated key exchange protocol
Muckle with signature-based authentication. Thereby, we are able to provide
both certificate-based mutual or unilateral authentication depending on the
intended use-case. Our implementation and evaluation of the protocol within
a small QKD network demonstrates its practical feasibility. With our intended
message flow of the protocol, Muckle+ may be integrated in typical scenarios
where especially the authenticity of the responder is essential. We however note
that there might be other trade-offs in the order and structure the messages if
different privacy properties are required for an application, e.g., SIGMA with
responder privacy or a protocol with forward privacy [63,69].

Note also that the Muckle+ protocol offers features that are interesting for
a wide range of applications in a similar setting as found in many of today’s
applications. Indeed, if one considers classical client-server uses on the web, it
is expected that one can connect to almost any server on the network without
additional configuration. Hence, handling shared state such as the pre-shared
keys is not desired due to scalability issues as well as the out-of-band commu-
nication. Considering more high-level use-cases that are envisioned in EuroQCI
where network-wide key management systems will provide QKD keys to security
applications, ensuring authenticity with certificate-based mechanisms will pro-
vide better scalability especially considering that nowadays process for certificate
management can be fully automated [1].

628 S. Bruckner et al.

Acknowledgements. The authors want to thank Christian Rechberger and Felix
Wissel for insightful discussions, and Florian Kutschera for helping with the setup of
the QKD devices. This work received funding from the Austrian Research Promotion
Agency (FFG) under grant agreement number FO999886370 (“QKD4GOV”), from the
European Defence Industrial Development Programme (EDIDP) under grant agree-
ment number SI2858093 (“DISCRETION”), and from the Digital Europe Program
under grant agreement number 101091642 (“QCI-CAT”).

References

1. Aas, J., et al.: Let’s encrypt: an automated certificate authority to encrypt the
entire web. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019,
pp. 2473–2487. ACM Press (2019). https://doi.org/10.1145/3319535.3363192

2. Alléaume, R., et al.: Using quantum key distribution for cryptographic purposes:
a survey. Theor. Comput. Sci. 560, 62–81 (2014). https://doi.org/10.1016/j.tcs.
2014.09.018

3. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75245-3_11

4. Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assump-
tions: a generic validation of an HMAC assumption. Cryptology ePrint Archive,
Report 2015/1198 (2015). https://eprint.iacr.org/2015/1198

5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_28

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

7. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: 27th ACM STOC, pp. 57–66. ACM Press (1995). https://doi.org/10.1145/
225058.225084

8. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9_9

10. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019, pp. 2129–2146. ACM Press (2019). https://doi.
org/10.1145/3319535.3363229

11. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-15979-4_16

12. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt,

https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1016/j.tcs.2014.09.018
https://doi.org/10.1016/j.tcs.2014.09.018
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://eprint.iacr.org/2015/1198
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1145/225058.225084
https://doi.org/10.1145/225058.225084
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-031-15979-4_16

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 629

R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7_12

13. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sympo-
sium on Security and Privacy, pp. 553–570. IEEE Computer Society Press (2015).
https://doi.org/10.1109/SP.2015.40

14. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1465–1482. ACM Press
(2017). https://doi.org/10.1145/3133956.3133980

15. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_12

16. Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange pro-
tocols: newhope, TLS 1.3, and hybrids. In: Sako, K., Schneider, S., Ryan, P.Y.A.
(eds.) ESORICS 2019. LNCS, vol. 11736, pp. 521–541. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29962-0_25

17. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5_8

18. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

19. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C.,
Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_15

20. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key
primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017, pp. 1825–1842. ACM Press (2017). https://doi.org/10.1145/3133956.
3133997

21. Chen, L., Chen, J., Chen, Q., Zhao, Y.: A quantum key distribution routing scheme
for hybrid-trusted QKD network system. Quantum Inf. Process. 22(1), 75 (2023).
https://doi.org/10.1007/s11128-022-03825-x

22. Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64837-4_6

23. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.T.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, 1–151 (2008). https://doi.org/10.17487/RFC5280

24. Costea, S., Choudary, M.O., Gucea, D., Tackmann, B., Raiciu, C.: Secure oppor-
tunistic multipath key exchange. In: Lie, D., Mannan, M., Backes, M., Wang, X.
(eds.) ACM CCS 2018, pp. 2077–2094. ACM Press (2018). https://doi.org/10.
1145/3243734.3243791

25. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1_42

https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-030-29962-0_25
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/s11128-022-03825-x
https://doi.org/10.1007/978-3-030-64837-4_6
https://doi.org/10.17487/RFC5280
https://doi.org/10.1145/3243734.3243791
https://doi.org/10.1145/3243734.3243791
https://doi.org/10.1007/978-3-642-33167-1_42

630 S. Bruckner et al.

26. Dallmeier, F., et al.: Forward-secure 0-RTT goes live: implementation and perfor-
mance analysis in QUIC. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS
2020. LNCS, vol. 12579, pp. 211–231. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-65411-5_11

27. Dauterman, E., Corrigan-Gibbs, H., Mazières, D.: SafetyPin: encrypted backups
with human-memorable secrets. In: 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event, 4–6 November 2020,
pp. 1121–1138. USENIX Association (2020)

28. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption
and applications to efficient forward-secret 0-RTT key exchange. J. Cryptol. 34(2),
13 (2021)

29. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7_14

30. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_8

31. Derler, D., Ramacher, S., Slamanig, D., Striecks, C.: Fine-grained forward secrecy:
allow-list/deny-list encryption and applications. In: Borisov, N., Diaz, C. (eds.)
FC 2021. LNCS, vol. 12675, pp. 499–519. Springer, Heidelberg (2021). https://doi.
org/10.1007/978-3-662-64331-0_26

32. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

33. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

34. Donenfeld, J.A.: WireGuard: next generation kernel network tunnel. In: NDSS
2017. The Internet Society (2017)

35. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. J. Cryptol. 34(4), 37 (2021). https://doi.org/10.
1007/s00145-021-09384-1

36. Dowling, B., Hansen, T.B., Paterson, K.G.: Many a mickle makes a muckle: a
framework for provably quantum-secure hybrid key exchange. In: Ding, J., Tillich,
J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 483–502. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44223-1_26

37. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020, pp. 2093–2110.
USENIX Association (2020)

38. ETSI: Quantum key distribution (QKD): Protocol and data format of rest-based
key delivery API (2019). https://www.etsi.org/deliver/etsi_gs/QKD/001_099/
014/01.01.01_60/gs_qkd014v010101p.pdf

39. Fitzi, M., Franklin, M., Garay, J., Vardhan, S.H.: Towards optimal and efficient
perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 311–322. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70936-7_17

40. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021). https://eprint.iacr.org/2021/339

41. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_5

https://doi.org/10.1007/978-3-030-65411-5_11
https://doi.org/10.1007/978-3-030-65411-5_11
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-319-76578-5_8
https://doi.org/10.1007/978-3-662-64331-0_26
https://doi.org/10.1007/978-3-662-64331-0_26
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-030-44223-1_26
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://doi.org/10.1007/978-3-540-70936-7_17
https://doi.org/10.1007/978-3-540-70936-7_17
https://eprint.iacr.org/2021/339
https://doi.org/10.1007/3-540-46885-4_5

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 631

42. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7_18

43. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_14

44. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: extended
Merkle signature scheme. RFC 8391, 1–74 (2018). https://doi.org/10.17487/
RFC8391

45. Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum
WireGuard. In: 2021 IEEE Symposium on Security and Privacy, pp. 304–321. IEEE
Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00030

46. Huttner, B., et al.: Long-range QKD without trusted nodes is not possible with
current technology. npj Quantum Inf. 8(1), 1–5 (2022)

47. Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and secure transport.
RFC 9000, 1–151 (2021). https://doi.org/10.17487/RFC9000

48. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018). https://doi.
org/10.1145/3243734.3243805

49. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC
Press (2014). https://www.crcpress.com/Introduction-to-Modern-Cryptography-
Second-Edition/Katz-Lindell/p/book/9781466570269

50. Kaufman, C.: Internet key exchange (IKEv2) protocol. RFC 4306, 1–99 (2005).
https://doi.org/10.17487/RFC4306

51. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4_24

52. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly
secure communication over arbitrary networks. In: Ricciardi, A. (ed.) 21st ACM
PODC, pp. 193–202. ACM (2002). https://doi.org/10.1145/571825.571858

53. Kwiatkowski, K., Sullivan, N., Langley, A., Levin, D., Mislove, A.: Measuring
TLS key exchange with post-quantum KEM. In: Workshop Record of the Second
PQC Standardization Conference (2019). https://csrc.nist.gov/CSRC/media/
Events/Second-PQC-Standardization-Conference/documents/accepted-papers/
kwiatkowski-measuring-tls.pdf

54. Langley, A.: Cecpq1 results. Blog post (2016). https://www.imperialviolet.org/
2016/11/28/cecpq1.html

55. Langley, A., et al.: The QUIC transport protocol: design and internet-scale deploy-
ment. In: Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, 21–25 August
2017, pp. 183–196. ACM (2017). https://doi.org/10.1145/3098822.3098842

56. Lauer, S., Gellert, K., Merget, R., Handirk, T., Schwenk, J.: T0RTT: non-
interactive immediate forward-secret single-pass circuit construction. PoPETs
2020(2), 336–357 (2020). https://doi.org/10.2478/popets-2020-0030

57. Li, J., Kim, K., Zhang, F., Chen, X.: Aggregate proxy signature and verifiably
encrypted proxy signature. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007.

https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8391
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.17487/RFC4306
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1145/571825.571858
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.2478/popets-2020-0030

632 S. Bruckner et al.

LNCS, vol. 4784, pp. 208–217. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75670-5_15

58. Maurer, U.M.: Protocols for secret key agreement by public discussion based on
common information. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
461–470. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_32

59. Mehic, M., et al.: Quantum key distribution: a networking perspective. ACM Com-
put. Surv. 53(5), 96:1–96:41 (2020). https://doi.org/10.1145/3402192

60. Mosca, M., Stebila, D., Ustaoğlu, B.: Quantum key distribution in the classical
authenticated key exchange framework. In: Gaborit, P. (ed.) PQCrypto 2013.
LNCS, vol. 7932, pp. 136–154. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38616-9_9

61. Pacher, C., et al.: Attacks on quantum key distribution protocols that employ non-
its authentication. Quantum Inf. Process. 15(1), 327–362 (2016). https://doi.org/
10.1007/s11128-015-1160-4

62. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_5

63. Ramacher, S., Slamanig, D., Weninger, A.: Privacy-preserving authenticated key
exchange: stronger privacy and generic constructions. In: Bertino, E., Shulman,
H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 676–696. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_33

64. Rashidi, L., et al.: More than a fair share: network data remanence attacks against
secret sharing-based schemes. In: NDSS 2021. The Internet Society (2021)

65. Rass, S., König, S.: Indirect eavesdropping in quantum networks. In: ICQNM 2011:
The Fifth International Conference on Quantum, Nano and Micro Technologies
(2011)

66. Rass, S., Schartner, P.: Multipath authentication without shared secrets and with
applications in quantum networks. In: Arabnia, H.R., et al. (eds.) Proceedings of
the 2010 International Conference on Security & Management, SAM 2010, Las
Vegas Nevada, USA, 12–15 July 2010, vol. 2, pp. 111–115. CSREA Press (2010)

67. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
1–160 (2018). https://doi.org/10.17487/RFC8446

68. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with
applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023. LNCS, vol. 14008, pp. 3–34. Springer, Heidelberg (2023). https://
doi.org/10.1007/978-3-031-30589-4_1

69. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6_20

70. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp.
1461–1480. ACM Press (2020). https://doi.org/10.1145/3372297.3423350

71. Slamanig, D., Striecks, C.: Puncture ’em all: updatable encryption with no-
directional key updates and expiring ciphertexts. Cryptology ePrint Archive,
Report 2021/268 (2021). https://eprint.iacr.org/2021/268

72. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2

https://doi.org/10.1007/978-3-540-75670-5_15
https://doi.org/10.1007/978-3-540-75670-5_15
https://doi.org/10.1007/3-540-48071-4_32
https://doi.org/10.1145/3402192
https://doi.org/10.1007/978-3-642-38616-9_9
https://doi.org/10.1007/978-3-642-38616-9_9
https://doi.org/10.1007/s11128-015-1160-4
https://doi.org/10.1007/s11128-015-1160-4
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/978-3-031-30589-4_1
https://doi.org/10.1007/978-3-031-30589-4_1
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2021/268
https://doi.org/10.1007/978-3-319-69453-5_2

Muckle+: End-to-End Hybrid Authenticated Key Exchanges 633

73. Yu, X., et al.: Multi-path-based quasi-real-time key provisioning in quantum-key-
distribution enabled optical networks (QKD-on). Opt. Express 29(14), 21225–
21239 (2021). https://doi.org/10.1364/OE.425562

74. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 1464–1479. ACM Press (2016). https://doi.org/10.1145/2976749.
2978350

https://doi.org/10.1364/OE.425562
https://doi.org/10.1145/2976749.2978350
https://doi.org/10.1145/2976749.2978350

Side-Channel Cryptanalysis
and Countermeasures

WrapQ: Side-Channel Secure Key
Management for Post-quantum

Cryptography

Markku-Juhani O. Saarinen1,2(B)

1 PQShield Ltd., Oxford, UK
mjos@pqshield.com

2 Tampere University, Tampere, Finland
markku-juhani.saarinen@tuni.fi

Abstract. Transition to PQC brings complex challenges to builders of
secure cryptographic hardware. PQC keys usually need to be stored off-
module and protected via symmetric encryption and message authentica-
tion codes. Only a short, symmetric Key-Encrypting Key (KEK) can be
managed on-chip with trusted non-volatile key storage. For secure use,
PQC key material is handled in masked format; as randomized shares.
Due to the masked encoding of the key material, algorithm-specific tech-
niques are needed to protect the side-channel security of the PQC key
import and export processes.

In this work, we study key handling techniques used in real-life secure
Kyber and Dilithium hardware. We describe WrapQ, a masking-friendly
key-wrapping mechanism designed for lattice cryptography. On a high
level, WrapQ protects the integrity and confidentiality of key material
and allows keys to be stored outside the main security boundary of the
module. Significantly, its wrapping and unwrapping processes minimize
side-channel leakage from the KEK integrity/authentication keys as well
as the masked Kyber or Dilithium key material payload.

We demonstrate that masked Kyber or Dilithium private keys can be
managed in a leakage-free fashion from a compact WrapQ format with-
out updating its encoding in non-volatile (or read-only) memory. WrapQ
has been implemented in a side-channel secure hardware module. Kyber
and Dilithium wrapping and unwrapping functions were validated with
100K traces of ISO 17825/TVLA-type leakage assessment.

Keywords: Side-Channel Security · Masking Countermeasures · Key
Wrapping · Kyber · Dilithium

1 Introduction

With the standardization of CRYSTALS suite algorithms Kyber [3] and
Dilithium [5] as the preferred NIST Post-Quantum Cryptography (PQC) meth-
ods for key agreement and digital signatures [1], their secure and efficient imple-
mentation has become one of the most important engineering challenges in cryp-
tography. NSA has also selected these two algorithms for the CNSA 2.0 suite for
protecting classified information in National Security Systems [30].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 637–657, 2023.
https://doi.org/10.1007/978-3-031-40003-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-40003-2_23

638 M.-J. O. Saarinen

1.1 Side-Channel Countermeasures for Lattice Cryptography

Kyber and Dilithium are gradually replacing older RSA and Elliptic Curve Cryp-
tography in systems where it is a requirement that a device (such as a mobile
phone, authentication token, or a smart card) does not leak sensitive informa-
tion even if an adversary has physical access to the device or its close proximity.
A related (System-on-Chip) PQC use case is platform security, where crypto-
graphic signatures and protocols are used to protect system firmware/bitstream
integrity and updates against unauthorized modification and other attacks.

Side-Channel Attacks (SCA) use external physical measurements to derive
information about the data being processed. Some of the most important consid-
erations are Timing Attacks (TA) [22], Differential Power Analysis (DPA) [23],
and Differential Electromagnetic Analysis (DEMA) [33]. Almost any implemen-
tation can be rapidly attacked with these methods if appropriate countermea-
sures are not in place. Mitigations against TA, DPA, DEMA non-invasive attacks
are required for FIPS 140-3/ISO 19790 certification [20,21] at higher levels.

Masking [12] has emerged as the most prominent and effective way to secure
lattice-based cryptography against side-channel attacks. Masking is based on
randomly splitting all secret variables into two or more shares.

Definition 1. Order-d masked encoding [[x]] of a group element x ∈ G consists
of a tuple of d + 1 shares (x0, x1, · · · , xd), xi ∈ G with x0 + x1 + · · · + xd ≡ x.

The addition operation can be defined in an arbitrary finite group G; Boolean
masking uses the exclusive-or operation ⊕, while arithmetic masking uses mod-
ular addition. Vectors, matrices, and polynomials can be represented as shares.

A fundamental security requirement is that the shares are randomized so
that all d + 1 shares are required to reconstruct x, and any subset of only d
shares reveals no statistical information about x itself. There are |G|d possible
representations [[x]] for x; Mask refreshing refers to a re-randomization procedure
that maps [[x]] to another encoding [[x]]′ of x.

Computation of cryptographic functions [[y]] = f([[x]]) is organized in a way
that avoids directly combining the shares, thereby limiting leakage. Arbitrary
circuits can be transformed to use masking with quadratic O(d2) overhead [19].
It has been shown that the amount of side channel information required to learn
x or y grows exponentially in relation to masking order d [12]. Hence masking is
asymptotically efficient.

Several abstract models have been proposed for the purpose of providing
theoretical proofs of security for masked implementations, including the Ishai-
Sahai-Wagner probing model [19] and Prouff-Rivain noisy leakage model [32,35].
Designers often proceed by describing a set of generic “gadgets” that make up the
secured portion of the algorithm and then providing analysis for the composition.
The SNI (Strong Non-Interference) [6] property allows better composability.

In addition to theoretical soundness, an essential advantage of masking coun-
termeasures for PQC is that they are generally less dependent on the physical
details of the implementation when compared to logic-level techniques such as

WrapQ: Side-Channel Secure Key Management 639

dual-rail countermeasures [2]. However, it is essential to verify the leakage prop-
erties experimentally. There are standard approaches to physical leakage assess-
ment [14,21,38].

1.2 Sensitivity Analysis: Private Keys and Secret Variables

Side-channel leakage can be exploited in any component that handles secret
key material. In a broader sensitivity analysis (such as the one performed on
Dilithium in [18]), it is apparent that the key management processes must meet
the same security requirements as the key generation or private key operations.

Often the “zeroth” step of an asymmetric private-key operation such as sign-
ing or decapsulation is “load private key.” In SCA-protected implementation,
the private key clearly cannot really be stored in non-masked plaintext format.

Masking generally requires that the shares are refreshed (re-randomized)
every time they are used. A trivial solution is to write back the refreshed keys
to non-volatile memory after each usage. However, this is not practical with
ROM or Flash keys. Furthermore, masked representations significantly increase
the secret key storage requirement. Secure, non-volatile key storage is an expen-
sive resource. Standard-format Kyber1024 private keys are 25,344 bits, while
Dilithium5 secret keys are 38,912 bits (Table 3). This is an order of magnitude
more than typical RSA keys and two orders of magnitude more than the keys of
Elliptic Curve Cryptography schemes.

Key Wrapping [15,37] is a process where Authenticated Encryption (AE) is
used to protect the confidentiality and integrity of other key material, such as
asymmetric keys. Key wrapping reduces much of the problem of secure key man-
agement to that of protecting (or deriving) the shorter, symmetric AE wrapping
key(s). However, the standard AES-based techniques can’t easily protect the
plaintext payload from side-channel leakage, just the AES/KEK key itself.

1.3 Outline of this Work and Our Contributions

There exists a body of work discussing the side-channel protection of lattice
cryptography schemes, including GLP [7], Dilithium [4,26] and Kyber [11,18].
The key management issue has not been addressed previously; keys have been
assumed to be immediately available in a dynamically refreshable masked form.

We define the side-channel secure key wrapping problem and outline the
WrapQ approach. Here the key import function performs a simultaneous unwrap-
ping (symmetric decryption) and refreshing of PQC private key masks. No write-
back of refreshed keys is necessary. WrapQ enables compact storage of PQC
secret keys on an untrusted medium and their side-channel secure use.

We describe a real-life implementation of WrapQ for Kyber and Dilithium.
Side-channel security requires a sensitivity analysis and classification of these
algorithms’ Critical Security Parameters (CSPs) so that each variable in the
secret key is appropriately handled. We then describe an FPGA implementation
and perform a leakage assessment of masked Kyber and Dilithium key import
and key export functions. No leakage was found in 100K traces.

640 M.-J. O. Saarinen

2 Masked Key Wrapping

Most works on side-channel secure implementations of symmetric ciphers (such
as AES) focus on protecting the symmetric key; in a standard model, the attacker
can observe and even choose both plaintext and ciphertext. For Key Wrapping,
we have an additional goal: its “plaintext” (i.e., the wrapped asymmetric key
payload) must also remain invisible to side-channel measurements.

For lattice-based secret keys, an approach that first decrypts a standard seri-
alization of a secret key and only then splits it into randomized shares (Definition
1) will leak information in repeat observations; even partial information about
coefficients can be used to accelerate attacks. One can also consider encrypting
the individual masked shares, which significantly increases the size of the key
blob. However, when importing the same static key blob multiple times, the
decrypted masked key is always the same: Not a unique, random representation
as required for masking security.

A potential solution would be to write a refreshed, re-encrypted secret key
back every time the key is used, but this approach has severe practical disad-
vantages in addition to a much larger key blob, such as reliability risks.

2.1 High Level Interface

WrapQ implements masked Key Wrapping (protection of the confidentiality and
integrity of cryptographic keys [15]) for lattice cryptography with a special type
of Authenticated Encryption with Associated Data (AEAD) [36] mechanism. An
abstract high-level interface for a masked key wrapping and unwrapping is:

C ← WrapQ([[K]], [[P]], AD) (1)

{[[P]],FAIL} ← WrapQ−1([[K]], C,AD). (2)

Double square brackets [[·]] denote masked variables:

[[K]] Key Encrypting Key (KEK): Symmetric secret for integrity
and confidentiality (short, Boolean-masked key.)

[[P]] Payload: Asymmetric key material to be encrypted (a set of
masked arithmetic and Boolean variables.)

AD Authenticated Associated Data: Additional elements that
only require integrity protection (e.g. the public key.)

C Wrapped key: Encrypted P , authentication information for AD
and P , and internal auxiliary information such as nonces.

Each unwrapping call WrapQ−1 produces a fresh, randomized masking repre-
sentation for [[P]] variables, or FAIL in case of authentication (integrity) failure.
In addition to standard AEAD security goals, the primitives guarantee that long-
term secrets K or P do not leak while operating WrapQ and WrapQ−1 thousands
of times.

WrapQ: Side-Channel Secure Key Management 641

3 WrapQ 1.0 Design Outline

Our solution makes several design choices motivated by its particular use case;
a side-channel secure hardware module that implements lattice-based cryptog-
raphy. It is hardware-oriented and is not intended as an “universal” format.

3.1 Design Choices

Key Import and Export. Importing may occur during device start-up or if
there is a change of keys. Key export is required when new keys are generated or
if KEK changes. Side-channel considerations are equally important in both use
cases. The term “import” does not necessarily imply interaction with external
devices. The import function simply prepares and loads a private key from static
storage to be used by a cryptographic processor.

Key Encryption Key. We primarily want to secure the process of local, auto-
matic, unsupervised loading of secret keys for immediate use. For example, some
hardware devices may use a device-unique key or a Physically Unclonable Func-
tion (PUF) to derive the KEK, with the idea that keys exported to a less trusted
storage can only be imported back into the same physical module [24]. Since the
main goal is side-channel security, the storage format may be modified to accom-
modate implementation-specific requirements.

Non-determinism is Preferable. Rogaway and Shrimpton [37] argue that a
key wrapping operation should be fully deterministic; the inputs K,P,A fully
determine C without randomization. Their motivation is that removing the ran-
domization nonce from C will save some bandwidth. We prioritize side-channel
security and observe that randomization helps to eliminate leakage in the export
function.

Secondary Encryption. WrapQ only encrypts critical portions of the key
material. It is a “feature” that algorithm identifiers and the public key hash
are unencrypted; this makes it possible to retrieve a matching public key before
validating the secret key blob. WrapQ key blobs do not have complete confi-
dentiality properties, such as indistinguishability from random. However, the
resulting blob is much safer to handle as critical variables are encrypted; a sec-
ondary confidentiality step can use arbitrary mechanisms to re-encrypt it.

