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Abstract. The analysis of the additional properties of fuzzy implica-
tion functions often leads to studying some functional equations. Among
them, the solution of a multiplicative Sincov’s type equation connected
with the characterization of power-based implications was recently pub-
lished. In this paper, we provide a counterexample of this previous result,
and the corrected result is presented, describing all fuzzy implication
functions that satisfy the equation. Finally, we illustrate the result with
several examples.
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1 Introduction

In the last decades, one of the leading research lines on the topic of fuzzy impli-
cation functions is the study of the additional properties that these operators
may fulfil [2]. This research line is boosted by two crucial features of fuzzy impli-
cation functions. First of all, the not-so-demanding axioms of their definition
allow the existence of a plethora of families of these operators, each of these
with their own expression, method of construction, and additional properties.
Second, many of these additional properties are not exclusively connected with
one of such families, but members of different families can fulfill them. Therefore,
in some recent studies, an additional property is fixed, and the corresponding
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functional equation is solved, finding all those fuzzy implication functions fulfill-
ing the property. As important examples, we can highlight the law of importation
[9], the distributivity properties [5] or the invariance property [6], among many
others.

One of the functional equations which has been studied recently is a multi-
plicative version of Sincov’s functional equation given by

I(x, y) · I(y, z) = I(x, z), 1 > x > y > z > 0, (1)

where I is a fuzzy implication function. The importance of this functional equa-
tion is twofold. Namely, it is used in [8] to characterize the family of power based
implications, and moreover, the fulfilment of Eq. (1) in the domain x ≤ y ≤ z is
a necessary and sufficient condition for being a unidimensional T ′-preorder, with
T ′ the product t-norm (see [4]). In [3], a generalization of this functional equa-
tion by understanding the internal product as the product t-norm and changing
it to a general arbitrary continuous Archimedean t-norm was deeply analysed.
Focusing on the original Eq. (1), due to its importance, in [1], a characterization
result of all fuzzy implication functions satisfying Eq. (1) was presented. Unfor-
tunately, as it will be proved later in this paper, that characterization result is
not entirely correct, and a revision is needed. This constitutes the main contri-
bution of this paper. First, we will present an example of a fuzzy implication
function satisfying Eq. (1) but not being a solution provided by the characteriza-
tion theorem. After that, a new characterization result that provides the solution
to our problem will be proved jointly with several examples that illustrate the
result.

The structure of the paper is as follows. After the preliminaries, in Sect. 3, the
characterization result given in [1] is recalled, and the counterexample proving
that the result needs revision is presented. Then, in Sect. 4, the corrected result
is proved along with some illustrative examples. Finally, the paper ends with
some concluding remarks.

2 Preliminaries

In this section, we will recall the basic definitions and concepts of fuzzy impli-
cation functions that will be used throughout the paper. First, the definition of
a fuzzy implication function is provided.

Definition 1 ([2, Definition 1.1.1.]). A binary operation I : [0, 1]2 → [0, 1] is
said to be a fuzzy implication function if it satisfies, for all x, y, z ∈ [0, 1]:

(I1) I(x, z) ≥ I(y, z), when x ≤ y,
(I2) I(x, y) ≤ I(x, z), when y ≤ z,
(I3) I(0, 0) = I(1, 1) = 1, and I(1, 0) = 0.

From the definition it is clear that I(0, x) = I(x, 1) = 1 for all x ∈ [0, 1].
However, neither I(x, 0) nor I(1, x) are determined for all x ∈ (0, 1). This flex-
ibility allows the potential fulfilment of many additional properties from which
we recall next to the ordering property, which will be used later.
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Definition 2 ([2, Definition 1.3.1.]). We say that a fuzzy implication function
I satisfies the ordering property, if:

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

On the other hand, the monotonicities of the fuzzy implication function imply
the following straightforward result.

Lemma 1. Let I : [0, 1]2 → [0, 1] be a fuzzy implication function. Define

QI := {(x, y) ∈ [0, 1]2 : x > y and I(x, y) = 1}.

Then it holds that I(u, v) = 1 for each (u, v) ∈ RI , where

RI :=
⋃

{[0, x] × [y, 1] : (x, y) ∈ QI}. (2)

3 Previous Characterization Result and Counterexample

In [1], the characterization result that was presented for the fuzzy implication
functions satisfying Eq. (1) stated as follows.