Not (Necessarily) a Key Interchange Format. Export can also occur
between devices; sometimes, the term “Key Exchange Key” is used to export
a key from one HSM to another or from an on-premises system to the cloud
[25]. In such “one-off” manual use cases, side-channel protections may be less
critical, and mechanisms such as PKCS #12 [27] can be used (after additional
authorization).

642 M.-J. O. Saarinen

3.2 Masked XOF and Domain Separation

WrapQ uses a masked XOF (extensible output function [28]) as a building block
for all of its side-channel secure cryptographic functionality.

Definition 2. An Order-d masked extensible output function [[h]] ←
XOFn([[m]]) processes an arbitrary-length masked input [[m]] into n-byte output
shares [[h]] while maintaining Order-d security (under some applicable defini-
tion).

The XOF (Definition 2) is instantiated with a masked Keccak [1600] [28]
permutation. Note that a masked SHA3/SHAKE (and hence a masked Keccak
permutation) is required to process secret variables in Kyber (G, PRF, KDF) and
in Dilithium (H, ExpandS, ExpandMask). Hence this primitive can be expected
to be available in masked Kyber and Dilithium implementations.

Frame Header. We construct a non-secret frame header for all XOF inputs
from four fixed-length components:

frame = (ID ‖ DS ‖ ctr ‖ IV) (3)

ID 32-bit identifier for algorithm type, parameter set, authentication frame
structure, key blob structure, WrapQ version; all serialization details.

DS 8-bit Domain Separation identifier. This specifies frame purpose: hash, keyed
MAC, encryption, etc.

ctr A 24-bit block index 0, 1, 2, . . . for encrypting multi-block material. Set to 0
for authentication (unless the authentication process is parallelized).

IV Nonce: a 256-bit Initialization Vector, chosen randomly for the key blob. Its
frames share the IV .

The main security property of the frame header is that it creates non-repeating,
domain-separated inputs for the XOF.

– For a fixed secret key protecting many key blobs, this is due to the random-
ization of IV . There is a birthday bound of 2128 wrapping operations for a
given key.

– Within a key blob (fixed IV , key), frames are made unique thanks to (DS , ctr)
being different.

– Across versions. Any functional change in WrapQ serialization requires a new
ID . This identifier unambiguously defines the structure of the key blob, the
interpretation of the contents, the frame header, etc.

There are predefined domain separation bytes; DShash and DSmac for authen-
tication (Algorithm 1) and DS enc for encryption/decryption (Algorithms 2 and
3.) Frame headers with these domain separation fields are denoted framehash,
framemac and frameenc.

WrapQ: Side-Channel Secure Key Management 643

Algorithm 1: T = AuthTag(A, [[K]], ID , ctr , IV)
Input: A, Authenticated data, including ciphertext.
Input: [[K]], Message Integrity Key (Boolean masked.)
Input: ID , ctr , IV : Used to construct frameDS headers.
Output: T , Resulting authentication tag/code.

1: h ← Hash(framehash ‖ A)
2: [[T]] ← XOF|T |(framemac ‖ [[K]] ‖ h)
3: [[K]] ← Refresh([[K]])
4: return T = Decode([[T]])

3.3 Integrity Protection: Masked MAC Computation

Algorithm 1 describes the authentication tag computation process. The authen-
tication tag is always checked before any decryption is performed.

For performance reasons, we first use a non-masked hash function Hash() to
process A (Step 1) and only use a masked XOF to bind the hash result h with
the (masked) authentication key [[K]] and other variables (Step 2). Furthermore,
randomized hashing [17] with a frame header containing the IV is used to make
the security of h more resilient to collision attacks. The random prefix IV is
included in the frame construction (Eq. (3)) and used again in the masked key
binding step. It is domain-separated via DS from encryption/decryption frames
in case the same [[K]] is used. After this single masked step, [[K]] is refreshed,
and the authentication tag [[T]] can be unmasked (collapsed) into T .

Cryptographic Security Notes. In the terminology of [9], WrapQ is an
Encrypt-then-MAC (EtM) scheme; ciphertext is authenticated rather than plain-
text. Upon a mismatch between the calculated T ′ and the tag T , a FAIL is
returned – no partial decrypted payload. Since WrapQ is an Authenticated
Encryption with Associated Data (AEAD) [36] scheme, input tuple A includes
data items that do not need to be decrypted in addition to ciphertext C. Unam-
biguous serialization is used to guarantee domain separation between data items.
The ID identifier in frame defines the contents and ordering of fixed-length fields
in A and all other variables.

3.4 Confidentiality Protection: Encrypting Masked Plaintext

We use the masked XOF in “counter mode” to encrypt/decrypt data. Data is
processed in blocks. For Sponge-based primitives such as SHA3/SHAKE [28],
the appropriate block size is related to the “rate” parameter, which depends on
the security level. Generally, one wants to minimize the number of permutation
invocations. SHAKE256 has a data rate of (1600 − 2 ∗ 256)/8 = 136 bytes for
each permutation, while SHAKE128 has a 168-byte rate.

Algorithm 2 outlines the process of encrypting a single block; using stream
cipher terminology, it uses the masked XOF to produce a block of keystream
shares (Step 1), which are exclusive-ored with the plaintext to produce ciphertext

644 M.-J. O. Saarinen

(Step 2). Key blocks must be used only once before being refreshed (Step 3).
Plaintext must also be refreshed unless it is discarded (Step 4). The ciphertext
is no longer sensitive, so it can be decoded back into unmasked format (Step 5).

Algorithm 2: C = EncBlock([[P]], [[K]], ID , ctr , IV)
Input: [[P]], Payload block (Boolean masked.)
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct header frameenc.
Output: C, Resulting ciphertext block.

1: [[x]] ← XOF|P |(frameenc ‖ [[K]])
2: [[C]] ← [[P]] ⊕ [[x]] � “Stream cipher.”
3: [[K]] ← Refresh([[K]])
4: [[P]] ← Refresh([[P]]) � (Unless discarded.)
5: return C = Decode([[C]])

Algorithm 3 describes the decryption process, which is also illustrated in
Fig. 1. A necessary feature of the block decryption (import) function (Algorithm
3) is that the ciphertext C is first converted into masked encoding (Step 1). The
secret cover [[x]] is also in randomized shares (Step 2). Hence decryption occurs
in masked form (Step 3), avoiding collapsing [[P]].

Algorithm 3: [[P]] = DecBlock(C, [[K]], ID , ctr , IV)
Input: C, Ciphertext block.
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct frameenc.
Output: [[P]], key material payload (Boolean masked.)

1: [[C]] ← Encode(C)
2: [[x]] ← XOF|P |(frameenc ‖ [[K]])
3: [[P]] ← [[C]] ⊕ [[x]] � “Stream cipher.”
4: [[K]] ← Refresh([[K]])
5: return [[P]] = Refresh([[P]])

Cryptographic Security Notes. Algorithms 2 and 3 are analogous to counter-
mode (CTR) encryption/decryption, except that the payload [[P]] is masked.
Confidentiality of ciphertext C follows from the one-wayness and random-
indistinguishability of the XOF function (as it would without masking), assuming
that the frame identifiers never repeat for the same secret key [[K]].

WrapQ: Side-Channel Secure Key Management 645

ID ‖ DS ‖ ctr ‖ IV [[K]] shares

frameenc K0 K1 K2

m0 m1 m2

XOF (Masked Keccak Permutation)

Ciphertext Block

C

Encode (Random)

C0 C1 C2 x0 x1 x2

P0 P1 P2

[[P]] shares

Fig. 1. The WrapQ−1 key import function uses a masked XOF in counter mode to
decrypt ciphertext blocks C into randomized Boolean shares [[P]]. The Keccak Permu-
tation (pictured here with three shares) exists in secure implementations of Dilithium
and Kyber; WrapQ just reuses the component.

4 Kyber and Dilithium Private Keys

Cryptographic module security standards (FIPS 140-3 [29]/ISO 19790 [20])
expect that implementors classify all variables based on the impact of their
potential compromise.

– CSP (Critical Security Parameter): Security-related information whose dis-
closure or modification can compromise the security of a cryptographic mod-
ule. CSPs require both integrity and confidentiality protection.

– PSP (Public Security Parameter): Security-related public information whose
modification can compromise the security of a cryptographic module. PSPs
require only integrity protection (authentication).

– SSP (Sensitive Security Parameter): Either a CSP or PSP, or a mixture of
both. Essentially all variables in a cryptographic module are SSPs.

The parts of secret key material whose disclosure can compromise cryptographic
security are CSPs. Additionally, all internally derived or temporary variables
whose leakage will compromise security are CSPs. In the FIPS 140-3/ISO 19790
context, the (non-invasive) side-channel leakage protection requirement only
applies to CSPs [20, Sect 7.8], not PSPs.

646 M.-J. O. Saarinen

Table 1. Kyber public and secret key components: Variable sensitivity classification
and WrapQ encoding for Kyber secret keys.

CRYSTALS-Kyber Public Key Secret Key

Standard encoding [3]: pk = (t̂, ρ) sk = (ŝ, pk, pkh), z)

Field Size (bits) Description

t̂ k × 12 × 256 PSP: Public vector, NTT domain.

ρ 256 PSP: Seed for public A.

ŝ k × 12 × 256 CSP: Secret vector, NTT domain.

pk |t̂| + 256 PSP: Full public key.

pkh 256 PSP: Hash of the public key SHA3(pk).

z 256 CSP: Fujisaki-Okamoto rejection secret.

WrapQ Secret Key: skwq = (ID , T, IV , pkh, z, s)

Field Size (bits) Description

ID 32 Algorithm and serialization type identifier.

T 256 Authentication tag (Algorithm 1).

IV 256 Random nonce.

pkh 256 Authenticated: Public key hash SHA3(pk).

z 256 Encrypted: FO Transform secret.

s k × 4 × 256 Encrypted: Secret key polynomials.

4.1 CRYSTALS-Kyber

Table 1 contains a classification of Kyber key variables. WrapQ encrypts and
authenticates masked CSPs (s, z) and only authenticates the rest of the param-
eters. For the underlying MLWE problem t = As + e the public key consists of
(A, t) and the secret key is s (ephemeral error e is not stored.) In Kyber, the A
matrix is represented by a SHAKE128 seed ρ that deterministically generates it.

Kyber standard secret key encoding stores s in the NTT-domain represen-
tation ŝ. To conserve storage space and also Boolean-to-Arithmetic transforma-
tion effort, we instead store normal-domain ŝ, where coefficients are in the range
[−η, η] and would fit into 3 bits (in Kyber, we have η ∈ {2, 3}, depending on
the security level.) However, WrapQ uses four bits per coefficient for Boolean
masking conversion convenience.

The z variable is a secret quantity used to generate a deterministic response
to an invalid ciphertext in the Fujisaki-Okamoto transform. The security proofs
assume it to be secret (we implement the entire FO transform as masked); hence,
this 256-bit quantity is handled as a Boolean masked secret.

WrapQ: Side-Channel Secure Key Management 647

Table 2. Dilithium public and secret key components: Variable sensitivity classification
and WrapQ encoding for Dilithium secret keys.

CRYSTALS-Dilithium Public Key Secret Key

Standard encoding [5] pk = (ρ, t1) sk = (ρ, K, tr, s1, s2, t0)

Field Size (bits) Description

ρ 256 PSP: Seed for public A.

t1 k × 10 × 256 PSP: Upper half of public t.

K 256 CSP: Seed for deterministic signing.

tr 256� PSP: Hash of public key tr = H(ρ ‖ t1).

s1 � × dη × 256 CSP: Secret vector 1, coefficients [−η, η].

s2 k × dη × 256 CSP: Secret vector 2, coefficients [−η, η].

t0 k × 13 × 256 PSP: Lower half of public t.

WrapQ Secret Key: skwq = (ID , T, IV , ρ, K, tr, s1, s2)

Field Size (bits) Description

ID 32 Algorithm and serialization type identifier.

T 256 Authentication tag (Algorithm 1).

IV 256 Random nonce.

ρ 256 Authenticated: Public seed for A.

K 256 Encrypted: Seed for deterministic signing.

tr 256� Authenticated: Hash tr = SHAKE256(pk).

t0 k × 13 × 256 Authenticated: Lower half of public t.

s1 � × 4 × 256 Encrypted: Secret vector 1.

s2f k × 4 × 256 Encrypted: Secret vector 2.

In standard encoding, the Kyber secret key contains a full copy of the public
key. It also contains H(pk), purely as a performance optimization. We also retain
and authenticate the H(pk) quantity, but for a different reason: it can be used
to authenticate a separately supplied public key.

4.2 CRYSTALS-Dilithium

Table 2 contains a classification of Dilithium key variables. WrapQ encrypts and
authenticates masked CSPs (K, s1, s2) and only authenticates the rest of the
parameters. In the underlying equation t = As1 + s2, variables (A, t) are public
and (s1, s2) are secret. The A matrix is expanded from SHAKE128 seed ρ.

648 M.-J. O. Saarinen

Note that Dilithium’s public variable t is split into two halves to minimize
the size of the public key, with t1 placed in the public key and the t0 in private
key (as high bits are sufficient for verification.) However, from a cryptanalytic
viewpoint, the entire t is a public variable. Hence t0 is placed within the secret
key blob but as a PSP. There is no need to encrypt t0; we just authenticate it.

The tr quantity is a 256-bit� hash of the public key tr = SHAKE256(ρ ‖ t1).
Only the hash is required for signature generation (as a collision-resilient message
processing). Since tr is an authenticated part of the key blob, we also use this
quantity to verify that a separately supplied public key is valid.

The distribution of both s1 and s2 is uniform in [−η,+η]. Depending on
the security parameters, we have η ∈ {2, 4}. While the standard encoding uses
dη = �log2(2η + 1)	 bits (either 3 or 4), WrapQ uses 4 Boolean masked bits per
coefficient with all security parametrizations.

The K variable is a secret “seed” value used in deterministic signing (making
the signature a deterministic, non-randomized function of the private key and
the message to be signed). We treat K as a 256-bit Boolean-masked quantity.
However, from a side-channel security perspective, it is preferable to randomize
the signing process, in which case K is not used.

5 Parameter Selection and Algorithm Analysis

Cryptography in WrapQ is entirely built from SHA3/SHAKE (FIPS 202 [28])
components, which in turn are based on the Keccak permutation. The XOF()
function (Definition 2) uses a masked version while Hash() (Sect. 3.3) is non-
masked. A straightforward first-order threshold implementation of masked Kec-
cak is roughly three times larger [10] than the unmasked one, and the complexity
grows quadratically with the masking order [6]. Other operations in the process
are related to mask refreshing or trivial ones such as linear XORs, packing of
bits, etc.

Algorithm 1 requires �(|frame| + |A| + |padding|)/r	 unmasked Keccak per-
mutations to compute h with Hash(), where r is the block rate. For SHAKE256,
we have r = 136 bytes. Additionally, there is a single invocation of masked XOF()
permutation to compute [[T]].

Algorithms 2 and 3 require �|P |/r	 invocations of the masked permutation in
XOF(). This is also the minimum when computation is organized in a “counter
mode” fashion where [[P]] is split into block-sized chunks and ctr is used as an
input index. It is not economical to encrypt blocks substantially smaller than
r, as that will result in an increased number of permutations and slower speed.
However, for some parameters, we sacrifice optimality for the logical separation
of data items, simplifying implementation.

� The size of tr is 256 bits in Dilithium 3.1 [5]. It may change to 512 bits in a future
revision of Dilithium [31].

WrapQ: Side-Channel Secure Key Management 649

5.1 Wrapping Process

In the implementation of the key wrapping operation WrapQ (Eq. (1)), all CSPs
are converted to Boolean shares (Tables 1 and 2). For internal secret [[̂s]] shares,
this involves Inverse-NTT operations to [[s]] since 4-bit packing is used, followed
by an Arithmetic-to-Boolean conversion.

After conversions required for the construction of [[P]], we choose a random
IV for the entire key blob. The [[P]] input, comprising of CSP data, is divided
into blocks and fed to Algorithm 2 to produce ciphertext C.

For Dilithium and Kyber, we can process one polynomial at a time since the
resulting (4×256)/8 = 128-byte block fits the 136-byte data rate of SHAKE256.
This has the advantage of “random access” – each secret polynomial can be
decrypted only when needed, reducing the RAM requirement. The 4-bit encoding
is not optimal of all [−η,+η] ranges present in these algorithms but is simpler
to decode.

The Boolean CSPs (K or z) have ctr = 0, block and polynomial CSPs are
1 ≤ ctr ≤ k with Kyber and 1 ≤ ctr ≤ k + � with Dilithium. The ciphertext
blocks and the PSP data items are then combined into blob A; their serialization
is the same as given in Tables 1 and 2, although ID , T, IV are omitted.

Finally, A is passed to Algorithm 1 to produce T ; then the final WrapQ key
blob is combined from (ID , T, IV , A).

5.2 Unwrapping Process

The unwrapping operation WrapQ−1 (Eq. (2)) starts with consistency checks; we
parse ID from the beginning of the blob and see if the size of the blob matches
with it. We also check that the pkh (Kyber) or tr (Dilithium) fields match with
a hash of the public key that is separately provided.

The rest of unwrapping proceeds in inverse order from wrapping; authenti-
cation first, then decryption. We extract IV and A (the remaining part after
IV in the blob) and pass those to Algorithm 1 to obtain a check value T ′. If we
have a mismatch T �= T ′, we return FAIL and abort.

Upon success, we proceed to decrypt CSP fields into payload shares [[P]]
using Algorithm 3. The conversion of arithmetic CSPs also follows an inverse
route; Boolean-to-Arithmetic conversion, followed by an NTT transform as the
implementation keeps secret keys “ready” in the NTT domain.

5.3 Size Metrics

Table 3 summarizes the sizes of both standard encodings for Kyber and Dilithium
keypairs. We observe that each randomized arithmetic CSP share would be larger
than the WrapQ format (even if packed to �log2 q	 bits per coefficient). For sev-
eral parameter sizes, the WrapQ size could be further reduced by encoding the
[−η,+η] coefficients in less than 4 bits, but this would complicate the implemen-
tation.

Note that the NIST standardization process will likely bring some changes
to Kyber 3.02 [3] and Dilithium 3.1 [5].

650 M.-J. O. Saarinen

Table 3. The size of a WrapQ secret key (Tables 1 and 2) does not depend on the
masking order. Each individual internal (unpacked) masking share is larger, as are
Kyber’s “standard serialization” secret keys due to a lack of bit packing.

Algorithm Masking Per Share Std. Encoding WrapQ

Parameters k � |pk| |sk| |skwq|
Kyber512 2 768 800 1,632 388

Kyber768 3 1,152 1,184 2,400 516

Kyber1024 4 1,536 1,568 3,168 644

Dilithium2 4 4 5,888 1,312 2,528 2,852

Dilithium3 6 5 8,096 1,952 4,000 4,068

Dilithium5 8 7 11,040 2,592 4,864 5,412

6 Implementation and Leakage Assessment

WrapQ grew out of a need to be able to manage Kyber and Dilithium private keys
in a commercial side-channel secure hardware module. For leakage testing, the
hardware platform was instantiated on an FPGA target. A secret key conversion
program was written in Python for interoperability testing.

6.1 FPGA Platform Overview

A first-order implementation of WrapQ was tested with an FPGA module that
also implements first-order masked Dilithium and Kyber. We outline its relevant
components.

– A low-area 64-bit RISC-V control processor.
– Lattice accelerator that can support Kyber and Dilithium Zq polynomials and

NTT ring arithmetic. The unit can also perform vectorized bit manipulation
operations for tasks such as masking conversions (A2B, B2A).

– Ascon-based random mask generator. This is used by the lattice unit for
refreshing Boolean and Arithmetic (mod q) shares. The unit can be contin-
uously seeded from an entropy source.

– A compact first-order, three-share Threshold Implementation [10,13] of the
masked Keccak permutation. See discussion in Sect. 3.

– A faster, non-masked 1600-bit Keccak permutation used for public A matrix
generation and also to compute PSP hashes (e.g., the h value in Algorithm
1).

For first-order security, we use trivial refresh gadgets Refresh([[x]]) = (x0 ⊕
r, x1 ⊕ r) with r = Random() and Encode(x) = (x ⊕ r, r) with r = Random().
The function Decode([[x]]) = x0 ⊕ x1 ⊕ · · · xd = x simply unmasks x.

WrapQ: Side-Channel Secure Key Management 651

6.2 Implementation Overview

The implementation supported all main versions of Kyber and Dilithium
(Table 3). In the internal representation, the algorithms hold two copies of the
secret CSP variables in Tables 1 and 2 either in compressed or uncompressed for-
mat. Kyber polynomials are manipulated at 16 bits per coefficient for arithmetic
operations, while Dilithium polynomials use 32 bits. Hence a two-share unpacked
Kyber1024 [[s]] requires 4 kB of internal storage while Dilithium5 ([[s1]], [[s2]])
needs 30 kB. These polynomials are handled using (mod q) arithmetic masking.
The 256-bit quantities z (Kyber) and K (Dilithium) were Boolean masked in
the internal representation.

The confidentiality algorithm used in the test target matches the details
of Algorithms 2 and 3 in Sect. 2.1. Authentication was enabled in the import
and export functions, but the tests were performed using a “platform security”
parameterization; 128-bit IV and T fields, and a slightly different arrangement
of hashes in Algorithm 1.

6.3 Leakage Assessment: Fixed-vs-Random Experiments

Our methodology broadly follows the ISO/IEC WD 17825:2021(E) “General
Testing Procedure,” [21, Figure 7] with statistical corrections. This, in turn, was
based on Test Vector Leakage Assessment (TVLA) proposed by CRI/Rambus
in 2011 [16] and refined in [14,38].

Traditionally a critical value C of ±4.5 has been used for L = 1, which
matches an α < 10−5 in that case [8,34]. Since we have long traces (large L),
this choice would cause false positives. We adjust the critical value C based on
L using the Mini-p procedure from Zhang et al. [14]. Let αL = 1 − (1 − α)(1/L)

be the adjusted significance level. Since the degrees of freedom are very large,
we can approximate using the normal distribution: C = CDF−1(1 − αL

2).

KEK Leakage Testing. The test aims to find leakage from the key K itself, and
its set-up is similar to “fixed-vs-random key” TVLA tests performed on block
ciphers such as AES [21,34]. Set A has a fixed K, while set B has a random
K. Note that the plaintext payload data (i.e., Kyber and Dilithium keys) is
randomized in this test; only the symmetric keys are manipulated.

CSP Leakage Testing. For fixed-vs-random testing, confidentiality (encryption)
is only provided in WrapQ for CSP (actually non-public) variables. Kyber has
two CSPs: ring vector s (decryption key), and FO secret z (Table 1) while
Dilithium’s CSPs are the ring vectors s1, s2 (signing key) and the deterministic
seed K (Table 2). All other variables are PSPs (public).

6.4 Trace Acquisition and Results

The experiments were performed with XC7A100T2FTG256 Artix 7 FPGA chip
on a ChipWhisperer CW305-A100 board, clocked at 50 MHz. The processor

652 M.-J. O. Saarinen

Table 4. Summary of Random-vs-Fixed tests on WrapQ key import and export func-
tions. The tests were designed to test leakage from both the KEK (Key-Encrypting
Key) and the payload CSPs (PQC Secret Keys.) See traces in Fig. 2.

Test Function Set A Set B Both A&B

#1 Kyber Import Fix CSP Rand CSP Fix KEK

#2 Kyber Import Fix KEK Rand KEK Rand CSP

#3 Dilithium Import Fix CSP Rand CSP Fix KEK

#4 Dilithium Import Fix KEK Rand KEK Rand CSP

#5 Kyber Export Fix CSP Rand CSP Fix KEK

#6 Kyber Export Fix KEK Rand KEK Rand CSP

#7 Dilithium Export Fix CSP Rand CSP Fix KEK

#8 Dilithium Export Fix KEK Rand KEK Rand CSP

and coprocessor bitstreams were synthesized with Xilinx Vivado 2021.2. The
C language firmware was with complied GCC, under -Os size optimization and
-mabi=lp64 -march=rv64imac architectural flags.

Signal acquisition was performed with Picoscope 6434E oscilloscopes with
a 156.25 MHz sampling rate connected to the SMA connectors on the CW305
board. The DUT generated a cycle-precise trigger.

Table 4 summarizes the various Fixed-vs-Random tests performed on the
implementation. The tests were carried out on all three proposed security levels
of Kyber and Dilithium, but due to space constraints, we only include graphs
for the (highest) Category 5 versions, Kyber1024 and Dilithium5.

The functions passed the tests with 100,000 traces. Even though the critical
value C has been adjusted for long traces (as discussed above), from Fig. 2, we
can see that the t values are generally bound at a much smaller range. The
target unit also performs side-channel secure Kyber and Dilithium operations
(key generation, signatures, encapsulation, decapsulation), but those tests are
out of scope for the present work.

WrapQ: Side-Channel Secure Key Management 653

Kyber1024 WrapQ Key Import Random-vs-Fixed CSP (#1 left), KEK (#2 right).

Dilithium5 WrapQ Key Import Random-vs-Fixed CSP (#3 left), KEK (#4 right).

Kyber1024 WrapQ Key Export Random-vs-Fixed CSP (#5 left), KEK (#6 right).

Dilithium5 WrapQ Key Export Random-vs-Fixed CSP (#7 left), KEK (#8 right).

Fig. 2. Kyber and Dilithium average power traces and TVLA t-traces for WrapQ key
import and export functions (See Table 4). 100,000 traces were measured for each test.
The TVLA results were well within leakage assessment boundaries (red lines). (Color
figure online)

654 M.-J. O. Saarinen

7 Conclusions and Future Work

When building side-channel secure implementations of asymmetric algorithms, it
is easy to sidestep the key management problem. Academic works have generally
focused on protecting the private key operations, assuming that refreshed key
shares can be kept in working memory. However, many real-life devices do not
have the option of having refreshable non-volatile memory for keys.

WrapQ is a method for handling masked secret key material between a hard-
ware security module and potentially untrusted storage. Its encryption, decryp-
tion, and authentication modes can manage wrapped key material in masked
format, significantly increasing resilience to side-channel attacks.

We detail a version of WrapQ that supports CRYSTALS-Kyber 3.02 Key
Encapsulation Mechanism and CRYSTALS-Dilithium 3.1 signature scheme. The
implementation leverages a masked implementation of FIPS 202/SHAKE256
(the Keccak permutation) in a mode that prevents leakage even when an attacker
can acquire thousands of side-channel measurements from importing and export-
ing secret keys and also access the resulting WrapQ data itself. The size of the
WrapQ secret key is independent of the masking order and is often even smaller
than the standard encoding.

We have performed a TVLA leakage assessment and validation of a WrapQ
implementation for Kyber and Dilithium. The leakage of payload CSP variables
and the KEK (key encryption key) was tested. Import and export functions for
both algorithms pass TVLA testing for up to 100K traces.

Our experimental work has focused on first-order protections. However, the
file format works also with higher-order masking. As the masking order grows,
so does the complexity of all nonlinear operations and refresh gadgets. We
acknowledge that the construction of higher-order gadgets for WrapQ (Sect. 2.1)
requires further investigation. Furthermore, the formal SNI security of the gad-
gets remains to be shown.

Acknowledgments. The author wishes to thank Ben Marshall for running the leak-
age assessment tests and Oussama Danba and Kevin Law for helping to make the
FPGA test target operational. Further thanks to Thomas Prest, Rafael del Pino, and
Melissa Rossi for the technical and theoretical discussions. The author is to blame for
all errors and omissions.

References

1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryp-
tography standardization process. Interagency or internal report, National Insti-
tute of Standards and Technology (2022). https://doi.org/10.6028/NIST.IR.8413-
upd1. https://csrc.nist.gov/publications/detail/nistir/8413/final

2. Alioto, M., Bongiovanni, S., Djukanovic, M., Scotti, G., Trifiletti, A.: Effectiveness
of leakage power analysis attacks on DPA-resistant logic styles under process vari-
ations. IEEE Trans. Circ. Syst. I Regul. Pap. 61(2), 429–442 (2014). https://doi.
org/10.1109/TCSI.2013.2278350

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://doi.org/10.1109/TCSI.2013.2278350
https://doi.org/10.1109/TCSI.2013.2278350

WrapQ: Side-Channel Secure Key Management 655

3. Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specifications and supporting doc-
umentation (version 3.02). NIST PQC Project, 3rd Round Submission Update
(2021). https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.
pdf

4. Azouaoui, M., et al.: Leveling Dilithium against leakage: revisited sensitivity anal-
ysis and improved implementations. Cryptology ePrint Archive, Paper 2022/1406
(2022). https://eprint.iacr.org/2022/1406. Fourth PQC Standardization Confer-
ence, NIST (Virtual) 29 November–1 December 2022

5. Bai, S., et al.: CRYSTALS-Dilithium: algorithm specifications and support-
ing documentation (version 3.1). NIST PQC Project, 3rd Round Submission
Update (2021). https://pq-crystals.org/dilithium/data/dilithium-specification-
round3-20210208.pdf

6. Barthe, G., et al.: Strong non-interference and type-directed higher-order mask-
ing. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) CCS 2016: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, 24–28 October 2016, pp.
116–129. ACM (2016). https://doi.org/10.1145/2976749.2978427. http://dl.acm.
org/citation.cfm?id=2976749

7. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12.
https://eprint.iacr.org/2018/381

8. Becker, G., et al.: Test vector leakage assessment (TVLA) methodology in practice.
Presented at International Cryptography Module Conference - ICMC 2013 (2013)

9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak (2010). https://csrc.nist.gov/Events/2010/The-
Second-SHA-3-Candidate-Conference

11. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.
173-214

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [39], pp. 398–412. https://doi.org/10.
1007/3-540-48405-1 26

13. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 7

14. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 7

15. Dworkin, M.: Recommendation for block cipher modes of operation: methods for
key wrapping. NIST Special Publication SP 800-38F (2012). https://doi.org/10.
6028/NIST.SP.800-38F

16. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation. CMVP & AIST Non-Invasive Attack Testing Work-

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1406
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1145/2976749.2978427
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-319-78375-8_12
https://eprint.iacr.org/2018/381
https://doi.org/10.1007/s00145-008-9026-x
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.6028/NIST.SP.800-38F
https://doi.org/10.6028/NIST.SP.800-38F

656 M.-J. O. Saarinen

shop (NIAT 2011) (2011). https://csrc.nist.gov/csrc/media/events/non-invasive-
attack-testing-workshop/documents/08 goodwill.pdf

17. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 3

18. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. IACR ePrint 2022/058 (2022).
https://eprint.iacr.org/2022/058

19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

20. ISO: Information technology - security techniques - security requirements for cryp-
tographic modules. Standard ISO/IEC WD 19790:2022(E), International Organi-
zation for Standardization (2022)

21. ISO: Information technology - security techniques - testing methods for the miti-
gation of non-invasive attack classes against cryptographic modules. Draft Inter-
national Standard ISO/IEC DIS 17825:2022(E), International Organization for
Standardization (2023)

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [39], pp.
388–397. https://doi.org/10.1007/3-540-48405-1 25

24. Menhorn, N.: External secure storage using the PUF. Application Note: Zynq
UltraScale+ Devices, XAPP1333 (v1.2) (2022). https://docs.xilinx.com/r/en-US/
xapp1333-external-storage-puf

25. Microsoft: Bring your own key specification. Online documentation: Azure
Key Vault/Microsoft Learn (2022). https://learn.microsoft.com/en-us/azure/key-
vault/keys/byok-specification. Accessed 12 Oct 2022

26. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking Dilithium. In:
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21568-2 17

27. Moriarty, K.M., Nystrom, M., Parkinson, S., Rusch, A., Scott, M.: PKCS #12:
personal information exchange syntax v1.1. IETF RFC 7292 (2014). https://doi.
org/10.17487/RFC7292

28. NIST: SHA-3 standard: permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication FIPS 202 (2015). https://
doi.org/10.6028/NIST.FIPS.202

29. NIST: Security requirements for cryptographic modules. Federal Information Pro-
cessing Standards Publication FIPS 140-3 (2019). https://doi.org/10.6028/NIST.
FIPS.140-3

30. NSA: Announcing the commercial national security algorithm suite 2.0. National
Security Agency, Cybersecurity Advisory (2022). https://media.defense.gov/2022/
Sep/07/2003071834/-1/-1/0/CSA CNSA 2.0 ALGORITHMS .PDF

31. Perlner, R.: Planned changes to the Dilithium spec. Posting on PQC Forum
(2023). https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3pBJsYjfRw4/
m/GjJ2icQkAQAJ

32. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.

https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/11818175_3
https://eprint.iacr.org/2022/058
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.17487/RFC7292
https://doi.org/10.17487/RFC7292
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3pBJsYjfRw4/m/GjJ2icQkAQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3pBJsYjfRw4/m/GjJ2icQkAQAJ

WrapQ: Side-Channel Secure Key Management 657

7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

33. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

34. Rambus: Test vector leakage assessment (TVLA) derived test requirements (DTR)
with AES. Rambus CRI Technical Note (2015). https://www.rambus.com/wp-
content/uploads/2015/08/TVLA-DTR-with-AES.pdf

35. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

36. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, Washington, DC, USA, 18–22 November 2002, pp. 98–107.
ACM (2002). https://doi.org/10.1145/586110.586125. http://dl.acm.org/citation.
cfm?id=586110

37. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

38. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

39. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1145/586110.586125
http://dl.acm.org/citation.cfm?id=586110
http://dl.acm.org/citation.cfm?id=586110
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/3-540-48405-1

Faulting Winternitz One-Time Signatures
to Forge LMS, XMSS, or SPHINCS+

Signatures

Alexander Wagner1,2(B) , Vera Wesselkamp2 , Felix Oberhansl1 ,
Marc Schink1,2, and Emanuele Strieder1,2

1 Fraunhofer Institute for Applied and Integrated Security (AISEC),
Garching near Munich, Germany

{alexander.wagner,felix.oberhansl,marc.schink,
emanuele.strieder}@aisec.fraunhofer.de

2 Technical University of Munich, Munich, Germany
{alexander.wagner,vera.wesselkamp,marc.schink,emanuele.strieder}@tum.de

Abstract. Hash-based signature (HBS) schemes are an efficient method
of guaranteeing the authenticity of data in a post-quantum world. The
stateful schemes LMS and XMSS and the stateless scheme SPHINCS+

are already standardised or will be in the near future. The Winternitz
one-time signature (WOTS) scheme is one of the fundamental building
blocks used in all these HBS standardisation proposals. We present a new
fault injection attack targeting WOTS that allows an adversary to forge
signatures for arbitrary messages. The attack affects both the signing
and verification processes of all current stateful and stateless schemes.
Our attack renders the checksum calculation within WOTS useless. A
successful fault injection allows at least an existential forgery attack and,
in more advanced settings, a universal forgery attack. While checksum
computation is clearly a critical point in WOTS, and thus in any of
the relevant HBS schemes, its resilience against a fault attack has never
been considered. To fill this gap, we theoretically explain the attack, esti-
mate its practicability, and derive the brute-force complexity to achieve
signature forgery for a variety of parameter sets. We analyse the refer-
ence implementations of LMS, XMSS and SPHINCS+ and pinpoint the
vulnerable points. To harden these implementations, we propose counter-
measures and evaluate their effectiveness and efficiency. Our work shows
that exposed devices running signature generation or verification with
any of these three schemes must have countermeasures in place.

Keywords: fault injection · post-quantum cryptography · hash-based
signatures · winternitz one-time signatures · LMS · XMSS ·
SPHINCS+

1 Introduction

Hash-based signature (HBS) schemes have been known for decades but they were
not really considered for further research or practical applications in the past.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 658–687, 2023.
https://doi.org/10.1007/978-3-031-40003-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_24&domain=pdf
http://orcid.org/0000-0003-2853-3063
http://orcid.org/0009-0002-8481-9103
http://orcid.org/0000-0002-7822-2880
http://orcid.org/0000-0003-0204-3234
https://doi.org/10.1007/978-3-031-40003-2_24

Faulting Winternitz One-Time Signatures 659

This changed when the need for post-quantum cryptography (PQC) emerged
that could withstand attacks by quantum computers.

The standardization of stateful HBS schemes started with the publica-
tions of the IETF RFCs for the eXtended Merkle Signature Scheme (XMSS)
and Leighton-Micali hash-based signature (LMS) in 2018 and 2019, respec-
tively [HBG+18,MMC19]. The National Institute of Standards and Technol-
ogy (NIST) published a supplement to their digital signature standard recom-
mending parameters for both of these algorithms in 2020 [CAD+]. The French
national agency for the security of information systems (ANSSI) and the Ger-
man federal office for information security (BSI) also specify both algorithms
in their own publications [ANS22,BSI22]. The stateless scheme SPHINCS+ was
selected in 2022 at the end of the third round of the process to standardize
quantum-resistant public key cryptographic algorithms [MAA+].

Since their standardization, stateful HBS algorithms have been deployed in
several products ranging from embedded devices up to servers [Rai22,Cis19,
gen20]. Due to their inherent nature of statefulness, the number of signatures
that can be created with a key pair is limited, which also limits the range of appli-
cations. In practice, they are most applicable to verify the integrity and authen-
ticity of data that rarely changes, such as the firmware of embedded devices. The
verification procedure then takes place during a secure boot or firmware update
process. In past works, the research community has investigated hardware and
software optimizations for this use case [WOS22,WJW+,KPC+,KGC+20] and
vendors brought forward products [Rai22]. The standard for SPHINCS+ is yet
to be published sometime between today and 2024, but the scheme is already
considered for adoption [MAA+]. For example, the OpenTitan project consid-
ers to integrate SPHINCS+ into their open source hardware root of trust for
firmware verification [goo].

These efforts demonstrate the need for a post-quantum secure boot and
firmware update process. An adversary who can circumvent such a process can
execute malicious firmware, which compromises the security of embedded devices
completely. Over time, researchers have established that fault attacks pose a con-
siderable threat to exposed embedded devices, e.g. by allowing exactly such a
circumvention of the secure boot process [BFP19,Rot19]. Developers of secure
boot libraries such as MCUboot1 and microcontroller manufacturers have rec-
ognized this by introducing countermeasures against such attacks in the basic
control flow [AdGHB]. The cryptographic implementations, however, remained
unprotected. We present a fault attack, which demonstrates that such an assump-
tion could prove fatal for an exposed embedded device that uses any of the three
HBS schemes: LMS, XMSS, and SPHINCS+.

Attack Overview. Instead of trying to entirely skip a secure boot or firmware
update process, our fault attack targets the internal structure of HBS schemes.
Our attack grants the adversary signature forgery for arbitrary malicious pay-
loads. We want to emphasize the impact of such an attack, if executed success-

1 https://github.com/mcu-tools/mcuboot.

https://github.com/mcu-tools/mcuboot

660 A. Wagner et al.

fully. It is common practice to rely on one entity for signing firmware updates
with one key pair for a complete line of products. Therefore, forging a single
signature for a malicious payload that seems valid with respect to the entity’s
public key allows the adversary to corrupt any device. We introduce the idea
behind the attack itself in detail in Sect. 3 and the adversarial model in Sect. 3.5.
The attack can target either the signing or the verifying entity, is applicable to
LMS, XMSS, and SPHINCS+, and consists of two phases. In one phase, a fault is
introduced into the Winternitz one-time signature (WOTS) signing or verifying
procedure. The other phase is responsible for brute-forcing a forgery candidate.
The order of these phases depends on whether it is applied to the signer or the
verifier. Further, the effort and success probability of the brute-force phase (ana-
lyzed in Sect. 4) depends on the algorithmic part targeted during fault injection.
We demonstrate how our attack can be used on the reference implementations
of LMS, XMSS, and SPHINCS+ in Sect. 6.

Related Work. The only fault attack known in the context of HBS is the ‘Grafting
Trees’ attack, proposed in [CMP18]. Effective and efficient countermeasures have
not yet been sufficiently developed [Gen23]. Practicable evaluations of this fault
injection attack were shown in [GKPM18,ALCZ20]. It targets the signature
generation of multi-tree schemes, therefore it only affects SPHINCS+ and the
multi-tree variants of LMS and XMSS. The adversary tampers with the signing
procedure, such that the signer unknowingly leaks secret information. A few
tries suffice for the adversary to be able to reconstruct the signer’s secret key.
The attack has the advantage of very lax requirements with respect to the fault
model and the temporal precision. Once the adversary extracts the secret key,
she can sign arbitrary messages. The disadvantage is that the attack can only be
carried out on the signer. Therefore, it is not applicable in the context of firmware
updates or secure boot, as the adversary typically does not have physical access
to the signing entity.

Contributions. We present the first attack that allows to tamper the signing
as well as the verification operation of HBS schemes in general. Our attack is
applicable to all variants of LMS, XMSS, and SPHINCS+, by targeting the
checksum mechanism in the fundamental WOTS scheme. The attack consists of
two phases. The first phase is a brute-force search for a suitable message digest.
This phase happens offline, i.e. there are no strict timing requirements on the
adversary. We derive the brute-force complexity and success probability depend-
ing on the fault model and algorithmic parameters. Further, we estimate the cost
of the brute-forcing capabilities needed in practice. The second phase covers the
physical attack on the victim device, typically an embedded system to which the
adversary has physical access. We analyze real world implementations for weak
spots and show the applicability of our attack with respect to the capabilities
of the adversary. In combination with the brute-force cost, our analysis shows
that attacking reference implementations of all considered HBS schemes, namely
LMS, XMSS, and SPHINCS+ is feasible. To conclude, we outline different coun-
termeasures to mitigate our attack, estimate their effectiveness and costs, and
stress their importance for exposed devices.

Faulting Winternitz One-Time Signatures 661

2 Hash-Based Signatures

We briefly introduce the structure of WOTS and explain how it is used
as a fundamental building block in the HBS algorithms LMS [MMC19],
XMSS [HBG+18], and SPHINCS+ [HBD+20].

2.1 Winternitz One-Time Signatures

Figure 1 depicts the principle behind WOTS+ as described in [Hü]. In the fol-
lowing we refer to WOTS+ as WOTS, unless clearly stated otherwise, as it is
the foundation for all “WOTS-like” algorithms in LMS, XMSS, and SPHINCS+,
the most relevant HBS schemes to date.

Fig. 1. Simplified Winternitz one-time signature – w = 4 and n = 1 – with the nodes
of the secret key (), the public key (), and the signature () highlighted. (Color
figure online)

A WOTS signature consists of l hash chains and of these l1 are required for
the message digest and l2 for the checksum, which are defined as

l = l1 + l2, l1 =
⌈

8n
log2(w)

⌉
, l2 =

⌊
log2(l1(w − 1))

log2(w)

⌋
+ 1. (1)

To generate a WOTS signature, a message is hashed into an n-byte value
m. The message digest m is split into l1 chunks. Each chunk is interpreted as a
value mi = N (m, i), i.e. the function N maps the i-th chunk of m to mi, where
mi ∈ [0, w− 1] and i ∈ [0, l1 − 1]. The parameter w is the Winternitz parameter.
Each of the values mi is assigned an individual hash chain consisting of w nodes,
each represented by an n-byte value. The start node is the one-time signature
(OTS) secret key (), and the end node the OTS public key (). Advancing
from one node to another is realized by applying a function F to the current
node. The output of F serves as the next node. The end nodes are combined

662 A. Wagner et al.

by applying the function K to obtain the compressed OTS public key. Although
the exact implementations of F and K may differ, we assume both to be single
calls to a cryptographic hash function. In reality, before being hashed, the node
data might be - depending on the scheme - pre-processed with masks and keys,
which are also the output of a hash function.

To sign (→) or verify (→) a mi the corresponding hash chain is
advanced by applying F . For signing, F is applied mi times to the respective
secret key node () and the resulting node () is taken as part of the WOTS
signature. For verifying, the signature node () is taken as basis and advanced
w − 1 − mi times. If this does not yield the public key (), the verifier rejects
the signature.

If the WOTS scheme were used just with the l1 hash chains representing
the message digest m, an adversary could trivially sign any message, where
the digest r consists only of chunks ri, where ri ≥ mi,∀i ∈ [0, l1 − 1]. This is
because the adversary gains information about intermediate hash chain nodes
from the original signature. Information that was prior to the signing operation,
private. The adversary can simply advance all signature nodes by ri − mi to
forge a signature. To mitigate this, a checksum mechanism is part of the WOTS
scheme. In addition to the message digest and its corresponding signature nodes,
each WOTS signature consist also of a checksum c, which has its own signature
nodes (Fig. 1). The calculation of the checksum c for a message digest m is
denoted as

c = C(m) =
l1−1∑
i=0

(w − 1 − mi). (2)

Put in simple terms, c corresponds to the sum of “steps left” over all message
hash chains. The value c is split into l2 checksum chunks ck, where k ∈ [0, l2 −1]
and l2 is defined in Eq. (1). The mapping between c and checksum chunks ck is
defined by the function N (c, k), similar to the mapping between message digest
m and message chunks mi. For the final signature, message chunks and checksum
chunks are appended, s.t. m0 |m1 | . . . |ml1−1 | c0 | c1 | . . . | cl2−1. By doing an
index transformation from k ∈ [0, l2 − 1] to j ∈ [l1, l − 1], we map ck = mj , s.t.
we can simplify our signature to a continuous series of m0 |m1 | . . . |ml−1, where
mi are nodes corresponding to message chunks and mj are nodes corresponding
to checksum chunks. With the checksum nodes, it is now guaranteed that for
a malicious message digest r for which ri ≥ mi,∀i ∈ [0, l1 − 1] the checksum
c′ < c. Therefore, the adversary would have to get to a lower node from a higher
node for at least one checksum chain. This is impossible from an algorithmic
perspective, as these lower nodes are neither public nor computable.

The WOTS scheme used today (WOTS+ [Hü]) is a result of optimizing the
original scheme by Winternitz [Mer90] and the updated version from [BDE+11].
Its actual instantiations in LMS, XMSS and SPHINCS+ differ, but the parts
relevant for this paper are equivalent. This includes the Winternitz one-time sig-
nature with tweakable hash functions (WOTS-TW) scheme, the WOTS scheme
used in SPHINCS+, which was formally extracted and equipped with a new

Faulting Winternitz One-Time Signatures 663

security proof in [HK22], after a flaw in the original proof was found. The Com-
pressed Winternitz one-time signature (WOTS+C) scheme [KHRY22], however,
differs in the fact that no checksum chains are required. Instead, a short ran-
dom bit string (salt) is introduced in the signing procedure. The salt is sampled
randomly until a message digest with a pre-defined value for c is found. This
modification was proposed as part of the efforts to compress SPHINCS+ signa-
tures, as it makes the checksum signature nodes obsolete.

2.2 LMS, XMSS, and SPHINCS+

For most of today’s applications of digital signatures, a one-time signature
scheme like WOTS alone can hardly ever be used. Therefore, many-time sig-
natures (MTSs) like XMSS and LMS combine WOTS with one or multiple
Merkle trees. The idea of Merkle signature schemes (MSSs) can be traced back
to [Mer90]. Its structure is depicted in Fig. 2a. These schemes are stateful, i.e.
the amount of signatures that can be created with one key pair is greater than
one but still limited and the signer needs to keep track of the signatures that
were already used (maintain a state). As in the previous subsection, WOTS is
used to sign the initial message digest. The WOTS public key nodes () corre-
spond to the leaf nodes of a Merkle tree. The root node of the tree (), in turn,
corresponds to the LMS or XMSS public key. Therefore, a Merkle tree with a
tree height of h can authenticate 2h WOTS key pairs, each of which can be used
once.

Fig. 2. MTS variants with one (MSS) and multiple (GMSS) levels of Merkle trees.

To sign a message, the signing entity publishes the WOTS signature () and
the so-called authentication path (). These nodes are used by the verifying
entity to compute the root node and check whether it matches the MSS public
key ().

664 A. Wagner et al.

For a large number of signatures, MSS schemes still proof impractical. For
larger tree heights h, the runtime of key and signature generation is no longer fea-
sible. The generalized Merkle signature scheme (GMSS) [BDK+] addresses this
issue, by stacking up d Merkle trees of smaller height h′ = h/d instead of using
one large tree of height h (see Fig. 2b). The WOTSs of the top and intermediate
Merkle trees are used to authenticate the root nodes of the respective Merkle
trees below (sub-trees). The WOTSs of the Merkle trees on the lowest layer are
used to sign message digests. The multi-tree variants of XMSS, XMSS-MT, and
LMS, hierarchical signature system (HSS), specify different parameter sets for d
and h, which can be chosen depending on the number of required signatures.

For SPHINCS+, a limited subset of parameters exist. The SPHINCS+ scheme
is an stateless signature scheme. Theoretically, a bound for the maximum number
of allowed signatures can be derived, but due to a careful combination of param-
eters, this number is too high to pose a limitation for real-world applications.
Additionally, the message digest in SPHINCS+ is not signed with WOTS, but a
few-time signature (FTS) scheme called forest of random subsets (FORS). Since
the usage of FORS is not of importance for our attack, we omit an explanation
here and refer the interested reader to [HBD+20] instead.

3 Attack Sketch

Our attack enables an adversary to choose an arbitrary message and create a
valid signature, which we refer to as forged signature throughout this paper.
The forged signature can be generated if the adversary has at least one signa-
ture which was signed with the secret key. In contrast to existing fault attacks
in the context of HBSs, the adversary can either target the signing or the ver-
ifying entity. In the following, we abbreviate the two scenarios with FS and
FV for faulting the signer or faulting the verifier, respectively. Both scenarios,
described in detail in Sect. 3.4, share that the injected faults target the checksum
mechanism of the WOTS scheme to render it ineffective. We refer to the phase
in which this fault is injected as fault injection phase, it is described in detail
in Sect. 3.2. Also, in both scenarios, the adversary must perform a brute-force
search to generate a signature for its malicious message. We refer to this phase
as brute-force phase and it is described in Sect. 3.1.