Theorem 1 ([1, Theorem 14]). Let I be a fuzzy implication function. If
I solves Eq. (1), then there exist y0 ∈ [0, 1] and a non-increasing function
f : (y0, 1) → (0,+∞) such that I is given by:

I(x, y) =

{
f(x)
f(y) , if y ∈ (y0, 1), x ∈ (y, 1),

0, if y ∈ [0, y0), x ∈ (y, 1).
(3)

Conversely, for every point y0 ∈ [0, 1] and for every function f : (y0, 1) →
(0,+∞), every mapping I : [0, 1]2 → R which on the set

{(x, y) ∈ [0, 1] | y ∈ (y0, 1), x ∈ (y, 1) or y ∈ [0, y0), x ∈ (y, 1)}
is given by Eq. (3) is a solution to Eq. (1) postulated for all x, y, z ∈ [0, 1] such
that 1 > x > y > z > y0.

As it has been already aforementioned, this theorem contains an error and
not every solution can be described in such way. Indeed, let us define an example
of a fuzzy implication function which satisfies Eq. (1) but it is not of the form
given by Eq. (3):

Example 1. Let us define the following operator I : [0, 1]2 → [0, 1] given by:

I(x, y) =

{
1, if (x ≤ y) or (x < 1

2 ) or (y > 1
2 ),

0, otherwise.
(4)

Figure 1 gives the structure of I. It is easy to check that such a function is a fuzzy
implication function. Now, on the one hand, by a simple computation, it can be
proved that this implication fulfils Sincov’s equation (1). However, it is clear
that this implication cannot be written in the form of Eq. (3). Consequently,
this results in a counterexample of Theorem 1, which needs a deep revision.
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Fig. 1. Plot of the fuzzy implication function used in Example 1.

This example can be easily generalized. Indeed, there is nothing special about
point 1

2 used in the construction, and we can take any y0 ∈ (0, 1). Moreover, the
fuzzy implication function does not need to be constant on the two triangles
with vertices:

– (0, 0), (y0, y0), (y0, 0),
– (y0, y0), (1, y0), (1, 1).

Example 2. Let us consider y0 ∈ (0, 1) and the non-increasing functions
f : (y0, 1) → (0,+∞) and g : (0, y0) → (0,+∞). Then the binary operator
I : [0, 1]2 → [0, 1] given by

I(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x ≤ y,
f(x)
f(y) , if y ∈ (y0, 1), x ∈ (y, 1),
g(x)
g(y) , if x ∈ (0, y0), y ∈ (0, x),

0, otherwise,

is a fuzzy implication function which is a solution of Eq. (1). In Fig. 2 the struc-
ture of I is depicted. However, again it is easy to check that it cannot be written
in the form of Eq. (3).

4 New Characterization Result

The main goal of this section is to present a new characterization result that
fixes Theorem 1.
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Fig. 2. Plot of the fuzzy implication function used in Example 2.

Assume that J is a nontrivial interval and denote ΔJ := {(s, t) ∈ J2 : s ≤ t}.
Gergely Kiss and Jens Schwaiger in [7] proved the following result.

Theorem 2 (see [7, Theorem 3.11]). Let f : ΔJ → R be a solution of

f(s, t) · f(t, u) = f(s, u), (s, t), (t, u) ∈ ΔJ . (5)

Then there exists a countable (possibly empty) family S of pairwise disjoint non-
trivial intervals I ⊆ J and a function d :

⋃
I∈S I → R\{0} such that

f(x, y) =
d(y)
d(x)

, x, y ∈ I, I ∈ S, x ≤ y. (6)

Moreover, fixed I ∈ S, x ∈ I and y, z ∈ (J\I) such that z < x < y, then

f(x, y) = f(z, x) = 0.

Further,

f(x, x) =
{

1, if x ∈ ⋃
I∈S I,

1 or 0, otherwise.