3.1 Brute-Force Forgery of WOTS

In the following we assume that the checksum mechanism is not part of the
WOTS scheme, i.e. is ineffective due to the injected fault. Without the checksum,
a WOTS of the message digest m created by an entity A can be used to sign
other message digests, e.g. to forge a signature for a malicious payload. This is
possible as the hash chains can be advanced by repeatedly hashing the signature
chunks. To be able to exploit this, the adversary needs to be in possession of a
message digest r, s.t. ri ≥ mi ∀i (ri = N (r, i) and mi = N (m, i), see Sect. 2.1).
The forged signature behaves as if A had signed r using its secret key. Finding a

Faulting Winternitz One-Time Signatures 665

message which maps to such a message digest r is only possible through brute-
force search, due to the preimage resistance of the underlying hash function. The
number of trials that is necessary for an adversary to succeed in such a search is
analyzed in Sect. 4.1. Section 6.1 reviews the means by which an adversary can
efficiently perform the brute-force search.

3.2 Fault Attack on WOTS Checksum Chains

If the adversary is in possession of a malicious message digest r, s.t. ri ≥ mi ∀i,
the checksum of r will always be lower than that of m. The checksums cannot
be equal as this would imply that all chunks of m and r are equal. We disregard
the case where the adversary selects its malicious message to be equal to the
original message, as this would be of no benefit. And, further, if the digests r
and m are equal but not the messages, this would resemble an infeasible second
preimage attack.

However, for some checksum chunks rj = N (C(r), j) and mj = N (C(m), j),
rj ≥ mj may still hold. For these, the adversary can simply reuse or advance
chains of the signature of m for her forgery. But, if rj < mj , the adversary
must know prior nodes of the OTS checksum hash chain. Recovering prior nodes
by inverting F is impossible as it is based on a cryptographic hash function.
To overcome this issue, we instead propose a fault attack: The injected fault
shall force a node to a lower level on the chain than required by the respective
checksum chunk. Consider a value v ∈ [0, w − 1] for checksum chunk mj =
v. Then, either the corresponding secret key node skj (during signing) or the
signature node sigj (during verification) is advanced v or w − v − 1 times, i.e.
Fv(skj) or Fw−v−1(sigj). Our fault attack forces the implementation to use
values smaller than the actual v, or w − v − 1, respectively. If the signing entity
is attacked, prior nodes than the actual signature nodes are revealed. If the
verifying entity is attacked, a correct public WOTS key is derived from nodes
too far progressed. With the fault, the adversary is able to forge a valid WOTS
for r.

We describe both attack variants in Sect. 3.4. For our theoretic analysis in
Sect. 4.1 we assume that the adversary is able to completely skip the checksum
calculations. In this case we do not need to care about individual checksum
chunks and whether we can forge them or not. We refine this by limiting our
attacker capabilities to skip or tamper single or multiple calculations in the
theoretic analysis in Sect. 4.2. We show the practicability of our fault attack in
Sect. 6.

3.3 Faulting WOTS to Break LMS, XMSS, and SPHINCS+

So far we have established how an adversary can forge a WOTS signature with
fault injection. This section establishes that faulting WOTS is sufficient to break
any of the HBS algorithms introduced in Sect. 2.2 and describes the attacks an
adversary can mount on the respective schemes.

666 A. Wagner et al.

For the single tree variants of LMS and XMSS, the adversary is limited to
attacking the only WOTS instance within these schemes, the one signing the
actual message digest. A successfully forged WOTS signature is also valid for
LMS and XMSS, as the Merkle tree in those schemes only authenticates the
WOTS public key.

For the many-time signatures HSS and XMSS-MT, the adversary has more
possibilities to mount an attack. If she chooses to attack the lowest WOTS,
which signs the actual message, the attack is equivalent to the attack on a
single tree scheme described above. However, choosing one of the intermediate
WOTSs, which authenticates the root of the respective lower Merkle tree, allows
an adversary to sign arbitrary malicious messages. This is because, if the attack
on an intermediate WOTS succeeds, the adversary gains the capability to forge
a signature for a root node of a lower Merkle tree. Once such a signature is
forged, the adversary can arbitrarily construct an entire tree and is therefore
in possession of a secret key, which can be used to sign (a limited amount of)
arbitrary messages. For the brute-force phase we propose to use the topmost
authentication node of the targeted intermediate tree as a counter to efficiently
search for suitable root node candidates.

This also applies to the stateless signature scheme SPHINCS+. The only
difference between attacks on SPHINCS+ and attacks on HSS and XMSS-MT
is, that SPHINCS+ uses FORS instead of WOTS to sign the actual message.
However, this structural difference does not impact the adversary’s capabilities
to forge an entire Merkle tree.

3.4 Attack Variants

The two scenarios to which our attack applies, faulting the signer or verifier (FS
or FV), differ in the order in which the fault injection and brute-force phase take
place.

Faulting the Signer (FS). In case of the FS scenario, the message and therefore
the digest m is only known to the adversary after the signature was generated.
Nevertheless, the adversary manipulates the WOTS checksum mechanism during
signing. The general goal is to force the signer to not advance any checksum hash
chain up to the needed signature node, i.e. manipulating Fv(skj) to Fv′

(skj),
where v′ < v. This reveals nodes which need to be kept secret. Depending on
the adversary capabilities described in Sect. 3.5, we show in Sect. 4.2 that there
are different strategies to achieve this outcome.

The fault was successful, if the result is a tampered signature revealing
enough prior nodes in the checksum hash chains. To forge a valid signature
for the malicious payload, the tampered signature is used as an input for the
brute-force phase. Here, the selected fault strategy also has an impact on the
probabilities for finding a message digest which is suitable to forge a signature.

The malicious payload is forwarded with the forged signature to the victim
for verification, e.g. during a secure boot or firmware update. Since the adversary

Faulting Winternitz One-Time Signatures 667

crafted a dedicated payload for the tampered signature, the victim’s verification
of the message with the public key stored on the device yields a valid signature.

Faulting the Verifier (FV). In the FV scenario, the adversary is able to collect a
set of signatures. These signatures are used as an input for the brute-force phase.
Depending on the faulting capabilities of the adversary, the success probability
of the brute-force phase, and therefore also the computational cost, vary.

During the fault injection, the adversary tries to force the verifier to not
advance a checksum hash chain as determined by the respective checksum chunk,
i.e. manipulate Fw−v−1(sigj) to Fo(sigj), where o < w−v−1. A straightforward
approach for the adversary is to manipulate the victim, s.t. o = 0. In this case,
the chain calculation of a checksum chunk is skipped entirely and the sigj node
of the forged signature is forwarded directly to the computation of the WOTS
public key candidate. To achieve verification, the adversary sets sigj to the top
value of the respective chain, s.t. the correct public key is computed. In Sect. 4.2,
we evaluate both relaxed assumptions on the adversary, where setting o = 0,∀j
is possible and more constrained assumptions, where only individual checksum
hash chains are (partly) skipped. As described above, these scenarios imply dif-
ferent degrees of freedom for the brute-force phase.

The malicious payload and the forged signature are forwarded to the target
device for verification. To trick the verifier into accepting the invalid signature
containing invalid OTSs for the checksum, an adversary applies the fault attack
as described above. The fault injection was not successful, if the verifier advances
this hash chain too far and calculates an invalid compressed OTS public key,
which fails verification. If the fault injection was successful, the verifier derives
the correct WOTS public key, the signature is verified as valid, and the malicious
payload is accepted by the target device.

3.5 Adversarial Model

In this section, we introduce the faulting and brute-force capabilities of the
adversary.

Faulting Capabilities. A fault attack has the purpose of manipulating the control
or data flow of an application to achieve an outcome that is desired by the
adversary. Typical fault attacks we deem applicable to this work are clock and
voltage glitching, electromagnetic fault injection (EMFI), laser fault injection
(LFI) or software-based hardware attacks like Rowhammer. To simplify analysis,
we condense all these attacks into two basic fault models. Please note, that this is
not sufficient to fully analyze an implementation. To do so, fault models specific
to the underlying hardware need to be derived and used for analysis of the exact
data and control flow.

The first fault model we deem reasonable allows an adversary to skip a single
instruction. This fault model is frequently reported in literature and has been
demonstrated on various embedded devices [OSS17,GTSC,O’F19].

668 A. Wagner et al.

The second fault model allows the adversary to tamper data. More precisely,
we assume that the adversary is able to inject single or multiple bit-flips into
registers or memory [SZK+18,FKK+22]. By applying both fault models and
showing vulnerable spots within the HBS implementations (Sect. 6), we want to
highlight the general applicability of our attack to several devices in different
environments and scenarios.

Brute-Forcing Capabilities. As this attacks bears some computational complex-
ity, we need to evaluate its feasibility depending on the adversary’s capabili-
ties. To do so, we base our categorisation on [Aum19], which classifies security
strengths below 100 bits as weakened, and below 80 bits as broken. This is com-
monly used in similar scenarios like side-channel analysis [VCGS13,HMU+20].
In Sect. 6.1, we evaluate different hardware platforms (CPUs, GPUs, or ASICs)
to give an estimate for the economic costs connected to this attack.

4 Probabilistic Analysis

In the previous section, we established that the complexity of the fault attack,
and the complexity of the brute-force search for a suitable message digest to
forge a signature are connected. In the following section, we first analyze the
computational complexity for the brute-force phase when assuming that the
checksum is rendered completely ineffective by the fault attack (Sect. 4.1). We
refine these probabilities and the cost of the attack wrt. the faulting capabilities
of the attacker in Sect. 4.2.

4.1 Probabilities

For the attack, the adversary needs to find a digest whose signature is forgeable
by using a set M of signed random message digests. We assume the adversary
has intercepted the set M of signed digests m ∈ M . As the attacker does not
have an influence on the digests contained in M , its capabilities are those of a
random message attack (RMA). She now performs the calculation of digests r
of messages that are usable for the attack. The set of these trials is R. Even
if the adversary has a specific target message, e.g. in the form of a binary, an
infinite number of potential forgery targets can be generated by appending a
counter to the payload. Among others, this principle was also used in [BHRVV]
to efficiently generate a vast amount of different message digests. If it is not
possible to append a counter to the selected message, an attacker can exploit
the fact that for LMS and XMSS the message is digested using a method called
randomised hashing. The hashing instance is initialised with a seed chosen by
the signer. An attacker can therefore choose arbitrary values. For SPHINCS+ a
different approach is used, with similar capabilities, which is described in more
detail at the end of this section. We thus assume that, if needed, the adversary
can generate any amount of candidate digests, only limited by its computational
resources. In the following, we describe the attack scenario for the adversary

Faulting Winternitz One-Time Signatures 669

goals of universal forgery (UF), selective forgery (SF), and existential forgery
(EF). These goals were also used in [GBH18] to evaluate their attack.

To model the probability, we need to know the distribution of values the
signed message can take. More precisely, we require the distribution of the mes-
sage digest, as the message is always hashed prior to signing. We are not inter-
ested in weaknesses of the underlying hash functions, therefore we assume that
F behaves like an oracle with uniformly randomly distributed output.

Universal Forgery (UF). An UF is a the strongest forgery attack as it enables
an adversary to sign any given digest r. When applied to WOTS, it is necessary
for the attacker to possess a valid signature of a message digest m that consists
of all zeros – which is rarely the case. However, if the adversary has obtained
such a signature, she has obtained all OTS secret keys. Hence, each hash chain
can be advanced to an arbitrary node, signing any message. The probability for
a single hash chain of length w to be equal to zero is 1

w . The probability that
this is the case for all hash chains is

pUF =
(

1
w

)l1

= 2−8n.

Given a set of M validly signed message hashes, the probability that one of
them is a zero-hash can be modeled by the CDF of a geometric distribution with
parameter pUF as following

Prbreak[M,R] = 1 − (1 − pUF)|M |.

The adversary has no possibility to increase the overall probability as its
brute-force set R has no influence. As n ∈ [16, 24, 32] – for the NIST security
levels of one, three, and five, respectively – the success probability to achieve
UF-RMA when our attack is applied only to WOTS is infeasible. By extending
our attack to HBS schemes with multiple trees, we show how an attacker can
still achieve UF-RMA within certain constraints. This extension is described
in Sect. 3.3.

Selective Forgery (SF). In case of a SF, an adversary chooses a fixed digest r
before gaining knowledge of the set M . Based on [GBH18], we model this scenario
as follows: To maximize the likeliness that the chosen r is a forgery candidate
for the unknown set M , the adversary chooses a threshold b ∈ [0, w − 1]. Now,
an r where for each chunk ri it holds that ri ≥ b is pre-calculated. The attack
succeeds with such a chosen r, if M contains a message hash m where for each
chunk mi holds mi ≤ b. In this case, the adversary has knowledge of an r for
which holds that ri ≥ mi,∀i. Thus, m can be misused to forge a signature for
r. Due to the equally distributed output of the hash function, the probabilities
that ri ≥ b and mi ≤ b ∀i are given as

pSF≥b
=

(
w − b

w

)l1

, pSF≤b
=

(
b

w

)l1

.

670 A. Wagner et al.

Each of the two cases applied to the whole set, i.e. ∃m ∈ M |mi ≤ b and
∃r ∈ R | ri ≥ b ∀i, can again be modeled as the CDF of a geometric distribution
dependent on the size of the set. Thus, the joint probability of both occurring is

Prbreak[M,R] =
(
1 − (1 − pSF≤b

)|M |
)

·
(
1 − (1 − pSF≥b

)|R|
)
.

The selection of the threshold b constitutes a trade-off, as a higher b leads
to a higher pSF≤b

allowing for a smaller set M , but at the same time raises
the necessary pre-computation for the set R as pSF≥b

drops. In the case that
∃m ∈ M |mi ≤ b ∀i a signature m can still be leveraged for the forgery, if
∃m ∈ M and ∃r ∈ R |mi ≤ ri ∀i. Thus the actual probability is at least the
above.

The SF scenario corresponds to cases where the computation of the forgery
candidate needs to occur before the attacker gets access to m. We deem this as
less relevant and therefore do not further investigate this scenario within this
work.

Existential Forgery (EF). In case of EF, an adversary succeeds in signing one
arbitrary digest. To achieve this when given set of signed digests M , the adver-
sary performs a calculation of forgery candidates r for each m ∈ M , i.e. the
size of both sets are equal: |M | = |R|. The probability that one chunk ri of the
candidate is greater or equal to the corresponding chunk mi of the message m
can be described using the law of total probability

Pr [ri ≥ mi] =

=
w−1∑
x=0

Pr [ri ≥ mi|mi = x] · Pr [mi = x]

=
w−1∑
x=0

(
w − x

w

)
1
w

=
w + 1
2w

.

This leads to the overall probability for l1 chunks of r being larger than m
with |R| number of trials:

Prbreak[M,R] = 1 −
(

1 −
(
w + 1
2w

)l1
)|R|

. (3)

The results for different parameters are plotted in Fig. 3. As we assume for
each forgery trial to draw an unseen m, we model the probability for each trial as
independent event. While this case allows an exact calculation of the correspond-
ing probabilities, it can only be used to roughly estimate the order of complexity

Faulting Winternitz One-Time Signatures 671

for cases where |M | = I and |R| � I. Hence, it remains unclear how many trials
are required in the adversaries scenario and a more exact representation of the
probability is needed.

Fig. 3. The success probability of an EF-RMA with |M | = |R|.

A different approach is to calculate the probability of a forgery for each m
individually. For a certain m we can calculate the probability that all l1 chunks
ri of the candidate are greater or equal to the corresponding chunks mi:

Pr [ri ≥ mi,∀i] =
l1∏
i

w − mi

w
.

In contrast to the previous scenarios, this probability is dependent on m.
It is thus not possible to derive a general pEU . The probability of breaking a
non-fixed message m using a set R is the sum of probabilities for all possible m,
each of which occurs with the same probability:

Prbreak[m,R] =
∑
m∈M

(1 − (1 − Pr[ri ≥ mi,∀i])|R|) · Pr[m]

=
∑
m∈M

(1 − (1 − Pr[ri ≥ mi,∀i])|R|) · 1
wl1

.

For a set M , the overall probability thus becomes

Prbreak[M,R] = 1 − (1 − Prbreak [m,R])|M |
. (4)

To calculate the probability Prbreak[m,R], all valid digests m ∈ M need to
be evaluated. Due to the amount of possible outputs of a cryptographic hash
function, this is infeasible to compute. Therefore, we propose to approximate
the expected probabilities with the help of simulations. If the values from Fig. 3
are taken as a reference point to estimate the complexity for simulating the

672 A. Wagner et al.

attack, it becomes obvious that a high resource usage is required. For example,
the experiment with n = 32, w = 16 might require up to 260 trials. Further,
we would have to run the experiment a significant number of times to draw
conclusions from it and the simulation only allows to draw conclusions for the
number of trials performed.

To circumvent this issue, we instead simulate Prbreak[M,R] for |M | > 1.
This reduces the computational effort and, thus, allows to use general-purpose
computing equipment. With these results we can approximate Prbreak[m,R], i.e.
|M | = 1 as

Prbreak

[
m,

R

|M |
]

= 1 − |M|
√

1 − Prbreak[M,R]. (5)

Figure 4 shows our results. Please note that the analysis of the w = 16, n = 32
parameter set exceeded our available computing resources and is therefore omit-
ted. For the parameter set of w = 16, n = 24, we have run our simulations with
|M | = 131072. Due to the high count of |M | and limited computing resources,
we selected 4096 messages from M , for which the brute-force search had the
highest success probability based on Eq. (3) – effectively reducing the input to
the brute-force search by 32. Hence, Prbreak for w = 16, n = 24 is at least as
high as given by the results of our simulations. To reflect this in the plots, we
marked the count of the message set with |M∗|.

Extending Existential Forgery to Universal Forgery. The results shown so far
demonstrate that, if only a single WOTS signing a message is targeted, an
adversary can only achieve EF with reasonable high probabilities. This changes
if the attack is applied to any of the multi-tree algorithms, i.e. the HSS vari-
ant of LMS, XMSS-MT, and SPHINCS+. By exploiting the dependency between
trees, the adversary is able to extend its forging capabilities such that UF can be
achieved. Section 3.3 established that an adversary may target WOTS instances
that authenticate sub-trees. This affects the brute-force complexities slightly.
The input to the signing or verifying operation is no longer a message, which
can be chosen freely, but the root node of a sub-tree. During the brute-force
phase, the adversary must generate a new sub-tree with a suitable root node.
For this, the secret key (a seed which is used to generate all the leaf nodes) is
chosen freely. Then, the adversary constructs the tree from the secret key and
divides it into signature and authentication nodes (see Sect. 2.2). The top-most
node of the authentication path can be replaced with a counter which is iterated
until a suitable root node is found. The difference to attacking a WOTS instance
signing a message is that the adversary is now capable of authenticating a key
pair and is in possession of the secret key. Therefore, the adversary gains the
possibility to sign messages without any additional effort. If a message-signing
WOTS instance is attacked, every new message requires a new brute-force phase.
Hence, the attack is extend from EF to UF.

Faulting Winternitz One-Time Signatures 673

Fig. 4. Simulated (solid line), and approximated (dotted line) probability of finding
suitable hash for different Winternitz parameters w, hash output lengths n, and signa-
ture set sizes |M |, with respect to the number of trials |R|. All results for a certain set
size |M | are plotted using the same color. The dashed lines represent the approxima-
tions obtained from the respective maximum |M |. The solid lines show actual simula-
tion results to verify the estimated data.

4.2 Probabilities wrt. Adversary Capabilities

In this section, we empirically derive the theoretic probability that an adversary
can produce a valid forgery with a digest r derived from the brute-force phase by
means of fault injection. The general probability to find such a digest r can be
obtained from Fig. 4. Recall, that in Sect. 4.1 and Fig. 4, the assumption was that
the complete checksum computation can be skipped. Now the probabilities that

674 A. Wagner et al.

r is suitable for a forgery in more constrained fault models are analyzed. Recall
that for a forged signature to be accepted, each chunk of the faulted checksum
C(r) needs to be larger or equal to the corresponding chunk of C(m). Therefore,
suitable in this context means that faults corresponding to certain models can
be used to manipulate the checksum in this manner. We define this probability
as Prvalid. Obviously, this probability varies depending on the adversary’s fault
injection (FI) capabilities.

Two properties factor into Prvalid: the type of fault attack and the number
of independent faults injected during one operation, either during signing or
verifying. We introduced the general FI capabilities of the attacker in Sect. 3.5.
We simplified our evaluation by assuming two fault models, control flow and
data corruption. For control flow corruption we only consider single instruction
skips, for data corruption we analyze single and double bit-flips. We assume bit-
flips for arbitrary positions with no positional constraints. Further, in the case of
double bit-flips, both are independent from each other and behave as two single
bit-flip faults. From these fault models, we derive three concrete fault scenarios,
which are listed in the following.

In Sect. 3.4, two variants of our attack were introduced, FS for applying
the fault attack to the signer, and FV for applying the fault attack to the
verifier. For the FS scenario, the adversary needs a strategy to fault the signing
operation without knowledge of the message and its signature, s.t. the probability
to find a forged signature in the brute-force phase is as high as possible. For all
listed scenarios we list the highest achievable probability with the respective
strategy in Table 2. In the FV scenario, the attacker is already in possession
of a forged signature obtained in the brute-force phase and therefore knows
how the checksum computation needs to be manipulated. Therefore, for the
listed probabilities in Table 1 it is not necessary to differentiate between different
strategies.

Single hash chain skip. The attacker skips the calculation of one OTS checksum
hash chain by means of a single instruction skip. In our practical analysis
in Sect. 6, we show that this is a reasonable assumption. We assume that
the adversary is able to skip one chosen checksum hash chain precisely. The
exact point in time of individual checksum hash chains depends on m and
therefore is not constant in time. However, in the FV scenario, the adversary
knows the order of operations as r is known. In case of the FS scenario, the
adversary could obtain such informations via a side-channel inspection. If
the hash chain calculation is skipped, the chain will not be advanced by the
signer or verifier at all, but execution stalls with the input node. Therefore,
the input node is used as-is for the further execution of the algorithm.

Single bit-flip. The attacker corrupts the value of one of the checksum chunks
with a single induced bit-flip. Ideally, this manipulates the checksum opera-
tion, s.t. instead of advancing by v steps, i.e. Fv, the chain is only advanced
by v′ < v. In contrast to hash chain skips, timing might be less of an issue
as the data can be targeted while stored in memory.

Faulting Winternitz One-Time Signatures 675

Double bit-flip. The attacker corrupts the value of at least one of the checksum
chunks with two induced bit-flips. We do not differentiate between cases
where both bit-flips target the same chunk and cases where the bit-flips
apply to different chunks. In contrast to the single bit-flip scenario, a double
bit-flip has more possible outcomes in terms of how the checksum chunks
are manipulated. Therefore, v′ < v can hold for one or two checksum hash
chains.

Table 1. The average probability Prvalid in case of FV for a single suitable hash r
depending on the attacker capabilities.

Fault type Scenario w = 16 w = 256

n = 16 n = 24 n = 16 n = 24 n = 32

Control flow
corruption

Single hash
chain skip

54.1% 44.1% 46.8% 39.6% 51.0%

Data
corruption

Single bit-flip 54.1% 34.8% 46.8% 39.6% 51.0%

Double bit-flip 89.1% 65.8% 81.2% 72.0% 83.8%

Table 2. The average probability Prvalid for the most suitable fault locations in case
of FS for a single suitable hash r depending on the attacker capabilities.

Fault type Scenario w = 16 w = 256

n = 16 n = 24 n = 16 n = 24 n = 32

Control flow
corruption

Single hash
chain skip

54.1%
rj |j = 0

34.8%
rj |j = 0

46.8%
rj |j = 0

39.6%
rj |j = 0

51.0%
rj |j = 0

Data
corruption

Single
bit-flip

54.1%
bit 8

28.0%
bit 8

46.8%
bit 11

17.3%
bit 11

51.0%
bit 12

Double
bit-flip

56.6%
bit 8, 7

29.3%
bit 8, 7

48.0%
bit 11, 5

22.5%
bit 11, 10

51.4%
bit 12, 4

Table 1 shows the average Prvalid for the scenarios of FV. A value of
Prvalid = 54.1% for FV, w = 16, n = 16, and single hash chain skip, reads as
“slightly more than half of all digests found in the brute-force phase described in
Sect. 4.1 can be realized in scenarios, where only one fault can be applied, s.t. a
single hash chain calculation is skipped”. Obviously, an adversary can determine
directly from r, whether an attack will succeed within a certain fault scenario.
Therefore, the fault injection phase is only performed for digests r for which
Prvalid(r) = 1. In the FS scenario, Table 2 additionally shows which strategy
an adversary needs pursue to achieve the highest probability Prvalid. A value of
Prvalid = 54.1% with rj |j = 0 for FS, w = 16, n = 16, and single hash chain
skip, reads as “if during signing, a checksum chain with index rj |j = 0 is skipped,
slightly more than half of all digests found in the brute-force phase described in

676 A. Wagner et al.

Sect. 4.1 can be used to forge a signature”. For the fault type of data corruption
we list Prvalid along the bits that needs to be targeted during signing to achieve
this probability, e.g. for the parameter w = 16 and n = 16 the adversary has
the highest probability of 54.1% or 56.6% if fault attacks with single-bit flips
target bit 8 or with double bit-flips target bit 8 and 7, respectively. This is due
to the fact that the brute-force phase described in Sect. 4.1 does not have any
constraints on the checksum and its chunks, but only on the message chunks
(ri ≥ mi ∀i). These constraints are introduced by the fact that candidates found
in the brute-force phase can only used for forgery with a probability of Prvalid.

The analysis of the probabilities in general and the strategies for FS is based
on the simulation results displayed in Fig. 4. For each pair of (r,m) we applied
any possible fault for the three listed fault scenarios. We applied the fault to
the checksum of m or r for FS or FV, respectively. We calculated Prvalid by
dividing the number of suitable sets (r,m) for forgery by the total number of
generated candidates r which fulfill the constraints of ri ≥ mi ∀i.

5 Countermeasures

To protect HBS implementations against the presented attack, different measures
are applicable depending on the two attack variants, FS and FV. In the case of
FS, hardening the implementation is straightforward. As a consequence of the
tampered signature generation, the signer generates an invalid signature. This
weakness of the attack can be used to design a countermeasure (CM). If the
signer verifies the signature after generation, the attack will be detected. Since
the cost of verification is minimal compared to signature generation, this step
can easily be added by the signing entity. In the case of FV, the countermeasures
are more diverse and costly. We describe their design in the following sections.
However, due to the more complex approach, we evaluate their efficiency and
effectiveness in detail in Sect. 6.

Hash Chain Length Calculations. Any error introduced into the calculation of the
hash chain length can lead to a wrongly calculated, but potentially exploitable,
hash chain length value. Repetition and comparison of the calculated hash
lengths allows any tampering to be detected. The cost of this countermeasure is
small, as this part of the algorithm is negligible in terms of overall performance.

Hash Chain Calculations. The countermeasures for the hash chain calculations
can be divided into two independent levels: skipping partial and full hash chain
calculations.

The attack vector of a partial skip of a hash calculation can be avoided by
using a memory comparison of the input and output buffers. This will detect if
the hash operation was skipped and thus render the attack vector ineffective.
This countermeasure only needs to be performed during the first iteration, as an
adversary must skip from the first iteration onwards. This is due to the fact that
the iteration index is an input to each hash step calculation. To ensure successful

Faulting Winternitz One-Time Signatures 677

verification, the verifier must be tricked to combine the malicious checksum node
with the correct iteration index. Therefore, it is not possible to swap hash steps
and the skip must be introduced from the first iteration onwards.

The complete skip of the hash chain calculation can be countered by assur-
ing that at least one hash chain calculation is performed. Combined with the
countermeasure to disable a partial skip of the hash calculation, this makes this
attack vector impossible to execute. In practice, an implementation can simply
return the iteration counter. The calling function compares the returned value
with the maximum value for the iteration. If it does not match, a fault has been
introduced and execution is aborted.

WOTS+C. WOTS+C is designed to compress WOTSs [KHRY22] as introduced
in Sect. 2.1. The key idea behind this study is to skip the checksum chains in
favor of a checksum with a fixed value. This makes control flow attacks to skip
a checksum chain no longer feasible. The applicability of data errors needs to be
investigated, as well as any impact on the brute-force phase. Operations such
as checksum comparison may be suitable targets for FI and must therefore be
hardened.

6 Attack in Practice

In this section we describe a real-world scenario to demonstrate the practica-
bility and severity of our attack. The target is an embedded device based on
the commonly used ARM Cortex-M4 processor. The attacker’s goal is to run
malicious firmware on the embedded device. To protect the firmware execution
on the device against tampering from physical adversaries, secure boot is used
directly after power-up to verify any firmware after loading it into the internal
memory and before execution. For verification one of the hash-based signature
schemes is used. The secure boot implementation is based on MCUboot [mcu].
We assume that the attacker has physical access and therefore is able to mod-
ify or exchange the off-chip stored firmware before it is loaded into the internal
memory and to execute a fault attack.

Fault Model and Hardening. If MCUboot is used, the secure boot implementa-
tion is partially hardened against FI attacks [mcu]. The scope of the hardenings
is to, for example, protect against an instruction skip. Therefore, instruction
skip fault attacks that target the generic secure boot flow, e.g. ensuring that
only valid images are booted, will not be successful. The cryptographic imple-
mentations are only partially hardened with similar countermeasures [Ban] and
may therefore still be vulnerable to FI attacks.

PQ Secure Boot. To fulfill the requirements of a post-quantum secure boot, the
targeted embedded device verifies each stage using a HBS scheme instead of clas-
sical asymmetric cryptography. Please note that MCUboot does not yet support
PQC schemes, but plans to do so [Bro]. We select the algorithms and the respec-
tive parameters based on the results in Fig. 4, related research works [KPC+]

678 A. Wagner et al.

and public available information on embedded devices, which employ HBSs for
secure boot or firmware updates or plan to do so [Phi22]. The probabilistic anal-
ysis in Sect. 4.1 has shown that – for the analyzed parameters – the parameter
set of w = 16 and n = 24 has the highest brute-force complexity. Therefore,
we deem it relevant to be investigated within this scenario. As we select these
parameters, we assume either LMS or XMSS with a single tree, reflecting the
worst case for the attacker based on our results. In [KPC+], HSS and SPHINCS+

with 192-bit key length, w = 256, and three or five Merkle trees, respectively, is
considered as relevant for UEFI secure boot. In [Phi22], SPHINCS+ with 128-bit
key length is reported as suitable for the secure boot of an embedded device. As
the tree structure is not specified, but a reduced maximum signature count is
requested, we assume a similar tree structure as in [KPC+], and set the Winter-
nitz parameter as w = 16 based on the statement in [Phi22] that performance is
a constraint.

In summary, this results in these distinct algorithms and parameter sets for
our practical analysis: LMS or XMSS with w = 16 and n = 24; HSS with three
Merkle trees, w = 256 and n = 24 [KPC+]; SPHINCS+ with five Merkle trees,
w = 16 and n = 16, and w = 256 and n = 24 [KPC+,Phi22].

6.1 Brute-Force Forgery of WOTS

As described in Sect. 3.1, the brute-force phase requires at least one WOTS
message-signature pair as input, in this scenario we use the more suitable term
of firmware-signature pair. Within this attack, the adversary has access to the
external memory, which contains firmware and the corresponding signature.
Because the device receives updates, the adversary is even capable to collect sev-
eral pairs for the brute-force. To reflect different update intervals we analyze the
scenario with the assumption that the adversary can collect firmware-signature
pairs with a count out of [1, 10, 100, 1000].

By applying our fault injection attack, a verifier is tricked to assume a
malicious signature as valid. Before the actual fault attack, the attacker must
forge this signature. This brute-force process can happen “offline” and “off-
site”, i.e. there are no strict timing requirements. Depending on the HBS scheme
the adversary achieves existential or universal forgery as described in Sect. 3.3
and Sect. 4.1. In practice, the efficiency of signature forging boils down to the
number of hash calculations per timespan, i.e. the hash rate, the attacker can

Table 3. Hash rates of SHA-256 for different platforms.

Hardware Type Hash rate

Intel i7-9700K [Son19] CPU 299 MH/s

Nvidia RTX 3090 [Cro20] GPU 9.71 GH/s

Nvidia RTX 4090 [Cro22] GPU 22.0 GH/s

Antminer S19 XP [Bit22] ASIC 140 TH/s

Faulting Winternitz One-Time Signatures 679

achieve. Table 3 shows different platforms with their respective hash rates. For
central processing units (CPUs) and graphics processing units (GPUs), the
benchmarks were performed with hashcat.

In comparison to CPUs and GPUs, application-specific integrated circuits
(ASICs) achieve the best performance. However, we deem ASICs less relevant
since their dedicated design would make them very expensive. GPUs are, how-
ever, attractive due their combination of high performance and flexibility. The
attacker can easily gain access to many devices, e.g. from cloud computing
providers. We selected a single Nvidia RTX 4090 GPU to estimate the time
required for a brute-force search for the selected parameters. The results in Fig. 5
show that, for all three parameter sets based on a multi-tree structure, a forgery
succeeds (Prbreak ≥ 90%) in less than an hour. We achieve these results even
if an adversary has only access to a single firmware-signature pair. While the
effort is significantly larger for single tree structures (d = 1), it is still feasible,
e.g. if multiple GPUs are available.

Fig. 5. Cost estimation for brute-force forgery of the selected parameter and structure
with a single GPU. Estimations are displayed for the number of firmware-signature
pairs for the values of 1, 10, 100, and 1000.

6.2 Fault Attack on Hash-Based Signatures

Having the possibility to forge a signature for a malicious firmware image brings
the attacker one step closer to the goal of executing malicious code. The miss-
ing piece is to inject a fault to circumvent the signature verification. To assess
the possibility of a successful fault attack we search for weak spots within the
reference implementations of LMS, XMSS, and SPHINCS+. We base our analy-
sis on an extensive emulation of all possible faults based on the instruction skip
fault model using ARCHIE [HGA+21]. The emulation is performed for the ARM
Cortex-M4 processor. We analyse two different scenarios reflecting the two differ-
ent approaches to optimising for performance or size and their impact on fault
injection resilience. Therefore, the firmware is compiled for the two scenarios
with either of the two optimisation levels: -O2 and -Os.

680 A. Wagner et al.

Table 4. Number of instructions that will lead to a successful verification of an invalid
signature if only one is skipped.

Optimization CMs Generic FI WOTS FI

(1) (2) (3) (1) (2) (3)

LMS -O2 No 20 – 15 32 – 27

Yes 1 – 0 1 – 0

-Os No 18 – 18 33 – 33

Yes 2 – 0 2 – 0

XMSS -O2 No 6 2 1 17 13 12

Yes 5 1 0 5 1 0

-Os No 13 10 0 21 18 8

Yes 13 10 0 13 10 0

SPHINCS+ -O2 No 2 1 1 7 6 6

Yes 1 0 0 1 0 0

-Os No 5 4 0 10 5 5

Yes 5 4 0 5 4 0

We include both generic and WOTS-specific fault attacks in the analysis.
Generic fault attacks are more straightforward for an attacker, as no brute-
force phase is required. However, systems that require physical security can eas-
ily be protected against such attacks, without a detailed understanding of the
underlying algorithms. In the following, we will demonstrate this by hardening
a reference implementation with generic countermeasures. In contrast, we show
that mitigating WOTS-specific attacks is not as straightforward. One needs to
be aware of them and the vulnerable points they cause during execution. We
demonstrate that generic countermeasures do not consider these points and that
WOTS-specific attacks require a more thorough understanding in order to design
integrated countermeasures. We apply the countermeasures proposed in Sect. 5
and evaluate their effectiveness and efficiency. The comparison of both types of
attacks allows to understand their different leverage points. Furthermore, this
analysis demonstrates the severity of an unprotected implementation and shows
that countermeasures are feasible.

Table 5. Code size [B] of the signature verification routine for the different HBS
schemes, optimisation levels, and CM tiers.

Optimization Code size Code size increase by CMs

(1) (2) (3)

LMS -O2 2650 +206 – +258

SHA2 10 256 -Os 2380 +164 – +216

XMSS -O2 4380 +126 +138 +162

SHA2 10 192 -Os 3870 +98 +114 +134

SPHINCS+-s -O2 10400 +106 +118 +134

sha2-128s -Os 9550 +84 +100 +112

Faulting Winternitz One-Time Signatures 681

Table 6. Cycle count [cc] of the signature verification for the different HBS schemes,
optimisation levels, and CM tiers.

Optimization Cycle count Cycle count increase by CMs

(1) (2) (3)

LMS -O2 8.5M +3.94k – +5.15k

SHA2 10 256 -Os 8.7M +3.80k – +5.02k

XMSS -O2 31.6M +3.93k +3.93k +4.10k

SHA2 10 192 -Os 32.3M +4.11k +4.11k +4.27k

SPHINCS+-s -O2 17.9M +15.3k +15.3k +15.4k

sha2-128s -Os 18.3M +17.8k +17.8k +17.9k

The XMSS and SPHINCS+ APIs provide a device with several ways to eval-
uate the result of the signature verification. As is common practice, the return
value of the signature verification routine indicates whether an error has occurred
or not. In addition, two other values, the message and its length, can be used
to evaluate the result. In the event of an error, the message points to a array
initialized with zeros and the corresponding length is set to zero. In the follow-
ing, we will outline how these variants significantly increase the fault injection
resilience. Hence, making fault attacks more difficult to execute. For this pur-
pose, we group these variants into three enumerated categories with increased
cost to the verifier: the verifier checks (1) the return code, (2) the return code
and the message length, or (3) the return code, the message length, and the mes-
sage. The original implementation of LMS does not support this functionality.
To allow for a similar analysis, we add the ability to check the return code as
well as the message. In the following this variant is labeled as (3).

Note that none of the reference implementations claim to be fault injection
resilient. At the time of writing, there are no other HBS implementations avail-
able stating any countermeasures against fault attacks. Table 4 shows the overall
fault injection resilience for the different scenarios. The count is the number of
instructions where skipping one is sufficient to bypass the signature check. There-
fore, a higher count corresponds to a lower resilience. Table 5 and Table 6 list
the increased code size and execution time of the signature verification routine
introduced by the variants for checking the returned values and the countermea-
sures.

Generic Fault Attack. Comparing the two stateful reference implementations,
the XMSS implementation is more resilient to generic FI attacks. The main rea-
son for this is the return of multiple values as described above and its internal
structure. Most importantly, the comparison of the public key and the com-
puted candidate directly triggers the writing of the return values. Furthermore,
XMSS does not contain any bridging functions that may introduce exploitable
weaknesses. However, despite the relatively high level of resilience, we still found
vulnerable spots in XMSS that could be exploited with a generic FI attack. The

682 A. Wagner et al.

existence of vulnerabilities depends on the level of compiler optimisation chosen.
For the speed optimisation a countermeasure is needed to harden the comparison
of the public key with its computed candidate. For all the experiments carried
out, two measures were sufficient to protect this potentially fragile point. The
first is to check that the length which is an input to the memcmp function is
equal to zero. If this condition is met, an error is thrown and the execution is
aborted. This is necessary because the memcmp function will always return zero
for a length of zero despite the values contained in the two pointers. And the
second part is to mark the returned value as volatile to allow for a repeated com-
parison of the returned value. The combination of these two measures effectively
prevents tampering with this operation.

The LMS implementation differs fundamentally from the XMSS implementa-
tion. The major difference in terms of the fault injection resilience is that it only
returns a single value to check the status of the signature verification. In gen-
eral, the implementation contains more bridging functions, which has the effect
that more measures to harden the implementation are required. As a result the
required code size for the countermeasures listed in Table 5 is larger than for
the other two implementations. The countermeasures required are similar to the
hardening of the memcmp routine described above. As with the other two imple-
mentations, the comparison of the public key and the computed candidate must
be hardened. In addition, for each returning bridging function, the check on the
return value must be hardened by duplicated checks, and if it returns a Boolean
value, it must be cast to an integer. The integer casting is required because
we have experienced that for Boolean return values the compiler most often
compares if the value is not equal to zero, resulting in false positives. Another
necessary countermeasure is to initialise the error state with an initial error code.
This way, any premature return will return the uncleared error statement and
allow potential malicious tampering to be detected.

The SPHINCS+ reference implementation is very similar to the XMSS imple-
mentation. The analysis showed a fairly resilient implementation. Nevertheless,
SPHINCS+ also requires a hardening of the public key comparison with its com-
puted candidate. The hardening of this operation can be done with the same
countermeasures as described above.

In conclusion, all three reference implementations of the HBS schemes can
be hardened with simple measures so that there are no vulnerable instructions
that could be skipped to lead to a successful verification of an invalid signature
using a generic fault attack. This is reflected within the results in Table 4 show-
ing that there are non weak spots left for a generic fault attack, if the proposed
countermeasures are applied. Neither executing the generic attack nor designing
countermeasures against it required any special knowledge of the running algo-
rithms. The weak spots targeted by a generic fault attack are easy to spot for
an attacker as well as the defender. Hence, an implementation is more likely to
be resilient against a generic fault attack.

WOTS-Specific Fault Attack. The results in Table 4 demonstrate that while an
implementation can be hardened, there may still be potential vulnerabilities to

Faulting Winternitz One-Time Signatures 683

a specific attack. In the worst case, including a WOTS-specific attack triples
the number of vulnerable locations. Even worse, some implementations, such
as the size-optimised XMSS with three return values, appear to be resistant
to fault injection, but are not when a WOTS-specific attack is executed. We
can therefore conclude that the generic countermeasures are effective, but do
not protect against WOTS-specific attacks. However, this is different for the
WOTS-specific countermeasures proposed in Sect. 5. When the countermeasures
are used together with the three return value variant, all implementations for
all scenarios are resilient against each of the two types of attack. In spite of the
different code bases of the three reference implementations, all of them allow for
similar countermeasure approaches without any loss of effectiveness. This is, of
course, mainly due to the high degree of similarity between the three algorithms,
which is also reflected in their implementations.

Effectiveness and Efficiency of CMs. Due to the countermeasures applied, the
implementations suffer in terms of performance and increased code size. The
increase in execution time is listed in Table 6. Surprisingly, the performance is
hardly changed by the countermeasures. Due to the adapted design of the coun-
termeasures, a small impact was expected. But for all three implementations,
the impact of the changed execution time is only about one permille or less. The
impact on code size, listed in Table 5, is much more significant. The increase
is in the range of one to ten percent. The additional size of the countermea-
sures is about 100 to 250 bytes, depending on the reference implementation, the
level of optimisation and the number of return values. Due to the similarity of
XMSS and SPHINCS+, the implemented countermeasures are very similar and
therefore the absolute impact on code size is comparable. The relative difference
varies mostly due to a different implementation of the underlying hash function.
In both relative and absolute terms, the LMS reference implementation has the
largest code size increase due to the countermeasures. This is because this imple-
mentation has the smallest initial code size, but also required the most changes
to be resilient. Overall, the proposed countermeasures, both generic and spe-
cific, make the reference implementations resilient to fault attacks with minimal
impact on performance and size.

7 Conclusion

In this paper we present the first fault attack that directly targets the WOTS
schema, which is an integral part of all currently standardised HBS schemes.
Therefore, it affects LMS, XMSS and SPHINCS+. Furthermore, our attack
affects both signature generation and signature verification. Although the attack
requires brute-force computation of an appropriate digest, we have demonstrated
its feasibility. Our research shows that for a Winternitz parameter w = 16, sig-
natures are forgeable for all algorithms with a NIST security level up to 3.
For w = 256, signatures generated by all algorithms considered are forgeable,
regardless of the chosen security level. The complexity of the attack is at most

684 A. Wagner et al.

affected by the choice of the Winternitz parameter and the internal tree struc-
ture. Choosing a larger value for w combined with a multi-tree structure leads
to parameter sets that can be broken within seconds with a single GPU. To
defend against this attack, appropriate countermeasures must be in place. The
analysis of the proposed countermeasures shows their effectiveness and efficiency
against the WOTS-specific attack. Furthermore, our proposed generic counter-
measures harden the implementations so that a fault attack is no longer feasible
within this scenario. However, despite the advanced progress in standardisation,
our research has shown that the analysis of the implementation security of HBS
algorithms is still an ongoing task. With our work, we aim to stimulate further
research in this area. The recent selection of SPHINCS+ for standardisation
makes this particularly important, as this will lead to more vendors looking to
incorporate HBS schemes into their products. We also see a need for a more
thorough analysis of implementation security in general. A combination of algo-
rithmically formalised knowledge and automated analysis could ensure a higher
probability of early detection of vulnerabilities in implementations. Efforts in
this direction will allow the development of hardened PQC implementations in
a secure and rapid manner.

Acknowledgements. This work was partly funded by the German Federal Ministry
of Education and Research (BMBF) in the project APRIORI under grant number
16KIS1390.

References

[AdGHB] Atilano, E., de Grandmaison, A., Heydemann, K., Bouffard, G.: Assessing
the effectiveness of MCUboot protections against fault injection attacks

[ALCZ20] Amiet, D., Leuenberger, L., Curiger, A., Zbinden, P.: FPGA-based
SPHINCS+ implementations: mind the glitch. In: 2020 23rd Euromicro
Conference on Digital System Design (DSD), pp. 229–237 (2020)

[ANS22] ANSSI: ANSSI views on the Post-Quantum Cryptography transition
(2022). https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-
quantum-cryptography-transition/

[Aum19] Aumasson, J.-P.: Too much crypto (2019). https://eprint.iacr.org/2019/
1492.pdf

[Ban] Ban, T.: HW Fault Injection Mitigation - Trusted Firmware M. https://
www.trustedfirmware.org/docs/TF-M fault injection mitigation.pdf

[BDE+11] Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the
security of the Winternitz one-time signature scheme. Cryptology ePrint
Archive, Paper 2011/191 (2011). https://eprint.iacr.org/2011/191

[BDK+] Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.:
Merkle signatures with virtually unlimited signature capacity. In: Katz,
J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 3

[BFP19] Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: optimizing
voltage fault injection attacks. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2019(2), 199–224 (2019)

https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://eprint.iacr.org/2019/1492.pdf
https://eprint.iacr.org/2019/1492.pdf
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://eprint.iacr.org/2011/191
https://doi.org/10.1007/978-3-540-72738-5_3

Faulting Winternitz One-Time Signatures 685

[BHRVV] Bos, J.W., Hülsing, A., Renes, J., Van Vredendaal, C.: Rapidly verifiable
XMSS signatures, pp. 137–168 (2021)

[Bit22] Bitmain Antminer S19 XP (140Th) profitability (2022). https://www.
asicminervalue.com/miners/bitmain/antminer-s19-xp-140th

[Bro] Brown, D.: Post-quantum cryptography. https://github.com/mcu-tools/
mcuboot/discussions/1099?sort=top

[BSI22] BSI: BSI - Technische Richtlinie: Kryptographische Verfahren: Empfehlun-
gen und Schluessellaengen (2022). https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/
BSI-TR-02102.pdf? blob=publicationFile

[CAD+] Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J.,
Miller, C.A.: Recommendation for stateful hash-based signature schemes
(2020)

[Cis19] Cisco: Post quantum trust anchors (2019). https://www.cisco.com/c/
dam/en us/about/doing business/trust-center/docs/post-quantum-trust-
anchors-wp.pdf

[CMP18] Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: a fault attack
against the SPHINCS framework. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 165–184. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 8

[Cro20] Croley, S.: Hashcat v6.1.1 benchmark on the Nvidia RTX 3090 (2020).
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb42222
2fd

[Cro22] Croley, S.: Hashcat v6.2.6 benchmark on the Nvidia RTX 4090 (2022).
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb42222
2fd

[FKK+22] Fahr, M., et al.: When Frodo Flips: end-to-end key recovery on FrodoKEM
via Rowhammer. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, Los Angeles, CA, USA, Novem-
ber 2022, pp. 979–993. ACM (2022)

[GBH18] Groot Bruinderink, L., Hülsing, A.: “Oops, i did it again” – security of one-
time signatures under two-message attacks. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 299–322. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72565-9 15

[gen20] IT Security Solutions From Genua Withstand Attacks With Quantum
Computers (2020). https://www.genua.eu/knowledge-base/it-security-
solutions-from-genua-withstand-attacks-with-quantum-computers

[Gen23] Genêt, A.: On protecting SPHINCS+ against fault attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 80–114 (2023)

[GKPM18] Genêt, A., Kannwischer, M.J., Pelletier, H., McLauchlan, A.: Practical
fault injection attacks on SPHINCS (2018). https://eprint.iacr.org/2018/
674

[goo] https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7H
A/m/f50WvA3RBAAJ

[GTSC] Gratchoff, J., Timmers, N., Spruyt, A., Chmielewski, L.: Proving the wild
jungle jump. Technical report, University of Amsterdam (2015)