Moreover, as it was observed in the last sentence of the proof of this theorem, it
holds also that f(x, y) = 0 if x, y /∈ ⋃

I∈S I and x < y.
We will apply the above theorem to obtain a new characterization of the fam-

ily of fuzzy implication functions fulfiling Eq. (1) amending the gap in Theorem
1, our earlier result.
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Corollary 1. Let I : [0, 1]2 → [0, 1] be a fuzzy implication which satisfies Eq. (1).
Then, there exists a countable (possibly empty) family S of pairwise disjoint non-
trivial intervals I ⊆ [0, 1] and a non-increasing function d :

⋃
I∈S I → [0,+∞)

such that:

(a) if x, y ∈ I with I ∈ S and x > y, then I(x, y) = d(x)/d(y),
(b) if x > y and x, y do not belong to the same member of S (or one or both of

them are outside the set
⋃ S), then I(x, y) = 0,

(c) if x < y and x ∈ int
⋃

I∈S I, then I(x, y) = 1.

Conversely, for every countable family S of pairwise disjoint nontrivial inter-
vals I ⊆ [0, 1] and every non-increasing function d :

⋃
I∈S I → [0,+∞), the map

I : [0, 1]2 → [0, 1] described by (a), (b), (c) satisfies Eq. (1). Moreover, if I is
mixed monotone (in the sense of Definition 1) on the (possibly empty) set that
is not covered by (a), (b), (c), then it is a fuzzy implication function.

Proof. Assume that I is a fuzzy implication function that satisfies Eq. (1). We
will follow the idea of [7, Remark 3.15]. Define f : Δ[0,1] → [0, 1] as f(x, y) =
I(y, x) when x < y and f(x, x) = 1 for x ∈ [0, 1]. One can see that f is a
solution of Eq. (5) on Δ[0,1]. By Theorem 2 there exists a family S of disjoint
nontrivial intervals I ⊆ J = [0, 1] and a function d :

⋃
I∈S I → R\{0} such that

Eq. (6) holds. Further, by the same theorem, I(x, y) = f(y, x) = 0 for x > y
in the following two cases: (x, y /∈ ⋃

I∈S I) or (x ∈ I with I ∈ S and y /∈ I).
Therefore, (b) holds. Since I attains only non-negative values, we can assume
that d :

⋃
I∈S I → (0,+∞). We thus have

I(x, y) =
d(x)
d(y)

, x, y ∈ I, I ∈ S, x > y. (7)

It is important to remember that I(x, x) needs not to be equal to f(x, x), thus
we have excluded in Eq. (7) the possibility x = y. Thus, (a) holds. Moreover,
without loss of generality, thanks to (I3), we may assume that d(0) = 1.

At this point, since map d is monotone, has at most countably many points
of discontinuity. Moreover, d is bounded on every closed subinterval contained in⋃

I∈S I. Therefore, the value I(x, y) is arbitrarily close to 1 when x, y ∈ [x0, y0] ⊆
I are such that x > y and x approaches to y. Consequently, using Lemma 1, for
every x, y ∈ [0, 1] such that x < y and x ∈ int

⋃
I∈S I we have I(x, y) = 1, thus

(c) holds. Further, since I is non-decreasing with respect to the second variable,
then the map d is non-increasing on each interval from the family S.

Conversely, any function I : [0, 1]2 → [0, 1] described by (a), (b), (c), for any
countable family S of pairwise disjoint nontrivial intervals I ⊆ [0, 1] and any
non-increasing function d :

⋃
I∈S I → [0,+∞), it is easy to check that Eq. (1)

holds. We cannot ensure that
⋃

I∈S I ⊇ [0, 1] as it can be seen in Fig. 3. Thus
we have to assume monotonicity for points x, y /∈ ⋃

I∈S I, for I to be a fuzzy
implication function. ��

Note that each fuzzy implication function, continuous or not, such that
I(x, y) = 0 for x > y trivially solves Eq. (1). In this case the family S is empty.
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Fig. 3. In the above example S = {(x1, x2)}, and d is strictly monotone on (x1, x2).
The set QI is empty, I is discontinuous and not determined everywhere on [0, 1]2 and
(OP) may hold or not.

We can see exemplary application of Corollary 1 in Fig. 4. Such fuzzy implication
function can be constant and equal to 1 on some intervals for x > y.

Next, we will deal with the continuous case.