[HBD+20] Hülsing, A., et al.: SPHINCS+ - submission to the NIST post-
quantum project, vol. 3 (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

https://www.asicminervalue.com/miners/bitmain/antminer-s19-xp-140th
https://www.asicminervalue.com/miners/bitmain/antminer-s19-xp-140th
https://github.com/mcu-tools/mcuboot/discussions/1099?sort=top
https://github.com/mcu-tools/mcuboot/discussions/1099?sort=top
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/post-quantum-trust-anchors-wp.pdf
https://doi.org/10.1007/978-3-319-79063-3_8
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://gist.github.com/Chick3nman/32e662a5bb63bc4f51b847bb422222fd
https://doi.org/10.1007/978-3-319-72565-9_15
https://www.genua.eu/knowledge-base/it-security-solutions-from-genua-withstand-attacks-with-quantum-computers
https://www.genua.eu/knowledge-base/it-security-solutions-from-genua-withstand-attacks-with-quantum-computers
https://eprint.iacr.org/2018/674
https://eprint.iacr.org/2018/674
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

686 A. Wagner et al.

[HBG+18] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS:
eXtended Merkle signature scheme (2018). https://datatracker.ietf.org/
doc/html/rfc8391

[HGA+21] Hauschild, F., Garb, K., Auer, L., Selmke, B., Obermaier, J.: ARCHIE: A
QEMU-Based framework for architecture-independent evaluation of faults.
In: 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), pp. 20–30 (2021)

[HK22] Hülsing, A., Kudinov, M.: Recovering the tight security proof of
SPHINCS+. Cryptology ePrint Archive, Paper 2022/346 (2022). https://
eprint.iacr.org/2022/346

[HMU+20] Heyszl, J., et al.: Investigating profiled side-channel attacks against the
DES key schedule. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3),
22–72 (2020)

[Hü] Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature
schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38553-7 10

[KGC+20] Kumar, V.B.Y., Gupta, N., Chattopadhyay, A., Kasper, M., Krauß, C.,
Niederhagen, R.: Post-quantum secure boot. In: 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1582–1585 (2020)

[KHRY22] Kudinov, M., Hülsing, A., Ronen, E., Yogev, E.: SPHINCS+C: compress-
ing SPHINCS+ with (almost) no cost. Cryptology ePrint Archive, Paper
2022/778 (2022). https://eprint.iacr.org/2022/778

[KPC+] Kampanakis, P., Panburana, P., Curcio, M., Shroff, C., Alam, M.: Post-
quantum LMS and SPHINCS+ hash-based signatures for UEFI secure
boot, p. 22 (2021)

[MAA+] Moody, D., et al.: Status report on the third round of the NIST post-
quantum cryptography standardization process (2022)

[mcu] MCUboot documentation. https://docs.mcuboot.com/
[Mer90] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO

1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 21

[MMC19] McGrew, D., Fluhrer, S., Curcio, M.: Leighton-Micali hash-based signa-
tures (2019). https://datatracker.ietf.org/doc/html/rfc8554

[O’F19] O’Flynn, C.: MIN()imum failure: EMFI attacks against USB stacks. In:
13th USENIX Workshop on Offensive Technologies (WOOT 2019), Santa
Clara, CA, August 2019. USENIX Association (2019)

[OSS17] Obermaier, J., Specht, R., Sigl, G.: Fuzzy-glitch: a practical ring oscillator
based clock glitch attack. In: 2017 International Conference on Applied
Electronics (AE), pp. 1–6 (2017)

[Phi22] Philipoom, J.: Request for feedback on possible SPHINCS+ variant (2022).
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7H
A/m/f50WvA3RBAAJ

[Rai22] Raimbault, G.: Welcome to a new generation of future-proof TPMs:
OPTIGA TPM SLB 9672 (2022). https://www.infineon.com/dgdl/Infi
neon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b
00d2

[Rot19] Roth, T.: TrustZone-M(eh): Breaking ARMv8-M’s security (2019)
[Son19] Sondero: Hashcat v5.1.0 benchmark on the Intel(R) Core(TM) i7-

9700K (2019). https://hashcat.net/forum/thread-9042-post-47927.html#
pid47927

https://datatracker.ietf.org/doc/html/rfc8391
https://datatracker.ietf.org/doc/html/rfc8391
https://eprint.iacr.org/2022/346
https://eprint.iacr.org/2022/346
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2022/778
https://docs.mcuboot.com/
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://datatracker.ietf.org/doc/html/rfc8554
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA/m/f50WvA3RBAAJ
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2
https://www.infineon.com/dgdl/Infineon-OPTIGA-TPM-SLB9672.pdf?fileId=8ac78c8b7e7122d1017f071c3f6b00d2
https://hashcat.net/forum/thread-9042-post-47927.html#pid47927
https://hashcat.net/forum/thread-9042-post-47927.html#pid47927

Faulting Winternitz One-Time Signatures 687

[SZK+18] Selmke, B., Zinnecker, K., Koppermann, P., Miller, K., Heyszl, J., Sigl,
G.: Locked out by latch-up? An empirical study on laser fault injection
into Arm Cortex-M processors. In: 2018 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), Amsterdam, Netherlands, September
2018, pp. 7–14. IEEE (2018)

[VCGS13] Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations
beyond computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 8

[WJW+] Wang, W., Jungk, B., Wälde, J., Deng, S., Gupta, N., Szefer, J., Nieder-
hagen, R.: XMSS and embedded systems. In: Paterson, K.G., Stebila, D.
(eds.) SAC 2019. LNCS, vol. 11959, pp. 523–550. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38471-5 21

[WOS22] Wagner, A., Oberhansl, F., Schink, M.: To be, or not to be stateful: post-
quantum secure boot using hash-based signatures. In: Proceedings of the
2022 Workshop on Attacks and Solutions in Hardware Security, ASHES
2022, pp. 85–94. Association for Computing Machinery, New York (2022)

https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-030-38471-5_21

Breaking and Protecting the Crystal:
Side-Channel Analysis of Dilithium

in Hardware

Hauke Steffen1 , Georg Land2(B) , Lucie Kogelheide3(B) ,
and Tim Güneysu2,4

1 TÜV Informationstechnik GmbH, Essen, Germany
h.steffen@tuvit.de

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
mail@georg.land, tim.gueneysu@rub.de

3 BWI GmbH, Bonn, Germany
lucie.kogelheide@bwi.de

4 DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

Abstract. The lattice-based CRYSTALS-Dilithium signature scheme
has been selected for standardization by the NIST. As part of the selec-
tion process, a large number of implementations for platforms like x86,
ARM Cortex-M4, or – on the hardware side – Xilinx Artix-7 have been
presented and discussed by experts. While software implementations
have been subject to side-channel analysis with several attacks being
published, an analysis of Dilithium hardware implementations and their
peculiarities has not taken place. With this work, we aim to fill this gap,
presenting an analysis of vulnerable operations and practically showing a
successful profiled Simple Power Analysis (SPA) and a Correlation Power
Analysis (CPA) on a recent hardware implementation by Beckwith et al.
Our SPA attack requires 700 000 profiling traces and targets the first
Number-Theoretic Transform (NTT) stage. After finishing profiling, we
can identify pairs of coefficients with 1 101 traces. The full CPA attack
finds secret coefficients with as low as 66 000 traces. In response, we
present specific countermeasures and show that they effectively prevent
both attacks.

Keywords: Dilithium · Side-Channel Analysis · FPGA · SPA · CPA ·
PQC

1 Introduction

Quantum computers pose a real threat to communication security. Currently
deployed symmetric schemes can be adapted easily to withstand attacks even
from large-scale quantum computers. In contrast, asymmetric schemes like RSA
and ECC-based schemes can be broken without significant effort through Shor’s

L. Kogelheide—The respective work has been conducted as an employee of TÜV Infor-
mationstechnik GmbH.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 688–711, 2023.
https://doi.org/10.1007/978-3-031-40003-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40003-2_25&domain=pdf
http://orcid.org/0000-0002-7065-5980
http://orcid.org/0000-0002-1533-3583
http://orcid.org/0000-0002-6849-7434
http://orcid.org/0000-0002-3293-4989
https://doi.org/10.1007/978-3-031-40003-2_25

Breaking and Protecting the Crystal 689

algorithms [25]. Although it is not yet clear whether this threat will become a
reality in the near future, it is undisputed that action needs to be taken early
to prevent prospective damage. Therefore, the United States National Institute
for Standards and Technology (NIST) launched standardization efforts for post-
quantum secure schemes for Key Encapsulation Mechanisms (KEMs) and digital
signatures in 2017.

After three rounds, with several schemes being dropped due to cryptanalytic
attacks, lacking efficiency, or missing confidence in their security assumptions,
NIST announced the schemes to be standardized in July 2022. As KEM, Kyber
has been selected, while four other schemes proceed to a fourth round and are
considered for standardization in the future. For signature schemes, Dilithium,
Falcon, and SPHINCS+ are being standardized, with Dilithium being the primary
choice.

Dilithium has undergone a thorough cryptanalytic process and guarantees
security against Strong Existential Unforgeability under Chosen Message Attacks
(SUF-CMA). Besides, concrete implementations can be attacked by employ-
ing side-channel analysis, exploiting dependencies of physical characteristics on
secret values during computation. Several side-channel analyses have been pub-
lished on Dilithium software implementations in this context. In [22], Ravi et al.
show a signature forgery attack enabled by finding a partial secret key using a
power analysis. This work is extended to fault attacks on pqm4 implementations
of Dilithium and qTesla [23], also presenting a mitigation approach. Migliore et al.
carry out a side-channel evaluation targeting the ARM Cortex-M4 platform [21].
They are also the first to introduce concrete masking countermeasures. Following
this, Chen et al. present an efficient CPA attack on the Dilithium pqm4 software
implementation [9], succeeding with only 157 power measurements. Karabulut
et al. show that sampling of fixed-weight polynomials in Dilithium, NTRU, and
NTRU Prime is vulnerable to side-channel analysis [16]. Finally, Marzougui et
al. present a novel side-channel attack that exploits a vulnerability in a sam-
pling procedure [20]. However, their attack requires many measurements and
complex post-processing. Finally, a recent work by Azouaoui et al. [1] presents
a thorough analysis of side-channel requirements for Dilithium, including state-
of-the-art countermeasures.

All these works have in common that they target software platforms. At
the same time, there is no dedicated side-channel analysis targeting hardware
implementations, which is a glaring lack in light of Dilithium already being chosen
for standardization. Our work aims to close this gap by analyzing a recent Field-
Programmable Gate Array (FPGA) implementation, presenting a profiled SPA
and a CPA attack. Additionally, we investigate and implement countermeasures,
evaluating their efficacy against the before-proposed attacks.

Contribution. Hence, our contribution can be summarized as follows:

– We present the first power side-channel results of a Dilithium implementation
in reconfigurable hardware.

– We show several profiled SPA attacks on Dilithium-2 and -5, including:

690 H. Steffen et al.

• an evaluation of single-trace attacks on the decoding and the first NTT
stage, with up to 94.2% success probability to recover the correct coeffi-
cient.

• multi-trace attacks on decoding with 50 000 profiling traces, capable of
recovering the target coefficient with 130 traces during attack phase.

• multi-trace attacks on first NTT stage with 350 000 profiling traces that
enable full key recovery with a pair of target coefficients using 1 101 traces.

– We also show a CPA on the polynomial multiplication, recovering secret coef-
ficients with 66 000 traces, which are agnostic to the parameter set and enable
full key recovery.

– We present an analysis of how to apply masking as a countermeasure by
proposing arithmetic masking, effectively prohibiting the presented attacks.

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and q = 223 − 213 + 1. Further, let Rq

be a polynomial ring with Rq = Zq[X]/(Xn + 1). The infinity norm ||x||∞ of a
polynomial x is defined as the maximum absolute value among all its coefficients.
For polynomial vectors, this norm is defined as the maximum infinity norm of
all polynomials in the vector. Then, Sb denotes the set of polynomials in Rq

with infinity norm b and S̃b denotes the same set but excluding coefficients with
value −b. Furthermore, the set of polynomials in Rq with exactly τ non-zero
coefficients and infinity norm 1 is denoted as Bτ . In addition, let us denote
vectors in bold lower-case letters, e.g., v, while matrices are denoted in bold
upper-case letters, e.g., A. Polynomials in NTT domain are indicated by a hat,
e.g., ĉ. This is also used transitively; thus, Â denotes that each polynomial in
A is transformed to NTT domain individually. Finally, we denote the pointwise
multiplication with ◦.

2.2 CRYSTALS-Dilithium

As common for digital signature schemes, Dilithium provides the three core pro-
cedures for key generation, signature generation, and signature verification. In
the following, we briefly explain the key generation and signing and leave a fully
detailed description of the scheme to the official documentation [11].

Key Generation. Algorithm 1 shows the key generation of Dilithium. As can
be seen there, finding the secret key from knowing the public key is basically
the M-LWE problem. Moreover, once an attacker obtains either s1 or s2, she
can directly obtain the other value since A and t are public values. However,
Dilithium makes an interesting modification in moving the lower d bits of each
coefficient in t to the secret key in order to reduce the public key size, which
is what the function Power2Round does. Still, the polynomial vector t0, which
contains these lower bits, is considered public information.

Breaking and Protecting the Crystal 691

Algorithm 1. Dilithium key generation
1: ζ ← {0, 1}256

2: (ρ, ρ′, K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := SHAKE-256(ζ)
3: sample A ∈ Rk×�

q deterministically in NTT domain from the output stream of
SHAKE-128(ρ)

4: sample (s1, s2) ∈ S�
η × Sk

η from the output stream of SHAKE-256(ρ′)
5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := SHAKE-256(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0))

Algorithm 2. Dilithium signature generation
Require: secret key sk, message M
1: κ := 0, sample A as in key generation
2: μ ∈ {0, 1}512 := SHAKE-256(tr||M)
3: ρ′ ∈ {0, 1}512 := SHAKE-256(K||μ) for deterministic signing

ρ′ ← {0, 1}512 for randomized signing
4: while true do
5: sample y ∈ S̃�

γ1 deterministically based on ρ′, κ
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)

8: c̃ ∈ {0, 1}256 := SHAKE-256(μ||w1)
9: c ∈ Bτ := SampleInBall(c̃)

10: z := y + cs1
11: r0 := LowBitsq(w − cs2, 2γ2)
12: if ||z||∞ < γ1 − β and ||r0||∞ < γ2 − β then
13: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
14: if ||ct0||∞ < γ2 and the # of 1’s in h is less than or equal to ω then
15: return (z,h, c̃)

16: κ := κ + �

Signature Generation. Algorithm 2 describes the signature generation for a given
message and secret key. Most notably, there is a big rejection loop that only ter-
minates if the signature is approved not to leak any information on the secret
key, which is ensured by the checks starting in Line 13. Inside the loop, the
signing algorithm chooses a masking polynomial vector y with coefficients from
[−γ1, γ1), computes w = Ay, and rounds each coefficient of the resulting polyno-
mial vector according to the HighBitsq function. From this and the message, the
challenge polynomial c is sampled, which has precisely τ non-zero coefficients,
which are either 1 or -1. Then, a signature candidate z is computed as y + cs1.
Following this, it is checked whether the broad “noise” generated by y actually
hides cs1. Finally, using the MakeHintq function, the signing algorithm generates
“hints” for the verifier to compensate for the missing lower bits of t0. Note that
all polynomial multiplications are performed using the NTT for efficiency.

692 H. Steffen et al.

Parameters. For Dilithium, three parameter sets are proposed, which aim at
the NIST security categories 2, 3, and 5. The security is scaled primarily via
increasing the matrix and vector dimensions (k, �), which are (4, 4) for level 2,
(6, 5) for level 3, and (8, 7) for level 5. Another relevant parameter that changes
over the parameter sets is the secret key range η, which is 2 for levels 2 and 5,
and 4 for level 3.

2.3 Side-Channel Analysis

The field of side-channel analysis has been established with Kocher’s seminal
work [17] on timing side-channels. In the following, we briefly explain the two
relevant approaches for our work.

Simple Power Analysis. This technique aims to analyze power traces directly
to learn operations that have been executed and processed secrets. In the best
case, a single measurement is sufficient to completely recover the key. The most
important extension of SPA is profiled or template SPA. Here, the attack is per-
formed in two phases. In the profiling phase, the attacker measures the target
device performing several operations with known or chosen secret input, obtain-
ing information about the device’s behavior depending on the input. In the
attack phase, she uses the knowledge from the first phase to recover the secret
by measuring the target device performing the operation with secret input.

This requires an extension of the attacker model. When introducing profiling,
the attacker must now have extended access to the target device, knowing or even
being able to choose several usually secret inputs. She may use one or multiple
traces in the attack phase, resulting in single-trace or multi-trace attacks.

Finding Points of Interest. To determine Points of Interest (POIs) that corre-
spond to differences between the observed classes, we use the sum of squared
pairwise t-differences (SOST) as the metric, which has been introduced in [13].
The idea is to measure many traces for each class, then compute the t-test
traces between any possible pair of classes, square them point-wise, and accu-
mulate the results. We then consider points if their SOST exceeds an adaptively
chosen threshold based on the overall noise level.

Matching Power Traces to a Template. To match new traces to the prepared
templates, we follow the approach first introduced in [8]. A template for a single
class consists of a mean trace and the pooled noise covariance matrix (for a
comprehensive definition, we refer to [10]). In the attack phase, when measuring
a power trace, we compute the probability of matching each template using the
probability density function of the multivariate normal distribution.

Updating the Ranking for Multi-trace Attacks. Starting with one trace, we obtain
probabilities for matching each class, as explained before. Subsequently, we anal-
ogously compute the probabilities for the following trace and update the classi-
fication probabilities according to Bayes’ theorem.

Breaking and Protecting the Crystal 693

Correlation Power Analysis. CPA [5] has a very different concept, as the
attacker obtains many power measurements here. The idea then is to test all
possible hypotheses for a part of a key (e.g., a single coefficient) by correlating
a power model of an intermediate value that depends on the targeted key part
with the power traces. For this, the attacker either must be able to choose or at
least know the public input, which is in contrast to the profiled SPA, where she
also is required to know or choose secret inputs in the first phase. In our case,
for a digital signature scheme, the model is either the known or chosen message
attacker for the CPA.

Finally, the hypothesis with the highest absolute correlation coefficient is
identified as the correct key part. For this, Pearson’s correlation is used, i.e.,
the covariance of power model output and sample value normalized over the
product of the standard deviations of each of the two. As significance bound, we
use

√
28/N , where N is the number of processed traces [19].

Countermeasures. Many countermeasures have been proposed to mitigate
side-channel attacks. The straightforward idea is to purposefully decrease the
target devices’ signal-to-noise ratio (SNR) (where the signal is the leaking infor-
mation). For instance, this can be achieved by noise generators that run in
parallel to sensitive operations [15]. However, this usually aims to increase the
number of measurements required for an attack.

If the algorithm whose implementation is to be secured allows re-ordering
of operations, shuffling [26] can be an option to counter single-trace SPA. By
this, the attacker may be able to recover the secret value but not its position
within the complete secret. For a CPA, shuffling only decreases the SNR because
a certain fraction of the measurements will have the operation that leaks the
secret aligned, with all other measurements being noise concerning the attack.

Thus, masking has been introduced [7,14] to counter this attack as well,
which has its foundations in Shamir’s secret sharing. Here, a secret value x is split
into multiple uniform random shares. Regarding PQC, the two most common
masking schemes are Boolean and additive masking, splitting secrets either in
Boolean or additive shares. In order to process secret data, any linear function
in the masking domain can be performed share-wise. Non-linear functions have
a higher complexity growth and usually require refreshing the mask(s) during
intermediate steps.

Consequently, the CPA attacker does not obtain any information about the
secret, as only uniform random values are processed. This, of course, is only true
if the attacker is restricted to only one probe. Once she can probe both shares,
she can perform the same attack again. It follows that the masking degree is
always chosen according to a given attacker model.

3 Conceptual Considerations

The first reported implementation of the current specification was presented by
Land et al. [18]. This implementation heavily depends on Digital Signal Proces-
sors (DSPs) that speed up the NTT significantly. However, it is relatively slow

694 H. Steffen et al.

and big compared to newer implementations. Instead, we target the state-of-the-
art implementation by Beckwith et al. [4]. We are aware of the more recent work
by Zhao et al. [27], which was unavailable at the start of our work. However,
since the operations we exploit are rather algorithmic-specific, we expect broad
applicability of our techniques. In the following, we explain and analyze several
operations within the target implementation.

3.1 Bit-Packing and Decoding of Secret Polynomials s1, s2

In general, the specification describes encoding as follows: An integer x ∈ [−η, η]
is packed as η − x such that the encoded value is non-negative. Particularly,
η = 2 for Dilithium security levels 2 and 5, and η = 4 for security level 3. Five
consecutive resulting three-bit values are packed to three bytes for all parameter
sets. In our target implementation, chunks of 64 bits are processed rather than
single coefficients, which is implemented with a FIFO, and then four coefficients
are decoded in parallel.

Since the implementation uses an unsigned representation, the decoding oper-
ation (a subtraction) is modulo q. Thus, the decoded values are either close to
zero or close to q. This results in vastly different HWs for the cases depicted in
Table 1. As can be seen there, the particular value q = 223 − 213 +1 additionally
enables a clear distinction between the low-HW outputs, q − 2, and the high-
HW outputs. We expect that the significant differences in the HW to lead to a
distinguishable amount of power consumption, enabling SPA attacks.

3.2 Number-Theoretic Transform

After unpacking the secret polynomials in s1 and s2, they are transformed into
NTT representation. The NTT, as used in Dilithium, can be seen as a discrete
Fourier transform over polynomials in Rq, where modular arithmetic of the

Table 1. Hamming weight (HW) differences of decoded coefficients in s1 and s2

(a) η = 2

in out = η − in mod q HW(out)

0 0x000002 1

1 0x000001 1

2 0x000000 0

3 0x7fe000 10

4 0x7fdfff 22

(b) η = 2

in out = η − in mod q HW(out)

0 0x000004 1

1 0x000003 2

2 0x000002 1

3 0x000001 1

4 0x000000 0

5 0x7fe000 10

6 0x7fdfff 22

7 0x7fdffe 21

8 0x7fdffd 21

Breaking and Protecting the Crystal 695

a1

b1 ×

+

−

a2

b2 ×

+

−

×

+

−

â1

b̂1

×

+

−

â2

b̂2

Fig. 1. 2 × 2 BFU construction

polynomial coefficients replaces the complex arithmetic. Since the ring struc-
ture enables negative wrapped convolution, we can use an n-point NTT for fast
polynomial multiplication. For this, we transform both factor polynomials to the
NTT domain, multiply coefficient-wise in the NTT domain, and then apply the
inverse transform to the result to obtain the final product polynomial.

The core operation of the NTT is the so-called butterfly. Generally, the NTT
is easily parallelizable and thus, it is possible to make a design choice of how
many butterflies to instantiate. For the given n = 256, eight NTT layers must
be processed. However, in the targeted implementation, a 2 × 2-Butterfly Unit
(BFU) is deployed, which means that four butterflies are instantiated in a way
that four input coefficients are processed first through two butterflies and then
through the two others in order to perform two layers of NTT consecutively.
This is depicted in Fig. 1. In the following, we refer to this as one stage of the
NTT.

Note that for the butterfly, each output depends on all input values. More-
over, a1 is spread without multiplication, b1 is processed through one multiplica-
tion, a2 through two multiplications, and b2 through three. As the multiplications
are with primitive roots of unity, which range over the whole Zq, intermediate
values seem to be distributed uniformly in Zq regardless of the input distribu-
tion. However, for s1 and s2 the input space to the first layer is bounded by η,
which implicitly bounds the set of possible intermediate results and outputs of
the BFU. We expect that this results in more distinguishable power signatures,
facilitating more powerful SPA attacks.

3.3 Polynomial Multiplication

In Algorithm 2, we see that the secrets s1 and s2 are multiplied with the challenge
polynomial c. If the signature candidate is accepted, the hash c̃ that is used to
generate the challenge deterministically is part of the signature and thus publicly
known. Besides, c̃ is the hash of μ, which directly depends on the message M ,
and w1. Therefore, for the deterministic signing procedure, c deterministically
depends on the message. On the other hand, if randomized signing is deployed

696 H. Steffen et al.

– introduced initially to counter fault attacks – c is also randomized even for a
fixed message M through the randomization of y, which is used to compute w1.

Moreover, the polynomial multiplications are performed in the NTT domain,
which is essentially a coefficient-wise modular multiplication between ĉ and the
vectors ŝ1 and ŝ2. This renders the aforementioned polynomial multiplications
a natural target for a CPA attack since we can target the polynomial vector ŝ1
coefficient by coefficient.

The advantage of such an attack would be its weak attacker model. For the
deterministic case, messages must be distinct, while for the randomized case
there is no restriction on the messages. In both cases, though, the attacker must
be able to trigger enough signings under the same secret key.

3.4 Measurement Setup

We perform all our attacks on a Xilinx Artix-7 100T FPGA – the hardware
platform recommended by NIST for comparison of hardware implementations –
running at 100 MHz. We measured the power consumption via peripheral com-
ponents. Using an electromagnetic (EM) near-field probe, we measure the elec-
tromagnetic field of a capacitor on the board with a particularly low capacity
of 47 nF. Since this capacitor is placed very close to the FPGA and in its power
path, the capacitor’s electromagnetic emanation directly depends on the power
consumption of the FPGA. The advantage of this procedure is that no physi-
cal modifications are required on the target board. All measurements have been
performed with 20 GS/s and a quantization of 12bit.

4 Simple Power Analysis

In the following, we focus on the case η = 2 (Dilithium-2 and -5), which is more
promising. Still, we evaluate and discuss the case η = 4 (Dilithium-3) at the end
of this section.

4.1 Targeting Single Coefficients

As a first step towards a practical attack, we target single coefficients. We start
by applying an attacker model, in which three out of the four secret coefficients
decoded simultaneously are known, and the other one is attempted to recover.
In practice this means that during the profiling phase, the attacker builds the
templates knowing the three other secret coefficients. This results in less noise
compared to the more realistic scenario in which the attacker does not know the
other coefficients and thus would choose them randomly.

Interestingly, our countermeasures work also against this attacker. This
results in an extended efficacy guarantee by deducting that the countermea-
sures effectively hinder any weaker SPA attacker, i.e., also the attacker that
does not know the other three coefficients.

Breaking and Protecting the Crystal 697

Attacking the Decoding Step. For this, we measure 55 000 traces, using
a secret key as input fixed for all coefficients but one chosen randomly. We
divide this trace set into the profiling set of 50 000 traces and the attack set of
5 000 traces. Subsequently, we prepare templates for three different attacks:

1. Five classes, aiming for the classification of the exact coefficient value
2. Four classes, aiming to distinguish between input classes

– 0, 1 (yielding output HW 1)
– 2 (yielding output HW 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

3. Three classes, aiming to distinguish between input classes
– 0, 1, 2 (yielding output HW 1 or 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

Finally, we perform the three attacks on each subset of the attack set with the
same key, obtaining the single-trace success probabilities.

As can be seen in Table 2, the results match the expectations, and classifi-
cation works best for the case where three classes each internally have a very
similar HW, recovering with high probability whether the targeted output is 4
or 3 or a member of the set {0, 1, 2}. Nevertheless, the classification model with
the worst results, which is finding the exact coefficient value, also classifies each
class correctly with a significantly higher probability than guessing, which would
be 20%.

When extending this attack to the multi-trace setting, the picture changes
drastically. After at most 130 traces only, we can recover the correct coefficient
for all classes.

Attacking the First NTT Layer. As explained before in Sect. 3.2, the four
input coefficients to the BFU propagate differently as a1 is only added or sub-
tracted, while the others are also multiplied. We expect to classify coefficients
for attacking this first NTT stage better than for targeting the decoding. That is
because a small set of potential inputs is multiplied and reduced with the same
constants, which results in a more diversified power signature and thus can be
classified easier.

Table 2. Success rates of single-trace SPA on the decoder

Class Avg.

0 1 2 3 4

48.8% 34.7% 49.5% 80.4% 99.4% 64.1%

64.6% 57.7% 86.0% 99.3% 74.4%

92.9% 88.1% 99.4% 93.2%

698 H. Steffen et al.

Table 3. Success rates for attacking the first NTT stage in the single- and multi-trace
setting for η = 2 and η = 4

Target η = 2 η = 4

Class Avg. Multi-t.: #
Traces

Avg. Multi-t.: #
Traces0 1 2 3 4

a1 60.1% 59.1% 92.2% 89.6% 97.8% 79.8% 34 57.3% 87

b1 89.1% 88.4% 100.0% 89.3% 92.4% 91.8% 4 74.5% 10

a2 83.5% 88.1% 93.8% 96.6% 100.0% 92.5% 4 84.0% 45

b2 88.0% 90.2% 99.8% 94.6% 97.7% 94.2% 3 76.2% 23

Avg. 80.2% 81.5% 96.5% 92.5% 97.0% 89.6% 73.0%

The results in the left part of Table 3 show that the expectations again are
met. Overall, this attack yields better results for all classes, as now, we can
recover single coefficients that are processed as b1, a2, b2 with a probability of
over 90%. In contrast, as expected, a1 can be recovered with a lower probability.

Furthermore, Fig. 2 visualizes the results of the single-trace attacks. The con-
fusion matrices depict the probabilities of assigning each class during the attack
phase given each (known) correct class. There, the darkness of a square quan-
tifies the probability that, given the correct class for a trace (y-axis), a specific
class (x-axis) has been assigned by the attack. As shown in Fig. 2a, the attack
on a1 mainly confuses class 1 for class 0 with low probability while correctly
classifying all other classes with high probability. Note that the diagonals in Fig.
2 represent the single rows in Table 3.

For the multi-trace setting, Table 3 also shows how many traces are required
to recover the correct coefficient with 100% probability. This demonstrates the
power of this attack, which requires at most 34 traces to recover any secret
coefficient.

4.2 Extension to Multiple Coefficients

We extend our approach of targeting a single secret coefficient on the first NTT
stage to attacking two coefficients simultaneously. A straightforward approach
here would be to target all possible 54 combinations of (a1, b1, a2, b2). However,
this would be a computationally very complex approach. Instead, we only target
the first half of the BFU. The same operation is applied to the input tuples
(a1, b1) and (a2, b2) independently. Thus, we can classify each possible input
tuple by targeting 5 × 5 = 25 classes instead of 54. This comes at the cost of
more profiling traces. Here, we require a profiling trace set with chosen secret
coefficients, where (a2, b2) are kept steady for attacking (a1, b1) and vice versa.
We increase the number of traces to 375 000 and divide them into 350 000 pro-
filing traces and 25 000 attack traces to ensure the same number per class as for
targeting single coefficients.

Figure 3b shows the confusion matrix of this attack. As can be seen there,
this attack succeeds with a high probability of assigning the correct class (the

Breaking and Protecting the Crystal 699

(a) a1 (b) b1

(c) a2 (d) b2

Fig. 2. Single-trace SPA confusion matrices for attacks on the first NTT stage with
η = 2

diagonal) but also shows some symmetry for assigning wrong classes, primarily
due to confusing (a1, b1) with (b1, a1). On average, the attack succeeds in classi-
fying the correct tuple with a probability of 51.5%, vastly better than guessing,
which would have a probability of 1/25. Moreover, in Fig. 3a, we see that the
correct guess is within the top 5 with an overwhelming probability of 94.8%.

Ultimately, we have also performed this attack in the multi-trace setting.
Here, we are able to recover the correct combination of both secret coefficients
after 1 101 traces. Using this approach, an attacker in the profiled SPA setting is
able to recover the full secret polynomials s1 and s2 with 700 000 profiling traces.
In particular, the attacker would profile the device under test with 350 000 traces
for all possible combinations of (a1, b1) and repeat the same for all possible
combinations of (a2, b2). Then, according to our experiments, the device would
be queried to perform 1 101 signing procedures (processing the secret key) and
measure the first NTT stage of all secret polynomials either for s1 or s2 to recover
it.

700 H. Steffen et al.

4.3 Attack on η = 4

For security level 3, where η = 4, the amount of classes increases from 5 to 9. The
possible output HWs are shown in Table 1b. Similar to the results in Table 4,
we can clearly distinguish between all groups with similar output HW when
targeting the decoding. A multi-trace attack on the decoding finds the correct
coefficient after 2 267 traces, compared to 130 for η = 2. This demonstrates that
the increased number of possible coefficient values with similar HW downgrades
the attack.

Targeting the BFU, we have performed experiments using 90 000 traces for
profiling (i.e., 10 000 per class as for η = 2). The results are shown in the right
part of Table 3. As expected and as it is the case for η = 2, the attack works better
than those on the decoding, being capable of recovering the correct coefficient
after one trace with a significantly higher probability than guessing, which would
be 1/9. In the multi-trace setting, classifying the correct coefficient is possible
after at most 87 traces. Overall, the SPA on Dilithium-3 is less feasible compared
to the other parameter sets.

(a) Ranking distribution (b) Confusion matrix

Fig. 3. Single-trace SPA results for NTT inputs a1 and b1.

Table 4. Success probabilities for single-trace SPA on the combined a1, b1.

b1

0 1 2 3 4

a1 0 37.1% 25.8% 34.1% 35.6% 48.8%

1 30.9% 27.2% 36.1% 40.2% 42.8%

2 34.4% 39.4% 46.1% 46.9% 48.2%

3 46.6% 60.2% 55.7% 73.3% 75.5%

4 64.1% 66.9% 76.3% 78.5% 83.2%

Breaking and Protecting the Crystal 701

5 Correlation Power Analysis on the Polynomial
Multiplication

In addition to our SPA, we perform a CPA on the polynomial multiplication
module, employing a weaker attacker model, as explained in Sect. 3.3.

For this attack, we observe many signature generations under the same secret
key, and then, given the public challenge polynomial c, we target the pointwise
multiplication ĉ ◦ ŝ1. In this attack, we cannot exploit that each coefficient of s1
has a bounded norm since, during multiplication, the polynomial is processed in
the NTT domain. Therefore, we have q hypotheses per coefficient in general.

5.1 Power Model

As a first approach, we chose to employ a HW model. As can be seen in Fig.
4, we show that the correct hypothesis reaches the first rank after 80 000 traces.
However, there are also multiple wrong hypotheses exceeding the significance
bound significantly.

Fig. 4. CPA results – HW model, 1 000 most promising hypotheses shown, correct
hypothesis in black, targeting ĉ ◦ t̂0

Instead, we adapt an idea from [9, Sec. III.B], where a software implemen-
tation is attacked and the hypothesis space is reduced by using the correlation
peak polarity as additional information. We identify that targeting the least sig-
nification bit (LSB) of the product between the challenge polynomial coefficient
and the hypotheses yields better results (i.e., no wrong hypotheses exceeding
the significance bound significantly). Moreover, this approach allows cutting the
number of hypotheses in half, resulting in a computationally less complex attack.
We observe that for each hypothesis h ∈ Zq\{0} and each challenge polynomial
coefficient ĉi ∈ Zq\{0} of the challenge ĉ, the following equation holds:

lsb(ĉi · h mod q) = 1 ⊕ lsb(ĉi · (−h) mod q) (1)

702 H. Steffen et al.

It follows that for this power model, the hypotheses h and −h mod q yield
inverted correlations. This can be used to halve the number of possible hypothe-
ses to the range [0, �q/2�] by the following procedure. Figure 5a shows the cor-
relation of the LSB of the public coefficient ĉi and the correlation with the LSB
of the negative value. Note how there is first a positive peak and then a negative
peak for the known ĉi. Correlations with other coefficients of the public poly-
nomial c might also show an inverse peak polarity: first negative, then positive.
In any case, the information of the correlation peak polarity is purely based on
public information, and thus can be computed by the attacker in any case.

(a) Correlation of LSB of ĉi (black) and q −
ĉi (gray)

(b) Correlation of LSB of ĉi · h mod q (black)
and ĉi · (−h) mod q (gray)

Fig. 5. Correlation for 100 000 traces of the LSB of ĉi and ĉi · h mod q. For the high-
lighted (black) case, h is the correct hypothesis since both have a positive peak first,
then a negative one.

Figure 5b then shows very similar behavior for the correlation of the LSB of
ĉi · h mod q and ĉi · (−h) mod q. Our observation now is that if the correlation
peak polarity is the same for the power correlation of ĉi and ĉi · h mod q (where
h is the hypothesis that yields the highest absolute correlation), h is the correct
hypothesis. Otherwise, if the peak polarity does not match, q − h is the correct
hypothesis.

Thus, the attacker only needs to compute the correlations for half the
hypotheses and then, after finding a hypothesis h with maximum absolute cor-
relation coefficient, decides between h and q−h based on whether the respective
ĉi yields

1. a positive, then a negative correlation peak. Then, if h yields
(a) a positive, then a negative correlation peak, h is the sought coefficient.
(b) a negative, then a positive correlation peak, q−h is the sought coefficient.

2. a negative, then a positive correlation peak. Then, if h yields
(a) a positive, then a negative correlation peak, q−h is the sought coefficient.
(b) a negative, then a positive correlation peak, h is the sought coefficient.

Breaking and Protecting the Crystal 703

5.2 Noise

In the targeted implementation, the Keccak core works during all multiplications
that include s1 or s2. This core generates most of the design’s power consump-
tion. This causes the problem that a lower quantization precision is left for the
targeted value since the Keccak power consumption is noise to it. Both issues lead
to requiring an increased number of traces for an attack. Thus, we investigate
the attack in two different scenarios:

1. Evaluate ĉ ◦ t̂0, where no Keccak runs in parallel, and
2. Evaluate ĉ ◦ ŝ1.

Compared to the first scenario, the concurrently operating Keccak module
reduces the SNR by a factor of 25.

Therefore, the first scenario is a low-noise setting, and the second one is a
high-noise setting, enabling a clear comparison between both. We expect that
opening the FPGA packaging and probing the polynomial multiplication module
locally using an EM near-field probe would result in a similar low-noise setting
as for the first scenario.

5.3 Attacks

When targeting ĉ ◦ t̂0, we are able to recover the correct coefficients of t̂0 after
66 000 traces, as can be seen in Fig. 6a. Moreover, after 22 000traces, the correct
hypothesis is within the top 2048 candidates, and after 57 000traces, it is within
the top 32 candidates.

In Fig. 6b, it can be seen that the very same approach is becoming more
difficult for attacking s1 for the reasons mentioned above due to a decreased
SNR. Still, after 1 million traces, we can recover the correct coefficient. For this
attack, the correct hypothesis is in the top 2048 after 240 000 traces and the top
32 after 850 000 traces.

In summary, it is possible to recover the secret in any case, even assum-
ing a high-noise setting. Moreover, no invasive methods, such as opening the
FPGA packaging, are required, which would be a much more specialized attack
measuring the direct near-field EM emanation of the polynomial multiplication
module. Finally, we want to stress that, contrary to the SPA, this attack works
independently of η and thus is equally applicable to all security levels.

6 Countermeasures

6.1 Integration of Decoding into the First NTT Stage

Decoding the secrets s1 and s2 is an affine operation and thus can also be pro-
cessed easily in a later phase of signature generation. Therefore, our first app-
roach aims at removing the parts of the decoder unit that process the targeted
secret coefficients and integrate the decoding step into the first level of the NTT.

704 H. Steffen et al.

(a) Targeting ĉ ◦ t̂0 (b) Targeting ĉ ◦ ŝ1

Fig. 6. CPA results – LSB model, 1 000 most promising hypotheses shown, correct
hypothesis in black

As explained before, we assume that the leakage of the decoding mainly
depends on the differences of the HWs of the decoded values. Therefore, keeping
all processed coefficients at a similar level of HW would be advantageous. We
integrate the decoding into the BFU by feeding q + η − x into each BFU input,
where x is an encoded coefficient.

6.2 Masking

Masking must be deployed to counter both attacks through a comprehensive
countermeasure. A comprehensive masking approach, where secret data is never
processed nor transferred unmasked, requires that the secret key is already
masked in the first place. In particular, we have the option to either apply arith-
metic or Boolean masking. Applying arithmetic masking on s1 and s2, however, is
not possible efficiently as it would induce an unnecessary high overhead factor for
storing the masked key, since the coefficients are uniformly bounded by η rather
than uniform in Zq. Because memory is an expensive resource on embedded
hardware devices and the masking shares pose an overhead already, a masking
countermeasure that requires no additional overhead would be desirable.

Specifically, in a real-world device, the secret key usually would be stored
in a permanent memory outside of the FPGA, which would then have to be
dimensioned bigger by a factor of 23/3 to account for the larger shares, and
the key transfer would take equivalently longer compared to Boolean masking.
The problem intensifies when the system includes multiple keys. In this case,
external memory is virtually inevitable. Moreover, a smaller arithmetic masking
domain could also be used, but this would also require a similarly expensive
masking conversion compared to our proposal. Thus, only Boolean masking is
feasible, which raises the necessity of converting efficiently from the encoded,
Boolean-masked representation of s1 and s2, to a decoded and arithmetically
masked representation.

Breaking and Protecting the Crystal 705

Algorithm 3. First-order secure combined masking conversion and decoding,
adapted from [12, Alg. 12]
Require: b0, b1 such that b = b0 ⊕ b1
Ensure: a0, a1 such that a = a0 + a1 = η − b mod q
1: X, R ← Zq × Z223

2: Y0 := ((X − η) + (223 − q)) ⊕ R
3: Y1 := R
4: Z0, Z1 ← SecAddq((b0, b1), (Y0, Y1))
 instantiate with SecAddq from [12, Alg. 8]
5: return a0 = X, a1 = q − (Z0 ⊕ Z1)

As already introduced in [3] and further developed in [12], an efficient con-
version from Boolean to arithmetic masking modulo q can be performed using a
secure adder over Boolean shares, which have been studied extensively in [2,24].
It is possible to adapt this procedure to integrate the decoding step into the
masking conversion.

The original idea from [12] is to sample a uniform random A ∈ Zq, then
generate a fresh Boolean sharing of (q−A)+(223−q) and add this with a secure
adder as described in [12, Alg. 8] to the masked input. Note that in order to
enable an easy reduction modulo q, this secure adder has the special property to
subtract an additional constant of 223 − q, which explains the uncommon form
of the input. The unmasked result of this operation then is one arithmetic share,
and A is the other.

Instead, to include the decoding into the masking conversion, we adapt this
procedure as shown in Algorithm 3:

1. We need two statistically random integers for the conversion, as shown in
Line 1.

2. We generate a fresh Boolean sharing of (X − η) + (223 − q) in Lines 2 and 3
using R and X. Note that this operation can also be done offline or – for
hardware – in parallel.

3. In Line 4, the Boolean masked input coefficient is added to the constructed
Boolean sharing using the aforementioned special adder [12, Alg. 8], yielding
a Boolean sharing of X − η + 223 − q + b − (223 − q) = X − η + b. Since X
is uniformly random, it serves as an arithmetic mask and we can unmask the
Boolean sharing without revealing the secret b.

4. In order to obtain a valid arithmetic sharing of η−x, we need to subtract the
unmasked result from q, resulting in η − b−X mod q. Setting X as the other
arithmetic share, we have completed the conversion with implicit decoding.

Following this, we can perform all linear operations in the masking domain
simply by applying the function to each share. This includes both the NTT and
multiplication with non-secret values like c. An implementation of this approach
requires two different secure adders over Boolean shares:

1. For Step 1 in [12, Alg. 8], a 3 plus 23 bit adder is required.

706 H. Steffen et al.

2. For Step 4 in [12, Alg. 8], a 23 plus 23 bit adder with 12 of the input bits
being hardcoded to zero, which enables substantial improvements compared
to a generic secure adder

Note that this approach is not restricted to hardware implementations alone,
but could very well also be done efficiently in a software implementation. For
this, a secure bit-sliced adder, as proposed by [6], could be utilized, enabling
parallelized processing of 32 or more coefficients.

It is possible to adapt this approach to an arbitrary masking order. For this,
[6, Alg. 11] can be modified analogously to our method above. This requires
an additional arithmetic-to-Boolean conversion to generate the Boolean shar-
ing from Lines 2 and 3 in Algorithm 3. The additional conversion can be also
performed offline and does not induce a further delay, even for higher orders.

6.3 Evaluation

Decoding in the First NTT Stage. Integrating the decoding into the first
NTT stage obviously eliminates the possibility of attacking the decoding as a
standalone step. Nonetheless, we evaluate the effect of this countermeasure on the
leakage of the BFU by performing the same single-coefficient attacks as explained
before. Table 5 shows the attack’s results compared to Table 3. Notably, even
though the countermeasure is not intended to prevent this attack, it mitigates
the SPA on the BFU. Additionally, the number of traces required to recover
the coefficients is doubled. We suppose that Table 5 quantifies the impact of the
diverse HWs of the first NTT stage while not altering the diversification of the
power signature after the arithmetic operations.

Arithmetic Masking. We also evaluate the efficacy of arithmetic masking
against the SPA and the CPA. First, we test whether the exact same CPA
works as before. Figure 7 shows the results for the low-noise setting that targets
ĉ ◦ t̂0. As seen there, the correct hypothesis stays at about the same rank even
after 1 million traces. Also, the absolute correlation does not come close to the
higher-ranked hypotheses or even the significance threshold. Since the attack
does not work in the low-noise setting, we deduct that it does also not work
when the Keccak module produces noise in parallel.

Table 5. SPA results on BFU with integrated decoding given as percent points (resp.
difference of traces required in the multi-trace setting) with the η = 2 part of Table 3
as reference

Target Class Average Δ#Traces

0 1 2 3 4

a1 −3.4% −3.8% +2.9% −18.0% −8.4% −5.7% +31

b1 −23.0% −5.6% −17.7% −14.7% −14.1% −15.1% +3

Breaking and Protecting the Crystal 707

(a) Correct hypothesis ranking progression (b) Absolute correlation progression for the 1 000
most promising hypotheses (gray) and the correct
hypothesis (black)

Fig. 7. CPA results for multiplication of ĉ with masked t̂0 for 1 000 000 traces

(a) Masking deactivated, 100 000 traces (b) Masking activated, 1 000 000 traces

Fig. 8. Fixed-vs-random t-test for NTT

(a) Ranking distribution (b) Confusion matrix

Fig. 9. SPA on NTT with masking, cf. Fig. 2

708 H. Steffen et al.

Then, to evaluate the effect of masking on the SPA, we perform a standard
test-vector-based leakage assessment using a fixed-vs-random t-test on the NTT.
As can be seen in Fig. 8, the masking effectively hinders any distinction between
fixed and random input even after 1 000 000 traces.

Finally, we also attempt to perform the SPA on the whole BFU for single
coefficients. For the evaluation, we increase the number of traces to 450 000
instead of 50 000 during the profiling phase, employ the same overly powerful
attacker as before and confirm that the attack is not successful anymore. The
respective confusion matrix and ranking distribution can be found in Fig. 9.
From this, we deduce that no weaker SPA attacker can learn anything about the
secret, e.g., also the one we present in Sect. 4.2. Finally, we could not recover
any coefficient using a multi-trace attack with up to 10 000 traces per class.

7 Discussion and Future Work

Our work presents a first side-channel analysis of Dilithium in hardware. We
demonstrate attack surfaces and feasibility for single- and multi-trace profiled
SPA attacks, targeting the decoding of the secret polynomials and the first NTT
stage. Beyond this strong attacker model of profiled SPA, we show a practical
CPA attack on polynomial multiplication using power measurements. Regarding
the applicability of these attacks on other implementations, we can summarize
our findings as follow:

1. The SPA on the decoding exploits the specified range of the secret coefficients
and their HW, which does not depend on our targeted implementation. Thus,
we expect that the same attack surface exists for any implementation.

2. The SPA on the NTT similarly exploits the secret key range, benefitting from
the more unique power signatures generated by the BFU. Following this, we
expect that the attack works similarly for the implementations [18,27], which
also contain BFUs (as necessary for computing an NTT). However, the co-
processor [18] detaches a “pre-computation” step from the signing procedure,
which performs the NTT of the secrets once and then stores the transformed
polynomial vectors for all subsequent signings under the same secret key.
This could mitigate the SPA attack by potentially preventing the collection
of multiple traces of the NTT transformation on s1 and s2.

3. The CPA on the polynomial multiplication is rather generic, as all imple-
mentations will perform the polynomial multiplication using the NTT, even
though the specification does not strictly require it.

Moreover, our work shows that random noise generated by a Keccak module
running in parallel to the multiplication does not effectively hinder either attack.
Finally, we also present countermeasures and evaluate that arithmetic masking
effectively prohibits all presented attacks.

For future work, we leave both higher-order attacks and efficient higher-
order masking conversions with integrated decoding open. On a higher level, a
complete masked hardware implementation of Dilithium is desirable.

Breaking and Protecting the Crystal 709

Acknowledgments. We thank the reviewers for their constructive comments. Fur-
thermore, we thank Pascal Sasdrich for the fruitful discussions. This work was sup-
ported by the German Research Foundation under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972, through the H2020 project PROMETHEUS (grant
agreement ID 780701), CONVOLVE (grant agreement ID 101070374), and by the
Federal Ministry of Education and Research of Germany through the Quantum-
RISC (16KIS1038), PQC4Med (16KIS1044), and 6GEM (16KISK038) projects.