Corollary 2. Assume that I : [0, 1]2 → [0, 1] is a continuous fuzzy implication
function that satisfies Eq. (1). Then there exists a continuous and non-increasing
function d : [0, 1] → [0, 1] such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1
and

I(x, y) =
d(x)
d(y)

, x, y ∈ [0, 1], x > y (8)

with the convention 0/0 = 1. Moreover, in this case I satisfies (OP) if and only
if d is decreasing.

Conversely, for every continuous and non-increasing function d : [0, 1] →
[0, 1] such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1, the map
I : [0, 1]2 → [0, 1] defined by (8) and I(x, y) = 1 for x ≤ y satisfies Eq. (1)
and is a fuzzy implication function. Moreover, it satisfies (OP) if and only if d
is decreasing.

Proof. Let us assume that I is a continuous fuzzy implication function that
satisfies (1). From Corollary 1, we know that there exist a family S and a non-
increasing function d such that (a), (b) and (c) hold. Continuity of d follows from
continuity of I. Moreover, the continuity of I implies that either

⋃
I∈S I = ∅ or⋃

I∈S I ⊇ (0, 1) since otherwise I would have a 1 − 0 discontinuity at each point
(x0, x0) ∈ [0, 1]2 such that x0 ∈ (0, 1)\ ⋃

I∈S I.
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Fig. 4. In the above example S = {(0, x1), (x2, x3), (x4, 1)}, d(x) = 1 on (0, x1) ∪
(x4, 1) and d is arbitrary monotone on (x2, x3) and constant on (v, x3). Moreover, I is
discontinuous and not determined everywhere on [0, 1]2 and (OP) does not hold.

However, the case
⋃

I∈S I = ∅ also leads to a contradiction with continuity.
Using (b) we can see that I(x, y) = 0 for x > y, but from (I3) we also know
that I(1, 1) = 1. So if we take an arbitrary non-decreasing sequence (xn)N, such
that xn ∈ [0, 1] and limn→+∞ xn = 1, then limn→+∞ I(1, xn) = 0 
= 1 = I(1, 1).
Thus such solutions do not exist.

Therefore, the only viable case is when
⋃

I∈S I ⊇ (0, 1). In that case, function
d has finite limits at 0 and 1, and thus it can be continuously extended to [0, 1].
From the proof of Corollary 1, we know that without loss of generality, d(0) = 1.
Note that the last part of the condition (I3) implies that [0, 1] /∈ S. Therefore,
if we want to extend the map d in such a way that it is defined at 1, then
necessarily d(1) = 0. This, in turn, implies that because of the second part of
(I3), one needs to adopt a convention that 0/0 = 1. After this agreement, Eq.
(7) covers the cases I(1, 1) and I(1, 0) as well. As a consequence, Eq. (7) holds
for all x, y ∈ [0, 1] such that x > y.

Conversely, if we consider map I : [0, 1]2 → [0, 1] defined by Eq. (8) and
I(x, y) = 1 for x ≤ y, where d : [0, 1] → [0, 1] is an arbitrary continuous and non-
increasing function such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1, then it
is easy to check that I satisfies Eq. (1) and is a fuzzy implication function.

Regarding (OP), we know that if
⋃

I∈S I ⊇ (0, 1), then I(x, x) = 1 for all
x ∈ [0, 1]. From this, it also follows that I(x, y) = 1 for all x, y ∈ [0, 1], such
that x ≤ y. If d is constant on a nontrivial subinterval [v, u] ⊆ ⋃

I∈S I, then by
Eq. (7) we get I(u, v) = 1. Conversely, if I(u, v) = 1 for some u > v, then d is
constant on [v, u]. Thus, I satisfies (OP) if and only if d is decreasing.
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5 Conclusions

In this paper, we obtained a description of fuzzy implication functions that
satisfy the multiplicative Sincov’s functional equation described in Eq. (1). With
this contribution, we corrected a gap in our earlier work [1], and we supplemented
the research with some illustrative examples. The new characterization result is
based on a new result of Kiss and Schwaiger, published in [7], that deals with
the Sincov’s equation. From these papers, this equation shows its importance in
information science and economy. We believe further studies on the topic will
bring new interesting results and further applications of the equation.
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