References

1. Azouaoui, M., et al.: Protecting Dilithium against leakage: revisited sensitiv-
ity analysis and improved implementations. Cryptology ePrint Archive, Paper
2022/1406 (2022). https://eprint.iacr.org/2022/1406

2. Bache, F., Güneysu, T.: Boolean masking for arithmetic additions at arbitrary
order in hardware. Appl. Sci. 12(5), 2274 (2022)

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

4. Beckwith, L., Nguyen, D.T., Gaj, K.: High-performance hardware implementation
of CRYSTALS-Dilithium. In: International Conference on Field-Programmable
Technology, (IC)FPT 2021, Auckland, New Zealand, 6–10 December 2021, pp.
1–10. IEEE (2021)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions
for fun and profit with application to lattice-based KEMs. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022(4), 553–588 (2022)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

9. Chen, Z., Karabulut, E., Aysu, A., Ma, Y., Jing, J.: An efficient non-profiled side-
channel attack on the CRYSTALS-Dilithium post-quantum signature. In: 39th
IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA,
24–27 October 2021, pp. 583–590. IEEE (2021)

10. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

11. Ducas, L., et al.: CRYSTALS-Dilithium - algorithm specifications and support-
ing documentation (version 3.1). Technical report (2021). https://pq-crystals.org/
dilithium/data/dilithium-specification-round3-20210208.pdf

12. Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-
quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
414–460 (2022)

https://eprint.iacr.org/2022/1406
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

710 H. Steffen et al.

13. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

14. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

15. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 3

16. Karabulut, E., Alkim, E., Aysu, A.: Single-trace side-channel attacks on ω-small
polynomial sampling: with applications to NTRU, NTRU Prime, and CRYSTALS-
DILITHIUM. In: IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2021, Tysons Corner, VA, USA, 12–15 December 2021, pp. 35–
45. IEEE (2021)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

18. Land, G., Sasdrich, P., Güneysu, T.: A hard crystal - implementing Dilithium on
reconfigurable hardware. In: Grosso, V., Pöppelmann, T. (eds.) CARDIS 2021.
LNCS, vol. 13173, pp. 210–230. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-97348-3 12

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

20. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.-P.: Profiling side-channel
attacks on Dilithium: a small bit-fiddling leak breaks it all. Cryptology ePrint
Archive, Report 2022/106 (2022). https://eprint.iacr.org/2022/106

21. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking Dilithium. In:
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21568-2 17

22. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Side-channel
assisted existential forgery attack on Dilithium - a NIST PQC candidate. Cryptol-
ogy ePrint Archive, Report 2018/821 (2018). https://eprint.iacr.org/2018/821

23. Ravi, P., Jhanwar, M.P., Howe, J., Chattopadhyay, A., Bhasin, S.: Exploiting deter-
minism in lattice-based signatures: practical fault attacks on pqm4 implementa-
tions of NIST candidates. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann,
D., Kirda, E., Liang, Z. (eds.) ASIACCS 2019: 14th ACM Symposium on Informa-
tion, Computer and Communications Security, Auckland, New Zealand, 9–12 July
2019, pp. 427–440. ACM Press (2019)

24. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over Boolean masking.
In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7 27

25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, NM, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society Press
(1994)

26. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:

https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-642-23951-9_3
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://eprint.iacr.org/2022/106
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://eprint.iacr.org/2018/821
https://doi.org/10.1007/978-3-319-28166-7_27
https://doi.org/10.1007/978-3-319-28166-7_27

Breaking and Protecting the Crystal 711

Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

27. Zhao, C., et al.: A compact and high-performance hardware architecture for
CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
270–295 (2022)

https://doi.org/10.1007/978-3-642-34961-4_44

Author Index

A
Alamati, Navid 417
Amblard, Zoé 445
Avendaño, Martín 379

B
Battarbee, Christopher 113
Beckwith, Luke 57
Briaud, Pierre 38
Bruckner, Sonja 601

C
Chailloux, André 225
Chen, Jiawei 141
Chen, Liqun 565
Coscojuela, Pilar 379
Couvreur, Alain 3

D
Dong, Changyu 565
Dupin, Aurélien 445

E
El Kassem, Nada 565
Eldefrawy, Karim 196

F
Fehr, Serge 405
Furue, Hiroki 357

G
Gaj, Kris 57
Gärtner, Joel 321
Genise, Nicholas 196
Goertzen, Jason 535
Güneysu, Tim 688
Guo, Qian 291

H
Huang, Yu-Hsuan 405

J
Jo, Hyungrok 141

K
Kahrobaei, Delaram 113
Kirshanova, Elena 167
Kogelheide, Lucie 688

L
Land, Georg 688
Ling, Cong 256
Loidreau, Pierre 38
Loyer, Johanna 225
Luengo, Ignacio 379

M
Manohar, Nathan 196
Maram, Varun 417
Mårtensson, Erik 291
Masny, Daniel 417
May, Alexander 167
Mendelsohn, Andrew 256
Mohajerani, Kamyar 57

N
Nemoz, Tristan 445
Newton, Christopher J. P. 565
Nowakowski, Julian 167

O
Oberhansl, Felix 658

P
Perret, Ludovic 113

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
T. Johansson and D. Smith-Tone (Eds.): PQCrypto 2023, LNCS 14154, pp. 713–714, 2023.
https://doi.org/10.1007/978-3-031-40003-2

https://doi.org/10.1007/978-3-031-40003-2

714 Author Index

R
Ramacher, Sebastian 601
Remaud, Maxime 505

S
Saarinen, Markku-Juhani O. 637
Sato, Shingo 141
Schink, Marc 658
Schrottenloher, André 505
Seifert, Jean-Pierre 476
Sendrier, Nicolas 91
Shahandashti, Siamak F. 113
Shikata, Junji 141
Stebila, Douglas 535
Steffen, Hauke 688
Striecks, Christoph 601
Strieder, Emanuele 658

T
Takagi, Tsuyoshi 357
Tillich, Jean-Pierre 505

U
Ulitzsch, Vincent Quentin 476

W
Wagner, Alexander 658
Wallace, Robert 57
Wang, Yalan 565
Wesselkamp, Vera 658

Z
Zappatore, Ilaria 3

	 Preface
	 Organization
	 Contents
	Code-Based Cryptography
	An Extension of Overbeck's Attack with an Application to Cryptanalysis of Twisted Gabidulin-Based Schemes
	1 Prerequisites
	1.1 Notation
	1.2 Rank Metric Codes
	1.3 Gabidulin Codes
	1.4 Twisted Gabidulin Codes
	1.5 GPT System and Variants

	2 On the Decoding of Gabidulin Codes and Their Twists
	2.1 An Important Remark on the Decoder of Gabidulin Codes
	2.2 Decoding Twisted Gabidulin Codes
	2.3 Discussion About the Claim
	2.4 A Remark on the Code that is Actually Decoded

	3 Revisiting Overbeck's Attack
	3.1 A Distinguisher
	3.2 The Structure of i(Gpub)
	3.3 Overbeck's Attack
	3.4 Analyzing the Dimension of i (Cpub) for Small i's
	3.5 Puchinger, Renner and Wachter–Zeh Variant of GPT

	4 An Extension of Overbeck's Attack
	4.1 Sketch of the Attack
	4.2 Some Algebraic Preliminaries
	4.3 Description of Our Extension of Overbeck's Attack
	4.4 Summary of the Attack
	4.5 Discussions and Simplifications
	4.6 Complexity
	4.7 Discussion About the Claims on Conductors and Stabilizers

	5 Don't Twist Again
	5.1 A Distinguisher
	5.2 The Structure of i(GTpub)
	5.3 Attacking the System for Small i's

	References

	Cryptanalysis of Rank-Metric Schemes Based on Distorted Gabidulin Codes
	1 Introduction
	2 Preliminaries on the Rank Metric
	3 Loidreau Cryptosystem
	3.1 Description of the Scheme
	3.2 Security

	4 A Constrained Linear System for Decryption
	5 Combinatorial Approach
	6 A Bilinear System
	7 Tools to Analyze System 1
	7.1 Algebraic Background
	7.2 Understanding the Projection Over Fq

	8 Degree Fall Polynomials from Jacobians
	8.1 Jacobian with Respect to the R Variables
	8.2 Jacobian with Respect to the Cj Variables
	8.3 Approach Based on Degree Fall Polynomials

	9 Conclusion
	References

	A High-Performance Hardware Implementation of the LESS Digital Signature Scheme
	1 Introduction
	2 Previous Work
	3 Background
	3.1 Generator, Permutation, and Monomial Matrices
	3.2 LESS

	4 Hardware Architecture
	4.1 Top Level Architecture
	4.2 Submodule Design
	4.3 Operation Scheduling

	5 Results
	5.1 Software Comparison
	5.2 Comparison with Other Digital Signature Schemes

	6 Conclusions
	References

	Wave Parameter Selection
	1 Introduction
	2 Preliminaries
	2.1 Error Correcting Code
	2.2 Decoding Problem
	2.3 Generalized Ternary (U|U+V) Code
	2.4 The Wave Signature Scheme
	2.5 Weight Distribution and (U|U+V)-Specific Codewords

	3 q-ary Information Set Decoding (ISD)
	3.1 An ISD Framework
	3.2 ISD-MMT
	3.3 ISD-GBA

	4 Best Known Attacks on Wave
	4.1 Forgery Attack
	4.2 Key Attack
	4.3 Wave Parameter Selection
	4.4 Sizes
	4.5 Scaling Security
	4.6 Quantum Security

	5 Conclusion
	References

	Group-Action-Based Cryptography
	SPDH-Sign: Towards Efficient, Post-quantum Group-Based Signatures
	1 Preliminaries
	1.1 The Semidirect Product
	1.2 Proofs of Knowledge and Identification Schemes
	1.3 Signature Schemes

	2 A Novel Connection to a Group Action
	2.1 Semidirect Discrete Logarithm Problem

	3 SPDH-Sign
	3.1 An Identification Scheme
	3.2 A Digital Signature Scheme

	4 On the Difficulty of SDLP
	4.1 Dihedral Hidden Subgroup Problem
	4.2 Semidirect Computational Diffie-Hellman

	5 A Candidate Group
	6 Conclusion
	References

	Isogeny-Based Cryptography
	A Tightly Secure Identity-Based Signature Scheme from Isogenies
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve and Ideal Class Group
	2.2 Lossy Identification Schemes
	2.3 Identity-Based Signatures
	2.4 Hardness Assumptions

	3 The Lossy CFI-FiSh Scheme
	3.1 The Lossy CFI-FiSh

	4 Tightly Secure IBS from Lossy CSI-FiSh
	4.1 Construction
	4.2 Security Analysis

	5 Conclusion
	References

	Lattice-Based Cryptography
	New NTRU Records with Improved Lattice Bases
	1 Introduction
	1.1 Our Results
	1.2 Future Work
	1.3 Organization of Our Paper

	2 Preliminaries
	2.1 Notations
	2.2 Lattices
	2.3 Lattice Reduction

	3 NTRU
	3.1 NIST Submission
	3.2 NTRU Challenges

	4 Lattice Reduction with a Hint
	5 Choosing Lattices for NTRU-HPS and NTRU-HRSS
	5.1 The Coppersmith-Shamir Lattice
	5.2 The Cyclotomic Lattice and the Projected Cyclotomic Lattice
	5.3 Further Improvement by Exploiting Design Choices

	6 Experimental Results for HRSS and HPS
	6.1 NTRU-HRSS
	6.2 NTRU-HPS
	6.3 Comparison Between HRSS and HPS, and Implications

	7 New NTRU Record: n = 181
	7.1 Choosing a Lattice for the NTRU Challenges
	7.2 Record Computation Details

	References

	On the Hardness of Scheme-Switching Between SIMD FHE Schemes
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Works
	1.4 Organization

	2 Preliminaries
	2.1 RLWE SIMD Schemes
	2.2 Useful Lemmas
	2.3 Bootstrapping Circuits for BGV and CKKS

	3 Homomorphic Scheme-Switching
	3.1 Weak Scheme-Switching Oracles
	3.2 Strong Scheme-Switching Oracles

	4 Bootstrapping via a Weak Scheme-Switching Oracle
	4.1 Bootstrapping in CKKSfrom a BGV-to-CKKS Oracle
	4.2 Bootstrapping in BGVfrom a CKKS-to-BGV Oracle
	4.3 Switching Between Schemes Using Bootstrapping

	5 Bootstrapping via a Comparison Oracle
	5.1 Comparison Oracles
	5.2 Bootstrapping in CKKS from Comparisons
	5.3 Bootstrapping in BGV from Comparisons

	6 Conclusion
	References

	Classical and Quantum 3 and 4-Sieves to Solve SVP with Low Memory
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computing
	2.2 Lattice Sieving
	2.3 Configurations

	3 Code Structure and Filtering
	3.1 Locality Sensitive Filtering
	3.2 Residual Vectors in Filter

	4 Framework
	5 Classical Sieving
	5.1 Classical 2-Sieve
	5.2 Classical 3-Sieve
	5.3 Classical 4-Sieve

	6 Quantum Sieving
	6.1 Quantum 3-Sieve
	6.2 Quantum 4-Sieve

	References

	NTRU in Quaternion Algebras of Bounded Discriminant
	1 Introduction
	2 Preliminaries
	3 NTRU
	4 Cyclic Division Algebras
	5 NTRU in CDAs
	6 Results on q-Ary Lattices
	7 An NTRU Key Generation Algorithm
	8 A Provably Secure NTRU-Based Scheme
	9 Conclusion
	A Proofs
	B Choosing Parameters and Number Fields
	C Sketched Cryptographic Functionality
	References

	Do Not Bound to a Single Position: Near-Optimal Multi-positional Mismatch Attacks Against Kyber and Saber
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Organization

	2 Background
	2.1 CPA-Secure Version of Kyber
	2.2 CPA-Secure Version of Saber
	2.3 The Threat Model – Mismatch Attack Model
	2.4 Huffman Coding

	3 One-Positional Mismatch Attacks
	3.1 Kyber
	3.2 Saber
	3.3 The Lower Bounds from ch11AC21:QCZPHD
	3.4 The Practical Mismatch Attacks from ch11AC21:QCZPHD
	3.5 On the Performance of the Mismatch Attacks from ch11AC21:QCZPHD

	4 Multi-positional Mismatch Attacks
	4.1 Two-Positional Mismatch Attacks on Kyber
	4.2 Two-Positional Mismatch Attacks on Saber
	4.3 Hyperrectangular Cuts
	4.4 The Optimization Problem
	4.5 Comparisons

	5 Discussions
	5.1 Room for Further Improvements
	5.2 Post-processing with Lattice Reduction
	5.3 Relation to Side-Channel and Fault-Injection Attacks

	6 Conclusions and Future Work
	References

	NTWE: A Natural Combination of NTRU and LWE
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Outline

	2 Background
	2.1 Notation
	2.2 Lattices
	2.3 Algebraic Number Theory
	2.4 LWE and NTRU
	2.5 Lattice Reduction

	3 The NTWE Problem
	3.1 Relation to Other Problems

	4 The NTWE Lattice Problems
	4.1 NTRU Problem
	4.2 Module-LWE Problem
	4.3 NTWE Problem

	5 Our Cryptosystem
	5.1 Security
	5.2 Correctness of Decryption
	5.3 Comparison to Other Cryptosystems

	6 Example Parametrizations
	6.1 Skewed Parameters
	6.2 Parameters Similar to Kyber
	6.3 Parameters Combining NTRU and LWE

	7 Final Remarks
	References

	Multivariate Cryptography
	Fast Enumeration Algorithm for Multivariate Polynomials over General Finite Fields
	1 Introduction
	2 Classical Approach
	3 Enumeration Algorithm of Bouillaguet et al.
	3.1 Notations
	3.2 Enumeration Algorithm

	4 Our Proposed Algorithms
	4.1 Notations
	4.2 Enumeration Order
	4.3 Data Structure
	4.4 Successive Classification of Inputs
	4.5 Our Enumeration Algorithm
	4.6 Complexity

	5 Conclusion
	A Application to Solving Polynomial Equations
	B Toy Example of Our Enumeration
	C Magma Code
	References

	DME: A Full Encryption, Signature and KEM Multivariate Public Key Cryptosystem
	1 Introduction
	2 Mathematical Description of DME
	3 Computing the Public Key F
	3.1 Computing the Monomials of F
	3.2 Computing the Coefficients of the Public Key F

	4 DME as a Trapdoor One Way Permutation
	5 Set up of the DME
	5.1 The Configuration Matrices
	5.2 Reduction of the Number of Monomials

	6 Security of the DME
	6.1 Gröbner Basis
	6.2 Weil Descent
	6.3 Estimation of the Number of Monomials of the Inverse
	6.4 Structural Cryptanalysis

	7 Implementation and Timings
	References

	Quantum Algorithms, Cryptanalysis and Models
	On the Quantum Security of HAWK
	1 Introduction
	2 Preliminary
	2.1 Setting up the Stage
	2.2 Geometric Units
	2.3 Adaptive Reprogramming Lemma

	3 Brief Recap on HAWK and the One-More SVP
	4 Quantum Security of HAWK
	4.1 Warming Up: NMA Security
	4.2 Full CMA Quantum Security
	4.3 Classical Security

	A More Proofs
	References

	Non-Observable Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Quantum Random Oracle Model (QROM)
	2.2 Commitments
	2.3 Other Basic Cryptographic Primitives

	3 The Non-Observable Quantum Random Oracle Model
	4 Extractable Non-Malleable Commitments in the NO QROM
	5 Signature Schemes in the NO QROM
	5.1 Signatures with History-Free Reductions
	5.2 FDH Based Signature Schemes

	6 Hinting PRGs in the NO QROM
	References

	Characterizing the qIND-qCPA (In)security of the CBC, CFB, OFB and CTR Modes of Operation
	1 Introduction
	1.1 Context and Results
	1.2 Our Contributions
	1.3 Previous Work

	2 Prerequisites
	2.1 Notations and Definitions
	2.2 Lemmas
	2.3 IND-qCPA Security of CBC, CFB, CTR and OFB

	3 Our Results
	3.1 qIND-qCPA-P13 Insecurity of CTR and OFB
	3.2 qIND-qCPA-P13 Insecurity of CFB
	3.3 qIND-qCPA-P13 Insecurity of CBC
	3.4 General Results and Discussion

	4 Conclusion
	A Adapting Anand et al.'s Work to the More General IND-qCPA Notions
	A.1 Definitions
	A.2 Lemmas
	A.3 IND-qCPA Security of CTR and OFB
	A.4 Potential IND-qCPA Insecurity of CFB Used with a PRP
	A.5 Potential IND-qCPA Insecurity of CBC Used with a PRP
	A.6 IND-qCPA Security of CBC and CFB Used with a qPRP

	References

	Breaking the Quadratic Barrier: Quantum Cryptanalysis of Milenage, Telecommunications' Cryptographic Backbone
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Notation
	2.2 The AKA Protocol and Milenage Algorithms
	2.3 Classical Cryptanalysis of Milenage algorithms
	2.4 Quantum Computation
	2.5 Attacker Model

	3 The Quantum Cryptanalysis Toolbox
	3.1 Grover's Algorithm: Fast Unstructured Search
	3.2 Simon's Algorithm: Quantum Period Finding
	3.3 Offline Simon's Algorithm: Attacks Without Superposition Queries

	4 Quantum Cryptanalysis of the Milenage Algorithms
	4.1 The Grover Key Recovery for f1, …, f5
	4.2 Quantum Slide Attacks Against f2
	4.3 Existential Forgery of f1
	4.4 Quantum Related Key Attacks Against f1, …, f5

	5 Discussion
	6 Conclusion
	A List of Abbreviations
	B The AKA Protocol
	C Proof of the Hidden Period Required for the Quantum Slide Attack
	D Proof of the Hidden Period Required for the Existential Forgery Attack
	References

	Time and Query Complexity Tradeoffs for the Dihedral Coset Problem
	1 Introduction
	2 Preliminaries
	2.1 Phase Vectors and Kuperberg's First Algorithm
	2.2 Regev's Algorithm
	2.3 Kuperberg's Second Algorithm
	2.4 The Subset-Sum Problem

	3 Reducing DCP To a Subset-Sum Problem
	3.1 Using a Classical Subset-Sum Solver
	3.2 Using a Quantum Subset-Sum Solver

	4 Interpolation Algorithm
	5 Quantum Subset-Sum Algorithms
	5.1 Algorithms Based on Representations
	5.2 From Asymptotic to Exact Optimizations
	5.3 Solving Subset-Sum in Superposition

	References

	Post-Quantum Protocols
	Post-Quantum Signatures in DNSSEC via Request-Based Fragmentation*-4pt
	1 Introduction
	1.1 Our Contributions

	2 The Domain Name System
	3 Request-Based Fragmentation
	3.1 Resource Record Fragments
	3.2 Using RRFRAGs
	3.3 Example Execution of ARRF
	3.4 Caching and DNSSEC Considerations

	4 Evaluation
	4.1 Experiment Setup
	4.2 Algorithm Performance
	4.3 Post-quantum with Standard DNSSEC
	4.4 Post-quantum with ARRF
	4.5 Data Transmission
	4.6 Results

	5 Discussion
	5.1 Performance
	5.2 Backwards Compatibility
	5.3 Security Considerations
	5.4 Comparing ARRF against Previous DNS Fragmentation Proposals

	6 Future Work
	7 Conclusion
	A Appendix – Performance Graphs
	References

	Hash-Based Direct Anonymous Attestation
	1 Introduction
	2 Preliminaries
	2.1 Hash-Based Signatures
	2.2 MPC-in-the-Head and Picnic-Style Signatures
	2.3 DAA Concept

	3 Construction
	3.1 F-SPHINCS+ and M-FORS
	3.2 The DAA Scheme
	3.3 The Proof D

	4 Security Analysis of F-SPHINCS+
	5 Soundness Analysis of D
	6 UC Security Model for DAA
	7 UC Security Proof of the DAA Scheme
	7.1 High-Level Description of Our Proof
	7.2 The DAA Scheme Proof

	8 Conclusion
	References

	Muckle+: End-to-End Hybrid Authenticated Key Exchanges
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Cryptographic Primitives and Schemes
	2.2 Hybrid Authenticated Key Exchange

	3 Extending Muckle with Signature-Based Authentication
	3.1 Muckle
	3.2 Extending Muckle with Signature-Based Authentication
	3.3 Security of Muckle+
	3.4 Instantiating Muckle+

	4 Implementation and Evaluation
	5 Conclusion and Outlook
	References

	Side-Channel Cryptanalysis and Countermeasures
	WrapQ: Side-Channel Secure Key Management for Post-quantum Cryptography
	1 Introduction
	1.1 Side-Channel Countermeasures for Lattice Cryptography
	1.2 Sensitivity Analysis: Private Keys and Secret Variables
	1.3 Outline of this Work and Our Contributions

	2 Masked Key Wrapping
	2.1 High Level Interface

	3 WrapQ 1.0 Design Outline
	3.1 Design Choices
	3.2 Masked XOF and Domain Separation
	3.3 Integrity Protection: Masked MAC Computation
	3.4 Confidentiality Protection: Encrypting Masked Plaintext

	4 Kyber and Dilithium Private Keys
	4.1 CRYSTALS-Kyber
	4.2 CRYSTALS-Dilithium

	5 Parameter Selection and Algorithm Analysis
	5.1 Wrapping Process
	5.2 Unwrapping Process
	5.3 Size Metrics

	6 Implementation and Leakage Assessment
	6.1 FPGA Platform Overview
	6.2 Implementation Overview
	6.3 Leakage Assessment: Fixed-vs-Random Experiments
	6.4 Trace Acquisition and Results

	7 Conclusions and Future Work
	References

	Faulting Winternitz One-Time Signatures to Forge LMS, XMSS, or SPHINCS+ Signatures
	1 Introduction
	2 Hash-Based Signatures
	2.1 Winternitz One-Time Signatures
	2.2 LMS, XMSS, and SPHINCS+

	3 Attack Sketch
	3.1 Brute-Force Forgery of WOTS
	3.2 Fault Attack on WOTS Checksum Chains
	3.3 Faulting WOTS to Break LMS, XMSS, and SPHINCS+
	3.4 Attack Variants
	3.5 Adversarial Model

	4 Probabilistic Analysis
	4.1 Probabilities
	4.2 Probabilities wrt. Adversary Capabilities

	5 Countermeasures
	6 Attack in Practice
	6.1 Brute-force Forgery of WOTS
	6.2 Fault Attack on HBSs

	7 Conclusion
	References

	Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium in Hardware
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 CRYSTALS-Dilithium
	2.3 Side-Channel Analysis

	3 Conceptual Considerations
	3.1 Bit-Packing and Decoding of Secret Polynomials s1,s2
	3.2 Number-Theoretic Transform
	3.3 Polynomial Multiplication
	3.4 Measurement Setup

	4 Simple Power Analysis
	4.1 Targeting Single Coefficients
	4.2 Extension to Multiple Coefficients
	4.3 Attack on =4

	5 Correlation Power Analysis on the Polynomial Multiplication
	5.1 Power Model
	5.2 Noise
	5.3 Attacks

	6 Countermeasures
	6.1 Integration of Decoding into the First NTT Stage
	6.2 Masking
	6.3 Evaluation

	7 Discussion and Future Work
	References

	Author Index

